

# TUBE MANUAL

EIMAC division of varian SAN CARLOS, CALIFORNIA



### DIVISION OF VARIAN

301 Industrial Way San Carlos, California

# TABLE OF CONTENTS 9-1-75

Printed in U.S.A.

### TABLE OF CONTENTS

| GENERAL                                 | TRIODES                                |
|-----------------------------------------|----------------------------------------|
| Tube Type Numbering                     | 3-400Z/8163 8-15-74                    |
| System                                  | 3-500Z                                 |
| Table of Contents 9-1-75                | 3-1000Z/8164 8-15-74                   |
| Index                                   | 3C24                                   |
| EIMAC and JEDEC Cross                   | 3CV1500A7 6-15-71                      |
| Reference List 2-15-75                  | 3CV30,000A33-1-67                      |
| Power Grid Selection Guide 2-15-75      | 3CV30,000H35-1-68                      |
| Varian/Eimac Electron Tube              | 3CW5000A1/8240 &                       |
| and Device Group Sales Offices          | 3CW5000F1/8241 5-15-71                 |
| Distributor Directory                   | 3CW5000A3/8242 1-11-74                 |
| = 15th batter Bricetory                 | 3CW5000F3/8243 see 3CW5000A3 3CW5000H3 |
|                                         |                                        |
| DIODES - RECTIFIERS                     | 3CW10,000H3                            |
|                                         | 3CW20,000A3                            |
| 2-01C 1-22-60                           | 3CW20,000A71-1-63                      |
| 2-450A                                  | 3CW20,000H3                            |
| 2-2000A                                 | 3CW20,000H75-15-74                     |
| 250R                                    | 3CW30,000H3                            |
| 253                                     | 3CW30,000H7 2-1-75                     |
| 575A & 673                              | 3CW40,000H38-1-67                      |
| 869B & 869BL                            | 3CX400U7/8961 8-1-74                   |
| 0000                                    | 3CX1000A7/8283 3-25-75                 |
| 8020 6-1-67                             | 3CX1500A7/8877                         |
|                                         | 3CX2500A3/8161                         |
| PLANAR TRIODES                          | 3CX2500F3/8251                         |
|                                         | 3CX2500H3                              |
| 2C39A see 7289                          | 3CX3000A1/8238                         |
| 3CX100A5 see 7289                       | 3CX3000F1/8239                         |
| 7211/7698 11-15-70                      | 3CX3000F7/8162 5-7-70                  |
| 7289/3CX100A5 11-1-71                   | 3CX5000H3                              |
| 7698 see 7211                           | 3CX10,000A1/8158 11-15-68              |
| 7815/7815R                              | 3CX10,000A3/8159 5-1-68                |
| 7815AL/7815RAL 7-1-70<br>7815R see 7815 | 3CX10,000A7/8160 2-1-73                |
| 7815R see 7815<br>7815RAL see 7815AL    | 3CX10,000H3                            |
| 7855/7855K 8-1-71                       | 3CX15,000A37-1-69                      |
| 7855AL/7855KAL 3-1-72                   | 3CX15,000A7                            |
| 7855K see 7855                          | 3CX15,000H3                            |
| 7855KAL see 7855AL                      | 3CX20,000A3                            |
| 8403 12-1-71                            | 3CX20,000A7                            |
| 8533                                    | 3W5000F3/8243 10-20-61                 |
| 8755/8755A                              | 35T                                    |
| 8755A see 8755                          | 35TG 6-1-67                            |
| 8757                                    | 75TH 12-15-65                          |
| 8847/8847A 6-1-70<br>8847A see 8847     | 75TL 4-1-67                            |
| 8892                                    | 100TH 4-1-67                           |
| 8893 6-1-70                             | 100TL                                  |
| 8906/8907                               | 152TH                                  |
| 8906AL/Y572AL 11-1-71                   | 152TL                                  |
| 8907 see 8906                           | 250TH 6-15-66<br>250TL                 |
| 8911 2-1-71                             | 304TH                                  |
| 8912 2-1-71                             | 304TL 6-1-67                           |
| 8933                                    | 450TH 12-15-65                         |
| Y572AL see 8906AL                       | 450TL 12-15-65                         |
|                                         | 592/3-200A3 6-15-66                    |
|                                         | 1000T 12-15-65                         |

1500T ..... 5-5-70

| TRIODES                      |                  | 4CX5000J/8909 10-1-71                   |
|------------------------------|------------------|-----------------------------------------|
| INIODES                      |                  | 4CX5000R/8170W 4-15-71                  |
| 2000T                        | 10-15-50         | 4CX10,000D/81711-1-72                   |
| 5867A                        | 11-15-64         | 4CX10,000J 2-1-72                       |
| 6696A                        | 10-15-64         | 4CX15,000A/8281                         |
| 6697A                        | 10-15-64         | 4CX15,000J/8910 10-15-71                |
| 7480                         | 11-1-68          | 4CX35,000C/8349 12-1-70                 |
| 8873/8874/8875               | 6-3-73           | 4W300B/8249 11-1-73                     |
| 8938                         | 5-15-73          | 4X150A/7034 & 7609 8-1-74               |
| 8963                         | 4-1-75           | 4X150G/8172 10-15-73                    |
|                              |                  | 4X500A 1-1-64                           |
|                              |                  | 6816,6884,7843                          |
| TETRODES                     |                  | 7609 see 4X150A/7034                    |
|                              |                  | 8560A 7-15-71                           |
| 4-65A/8165                   | 5-1-62           | 8876 6-15-71                            |
| 4-125A/4D21                  | 6-1-67           | 8930 12-1-73                            |
| 4-250A/5D22                  | 5-5-70           | 8954 6-1-74                             |
| 4-400A/8438                  | 7-20-70          | 8959                                    |
| 4-400C/6775                  | 4-1-71           | X2159 7-1-73                            |
| 4-500A                       | 3-10-72          |                                         |
| 4-1000A/8166                 | 10-30-66         |                                         |
| 4CN15A                       | 6-1-68           | PENTODES                                |
| 4CPX250K/8590                | 4-1-70           |                                         |
| 4CS250R                      | 9-1-70           | 5-125B/4E27A 8-15-52                    |
| 4CV8000A                     | 3-15-71          | 5-500A 5-1-68                           |
| 4CV20,000A                   | 6-1-68           | 5CX1500A                                |
| 4CV35,000A                   | 5-15-66          | 5CX3000A 8-1-67                         |
| 4CV50,000E                   | 5-1-70           | 264/8576 6-5-70                         |
| 4CV50,000J                   | 7-15-71          | 290                                     |
| 4CV100,000C/8351             | 2-1-68           | 8295A 1-15-73                           |
| 4CV250,000A                  | 3-1-72           | PILL CE MODELL ATORS                    |
| 4CW800B/F                    | 11-1-73          | PULSE MODULATORS                        |
| 4CW2000A/8244                | 6-15-71          | 4PR60C/8252W 6-30-71                    |
| 4CW10,000A/8661              | 4-15-63          | 4PR65A/8187 2-15-63                     |
| 4CW25,000A                   | 2-1-72<br>7-1-70 | 4PR125A/8247                            |
| 4CW50,000E                   | 7-1-70           | 4PR250C/8248                            |
| 4CW50,000J                   | 7-13-71          | 4PR400A/8188 9-15-65                    |
| 4CW100,000B                  | 9-1-70           | 4PR1000A/8189 12-15-65                  |
| 4CW250,000A                  | 3-1-71           | 6C21                                    |
| 4CX125C/F                    | 6-1-67           | 0021                                    |
| 4CX250B/7203 & 4CX250FG/8621 | 8-1-74           | OTHER PRODUCTS                          |
| 4CX250BC/8957                | 1-1-74           | VIIIBN I NOPOULO                        |
| 4CX250K/8245 &               | 4 A / T          | VS-2, 4, 5 & 6                          |
| 4CX250M/8246                 | 5-1-68           | Preformed Contact                       |
| 4CX250R/7580W                | 6-16-61          | Finger Stock 6-15-71                    |
| 4CX300A/8167                 | 8-30-66          | HR Heat Dissipating                     |
| 4CX300Y/8561                 | 6-15-66          | Connectors                              |
| 4CX350A/8321 &               |                  | SK-300A 4-15-69                         |
| 4CX350F/8322                 | 6-15-65          | SK-306, SK-316 8-15-66                  |
| 4CX350FJ/8904                | 9-1-71           | SK-400 4-1-56                           |
| 4CX600B & 4CX600F            | 3-20-70          | SK-406, SK-416, SK-426 12-1-73          |
| 4CX600J/8809 &               |                  | SK-410                                  |
| 4CX600JA/8921                | 8-15-71          | SK-500                                  |
| 4CX1000A/8168                | 5-1-70           | SK-506, SK-516 4-15-69                  |
| 4CX1000K/8352                | 8-20-66          | SK-510                                  |
| 4CX1500A                     | 12-1-71          | SK-600A, SK-610A                        |
| 4CX1500B/8660                | 6-1-67           | SK-606, SK-626, SK-636B, SK-646 11-1-74 |
| 4CX3000A/8169                | 5-1-67           | SK-607 8-15-71                          |
| 4CX5000A/8170                | 4-15-69          | (Cont'd)                                |
|                              |                  | (Cont u)                                |



(Cont'd)

#### OTHER PRODUCTS

| SK-620, SK-620A<br>SK-630, SK-630A<br>SK-640<br>SK-650, SK-655<br>SK-700, SK-710<br>SK-711A, SK-712A<br>SK-740<br>SK-760, SK-770<br>SK-800B, SK-806 | 3-15-67<br>7-1-75<br>1-15-66<br>10-15-66<br>3-15-71<br>8-15-66 | SK-810B, SK-806 | 6-1-67<br>3-25-75<br>6-1-67<br>8-15-66<br>3-1-72<br>8-15-66<br>10-15-66<br>8-15-72 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|



#### **DIVISION OF VARIAN**

301 Industrial Way San Carlos, California 94070

# **INDEX**



| 100711            | _        |                          |    |                       |     |
|-------------------|----------|--------------------------|----|-----------------------|-----|
| 100TH             | Т        | 3CX10,000A3/8159         | Т  | 4CX600J/8809          | TET |
| 100TL             | Т        | 3CX10,000A7/8160         | Т  | 4CX600JA/8921         |     |
| 152TH             | Т        | 3CX10,000H3              | Т  | see 4CX600J           | TET |
| 152TL             | Т        | 3CX15,000A3              | Т  | 4CX1000A/8168         | TET |
| 1000T             | Т        | 3CX15,000 A7             | Т  | 4CX1000K/8352         | TET |
| 1500T             | Т        | 3CX15,000H3              | Т  | 4CX1500A              | TET |
| 250R              | R        | 3CX20,000A3              | Т  | 4CX1500B/8660         | TET |
| 250TH             | Т        | 3CX20,000 A7             | Т  | 4CX3000A/8169         | TET |
| 250TL             | Т        | 3CX20,000H3              | T  | 4CX5000A/8170         | TET |
| 253               | R        | 3W5000F3/8243            | Ť  | 4CX5000J/8909         | TET |
| 264/8576          | PE       | 450TH                    | Ť  | 4CX5000R/8170W        | TET |
| 290               | PE       | 450TL                    | Ť  | 4CX10,000D/8171       | TET |
| 2000T             | Т        | 4 4                      | ET |                       |     |
| 2-01C             | Ď        | A 400 A 4                |    | 4CX10,000J            | TET |
| 2-450 A           | R        | 4 050 A /5D 00           | ET | 4CX15,000A/8281       | TET |
| 2-2000A           | R        | 4.400.4/0.400            | ET | 4CX15,000J/8910       | TET |
| 2C39A see 7289    |          |                          | ET | 4CX35,000C/8349       | TET |
|                   | PL       | 4-400C/6775 T            | ET | 4D21 see 4-125A       | TET |
| 35T               | T        | 4-500A T                 | ΕT | 4E27A see 5-125B      | PE  |
| 35TG              | T        |                          | ET | 4PR60C/8252W          | PM  |
| 304TH             | <u>T</u> |                          | ET | 4PR65A/8187           | РМ  |
| 304TL             | T        | 4CPX250K/8590 T          | ET | 4PR125A/8247          | PM  |
| 3-200A3 see 592   | Т        |                          | ΕT | 4PR250C/8248          | PM  |
| 3-400Z/8163       | Т        |                          | ΕT | 4PR400A/8188          | PM  |
| 3-500Z            | Т        | 101/00 000 1             | ET | 4PR1000A/8189         | PM  |
| 3-1000Z/8164      | Т        | 10110000                 | ET | 4W300B/8249           | TET |
| 3C24              | T        | 101/50 0000              | ET | 4X150A/7034 see 7609  |     |
| 3CV 1500 A7       | Т        | 4014                     | ET | 4×150×/7034 See 7609. | TET |
| 3CV30,000A3       | Т        | 1011100                  | ET | 4X150G/8172           | TET |
| 3CV30,000H3       | Т        | 4CV250,000A TE           |    | 4X500A                | TET |
| 3CW5000A1/8240    | Т        | 4CW800B TE               |    | 575A                  | R   |
| 3CW5000 A3/8242   | Т        | 4CW800F see 4CW800B . TE |    | 592/3-200A3           | T   |
| 3CW5000F1/8241    | Ť        | 4CW2000 A/8244 TE        |    | 5867A                 | Т   |
| 3CW5000F3/8243    | T        | 4CW10,000A TE            |    | 5-125B/4E27A          | PE  |
| 3CW5000H3         | Ť        |                          |    | 5-500A                | PE  |
| 3CW10,000H3       | Ť        | 4CW25,000A TE            |    | 5CX1500A              | PE  |
| 3CW20,000A1       | Ť        | 4CW50,000E TE            |    | 5CX3000A              | PE  |
| 3CW20,000A1       | Ť        | 4CW50,000J TE            |    | 5D22 see 4-250A       | TET |
| 3CW20,000A3       |          | 4CW100,000D TE           |    | 673 see 575A          | R   |
| 3CW20,000A7       | T        | 4CW100,000E TE           | T  | 6696A                 | Т   |
| 3CW20,000H3       | T        | 4CW250,000A TE           |    | 6697A                 | Т   |
| 3CW20,000H7       | T        | 4CX125C TE               | Т  | 6775 see 4-400C       | TET |
| 3CW30,000H3       | T        | 4CX125F see 4CX125C . TE | Τ  | 6816                  | TET |
| 3CW30,000H7       | T        | 4CX250B/7203 &           |    | 6884 see 6816         | TET |
| 3CW40,000H3       | T        | 4CX250FG/8621, TE        | Т  | 6894                  | R   |
| 3CX100A5 see 7289 | PL       | 4CX250BC/8957 TE         | Т  | 6895 see 6894         | R   |
| 3CX400U7          | Т        | 4CX250K/8245 TE          |    | 6C21                  | PM  |
| 3CX1000A7/8283    | T        | 4CX250M/8246 TE          |    | 75TH                  | T   |
| 3CX1500A7/8877    | Т        | 4CX250R/7580W TE         |    |                       |     |
| 3CX2500A3/8161    | Т        | 4CX300A/8167 TE          |    | 75TL                  | T   |
| 3CX2500F3/8251    | Т        | 4CX300Y/8561 TE          |    | 750TL                 | T   |
| 3CX2500H3         | Т        | 4CX350A/8321 TE          |    | 7034 see 4X150A       | TET |
| 3CX3000A1/8238    | Т        |                          |    | 7035 see 4X150A/D     | TET |
| 3CX3000A7         | Ť        |                          |    | 7203 see 4CX250B      | TET |
| 3CX3000F1/8239    | Ť        |                          |    | 7204 see 4CX250B/F    | TET |
| 3CX3000F7/8162    | Ť        | 4CX600B TE               |    |                       |     |
| 3CX5000H3         | Ť        | 4CX600F see 4CX600B . TE | 1  |                       |     |
| 3CX10,000A1/8158  | Ť        |                          |    |                       |     |
| 55/10,000/1/6156  |          |                          |    |                       |     |

D - Diode

PE - Pentode

PL - Planar Triode

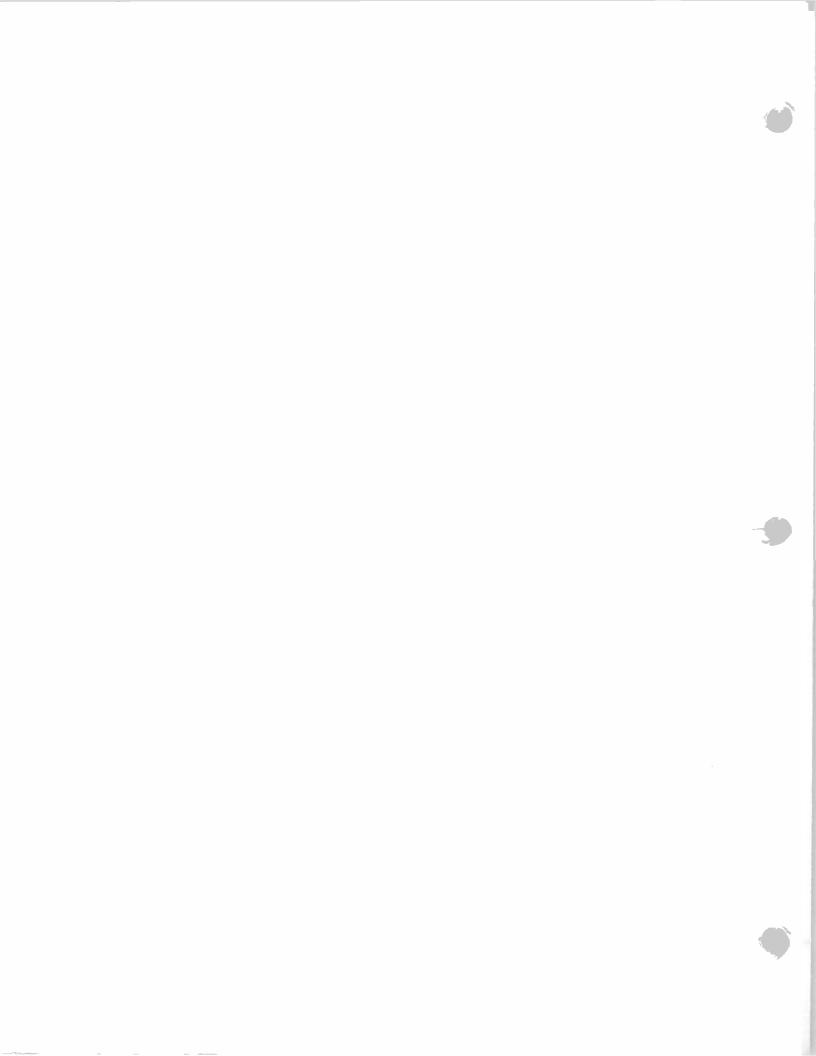
PM - Pulse Modulator

OP - Other Products

R - Rectifier

T - Triode TET - Tetrode

|   | 7211                  | PL     | 8252W see 4PR60C       | PM      | SK-400                 | OP  |
|---|-----------------------|--------|------------------------|---------|------------------------|-----|
|   | 7289/3CX100A5         | PL     | 8281 see 4CX15,000A    | TET     | SK-406                 | OP  |
|   | 7480                  | Т      | 8283 see 3CX1000A7     | Т       | SK-410                 | OP  |
|   | 7580W see 4CX250R     | TET    | 8295A                  | PE      | SK-416 see SK-406      | OP  |
|   | 7609 see 4X150A/7034  | TET    | 8321 see 4CX350A       | TET     | SK-426 see SK-406      | OP  |
|   | 7698                  | PL     | 8322 see 4CX350A/F     | TET     | SK-500                 | OP  |
|   | 7815/7815R            | PL     | 8349 see 4CX35,000C    | TET     | SK-506                 | OP  |
|   | 7815AL/7815RAL        | PL     | 8351 see 4CV100,000C . | TET     | SK-510                 | OP  |
|   | 7815R see 7815        | PL     | 8352 see 4CX1000K      | TET     | SK-516 see SK-506      | OP  |
|   | 7815RAL see 7815AL    | PL     | 8403                   | PL      | SK-600A                | OP  |
|   | 7843                  | TET    | 8438 see 4-400A        | TET     | SK-606                 | OP  |
|   | 7855/7855K            | PL     | 8533                   | PL      | SK-607                 | OP  |
|   | 7855AL/7855KAL        | PL     | 8560A                  | TET     | SK-610 see SK-600A     | OP  |
|   | 7855K see 7855        | PL     | 8561 see 4CX300Y       | TET     | SK-620                 | OP  |
|   | 7855KAL see 7855AL    | PL     | 8576 see 264           | PE      | SK-620 A see SK-620    | OP. |
|   | 869B                  | R      | 8590 see 4CPX250K      | TET     | SK-626 see SK-606      | OP  |
|   | 869BL see 869B        | R      | 8660 see 4CX1500B      | TET     | SK-630                 | OP  |
|   | 8020                  | R      | 8661 see 4CW10,000A    | TET     | SK-630 A see SK-630    | OP  |
|   | 8158 see 3CX10,000A1  | T      | 8755                   | PL      |                        | OP  |
|   | 8159 see 3CX10,000A1  | +<br>+ | 8755A see 8755         | PL      | SK-636B see SK-606     | OP  |
|   | 8160 see 3CX10,000A3  | Ť      |                        | PL      | SK-640                 | OP  |
|   | 8161 see 3CX2500A3    | +      | 8757                   | TET     | SK-646 see SK-606      | OP  |
|   | 8162 see 3CX3000F7    | Ť      | 8809 see 4CX600J       | PL      | SK-650                 |     |
|   | 8163 see 3-400Z       | Ť      | 8847                   |         | SK-655 see SK-650      | OP  |
|   |                       | ,<br>T | 8847A see 8847         | PL<br>T | SK-700                 | OP  |
|   | 8164 see 3-1000Z      |        | 8873                   | ,<br>T  | SK-710 see SK-700      | OP  |
|   | 8165 see 4-65A        | TET    | 8874 see 8873          | T       | SK-711A                | OP  |
|   | 8166 see 4-1000A      | TET    | 8875 see 8873          | •       | SK-712A see SK-711A    | OP  |
|   | 8167 see 4CX300A      | TET    | 8876                   | TET     | SK-740                 | OP  |
|   | 8168 see 4CX1000A     | TET    | 8877 see 3CX1500A7     | Т       | SK-760                 | OP  |
|   | 8169 see 4CX3000A     | TET    | 8892                   | PL      | SK-770 see SK-760      | OP  |
| ř | 3170 see 4CX5000A     | TET    | 8893                   | PL      | SK-800B                | OP  |
|   | 8170W see 4CX5000R    | TET    | 8904 see 4CX350FJ      | TET     | SK-806 see SK-800B     | OP  |
|   | 8171 see 4CX10,000D   | TET    | 8906                   | PL      | SK-810B                | OP  |
|   | 8172 see 4X150G       | TET    | 8906AL/Y572AL          | PL      | SK-816                 | OP  |
|   | 8173 see 4W20,000A    | TET    | 8907 see 8906          | PL      | SK-860 see SK-816      | OP  |
|   | 8187 see 4PR65A       | PM     | 8909 see 4CX5000J      | TET     | SK-870 see SK-816      | OP  |
|   | 8188 see 4PR400A      | PM     | 8910 see 4CX15,000J    | TET     | SK-890B                | OP  |
|   | 8189 see 4PR1000A     | PM     | 8911                   | PL      | SK-900                 | OP  |
|   | 8238 see 3CX3000A1    | Т      | 8912                   | PL      | SK-906 see SK-900      | OP  |
|   | 8239 see 3CX3000F1    | Т      | 8921 see 4CX600J/JA    | TET     | SK-1300                | OP  |
|   | 8240 see 3CW5000A1    | Т      | 8930                   | TET     | SK-1306                | OP  |
|   | 8241 see 3CW5000A1/F1 | Т      | 8933                   | PL.     | SK-1310 see SK-1300    | OP  |
|   | 8242 see 3CW5000A3    | Т      | 8938                   | Т       | SK-1320 see SK-1300    | OP  |
|   | 8244 see 4CW2000A     | TET    | 8954                   | TET     | SK-1400A               | OP  |
|   | 8245 see 4CX250K      | TET    | 8959                   | TET     | SK-1406 see SK-1306    | QР  |
|   | 8246 see 4CX250K/M    | TET    | 8963                   | Т       | SK-1470A see SK-1400A. | OP  |
|   | 8247 see 4PR125A      | PM     | Contact Finger Stock   |         | SK-2200                | OP  |
|   | 8248 see 4PR250C      | PM     | (Preformed)            | OP      | SK-2210 see SK-2200    | OP  |
|   | 8249 see 4W300B       | TET    | HR Heat Dissipating    |         | VS-2, 4, 5 & 6         | OP  |
|   | 8251 see 3CX2500F3    | Т      | Connectors             | OP      | X-2159                 | TET |
|   |                       |        | SK-300 A               | OP      | Y572AL see 8906AL      | PL  |
|   |                       |        | SK-306                 | OP      |                        |     |
|   |                       |        | SK-316 see SK-306      | OP      |                        |     |
|   |                       |        |                        |         |                        |     |




PE - Pentode

PL - Planar Triode

PM - Pulse Modulator

T - Triode





# tetrodes

### **EIMAC** division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for— A quick guide to EIMAC products and services offered in this catalog.

Including ...

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

## Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.



#### TECHNICAL DATA

8165 RADIAL-BEAM POWER TETRODE MODULATOR OSCILLATOR

**AMPLIFIER** 

The Eimac 8165/4-65A is a small radial-beam tetrode with a maximum platedissipation rating of 65 watts. In most applications, no forced air is required, normal radiation and convection cooling being adequate. An instant-heating, thoriated tungsten filament is employed, allowing all electrode voltages to be applied simultaneously and permitting the conservation of power during standby periods. The 8165/4-65A is, therefore, a good choice for many mobile applications.

Short, heavy leads and low interelectrode capacities assure stable, efficient operation at high frequencies and permit its use at maximum ratings through 150 megacycles. The 8165/4-65A is equally useful in audio-amplifier or modulator service.

#### GENERAL CHARACTERISTICS

| ELECTRICAL                                                          | Min. Nom. Max.                                                                  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Filament: Thoriated Tungsten                                        |                                                                                 |
| Voltage                                                             | - 6.0 voits                                                                     |
| Current                                                             | 3.2 3.8 amperes                                                                 |
| Grid-Screen Amplification Factor                                    | 5 7                                                                             |
| Direct Interelectrode Capacitances:                                 | LDD                                                                             |
| Grid-Plate                                                          | - 0.12 uuf                                                                      |
| Input                                                               | 6.0 8.3 uuf                                                                     |
| Output                                                              | 1.9 2.6 uuf                                                                     |
| Frequency for Maximum Ratings                                       | 150 mc                                                                          |
| MECHANICAL                                                          |                                                                                 |
|                                                                     | 5-pin-National HX-29 or Johnson 122-101                                         |
| Maximum Seal Temperature                                            |                                                                                 |
| Maximum Envelope Temperature                                        | 225° C                                                                          |
| Recommended Socket Operating Position                               | Vertical base down or up                                                        |
|                                                                     | Convection and radiation                                                        |
| Cooiling                                                            |                                                                                 |
| Recommended Heat Dissipating Connector                              | Elitac Fix-s                                                                    |
| Maximum Over-all Dimensions                                         | 4.19 inches                                                                     |
| Length                                                              |                                                                                 |
| Diameter                                                            |                                                                                 |
| Net Weight                                                          | 1.5 pounds                                                                      |
| Shipping Weight (Approximate)                                       |                                                                                 |
| RADIO-FREQUENCY POWER AMPLIFIER                                     | TYPICAL OPERATION (Frequencies up to 150 megacycles)                            |
| OR OSCILLATOR                                                       | D-C Plate Voltage 1500 2000 2500 3000 volts                                     |
| Class-C Telegraphy or FM Telephony                                  | D-C Screen Voltage 250 250 250 250 volts D-C Grid Voltage 105 - 105 - 105 volts |
|                                                                     | D-C Grid Voltage105 -105 -105 -105 volts D-C Plate Current 150 137 124 112 ma   |
| MAXIMUM RATINGS (Key-down conditions)                               | D-C Screen Current* 39 32 26 22 ma                                              |
| D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C SCREEN VOLTAGE 400 MAX. VOLTS | D-C Grid Current* 19 15 13 9 ma                                                 |
| D.C GRID VOLTAGE                                                    | Peak R-F Grid Voltage* 205 195 185 175 volts                                    |
| D-C PLATE CURRENT 150 MAX. MA                                       | Driving Power* 3.9 2.9 2.4 1.6 watts                                            |
| PLATE DISSIPATION 65 MAX. WATTS                                     | Plate Input Power 225 275 310 335 watts                                         |
| SCREEN DISSIPATION 10 MAX. WATTS                                    | Title Output Tower                                                              |
| GRID DISSIPATION 5 MAX. WATTS                                       | *Approximate values                                                             |
| PLATE-MODULATED RADIO-FREQUENCY                                     | TYPICAL OPERATION (Frequencies up to 150 megacycles)                            |

(Effective 5-1-62) Copyright 1961 by Eitel-McCullough, Inc.

MAXIMUM RATINGS (Carrier conditions)

**AMPLIFIER** 

Class-C Telephony

D-C PLATE VOLTAGE

D-C GRID VOLTAGE D-C PLATE CURRENT

PLATE DISSIPATION

SCREEN DISSIPATION GRID DISSIPATION

D-C SCREEN VOLTAGE

2500 MAX. VOLTS

400 MAX. VOLTS -500 MAX. VOLTS

45 MAX. WATTS

10 MAX. WATTS

5 MAX. WATTS

120 MAX. MA

D-C Plate Voltage -

D-C Screen Voltage -

D-C Grid Voltage -

D-C Plate Current -

D-C Grid Current\* -

Plate Output Power -

\*Approximate values

D-C Screen Current\*

Peak R-F Voltage\*

Plate Input Power

Driving Power\*

- 1000

- 250

- -150

- 120

40

20

255

5.1

120

2000

-150

113

37

18

250

4.8

226

250

120

40

20

255

5.1

180

140

-150

2500 volts

250 volts

-150 volts

102 ma

26 ma

13 ma

235 volts

3.1 watts

255 watts

210 watts



# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class-AB<sub>1</sub>

MAXIMUM RATINGS

D-C PLATE VOLTAGE - - - 3000 MAX. VOLTS
D-C SCREEN VOLTAGE - - - 600 MAX. VOLTS
D-C PLATE CURRENT - - - 150 MAX. MA
PLATE DISSIPATION - - - 65 MAX. WATTS
SCREEN DISSIPATION - - 10 MAX. WATTS

#### **RADIO-FREQUENCY SSB POWER AMPLIFIER**

Class-AB

MAXIMUM RATINGS

D-C PLATE VOLTAGE - - - 3000 MAX. VOLTS
D-C SCREEN VOLTAGE - - 600 MAX. VOLTS
D-C PLATE CURRENT - - 150 MAX. MA
PLATE DISSSIPATION - - 65 MAX. WATTS
SCREEN DISSIPATION - - 10 MAX. WATTS

TYPICAL OPERATION

Class-AB, (Sinusoidal wave, two tubes except where noted)

| D-C Plate                            | Voltage             | -     |        | -   | 1500  | 2000     | 2500   | 3000   | volts |
|--------------------------------------|---------------------|-------|--------|-----|-------|----------|--------|--------|-------|
| D-C Screen                           | Voltage             | -     |        | -   | 500   | 500      | 400    | 400    | volts |
| D-C Grid V                           | oltage <sup>1</sup> | -     |        |     | 90    | -105     | 85     | 90     | volts |
| Zero-Signal                          | D-C Plat            | e Cu  | rrent  |     | 60    | 40       | 30     | 30     | ma    |
| MaxSignal                            | D-C Pla             | te C  | urrent |     | 166   | 150      | 132    | 120    | ma    |
| MaxSignal                            | D-C Sci             | reen  | Curren | + - | 10    | 6        | 6      | 6      | ma    |
| Peak A-F G                           | rid Volta           | qe (r | er tub | e)* | 70    | 80       | 77     | 77     | volts |
| Effective I                          |                     |       |        |     | 3,300 | 24,000   | 37,500 | 50,000 | ohms  |
| MaxSignal                            | Plate In            | put I | ower   | -   | 250   | 300      | 330    | 360    | watts |
| MaxSignal                            |                     |       |        |     |       | 170      | 200    | 240    | watts |
| <sup>1</sup> Adjust to<br>*Approxima | obtain li           | sted  |        |     | d-c p | olate cu | rrent. |        |       |

TYPICAL OPERATION

Class-AB1 (Frequencies to 150 megacycles)

| D-C Plate  | Voltag   | е -     |           | -   | 1500 | 2000     | 2500  |     | volts |
|------------|----------|---------|-----------|-----|------|----------|-------|-----|-------|
| D-C Scree  | n Volta  | age -   |           | -   | 500  | 500      | 400   | 400 | volts |
| D-C Grid   | Voltag   | e1 -    |           |     | 90   | —105     | 85    | —90 | volts |
| Zero-Signa | I D-C    | Plate   | Current   | -   | 30   | 20       | 15    | 15  | ma    |
| MaxSigna   | I D-C    | Plate   | Current   | -   | 83   | 75       | 66    | 60  | ma    |
| MaxSigna   | I D-C    | Screen  | n Current | * - | 5    | 3        | 3     | 3   | ma    |
| Peak R-F   | Grid Vo  | oltage* |           | -   | 70   | 80       | 77    | 77  | volts |
| MaxSigna   |          |         |           |     |      | 150      | 165   | 180 | watts |
| MaxSigna   | il Plate | Outp    | ut Power  |     | 60   | 85       | 100   | 120 | watts |
| 'Adjust to |          |         |           |     |      | late cur | rent. |     |       |
| K A        |          |         |           |     |      |          |       |     |       |

\*Approximate Values,

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

In class-C operation, adjustment of the r-f grid drive to obtain listed plate current at the listed grid bias, screen voltage, and plate voltage is assumed. Resultant screen and grid currents will vary from tube to tube, but little change in output power will be noted.

In class-AB<sub>1</sub> linear operation, screen current will also vary from tube to tube but is a useful indicator of relative linearity. In general, less screen current means better linearity, providing other conditions are held constant. The same degree of linearity will be obtained from different tubes if loading and drive are adjusted to give the same plate and screen current, although output power may vary from tube to tube.

#### APPLICATION

#### **MECHANICAL**

Mounting—The 4-65A must be operated vertically, base up or base down. The socket must provide clearance for the glass tip-off which extends from the center of the base. A flexible connecting strap should be provided between the plate terminal and the external plate circuit, and the Eimac HR-6 connector (or equivalent) used on the tube plate lead. The socket must not apply lateral pressure against the base pins. The tube must be protected from severe vibration and shock.

Adequate ventilation must be provided so that the seals and/or envelope under operating conditions do not exceed their rated maximum temperatures. For operation above 50 Mc. the plate voltage should be reduced, or special attention should be given to seal cooling.

When the ambient temperature does not exceed 30° C it will not ordinarily be necessary to provide forced-air cooling of the envelope or plate seal at frequencies below 50 Mc. provided that a heat-radiating plate connector is used and the tube is so located that normal circulation of air past the envelope is not impeded.

#### **ELECTRICAL**

**Filament Voltage**—The filament voltage, as measured at the filament pins, should be 6.0 volts. For long life, excursions from this value should not exceed  $\pm$  5 percent

**Bias Voltage**—D-C bias voltage for the 4-65A should not exceed —500 volts. If grid-leak bias is used, suitable protective means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation.

**Screen Voltage**—The d-c screen voltage for the 4-65A should not exceed 400 volts except in the case of class-AB audio operation and Single-Side-Band r-f amplifier operation where it should not exceed 600 volts.

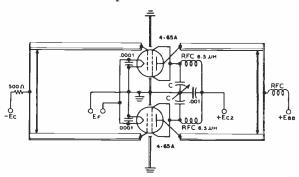
**Screen Dissipation**—The power dissipated by the screen of the 4-65A must not exceed 10 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load is removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 10 watts in the event of circuit failure.

Plate Voltage—The plate-supply voltage for the 4-65A should not exceed 3000 volts. Above 50 Mc. it is advisable to use a lower plate voltage than the maximum, since the seal heating due to r-f charging currents in the screen leads increases with plate voltage and frequency. See instructions on seal cooling under "Mechanical" and "Shielding."

Plate Dissipation—Under normal operating conditions, the plate dissipation of the 4-65A should not be allowed to exceed 65 watts in unmodulated applications.

In high-level-modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 45 watts.

Plate dissipation in excess of the maximum rating is permissable for short periods of time, such as during tuning procedures.

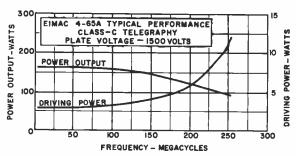

#### **OPERATION**

**Class-C FM or Telegraphy**—The 4-65A may be operated as a class-C FM or telegraphy amplifier without



neutralization up to 110 Mc. if reasonable precautions are taken to prevent coupling between input and output circuits external to the tube. In single-ended circuits, plate, grid, filament, and screen by-pass capacitors should be returned through the shortest possible leads and short, heavy leads should be used to inter-connect the screens and filaments of the two tubes. Care should be taken to prevent leakage of radio-frequency energy to leads entering the amplifier in order to minimize grid-plate coupling between these leads external to the amplifier.

Where shielding is adequate, the feedback at frequencies above 110 Mc. is due principally to screenlead-inductance effects and it becomes necessary to introduce in-phase voltage from the plate circuit into the grid cricuit. This can be done by adding capacitance between plate and grid external to the tube. Ordinarily, a small metal tab approximately "" square and located adjacent to the envelope opposite the plate will suffice for neutralization. Means should be provided for adjusting the spacing between the neutralizing capacitor plate and the envelope. An alternate neutralization scheme for use above 110 Mc. is illustrated in the diagram shown below. In this circuit, feedback is eliminated by series-tuning the screen to ground with a small capacitor. The socket screen terminals should be strapped together as shown on the diagram, by the shortest possible lead, and the lead from the mid point of this screen strap to the capacitor, C, and from the capacitor to ground should be made as short as possible.




Screen-tuning neutralization circuit for use above 100 Mc. C is a small split-stator capacitor.

$$C(\mu_{\mu}f_{d}) = \frac{640,000}{f^{2} \text{ (Mc.)}}, \text{ approx.}$$

Typical driving power and output power versus frequency are shown below. The output power shown is the actual plate power delivered by the tube; the power delivered to the load will depend upon the efficiency of the plate tank and output coupling system. The driving power is likewise the driving power required by the tube (includes bias loss). The driver output should exceed the driving power requirements by a sufficient margin to allow for coupling-circuit losses. The use of silver-plated linear tank-circuit elements is recommended at frequencies above 75 Mc.

Class-C AM Telephony—The r-f circuit considerations discussed above under class-C FM or telegraphy also apply to amplitude-modulated operation of the 4-65A. When the 4-65A is used as a class-C high-level-modulated amplifier, both the plate and screen



should be modulated. Modulation voltage for the screen may be obtained by supplying the screen voltage through a series dropping resistor from the unmodulated plate supply, or by the use of an audio-frequency reactor in the positive screen-supply lead, or from a separate winding on the modulation transformer. When screen modulation is obtained by either the series-resistor or the audio-reactor methods, the audiofrequency variations in screen current, which result from the variations in plate voltage as the plate is modulated, automatically give the required screen modulation. Where a reactor is used, it should have a rated inductance of not less than 10 henries divided by the number of tubes in the modulated amplifier and a maximum current rating of two to three times the operating d-c screen current. To prevent phaseshift between the screen and plate modulation voltages at high audio frequencies, the screen by-pass capacitor should be no larger than necessary for adequate r-f by-passing.

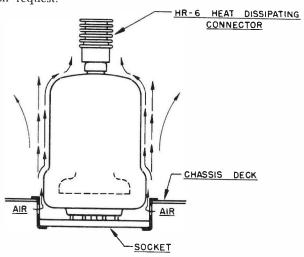
For high-level modulated service, the use of partial grid-leak bias is recommended. Any by-pass capacitors placed across the grid-leak resistance should have a reactance at the highest modulation frequency equal to at least twice the grid-leak resistance.

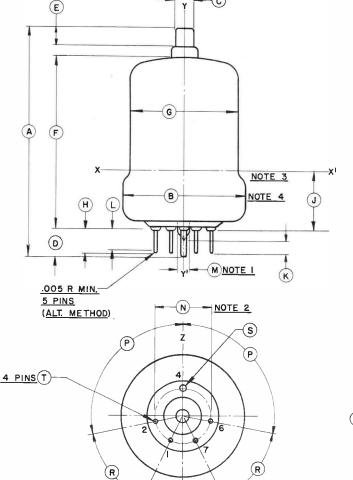
Class-AB<sub>1</sub> and Class-AB<sub>2</sub> Audio—Two 4-65As may be used in a push-pull circuit to give relatively high audio output power at low distortion. Maximum ratings and typical operating conditions for class-AB<sub>1</sub> audio operation are given in the tabulated data.

Screen voltage should be obtained from a source having good regulation, to prevent variations in screen voltage from zero-signal to maximum-signal conditions. The use of voltage-regulator tubes in a standard circuit should provide adequate regulation.

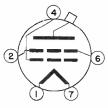
Grid-bias voltage for class-AB<sub>2</sub> service may be obtained from batteries or from a small fixed-bias supply. When a bias supply is used, the d-c resistance of the bias source should not exceed 250 ohms. Under class-AB<sub>1</sub> conditions the effective grid-circuit resistance should not exceed 250,000 ohms.

In some cases the maximum-signal plate dissipation shown under "Typical Operation" is less than the maximum rated plate dissipation of 4-65A. In these cases, with sine-wave modulation, the plate dissipation reaches a maximum value, equal to the maximum rating, at a point somewhat below maximum-signal conditions

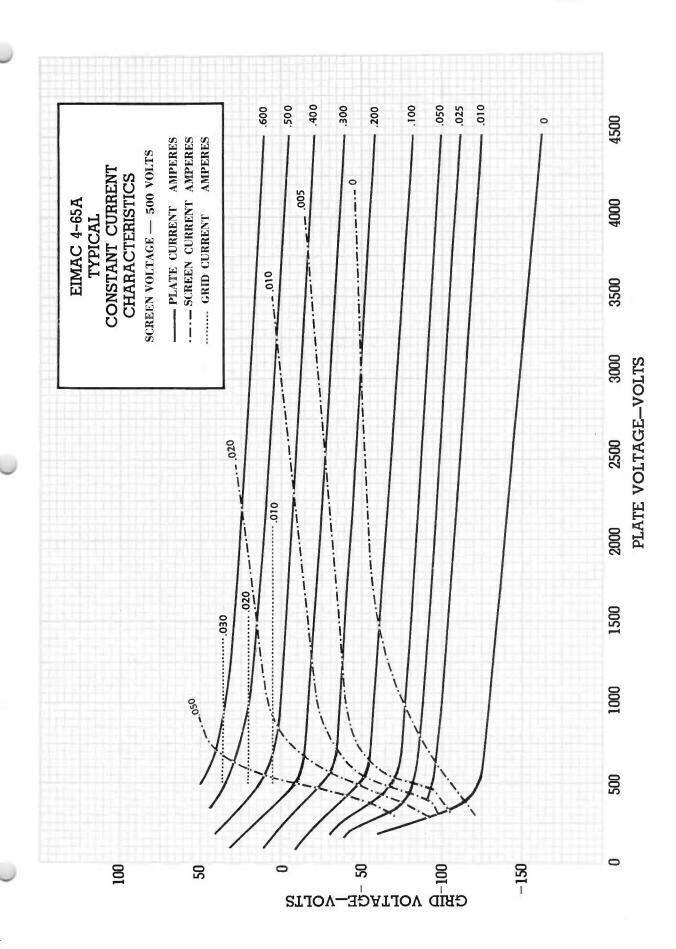

The output-power figures given in the tabulated data refer to the total output power from the amplifier tubes. The useful output power will be from 5 to 15 percent less than the figure shown, due to losses in the output transformer.

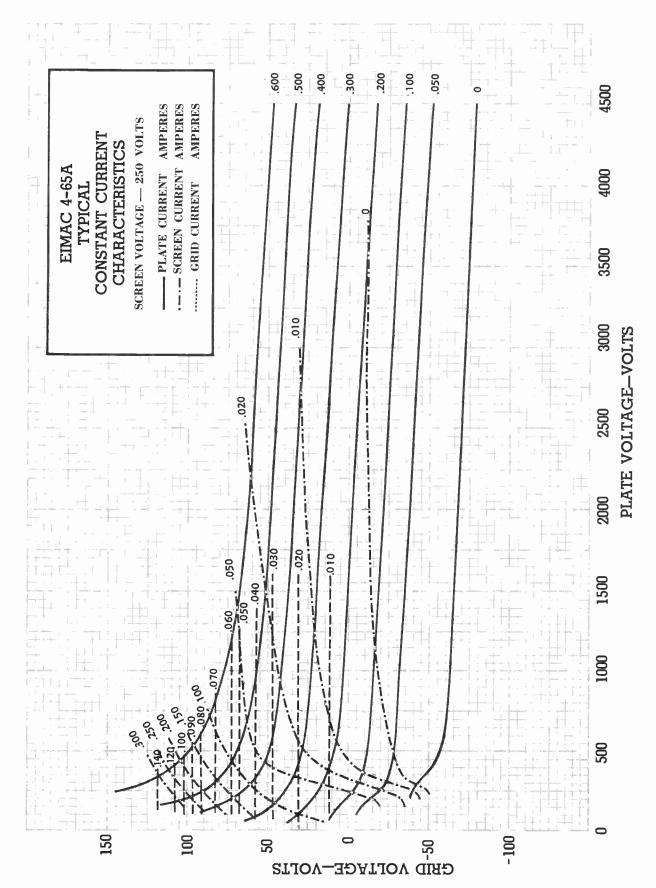

**Shielding**—The internal feedback of the tetrode has been substantially eliminated and in order to fully utilize this advantage, it is essential that the design of the equipment completely eliminate any feedback external to the tube. This means complete shielding of the output cricuit from the input circuit and earlier stages, proper reduction to low values of the inductance of the screen lead to the r-f ground, and elimination of r-f feedback in any common power-supply leads.

Complete shielding is easily achieved by mounting the socket of the tube flush with the deck of the chassis as shown in the sketch shown at the right.


The holes in the socket permit the flow of convection air currents from below the chassis up past the seals in the base of the tube. This flow of air is essential to cool the tube and in cases where the complete under-part of the chassis is enclosed for electrical shielding, screened holes or louvers should be provided to permit air circulation. Note that shielding is completed by aligning the internal screen shield with the chassis deck and by proper r-f by-passing of the screen leads to r-f ground. The plate and output circuits should be kept above deck and the input circuit and circuits of earlier stages should be kept below deck or completely shielded.

Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California, for information and recommendations. Copies of characteristic curves, either constant-grid-voltage or constant-current, for various screen potentials may be obtained from this department on request.




|      | DIMEN | ISION DATA    |                               |
|------|-------|---------------|-------------------------------|
| REF. | NOM,  | MIN.          | MAX.                          |
| Α    |       | 4             | 4 3/16                        |
| 8    |       |               | 2 <sup>3</sup> / <sub>8</sub> |
| С    |       | .350          | .365                          |
| D    |       | 7/16<br>21/64 | 9/16                          |
| E    |       | 21/64         |                               |
| F    |       | 2 15/16       | 3 5/16                        |
| G    |       |               | 2 1/8                         |
| н    |       | 3/8           | 1/2                           |
| J    |       | .844          | 1.219                         |
| K    |       | .000          |                               |
| L    |       | 5/16          |                               |
| М    |       |               | 3/8                           |
| N    | 1.000 |               |                               |
| Р    | 102°  |               |                               |
| R    | 52°   |               |                               |
| S    |       | .122 DIA.     | .128 DIA.                     |
| Т    |       | .055 DIA.     | .061 DIA.                     |



ALL DIMENSIONS IN INCHES.







#### TECHNICAL DATA

4-125A
(4D21)
RADIAL-BEAM
POWER TETRODE

MODULATOR OSCILLATOR AMPLIFIER

The EIMAC 4-125A is a radial-beam power tetrode intended for use as an amplifier, oscillator, or modulator. It has a maximum plate-dissipation rating of 125 watts and a maximum plate-voltage rating of 3000 volts at frequencies up to 120 MHz.

The low grid-plate capacitance of this tetrode together with its low drivingpower requirement allows considerable simplification of the associated circuit and driver stage.

Cooling is by radiation from the plate and by air circulation through the base and around the envelope.

The 4-125A in class-C rf service will deliver up to 375 watts plate power output with 1.2 watts nominal driving power.



#### GENERAL CHARACTERISTICS

| ELECTRICAL | EL | .EC | TR | IC | AL |
|------------|----|-----|----|----|----|
|------------|----|-----|----|----|----|

|    | Filament: Thoria    | ted T    | ungste     | n                   |       |       |                               |     |       |     |       |     |    |      |             |          |            |
|----|---------------------|----------|------------|---------------------|-------|-------|-------------------------------|-----|-------|-----|-------|-----|----|------|-------------|----------|------------|
|    | Voltage             |          |            | -                   | -     | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 5.0      | volts      |
|    | Curren              | t ·      |            | -                   | -     | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 6.5      | amperes    |
|    | Grid-Screen Ampl    | ificati  | ion Fac    | ctor (              | (Ave  | rage  | )                             | -   | -     | -   | -     | -   | _  | -    | _           | 5.9      | _          |
|    | Direct Interelectro | de Ca    | apacita    | nces                | (Av   | erage | e)                            |     |       |     |       |     |    |      |             |          |            |
|    | Grid-Plate          |          |            | -                   | -     | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 0.05     | рF         |
|    | Input -             |          |            | -                   | **    | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 10.8     | pF         |
|    | Output -            |          |            | -                   | -     | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 3.1      | рF         |
|    | Transconductance    | $=_{b}I$ | 50 m       | A, E <sub>b</sub> : | =250  | )0 V, | $\mathbf{E}_{\mathfrak{c}2}=$ | 400 | V)    | -   | -     | -   | -  | -    |             | 2450     | $\mu$ mhos |
|    | Highest Frequency   | y for    | Maxim      | ium I               | Ratir | ngs   | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 120      | MHz        |
| ME | CHANICAL            |          |            |                     |       |       |                               |     |       |     |       |     |    |      |             |          |            |
|    | Base                | -        |            | -                   | •     | -     | -                             | -   | -     | -   | -     | _   | -  | -    | <b>5</b> -1 | pin me   | etal shell |
|    | Basing              |          |            | -                   | -     | -     | -                             | -   | _     | -   | -     | -   | _  |      |             |          | drawing    |
|    | Socket              | E.       | F. Joh     | nson                | Co. s | socke | t No.                         | 122 | -275, | Nat | ional | Co. | No | .HX- | 100         | ), or ed | quivalent  |
|    | Mounting Position   |          | - · -      |                     |       |       | -                             |     |       |     | _     |     |    |      |             |          | wn or up   |
|    | Cooling             | _        | - <u>-</u> | _                   | _     |       | _                             |     |       |     | _     | _   |    |      |             |          | orced air  |
|    | Recommended He      | eat-Di   | issinati   | ing P               | Plate | Con   | necto                         | ır  | _     | _   | _     | _   | _  | _    |             |          | C HR-6     |
|    | Maximum Over-a      |          |            |                     | Tate  | COII  | necte                         | /1  |       |     |       |     |    |      |             | 131.412  | io mico    |
|    | Length -            | יווט וו  | 11611510   | 115:                |       |       |                               |     |       |     |       |     |    |      | _           | 5.69     | inches     |
|    | Diameter            | _        |            | _                   | _     | _     | -                             | _   | -     | _   | -     | _   | _  | _    | _           | 2.1      | inches     |
|    | Net Weight -        | _        | _          | _                   | _     | _     | _                             | _   | _     | _   | _     | _   | _  | _    | _           | 6.5      | ounces     |
|    | 0                   | _        | _ <u>-</u> |                     |       |       | _                             | -   | _     | _   |       | _   | _  | _    | _           |          | _          |
|    | Shipping Weight     | -        |            | -                   | -     | -     | -                             | -   | -     | -   | -     | -   | -  | -    | -           | 1.5      | pounds     |

(Revised 6-1-67) © 1958, 1967 by Varian

Printed in U.S.A.



# RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down condition, 1 tube)

#### **MAXIMUM RATINGS**

| DC Plate Voltage <sup>1</sup> | - | - | - | - | _ | - | - | - | - | 3000 volts |
|-------------------------------|---|---|---|---|---|---|---|---|---|------------|
| DC Screen Voltage             | _ | - | - | - | - | - | - | - | - | 400 volts  |
| DC Grid Voltage -             | - | - | - | - | - | - | - | - | - | -500 watts |
| DC Plate Current -            | - | - | - | - | - | - | - | - | - | 225  mA    |
| Plate Dissipation -           | - | - | - | - | - | - | - | - | - | 125 watts  |
| Screen Dissipation            | - | - | - | - | - | - | - | - | - | 20 watts   |
| Grid Dissipation -            | - | - | - | - | - | - | - | - | - | 5 watts    |

#### TYPICAL OPERATION

| (Frequencies below  | 120 | 0 M   | ΙHz | <u>.</u> ) |      |      |      |       |
|---------------------|-----|-------|-----|------------|------|------|------|-------|
| DC Plate Voltage    | -   | -     | -   | -          | 2000 | 2500 | 3000 | volts |
| DC Screen Voltage   | -   | -     | -   | -          | 350  | 350  | 350  | volts |
| DC Grid Voltage     | -   | -     | -   | ~          | -100 | -150 | -150 | volts |
| DC Plate Current    | -   | -     | -   | -          | 200  | 200  | 167  | mA    |
| DC Screen Current   | -   | -     | -   | -          | 50   | 40   | 30   | mA    |
| DC Grid Current -   | -   | _     | _   | -          | 12   | 12   | 9    | mA    |
| Screen Dissipation  | _   | -     | _   | _          | 18   | 14   | 10.5 | watts |
| Grid Dissipation -  | -   | ~     | -   | -          | 1.6  | 2    | 1.2  | watts |
| Peak RF Grid Input  | Vo  | olta  | ge  | -          | 230  | 320  | 280  | volts |
| (approx.)           |     |       |     |            |      |      |      |       |
| Driving Power (apr  | roz | (, )3 | -   | -          | 2.8  | 3.8  | 2.5  | watts |
| Plate Power Input   | -   | _     | -   | -          | 400  | 500  | 500  | watts |
| Plate Dissipation - | -   | -     | -   | -          | 125  | 125  | 125  | watts |
| Plate Power Output  | -   | -     | -   | -          | 275  | 375  | 375  | watts |
|                     |     |       |     |            |      |      |      |       |

# AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR

Class-AB<sub>1</sub>

#### **MAXIMUM RATINGS**

| DC Plate Voltage          |        | -   | -   | -   | - | - | - | 3000 volts        |
|---------------------------|--------|-----|-----|-----|---|---|---|-------------------|
| DC Screen Voltage         |        | -   | -   | -   | - | - | - | 600 volts         |
| Max-Signal DC Plate Cur   | rrent, | per | · T | ube |   | - | - | $225 \mathrm{mA}$ |
| Plate Dissipation, per Tu | be     | -   | -   | -   | - | - | - | 125 watts         |
| Screen Dissipation, per T | ube    | -   | -   | -   | - | - | - | 20 watts          |

#### TYPICAL OPERATION

(Sinusoidal wave, two tubes unless otherwise specified)

| ( Dimabolette mere) and terms    |        |        | L      | - /     |
|----------------------------------|--------|--------|--------|---------|
| DC Plate Voltage                 | 1500   | 2000   | 2500   | volts   |
| DC Screen Voltage                | 600    | 600    | 600    | volts   |
| DC Grid Voltage <sup>2</sup>     | -90    | -94    | -96    | volts   |
| Zero-Signal DC Plate Current -   | 60     | 50     | 50     | mA      |
| Max-Signal DC Plate Current -    | 222    | 240    | 232    | mA      |
| Zero-Signal DC Screen Current    | -1.0   | -0.5   | -0.3   | mA      |
| Max-Signal DC Screen Current     | 17     | 6.4    | 8.5    | mA      |
| Effective Load, Plate-to-Plate - | 10,200 | 13,400 | 20,300 | ohms    |
| Peak, AF Grid Input Voltage      |        |        |        |         |
| (per tube)                       | 90     | 94     | 96     | volts   |
| Driving Power                    | 0      | 0      | 0      | watts   |
| Max-Signal Plate Dissipation     |        |        |        |         |
| (per tube)                       | 87.5   | 125    | 125    | watts   |
| Max-Signal Plate Power Output    |        | 230    | 330    | watts   |
| Total Harmonic Distortion        | 5      | 2      | 2.6    | per ct. |

## HIGH-LEVEL MODULATED RADIO-FREQUENCY AMPLIFIER

Class-C Telephony

(Carrier conditions unless otherwise specified, 1 tube)

#### **MAXIMUM RATINGS**

| DC Plate Voltage <sup>1</sup> | - | - | - | - | - | - | - | - |   | 2500 volts         |
|-------------------------------|---|---|---|---|---|---|---|---|---|--------------------|
| DC Screen Voltage             | - | - | - | - | - | - | - | - | - | 400 volts          |
| DC Grid Voltage -             | - | - | - | - | - | - | - | _ | - | -500 watts         |
| DC Plate Current -            | - | - | - | - | - | - | - | - | - | $200  \mathrm{mA}$ |
| Plate Dissipation -           | _ | - | - | - | _ | - | - | - | - | 85 watts           |
| Screen Dissipation            | _ | - | - | - | - | - | - | - | _ | 20 watts           |
| Grid Dissipation -            | - | - | - | - | - | - | - | - | - | 5 watts            |
|                               |   |   |   |   |   |   |   |   |   |                    |

#### TYPICAL OPERATION

| (Frequencies below | 12  | 0 N  | 1H  | z) |   |      |      |       |
|--------------------|-----|------|-----|----|---|------|------|-------|
| DC Plate Voltage   | _   | _    | _   | _  | _ | 2000 | 2500 | volts |
| DC Screen Voltage  | -   | -    | -   | -  | - | 350  | 350  | volts |
| DC Grid Voltage    | -   | -    | -   | -  | - | -220 | -210 | volts |
| DC Plate Current   | -   | -    | -   | -  | - | 150  | 152  | mA    |
| DC Screen Current  | -   | -    | -   | -  | - | 33   | 30   | mA    |
| DC Grid Current    | -   | -    | -   | -  | - | 10   | 9    | mA    |
| Screen Dissipation | -   | -    | -   | -  | - | 11.5 | 10.5 | watts |
| Grid Dissipation - | -   | -    | -   | -  | - | 1.6  | 1.4  | watts |
| Peak AF Screen Vol | tag | ge,  | 100 | %  |   |      |      |       |
| Modulation -       | -   | -    | -   | -  | - | 210  | 210  | volts |
| Peak RF Grid Input | V   | olta | ge  |    |   |      |      |       |
| (approx.)          |     |      |     | -  | - | 375  | 360  | volts |
| Driving Power (app |     |      |     | -  | - | 3.8  | 3.3  | watts |
| Plate Power Input  | -   | -    | -   | -  | - | 300  | 380  | watts |
|                    |     | -    | -   | -  | - | 75   | 80   | watts |
| Plate Power Output | -   | -    | -   | -  | - | 225  | 300  | watts |

# AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR

Class-AB<sub>2</sub>

#### **MAXIMUM RATINGS**

| DC Plate Voltage                      |   | - | 300 volts         |
|---------------------------------------|---|---|-------------------|
| DC Screen Voltage                     |   | - | 400 volts         |
| Max-Signal DC Plate Current, per Tube | - | - | $225 \mathrm{mA}$ |
| Plate Dissipation, per Tube           |   | - | 125 watts         |
| Screen Dissipation, per Tube          |   | - | 20 watts          |

#### TYPICAL OPERATION

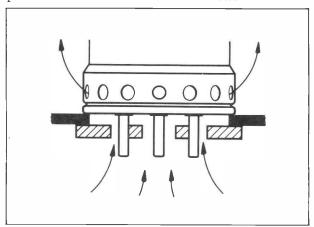
| TITLE OF EIGHT OF                |         |          |          |         |
|----------------------------------|---------|----------|----------|---------|
| (Sinusoidal wave, two tubes unle | ss othe | erwise s | pecified | ()      |
| DC Plate Voltage                 | 1500    | 2000     | 2500     | volts   |
| DC Screen Voltage                | 350     | 350      | 350      | volts   |
| DC Grid Voltage                  | -41     | -45      | -43      | volts   |
| Zero-Signal DC Plate Current -   | 87      | 72       | 93       | mA      |
| Max-Signal DC Plate Current -    | 400     | 300      | 260      | mA      |
| Zero-Signal DC Screen Current    | 0       | 0        | 0        | mA      |
| Max-Signal DC Screen Current     | 34      | 5        | 6        | mA      |
| Effective Load, Plate-to-Plate - | 7200    | 13,600   | 22,200   | ohms    |
| Peak AF Grid Input Voltage       |         |          |          |         |
| (per tube)                       | 141     | 105      | 89       | volts   |
| Max-Signal Avg. Driving Power    |         |          |          |         |
| (approx.)                        | 2.5     | 1.4      | 1        | watts   |
| Max-Signal Peak Driving Power    | 5.2     | 3.1      | 2.4      | watts   |
| Max-Signal Plate Dissipation     |         |          |          |         |
| (per tube)                       | 125     | 125      | 122      | watts   |
| Max-Signal Plate Power Output    | 350     | 350      | 400      | watts   |
| Total Harmonic Distortion        | 2.5     | 1        | 2.2      | per ct. |
|                                  |         |          |          |         |

 $\bigcirc$  Above 120 MHz the maximum plate voltage rating depends upon frequency. See page 4.

(2) The effective grid circuit resistance for each tube must not exceed 250,000 ohms.

③ Driving power increases above 70 MHz. See page 4.

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION" POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC DIVISION OF VARIAN ASSOCIATES, FOR INFORMATION AND RECOMMENDATIONS




#### **APPLICATION**

#### **MECHANICAL**

Mounting—The 4-125A must be mounted vertically, base down or base up. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The tube should be mounted above the chassis deck to allow free circulation of air in the manner shown in the mounting diagram below. The above requirements are met by the E. F. Johnson Co. socket No. 122-275, the National Co. socket No. HX-100, or a similar socket.

A flexible connecting strap should be provided between the HR-6 Heat Dissipating Plate Connector on the plate terminal and the external circuit. The tube must be protected from severe vibration and shock.



4-125A mounting providing base cooling, shielding and isolation of output and input compartments.

Cooling—Adequate cooling must be provided for the seals and envelope of the 4-125A. In continuous-service applications, the temperature of the plate seal, as measured on the top of the plate cap, should not exceed 170° C. A relatively slow movement of air past the tube is sufficient to prevent seal temperatures in excess of maximum at frequencies below 30 MHz. At frequencies above 30 MHz, radio frequency losses in the leads and envelope contribute to seal and envelope heating, and special attention should be given to cooling. A small fan or centrifugal blower directed toward the upper portion of the envelope will usually provide sufficient circulation for cooling at frequencies above 30 MHz, however.

In intermittent-service applications where the "on" time does not exceed a total of five minutes in any tenminute period, plate seal temperatures as high as  $220\,^{\circ}$  C. are permissible. When the ambient temperature does not exceed  $30\,^{\circ}$  C. it will not ordinarily be necessary to provide forced cooling to hold the temperatures below this maximum at frequencies below 30 MHz, provided that a heat-dissipating plate connector is used, and the tube is so located that normal circulation of air past the envelope is not impeded.

Provision must be made for circulation of air through the base of the tube. Where shielding or socket design makes it impossible to allow free circulation of air through the base, it will be necessary to apply forced-air cooling to the stem structure. An air flow of two cubic feet per minute through the base will be sufficient for stem cooling.

#### **ELECTRICAL**

**Filament Voltage**— For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated value of 5.0 volts. Unavoidable variations in filament voltage must be kept within the range from 4.75 to 5.25 volts.

**Bias Voltage**— Dc bias voltage for the 4-125A should not exceed 500 volts. If grid-leak bias is used, suitable protective means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation.

**Screen Voltage**—The dc screen voltage for the 4-125A should not exceed 400 volts, except for class-AB audio operation.

**Plate Voltage**—The plate-supply voltage for the 4-125A should not exceed 3000 volts for frequencies below 120 MHz. The maximum permissible plate voltage is less than 3000 volts above 120 MHz, as shown by the graph on page 5.

**Grid Dissipation**—Grid dissipation for the 4-125A should not be allowed to exceed five watts. Grid dissipation may be calculated from the following expression:

$$\begin{split} P_{g} = & e_{cmp} I_{c} \\ \text{where } P_{g} = & \text{Grid dissipation,} \\ e_{cmp} = & \text{Peak positive grid voltage, and} \\ I_{c} = & \text{D-c grid current.} \end{split}$$

 $e_{\text{cmp}}\,$  may be measured by means of a suitable peak voltmeter connected between filament and grid.

**Screen Dissipation**—The power dissipated by the screen of the 4-125A must not exceed 20 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 20 watts in the event of circuit failure.

**Plate Dissipation**—Under normal operating conditions, the plate dissipation of the 4-125A should not be allowed to exceed 125 watts in unmodulated applications.

In high-level-modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 85 watts. The plate dissipation will rise to 125 watts under 100% sinusoidal modulation.

Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.



#### **OPERATION**

Class-C Telegraphy or FM Telephony—The 4-125A may be operated as a class-C telegraph or FM telephone amplifier without neutralization up to about 30 MHz if reasonable precautions are taken to prevent coupling between input and output circuits external to the tube. A grounded metallic plate on which the socket may be mounted as shown in the mounting diagram on page three provides an effective isolating shield between grid and plate circuits. In single-ended circuits, plate, grid, filament and screen by-pass capacitors should be returned through the shortest possible leads to a common chassis point. In push-pull applications the filament and screen terminals of each tube should be by-passed to a common chassis point by the shortest possible leads, and short, heavy leads should be used to interconnect the screens and filaments of the two tubes. Care should be taken to prevent leakage of radio-frequency energy to leads entering the amplifier, to prevent grid-plate coupling between these leads external to the amplifier.

Where shielding is adequate, the feed-back at frequencies above 100 MHz is due principally to screenlead-inductance effects, and it becomes necessary to introduce in-phase voltage from the plate circuit into the grid circuit. This can be done by adding capacitance between plate and grid external to the tube. Ordinarily, a small metal tab approximately %-inch square connected to the grid terminal and located adjacent to the envelope opposite the plate will suffice for neutralization. Means should be provided for adjusting the spacing between the neutralizing capacitor plate and the envelope, but care must be taken to prevent the neutralizing plate from touching the envelope. An alternative neutralization scheme is illustrated in the diagram below. In this circuit feed-back is eliminated by series-tuning the screen to ground with a small capacitor. The socket screen terminals should be strapped together, as shown on the diagram, by the shortest possible lead, and the leads from the screen terminal to the capacitor, C, and from the capacitor to ground should be made as short as possible. All connections to the screen terminals should be made to the center of the strap between the terminals, in order to equalize the current in the two screen leads and prevent overheating one of them. The value for C given under the diagram presupposes the use of the shortest possible

At frequencies below 100 MHz ordinary neutralization systems may be used. With reasonably effective shielding, however, neutralization should not be required below about 30 MHz.

The driving power and power output under typical operating conditions, with maximum output and plate voltage, are shown on page 5. The power output shown is the actual plate power delivered by the tube; the power delivered to the load will depend upon the efficiency of the plate tank and output coupling system. The driving power is likewise the driving power required by the tube (includes bias loss). The driver output power should exceed the driving power requirement by a sufficient margin to allow for coupling-circuit losses. These losses will not ordinarily amount to more than 30 or 40

per cent of the driving power, except at frequencies above 150 MHz. The use of silver-plated linear tank-circuit elements is recommended at frequencies above 100 MHz.

Conventional capacitance-shortened quarter-wave linear grid tank circuits having a calculated  $Z_0$  of 160 ohms or less may be used with the 4-125A up to 175 MHz. Above 175 MHz linear grid tank circuits employing a "capacitor"-type shortening bar, as illustrated in the diagram below, may be used. The capacitor,  $C_1$ , may consist of two silver-plated brass plates one inch square with a piece of .010 inch mica or polystyrene as insulation.

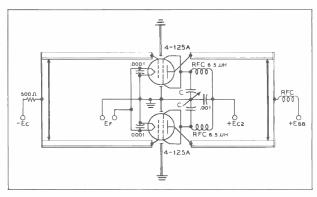
Class-C AM Telephony—The rf circuit considerations discussed above under Class-C Telegraphy or FM Telephony also apply to amplitude-modulated operation of the 4-125A. When the 4-125A is used as a class-C high-level-modulated amplifier, modulation should be applied to both plate and screen. Modulation voltage for the screen may be obtained from a separate winding on the modulation transformer, by supplying the screen voltage via a series dropping resistor from the unmodulated plate supply, or by the use of an audio-frequency reactor in the positive screen-supply lead. When screen modulation is obtained by either the series-resistor or the audio-reactor method, the audio-frequency variations in screen current which result from variations in plate voltage as the plate is modulated automatically give the required screen modulation. Where a reactor is used, it should have a rated inductance of not less than 10 henries divided by the number of tubes in the modulated amplifier and a maximum current rating of two or three times the operating dc screen current. To prevent phase shift between the screen and plate modulation voltages at high audio frequencies, the screen bypass capacitor should be no larger than necessary for adequate rf by-passing. Where screen voltage is obtained from a separate winding on the modulation transformer, the screen winding should be designed to deliver the peak screen modulation voltage given in the typical operating data on page 2.

For high-level modulated service, the use of partial grid-leak bias is recommended. Any by-pass capacitors placed across the grid-leak resistance should have a reactance at the highest modulation frequency equal to at least twice the grid-leak resistance.

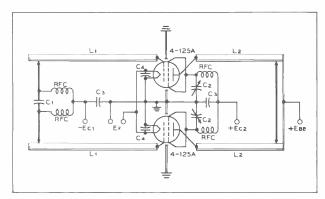
Class-AB<sub>1</sub> and Class-AB<sub>2</sub> Audio— Two 4-125A's may be used in a push-pull circuit to give relatively high audio output power at low distortion. Maximum ratings and typical operating conditions for class-AB<sub>1</sub> and class-AB<sub>2</sub> audio operation are given in the tabulated data.

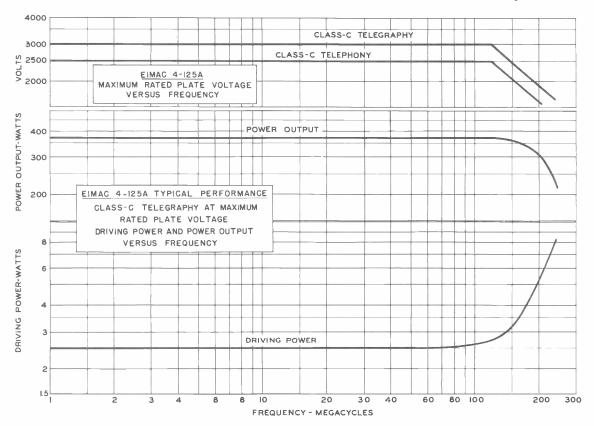
When type 4-125A tubes are used as class-AB<sub>1</sub>, or class-AB<sub>2</sub> audio amplifiers at 1500 plate volts, under the conditions given under "Typical Operation," the screen voltage must be obtained from a source having reasonably good regulation, to prevent variations in screen voltage from zero-signal to maximum-signal conditions. The use of voltage regulator tubes in a standard circuit will provide adequate regulation. The variation in screen current at plate voltages of 2000 and above is low enough so that any screen power supply having a normal order



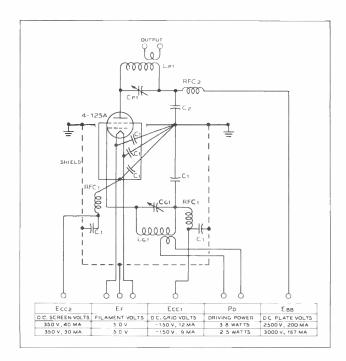

of regulation will serve. The driver plate supply makes a convenient source of screen voltage under these conditions.

Grid bias voltage for class-AB $_2$  service may be obtained from batteries or from a small fixed-bias supply. When a bias supply is used, the dc resistance of the bias source should not exceed 250 ohms. Under class-AB $_1$  conditions the effective grid-circuit resistance for each tube should not exceed 250,000 ohms.

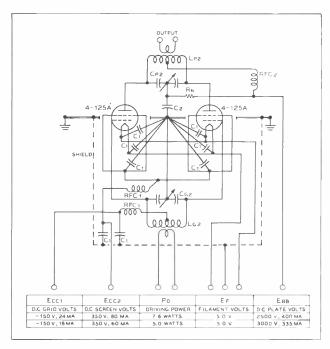

The peak driving power figures given in the class-AB<sub>2</sub> tabulated data are included to make possible an accurate determination of the required driver output power. The


driving amplifier must be capable of supplying the peak driving power without distortion. The driver stage should, therefore, be capable of providing an undistorted average output equal to half the peak driving power requirement. A small amount of additional driver output should be provided to allow for losses in the coupling transformer.

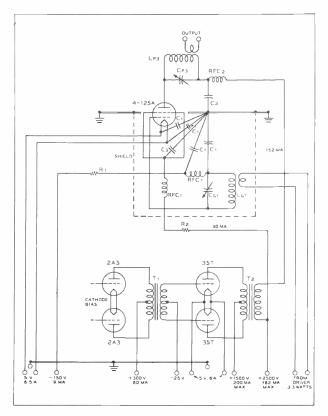
The power output figures given in the tabulated data refer to the total power output from the amplifier tubes. The useful power output will be from 5 to 15 per cent less than the figures shown, due to losses in the output transformer.



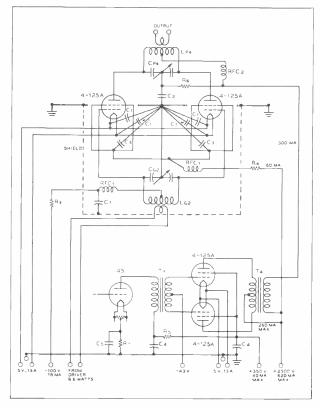

Screen-tuning neutralization circuit for use above 100 Mc. C is a small split-stator capacitor.  $C(\mu\mu f d) = \frac{640,000}{f^2 \text{ (Mc.)}} \text{ , approx.}$ 









Typical radio-frequency power amplifier circuit, Class-C telegraphy, 500 watts input.



Typical radio-frequency power amplifier circuit, Class-C telegraphy, 1000 watts input.



Typical high-level-modulated r-f amplifier circuit, with modulator and driver stages, 380 watts plate input.



Typical high-level-modulated r-f amplifier circuit, with modulator and driver stages, 750 watts plate input.

See opposite page for list of components.



#### COMPONENTS FOR TYPICAL CIRCUITS

(Diagrams, Page 6)

 $L_{p1}$ - $C_{p1}$ —Tank circuit appropriate for operating frequency; Q=12. Capacitor plate spacing = .200".

 $L_{p2}$ -  $C_{p2}$  — Tank circuit appropriate for operating frequency; Q = 12. Capacitor plate spacing = .200".

 $L_{p3}$  -  $C_{p3}$  — Tank circuit appropriate for operating frequency; Q=12. Capacitor plate spacing = .375".

 $L_{\rm p4}$  -  $C_{\rm p4}$  — Tank circuit appropriate for operating frequency; Q = 12. Capacitor plate spacing = .375".

 $L_{\rm gr}$  -  $C_{\rm gr}$  — Tuned circuit appropriate for operating frequency.

 $L_{\rm g2}$  -  $C_{\rm g2}$  — Tuned circuit appropriate for operating frequency.

C, - .002-ufd., 500-v. mica

C<sub>2</sub> --- .002-ufd., 5000-v. mica

C<sub>3</sub> -- .001-ufd., 2500-v. mica

C. - 16-ufd., 450-v. electrolytic

Cs - 10-ufd., 25-v. electrolytic

R, - 7000 ohms, 5 watts

 $R_2 - 70,000$  ohms, 100 watts

 $R_3 - 3500$  ohms, 5 watts

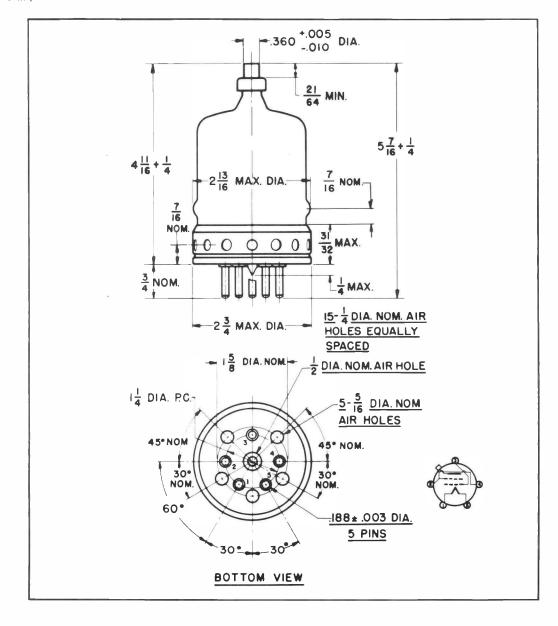
R4 - 35,000 ohms, 200 watts

 $R_s = 560$  ohms, I watt

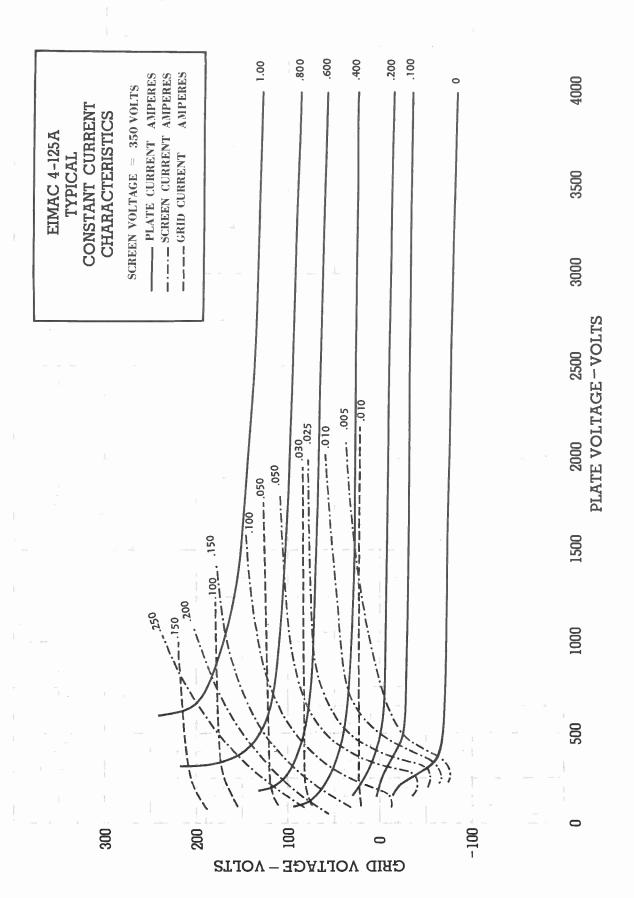
 $R_6 - 25,000$  ohms, 2 watts

R7 - 1500 ohms, 5 watts

RFC<sub>1</sub> — 2.5-mhy., 125-ma. r-f choke


RFC<sub>2</sub> — 1-mhy., 500-ma. r-f choke

 $T_1 = 10$ -watt driver transformer; ratio pri. to  $\frac{1}{2}$  sec. approx. 2:1.


T<sub>2</sub> — 200-watt modulation transformer; ratio pri. to sec. approx. 1:1; pri. impedance = 16,200 ohms, sec. impedance = 16,500 ohms.

 $T_3$  — 5-watt driver transformer; ratio pri. to 1/2 sec. approx. 1.1:1.

T<sub>4</sub> — 400-watt modulation transformer; ratio pri. to sec. approx. 2.7:1; pri. impedance = 22,200 ohms, sec. impedance = 8300 ohms.









#### TECHNICAL DATA

5D22 4-250A

RADIAL BEAM POWER TETRODI

The EIMAC 5D22/4-250A is a compact, ruggedly constructed power tetrode having a maximum plate dissipation rating of 250 watts. It is intended for use as an amplifier, oscillator or modulator. The low grid-plate capacitance of this tetrode coupled with its low driving-power requirement allows considerable simplification of the associated circuit and driver stage.

The 5D22/4-250A is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope, and over the plate seal.

#### GENERAL CHARACTERISTICS 1

| ELECTRICAL                                                         |                |            |      |       |
|--------------------------------------------------------------------|----------------|------------|------|-------|
| Filament: Thoriated Tungsten                                       |                |            | · -  |       |
| Voltage                                                            | $5.0 \pm 0.25$ | V          | 0    | 0 0   |
| Current, at 5.0 volts                                              | 14.5           | A          |      |       |
| Transconductance (Average):                                        |                |            |      |       |
| $I_b = 100 \text{ mA}, E_{c2} = 500 \text{ Vdc}$                   | 4000           | $\mu$ mhos | 0    | U     |
| Amplification Factor (Average):                                    |                |            |      |       |
| Grid to Screen                                                     | 5.1            |            |      |       |
| Direct Interelectrode Capacitance (grounded filament) <sup>2</sup> |                |            |      |       |
| Input                                                              |                |            | 12.  | 7 pF  |
| Output                                                             |                |            | 4.   | 5 pF  |
| Feedback                                                           |                |            | 0.12 | 2 pF  |
| Frequency of Maximum Rating:                                       |                |            |      | -     |
| ĈW                                                                 |                |            | 110  | ) MHz |

- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### MECHANICAL

Maximum Overall Dimensions:

| Length                         | 1.93 mm  |
|--------------------------------|----------|
| Diameter 3.563 in; 90          | 0.50 mm  |
| Net Weight                     | 26.8 gm  |
| Operating Position             | vn or up |
| Maximum Operating Temperature: |          |
| Plate Seal                     | 200°C    |
| Dana Canta                     | 1700 C   |

(Effective 5-5-70) © 1970, 1952 by Varian

Printed in U.S.A.

| Base                                                                                                                                               | Radiation and forced air Special 5-pin EIMAC SK-400 Series EIMAC SK-406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER<br>GRID DRIVEN<br>Class AB <sub>1</sub>                                                                           | TYPICAL OPERATION (Frequencies to 30 MHz) Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation Crest Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                    | <ol> <li>Adjust to specified zero-signal dc plate current.</li> <li>Approximate value.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE1    | TYPICAL OPERATION (Frequencies to 110 MHz)         Plate Voltage       2500       3000       Vdc         Screen Voltage       400       400       Vdc         Grid Voltage       -200       -310       Vdc         Plate Current       200       225       mAdc         Screen Current 4       30       30       mAdc         Grid Current 4       9       9       mAdc         Peak af Screen Voltage (100%       350       350       v         Peak rf Grid Voltage 4       255       365       v         Calculated Driving Power 4/5       2.2       3.2       W         Plate Input Power       500       675       W         Plate Dissipation       125       165       W         Plate Output Power       375       510       W |
| tion.  3. Average, with or without modulation.                                                                                                     | <ol> <li>Approximate Value.</li> <li>Driving power increases above 110 MHz. See Application (Electrical) section.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB, Grid Driven

| (Sinusoidal Wave)                   | DC SCREEN VOLTAGE  | 600  | VOLTS  |
|-------------------------------------|--------------------|------|--------|
|                                     | DC PLATE CURRENT   | 0.35 | AMPERE |
| ABSOLUTE MAXIMUM RATINGS (per tube) | PLATE DISSIPATION  | 250  | WATTS  |
|                                     | SCREEN DISSIPATION | 35   | WATTS  |
| DC PLATE VOLTAGE 4000 VOLTS         | GRID DISSIPATION   | 10   | WATTS  |

| TYPICAL OPERATION (Two Tubes), Class AB <sub>1</sub> |       |        |        |      |  |  |  |  |  |
|------------------------------------------------------|-------|--------|--------|------|--|--|--|--|--|
| Plate Voltage 1500                                   | 2000  | 2500   | 3000   | Vdc  |  |  |  |  |  |
| Screen Voltage 600                                   | 600   | 600    | 600    | Vdc  |  |  |  |  |  |
| Grid Voltage1/395                                    | -104  | -110   | -116   | Vdc  |  |  |  |  |  |
| Zero-Signal Plate Current 120                        | 110   | 120    | 120    | mAdc |  |  |  |  |  |
| Max. Signal Plate Current 400                        | 405   | 430    | 417    | mAdc |  |  |  |  |  |
| Zero-Signal Screen                                   |       |        |        |      |  |  |  |  |  |
| Current 10.40                                        | -0.30 | -0.30  | -0.20  | mAdc |  |  |  |  |  |
| Max. Signal Screen                                   |       |        |        |      |  |  |  |  |  |
| Current <sup>1</sup> 23                              | 22    | 13     | 11     | mAdc |  |  |  |  |  |
| Peak af Grid Voltage 2. 64                           | 88    | 90     | 93     | V    |  |  |  |  |  |
| Peak Driving Power 0                                 | 0     | 0      | 0      | W    |  |  |  |  |  |
| Max. Signal Plate                                    |       |        |        |      |  |  |  |  |  |
| Dissipation 2 145                                    | 175   | 225    | 250    | W    |  |  |  |  |  |
| Plate Output Power 310                               | 460   | 625    | 750    | W    |  |  |  |  |  |
| Load Resistance                                      |       |        |        |      |  |  |  |  |  |
| (plate to plate) 6250                                | 9170  | 11,400 | 15,000 | Ω    |  |  |  |  |  |

#### TYPICAL OPERATION (Two Tubes), Class AB2

| Plate Voltage Screen Voltage | 1500 | 2000<br>300     | 2500<br>300     |        | Vdc  |
|------------------------------|------|-----------------|-----------------|--------|------|
| Grid Voltage1/3              | -48  | <del>-</del> 48 | <del>-</del> 51 |        | Vdc  |
| Zero-Signal Plate Current    | 100  | 120             | 120             | 125    | mAdc |
| Max. Signal Plate Current    | 485  | 510             | 500             | 473    | mAdc |
| Zero-Signal Screen           |      |                 |                 |        |      |
| Current 1                    | 0    | 0               | 0               | 0      | mAdc |
| Max. Signal Screen           |      |                 |                 |        |      |
| Current 1                    | 34   | 26              | 23              | 33     | mAdc |
| Peak af Grid Voltage 2 .     | 96   | 99              | 100             | 99     | V    |
| Peak Driving Power 4         | 4.7  | 5.5             | 4.8             | 4.6    | W    |
| Max. Signal Plate            |      |                 |                 |        |      |
| Dissipation2                 | 150  | 185             | 205             | 190    | W    |
| Plate Output Power           | 428  | 650             | 840             | 1040   | W    |
| Load Resistance              |      |                 |                 |        |      |
| (plate to plate)             | 5400 | 8000            | 10,900          | 16,000 | Ω    |

- 1. Approximate value.
- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.
- 4. Nominal drive power is one-half peak drive power.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                       | Min. | Max.    |
|-------------------------------------------------------------------------|------|---------|
| Filament: Current at 5.0 volts                                          |      |         |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection) |      |         |
| Input                                                                   | 10.7 | 14.5 pF |
| Output                                                                  | 3.7  | 5.1 pF  |
| Feedback                                                                |      | 0.14 pF |
|                                                                         |      |         |

1. In Shielded Fixture.



#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4-250A must be mounted vertically, base up or down. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The metal tube-base shell should be grounded by means of suitable spring fingers. The above requirements are met by the EIMAC SK-400 and SK-410 Air-System Sockets. A flexible connecting strap should be provided between the EIMAC HR-6 connector on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock.

COOLING - Adequate forced-air cooling must be provided to maintain the base seals at a temperature below  $170^{\circ}$ C, and the plate seal at a temperature below  $200^{\circ}$ C.

When the EIMAC SK-400 or SK-410 Air-System Socket is used, a minimum air flow of 5 cubic feet per minute at a static pressure of 0.25 inches of water or less, as measured in the socket or plenum chamber at sea level, is required to provide adequate cooling under all conditions of operation. Seal temperature limitations may require that cooling air be supplied to the tube even when the filament alone is on during standby periods.

In the event an Air-System Socket is not used, provision must be made to supply equivalent cooling of the base, the envelope, and the plate lead.

Intermittent-service applications where the "on" time does not exceed a total of five minutes in any ten-minute period, plate-seal temperatures as high as 220°C, are permissible. When the ambient temperature does not exceed 30°C, it will not ordinarily be necessary to provide forced cooling of the bulb and plate seal to hold the temperature below this maximum at frequencies below 30 MHz, provided that a heat-radiating plate connector is used, and the tube is so located that normal circulation of air past the envelope is not impeded. The five cubic feet per minute base-cooling requirement must be observed in intermittent service.

Tube temperatures may be measured with a temperature sensitive paint, spray or crayon,

such as manufactured by Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield, N.J. 07080.

#### **ELECTRICAL**

FILAMENT VOLTAGE - For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated voltage of 5.0 volts. Variations in filament voltage must be kept within the range from 4.75 to 5.25 volts.

BIAS VOLTAGE - The dc bias voltage for the 4-250A should not exceed 500 volts. If grid resistor bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 MHz, it is advisable to keep the bias voltage as low as is practicable.

SCREEN VOLTAGE - The dc screen voltage for the 4-250A should not exceed 600 volts. The screen voltages shown under Typical Operation are representative voltages for the type of operation involved.

PLATE VOLTAGE - The plate-supply voltage for the 4-250A should not exceed 4000 volts in CW and audio applications. In plate-modulated telephony service the dc plate supply voltage should not exceed 3200 volts, except below 110 MHz, intermittent service, where 4000 volts may be used.

GRID DISSIPATION - Grid dissipation for the 4-250A should not be allowed to exceed 10 watts. Grid dissipation may be calculated from the following expression:

$$P_g = e_{gk} \times I_c$$

where Pg = Grid dissipation

 $e_{gk}$  = Peak positive grid to cathode voltage, and

Ic = dc grid current

 $\mathbf{e}_{gk}$  may be measured by means of a suitable peak voltmeter connected between filament and grid.

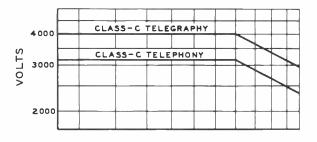
SCREEN DISSIPATION - The power dissipated by the screen of the 4-250A must not exceed 35 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 35 watts in event of circuit failure.

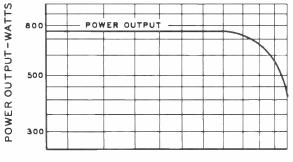
PLATE DISSIPATION - Under normal operating conditions, the plate dissipation of the 4-250A should not be allowed to exceed 250 watts. The anode of the 4-250A operates at a visibly red color at its maximum rated dissipation of 250 watts.

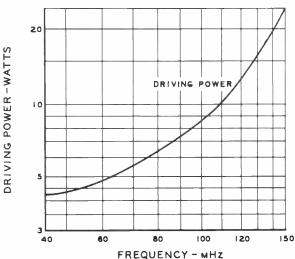
In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 165 watts. The plate dissipation will rise to 250 watts under 100% sinusoidal modulation.

Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

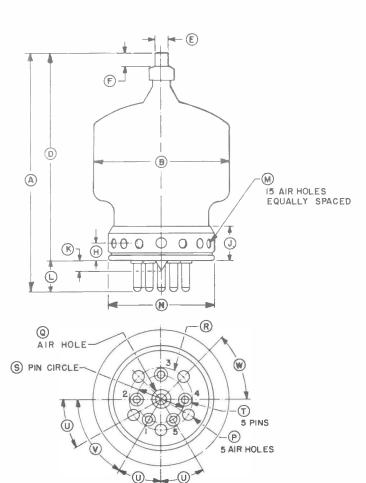
PULSE SERVICE - For pulse service, the EIMAC 4PR400A should be used.


MULTIPLE OPERATION - To obtain maximum power output with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal for class AB1 operation.


CAUTION-GLASS IMPLOSION - The EIMAC 4-250A is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.


CAUTION-HIGH VOLTAGE - Operating voltage for the 4-250A can be deadly, so the equipment must be designed properly and operation precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock

switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

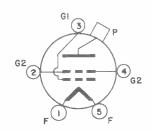

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.







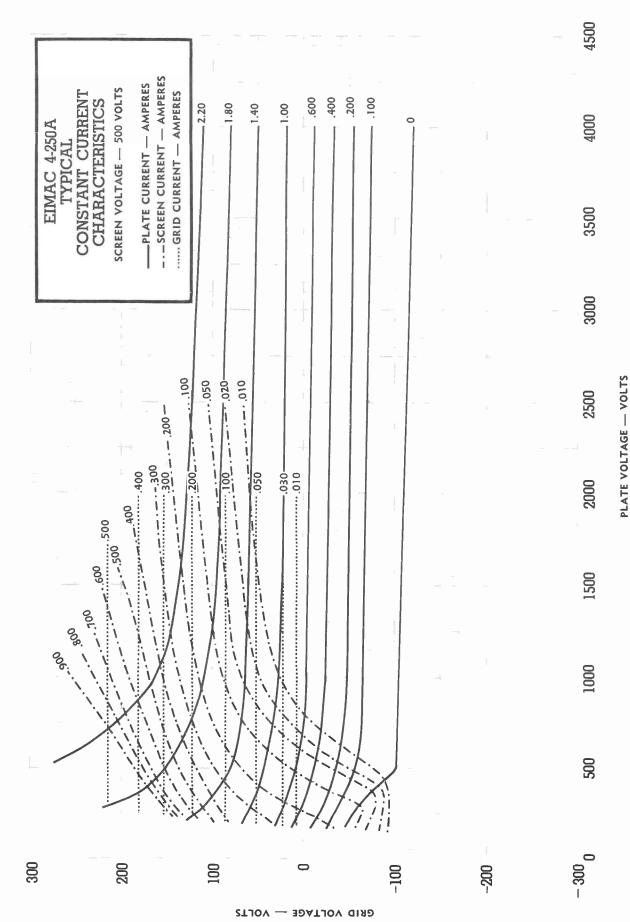
OPERATING CHARACTERISTICS ABOVE 40 MHz

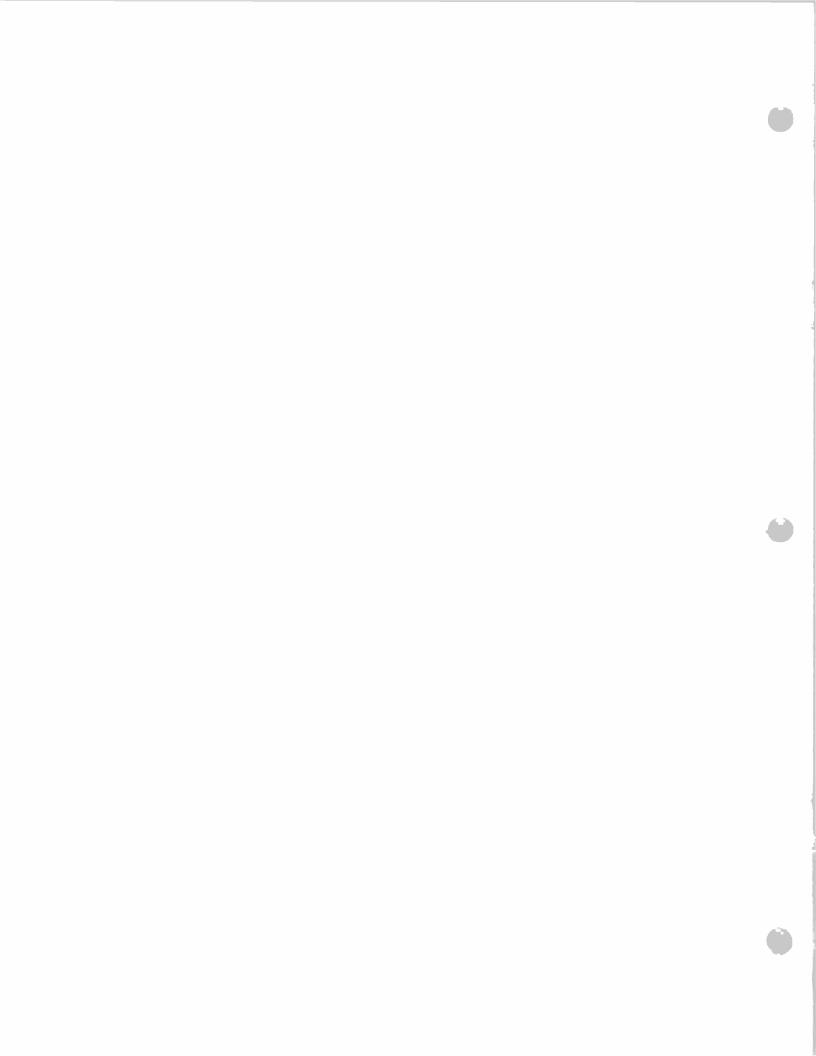



BOTTOM VIEW

| DIMENSIONAL DATA |       |        |       |             |        |            |  |  |  |  |  |
|------------------|-------|--------|-------|-------------|--------|------------|--|--|--|--|--|
| DIM              |       | INCHES |       | MILLIMETERS |        |            |  |  |  |  |  |
| DIM.             | MIN.  | MAX    | REF   | MIN.        | MAX.   | REF        |  |  |  |  |  |
| Α                | 5.875 | 6.375  |       | 149.23      | 161.93 |            |  |  |  |  |  |
| 8                |       | 3,563  |       |             | 90.50  | _ <b>_</b> |  |  |  |  |  |
|                  |       |        |       |             |        |            |  |  |  |  |  |
| D                | 5.125 | 5.625  | ~-    | 130.18      | 42.88  |            |  |  |  |  |  |
| Ε                | 0.350 | 0.365  |       | 8.89        | 9.27   |            |  |  |  |  |  |
| F                | 0.328 |        |       | 8.33        |        |            |  |  |  |  |  |
|                  |       |        |       |             |        |            |  |  |  |  |  |
| Н                |       |        | 0.438 |             |        | 11.13      |  |  |  |  |  |
| J                |       | 0.969  |       |             | 24.61  |            |  |  |  |  |  |
| K                |       | 0.250  |       |             | 6.35   |            |  |  |  |  |  |
| L                |       |        | 0.750 |             |        | 19.05      |  |  |  |  |  |
| М                |       |        | 0.250 |             |        | 6.35       |  |  |  |  |  |
| N                |       | 2.750  |       |             | 69.85  |            |  |  |  |  |  |
| P                |       |        | 0.312 |             |        | 7. 92      |  |  |  |  |  |
| Q                |       |        | 0.500 |             |        | 12.70      |  |  |  |  |  |
| R                |       |        | 1.625 |             |        | 41.28      |  |  |  |  |  |
| S                |       |        | 1.250 |             |        | 31.75      |  |  |  |  |  |
| T                | 0.185 | 0.191  |       | 4.70        | 4.85   |            |  |  |  |  |  |
| U                |       |        | 30°   |             |        | 30°        |  |  |  |  |  |
| V                |       |        | 60°   |             |        | 60°        |  |  |  |  |  |
| W                |       |        | 45°   |             |        | 45°        |  |  |  |  |  |
|                  |       |        |       |             |        |            |  |  |  |  |  |
|                  |       |        |       |             |        |            |  |  |  |  |  |

NOTES:


REF. DIMENSIONS ARE FOR INFO.
ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.




#### NOTE:

Base pins T and tubulation K are so alined that they can be freely inserted in a gage  $\frac{1}{2}$  inch (6.35 mm) thick with hole diameters of .204 (5.18 mm) and .500 (12.70 mm), respectively, located on the true centers by the given dimensions S, U, V.









#### TECHNICAL DATA

8438 4-400A

RADIAL BEAM POWER TETRODE

The EIMAC 8438/4-400A is a compact, ruggedly constructed power tetrode having a maximum plate dissipation rating of 400 watts. It is intended for use as an amplifier, oscillator or modulator. The low grid-plate capacitance of this tetrode coupled with its low driving-power requirement allows considerable simplification of the associated circuit and driver stage.

The 8438/4-400A is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope, and over the plate seal. Cooling can be greatly simplified by using an EIMAC SK-400 Series Air System Socket and its accompanying glass chimney. This socket is designed to maintain the correct balance of cooling air between the component parts of the tube. <sup>3</sup>

#### GENERAL CHARACTERISTICS<sup>1</sup>

# ELECTRICAL

| Filament: Thoriated Tungsten                            |   |
|---------------------------------------------------------|---|
| Voltage                                                 |   |
| Current, at 5.0 volts                                   |   |
| Transconductance (Average):                             |   |
| $I_{b}=$ 100 mA, $E_{c2}=$ 500 volts 4000 $\mu$ mhos    |   |
| Amplification Factor (Average):                         |   |
| Grid to Screen 5.1                                      |   |
| Direct Interelectrode Capacitances (grounded filament)2 |   |
| Input                                                   |   |
| Output                                                  | ٠ |
| Feedback                                                |   |

| 1. | Characteristics and operating values are based upon performance tests. These figures may change without notice    |
|----|-------------------------------------------------------------------------------------------------------------------|
|    | as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using |
|    | this information for final equipment design.                                                                      |

2. In Shielded Fixture.

Frequency of Maximum Rating:

#### MECHANICAL

| Maximum Overall Dimensions: |                     |
|-----------------------------|---------------------|
| Length                      | 6.375 in; 161.93 mm |
| Diameter                    | 3.563 in; 90.50 mm  |

(Effective 7-20-70) © by Varian

Printed in U.S.A.

12.5 pF 4.7 pF 0.12 pF

110 MHz

<sup>3.</sup> Guarantee applies only when the 4-400A is used as specified with adequate air in the SK-400 or SK-410 Air-System Socket and associated chimney or equivalent.

| Maximum Operating Temperature: Plate Seal Base Seals Cooling Base Recommended Socket Recommended Chimney Recommended Heat-Dissipating Connectors:                                                                                                                                                                                                                                                                                                                                                  | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                 | TYPICAL OPERATION (Frequencies to 75 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions                                                                                                                                                                                                                                                                                                                                                                            |
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                 | Peak rf Grid Voltage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TYPICAL OPERATION (Frequencies to 75 MHz)         Plate Voltage       2500       3000       4000       Vdc         Screen Voltage       500       500       500       Vdc         Grid Voltage       -200       -220       -220       Vdc         Plate Current       350       350       350       mAdc         Screen Current 1       46       46       40       mAdc         Screen Dissipation       23       23       20       W         Grid Current 1       18       19       18       mAdc | Plate Voltage       3500       4000       Vdc         Screen Voltage       500       500       Vdc         Grid Voltage       -170       -170       Vdc         Plate Current       500       540       mAdc         Screen Current       34       31       mAdc         Grid Current       20       20       mAdc         Driving Power 1       20       20       W         Plate Output Power 1       1300       1600       W         Useful Output Power       1160       1440       W |



# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN Class C Telephony (Carrier Conditions)

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE                | 3200 | VOLTS |
|---------------------------------|------|-------|
| DC SCREEN VOLTAGE               | 600  | VOLTS |
| DC GRID VOLTAGE                 | -500 | VOLTS |
| DCPLATE CURRENT                 |      |       |
| PLATE DISSIPATION <sup>1</sup>  | 270  | WATTS |
| SCREEN DISSIPATION <sup>2</sup> | 35   | WATTS |
| GRID DISSIPATION <sup>2</sup>   | 10   | WATTS |

- Corresponds to 400 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

# **MAXIMUM RATINGS** (Frequencies to 30 MHz, Intermittent Service

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE 4000   | VOLTS  |
|-------------------------|--------|
| DC SCREEN VOLTAGE 600   | VOLTS  |
| DC GRID VOLTAGE500      | VOLTS  |
| DC PLATE CURRENT 0.275  | AMPERE |
| PLATE DISSIPATION 1 270 |        |
| SCREEN DISSIPATION 2    |        |
| GRID DISSIPATION2       | WATTS  |

#### TYPICAL OPERATION (Frequencies to 75 MHz)

| Screen Voltage 500 500 Vdd           |    |
|--------------------------------------|----|
| Grid Voltage220 -220 Vdd             | ,  |
| Plate Current 275 275 mA             | dc |
| Screen Current 1 30 28 26 mA         | dc |
| Screen Dissipation 15 14 13 W        |    |
| Grid Current 1 12 12 mA              | dc |
| Grid Dissipation 1.1 1.1 W           |    |
| Peak af Screen Voltage 1             |    |
| (100% modulation) 350 350 v          |    |
| Peak rf Grid Voltage 1 290 290 290 v |    |
| Calculated Driving Power 1 3.5 3.5 W |    |
| Plate Input Power 550 688 825 W      |    |

178

510

195 W

630 W

# TYPICAL OPERATION (Frequencies to 30 MHz, Intermittent Service)

|   | Plate Voltage               | 2000 | 2500 | 3000 | 3650 | Vdc  |
|---|-----------------------------|------|------|------|------|------|
|   | Screen Voltage              | 500  | 500  | 500  | 500  | Vdc  |
|   | Grid Voltage                | -220 | -220 | -220 | -225 | Vdc  |
| ; | Plate Current               | 275  | 275  | 275  | 275  | mAdd |
| ; | Screen Current <sup>1</sup> | 30   | 28   | 26   | 23   | mAdd |
|   | Screen Dissipation          | 15   | 14   | 13   | 12   | W    |
| ; | Grid Current 1              | 12   | 12   | 12   | 13   | mAdc |
|   | Grid Dissipation            | 1.1  | 1.1  | 1.1  | 1.2  | W    |
|   | Peak Screen Voltage         |      |      |      |      |      |
|   | (100% modulation)           | 350  | 350  | 350  | 350  | V    |
|   | Peak rf Grid Voltage 1      | 290  | 290  | 290  | 315  | V    |
|   | Calculated Driving Power 1. | 3.5  | 3.5  | 3.5  | 4.0  | W    |
|   | Plate Input Power           | 550  | 688  | 825  | 1000 | W    |
|   | Plate Dissipation           | 170  | 178  | 195  | 235  | W    |
|   | Plate Output Power          | 380  | 510  | 630  | 765  | W    |
|   |                             |      |      |      |      |      |

#### 1. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB, Grid Driven (Sinusoidal Wave)

#### ABSOLUTE MAXIMUM RATINGS (Per Tube)

Plate Dissipation . . . . . . . . 170

Plate Output Power . . . . . . . . 380

| DC PLATE VOLTAGE.   |  |  |  |  |  | 4000  | VOLTS  |
|---------------------|--|--|--|--|--|-------|--------|
| DC SCREEN VOLTAGE   |  |  |  |  |  | 800   | VOLTS  |
| DC PLATE CURRENT.   |  |  |  |  |  | 0.350 | AMPERE |
| PLATE DISSIPATION . |  |  |  |  |  | 400   | WATTS  |
| SCREEN DISSIPATION  |  |  |  |  |  | 35    | WATTS  |
| GRID DISSIPATION    |  |  |  |  |  | 10    | WATTS  |

#### TYPICAL OPERATION (Two Tubes) Class AB1

| Plate Voltage                     | 2500 | 3000 | 3500 | 4000 | Vdc  |
|-----------------------------------|------|------|------|------|------|
| Screen Voltage                    | 750  | 750  | 750  | 750  | Vdc  |
| Grid Voltage 1/4                  | -130 | -137 | -145 | -150 | Vdc  |
| Zero-Signal Plate Current         | 190  | 160  | 140  | 120  | mAdc |
| Max. Signal Plate Current         | 635  | 635  | 610  | 585  | mAdc |
| Zero-Signal Screen Current .      | 0    | 0    | 0    | 0    | mAdc |
| Max. Signal Screen Current1.      | 28   | 26   | 32   | 40   | mAdc |
| Peak af Grid Voltage <sup>2</sup> | 130  | 137  | 145  | 150  | v    |
| Peak Driving Power 3              | 0    | 0    | 0    | 0    | w    |
| Max Signal Plate                  |      |      |      |      |      |
| Dissipation <sup>2</sup>          | 370  | 400  | 400  | 400  | W    |
| -                                 |      |      |      |      |      |

| Plate Output Power |  |  |  | 850  | 1100 | 1330   | 1540   | W          |
|--------------------|--|--|--|------|------|--------|--------|------------|
| Load Resistance    |  |  |  |      |      |        |        |            |
| (plate to plate) . |  |  |  | 6800 | 8900 | 11,500 | 14,000 | $\Omega$ 0 |

#### TYPICAL OPERATION (Two Tubes) Class AB2

| Plate Voltage               | 2500 | 3000 | 3500   | 4000  | Vdc            |
|-----------------------------|------|------|--------|-------|----------------|
| Screen Voltage              | 500  | 500  | 500    | 500   | Vdc            |
| Grid Voltage 1/4            | -75  | -80  | -85    | -90   | Vdc            |
| Zero-Signal Plate Current . | 190  | 160  | 140    | 120   | mAdd           |
| Max. Signal Plate Current . | 700  | 700  | 700    | 638   | mAdd           |
| Zero-Signal Screen Current  | 0    | 0    | 0      | 0     | mAdd           |
| Max. Signal Screen Current  | 50   | 40   | 38     | 32    | mAdd           |
| Peak af Grid Voltage2       | 133  | 140  | 145    | 140   | V              |
| Peak Driving Power 3        | 8.6  | 9.0  | 10.2   | 7.0   | W              |
| Max. Signal Plate           |      |      |        |       |                |
| Dissipation 2               | 320  | 363  | 400    | 400   | W              |
| Plate Output Power          | 1110 | 1375 | 1650   | 1750  | W              |
| Load Resistance             |      |      |        |       |                |
| (plate to plate)            | 7200 | 9100 | 10,800 | 14,00 | $\Omega\Omega$ |
|                             |      |      |        |       |                |

- 1. Approximate value.
- 2. Per tube.
- 3. Nominal drive power is one-half peak power.
- 4. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                        | 14:          | M              |  |
|--------------------------------------------------------------------------|--------------|----------------|--|
| Filament: Current at 5.0 volts                                           | Min.<br>13.5 | Max.<br>14.7 A |  |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection): |              |                |  |
| Input                                                                    | 10.7         | 14.5 pF        |  |
| Output                                                                   | 4.2          | 5.6 pF         |  |
| Feedback                                                                 |              | 0.17 pF        |  |

1. In Shielded Fixture.

#### APPLICATION

#### **MECHANICAL**

MOUNTING - The 4-400A must be mounted vertically, base up or down. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The metal tube-base shell should be grounded by means of suitable spring fingers. The above requirements are met by the EIMAC SK-400 and SK-410 Air-System Sockets. A flexible connecting strap should be provided between the EIMAC HR-6 cooler on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock.

<code>COOLING</code> - Adequate forced-air cooling must be provided to maintain the base seals at a temperature below 200 $^{\circ}$ C, and the plate seal at a temperature below 225 $^{\circ}$ C.

When the EIMAC SK-400 or SK-410 Air-System Socket is used, a minimum air flow of 14 cubic feet per minute at a static pressure of 0.25 inches of water or less, as measured in the socket or plenum chamber at sea level, is required to provide adequate cooling under all conditions of operation. Seal temperature limitations may require that cooling air be supplied to the tube even when the filament alone is on during standby periods.

In the event an Air-System Socket is not used, provision must be made to supply equivalent cooling of the base, the envelope, and the plate lead.

Tube temperatures may be measured with a temperature sensitive paint, spray or crayon, such as manufactured by Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield, N.J. 07080.

#### **ELECTRICAL**

FILAMENT VOLTAGE - For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated voltage of 5.0 volts. Variations in filament voltage must be kept within the range from 4.75 to 5.25 volts.

BIAS VOLTAGE - The dc bias voltage for the 4-400A should not exceed 500 volts. If grid resistor bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 MHz, it is advisable to keep the bias voltage as low as is practicable.

SCREEN VOLTAGE - The dc screen voltage for the 4-400A should not exceed 800 volts. The screen voltages shown under Typical Operation are representative voltages for the type of operation involved. PLATE VOLTAGE - The plate-supply voltage for the 4-400A should not exceed 4000 volts in CW and audio applications. In plate-modulated telephony service the dc plate-supply voltage should not exceed 3200 volts, except below 30 MHz, intermittent service, where 4000 volts may be used.

GRID DISSIPATION - Grid dissipation for the 4-400A should not be allowed to exceed 10 watts. Grid dissipation may be calculated from the following expression:

 $P_g = e_{gk} \times I_c$ 

where  $P_{q} = Grid dissipation$ 

 $e_{gk}$  = Peak positive grid to cathode voltage, and

Ic = dc grid current

e<sub>cmp</sub> may be measured by means of a suitable peak voltmeter connected between filament and grid.

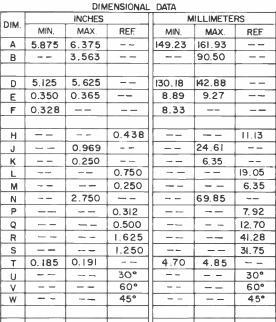
SCREEN DISSIPATION - The power dissipated by the screen of the 4-400A must not exceed 35 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 35 watts in event of circuit failure.

PLATE DISSIPATION - Under normal operating conditions, the plate dissipation of the 4-400A should not be allowed to exceed 400 watts. The anode of the 4-400A operates at a visibly red color at its maximum rated dissipation of 400 watts.

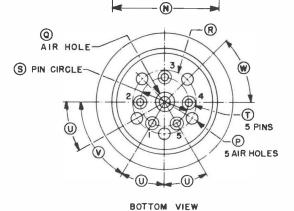
In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 270 watts. The plate dissipation will rise to 400 watts under 100% sinusoidal modulation.

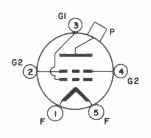
Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

PULSE SERVICE - For pulse service, the EIMAC 4PR400A should be used.


MULTIPLE OPERATION - To obtain maximum power output with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal for class AB1 operation.

CAUTION - GLASS IMPLOSION - The EIMAC 4-400A is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.

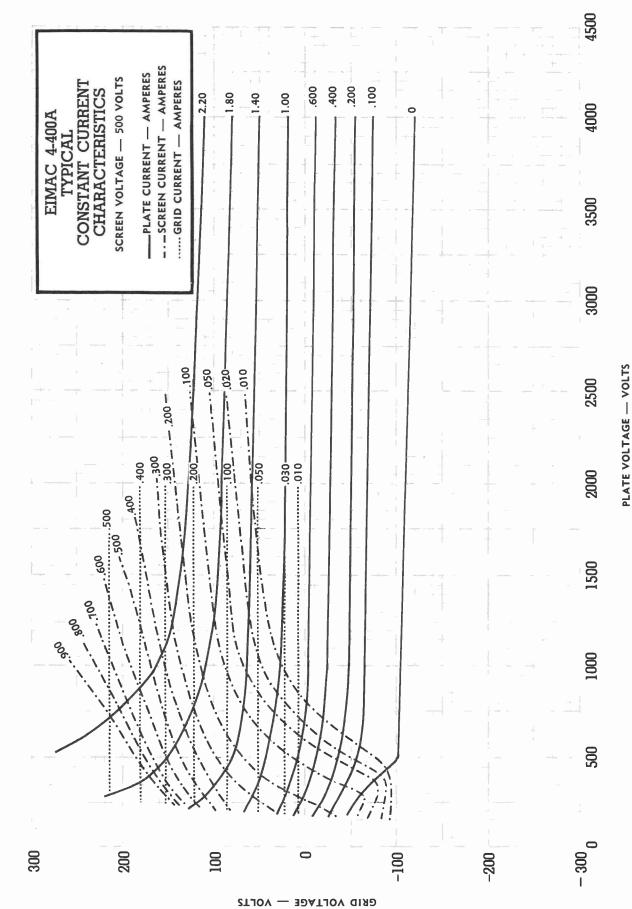

CAUTION-HIGH VOLTAGE - Operating voltage for the 4-400A can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

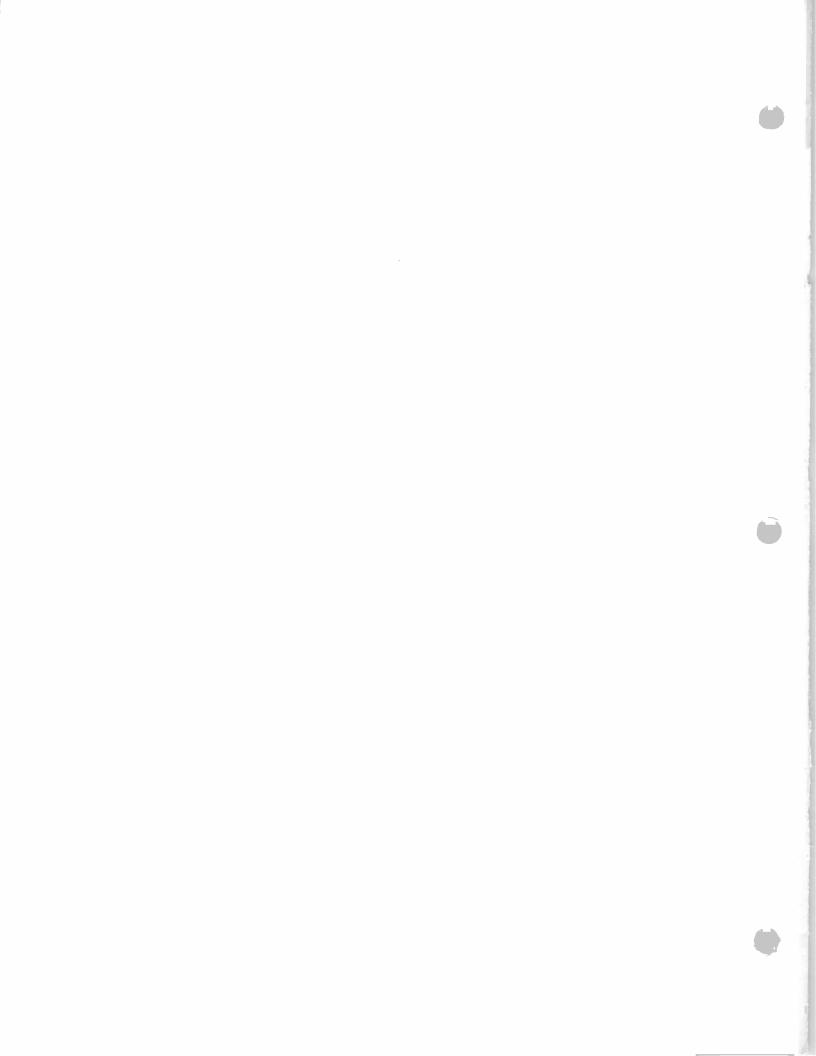

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

B IS AIR HOLES EQUALLY SPACED



REF DIMENSIONS ARE FOR INFO.
ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.




#### NOTE:

Base pins T and tubulation K are so alined that they can be freely inserted in a gage  $\frac{1}{2}$  inch (6.35 mm) thick with hole diameters of .204 (5.18 mm) and .500 (12.70 mm), respectively, located on the true centers by the given dimensions  $\frac{1}{2}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2}$ .









#### TECHNICAL DATA

6775 4-400C

RADIAL BEAM POWER TETRODE

The EIMAC 6775/4-400C is a compact, ruggedly constructed, broadcast-quality tetrode having a maximum plate dissipation rating of 400 watts. It is intended for use as an amplifier, oscillator, or modulator. The low grid-plate capacitance of this tetrode coupled with its low driving-power requirement allows considerable simplification of the associated circuit and driver stage.

The 6775/4-400C is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope, and over the plate seal. Cooling can be greatly simplified by using an EIMAC SK-400 Series Air-System Socket, and its accompanying glass chimney. This socket is designed to maintain the correct balance of cooling air between the component parts of the tube.1

The  $6775/4-400\,\mathrm{C}$  is especially recommended for applications where long life and consistent performance are of prime consideration.<sup>2</sup>



#### **GENERAL CHARACTERISTICS**<sup>3</sup>

#### ELECTRICAL

| Filament: Thoriated Tungsten                                        |                |       |
|---------------------------------------------------------------------|----------------|-------|
| Voltage                                                             | $5.0 \pm 0.25$ | V     |
| Current, at 5.0 volts                                               |                |       |
| Transconductance (Average):                                         |                |       |
| $I_b = 100 \text{ mA}, E_{c2} = 500 \text{ volts} \dots$            | 4000           | umhos |
| Amplification Factor (Average):                                     |                |       |
| Grid to Screen                                                      | 5.1            |       |
| Direct Interelectrode Capacitances (grounded filament) <sup>4</sup> |                |       |
| Cin                                                                 | 12.5           | pΕ    |
| Cout                                                                | 4.7            | •     |
| Cgp                                                                 | 0.12           | •     |
| Frequency of Maximum Rating:                                        | 0.12           | Ρ.    |
| CW                                                                  | 110            | MH2   |

- 1. Guarantee applies only when the 4-400C is used as specified with adequate cooling air in the SK-400 or SK-410 Air-System Socket and associated chimney, or equivalents.
- 2. See FILAMENT VOLTAGE section for recommended operating conditions when long life and consistent performance are of prime concern.
- Characteristics and operating values are based on performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

(Effective 4-1-71) © by Varian

Printed in U.S.A.

| MECHANICAL                                                           |                                                                                                                             |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Maximum Overall Dimensions:                                          |                                                                                                                             |
| Length                                                               | 6.375 in; 161.93 mm                                                                                                         |
| Diameter                                                             | 3.563 in; 90.50 mm                                                                                                          |
| Net Weight                                                           | 9.0 oz; 255 gm                                                                                                              |
| Operating Position                                                   | Āny                                                                                                                         |
| Maximum Operating Temperature:                                       |                                                                                                                             |
|                                                                      |                                                                                                                             |
|                                                                      |                                                                                                                             |
|                                                                      |                                                                                                                             |
| Base                                                                 |                                                                                                                             |
|                                                                      | EIMAC SK-400 Series                                                                                                         |
|                                                                      | EIMAC SK-406                                                                                                                |
| Recommended Heat-Dissipating Connectors:                             |                                                                                                                             |
| . 5                                                                  | HR-6                                                                                                                        |
|                                                                      |                                                                                                                             |
| RADIO FREQUENCY LINEAR AMPLIFIER                                     | TYPICAL OPERATION (Frequencies to 75 MHz)                                                                                   |
| GRID DRIVEN                                                          | Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation                                                            |
| Class AB <sub>1</sub>                                                | Crest Conditions                                                                                                            |
|                                                                      | Plate Voltage 3000 Vdc                                                                                                      |
| ABSOLUTE MAXIMUM RATINGS                                             | Screen Voltage         750 Vdc           Grid Voltage 1         -130 Vdc                                                    |
| DC PLATE VOLTAGE 4000 VOLTS                                          | Zero-Signal Plate Current 80 mAdc                                                                                           |
| DC PLATE VOLTAGE 4000 VOLTS DC SCREEN VOLTAGE 800 VOLTS              | Single-Tone Plate Current 290 mAdc                                                                                          |
| DC PLATE CURRENT 0.350 AMPERE                                        | Single-Tone Screen Current 2                                                                                                |
| PLATE DISSIPATION 400 WATTS                                          | Resonant Load Impedance                                                                                                     |
| SCREEN DISSIPATION 35 WATTS                                          | Adjust to specified zero-signal dc plate current.                                                                           |
| GRID DISSIPATION 10 WATTS                                            | 2. Approximate value.                                                                                                       |
|                                                                      | <del></del>                                                                                                                 |
| RADIO FREQUENCY POWER AMPLIFIER OR                                   | Peak rf Grid Voltage1 300 320 320 v                                                                                         |
| OSCILLATOR IClass C Telegraphy or FM Telephony (Key-Down Conditions) | Grid Dissipation 1.8 1.9 1.8 W Calculated Driving Power 2 5.4 6.1 5.8 W                                                     |
| (iii) Doini Gonamini                                                 | Plate Input Power 875 1050 1400 W                                                                                           |
| ABSOLUTE MAXIMUM RATINGS                                             | Plate Dissipation         235         250         300 W           Plate Output Power         640         800         1100 W |
| DC PLATE VOLTAGE 4000 VOLTS                                          | Trate Output Fower 040 doo 1100 W                                                                                           |
| DC SCREEN VOLTAGE 600 VOLTS                                          | 1. Approximate value.                                                                                                       |
| DC PLATE CURRENT 0.350 AMPERE PLATE DISSIPATION 400 WATTS            | <ol><li>Driving Power increases with frequency. At 75 MHz driving power is approximately 12 watts.</li></ol>                |
| SCREEN DISSIPATION 35 WATTS                                          |                                                                                                                             |
| GRID DISSIPATION 10 WATTS                                            | TYPICAL OPERATION (110 MHz, two tubes)                                                                                      |
| TYPICAL OPERATION (Frequencies to 75 MHz)                            | Plate Voltage                                                                                                               |
|                                                                      | Screen Voltage 500 500 Vdc                                                                                                  |
| Plate Voltage                                                        | Grid Voltage         -170         -170         Vdc           Plate Current         500         540         mAdc             |
| Grid Voltage200 -220 -220 Vdc                                        | Screen Current                                                                                                              |
| Plate Current 350 350 mAdc                                           | Grid Current 20 20 mAdc                                                                                                     |
| Screen Current 1                                                     | Driving Power1                                                                                                              |
| Grid Current <sup>1</sup> 18 19 18 mAdc                              | Useful Output Power                                                                                                         |
|                                                                      | 1. Approximate value                                                                                                        |

| PLATE MODULATED RADI  | O FREQUENCY    | POWER |
|-----------------------|----------------|-------|
| AMPLIFIER-GRID DRIVEN | Class C Teleph | nony  |
| (Carrier Conditions)  |                |       |

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE              | 3200  | VOLTS         |
|-------------------------------|-------|---------------|
| DC SCREEN VOLTAGE             | 600   | VOLTS         |
| DC GRID VOLTAGE               | -500  | VOLTS         |
| DC PLATE CURRENT              | 0.275 | <b>AMPERE</b> |
| PLATE DISSIPATION 1           | 270   | WATTS         |
| SCREEN DISSIPATION 2          | 35    | WATTS         |
| GRID DISSIPATION <sup>2</sup> | 10    | WATTS         |

Corresponds to 400 watts at 100% sine-wave modulation.

### TYPICAL OPERATION (Frequencies to 75 MHz, Continuous Service)

| Continuous Service)       |      |      |      |      |
|---------------------------|------|------|------|------|
| Plate Voltage             | 2000 | 2500 | 3000 | Vdc  |
| Screen Voltage            | 500  | 500  | 500  | Vdc  |
| Grid Voltage              | -220 | -220 | -220 | Vdc  |
| Plate Current             | 275  | 275  | 275  | mAdc |
| Screen Current1           | 30   | 28   | 26   | mAdc |
| Screen Dissipation        | 15   | 14   | 13   | W    |
| Grid Current1             | 12   | 12   | 12   | mAdc |
| Grid Dissipation          | 1.1  | 1.1  | 1.1  | W    |
| Peak af Screen Voltage 1  |      |      |      |      |
| (100% modulation)         | 350  | 350  | 350  | V    |
| Peak rf Grid Voltage 1    | 290  | 290  | 290  | V    |
| Calculated Driving Power1 | 3.5  | 3.5  | 3.5  | W    |
| Plate Input Power         | 550  | 688  | 825  | W    |
| Plate Dissipation         | 170  | 178  | 195  | W    |
| Plate Output Power        | 380  | 510  | 630  | W    |

#### 1. Approximate value.

## AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB, Grid Driven (Sinusoidal Waye)

#### ABSOLUTE MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 4000  | VOLTS  |
|--------------------|-------|--------|
| DC SCREEN VOLTAGE  |       |        |
|                    |       |        |
| DC PLATE CURRENT   | 0.350 | AMPERE |
| PLATE DISSIPATION  | 400   | WATTS  |
| SCREEN DISSIPATION | 35    | WATTS  |
| GRID DISSIPATION   | 10    | WATTS  |

#### TYPICAL OPERATION (Two Tubes) Class AB1

| Plate Voltage Screen Voltage Grid Voltage1/4 Zero-Signal Plate Current . Max.Signal Plate Current . Zero-Signal Screen Current . Max.Signal Screen Current 1 Peak af Grid Voltage2 | 750<br>-130<br>190<br>635<br>0<br>28<br>130 | 750<br>-137<br>160<br>635<br>0<br>26<br>137 | 750<br>-145<br>140<br>610<br>0<br>32<br>145 | 750<br>-150<br>120<br>585<br>0<br>40 | Vdc<br>Vdc<br>mAdc<br>mAdc<br>mAdc<br>mAdc |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------------|
| Peak Driving Power3                                                                                                                                                                | 0                                           | 0                                           | 0                                           | 0                                    | w                                          |
|                                                                                                                                                                                    |                                             |                                             |                                             |                                      |                                            |

MAXIMUM RATINGS (Frequencies to 30 MHz, Intermittent Service)

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE                | 4000 | VOLTS |
|---------------------------------|------|-------|
| DC SCREEN VOLTAGE               | 600  | VOLTS |
| DC GRID VOLTAGE                 | -500 | VOLTS |
| DC PLATE CURRENT                |      |       |
| PLATE DISSIPATION <sup>1</sup>  | 270  | WATTS |
| SCREEN DISSIPATION <sup>2</sup> | 35   | WATTS |
| GRID DISSIPATION 2              | 10   | WATTS |

#### 2. Average, with or without modulation.

## TYPICAL OPERATION (Frequencies to 30 MHz, Intermittent Service)

| Plate Voltage                     | 2000 | 2500 | 3000 | 3650 | Vdc  |
|-----------------------------------|------|------|------|------|------|
| Screen Voltage                    | 500  | 500  | 500  | 500  | Vdc  |
| Grid Voltage                      | -220 | -220 | -220 | -225 | Vdc  |
| Plate Current                     | 275  | 275  | 275  | 275  | mAdc |
| Screen Current <sup>1</sup>       | 30   | 28   | 26   | 23   | mAdc |
| Screen Dissipation                | 15   | 14   | 13   | 12   | W    |
| Grid Current 1                    | 12   | 12   | 12   | 13   | mAdc |
| Grid Dissipation                  | 1.1  | 1.1  | 1.1  | 1.2  | W    |
| Peak Screen Voltage               |      |      |      |      |      |
| (100% modulation)                 | 350  | 350  | 350  | 350  | V    |
| Peak rf Grid Voltage <sup>1</sup> | 290  | 290  | 290  | 315  | V    |
| Calculated Driving Power 1        | 3.5  | 3.5  | 3.5  | 4.0  | W    |
| Plate Input Power                 | 550  | 688  | 825  | 1000 | W    |
| Plate Dissipation                 | 170  | 178  | 195  | 235  | W    |
| Plate Output Power                | 380  | 510  | 630  | 765  | W    |
|                                   |      |      |      |      |      |

| Max Signal Plate   |      |      |        |        |          |
|--------------------|------|------|--------|--------|----------|
| Dissipation 2      | 370  | 400  | 400    | 400    | W        |
| Plate Output Power | 850  | 1100 | 1330   | 1540   | W        |
| Load Resistance    |      |      |        |        |          |
| (plate to plate)   | 6800 | 8900 | 11,500 | 14,000 | $\Omega$ |
|                    |      |      |        |        |          |

#### TYPICAL OPERATION (Two Tubes) Class AB<sub>2</sub>

| Plate Voltage               | 2500 | 3000 | 3500   | 4000   | Vdc      |
|-----------------------------|------|------|--------|--------|----------|
| Screen Voltage              | 500  | 500  | 500    | 500    | Vdc      |
| Grid Voltage1/4             | -75  | -80  | -85    | -90    | Vdc      |
| Zero-Signal Plate Current . | 190  | 160  | 140    | 120    | mAdo     |
| Max.Signal Plate Current    | 700  | 700  | 700    | 638    | mAdo     |
| Zero-Signal Screen Current. | 0    | 0    | 0      | 0      | mAdo     |
| Max.Signal Screen Current . | 50   | 40   | 38     | 32     | mAdc     |
| Peak af Grid Voltage2       | 133  | 140  | 145    | 140    | V        |
| Peak Driving Power3         | 8.6  | 9.0  | 10.2   | 7.0    | w        |
| Max.Signal Plate            |      |      |        |        |          |
| Dissipation2                | 320  | 363  | 400    | 400    | W        |
| Plate Output Power          | 1110 | 1375 | 1650   | 1750   | W        |
| Load Resistance             |      |      |        |        |          |
| (plate to plate)            | 7200 | 9100 | 10,800 | 14,000 | $\Omega$ |
|                             |      |      |        |        |          |

- 1. Approximate value.
- Per Tube.
- 3. Nominal drive power is one-half peak power.
- 4. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                        | Min. | Max.    |
|--------------------------------------------------------------------------|------|---------|
| Filament: Current at 5.0 volts                                           |      |         |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection): |      |         |
| Cin                                                                      | 10.7 | 14.5 pF |
| Cout                                                                     | 4.2  | 5.6 pF  |
| Cgp                                                                      |      | 0.17 pF |

1. In Shielded Fixture, per EIA Standard RS-191.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4-400C may be operated in any position. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The metal tube-base shell should be grounded by means of suitable spring fingers. The above requirements are met by the EIMAC SK-400 and SK-410 Air-System Sockets. A flexible connecting strap should be provided between the EIMAC HR-6 cooler on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock.

COOLING - Adequate forced-air cooling must be provided to maintain the base seals at a temperature below  $200^{\circ}$ C, and the plate seal at a temperature below  $225^{\circ}$ C.

When the EIMAC SK-400 or SK-410 Air-System Socket is used, a minimum air flow of 14 cubic feet per minute at a static pressure of 0.25 inches of water or less, as measured in the socket or plenum chamber at sea level, is required to provide adequate cooling under all conditions of operation. Seal temperature limitations may require that cooling air be supplied to the tube even when the filament alone is on

during standby periods.

Tube temperatures may be measured with a temperature sensitive paint, spray or crayon, such as manufactured by Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield, N.J. 07080.

#### **ELECTRICAL**

FILAMENT VOLTAGE - Filament voltage should be measured at the tube base with an accurate meter. When operating at the nominal voltage, variations of ±5% are tolerable and should have little effect on electrical performance of the tube. However, when very long life and consistent performance are factors, voltage can often be reduced to a value lower than the nominal voltage, but should be regulated and held to ±1% when this is done. To achieve a regulated voltage and still have it adjustable, a typical procedure would involve a one-to-one regulating transformer, feeding a variable ratio transformer (such as a POWERSTAT or a VARIAC), which in turn feeds the filament transformer. The equipment is first operated with nominal filament voltage applied, and when stable operation is achieved, the voltage is then reduced in small steps (about 0.2 volt at a time) until the point is reached where performance of the tube is clearly affected. The voltage is then

raised to a few tenths of a volt above this level for operation. Periodically (every 500 to 1000 hours) this procedure should be repeated and the operating value of the filament voltage readjusted if necessary.

BIAS VOLTAGE - The dc bias voltage for the 4-400C should not exceed 500 volts. If grid resistor bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 MHz, it is advisable to keep the bias voltage as low as is practicable.

SCREEN VOLTAGE - The dc screen voltage for the 4-400C should not exceed 800 volts. The screen voltages shown under Typical Operation are representative voltages for the type of operation involved.

PLATE VOLTAGE - The plate-supply voltage for the 4-400C should not exceed 4000 volts in CW and audio applications. In plate-modulated telephony service the dc plate-supply voltage should not exceed 3200 volts, except below 30 MHz, intermittent service, where 4000 volts may be used.

GRID DISSIPATION - Grid dissipation for the 4-400C should not be allowed to exceed 10 watts. Grid dissipation may be calculated from the following expression:

Pg=egkxIc

where Pg = Grid dissipation

egk = Peak positive grid to cathode voltage, and

age, and

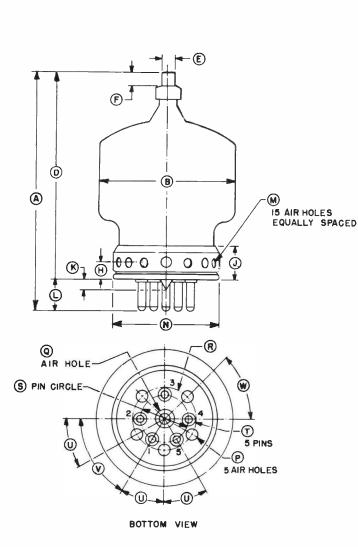
Ic = dc grid current

SCREEN DISSIPATION - The power dissipated by the screen of the 4-400 C must not exceed 35 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 35 watts in event of circuit failure.

PLATE DISSIPATION - Under normal operating conditions, the plate dissipation of the 4-400C should not be allowed to exceed 400 watts. The

anode operates at a visibly red color at its maximum rated dissipation of 400 watts.

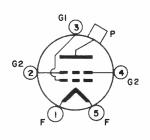
In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 270 watts. The plate dissipation will rise to 400 watts under 100% sinusoidal modulation.


Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

MULTIPLE OPERATION - To obtain maximum power output with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal for class AB1 operation.

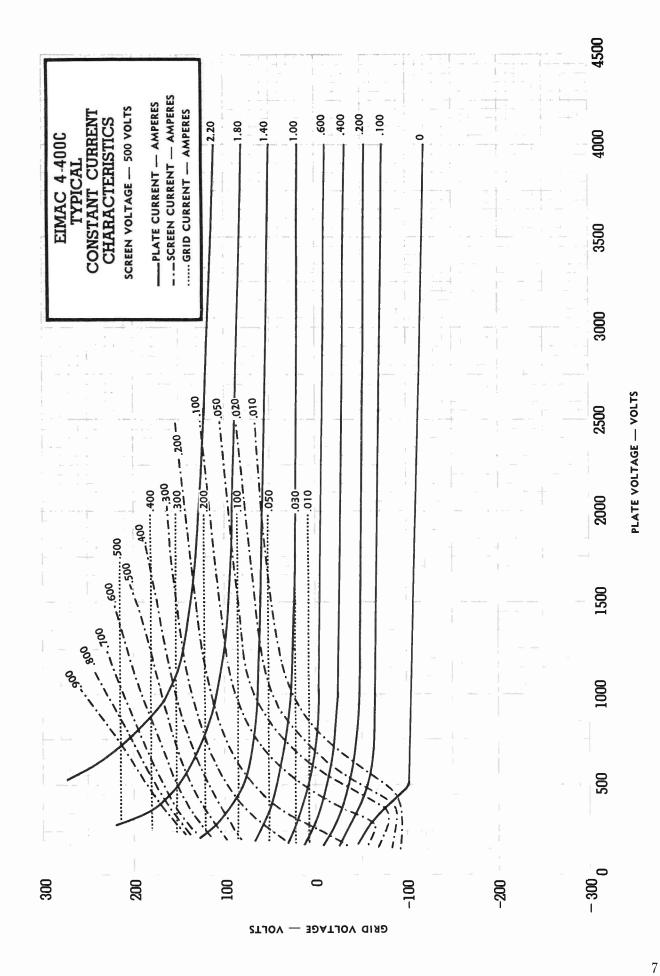
CAUTION - GLASS IMPLOSION - The EIMAC 4-400C is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.

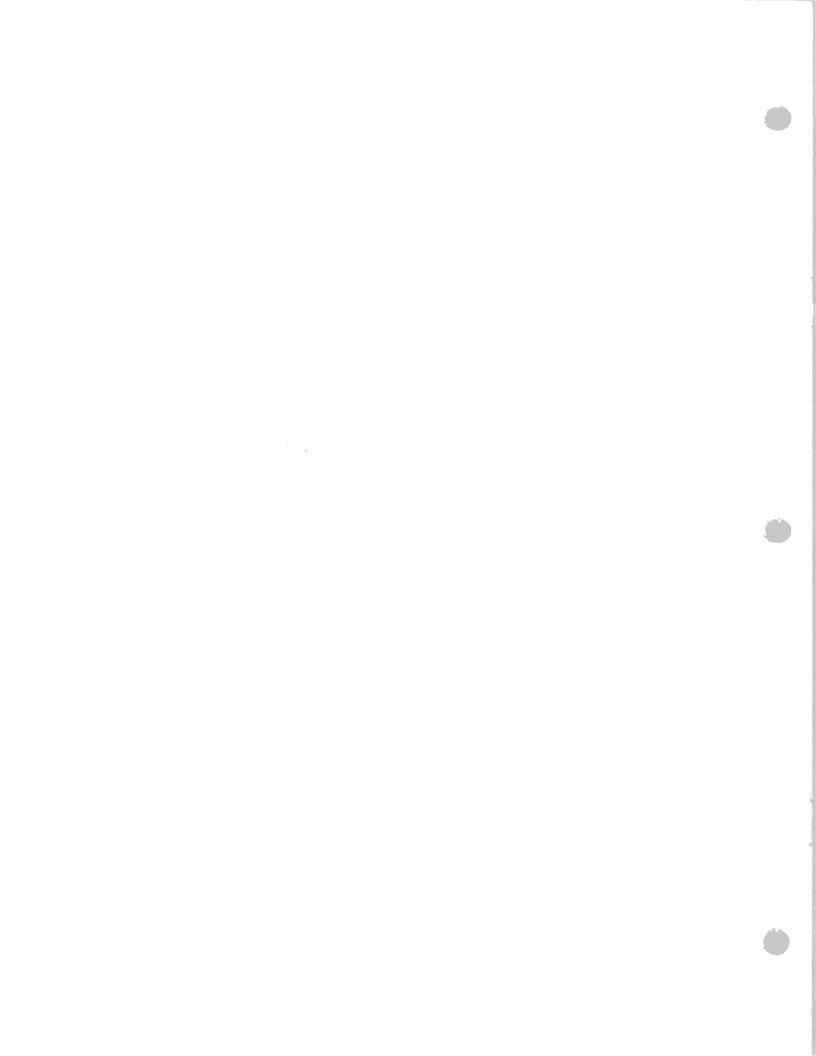
CAUTION-HIGH VOLTAGE - Operating voltage for the 4-400°C can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or 'cheated' to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.



|      | DIMENSIONAL DATA |        |       |        |                |       |  |  |
|------|------------------|--------|-------|--------|----------------|-------|--|--|
| DIM. |                  | INCHES |       | l A    | ILLIMETE       | RS    |  |  |
| DIM. | MIN.             | MAX.   | REF   | MIN.   | MAX.           | REF   |  |  |
| Α    | 5.875            | 6.375  |       | 149.23 | 161.93         |       |  |  |
| В    |                  | 3,563  |       |        | 90.50          |       |  |  |
|      |                  |        |       |        |                |       |  |  |
| D    | 5.125            | 5. 625 |       | 130.18 | 142.88         |       |  |  |
| E    | 0.350            | 0.365  |       | 8.89   | 9.27           |       |  |  |
| F    | 0.328            |        |       | B.33   |                |       |  |  |
|      |                  |        |       |        |                |       |  |  |
| Н    |                  |        | 0.438 |        |                | 11,13 |  |  |
| J    |                  | 0.969  |       |        | 24.61          |       |  |  |
| K    |                  | 0.250  |       |        | 6,35           |       |  |  |
| L    |                  |        | 0.750 |        |                | 19.05 |  |  |
| М    |                  |        | 0.250 |        |                | 6.35  |  |  |
| N    |                  | 2.750  |       |        | 69.85          |       |  |  |
| Р    |                  |        | 0.312 |        |                | 7. 92 |  |  |
| Q    |                  |        | 0.500 |        |                | 12,70 |  |  |
| R    |                  |        | 1.625 |        | _ <del>_</del> | 41.28 |  |  |
| S    |                  |        | 1.250 |        |                | 31.75 |  |  |
| T    | 0.185            | 0.191  |       | 4.70   | 4.85           |       |  |  |
| U    |                  |        | 30°   |        |                | 30°   |  |  |
| ٧    |                  |        | 60°   |        |                | 60°   |  |  |
| W    |                  |        | 45°   |        |                | 45°   |  |  |
|      |                  |        |       |        |                |       |  |  |
|      |                  |        |       |        |                |       |  |  |


NOTES:


I. REF. DIMENSIONS ARE FOR INFO.
ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.



#### NOTE:

Base pins T and tubulation K are so alined that they can be freely inserted in a gage  $\frac{1}{2}$  inch (6.35 mm) thick with hole diameters of .204 (5.18 mm) and .500 (12.70 mm), respectively, located on the true centers by the given dimensions  $\frac{1}{2}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2}$ .









RADIAL BEAM POWER TETRODE

The EIMAC 4-500A is a compact, ruggedly constructed, broad-cast-quality tetrode having a maximum plate dissipation rating of 500 watts. It is intended for use as an amplifier, oscillator, or modulator. The low grid-plate capacitance of this tetrode coupled with its low driving-power requirement allows considerable simplification of the associated circuit and driver stage.

The 4-500A is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope, and over the plate seal. Cooling can be greatly simplified by using an EIMAC SK-400 Series Air-System Socket, and its accompanying glass chimney. This socket is designed to maintain the correct balance of cooling air between the component parts of the tube.

The 4-500A is especially recommended for applications where long life and consistent performance are of prime consideration.



#### GENERAL CHARACTERISTICS1

#### ELECTRICAL

| Filament: Thoriated Tungsten                                        |                |     |
|---------------------------------------------------------------------|----------------|-----|
| Voltage                                                             | $10.0 \pm 0.5$ | V   |
| Current, at 10.0 volts                                              | 10.2           | A   |
| Amplification Factor (Average):                                     |                |     |
| Grid to Screen                                                      | 5.5            |     |
| Direct Interelectrode Capacitances (grounded filament) <sup>2</sup> |                |     |
| Cin                                                                 | 15.0           | pF  |
| Cout                                                                | 5.0            | pF  |
| Cgp                                                                 | 0.15           | pF  |
| Frequency of Maximum Rating:                                        |                |     |
| C W                                                                 | 110            | MHz |

- Characteristics and operating values are based on performance tests. These figures may change without notice as
  the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this
  information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Maximum                 | Dverall | Dime    | neione.   |
|-------------------------|---------|---------|-----------|
| *** COLLEGE TILL COLLIS | Ovciuii | T. TIII | iioioiio. |

| Length     | 7.000 in; | 177.80 | mm |
|------------|-----------|--------|----|
| Diameter   | 3.562 in; | 90.47  | mm |
| Net Weight | 8.7 oz;   | 245    | gm |

(Effective 3-10-72) © by Varian

Printed in U.S.A.

| Operating Position  Maximum Operating Temperature:  Plate Seal.  Base Seals  Cooling  Base  Recommended Socket  Recommended Chimney  Recommended Heat-Dissipation Connectors:  Plate                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB 1                                                                                                                                                       | TYPICAL OPERATION (Frequencies to 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                     | Plate Voltage       2500       3000       4000       Vdc         Screen Voltage       750       750       750       Vdc         Grid Voltage       -117       -130       -140       Vdc                                                                                                                                                                                                                                                                                                                                                                             |
| DC PLATE VOLTAGE                                                                                                                                                                                              | Zero-Signal Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Adjust for specified zero-signal plate current.</li> <li>Approximate values.</li> <li>The intermodulation distortion products are referenced against one tone of a two-equal-tone signal.</li> </ol> | One-Tone Plate Output Power 427 533 773 W Resonant Load Impedance . 3700 4800 6500 $\Omega$ IMD Products 3 3rd Order33 -33 -29 dB 5th Order                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR (Class C Telegraphy or FM Telephony -                                                                                                                           | TYPICAL OPERATION (Frequencies to 75 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Key Down Conditions)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                             | Plate Voltage       2500       3000       3800       Vdc         Screen Voltage       500       500       500       Vdc         Grid Voltage       -265       -270       -280       Vdc         Plate Current       402       428       445       mAdc         Screen Current 1       34       48       49       mAdc                                                                                                                                                                                                                                               |
| PLATE DISSIPATION                                                                                                                                                                                             | Peak rf Grid Voltage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Shown are calculated or measured at Low Frequency.  PLATE MODULATED RADIO FREQUENCY                                                                                                                           | TYPICAL OPERATION (Frequencies to 30 MHz) (Continuous Service)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| POWER AMPLIFIER- GRID DRIVEN Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                              | Plate Voltage       2700       3200       Vdc         Screen Voltage       500       500       Vdc         Grid Voltage       -280       -300       Vdc         Plate Current       338       337       mAdc         Screen Current 3       30       40       mAdc         Grid Current 3       12       15       mAdc         Peak af Screen Voltage3       500       500       v         Peak rf Grid Voltage 3       360       380       v         Calculated Driving Power 4       4.3       5.8       W         Plate Input Power       915       1075       W |
| <ol> <li>Approximate value.</li> <li>Driving power increases with frequency. Values shown are calculated for low frequency.</li> </ol>                                                                        | Plate Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB, Grid Driven, Sinusoidal Wave

#### ABSOLUTE MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 4000  | <b>VOLTS</b>  |
|--------------------|-------|---------------|
| DC SCREEN VOLTAGE  | 1000  | VOLTS         |
| DC PLATE CURRENT   | 0.450 | <b>AMPERE</b> |
| PLATE DISSIPATION  | 500   | WATTS         |
| SCREEN DISSIPATION | 35    | WATTS         |
| GRID DISSIPATION   | 12    | WATTS         |

- 1. Approximate value.
- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.

TYPICAL OPERATION (Two Tubes - Class AB<sub>1</sub>)

| Plate Voltage                     | 3000         | 3800  | Vdc  |
|-----------------------------------|--------------|-------|------|
| Screen Voltage                    | <b>7</b> 50  | 750   | Vdc  |
| Grid Voltage1/3                   | -138         | -150  | Vdc  |
| Zero-Signal Plate Current         | 200          | 150   | mAdo |
| Max. Signal Plate Current         | 735          | 715   | mAdd |
| Zero-Signal Screen Current        | 0            | 0     | mAdd |
| Max. Signal Screen Current 1      | 16           | 16    | mAdd |
| Max. Signal Grid Current          | 0            | 0     | mAdo |
| Peak af Grid Voltage <sup>2</sup> | 123          | 135   | V    |
| Peak Driving Power                | 0            | 0     | W    |
| Max. Signal Plate Dissipation     | 480          | 500   | W    |
| Plate Output Power                | 1240         | 1720  | W    |
| Load Resistance (tube-to-tube)    | <b>78</b> 00 | 10500 | Ω    |
|                                   |              |       |      |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                        | Min. | Max.    |
|--------------------------------------------------------------------------|------|---------|
| Filament: Current at 10.0 volts                                          | 9.7  | 11.2 A  |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection): |      |         |
| Cin                                                                      | 13.0 | 17.0 pF |
| Cout                                                                     | 4.0  | 6.0 pF  |
| C gp                                                                     |      | 0.20 pF |

1. In Shielded Fixture, per EIA Standard RS-191.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4-500A must be mounted vertically. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The metal tube-base shell should be grounded by means of suitable spring fingers. The above requirements are met by the EIMAC SK-410 Air-System Socket. A flexible connecting strap should be provided between the EIMAC HR-6 cooler on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock.

COOLING - Adequate forced-air cooling must be provided to maintain the base seals at a temperature below  $200^{\circ}C$ , and the plate seal at a temperature below  $225^{\circ}C$ .

When the EIMAC SK-410 Socket and SK-426 Chimney are used, a minimum air flow of 14 cubic feet per minute at a static pressure of 0.25 inches of water or less, as measured in the socket or plenum chamber at sea level, is required to provide adequate cooling under all conditions of operation. Seal temperature limitations may require that cooling air be supplied to the tube even when the filament alone is on during standby periods.

Tube temperatures may be measured with a temperature sensitive paint, spray or crayon, such as manufactured by Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield, N.J. 07080.

#### **ELECTRICAL**

FILAMENT VOLTAGE - Filament voltage should be measured at the tube base with an accurate meter. When operating at the nominal

voltage, variations of ±5% are tolerable and should have little effect on electrical performance of the tube. However, when very long life and consistent performance are factors, voltage can often be reduced to a value lower than the nominal voltage, but should be regulated and held to ±1% when this is done. To achieve a regulated voltage and still have it adjustable, a typical procedure would involve a one-to-one regulating transformer, feeding a variable ratio transformer (such as a POWERSTAT or a VARIAC), which in turn feeds the filament transformer. The equipment is first operated with nominal filament voltage applied, and when stable operation is achieved, the voltage is then reduced in small steps (about 0.2 volt at a time) until the point is reached where performance of the tube is clearly affected. The voltage is then raised to a few tenths of a volt above this level for operation. Periodically (every 500 to 1000 hours) this procedure should be repeated and the operating value of the filament voltage readjusted if necessary.

BIAS VOLTAGE - The dc bias voltage for the 4-500A should not exceed 500 volts. If grid resistor bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 MHz, it is advisable to keep the bias voltage as low as is practicable.

SCREEN VOLTAGE - The dc screen voltage for the 4-500A should not exceed 1000 volts. The screen voltages shown under Typical Operation are representative voltages for the type of operation involved.

PLATE VOLTAGE - The plate-supply voltage for the 4-500A should not exceed 4000 volts in CW and audio applications. In plate-modulated telephony service the dc plate-supply voltage should not exceed 3200 volts, except below 30 MHz, intermittent service, where 4000 volts may be used.

GRID DISSIPATION - Grid dissipation for the 4-500A should not be allowed to exceed 12 watts. Grid dissipation may be calculated from the following expression:

 $Pg = egk \times Ic$ 

where Pg = Grid dissipation

egk = Peak positive grid to cathode voltage,

Ic=dc grid current

SCREEN DISSIPATION - The power dissipated by the screen of the 4-500A must not exceed 35 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 35 watts in event of circuit failure.

PLATE DISSIPATION - Under normal operating conditions, the plate dissipation of the 4-500A should not be allowed to exceed 500 watts. The anode operates at a visibly red color at its maximum rated dissipation of 500 watts.

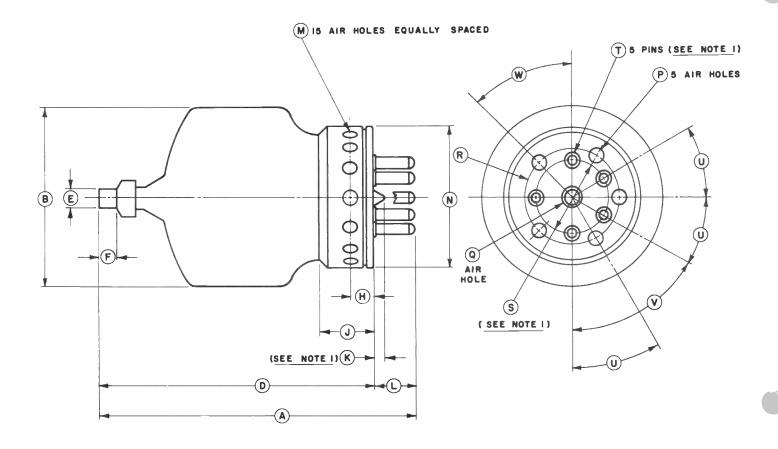
In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 335 watts. The plate dissipation will rise to 500 watts under 100% sinusoidal modulation.

Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

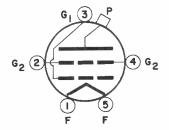
MULTIPLE OPERATION - To obtain maximum power output with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal for class AB1 operation.

CAUTION-GLASS IMPLOSION - The EIMAC 4-500A is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.

CAUTION-HIGH VOLTAGE - Operating voltage for the 4-500A can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that


no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

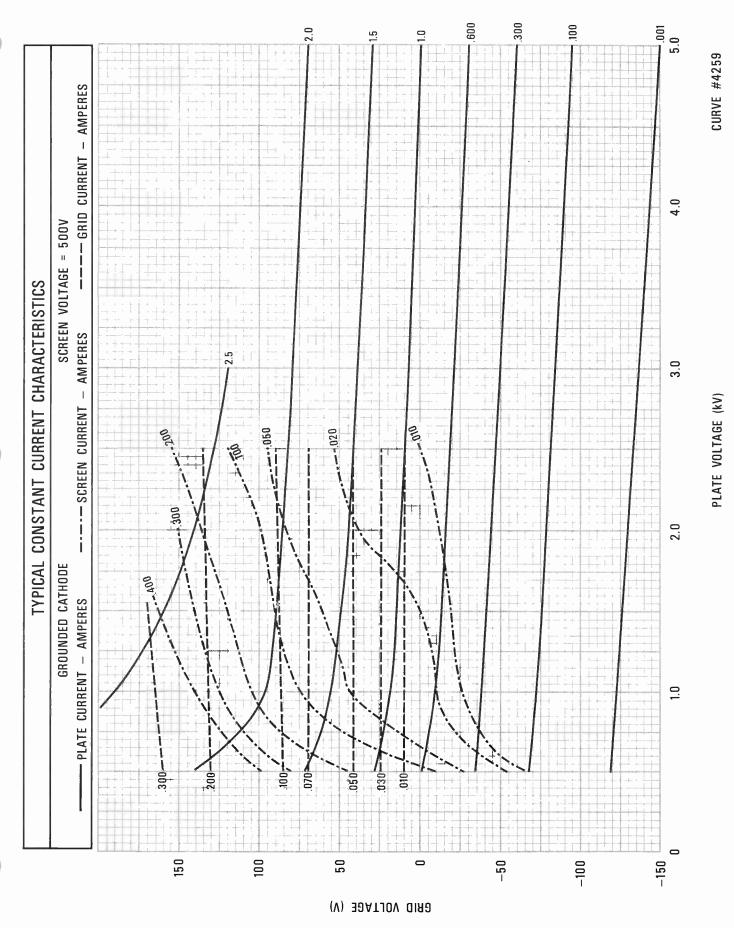
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield

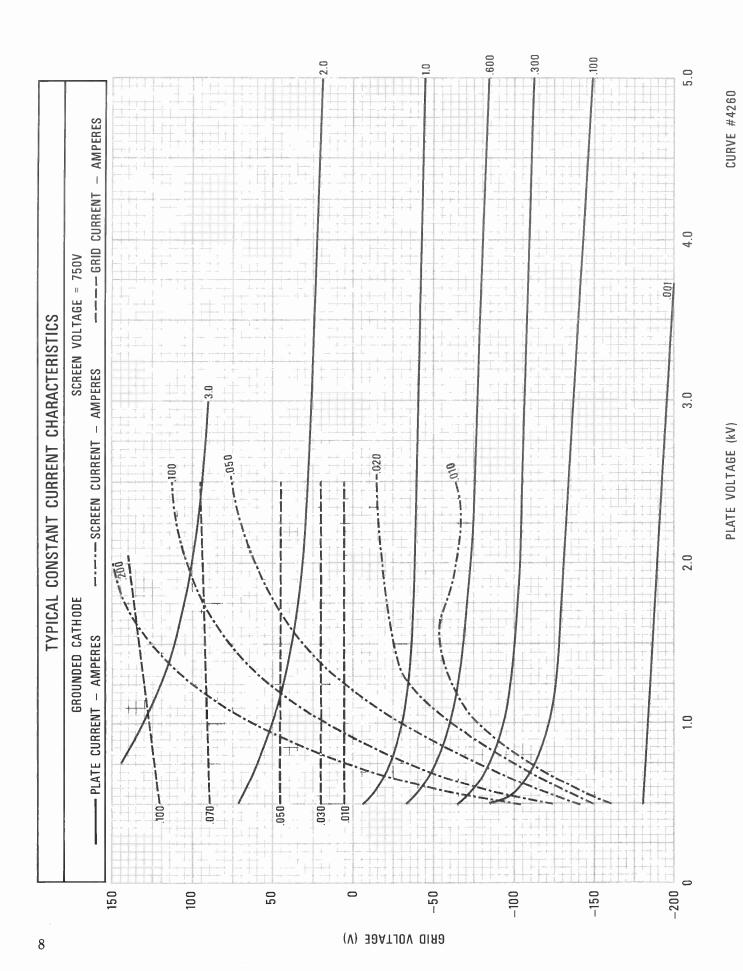

all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.




| DIMENSIONAL DATA |       |        |       |             |        |       |  |  |
|------------------|-------|--------|-------|-------------|--------|-------|--|--|
| DIM.             | ,     | INCHES |       | MILLIMETERS |        |       |  |  |
| DIM.             | MIN.  | MAX.   | REF   | MIN.        | MAX.   | REF   |  |  |
| Α                | 6.500 | 7.000  |       | 165.10      | 177,80 |       |  |  |
| В                |       | 3.562  |       |             | 90.47  |       |  |  |
| D                | 5.750 | 6.250  |       | 146.05      | 158.75 | ]     |  |  |
| E                | 0.350 | 0.365  |       | 8.89        | 9.27   |       |  |  |
| F                | 0.328 |        | [ ]   | 8.33        |        | [ ]   |  |  |
| Н                |       |        | 0.468 |             |        | 11.89 |  |  |
| J                |       |        | 1.125 |             |        | 28.57 |  |  |
| K                |       | 0.250  |       |             | 6.35   |       |  |  |
| L                |       |        | 0.750 |             |        | 19.05 |  |  |
| M                |       |        | 0.250 |             |        | 6.35  |  |  |
| N                |       | 2.750  |       |             | 69.85  |       |  |  |
| Р                |       |        | 0.312 |             |        | 7.92  |  |  |
| Q                |       |        | 0.500 |             |        | 12.70 |  |  |
| R                |       |        | 1.625 |             |        | 41.27 |  |  |
| S                |       |        | 1.250 |             |        | 31.75 |  |  |
| T                | 0.185 | 0.191  |       | 4.70        | 4.85   |       |  |  |
| Ų                |       |        | 30°   |             |        | 30°_  |  |  |
| V                |       |        | 60°   |             |        | 60°   |  |  |
| W                |       |        | 45°   |             |        | 45°_  |  |  |




#### NOTES:

- I. BASE PINS T & TUBULATION

  (K) ARE SO ALIGNED THAT
  THEY CAN BE FREELY INSERTED INTO A GAUGE I/4
  THICK WITH HOLE DIA'S OF
  .204 & .500 RESPECTIVELY
  LOCATED ON THE TRUE
  CENTERS BY THE GIVEN
  DIMENSIONS (V), (U) & (S).
- 2. REF. DIM'S ARE FOR INFO. ONLY & ARE NOT REQ'D FOR INSPECTION PURPOSES.









The EIMAC 8166/4-1000A is a radial-beam tetrode with a maximum plate dissipation rating of 1000 watts. Intended for use as an amplifier, oscillator, or modulator, the 8166/4-1000A is capable of efficient operation well into the VHF range.

In FM broadcast service on 110 Megahertz, two 8166/4-1000A tetrodes will deliver a useful output power of over 5000 watts.

Operating under class  $AB_2$  modulator conditions with less than 10 watts of peak driving power, two of these tubes will deliver 3900 watts of output power.

In class  $AB_1$ , a pair of 8166/4-1000A tetrodes will deliver 3800 watts of output power.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope. Cooling can be simplified through the use of the EIMAC SK-500 Air-System Socket.



#### GENERAL CHARACTERISTICS

| ELECTRICAL                                |   |   |   |   |   |       |         |            |                     |
|-------------------------------------------|---|---|---|---|---|-------|---------|------------|---------------------|
| Filament: Thoriated tungsten              |   |   |   |   |   | Min.  | Nom.    | Max.       |                     |
| Voltage                                   | - | - | - | - | - |       | 7.5     |            | volts               |
| Current                                   | - | - | - | - | - | 20.0  |         | 22.7       | amperes             |
| Amplification Factor (Grid to Screen) -   | - | - | - | - | - | 6.1   |         | 7.7        |                     |
| Direct Interelectrode Capacitances:†      |   |   |   |   |   |       |         |            |                     |
| Grid-Plate                                | - | - | - | - | - |       |         | 0.35       | $\mu \mu { m f}$    |
| Input                                     | - | - | - | - | - | 23.8  |         | 32.4       | $\mu \mu { m f}$    |
| Output                                    | - |   | - | - | - | 6.8   |         | 9.4        | $\mu \mu { m f}$    |
| Transconductance ( $I_b=300 \text{ ma}$ ) | - | - | - | - | - |       | 10,000  |            | $\mu \mathrm{mhos}$ |
| Highest Frequency for Maximum Ratings     | - |   | - | - | - |       |         | 110        | MHz                 |
|                                           |   |   |   |   |   |       |         |            |                     |
| MECHANICAL                                |   |   |   |   |   |       |         | <b>.</b> . |                     |
| Base                                      | - | - | - | - | - |       |         | 5-pi       | n metal shell       |
| Basing                                    | - | - | - | • | - | -     |         | -          | See drawing         |
| Recommended Socket                        | - | - | - | - | - | EIMAC | SK-500  | Air-S      | ystem Socket        |
| Recommended Chimney                       | - | - | - | - | - |       |         | -          | - SK-506            |
| Operating Position                        | - | - | - | - | - |       | Vertica | al, bas    | e up or down        |
| Cooling                                   | - | - | - | - | - |       | Radia   | tion a     | nd forced air       |
| Recommended Heat-Dissipating Connector    | : |   |   |   |   |       |         |            |                     |
| Plate                                     | - | - | - | - | - |       |         | -          | EIMAC HR-8          |
| Maximum Over-all Dimensions:              |   |   |   |   |   |       |         |            |                     |
| Length                                    | - | - | - | - | - |       |         | -          | 9.63 inches         |
| Diameter                                  | - | - | - | - | - |       |         | -          | 5.25 inches         |
| Net Weight (tube only)                    | - | - | - | - | - |       |         | -          | 1.5 pounds          |
| Shipping Weight                           | - | - | - | - | - |       |         | -          | 12 pounds           |
| †In Shielded Fixture                      |   |   |   |   |   |       |         |            |                     |
| (Davided 10 20 44) @ 1042 1044 Varian     |   |   |   |   |   |       |         | C          | Printed in U.S.A.   |
| (Revised 10-30-66) © 1963, 1966 Varian    |   |   |   |   |   |       |         |            | Timod in O.O.7 ti   |



#### RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony

TYPICAL OPERATION Class-AB1

(Sinusoidal wave, two tubes unless otherwise spectrum of the control of the contr

(Sinusoidal wave, two tubes unless otherwise specified)

| MAXIMUM RATINGS (Key-down conditions, per tube to 110 MHD DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz)  6000 VOLTS 1000 VOLTS 1000 VOLTS 1000 VOLTS 1000 WATTS 75 WATTS 25 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TYPICAL OPERATION (Frequencies below 110 MHz, one tube)  DC Plate Voltage 3000 4000 5000 6000 volts DC Screen Voltage 500 500 500 500 volts DC Grid Voltage150 -150 -200 -200 volts DC Plate Current 100 700 700 700 ma DC Screen Current 146 137 147 140 ma DC Grid Current 38 39 45 42 ma Screen Dissipation 73 69 73 70 watts Grid Dissipation 5 6 7 6 watts Peak RF Grid Input Voltage (approx.) - 290 290 355 350 volts Driving Power (approx.)* 111 12 16 15 watts Plate Input Power 2100 2800 3500 4200 watts Plate Dissipation 670 700 690 800 watts Plate Dissipation 1010 2810 3400 watts Plate Output Power 1 102 2810 3400 watts Plate Output Power 1 102 2810 3400 watts Plate Output Power 1 102 2810 3400 watts Plate Output Power requirements increase above 30 MHz. At 110 MHz the driver should be capable of supplying 200 watts per tube to take care of feed-through, circuit losses, and radiation. | TYPICAL OPERATION (110 MHz, two tubes, push-pull)  DC Plate Voltage 4000 5000 6000 volts  DC Screen Voltage 450 500 500 volts  DC Grid Voltage 150 -160 -180 volts  DC Plate Current 150 -160 -180 volts  DC Plate Current 280 240 250 ma  DC Grid Current 80 80 100 ma  Screen Dissipation (per tube) 63 60 63 watts  Driving Power (approx.) 350 400 400 watts  Plate Input Power 4600 6250 7500 watts  Plate Dissipation (per tube) 650 850 900 watts  Plate Dissipation (per tube) 650 850 900 watts  These 110 MHz typical performance figures were obtained by direct measurement in operating equipment. The output power is useful power measured in a load circuit. The driving power is that taken by the tube and a practical resonant circuit. The driving power is that taken by the tube and a practical resonant circuit. In many cases with further refinement and improved techniques, better performance might be obtained.                       |
| PLATE-MODULATED RADIO-FREQUENCY AMPLIFIER Class-C Telephony (Carrier Conditions)  MAXIMUM RATINGS (Per tube to 110 MHz)  DC PLATE VOLTAGE 5000 VOLTS†  DC SCREEN VOLTAGE 1000 VOLTS  DC GRID VOLTAGE 5000 VOLTS  DC PLATE CURRENT 600 MA  PLATE DISSIPATION 670 WATTS  SCREEN DISSIPATION 25 WATTS  GRID DISSIPATION 75 WATTS  †5500 Max. volts below 30 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPICAL OPERATION (Frequencies below 110MHz, one tube)  DC Plate Voltage 3000 4000 5000 5500*volts  DC Screen Voltage 500 500 500 500 volts  DC Grid Voltage 200 -200 -200 -200 volts  DC Plate Current 600 600 600 600 600 ma  DC Screen Current 145 132 130 105 ma  DC Grid Current 36 33 33 28 ma  Screen Dissipation 72 66 65 52 watts  Grid Dissipation 5 4 4 3 watts  Peak AF Screen Voltage  (100% modulation) 250 250 250 250 volts  Peak RF Grid Input Voltage - 340 335 335 325 volts  Driving Power* 12 11 11 9 watts  Plate Dissipation 410 490 550 670 watts  Plate Dissipation 410 490 550 670 watts  Plate Dissipation 410 490 550 670 watts  Plate Output Power - 1390 1910 2440 2630 watts  *5500 volt operation may be used below 30 MHz only.  **Apparent driving power requirements increase above 30 MHz. At 110 MHz the driver should be capable of supplying 200 watts per tube to take care of feed-through, circuit losses, and radiation. |
| AUDIO FREQUENCY POWER AMPLIFIER AND MO Class-AB  MAXIMUM RATINGS (Per tube)  DC PLATE VOLTAGE  DC SCREEN VOLTAGE  MAX-SIGNAL DC PLATE CURRENT  PLATE DISSIPATION  SCREEN DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PDULATOR  6000 VOLTS 1000 VOLTS 1000 VOLTS 700 MA 75 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Note: Typical operation data are based on conditions of adjusting the rf grid drive to a specified plate current, maintaining fixed conditions of grid bias and screen voltage. It will be found that if this procedure is followed there will be little variation in output power between tubes even though there may be some variation in grid and screen currents. Where grid bias is obtained principally by means of a grid resistor, it is necessary to make the resistor adjustable to control late current. control plate current.

6000 volts 1000 volts -135 volts 200 ma 0.95 amps 0 ma

1.05 1.00 0.95 amps 0 0 0 ma 60 60 64 ma 7000 10,000 14,000 ohms 115 125 135 volts 0 0 0 watts 930 950 930 watts 2340 3100 3840 watts

1.00

1.05

\*Adjust to give stated zero-signal plate current. The DC resistance in series with the control grid of each tube should not exceed 250,000 ohms.

TYPICAL OPERATION Class-AB<sub>2</sub>

(Sinusoidal wave, two tubes unless otherwise specified)

1fted)
4000 5000 6000 volts
500 500 500 volts
-60 -70 -75 volts
300 200 150 ma
1.20 1.10 .95 amps
0 0 0 ma
95 90 65 ma
7000 11,000 15,000 ohms
140 145 130 volts
11.0 11.0 9.4 watts

5.5 850

900

4.7 watts 900 watts 3900 watts

\*Adjust to give stated zero-signal plate current.

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION," POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC DIVISION OF VARIAN ASSOCIATES, FOR INFORMATION AND RECOMMENDATIONS



#### APPLICATION

#### **MECHANICAL**

Mounting — The 4-1000A must be operated vertically. The base may be down or up. The recommended socket for this tube is the SK-500 Air-System Socket.

Cooling — Adequate forced-air cooling must be provided to maintain the base seal temperatures below 150°C and the plate seal temperature below 200°C. Cooling is simplified by the use of the EIMAC SK-500 Air-System Socket, and its SK-506 Air Chimney, which control the flow of air around the tube.

When the EIMAC SK-500 Air-System Socket is used, the following flow rates apply to sea level operation, with an ambient temperature of 25°C for the operating conditions described:

At 110 megahertz, with maximum rated plate dissipation, an air-flow rate of 35 cfm is required. The corresponding pressure drop as measured in the socket is 1.9 inches of water column.

At frequencies below 30 megahertz, an airflow rate of 20 cfm provides adequate cooling. The corresponding pressure drop as measured in the socket is 0.6 inch of water column.

In the event that an Air-System Socket and Air Chimney are not used, air must be circulated through the base of the tube and over the envelope surface and the plate seal in sufficient quantities to maintain the temperatures below the maximum ratings. Seal-temperature ratings may require that cooling air be supplied to the tube if the filament is maintained at operating temperature during standby periods.

In any questionable situation, the only criterion for correct cooling practice is temperature. A convenient medium for measuring tube temperatures is a temperature-sensitive paint.

#### **ELECTRICAL**

Filament Voltage — For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated voltage of 7.5 volts. Variations in filament voltage must be kept within the range of 7.13 to 7.87 volts.

Bias Voltage — The dc bias voltage for the 4-1000A should not exceed 500 volts. With gridleak bias, suitable means must be provided to prevent excessive plate or screen dissipation in

the event of loss of excitation. The grid-resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In the case of operation above 50 megahertz, it is advisabe to keep the bias voltage as low as possible.

Screen Voltage — The dc screen voltage for the 4-1000A should not exceed 1000 volts. The screen voltages shown under "Typical Operation" are representative voltages for the type of operation involved.

Plate Voltage — The plate-supply voltage for the 4-1000A should not exceed 6000 volts in CW and audio applications. In plate-modulated telephony service above 30 megahertz, the dc plate-supply voltage should not exceed 5000 volts; however, below 30 megahertz, 5500-volts may be used.

Grid Dissipation — Grid dissipation for the 4-1000A should not be allowed to exceed 25 watts. Grid dissipation may be calculated from the following expression:

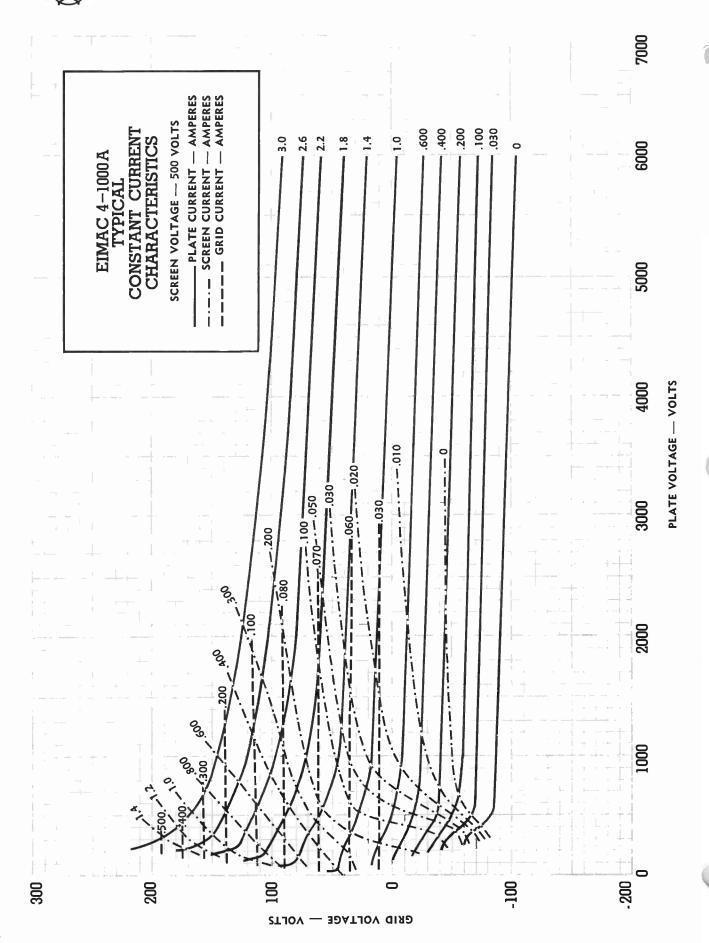
 $P_g = e_{cmp}I_c$ 

where: Pg=Grid dissipation,

e<sub>emp</sub>=Peak positive grid to cathode

voltage

I<sub>c</sub>=DC grid current.


 $e_{\rm emp}$  may be measured by means of a suitable peak voltmeter connected between filament and grid.

Screen Dissipation—The power dissipated by the screen of the 4-1000A must not exceed 75 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 75 watts in event of circuit failure.

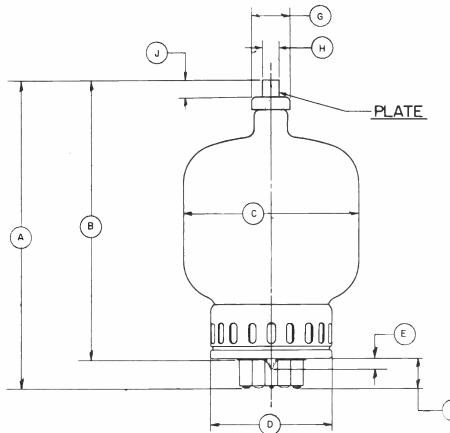
Plate Dissipation — Under normal operating conditions, the plate dissipation of the 4-1000A should not be allowed to exceed 1000 watts.

In plate-modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 670 watts. The plate dissipation will rise to 1000 watts under 100 per-cent sinusoidal modulation.

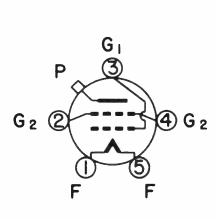
Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

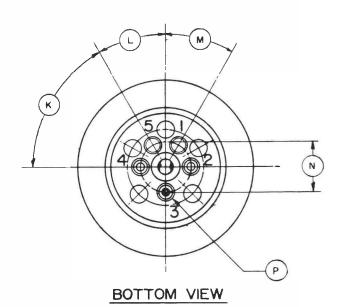





Neutralization — If reasonable precautions are taken to prevent coupling between input and output circuits, the 4-1000A may be operated up to the 10-megahertz region without neutralization. In the region between 10 megahertz and 30 megahertz, the conventional type of crossneutralizing may be used with push-pull circuits. In single-ended circuits ordinary neutralization systems may be used which provide 180° out of phase voltage to the grid.

At frequencies above 30 megahertz the feedback is principally due to screen-lead-inductance effects. Feedback is eliminated by using series capacitance in the screen leads between the screen and ground. A variable capacitor of from 25 to 50  $\mu\mu$ fds will provide sufficient capacitance to neutralize each tube in the region of 100 megahertz. When using this method, the two screen terminals on the socket should be strapped together by the shortest possible lead. The lead from the mid-point of this screen strap


to the variable capacitor and from the variable capacitor to ground should have as little inductance as possible.


In general, plate, grid, filament, and screenbypass or screen-neutralizing capacitors should be returned to rf ground through the shortest possible leads.

In order to take full advantage of the high power gain obtainable with the 4-1000A, care should be taken to prevent feedback from the output to input circuits. A conventional method of obtaining the necessary shielding between the grid and plate circuits is to use a suitable metal chassis with the grid circuit mounted below the deck and the plate circuit mounted above the deck. Power-supply leads entering the amplifier should be bypassed to the ground and properly shielded to avoid feedback coupling in these leads. The output circuit and antenna feeders should be arranged so as to preclude any possibility of feedback into other circuits.



|     |       |       | the last of the la |
|-----|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REF | MIN.  | NOM.  | MAX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Α   | 8.875 | 9.250 | 9.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В   | 8.000 | 8.375 | 8.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С   |       |       | 5.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D   |       |       | 3.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E   |       |       | .313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F   | .825  | .875  | .925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G   | 1.110 | 1.125 | 1.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| н   | .559  | .566  | .573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| J   | .484  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| K   |       | 60°   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L   |       | 30°   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M   |       | 30°   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N   | 1.495 | 1.500 | 1,505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P   | .371  | .374  | .377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





DIMENSIONS IN INCHES



# Division of Varian

4CN15A

CERAMIC POWER TETRODE

The Eimac 4CN15A is a coolerless version of the 4CX300A tetrode intended for use in low duty or pulse service. It is electrically identical to the 4CX300A with the exception of plate dissipation which is rated at 15 watts in air. Where other cooling means are used, such as liquid immersion, plate dissipation is limited only by the maximum allowable anode and seal temperatures.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Cathode:   | Oxide-Coat    | ed, Ur | nipoter | ntial |     |                              |      | Min  |     | Nom. | Max.        |         |
|------------|---------------|--------|---------|-------|-----|------------------------------|------|------|-----|------|-------------|---------|
|            | Heating Tir   |        |         | -     | -   | -                            | -    | 30   |     | 60   |             | seconds |
|            | Cathode-to-   | -Heate | er Pot  | enti  | al  | -                            | -    | -    | -   |      | $- \pm 150$ | volts   |
| Heater:    | Voltage       |        |         | _     | _   | _                            | -    | -    | -   | 6.0  |             | volts   |
|            | Current       |        |         | _     | _   | -                            | -    | 2.6  |     |      | 3.1         | amperes |
| Amplifica  | tion Factor ( | Grid   | to Scr  | een)  | -   | -                            | _    | 4.0  |     |      | 5.6         | •       |
| Transcond  | ductance (Ib  | = 200  | ma) -   | -     | -   | -                            | -    | -    | 12  | ,000 |             | umhos   |
| Direct Int | erelectrode   | Capac  | itance  | s, C  | rou | $\operatorname{ind}\epsilon$ | ed ( | Cath | ode | :    |             |         |
|            | Input -       |        |         | -     | -   | -                            | -    | 25   |     |      | 33          | uuf     |
|            | Output -      |        |         | _     | -   | _                            | -    | 3.5  |     |      | 4.5         | uuf     |
|            | Feedback      |        |         | -     | _   | -                            | _    | -    | _   |      | - 0.06      | uuf     |
| Frequency  | y for Maxim   | ım Ra  | tings   |       | -   | -                            | ~    | -    | _   |      | - 500       | Mc      |

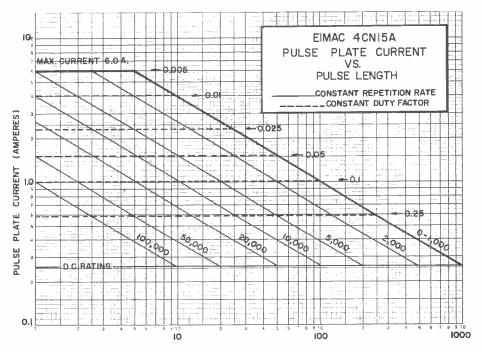


#### MECHANICAL

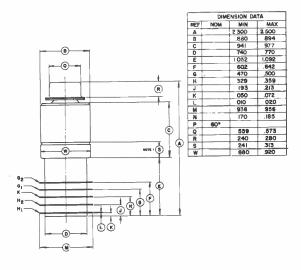
| Base                           |   |   |    |   |   |   | _ | - | - | _   | Sp | eci | al, b | ree    | echt | oloc | k te | erm | inal | surfaces              |
|--------------------------------|---|---|----|---|---|---|---|---|---|-----|----|-----|-------|--------|------|------|------|-----|------|-----------------------|
| Recommended Socket             |   |   |    |   |   |   |   |   |   | -   |    |     |       |        |      |      |      |     |      | 00 series             |
| Operating Position             |   | _ | _  | - | _ | _ | - | _ | - | -   | -  | -   | -     | estern | _    | _    | -    | -   | -    | <ul><li>Any</li></ul> |
| Maximum Operating Temperatures | : |   |    |   |   |   |   |   |   |     |    |     |       |        |      |      |      |     |      |                       |
| Ceramic-to-Metal Seals         | - | _ | _  | - | - | - | - | - | - | -   | _  | -   | -     | _      | _    | _    | -    |     | the  | 250° C                |
| Anode Core                     |   |   |    |   |   |   |   |   |   |     | -  | -   | -     | -      | -    | -    | -    | _   | _    | 250° C                |
| Cooling                        | - | - | -  | - | - | - | - | - | - | -   | -  | _   | -     | -      | C    | onv  | ecti | on  | or c | onduction             |
| Maximum Over-all Dimensions:   |   |   |    |   |   |   |   |   |   |     |    |     |       |        |      |      |      |     |      |                       |
| Height                         | _ | - | ** | - | - | - | - |   | _ | -   | _  | _   | _     | -      | -    | _    | _    | -   | 2.5  | inches                |
| Diameter                       | - | - | _  | - | - | - | - | _ | - | 000 | _  | _   | -     | -      | -    | ***  | -    | _   |      | inches                |
| Net Weight                     |   |   |    |   |   |   | - | _ | - | -   | -  | _   | -     | _      | -    | _    | -    | _   | 2.5  | ounces                |
| Shipping Weight                | - | - | -  | - | _ | - | - | - | - | -   | -  | -   | -     | -      | -    | -    | -    | -   | 1    | pound                 |

| MAXIMUM CW RATINGS  | ; |   |   |   |   |   |   |   | Class-C<br>FM or Teleg | Class-C<br>Plate Mod | Class-AB |      |       |
|---------------------|---|---|---|---|---|---|---|---|------------------------|----------------------|----------|------|-------|
| DC PLATE VOLTAGE -  | _ | _ | - | _ | _ | _ | - | _ | 2000                   | 1500                 | 2500*    | MAX. | VOLTS |
| DC PLATE CURRENT -  | - | - | - | - | - | - | - | - | 250                    | 200                  | 250      | MAX. | MA    |
| DC SCREEN VOLTAGE   | - | - | - | _ | _ | - | - | - | 300                    | 300                  | 400      | MAX. | VOLTS |
| DC GRID VOLTAGE -   | - | - | - | - | - | - | - | - | -250                   | -250                 |          | MAX. | VOLTS |
| PLATE DISSIPATION - | - | - | - | - | - | - | - | - | 15**                   | 10**                 | 15**     | MAX. | WATTS |
| SCREEN DISSIPATION- | - | - | - | - | - | - | - | - | 12                     | 12                   | 12       | MAX. | WATTS |
| GRID DISSIPATION    | - | _ | - | - | - | _ | - | _ | 2                      | 2                    | 2        | MAX. | WATTS |

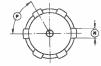
<sup>\*</sup>Up to 250 Mc.


<sup>\*\*</sup>Rating in air - may be increased with adequate cooling.




| MAXIMUM PULSE RATINGS                                                                                                                 | Class-C<br>Grid Pulsed           | Class-C<br>Plate Pulsed                                         | Pulse<br>Modulator |                                              |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------|----------------------------------------------|------------------------------------------|
| DC PLATE VOLTAGE PEAK PLATE CURRENT (DC Component) DC GRID VOLTAGE DC SCREEN VOLTAGE PLATE DISSIPATION (AVG)** GRID DISSIPATION (AVG) | <br><br><br>300<br>- 750<br>- 15 | 7000 (pulsed)<br>6.0*<br>-500<br>1500 (pulsed)<br>15<br>12<br>2 | 6.0*<br>-300       | MAX.<br>MAX.<br>MAX.<br>MAX.<br>MAX.<br>MAX. | VOLTS AMPS VOLTS VOLTS WATTS WATTS WATTS |

<sup>\*</sup>According to table below.


<sup>\*\*</sup>Depends on cooling method.



PULSE DURATION ( JL SEC.)



These dimensions NOTE: reflect standard manufacturing tolerances. Where they are to be made the basis of purchase specifications, they should first be checked with the factory.



DO NOT CONTACT THIS SURFACE.





8590 4CPX250K

RADIAL BEAM **TETRODE** 

The EIMAC 8590/4CPX250K is a compact forced-air cooled, external anode radial beam tetrode, intended for wideband grid-pulsed radio frequency amplifier and pulse modulator service.

The 8590/4CPX250K has a maximum anode dissipation of 250 watts and is capable of delivering pulse output power in excess of 10 kW with 10 db gain when cathode driven at 450 MHz.

The tube is of coaxial construction and especially designed for cavity operation.

#### GENERAL CHARACTERISTICS 1

#### **ELECTRICAL**

| Cathode: Oxide Coated, Unipotential                             |                         |         |
|-----------------------------------------------------------------|-------------------------|---------|
| Heater: Voltage                                                 | $6.0 \pm 0.3 \text{ V}$ |         |
| Current, at 6.0 volts                                           | 2.5 A                   |         |
| Amplification Factor (Average):                                 |                         |         |
| Grid to Screen                                                  | 5                       |         |
| Direct Interelectrode Capacitances (Grounded grid) <sup>2</sup> |                         |         |
| Input                                                           |                         | 14.0 pF |
| Output                                                          |                         | 4.1 pF  |
| Feedback                                                        |                         |         |
| Frequency of Maximum Rating:                                    |                         |         |
| CW                                                              |                         | 500 MHz |

<sup>1.</sup> Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

#### 2. In Shielded Fixture.

#### MECHANICAL

| Maximum Overall Dimensions: |                   |
|-----------------------------|-------------------|
| Length                      | 2.81 in; 71.37 mm |
| Diameter                    | 1.64 in; 41.66 mm |
| Net Weight                  | , .               |
| Operating Position          | Any               |

500 MHz

| MECHANICAL  Maximum Operating Temperature:  Ceramic/Metal Seals                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cooling                                                                                                                                                                                                                     | Forced-Air Coaxial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Socketing: EIMAC collets are available as follows:                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Heater pin connection                                                                                                                                                                                                       | EIMAC Part No. 008291 EIMAC Part No. 008292 EIMAC Part No. 008294                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR                                                                                                                                                                               | TYPICAL OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Class C Telegraphy or FM Telephony<br>(Key-Down Conditions)                                                                                                                                                                 | Plate Voltage       1000       1500       2000       2500       Vdc         Screen Voltage       250       250       250       250       Vdc         Grid Voltage       90       90       90       90       90       90       90                                                                                                                                                                                                                                                                                                                |
| MAXIMUM RATINGS DC PLATE VOLTAGE . 2500 VOLTS DC SCREEN VOLTAGE . 500 VOLTS DC GRID VOLTAGE250 VOLTS DC PLATE CURRENT . 0.250 AMPERE PLATE DISSIPATION . 250 WATTS SCREEN DISSIPATION . 12 WATTS GRID DISSIPATION . 2 WATTS | Plate Current       250       250       250       250       250       mAdc         Screen Current 1       38       21       19       16       mAdc         Grid Current 1       31       28       26       25       mAdc         Peak rf Grid Voltage 1       114       112       112       111       v         Calculated Driving Power 1       3.5       3.2       2.9       2.8       W         Plate Input Power       250       375       500       625       W         Plate Output Power       190       280       390       500       W |
|                                                                                                                                                                                                                             | 1. Approximate value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PULSE MODULATOR SERVICE                                                                                                                                                                                                     | TYPICAL OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAXIMUM RATINGS DC PLATE VOLTAGE                                                                                                                                                                                            | Plate Voltage         6000 Vdc           Screen Voltage         750 Vric           Grid Voltage         -275 Vdc           Peak Drive Voltage 1         280 v           Peak Plate Current         3.5 a           Peak Screen Current 1         0.4 a           Peak Input Power         21.0 kW           Peak Output Power         17.5 kW           Peak Output Voltage         5000 kv           Pulse Duration         250 μs           Duty Factor         0.005                                                                         |

<sup>1.</sup> Approximate value .



#### RF POWER AMPLIFIER

Class B or C. Grid and Screen Pulsed

| MAXIMUM RATINGS             |           |
|-----------------------------|-----------|
| DC PLATE VOLTAGE 5500       | VOLTS     |
| PEAK DC SCREEN VOLTAGE 1000 | VOLTS     |
| DC GRID VOLTAGE250          | VOLTS     |
| PEAK PLATE CURRENT 1 6.0    | AMPERES   |
| PULSE DURATION(See Deration | ng Chart) |
| DUTY FACTOR (See Deration   | ng Chart) |
| PLATE DISSIPATION 250       | WATTS     |
| SCREEN DISSIPATION 12       | WATTS     |
| GRID DISSIPATION 2          | WATTS     |
|                             |           |

1. Peak anode current may be considered as average during the pulse and should be limited to 6.0 amperes. With a pulse length longer than 80  $\mu$ s, or a duty factor higher than 0.0016, peak current should be reduced in

TYPICAL OPERATION (Frequencies to 500 MHz) Class B, Grounded Grid (Measured Values)

| Plate Voltage 550           | 0 Vdc |
|-----------------------------|-------|
| Screen Voltage (Pulsed) 100 | 0 v   |
| Grid Voltage200             | 0 Vdc |
|                             | 5 v   |
| Peak Driving Power 2 100    | 0 w   |
| Peak Output Power (Useful)  | 0 kW  |
| Pulse Duration              | 0 μs  |
| Duty Factor                 | 5     |

accordance with the data shown on the Derating Chart for Anode Current. For longer pulse duration or larger duty factor, consult EIMAC Division of Varian.

2. Approximate value.

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE | VALUES | FOR | EQUIPMENT | DESIGN |
|-------|--------|-----|-----------|--------|
|       |        |     |           |        |

|                                                        | Min. | Max  | ۲.   |
|--------------------------------------------------------|------|------|------|
| Heater: Current at 6.0 volts                           | 2.3  | 3.0  | Α    |
| Cathode Warmup Time                                    | 30   |      | sec. |
| Interelectrode Capacitances (Grounded Grid Connection) |      |      |      |
| Input                                                  | 12.0 | 16.0 | pF   |
| Output                                                 | 3.90 | 4.35 | pF   |
| Feedback                                               |      | 0.01 | pF   |

1. Capacitance values are for a cold tube as measured in a shielded fixture.

#### **APPLICATION**

MOUNTING - The 8590/4CPX250K may be mounted in any position. The concentric arrangement of the electrode terminals permits the use of the tube in coaxial line or cavity-type circuits to advantage.

Connections to the contact surfaces should be made by means of spring finger collets which have sufficient pressure to maintain a good electrical contact at all fingers. Points of electrical contact should be kept clean and free of oxidation to minimize rf losses. HEATER - The rated heater voltage for the 8590/4CPX250K is 6.0 volts, as measured at the base of the tube, and variations should be restricted to plus or minus 0.3 volt for long tube life and consistent performance. At frequencies above approximately 300 MHz under Class C Telegraphy conditions, it may be necessary to reduce heater voltage to compensate for rf transit-time heating of the cathode. This type of back-heating is a function of frequency, grid current, grid bias, anode current, duty cycle, and circuit design and adjustment. The following heater operation voltages are recommended for straight-through CW amplifier operation:

| Frequency (MHz) | Heater Voltage |
|-----------------|----------------|
| 300 or lower    | 6.00           |
| 301 to 400      | 5.75           |
| 401 to 500      | 5.50           |
|                 | 1              |

COOLING - Sufficient forced-air cooling must be provided to maintain the anode core and seal temperatures within maximum ratings. Special care must be observed to insure that there is adequate cooling in the area of the coaxial filament and grid terminals. With an anode dissipation of 250 watts and an incoming air temperature of 50°C at sea level, a minimum air flow of 4.8 cfm must be passed through the anode cooler, with a resultant pressure drop of approximately 0.25 inch of water. Air should normally be directed in a base-to-anode direction in order to minimize base cooling problems. In cases where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial. Air flow should be applied before or simultaneously with the application of electrode voltages (including heater voltage), and may be removed simultaneously with them.

CATHODE WARMUP TIME - Heater voltage should be applied for a minimum of 30 seconds before the application of other electrode voltages to allow proper conditioning of the cathode surface.

CATHODE OPERATION - The oxide-coated unipotential cathode must be protected against excessively high emission current. The DERATING CHART FOR ANODE CURRENT shows the current capability of the 8590/4CPX250K anode at various pulse durations and duty factors. To use this chart, enter with pulse duration and note the intersection with the desired peak anode current. At this intersection read off the values of maximum duty and/or pulse repetition rate.

Under a given set of operating conditions, element dissipation may limit the maximum permissible duty to a smaller value than anode current considerations alone would dictate. It will usually be found that screen grid dissipation is the limiting factor with large plate voltage swings and that plate dissipation limits the maximum duty with small plate voltage swings.

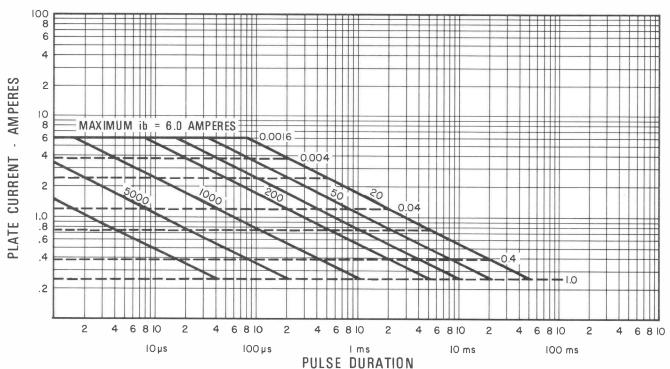
CONTROL GRID OPERATION - The average power dissipated by the control grid must not exceed two watts. The control grid dissipation can be computed as the product of average grid current, and peak positive grid to cathode voltage.

SCREEN GRID OPERATION - The average power dissipated by the screen grid must not exceed twelve watts. Screen grid dissipation is the product of dc screen voltage, average screen current during the pulse, and duty factor.

The screen grid current may reverse under certain operating conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen grid power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen grid under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator, or an electron tube shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per tube. A series pass tube regulated power supply can be used only when an adequate bleeder resistor is provided. Protection for the screen grid should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

PULSE MODULATOR PLATE OPERATION - Average plate dissipation may be calculated as the product of average plate current during the pulse, minimum anode voltage, and duty factor. Excessive average dissipation is likely to occur with high values of minimum anode voltage. The calculated value of plate dissipation may well be below 250 watts based on a rectangular pulse but excessive dissipation will result if pulse rise and fall times slow down the plate voltage swing and allow plate current to flow for longer periods in the high anode voltage region.



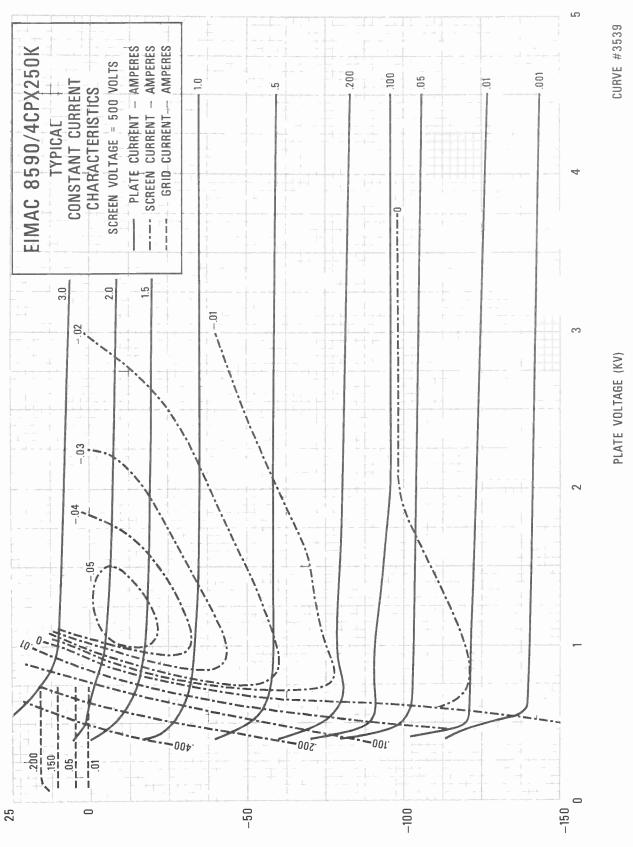

*UHF OPERATION* - Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

MULTIPLE OPERATION - Tubes operating in event that any tube fails.

parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustments of bias and/or screen grid voltage to equalize the plate currents. Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that any tube fails.

#### SPECIAL APPLICATION

If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, FIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.




TYPE 8590/4CPX250K — DERATING CHART FOR ANODE CURRENT (AVERAGE DURING PULSE)

SOLID LINES REPRESENT CONSTANT REPETITION RATES

DASHED LINES REPRESENT CONSTANT DUTIES

DO NOT EXTRAPOLATE ABOVE OR TO THE RIGHT OF BOLD LINES



(V) 30ATJOV DIRO

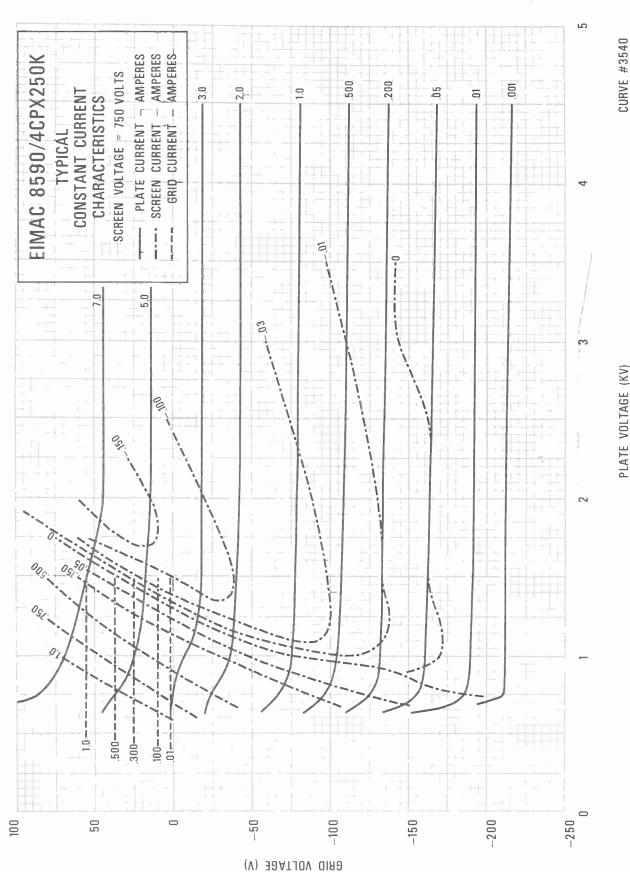
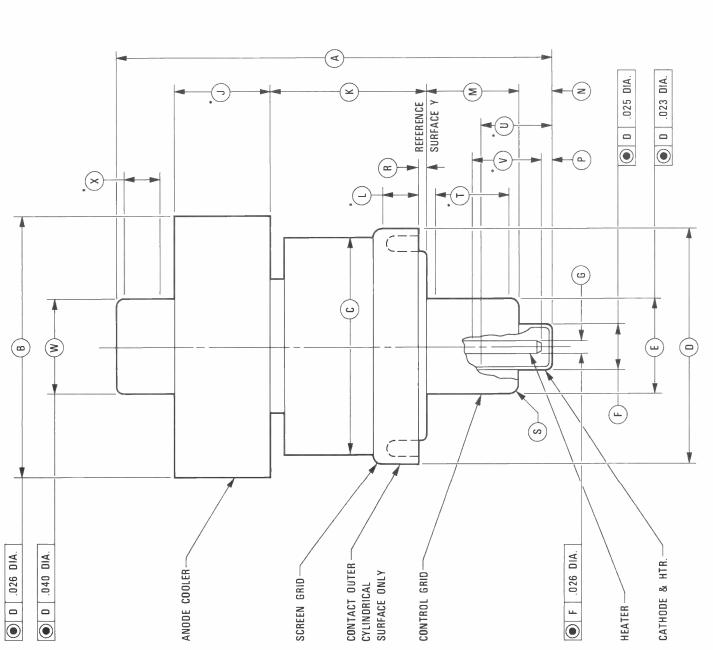




PLATE VOLTAGE (KV)

| _      | _                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NETERS | MAX.               | 71.45          | 41.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MILLIN | MIN.               | 1              | 41.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98'6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IES    | MAX.               | 2.813          | 1.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INCF   | MIN.               | 1              | 1.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ni C   | I                  | ۷              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ပ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ıL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | တ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ח                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | INCHES MILLIMETERS | MIN. MAX. MIN. | INCHES   MILLIMET   MIN.   M | INCHES   MILLIMET   MIN.   MAX.   MIN.     MIN.     MAX.   MIN.     MIN.     MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN.   MIN. | INCHES   MILLIMET   MIN.   MAX.   MIN.   MAX.   MIN.   M | INCHES   MILLIME   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MIN.   MAX.   MIN.   MI | NCHES   MILLIME   MIN.   MAX.   MIN.   MIN | INCHES   MILLIME   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MIN.   MAX.   MIN.   MI | NCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MIN | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME     MIN.   MAX.   MIN.     - 2.813       1.615   1.640   41.02     - 1.415   1.435   35.94     0.588   0.597   14.94     0.588   0.095   2.31     0.091   0.095   2.31     0.090   0.095   2.31     0.900   0.950   22.86     0.900   0.950   22.86     0.900   0.950   22.86     0.900   0.950   22.86     0.900   0.950   3.21     0.032   0.062   5.97     0.032   0.082   0.83     - 0.040   -   0.040     0.388   -   0.031     0.388   -   0.051     0.388   -   0.051     0.388   -   0.051     0.388   -   0.051     0.388   -   0.051     0.388   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051     0.398   -   0.051 | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI | INCHES   MILLIME   MAX.   MIN.   MAX.   MIN.   MAX.   MIN.   MI |

# NOTES:

- 1. \* INDICATES CONTACT SURFACE.
- 2. THE TUBE WILL BE ROTATED ON DIAMETER D WHEN ECCENTRICITY IS BEING MEASURED.
- 3. SURFACE Y MUST BE PERPENDICULAR TO THE MEASURING PLATFORM WHEN ECCENTRICITY IS BEING MEASURED.
- 4. AVERAGE DIAMETER OF E SHALL BE AS NOTED, & MAY BE OUT OF ROUND A TOTAL OF 0.006 (0.15 mm). AVERAGE DIAMETER OF F SHALL BE AS NOTED, AND MAY BE OUT OF ROUND A TOTAL OF 0.006 (0.15 mm).





### TECHNICAL DATA

RADIAL BEAM
TETRODE

The 4CS250R is a compact, conduction cooled, high perveance radial beam tetrode. It is electrically identical to the 4CX250R except that the maximum dissipation of the 4CS250R is limited only by the maximum allowable anode and ceramic/metal seal temperatures. A beryllium oxide (BeO) thermal link is brazed to the anode providing an electrically isolated, low thermal resistance path between the anode and the heat sink. Ruggedized construction allows the 4CS250R to be operated in applications where shock and/or vibration is experienced.



# GENERAL CHARACTERISTICS<sup>1</sup>

| 61 | EC | TD |     |   |
|----|----|----|-----|---|
| ᄃᄂ |    | 11 | ICA | - |

| Cathode: Oxide Coated, Unipotential                    |     |                |
|--------------------------------------------------------|-----|----------------|
| Heater: Voltage                                        |     |                |
| Current, at 6.0 volts                                  |     |                |
| Cathode - Heater Potential ±150 V                      |     |                |
| Direct Interelectrode Capacitances (grounded cathode)2 |     |                |
| Input                                                  | 17  | рF             |
| Output 3                                               |     |                |
| Feedback                                               | .04 | pF             |
| Frequency of Maximum Rating:                           |     |                |
| ĈW                                                     | 500 | $\mathrm{MH}z$ |
| Plate or Grid-Pulsed                                   |     |                |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. In Shielded Fixture.
- 3. See output capacitance.

## MECHANICAL

| B/I court management | 1 1 | 1 * * ^ # ^   1 | I lamon at an at |
|----------------------|-----|-----------------|------------------|
| WAXIIIIIII           |     | veran           | Dimensions:      |
|                      |     |                 |                  |

| Length             | 2.46 in; 62.5 mm |
|--------------------|------------------|
| Diameter           | 1.76 in; 44.9 mm |
| Net Weight         | 5 oz; 141.7 gm   |
| Operating Position | Any              |

(Fffective 9-1-70) © by Varian

Printed in U.S.A.



| Maximum Operating Temperature:  Ceramic/Metal Seals  Anode Core  Plate and Base Seals  Cooling  Base  Recommended Socket | 250°C 250°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN CATHODE DRIVEN Class AB1                                                    | TYPICAL OPERATION (Frequencies to 500 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RADIO FREQUENCY POWER AMPLIFIER                                                                                          | TYPICAL OPERATION (Frequencies to 175 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  MAXIMUM RATINGS:  DC PLATE VOLTAGE               | Plate Voltage       1000       1500       2000       Vdc         Screen Voltage       250       250       250       Vdc         Grid Voltage       -90       -90       -90       Vdc         Plate Current       227       240       241       mAdc         Screen Current 1       9       8       8       mAdc         Grid Current 1       11       10.5       10.5       mAdc         Peak rf Grid Voltage 1       104       104       104       v         Calculated Driving Power 1       1.2       1.1       1.1       W         Plate Input Power       170       360       482       W         Plate Dissipation       17       91       103       W         Plate Output Power       153       269       379       W         Resonant Load Impedance       1833       2900       4041       Ω         1. Approximate value. |
| PLATE MODULATED RADIO FREQUENCY POWER<br>AMPLIFIER-GRID DRIVEN<br>Class C Telephony (Carrier Conditions)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                       | DC PLATE CURRENT 0.200 AMPERE SCREEN DISSIPATION 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB1, Grid Driven (Sinusoidal Wave)

#### MAXIMUM RATINGS (Per Tube):

| DC PLATE VOLTAGE   | 2000  | VOLTS  |
|--------------------|-------|--------|
| DC SCREEN VOLTAGE  | 500   | VOLTS  |
| DC GRID VOLTAGE    | -250  | VOLTS  |
| DC PLATE CURRENT   | 0.250 | AMPERE |
| SCREEN DISSIPATION | 12    | WATTS  |
| GRID DISSIPATION   | 2     | WATTS  |

#### TYPICAL OPERATION (Two Tubes) (Push-Pull)

| Plate Voltage                    | 1500 | 2000 | Vdc      |
|----------------------------------|------|------|----------|
| Screen Voltage                   | 300  | 350  | Vdc      |
| Grid Voltage 1/2                 | -48  | -66  | Vdc      |
| Zero-Signal Plate Current        | 200  | 140  | mAdd     |
| Max. Signal Plate Current        | 490  | 500  | mAdd     |
| Zero-Signal Screen Current 1     | -2   | -4   | mAdd     |
| Max. Signal Screen Current1      | 0    | +4   | mAdd     |
| Plate Output Power               | 390  | 595  | W        |
| Load Resistance (plate to plate) | 5920 | 8016 | $\Omega$ |
|                                  |      |      |          |

- 1. Approximate value.
- 2. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                           | Min. | Max.    |
|-------------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                                | 2.3  | 2.9 A   |
| Cathode Warmup Time                                         | 30   | sec.    |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |         |
| Input                                                       | 16.0 | 18.5 pF |
| Output                                                      | 4.2  | 5.2 pF  |
| Feedback                                                    |      |         |
| 1. In Shielded Fixture.                                     |      | - r     |

# **APPLICATION**

## **MECHANICAL**

MOUNTING & SOCKETING - The 4CS250R may be mounted in any position. EIMAC SK-660 and SK-661 socket series is recommended. The SK-660 (made of alumina) and the SK-661 (made of BeO) will allow the tube base seal heat to be effectively transferred to the heat sink. Other sockets may be used if a means for keeping the ceramic/metal base seals below 250°C is provided. The EIMAC SK-655 and ERIE 2943 and 2929 series screen by-pass capacitor are recommended for use with the 4CS250R. Figure 1 shows the recommended method of mounting the 4CS-250R to the heat sink.

When using natural convection heat sinks, Figure 2 will assist the designer in determining the minimum heat sink surface area required for

the given power dissipation. The thermal and electrical characteristics of the BeO used on the 4CS250R are given in Table I and Figure 3.

A good thermally conductive compound (1) should be used in the interface to reduce the thermal resistance of this joint. In addition, the method of fastening the tube to the heat sink should provide reasonable compression to help further reduce this interface thermal resistance.

The effectiveness of any cooling system used with the 4CS250R is determined by the anode and ceramic/metal seal temperatures. These must be held below 250°C for all conditions of expected ambient temperatures and operation. These temperature parameters should be measured in the design stage using accurate thermocouples or thermistors.



- (1) Thermal joint compound and supplier.
  - a) Wakefield 120, Wakefield Engineering Co. Wakefield, Mass.
  - b) Dow Corning 340, Dow Corning Corp., Midland, Michigan.
  - c) Astrodyne Thermal Bond 312, Astrodyne, Inc., Burlington, Mass.
  - d) General Electric Insulgrease G641, General Electric Co. Cleveland Ohio, 44117.

COOLING - The 4CS250R is designed for conduction cooled systems by using a beryllium oxide (BeO) thermal link brazed to the anode. The BeO is a ceramic material which exhibits high thermal conductance similar to aluminum and high electrical resistance and low loss typical of ceramics. When this BeO thermal link is fastened to a suitable heat sink, it provides a low thermal resistance path allowing the anode heat to be transferred to the heat sink. The BeO also provides electrical isolation between the tube anode and the heat sink.

The heat sink can be cooled by natural (free) convection, forced air convection, liquid cooling or a combination of these methods. The design choice is determined by the tubes application but in all cases the cooling system must maintain the anode and ceramic/metal seal temperatures below  $250^{\circ}\text{C}$ .

In a conduction cooled system, anode temperature and seal temperature are determined by the thermal resistance of the thermal path between the anode and the cooling medium, e.g., air, water. The thermal path consists of the Beryllium oxide thermal link, the interface between the thermal link and heat sink, and the heat sink.

The thermal resistance of the BeO thermal link versus its average temperature is given in Figure 3. The tube user must then determine the thermal resistance of the thermal link from the BeO thermal link to the cooling medium for his particular application.

DANGER-BERYLLIUM OXIDE CERAMICS (BeO) BREATHING DUST OR FUMES CAN KILL Normal use of tubes with Beryllium Oxide ceramics is not hazardous, but the user is cautioned that breathing small quantities of the dust or fumes from Beryllium Oxide can seriously injure or kill. Do not alter, disassemble, grind, lap, fire, chemically clean, or perform any other operation on the Beryllium Oxide block attached to the anode of the 4CS250R, or to the socket used with the tube, which may also contain Beryllium Oxide.

Any tube or accessory part containing Beryllium Oxide ceramics should be returned to EIMAC at the end of its useful life, with authorization for disposal.

SHOCK AND VIBRATION - The 4CS250R is shock and vibration tested with plate and screen voltages applied. Production tubes are randomly sampled and tested under the following conditions.

With a plate voltage of 2000 volts applied, the tubes sampled are subjected to six shocks of 90 G's minimum half-sine-wave motion, with a duration of  $11.0 \pm 2$  milliseconds, in each of the three major axes (X, Y, Z).

With the rated plate and screen voltages applied and the control grid voltage adjusted for a plate current of 100 ma, through a plate load resistance of 4900 ohms, each of the tubes tested is vibrated in the three major axes throughout the range of 28 to 2000 and back to 28 Hz in a

|                                             | CHARACTERIS        | TICS OF 99.5% BeO                                            |              |  |  |  |  |  |  |
|---------------------------------------------|--------------------|--------------------------------------------------------------|--------------|--|--|--|--|--|--|
| Electrical Resistivity in ohm-cm @250°F     | 1014               | 10 <sup>14</sup> Dielectric Strength in volts/mil 300        |              |  |  |  |  |  |  |
| Dielectric Constant<br>at 70°F and 1 MHz    | 6.40               | Thermal Conductivity (K) in Cal./Cm2/Cm/Sec./°C of 99.5% BeO |              |  |  |  |  |  |  |
| at 70°F and 8.5 GHz<br>at 250°F and 8.5 GHz | 6.57<br>6.64       | 20°C<br>100°C                                                | 0.60<br>0.45 |  |  |  |  |  |  |
| Loss Tangent<br>at 70°F and 1 MHz           | 0.0006             | 400°C                                                        | 0.20         |  |  |  |  |  |  |
| at 70°F and 8.5 GHz<br>at 250°F and 8.5 GHz | 0.00044<br>0.00040 | (From Coors Data Sheet 0001,                                 | Aug 1965)    |  |  |  |  |  |  |



minimum time of six minutes per axis. The vibration level is maintained at 10 G's. The noise voltage developed across the plate load resistor may not exceed 30 volts rms.

VOLTAGE BREAKDOWN VERSUS ALTITUDE - Table II shows typical breakdown voltage versus altitude across the BeO thermal link. The measurements were taken with the heat sink plate at ground potential and the anode at the breakdown potential.

| All voltage<br>readings in kVdc<br>(typical) |
|----------------------------------------------|
| 11.5<br>10.5                                 |
| 10.5<br>9.0                                  |
| 7.5<br>6.5                                   |
| 5.5<br>5.0                                   |
| 4.0<br>4.0<br>3.5                            |
|                                              |

Table II

OUTPUT CAPACITANCE - The interelectrode capacitances given in the General Characteristics are measured in a shielded fixture and does not include additional external capacitances. The typical capacitance between the anode and a heat sink plate 4" x 4" is 6.7 pF at 25°C. Total output capacitance will be approximately 11.5 pF. The measurement configuration is shown in Figure 1.



FIG. 1 TYPICAL MOUNTING CONFIGURATION

## **ELECTRICAL**

HEATER/CATHODE OPERATION - For maximum life and uniform performance, the heater voltage should be maintained within plus or minus 5% of the rated 6.0 volts at operating frequencies up to 300 MHz for CW use.Between 300 and 400 MHz, 5.75 volts is recommended and between 400 and 500 MHz 5.5 volts is recommended.

GRID OPERATION - Maximum rated dc bias voltage is -250 volts. D.C. resistance, grid to cathode, should be no more than 100,000 ohms. Maximum grid dissipation allowable is 2 watts.

SCREEN OPERATION - Maximum screen dissipation is 12 watts, normally computed by multiplying dc screen voltage by the average screen current. This computation is essentially correct except in the case of heavy plate loading when secondary emission current may mask the normal screen current.

All tetrodes, under some conditions of loading and drive, will exhibit secondary emission from the screen which changes the net current to the screen and may even cause the screen meter to reverse. Normally, secondary emission is harmless provided the screen voltage is stable. To insure stable screen voltage, it is recommended that a bleeder resistor calculated to pass 15 ma from screen to ground be used.

PLATE OPERATION - The plate dissipation rating of the 4CS250R is limited by anode core and ceramic/metal seal temperature. These are a function of the thermal link and are discussed in the "Cooling" section.

MULTIPLE OPERATION - To obtain maximum power with minimum distortion from tubes operated in multiple it is desirable to adjust individual screen or grid-bias voltages so the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal for class-AB1 operation.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

# ANODE POWER DISSIPATION OF 4CS250R VS HEAT SINK AREA FOR WAKEFIELD B-1703 (SAFETY FACTOR INCLUDED)

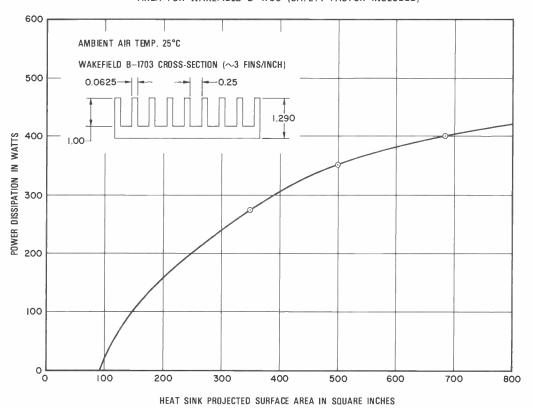



FIG. 2

# THERMAL RESISTANCE VS AVERAGE TEMPERATURE OF 4CS250R THERMAL LINK INCLUDING 1 LAYER OF WAKEFIELD 120 THERMAL COMPOUND BETWEEN $B_{\text{E}}O$ and heat sink

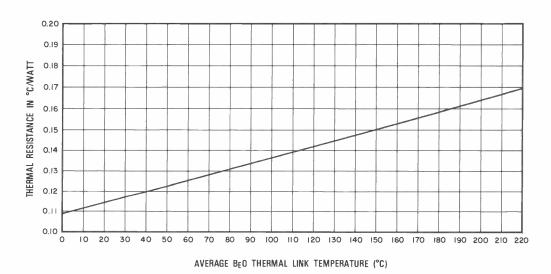
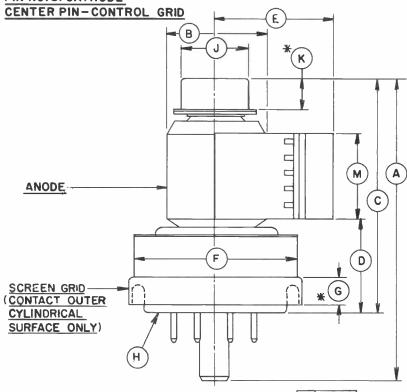
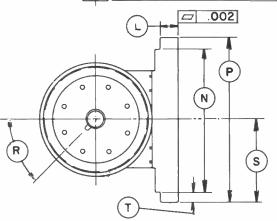
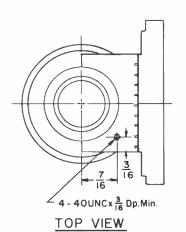
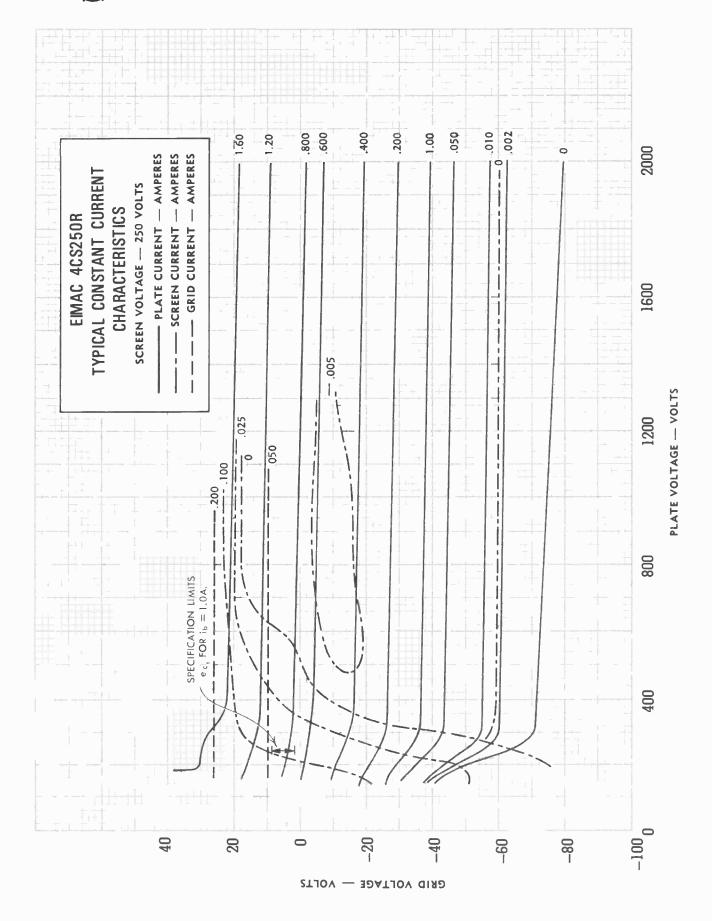



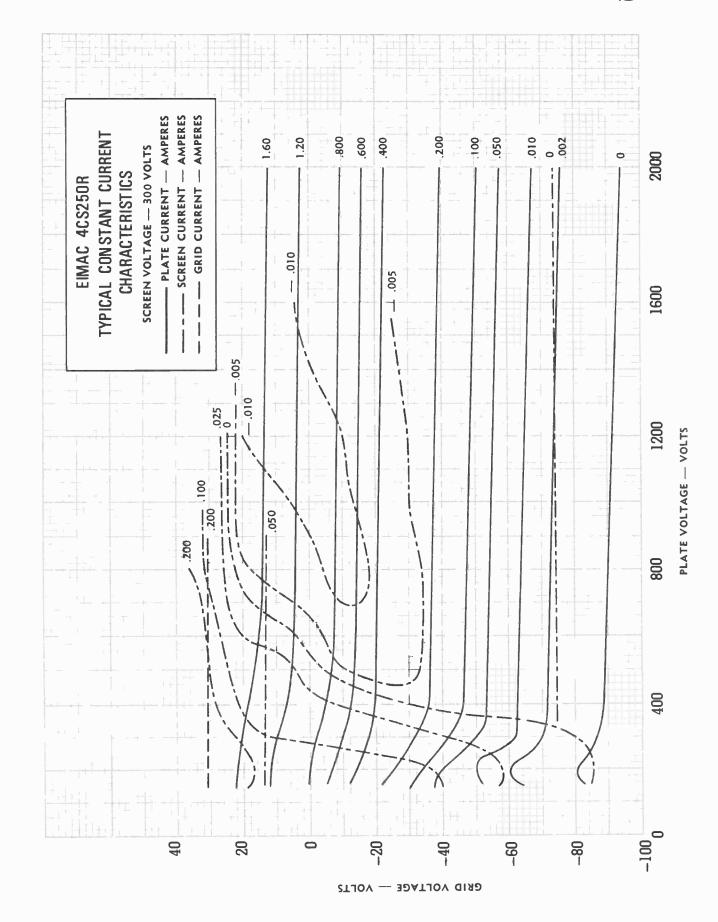

FIG. 3



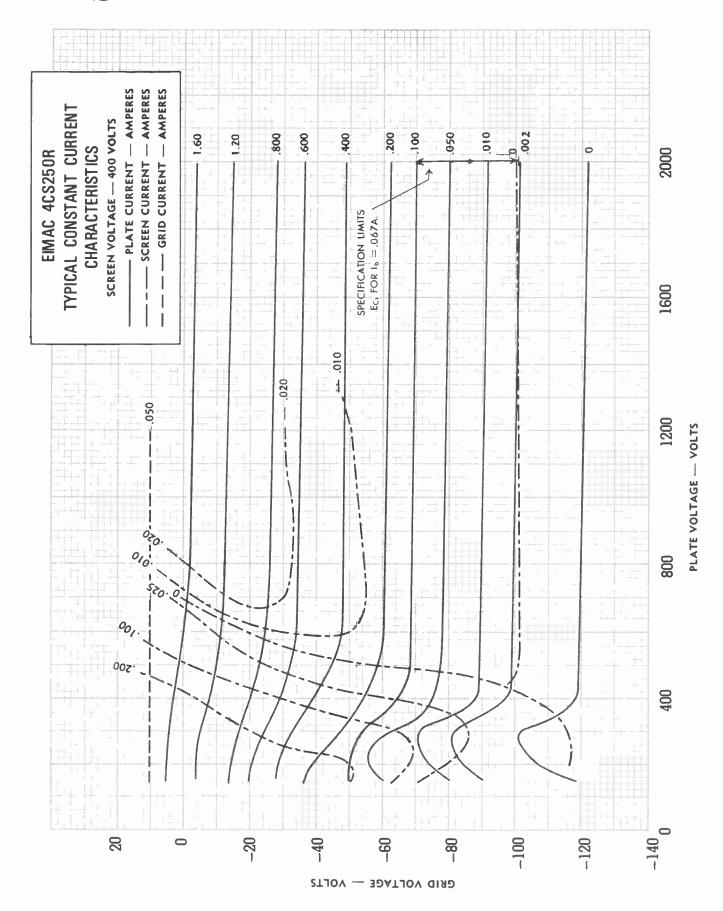


PIN NO.1. SCREEN GRID
PIN NO 2 CATHODE
PIN NO.3. HEATER
PIN NO.4. CATHODE
PIN NO.5. LC DO NOT USE FOR EXTERNAL CONNECTION
P:N NO.6. CATHODE
PIN NO.7. HEATER
PIN NO.B. CATHODE
CENTER PIN - CONTROL GRID

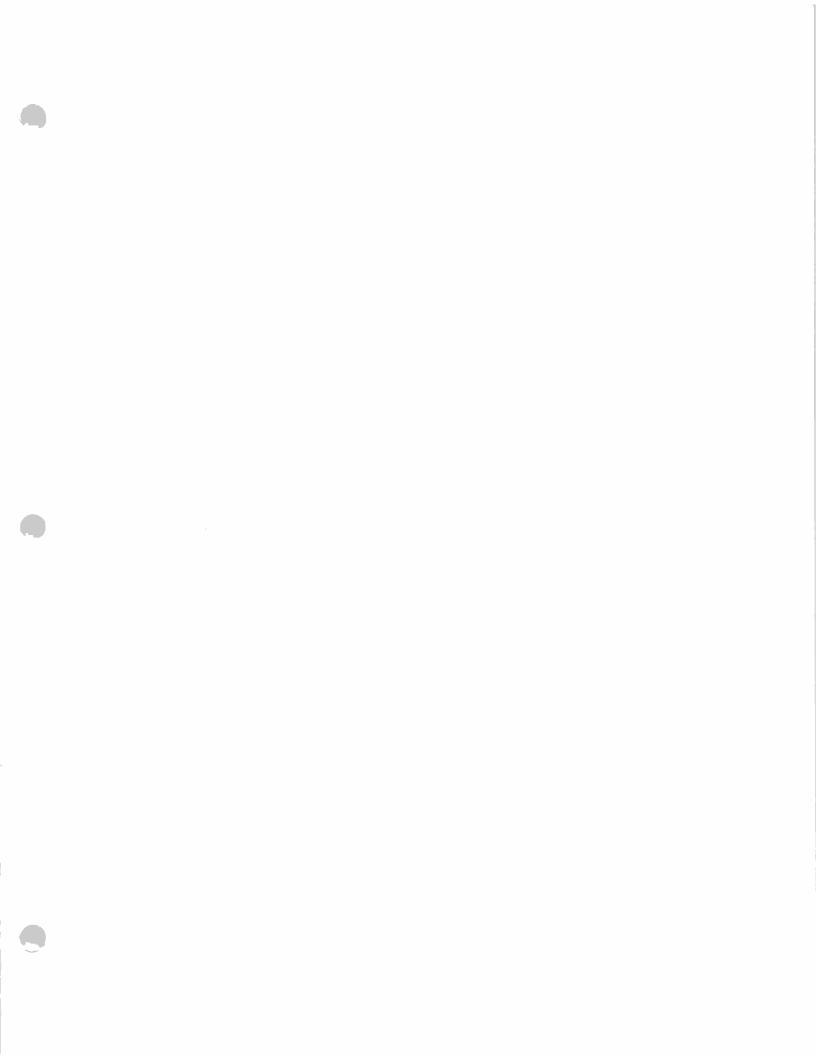


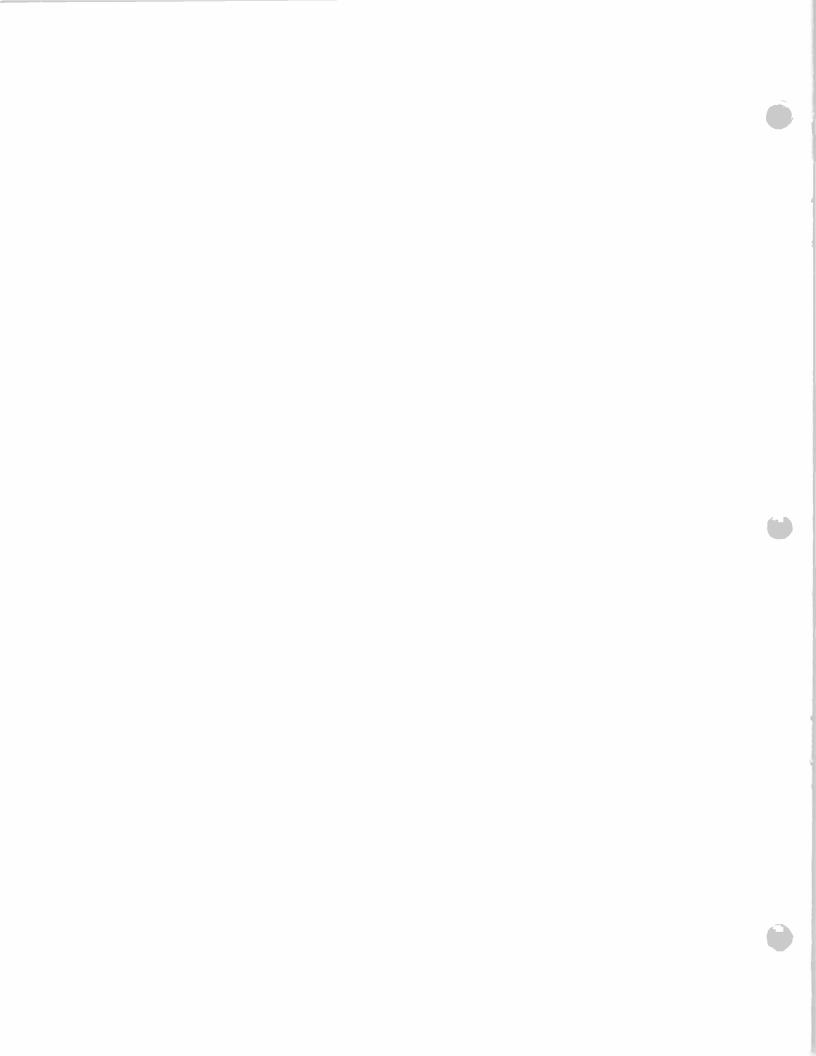

| DIMENSIONAL DATA |       |        |       |          |                  |     |  |  |  |  |  |
|------------------|-------|--------|-------|----------|------------------|-----|--|--|--|--|--|
| DIM.             |       | INCHES |       | l N      | <b>IILLIMETE</b> | RS  |  |  |  |  |  |
| DIW.             | MIN.  | MAX.   | REF   | MIN.     | MAX.             | REF |  |  |  |  |  |
| Α                | 2,324 | 2.464  |       | 59.03    | 62.59            |     |  |  |  |  |  |
| В                | 0.880 | 0.894  |       | 22.35    | 22.71            |     |  |  |  |  |  |
| С                | 1.810 | 1.910  |       | 45.97    | 48.51            |     |  |  |  |  |  |
| D                | 0.760 | 0.800  |       | 19.30    | 20.32            |     |  |  |  |  |  |
| E                | 0.985 | 1.015  |       | 25.02    | 25,78            |     |  |  |  |  |  |
| F                |       | 1406   |       |          | 35.71            |     |  |  |  |  |  |
| G                | 0.187 |        |       | 4.75     |                  |     |  |  |  |  |  |
| н                |       |        | BASE  | B8-236   |                  |     |  |  |  |  |  |
|                  |       |        | (JEDE | DESIGNA  | DESIGNATION)     |     |  |  |  |  |  |
| J                | 0.559 | 0.573  |       | 14.20    | 14.55            |     |  |  |  |  |  |
| K                | 0.240 |        |       | 6.10     |                  |     |  |  |  |  |  |
| L                | 0.214 | 0.228  |       | 5.44     | 5.79             |     |  |  |  |  |  |
| М                | 0.600 | 0.640  |       | 15.24    | 16.26            |     |  |  |  |  |  |
| N                | 1.733 | 1.767  |       | 44.02    | 44.88            |     |  |  |  |  |  |
| Р                | 19.80 | 20.30  |       | 50.29    | 51.56            |     |  |  |  |  |  |
| R                | 43°   | 47°    |       | 43°      | 47*              |     |  |  |  |  |  |
| S                | 0.985 | 1.105  |       | 25.02    | 25.78            |     |  |  |  |  |  |
| Т                | 0.107 | 0.143  |       | 2.72 3.6 |                  |     |  |  |  |  |  |
|                  |       |        |       |          |                  |     |  |  |  |  |  |
|                  |       |        |       |          |                  |     |  |  |  |  |  |
|                  |       |        |       |          |                  |     |  |  |  |  |  |
|                  |       |        |       |          |                  |     |  |  |  |  |  |
|                  |       |        |       |          |                  |     |  |  |  |  |  |


NOTES:
I. REF. DIMENSIONS ARE FOR INFO.
ONLY 8 ARE NOT REQUIRED FOR
INSPECTION PURPOSES.


















# 4C

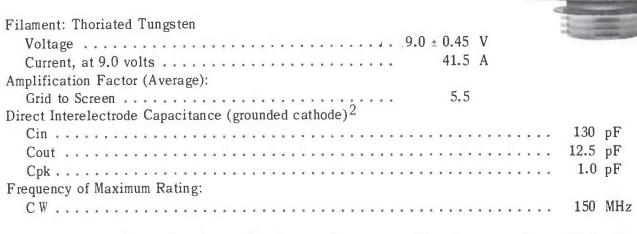
Printed in U.S.A.

# 4CV8000A

VAPOR-COOLED

RADIAL-BEAM POWER-TETRODE






(Revised 3-15-71) © by Varian

The EIMAC 4CV8000A is a ceramic/metal vapor-cooled power tetrode designed to be used as a Class-AB1 linear amplifier in audio or radio-frequency applications. Its characteristic of low intermodulation distortion makes it specially suitable for single-sideband service. The vapor-cooled anode has a dissipation rating of 8000 watts when mounted in an EIMAC BR-101 broiler.

The 4CV8000A is also recommended for Class-C radio-frequency power amplifier and plate-modulated radio-frequency power amplifier service.

## GENERAL CHARACTERISTICS<sup>1</sup>



- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

| MECHANICAL                     |     |     |      |     |    |     |     |   |    |    |     |                   |         |
|--------------------------------|-----|-----|------|-----|----|-----|-----|---|----|----|-----|-------------------|---------|
| Maximum Overall Dimensions:    |     |     |      |     |    |     |     |   |    |    |     |                   |         |
| Length                         |     |     |      | 0 0 | •  |     | • • |   |    |    |     | 7.98 in; 202.     | 59 mm   |
| Diameter                       |     |     |      |     |    |     |     |   |    |    |     | 7.87 in; 199.     | 90 mm   |
| Net Weight                     |     |     |      |     | •  |     |     |   |    |    | 0 0 | 7.0 lb; 3         | .2 kg   |
| Operating Position             |     |     |      |     |    |     |     |   |    |    |     | Axis vertical, b  | ase up  |
| Maximum Operating Temperature: |     |     |      |     |    |     |     |   |    |    |     |                   |         |
| Ceramic/Metal Seals            |     |     |      |     |    |     |     |   |    |    |     |                   | 250°C   |
| Anode Flange                   |     |     |      |     |    |     |     |   |    |    |     |                   | 110°C   |
| Cooling                        |     |     |      |     |    |     |     |   |    |    |     | . Vapor and Ford  | ed Air  |
| Base                           | . S | peo | cial | , r | in | g a | nd  | b | re | ac | h-  | block terminal si | ırfaces |
| Recommended Air System Socket  |     |     |      |     |    |     |     |   |    |    |     | S                 | K-1490  |
| Recommended Boiler             |     |     |      |     |    |     |     |   |    |    |     |                   | BR-101  |
|                                |     |     |      |     |    |     |     |   |    |    |     |                   |         |
|                                |     |     |      |     |    |     |     |   |    |    |     |                   |         |

| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, Class AB 1                                                                                       | TYPICAL OPERATION (Frequencies to 30 MHz) Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation Crest Conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                     | Plate Voltage . 5000 6000 Vdc Screen Voltage . 850 850 Vdc Grid Voltage 1130 -135 Vdc Zero-Signal Plate Current 1.0 1.0 Adc Single-Tone Plate Current 1.95 2.0 Adc Single-Tone Screen Current 2 130 125 mAdc Peak rf Grid Voltage 2 120 125 v Plate Dissipation 3650 4750 W Plate Cutput Power 6000 7250 W Resonant Load Impedance 2170 1825 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RADIO FREQUENCY POWER AMPLIFIER OR                                                                                                             | TYPICAL OPERATION (Frequencies to 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                | Plate Voltage         6000         7000         Vdc           Screen Voltage         500         500         Vdc           Grid Voltage         -240         -265         Vdc           Plate Current         1.95         1.90         Adc           Screen Current 1         315         295         mAdc           Grid Current 1         135         125         mAdc           Peak rf Grid Voltage 1         345         370         v           Calculated Driving Power         47         47         W           Plate Cutput Power         9.2         11.0         kW                                                                                                                                                                                         |
| SCREEN DISSIPATION                                                                                                                             | 1. Approximate value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE | TYPICAL OPERATION (Frequencies to 30 MHz)           Plate Voltage         4000         5000         Vdc           Screen Voltage         400         400         Vdc           Grid Voltage         -250         -250         Vdc           Plate Current         1.4         1.35         Adc           Screen Current 1         225         235         mAdc           Grid Current 1         115         125         mAdc           Peak af Screen Voltage 1         365         365         v           Peak rf Grid Voltage 1         335         330         v           Calculated Driving Power         39         42         W           Plate Dissipation         1200         1250         W           Plate Output Power         4400         5500         W |
| 2. Average, with or without modulation,                                                                                                        | 1. Approximate value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB , Grid Driven (Sinusoidal Wave)

ABSOLUTE MAXIMUM RATINGS (per tube)

| DC PLATE VOLTAGE   | 7000 | VOLTS   |
|--------------------|------|---------|
| DC SCREEN VOLTAGE  | 1000 | VOLTS   |
| DC PLATE CURRENT   | 2.0  | AMPERES |
| PLATE DISSIPATION  | 8000 | WATTS   |
| SCREEN DISSIPATION | 175  | WATTS   |
| GRID DISSIPATION   | 50   | WATTS   |

| TYPICAL OPERATION (Two Tubes)              |      |      |      |
|--------------------------------------------|------|------|------|
| Plate Voltage                              | 5000 | 6000 |      |
| Screen Voltage                             | 850  | 850  | Vdc  |
| Grid Voltage 1/3                           | -130 | -135 | Vdc  |
| Zero-Signal Plate Current                  | 2.0  | 2.0  | Adc  |
| Max. Signal Plate Current                  | 3.9  | 4.0  | Adc  |
| Max. Signal Screen Current 1               | 260  | 250  | mAdd |
| Peak af Grid Voltage 2                     | 120  | 125  | V    |
| Max. Signal Plate Dissipation <sup>2</sup> | 3650 | 4750 | W    |
| Plate Output Power                         | 12.0 | 14.5 | kW   |
| Load Resistance (plate to plate)           | 4340 | 3650 | Ω    |
| 2000 House (France )                       |      |      |      |

1. Approximate value.

TUDICAL ODERATION /Two Tubos)

- 2. Per Tube.
- 3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In Class C service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| DANCE VALUES END ENHIQUENT DESIGN |      |        |
|-----------------------------------|------|--------|
| RANGE VALUES FOR EQUIPMENT DESIGN | Min. | Max.   |
| Heater: Current at 9.0 volts      | 39.5 | 43.5 A |
| Cin                               | 120  | 140 pF |
| Cout                              |      |        |
| Cgp                               |      | 1.4 pF |
|                                   |      |        |

<sup>1.</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CV8000A must be operated with its axis vertical, base up in an EIMAC BR-101 boiler. Care must be exercised when installing to insure that the boiler is level, the water is at the proper level and that the flange of the tube makes a vapor tight seal against the rubber "0" ring and boiler. A typical vapor cooling system is shown in this data sheet.

SOCKET - The EIMAC SK-1490 socket is available for use with the 4CV8000A. Filament, control-grid, and screen-grid connections are made to this socket.

COOLING - Cooling is accomplished by immersing the anode in the distilled water filled BR-101 boiler. The energy dissipated at the anode causes the water to boil at the surfaces of the anode, be converted into steam and be carried away to the condenser. The boiling action keeps the anode surfaces at approximately 100°C. In a properly designed boiler-tube system (such as the 4CV8000A and BR-101), it is extremely unlikely that the anode surfaces will ever exceed 110°C-well below the 250°C maximum rating-at full dissipation ratings.

The water in the boiler must be maintained at

a constant level, just below the top of the fins on the anode cooler. This is accomplished automatically in the vapor cooling system shown. Condensate from the condenser is returned to the boiler to maintain this constant fluid level. Any decrease in liquid level is sensed by the control box, CB-102. A low water level in the control box activates the solenoid water valve, allowing make-up water from the reservoir to enter the boiler. When the proper level is reached, the control box de-energizes the solenoid, stopping the flow from the reservoir. A second switch in the control box is energized if the water level drops to a lower level because of an empty reservoir or a constriction in the line. This switch may be used to shut down the equipment or activate an

For reliable operation, it is important that the control box and boiler be mounted so that the level sensed by the control box is exactly the same as the level in the boiler.

Cooling of the tube base is accomplished by blowing 25-50 CFM of air through the socket from the sides.

#### **ELECTRICAL**

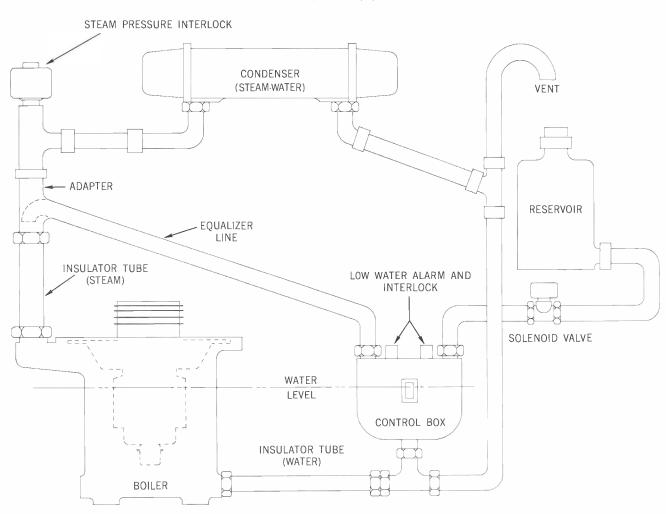
HIGH VOLTAGE - Normal operating voltages used with the 4CV8000A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

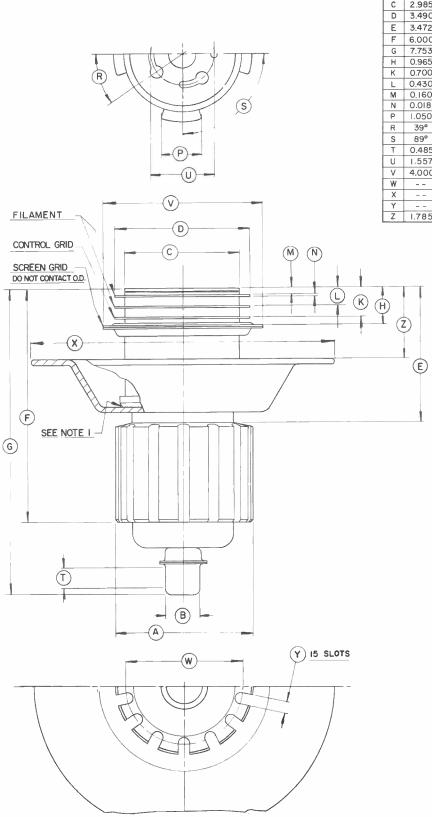
FILAMENT OPERATION - The rated filament voltage for the 4CV8000A is 9.0 volts. Filament

voltage, as measured at the socket, must be maintained at 9.0 volts plus or minus five percent to obtain maximum tube life. The use of a constant voltage filament transformer is recommended.

GRID OPERATION - The 4CV8000A grid has a maximum dissipation rating of 50 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is the product of the dc grid current and the peak positive grid voltage swing.

SCREEN OPERATION - The power dissipated by the screen must not exceed 175 watts. Screen dissipation, in cases where no ac is applied to the screen, is the product of screen voltage and screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power and screen voltage.

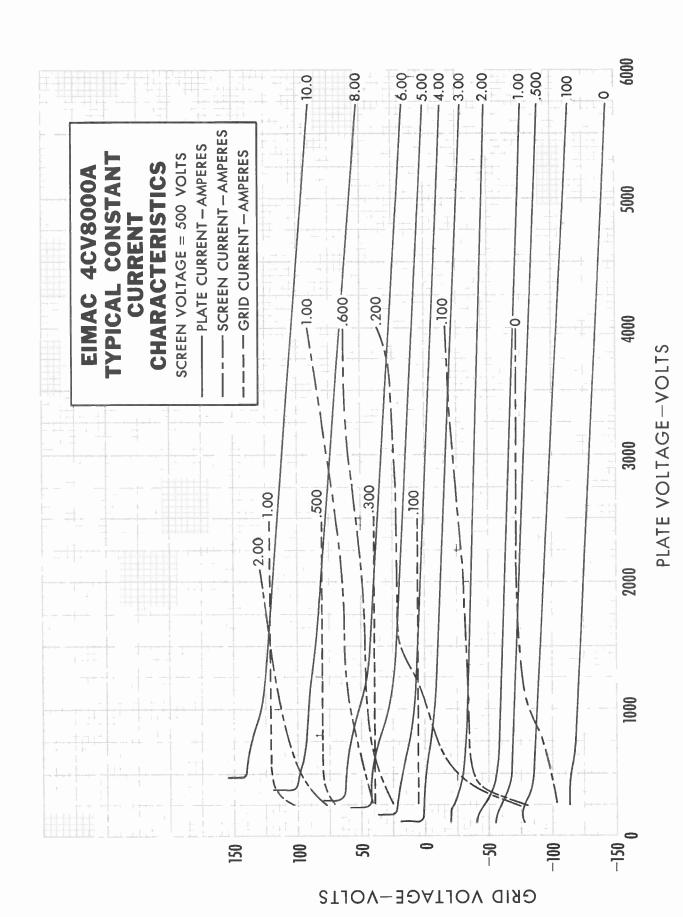

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation in the event of these failures.


PLATE DISSIPATION - The plate dissipation rating of 8000 watts attainable through vapor cooling provides a large margin of safety. It is unlikely that this rating will be exceeded, even during tuning periods.

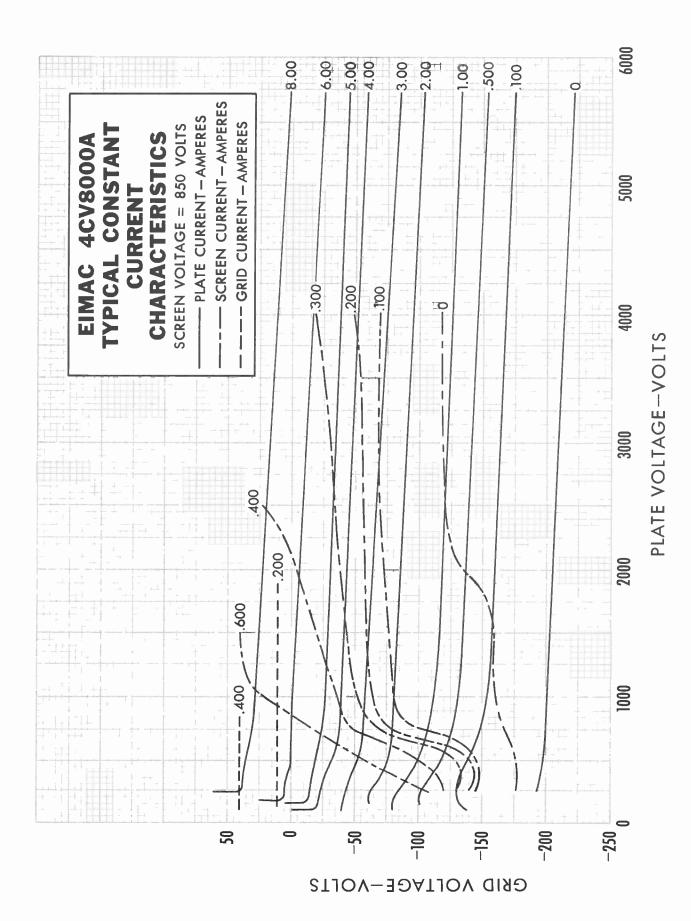
When the 4CV8000A is used as a plate-modulated rf amplifier, this rating is reduced to 5500 watts with a reduced plate input rating of 5000 volts and 1.4 amps.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

#### VAPOR COOLING SYSTEM







| DIMENSIONAL DATA |       |        |       |        |             |        |  |  |  |  |  |
|------------------|-------|--------|-------|--------|-------------|--------|--|--|--|--|--|
| DIM.             |       | INCHES |       | M      | MILLIMETERS |        |  |  |  |  |  |
| DIM.             | MIN.  | MAX.   | REF.  | MIN.   | MAX.        | REF.   |  |  |  |  |  |
| Α                | 3.475 | 3,525  |       | 88.27  | 89.53       |        |  |  |  |  |  |
| В                | 0.860 | 0.890  |       | 21.84  | 22.61       |        |  |  |  |  |  |
| С                | 2.985 | 3.025  |       | 75.82  | 76.84       |        |  |  |  |  |  |
| D                | 3.490 | 3,525  |       | 88.65  | 89.54       |        |  |  |  |  |  |
| E                | 3.472 | 3.602  |       | 88.19  | 91.49       |        |  |  |  |  |  |
| F                | 6.000 | 6.200  |       | 152.40 | 157.48      |        |  |  |  |  |  |
| G                | 7.753 | 7.983  |       | 196.93 | 202.77      |        |  |  |  |  |  |
| Н                | 0.965 | 1.005  |       | 24.51  | 25.53       |        |  |  |  |  |  |
| К                | 0.700 | 0.730  |       | 17.78  | 18.54       |        |  |  |  |  |  |
| L                | 0.430 | 0.460  |       | 10.92  | 11.68       |        |  |  |  |  |  |
| М                | 0.160 | 0.180  |       | 4.06   | 4.57        |        |  |  |  |  |  |
| N                | 0.018 | 0.025  |       | 0.46   | 0.64        |        |  |  |  |  |  |
| Р                | 1.050 | 1.100  |       | 26.67  | 27.94       |        |  |  |  |  |  |
| R                | 39°   | 410    |       | 39°    | 410         |        |  |  |  |  |  |
| S                | 89°   | 91°    |       | 89°    | 91°         |        |  |  |  |  |  |
| т                | 0.485 | 0.515  |       | 12.32  | 13.08       |        |  |  |  |  |  |
| U                | 1.557 | 1.567  |       | 39.55  | 39.80       |        |  |  |  |  |  |
| ٧                | 4.000 | 4.175  |       | 101,60 | 106.05      |        |  |  |  |  |  |
| W                |       |        | 2.968 |        |             | 75.39  |  |  |  |  |  |
| Х                |       |        | 7.875 |        |             | 200.03 |  |  |  |  |  |
| Υ                |       |        | 0.344 |        |             | 8.74   |  |  |  |  |  |
| Z                | 1.785 | 1.915  |       | 45.34  | 48.64       |        |  |  |  |  |  |

NOTES:
I. AREA FOR MEASURING ANODE
FLANGE TEMPERATURE.

2. REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY & ARE NOT REQID FOR INSPECTION PURPOSES.



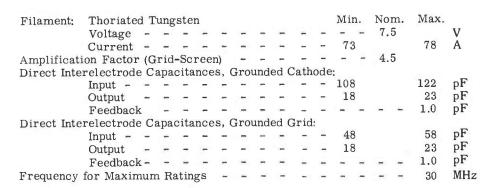
7





# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

4CV20,000A


VAPOR-COOLED RADIAL-BEAM POWER-TETRODE

The Eimac 4CV20,000A is a vapor-cooled, ceramic-metal, power tetrode designed for use as an oscillator, modulator, or amplifier in audio and radio-frequency applications. The vapor-cooled anode is conservatively rated at 20 kilowatts of plate dissipation when mounted in an Eimac BR-200 boiler.

A pair of these tubes in class AB<sub>1</sub> audio frequency or radio frequency linear amplifier service will deliver 35 kilowatts output. The frequency for maximum ratings is 30 megacycles; operation to 110 megacycles is possible at reduced input.



#### **ELECTRICAL**





#### **MECHANICAL**

| Base                 |        | -     |      | _ | - | - | - | - | - | ~ | - | - | - | - | _             | - | - |      |      |       |       | tric |
|----------------------|--------|-------|------|---|---|---|---|---|---|---|---|---|---|---|---------------|---|---|------|------|-------|-------|------|
| Recommended Socket   |        | -     |      | - | - | - | - | - | - | - | - | - | - | - | -             | - | - |      |      |       |       | 800A |
| Recommended Boiler   |        | -     |      | - | - | - | - | - | _ | - | _ | - | _ | - | _             | - | - |      | Eim  | ac,   | BR    | -200 |
| Operating Position - |        | -     |      | - | - | - | - | - | _ | - | - | - | _ | - | -             | - | - | Axis | vert | ical, | , bas | e up |
| Cooling              |        | -     |      | - | - | - | _ | - | - | - | - | - | - | - | $\rightarrow$ | - | - | Vapo | r &  | For   | rced  | air  |
| Maximum Seal Temper  | ature  | -     |      |   |   |   |   |   |   |   |   |   |   |   |               |   |   |      |      |       | 250   | ° C  |
| Maximum Anode Core   | Гетре  | eratu | re - | - | - | - | - | - | - | - | - | - | - | - | -             | - | - |      | -    | -     | 250   | ° C  |
| Maximum Over-all Din | nensio | ns:   |      |   |   |   |   |   |   |   |   |   |   |   |               |   |   |      |      |       |       |      |
| Height -             |        | -     |      | _ | _ | - | _ | _ | _ | - |   | - | - | - | -             |   | - |      |      | 9.    | .13   | in   |
| Diameter             |        | -     |      | - | - | - | - | - | - | - | - | - | - | - | _             | - | - |      |      | 7.    | .75   | in   |
| Net Weight           |        | -     |      | - | - | - | - | - | - | - | - | - | - | - | -             | - | - |      |      |       | 21    | lbs  |

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

| Clas | Class-C Telegraphy or FM Telephony |    |     |   |    |       |       |  |  |  |  |
|------|------------------------------------|----|-----|---|----|-------|-------|--|--|--|--|
| MAX  | MAXIMUM RATINGS                    |    |     |   |    |       |       |  |  |  |  |
| DC   | PLATE VOLTAGE (to 3                | 30 | Mc) | - | _  | 7500  | VOLTS |  |  |  |  |
|      | (30-6                              | 60 | Mc) | - | _  | 7000  | VOLTS |  |  |  |  |
|      | (60-13                             | 10 | Mc) | - | -  | 6500  | VOLTS |  |  |  |  |
| DC   | SCREEN VOLTAGE -                   | -  | -   | - | -  | 1500  | VOLTS |  |  |  |  |
| DC   | PLATE CURRENT (to 3                | 30 |     | - | -  |       | AMPS  |  |  |  |  |
|      | (30-6                              | 60 | Mc) | - | -  | 2.8   | AMPS  |  |  |  |  |
|      | (60-11                             | 0  | Mc) | - | -  | 2.6   | AMPS  |  |  |  |  |
| PLA  | TE DISSIPATION                     |    |     |   | 20 | 0,000 | WATTS |  |  |  |  |
| SCR  | EEN DISSIPATION -                  | -  | -   | - | -  | 250   | WATTS |  |  |  |  |
| GRI  | D DISSIPATION                      | -  | -   | - | -  | 75    | WATTS |  |  |  |  |

## TYPICAL OPERATION (Below 30 Mc)

| DC       Plate Voltage       -       -       6000       7500 volts         DC       Screen Voltage       -       -       500       500 volts         DC       Grid Voltage       -       -       -290       -300 volts         DC       Plate Current       -       -       3.0 amps         DC       Screen Current*       -       -       500 mA         DC       Grid Current       -       -       290 290 mA         Peak       RF       Grid Voltage*       -       520 530 volts         Driving       Power       -       -       150 usts         Plate       Output       Power       -       -       12,900       17,000 watts |      |                |     |   |   |        |              |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----|---|---|--------|--------------|---|
| DC       Grid Voltage       -       -       -290       -300 volts         DC       Plate Current       -       -       3.0 amps         DC       Screen Current*       -       -       500 mA         DC       Grid Current       -       -       290 290 mA         Peak       RF       Grid Voltage*       -       520 530 volts         Driving       Power       -       -       150 155 watts                                                                                                                                                                                                                                        | DC   | Plate Voltage  | -   | - | - | 6000   | 7500 volts   | , |
| DC       Plate Current 3.0       3.0 amps         DC       Screen Current* 500       500 mA         DC       Grid Current 290       290 mA         Peak       RF       Grid Voltage* - 520       530 volts         Driving       Power 150       155 watts                                                                                                                                                                                                                                                                                                                                                                                | DC   | Screen Voltage | -   | - | - | 500    | 500 volts    | , |
| DC Screen Current* 500       500 mA         DC Grid Current 290       290 mA         Peak RF Grid Voltage* - 520       530 volts         Driving Power 150       155 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DC   | Grid Voltage   | _   | - | _ | -290   | -300 volts   |   |
| DC Grid Current 290 290 mA Peak RF Grid Voltage* - 520 530 volts Driving Power 150 155 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DC   | Plate Current  | -   | - | - | 3.0    | 3.0 amps     | , |
| Peak RF Grid Voltage* - 520 530 volts<br>Driving Power 150 155 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC   | Screen Current | *   | - | - | 500    | 500 mA       |   |
| Driving Power 150 155 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC   | Grid Current   | -   | - | - | 290    | 290 mA       |   |
| Driving Power 150 155 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peal | k RF Grid Volt | age | * | - | 520    | 530 volts    |   |
| Plate Output Power 12,900 17,000 watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                |     | - | - | 150    | 155 watts    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plat | e Output Power | -   | - | - | 12,900 | 17,000 watts |   |

<sup>\*</sup>Approximate Values



# PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER

# MAXIMUM RATINGS DC PLATE VOLTAGE - - - - 5000 VOLTS DC SCREEN VOLTAGE - - - 1000 VOLTS DC PLATE CURRENT - - - 2.5 AMPS PLATE DISSIPATION\* - - - 13,500 WATTS SCREEN DISSIPATION - - - 250 WATTS

\* Corresponds to 20,000 watts at 100-percent sinewave modulation.

75 WATTS

\*\* Approximate values.

GRID DISSIPATION -

# TYPICAL OPERATION (Frequencies below 30 megacycles)

|      | Plate Voltage -   | -    | -   | - | - | 4000 | 5000 | volts |
|------|-------------------|------|-----|---|---|------|------|-------|
| DC   | Screen Voltage    | -    | -   | - | - | 500  | 500  | volts |
| Peal | k AF Screen Vol   | tage | е   |   |   |      |      |       |
| (F   | for 100%) modulat | tion | ) - | - | _ | 470  | 490  | volts |
| DC   | Grid Voltage -    | -    | -   | - | - | -320 | -340 | volts |
| DC   | Plate Current -   | -    | -   | - | - | 2.2  | 2.2  | amps  |
| DC   | Screen Current*   | *    | -   | - | _ | 335  | 330  | mA    |
| DC   | Grid Current**    | -    | -   | - | - | 160  | 150  | mA    |
| Peal | k RF Grid Voltag  | ge** | k   | _ | - | 490  | 510  | volts |
| Grid | Driving Power     | -    | -   | - | - | 78.5 | 76.5 | watts |
| Plat | e Dissipation -   | -    | -   | - | _ | 3050 | 3250 | watts |
| Plat | e Output Power    | -    | -   | - | - | 5750 | 7750 | watts |
|      |                   |      |     |   |   |      |      |       |

## RADIO-FREQUENCY LINEAR AMPLIFIER

Class AB<sub>1</sub>

MAXIMUM RATINGS (per tube)
DC PLATE VOLTAGE - - -

DC PLATE VOLTAGE - - - 7500 VOLTS
DC SCREEN VOLTAGE - - - 1500 VOLTS
DC PLATE CURRENT - - - 4.0 AMPS
PLATE DISSIPATION - - - 20,000 WATTS
SCREEN DISSIPATION - - - 75 WATTS

- \* Per Tube
- \*\*Approximate values.

# TYPICAL OPERATION (Peak-Envelope or Modulation-Crest Conditions.

DC Plate Voltage - - - - - 5000 7500 volts
DC Screen Voltage - - - - - 1500 1500 volts
DC Grid Voltage - - - - - - - - - - - - - - 250 - 260 volts
Max-Signal Plate Current

4.0 Max-Signal Plate Current - - -4.0 amps 2.0 amps Zero-Signal Plate Current - - -2.0 Max-Signal Screen Current\*- - -165 150 mΑ Peak RF Grid Voltage\* - - - -240 250 volts Driving Power - - - - - - 0 0 watts Plate Dissipation - - - - - 9700 12,500 watts Plate Output Power - - - - 10,300 17,500 watts Resonant Load Impedance - -590 1030 ohms

# AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB<sub>1</sub>

 MAXIMUM RATINGS

 DC PLATE VOLTAGE - - - - 7500 VOLTS

 DC SCREEN VOLTAGE - - - 1500 VOLTS

 QC PLATE CURRENT - - - 4.0 AMPS

 PLATE DISSIPATION - - - 20,000 WATTS

 SCREEN DISSIPATION - - - 75 WATTS

\* Approximate values

## TYPICAL OPERATION (Two Tubes)

DC Plate Voltage - - - - - 5000 7500 volts DC Screen Voltage - - - - - 1500 1500 volts DC Grid Voltage - - - - --250 -260 volts Max-Signal Plate Current - - - 8.0 8.0 amps Zero-Signal Plate Current - - -4.0 4.0 amps Max-Signal Screen Current\*\* - -330 300 mAPeak RF Driving Voltage\*\* - Driving Power - - - - -240 250 volts 0 0 watts Load Resistance, Plate-to-Plate 1180 2060 ohms Max-Signal Plate Dissipation\* - 970012,500 watts Max-Signal Plate Output Power 20,600 35,000 watts

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance is made for circuit losses of any kind. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.

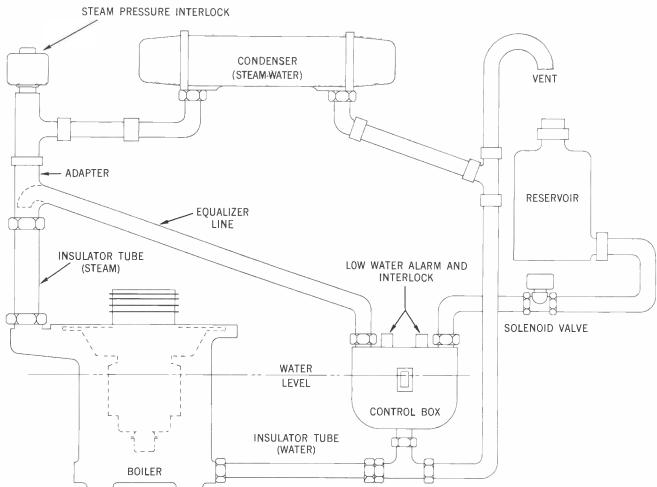


## **APPLICATION**

#### **MECHANICAL**

**MOUNTING** — The 4CV20,000A must be operated with its axis vertical, base up in an Eimac BR-200 boiler. Care must be exercised when installing to insure that the boiler is level, the water is at the proper level and that the flange of the tube makes a vapor tight seal against the rubber "O" ring and boiler. A typical vapor cooling system is shown below.

**SOCKET** — The Eimac SK-300A socket is available for use with the 4C V20,000A. Filament, control grid and screen grid connections are made to this socket.


COOLING — Cooling is accomplished by immersing the anode in the distilled water filled BR-200 boiler. The energy dissipated at the anode causes the water to boil at the surfaces of the anode, be converted into steam and be carried away to the condenser. The boiling action keeps the anode surfaces at approximately 100°C. In a properly designed boiler-tube system (such as the 4C V20,000A and BR-200), it is extremely unlikely that the anode surfaces will ever exceed 110°C - well below the 250°C maximum rating - at full dissipation ratings.

The water in the boiler must be maintained at a constant level as indicated by the mark on the boiler, just below the top of the fins on the anode cooler. This is accomplished automatically in the vapor cooling system shown. Condensate from the condenser is returned to the boiler to maintain this constant fluid level. Any losses or drops in liquid level are sensed by the control box, CB-202. A low water level in the control box activates the solenoid water valve, allowing makeup water from the reservoir to enter the boiler. When the proper level is reached, the control box deenergizes the solenoid, stopping the flow from the reservoir. A second switch in the control box is energized if the water level drops to a lower level because of an empty reservoir or a constriction in the line. This switch may be used to shut down the equipment or activate an alarm.

For reliable operation, it is important that the control box and boiler be mounted so that the level sensed by the control box is exactly the same as the level in the boiler.

Cooling of the tube base is accomplished by blowing  $25-50\ {\rm CFM}$  of air into the socket in the area of the filament seals.

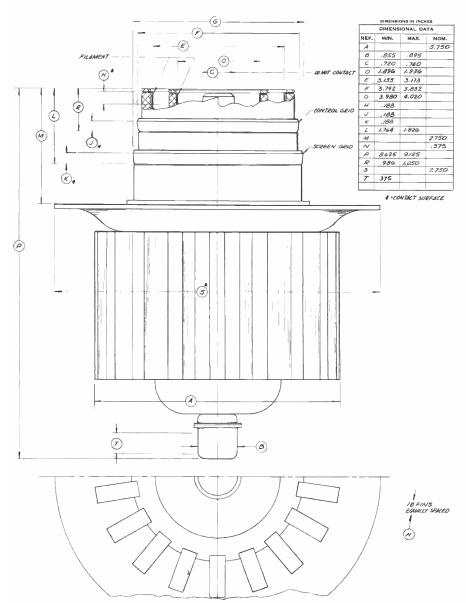
#### VAPOR COOLING SYSTEM

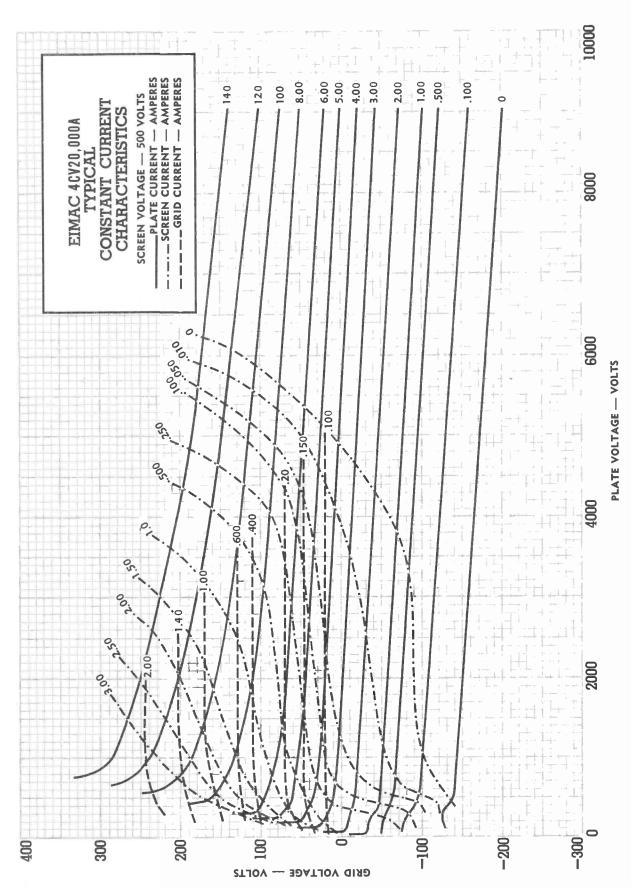


#### ELECTRICAL

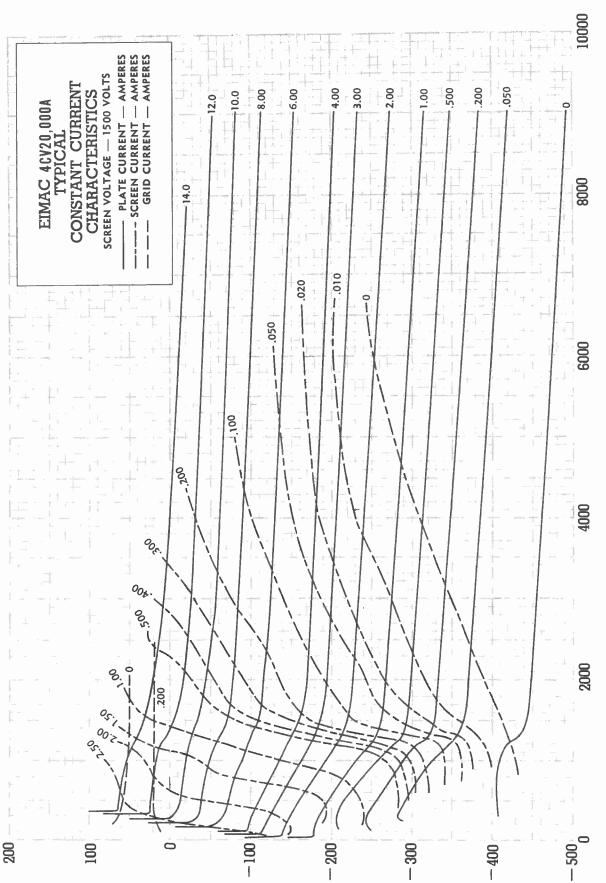
**FILAMENT OPERATION** — The rated filament voltage for the 4C V20,000A is 7.5 volts. Filament voltage, as measured at the socket, must be maintained at 7.5 volts plus or minus five percent to obtain maximum tube life. The use of a constant voltage filament transformer is recommended.

**CONTROL-GRID OPERATION** — The 4CV20,000A control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is the product of the dc grid current and the peak positive grid voltage swing.


**SCREEN-GRID OPERATION** — The power dissipated by the screen must not exceed 250 watts. Screen dissipation, in cases where no ac is applied to the screen is the product of screen voltage and screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power and screen voltage.


Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation in the event of these failures.

**PLATE DISSIPATION** — The plate dissipation rating of 20,000 watts attainable through vapor cooling provides a large margin of safety. It is unlikely that this rating will be exceeded, even during tuning periods.


When the 4CV20,000A is used as a plate-modulated rf amplifier, this rating is reduced to 13,500 watts with a reduced plate input rating of 5000 volts and 2.5 amps.

SPECIAL APPLICATIONS — If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing Department, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California for information and recommendations.









GRID VOLTAGE - VOLTS

PLATE VOLTAGE — VOLTS



## TECHNICAL DATA

4CV35,000A

VAPOR-COOLED RADIAL-BEAM POWER-TETRODE

The EIMAC 4CV35,000A is a ceramic-metal power tetrode intended for use as a Class-C amplifier in radio-frequency applications. It features a new type of internal mechanical structure which results in higher RF operating efficiency. Low RF losses in this mechanical structure permit operation of the 4CV35,000A at full ratings up to 110 megahertz. The 4CV35,000A is also recommended for Class-AB audio-frequency and radio-frequency linear power amplifier service. The vapor-cooled anode is rated at 35 kilowatts of plate dissipation, making the tube attractive for low efficiency applications.



## GENERAL CHARACTERISTICS

|                      | N C K  | AL     | CI    | 7 A   | KA   | CI   | EKI     | <b>3</b> I   | 1 6 3         | ł.  |           |       |       |           |           |                     |
|----------------------|--------|--------|-------|-------|------|------|---------|--------------|---------------|-----|-----------|-------|-------|-----------|-----------|---------------------|
| ELECTRICAL           | 1 or   |        |       |       |      | 7    | Urr     | <b>3</b> . 7 |               | 14- |           | •     |       |           |           |                     |
| Filament: Thoriate   | a 1un  | gsten  | 1     |       |      | _1   | Min.    |              | $\frac{m}{n}$ | Ma  | <u>x.</u> | 14    |       |           |           |                     |
| Voltage -            | -      | -      | -     | -     | -    |      |         | 6            | .3            |     | _         | volts |       |           |           |                     |
| Current -            | _      | -      | -     | -     | -    |      | 152     |              |               | 16  | 8         | amp   | S     |           |           |                     |
| Amplification 1      | Factor | (Gr    | id-So | creer | 1)   |      |         |              | _             |     |           |       |       |           |           |                     |
| (average)            | -      | -      | -     | -     | -    |      |         | 4            | .5            |     |           |       |       |           |           |                     |
| Direct Interelectrod | e Cap  | acita  | nces  | , Gro | ound | ed C | Catho   | de:          |               |     |           |       |       | Min.      | Max.      | _                   |
| Input                | -      | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     | 152       | 172       | $\mu \mu { m f}$    |
| Output               |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | _         | -     | -     | 22.0      | 27.0      | $\mu\mu { m f}$     |
| Feedback -           | -      | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     |           | 2.0       | $\mu\mu\mathrm{f}$  |
| Direct Interelectrod | e Capa | acitar | ices. | Gro   | unde | ed G | rid ar  | nd S         | creen         | 1:  |           |       |       |           |           |                     |
| Input                | -      | _      |       |       |      |      | _       |              |               | _   | _         | _     | _     | 63.0      | 78.0      | $\mu \mu { m f}$    |
| Output               |        | _      | _     | _     | _    | _    | _       | _            | -             | _   | _         | _     | _     | 23.0      | 28.0      | $\mu\mu \mathrm{f}$ |
| Feedback -           |        | _      | _     | -     | _    | _    | _       | _            | _             | _   | _         | _     | _     | 2010      | 0.3       | $\mu\mu f$          |
| 1 Codpach            |        |        |       |       |      |      |         |              |               |     |           |       |       |           | 0.0       | mp=                 |
|                      |        |        |       |       |      |      |         |              |               |     |           |       |       |           |           |                     |
| MECHANICAL           |        |        |       |       |      |      |         |              |               |     |           |       |       | 0         | 1         |                     |
| Base                 |        |        | -     | -     | -    | -    | -       | -            |               | -   | -         | -     | -     | Spe       | ecial, co | ncentric            |
| Maximum Seal Ter     | -      |        | -     | -     | -    | -    | -       |              | -             |     | -         | -     | -     |           |           | 250°C               |
| Maximum Anode F      | _      | Temp   | perat | ure   | (See | Out  | iline l | )rav         | ving)         | ) - | -         | -     | -     |           |           | 110°C               |
| Recommended Soc      | ket -  | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     |           |           | SK-310              |
| Boiler               |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     | - ]       | EIMAC,    | BR-200              |
| Operating Position   | -      | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | Axis  | s vei | rtical, l | oase up   | or down             |
| Maximum Dimensi      | ons:   |        |       |       |      |      |         |              |               |     |           |       |       |           |           |                     |
| Height -             |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     | -         |           | 4 inches            |
| Diameter             |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     | -         |           | 5 inches            |
| Base Cooling -       |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     | -         |           | rced Air            |
| Net Weight -         |        | -      | -     | -     | -    | -    | -       | -            | -             | -   | -         | -     | -     |           |           | pounds              |
| Shipping Weight (    | Appro  | xima   | te)   | -     | -    | -    | -       | ~            | -             | -   | -         | -     | -     | -         | - 35      | pounds              |

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

(Revised 5-15-66) © 1962, 1966 Varian

Printed in U.S.A.





| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions)  MAXIMUM RATINGS DC PLATE VOLTAGE 10,000 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 5.0 AMPS PLATE DISSIPATION 35,000 WATTS SCREEN DISSIPATION 450 WATTS GRID DISSIPATION 200 WATTS                                                               | TYPICAL OPERATION         DC Plate Voltage 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER  Class-C Telephony (Carrier conditions unless noted)  MAXIMUM RATINGS DC PLATE VOLTAGE 8000 VOLTS DC SCREEN VOLTAGE 1500 VOLTS DC PLATE CURRENT 4.0 AMPS PLATE DISSIPATION* 23,000 WATTS SCREEN DISSIPATION 450 WATTS GRID DISSIPATION 200 WATTS *Corresponds to 35,000 watts at 100 percent sine-wave modulation. | TYPICAL OPERATION  DC Plate Voltage 6000 8000 volts DC Screen Voltage 750 750 volts Peak AF Screen Voltage (For 100% modulation)740 710 volts DC Grid Voltage600 -640 volts DC Plate Current 3.75 3.65 amps DC Screen Current450 .430 mA DC Grid Current185 .180 mA Peak RF Grid Voltage - 800 840 volts Grid Driving Power 150 150 watts Plate Dissipation 5100 5800 watts Plate Output Power 17,400 23,500 watts                                                                                                                                                      |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class-AB1  MAXIMUM RATINGS (Per Tube)  DC PLATE VOLTAGE 10,000 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 6.0 AMPS PLATE DISSIPATION 35,000 WATTS SCREEN DISSIPATION 450 WATTS GRID DISSIPATION 200 WATTS *Per Tube **Approximate Values                                                                          | TYPICAL OPERATION (Two Tubes)         DC Plate Voltage 8000 10,000 volts         DC Screen Voltage 1500 1500 volts         DC Grid Voltage 290 —300 volts         Max-Signal Plate Current - 5.0 5.0 amps         Zero-Signal Plate Current* - 390 .340 mA         Zero-Signal Screen Current - 0 0 amps         Peak AF Driving Voltage* - 280 290 volts         Driving Power 0 watts         Load Resistance, Plate-to-Plate 1680 20,500 watts         Max-Signal Plate Dissipation* - 16,800 20,500 watts         Max-Signal Plate Output Power 50,000 66,000 watts |
| RADIO-FREQUENCY LINEAR AMPLIFIER Class-AB1  MAXIMUM RATINGS DC PLATE VOLTAGE 10,000 VOLTS                                                                                                                                                                                                                                                                          | TYPICAL OPERATION, Peak-Envelope or Modulation-Crest Conditions  DC Plate Voltage 8000 10,000 volts  DC Screen Voltage 1500 1500 volts  DC Grid Voltage290 —300 volts  Max-Signal Plate Current - 5.35 amps                                                                                                                                                                                                                                                                                                                                                             |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance is made for circuit losses of any kind. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.

2,000 VOLTS

35,000 WATTS

6.0 AMPS

450 WATTS

200 WATTS

Max-Signal Plate Current -Zero-Signal Plate Current

Max-Signal Screen Current\*

Peak RF Grid Voltage Driving Power - Plate Dissipation - Plate Output Power Resonant Load Impedance

5.35 2.5

.195

280

840

25,000

5.35 amps 2.5 amps

.170 mA 290 volts

33,000 watts

1100 ohms

16,800 20,500 watts

0 watts



DC SCREEN VOLTAGE

DC PLATE CURRENT -

PLATE DISSIPATION -

SCREEN DISSIPATION -

GRID DISSIPATION

\*Approximate Values

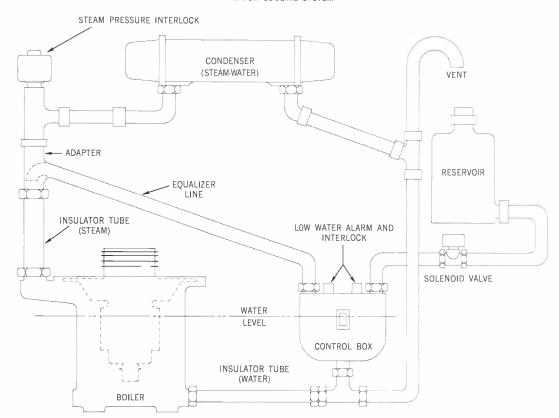
## APPLICATION

#### **MECHANICAL**

Mounting — The 4CV35,000A must be operated with its axis vertical, base up in an EIMAC BR-200 boiler. Care must be exercised when installing to insure that the boiler is level, the water is at the proper level and that the flange of the tube makes a vapor tight seal against the the rubber O-ring and boiler. A typical vapor cooling system is shown on the opposite page.

Socket — The EIMAC SK-310 socket is available for use with the 4CV35,000A. Filament, control grid and screen grid connections are made to this socket.

Cooling — Cooling is accomplished by immersing the anode in the distilled water filled BR-200 boiler. The energy dissipated at the anode causes the water to boil at the surfaces of the anode, be converted into steam and be carried away to the condenser. The boiling action keeps the anode surfaces at approximately 100°C. In a properly designed boiler-tube system (such as the 4CV35,000A and BR-200), it is extremely unlikely that the anode surfaces will ever exceed 110°C — well below the 250°C maximum rating — at full dissipation ratings.


The water in the boiler must be maintained

at a constant level. Just below the top of the fins on the anode cooler. This is accomplished automatically in the vapor cooling system shown. Condensate from the condenser is returned to the boiler to maintain this constant fluid level. Any losses or drops in liquid level are sensed by the control box CB-202. A low water level in the control box activates the solenoid water valve, allowing make-up water from the reservoir to enter the boiler. When the proper level is reached, the control box deenergizes the solenoid, stopping the flow from the reservoir. A second switch in the control box is energized if the water level drops to a lower level because of an empty reservoir or a constriction in the line. This switch may be used to shut down the equipment or activate an alarm.

For reliable operation, it is important that the control box and boiler be mounted so that the level sensed by the control box is exactly the same as the level in the boiler.

Air cooling of the tube base is required. 100 CFM minimum should be directed straight down toward the center of the SK-310 socket from a blower or duct, not more than  $5\frac{1}{2}$  inches from the socket.

VAPOR COOLING SYSTEM

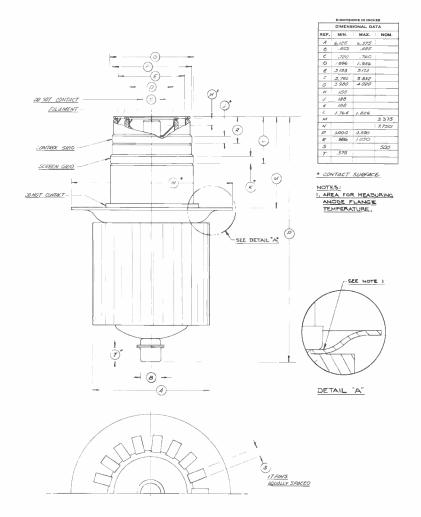


#### **ELECTRICAL**

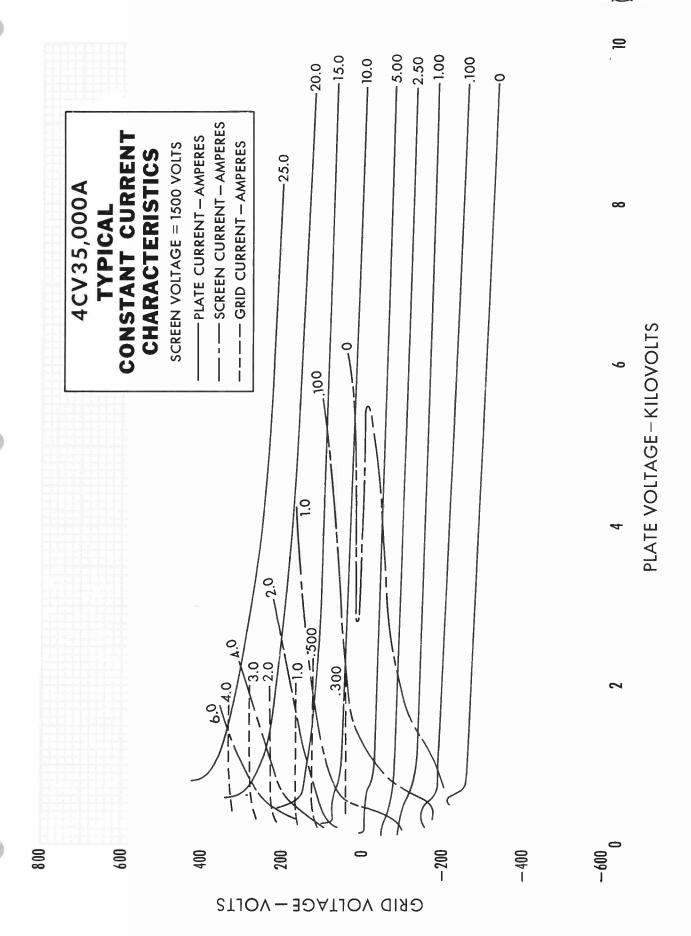
Filament Operation — The rated filament voltage for the 4CV35,000A is 6.3 volts. Filament voltage, as measured at the socket, must be maintained at 6.3 volts plus or minus five percent to obtain maximum tube life. The use of a constant voltage filament transformer is recommended.

Control-Grid Operation — The 4CV35,000A control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is the product of the dc grid current and the peak positive grid voltage swing.

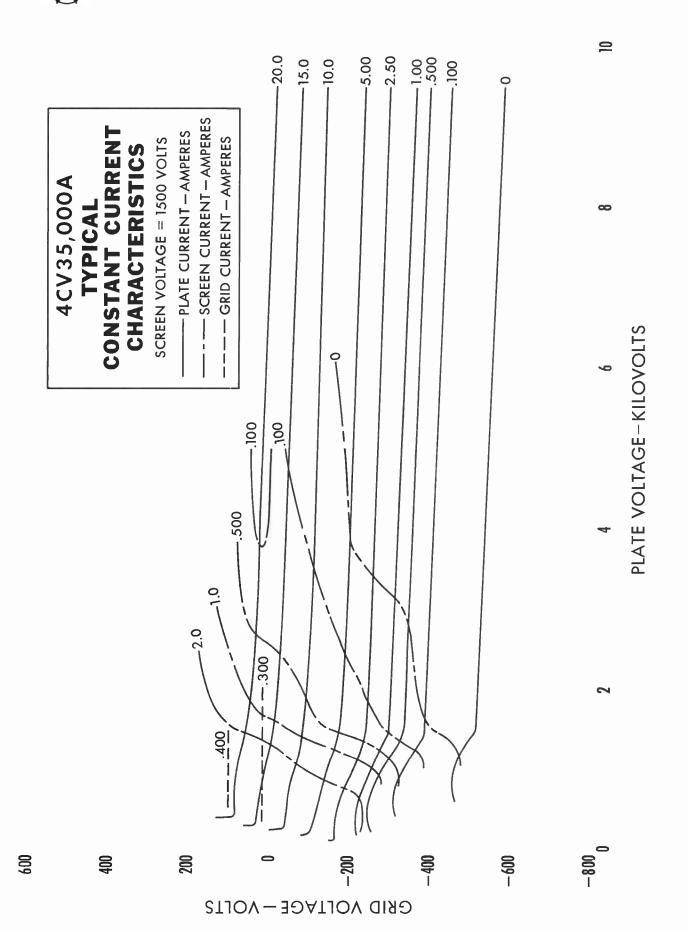
Screen-Grid Operation — The power dissipated by the screen must not exceed 450 watts. Screen dissipation, in cases where no ac is applied to the screen is the product of screen voltage and screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power and screen voltage.


Screen dissipation is likely to rise to excessive

values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation in the event of these failures.


Plate Dissipation — The plate dissipation rating of 35,000 watts attainable through vapor cooling provides a large margin of safety. It is unlikely that this rating will be exceeded, even during tuning periods.

When the 4CV35,000A is used as a plate-modulated rf amplifier, this rating is reduced to 23,000 watts with a reduced plate input rating of 8000 volts and 4.0 amps.


Special Applications — If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing Department, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California for information and recommendations.













ELECTRICAL

# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

4CV50,000E

VAPOR COOLED POWER TETRODE

The EIMAC 4CV50,000E is a ceramic/metal, vapor-cooled power tetrode intended for use at the 50 to 100 kilowatt output power level. This tube is characterized by low input and feedback capacitances and low internal lead inductances. A rugged mesh thoriated tungsten filament provides adequate emission over the long operating life. It is recommended for use as a class C rf amplifier or oscillator, a class AB rf linear amplifier or a class AB push-pull af amplifier or modulator. The 4CV50,000E is also useful as a plate and screen modulated class C rf amplifier. The vapor cooled anode is rated at 50 kilowatts dissipation.



Shown with

# GENERAL CHARACTERISTICS<sup>1</sup>

| EEECTRICAE                                                                                                                                                                                                                                                            | boiler  | removed |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Filament: Mesh Thoriated Tungsten Voltage                                                                                                                                                                                                                             |         | H       |
|                                                                                                                                                                                                                                                                       |         |         |
| Current, at 12.0 volts                                                                                                                                                                                                                                                |         |         |
| Amplification Factor (Average)                                                                                                                                                                                                                                        |         |         |
| Grid to Screen                                                                                                                                                                                                                                                        |         |         |
| Direct Interelectrode Capacitances (grounded cathode)                                                                                                                                                                                                                 |         |         |
| Input                                                                                                                                                                                                                                                                 | 310     | pF      |
| Output                                                                                                                                                                                                                                                                | 53      | pF      |
| Feedback                                                                                                                                                                                                                                                              | 0.7     | •       |
| Frequency of Maximum Rating:                                                                                                                                                                                                                                          | 0.7     | P1      |
|                                                                                                                                                                                                                                                                       | 110     | MITT    |
| CW                                                                                                                                                                                                                                                                    | 110     | MHz     |
| <ol> <li>Characteristics and operating values are based upon performance tests. These figures may change as the result of additional data or product refinement. EIMAC Division of Varian should be consulted this information for final equipment design.</li> </ol> |         |         |
| MECHANICAL                                                                                                                                                                                                                                                            |         |         |
| Maximum Overall Dimensions:                                                                                                                                                                                                                                           |         |         |
| Length (less boiler)                                                                                                                                                                                                                                                  | (292.1  | mm)     |
| Diameter                                                                                                                                                                                                                                                              |         |         |
|                                                                                                                                                                                                                                                                       |         |         |
| Net Weight (less boiler)                                                                                                                                                                                                                                              |         | -       |
| Operating Position Vertical,                                                                                                                                                                                                                                          | base    | down    |
| Maximum Operating Temperature:                                                                                                                                                                                                                                        |         |         |
| Ceramic/Metal Seals and terminals                                                                                                                                                                                                                                     | 2       | 50°C    |
| Cooling Vapor and                                                                                                                                                                                                                                                     |         | _       |
| -                                                                                                                                                                                                                                                                     |         |         |
| Base                                                                                                                                                                                                                                                                  | -       |         |
| Recommended Air System Socket EIMAC SK-                                                                                                                                                                                                                               |         |         |
| Recommended Boiler EIMAC BR                                                                                                                                                                                                                                           | ≀-700 S | eries   |
|                                                                                                                                                                                                                                                                       |         |         |



# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |
|                    |        |                |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB<sub>1</sub>, Grid Driven, Peak Envelope or Modulation Crest Conditions.

| Plate Voltage             | 10.0 | kVdc |
|---------------------------|------|------|
|                           |      |      |
| Grid Voltage 1            | -260 | Vdc  |
| Zero-Signal Plate Current | 3.4  | Adc  |
| Single Tone Plate Current | 9.14 | Adc  |
| Peak rf Grid Voltage 2    | 230  | V    |
| Resonant Load Impedance   | 600  | Ω    |
| Plate Dissipation         | 35   | kW   |
| Plate Output Power        | 57   | kW   |
|                           |      |      |

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM Telephony (Key-Down Conditions)

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |

### TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                     | 15.0 | kVdc     |
|-----------------------------------|------|----------|
| Screen Voltage 1.5                | 1.5  | kVdc     |
| Grid Voltage800                   | -800 | Vdc      |
| Plate Current 9.0                 | 11.5 | Adc      |
| Screen Current10.9                | 0.83 | Adc      |
| Grid Current <sup>1</sup> 125     | 160  | mAdd     |
| Peak rf Grid Voltage <sup>1</sup> | 925  | V        |
| Calculated Driving Power 1,       | 150  | M,       |
| Plate Dissipation 25              | 36   | kW       |
| Plate Output Power                | 137  | kW       |
| Resonant Load Impedance 820       | 615  | $\Omega$ |
|                                   |      |          |

#### 1. Approximate value

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

## ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE              | 15,000 | VOLTS |
|-------------------------------|--------|-------|
| DC SCREEN VOLTAGE             | 2,000  | VOLTS |
| DC PLATE CURRENT              |        |       |
| PLATE DISSIPATION 1           |        |       |
| SCREEN DISSIPATION 2          | 1,500  | WATTS |
| GRID DISSIPATION <sup>2</sup> | 400    | WATTS |

- Corresponds to 50,000 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

# TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage 9.0            | 14.0  | kVdc |
|------------------------------|-------|------|
| Screen Voltage 750           | •750  | Vdc  |
| Grid Voltage600              | -600  | Vdc  |
| Plate Current 7.41           | 9.25  | Adc  |
| Screen Current 3 0.69        | 1.15  | Adc  |
| Grid Current                 | 0.833 | Adc  |
| Peak af Screen Voltage 3     |       |      |
| (100% modulation) 750        | 750   | V    |
| Peak rf Grid Voltage 3 750   | 820   | V    |
| Calculated Driving Power 250 | 685   | W    |
| Plate Dissipation 12.5       | 21.5  | kW   |
| Plate Output Power 54.2      | 1 10  | kW   |
| •                            |       |      |

3. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB1, Grid Driven (Sinusoidal Wave)

#### ABSOLUTE MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |
|                    |        |                |

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage                    | 15.0 | kVdc |
|----------------------------------|------|------|
| Screen Voltage                   | 1.25 | kVdc |
| Grid Voltage 1/3                 | -280 | Vdc  |
| Zero-Signal Plate Current        | 5.0  | Adc  |
| Max. Signal Plate Current        | 18.6 | Adc  |
| Max. Signal Screen Current 1     | 0.6  | Adc  |
| Peak af Grid Voltage 2           | 275  | V    |
| Peak Driving Power               | 0    | W    |
| Max. Signal Plate Dissipation 2  | 41.7 | kW   |
| Plate Output Power               | 195  | kW   |
| Load Resistance (plate to plate) | 1870 | Ω    |
|                                  |      |      |

- 1. Approximate value.
- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                         | $\underline{\text{Min}}$ . | Max.    |
|-----------------------------------------------------------|----------------------------|---------|
| Heater: Current at 12.0 volts                             | 200                        | 230 A   |
| Interelectrode Capacitances (grounded cathode connection) |                            |         |
| Input                                                     | 290                        | 330 pF  |
| Output                                                    |                            |         |
| Feedback                                                  |                            |         |
| Interelectrode Capacitances (grounded grid connection)    |                            |         |
| Input                                                     | 130                        | 150 pF  |
| Output                                                    | 47.0                       | 57.0 pF |
| Feedback                                                  |                            | 0.5 pF  |

# **APPLICATION**

## **MECHANICAL**

MOUNTING - The 4CV50,000E must be operated with its axis vertical. The base of the tube must be down.

SOCKET - The EIMAC sockets type SK-2000 series are recommended for use with the 4CV-50.000E.

COOLING - Cooling is accomplished by immersing the anode in the distilled water filled EIMAC boiler. The energy dissipated at the anode causes the water to boil at the surfaces of the anode, to be converted into steam and be carried away to the condenser. The boiling action keeps the anode surfaces at approximately 100°C. In a properly designed boiler-tube system, it is extremely unlikely that the anode surfaces will ever exceed 110°C at full dissipation ratings.

The water in the boiler must be maintained at a constant level which may be accomplished automatically in an EIMAC vapor cooling system. Condensate from the condenser is returned to the boiler to maintain a constant coolant level. Any losses or drops in coolant level are sensed and makeup water enters the boiler from the reservoir. When the proper level is reached the flow from the reservoir is stopped automatically. A switch is energized when the reservoir water level drops to a low level. This switch may be used to shut down the equipment or activate an alarm.

Air cooling of the tube base is required whenever filament voltage is applied. A minimum air flow of 100 cfm should be ducted toward the center of the EIMAC SK-2000 socket from a blower or fan. Pressure drop through the SK-2000 socket is approximately 0.5 inches of water. The air system must be capable of supplying 100 cfm into this head.

The water used as a coolant in the vapor phase cooling system is continuously distilled. It is imperative that the resistivity of the water be maintained above 200,000 ohms/cm<sup>3</sup>. The entry of any contaminator to the system must be prevented. The use of any lead bearing alloys such as brass or soft/solder in fabrication of the cooling system must be avoided since steam leaches out the lead, contaminating the coolant.

Suitable materials for a cooling system are copper, hard solder, and polypropylene. Any contamination of the water causes leakage current to flow through the water supply lines to ground. When the resistivity is low this leakage current power will cause boiling in the lines, interfering with the proper operation of the system.

The user must be prepared to flush the system on initial startup to purge any contamination which may have entered the components during shipment or assembly.

## **ELECTRICAL**

FILAMENT OPERATION - Filament voltage should be measured at the socket with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 4CV-50,000E is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CV50,000E by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CV50,000E. At some point in filament voltage there will be noticeable reduction in plate current, or power output, or an increase in age slightly higher than the point at which performance appears to deteriorate. This point should be periodically checked to maintain proper operation.

GRID OPERATION - The 4CV50,000E control grid is rated at 400 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.

SCREEN OPERATION - The power dissipated by the screen grid must not exceed 1500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

The 4CV50,000E may exhibit reversed screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to

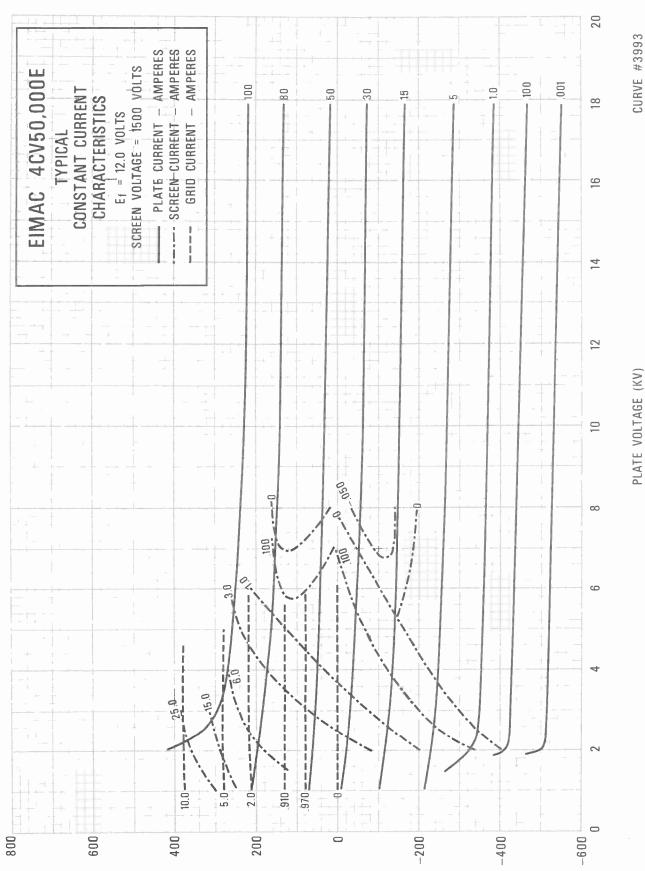
cathode, or an electron-tube regulator circuit may be employed in the screen supply. It is absolutely essential to use a bleeder if a series electrontube regulator is employed.

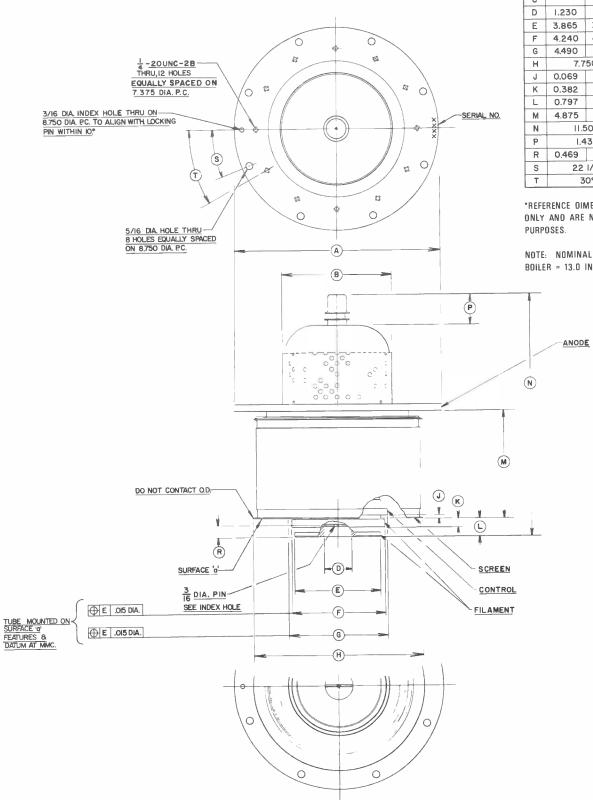
PLATE DISSIPATION - The plate dissipation of 50 kilowatts attainable through vapor cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CV50,000E is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 33,300 watts.

HIGH VOLTAGE - Normal operating voltages used with the 4CV50,000E are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all e-equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CV50,000E, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

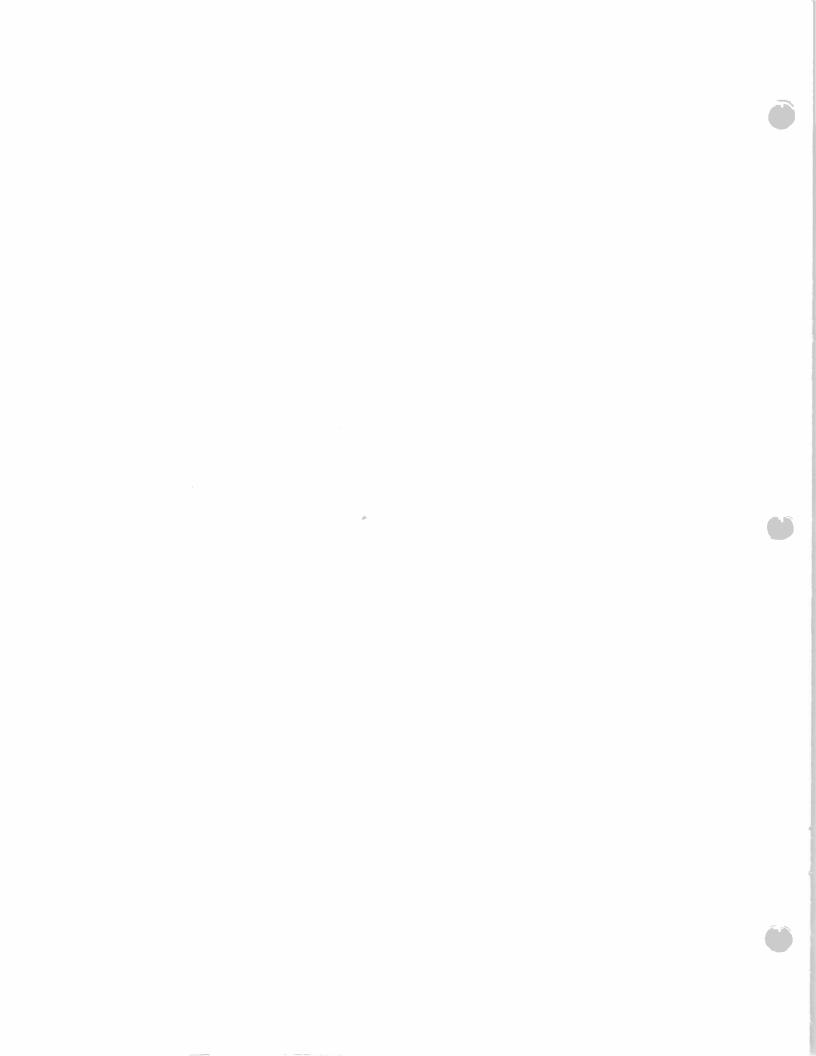

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 4CV-50,000E, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry—the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

FAULT PROTECTION - In addition to normal plate overcurrent interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltages.

In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc is recommended.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Application Engineering, Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.






|       | OIN   | MENSIONAL | DATA    |        |  |  |  |  |
|-------|-------|-----------|---------|--------|--|--|--|--|
| 0.164 | INC   | HES       | MILLIN  | METERS |  |  |  |  |
| DIM.  | MIN.  | MAX.      | MIN.    | MAX.   |  |  |  |  |
| Α     | 9.468 | 9.531     | 240.49  | 242.09 |  |  |  |  |
| В     | 5.000 | 5.250     | 127.00  | 133,35 |  |  |  |  |
| С     |       |           |         |        |  |  |  |  |
| D     | 1.230 | 1.270     | 31.24   | 32.26  |  |  |  |  |
| E     | 3.865 | 3.885     | 98.17   | 98.68  |  |  |  |  |
| F     | 4.240 | 4.260     | 107.70  | 108.20 |  |  |  |  |
| G     | 4.490 | 4.510     | 114.05  | 114.55 |  |  |  |  |
| Н     | 7.7   | 50 *      | 196.85* |        |  |  |  |  |
| J     | 0.069 | 0.149     | 1.75    | 3.78   |  |  |  |  |
| K     | 0.382 | 0.462     | 9.70    | 11.73  |  |  |  |  |
| L     | 0.797 | 0.922     | 20.24   | 23.42  |  |  |  |  |
| М     | 4.875 | 5.000     | 123,83  | 127.00 |  |  |  |  |
| N     | 11.5  | 500*      | 29      | 2.10   |  |  |  |  |
| Р     | 1.4   | 137°      | 36      | .50*   |  |  |  |  |
| R     | 0.469 | 0.531     | 11.91   | 13.49  |  |  |  |  |
| S     | 22    | 1/2°*     | 22      | 1/2° ° |  |  |  |  |
| Т     | 3     | O° "      | 3       | 0° °   |  |  |  |  |
|       |       |           |         |        |  |  |  |  |

\*REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR INSPECTION PURPOSES.

NOTE: NOMINAL OVERALL HEIGHT WITH BOILER = 13.0 INCHES (330.2 mm).





#### TECHNICAL DATA

VAPOR COOLED POWER TETRODE

The EIMAC 4CV50,000J is a ceramic/metal, vapor-cooled power tetrode intended for use at the 50 to 100 kilowatt output power level. This tube is characterized by low input and feedback capacitances and low internal lead inductances. A rugged mesh thoriated tungsten filament provides adequate emission over the long operating life. It is recommended for use as a class AB1 rf linear amplifier. The vapor cooled anode is rated at 50 kilowatts dissipation.



#### GENERAL CHARACTERISTICS 1

| F |         | $\sim$ T   | . DI | CA |   |
|---|---------|------------|------|----|---|
| _ | <b></b> | <b>~</b> I | L/ I | CH | _ |

| Filament: Mesh Thoriated Tungsten                                                                |     | -   |
|--------------------------------------------------------------------------------------------------|-----|-----|
| Voltage                                                                                          |     |     |
| Current, at 12.0 volts                                                                           |     |     |
| Amplification Factor (Average)                                                                   |     |     |
| Grid to Screen                                                                                   | 4.5 |     |
| Direct Interelectrode Capacitances (grounded cathode)                                            |     |     |
| Cin                                                                                              | 310 | pF  |
| Cout                                                                                             | 48  | pF  |
| Cgp                                                                                              | 1.0 | pF  |
| Frequency of Maximum Rating:                                                                     |     |     |
| CW                                                                                               | 110 | MHz |
| 1. Characteristics and operating values are based upon performance tests. These figures may char | •   |     |

Characteristics and operating values are based upon performance tests. These figures may change without notice
as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
this information for final equipment design.

#### MECHANICAL

| Overall | Dimensions:       |
|---------|-------------------|
| 0,01011 | 2 211101101101101 |

| Diameter 9.531 in; 241.0 mm                        |
|----------------------------------------------------|
| Net Weight (less boiler)                           |
| Operating Position                                 |
| Maximum Operating Temperature:                     |
| Ceramic/Metal Seals and terminals                  |
| Cooling                                            |
| Base Special                                       |
| Recommended Air System Socket EIMAC SK-2000 Series |
| Recommended Boiler EIMAC BR-710, 720               |

(Effective 7-15-71) © 1971 by Varian

Printed in U.S.A.

### RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |
|                    |        |                |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.
- The IMD products are referenced against one tone of a two-equal tone signal.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB<sub>1</sub>, Grid Driven Peak Envelope or Modulation Crest Conditions

|                                 | kVdc |
|---------------------------------|------|
| Screen Voltage 1.5              | kVdc |
| Grid Voltage 1250               | Vdc  |
|                                 | Adc  |
| Single-Tone Plate Current 9.8   | Adc  |
| Peak rf Grid Voltage ? 250      | V    |
| Resonant Load Impedance 413     | Ω    |
|                                 | kW   |
| Plate Output Power 45           | kW   |
| Intermod. Distortion Products 3 |      |
| 3rd Order46                     | dB   |
| 5th Order60                     | dB   |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias,
screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output
power when the tube is changed, even though there may be some variation in grid and screen current. The grid
and screen currents which result when the desired plate current is obtained are incidental and vary from tube
to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in
the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                         | Min. | Max.    |
|-----------------------------------------------------------|------|---------|
| Heater: Current at 12.0 volts                             | 200  | 230 A   |
| Interelectrode Capacitances (grounded cathode connection) |      |         |
| Cin                                                       |      | 330 pF  |
| Cout                                                      |      | 53.0 pF |
| Cgp                                                       |      | 1.5 pF  |
| Interelectrode Capacitances (grounded grid connection)    |      | •       |
| Cin                                                       | 113  | 137 pF  |
| Cout                                                      | 45.0 | 55.0 pF |
| Cgk                                                       |      | 0.5 pF  |

#### APPLICATION

#### MECHANICAL

MOUNTING - The 4CV50,000J must be operated with its axis vertical. The base of the tube must be down.

SOCKET - The EIMAC sockets type SK-2000 series are recommended for use with the 4CV-50,000J.

COOLING - Cooling is accomplished by immersing the anode in the distilled water filled EIMAC boiler. The energy dissipated at the anode causes the water to boil at the surfaces of the anode, to be converted into steam and be carried away to the condenser. The boiling action keeps the anode surfaces at approximately 100°C. In a properly designed boiler-tube system, it is ex-

tremely unlikely that the anode surfaces will ever exceed  $110^{\circ}C$  at full dissipation ratings.

The water in the boiler must be maintained at a constant level which may be accomplished automatically in an EIMAC vapor cooling system. Condensate from the condenser is returned to the boiler to maintain a constant coolant level. Any losses or drops in coolant level are sensed and makeup water enters the boiler from the reservoir. When the proper level is reached the flow from the reservoir is stopped automatically. A switch is energized when the reservoir water level drops to a low level. This switch may be used to shut down the equipment or activate an alarm.

Air cooling of the tube base is required whenever filament voltage is applied. A minimum air flow of 100 cfm should be ducted toward the center of the EIMAC SK-2000 socket from a blower or fan. Pressure drop through the SK-2000 socket is approximately 0.5 inches of water. The air system must be capable of supplying 100 cfm into this head.

The water used as a coolant in the vapor phase cooling system is continuously distilled. It is imperative that the resistivity of the water be maintained above 200,000 ohms/cm. The entry of any contaminator to the system must be prevented. The use of any lead bearing alloys such as brass or soft/solder in fabrication of the cooling system must be avoided since steam leaches out the lead, contaminating the coolant.

Suitable materials for a cooling system are copper, hard solder, and polypropylene. Any contamination of the water causes leakage current to flow through the water supply lines to ground. When the resistivity is low this leakage current power will cause boiling in the lines, interfering with the proper operation of the system.

The user must be prepared to flush the system on initial startup to purge any contamination which may have entered the components during shipment or assembly.

#### ELECTRICAL

FILAMENT OPERATION - Filament voltage should be measured at the socket with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 4CV-50,000J is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CV50,000J by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CV50,000J. At some point in filament voltage there will be noticeable reduction in plate current, or power output, or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate. This point should be periodically checked to maintain proper operation.

GRID OPERATION - The 4CV50,000J control grid is rated at 400 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.

SCREEN OPERATION - The power dissipated by the screen grid must not exceed 1500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

The 4CV50,000J may exhibit reversed screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, or an electron-tube regulator circuit may be employed in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed.

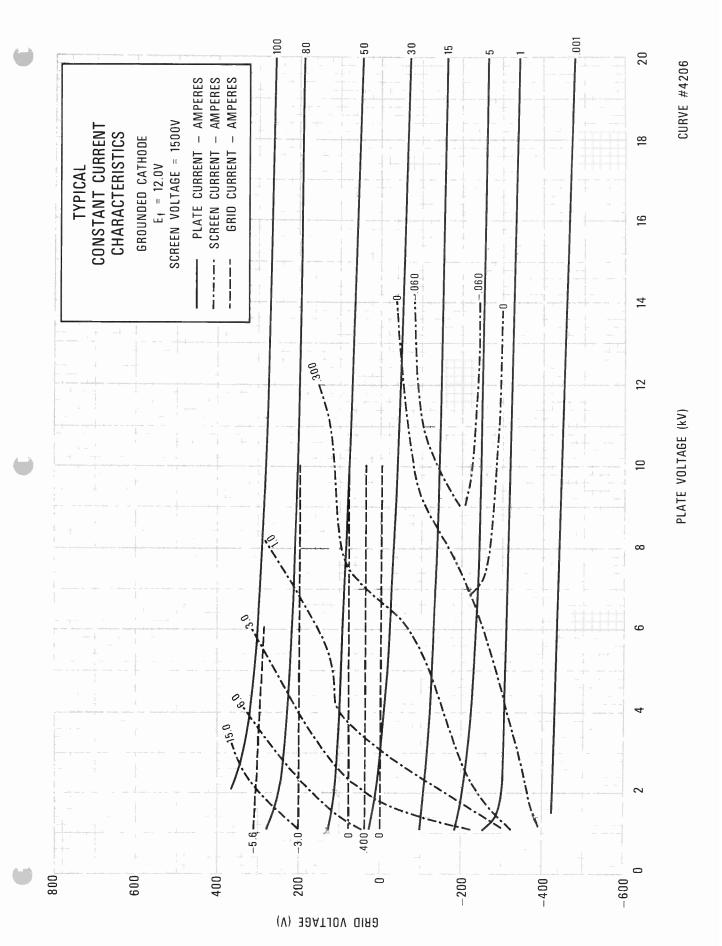
PLATE DISSIPATION - The plate dissipation of 50 kilowatts attainable through vapor cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CV50,000J is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 33,300 watts.

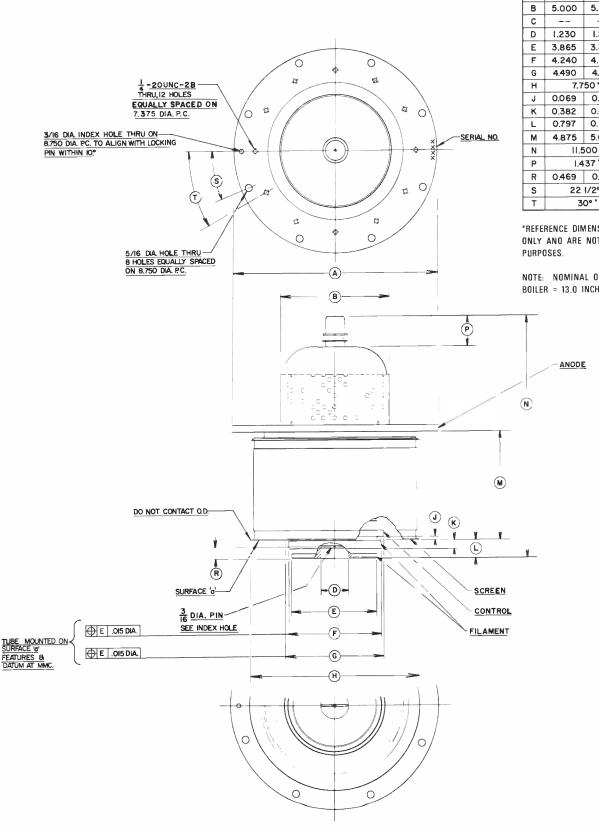
HIGH VOLTAGE - Normal operating voltages used with the 4CV50,000J are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

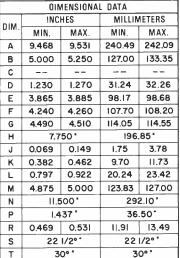
X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CV50,000J, operating at its rated voltages and currents, is a potential

X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.


RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 4CV-50,000J, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.


FAULT PROTECTION - In addition to normal plate overcurrent interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltages.

In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc is recommended.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Application Engineering, Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.







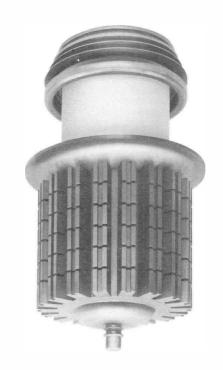
\*REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR INSPECTION PURPOSES.

NOTE: NOMINAL OVERALL HEIGHT WITH BOILER = 13.0 INCHES (330.2 mm).



# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

8351 4CV100,000C


VAPOR COOLED POWER TETRODE

The EIMAC 8351/4CV100,000C is a ceramic-metal, vapor-cooled power tetrode intended for use at the 100 to 200 kilowatt output power level. It is recommended for use as a Class-C rf amplifier or oscillator, a Class-AB, rf linear amplifier or a Class-AB, push-pull af amplifier or modulator. The 8351/4CV100,000C is also useful as a plate and screen modulated Class-C rf amplifier.

The vapor-cooled anode is rated at 100 kilowatts of plate dissipation when mounted in the EIMAC BR-300 series boiler.

#### GENERAL CHARACTERISTICS

| Filament: Th  | oriated | lΤι  | ıng  | ste  | n   |     |      |     |      |     |   |   |   |   |   |    |    |     |      |
|---------------|---------|------|------|------|-----|-----|------|-----|------|-----|---|---|---|---|---|----|----|-----|------|
| Volta         |         |      | _    |      |     | -   | -    | -   | -    | -   | - | - | _ | - | - | -  | -  | 10  | V    |
| Curre         | nt -    |      | -    | -    | -   | -   | -    | -   | -    | -   | - | - | - | - | - | -  | -  | 300 | A    |
| Amplification | Facto   | r (C | Grid | l-Sc | ree | n)  | (ave | era | ge)  | -   | - | - | - | - | - | -  | -  |     | 4.5  |
| Interelectrod | e Capa  | cita | ince | es,  | Gro | oun | ded  | Ca  | atho | ode |   |   |   |   |   | Mi | n. | Max |      |
| Input         |         | -    | -    | -    | -   | -   | -    | -   | -    | -   | - | - | - | - |   | 42 | 20 | 500 | рF   |
|               | ıt      |      |      |      |     |     |      |     |      |     |   |   |   |   |   | 4  | 16 | 56  | pF   |
| Feed          | back -  | -    | -    | ***  | -   | -   | -    | -   | -    | -   | - | - | - | - |   | 1  | .5 | 3.2 | pF   |
| Interelectrod | e Capa  | cita | nce  | es,  | Gro | oun | ded  | Gı  | id   |     |   |   |   |   |   |    |    |     |      |
| Input         |         | -    | -    | -    | -   | -   | -    | -   | -    | -   | - | - | - | - |   | 17 | 70 | 210 | рF   |
| Outpu         | ıt      | -    | -    | -    | -   | -   | -    | -   | -    | -   | - | - | - | - |   | 4  | 48 | 58  | рF   |
| Food          | 001     |      |      |      |     |     |      |     |      |     |   |   |   |   |   |    |    | 0.6 | - 17 |



#### MECHANICAL

Frequency for Maximum Ratings - -

ELECTRICAL

| Base                          |       | - | <br>- | - | - | - | - | - | - | - | - | - | Special, graduated rings       |
|-------------------------------|-------|---|-------|---|---|---|---|---|---|---|---|---|--------------------------------|
|                               |       |   |       |   |   |   |   |   |   |   |   |   | 250°C                          |
| Maximum Anode Flange Tempera  | ature | - | <br>- | - | - | - | - | - | - | - | - | - | 130°C                          |
| Recommended Socket            |       | - | <br>- | - | - | - | - | - | - | - | - | - | EIMAC SK-1500 Series           |
| Recommended Boiler            |       | - | <br>- | - | - | - | - | - | - | - | - | - | EIMAC BR-300 Series            |
| Operating Position            |       | - | <br>- | - | - | - | - | - | - | - | - | - | Vertical, base up              |
| Maximum Dimensions:           |       |   |       |   |   |   |   |   |   |   |   |   |                                |
| Height                        |       | - | <br>- | - | - | - | - | - | - | - | - | - | 17.0 in                        |
| Diameter                      |       | - | <br>- | - | - | - | - | - | - | - | - | - | 10.0 in                        |
| Cooling                       |       | - | <br>- | - | - | - | - | - | - | - | - | - | Liquid to vapor and forced air |
| Net Weight                    |       | - | <br>- | - | - | - | - | - | - | - | - | - | 95 lbs                         |
| Shipping Weight (approximate) |       | - | <br>- | - | - | - | - | - | - | - | - | - | 150 lbs                        |

#### RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions)

| MAXIMUM RATINGS    |   |   |   |         |       |
|--------------------|---|---|---|---------|-------|
| DC PLATE VOLTAGE   | - | - | _ | 20,000  | VOLTS |
| DC SCREEN VOLTAGE  | - | _ | - | 2500    | VOLTS |
| DC PLATE CURRENT   | - | - | - | 15.0    | AMPS  |
| PLATE DISSIPATION  | - | - | - | 100,000 | WATTS |
| SCREEN DISSIPATION | - | - | - | 1750    | WATTS |
| GRID DISSIPATION - | - | - | - | 500     | WATTS |

TYPICAL OPERATION (Frequencies holow 20 magasyoles

30 MHz

| TYPICAL OPERATION (    | (Fre | equ | ien | cres | s b | elo | W | 30 me | gacycle | (5)      |
|------------------------|------|-----|-----|------|-----|-----|---|-------|---------|----------|
| DC Plate Voltage       | -    | _   | _   | _    | -   | _   | - | 15    | 17.5    | kV       |
| DC Screen Voltage -    | -    | -   | -   | -    | -   | -   | - | 1.5   | 1.5     | kV       |
| DC Grid Voltage        | -    | -   | -   | -    | -   | -   | - | 1020  | -1050   | V        |
| DC Plate Current       | -    | -   | -   | -    | -   | -   | - | 11.8  | 11.8    | Α        |
| DC Screen Current -    |      | -   | -   | -    | -   | -   | - | 1.0   | 1.0     | Α        |
| DC Grid Current        | -    | -   | -   | -    | -   | -   | - | 100   | 100     | mΑ       |
| Peak RF Grid Voltage - | -    | -   | -   | -    | -   | -   | - | 1220  | 1250    | V        |
| Driving Power*         | -    | -   | -   | -    | -   | -   | - | 120   | 125     | W        |
| Plate Dissipation      | -    | -   | -   | -    | -   | -   | - | 38    | 38.5    | kW       |
| Plate Output Power -   | -    | -   | -   | -    | -   | -   | - | 139   | 168     | kW       |
| Resonant Load Impeda   | nc   | е   | -   | -    | -   | -   | - | 600   | 710     | $\Omega$ |
|                        |      |     |     |      |     |     |   |       |         |          |





#### PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER-CATHODE DRIVEN

| PUWER AMPLIFIER-GAINUUE DRIVEN                                                                                                                                                                                                                                                                                                                                                                                                                                       | TYPICAL OPERATION (Frequencies below 30 megacycles)                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Class-C Telephony (Carrier conditions except where noted)  MAXIMUM RATINGS  DC PLATE VOLTAGE 17,500 VOLTS  DC SCREEN VOLTAGE 2000 VOLTS  DC PLATE CURRENT 15.0 AMPS  PLATE DISSIPATION* 66,500 WATTS  SCREEN DISSIPATION* 1750 WATTS  GRID DISSIPATION* 500 WATTS  * Corresponds to 100,000 watts at 100 per cent sine wave modulation  ** Approximate value  † Calculated low frequency drive power  ‡ Average, with or without modulation                          | DC Plate Voltage                                                                                                                |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR  Class-AB <sub>1</sub> MAXIMUM RATINGS  DC PLATE VOLTAGE 20,000 VOLTS  DC SCREEN VOLTAGE 2500 VOLTS  DC PLATE CURRENT 15.0 AMPS  PLATE DISSIPATION 100,000 WATTS  SCREEN DISSIPATION 1750 WATTS  GRID DISSIPATION 500 WATTS  *Per Tube  **Approximate value                                                                                                                                                                   | TYPICAL OPERATION (Two Tubes)  DC Plate Voltage 15                                                                              |
| PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER-GRID DRIVEN  Class-C Telephony (Carrier conditions except where noted)  MAXIMUM RATINGS  DC PLATE VOLTAGE 17,500 VOLTS  DC SCREEN VOLTAGE 2000 VOLTS  DC PLATE CURRENT 15.0 AMPS  PLATE DISSIPATION 66,500 WATTS  SCREEN DISSIPATION 1750 WATTS  GRID DISSIPATION 500 WATTS  *Voltages given are referenced to ground  ‡Average, with or without modulation  RADIO-FREQUENCY LINEAR AMPLIFIER  Class-AB <sub>1</sub> | TYPICAL OPERATION (Frequencies below 30 megacycles)  DC Plate Voltage* 12 15 kV  DC Screen Voltage* 560 900 V  DC Grid Voltage* |
| V1435-AU1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DC Plate Voltage 15 18 kV DC Screen Voltage 1.5 1.5 kV                                                                          |

MAXIMUM RATINGS

DC PLATE VOLTAGE - -

PLATE DISSIPATION - -

SCREEN DISSIPATION -

GRID DISSIPATION - -

\*Approximate value

DC SCREEN VOLTAGE - - -

DC PLATE CURRENT - - -

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.

VOLTS

VOLTS

AMPS

WATTS

WATTS

WATTS

- 20,000

100,000

2500

15.0

1750

500

DC Grid Voltage - - - - -

Zero-Signal Plate Current - -

Max-Signal Screen Current\* - -

Peak RF Grid Voltage - - -

Plate Output Power - - - -

Plate Dissipation - - - -

Max-Signal Plate Current - - - -

Driving Power - - - - - - -

Resonant Load Impedance - - - -

-360

3.0

350

0

-380

3.0 Α

380

0 W

kW

kW

9.4 10.0

0.345 0.350

47.3 56.8

93.7 123.2

900 1040 Ω



# APPLICATION MECHANICAL

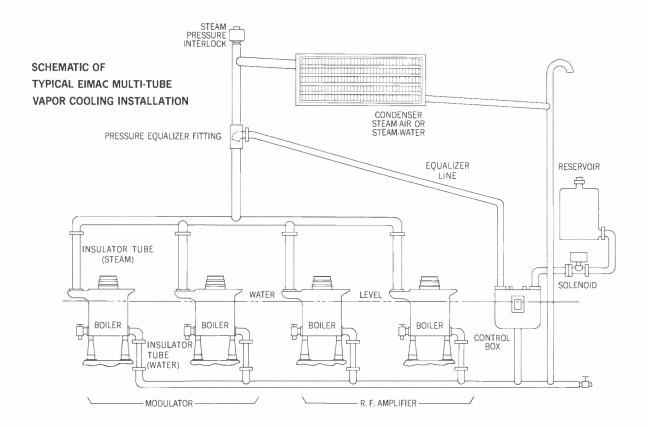
Mounting: The 4CV100,000C must be mounted vertically, anode down, in an EIMAC BR-300 series boiler. Care must be exercised to insure that the axis of the tube/boiler combination is vertical and that water in the boiler is at the level indicated. The anode flange on the tube must seat securely against the rubber "O" ring, forming a vapor-tight seal between tube and boiler.

**Socket:** The EIMAC SK-1500 series socket is available for use with the 4CV100,000C. Filament, control grid and screen grid connections are made to this socket. Spring finger contacts on the socket are used to make connections to the concentric rings on the tube base.

Cooling: Cooling is accomplished by immersing the anode of the 4CV100,000C in a "Boiler" filled with distilled water. Energy dissipated by the anode causes the water to boil at the anode surfaces, be converted into steam and be carried away to an external condenser. The condensate is then returned to the boiler, completing the cycle.

This boiling action maintains the anode surfaces at a fairly constant temperature near 100°C. The vapor-cooled tube has good overload capabilities;

excess dissipation for moderate periods only causes more water to boil.


The system schematic drawing shown below outlines a vapor-cooling installation. A control box (EIMAC CB-202) is used to sense water level, to signal for make-up water and to shut down the system in case of low water level. In order to perform its function, the control box must be mounted so that its water level mark is at the same elevation as the water level mark on the boiler.

Since the tube anode and boiler are usually at high potential to ground, water and steam connections to the boiler are made through insulating tubing.

A pressure equalizing line is shown between the steam side of the system and the top of the control box. Its function is to provide the same pressure in the control box as in the boiler.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than 250°C. For most applications, 1 to 2 C.F.M. of air directed through the center of the socket is sufficient for this purpose.



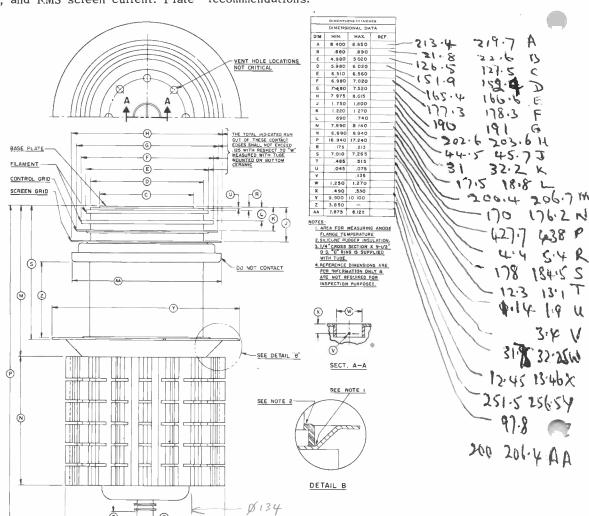


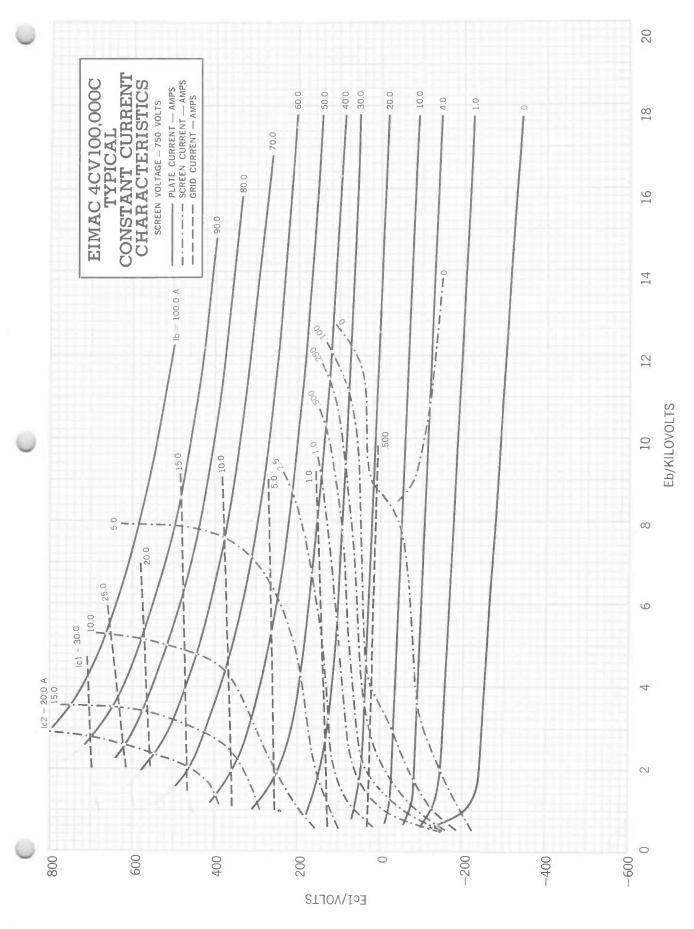
#### **ELECTRICAL**

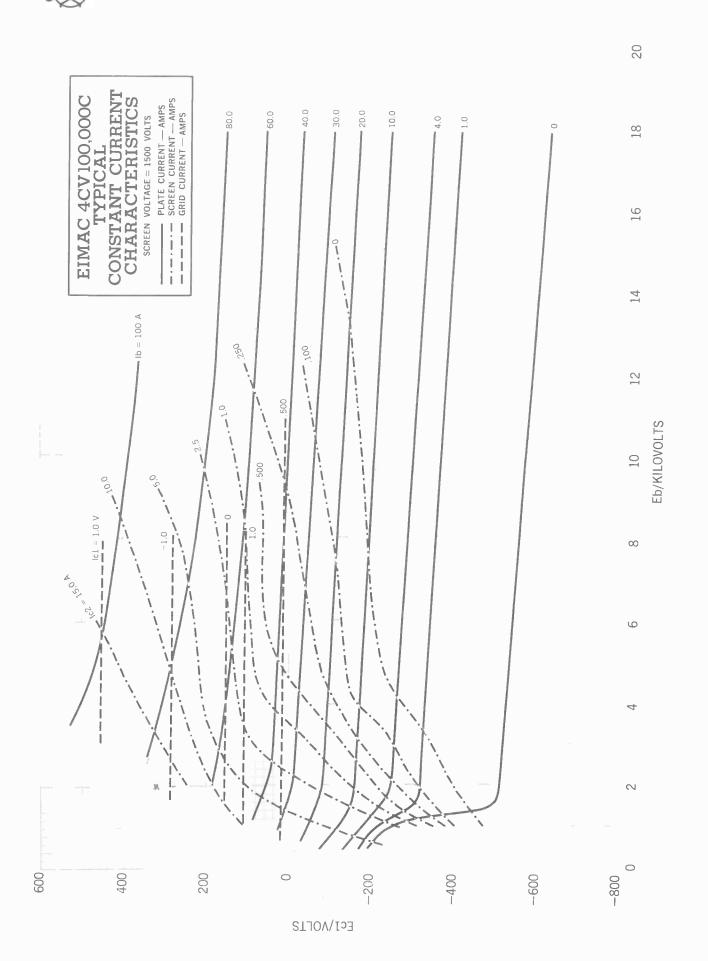
Filament The rated filament voltage for the 4CV100,000C is 10.0 volts. Filament voltage, as measured at the socket, should be maintained at 10 volts plus or minus five percent to obtain maximum life and consistent performance.

Filament starting current must be limited to a maximum of 900 amperes.

Voltage between filament and the base plates of either tube, or SK-1500 socket, must not exceed 100 volts.


**Control-Grid Óperation** The 4CV100,000C control grid is rated at 500 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.


Screen Dissipation The power dissipated by the screen grid must not exceed 1750 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is dependent on RMS screen voltage, and RMS screen current. Plate


voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

**Plate Dissipation** The plate dissipation of 100 kilowatts attainable through vapor cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CV100,000C is used as a platemodulated rf amplifier, plate dissipation under carrier conditions is limited to 66,500 watts.

**Special Application** Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.



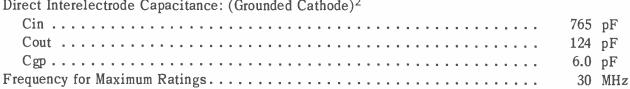




#### TECHNICAL DATA



VAPOR COOLED POWER TETRODE


The EIMAC 4CV250,000A is a ceramic/metal, vapor-cooled power tetrode intended for use at the 250 to 500 kilowatt output power level. It is recommended for use as a Class C rf amplifier or oscillator, a Class AB rf linear amplifier or a Class AB push-pull af amplifier or modulator. The 4CV250,000A is also useful as a plate and screen modulated Class C rf amplifier.

The vapor cooled anode is rated at 250 kilowatts maximum dissipation when used with the EIMAC Y-585 boiler.

#### GENERAL CHARACTERISTICS<sup>1</sup>

#### **ELECTRICAL**

| Filament: Thoriated Tungsten                                   |            |   |
|----------------------------------------------------------------|------------|---|
| Voltage                                                        | 12.0 ± 0.6 | V |
| Current (at 12.0 volts)                                        |            |   |
| Amplification Factor (Grid-Screen)(Avg.)                       | 4.5        |   |
| Direct Internal actuada Connector and (Connector de de Cathada | \2         |   |



- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured without any special shielded fixture.

#### MECHANICAL

| Base Special                   |
|--------------------------------|
| Maximum Seal Temperature       |
| Recommended Boiler EIMAC Y-585 |
| Operating Position             |
| Maximum Dimensions:            |
| Height                         |
| Diameter 15.062 in; 38.26 cm   |
| Cooling Vapor and water        |
| Net Weight 180 lb.; 82 kg      |
| Shipping Weight (approximate)  |

(Revised 3-1-72)



Printed in U.S.A.

| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR                                                                                                                                                                                                                           | TYPICAL OPERATION (Frequencies below 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class C Telegraphy or FM Telephony (Key-down Condition)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS | DC Plate Voltage       16       19 kV         DC Screen Voltage       800       800 V         DC Grid Voltage       -800 -800 V         DC Plate Current       23.5 32.5 A         DC Screen Current       2.4 3.5 A         DC Grid Current       1.15 2.5 A         Driving Power 1       2.24 3.0 kW         Plate Output Power       275 460 kW         Plate Dissipation       100 155 kW         RF Load Impedance       300 275 Ω         N       30/2 15 √2         1. Calculated Driving Power neglects input conductance and rf circuit loss.                                                                    |
| PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                  | TYPICAL OPERATION (Frequencies below 30 MHz)         DC Plate Voltage       15 kV         DC Screen Voltage       800 V         Peak af Screen Voltage(for 100% Mod.)2       800 V         DC Grid Voltage       -800 V         DC Plate Current       22.8 A         DC Screen Current       4.1 A         DC Grid Current       1.46 A         Peak rf Grid Voltage       1110 v         Grid Driving Power 3       1630 W         Plate Output Power       280 kW         RF Load Impedance       323 Ω         Plate Dissipation       63 kW         2       6670                                                      |
| <ol> <li>Corresponds to 250,000 watts at 100 per cent sine wave modulation.</li> <li>Approximate Value.</li> </ol>                                                                                                                                                      | 3. Calculated Driving Power neglects input conductance and rf circuit loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class AB                                                                                                                                                                                                                         | TYPICAL OPERATION (Two Tubes Class AB <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS (Per Tube)  DC PLATE VOLTAGE                                                                                                                                                                                                                   | DC Plate Voltage       15       20 kV         DC Screen Voltage       1.8       1.8 kV         DC Grid Voltage       -500       -500 V         Max-Signal Plate Current       40       46 A         Zero Signal Plate Current <sup>2</sup> 0.2       0.2 A         Max-Signal Screen Current <sup>1</sup> 1.1       1.2 A         Peak af Driving Voltage 2       500       500 v         Driving Power       0       0 W         Load Impedance (plate to plate)       650       870 Ω         Plate Dissipation       160       260 kW         Max-Signal Output Power       440       660 kW         7       7       17 |
| RADIO-FREQUENCY LINEAR AMPLIFIER Class AB                                                                                                                                                                                                                               | TYPICAL OPERATION Class $AB_1$ Peak-Envelope or Modulation Crest Conditions (Frequencies below 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DC PLATE VOLTAGE                                                                                                                                                                                                                                                        | DC Plate Voltage       15       20 kV         DC Screen Voltage       1.8       1.8 kV         DC Grid Voltage       -500       -500 V         Plate Current       20       23 A         Zero Signal Plate Current       0.2       0.2 A         Maximum Signal Screen Current 1       1.1       1.2 A         Peak rf Grid Voltage       500       500 v         Driving Power 2       0       0 W         Plate Dissipation       80       130 kW         Resonant Load Impedance       325       435 Ω         Plate Output Power       220       330 kW                                                                |

#### PULSE MODULATOR OR REGULATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE ..... 40,000 VOLTS

| DC SCREEN VOLTAGE 2,500   | <b>VOLTS</b> |
|---------------------------|--------------|
| PEAK CATHODE CURRENT 350  | AMPERES      |
| PLATE DISSIPATION 250,000 | WATTS        |
| SCREEN DISSIPATION 3,500  | WATTS        |
| GRID DISSIPATION 1,500    | WATTS        |

#### APPLICATION

#### MECHANICAL

MOUNTING - The 4CV250,000A must be mounted vertically, anode up. The tube may be supported by the anode flange or the screen flange.

Care must be exercised to insure that the axis of the tube/boiler combination is vertical and that water in the boiler is at the level indicated. The anode flange on the tube must seat securely against the rubber "O" ring, forming a vapor-tight seal between tube and boiler.

COOLING - Cooling is accomplished by immersing the anode of the 4CV250,000A in a "Boiler" filled with distilled water. Energy dissipated by the anode causes the water to boil at the anode surfaces, be converted into steam and be carried away to an external condenser. The condensate is then returned to the boiler, completing the cycle.

This boiling action maintains the anode surfaces at a fairly constant temperature near 100°C. The vapor-cooled tube has good overload capabilities; excess dissipation for moderate periods only causes more water to boil.

Since the tube anode and boiler are usually at high potential to ground, water and steam connections to the boiler are made through insulated tubing.

The filament supports of the 4CV250,000A are water cooled. Approximately .5 GPM should circulate through each of the filament connectors with a pressure drop of 20 PSI. Filament connector assemblies, SK-1710, provide electrical and water connections. Two sets of SK-1710 are required.

It is recommended that the water cooled control grid connector, SK-1712, be used. Water flow of approximately .5 GPM should circulate through the grid connector. The pressure drop across the grid connector is low. A convenient way to make water connection is to series connect the grid cooling water with the outer filament cooling water path.

The outer filament water path has a lower pressure drop than the inner filament water path making this connection practical.

#### **ELECTRICAL**

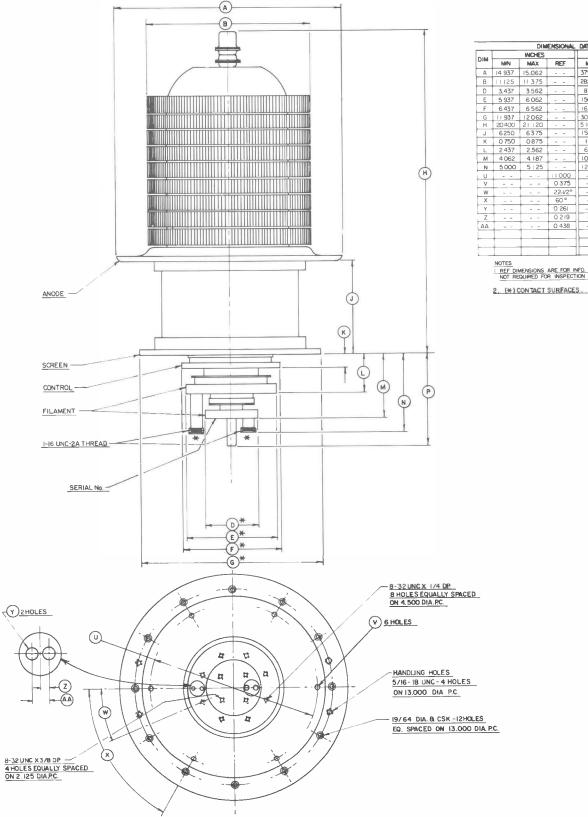
FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CV-250,000A is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CV250,000A by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appeared to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked.

Filament starting current must be limited to a maximum of 1800 amperes.

CONTROL GRID OPERATION - The 4CV-250,000A control grid is rated at 1,500 watts of dissipation and protective measures should be included in circuitry to insure that this rating is not exceeded. Grid dissipation is the approximate product of dc grid current and peak positive grid voltage.

SCREEN DISSIPATION - The power applied to the screen grid must not exceed 3,500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is the product of RMS screen current and RMS screen voltage.

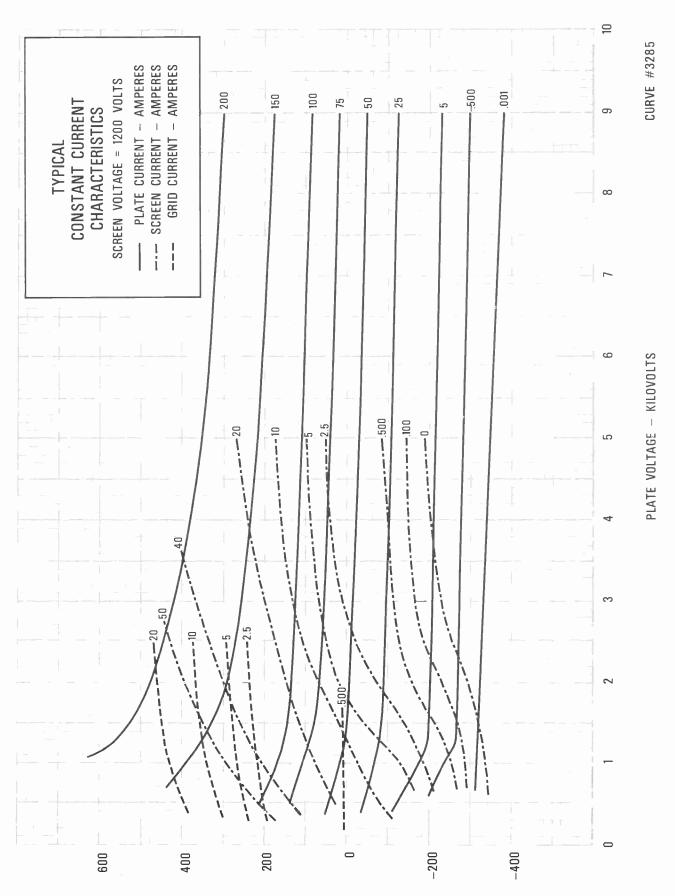
PLATE DISSIPATION - The plate dissipation of 250 kilowatts attainable through vapor cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CV250,000A is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 167,000 watts.


X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CV250,000A, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the Xray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equip-

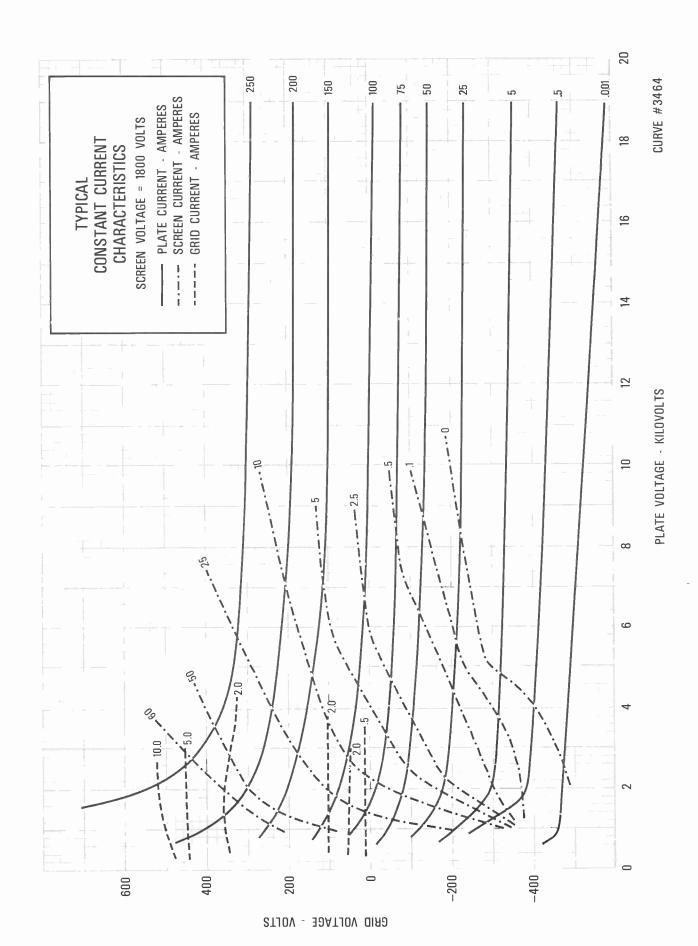
Operation of high-voltage equipment with inter-

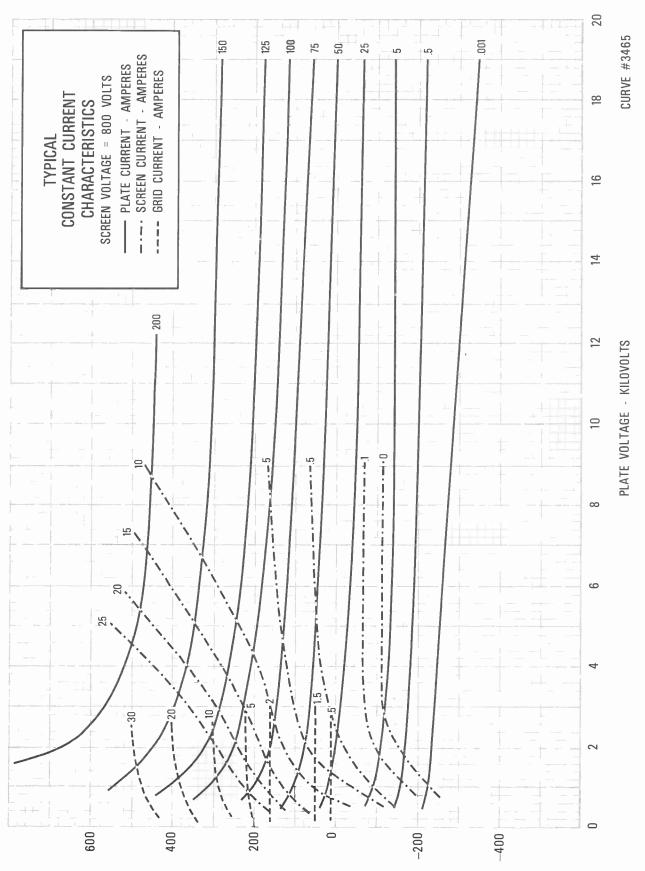
lock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

HIGH VOLTAGE - Normal operating voltages used with the 4CV250,000A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.




| DIMENSIONAL DATA |        |         |        |              |             |         |  |  |
|------------------|--------|---------|--------|--------------|-------------|---------|--|--|
| DiM              |        | INCHES  |        | M            | MILLIMETERS |         |  |  |
| DIM              | MIN    | MAX     | REF    | MIN.         | MAX.        | REF     |  |  |
| Δ                | 14 937 | 15.062  |        | 379.40       | 382.57      |         |  |  |
| В                | 11125  | 11 375  |        | 282 57       | 288 92      | ~ -     |  |  |
| D                | 3.437  | 3562    |        | 8730         | 90 47       |         |  |  |
| Ε                | 5 937  | 6 062   |        | 150 80       | 153 97      |         |  |  |
| F                | 6 437  | 6 5 6 2 |        | 163 50       | 166 67      |         |  |  |
| G                | 11 937 | 12 0 62 |        | 303 20       | 306 37      |         |  |  |
| Н                | 20400  | 21 120  |        | 51816        | 536 45      |         |  |  |
| J                | 6250   | 6375    |        | 158 75       | 161 92      |         |  |  |
| К                | 0.750  | 0875    |        | 19 05        | 22 22       |         |  |  |
| L                | 2 437  | 2.562   |        | 61.90        | 65.07       |         |  |  |
| М                | 4 062  | 4 187   |        | 103 17       | 106.35      |         |  |  |
| N                | 5 000  | 5   25  |        | 127 00       | 130 17      |         |  |  |
| U                |        |         | 11000  |              |             | 27940   |  |  |
| ٧                |        |         | 0 375  |              |             | 9 52    |  |  |
| W                |        |         | 22-V2° |              |             | 22-1/2° |  |  |
| X                |        |         | 60 °   |              |             | 60°     |  |  |
| Y                |        |         | 0 261  |              |             | 6 63    |  |  |
| Z                |        |         | 0 2 19 | ] [ <u>-</u> |             | 5 5 6   |  |  |
| AA               | - ~    |         | 0 438  |              |             | 11.12   |  |  |
|                  |        |         |        |              |             | 1       |  |  |
| -                |        |         |        |              | -           | -       |  |  |
|                  |        |         |        | Ц            |             |         |  |  |


NOTES

REF DIMENSIONS ARE FOR INFO. ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.



GRID VOLTAGE - VOLTS





STJOV - 30ATJOV OIRO



#### TECHNICAL DATA

### 4CW800B 4CW800F

RADIAL BEAM POWER TETRODE

The EIMAC 4CW800B and 4CW800F are ceramic/metal, liquid cooled radial-beam tetrodes designed for use in distributed amplifiers and VHF/UHF power amplifiers.

The mechanical and electrical features of these tubes are compatible with distributed amplifier circuit requirements, i.e., low lead inductance, low input and output capacitance and small size.

Ruggedized construction consisting of a unitized electrode structure and direct mounting to the chassis, combine to make the 4CW800B and 4CW800F suitable for environments of severe shock and vibration.

The maximum rated plate dissipation is 800 watts for both types. GENERAL CHARACTERISTICS<sup>1</sup>



#### ELECTRICAL

|    | Cathode: Oxide Coated, Unipotential                                                                                                                                                                                                                            |                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | Heater: 4CW800B                                                                                                                                                                                                                                                |                     |
|    | Voltage 6.0                                                                                                                                                                                                                                                    | V                   |
|    | Current 4.4                                                                                                                                                                                                                                                    | A                   |
|    | Heater: 4CW800F                                                                                                                                                                                                                                                |                     |
|    | Voltage 26.5                                                                                                                                                                                                                                                   | 5 V                 |
|    |                                                                                                                                                                                                                                                                | 1 A                 |
|    | Transconductance: $(I_b = 600 \text{ mAdc})$                                                                                                                                                                                                                   | ) $\mu$ mhos        |
|    | Input Conductance: (I <sub>b</sub> = 600 mAdc)                                                                                                                                                                                                                 |                     |
|    | $(F = 30 \text{ MHz})$ $0.1 \times 10^{-3}$                                                                                                                                                                                                                    | 3 mhos              |
|    | reducited for manamam reactings                                                                                                                                                                                                                                | 0  MHz              |
|    | Direct Interelectrode Capacitance: (Grounded Cathode) <sup>2</sup>                                                                                                                                                                                             |                     |
|    | Cin                                                                                                                                                                                                                                                            | 5 pF                |
|    | Cout 5.                                                                                                                                                                                                                                                        | 8 pF                |
|    | 66                                                                                                                                                                                                                                                             | 5 pF                |
| 1. | Characteristics and operating values are based upon performance tests. These figures may change withou as the result of additional data or product refinement. EIMAC Division of Varian should be consulted befor this information for final equipment design. | t notice<br>e using |
| 2. | Capacitance values are for a cold tube as measured in a special shielded fixture.                                                                                                                                                                              |                     |

| MECHANICAL | M | Ε | C | н | A | N | ١ | C | A | L |
|------------|---|---|---|---|---|---|---|---|---|---|
|------------|---|---|---|---|---|---|---|---|---|---|

| Base                            |        |
|---------------------------------|--------|
| Operating Position              | Any    |
| Maximum Operating Temperatures: |        |
| Ceramic-to-Metal Seals          | 250°C  |
| Base Plate                      | 150°C  |
| Cooling                         | Liquid |
|                                 |        |

(Revised 11-1-73) © 1968, 1973 by Varian

Printed in U.S.A.

| Maximum Over-all Dimensions:  Length                                                                                                                                                                   |                                                                                             |                  | . 2.0            | 00 In; 70<br>03 In; 5<br>7 oz; | 1.56 п                                      | nm               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------|---------------------------------------------|------------------|
| RANGE VALUES FOR EQUIPMENT DESIGN                                                                                                                                                                      |                                                                                             |                  |                  |                                |                                             |                  |
| Heater: 4CW800B - Current at 6.0 volts 4CW800F - Current at 26.5 volts                                                                                                                                 | ode circuit) <sup>1</sup>                                                                   |                  | . 0.8            | 55 1.2<br>50                   | .7 A<br>25 A<br>- sec                       | •                |
| Cout                                                                                                                                                                                                   | • • • • • • • • • • • • • • • • •                                                           |                  | . 42.            |                                | .0 pF                                       |                  |
| Cgp                                                                                                                                                                                                    |                                                                                             |                  |                  |                                | .5 pr<br>20 pF                              |                  |
| Capacitance values are for a cold tube as measu dustries Association Standard RS-191.  BROADBAND RF LINEAR AMPLIFIER  Class AB, Grid D in the cold tube as measu dustries Association Standard RS-191. | red in a special shielded f                                                                 |                  | cordance         | with Elec                      | etronic I                                   | n-               |
| Class AB, Grid Driven                                                                                                                                                                                  | Plata Valtaga                                                                               |                  | 1000             | 1500                           | 3500 14                                     |                  |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                              | Plate Voltage<br>Screen Voltage                                                             |                  | 1000<br>275      | 1500 2<br>275                  | 2500 Va<br>275 Va                           |                  |
| DC PLATE VOLTAGE . 3000 VOLTOC SCREEN VOLTAGE . 500 VOLTOC PLATE CURRENT . 0.6 AMPI PLATE DISSIPATION . 800 WAT SCREEN DISSIPATION . 15 WAT GRID DISSIPATION . 3 WAT                                   | Grid Voltage 1. TS Zero Signal Pla ERE Plate Current . TS Screen Current TS Peak of Grid Vo | te Current       | -40              | -40<br>100<br>580<br>29<br>43  | -40 Vo<br>100 m/<br>585 m/<br>17 m/<br>42 v | dc<br>Adc<br>Adc |
| 1. Adjust for specified zero-signal plate current.                                                                                                                                                     | Plate Dissipati                                                                             |                  | 250              | 280                            | 460 W                                       |                  |
| 2. Approximate value.                                                                                                                                                                                  | rf Load Impedar                                                                             | nce              | 765              | 1225 2                         | 2325 Ω                                      |                  |
| RADIO FREQUENCY POWER AMPLIFIER<br>Class B, Grid Driven                                                                                                                                                | TYPICAL OPERATION                                                                           | Strip-li         | 60 MHz<br>ne amp | 432 MF<br>Cavity               | Hz 865<br>y Cav                             | MHz<br>/ity      |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                              | Plate Voltage                                                                               | 1650 195         | -                |                                | 2000                                        |                  |
| DC PLATE VOLTAGE 3000 VOLTS DC SCREEN VOLTAGE 500 VOLTS                                                                                                                                                | Screen Voltage Grid Voltage 1 Zero Signal Plate                                             | 400 30<br>-75 -6 |                  |                                |                                             | Vdc<br>Vdc       |
| DC PLATE CURRENT 0.6 AMPERE PLATE DISSIPATION 800 WATTS                                                                                                                                                | Current Maximum Signal Plate                                                                |                  | 5 15             | 20                             |                                             | mAdc             |
| GRID DISSIPATION 15 WATTS  GRID DISSIPATION 3 WATTS                                                                                                                                                    | Current Screen Current?                                                                     | 600 53<br>14 1   | 0 600<br>1 11    | 600<br>7                       |                                             | mAdc             |
| 1 Adjust for specified zero signal plats                                                                                                                                                               | Grid Current 2                                                                              |                  | 2 +8             |                                |                                             | mAdc<br>mAdc     |
| <ol> <li>Adjust for specified zero-signal plate current.</li> <li>Approximate value.</li> <li>Delivered to the load.</li> </ol>                                                                        | Useful Power Output <sup>3</sup><br>Bandwith (3dB) of                                       | 540 55           | 5 820            | 770                            | 550                                         |                  |
|                                                                                                                                                                                                        | Amplifier<br>Power Gain <sup>2</sup>                                                        |                  | 6 4.5            |                                |                                             | MHz              |
|                                                                                                                                                                                                        | TOWER Gains                                                                                 |                  |                  | 15.3                           | 10.4                                        | qB               |



#### APPLICATION

#### MECHANICAL

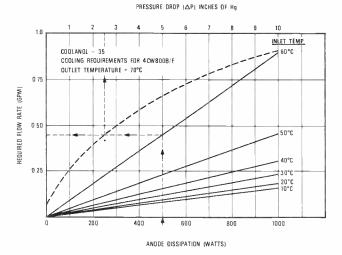
MOUNTING - These tubes may be mounted in any position. No socket is required. The tube may be mounted directly on the SK-680 Screen Bypass Capacitor which in turn is mounted to the chassis with four 6-32 screws. The chassis thickness should be 0.062 inch to insure adequate space for connections to the base of the tube and care should be exercised to insure a flat mounting surface to minimize cathode lead inductance.

COOLING - Sufficient cooling must be provided for the anode and ceramic-to-metal seals to maintain operating temperatures below the rated maximum values:

Ceramic-to-metal seals 250°C Base and flanges 150°C

Anode cooling is accomplished by circulating liquid through the integral water jacket.

At ambient temperatures of 25°C or less, no base cooling is required.


At higher temperatures, base cooling may be required to maintain base temperatures below 150°C. This can be accomplished by mounting the tube to a cold plate cooled by the inlet liquid.

WATER COOLING - The tabulation below lists the minimum water flow requirements for  $25^{\circ}\text{C}$  inlet water temperature with a temperature rise of  $15^{\circ}\text{C}$  from inlet to outlet.

| Plate       | Water | Pressure |
|-------------|-------|----------|
| Dissipation | Flow  | Drop     |
| (Watts)     | (GPM) | (psi)    |
| 200         | .050  | .025     |
| 400         | .100  | .050     |
| 600         | .156  | .075     |
| 800         | .202  | .100     |

Water pressure should never exceed 200 psi and outlet temperature must be limited to  $70^{\circ}$ C.

OIL COOLING - The cooling jacket was specifically designed for oil coolant such as Coolanol 35. The minimum flow requirement and pressure drop can be derived from the following graph:



\* Sample Calculation: For an inlet temperature of  $60^{\circ}$ C at 500 watts anode dissipation, the required flow rate is .45 GPM. The pressure drop will be .25 inches of Hg.

In cases where there is any doubt regarding the adequacy of the supplied cooling, it should be borne in mind that operating temperature is the sole criterion of cooling effectiveness.

#### ELECTRICAL

HEATER - The rated heater voltage is 6.0 volts for the 4CW800B and 26.5 volts for the 4CW800F. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above or below the rated value.

The cathode and one side of the heater are internally connected.

It is recommended that the heater voltage be applied for a period of not less than three minutes before current is drawn from the cathode. Tube operation will stabilize after a period of approximately five minutes from a cold start.

CONTROL-GRID OPERATION - The control-grid has a maximum dissipation of 3.0 watts and precautions should be observed to avoid exceeding this rating. Derating of the control grid dissipation will be necessary if the base flange temperature exceeds  $150^{\circ}\text{C}$ .

There are four threaded grid pins on the base of the tube. These pins can be used separately or in parallel to control the amount of grid lead inductance to suit the requirements of the circuit. The grid lead inductance for one pin is 2.4 nanohenries.

SCREEN GRID OPERATION - The maximum rated screen dissipation for the 4CW800B or 4CW800F is 15 watts.

Under certain operating conditions the screen current of a tetrode may reverse as indicated on the screen current meter. This condition is the result of secondary emission from the screen and is normal for a power tetrode. If the impedance of the screen power supply is high, negative screen current will cause the screen voltage to approach the anode voltage, and the results will be a runaway condition which could lead to a catastrophic failure. This condition can be avoided if sufficient bleeder current is drawn from the screen supply by an appropriate bleeder or regulator tube. The recommended bleeder current for these tubes is 20 mA for each tube connected to a common screen power supply.

A low inductance screen bypass capacitor, EIMAC SK-680, is available for either tube. This capacitor is easily installed with six 0-80 screws. With the SK-680 capacitor installed, the screen self-resonant frequency of either tube is in excess of 900 MHz.

PLATE OPERATION - The maximum rated plate dissipation power for either tube is 800 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded. Connection to the anode is accomplished by a clamp around the anode.

DISTRIBUTED AMPLIFIER SERVICE - The mechanical and electrical features of the 4CW800B and 4CW800F are compatible with distributed amplifier circuit requirements, combining the qualities of low lead inductance, low input and output capacitances, high transconductance, and small size. Connection is made to the control grid by means of four threaded studs. By using the correct number of connections, the designer has available a choice of several values of grid lead inductance. This feature is quite useful in design of VHF/UHF distributed amplifiers. In addition, rugged internal tube construction, consisting of a unitized electrode structure and a solid directchassis flange mount, are features which make these tubes suitable for environments exhibiting severe shock and vibration, such as encountered in mobile or airborne service.

A distributed amplifier is a wideband, cascade device, employing vacuum tubes placed along an artificial transmission line, the tube capacitances appearing as the shunt elements of the line. In a properly designed distributed amplifier, the driving impedance is virtually independent of the number of tubes. The amplifier may make use of the characteristics of the low pass, the band pass, or the high pass filter configuration.

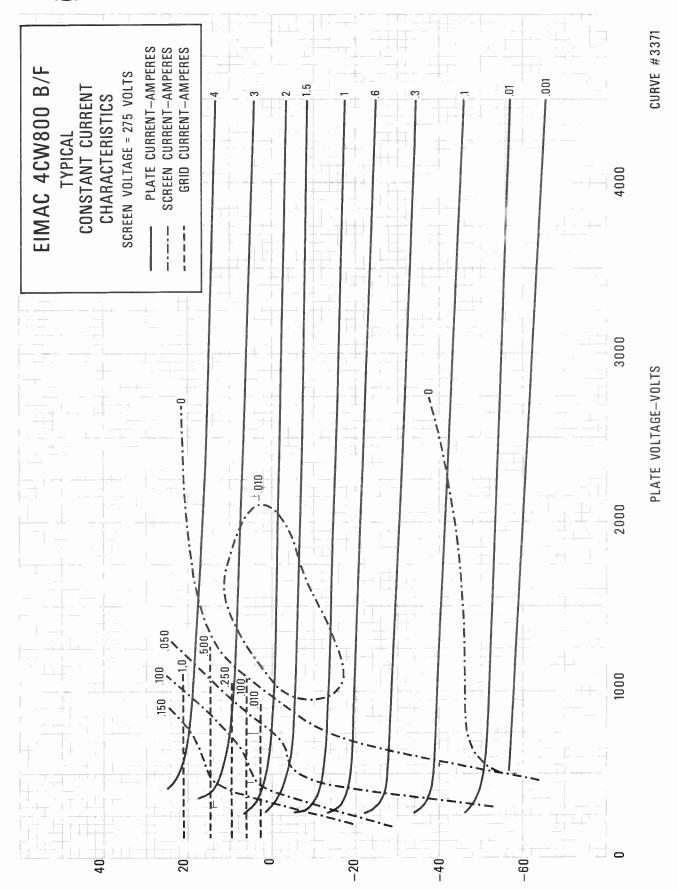
The 4CW800B and 4CW800F are ideal tubes for distributed amplifier service, as anode heat may be readily disposed of by a compact, external cooling system. An amplifier using one of these types is an advantage in instantaneous bandwidth rf systems as it eliminates the need of complex and slow tuning and tracking equipment necessary for a tuned amplifier.

EIMAC APPLICATION BULLETIN NUMBER FOURTEEN - This 23-page booklet is available from EIMAC and contains additional information on the use of these tubes (or similar types of the same tube family), including some constructional details, in strip-line amplifier circuitry in the 140-250 MHz range, distributed amplifier service, and cavity amplifier operation at 432 MHz and 865 MHz.

HIGH VOLTAGE - The 4CW800B and 4CW800F operate at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

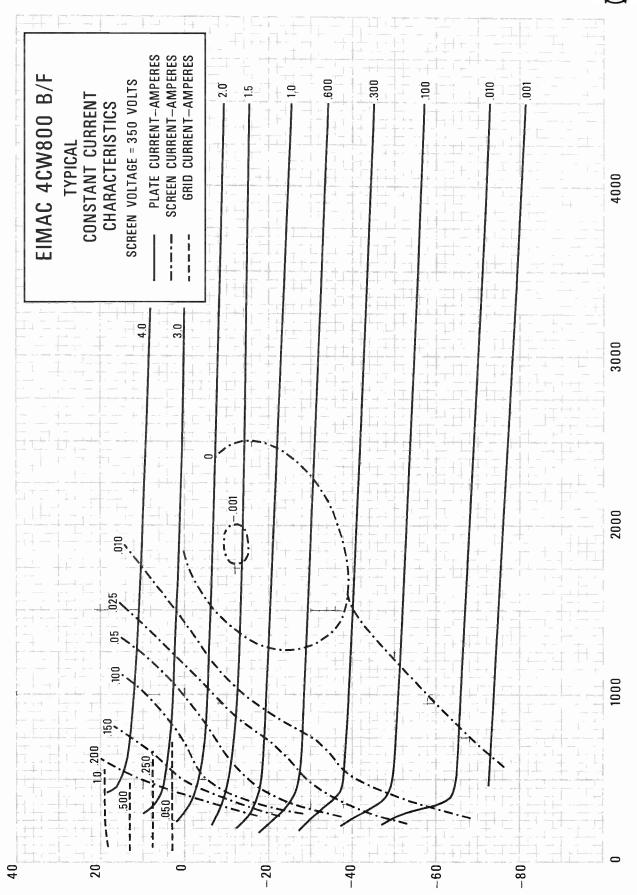
# 4CW800B/4CW800F Emac\_8


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, stray capacitance between tube terminals. and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good inter-

changeability of tubes over a period of time, manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with mounting which represent approximate final layout if capacitance values are highly significant in the design.

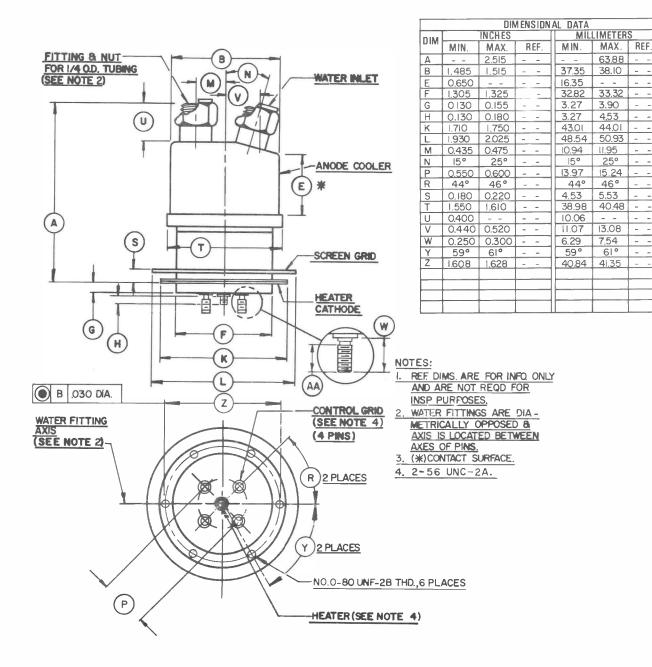
SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.






GRID VOLTAGE-VOLTS

CURVE #3342


PLATE VOLTAGE-VOLTS



STJOV-30ATJOV 0180

7







#### TECHNICAL DATA

#### 8244 4CW2000A

CERAMIC POWER TETRODE

The EIMAC 8244/4CW2000A is a ceramic/metal water cooled radial-beam tetrode with a rated maximum plate dissipation of 2000 watts. It is a low-voltage high current tube designed for Class AB1 rf linear amplifier or audio amplifier applications where its high gain may be used to advantage. It is also recommended for voltage or current regulator service. As a regulator, the maximum dc plate voltage rating is 6000 volts. The 8244/4CW2000A is the water-cooled version of the 8168/4CX1000A.



#### GENERAL CHARACTERISTICS<sup>1</sup>

| Cathode: Oxide-coated Unipotential                                             |       |     |
|--------------------------------------------------------------------------------|-------|-----|
| Heater Voltage 6.0 ± 0.3 V                                                     |       |     |
| Heater Current, at 6.0 volts 9.0 A                                             |       |     |
| Transconductance (Average):                                                    |       |     |
| $I_b = 1.0 \text{ Adc}, E_{c2} = 325 \text{ Vdc} \dots 37,000 \mu \text{mhos}$ |       |     |
| Amplification Factor (Average):                                                |       |     |
| Grid to Screen                                                                 | 3.8   |     |
| Direct Interelectrode Capacitance (grounded cathode)2                          |       |     |
| Cin                                                                            | 81.5  | pF  |
| Cout                                                                           | 11.8  | pF  |
| Cgp                                                                            | 0.015 | pF  |
| Frequency of Maximum Rating:                                                   |       |     |
| CW                                                                             | 110   | MHz |
|                                                                                |       |     |

- Characteristics and operating values are based on performance tests. These figures may change without notice as
  the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

**ELECTRICAL** 

| Maximilm | LIVAFALL | I limonaiona: |
|----------|----------|---------------|
| Maximum  | Overair  | Dimensions:   |
|          |          |               |

| Length                                     |
|--------------------------------------------|
| Diameter 2.66 in; 67.6 mm                  |
| Net Weight 27 oz; 766 gm                   |
| Operating Position                         |
| Maximum Operating Temperature:             |
| Ceramic/Metal Seals                        |
| Cooling Water                              |
| Base Special, breechlock terminal surfaces |
| Recommended Socket EIMAC SK-800 Series     |

(Revised 6-15-71) © 1963,1966 by Varian

Printed in U.S.A.

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB<sub>1</sub> or B (Single Side-Band Suppressed-Carrier Operation)

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 3000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC PLATE CURRENT   | 1.0  | AMPERE |
| PLATE DISSIPATION  | 2000 | WATTS  |
| SCREEN DISSIPATION | 12   | WATTS  |
| GRID DISSIPATION   | 0    | WATTS  |

TYPICAL OPERATION (Frequencies to 30 MHz)
Class AB1, Grid Driven, Peak Envelope or Modulation
Crest Conditions

| Plate Voltage                | 2000 | 2500 | 3000 | Vdc  |
|------------------------------|------|------|------|------|
| Screen Voltage               | 325  | 325  | 325  | Vdc  |
| Grid Voltage <sup>1</sup>    | -60  | -60  | -60  | Vdc  |
| Zero-Signal Plate Current    | 250  | 250  | 250  | mAdo |
| Single-Tone Plate Current 2  | 890  | 885  | 875  | mAdd |
| Two-Tone Plate Current 2     | 645  | 650  | 635  | mAdo |
| Zero-Signal Screen Current 2 | 8    | 6    | 5    | mAdo |
| Single-Tone Screen Current 2 | 35   | 35   | 35   | mAdo |
| Two-Tone Screen Current 2    | 10   | 8    | 8    | mAdo |
| Plate Output Power           | 930  | 1300 | 1630 | W    |
|                              |      |      |      |      |

1. Adjust to specified zero-signal dc plate current.

2. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB , Grid Driven, Sinusoidal Wave

#### ABSOLUTE MAXIMUM RATINGS (per tube)

| DC PLATE VOLTAGE   | 3000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC PLATE CURRENT   | 1.0  | AMPERE |
| PLATE DISSIPATION  | 2000 | WATTS  |
| SCREEN DISSIPATION | 12   | WATTS  |
| GRID DISSIPATION   | 0    | WATTS  |

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage                              | 2000 | 2500 | 3000 | Vdc  |
|--------------------------------------------|------|------|------|------|
| Screen Voltage                             | 325  | 325  | 325  | Vdc  |
| Grid Voltage 1                             | -60  | -60  | -60  | Vdc  |
| Zero-Signal Plate Current                  | 500  | 500  | 500  | mAdc |
| Maximum-Signal Plate Current .             | 1.78 | 1.77 | 1.75 | Adc  |
| Zero-Signal Screen Current 2               |      | 12   | 10   | mAdc |
| Maximum-Signal Screen Current <sup>2</sup> | 70   | 70   | 70   | mAdc |
| Plate Output Power                         | 1860 | 2600 | 3260 | W    |
| Load Resistance                            |      |      |      |      |
| (Plate to Plate)                           | 2040 | 2850 | 3860 | Ω    |

- 1. Adjust to give stated zero-signal plate current.
- 2. Approximate value.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                     | Min. | Max.     |
|-----------------------------------------------------------------------|------|----------|
| Heater: Current at 6.0 volts                                          | 8.1  | 9.9 A    |
| Cathode Warmup Time                                                   | 3.0  | Min.     |
| Amplification Factor (g1 to g2)                                       | 3.2  | 4.5      |
| Interelectrode Capacitance (grounded cathode connection) <sup>1</sup> |      |          |
| Cin                                                                   | 75.0 | 88.0 pF  |
| Cout                                                                  | 10.8 | 12.8 pF  |
| Cgp                                                                   |      | 0.022 pF |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **APPLICATION**

#### MECHANICAL

<code>COOLING</code> - Sufficient cooling must be provided for the anode and ceramic/metal seals to maintain operating temperatures below the rated maximum value of  $250^{\circ}$ C.

Anode cooling is accomplished by circulating water through the integral water jacket. The tabulation below lists the minimum water flow requirements for  $50^{\circ}$ C inlet water temperature.

| Plate<br>Dissipation<br>(Watts) | Water Flow<br>(gpm) | Pressure Drop<br>(psi) |
|---------------------------------|---------------------|------------------------|
| 1000                            | 1.0                 | 1.0                    |
| 2000                            | 2.0                 | 2.5                    |
| 2000                            | 2.0                 | 2.3                    |

Water pressure should never exceed 50 psi and outgoing water temperature must be limited to  $70^{\circ}\text{C}$ .

At ambient temperatures of 25°C, or less, when mounted in an EIMAC SK-800B socket, the 4CW2000A does not require base cooling. At higher temperatures, however separate base cooling may be required.

In cases where there is any doubt regarding the adequacy of the supplied cooling, it should be bome in mind that operating temperature is the sole criterion of cooling effectiveness. Surface temperatures may be easily and effectively measured by using one of the several temperature-sensitive paints or sticks available from various chemical or scientific equipment suppliers. When these materials are used, extremely thin applications must be made to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

SHOCK AND VIBRATION - The 4CW2000A has the same internal construction as the EIMAC 4CX1000A, and both are capable of operation under vibration conditions at 10 g to 500 Hz, or long-duration shock (11 milliseconds) of 50 g, with full rated voltages applied.

When environmental stress is anticipated, care must be taken in mounting of the tube and socket so there is sufficient support for the tube to prevent relative motion between tube and socket under stress conditions. The socket is not designed to provide sole support for the tube during shock or vibrational stress.

#### ELECTRICAL

HEATER - The rated heater voltage for the 4CW2000A is 6.0 volts. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above or below the rated value.

The cathode and one side of the heater are internally connected.

It is recommended that the heater voltage be applied for a period of not less than 3 minutes before other operating voltages are applied. From an initial cold condition, tube operation will stabilize after a period of approximately 5 minutes.

GRID OPERATION - The grid dissipation rating of the 4CW2000A is zero watts. The design features which make the tube capable of maximum power operation without driving the grid into the positive region also make it neccessary to avoid positive grid operation.

Although the average grid current rating is zero, peak grid currents of less than five milliamperes as read on a five milliampere meter may be permitted to flow for peak signal monitoring purposes.

SCREEN OPERATION - Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design. This characteristic is prominent in the 4CW2000A and, under some operating conditions, indicated negative screen currents in the order of 25 milliamperes may be encountered.

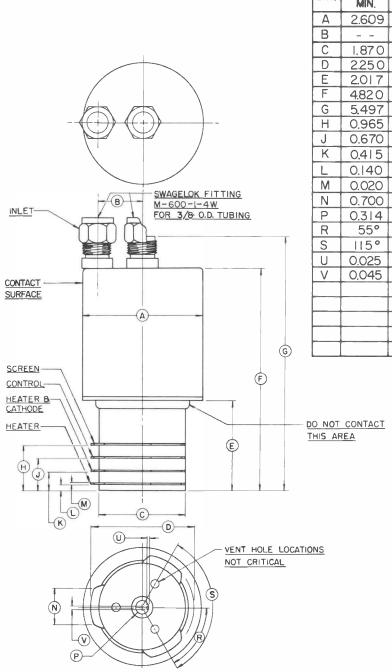
The maximum rated power dissipation for the screen grid in the 4CW2000A is 12 watts and the screen power should be kept below this level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage. Experience has shown that the screen will operate within the limits established for this tube if the indicated screen current, plate voltage and drive voltage approximate the "Typical Operation" values.

The screen supply voltage must be main-

tained constant for any values of negative and positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished in sevveral different ways. A bleeder resistor may be connected from screen or cathode; a combination of VR tubes may be connected from screen to cathode; or an electron-tube regulator circuit may be used in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed. The screen bleeder current should approximate 70 milliamperes to adequately stabilize the screen voltage. It should be observed that this bleeder power may be usefully employed to energize low-power stages of the transmitter.

PLATE OPERATION - The maximum rated plate dissipation power is 2000 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded.

*VOLTAGE OR CURRENT REGULATOR* - The 4CW2000A is attractive for regulator service. As a voltage or current regulator the dc plate voltage rating is increased to 6000 volts. All other ratings remain the same.

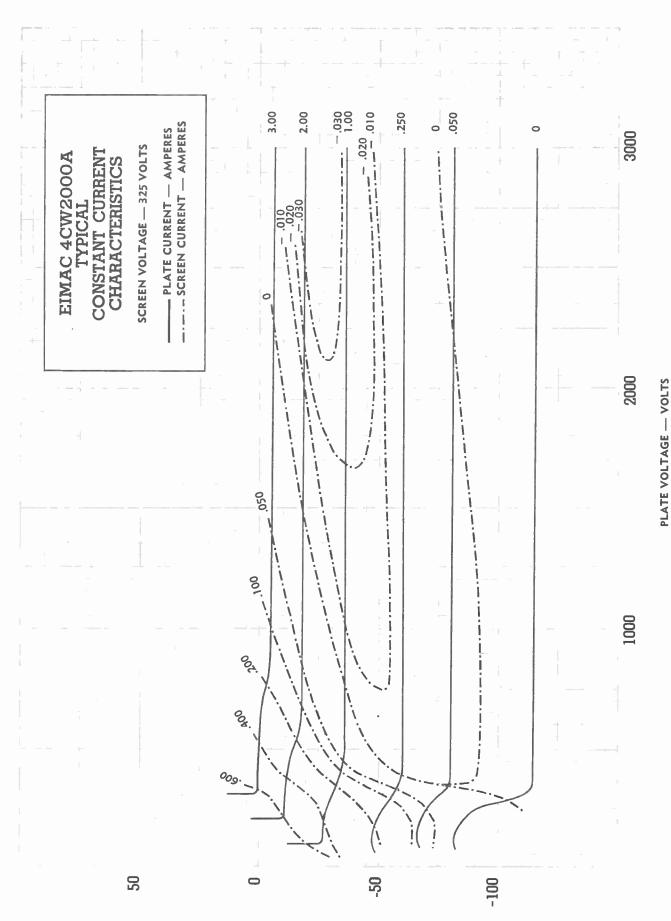

HIGH VOLTAGE - The 4CW2000A operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be

bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance. values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions different from those given here, write to the Application Engineering Department, EIMAC Division of Varian, San Carlos, California, 94070, for information and recommendations.




DIMENSIONAL DATA

| DIM.    |       | INCHES |       | Γ | M      | ILLIMETE | RS |      |
|---------|-------|--------|-------|---|--------|----------|----|------|
| DIM.    | MIN.  | MAX.   | REF   |   | MIN.   | MAX.     | R  | EF   |
| Α       | 2.609 | 2.663  |       | l | 66.27  | 66.88    | _  | -    |
| В       |       |        | 0.984 |   |        |          | 24 | 1.99 |
| С       | 1.870 | 1.900  |       |   | 47.50  | 48.26    | -  | -    |
| D       | 2.250 | 2.300  |       |   | 57.15  | 58.42    | _  | -    |
| E       | 2.017 | 2153   |       |   | 51.23  | 54.69    | _  | -    |
| F       | 4.820 | 4.960  |       |   | 122.43 | 125.98   | _  | -    |
| G       | 5.497 | 5.685  |       |   | 139.62 | 144.40   | _  | -    |
| Н       | 0.965 | 0.988  |       |   | 24.51  | 25.10    |    | _    |
| J       | 0.670 | 0.710  |       |   | 17.02  | 18.03    | _  | -    |
| K       | 0.415 | 0.435  |       |   | 10.54  | 11.05    | _  | -    |
| L       | 0.140 | 0. 165 |       |   | 3.56   | 4.19     | -  | -    |
| М       | 0.020 | 0.030  |       |   | 0.51   | 0.76     |    | -    |
| N       | 0.700 | 0.800  |       |   | 17.78  | 20.32    | -  | -    |
| Р       | 0.314 | 0.326  |       |   | 7.98   | 8.28     | -  | -    |
| R       | 55°   | 65°    |       |   | _55°   | 65°      | -  | -    |
| S       | 115°  | 125°   |       |   | 115°   | 125°     | -  | -    |
| U       | 0.025 | 0.048  |       |   | 0.64   | 1.22     | _  | -    |
| V       | 0.045 | 0.070  |       |   | 1.14   | 1.78     | -  | -    |
|         |       |        |       |   |        |          |    |      |
| <u></u> |       |        |       |   |        |          |    |      |
| $\perp$ |       |        |       |   |        |          |    |      |
|         |       |        |       |   |        |          |    |      |
|         |       |        |       |   |        |          |    |      |
|         |       |        | MOTE  | Š |        |          |    |      |

NOTES:

REF DIMENSIONS ARE FOR INFO.
ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.



GRID VOLTAGE -- VOLTS





# 4CW10,000A

RADIAL-BEAM
POWER TETRODE

The Eimac 4CW10,000A is a water-cooled, ceramic-metal power tetrode which is electrically identical to the 8171/4CX10,000D (and 8170/4CX5000A, except for plate dissipation). The water-cooled anode is equipped with an integral water jacket and is rated at 12 kilowatts dissipation.

The 4CW10,000A is useful as an oscillator, amplifier or modulator at frequencies up to 110 megacycles, and is particularly suited for use as a linear rf amplifier or or class-AB audio amplifier.

A pair of these tubes operating class AB will deliver more than 30 kilowatts of audio-frequency or radio-frequency plate output power.

# Simol: 4CW10,000A

# **GENERAL CHARACTERISTICS**

### **ELECTRICAL**

(Effective 4-15-63) 1963, 1967 by VARIAN

| Ellenini   | Thoriated 1     | T      |           |       |      |       |        |       |        |     |   | Min.    | Nom. | Ma | ıx.     |     |             |             |          |
|------------|-----------------|--------|-----------|-------|------|-------|--------|-------|--------|-----|---|---------|------|----|---------|-----|-------------|-------------|----------|
| rijament:  | Voltage         | _      | sten<br>• |       | _    |       |        |       |        |     |   |         | 7.5  |    | volts   |     |             |             |          |
|            | Current         |        |           |       |      | -     | -      | -     | -      | -   | - | -<br>73 | 7.5  | 70 |         |     |             |             |          |
| A 1000     |                 |        |           |       |      |       |        |       | -      |     |   |         | 4.5  | /8 | amperes |     |             |             |          |
|            | tion Factor     |        |           |       |      |       |        |       | -      |     | - |         |      |    |         |     |             |             |          |
| Frequency  | for Maxim       | ıum    | Katıı     | ngs   | -    | -     | •      | -     | -      | -   | - | •       | -    | 30 | М       | :   |             |             |          |
| Direct Int | erelectrode     | Cap    | pacit     | ances | , Gr | ounde | d Ca   | thod  | e:     |     |   |         |      |    |         |     | Min.        | Max.        |          |
|            | 1 1             |        |           |       |      |       |        |       |        |     |   |         |      |    |         |     | 108         | 122         | ,        |
|            | Input           | •      | -         | -     | •    | -     | -      | •     | -      | -   | - | •       | •    | -  | • •     | -   |             |             | uuf      |
|            | Output          | •      | -         | -     | -    | -     | -      | -     | -      | -   | - | •       | -    | -  |         | -   | 18          | 23          | uuf      |
|            | Feedback        | -      | -         | •     | -    | -     | -      | -     | •      | -   | • | -       | •    | •  |         | -   | • -         | - 1.0       | uuf      |
| Direct Int | erelectrode     | Сар    | acita     | nces, | Gro  | undec | l Grid | d and | I Scre | en: |   |         |      |    |         |     |             |             |          |
|            | Input           | -      | -         | -     | _    | _     | _      | _     | -      | -   | _ |         |      | -  |         | -   | 48          | 58          | uuf      |
|            | Output          | -      | -         | -     | -    | -     | -      | -     | -      | -   | _ | -       | -    | -  |         | -   | 18          | 23          | uuf      |
|            | Feedback        | -      | -         | -     | -    | -     | -      | -     | -      | -   |   | -       | -    | -  |         | -   |             | - 0.16      | uuf      |
| IECHANI    | CAL             |        |           |       |      |       |        |       |        |     |   |         |      |    |         |     |             |             |          |
| Base -     |                 | -      | _         | _     | -    | _     | _      |       |        |     | _ | _       | _    | _  |         | _   |             | Special con | ncentric |
| Maximum    | Seal Tempe      | eratu  | ге        |       | _    | _     | _      | _     | _      | _   |   | _       |      |    |         | _   |             | •           | 250° C   |
|            | Anode-Core      |        |           | ature | _    | _     | _      | _     |        |     |   | _       | _    |    |         | _   |             |             | 250° C   |
|            | ded Socke       |        | •         | _     |      | _     | _      |       |        |     | _ |         | -    | _  |         | _   |             | Eimac S     |          |
|            | Position        |        | -         | -     | -    | -     | -      | -     | -      | -   | - | -       | -    | -  |         | Axi | is vertical | , base up o |          |
| Maximum    | Dimensions      | :      |           |       |      |       |        |       |        |     |   |         |      |    |         |     |             |             |          |
|            | Height          |        |           |       | _    | _     | _      |       | _      | _   |   | _       |      | _  |         | _   |             | - 11.44     | inches   |
|            |                 |        |           | _     |      | _     |        |       | _      |     |   |         |      |    |         | _   |             |             | inches   |
| Cooling    |                 |        |           |       | -    | _     |        | _     |        | -   |   |         |      | _  |         | _   | - Wat       | er and Fore |          |
| Net Weig   |                 | _      | _         |       | _    | -     | -      | -     |        | -   |   | -       |      | _  |         | _   |             |             | pounds   |
| _          | …<br>Weight (Ap | -      |           |       | _    | -     | -      | -     | •      | -   |   | -       |      | -  |         | -   |             |             | pounds   |
| Simpping   | rreigiii (A)    | יט וקי | ······dT  | - 1   | -    | -     | -      | -     | •      | -   | - | -       | -    | -  |         | -   |             | - 17        | Pounds   |

Printed in U.S.A.



# RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR (Up to 110 megacycles)

Class-C Telegraphy or FM Telephony (Key-down conditions)

| MAYIMI   | Ви  | RATINGS  |
|----------|-----|----------|
| MINALIMI | ∪ M | KAIIIIGS |

| MAXIMUM RATINGS      |        |            |        |      |         |
|----------------------|--------|------------|--------|------|---------|
| D-C PLATE VOLTAGE up | to 30  | megacycles | 7500   | MAX. | VOLTS   |
| 30                   | to 60  | megacycles | 7000   | MAX. | VOLTS   |
| 04                   | to 110 | megacycles | 6500   | MAX. | VOLTS   |
| D-C SCREEN VOLTAGE - | -      |            | 1500   | MAX. | VOLTS   |
| D-C PLATE CURRENT up | to 30  | megacycles | 3      | MAX. | AMPERES |
| 30                   | to 60  | megacycles | 2.8    | MAX. | AMPERES |
| 04                   | to 110 | megacycles | 2.6    | MAX. | AMPERES |
| PLATE DISSIPATION -  | -      |            | 10,000 | MAX. | WATTS   |
| SCREEN DISSIPATION - | -      |            | 250    | MAX. | WATTS   |
| GRID DISSIPATION -   | -      |            | 75     | MAX. | WATTS   |

#### TYPICAL OPERATION (Frequencies below 30 megacycles)

| D-C Plate   | Voltage    | -  |   |   | - | - | - | - | - | 7500   | volts   |
|-------------|------------|----|---|---|---|---|---|---|---|--------|---------|
| D-C Scree   | n Voltage  | -  | - | - | - | - | - | - | - | 500    | volts   |
| D-C Grid    | Voltage    | -  | - | - | - | - | - | - | - | —350   | volts   |
| D-C Plate   | Current    | -  | - | - | - | - | - | - | - | 2.8    | amperes |
| D-C Scree   | n Current  |    | - | - | - | - | - | - | - | 0.5    | ampere  |
| D-C Grid    | Current    | -  | - | - | - | - |   | - | - | 0.25   | ampere  |
| Peak R-F    | Grid Volta | ge | - | - | - | - | - | - | - | 590    | volts   |
| Driving Po  | wer -      | -  | - | - | - | - | - | - | - | 150    | watts   |
| Plate Dissi | pation     |    | - | - | - | - | - | - | - | 5000   | watts   |
| Plate Outp  | ut Power   | -  | - | - | - | - | - | - |   | 16,000 | watts   |
|             |            |    |   |   |   |   |   |   |   |        |         |

# PLATE-MODULATED RADIO-FREQUENCY **POWER AMPLIFIER**

Class-C Telephony (Carrier conditions except where noted)

### MAXIMUM RATINGS

| D-C PLATE VOLTAGE           | -    | -      | -     | 5000     | MAX.   | VOLTS   |
|-----------------------------|------|--------|-------|----------|--------|---------|
| D-C SCREEN VOLTAGE          | -    | -      | -     | 1000     | MAX.   | VOLTS   |
| D-C PLATE CURRENT           | -    | -      | -     | 2.5      | MAX.   | AMPERES |
| PLATE DISSIPATION*          | -    | -      | -     | 6650     | MAX.   | WATTS   |
| SCREEN DISSIPATION          | -    | -      | -     | 250      | MAX.   | WATTS   |
| GRID DISSIPATION            | -    | -      | -     | 75       | MAX.   | WATTS   |
| *Corresponds to 10,000 watt | s at | 100-pe | rcent | sine-way | e modu | lation. |

# TYPICAL OPERATION (Frequencies below 30 megacycles)

| D | -C Plate | Voltage    | -     | -   | •     | -     | -    | -   | -     | -    | 5000 | volts            |
|---|----------|------------|-------|-----|-------|-------|------|-----|-------|------|------|------------------|
| D | -C Scree | n Voltage  | -     | -   | -     | -     | -    | -   |       | -    | 500  | volts            |
| P | eak A-F  | Screen Vo  | ltage | (Fo | r 100 | )-per | cent | mod | dulat | ion) | 500  | volts            |
| D | -C Grid  | Voltage    | -     | -   | -     | -     | -    | -   | -     | -    | 350  | volts            |
| D | -C Plate | Current    | -     | -   | -     | •     | -    | -   | -     | -    | 2.4  | am <b>pe</b> res |
| D | -C Scree | n Current  | -     | -   | -     | -     | -    | -   | •     | -    | 0.4  | ampere           |
| D | -C Grid  | Current    | -     | -   | -     | -     | -    | -   | -     | -    | 0.22 | am pere          |
| P | eak R-F  | Grid Volta | ge    | -   | -     | -     | -    | -   | -     | -    | 550  | volts            |
| G | rid Driv | ing Power  | -     | -   | -     | -     | -    | -   | -     | -    | 120  | watts            |
|   |          | sipation   |       |     |       |       |      |     |       |      |      | watts            |
| P | late Ou  | lput Power |       | -   | -     | -     | -    | -   | -     | -    | 8.5  | kilowatt         |

# AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB<sub>1</sub>

# MAXIMUM RATINGS

| D-C PLATE VOLTAGE  | - | - | - | 7500   | MAX. | VOLTS   |
|--------------------|---|---|---|--------|------|---------|
| D-C SCREEN VOLTAGE | - | - | - | 1500   | MAX. | VOLTS   |
| D-C PLATE CURRENT  | - | - | - | 4.0    | MAX. | AMPERES |
| PLATE DISSIPATION  | - | - | - | 12,000 | MAX. | WATTS   |
| SCREEN DISSIPATION | - | - | - | 250    | MAX. | WATTS   |
| GRID DISSIPATION   |   | _ |   | 75     | MAX. | WATTS   |

# TYPICAL OPERATION, two tubes

| D-C Plate Voltage               | 4000   | 5000   | 6000   | 7500   | volts  |
|---------------------------------|--------|--------|--------|--------|--------|
| D-C Screen Voltage              | 1500   | 1500   | 1500   | 1500   | volts  |
| D-C Grid Voltage                | -315   | -320   | -330   | 340    | volts  |
| MaxSignal Plate Current -       | 6.66   | 6.66   | 6.66   | 6.66   | ampere |
| Zero-Signal Plate Current*      | 0.50   | 0.50   | 0.50   | 0.50   | ampere |
| MaxSignal Screen Current -      | 0.33   | 0.32   | 0.30   | 0.25   | ampere |
| Zero-Signal Screen Current -    | 0      | 0      | 0      | 0      | ampere |
| Peak A-F Driving Voltage -      | 305    | 310    | 320    | 330    | volts  |
| Driving Power                   | 0      | 0      | 0      | 0      | watts  |
| Load Resistance, Plate-to-Plate | 940    | 1320   | 1700   | 2280   | ohms   |
| MaxSignal Plate Dissipation *   | 6,670  | 7,950  | 8,100  | 9,050  | watts  |
| MaxSignal Plate Output Power    | 13,300 | 17,500 | 23,800 | 31,900 | watts  |
| *Per Tube                       |        | •      |        |        |        |

# RADIO-FREQUENCY LINEAR AMPLIFIER

Class-AB,

# MAXIMUM RATINGS

| D-C PLATE VOLTAGE  | - | - | - | 7500   | MAX. | VOLTS   |
|--------------------|---|---|---|--------|------|---------|
| D-C SCREEN VOLTAGE | - | - | - | 1500   | MAX. | VOLTS   |
| D-C PLATE CURRENT  | - | - | - | 4.0    | MAX. | AMPERES |
| PLATE DISSIPATION  |   | - | - | 12,000 | MAX. | WATTS   |
| SCREEN DISSIPATION | - | - | - | 250    | MAX. | WATTS   |
| GRID DISSIPATION   | _ | _ | _ | 75     | MAX. | WATTS   |

# TYPICAL OPERATION, Peak-Envelope or Modulation-Crest Conditions,

| TITIOAL OFERATION, Teak-Eliverope                                             | Q1 | MOG | uidi | 1011-4 | 1031 00 | mamons, |
|-------------------------------------------------------------------------------|----|-----|------|--------|---------|---------|
| (Frequencies below 30 megacycles)                                             |    |     |      |        |         |         |
| D-C Plate Voltage                                                             | -  | -   | -    | -      | 7500    | volts   |
| D-C Screen Voltage                                                            | -  | •   | -    | -      | 1500    | volts   |
| D-C Grid Voltage*                                                             | -  | -   | -    | -      | 340     | volts   |
| MaxSignal Plate Current                                                       | -  | -   | -    | -      | 3.33    | amperes |
| Zero-Signal Plate Current                                                     | -  | -   | -    | -      | 0.50    | ampere  |
| MaxSignal Screen Current                                                      | -  | -   | -    | -      | 0.125   | ampere  |
| Peak R-F Grid Voltage                                                         | -  |     | -    | -      | 330     | volts   |
| Driving Power                                                                 | -  | -   | -    | -      | 0       | watts   |
| Plate Dissipation                                                             |    | -   | _    | -      | 9050    | watts   |
| Plate Output Power**                                                          | -  | -   | -    | -      | 15,950  | watts   |
| *Adjust grid voltage to obtain specif **PEP output or r-f output power at cre |    |     |      |        |         |         |

NOTE: In most cases, "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses, either input or output, has been made.





# **APPLICATION**

# **MECHANICAL**

**Mounting**—The 4CW10,000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

**Socket**—The Eimac SK-300A air-system socket may be used with the 4CW10,000A. The socket has provision for directing cooling air through the socket and over the base seals.

**Cooling**—Base terminal cooling is accomplished by directing air through the socket and over the filament and grid seals. Anode cooling is accomplished by circulating water through the integral water jacket. The table below lists minimum water flow rates for proper cooling at various plate dissipation levels.

| Minimum                      | Cooling Water Re                | equirement                |
|------------------------------|---------------------------------|---------------------------|
| Plate<br>Dissipation<br>(kw) | Quantity<br>(gpm)               | Pressure<br>Drop<br>(psi) |
| 6<br>8<br>10<br>12           | 4.0 (-3.7)<br>5.1<br>6.3<br>7.4 | 2.2<br>3.1<br>4.3<br>5.5  |

Note: Since power dissipated by the filaments represented about 560 watts and grid plus screen dissipation can represent another 325 watts, an extra 900 watts has been added to plate dissipation in preparing this tabulation.

Maximum outlet-water temperature must never exceed 70°C and inlet-water pressure should be limited to 50 psi.

When the tube is mounted with its anode up, the water inlet is on the outer connector; when the anode is down, the inlet is the center connector. Water and air flow should start whenever filament voltage is applied. There is no danger in removing cooling water and air simultaneously with power removal.

Base cooling may be accomplished by directing approximately 30 cfm of air through the socket and over the seals. Pressure drop will be approximately 0.1 inch of water. An alternate method for frequencies below 30 Mc is to direct approximately 10 cfm through a ¾" ID tube directly at the center stud. The jet should be no more than two inches from the stud.

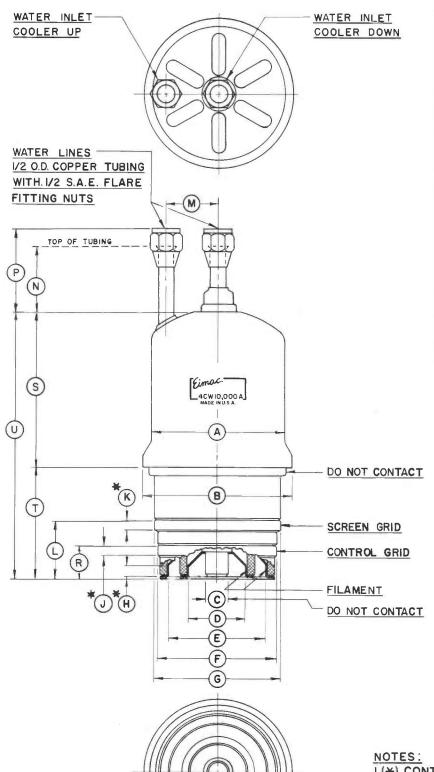
### **ELECTRICAL**

**Filament Operation**—The rated filament voltage for the 4CW10,000A is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus 5 percent from the rated value.

**Electrode Dissipation Ratings**—The maximum dissipation ratings for the 4CW10,000A must be respected to avoid damage to the tube. An exception is the plate dissipation, which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

**Control Grid Operation**—The 4CW10,000A control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible.

**Screen-Grid Operation**—The power dissipated by the screen of the 4CW10,000A must not exceed 250 watts.

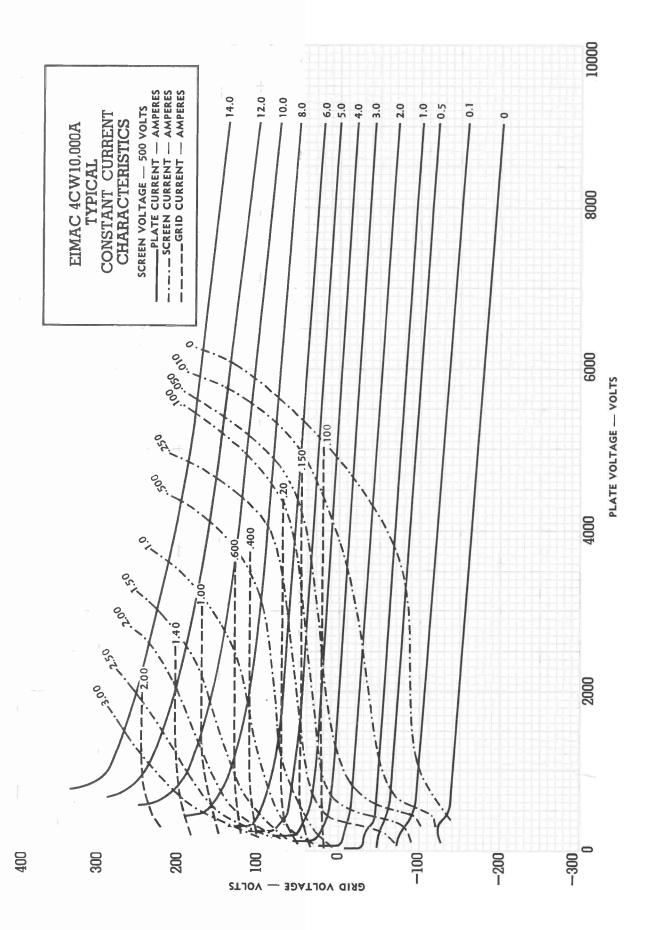

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

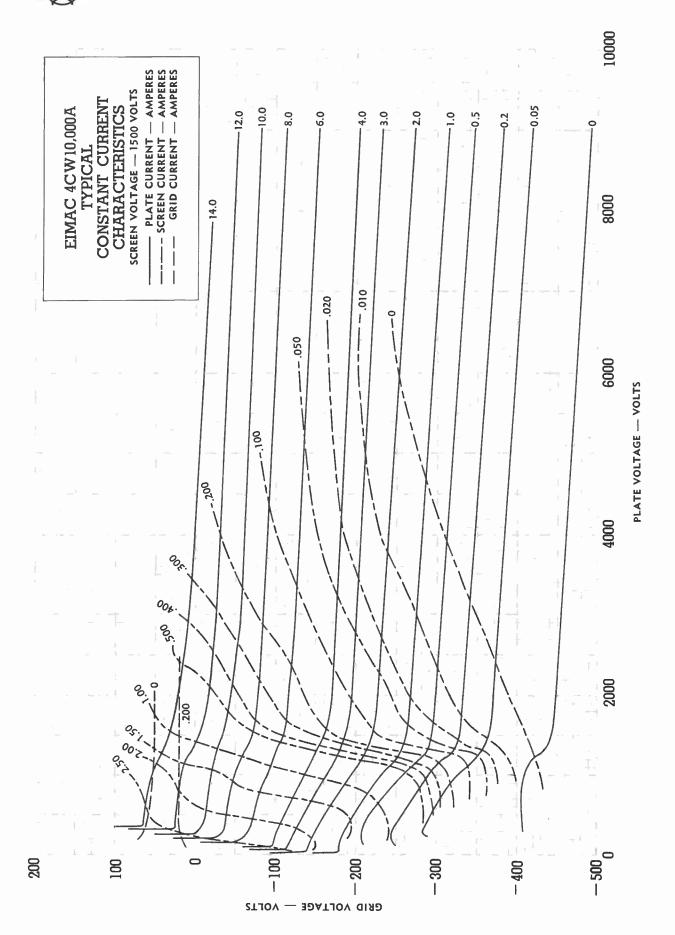
Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.

**Plate Dissipation**—The plate-dissipation rating for the 4CW10,000A is 10,000 watts for most applications, but for audio and SSB amplifier applications, the maximum allowable dissipation is 12,000 watts.

When the 4CW10,000A is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 6650-watt maximum plate dissipation rating will be exceeded.

**Special Applications**—If it is desired to operate this tube under conditions widely different from those given here, write to the Power Grid Tube Marketing Department, Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California, for information and recommendations.





| REF | NOM. | MIN.  | MAX.  |
|-----|------|-------|-------|
| A   |      | 4.094 | 4.156 |
| В   |      | 4.594 | 4.656 |
| С   |      | .720  | .760  |
| D   |      | 1.896 | 1.936 |
| Ε   |      | 3.133 | 3.173 |
| F   |      | 3.792 | 3.832 |
| G   |      | 3.980 | 4.020 |
| Н   |      | .188  |       |
| J   |      | .188  |       |
| K   |      | .188  |       |
| L   |      | 1.764 | 1.826 |
| М   |      | 1.500 | 1.750 |
| N   |      | 1.937 | 2.187 |
| Р   |      | 2,312 | 2.812 |
| R   |      | .986  | 1.050 |
| S   |      | 4.780 | 5.025 |
| Т   |      | 3.350 | 3.650 |
| U   |      | 8.125 | 8.625 |
|     |      | -     |       |
|     |      |       |       |

These dimensions reflect standard manufacturing tolerances. They should not be used as the basis for purchase specifications unless checked with Eitel-McCullough, Inc.

NOTES: I.(\*) CONTACT SURFACE, 2. DIMENSIONS IN INCHES.







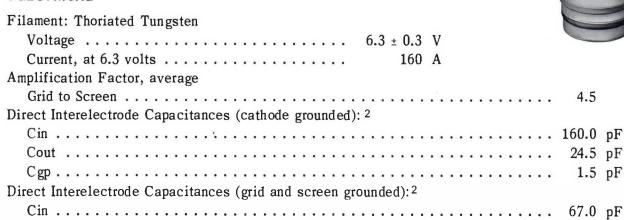




RADIAL BEAM POWER TETRODE

4CW25,000A

 $0.2~\mathrm{pF}$ 


110 MHz

The EIMAC 4CW25,000A is a ceramic/metal power tetrode intended for use in audio or radio frequency applications. It features a new type of internal mechanical structure which results in higher rf operating efficiency. Low rf losses in this mechanical structure permit operation of the 4CW25,000A at full ratings up to 110 MHz, and at reduced ratings, to 225 MHz.

The 4CW25,000A is recommended for radio-frequency linear power amplifier service, for television linear amplifier service, and as a switch tube for pulsed regulator service.



### ELECTRICAL



Characteristics and operating values are based on performance tests. These figures may change without notice as
the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this
information for final equipment design.

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# MECHANICAL

| 3.6      | A 44    | <b>-</b> :  |
|----------|---------|-------------|
| Mayımıım | Dvarall | Dimensions: |
|          |         |             |

Maximum Frequency Ratings

| Length               |                                         | 12.69 in; 322.33 mm     |
|----------------------|-----------------------------------------|-------------------------|
| Diameter             | • • • • • • • • • • • • • • • • • • • • | 4.750 in; 120.65 mm     |
| Net Weight           |                                         | 13.5 lb; 6.10 kg        |
| Operating Position   | Axis ve                                 | rtical, base up or down |
| Cooling              |                                         | . Water and Forced Air  |
| (Effective 2-1-72) © | by Varian                               | Printed in U.S.A.       |

| Operating Temperature, maximum  Ceramic/Metal Seals and Anode Core  Base                                                                                                                                 | Special, concentric                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recommended Air System Socket                                                                                                                                                                            |                                                                                                                                                                                                                                                 |
| GRID DRIVEN, Class AB 1                                                                                                                                                                                  | TYPICAL OPERATION (Frequencies to 110 MHz) Peak Envelope or Modulation Crest Conditions                                                                                                                                                         |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                | Plate Voltage 7,500 10,000 Vdc                                                                                                                                                                                                                  |
| PLATE VOLTAGE . 10.0 kVdc SCREEN VOLTAGE . 2.0 kVdc PLATE CURRENT . 6.0 Adc PLATE DISSIPATION . 25.0 kW SCREEN DISSIPATION . 450 W GRID DISSIPATION . 200 W                                              | Screen Voltage                                                                                                                                                                                                                                  |
| <ol> <li>Adjust for specified zero-signal plate current.</li> <li>Approximate value.</li> </ol>                                                                                                          | Single-Tone Plate Output Power 20.8 28.5 kW Resonant Load Impedance 865 1,260 $\Omega$                                                                                                                                                          |
| RADIO FREQUENCY POWER AMPLIFIER OR                                                                                                                                                                       | TYPICAL OPERATION (Frequencies to 110 MHz)                                                                                                                                                                                                      |
| OSCILLATOR                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |
| Class C Telegraphy of FMTelephony<br>(Key-Down Conditions)                                                                                                                                               | Plate Voltage       7,500       10,000       Vdc         Screen Voltage       750       750       Vdc         Grid Voltage       -510       -550       Vdc                                                                                      |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                | Plate Current       4.65       4.55       Adc         Screen Current       0.59       0.54       Adc         Grid Current       0.30       0.27       Adc                                                                                       |
| PLATE VOLTAGE                                                                                                                                                                                            | Peak rf Grid Voltage 1 730 790 v Calculated Driving Power 220 220 W Plate Dissipation 8.1 9.0 kW                                                                                                                                                |
| PLATE DISSIPATION 25.0 kW  SCREEN DISSIPATION 450 W  GRID DISSIPATION 200 W                                                                                                                              | Plate Output Power 26.7 36.5 kW  1. Approximate value.                                                                                                                                                                                          |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER, GRID DRIVEN, Class C Telephony                                                                                                                          | TYPICAL OPERATION (Frequencies to 110 MHz)                                                                                                                                                                                                      |
| (Carrier Conditions)                                                                                                                                                                                     | Plate Voltage         6,000         8,000         Vdc           Screen Voltage         750         750         Vdc                                                                                                                              |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                | Grid Voltage         -600         -640         Vdc           Plate Current         3.75         3.65         Adc                                                                                                                                |
| PLATE VOLTAGE 8.0 kVdc<br>SCREEN VOLTAGE 1.5 kVdc                                                                                                                                                        | Screen Current 1         0.45         0.43         Adc           Grid Current 1         0.18         0.18         Adc                                                                                                                           |
| PLATE CURRENT 4.0 Adc PLATE DISSIPATION 16.4 kW                                                                                                                                                          | Peak af Screen Voltage 1 100% modulation                                                                                                                                                                                                        |
| SCREEN DISSIPATION                                                                                                                                                                                       | Peak rf Grid Voltage1 800 840 v Calculated Driving Power 150 150 W Plate Dissipation 5.1 5.8 kW                                                                                                                                                 |
| 1. Approximate value.                                                                                                                                                                                    | Plate Dissipation 5.1 5.8 kW Plate Output Power 17.4 23.5 kW                                                                                                                                                                                    |
| AUDIO FREQUENCY POWER AMPLIFIER OR                                                                                                                                                                       | TYPICAL OPERATION (Two tubes)                                                                                                                                                                                                                   |
| MODULATOR, GRID DRIVEN, Class AB <sub>1</sub> (Sinusoidal Wave)                                                                                                                                          | Plate Voltage         7,500         10,000         Vdc           Screen Voltage         1,500         1,500         Vdc                                                                                                                         |
| ABSOLUTE MAXIMUM RATINGS (per tube)                                                                                                                                                                      | Grid Voltage 1350 -370 Vdc<br>Zero-Signal Plate Current 1.00 1.00 Adc                                                                                                                                                                           |
| PLATE VOLTAGE         10.0 kVdc           SCREEN VOLTAGE         2.0 kVdc           PLATE CURRENT         6.0 Adc           PLATE DISSIPATION         25.0 kW           SCREEN DISSIPATION         450 W | Maximum Signal Plate Current . 8.80 8.50 Adc Maximum Signal Screen Current <sup>2</sup> 0.34 0.30 Adc Peak af Grid Voltage <sup>2</sup> 330 340 v Maximum Signal Plate Dissipation 12.2 14.0 kW Plate Output Power 41.6 57.0 kW Load Resistance |
| GRID DISSIPATION                                                                                                                                                                                         | (plate to plate) 1.730 2.520 $\Omega$                                                                                                                                                                                                           |
| 1. Adjust for specified zero-signal plate current.                                                                                                                                                       | 2. Approximate value.                                                                                                                                                                                                                           |

# SWITCH TUBE OR PULSED REGULATOR SERVICE

### ABSOLUTE MAXIMUM RATINGS:

| PLATE VOLTAGE                   | 20.0 | kVdc |
|---------------------------------|------|------|
| SCREEN VOLTAGE                  | 3.0  | kVdc |
| GRID VOLTAGE                    | -1.5 | kVdc |
| PEAK CATHODE CURRENT            | 80   | а    |
| PEAK ANODE CURRENT              | 60   | а    |
| GRID DISSIPATION 1              | 200  |      |
| SCREEN DISSIPATION <sup>1</sup> | 450  | W    |

| PLATE DISSIPAT | IC | N | 1 |  |  |  |  |  |  |  | 25.0 kW    |
|----------------|----|---|---|--|--|--|--|--|--|--|------------|
| PULSE LENGTH   |    |   |   |  |  |  |  |  |  |  | See Note 2 |
| DUTY FACTOR    |    |   |   |  |  |  |  |  |  |  | See Note 2 |

- 1. Dissipation values shown are average.
- Duty must be maintained at a low enough level that average tube dissipation ratings are not exceeded. For pulse lengths in excess of 0.1 second, some reduction of electrode dissipation ratings will be required.

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

# RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                    | $\underline{\underline{Min.}}$ | _Max     |
|--------------------------------------------------------------------|--------------------------------|----------|
| Heater Current, at 6.3 volts                                       | 152                            | 168 A    |
| Interelectrode Capacitances, cathode grounded <sup>1</sup>         |                                |          |
| Cin                                                                | 154.0                          | 167.0 pF |
| Cout                                                               | 22.0                           | 27.0 pF  |
| Cgp                                                                |                                | 2.0 pF   |
| Interelectrode Capacitances, grid and screen grounded <sup>1</sup> |                                |          |
| Cin                                                                | 62.0                           | 72.0 pF  |
| Cout                                                               | 23.0                           | 28.0 pF  |
| Cpk                                                                |                                | 0.3 pF   |

<sup>1.</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CW25,000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC Air-System Socket Type SK-300A is designed especially for the concentric base terminals of the 4CW25,000A. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube base seal areas.

COOLING - Anode cooling is accomplished by circulating water through the integral anode water jacket. The table below lists the minimum cooling water requirements at various dissipation levels.

| Plate<br>*Dissipation<br>(kilowatts) | Water Flow<br>GPM | Approx.<br>Pressure<br>Drop<br>PSI |
|--------------------------------------|-------------------|------------------------------------|
| 10                                   | 2.2               | 3.3                                |
| 15                                   | 3.0               | 5.0                                |
| 20                                   | 4.0               | 8.0                                |
| 25                                   | 5.0               | 11.5                               |

<sup>\*</sup>Since the power dissipated by the filament represents about 1000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 600 watts, allowance has been made in preparing this tabulation for an additional 1600 watts dissipation.

The cooling table assumes a water temperature rise of 20°C. Under no circumstances should the outlet water temperature exceed 70°C. Inlet water pressure should not exceed 50 PSI.

A major factor effecting long life of water cooled tubes is the condition of the cooling water.

A simple method of determing the condition of the water is to measure the resistance across a measured amount. This can be accomplished by inserting two electrodes into the water through an insulted section of water line and measuring the resistance between the two electrodes with a sensitive meter. The resistance of the water should be maintained above 50 kohms/cm<sup>3</sup>.

Separate cooling of the tube base is required and is accomplished by directing approximately 50 cfm of air at sea level through the socket.

# **ELECTRICAL**

FILAMENT OPERATION - The rated filament voltage for the 4CW25,000A is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 4CW25,000A must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

GRID OPERATION - The 4CW25,000A control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CW25,000A must not exceed 450 watts.

Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CW25,000A is 25,000 watts.

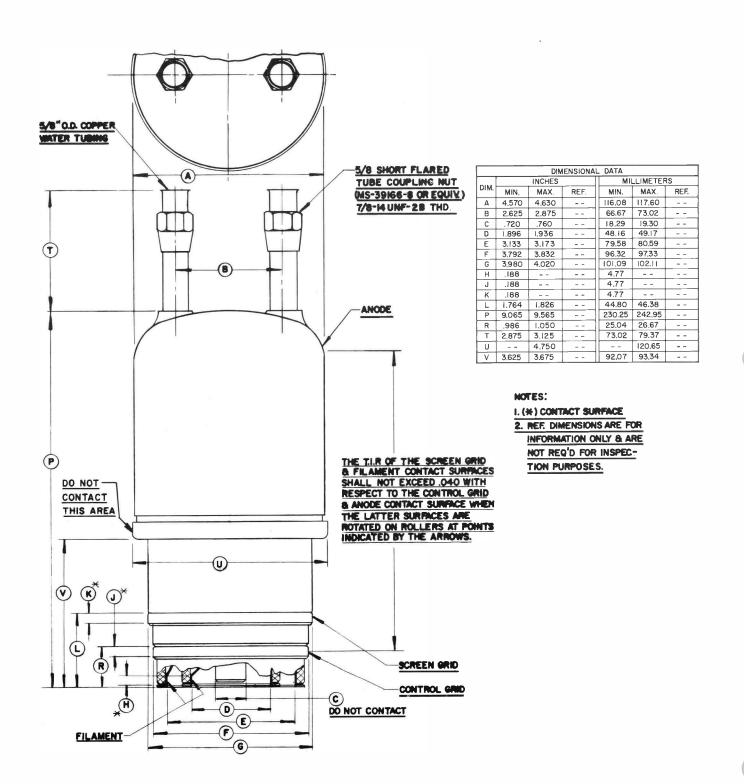
When the 4CW25,000A is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 25,000 watt maximum plate dissipation rating will be exceeded.

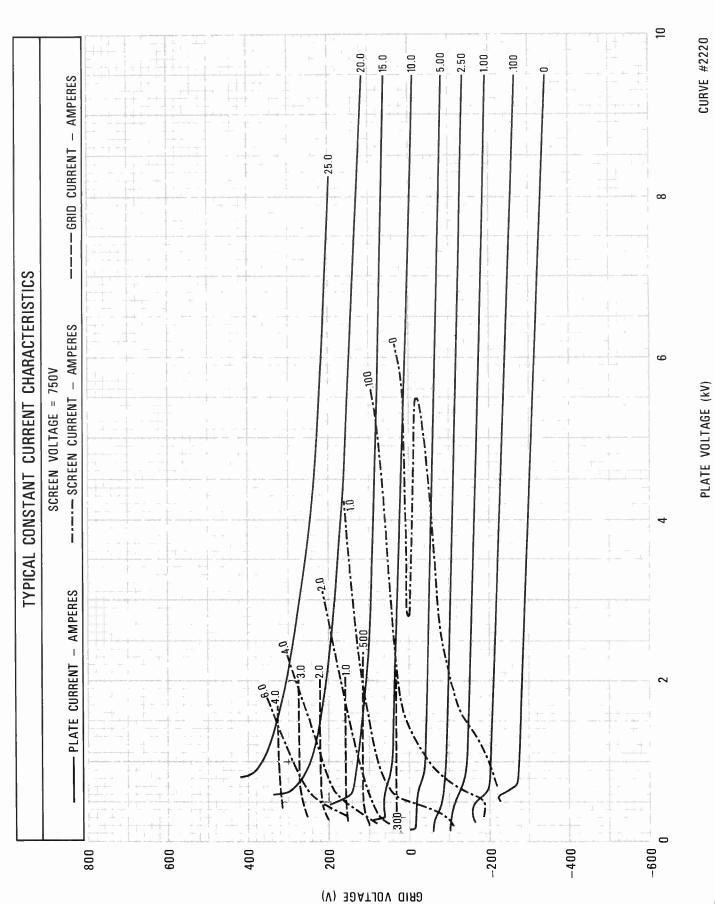
HIGH VOLTAGE - Normal operating voltages used with the 4CW25,000A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

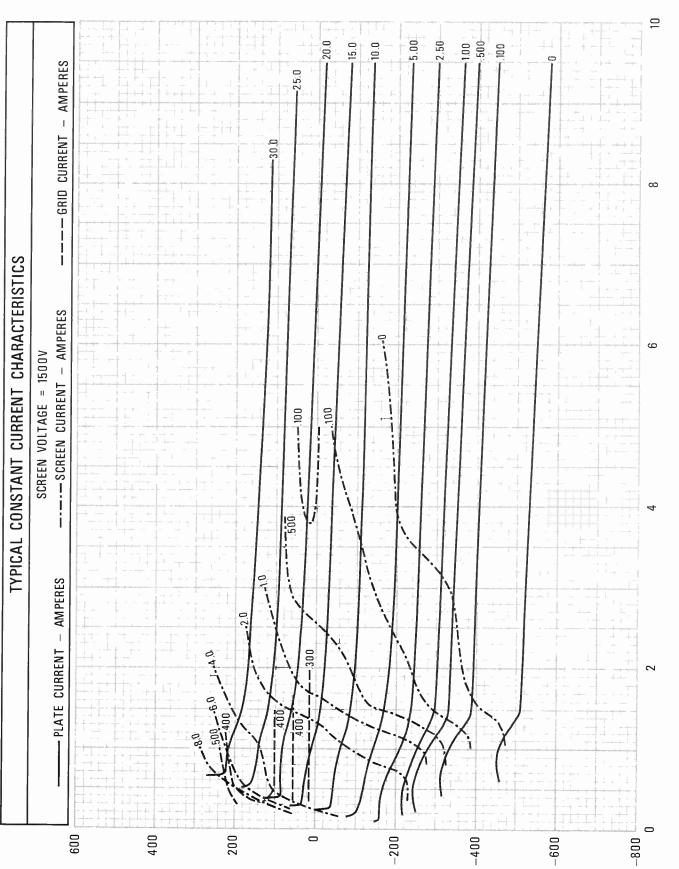
X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CW25,000A, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 4CW-25,000A, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

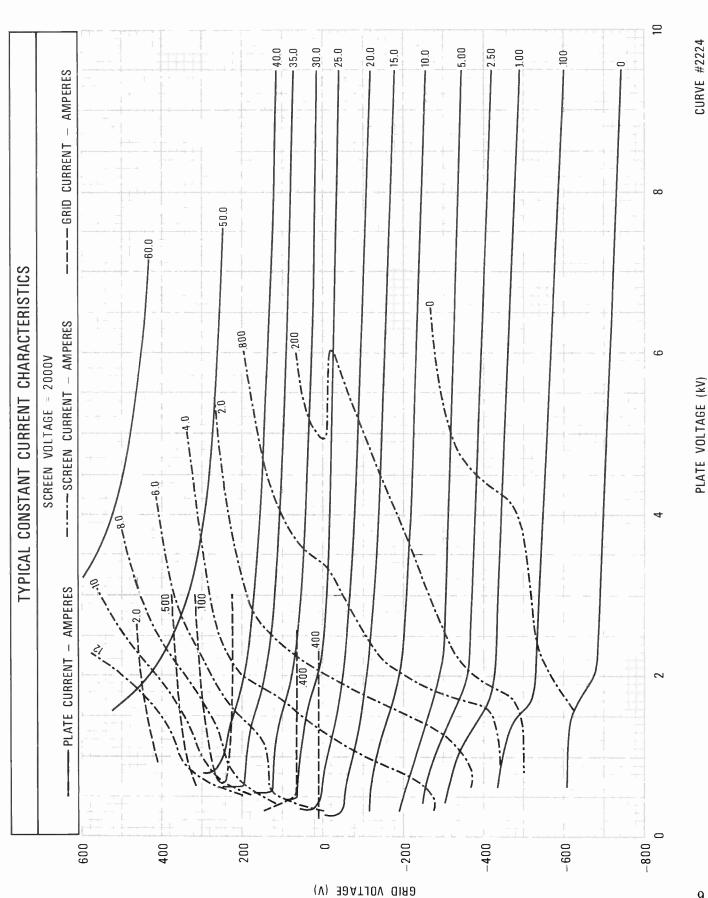

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and


wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

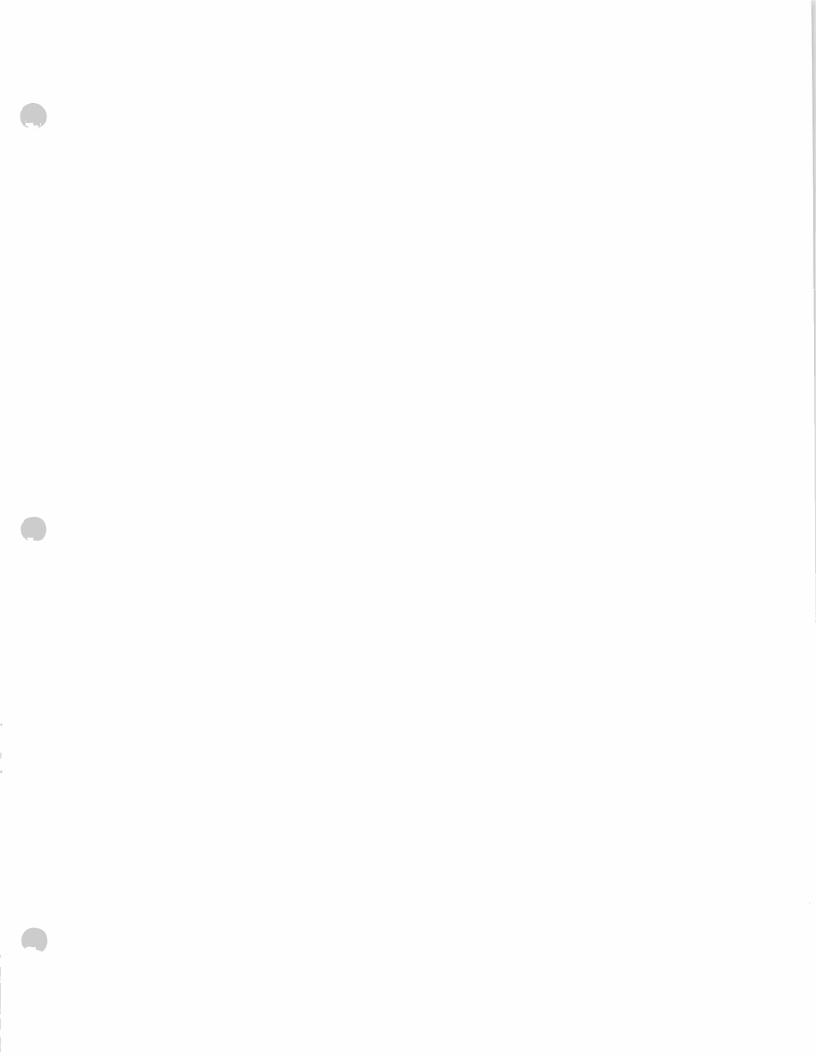
SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to the Application Engineering Dept., Power Grid Tube Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California, 94070 for information and recommendations.

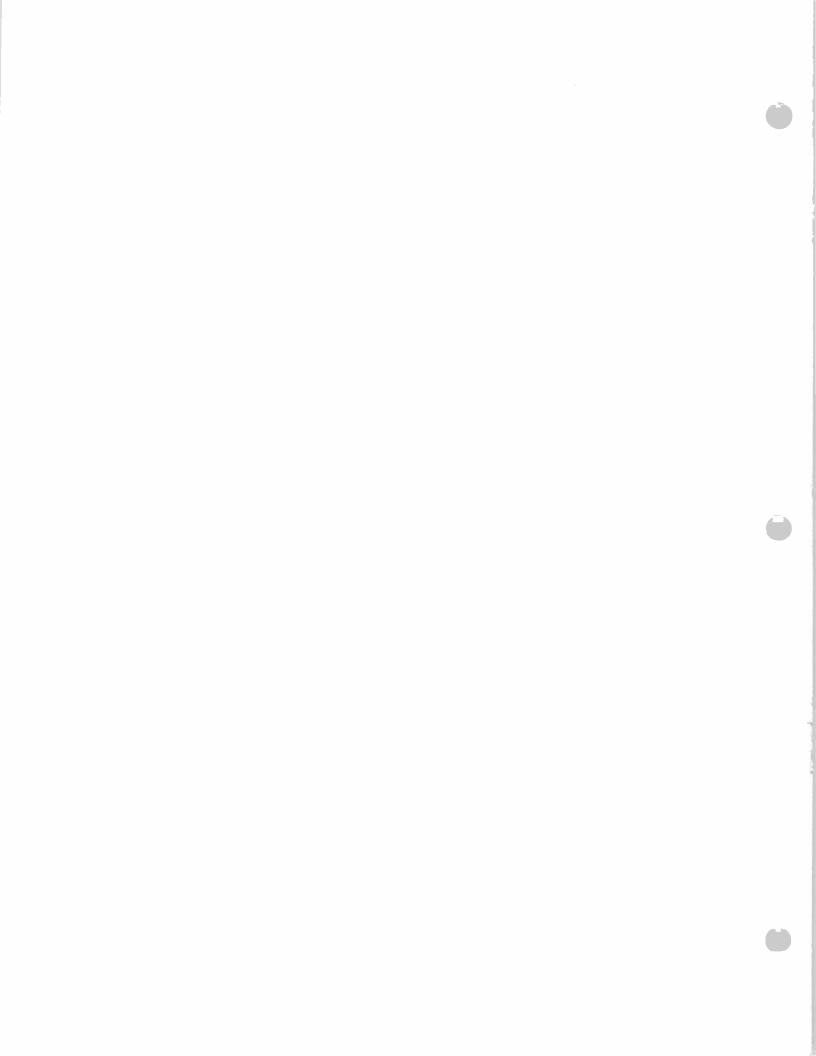









CURVE #2223


PLATE VOLTAGE (KV)

(V) 30ATJOV GIRD











# E I M A C Division of Varian S A N C A R L O S C A L I F O R N A

WATER COOLED POWER TETRODE

The EIMAC 4CW50,000E is a ceramic/metal, liquid-cooled power tetrode intended for use at the 50 to 100 kilowatt output power level. This tube is characterized by low input and feedback capacitances and low internal lead inductances. A rugged mesh thoriated tungsten filament provides adequate emission over the long operating life. It is recommended for use as a Class C rf amplifier or oscillator, a Class AB rf linear amplifier or a Class AB push-pull af amplifier or modulator. The 4CW50,000E is also useful as a plate and screen modulated Class C rf amplifier. The liquid-cooled anode is rated at 50 kilowatts plate dissipation.



# GENERAL CHARACTERISTICS<sup>1</sup>

Shown with SK-2050 water jacket removed.

| Filament: Mesh Thoriated Tungsten                     |                |   |         |     |
|-------------------------------------------------------|----------------|---|---------|-----|
| Voltage                                               | $12.0 \pm 0.6$ | V |         |     |
| Current, at 12.0 volts                                | 220            | Α |         |     |
| Amplification Factor (Average);                       |                |   |         |     |
| Grid to Screen                                        | 4.5            |   |         |     |
| Direct Interelectrode Capacitances (grounded cathode) |                |   |         |     |
| Input                                                 |                |   | <br>310 | pF  |
| Output                                                |                |   | <br>53  | pF  |
| Feedback                                              |                |   | <br>0.7 | pF  |
| Frequency of Maximum Rating:                          |                |   |         |     |
| CW                                                    |                |   | <br>110 | MHz |
|                                                       |                |   |         |     |

<sup>1.</sup> Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

# MECHANICAL

**ELECTRICAL** 

| Maximum Overall Dimensions:                        |
|----------------------------------------------------|
| Length (with water jacket)                         |
| Diameter                                           |
| Net Weight (less water jacket)                     |
| Operating Position                                 |
| Maximum Operating Temperature:                     |
| Ceramic/Metal Seals and terminals 250°C            |
| Cooling Liquid and Forced air                      |
| Base Special                                       |
| Recommended Socket EIMAC SK-2000 Series            |
| Recommended Water Jacket EIMAC SK-2050             |
| (Effective 7-1-70) © 1970 Varian Printed in U.S.A. |



# RADIO FREQUENCY LINEAR AMPLIFIER **GRID DRIVEN** Class AB

ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | VOLTS   |
|--------------------|--------|---------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS   |
| DC PLATE CURRENT   | 12.0   | AMPERES |
| PLATE DISSIPATION  | 50,000 | WATTS   |
| SCREEN DISSIPATION | 1,500  | WATTS   |
| GRID DISSIPATION   | 400    | WATTS   |

1. Adjust to specified zero-signal dc plate current.

2. Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions.

| Plate Voltage                | .0 kVdc |
|------------------------------|---------|
| Screen Voltage               | .8 kVdc |
| Grid Voltage 120             |         |
| Zero-Signal Plate Current    | .4 Adc  |
| Single Tone Plate Current 9. | 14 Adc  |
| Peak rf Grid Voltage 2       | 30 v    |
| Resonant Load Impedance 60   | ο Ω     |
| Plate Dissipation            |         |
| Plate Output Power           |         |

# RADIO FREQUENCY POWER AMPLIFIER OR **OSCILLATOR**

Class C Telegraphy or FM Telephony (Key-Down Conditions)

# ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |

# TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Valtage 15.0             | 15.0 | kVdc     |
|--------------------------------|------|----------|
| Plate Voltage                  |      |          |
| Screen Voltage 1.5             | 1.5  | kVdc     |
| Grid Voltage                   | -800 | Vdc      |
| Plate Current 9.0              | 11.5 | Adc      |
| Screen Current10.9             | 0.83 | Adc      |
| Grid Current <sup>1</sup> 125  | 160  | mAdc     |
| Peak rf Grid Voltage 1 880     | 925  | V        |
| Calculated Driving Power 1 110 | 150  | W        |
| Plate Dissipation 25           | 36   | kW       |
| Plate Output Power             | 137  | kW       |
| Resonant Load Impedance 820    | 615  | $\Omega$ |
|                                |      |          |

1. Approximate value

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

# ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE              | 15,000 | VOLTS |
|-------------------------------|--------|-------|
| DC SCREEN VOLTAGE             | 2,000  | VOLTS |
| DC PLATE CURRENT              |        |       |
| PLATE DISSIPATION 1           |        |       |
| SCREEN DISSIPATION 2          | 1,500  | WATTS |
| GRID DISSIPATION <sup>2</sup> | 400    | WATTS |
|                               |        |       |

1. Corresponds to 50,000 watts at 100% sine-wave modulation.

2. Average, with or without modulation.

# TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage 9.0            | 14.0  | kVdc |
|------------------------------|-------|------|
| Screen Voltage 750           | •750  | Vdc  |
| Grid Voltage600              | -600  | Vdc  |
| Plate Current 7.41           | 9,25  | Adc  |
| Screen Current 3 0.69        | 1.15  | Adc  |
| Grid Current                 | 0.833 | Adc  |
| Peak af Screen Voltage 3     |       |      |
| (100% modulation) 750        | 750   | V    |
| Peak rf Grid Voltage 3 750   | 820   | V    |
| Calculated Driving Power 250 | 685   | W    |
| Plate Dissipation 12.5       | 21.5  | kW   |
| Plate Output Power 54.2      | 1 10  | kW   |
|                              |       |      |

3. Approximate value.

# **AUDIO FREQUENCY POWER AMPLIFIER** OR MODULATOR

Class AB1, Grid Driven (Sinusoidal Wave)

# ABSOLUTE MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 17,500 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |

# TYPICAL OPERATION (Two Tubes)

| Plate Voltage                    | 15.0 | kVdc     |
|----------------------------------|------|----------|
| Screen Voltage                   | 1.25 | kVdc     |
| Grid Voltage 1/3                 | -280 | Vdc      |
| Zero-Signal Plate Current        | 5.0  | Adc      |
| Max. Signal Plate Current        | 18.6 | Adc      |
| Max. Signal Screen Current 1     | 0.6  | Adc      |
| Peak af Grid Voltage 2           | 275  | V        |
| Peak Driving Power               | 0    | W        |
| Max. Signal Plate Dissipation 2  | 41.7 | kW       |
| Plate Output Power               | 195  | kW       |
| Load Resistance (plate to plate) | 1870 | $\Omega$ |
|                                  |      |          |

- 1. Approximate value.
- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.



NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                         | Min. | Max.   |
|-----------------------------------------------------------|------|--------|
| Filament: Current at 12.0 volts                           | 200  | 230 A  |
| Interelectrode Capacitances (grounded cathode connection) |      |        |
| Input                                                     | 290  | 330 pF |
| Output                                                    | 45   | 58 pF  |
| Feedback                                                  |      | 1.0 pF |
| Interelectrode Capacitances (grounded grid connection)    |      |        |
| Input                                                     | 130  | 150 pF |
| Output                                                    |      |        |
| Feedback                                                  |      |        |

# APPLICATION

# MECHANICAL

MOUNTING - The 4CW50,000E must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

SOCKET - The EIMAC socket type SK-2000 is recommended for use with the 4CW50,000E.

COOLING - Anode cooling is accomplished by circulating water through the SK-2050 water jacket. The table below lists minimum cooling water requirements at various dissipation levels.

| Plate Dissipation* (kilowatts) | Water Flow<br>(GPM) | Pressure Drop<br>(PSI) |
|--------------------------------|---------------------|------------------------|
| 10                             | 3.0                 | 2.0                    |
| 20                             | 5.0                 | 3.0                    |
| 30                             | 6.5                 | 4.0                    |
| 40                             | 8.5                 | 5.2                    |
| 50                             | 10.5                | 6.5                    |

\*Since the power dissipated by the filament represents about 2500 watts and since grid-plus-screen dissipation can, under some conditions, represent another 1900 watts, allowance has been made in preparing this tabulation for an additional 4400 watts dissipation.

The cooling table above assumes a water temperature rise of 20°C. Under no circumstances should the outlet water temperature exceed 70°C. Inlet water pressure should not exceed 100 psi.

A major factor affecting long life of water cooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K ohms/cm³, and preferably above 250 K ohms/cm³. A relative water resistance check can be made continuously by measuring the leakage current which will bypass a short section of the insulating hose column if metal nipples or fittings are used as electrodes.

Separate cooling of the tube base is required and is accomplished by directing approximately 200 cfm of air through the socket.

# ELECTRICAL

FILAMENT OPERATION - Filament voltage should be measured at the socket with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 4CW50,000E is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CW50,000E by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is

done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CW50,000E. At some point in filament voltage there will be noticeable reduction in plate current, or power output, or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate. This point should be periodically checked to maintain proper operation.

GRID OPERATION - The 4CW50,000E control grid is rated at 400 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.

SCREEN DISSIPATION - The power dissipated by the screen grid must not exceed 1500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is dependent on rms screen voltage, and rms screen current. Plate voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

The 4CW50,000E may exhibit reversed screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, or an electron-tube regulator circuit may be employed in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed.

PLATE DISSIPATION - The plate dissipation of 50 kilowatts attainable through water cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CW50,000E is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 33,300 watts.

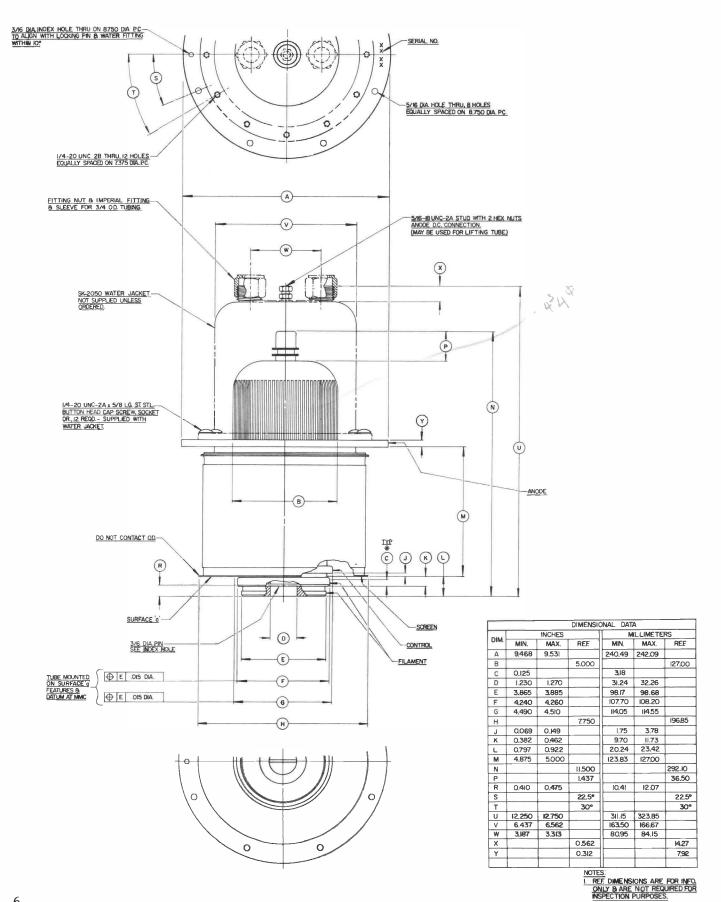
STANDBY OPERATION - Coolant must be circulated through the anode water jacket whenever filament power is applied even though no other voltages are present. Sixty to eighty percent of the filament power appears as heat in the anode. In the absence of coolant, flow temperatures will rise to levels which are detrimental to long life. If the coolant lines are obstructed the coolant jacket may rupture from the generated steam pressure.

HIGH VOLTAGE - Normal operating voltages used with the 4CW50,000E are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

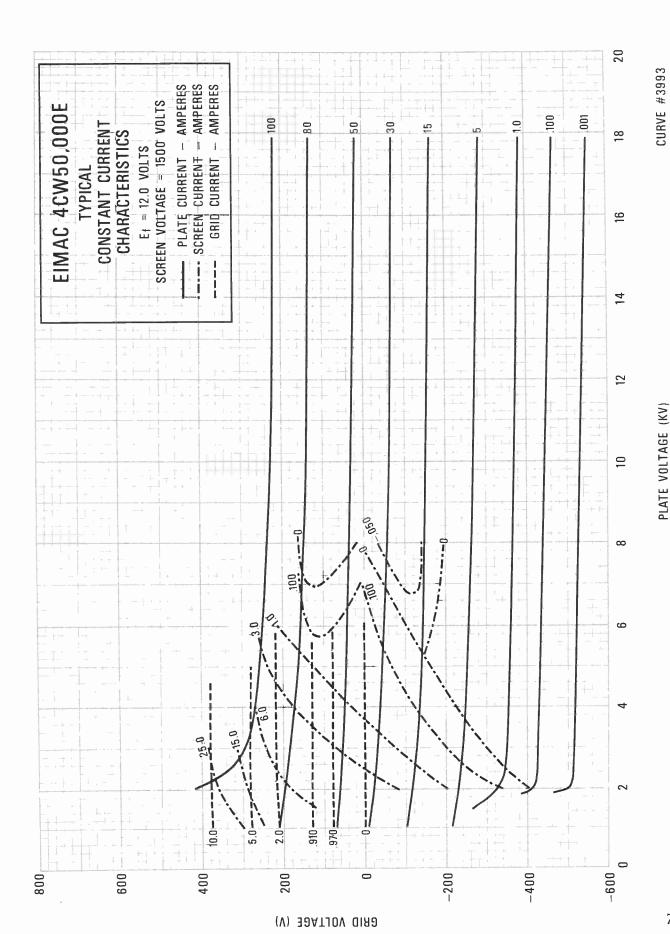
X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CW50,000E, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

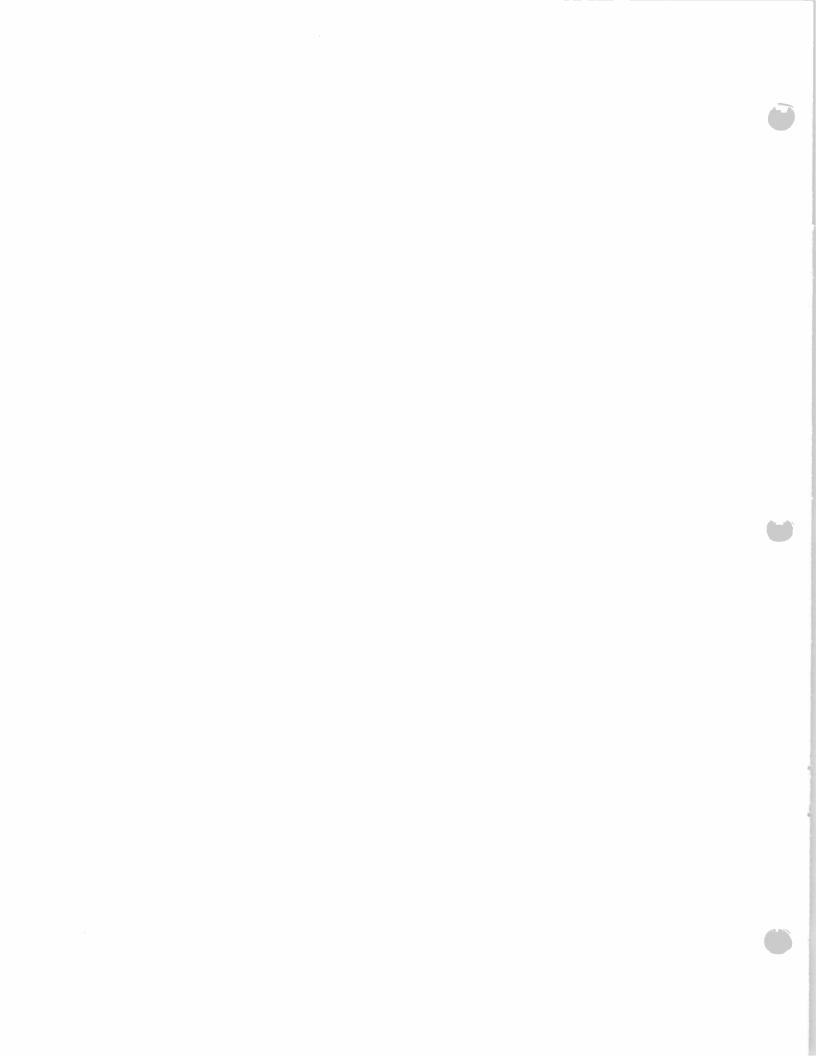
Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.




RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as the 4CW-50,000E, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry—the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.


FAULT PROTECTION - In addition to normal plate over-current interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltage.


In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

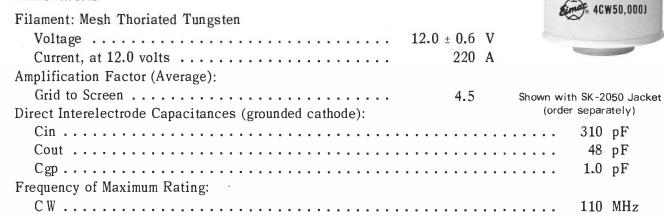











# TECHNICAL DATA

WATER COOLED POWER TETRODE

The EIMAC 4CW50,000J is a ceramic/metal, liquid-cooled power tetrode intended for use at the 50 to 100 kilowatt output power level. This tube is characterized by low input and feedback capacitances and low internal lead inductances. A rugged mesh thoriated tungsten filament provides adequate emission over the long operating life. It is recommended for use as a Class AB1 rf linear amplifier. The liquid-cooled anode is rated at 50 kilowatts plate dissipation.

# GENERAL CHARACTERISTICS 1

# ELECTRICAL



1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

# MECHANICAL

Diameter

| 3.6 .   | $\sim$       | 11       | D.     |         |
|---------|--------------|----------|--------|---------|
| Maximum | 11           | 17 A T O | I Jima | neinne  |
| maximum | $\mathbf{v}$ | vciaii   | DIME   | marona. |

| Diameter                                |
|-----------------------------------------|
| Net Weight (less water jacket)          |
| Operating Position                      |
| Maximum Operating Temperature:          |
| Ceramic/Metal Seals and terminals       |
| Cooling Liquid and Forced Air           |
| Base Special                            |
| Recommended Socket EIMAC SK-2000 Series |
| Recommended Water Jacket EIMAC SK-2050  |
|                                         |

(Effective 7-15-71)

(0)

1971 Varian

Printed in U.S.A.

12.75 in; 324 mm

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB

ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17,500 | <b>VOLTS</b>   |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 12.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 50,000 | WATTS          |
| SCREEN DISSIPATION | 1,500  | WATTS          |
| GRID DISSIPATION   | 400    | WATTS          |
|                    |        |                |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.
- The IMD products are referenced against one tone of a two-equal tone signal.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven Peak Envelope or Modulation Crest Conditions

| Plate Voltage 8.3                             |          |
|-----------------------------------------------|----------|
| Screen Voltage 1.5                            | kVdc     |
| Grid Voltage 1250                             | ) Vdc    |
| -cro orginal react burnerit                   | Adc      |
|                                               | 3 Adc    |
| Peak rf Grid Voltage <sup>2</sup>             | ) v      |
| mountain and important of the transfer of the | $\Omega$ |
| Plate Dissipation                             | 5 kW     |
|                                               | 5 kW     |
| Intermod. Distortion Products 3               |          |
| 3rd Order46                                   | dB       |
| 5th Order60                                   | ) dB     |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

# RANGE VALUES FOR EQUIPMENT DESIGN

|                                                          | Min. | Max.    |  |  |  |
|----------------------------------------------------------|------|---------|--|--|--|
| Filament: Current at 12.0 volts                          | 200  | 230 A   |  |  |  |
| Interlectrode Capacitances (grounded cathode connection) |      |         |  |  |  |
| Cin                                                      | 290  | 330 pF  |  |  |  |
| Cout                                                     | 42.0 | 53.0 pF |  |  |  |
| Cgp                                                      |      | 1.5 pF  |  |  |  |
| Interelectrode Capacitances (grounded grid connection)   |      |         |  |  |  |
| Cin                                                      | 113  | 137 pF  |  |  |  |
| Cout                                                     | 45.0 | 55.0 pF |  |  |  |
| Cgk                                                      |      | 0.5 pF  |  |  |  |

# **APPLICATION**

# MECHANICAL

MOUNTING - The 4CW50,000J must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

**SOCKET** - The EIMAC socket type SK-2000 is recommended for use with the 4CW50,000].

COOLING - Anode cooling is accomplished by circulating water through the SK-2050 water jacket. The table below lists minimum cooling water requirements at various dissipation levels.

|   | Plate Dissipa-<br>tion*<br>(kilowatts) | Water Flow<br>(GPM) | Pressure Drop<br>(PSI) |
|---|----------------------------------------|---------------------|------------------------|
|   | 10                                     | 3.0                 | 2.0                    |
|   | 20                                     | 5.0                 | 3.0                    |
|   | 30                                     | 6.5                 | 4.0                    |
|   | 40                                     | 8.5                 | 5.2                    |
| 1 | 50                                     | 10.5                | 6.5                    |
|   |                                        |                     |                        |

\*Since the power dissipated by the filament represents about 2500 watts and since grid-plus-screen dissipation can, under some conditions, represent another 1900 watts, allowance has been made in preparing this tabulation for an additional 4400 watts dissipation.

The cooling table above assumes a water temperature rise of  $20^{\circ}$ C. Under no circumstances should the outlet water temperature exceed  $70^{\circ}$ C. Inlet water pressure should not exceed 100 psi.

A major factor affecting long life of water cooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K ohms/cm³, and preferably above 250 K ohms/cm³. A relative water resistance check can be made continuously by measuring the leakage current which will bypass a short section of the insulating hose column if metal nipples or fittings are used as electrodes.

Separate cooling of the tube base is required and is accomplished by directing approximately 200 cfm of air through the socket.

# **ELECTRICAL**

FILAMENT OPERATION - Filament voltage should be measured at the socket with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 4CW50,0001 is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CW50,000J by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CW50,000]. At some point in filament voltage there will be noticeable reduction in plate current, or power output, or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate. This point should be periodically checked to maintain proper operation.

GRID OPERATION - The 4CW50,000J control grid is rated at 400 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.

SCREEN DISSIPATION - The power dissipated by the screen grid must not exceed 1500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen

current. With screen modulation the dissipation is dependent on rms screen voltage, and rms screen current. Plate voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

The 4CW50,000J may exhibit reversed screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, or an electron-tube regulator circuit may be employed in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed.

PLATE DISSIPATION - The plate dissipation of 50 kilowatts attainable through water cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CW50,000J is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 33,300 watts.

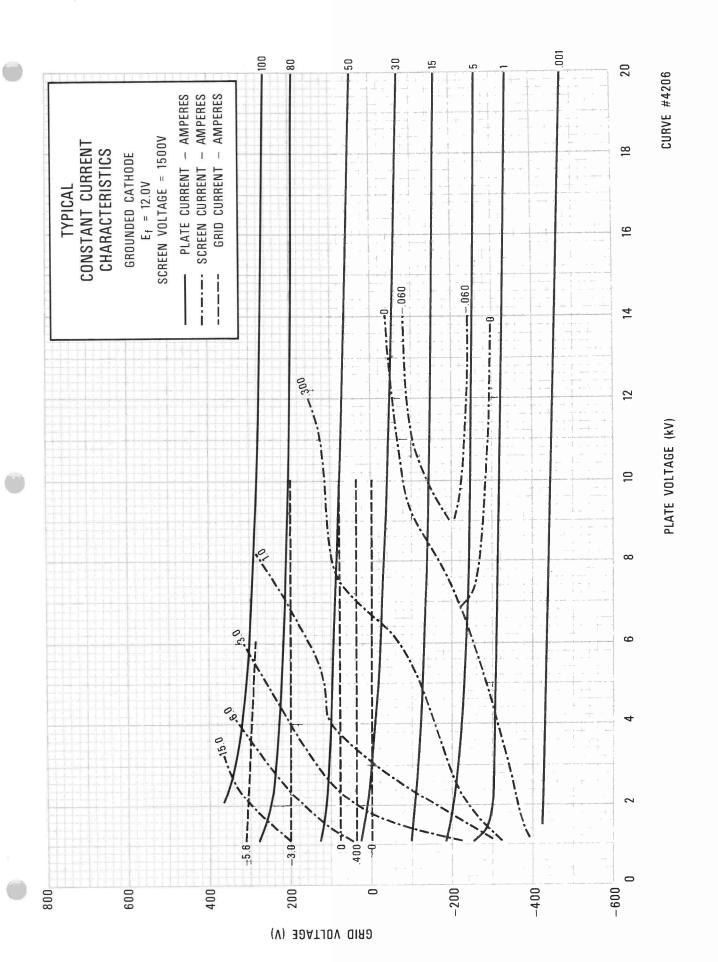
STANDBY OPERATION - Coolant must be circulated through the anode water jacket whenever filament power is applied even though no other voltages are present. Sixty to eighty percent of the filament power appears as heat in the anode. In the absence of coolant flow, temperatures will rise to levels which are detrimental to long life. If the coolant lines are obstructed the coolant jacket may rupture from the generated steam pressure.

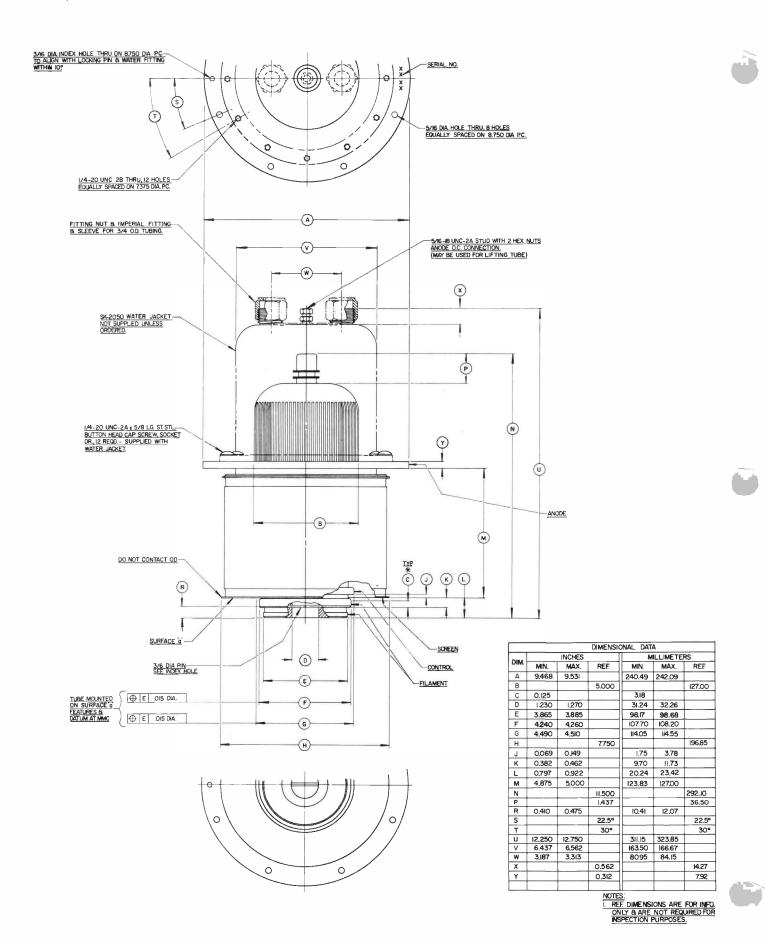
HIGH VOLTAGE - Normal operating voltages used with the 4CW50,000J are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher that 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CW50,000J, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies,


and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 4CW-50,000J, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

FAULT PROTECTION - In addition to normal plate over-current interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltage.

In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.









LIQUID COOLED
POWER TETRODE

The EIMAC 4CW100,000D is a ceramic/metal, liquid-cooled power tetrode intended for use at the 100 to 200 kilowatt output power level. It is recommended for use as a Class-C rf amplifier or oscillator, a Class-AB, rf linear amplifier or a Class-AB, push-pull af amplifier or modulator. The 4CW100,000D is also useful as a plate and screen modulated Class-C rf amplifier, and in pulse modulator-regulator service.

The liquid-cooled anode is rated at 100 kilowatts maximum plate dissipation.

# GENERAL CHARACTERISTICS1

# ELECTRICAL

| Filament: Thoriated Tungsten                                |      |                |  |  |
|-------------------------------------------------------------|------|----------------|--|--|
| Voltage                                                     | 10.0 | V              |  |  |
| Current                                                     | 295  | Α              |  |  |
| Amplification Factor (Grid-Screen)(average)                 | 4.5  |                |  |  |
| Interelectrode Capacitances, Grounded Cathode: <sup>2</sup> |      |                |  |  |
| Cin                                                         | 440  | pF             |  |  |
| Cout                                                        | 55   | pF             |  |  |
| Cgp                                                         | 2.4  | pF             |  |  |
| Interelectrode Capacitances, Grounded Grid: 2               |      |                |  |  |
| Cin                                                         | 175  | pF             |  |  |
| Cout                                                        | 57   | pF             |  |  |
| Cpk                                                         | 0.5  | pF             |  |  |
| Frequency for Maximum Ratings                               | 30   | $\mathrm{MH}z$ |  |  |



- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# MECHANICAL

| Base Special, graduated ri          | ngs  |
|-------------------------------------|------|
| Maximum Seal Temperature            | 0°C  |
| Maximum Envelope Temperature        | 0°C  |
| Recommended Socket EIMAC SK-1500 Se | ries |
| Operating Position                  | o wn |

(Effective 9-1-75) ©

© 1967, 1975 by Varian

Printed in U.S.A.



| Maximum Dimensions:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Height                                                                    | 18.0 In.; 457.2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Diameter                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooling                                                                   | Liquid and forced air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Net Weight (Approximate)                                                  | 60 lbs; 27.3 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shipping Weight (Approximate)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| suppling worght (opploamate)                                              | 05 lbs, 50.0 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RADIO-FREQUENCY POWER AMPLIFIER OR                                        | TYPICAL OPERATION (Frequencies below 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OSCILLATOR Class-C Telegraphy or FM (Key-down conditions)                 | Place V-land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (ney-down conditions)                                                     | Plate Voltage 15.0 17.0 19.0 kVdc<br>Screen Voltage 750 750 750 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ABSOLUTE MAXIMUM RATINGS:                                                 | Screen Voltage         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                           | Plate Current 9.0 9.8 10.6 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DC PLATE VOLTAGE 20,000 VOLTS                                             | Screen Current 1.6 1.67 1.83 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DC SCREEN VOLTAGE 2500 VOLTS                                              | Grid Current 0.8 1.0 1.12 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DC PLATE CURRENT 15.0 AMPERES                                             | Peak RF Grid Voltage 1000 1020 1040 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PLATE DISSIPATION 100,000 WATTS                                           | Driving Power 1 790 1020 1165 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCREEN DISSIPATION 1750 WATTS                                             | Plate Dissipation 24.0 30.0 35 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GRID DISSIPATION 500 WATTS  1. Calculated low frequency drive power.      | Plate Output Power 110 137.5 165 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T. Calculated low frequency drive power.                                  | Resonant Load Impedance . 825 845 980 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PLATE-MODULATED RADIO-FREQUENCY                                           | TYPICAL OPERATION (Frequencies below 30 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| POWER AMPLIFIER-GRID DRIVEN                                               | TIFICAL OPERATION (Frequencies below 30 Min2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Class-C Telephony                                                         | Plate Voltage 14 16 kVdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Carrier conditions except where noted)                                   | Screen Voltage 750 750 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A DOOL LITE AAA VIAALIAA DA TINLOG.                                       | Peak AF Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ABSOLUTE MAXIMUM RATINGS:                                                 | (For 100% modulation) <sup>2</sup> 750 750 v<br>Grid Voltage700 -700 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DC PLATE VOLTAGE 17,500 VOLTS                                             | Plate Current 9.1 12.0 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DC SCREEN VOLTAGE 2000 VOLTS                                              | Screen Current 2.0 1.75 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DC PLATE CURRENT 15.0 AMPERES PLATE DISSIPATION <sup>1</sup> 66,500 WATTS | Grid Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PLATE DISSIPATION 1                                                       | Peak RF Grid Voltage 1000 1050 v<br>Grid Driving Power3 1000 1260 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GRID DISSIPATION 4 500 WATTS                                              | Plate Dissipation 20.4 54.0 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.0                                                                       | Plate Output Power 107 138.5 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Corresponds to 100,000 watts at 100% sine wave                         | Resonant Load Impedance 790 620 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| modulation. 2. Approximate value, depends on degree of driver             | 3. Calculated low frequency drive power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| modulation.                                                               | Average, with or without modulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AUDIO-FREQUENCY AMPLIFIER OR                                              | TYPICAL OPERATION (Two Tubes) Class-AB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MODULATOR                                                                 | THE SECTION AND ADDRESS OF THE PROPERTY OF THE |
| Class-AB                                                                  | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ADCOLUTE MANUSALINA DATINICO ( Ad)                                        | Screen Voltage 1.5 kVdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABSOLUTE MAXIMUM RATINGS (per tube):                                      | Grid Voltage360 -380 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DC PLATE VOLTAGE 20,000 VOLTS                                             | Max-Signal Plate Current 18.8 20.0 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DC SCREEN VOLTAGE                                                         | Zero-Signal Plate Current 6.0 6.0 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DC PLATE CURRENT 15.0 AMPERES                                             | Max-Signal Screen Current 2 0.690 0.700 Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PLATE DISSIPATION 100,000 WATTS                                           | Peak AF Driving Voltage 1 350 380 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SCREEN DISSIPATION 1750 WATTS                                             | Driving Power 0 0 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GRID DISSIPATION 500 WATTS                                                | Load Resistance, Plate-to-Plate 1800 2080 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1. Per Tube.                                                              | Max-Signal Plate Dissipation <sup>1</sup> 47.3 56.8 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Approximate value.                                                     | Max-Signal Plate Output Power 187.4 246.4 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| RADIO-FREQUENCY LINEAR AMPLIFIER Class-AB         | TYPICAL OPERATION, Peak-Envelope or Modulation-<br>Crest Conditions, (Frequencies below 30 MHz)<br>Class-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS:                         | DI=- V I 10 IVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DC PLATE VOLTAGE                                  | Plate Voltage       15       18       kVdc         Screen Voltage       1.5       1.5       kVdc         Grid Voltage       -360       -380       Vdc         Max-Signal Plate Current       9.4       10.0       Adc         Zero-Signal Plate Current       3.0       3.0       Adc         Max-Signal Screen Current 1       0.345       0.350       Adc         Peak RF Grid Voltage       350       380       v         Driving Power       0       0       W         Plate Dissipation       47.3       56.8       kW         Plate Output Power       93.7       123.2       kW         Resonant Load Impedance       900       1040       Ω |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PULSE MODULATOR SERVICE                           | TYPICAL OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PULSE MODULATOR SERVICE ABSOLUTE MAXIMUM RATINGS: | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage         38 kVdc           Pulse Plate Current         112 a           Screen Voltage         1.5 kVdc           Pulse Screen Current 1         18.0 a           Grid Voltage         -1.2 kVdc           Pulse Grid Current 1         10.0 a           Pulse Positive Grid Voltage         480 v           Duty         5 %           Pulse Output Voltage         32 kv           Pulse Input Power         4.25 Mw                                                                                                                                                                                                                  |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE       | Plate Voltage       38 kVdc         Pulse Plate Current       112 a         Screen Voltage       1.5 kVdc         Pulse Screen Current 1       18.0 a         Grid Voltage       -1.2 kVdc         Pulse Grid Current 1       10.0 a         Pulse Positive Grid Voltage       480 v         Duty       5 %         Pulse Output Voltage       32 kv                                                                                                                                                                                                                                                                                                |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

# RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                        | Min. | Max.   |
|------------------------------------------------------------------------|------|--------|
| Heater: Current at 10.0 volts                                          | 280  | 310 A  |
| Interelectrode Capacitances (grounded cathode connection) <sup>2</sup> |      |        |
| Cin                                                                    | 410  | 470 pF |
| Cout                                                                   | 50   | 60 pF  |
| Cgp                                                                    | 1.5  | 3.2 pF |

<sup>2.</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# APPLICATION

### MECHANICAL

MOUNTING - The 4CW100,000D must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

SOCKET - The EIMAC sockets, type SK-1500 and SK-1510 are recommended for use with the 4CW100,000D.

COOLING - Anode cooling is accomplished by circulating water through the integral anode water jacket. The table below lists minimum cooling water requirements at various dissipation levels.

| Plate Dissipation * (kilowatts) | Water Flow<br>(GPM) | Pressure Drop<br>(PSI) |
|---------------------------------|---------------------|------------------------|
| 50                              | 10                  | 10                     |
| 75                              | 15                  | 25                     |
| 100                             | 20                  | 40                     |

\* Since the power dissipated by the filament represents about 3000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 2250 watts, allowance has been made in preparing this tabulation for an additional 5250 watts dissipation.

The cooling table above assumes a water temperature rise of 20°C. Under no circumstances should the outlet water temperature exceed 70°C. Inlet water pressure should not exceed 80 PSI.

A major factor effecting long life of water cooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K ohms/cm3, and preferably above 250 K ohms/cm3. A relative water resistance check can be made continuously by measuring the leakage current which will bypass a short section of the insulating hose column if metal nipples or fittings are used as electrodes.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than 250°C. For most applications, 1 to 2 cfm of air directed through the center of the socket is sufficient for this purpose.

## **ELECTRICAL**

FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CW100,000D is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CW100,000D by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CW100,000D. At some point in filament voltage there will be noticeable reduction in plate current, or power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appeared to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked to maintain proper operation.

Filament starting current must be limited to a maximum of 900 amperes.

 $\frac{\text{Voltage between filament and the base plates}}{\text{of the tube, and SK-1500 socket, must not exceed 100 volts.}}$ 

CONTROL-GRID OPERATION - The 4CW-100,000D control grid is rated at 500 watts of dissipation. Grid dissipation is the approximate product of grid current and peak positive grid voltage.

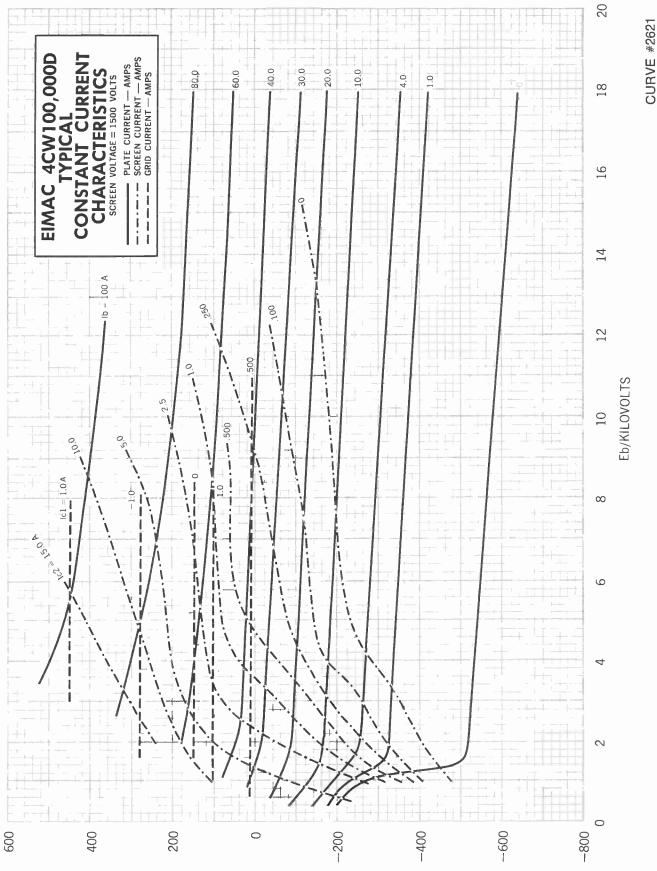
SCREEN DISSIPATION - The power dissipated by the screen grid must not exceed 1750 watts.

Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is dependent on RMS screen voltage, and RMS screen current. Plate voltage, plate load or bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to prevent any of these conditions.

PLATE DISSIPATION - The plate dissipation of 100 kilowatts attainable through water cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CW100,000D is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 66,500 watts.

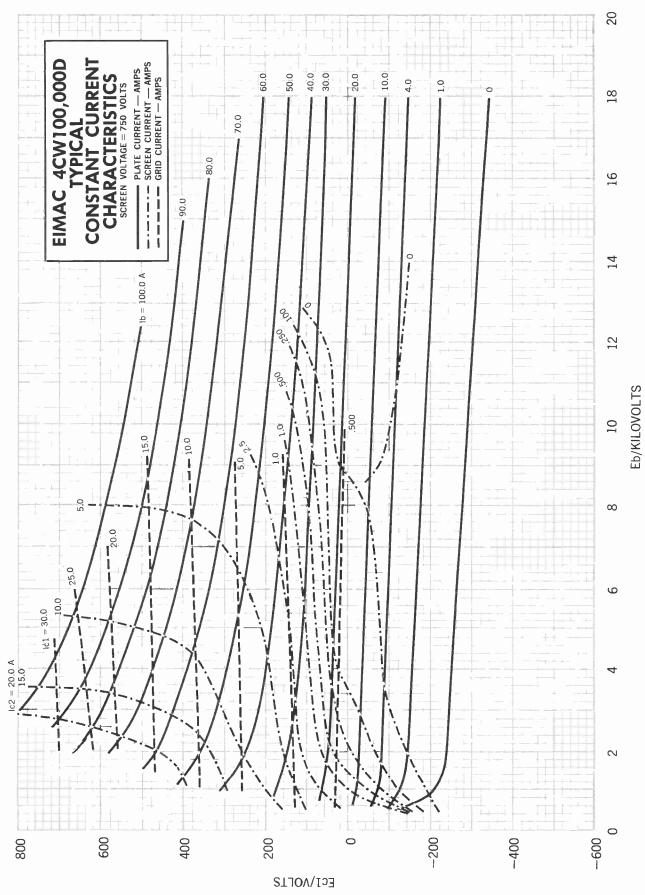
HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

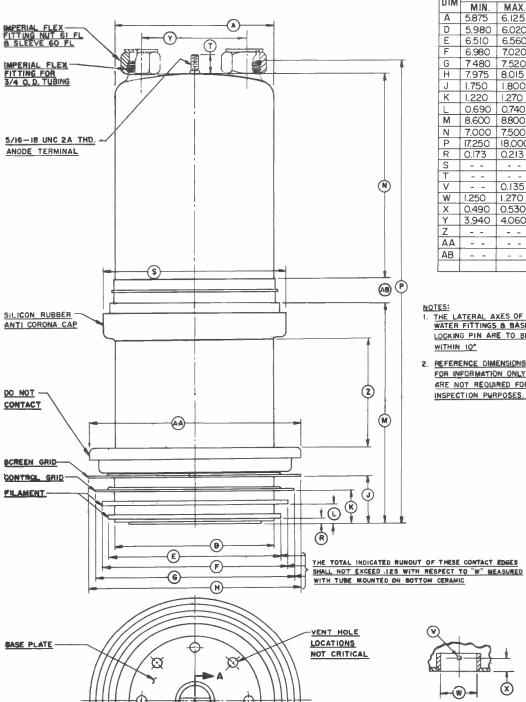
X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level


can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray sur vey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

FAULT PROTECTION - In addition to normal plate overcurrent interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltage.


In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.





**CURVE** #2623





| MIN.   MAX.   REF.   MIN.   MAX.   RIF.   RIF. | DIM ENSIDNAL DATA  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| MIN. MAX. REP.  A 5.875 6.125 D 5.980 6.020 E 6.510 6.560 F 6.980 7.020 H 7.975 8.015 J 17.73 178.3 G 7480 7.520 H 7.975 8.015 J 1.750 1.800 K 1.220 1.270 L 0.690 0.740 J 17.5 18.8 M 8.600 8.800 N 7.000 7.500 P 17.250 18.000 R 0.173 0.213 S 6.950 T 0.135 W 1.250 1.270 Y 3.940 4.060 Z 4.200 100.1 103.1 Z 4.200 100.1 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INCHES MILLIMETERS |  |  |  |  |  |  |
| D 5.980 6.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F.                 |  |  |  |  |  |  |
| E 6.510 6.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  |  |  |  |  |  |  |
| F 6.980 7.020   177.3 178.3   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 190.0 191.0 -   190.0 191.0 -   190.0 190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.0 191.0 -   190.                                                                                    | -                  |  |  |  |  |  |  |
| G 7480 7.520 190.0 191.0 - 202.6 203.6 - 203.6 1.750 1.800 44.4 45.7 - 31.0 32.3 - 44.4 45.7 - 31.0 32.3 - 17.5 18.8 - 218.4 223.5 - 17.5 18.800 17.5 18.8 - 218.4 223.5 - 17.5 18.800 17.5 18.8 190.5 - 17.5 18.800 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.7 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 - 17.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 190.5 1                | -                  |  |  |  |  |  |  |
| H 7.975 8.015 202.6 203.6 - 44.4 45.7 - 44.4 45.7 - 44.4 45.7 - 31.0 32.3 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.8 - 17.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                  |  |  |  |  |  |  |
| J     1.750     1.800        K     1.220     1.270        L     0.690     0.740        M     8.600     8.800        N     7.000     7.500        R     0.173     0.213        S       6.950       T       0.178       V      0.135        W     1.250     1.270        X     0.490     0.530        Y     3.940     4.060        Z       4.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  |  |  |  |  |  |  |
| K         I.220         I.270          3I.0         32.3            L         0.690         0.740          17.5         18.8            M         8.600         8800          17.5         18.8            N         7.000         7.500          177.8         190.5            P         17.250         18.000          438.1         457.2            S           6.950           176           T           0.718           18.           V          0.135           18.           18.           V         1.250         1.270          31.7         33.43          31.7         33.2          12.4         13.5          100.1         103.1          100.1         103.1          100.1         103.1          100.1         103.1           100.1         100.1         100.1         100.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  |  |  |  |  |  |  |
| L 0.690 0.740   17.5 18.8 -   M 8.600 8.800   17.75 18.8 -   N 7.000 7.500   17.78 190.5 -   P 17.250 18.000   43.8! 457.2 -   S 6.950     17.6   T 0.135   17.6   W 1.250 1.270   31.7 32.2   -   Y 0.490 0.530   Y 3.940 4.060   100.1 103.1 -   Z 4.200   100.1 103.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |  |  |  |  |  |  |
| M         8.600         8.800          218.4         223.5         -           N         7.000         7.500          177.8         190.5         -           P         17.250         18.000          438.1         457.2         -           R         0.173         0.213            176           S           6.950           176           T           0.718           18.           V          0.135           3.43         -           W         1.250         1.270          31.7         32.2         -           Y         3.940         4.060          12.4         13.5         -           Z           4.200           100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                  |  |  |  |  |  |  |
| N 7.000 7.500   177.8 190.5 -   438.1 457.2 -   439 5.41 -   176.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  |  |  |  |  |  |  |
| P     I7.250     I8.000      438.!     457.2     -       R     0.173     0.213      4.39     5.41     -       S       6.950       176       T      - 0.135       18.       V      0.135       3.43        W     1.250     1.270      31.7     32.2     -       X     0.490     0.530      12.4     13.5     -       Y     3.940     4.060      100.1     103.1     -       Z       4.200       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |  |  |  |  |  |  |
| R 0.173 0.213 4.39 5.41 - 176 S 6.950 T 0.135 18. V 0.135 18. V 1.250 1.270 - 31.7 32.2 X 0.490 0.530 12.4 13.5 - 19. Y 3.940 4.060 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 103.1 - 100.1 100.1 103.1 - 100.1 100.1 103.1 - 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.1 100.                                  | -                  |  |  |  |  |  |  |
| S 6.950<br>T 0.135 18.<br>V 0.135 31.7 32.2<br>Y 0.490 0.530 12.4 13.5<br>Y 3.940 4.060 100.1 103.1<br>Z 4.200 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |  |  |  |  |  |  |
| T 0.718<br>V 0.135 3.43 -<br>W 1.250 1.270 31.7 32.2 -<br>Y 0.490 0.530 12.4 13.5 -<br>Y 3.940 4.060 100.1 103.1 -<br>Z 4.200 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  |  |  |  |  |  |  |
| V     -     0.135     -     -     3.43     -       W     1.250     1.270     -     31.7     32.2     -       X     0.490     0.530     -     12.4     13.5     -       Y     3.940     4.060     -     100.1     103.1     -       Z     -     -     4.200     -     -     100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5                 |  |  |  |  |  |  |
| W     I.250     I.270     -     3I.7     32.2     -       X     0.490     0.530     -     I2.4     I3.5     -       Y     3.940     4.060     -     I00.1     I03.1     -       Z     -     -     4.200     -     -     I0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                  |  |  |  |  |  |  |
| X 0.490 0.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  |  |  |  |  |  |  |
| Y 3.940 4.060 100.1 103.1 - Z 4.200 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                  |  |  |  |  |  |  |
| Z 4.200 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  |  |  |  |  |  |  |
| AA 8.000 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŝ. <b>7</b>        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2                |  |  |  |  |  |  |
| AB 1.080 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |  |  |  |  |

DIMENUCIDAL AL DATA

- 1. THE LATERAL AXES OF THE WATER FITTINGS & BASE LOCKING PIN ARE TO BE
- 2. REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR INSPECTION PURPOSES.



SECTION A-A ROTATED 180°



# TECHNICAL DATA

4CW100,000E

HIGH-POWER WATER-COOLED TETRODE

# DESCRIPTION

The 4CW100,000E is a ceramic/metal, highpower tetrode for applications requiring tube outputs from 100 to 250 kilowatts. It is ideal for use as a Class C rf amplifier or oscillator, a Class AB rf linear amplifier, or a Class AB push-pull af amplifier or modulator as well as a plate- and screen-modulated Class C rf amplifier. In pulse-modulator service, it can deliver a peak output of 4 megawatts. The tube is characterized by low input and feedback capacitances and low internal lead inductances. Its rugged mesh thoriated-tungsten filament provides ample emission for long operating life. The watercooled anode dissipates 100 kilowatts when used with the EIMAC SK-2100 water jacket.



4CW100,000E without SK-2100 Water Jacket

# GENERAL CHARACTERISTICS<sup>1</sup>

| ELECTRICAL                          |       | PHYSICAL                                          |
|-------------------------------------|-------|---------------------------------------------------|
| Filament                            | gsten | Dimensions See Outline Drawing                    |
| Voltage $15.5 \pm 0.75$             | V     | Net Weight                                        |
| Current, at 15.5 V                  | A     | Tube only 38.5 lb; 17.5 kg                        |
| Direct Interelectrode Capacitances, |       | Tube and water jacket 47.0 lb; 21.4 kg            |
| Cathode grounded                    |       | Operating Position Vertical, base up or down      |
| Input 370                           | pF    | Anode Cooling Water                               |
| Output 60                           | рF    | Base Cooling Forced Air                           |
| Feedback 1.0                        | pF    | Operating Temperature, maximum                    |
| Grid grounded                       |       | Ceramic/metal seals and envelope 250 $^{\circ}$ C |
| Input 175                           | рF    | Anode Water Jacket,                               |
| Output 60                           | pF    | required EIMAC SK-2100                            |
| Feedback                            | pF    | Air System Socket,                                |
| Maximum Frequency,                  |       | recommended EIMAC SK-2000 Series                  |
| for maximum CW ratings 108          | MHz   | Base Special                                      |

# MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| RADIO FREQUENCY LINEAR AMPLIFIER, Class AB | Typical Operation, Class AB1, Grid Driven    |
|--------------------------------------------|----------------------------------------------|
|                                            | Peak Envelope or Modulation Crest Conditions |
| Absolute Maximum Ratings                   | Plate Voltage 18 kV                          |
| Plate Voltage 20 kVdc                      | Screen Voltage 1.5 kV                        |

|                    |      |      | Plate Voltage                | 18  | kVde |
|--------------------|------|------|------------------------------|-----|------|
| Plate Voltage      | 20   | kVdc | Screen Voltage               |     |      |
| Screen Voltage     |      |      | Grid Voltage                 |     |      |
| _                  |      |      | Zero-Signal Plate Current    | 4   | Adc  |
| Plate Current      |      |      | Single-Tone Plate Current    |     |      |
| Plate Dissipation  |      |      | Peak rf Grid Voltage, approx |     |      |
| Screen Dissipation | 1750 | W    | Plate Dissipation            |     |      |
| Grid Dissipation   | 500  | W    | Plate Output Power           |     |      |
|                    |      |      | Resonant Load Impedance      | 697 | Ω    |

2479 9/70 O Varian 1970 Printed in U.S.A.

# MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-down Conditions)  Absolute Maximum Ratings Plate Voltage 20 kVdc Screen Voltage 2.5 kVdc Plate Current 16 Adc Plate Dissipation 100 kW Screen Dissipation 1750 W Grid Dissipation 500 W                                                     | Typical OperationPlate Voltage20 kVdcScreen Voltage1.5 kVdcGrid Voltage-800 VdcPlate Current15.2 AdcScreen Current, approx567 mAdcGrid Current, approx125 mAdcPeak rf Grid Voltage, approx900 vDriving Power, calculated, approx120 WPlate Dissipation54 kWPlate Output Power220 kWResonant Load Impedance575 $\Omega$                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLATE MODULATED RADIO FREQUENCY AMPLIFIER GRID DRIVEN · Class C Telephony (Carrier Conditions)  Absolute Maximum Ratings Plate Voltage                                                                                                                                                                                            | Typical OperationPlate Voltage15 kVdcScreen Voltage750 VdcGrid Voltage-600 VdcPlate Current11.7 AdcScreen Current, approx875 mAdcGrid Current, approx660 mAdcPeak af Screen Voltage,750 vPeak rf Grid Voltage, approx800 vDriving Power, calculated530 WPlate Dissipation35 kWPlate Output Power140 kWResonant Load Impedance620 $\Omega$                                                                                                                                                                                                                                         |
| AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR GRID DRIVEN · Class AB1, Sinusoidal Wave  Absolute Maximum Ratings, per tube Plate Voltage                                                                                                                                                                                           | Typical Operation, two tubes  Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PULSE MODULATOR SERVICE  Absolute Maximum Ratings Plate Voltage 40 kVdc Screen Voltage 2.5 kVdc Grid Voltage2.0 kVdc Peak Cathode Current 200 a Plate Dissipation, during the pulse <sup>5</sup> . 1.0 MW Plate Dissipation, average 100 kW Screen Dissipation, average 1750 W Grid Dissipation, average 500 W Pulse Length 10 ms | Typical Operation           Plate Voltage         40 kVdc           Plate Current, pulse         110 a           Screen Voltage         2.5 kVdc           Screen Current, pulse, approx         12 a           Grid Voltage         -1.2 kVdc           Grid Current, pulse, approx         400 ma           Positive Grid Voltage, pulse         110 v           Duty         6 %           Output Voltage, pulse         37 kv           Input Power, pulse         4.4 Mw           Output Power, pulse         4.1 Mw           Cathode Current, pulse, approx         122 a |

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

# RANGE VALUES FOR EQUIPMENT DESIGN

|                                  | Min      | Max               |     |
|----------------------------------|----------|-------------------|-----|
| Filament Current, at 15.5 V      | 200      | 230               | A   |
| Cutoff Bias, at Eb = 25 kVdc,    |          |                   |     |
| Ec2 = 1500  Vdc, $Ib = 10  mAdc$ |          | -650              | Vdc |
| Interelectrode Capacitances,     |          |                   |     |
| Cathode grounded                 |          |                   |     |
| Input                            | 350      | 390 1             | ρF  |
| Output                           | 55       | 65 լ              | ρF  |
| Feedback                         | <b>-</b> | 1.2               | ρF  |
| Grid grounded                    |          |                   |     |
| Input                            | 160      | 190 լ             | ρF  |
| Output                           | 55       | 65 j              | ρF  |
| Feedback                         |          | $0.5  \mathrm{j}$ | ρF  |
|                                  |          |                   |     |

#### NOTES:

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. The EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Adjust to give specified zero-signal plate current.
- 3. Corresponds to 100 kW at 100% sine-wave modulation.
- 4. Average value, with or without modulation.
- 5. Power dissipated during rise and fall time neglected.

# **APPLICATION NOTES**

MOUNTING — The 4CW100,000E must be mounted with its major axis vertical. The tube base may be either up or down, at the discretion of the circuit designer.

 ${\tt SOCKETING-An\ EIMAC\ SK-2000\ series\ Socket},$  or equivalent, is recommended.

ANODE WATER JACKET — The EIMAC SK-2100 Water Jacket must be used to provide anode cooling. To achieve an anode dissipation of 100 kilowatts, the water jacket must be installed over the tube anode and adequate water flow provided.

COOLING — Anode cooling is accomplished by circulating water through the SK-2100 Water Jacket. Insufficient water flow will cause the anode temperature to rise to levels which will shorten tube life. Also, if the coolant lines become clogged, enough steam pressure may be generated to rupture the water jacket and destroy the tube. The following table lists the minimum cooling water requirements at various dissipation levels with a maximum inlet water temperature of 50  $^{\circ}\mathrm{C}$ .

| Anode<br>Dissipation<br>(kW) | Minimum<br>Water Flow<br>(gpm) | Approximate<br>Pressure Drop<br>(psi) |
|------------------------------|--------------------------------|---------------------------------------|
| 20                           | 5.0                            | 2.8                                   |
| 40                           | 9.0                            | 5.8                                   |
| 60                           | 12.5                           | 9.3                                   |
| 80                           | 16.5                           | 14.2                                  |
| 100                          | 20.0                           | 19.2                                  |

Note: Since the filament dissipates about 3500 watts, and the grid-plus-screen can, under some conditions, dissipate another 2250 watts, the table allows for an additional dissipation of 5750 watts.

Outlet water temperature must never exceed 70  $^{\circ}\text{C}$  and inlet water pressure should be limited to 100 psi. Direction of water flow is optional.

Tube life can be seriously affected by the condition of the cooling water. If it becomes ionized, copper-oxide deposits form on the inside of the water jacket causing localized anode heating and eventual tube failure.

To insure minimum electrolysis, and power loss, the water resistance at 20  $^{\circ}C$  should be greater than 50,000 ohms/cm³, preferably 250,000 ohms/cm³ or higher. The relative water resistance can be continuously monitored by measuring the leakage current through a short section of the insulating hose, using metal nipples or fittings as electrodes.

Auxiliary forced-air cooling, of the tube base is required to maintain filament- and grid-seal temperatures below 250 °C. An air flow of approximately 120 ft<sup>3</sup>/min at 50 °C maximum and sea level should be directed, through an EIMAC SK-2000 series socket or equivalent, toward the filament- and grid-seal areas.

Both anode and base cooling should be applied before or simultaneously with the application of electrode voltages, including the filament. Base cooling should continue for about three minutes after the removal of electrode voltages to allow the tube to cool properly.

FILAMENT OPERATION — At rated filament voltage, the peak emission of a 4CW100,000E is many times greater than the amount needed for communication service. Reducing the filament voltage decreases the filament temperature. A small decrease in filament temperature substantially increases filament life. The correct value of filament-voltage should be determined for the particular applications. First, gradually reduce the filament voltage to the point where there is a noticeable reduction in plate current or power output, or an increase in distortion. Then increase the voltage several tenths of a volt above the value where performance degradation occurred; this is the proper operating voltage. Filament voltage should always be measured at the tube base or socket using an rms responding meter. The above procedure should be performed periodically to assure optimum tube life.

GRID OPERATION — The maximum control-grid dissipation is 500 watts, determined approximately by the product of grid current and peak positive grid voltage.

Under some operating conditions, the control grid may exhibit a negative-resistance characteristic. This may occur when, with high screen-grid voltage, increasing the drive voltage decreases the grid current. As a result, large values of instantaneous negative grid current can be produced, causing the amplifier to become regenerative. Because this may happen, the driver stage must be designed to tolerate this condition. One technique is to swamp the driver so that the change in load, due to secondary grid emission, is a small percentage of the total driver load.

SCREEN OPERATION — The maximum screen-grid dissipation is 1750 watts. With no ac applied to the screen, dissipation is simply the product of dc screen voltage and dc screen current. With screen modulation, dissipation is dependent on rms screen voltage

and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since the screen dissipation rating will be exceeded. Suitable protective circuitry should be provided.

The 4CW100,000E may exhibit reverse screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, or an electron-tube regulator circuit may be employed in the screen supply. A bleeder resistor must be used if a series electron-tube regulator is employed.

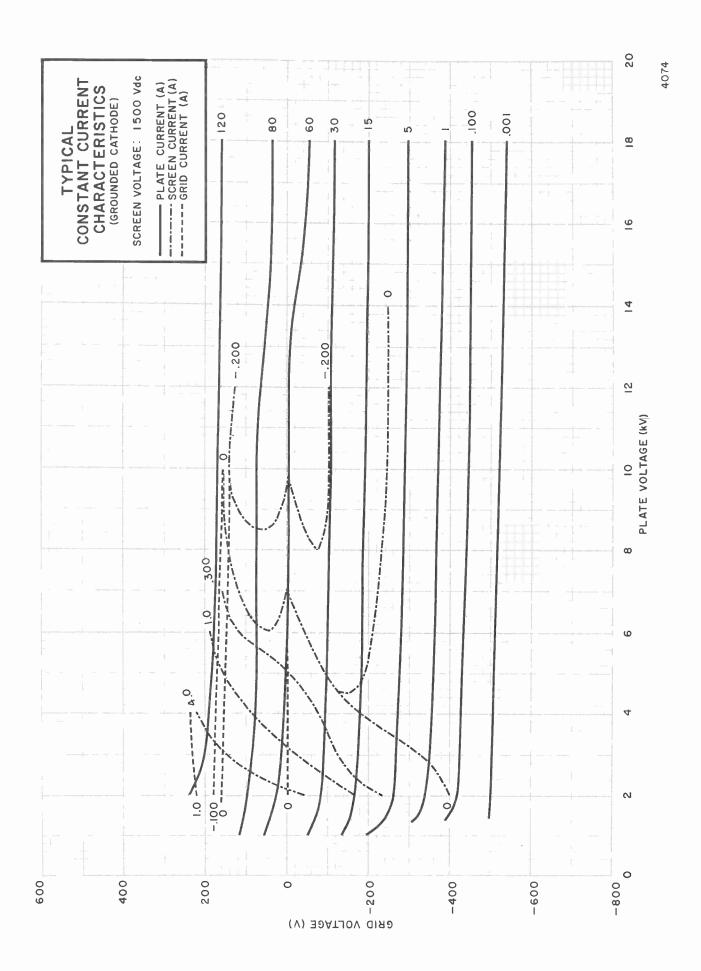
PLATE DISSIPATION — The rated plate dissipation of 100 kilowatts, attainable with water cooling, provides a large margin of safety in most applications. This rating may be exceeded briefly during tuning. When the 4CW100,000E is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions should be limited to 67 kilowatts.

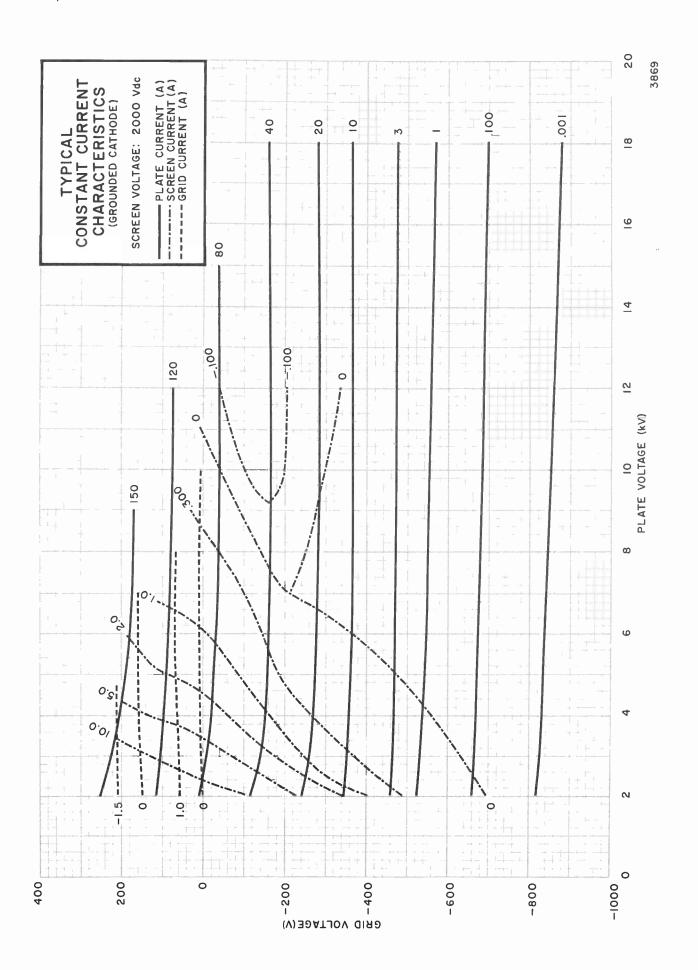
FAULT PROTECTION — In addition to the normal plate-overcurrent interlock, screen-current interlock, and coolant-flow interlock, it is good practice to protect the tube from internal damage caused by an internal plate are which may occur at high plate voltages.

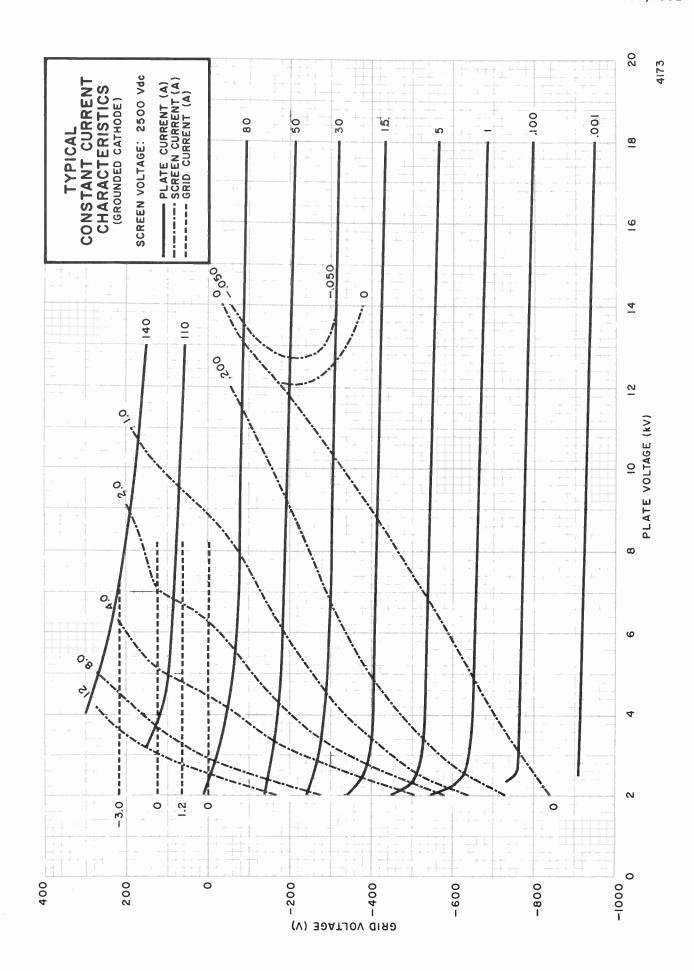
A protective resistance of 5 to 25 ohms should always be connected in series with each tube anode, to absorb power-supply stored energy if a plate arc should occur. An electronic crowbar, which will discharge power-supply capacitors in a few microseconds after the start of a plate arc, is recommended.

# OPERATING HAZARDS

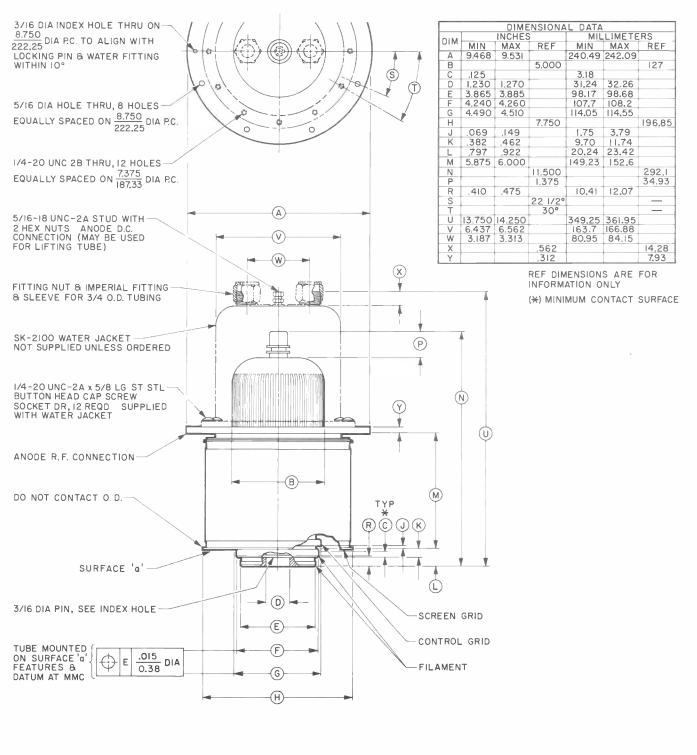
Read the following and take all necessary precautions to safeguard personnel. Safe operating conditions are the responsibility of the equipment designer and the user.

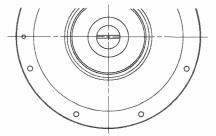

HIGH VOLTAGE — This tube operates at voltages which can be deadly. Equipment must be designed so personnel cannot come in contact with operating voltages. Enclose high-voltage circuits and terminals and provide fail-safe interlocking switch circuits to open the primary circuits of the power supply and to discharge high-voltage condensers whenever access into the enclosure is required.


X-RAY RADIATION — The 4CW100,000E, operating at its rated voltages and currents, is a potential X-ray hazard. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to changes in leakage paths or emission characteristics as they are affected by high voltage. Only limited shielding is afforded by the tube envelope. Additional X-ray shielding must be

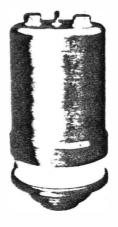

provided on all sides of the tube to provide adequate protection to operating personnel throughout the tube's life. When this tube is used as a pulse modulator, shielding of the pulse transformer may also be necessary. X-ray caution signs or labels must be permanently attached to equipment using this tube directing operating personnel never to operate this device without X-ray shielding in place.

RADIO FREQUENCY RADIATION — Exposure of the human body to rf radiation becomes increasingly more hazardous as the power level and/or frequency are increased. Exposure to high-power rf radiation must be strictly prevented at any frequency.


Equipment must be designed to fully safeguard all personnel from these hazards. Labels and caution notices must be provided on equipment and in manuals clearly warning of these hazards.






# **OUTLINE DRAWING**





# 4CW100,000G



The 4CW100,000G is a tetrode intended for Class C HF and VHF service. It features high-stability pyrolytic graphite grids and an internal structure which permits high efficiency operation to 250 MHz. The tube is also recommended for FM broadcast service and for VHF-TV linear amplifier service. The anode is rated for 100 kW with water cooling.

# CHARACTERISTICS

| Plate Dissipation (Max.)        | 100 000 watts             |
|---------------------------------|---------------------------|
| Screen Dissipation (Max.)       | 1 500 watts               |
| Grid Dissipation (Max.)         | 1,000 watts               |
| Frequency for Max. Ratings (CW) |                           |
| Cooling                         |                           |
| Filament                        |                           |
| Voltage                         |                           |
| Current                         |                           |
| Capacitances (Gnd. Cath. Conne  |                           |
| Input                           |                           |
| Output                          |                           |
| Feed-through                    |                           |
| Capacitances (Gnd. Grid Connec  |                           |
| input                           |                           |
| Output                          | 109 pr                    |
| Output                          |                           |
| Feed-through                    | 9.17 pr                   |
| Base                            |                           |
| Recommended Air System Socke    | Special Coaxial           |
| Maximum Seal & Anode Core Tel   |                           |
| Maximum Laneth                  | mperature 250°C           |
| Maximum Langth                  | 12.7 in; 32.3 cm          |
| Maximum Diameter                | 5.4 in; 16.3 cm           |
| Weight (approximate)            | 27.2 lb; 12.3 kg          |
| Operating Position              | Vertical, base up or down |

|           | MAXIMUM R       |         |         | TYPICAL OPERATION |         |         |         |        |
|-----------|-----------------|---------|---------|-------------------|---------|---------|---------|--------|
| Class     | Type of Service | Plate   | Plate   | Plete             | Screen  | Plate   | Drive   | Output |
| of        |                 | Voltage | Current | Voltage           | Voltage | Current | Power   | Power  |
| Operation |                 | (volta) | (amps)  | (volts)           | (volts) | (amps)  | (watts) | (kW)   |
| C         | RF Amplifier    | 14,000  | 12.5    | 10,600            | 900     | 7.0     | 250     | 60     |
|           | RF Amplifier†   | 14,000  | 12.5    | 11,500            | 550     | 6.4     | 1,000   | 53     |

†100.5 MHz



The 4CW150,000E is intended for use as a Class C RF amplifier or oscillator, a Class AB push-pull AF amplifier or modulator as well as a plate-and screen-modulated Class C RF amplifier. In pulse modulator service, it can deliver a peak output of 4 megawatts. The tube is characterized by low input and feedback capacitances and low internal lead inductance.

# 4CW150,000E

## CHARACTERISTICS

| Plate Dissipation (Max.)        |                          |
|---------------------------------|--------------------------|
| Screen Dissipation (Max.)       | 1.750 watts              |
| Grid Dissipation (Max.)         | 500 watts                |
| Frequency for Max. Ratings (CW) | 110 MHz                  |
| Cooling                         | Water and Forced Air     |
| Filament                        |                          |
| Voltage                         |                          |
|                                 |                          |
| Current                         |                          |
| Capacitances (Gnd. Cath. Connec |                          |
| input                           | 370 pF                   |
| Output                          | 60.0 pF                  |
| Feed-through                    |                          |
| Capacitances (Gnd. Grid Connect |                          |
| Input                           | 175 pF                   |
| Output                          | 60.0 pF                  |
| Feed-through                    | 0.35 pF                  |
| Base                            |                          |
| Recommended Air System Socke    | t SK-2011A               |
| Maximum Seal & Anode Core Ter   | noerature 250°C          |
| Maximum Length                  | 14 3 in: 36 2 cm         |
| Maximum Diameter                | 9.5 in: 24.2 cm          |
| Weight (approximate)            | 47 lb: 21 4 kg           |
| Operating Position              | Martinal home up or down |
| Operating Position              | Agirical name ab or down |

| Class of Operation Type of Service | MAXIMUM RATINGS              |                             | TYPICAL OPERATION          |                             |                              | TION                       | ı                         |                         |
|------------------------------------|------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|---------------------------|-------------------------|
|                                    | Type of Service              | Plate<br>Voltage<br>(volta) | Plate<br>Current<br>(amps) | Plate<br>Voltage<br>(volts) | Screen<br>Voltage<br>(volts) | Plate<br>Current<br>(amps) | Drive<br>Power<br>(watts) | Output<br>Power<br>(kW) |
| С                                  | RF Amplifier                 | 22,000                      | 20.0                       | 20,000                      | 1,500                        | 15.2                       | 120                       | 220                     |
| C                                  | RF Amplifier Plate Modulated | 17,500                      | 20.0                       | 15,000                      | 750                          | 11.7                       | 530                       | 140                     |
| AB,                                | RF Linear Amplifier          | 22,000                      | 20.0                       | 18,000                      | 1,500                        | 13.5                       | _                         | 168                     |
| _                                  | Pulse Modulator              | 40,000                      | 200t                       | 40,000                      | 2,500                        | 1221                       | _                         | 4,1001                  |

†Cathode current, pulse ‡Pulse value

# 4CW250,000B



The 4CW290,0008 is recommended as a Clase C amplifier or oscillator; a Clase AB RF linear amplifier; a Clase AB push-pull AF linear amplifier or modulator; a plate or screen modulated Clase C RF amplifier; or for pulse modulator or regulator service. Water jacted not included.

# CHARACTERISTICS

| Plate Dissipation (Max.) Screen Dissipation (Max.) Grid Dissipation (Max.) Frequency for Max. Ratings (CW) Cooling | 3,500 watts<br>1,500 watts<br>50 MHz |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Filament                                                                                                           | Thoristed Tuncetee                   |
| Voltage                                                                                                            | 12.0 volte                           |
| Current                                                                                                            | ASC amounts                          |
| Capacitances (Gnd. Cath. Connection):                                                                              | 500 amperes                          |
| input                                                                                                              |                                      |
| Output                                                                                                             | 124 of                               |
| Feed-through                                                                                                       | 80 nF                                |
| Capacitances (Gnd. Grid Connection):                                                                               |                                      |
| Input                                                                                                              | 324 oF                               |
| Output                                                                                                             | 128 of                               |
| Feed-through                                                                                                       | 1.2 pF                               |
| Amplification Factor (g <sub>1</sub> -g <sub>2</sub> )                                                             |                                      |
| Base                                                                                                               | Special                              |
| Recommended Filament Connector                                                                                     | SK-1710                              |
| Recommended Grid Connector                                                                                         | SK-1712                              |
| Recommended Anode Water Jacket                                                                                     | SK-1720                              |
| Maximum Seal & Envelope Temperatur                                                                                 | 20090                                |
| Maximum Length:                                                                                                    | 27 65 in: 70 22 am                   |
| Maximum Diameter:                                                                                                  | 12 06 in: 22 17 cm                   |
| Weight (approximate) (tube only)                                                                                   | 13.00 in, 33.17 cm                   |
| Operating Position Ver                                                                                             | 30.0 10; 44.3 Kg.                    |
|                                                                                                                    | uces, seem up or down                |

|                          |                                                                                         | MAXIMUN                              | RATINGS                      |                                      | TYPIC                        | AL OPERAT                     | TON                       |                           |
|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|------------------------------|-------------------------------|---------------------------|---------------------------|
| Class<br>of<br>Operation | Type of Service                                                                         | Plate<br>Voltage<br>(volts)          | Plate<br>Current<br>(amps)   | Plate<br>Voltage<br>(volts)          | Screen<br>Voltage<br>(volta) | Plate<br>Current<br>(amps)    | Drive<br>Power<br>(watta) | Output<br>Power<br>(kW)   |
| C<br>C<br>AB,<br>AB,     | RF Amplifier RF Amplifier Plate Modulated RF Linear Amplifier AF Amplifier or Modulator | 20,000<br>17,500<br>20,000<br>20,000 | 40.0<br>30.0<br>40.0<br>40.0 | 19,000<br>14,000<br>20,000<br>20,000 | 800<br>800<br>1800<br>1800   | 32.5<br>29.0<br>23.0<br>48.0° | 3000<br>2320<br>—         | 460<br>285<br>330<br>660° |

<sup>&</sup>quot;Two tubes.

# 4W300B/8249



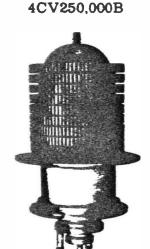
The 4W3008/8249 is a water-cooled version of the 4CX2508/7203 having an anode dissipation rating of 300 watts. It is intended for use where water cooling is preferred or when reserve anode dissipation is desired.

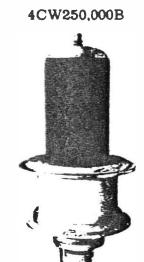
# CHARACTERISTICS

| Plate Dissipation (Max.)                               | sHe            |
|--------------------------------------------------------|----------------|
| Screen Dissipation (Max.)                              | etta<br>etta   |
| Grid Dissipation (Max.) 2 w                            | atta           |
| Frequency for Max. Ratings (CW) 500 I                  | ALL            |
| Cooling                                                | MMZ            |
| Cooling Water and Forced                               | AIF            |
| Cathode Oxide-coated Unipoter                          | ntial          |
| Voltage 6.0 v                                          |                |
| Current 2.6 amp                                        | 97 <b>0</b> \$ |
| Capacitances (Gnd. Cath. Connection)                   |                |
| Input                                                  |                |
| Output 4.                                              | 5 pF           |
| Feed-through 0.0                                       | 4 pF           |
| Capacitances (Gnd. Grid Connection)                    |                |
| Input                                                  | ) pF           |
| Output 4.1                                             | 5 pF           |
| Feed-through 0.0                                       | 1 pF           |
| Amplification Factor (g <sub>1</sub> -g <sub>2</sub> ) | 5              |
| 5ase 9-Pin Soe                                         | ecial.         |
| Recommended Air System Socket SK-600 Se                | ries           |
| Maximum Seal & Anode Core Temperature 25               | 50°C           |
| Maximum Length 3.4 in: 88.5                            | mm             |
| Maximum Diameter                                       | mm             |
| Weight (approximate) 5.75 oz: 163                      | am             |
| Operating Position Vertical, base up or d              | own            |
|                                                        |                |

|                                    |                                   | MAXIMUN                    | RATINGS                     | TYPICAL OPERATION            |                            |                           |                            |     |
|------------------------------------|-----------------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|---------------------------|----------------------------|-----|
| Class of Operation Type of Service | Plate<br>Voltage<br>(volts)       | Plate<br>Current<br>(amps) | Plate<br>Voltage<br>(volts) | Screen<br>Voltage<br>(volts) | Plate<br>Current<br>(amps) | Drive<br>Power<br>(watts) | Output<br>Power<br>(watts) |     |
| С                                  | RF Amplifier up to 175 MHz        | 2000                       | 0.25                        | 2000                         | 300                        | 0.25                      | 2.9                        | 390 |
| С                                  | RF Amplifier Plate Modulated      | 1 2004                     | 0.20                        | 2000                         | 300                        | 0.25                      | 2.3                        | 390 |
|                                    | up to 175 MHz                     | 1500                       | 0.20                        | 1500                         | 250                        | 0.20                      | 1.7                        | 235 |
| AB,                                | RF Linear Amplifier up to 175 MHz | 2000                       | 0.25                        | 2000                         | 350                        | 0.25                      | 1.7                        |     |
| AB,                                | RF Linear Amplifier (AM Service)  | 1                          |                             | 2000                         | 330                        | 0.25                      |                            | 300 |
|                                    | up to 175 MHz                     | 2000                       | 0.25                        | 2000                         | 350                        | 0.15                      | _                          | 65† |
| AB,                                | AF Amplifier or Modulator         | 2000                       | 0.25                        | 2000                         | 350                        | 0.50"                     |                            | 600 |




# **TECHNICAL DATA**




**POWER TETRODES** 

The EIMAC 4CV250,000B and 4CW250,000 are ceramic/metal (vapor cooled and water cooled, respectively) power tetrodes intended for use at the 250 to 500 kilowatt output power level. They are recommended for use as a Class C amplifier or oscillator. Class AB rf linear amplifier, Class AB push-pull af amplifier or modulator, plate or screen modulated Class C rf amplifier, or for pulse modulator or regulator service.

The 4CV250,000B is operated in the accessory boiler BR-620 (not supplied with the tube); the 4CW250,000B is operated with the accessory water jacket SK-1720 (not supplied with the tube), and both tubes are rated for 250 kilowatts maximum anode dissipation.





# GENERAL CHARACTERISTICS<sup>1</sup>

## ELECTRICAL

| Filament: Thoriated Tungsten                                      |        |     |     |
|-------------------------------------------------------------------|--------|-----|-----|
| Voltage                                                           | 12.0 ± | 0.6 | V   |
| Current @ 12.0 V                                                  |        | 660 | Α   |
| Amplification Factor (average), grid to screen                    |        | 4.5 |     |
| Direct Interelectrode Capacitance (grounded cathode) <sup>2</sup> |        |     |     |
| Cin                                                               |        | 760 | pF  |
| Cout                                                              |        | 124 | pF  |
| Cgp                                                               |        | 6.0 | pF  |
| Frequency of Maximum Rating, CW                                   |        | 50  | MHz |

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result
  af additional data or product refinement. ELMAC Division of Varian should be consulted before using this information for final
  equipment design.
- 2. Capacitance values are for a cold tube as measured without any special shielded fixture.

# **MECHANICAL**

# Maximum Overall Dimensions:

| Length (4CV250,000B)   | 26.895 In; 68.31 cm |
|------------------------|---------------------|
| (4CW250,000B)          | 26.525 In; 67.37 cm |
| Diameter (4CV250,000B) | 15.062 In; 38.26 cm |
| (4CW250,000B)          | 13.062 In; 33.18 cm |

4177 (Effective 7-15-79) • 1979 by Varian

Printed in U.S.A.

| Base (both types)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Special                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filament Connector (2 required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| Filament Connector (2 required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EIMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SK-1710                                                                                                                                                                                                         |
| Control Grid Connector (1 required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EIMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SK-1712                                                                                                                                                                                                         |
| Recommended Accessories For Anode Cool 4CV250.000B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing (not supplied with tube):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| 4CW250,000B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIMAC Toolse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r BR-620                                                                                                                                                                                                        |
| Operating Position: 4CV250,000B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | node tin                                                                                                                                                                                                        |
| Maximum Ceramic/Metal Seal or Envelope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or Down                                                                                                                                                                                                         |
| Cooling: 4CV250,000B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vapor a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - d 117 - 4                                                                                                                                                                                                     |
| Net Weight: 4CV250 000P (-/o hall an)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water                                                                                                                                                                                                           |
| Net Weight: 4CV250,000B (w/o boiler) 4CW250,000B (w/o jacket)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o; 81.8 kg<br>o; 44.5 kg                                                                                                                                                                                        |
| RADIO FREQUENCY POWER AMPLIFIER OR<br>OSCILLATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TYPICAL OPERATION (Frequencies belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |
| Class C Telegraphy or FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                               |
| (Key-down Condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC Plate Voltage         16           DC Screen Voltage         800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 kV                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC Grid Voltage 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800 V                                                                                                                                                                                                           |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DC DI-4- C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -800 V                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC Screen Current 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.5 A                                                                                                                                                                                                          |
| DC PLATE VOLTAGE 20,000 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC Grid Current 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5 A                                                                                                                                                                                                           |
| DC SCREEN VOLTAGE 2.500 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Driving Power <sup>1</sup> 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5 A<br>3.0 kW                                                                                                                                                                                                 |
| DC PLATE CURRENT 40 AMPERES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plate Output Power 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 460 kW                                                                                                                                                                                                          |
| PLATE DISSIPATION 250,000 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plate Dissipation 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155 kW                                                                                                                                                                                                          |
| SCREEN DISSIPATION 3.500 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RF Load Impedance 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |
| GRID DISSIPATION 1,500 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ol> <li>Calculated Driving Power neglects input conductor loss.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ance and if circ                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                 |
| PLATE MODULATED RADIO FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TYPICAL OPERATION (Frequencies beld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ow 30 MHz)                                                                                                                                                                                                      |
| POWER AMPLIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TYPICAL OPERATION (Frequencies belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |
| POWER AMPLIFIER Class C Telephony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
| POWER AMPLIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC Plate Voltage DC Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 kV                                                                                                                                                                                                           |
| POWER AMPLIFIER Class C Telephony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.) <sup>2</sup> DC Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 kV<br>800 V                                                                                                                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted) ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.) <sup>2</sup> DC Grid Voltage DC Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 kV<br>800 V<br>800 v                                                                                                                                                                                         |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.) <sup>2</sup> DC Grid Voltage DC Plate Current DC Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 kV<br>800 V<br>800 v<br>-800 V                                                                                                                                                                               |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current                                                                                                                                                                                                                                                                                                                                                                                                                | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A                                                                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                           | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A                                                                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION: 167,000 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power³                                                                                                                                                                                                                                                                                                                                                                       | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A                                                                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3.500 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power² Plate Output Power                                                                                                                                                                                                                                                                                                                                                    | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW                                                                                                                    |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION: 167,000 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power³ Plate Output Power RF Load Impedance                                                                                                                                                                                                                                                                                                                                  | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W                                                                                                                              |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3.500 WATTS GRID DISSIPATION 1.500 WATTS                                                                                                                                                                                                                                                                                                                                                                                                                              | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power² Plate Output Power                                                                                                                                                                                                                                                                                                                                                    | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 v<br>1630 W<br>280 kW                                                                                                                    |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3.500 WATTS GRID DISSIPATION 1.500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wove modulation.                                                                                                                                                                                                                                                                                                                                                       | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted                                                                                                                                                                                                                                                          | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wove modulation.  2. Approximate Value.                                                                                                                                                                                                                                                                                                                                | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power³ Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducte loss.                                                                                                                                                                                                                                                     | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 \Omega\$<br>63 kW                                                                                           |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3.500 WATTS GRID DISSIPATION 1.500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.                                                                                                                                                                                                                                                                                                                                                       | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted                                                                                                                                                                                                                                                          | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 \Omega\$<br>63 kW                                                                                           |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2.000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3.500 WATTS GRID DISSIPATION 1.500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR                                                                                                                                                                                                                                                                                        | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)² DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power³ Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducte loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage                                                                                                                                                                                         | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)                                                                                                                                                                                                                                         | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8                                                                                                                                                               | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 D<br>63 kW                                                                                                  |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS                                                                                                                                                                                                          | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500                                                                                                                                           | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 D<br>63 kW<br>once and rf cir                                                                               |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS                                                                                                                                                                            | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40                                                                                                               | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW<br>once and rf cir                                                                               |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES                                                                                                                                                | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 20.2                                                                                | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW<br>once and rf cir                                                                               |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS                                                                                                                | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 1.1                                                                                 | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 v<br>1630 W<br>280 kW<br>323 Ω<br>63 kW<br>once and rf cir<br>20 kV<br>1.8 kV<br>-500 V<br>46 A<br>0.2 A<br>1.2 A                        |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS  SCREEN DISSIPATION 3,500 WATTS                                                                                | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 1.1 Peak af Driving Voltage 500                                                     | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW<br>once and rf cir                                                                               |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wove modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS                                                    | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 1.1 Peak af Driving Voltage 500 Driving Power 0                                     | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 V<br>1630 W<br>280 kW<br>323 Ω<br>63 kW<br>once and rf cir<br>20 kV<br>1.8 kV<br>-500 V<br>46 A<br>0.2 A<br>1.2 A                        |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wave modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2.500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS GRID DISSIPATION 1,500 WATTS 1. Approximate Value. | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power2 Plate Output Power RF Load Impedance Plate Dissipation  3. Colculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 1.1 Peak af Driving Voltage 500 Driving Power 0 Load Impedance (plate to plate) 650 | 15 kV 800 V 800 V -800 V 22.8 A 4.1 A 1.46 A 1110 v 1630 W 280 kW 323 \(\Omega\) 63 kW once and rf cir  20 kV 1.8 kV -500 V 46 A 0.2 A 1.2 A 500 v 0. W 870 \(\Omega\)                                          |
| POWER AMPLIFIER Class C Telephony (Carrier conditions except where noted)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17,500 VOLTS DC SCREEN VOLTAGE 2,000 VOLTS DC PLATE CURRENT 30 AMPERES PLATE DISSIPATION 167,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS  1. Corresponds to 250,000 worts at 100 per cent sine wove modulation.  2. Approximate Value.  AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS: (Per Tube)  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 3,500 WATTS                                                    | DC Plate Voltage DC Screen Voltage Peak af Screen Voltage (for 100% Mod.)2 DC Grid Voltage DC Plate Current DC Screen Current DC Grid Current Peak rf Grid Voltage Grid Driving Power3 Plate Output Power RF Load Impedance Plate Dissipation  3. Calculated Driving Power neglects input conducted loss.  TYPICAL OPERATION (Two Tubes) Class AB 1  DC Plate Voltage 15 DC Screen Voltage 1.8 DC Grid Voltage 500 Max-Signal Plate Current 40 Zero Signal Plate Current 1.1 Peak af Driving Voltage 500 Driving Power 0                                     | 15 kV<br>800 V<br>800 V<br>-800 V<br>22.8 A<br>4.1 A<br>1.46 A<br>1110 v<br>1630 W<br>280 kW<br>323 II<br>63 kW<br>conce and rf circles<br>20 kV<br>1.8 kV<br>-500 V<br>46 A<br>0.2 A<br>1.2 A<br>500 V<br>0. W |



350 AMPERES

3.500 WATTS

#### RADIO FREQUENCY LINEAR AMPLIFIER TYPICAL OPERATION (Frequencies below 30 MHz) Class AB 1. Peak-Envelope or Modulation Crest Conditions ABSOLUTE MAXIMUM RATINGS: DC Plate Voltage 15 20 kV DC PLATE VOLTAGE ...... 20,000 VOLTS DC Screen Voltage ..... 1.8 1.8 kV DC SCREEN VOLTAGE ..... 2.500 VOLTS DC Grid Voltage ..... -500 -500 V DC PLATE CURRENT ...... **40 AMPERES** Plate Current ..... 20 23 A PLATE DISSIPATION ...... 250,000 WATTS Zero Signal Plate Current ..... 0.2 0.2 A SCREEN DISSIPATION ..... 3.500 WATTS Max-Signal Screen Current1 ... 1.1 1.2 A GRID DISSIPATION ...... 1,500 WATTS Peak rf Grid Voltage 500 500 v Driving Power\* ..... 0 W 0 I Approximate Value Plate Dissipation 80 130 kW 2. Calculated Driving Power neglects input conductance and if Resonant Load Impedance 325 435 () circuit loss Plate Output Power ..... 330 kW PULSE MODULATOR OR REGULATOR DC SCREEN VOLTAGE 2.500 VOLTS

# **APPLICATION**

# **MECHANICAL**

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE ...... 40,000 VOLTS

MOUNTING (4CV250,000B) - The tube must be mounted vertically, anode up. The tube may be supported by the anode flange or the screen flange.

Care must be exercised to insure that the axis of the tube/boiler combination is vertical and that the water in the boiler is at the correct level. The anode flange on the tube must seal securely against the "O" ring, forming a vapor-tight seal between the tube and boiler.

MOUNTING (4CW250,000B) - The tube must be mounted vertically, anode up or down. The tube may be supported by the anode flange or the screen flange.

ANODE COOLING (4CV250,000B) - Cooling is accomplished by immersing the anode of the 4CV250,000B in a "Boiler" filled with distilled water. Energy dissipated by the anode causes the water to boil at the anode surfaces, be converted into steam and be carried away to an external condenser. The condensate is then returned to the boiler, completing the cycle.

This boiling action maintains the anode surfaces at a fairly constant temperature near 100°C. The vapor-cooled tube has good overload capabilities; excess dissipation for moderate periods only causes more water to boil.

Since the tube anode and boiler are usually at high potential to ground, water and steam connections to the boiler are made through insulated tubing.

PLATE DISSIPATION ..... 250,000 WATTS

GRID DISSIPATION ...... 1.500 WATTS

PEAK CATHODE CURRENT

SCREEN DISSIPATION .....

ANODE COOLING (4CW250,000B) - Minimum cooling water requirements for the anode are shown in the table for an outlet water temperature not to exceed 70°C and an inlet water temperature of 50°C. High-purity water must be used to minimize power loss, corrosion of metal fittings, and loss of anode dissipation capability. Water resistivity must be maintained at 1 megohm/cm³ or better for long term operation.

| Anode       | Water | Approx. Jacket |
|-------------|-------|----------------|
| Dissipation | Flow  | Press. Drop    |
| (kW)        | (gpm) | (psi)          |
| 150         | 37.5  | 3.5            |
| 200         | 50.0  | 9.0            |
| 250         | 60.0  | 10.0           |

EIMAC Application Bulletin #16 titled. "WATER PURITY REQUIREMENTS IN LIQUID COOLING SYSTEMS" is available on request, and should be consulted for details on maintenance of water quality standards and use of a water purification loop in the installation. Since the anode is normally at high potential to



made through insulating tubing, with long enough sections that column resistance is above 4 megohms per 1000 plate supply volts, or 10 megohms total, whichever is less.

BASE COOLING (Both Types) - The filament supports of both tubes are water cooled. Approximately .5 GPM should circulate through each of the filament connectors with a pressure drop of 20 PSI. Filament connector assemblies, SK-1710, provide electrical and water connections. Two sets of SK-1710 are required.

It is recommended that the water cooled control grid connector, SK-1712, be used. Water flow of approximately .5 GPM should circulate through the grid connector. The pressure drop across the grid connector is low. A convenient way to make water connection is to series connect the grid cooling water with the outer filament cooling water path.

The outer filament water path has a lower pressure drop than the inner filament water path making this connection practical.

ALL COOLING MUST BE APPLIED BEFORE OR SIMULTANEOUSLY WITH THE APPLICATION OF ELECTRODE VOLTAGES. INCLUDING FILAMENT, AND SHOULD NORMALLY BE MAINTAINED FOR SEVERAL MINUTES AFTER ALL VOLTAGES ARE REMOVED TO ALLOW FOR TUBE COOLDOWN.

# ELECTRICAL

FILAMENT OPERATION - The peak emission at rated filament voltage is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appeared to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked.

Filament starting current must be limited to a maximum of 1800 amperes.

CONTROL GRID OPERATION - The control grid is rated at 1,500 watts of dissipation and protective measures should be included in circuitry to insure that this rating is not exceeded. Grid dissipation is the approximate product of dc grid current and peak positive grid voltage.

SCREEN DISSIPATION - The power applied to the screen grid must not exceed 3,500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is the product of RMS screen current and RMS screen voltage.

PLATE DISSIPATION - The plate dissipation of 250 kilowatts provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 167,000 watts.

LOAD VSWR - The load VSWR should be monitored and the detected signal used to operate the interlock system to remove the plate voltage within 20 milliseconds after a fault occurs. In the case of high stored energy in the load system, care must be taken to avoid excessive return energy from damaging the tube and associated circuit components.

FAULT PROTECTION - To assure nondestruction of tube elements from highenergy power supplies, during a fault condition, all supplies must be checked for proper operation of their protective circuits. An approved method to meet the tube protection criteria would be the use foil, solder wire, or small diameter wire to produce a controlled short on the power supply. The simplest technique is to short the plate to cathode, screen grid to cathode, control grid to cathode, and screen grid to anode (individually, one at a time) using

# 4CV250,000B/4CW250,000B



a vacuum relay through a section of #30 AWG copper wire. The wire will remain intact if the power supply protective circuitry is operating properly. An electronic crowbar will be required on the anode supply, and may be required on the other electrode supplies if the test outlined above is not passed. See EIMAC Application Bulletin #17 for further details.

Properly rated spark gaps must also be located between the screen grid and cathode and between the control grid and cathode to meet over-voltage protection criteria. A series resistance of 10 to 50 ohms is recommended in the screen and control grid power supply leads.

X-RADIATION - High-vacuum tubes operating at voltages higher than 15 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. These tubes, operating at rated voltages and currents, are a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 15 kilovolts are in use. Lead glass, which attenuates Xrays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

HIGH VOLTAGE - Normal operating voltages used with these tubes are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

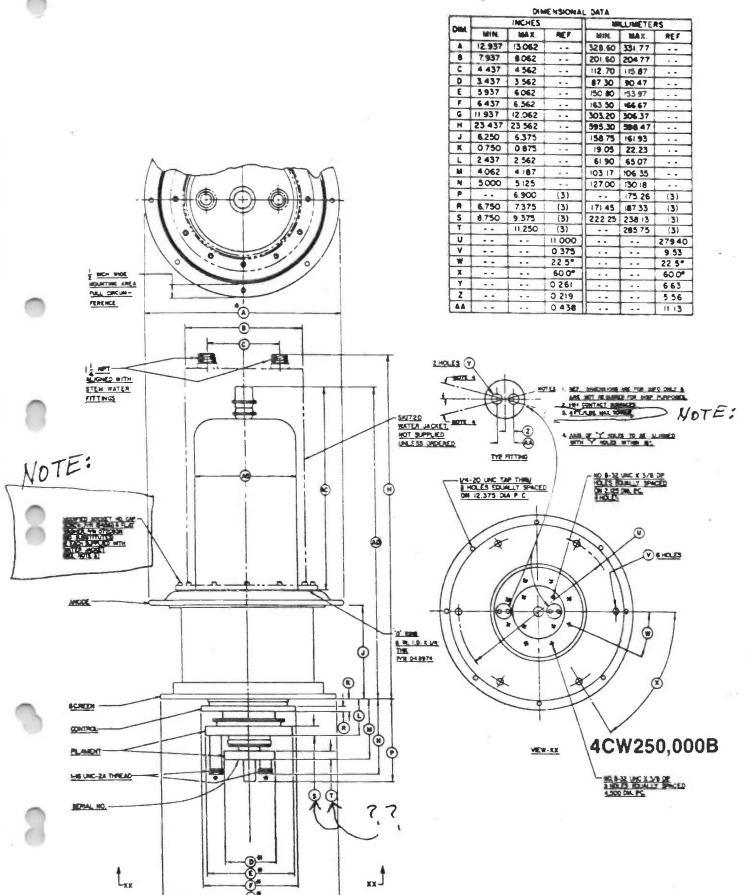
RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070, For information and recommendations.

# **OPERATING HAZARDS**

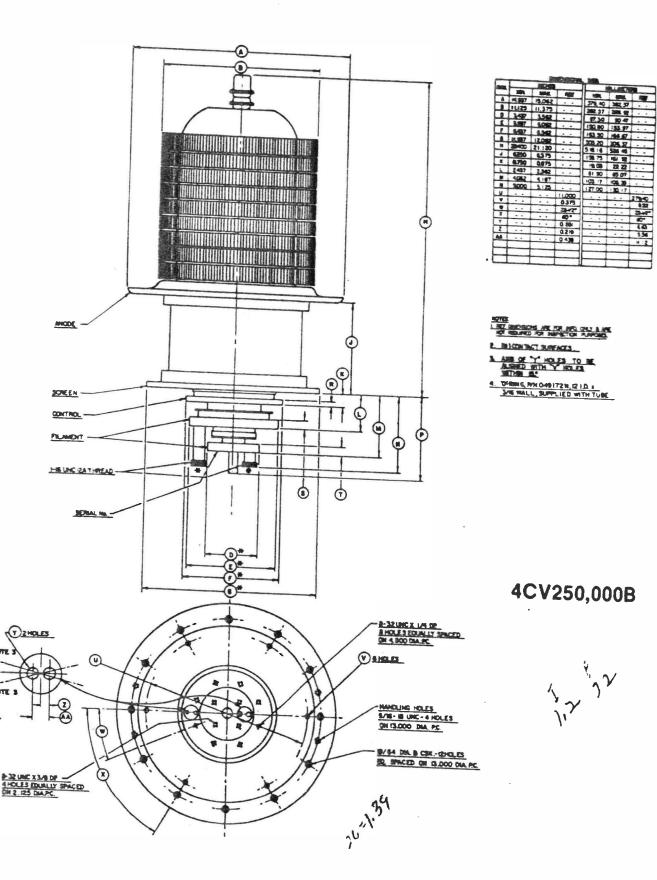
PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of power tubes involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

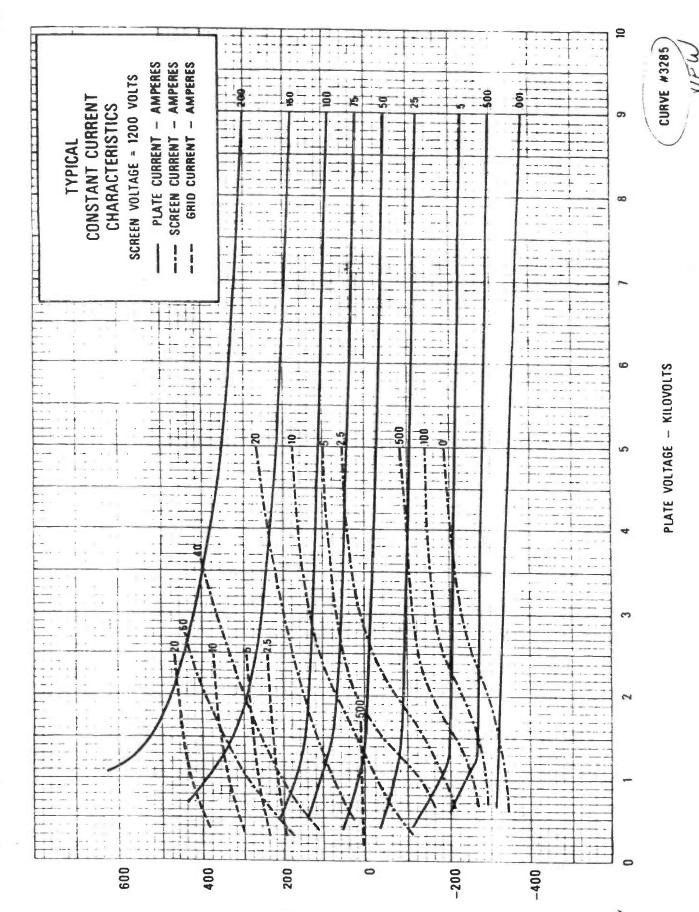

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.
- c. X-RAY RADIATION High voltage tubes can produce dangerous and possibly. fatal x-rays.
- d. BERYLLIUM OXIDE POISONING Dust or fumes from BeO ceramics used as thermal links with some conduction-cooled power tubes are highly toxic and can cause serious injury or death.
- e. GLASS EXPLOSION Many electron tubes have glass envelopes. Breaking the glass can cause an implosion, which will result in an explosive scattering of glass particles. Handle glass tubes carefully.
- f. HOT WATER Water used to cool tubes may reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- g. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched.

Please review the detailed operating hazards sheet enclosed with each tube or request a copy from the address shown below: Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way. San Carlos, California 94070.

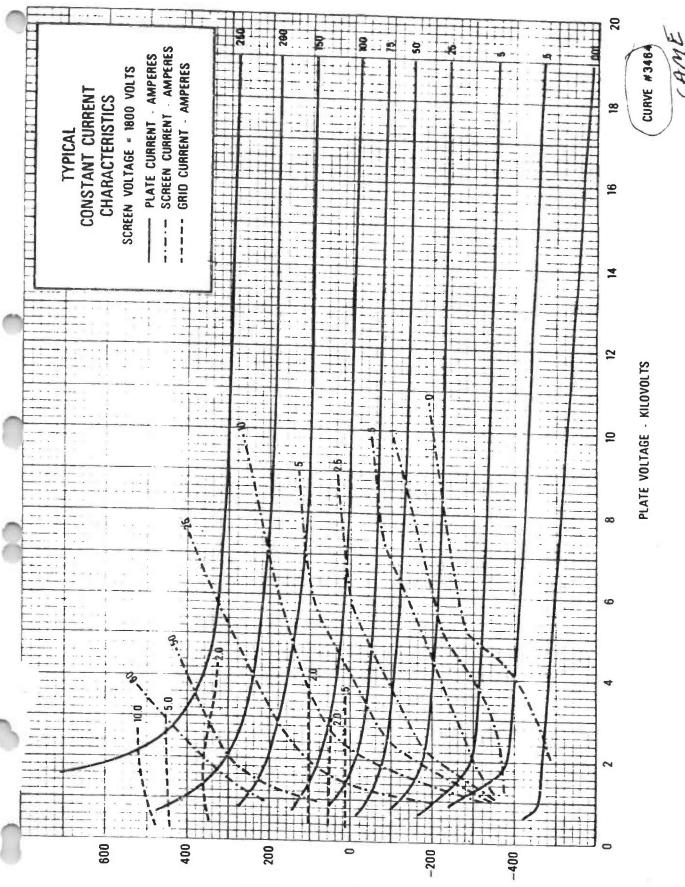
# 4CV250,000B/4CW250,000B




all or

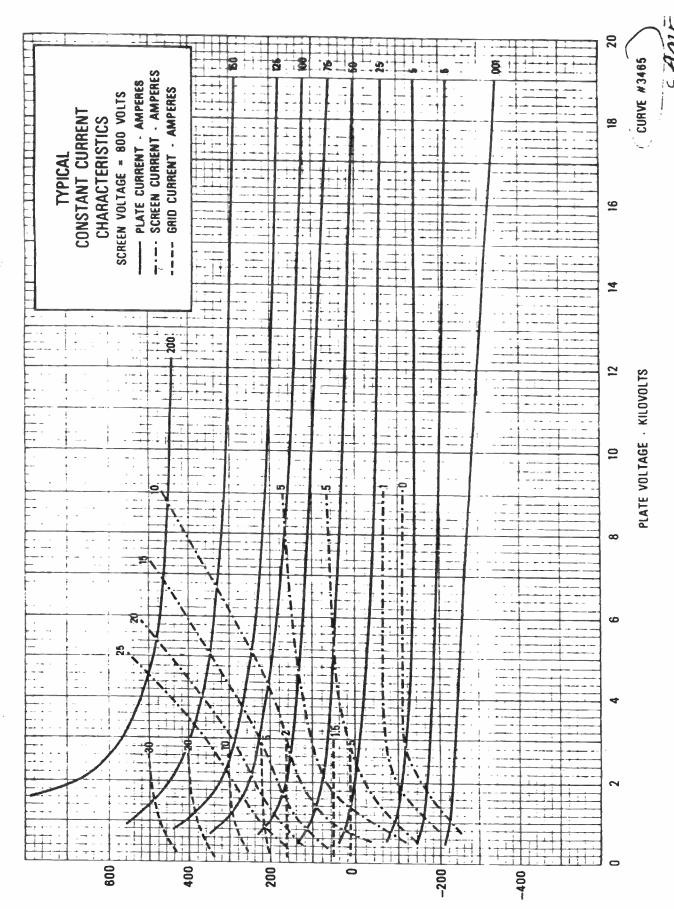






8












GRID VOLTAGE - VOLTS







# TECHNICAL DATA

# 4CW250,000V 4CW250,000A

WATER-COOLED POWER TETRODE

The EIMAC 4CW250,000V/A is a ceramic/metal, water-cooled, power tetrode intended for use at the 250 to 500 kilowatt output power level. It is recommended as a Class C amplifier or oscillator; a Class AB rf linear amplifier; a Class AB push-pull af amplifier or modulator; a plate or screen modulated Class C rf amplifier; or for pulse modulator or regulator service.

The 4CW250,000V is supplied with a VacIon®pump attached. On the 4CW-250,000A, no VacIon pump is attached.

# GENERAL CHARACTERISTICS1

## **ELECTRICAL**

| Filament: Thoriated Tungsten                                      |                |     |
|-------------------------------------------------------------------|----------------|-----|
| Voltage                                                           | $12.0 \pm 0.6$ | V   |
| Current, at 12.0 volts                                            | 660            | Α   |
| Amplification Factor (Average):                                   |                |     |
| Grid to Screen                                                    | 4.5            |     |
| Direct Interelectrode Capacitance (grounded cathode) <sup>2</sup> |                |     |
| Cin                                                               | 765            |     |
| Cout                                                              | 124            | pF  |
| C gp                                                              | 6.0            | pF  |
| Frequency of Maximum Rating:                                      |                |     |
| C W                                                               | 50             | MHz |
|                                                                   |                |     |

Characteristics and operating values are based upon performance tests. These figures
may change without notice as the result of additional data or product refinement.
EIMAC Division of Varian should be consulted before using this information for final
equipment design.

2. Capacitance values are for a cold tube,

Shown with anode water jacket.

| 37 .    | 0 11    | D: .        |
|---------|---------|-------------|
| Maximum | Overall | Dimensions: |

MECHANICAL

| Length (4CW250,000V)          |    | <br> |      | 32.93 in; 8  | 37.0 mm   |
|-------------------------------|----|------|------|--------------|-----------|
| (4CW250,000A)                 |    | <br> |      | 30.46 in; 7  | 74.0 mm   |
| Diameter                      |    | <br> |      | 13.06 in; 3  | 330.0 mm  |
| Net Weight                    |    | <br> |      | 98 1b;       | 44.5 kg   |
| Operating Position            |    | <br> | Vert | ical, base u | p or down |
| Maximum Operating Temperature | e: |      |      |              |           |
| Ceramic/Metal Seals           |    | <br> |      |              | 200°C     |

(Revised 3-1-71) © by Varian

Printed in U.S.A.

| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN                                                                                                                                                                                                                                                                           | TYPICAL OPERATION (Frequencies to 50 MHz)<br>Class AB, Peak Envelope or Modulation Crest Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class AB  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS                                                                                               | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS;  DC PLATE VOLTAGE 20,000 VOLTS DC SCREEN VOLTAGE 2,500 VOLTS DC PLATE CURRENT 40 AMPERES PLATE DISSIPATION 250,000 WATTS SCREEN DISSIPATION 3,500 WATTS GRID DISSIPATION 1,500 WATTS | TYPICAL OPERATION (Frequencies to 50 MHz)         Plate Voltage.       16.0       19.0       kVdc         Screen Voltage.       800       800       Vdc         Grid Voltage.       -800       -800       Vdc         Plate Current.       23.5       32.5       Adc         Screen Current.       2.4       3.5       Adc         Grid Current.       1.15       2.5       Adc         Calculated Driving Power       2.24       3.00       kW         Plate Dissipation       100.0       155.0       kW         Plate Output Power       275.0       460.0       kW         Resonant Load Impedance       300       275       Ω         1. Approximate value. |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS (per tube)  DC PLATE VOLTAGE                                                                                                                                                                                                           | TYPICAL OPERATION (Two Tubes), Sinusoidal Wave   Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## PULSE MODULATOR OR REGULATOR

## ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE     | 40,000 VOLTS | PLATE DISSIPATION  | 250,000 WATTS |
|----------------------|--------------|--------------------|---------------|
| DC SCREEN VOLTAGE    | 2,500 VOLTS  | SCREEN DISSIPATION | 3,500 WATTS   |
| PEAK CATHODE CURRENT | 350 AMPERES  | GRID DISSIPATION   | 1,500 WATTS   |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                           | Min. | Max.   |
|-------------------------------------------------------------|------|--------|
| Filament: Current at 12 volts                               | 620  | 700 A  |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |        |
| Cin                                                         | 730  | 800 pF |
| Cout                                                        | 112  | 136 pF |
| Cgp                                                         | 4.0  | 8.0 pF |

<sup>1.</sup> Capacitance values are for a cold tube.

## **APPLICATION**

## MECHANICAL

MOUNTING - The 4CW250,000V/A must be mounted vertically, anode up or down. The tube may be supported by the anode flange or the screen flange.

COOLING - The EIMAC SK-1720 water jacket is available for use with the 4CW250,000A and V. Because of the small size of this cooler, high frequency operation is possible. It is essential that high purity water be used to minimize power loss and corrosion of metal fittings. Good distilled or de-ionized water will have a resistance of 1 to 2 megohms per cm<sup>3</sup>. Water should be discarded if resistivity falls to 50,000 ohms cm<sup>3</sup>.

Since the tube anode is usually at high potential to ground, water connections to the anode are made through insulating tubing. These insulating sections should be long enough so that column resistance is above 100,000 ohms per 1000 plate supply volts.

The table below lists minimum cooling water requirements at various plate dissipation levels.

| Water Flow<br>(GPM) | Pressure Drop<br>(PSI)                |
|---------------------|---------------------------------------|
| 25.0                | 3.5                                   |
| 37.5                | 3.7                                   |
| 50.0                | 4.0                                   |
| 60.0                | 6.0                                   |
| 73.0                | 9.0                                   |
|                     | (GPM)<br>25.0<br>37.5<br>50.0<br>60.0 |

The filament supports of the 4CW250,000V/A are water cooled. Approximately 0.5 GPM should circulate through each of the filament connectors with a pressure drop of 20 PSI. Filament connector assemblies, SK-1710, provide electrical and water connections. Two sets of SK-1710 are required.

It is recommended that the water cooled control grid connector, SK-1712, be used. Water flow of approximately 0.5 GPM should circulate through the grid connector. The pressure drop across the grid connector is low. A convenient way to make water connection is to series connect the grid cooling water with the outer filament cooling water path.

The outer filament water path has a lower pressure drop than the inner filament water path making this connection practical.

Vacion ® High Vacuum Pump — Model 913-0011

This pump is included as standard equipment on the 4CW250,000V. It permits periodic checking of the vacuum condition of tubes in storage. It may be used to restore the vacuum of a tube which has been accidentally damaged by overheating in service.

Accessories required for VacIon ® pump operation but not supplied with the tube are:

Permanent magnet, Model 913-0011.

Control unit, Model 921-0006 for 60 Hz power. Control unit, Model 921-0026 for 50 Hz power.

## ELECTRICAL

FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CW-250,000V/A is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CW250,000V/A by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CW250,000V/A. At some value of filament voltage there will be a noticeable reduction in plate current or power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appeared to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked.

Filament starting current must be limited to a maximum of 1800 amperes.

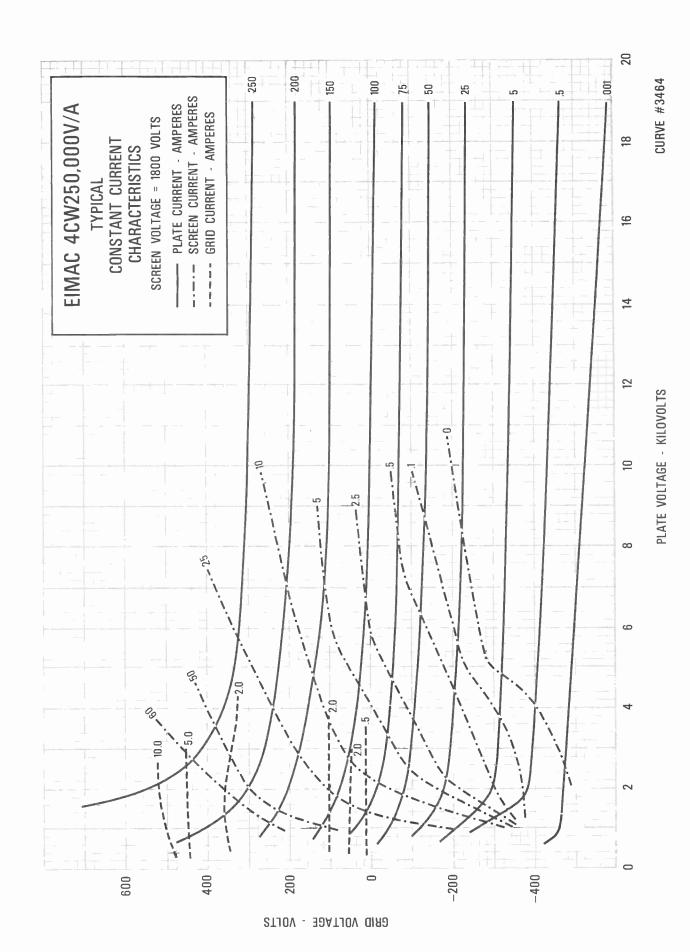
GRID OPERATION - The 4CW250,000V/A grid is rated at 1,500 watts of dissipation and protective measures should be included in circuitry to insure that this rating is not exceeded. Grid dissipation is the approximate product of dc grid current and peak positive grid voltage.

SCREEN DISSIPATION - The power applied to the screen grid must not exceed 3,500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is the product of RMS screen current and RMS screen voltage.

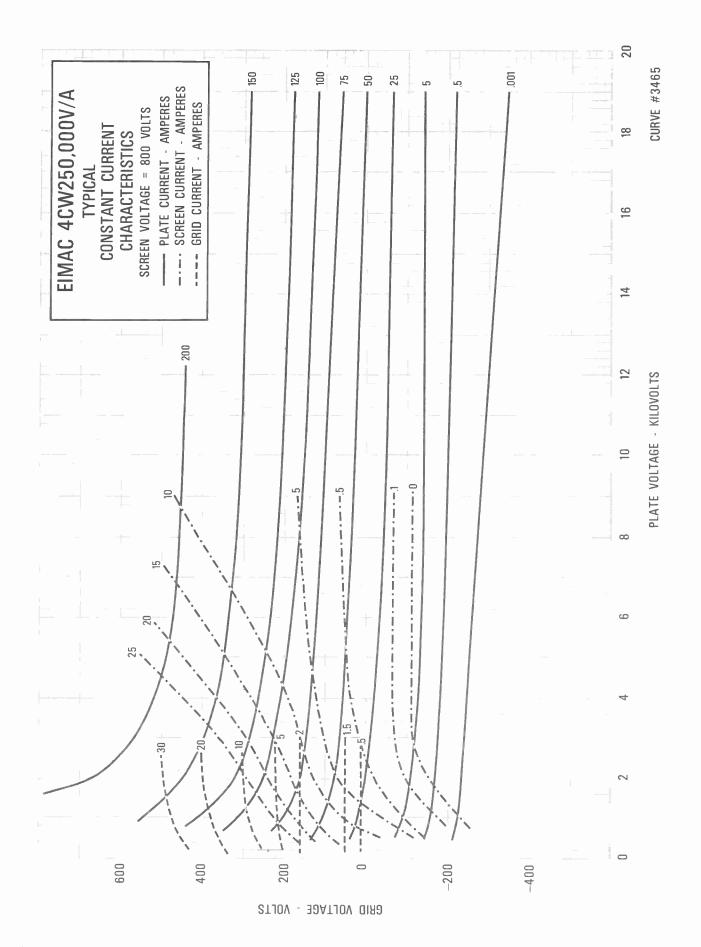
Plate voltage, plate load and bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective means must be provided to remove screen power at the occurrence of any such conditions.

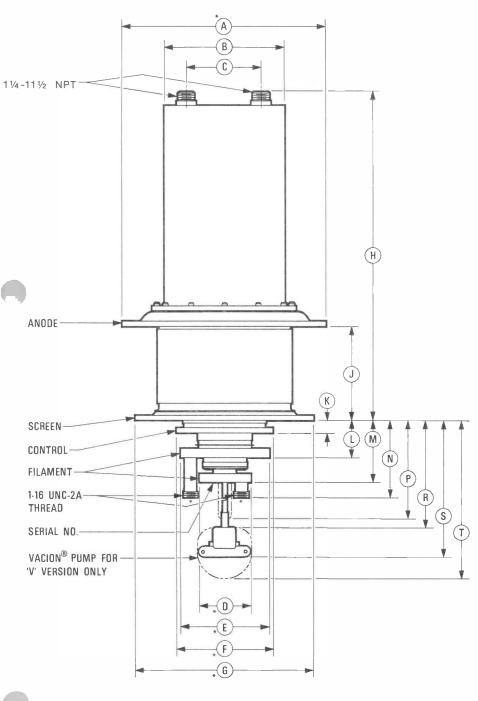
PLATE DISSIPATION - The plate dissipation of 250 kilowatts attainable through water cooling provides a large margin of safety in most applications. The rating may be exceeded for brief periods during tuning. When the 4CW250,000V/A is used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 167,000 watts.

HIGH VOLTAGE - Normal operating voltages used with the 4CW250,000V/A are deadly, and the equipment must be designed properly and op-


erating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CW250,000V/A, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the Xray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

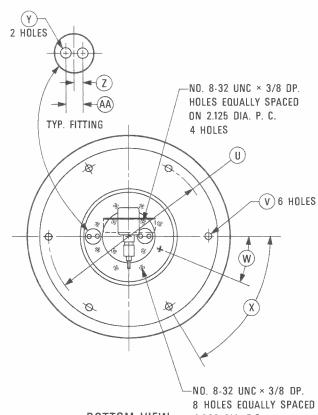

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.


RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070, for information and recommendations.

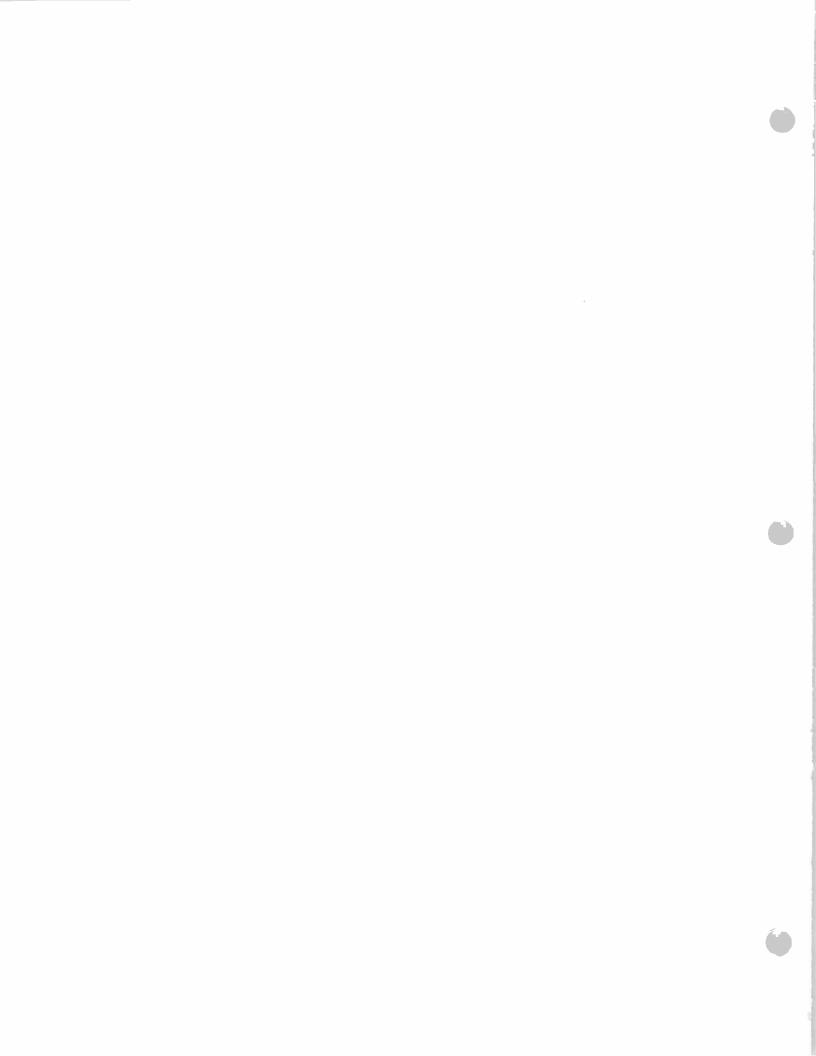


5






|      |        | DIN    | IENSIONA | LDATA  |            |        |  |  |  |  |
|------|--------|--------|----------|--------|------------|--------|--|--|--|--|
|      |        | INCHES |          | MI     | MILLIMETER |        |  |  |  |  |
| DIM. | MIN.   | MAX.   | REF.     | MIN.   | MAX.       | REF.   |  |  |  |  |
| Α    | 12.937 | 13.062 |          | 328.60 | 331.77     |        |  |  |  |  |
| В    | 7.937  | 8.062  |          | 201.60 | 204.77     |        |  |  |  |  |
| С    | 4.437  | 4.562  |          | 112.70 | 115.87     |        |  |  |  |  |
| D    | 3.437  | 3.562  |          | 87.30  | 90.47      |        |  |  |  |  |
| E    | 5.937  | 6.062  |          | 150.80 | 153.97     |        |  |  |  |  |
| F    | 6.437  | 6.562  |          | 163.50 | 166.67     |        |  |  |  |  |
| G    | 11.937 | 12.062 |          | 303.20 | 306.37     |        |  |  |  |  |
| Н    | 23.437 | 23,562 |          | 595.30 | 598.47     |        |  |  |  |  |
| J    | 6.250  | 6.375  |          | 158.75 | 161.93     |        |  |  |  |  |
| K    | 0.750  | 0.875  |          | 19.05  | 22.23      |        |  |  |  |  |
| L    | 2.437  | 2.562  |          | 61.90  | 65.07      |        |  |  |  |  |
| М    | 4.062  | 4.187  |          | 103.17 | 106.35     |        |  |  |  |  |
| N    | 5.000  | 5.125  |          | 127.00 | 130.18     |        |  |  |  |  |
| Р    |        | 6.900  | (3)      |        | 175.26     | (3)    |  |  |  |  |
| R    | 6.750  | 7.375  | (3)      | 171.45 | 187.33     | (3)    |  |  |  |  |
| S    | 8.750  | 9.375  | (3)      | 222.25 | 238.13     | (3)    |  |  |  |  |
| Т    |        | 11.250 | (3)      |        | 285.75     | (3)    |  |  |  |  |
| u    |        |        | 11.000   |        |            | 279.40 |  |  |  |  |
| ٧    |        |        | 0.375    |        |            | 9.53   |  |  |  |  |
| W    |        |        | 22.5°    |        |            | 22.5°  |  |  |  |  |
| X    |        |        | 60.0°    |        |            | 60.0°  |  |  |  |  |
| Υ    |        |        | 0.261    |        |            | 6.63   |  |  |  |  |
| Z    |        |        | 0.219    |        |            | 5.56   |  |  |  |  |
| AA   |        |        | 0.438    |        |            | 11.13  |  |  |  |  |


# NOTES:

- 1. REF. DIMS. ARE FOR INFO.ONLY AND ARE NOT REQ'D. FOR INSP. PURPOSES.
- 2. (\*) CONTACT SURFACES.
- 3. 'P' DIM. APPLIES TO 'A' VERSION ONLY. R, S & T DIMS. APPLY TO 'V' VERSION ONLY.



**BOTTOM VIEW** 

4.500 DIA. P.C.





# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

# 4CX125C 4CX125 F

RADIAL-BEAM
POWER TETRODES

The EIMAC 4CX125C and 4CX125F are horizontally-finned versions of the 4CX300A. These tubes possess the same rugged internal features of the 4CX300A and are quite free of mechanical noise under severe shock and vibration conditions.

The horizontal fins used on these tubes result in a lighter and smaller tube than the 4CX300A. Transverse cooling air-flow is required to attain the 125 watt nominal plate dissipation rating.

# **GENERAL CHARACTERISTICS**

# **ELECTRICAL**

| Cathode:  | Oxide-coated, Unipotential Heating Time                                                                          | į.       | _        | _   | _ | $\frac{\text{Min.}}{30}$ | $\frac{\text{Nom.}}{60}$ | Max.      | seconds      |
|-----------|------------------------------------------------------------------------------------------------------------------|----------|----------|-----|---|--------------------------|--------------------------|-----------|--------------|
|           | Cathode-to-heater Potential                                                                                      |          |          |     |   |                          |                          | $\pm 150$ | volts        |
| Heater:   | Voltage: 4CX125C                                                                                                 | -        | -        | _   | - |                          | 6.0                      |           | volts        |
|           | 4CX125F                                                                                                          |          |          |     |   |                          | 26.5                     |           | volts        |
|           | Current: 4CX125C                                                                                                 | -        | -        | 100 | - | 2.6                      |                          | 3.1       | amperes      |
|           | 4CX125F                                                                                                          |          |          |     |   | 0.6                      |                          | 0.7       | amperes      |
|           | tion Factor (Grid-Screen) -                                                                                      |          |          |     |   | 4.0                      |                          | 5.6       |              |
| Transcond | $\begin{array}{ll} \text{ductance } (I_b = 200 \text{ Ma}) & -\\ \text{y for Maximum Ratings} & -\\ \end{array}$ | -        | -        |     | - |                          | 12,000                   |           | umhos        |
| Frequenc  | y for Maximum Ratings                                                                                            | -        | -        | -   | - |                          |                          | 500       | MHz          |
|           | le Capacitances, Grounded Ca<br>Input                                                                            | tho<br>- | de:<br>- | _   | - |                          |                          |           | Tall'a Calla |

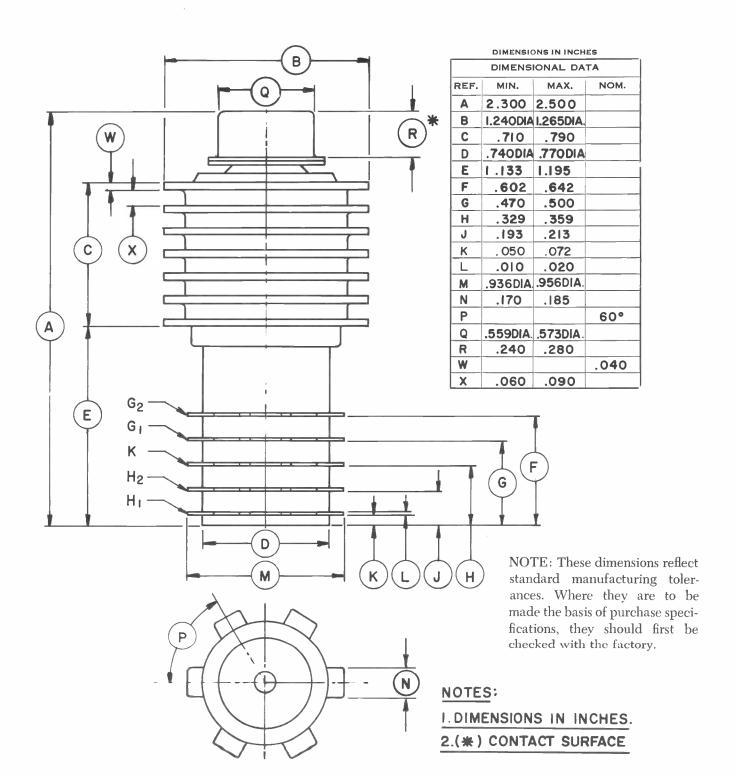
| relectro | de Capac | ita | nce | s, ( | Gro | unc | led | Ca | tho | de: |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Min. | Max. |    |
|----------|----------|-----|-----|------|-----|-----|-----|----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|------|----|
|          | Input    | -   | -   | -    | -   | -   | -   | -  | -   | -   | - | - | - | - | - | - | - | - | - | - | _ | - | _ | - | _ | - | 25.0 | 33.0 | pF |
|          | Output   |     | -   | -    | -   | **  | -   | -  | -   | -   | - | - | - | - | - | - | - | ~ | - | - | - | - | - | - | - | - | 3.5  | 4.5  | pF |
|          | Feedback | k   | -   | -    | -   | -   | **  | -  | -   | -   | - | - | - | - | - | - | ~ | - | ~ | - | - | - | - | - | - | * |      | 0.06 | pF |

# **MECHANICAL**

| Base                            | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -   | Sp | ecia | ıl, l | oree | echl | olo | ek, | ter | mir | nal surfaces |
|---------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|----|------|-------|------|------|-----|-----|-----|-----|--------------|
| Maximum Operating Temperatures: |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |    |      |       |      |      |     |     |     |     |              |
| Anode Core                      | _ | - | - | - | - | - |   |   | - | - | - | - | - | - | 1-1 | -  | -    | 100   | -    | _    | _   | _   | _   | -   | 250° C       |
| Ceramic-to-Metal Seals -        | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -   | -  | -    | -     | -    | -    | -   | _   | _   | _   | 250° C       |
| Operating Position              | - | - | - | - | - | - | - | - | - | ~ | ~ | - | - | - | -   | -  | -    | -     | -    | -    | -   | -   | -   | _   | Any          |
| Cooling                         | - | - | - | - | - | - | - | _ | - | - | - | - | _ | - | -   | -  | -    |       | -    | -    | -   | -   | -   | _   | Forced air   |
| Net Weight                      | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -   | -  | -    | -     | -    | -    | -   | -   | -   | -   | 3.5 ounces   |
| Shipping Weight (Approximate) - | - | - |   |   | - | - |   | - | - | - | - | - | - | - | -   | -  | -    | -     |      | -    | -   | -   | -   | -   | 1 pound      |

| MAXIMUM RATIN      | ٧G | S |   |   |   |   |   |   |   |   |   |   | Class–C<br>Plate Mod | Class–C<br>Teleg or FM | Class–AB<br>Audio or SSB |       |
|--------------------|----|---|---|---|---|---|---|---|---|---|---|---|----------------------|------------------------|--------------------------|-------|
| DC Plate Voltage   | -  | - | - | - | - | - | - | - | - | - | - | - | 1500                 | 2000                   | 2000                     | volts |
| DC Screen Voltage  | -  | - | - | - | - | - |   | - | - | - | - | - | 300                  | 300                    | 400                      | volts |
| DC Grid Voltage    | -  | ~ | - | - | - | - | - | - | - | - | - | - | -250                 | -250                   |                          | volts |
| DC Plate Current   | -  | - | - | - | - | - | - | - | - | - | - | - | 200                  | 250                    | 250                      | ma    |
| Plate Dissipation  | -  | - | - | - | - | - | - | - | - | - | - | - | 83                   | 125                    | 125                      | watts |
| Screen Dissipation | -  | _ | - | - | - | - | _ | - | - | - | - | - | 12                   | 12                     | 12                       | watts |
| Grid Dissipation   | -  | - |   | - | - | - | - | - | - | - | - | - | 2                    | 2                      | 2                        | watts |

Note: See 4CX300A data sheet for characteristic curves and typical operating conditions.


# TYPICAL OPERATION

| RF Amplifier<br>(excluding circuit losses) | DC Plate<br>Voltage<br>(Volts) | Driving<br>Power<br>(Watts) | Input<br>Power<br>(Watts) | Output<br>Power<br>(Watts) |
|--------------------------------------------|--------------------------------|-----------------------------|---------------------------|----------------------------|
| Class-C Telegraphy or FM Telephony         | 2000                           | 3.0                         | 500                       | 390                        |
| Plate-Modulated Telephony (Carrier)        | 1500                           | 2.0                         | 300                       | 235                        |
| Class—AB <sub>1</sub> Linear Amplifier     | 2000                           | 0                           | 315                       | 205                        |

#### **APPLICATION**

Cooling: The 4CX125C and 4CX125F are intended for use where transverse cooling air is desired. With the anode cooler installed in a duct of  $1'' \times 1\frac{1}{2}''$  cross section, approximately 8 cfm of air is required to maintain seal temperatures below

 $250^{\circ}$  C. This presumes sea level operation with an ambient temperature of 25  $^{\circ}$  or less. Sufficient air must be circulated around the base terminals to maintain the rated seal temperatures.





#### TECHNICAL DATA

7203 4CX250B 8621 4CX250FG RADIAL-BEAM POWER TETRODE

The 7203/4CX250B and 8621/4CX250FG are ceramic/metal forced-air cooled, external-anode radial-beam tetrodes with a maximum plate dissipation rating of 250 watts and a maximum input-power rating of 500 watts. The 7203/4CX250B is designed to operate with a heater voltage of 6.0 volts, while the 8621/4CX250FG is designed for operation at a heater voltage of 26.5 volts. Otherwise, the two tube types have identical characteristics.

#### GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL

| Cathode: Oxide Coated, Unipotential                                        |       |  |
|----------------------------------------------------------------------------|-------|--|
| Heater: Voltage (4CX250B) 6.0 ± 0.                                         | 3 V   |  |
| Current, at 6.0 volts 2.                                                   | 6 A   |  |
| Cathode - Heater Potential, maximum ±15                                    | 0 V . |  |
| Heater: Voltage (4CX250FG)                                                 | 3 V   |  |
| Current, at 26.5 volts 0.5                                                 | 4 A   |  |
| Cathode-Heater Potential, maximum ±15                                      | 60 V  |  |
| Amplification Factor (Average):                                            |       |  |
| Grid to Screen                                                             | 5     |  |
| Direct Interelectrode Capacitances (Grounded cathode) <sup>2</sup>         |       |  |
| Input                                                                      |       |  |
| Output                                                                     |       |  |
| Feedback                                                                   |       |  |
| Direct Interelectrode Capacitances (grounded grid and screen) <sup>2</sup> |       |  |
| Input                                                                      |       |  |
| Output                                                                     |       |  |

Feedback....

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. In Shielded Fixture.

Frequency of Maximum Rating:

Maximum Overall Dimensions:

#### MECHANICAL

| Maximum Overail Dimensions. |                  |
|-----------------------------|------------------|
| Length                      | 2.46 in; 62.5 mm |
| Diameter                    | 1.64 in; 41.7 mm |
| Net Weight                  | 4 oz; 113 gm     |
| Operating Position          | Any              |

(Revised 8-1-74) © 1962, 1970, 1973, 1974 Varian

Printed in U.S.A.

15.7 pF 4.5 pF 0.04 pF

> 13 pF 4.5 pF

0.01 pF

500 MHz

| Maximum Operating Temperature:     | 0.40-0                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------|
| Ceramic/Metal Seals                |                                                                                              |
| Anode Core                         |                                                                                              |
| Cooling                            | Forced Air                                                                                   |
| Base                               | Special 9-pin JEDEC-B8-236                                                                   |
|                                    | EIMAC SK-600 Series                                                                          |
|                                    | EIMAC SK-600 Series                                                                          |
| recommended entimites              | DIMAC SK-000 Series                                                                          |
|                                    |                                                                                              |
| RADIO FREQUENCY LINEAR AMPLIFIER   | TYPICAL OPERATION (Frequencies to 175 MHz)                                                   |
| GRID DRIVEN (SSB)                  | Class AB1, Grid Driven, Peak Envelope or Modulation Crest<br>Conditions                      |
| Class AB <sub>1</sub>              | Plate Voltage 1000 1500 2000 Vdc                                                             |
| MAXIMUM RATINGS                    | Screen Voltage                                                                               |
| VICATIVIONI NA LINGS               | Grid Voltage 155 -55 Vdc                                                                     |
| DC PLATE VOLTAGE 2000 VOLTS        | Zero-Signal Plate Current 100 100 mAdc<br>Single Tone Plate Current 250 250 250 mAdc         |
| DC SCREEN VOLTAGE 400 VOLTS        | Two-Tone Plate Current 190 190 190 mAdc                                                      |
| DC GRID VOLTAGE250 VOLTS           | Single-Tone Screen Current <sup>2</sup> 10 8 5 mAdc                                          |
| DC PLATE CURRENT 0.25 AMPERE       | Two-Tone Screen Current? 2 -1 -2 mAdc Single-Tone Grid Current? 0 0 0 mAdc                   |
| PLATE DISSIPATION 250 WATTS        | Peak rf Grid Voltage2 50 50 50 v                                                             |
| SCREEN DISSIPATION                 | Plate Output Power 120 215 300 W                                                             |
| GRID DISSIPATION 2 WATTS           | Resonant Load Impedance 2000 3000 4000 $\Omega$                                              |
| OND DISSILATION 2 WATTS            | 1. Adjust to specified zero-signal dc plate current.                                         |
|                                    | 2. Approximate value.                                                                        |
| RADIO FREQUENCY LINEAR AMPLIFIER   | TYPICAL OPERATION (Frequencies to 175 MHz)                                                   |
| GRID DRIVEN, CARRIER CONDITIONS    | Class AB <sub>1</sub> , Grid Driven                                                          |
| Class AB <sub>1</sub>              | Plate Voltage 1000 1500 2000 Vdc                                                             |
|                                    | Screen Voltage                                                                               |
| MAXIMUM RATINGS                    | Grid Voltage 1                                                                               |
|                                    | Carrier Plate Current                                                                        |
| DC PLATE VOLTAGE 2000 VOLTS        | Carrier Screen Current3 -4 -4 mAdc                                                           |
| DC SCREEN VOLTAGE 400 VOLTS        | Peak rf Grid Voltage 2 25 25 v                                                               |
| DC GRID VOLTAGE250 VOLTS           | Plate Output Power 30 50 65 W                                                                |
| DC PLATE CURRENT 0.25 AMPERE       |                                                                                              |
| PLATE DISSIPATION 250 WATTS        | 1. Adjust to specified zero-signal dc plate current                                          |
| SCREEN DISSIPATION 12 WATTS        |                                                                                              |
| GRID DISSIPATION 2 WATTS           | 2. Approximate value.                                                                        |
|                                    |                                                                                              |
| RADIO FREQUENCY POWER AMPLIFIER    | TYPICAL OPERATION(Frequencies to 175 MHz)   500 MHz <sup>2</sup>                             |
| OR OSCILLATOR                      | Plate Voltage 500 1000 1500 2000 2000 Vdc                                                    |
| Class C Telegraphy or FM Telephony | Screen Voltage 250 250 250 250 300 Vdc<br>Grid Voltage90 -90 -90 -90 -90 Vdc                 |
| (Key-Down Conditions)              | Plate Current 250 250 250 250 250 mAdc                                                       |
| MAYIMI IM DATINGS                  | Screen Current1 45 38 21 19 10 mAdc2                                                         |
| MAXIMUM RATINGS                    | Grid Current1 35 31 28 26 10 mAdc2 Peak rf Grid Voltage1114 114 112 112 v                    |
| DC DI ATE VOLTACE                  | Measured Driving                                                                             |
| DC PLATE VOLTAGE                   | Power 1 4.0 3.5 3.2 2.9 W                                                                    |
| DC SCREEN VOLTAGE                  | Plate Input Power 125 250 375 500 500 W Plate Output Power 70 190 280 390 290 W <sup>2</sup> |
| DC GRID VOLTAGE250 VOLTS           | Heater Voltage                                                                               |
| DC PLATE CURRENT 0.25 AMPERE       | (4CX250B) 6.0 6.0 6.0 6.0 5.5 V                                                              |
| PLATE DISSIPATION 250 WATTS        | Heater Voltage<br>(4CX250FG) 26.5 26.5 26.5 26.5 24.3 V                                      |
| SCREEN DISSIPATION 12 WATTS        | (TONEOU O) 2010 2010 2010 2010  24.3 V                                                       |

2 WATTS

Approximate value.
 Measured values for a typical cavity amplifier circuit.

GRID DISSIPATION .....

# 4CX250B-4CX250FG

1000 1500 2000 Vdc

### PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

#### MAXIMUM RATINGS

| DC PLATE VOLTAGE               | 1500 | VOLTS         |
|--------------------------------|------|---------------|
| DC SCREEN VOLTAGE              | 300  | VOLTS         |
| DC GRID VOLTAGE                | -250 | VOLTS         |
| DC PLATE CURRENT               | 0.20 | <b>AMPERE</b> |
| PLATE DISSIPATION <sup>1</sup> | 165  | WATTS         |
| SCREEN DISSIPATION2            | 12   | WATTS         |
| GRID DISSIPATION2              | 2    | WATTS         |

- Corresponds to 250 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

#### TYPICAL OPERATION (Frequencies to 175 MHz)

| Plate Voltage            | 500  | 1000 | 1500 | Vdc  |
|--------------------------|------|------|------|------|
| Screen Voltage           | 250  | 250  | 250  | Vdc  |
| Grid Voltage             | -100 | -100 | -100 | Vdc  |
| Plate Current            | 200  | 200  | 200  | mAdc |
| Screen Current           | 31   | 22   | 20   | mAdc |
| Grid Current             | 15   | 14   | 14   | mAdc |
| Peak rf Grid Voltage     | 118  | 117  | 117  | V    |
| Calculated Driving Power | 1.8  | 1.7  | 1.7  | W    |
| Plate Input Power        | 100  | 200  | 300  | W    |
| Plate Output Power       | 60   | 145  | 235  | W    |

3. Approximate value.

Plate Voltage

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB, Grid Driven (Sinusoidal Wave)

#### MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 2000             | VOLTS  |
|--------------------|------------------|--------|
| DC SCREEN VOLTAGE  | 400              | VOLTS  |
| DC GRID VOLTAGE    | <del>-</del> 250 | VOLTS  |
| DC PLATE CURRENT   | 0.25             | AMPERE |
| PLATE DISSIPATION  | 250              | WATTS  |
| SCREEN DISSIPATION | 12               | WATTS  |
| GRID DISSIPATION   | 2                | WATTS  |

- 1. Approximate value.
- 2. Per Tube.

#### TYPICAL OPERATION (Two Tubes)

| riale vollage               | 1000 | 1500 | 2000            | vac  |
|-----------------------------|------|------|-----------------|------|
| Screen Voltage              | 350  | 350  | 350             | Vdc  |
| Grid Voltage 1/3            | -55  | -55. | <del>-</del> 55 | Vdc  |
| Zero-Signal Plate Current   | 200  | 200  | 200             | mAdc |
| Max Signal Plate Current    | 500  | 500  | 500             | mAdc |
| Max Signal Screen Current 1 | 20   | 16   | 10              | mAdc |
| Max Signal Grid Current1    | 0    | 0    | 0               | mAdc |
| Peak af Grid Voltage 2      | 50   | 50   | 50              | V    |
| Peak Driving Power          | 0    | 0    | 0               | W    |
| Plate Input Power           | 500  | 750  | 1000            | W    |
| Plate Output Power          | 240  | 430  | 600             | W    |
| Load Resistance             |      |      |                 |      |
| (plate to plate)            | 3500 | 6200 | 9500            | Ω    |
|                             |      |      |                 |      |

3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                        | Min. | Nom. | Max.     |
|--------------------------------------------------------------------------|------|------|----------|
| Heater: 4CX250B Current at 6.0 volts                                     | 2.3  |      | 2.9 A    |
| Heater: 4CX250FG Current at 26.5 volts                                   | 0.45 |      | 0.62 A   |
| Cathode Warmup Time                                                      | 30   | 60   | sec.     |
| Interelectrode Capacitances 1 (grounded cathode connection)              |      |      |          |
| Input                                                                    | 14.2 |      | 17.2 pF  |
| Output                                                                   |      |      | 5.0 pF†  |
| Feedback                                                                 |      |      | 0.06 pF  |
| Interelectrode Capacitances1 (grounded grid and screen)                  |      |      | •        |
| Input                                                                    |      | 13.0 | pF       |
| Output                                                                   |      |      | 5.0 pF t |
| Feedback                                                                 |      | 0.01 | pF       |
|                                                                          |      |      |          |
| <sup>†</sup> Cout values shown are for 4CX250B; for 4CX250FG, values are | 4.0  |      | 5.3 pF   |

#### **APPLICATION**

#### **MECHANICAL**

MOUNTING - The 4CX250B and 4CX250FG may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen capacitors and may be obtained with either grounded or ungrounded cathode terminals.

COOLING - Sufficient forced-air cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum values. Air requirements to maintain anode core temperatures at 200°C with an inlet air temperature of 50°C are tabulated below. These requirements apply when a socket of the EIMAC SK-600 series and an EIMAC SK-606 chimney are used with air flow in the base to anode direction.

| SEA LEVEL 10,000 FEET      |                   |                                  | EET                          |                                  |
|----------------------------|-------------------|----------------------------------|------------------------------|----------------------------------|
| Plate Dissipa- tion(watts) | Air Flow<br>(CFM) | Pressure<br>Drop(In.of<br>water) |                              | Pressure<br>Drop(In.of<br>water) |
| 200<br>250                 | 5.0<br>6.4        | 0.52<br>0.82                     | 7 <b>.</b> 3<br>9 <b>.</b> 3 | 0.76<br>1 20                     |

The blower selected in a given application must be capable of supplying the desired airflow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters. The blower must be designed to deliver the air at the desired altitude.

At 500 MHz or below, base cooling air requirements are satisfied automatically when the tube is operated in an EIMAC Air-System Socket and the recommended air flow rates are used. Experience has shown that if reliable long life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

VIBRATION - These tubes are capable of satisfactorily withstanding ordinary shock and vibration, such as encountered in shipment and normal handling. The tubes will function well in automobile and truck mobile installations and similar environments. However, when shock and vibration more severe than this are expected, it is suggested that the EIMAC 4CX300A or 4CX250R be employed.

#### **ELECTRICAL**

<code>HEATER</code> - The rated heater voltage for the 4CX250B and 4CX250FG is 6.0 volts and 26.5 volts, respectively, and the voltage should be maintained as closely as practicable. Short-time changes of  $\pm$  10% will not damage the tube, but variations in performance must be expected. The heater voltage must be maintained within  $\pm$  5% to minimize these variations and to obtain maximum tube life.

At frequencies above approximately 300 MHz transit-time effects begin to influence the cathode temperature. The amount of driving power diverted to heating the cathode by back-bombardment will depend upon frequency, plate current, and driving power. When the tube is driven to maximum input as a class-C amplifier, the heater voltage should be reduced according to the table below;

| Frequency MHz | 4CX250B    | 4CX250FG   |
|---------------|------------|------------|
| 300 and lower | 6.00 volts | 26.5 volts |
| 301 to 400    | 5.75 volts | 25.3 volts |
| 401 to 500    | 5.50 volts | 24.3 volts |
|               |            |            |

CATHODE OPERATION - The oxide coated unipotential cathode must be protected against excessively high emission currents. The maximum rated dc input current is 200 mA for platemodulated operation and 250 mA for all other types of operation except pulse.

The cathode is internally connected to the four even-numbered base pins and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 30 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts regardless of polarity.

GRID OPERATION - The maximum rated dc grid bias voltage is -250 volts and the maximum grid dissipation rating is 2.0 watts. In ordinary audio and radio-frequency amplifiers the grid dissipation usually will not approach the maximum rating. At operating frequencies above the 100 MHz region, driving-power requirements for

amplifiers increase noticeably. At 500 MHz as much as 20 watts of driving power may have to be supplied. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory 500 MHz operation of the tube in a stable amplifier is indicated by grid-current values below approximately 15 mA.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull circuits, to assure equal load sharing.

The maximum permissible grid-circuit resistance per tube is 100,000 ohms.

SCREEN OPERATION - The maximum rated power dissipation for the screen is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes, or an electron

tube shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube series regulator can be used only when an a equate bleeder resistor is provided.

Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result in 100% modulation for plate-modulated rf amplifiers using the 4CX250B or 4CX250FG.

PLATE OPERATION - The maximum rated plate dissipation power is 250 watts. In plate-modulated applications the carrier plate dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that one tube fails.

VHF OPERATION-The 4CX250B and 4CX250FG are suitable for use in the VHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

HIGH VOLTAGE - The 7203/4CX250B and 8621/4CX250FG operate at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS-If it is desired to operate these tubes under conditions widely different from those given here, write to Application Engineering Dept., EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.

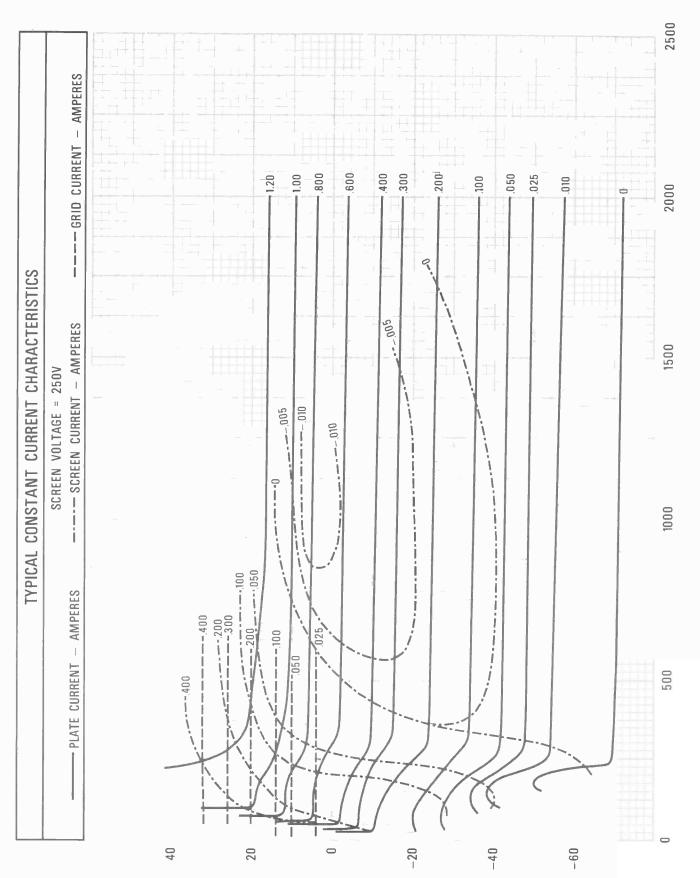
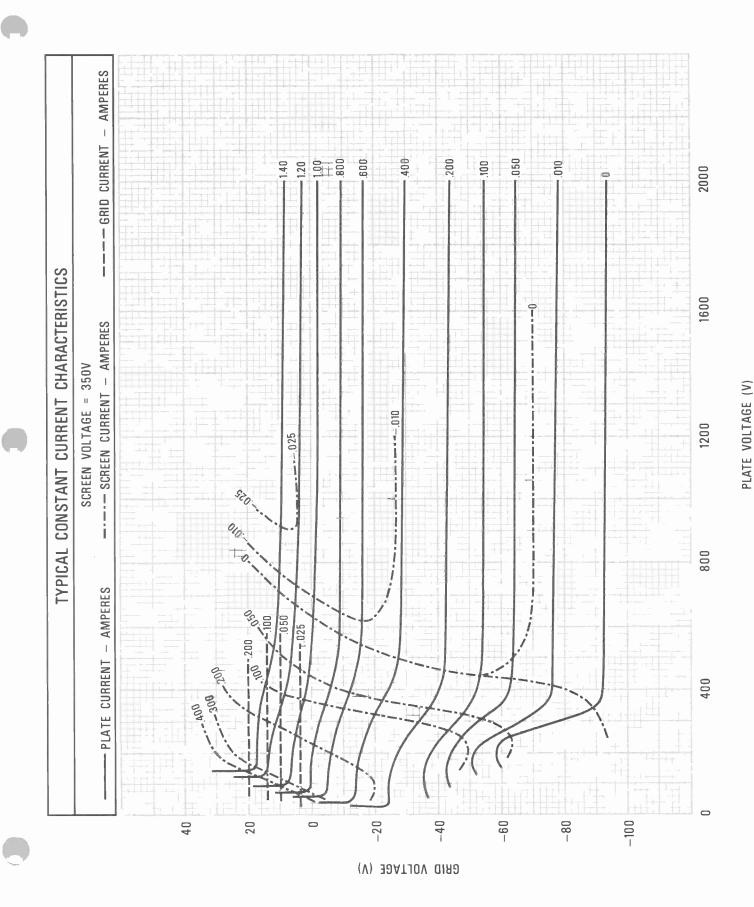
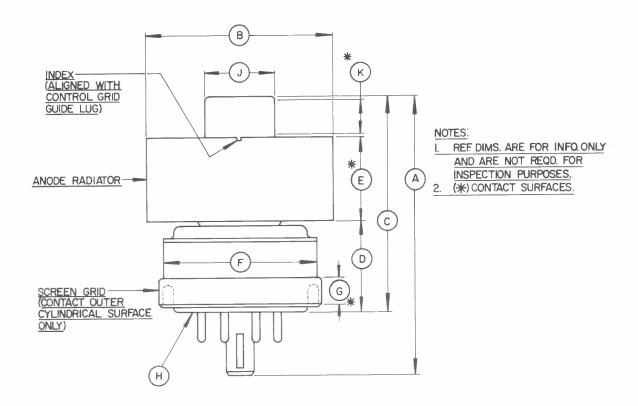




PLATE VOLTAGE (V)






7

| PIN       | DESIGNATION | 1         |          |             |
|-----------|-------------|-----------|----------|-------------|
| PIN NO. I | SCREEN (    | SRID      |          |             |
| PIN NO. 2 | CATHODE     |           |          |             |
| PIN NO.3  | HEATER      |           |          |             |
| PIN NO.4  | CATHODE     |           |          |             |
| PIN NO.5  | I.C. DO NO  | T USE FOR | EXTERNAL | CONNECTION. |
| PIN NO.6  | CATHODE     |           |          |             |
| PIN NO.7  | HEATER      |           |          |             |
| PIN NO.8  | CATHODE     |           |          |             |
| CENTER    | PIN-CONTROL | GRID      |          |             |

| DIMENSIONAL DATA      |              |       |              |       |        |        |  |
|-----------------------|--------------|-------|--------------|-------|--------|--------|--|
| DIM.                  | INCHES       |       | INCHES MILLI |       | MILLIN | METERS |  |
| UNIVI.                | MIN.         | MAX.  | MIN.         | MAX.  |        |        |  |
| Α                     | 2.342        | 2.464 | 59.03        | 62.59 |        |        |  |
| В                     | 1.610        | 1.640 | 40.89        | 41.66 |        |        |  |
| С                     | 1.810        | 1.910 | 45.97        | 48.51 |        |        |  |
| D                     | 0.750        | 0.810 | 19.05        | 20.57 |        |        |  |
| E                     | 0.710        | 0.790 | 18.03        | 20.07 |        |        |  |
| F                     |              | 1.406 |              | 35.71 |        |        |  |
| G                     | 0.187        |       | 4.75         |       |        |        |  |
|                       | BASE: B8-236 |       |              |       |        |        |  |
| H (JEDEC DESIGNATION) |              |       |              |       |        |        |  |
| J                     | 0.559        | 0.573 | 14.20        | 14.55 |        |        |  |
| K                     | 0.240        |       | 6.10         |       |        |        |  |





#### TECHNICAL DATA

### 8957 4CX250BC

RADIAL-BEAM POWER TETRODE

The 8957/4CX250BC is a ceramic/metal, forced-air cooled, external-anode radial-beam tetrode with a maximum plate dissipation rating of 250 watts and a maximum input power rating of 500 watts. It is intended for use as an oscillator, amplifier, or modulator.

The 8957/4CX250BC is especially recommended as a premium-quality replacement for the 7203/4CX250B, in applications where long life and consistent performance are of prime concern and the closer heater voltage tolerance and increased cathode warmup time are acceptable.



#### GENERAL CHARACTERISTICS<sup>1</sup>

#### **ELECTRICAL**

| Cathode: Oxide Coated, Unipotential                                        | 1     |     |
|----------------------------------------------------------------------------|-------|-----|
| Heater: Voltage 6.0 ± 0.3 V                                                |       |     |
| Current, at 6.0 volts 2.4 A                                                |       |     |
| Cathode-Heater Potential, maximum ±150 V                                   |       | •   |
| Amplification Factor (Average):                                            |       |     |
| Grid to Screen                                                             |       |     |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup>         |       |     |
| Cin                                                                        | 15.7  | pF  |
| Cout                                                                       | 4.5   | pF  |
| Cgp                                                                        | 0.04  | pF  |
| Direct Interelectrode Capacitances (grounded grid and screen) <sup>2</sup> |       |     |
| Cin                                                                        | 13.0  | pF  |
| Cout                                                                       | . 4.5 | pF  |
| Cpk                                                                        | 0.01  | pF  |
| Frequency of Maximum Rating:                                               |       |     |
| ĊW                                                                         | . 500 | MHz |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| M   | aximum      | Overal1 | Dime   | ensions: |
|-----|-------------|---------|--------|----------|
| 747 | ualiii uiii | Ovciuli | Dillic | moromo.  |

| Length             | 2.46 in; 62.5 | mm  |
|--------------------|---------------|-----|
| Diameter           | 1.64 in; 41.7 | mm  |
| Net Weight         | 4 oz; 113     | gm  |
| Operating Position |               | Any |

(Effective 1-1-74)

© 1974 by Varian

Printed in U.S.A.

| Maximum Operating Temperature: Ceramic/Metal Seals Anode Core Cooling Base Recommended Socket Recommended Chimney                                                                                |                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN (SSB) Class AB 1                                                                                                                                    | TYPICAL OPERATION (Frequencies to 175 MHz) Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation Crest Conditions                                                                                                                         |
| MAXIMUM RATINGS:                                                                                                                                                                                 | Plate Voltage                                                                                                                                                                                                                                        |
| DC PLATE VOLTAGE 2000 VOLTS DC SCREEN VOLTAGE 400 VOLTS DC GRID VOLTAGE250 VOLTS DC PLATE CURRENT 0.25 AMPERE PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS   | Single Tone Plate Current                                                                                                                                                                                                                            |
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, CARRIER CONDITIONS Class AB 1                                                                                                                      | TYPICAL OPERATION (Frequencies to 175 MHz) Class AB1, Grid Driven                                                                                                                                                                                    |
| MAXIMUM RATINGS:                                                                                                                                                                                 | Plate Voltage                                                                                                                                                                                                                                        |
| DC PLATE VOLTAGE 2000 VOLTS DC SCREEN VOLTAGE 400 VOLTS DC GRID VOLTAGE -250 VOLTS DC PLATE CURRENT 0.25 AMPERE PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS | Zero-Signal Plate Current                                                                                                                                                                                                                            |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR                                                                                                                                                    | TYPICAL OPERATION (Frequencies to 175 MHz 500 MHz                                                                                                                                                                                                    |
| Class C Telegraphy or FM<br>(Key-Down Conditions)                                                                                                                                                | Plate Voltage        500       1000       1500       2000       2000       Vdc         Screen Voltage        250       250       250       250       300       Vdc         Grid Voltage        -90       -90       -90       -90       -90       Vdc |
| MAXIMUM RATINGS:                                                                                                                                                                                 | Plate Current 250 250 250 250 250 mAdc 2<br>Screen Current 1 45 40 27 25 16 mAdc 2<br>Grid Current 1 35 31 28 26 25 mAdc                                                                                                                             |
| DC PLATE VOLTAGE 2000 VOLTS DC SCREEN VOLTAGE                                                                                                                                                    | Peak rf Grid Voltage 1 114 114 112 112 v  Measured Driving  Power 1 4.0 3.5 3.2 2.9 W                                                                                                                                                                |
| DC GRID VOLTAGE                                                                                                                                                                                  | Plate Input Power . 125 250 375 500 500 W Plate Output Power . 70 190 280 390 300 W <sup>2</sup> Heater Voltage 6.0 6.0 6.0 6.0 5.7 V                                                                                                                |
| SCREEN DISSIPATION                                                                                                                                                                               | <ol> <li>Approximate value.</li> <li>Measured values for a typical cavity amplifier circuit.</li> </ol>                                                                                                                                              |

## PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

#### MAXIMUM RATINGS:

| DC PLATE VOLTAGE    | 1500 | VOLTS  |
|---------------------|------|--------|
| DC SCREEN VOLTAGE   | _    | VOLTS  |
| DC GRID VOLTAGE     | -250 | VOLTS  |
| DC PLATE CURRENT    | 0.20 | AMPERE |
| PLATE DISSIPATION 1 | 165  | WATTS  |
| SCREEN DISSIPATION2 |      | WATTS  |
| GRID DISSIPATION 2  | 2    | WATTS  |

#### TYPICAL OPERATION (Frequencies to 175 MHz)

| Plate Voltage!            | 500        | 1000 | 1500 | Vdc  |
|---------------------------|------------|------|------|------|
| Screen Voltage            |            | 250  | 250  |      |
| Grid Voltage              | 100        | -100 | -100 | Vdc  |
| Plate Current             |            | 200  | 200  | mAdc |
| Screen Current 3          | 37         | 30   | 27   | mAdc |
| Grid Current <sup>3</sup> | 15         | 14   | 14   | mAdc |
| Peak rf Grid Voltage 3    | 118        | 117  | 117  | V    |
| Calculated Driving Power  | 1.8        | 1.7  | 1.7  | W    |
| Plate Input Power         | 100        | 200  | 300  | W    |
| Plate Output Power        | <b>6</b> 0 | 145  | 235  | W    |

- 1. Corresponds to 250 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.
- 3. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB , Grid Driven (Sinusoidal Wave)

#### MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 2000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC GRID VOLTAGE    | -250 | VOLTS  |
| DC PLATE CURRENT   | 0.25 | AMPERE |
| PLATE DISSIPATION  | 250  | WATTS  |
| SCREEN DISSIPATION | 12   | WATTS  |
| GRID DISSIPATION   | 2    | WATTS  |

1. Approximate value.

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage                        | 1000 | 1500 | 2000 | Vdc      |
|--------------------------------------|------|------|------|----------|
| Screen Voltage                       | 350  | 350  | 350  | Vdc      |
| Grid Voltage 1/3                     | -55  | -55  | -55  | Vdc      |
| Zero-Signal Plate Current            | 200  | 200  | 200  | mAdc     |
| Max Signal Plate Current             | 500  | 500  | 500  | mAdc     |
| Max signal Screen Current1           | 26   | 22   | 16   | mAdc     |
| Max Signal Grid Current <sup>1</sup> | 0    | 0    | 0    | mAdc     |
| Peak af Grid Voltage ?               | 50   | 50   | 50   | V        |
| Peak Driving Power                   | 0    | 0    | 0    | W        |
| Plate Input Power                    | 500  | 750  | 1000 | W        |
| Plate Output Power                   | 240  | 430  | 600  | W        |
| Load Resistance                      |      |      |      |          |
| (plate to plate)                     | 3500 | 6200 | 9500 | $\Omega$ |

- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data is obtained by direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In Class C service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                         | Min. | Max.    |
|-----------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                              |      |         |
| Cathode Warmup Time, with Heater Voltage at 6.0 volts     | 60   | sec.    |
| Interelectrode Capacitances (grounded cathode connection) |      |         |
| Cin                                                       | 14.2 | 17.2 pF |
| Cout                                                      | 4.0  | 5.0 pF  |
| Cgp                                                       |      |         |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.



#### MECHANICAL

MOUNTING - The 4CX250BC may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen capacitors and may be obtained with either grounded or ungrounded cathode terminals. SK-600 series Air Chimneys are also available.

COOLING - Sufficient forced-air cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum values. Air requirements to maintain anode core temperatures at 225°C with an inlet air temperature of 50°C are tabulated below. These requirements apply when a socket of the EIMAC SK-600 series and an EIMAC SK-606 c himney are used with air flow in the base to anode direction.

| S                               | EA LEVEL   | 10,00                             | 00 FEET           |                                   |
|---------------------------------|------------|-----------------------------------|-------------------|-----------------------------------|
| Plate<br>Dissipation<br>(Watts) |            | Pressure<br>Drop(In,<br>of water) | Air Flow<br>(CFM) | Pressure<br>Drop(In.<br>of water) |
| 200<br>250                      | 4.2<br>5.7 | 0.4<br>0.7                        | 6.1<br>8.2        | 0.6<br>1.0                        |

The blower selected in a given application must be capable of supplying the desired airflow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters. The blower must be designed to deliver the air at the desired altitude.

At 500 MHz or below, base cooling air requirements are satisfied automatically when the tube is operated in an EIMAC Air-System Socket and the recommended air flow rates are used. Experience has shown that if reliable long life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

VIBRATION - This tube is designed to provide reliable service under ordinary shock and vibration conditions, such as encountered in mobile installations. However, when severe shock, or high-level and high-frequency vibration are expected, it is suggested that the EIMAC 7580W/4CX250R be employed.

#### **ELECTRICAL**

<code>HEATER</code> - The nominal heater voltage for the 4CX250BC is 6.0 volts when the voltage regulation is held to  $\pm 5\%$ , and operation at this voltage and regulation will provide good life and stable performance. Regulation to a tolerance better than  $\pm 5\%$  normally will be beneficial as regards life expectancy, and if variation can be held to  $\pm 1\%$ , then the voltage may be reduced to as low as 5.7 volts, for greatest life expectancy. When this is done, however, voltage should be set and monitored with a voltmeter of high accuracy, which should be of the true-rms responding type.

Cathode peak current capability is dependent on cathode temperature, which is controlled by the heater operating voltage. Individual testing of the 4CX250BC assures adequate emission characteristics for normal rf or audio applications with heater voltage as low as 5.7 volts. Operation with the voltage lower than 5.7 volts should not be attempted at frequencies below UHF or cathode damage may result.

For pulse service, the full nominal value of 6.0 volts should be used on the heater.

At frequencies above approximately 300 MHz transit-time effects begin to influence the cathode temperature. The amount of driving power diverted to heating the cathode by back-bombardment will depend on frequency and operating conditions. When the tube is driven to a maximum input as a Class C amplifier, the heater voltage should be reduced in general accordance with the table below:

|                  | Volt. Reg. | Volt. Reg. |
|------------------|------------|------------|
|                  | _to ± 5%   | to ±1%     |
| 300 MHz or lower | 6.00 V     | 5.70 V     |
| 301 to 400 MHz   | 5.85 V     | 5.60 V     |
| 401 to 500 MHz   | 5.70 V     | 5.50 V     |

CATHODE OPERATION - The oxide coated unipotential cathode must be protected against excessively high emission current. The maximum rated dc input current (anode) is 200 mAdc for plate-modulated operation and 250 mAdc for all other types of operation except pulse.

The cathode is internally connected to the four even-numbered base pins and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 60 seconds before other operating voltages are applied. If reduced heater voltage is being used, with close voltage regulation, a warmup time of longer than 60 seconds should be allowed. If the 4CX250BC is used as a replacement for the 7203/4CX250B, adjustment of the warmup time-delay relay may be required, since some equipments designed for the 4CX250B used a time delay setting as short as 30 seconds.

Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts, regardless of the polarity.

GRID OPERATION - The maximum rated dc grid bias voltage is -250 volts and the maximum grid dissipation rating is 2.0 watts. In ordinary audio and radio-frequency amplifiers the grid dissipation usually will not approach the maximum rating. At operating frequencies above the 100 MHz region, driving power requirements for amplifiers increase noticeably. At 500 MHz as much as 20 watts of driving power may have to be supplied. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory 500 MHz operation of the tube in a stable amplifier is indicated by grid-current values below approximately 25 mA.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull circuits, to assure equal load sharing.

This maximum permissible grid-circuit resistance per tube is 100,000 ohms.

SCREEN OPERATION - The maximum rated power dissipation for the screen is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

It is a normal characteristic of most tetrodes for the screen current to reverse under certain operating conditions, producing a negative current indication on the screen milliammeter. Though there is considerably less likelihood of this happening with the 4CX250BC than with similar types, the screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode should be provided by a bleeder resistor or a suitable regulating device, arranged to pass a minimum of 5 milliamperes per connected screen.

PLATE OPERATION - The maximum rated plate dissipation power is 250 watts. In plate-modulated applications the carrier plate dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube (s) in the event that one tube fails.

VHF OPERATION - The 4CX250BC is suitable for use in the VHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

HIGH VOLTAGE - Normal operating voltages used with the 4CX250BC are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard

RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

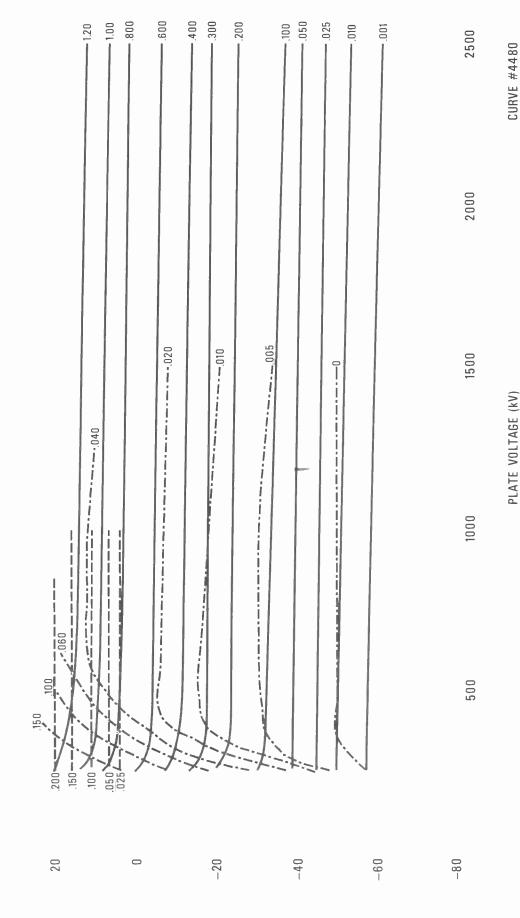
SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.



| DIMENSIONAL DATA                 |       |       |   |      |     |       |       |    |    |
|----------------------------------|-------|-------|---|------|-----|-------|-------|----|----|
| INCHES MILLIMETERS               |       |       |   |      |     |       |       |    |    |
| DIM                              | MIN.  | MAX.  | R | REF. |     | MIN.  | MAX.  | RE | F. |
| Α                                | 2.324 | 2464  |   | -    | ı   | 59.03 | 62.59 |    | -  |
| В                                | 1.610 | 1.640 |   | -    | 11  | 40.89 | 41.66 | _  | -  |
| С                                | 1.810 | 1.910 | - | _    | 11  | 46.00 | 48.51 |    | -  |
| D                                | 0.750 | 0.810 |   | -    | ] [ | 19.05 | 20.57 | _  |    |
| E                                | 0.710 | 0.790 | - | -    |     | 18.03 | 20.07 |    | -  |
| F                                |       | 1,406 | - | -    | ]   |       | 35.71 |    | -  |
| G                                | 0.187 |       | _ |      | 1   | 4.75  |       |    | -  |
| BASE: B8-236 (JEDEC DESIGNATION) |       |       |   |      |     |       |       |    |    |
| J                                | 0.559 | 0.573 | - | -    |     | 14.20 | 14.55 | _  | -  |
| K                                | 0.240 |       |   | -    |     | 6.10  |       |    |    |
|                                  |       |       |   |      |     |       |       |    |    |

#### NOTES:

. REF DIMS, ARE FOR INFO. ONLY AND ARE NOT REQD. FOR INSPECTION PURPOSES.


(\*) CONTACT SURFACES

| PIN I     | DESIGNATION            |       |          |            |
|-----------|------------------------|-------|----------|------------|
| PIN NO. I | SCREEN GRID            |       |          |            |
| PIN NO. 2 | CATHODE                |       |          |            |
| PIN NO.3  | HEATER                 |       |          |            |
| PIN NO.4  | <u>CATHODE</u>         |       |          |            |
| PIN NO.5  | I.C. DO NOT US         | E FOR | EXTERNAL | CONNECTION |
| PIN NO.6  | CATHODE                |       |          |            |
| PIN NO.7  | HEATER                 |       |          |            |
| PIN NO.8  | CATHODE                |       |          |            |
| CENTER P  | <u>IN-CONTROL GRID</u> |       |          |            |
|           |                        |       |          |            |

- .800 009.-.400 -1.00 300 200 .050 .025 100 .001 2500 **CURVE** #4478 ---- GRID CURRENT - AMPERES 2000  $E_{\rm f}$  = 6.0V SCREEN VOLTAGE = 350V ----- SCREEN CURRENT - AMPERES ----- GRID TYPICAL CONSTANT CURRENT CHARACTERISTICS 1500 PLATE VOLTAGE (kV) GROUNDED CATHODE - PLATE CURRENT - AMPERES 050 500 002: 20 -20-40-60-80 -100(V) ЭВАТЛОУ ОІЯВ



# ---- GRID CURRENT - AMPERES E<sub>f</sub> = 6.0V SCREEN VOLTAGE = 250V ----- SCREEN CURRENT - AMPERES ------ GRII TYPICAL CONSTANT CURRENT CHARACTERISTICS GROUNDED CATHODE - PLATE CURRENT - AMPERES

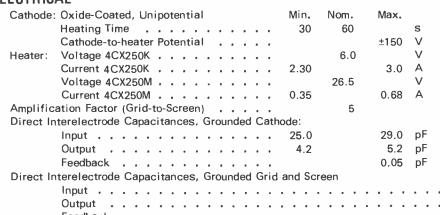


40



# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

8245 4CX250K 8246 4CX250M RADIAL-BEAM


POWER TETRODE

The 8245/4CX250K and 8246/4CX250M are compact, forced-air cooled, external-anode radial-beam tetrodes with a maximum plate dissipation rating of 250 watts and a maximum input-power rating of 500 watts. The 8245/4CX250K is designed to operate with a heater voltage of 6.0 volts, while the 8246/4CX-250M is designed for operation at a heater voltage of 26.5 volts. Otherwise, the two tube types have identical characteristics.

These tubes are of coaxial construction and are especially designed for cavity operation.

#### GENERAL CHARACTERISTICS

#### **ELECTRICAL**





| Direct Interelectrode Capacitances, Grounded Grid and Screen | Min. | Max. |     |
|--------------------------------------------------------------|------|------|-----|
| Input                                                        | 14.5 | 19   | pF  |
| Output                                                       | 4.2  | 5.2  | pF  |
| Feedback                                                     |      | 0.01 | pF  |
| Frequency for Maximum Ratings (CW)                           |      | 500  | MHz |
| (Pulsed)                                                     |      | 1500 | MHz |

#### **MECHANICAL**

| Base                            | Coaxial    |
|---------------------------------|------------|
| Maximum Operating Temperatures: |            |
| Ceramic-to-Metal-Seals          | 250° C     |
| Anode Core                      |            |
| Operating Position              | Any        |
| Maximum Dimensions:             |            |
| Height                          | 2.813 in   |
| Diameter                        | 1.640 in   |
| Cooling                         | Forced Air |
| Net Weight                      | 4.6 oz     |
| Shipping Weight (Approximate)   | 1.6 lbs    |

# RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

| Class-C Telegraphy or<br>(Key-down conditions)<br>MAXIMUM RATINGS | FI | VI | Te | ele | eph | or | ıy |   |      |              |
|-------------------------------------------------------------------|----|----|----|-----|-----|----|----|---|------|--------------|
| DC PLATE VOLTAGE .                                                |    |    | ,  |     |     |    |    |   | 2000 | VOLTS        |
| DC SCREEN VOLTAGE                                                 |    |    |    |     |     |    |    |   | 300  | <b>VOLTS</b> |
| DC GRID VOLTAGE .                                                 |    |    |    | ٠   |     |    |    |   | -250 | <b>VOLTS</b> |
| DC PLATE CURRENT .                                                |    |    |    |     |     |    |    |   | 250  | MA           |
| PLATE DISSIPATION .                                               |    |    |    |     |     |    |    |   | 250  | WATTS        |
| SCREEN DISSIPATION                                                |    |    |    |     |     |    |    |   | 12   | WATTS        |
| GRID DISSIPATION .                                                |    |    | •  |     | ٠   | •  | •  | • | 2    | WATTS        |

#### TYPICAL OPERATION

|                       | Freq | uenci | es up | to 175 |      | MHz    |
|-----------------------|------|-------|-------|--------|------|--------|
| DC Plate Voltage      |      | 1000  |       |        | 2000 |        |
| DC Screen Voltage .   | 250  | 250   | 250   | 250    | 300  | volts  |
| DC Grid Voltage       | -90  | -90   | -90   | -90    | -90  | volts  |
| DC Plate Current      | 250  | 250   | 250   | 250    | 250  |        |
| DC Screen Current* .  | 45   | 38    | 21    | 19     |      | *mA    |
| DC Grid Current*      | 35   | 31    | 28    | 26     |      | *mA    |
| Peak RF Grid Voltage* | 114  | 114   | 112   | 112    |      | volts  |
| Driving Power*        | 4.0  | 3.5   | 3.2   |        | _    |        |
| Plate Input Power     | 125  | 250   | 375   | 500    |      | watts  |
| Plate Output Power .  | 70   | 190   | 280   | 390    |      | *watts |
| Heater Voltage        | 6.0  | 6.0   | 6.0   | 6.0    | 5.5  | volts  |
|                       |      |       |       |        |      |        |

<sup>\*</sup> Approximate values.

<sup>\*\*</sup> Measured Values for a typical cavity amplifier circuit.



| PLATE-MODULATED RADIO-FREQUENCY                                      |                                                                                                               |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| AMPLIFIER                                                            | TYPICAL OPERATION (Frequencies up to 175 MHz) DC Plate Voltage 500 1000 1500 volts                            |
| Class-C Telephony (Carrier conditions)                               | DC Screen Voltage 500 1000 1500 volts  DC Screen Voltage 250 250 250 volts                                    |
| MAXIMUM RATINGS                                                      | DC Grid Voltage100 -100 -100 volts                                                                            |
| DC PLATE VOLTAGE 1500 VOLTS                                          | DC Plate Current 200 200 mA                                                                                   |
| DC SCREEN VOLTAGE 300 VOLTS DC GRID VOLTAGE250 VOLTS                 | DC Screen Current*                                                                                            |
| DC GRID VOLTAGE250 VOLTS DC PLATE CURRENT 200 MA                     | Peak RF Grid Input Voltage* 118 117 117 volts                                                                 |
| PLATE DISSIPATION 165 WATTS                                          | Driving Power* 1.8 1.7 1.7 watts                                                                              |
| SCREEN DISSIPATION 12 WATTS                                          | Plate Input Power                                                                                             |
| GRID DISSIPATION 2 WATTS                                             | * Approximate values.                                                                                         |
| RADIO-FREQUENCY POWER AMPLIFIER                                      | TYPICAL OPERATION (Frequencies up to 216 MHz, 5 MHz bandwidth)                                                |
| HADIO I REGOLIACT POWER AWPLIFIER                                    | DC Plate Voltage                                                                                              |
| Class-B Linear, Television Visual Service (per tube)                 | DC Grid Voltage60 -65 -70 volts                                                                               |
| orass between, relevision visual service (per tube)                  | During Sync-Pulse Peak:                                                                                       |
|                                                                      | DC Plate Current 335 330 360 mA                                                                               |
| DC PLATE VOLTAGE 1250 VOLTS                                          | DC Screen Current 50 45 29 mA                                                                                 |
|                                                                      | DC Grid Current                                                                                               |
| DC SCREEN VOLTAGE 400 VOLTS                                          | RF Driver Power (approx.) 7 8 9 watts                                                                         |
| DC GRID VOLTAGE250 VOLTS                                             | Useful Power Output 135 200 440 watts                                                                         |
| DC PLATE CURRENT (AVERAGE) 250 MA                                    | 8lack Level: DC Plate Current 245 240 250 mA                                                                  |
| PLATE DISSIPATION 250 WATTS                                          | DC Screen Current 20 15 0 mA DC Grid Current 4 4 4 mA                                                         |
|                                                                      | DC Grid Current 4 4 4 mA Peak RF Grid Voltage (approx.) 65 70 75 volts                                        |
| SCREEN DISSIPATION 12 WATTS                                          | RF Driver Power (approx.) 4.25 4.7 5.5 watts                                                                  |
| GRID DISSIPATION 2 WATTS                                             | Plate Power Input 185 240 500 watts Useful Power Output 75 110 250 watts                                      |
| PLATE PULSED RADIO FREQUENCY                                         |                                                                                                               |
| AMPLIFIER OR OSCILLATOR                                              | TYPICAL PULSE OPERATION                                                                                       |
| MAXIMUM RATINGS                                                      | Single tube oscillator, 1200 MHz                                                                              |
| PULSED PLATE VOLTAGE 7000 VOLTS                                      | Pulsed Plate Voltage 5 7 kV                                                                                   |
| PULSED SCREEN VOLTAGE 1500 VOLTS                                     | Pulsed Plate Current 4.0 6.0 amps Pulsed Screen Voltage 800 1200 volts                                        |
| DC GRID VOLTAGE500 VOLTS                                             | Pulsed Screen Current                                                                                         |
| MAXIMUM PULSE DURATION 5 JUS PULSED CATHODE CURRENT 7 AMPS           | DC Grid Voltage200 -250 volts                                                                                 |
| AVERAGE POWER INPUT                                                  | Pulsed Grid Current 0.5 0.6 amps Pulse Duration                                                               |
| PLATE DISSIPATION 250 WATTS                                          | Pulse Duration 4 5 µsec Pulse Repetition Rate                                                                 |
| SCREEN DISSIPATION 12 WATTS                                          | Peak Power Output                                                                                             |
| GRID DISSIPATION 2 WATTS                                             |                                                                                                               |
| RADIO-FREQUENCY LINEAR AMPLIFIER                                     | TYPICAL OPERATION (Frequencies up to 175 MHz, peak-envelope                                                   |
| Class-AB <sub>1</sub> (Single-Sideband Suppressed-Carrier Operation) | conditions except where noted) DC Plate Voltage 1000 1500 2000 volts                                          |
| MAXIMUM RATINGS                                                      | DC Screen Voltage 350 350 volts                                                                               |
| DO BLATE VIOLETA                                                     | DC Grid Voltage*55 -55 -55 volts Zero-Signal DC Plate Current 100 100 mA                                      |
|                                                                      | Peak RF Grid Voltage** 50 50 50 volts                                                                         |
| DC SCREEN VOLTAGE 400 VOLTS                                          | DC Plate Current                                                                                              |
| DC PLATE CURRENT                                                     | Plate Input Power 250 375 500 watts                                                                           |
| PLATE DISSIPATION 250 WATTS                                          | Two-Tone Average DC Plate Current 190 190 mA                                                                  |
| SCREEN DISSIPATION 12 WATTS                                          | Two-Tone Average DC Screen Current** 2 -1 -2 mA                                                               |
| GRID DISSIPATION 2 WATTS                                             | <ul> <li>Approximate values.</li> <li>Adjust grid bias to obtain listed zero-signal plate current.</li> </ul> |
|                                                                      |                                                                                                               |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direst tests. Adjustment of the r-f grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this proceedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct r-f driving voltage is applied.



#### **APPLICATION**

#### **MECHANICAL**

Mounting The 4CX250K and 4CX250M may be mounted in any position. The concentric arrangements of the electrode terminals permits the use of the tube in coaxial line or cavity type circuits to advantage.

Connections to the contact surfaces should be made by means of spring-finger collets which have sufficient pressure to maintain a good electrical contact at all fingers. Points of electrical contact should be kept clean and free of oxidation to minimize rf losses.

Cooling Sufficient forced-air cooling must be provided to maintain the anode core and seal temperatures below 250°C. Special care must be observed to insure that there is adequate cooling in the area of the coaxial filament and grid terminals.

#### ELECTRICAL

Heater The rated heater voltages for the 4CX-250K and 4CX250M are 6.0 and 26.5 volts, respectively and should be maintained at these values plus or minus five percent. At frequencies above 300 megahertz, transit time effects begin to influence the cathode temperature. The amount of driving power diverted to cathode heating will depend on frequency, plate current and driving power. When the tube is driven to maximum input as a class-C amplifier, the heater voltage should be reduced according to the following table. Further reduction in filament voltage may be needed in pulse service above 500 MHz.

| Frequency, MHz | 4CX250K    | 4CX250M    |
|----------------|------------|------------|
| 301 to 400     | 5.75 volts | 25.5 volts |
| 401 to 500     | 5.50 volts | 24.3 volts |

Cathode The oxide-coated unipotential cathode must be protected against excessively high emission currents. The maximum dc plate current must be limited to 250 mA under CW conditions. Pulse current must never exceed 6.0 amperes.

Where it is necessary to operate with some heater-to-cathode potential, the maximum heater-to-cathode voltage is 150 volts regardless of polarity.

Grid Dissipation Maximum grid dissipation is 2.0 watts. In ordinary af and rf amplifiers the grid dissipation usually will not reach this level. Above 100 MHz, drive power requirements increase, but most of this increase is absorbed in circuit losses rather than in grid dissipation. Satisfactory operation at 500 MHz in a "straight through" amplifier is indicated by grid currents below approximately 15 milliamperes. Grid circuit resistance should not exceed 100,000 ohms per tube.

The table below lists the minimum cooling requirements at sea level with 50°C ambient air to maintain 225°C on the anode. For operation at 10,000 feet, the air-flow values should be multiplied by 1.46.

|                                 |                      | TO-ANODE<br>LOW                            | ANODE-TO-BASE<br>FLOW |                                            |  |  |  |
|---------------------------------|----------------------|--------------------------------------------|-----------------------|--------------------------------------------|--|--|--|
| Plate<br>Dissipation<br>(Watts) | Air<br>Flow<br>(CFM) | Static<br>Pressure<br>(inches of<br>water) | Air<br>Flow<br>(CFM)  | Static<br>Pressure<br>(inches of<br>water) |  |  |  |
| 150<br>200<br>250               | 3.5<br>4.3<br>5.5    | 0.3<br>0.4<br>0.7                          | 3.1<br>4.6<br>6.1     | 0.2<br>0.4<br>0.7                          |  |  |  |

Screen-Grid Operation The maximum rated power dissipation for the screen grid is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

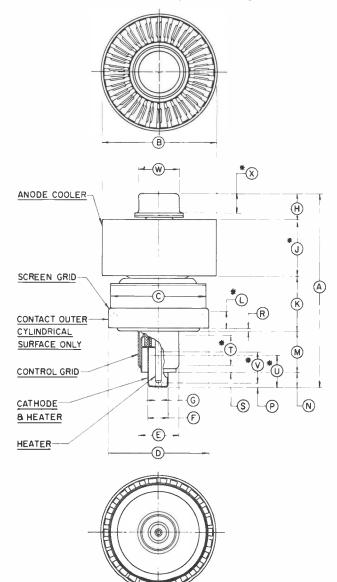
When screen voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes or an electron tube shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube series regulator can be used only when an adequate bleeder resistor is provided.

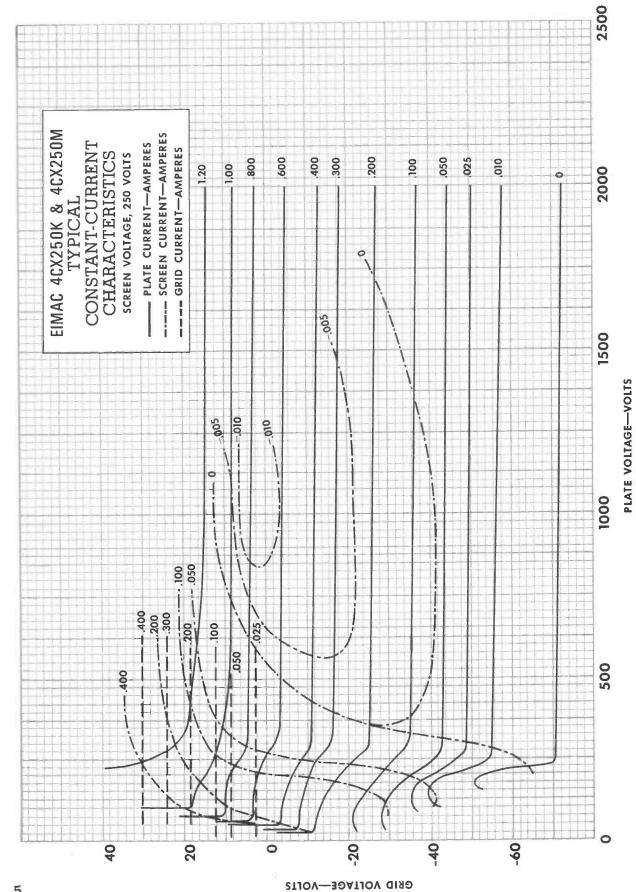
Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result in 100% modulation for plate-modulated rf amplifiers using the 4CX250K or 4CX250M.

Plate Operation The maximum rated plate-dissipation power is 250 watts. In plate-modulated applications the carrier plate-dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

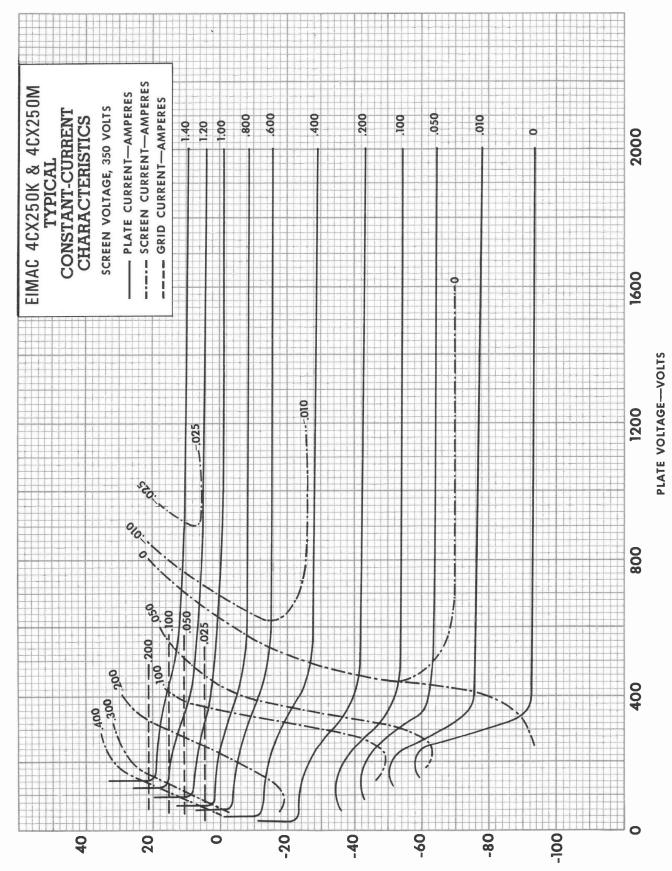

UHF Operation The 4CX250K and 4CX250M are suitable for use in the UHF region. Such operation

should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

Multiple Operation Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustments of bias or screen voltage to equalize the inputs.


Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that one tube fails.

Special Applications If it is desired to operate these tubes under conditions widely different from those given here, write to Product Manager, Eimac Division of Varian, San Carlos, California, for information and recommendations.




|      | DIMENSIO   | ONS        |  |  |  |  |  |  |  |  |
|------|------------|------------|--|--|--|--|--|--|--|--|
| REF. | MIN.       | MAX.       |  |  |  |  |  |  |  |  |
| Α    |            | 2.813      |  |  |  |  |  |  |  |  |
| В    | 1.610 DIA. | 1.640 DIA. |  |  |  |  |  |  |  |  |
| С    |            | 1.406 DIA. |  |  |  |  |  |  |  |  |
| D    | 1.410 DIA. | 1.440 DIA. |  |  |  |  |  |  |  |  |
| E    | .587 DIA.  | .597 DIA.  |  |  |  |  |  |  |  |  |
| F    | ,317 DIA.  | .327 DIA.  |  |  |  |  |  |  |  |  |
| G    | .088 DIA.  | .098 DIA.  |  |  |  |  |  |  |  |  |
| Н    |            | .358       |  |  |  |  |  |  |  |  |
| J    | .710       | .790       |  |  |  |  |  |  |  |  |
| K    | .740       | .820       |  |  |  |  |  |  |  |  |
| L    | .187       |            |  |  |  |  |  |  |  |  |
| М    | .500       | .580       |  |  |  |  |  |  |  |  |
| N    | .235       | .265       |  |  |  |  |  |  |  |  |
| Р    | .032       | .062       |  |  |  |  |  |  |  |  |
| R    | .020       | NOM.       |  |  |  |  |  |  |  |  |
| S    |            | NOM.       |  |  |  |  |  |  |  |  |
| Т    | 11/32      |            |  |  |  |  |  |  |  |  |
| U    | 13/32      |            |  |  |  |  |  |  |  |  |
| V    | 15/32      |            |  |  |  |  |  |  |  |  |
| W    | .559       | .573       |  |  |  |  |  |  |  |  |
| X    | .240       | .280       |  |  |  |  |  |  |  |  |











# SAN CARLOS CALLEGRNIA

### 7580W 4CX250R

RADIAL-BEAM POWER TETROOE

4CX250R

The 4CX250R is a compact, high-perveance radial-beam tetrode designed specifically for use in class-AB, linear amplifiers where shock and/or vibration preclude the use of non-ruggedized tube types. The 4CX250R will replace the 7580 in almost all applications since it is electrically identical except for a minute (0.2 uuf) increase in output-capacitance limits. Further, it will replace the 4X250B or 4CX250B in equipments where the range of bias adjustment will tolerate this higher perveance tube and where tuning range can compensate for the small differences in input and output capacitances.

The 4CX250R will deliver more output power in most linear amplifiers which presently employ the 4X250B or 4CX250B and it will operate with maximum rated

|                         | screen volted. See <b>Shoo</b> |      |                |       |      |       |       |     |    |            |            |                      |                     | ation is                        |       | -      |          | ×           | Ж ж.           | ADE IN U.S.A     |
|-------------------------|--------------------------------|------|----------------|-------|------|-------|-------|-----|----|------------|------------|----------------------|---------------------|---------------------------------|-------|--------|----------|-------------|----------------|------------------|
| -                       |                                |      |                |       |      |       | ARAC  | _   | -  |            |            |                      |                     |                                 |       |        | -        |             |                | on sincerna      |
| ELECTRIC                | CAL                            |      |                |       |      |       |       |     |    |            |            |                      |                     |                                 |       |        |          | 100         | (8.01i         |                  |
| Cathode                 | : Oxide-Coate                  | d, L | Jnipo          | tenti | al   |       |       |     |    | М          | in.        | Nom.                 | Max.                |                                 |       | - 1    |          |             |                |                  |
|                         | Heating Tim                    | е    | -              | -     | _    | -     | -     | _   |    | . ;        | 30         | 60                   |                     | second                          | S     |        |          | -           |                |                  |
|                         | Cathode-to-l                   | Heat | ter P          | oten  | tial |       | -     |     |    |            | _          |                      | ±150                | volt                            | s     | - 2    | 1        |             |                |                  |
| Heater:                 | Voltage -                      |      | -              | -     | _    | -     | -     | -   |    |            |            | 6.0                  |                     | volt                            | S     |        |          | 1           |                |                  |
|                         | Current -                      |      | -              | _     | -    | -     | -     |     |    | . 2        | .3         |                      | 2.9                 | ampere                          | s     |        |          |             | 1 (2)          | 1                |
| Direct In               | iterelectrode (                | Capa | acitar         | nces, | Gro  | unded | Catho | de: |    |            |            |                      |                     |                                 |       |        |          |             |                |                  |
|                         | Input -                        |      | -              | -     | -    | -     | -     |     |    | 16         | .0         |                      | 18.5                | цu                              | f     |        |          |             |                |                  |
|                         | Output -                       |      | -              | -     | -    | -     | -     |     | 9  | . 4        | .2         |                      | 5.2                 | uu                              | f     |        |          |             |                |                  |
|                         | Grid-to-Plate                  | е    | -              | -     | -    | -     |       | -   |    |            |            |                      | 0.06                | uu                              | f     |        |          |             |                |                  |
| Frequenc                | y for Maximu                   | ım R | <b>Ratin</b> g | gs    | -    | -     | -     | -   |    |            |            |                      | 500                 | М                               | :     |        |          |             |                |                  |
| MECHAN                  | IICAL                          |      |                |       |      |       |       |     |    |            |            |                      |                     |                                 |       |        |          |             |                |                  |
| Base -                  |                                | -    | -              | -     | -    | -     | -     | -   |    |            |            |                      | -                   |                                 | -     | -      |          | -           | Specia         | al 9-pin         |
| Maximum                 | Operating T                    | emp  | erati          | ures: |      |       |       |     |    |            |            |                      |                     |                                 |       |        |          |             | •              |                  |
|                         | Ceramic-to-N                   | Meta | ıl Se          | als   |      |       | -     |     |    |            |            |                      | -                   |                                 | -     | -      |          | -           | -              | 250°C            |
|                         | Anode Core                     |      | -              | -     | -    | -     | -     |     |    |            |            |                      | -                   |                                 | -     | -      | -        | -           | -              | 250°C            |
|                         | ended Socket                   |      | -              | -     | -    | -     | -     | 41  |    |            |            | -                    | -                   |                                 | -     | -      |          | imac        | SK-600         | O Series         |
| •                       | g Position -                   |      | -              | -     | -    | -     | -     | -   |    |            |            |                      | -                   |                                 | -     | -      | -        | -           | -              | Any              |
| Maximum                 | n Dimensions:                  |      |                |       |      |       |       |     |    |            |            |                      |                     |                                 |       |        |          |             | 0.444          |                  |
|                         | Height                         | -    | -              | •     | -    | 14    | -     | -   |    | -          |            | -                    | -                   | -                               | -     | -      |          |             | 2.464<br>1.910 | inches<br>inches |
|                         | Seated Heig                    | •    | -              | -     | -    |       |       | -   |    |            | -          | -                    | -                   | -                               | -     | -      |          | -           | 1.640          | inches           |
| 0 1:                    | Diameter .                     | -    | -              | -     | -    | -     | -     | -   | -  | -          |            | -                    | -                   |                                 | -     |        | •        | •           |                | ced Air          |
| Cooling                 |                                |      | -              | -     |      |       |       |     |    |            |            |                      | -                   |                                 | -     | •      |          |             | 4              | ounces           |
| Net We                  | -                              |      |                | -     | -    |       | ~     |     |    |            |            |                      | -                   |                                 | -     | -      |          |             | 1.6            | pounds           |
|                         | Weight (Ap                     |      |                |       |      |       |       | -   | -  |            |            | -                    | -                   |                                 | -     |        | -        | -           | 1.0            | pounds           |
| RADIO-F                 | REQUENCY                       | L    | INE            | AR    | AM   | PLIF  | ER    |     |    |            |            | LOPER                |                     |                                 |       | !.     | ak las   | 2 A Au      | ina tha        | 2705200          |
| Class-AB <sub>1</sub> - | Single Sideba                  | nd   |                |       |      |       |       |     |    | pov        | ver<br>95% | output-              | -Actual             | envelope<br>measurem            | ents- | -Tank- | -circuit | effic       | iency e        | stimated         |
| MAXIMUM                 | RATINGS                        |      |                |       |      |       |       |     |    | D-C<br>Zer | o-Sid      | ate Volt             | age<br>C Plate      | Current                         |       |        | :        | 1500        | 2000<br>070    | volts<br>ma      |
| D-C PLATE               | VOLTAGE                        | -    | ~              | -     | -    | 2000  | MAX.  | VOL | TS | Two        | -Ton       | e D-C<br>reen Vo     | Plate C             | urrent                          |       |        | -        | 250<br>350  | 245<br>400     | ma<br>volts      |
| D-C SCREE               | N VOLTAGE                      |      |                | _     |      | 500   | MAX.  | VOL | TS | Two        | -Ton       | e D-C                | Screen (<br>Voltage | Current                         |       |        | -        | —10<br>—62  | 1<br>80        | ma<br>volts      |
|                         |                                |      |                |       |      |       |       |     |    | Ped        | k Si       | gnal Vo              | oltage              |                                 |       |        | -        | 56          | 80             | volts            |
| D-C GRID                | VOLIAGE                        | -    | -              | -     | -    |       | MAX.  |     | 12 | ref        | Ord        | der Inte<br>I to sig | nal leve            | tion produ<br>l -<br>tion prod  | ICTS  |        |          | —30         | —23            | db               |
| D-C PLATE               | CURRENT                        |      | **             | -     | -    | 250   | MAX.  | MA  |    | 5th<br>ref | Ord        | ter inte             | rmodula<br>jnal lev | tion prod<br>el -<br>nodulation | ucts  |        |          | —35         | —27            | dЬ               |
| PLATE DISS              | SIPATION                       | -    | -              | -     | -    | 250   | MAX.  | WAT | TS | as         | drive      | e signal             | is redu             | ced -                           |       |        | -        | -29         | <del>-21</del> | db               |
| SCREEN DI               | SSIPATION                      |      | _              | -     | -    | 12    | MAX.  | WAT | TS | Loa        | d R        | esistance            | e -<br>Power        |                                 |       |        | -        | 2160<br>262 | 2840<br>470    | ohms<br>watts    |

Peak Envelope Power, Useful

SCREEN DISSIPATION



#### RADIO-FREQUENCY LINEAR AMPLIFIER

Class AR. (Carrier with Double Sidebands)

| Class-Adi (Carrier with Double Sidebands) |   |   |   |   |              |      |       |  |  |  |
|-------------------------------------------|---|---|---|---|--------------|------|-------|--|--|--|
| MAXIMUM RATINGS                           |   |   |   |   |              |      |       |  |  |  |
| D-C PLATE VOLTAGE                         | - | - | - | - | 2000         | MAX. | VOLTS |  |  |  |
| D-C SCREEN VOLTAGE                        | - | - | - | - | 500          | MAX. | VOLTS |  |  |  |
| D-C GRID VOLTAGE                          | - | - | - |   | <b>—25</b> 0 | MAX. | VOLTS |  |  |  |
| D-C PLATE CURRENT                         | - | - | - | - | 250          | MAX. | MA    |  |  |  |
| PLATE DISSIPATION                         | - | - | - | - | 250          | MAX. | WATTS |  |  |  |
| SCREEN DISSIPATION                        | - | _ | _ |   | 12           | MAX. | WATTS |  |  |  |

#### **AUDIO-FREQUENCY LINEAR AMPLIFIER**

| Class-AB <sub>1</sub>      |   |   |   |        |            |  |  |  |  |  |  |
|----------------------------|---|---|---|--------|------------|--|--|--|--|--|--|
| MAXIMUM RATINGS (Per Tube) |   |   |   |        |            |  |  |  |  |  |  |
| D-C PLATE VOLTAGE          | - | - | - | - 2000 | MAX. VOLTS |  |  |  |  |  |  |
| D-C SCREEN VOLTAGE         | - | - | - | - 500  | MAX. VOLTS |  |  |  |  |  |  |
| D-C GRID VOLTAGE           | - | - | - | 250    | MAX. VOLTS |  |  |  |  |  |  |
| D-C PLATE CURRENT          | - | - | - | - 250  | MAX. MA    |  |  |  |  |  |  |
| PLATE DISSIPATION          | - | - | - | - 250  | MAX. WATTS |  |  |  |  |  |  |
| SCREEN DISSIPATION         | - | - | _ | - 12   | MAX. WATTS |  |  |  |  |  |  |

#### TYPICAL OPERATION—Single Tube

| (Quantities shown for  | carrier  | condi  | tions | no   | mo | dulation   | )          |       |
|------------------------|----------|--------|-------|------|----|------------|------------|-------|
| D-C Plate Voltage      |          | -      | -     | _    | -  | 1500       | 2000       | volts |
| D-C Plate Current -    |          | -      | -     | -    | -  | 172        | 172        | ma    |
| D-C Screen Voltage     |          | -      | -     | -    | -  | 350        | 400        | volts |
| D-C Screen Current (/  | Approx)  | -      | -     | -    | -  | —3         | <b>—</b> 5 | ma    |
| D-C Grid-Bias Voltage  | ·        | -      | -     | -    | -  | <b>—58</b> | <b>—76</b> | volts |
| Peak Grid-Signal Volta | ige -    | -      | -     | -    | -  | 30         | 39         | volts |
| Plate-Load Resistance  |          | -      | -     | -    | -  | 2320       | 3150       | ohms  |
| Power Output for Ta    | nk Circ  | uit    |       |      |    |            |            |       |
| Efficiency of 95% -    |          | -      | -     | -    | -  | 55         | 100        | watts |
|                        |          |        |       |      |    |            |            |       |
| TYPICAL OPERATION      | (Two T   | ubes l | ush-l | ull) |    |            |            |       |
| D-C Plate Voltage -    |          | -      | -     | -    | _  | 1500       | 2000       | volts |
| D-C Plate Current No   | Signal   | _      | -     | -    | -  | 200        | 140        | ma    |
| D-C Plate Current at   | Full Sig | gnal   | -     | -    | -  | 490        | 500        | ma    |
| D-C Screen Voltage     |          | _      | -     | _    | -  | 300        | 350        | volts |
| D-C Screen Current N   | No Sian  | al -   | _     |      | _  | -2         | -4         | ma    |
| D-C Screen Current a   | t Full : | Signal | _     | -    | -  | 0          | +4         | ma    |
| D-C Grid-Bias Voltage  | App      | гох)   | -     | -    | -  | -48        | 66         | volts |
| Plate-to-Plate Load Re | sistance | · -    | _     | _    | _  | 5920       | 8016       | ohms  |
| Power Output for Train | nsforme  | r      |       |      |    |            |            |       |
| Efficiency of 95% -    |          |        | -     | -    | -  | 390        | 595        | watts |

#### MAXIMUM RATINGS FOR OTHER TYPES OF OPERATION

| Class-C Telegraphy or F | М |   |   |   |              |      |       | Class-C, Plate Modulate | d |   |   |   |
|-------------------------|---|---|---|---|--------------|------|-------|-------------------------|---|---|---|---|
| D-C PLATE VOLTAGE       | - | - | - | - | 2000         | MAX. | VOLTS | D-C PLATE VOLTAGE       | - | - | - | - |
| D-C SCREEN VOLTAGE      | - | - | - | - | 300          | MAX. | VOLTS | D-C SCREEN VOLTAGE      | - | - | - | - |
| D-C GRID VOLTAGE        | - | - | - |   | <b>—25</b> 0 | MAX. | VOLTS | D-C GRID VOLTAGE        | - | - | - |   |
| D-C PLATE CURRENT       | - | - | - | - | 250          | MAX. | MA    | D-C PLATE CURRENT       | - | - | - | - |
| PLATE DISSIPATION       | - | - | - | - | 250          | MAX. | WATTS | PLATE DISSIPATION       | - | - | - | - |
| SCREEN DISSIPATION      | - | - | - | - | 12           | MAX. | WATTS | SCREEN DISSIPATION      | - | - | - | - |
| GRID DISSIPATION        | - | - | - | - | 2            | MAX. | WATTS | GRID DISSIPATION        | - | - | - | - |
|                         |   |   |   |   |              |      |       |                         |   |   |   |   |

# **APPLICATION**

#### **MECHANICAL**

**Mounting**—The 4CX250R may be mounted in any position. An Eimac Air-System Socket of the SK-600 series or equivalent is recommended. These sockets may be obtained with or without the r-f screen by-pass capacitor, and with or without the four cathode terminals grounded to the socket shell. A simple Lock-in socket restricts the flow of cooling air and is not recommended.

**Cooling**—The 4CX250R has an efficient louvered anode cooler. The maximum allowable temperature for any external surface is  $250^{\circ}$ C.

For long service life at sea level, at an ambient temperature of 25°C and maximum rated anode dissipation of 250 watts, a *minimum* of 4.6 cfm air should flow from tube base through the anode cooler. The corresponding pressure drop with the recommended socket and chimney will be approximately 0.32 inch water column. See table for other dissipation levels and conditions.

4.6 cfm of air at 25°C is the same as a mass air flow of 18 pounds per hour. Higher ambient temperature requires greater air mass and volume. Higher altitude requires equivalent mass air flow for a given ambient temperature and therefore requires greater volume at increased back pressure.

The use of temperature-sensitive laquer is recommended to determine the effectiveness of a cooling system under operating conditions.

|                                 |                    | 55°C AMBIENT                          |                    |                                       |  |  |  |  |  |  |
|---------------------------------|--------------------|---------------------------------------|--------------------|---------------------------------------|--|--|--|--|--|--|
|                                 | SEA                | LEVEL                                 | 10,000 FEE         | T ALTITUDE                            |  |  |  |  |  |  |
| Plate<br>Dissipation<br>(Watts) | Air Flow<br>(CFM)  | Pressure<br>Drop (Inches<br>of Water) | Air Flow<br>(CFM)  | Pressure<br>Drop (Inches<br>of Water) |  |  |  |  |  |  |
| 75<br>125<br>250                | 1.15<br>2.3<br>6.4 | 0.025<br>0.09<br>0.59                 | 1.8<br>3.35<br>9.3 | 0.036<br>0.13<br>0.86                 |  |  |  |  |  |  |

1500 MAX. VOLTS 300 MAX. VOLTS -250 MAX. VOLTS 200 MAX. MA 165 MAX. WATTS 12 MAX. WATTS 2 MAX. WATTS

**Shock and Vibration**—The 4CX250R is one of the Eimac tube types which is unique in that shock and vibration testing is performed with *maximum rated plate and screen voltages* applied. Two samples of production tubes are randomly selected periodically and tested under the conditions outlined below.

With maximum rated plate and screen voltages applied, each of the tubes in this sample is subjected to six shocks of 90 G (minimum) half-sine-wave motion, with a duration of  $11\pm2$  milliseconds, in each of the three major axes (X1, X2, and Y1).

With maximum rated plate and screen voltages applied and with control-grid voltage adjusted to allow the flow of 100 ma through a plate load resistor of 4900 ohms, each of the tubes in this sample is vibrated in the three major axes throughout the range of 5-750-5 cps in a minimum time of six minutes per axis. The vibration level is maintained at 10 G from 28 cps to 750 cps and at 0.25 inch D.A. from 5 cps to 28 cps. During this test, noise voltage developed across the plate load resistor cannot exceed 30 volts rms. Sufficient plate power-supply voltage (2500 volts) is em-



ployed to assure that a minimum of 2000 volts appears at the plate of the tube under test even though 490 volts drop across the plate load resistor results from d-c plate-current flow.

The equipment designer is cautioned to provide adequate tube support to prevent relative motion between tube and socket in equipments where shock and/or vibration are anticipated.

#### ELECTRICAL

**Heater**—For maximum life and uniform performance, the heater voltage should be maintained within plus or minus 5% of the rated 6.0 volts at operating frequencies up to 300 Mc. For CW use between 300 and 400 Mc, 5.75 volts is recommended. For CW use, 400 to 500 Mc, 5.5 volts is recommended.

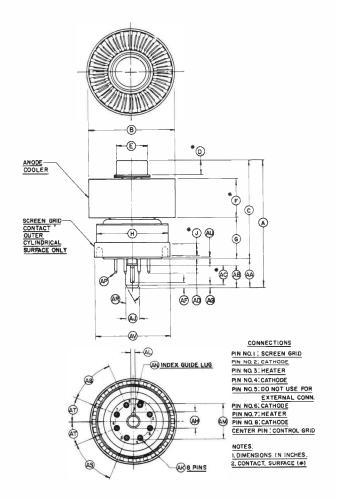
**Cathode**—The cathode is connected to the four evennumbered base pins to provide a low-inductance path, or permit separation of input and output circuits if required.

Rated heater voltage should be applied for 30 seconds before other operating voltages are applied. Heater-to-cathode maximum voltage is ±150 volts.

**Control Grid**—Maximum rated d-c bias voltage is -250 volts. D-C resistance, grid to cathode, should be no more than 100,000 ohms.

**Screen Grid**—Maximum screen dissipation is 12 watts, normally computed by multiplying d-c screen voltage by the average screen current. This computation is essentially correct except in the case of heavy

plate loading when secondary-emission current may mask the normal screen current.


All tetrodes, under some conditions of loading and drive, will exhibit secondary emission from the screen which changes the net current to the screen and may even cause the screen meter to reverse. Normally, secondary emission is harmless provided the screen voltage is stable. To insure stable screen voltage, it is recommended that a bleeder resistor calculated to pass 15 ma from screen to ground be used.

**Plate Dissipation**—The maximum plate dissipation is 250 watts. The usual single-sideband voice signal is complex and full peak envelope power shown in Typical Operating Conditions, may be developed without exceeding this plate dissipation. Single-tone testing for short periods with greater than 250 watts plate dissipation is permissible.

Multiple Operation — To obtain maximum power with minimum distortion from tubes operated in multiple it is desirable to adjust individual screen or gridbias voltages so the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual d-c plate currents will be approximately equal for full input signal for class-AB<sub>1</sub> operation.

**Special Application**—If it is desired to use the 4CX250R under conditions widely different from those given here, consult the Power Grid Tube Marketing Department, EIMAC Division of Varian, San Carlos, California.

|      | DIMENSION DATA |            |  |  |  |  |  |
|------|----------------|------------|--|--|--|--|--|
| REF. | MIN,           | MAX.       |  |  |  |  |  |
| Α    | 2.324          | 2,464      |  |  |  |  |  |
| В    | 1.610 DIA.     | 1.640 DIA. |  |  |  |  |  |
| С    | 1.810          | 1.910      |  |  |  |  |  |
| D    | .240           | .280       |  |  |  |  |  |
| Ε    | .559 DIA.      | .573 DIA.  |  |  |  |  |  |
| F    | .710           | .790       |  |  |  |  |  |
| G    | .750           | .810       |  |  |  |  |  |
| Н    |                | 1.406 DIA. |  |  |  |  |  |
| J    | .187           |            |  |  |  |  |  |
| AA   | .514           | .554       |  |  |  |  |  |
| AB   |                | .456       |  |  |  |  |  |
| AC   | .360           |            |  |  |  |  |  |
| AD   |                | .250       |  |  |  |  |  |
| AF   | .068           | .108       |  |  |  |  |  |
| AG   | .031           | NOM.       |  |  |  |  |  |
| AH   | .298           | .308       |  |  |  |  |  |
| AJ   | .255 DIA.      | .265 DIA.  |  |  |  |  |  |
| AK   | .045 DIA.      | .053 DIA.  |  |  |  |  |  |
| AL   | .078           | .086       |  |  |  |  |  |
| AM   | .680 DIA.      | .694 DIA.  |  |  |  |  |  |
| AN   |                | .043 R.    |  |  |  |  |  |
| AP   | .005 R. MIN    |            |  |  |  |  |  |
|      | .035 X 22.5    | 5°         |  |  |  |  |  |
| AR   | 30° N          | IOM.       |  |  |  |  |  |
| AS   | 45°N           |            |  |  |  |  |  |
| AT   |                | NOM.       |  |  |  |  |  |
| AU   | .080           |            |  |  |  |  |  |
| AV   | 1.417 DIA.     | 1.433 DIA. |  |  |  |  |  |



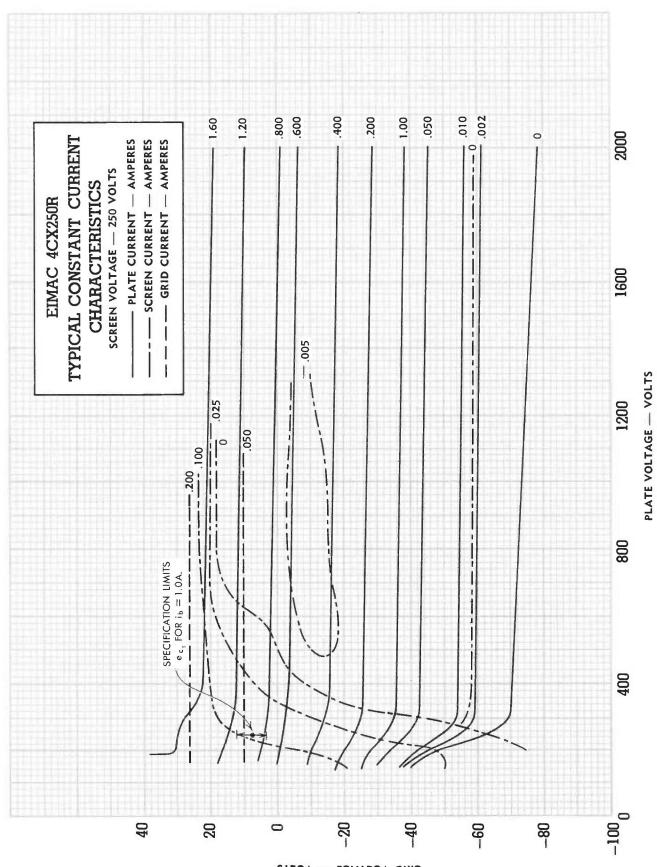
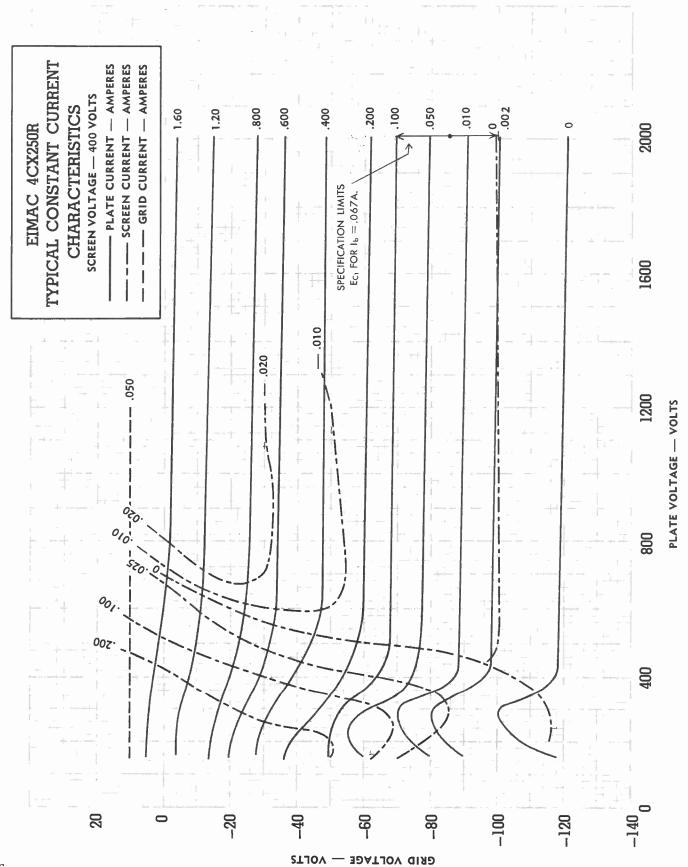




PLATE VOLTAGE — VOLTS

GRID VOLTAGE - VOLTS







# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

8167 4CX300A

CERAMIC POWER TETRODE

8167 4CX300A

The EIMAC 4CX300A is a compact integral-finned external-anode power tetrode having a maximum plate-dissipation rating of 300 watts. The 4CX300A may be operated at frequencies up to 500 megahertz.

The all-ceramic-and-metal construction and the internally-unitized electrode structure combine to make the 4CX300A especially durable and free from mechanically-induced noise under conditions of severe acceleration caused by shock or vibration.

#### GENERAL CHARACTERISTICS

#### **ELECTRICAL**

| Cathode: Oxide-Coated, Unipotential Heating Time Cathode-to-Heater Potential | - Min. Nom. Max.<br>- 30 60 ±150 | S V                                    |
|------------------------------------------------------------------------------|----------------------------------|----------------------------------------|
| Heater: Voltage (See "Application") Current $(E_t=6.0 \text{ volts})$        | - 6.0<br>- 2.6 3.1               | V<br>A                                 |
| Amplification Factor (Grid to Screen) -                                      | - 4.0 5.6                        |                                        |
| Transconductance (I <sub>b</sub> =200 ma.)                                   | - 12,000                         | $\mu$ mhos                             |
| Direct Interelectrode Capacitances, Ground                                   | nded Cathode:                    |                                        |
| Input                                                                        | - 25 33                          | pF<br>pF<br>pF                         |
| Direct Interelectrode Capacitances, Ground                                   | nded Grid and Screen:            | Min. Nom. Max.                         |
| Input                                                                        |                                  | - 16.2 pF<br>- 3.5 4.5 pF<br>- 0.01 pF |
| Frequency for Maximum Ratings                                                |                                  | - 500 MHz                              |

#### **MECHANICAL**

| Base                                                                    | -       | - | - | - | - | - | Spe | cial | bree | echb | olock | tern | ninal s | surfaces       |
|-------------------------------------------------------------------------|---------|---|---|---|---|---|-----|------|------|------|-------|------|---------|----------------|
| Recommended Socket                                                      | -       | - | - | - | - | - | -   | -    | -    | -    | EIM   | AC   | SK-70   | 0 Series       |
| Operating Position                                                      | -       | - | - | - | - | - | -   | -    | -    | -    | -     | -    | -       | - Any          |
| Maximum Operating Temperature<br>Ceramic-to-metal Seals -<br>Anode Core | s:<br>- | - | - | - | - | - | -   | -    | -    | -    | -     | -    | -       | 250°C<br>250°C |
| Cooling                                                                 | -       | - | - | - | - | _ | -   | -    | -    | -    | -     | -    | Fo      | rced Air       |
| Maximum Over-all Dimensions:                                            |         |   |   |   |   |   |     |      |      |      |       |      |         |                |
| Height                                                                  | -       | - | - | - | - | - | -   | -    | -    | -    | -     | -    | 2.5     | in             |
| Diameter                                                                | -       | - | - | - | - | - | -   | -    | -    | -    | -     | -    | 1.65    | in             |
| Net Weight                                                              | -       | - | - | - | - | - | -   | -    | -    | -    | -     | -    | 4       | OZ             |
| Shipping Weight (Approximate)                                           | _       | - | _ | _ | _ | _ | -   | -    | -    | -    | -     | -    | 1       | 1ъ             |



| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions)  MAXIMUM RATINGS DC PLATE VOLTAGE - 2000 VOLTS DC SCREEN VOLTAGE - 300 VOLTS DC GRID VOLTAGE250 VOLTS DC PLATE CURRENT - 250 MA PLATE DISSIPATION - 300 WATTS SCREEN DISSIPATION - 12 WATTS GRID DISSIPATION - 2 WATTS | TYPICAL OPERATION  DC Plate Voltage 500 1000 1500 2000 2500‡ 2000 volts  DC Screen Voltage - 250 250 250 250 250 volts  DC Grid Votage90 -90 -90 -90 -90 -90 volts  DC Plate Current - 250 250 250 250 250 250 ma  DC Screen Current* - 45 38 21 19 16 10† ma  DC Grid Current* - 35 31 28 26 25 25† ma  Peak RF Grid Voltage* - 114 114 112 112 111 - volts  Driving Power* - 4.0 3.5 3.2 2.9 2.8 - watts  Plate Input Power - 125 250 375 500 625 500 watts  Plate Output Power - 70 190 280 390 500 225† watts  Heater Voltage - 5.0 volts  *Approximate values for a typical cavity amplifier circuit at 500 MHz.  *For operation below 250Mc. only. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR  Class-AB <sub>1</sub> MAXIMUM RATINGS (Per tube)  DC PLATE VOLTAGE - 2500 VOLTS  DC SCREEN VOLTAGE - 400 VOLTS  DC PLATE CURRENT - 2500 MA  PLATE DISSIPATION - 300 WATTS  SCREEN DISSIPATION - 12 WATTS  GRID DISSIPATION - 2 WATTS                                                  | TYPICAL OPERATION (Sinusoidal wave, two tubes unless noted)  DC Plate Voltage 1000 1500 2000 2500 volts  DC Screen Voltage 350 350 350 350 volts  DC Grid Voltage¹ 55 -55 -55 volts  Zero-Signal DC Plate Current - 200 200 200 200 ma  Max-Signal DC Plate Current - 500 500 500 500 ma  Max-Signal DC Screen Current - 20 16 10 8 ma  Effective Load, Plate to Plate - 3500 6200 9500 11,600 ohms  Peak AF Grid Input Voltage  (per tube)* 50 50 50 50 50 volts  Driving Power 50 50 50 50 volts  Driving Power 240 430 600 800 watts  *Approximate values.  1Adjust grid bias to obtain listed zero-signal plate current.                             |
| RADIO-FREQUENCY LINEAR  AMPLIFIER  Class-AB <sub>1</sub> (Carrier conditions)  MAXIMUM RATINGS  DC PLATE VOLTAGE - 2500 VOLTS  DC SCREEN VOLTAGE - 400 VOLTS  DC PLATE CURRENT - 250 MA  PLATE DISSIPATION - 300 WATTS  SCREEN DISSIPATION - 12 WATTS  GRID DISSIPATION - 2 WATTS                                             | TYPICAL OPERATION  DC Plate Voltage 1000 1500 2000 2500 volts  DC Screen Voltage 350 350 350 350 volts  DC Grid Voltage¹ 55 —55 —55 —55 volts  Zero-Signal DC Plate Current - 100 100 100 100 ma  DC Plate Current 150 150 150 ma  DC Screen Current* 3 —4 —4 —4 ma  Peak RF Grid Voltage* 25 25 25 25 volts  Plate Output Power 30 50 65 85 watts  *Approximate values.  ¹Adjust grid bias to obtain listed zero-signal plate current.                                                                                                                                                                                                                  |
| RADIO-FREQUENCY LINEAR AMPLIFIER  Class-AB <sub>1</sub> (Single-Sideband Suppressed-Carrier Operation)  MAXIMUM RATINGS  DC PLATE VOLTAGE 2500 VOLTS  DC SCREEN VOLTAGE 400 VOLTS  DC PLATE CURRENT 250 MA  PLATE DISSIPATION 300 WATTS  SCREEN DISSIPATION 12 WATTS  GRID DISSIPATION 2 WATTS                                | TYPICAL OPERATION (Peak-envelope conditions except where noted)  DC Plate Voltage 1000 1500 2000 2500 volts  DC Screen Voltage 350 350 350 350 volts  DC Grid Voltage <sup>1</sup> 55 —55 —55 volts  Zero-Signal DC Plate Current - 100 100 100 100 ma  Peak RF Grid Voltage* 50 50 50 50 50 volts  DC Plate Current 250 250 250 250 ma  DC Screen Current* 10 8 5 4 ma  Plate Input Power 250 375 500 625 watts  Plate Output Power 120 215 300 400 watts  Two-Tone Average DC Plate Current - 190 190 190 ma  Two-Tone Average DC Screen Current* 2 —1 —2 —2 ma  *Approximate values.  1Adjust grid bias to obtain listed zero-signal plate current.   |
| PLATE-MODULATED RADIO- FREQUENCY AMPLIFIER  Class-C Telephony (Carrier conditions)  MAXIMUM RATINGS  DC PLATE VOLTAGE - 1500 VOLTS  DC SCREEN VOLTAGE 300 VOLTS  DC GRID VOLTAGE 250 VOLTS  DC PLATE CURRENT - 200 MA  PLATE DISSIPATION - 200 WATTS  SCREEN DISSIPATION - 12 WATTS  GRID DISSIPATION - 2 WATTS               | TYPICAL OPERATION  DC Plate Voltage 500 1000 1500 volts  DC Screen Voltage 250 250 250 volts  DC Grid Voltage 100—100 —100 volts  DC Plate Current 200 200 200 ma  DC Screen Current* 31 22 20 ma  DC Grid Current* 15 14 14 ma  Peak RF Grid Input Voltage* - 118 117 117 volts  Driving Power* 18 1.7 1.7 watts  Plate Input Power 100 200 300 watts  Plate Output Power 60 145 235 watts  *Approximate values.                                                                                                                                                                                                                                        |

NOTE: "TYPICAL OPERATION" data are obtainable by calculation from published characteristic curves and confirmed by direct tests. The driving power and output power shown are substantially correct at frequencies below 175 MHz. Allowance must be made for grid and plate circuit losses. At frequencies above 175 MHz. additional allowance must be made for high-frequency effects within the tube itself. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.



#### APPLICATION

#### **MECHANICAL**

**Mounting** — The 4CX300A may be operated in any position. Recommended sockets for the 4CX300A are the EIMAC Air-System Sockets type SK-700 (ungrounded cathode) or type SK-710 (cathode and one heater contact grounded). Both sockets provide connections to all electrodes except the anode and each incorporates a screen by-pass capacitor of approximately 1100  $\mu\mu$ f. The SK-606 chimney is recommended for use with the SK-700 and SK-710 sockets.

Other sockets suitable for use with the 4CX300A include the SK-740, SK-760, and SK-770. These sockets do not incorporate screen by-pass capacitors. The SK-760 and SK-770 incorporate integral air chimneys. Screen contacts are connected to the mounting flange in the SK-770 and are, therefore, grounded when the socket is installed in the usual manner.

**Cooling** — The maximum rated ceramic-to-metal seal temperature for the 4CX300A is 250°C. Adequate forced-air cooling must be provided to assure that this maximum temperature rating is not exceeded. Air flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below.

|                                 | Se                | 10,                                | 000 Feet          |                                    |
|---------------------------------|-------------------|------------------------------------|-------------------|------------------------------------|
| Plate<br>Dissipation<br>(watts) | Air Flow<br>(CFM) | Pressure Drop<br>(inches of water) | Air Flow<br>(CFM) | Pressure Drop<br>(inches of water) |
| 100                             | 2.2               | 0.065                              | 3.2               | 0.095                              |
| 150                             | 3.4               | 0.14                               | 4.9               | 0.21                               |
| 200                             | 4.6               | 0.26                               | 6.7               | 0.37                               |
| 250                             | 5.9               | 0.40                               | 8.6               | 0.58                               |
| 300                             | 7.2               | 0.58                               | 10.5              | 0.85                               |

A new, more efficient cooling fin design is incorporated in the 4CX300A which results in lower airflow requirements. This is reflected in the table above (which assumes the use of an EIMAC SK-700 or SK-710 socket and SK-606 chimney).

At high altitudes and high ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using the maximum rated temperature as the criterion for satisfactory cooling.

Cooling effectiveness should also be determined on an individual basis if the 4CX300A is operated immersed in an insulating fluid such as silicone oil, again using the maximum rated temperature as the criterion.

Impact and Vibration — The 4CX300A is designed to operate under impact or vibration capable of disabling a conventional tube of similar power capabilities. Impact forces up to 50g with 11-millisecond duration, or vibratory accelerations up to 20g at frequencies from 20 to 2000 cycles per second, will not destroy a normal 4CX300A unless unduly prolonged.

It is not suggested that the 4CX300A be subjected to abusive treatment unnecessarily, but in applications where operation under severe

environmental conditions is unavoidable the 4CX300A will provide more reliable service than will conventional tubes.

#### **ELECTRICAL**

**Heater Operation** — The rated heater voltage for the 4CX300A is 6.0 volts. At frequencies higher than 300 megacycles the heater voltage should be reduced according to the following schedule:

| Frequency (MHz) | Heater Voltage (Volts) |
|-----------------|------------------------|
| Up to 300       | 6.00                   |
| 300 to 400      | 5.75                   |
| 400 to 500      | 5.50                   |

The heater voltage must be maintained within  $\pm 5\%$  of the selected operating voltage if variations in circuit performance are to be minimized and best tube life obtained.

**Cathode Operation** — The 4CX300A employs a cylindrical indirectly-heated oxide-coated unipotential cathode. The minimum warm-up time is 30 seconds when rated heater voltage is applied.

**Grid Operation** — The 4CX300A control grid has a maximum dissipation rating of 2.0 watts, and precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the Typical Operation sections of the data sheet whenever possible.

At frequencies higher than 300 MHz., the driving power required by the circuits associated with the tube begins to increase, until at 500 MHz., as much as 30 watts of driving power may be required. The power dissipated by the control grid increases only slightly, however, in spite of the greatly increased driving power required by the circuit. Satisfactory 500-megahertz operation of the 4CX300A in a stable, "straight-through" amplifier is indicated by grid-current values below approximately 25 milliamperes.

In class-A and class-AB<sub>1</sub> amplifiers, where no grid current flows, the grid bias voltage may be applied through a resistor. The maximum permissible series resistance per tube is 100,000 ohms.

**Screen Operation** — The maximum rated screen dissipation for the 4CX300A is 12 watts. The maximum rated dc screen supply voltage is 300 volts when the tube is operated in class-C amplifier or oscillator service, and 400 volts when the tube is operated in class-AB or class-B amplifier service.

Ûnder certain operating conditions the screen current of a tetrode may reverse. This makes it dangerous to rely on a screen-dropping resistor or a series regulator to supply the screen voltage unless a bleeder or regulator tube is connected from screen to cathode. This bleeder should draw at least 15 milliamperes for each tube connected to the screen supply.

The power input to the screen can be calculated from the voltage and current whenever



the screen-to-cathode potential does not vary. Screen modulation or cathode driving of tetrode amplifiers can lead to errors in measurement of screen input when the effective voltage and current exceed the indicated dc values. When there is reason to suspect that the screen input exceeds the indicated power, it is advisable to maintain the indicated screen power input below approximately 75% of the rated screen

dissipation. A screen by-pass capacitor of approximately  $1100~\mu\mu f$  is incorporated in the body of the EIMAC SK-700 and SK-710 Air-System Sockets and is adequate for normal amplifier operation at high and ultra-high radio frequencies. Operation at low radio frequencies or audio frequencies may require that additional capacitance be connected externally. In the latter case, the screen by-pass capacitance within the socket helps to eliminate the high-frequency parasitic oscillations occasionally encountered in tetrode amplifiers.

The self-neutralizing frequency of the 4CX300A is above the useful high-frequency limit for the tube when either of the sockets with integral screen by-pass capacitors is used.

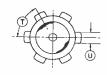
Plate Operation—The 4CX300A has a finned external anode for forced-air cooling. Connection to the anode may be made at the top cap or cylindrical cooler shell. The latter is usually used when the tube is installed in coaxial lines or cavities.

The absolute maximum plate-dissipation rating for the 4CX300A is 300 watts, which is also the rated maximum dissipation for class-C amplifier or oscillator applications and for class-B or class-AB amplifier applications. When the 4CX300A is used in plate-modulated amplifier applications, the plate-dissipation rating is 200

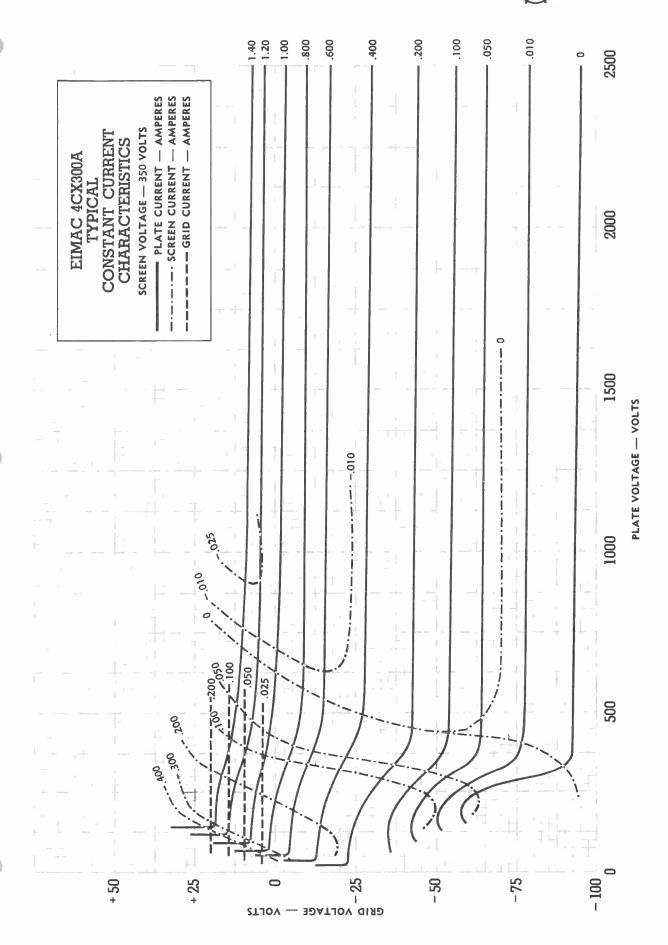
watts under carrier conditions, rising to 300 watts under 100% sine-wave modulation. Plate dissipation may be permitted to exceed the maximum rated value for brief periods, such as may occur while tuning.

The maximum rated plate voltage for class-AB<sub>1</sub> operation at frequencies up to 500 megahertz is 2500 volts. In class-C telegraphy and plate-modulated service the maximum rated plate voltage for operation up to 500 megahertz is 2000 and 1500 volts respectively. However, at frequencies below 250 megahertz, a plate potential of 2500 volts may be used in class-C telegraphy and FM telephony service.

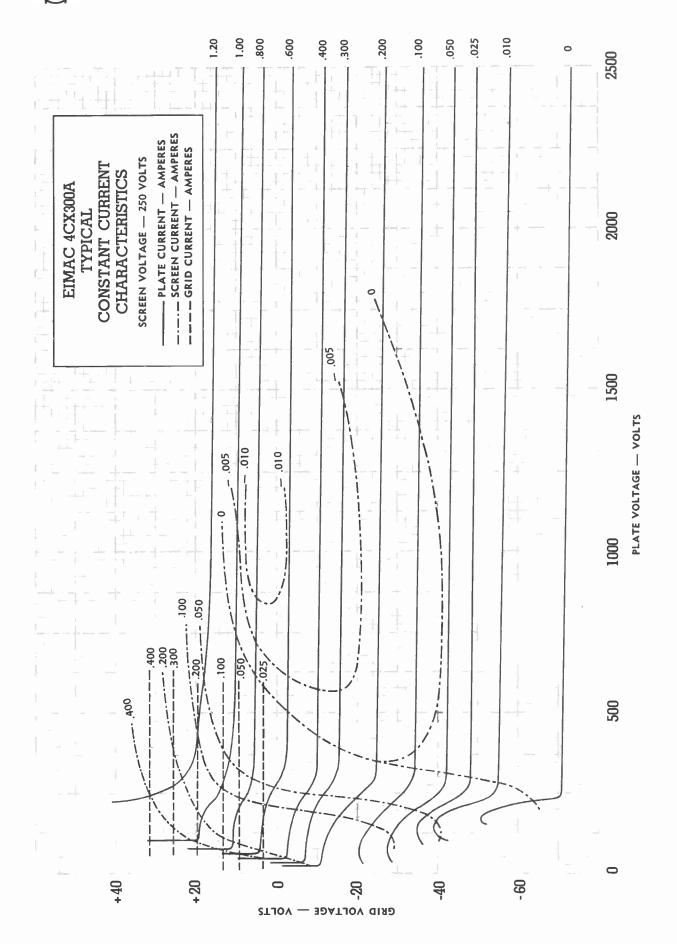
**Modulation** — The 4CX300A can be modulated by any of the methods commonly used with tetrode tubes. Its large reserve plate dissipation makes it especially suited for use in screen-modulated and linear amplifiers in which the plate efficiency is low.


Plate modulation can be applied to the 4CX-300A when it is operated as a class-C amplifier. To obtain 100% modulation with minimum distortion the screen supply voltage should be modulated in phase with the modulation applied to the plate supply voltage. Screen voltage modulation factors between 0.75 and 1.00 may be used.

"Self-modulation" of the screen by means of a resistor in series with the screen supply line is not recommended because of the effects which require a bleeder from screen to cathode as described under "Screen Operation."


**Special Applications** — If it is desired to operate this tube under conditions widely different from those given here, write to EIMAC, Division of Varian, for information and recommendations.

|     | 9     |
|-----|-------|
| (a) | © © © |
| F   |       |


|     | DIMENSION DATA |       |       |  |  |  |  |  |  |  |
|-----|----------------|-------|-------|--|--|--|--|--|--|--|
| REE | NOM.           | MIN.  | MAX.  |  |  |  |  |  |  |  |
| Α   | 2.400          | 2,300 | 2.500 |  |  |  |  |  |  |  |
| 8   | 1.625          | 1.610 | 1.640 |  |  |  |  |  |  |  |
| С   | .566           | .559  | .573  |  |  |  |  |  |  |  |
| D   | .750           | .710  | .790  |  |  |  |  |  |  |  |
| Ε   |                | .240  | .280  |  |  |  |  |  |  |  |
| F   | 1,164          | 1,133 | 1.195 |  |  |  |  |  |  |  |
| J   | .622           | .602  | .642  |  |  |  |  |  |  |  |
| LL  | .344           | .329  | .359  |  |  |  |  |  |  |  |
| М   | .203           | .193  | .213  |  |  |  |  |  |  |  |
| N   | .015           | .010  | .020  |  |  |  |  |  |  |  |
| Р   | ,755           | .740  | .770  |  |  |  |  |  |  |  |
| R   | .485           | 470   | .500  |  |  |  |  |  |  |  |
| S   | .946           | .936  | .956  |  |  |  |  |  |  |  |
| T   | 60"            |       |       |  |  |  |  |  |  |  |
| U   | ,175           | .170  | .185  |  |  |  |  |  |  |  |
| ٧   | .061           | .050  | .072  |  |  |  |  |  |  |  |



\* CONTACT SURFACE









# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

# 4CX300Y

CERAMIC POWER TETRODE

The EIMAC 4CX300Y is a compact integral-finned external-anode power tetrode having a maximum plate-dissipation rating of 400 watts. The 4CX300Y may be operated at maximum ratings to 110 MHz.

The all-ceramic-and-metal construction and the internally-unitized electrode structure combine to make the 4CX300Y especially durable and free from mechanically-induced noise under conditions of severe acceleration caused by shock or vibration.



#### **GENERAL CHARACTERISTICS**

| ELECTRICAL                                 |       |      |         |                     |       |         |        |           | -           | -        |
|--------------------------------------------|-------|------|---------|---------------------|-------|---------|--------|-----------|-------------|----------|
| Cathode: Oxide-Coated, Unipotent           | ial   |      | Min.    | $\underline{Nom}$ . | Max.  |         |        |           | -8          | -        |
| Heating Time Cathode-to-Heater Potential   | -     | _    | 30      | 60                  | ±150  | S<br>V  |        |           |             | -        |
| Heater: Voltage (See "Application"         | · ·   |      |         | 6.0                 | _100  | V       |        | 16        | -           |          |
| Current ( $E_t$ =6.0 volts) -              | -     |      | 3.0     | 0.0                 | 3.85  | Å       |        | 135       | Tour same   |          |
| Amplification Factor (Grid to Scre         | en)   | -    | 4.0     |                     | 5.6   |         |        |           |             |          |
| Transconductance (I <sub>b</sub> =200 ma.) | _     |      |         | 12,000              |       | $\mu$ m | hos    |           |             |          |
| Direct Interelectrode Capacitance          | s, Gr | ound | led Cat | hode:               |       |         | Min.   | Nom.      | Max.        |          |
| Input                                      | -     | -    |         | -                   |       | -       | 30     |           | 38          | pF       |
| Output<br>Feedback                         | -     | -    |         | -                   |       | -       | 3.9    |           | 5.0<br>0.07 | pF<br>pF |
| Direct Interelectrode Capacitances         |       |      |         | and Scr             | een : |         |        |           | 0.01        | PI       |
| Input                                      | , GIO | -    |         | and ber             |       | -       |        | 18        |             | pF       |
| Output                                     | -     | -    |         | -                   |       | -       | 3.9    |           | 5.0         | pF       |
| Feedback                                   | -     | -    |         | -                   |       | 21      |        | 0.01      |             | pF       |
| Frequency for Maximum Ratings              | -     | -    |         | -                   |       | ~       |        |           | 110         | MHz      |
| MEGUANUGAL                                 |       |      |         |                     |       |         |        |           |             |          |
| MECHANICAL                                 |       |      |         |                     | C     | 1       | 1 1 1  | 11-4      |             |          |
| Base                                       | -     | -    |         | -                   | - Spe | ciai,   | breech | olock ter |             |          |
| Recommended Socket                         | -     | -    | -       | 5                   |       | -       |        | EIMAC     | SK-70       | 0 Series |
| Operating Position                         | -     | -    |         | -                   |       | -       |        |           | -           | - Any    |
| Maximum Operating Temperature              | es:   |      |         |                     |       |         |        |           |             | 250°C    |
| Ceramic-to-Metal Seals -<br>Anode Core     | -     | -    |         |                     |       | -       |        |           | -           | 250°C    |
| Cooling                                    |       | _    |         |                     |       |         |        |           | For         | ced Air  |
| Maximum Over-All Dimensions:               |       | _    |         |                     |       |         |        |           | 101         | recu III |
| Height                                     | _     | _    |         |                     | 41 4  | -       |        |           | 2.5         | in       |
| Diameter                                   | -     | -    |         |                     | -1    | -       | -      | -         | 1.65        | in       |
| Net Weight                                 | -     | ~    |         | n n '               |       | -       | -      |           | 4           | OZ       |
| Shipping Weight (Approximate)              | -     | -    | 1-1     |                     |       | -       | -      | • •       | 1           | 1b       |



| RADIO-FREQUENCY POWER AMPLIFIER                                                                                                                                                                                                                                                              | TYPICAL OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class-C Telegraphy or FM Telephony (Key-down conditions)  MAXIMUM RATINGS  DC PLATE VOLTAGE 2000 VOLTS  DC SCREEN VOLTAGE 300 VOLTS  DC GRID VOLTAGE 250 VOLTS  DC PLATE CURRENT 400 MA  PLATE DISSIPATION 400 WATTS  SCREEN DISSIPATION 8 WATTS  GRID DISSIPATION 1 WATT                    | DC Plate Voltage 1000 1500 2000 volts DC Screen Voltage 250 250 250 volts DC Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR  Class-AB1  MAXIMUM RATINGS (per tube)  DC PLATE VOLTAGE 2000 VOLTS  DC SCREEN VOLTAGE 400 VOLTS  DC PLATE CURRENT 400 MA  PLATE DISSIPATION 400 WATTS  SCREEN DISSIPATION 8 WATTS  GRID DISSIPATION 1 WATT                                           | TYPICAL OPERATION (Sinusoidal wave, two tubes unless noted) DC Plate Voltage 1000 1500 2000 volts DC Screen Voltage 400 400 400 volts DC Grid Voltage <sup>1</sup> 60 —70 —70 volts Zero-Signal DC Plate Current - 400 200 200 mA Max-Signal DC Plate Current - 800 790 750 mA Max-Signal DC Screen Current - 24 16 4 mA Effective Load, Plate to Plate - 2060 3000 5100 ohms Peak AF Grid Input Voltage (per tube)* 55 65 60 volts Driving Power 55 65 60 volts Max-Signal Plate Output Power - 340 800 890 watts *Approximate values 1Adjust grid bias to obtain listed zero-signal plate current. |
| RADIO-FREQUENCY LINEAR AMPLIFIER  Class-AB <sub>1</sub> (Carrier conditions)  MAXIMUM RATINGS  DC PLATE VOLTAGE 2000 VOLTS  DC SCREEN VOLTAGE 400 VOLTS  DC PLATE CURRENT 400 MA  PLATE DISSIPATION 400 WATTS  SCREEN DISSIPATION 8 WATTS  GRID DISSIPATION 1 WATT                           | TYPICAL OPERATION  DC Plate Voltage 1000 1500 2000 volts  DC Screen Voltage 400 400 400 volts  DC Grid Voltage¹60 —70 —70 volts  Zero-Signal DC Plate Current - 200 100 100 mA  DC Plate Current 280 210 205 mA  DC Screen Current*5 —5 mA  Peak RF Grid Voltage* 28 33 30 volts  Plate Output Power 52 110 115 watts  *Approximate values.  1Adjust grid bias to obtain listed zero-signal plate current.                                                                                                                                                                                           |
| RADIO-FREQUENCY LINEAR AMPLIFIER  Class-AB <sub>1</sub> (Single-Sideband Suppressed-Carrier Operation)  MAXIMUM RATINGS  DC PLATE VOLTAGE 2000 VOLTS  DC SCREEN VOLTAGE 400 VOLTS  DC PLATE CURRENT 400 MA  PLATE DISSIPATION 400 WATTS  SCREEN DISSIPATION 8 WATTS  GRID DISSIPATION 1 WATT | TYPICAL OPERATION (Peak-envelope conditions except where noted)  DC Plate Voltage 1000 1500 2000 volts DC Screen Voltage 400 400 400 volts DC Grid Voltage¹60 —70 —70 volts Zero-Signal DC Plate Current - 200 100 100 mA Peak RF Grid Voltage* 55 65 60 volts DC Plate Current 400 395 375 mA DC Screen Current* 12 8 2 mA Plate Input Power 12 8 2 mA Plate Output Power 400 590 750 watts Plate Output Power 170 400 415 watts Two-Tone Average DC Plate Current Two-Tone Average DC Screen Current  *Approximate values.  1Adjust grid bias to obtain listed zero-signal plate current.          |
| PLATE-MODULATED RADIO-FREQUENCY AMPLIFIER Class-C Telephony (Carrier conditions)  MAXIMUM RATINGS DC PLATE VOLTAGE 1500 VOLTS DC SCREEN VOLTAGE 300 VOLTS DC GRID VOLTAGE 250 VOLTS DC PLATE CURRENT 300 MA PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 8 WATTS GRID DISSIPATION 1 WATT   | TYPICAL OPERATION  DC Plate Voltage 1000 1500 volts DC Screen Voltage 250 250, volts DC Grid Voltage 130 —130 volts DC Plate Current 285 300 mA DC Screen Current* 24 18 mA DC Grid Current* 17 17 mA Peak RF Grid Input Voltage* 148 148 volts Driving Power* 1.7 1.7 watts Plate Input Power 285 500 watts Plate Output Power 165 300 watts *Approximate values.                                                                                                                                                                                                                                   |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance has been made for circuit losses. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variation in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct of driving voltage is applied.



# APPLICATION

#### **MECHANICAL**

Mounting — The 4CX300Y may be operated in any position. Recommended sockets for the 4CX300Y are the EIMAC Air-System Sockets type SK-700 (ungrounded cathode) or type SK-710 (cathode and one heater contact grounded). Both sockets provide connections to all electrodes except the anode and each incorporates a screen by-pass capacitor of approximately 1100 pF. The SK-606 chimney is recommended for use with the SK-700 and SK-710 sockets.

Other sockets suitable for use with the 4CX300Y include the SK-740, SK-760, and SK-770. These sockets do not incorporate screen by-pass capacitors. The SK-760 and SK-770 incorporate integral air chimneys. Screen contacts are connected to the mounting flange in the SK-770 and are, therefore, grounded when the socket is installed in the usual manner.

Cooling — The maximum rated ceramic-tometal seal temperature for the 4CX300Y is 250°C. Adequate forced-air cooling must be provided to assure that this maximum temperature rating is not exceeded. Air-flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below.

| Plate                  | SEA               | LEVEL                                 | 10,00             | 10,000 FEET                           |  |  |
|------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|--|--|
| Dissipation<br>(Watts) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of Water) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of Water) |  |  |
| 100                    | 2.2               | 0.065                                 | 3.2               | 0.095                                 |  |  |
| 150                    | 3.4               | 0.14                                  | 4.9               | 0.21                                  |  |  |
| 200                    | 4.6               | 0.26                                  | 6.7               | 0.37                                  |  |  |
| 250                    | 5.9               | 0.40                                  | 8.6               | 0.58                                  |  |  |
| 300                    | 7.2               | 0.58                                  | 10.5              | 0.85                                  |  |  |
| 350                    | 8.7               | 0.82                                  | 12.7              | 1.2                                   |  |  |
| 400                    | 10.3              | 1.12                                  | 15.0              | 1.6                                   |  |  |

A new, more efficient cooling fin design is incorporated in the 4CX300Y which results in lower air-flow requirements. This is reflected in the table above (which assumes the use of an EIMAC SK-700 or SK-710 socket and SK-606 chimney).

At high altitudes and high ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using the maximum rated temperature as the criterion for satisfactory cooling.

Cooling effectiveness should also be determined on an individual basis if the 4CX300Y is operated immersed in an insulating fluid such as silicone oil, again using the maximum rated temperature as the criterion.

### **ELECTRICAL**

Heater Operation — The rated heater voltage for the 4CX300Y is 6.0 volts.

The heater voltage must be maintained within  $\pm 5\%$  of the selected operating voltage if variations in circuit performance are to be minimized and best tube life obtained.

Cathode Operation — The 4CX300Y employs a cylindrical indirectly-heated oxide-coated unipotential cathode. The minimum warm-up time is 30 seconds when rated heater voltage is applied.

Grid Operation — The 4CX300Y control grid has a maximum dissipation rating of 1.0 watt, and precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the Typical Operation sections of the data sheet whenever possible.

In class-A and class  $AB_1$  amplifiers, where no grid current flows, the grid bias voltage may be applied through a resistor. The maximum permissible series resistance per tube is 100,000 ohms.

Screen Operation — The maximum rated screen dissipation for the 4CX300Y is 8 watts. The maximum rated dc screen supply voltage is 300 volts when the tube is operated in class-C amplifier or oscillator service, and 400 volts when the tube is operated in class-AB<sub>1</sub> or class-B amplifier service.

Under certain operating conditions the screen current of a tetrode may reverse. This makes it dangerous to rely on a screen-dropping resistor or a series regulator to supply the screen voltage unless a bleeder or regulator tube is connected from screen to cathode. This bleeder should draw at least 15 milliamperes for each tube connected to the screen supply.

The power input to the screen can be calculated from the voltage and current whenever the screen-to-cathode potential does not vary. Screen modulation or cathode driving of tetrode amplifiers can lead to errors in measurement of screen input when the effective voltage and current exceed the indicated dc values. When there is reason to suspect that the screen input exceeds the indicated power, it is advisable to maintain the indicated screen power input below approximately 75% of the rated screen dissipation.

A screen by-pass capacitor of approximately  $1100~\mu\mu f$  is incorporated in the body of the EIMAC SK-700 and SK-710 Air-System Sockets and is adequate for normal amplifier operation at high and ultra-high radio frequencies. Operation at low radio frequencies or audio frequencies may require that additional capacitance be connected externally. In the latter case, the screen by-pass capacitance within the socket helps to eliminate the high-frequency parasitic oscillations occasionally encountered in tetrode amplifiers.

The self-neutralizing frequency of the 4CX300Y is above the useful high-frequency limit for the tube when either of the sockets with integral screen by-pass capacitors is used.

Plate Operation—The 4CX300Y has a finned external anode for forced-air cooling. Connection to the anode may be made at the top cap or cylindrical cooler shell. The latter is usually used

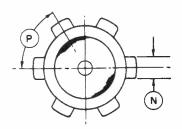
when the tube is installed in coaxial lines or cavities.

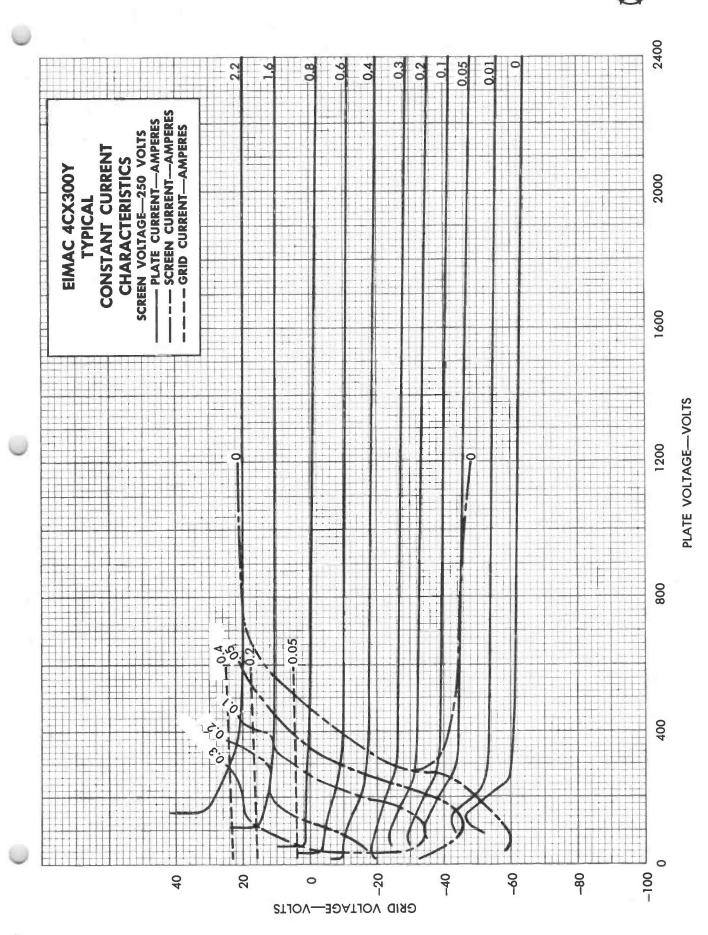
The absolute maximum plate-dissipation rating for the 4CX300Y is 400 watts, which is also the rated maximum dissipation for class-C amplifier or oscillator applications and for class-B or class-AB<sub>1</sub> amplifier applications. When the 4CX300Y is used in plate-modulated amplifier applications, the plate-dissipation rating is 250 watts under carrier conditions, rising to 400 watts under 100% sine-wave modulation. Plate dissipation may be permitted to exceed the maximum rated value for brief periods, such as may occur while tuning.

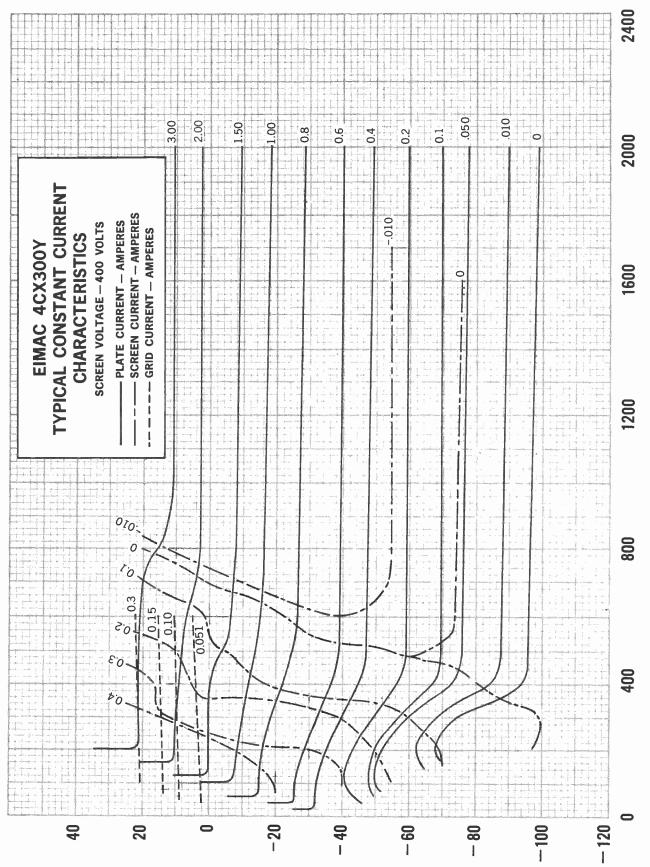
The maximum rated plate voltage for class- $AB_1$  operation is 2000 volts. In class-C telegraphy and plate-modulated service the maximum rated plate voltage is 2000 and 1500 volts respectively.

Modulation — The 4CX300Y can be modulated by any of the methods commonly used with

tetrode tubes. Its large reserve plate dissipation makes it especially suited for use in screen-modulated and linear amplifiers in which the plate efficiency is low.


Plate modulation can be applied to the 4CX300Y when it is operated as a class-C amplifier. To obtain 100% modulation with minimum distortion the screen supply voltage should be modulated in phase with the modulation applied to the plate supply voltage. Screen voltage modulation factors between 0.75 and 1.00 may be used.


"Self-modulation" of the screen by means of a resistor in series with the screen supply line is not recommended because of the effects which require a bleeder from screen to cathode as described under "Screen Operation" above.


Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.

| lated by all | y of the methods commonly used with |
|--------------|-------------------------------------|
|              |                                     |
|              |                                     |

| DIMENSION DATA |      |       |       |  |  |  |  |  |  |
|----------------|------|-------|-------|--|--|--|--|--|--|
| REF            | NOM. | MIN,  | MAX.  |  |  |  |  |  |  |
| Α              |      | 2.300 | 2,500 |  |  |  |  |  |  |
| В              |      | 1.610 | 1.640 |  |  |  |  |  |  |
| С              |      | .710  | .790  |  |  |  |  |  |  |
| D              |      | .740  | .770  |  |  |  |  |  |  |
| Ε              |      | 1.133 | 1.195 |  |  |  |  |  |  |
| F              |      | .602  | .642  |  |  |  |  |  |  |
| G              |      | .470  | .500  |  |  |  |  |  |  |
| H              |      | .329  | 359   |  |  |  |  |  |  |
| J              |      | .193  | .213  |  |  |  |  |  |  |
| K              |      | .050  | .072  |  |  |  |  |  |  |
| L              |      | .010  | .020  |  |  |  |  |  |  |
| М              |      | .936  | .956  |  |  |  |  |  |  |
| N              |      | .170  | .185  |  |  |  |  |  |  |
| Ρ              | 60°  |       |       |  |  |  |  |  |  |
| Q              |      | .559  | .573  |  |  |  |  |  |  |
| R              |      | .240  | . 280 |  |  |  |  |  |  |







GRID VOLTAGE - VOLTS

PLATE VOLTAGE - VOLTS



### TECHNICAL DATA

8321 4CX350A 8322 4CX350F RADIAL-BEAM POWER TETRODES

CX350A

The Eimac 8321/4CX350A and 8322/4CX350F are compact radial beam tetrodes with maximum plate dissipation of 350 watts and are intended for Class-AB, audio or rf amplifier service. These tubes are externally identical to the 4CX250B but contain rugged internal construction features. Amplification factor and cathode area have been increased over the 4CX250B to give higher transconductance and figure of merit.

The 8321/4CX350A and 8322/4CX350F differ only in heater voltage and current; the 8321/4CX350A is used at 6.0 volts while the 8322/4CX350F is rated at 26.5 volts. Both types are of ceramic and metal construction and are recommended for new equipment design.

#### GENERAL CHARACTERISTICS

# ELECTRICAL

| Cathode:   | Oxide-Co<br>Heating T    |       |       |     |      | ial  |      |     | _  | _    | Mi:   |     | N    | om. |   | Ma  |    | sec  | 5   |         |     |           |      |                                  |
|------------|--------------------------|-------|-------|-----|------|------|------|-----|----|------|-------|-----|------|-----|---|-----|----|------|-----|---------|-----|-----------|------|----------------------------------|
|            | Cathode-                 |       |       |     |      | ntia | .1 - | -   | -  | -    | -     | -   | -    | -   |   |     |    | volt |     |         |     |           |      |                                  |
| Heater:    | 4CX350A                  | Volt  | age   | _   | -    | _    | _    | -   | -  | _    | _     | _   | 6    | .0  |   |     |    | volt | S   |         |     |           |      |                                  |
|            | 4CX350A                  | Curi  | ent   | -   | -    | -    | -    | -   | -  | -    | 2.9   | }   |      |     |   | 3.  | ,6 | amp  | S   |         |     |           |      |                                  |
|            | 4CX350F                  | Volt  | age   | _   | _    | _    | _    | _   | _  | ~    | _     | _   | 26   | .5  |   |     |    | volt | s   |         |     |           |      |                                  |
|            | 4CX350F                  | Curi  | ent   | -   | -    | -    | -    | -   | -  |      | 0.66  | ;   |      |     |   | 0.8 | 31 | amp  | S   |         |     |           |      |                                  |
| Amplifica  | ition Factor             | (Gri  | d-to  | -Sc | eree | en)  | _    | _   | _  | _    | _     | _   | _    | ma. |   | _   | _  | _    | Mi: | n.<br>- |     | om.<br>13 | Max. |                                  |
| -          |                          | `     |       |     |      | ,    |      |     |    |      |       |     |      |     |   |     |    |      |     |         |     |           |      |                                  |
| Transcon   | ductance (I <sub>b</sub> | = 150 | 0 mA  | 7)  |      |      | -    | -   | -  | -    | -     | -   | _    | -   | _ | -   | _  | ~    | -   | -       | 22, | 000       |      | umhos                            |
| Direct Int | erelectrode              | Capa  | acita | ne  | es,  | Gr   | oun  | ded | Ca | tho  | de:   |     |      |     |   |     |    |      |     |         |     |           |      |                                  |
|            | Input -                  | _     | -     | _   | -    | -    | -    | -   | -  | -    | -     | -   | -    | 10% | - | -   | -  | -    | 22  | .2      |     |           | 26.2 | $\mathbf{u}\mathbf{u}\mathbf{f}$ |
|            | Output -                 | _     | -     | -   | -    | -    | -    | -   | _  | -    | -     | -   | -    | -   | - | -   | -  | -    | 5   | .0      |     |           | 6.0  | uuf                              |
|            | Feedback                 | -     | -     | -   | -    | -    | -    | -   | -  | -    | -     | -   | -    | -   |   | -   | -  | -    | -   | -       | -   | -         | 0.05 | uuf                              |
| Direct Int | erelectrode              | Capa  | acita | inc | es,  | Gr   | oun  | ded | Gr | id a | and S | Scr | een: | :   |   |     |    |      |     |         |     |           |      |                                  |
|            |                          |       |       |     |      |      |      |     |    |      |       |     |      |     |   |     |    |      |     |         |     |           |      |                                  |

# **MECHANICAL**

| Base                            | -    | _ | - | - | <br>- | - | - | - | - | - | - | _   | -   | 639 | -   | Special 9-pin   |
|---------------------------------|------|---|---|---|-------|---|---|---|---|---|---|-----|-----|-----|-----|-----------------|
| Maximum Operating Temperatures  | S:   |   |   |   |       |   |   |   |   |   |   |     |     |     |     |                 |
| Ceramic-to-Metal Seal           | ls - | - | - | - | <br>- | - | - | _ | - | - | - | -   | -   | -   | -   | 250° C          |
| Anode Core                      | -    | _ | - | - | <br>- | - | - | - | - | - | - | -   | -   | -   | -   | 250° C          |
| Recommended Socket              | -    | - | - | - | <br>- | - | - | - | ~ | - | - | -   | -   | E   | ima | c SK-600 Series |
| Operating Position              | -    | - | - | - | <br>- | - | - | _ | - | - | - | -   | _   | -   | -   | Any             |
| Maximum Dimensions:             |      |   |   |   |       |   |   |   |   |   |   |     |     |     |     |                 |
| Height                          | -    | - | - | - | <br>- | - | - | _ | - | - | - | _   | -   | -   | -   | - 2.464 inch    |
| Seated Height                   | -    | - | - | - | <br>- | - | - | _ | - | - | - | *** | *** | -   | _   | - 1.910 inch    |
| Diameter                        | ~    | - | - | - | <br>- | - | - | - | - | - | - | -   | -   | -   | -   | - 1.640 inch    |
| Cooling                         | -    | - | - | - | <br>- | - | - | - | _ | - | - | -   | -   | -   | -   | - Forced air    |
| Net Weight                      | -    | - | - | - | <br>- | - | - | - | - | - | - | -   | -   | -   | _   | - 4 ounces      |
| Shipping Weight (approximate) - | -    | - | - | - | <br>- | - | - | - | - | - | - | -   | -   | -   | -   | 1.6 pounds      |

(Effective 6-15-65) c 1968 by Varian

Input

Feedback -

Printed in U.S.A.

21.9

6.0

uuf

uuf uuf



# AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB<sub>1</sub>

MAXIMUM RATINGS (Per tube)

DC PLATE VOLTAGE - 2500 MAX. VOLTS
DC SCREEN VOLTAGE - 400 MAX. VOLTS
DC PLATE CURRENT - 300 MAX. MA
PLATE DISSIPATION - 350 MAX. WATTS
SCREEN DISSIPATION - 8 MAX. WATTS
GRID CURRENT - 2 MAX. MA

# TYPICAL OPERATION (Sinusoidal wave, two tubes unless noted)

| DC Plate Voltage -           | -    | -     | -   | -    | -   | 1000 | 1500 | 2200 volts         |
|------------------------------|------|-------|-----|------|-----|------|------|--------------------|
| DC Screen Voltage            | -    | -     | -   | -    | -   | 400  | 400  | 400 volts          |
| DC Grid Voltage <sup>1</sup> |      | -     |     | -    | -   | -27  | -27  | —27 volts          |
| Zero-Signal DC Plate         | Cui  | rrent | -   | -    | -   | 200  | 200  | $200  \mathrm{mA}$ |
| Max-Signal DC Plate          | Cur  | rent  | -   | -    | -   | 520  | 530  | 580  mA            |
| Max-Signal DC Scree          | n C  | urrei | nt  | -    | -   | —8   | —10  | —6 mA              |
| Effective Load, Plate        | to I | Plate | -   | -    | -   | 2600 | 5000 | 7800 ohms          |
| Peak AF Grid Input           | Volt | age ( | per | tube | :)1 | 21   | 21   | 50 volts           |
| Driving Power -              | -    | -     | -   | -    | -   | 0    | 0    | 0 watts            |
| Max-Signal Plate Inp         | ut I | Powe  | r   | -    | -   | 560  | 800  | 1260 watts         |
| Max Signal Plate Out         | put  | Pow   | er  | -    | -   | 190  | 400  | 770 watts          |

#### RADIO-FREQUENCY LINEAR AMPLIFIER

Class-AB<sub>1</sub> (Single-Sideband Suppressed-Carrier Operation)

#### **MAXIMUM RATINGS**

DC PLATE VOLTAGE - 2500 MAX. VOLTS
DC SCREEN VOLTAGE - 400 MAX. VOLTS
DC PLATE CURRENT - 300 MAX. MA
PLATE DISSIPATION - 8 MAX. WATTS
GRID CURRENT - 2 MAX. MA

# TYPICAL OPERATION (Peak-envelope conditions except where noted)

| DC Plate Voltage -           | -   | -  | - | - | - | 1000 | 1500 | 2200 volts         |
|------------------------------|-----|----|---|---|---|------|------|--------------------|
| DC Screen Voltage            | -   | -  | - | - | - | 400  | 400  | 400 volts          |
| DC Grid Voltage <sup>1</sup> | -   | -  | - | - | - | -27  | -27  | -27 volts          |
| Zero-Signal DC Plate         |     |    | - | - | - | 100  | 100  | $100  \mathrm{mA}$ |
| Peak RF Grid Voltage         | *   | -  | - | - | - | 21   | 21   | 25 volts           |
| DC Plate Current             | -   | -  | - | - | - | 260  | 265  | 290 mA             |
| DC Screen Current*           | -   | -  | - | - | - | 4    | 5    | $-3 \mathrm{mA}$   |
| Plate Input Power            | -   | -  | - | - | - | 260  | 400  | 630 watts          |
| Plate Output Power           |     |    |   |   |   |      | 200  | 385 watts          |
| Two-Tone Average D           |     |    |   |   |   |      | 215  | 195  mA            |
| Two-Tone Average D           |     |    |   |   |   |      |      |                    |
| Resonant Load Impe           | dan | ce | - | - | - | 1300 | 2500 | 3900 ohms          |
|                              |     |    |   |   |   |      |      |                    |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance is made for circuit losses of any kind. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.

#### **APPLICATION**

#### **MECHANICAL**

MOUNTING — The 4CX350A and 4CX350F may be operated in any position. An Eimac Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen by-pass capacitors and may be obtained with either grounded or ungrounded cathode terminals.

**COOLING** — Sufficient cooling must be provided for the anode, base seals and body seals to maintain operating temperatures below the rated maximum values. Air requirements to maintain seal temperatures at 225°C in 50°C ambient air are tabulated on page 3. These requirements apply when the Eimac

SK-600 or SK-610 socket is used with the SK-606 chimney and air-flow in the base-to-anode direction.

At 500 mc or below, base-cooling air requirements are satisfied automatically when the tube is operated in an Eimac Air-System Socket and the recommended air-flow rates are used. Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt, which might interfere with effective cooling.

<sup>\*</sup>Approximate values.

<sup>&</sup>lt;sup>1</sup>Adjust grid bias to obtain listed zero-signal plate current.

<sup>\*</sup>Approximate values

<sup>&</sup>lt;sup>1</sup>Adjust grid bias to obtain listed zero-signal plate current.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown below, plus any drop encountered in ducts and filters. The blower must be designed to deliver the air at the desired altitude.

| MINIMUM COOLING AIR-FLOW REQUIREMENTS |                     |                                       |                    |                                       |  |  |  |  |  |
|---------------------------------------|---------------------|---------------------------------------|--------------------|---------------------------------------|--|--|--|--|--|
| _                                     | SEA                 | LEVEL                                 | 10,000 FEET        |                                       |  |  |  |  |  |
| Plate<br>Dissipatio<br>(Watts)        | n Air-Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of water) | Air-Flow<br>(CFM)  | Pressure<br>Drop (Inches<br>of water) |  |  |  |  |  |
| 250<br>300<br>350                     | 5.3<br>6.5<br>7.8   | 0.6<br>0.9<br>1.2                     | 7.7<br>9.5<br>12.0 | 0.85<br>1.25<br>1.9                   |  |  |  |  |  |

If cooling methods other than forced air are used, if the recommended air-flow rates are not supplied or if there is any doubt that the cooling is adequate, it should be borne in mind that operating temperature is the sole criterion of cooling effectiveness. One method of measuring the surface temperatures is by the use of a temperature-sensitive lacquer. When temperature-sensitive materials are used, extremely thin applications must be used to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

VIBRATION — These tubes are capable of satisfactorily withstanding ordinary shock and vibration, such as encountered in shipment and normal handling. The tubes will function well in automobile and truck mobile installations and similar environments.

#### **ELECTRICAL**

**HEATER** — The rated heater voltages for the 4CX350A and 4CX350F are 6.0 volts and 26.5 volts respectively and these voltages should be maintained as closely as practicable. Short-time variations of the voltage of  $\pm 10\%$  of the rated value will not damage the tube, but variations in performance must be expected. The heater voltage should be maintained within  $\pm 5\%$  of its rated value to minimize variations in performance and to obtain maximum tube life.

CATHODE OPERATION — The cathode is internally connected to the four even-numbered base pins, and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 30 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts regardless of polarity.

CONTROL-GRID OPERATION — The grid dissipation rating of the 4CX350A and 4CX350F is zero watt. The design features which make the tubes capable of maximum power operation without driving the grid into the positive region also make it necessary to avoid positive grid operation. The grid current rating of 2.0 milliamperes allows the flow of positive grid current for peak-signal monitoring purposes.

**SCREEN-GRID OPERATION** — The maximum rated power dissipation for the screen grid is 8 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the d-c screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

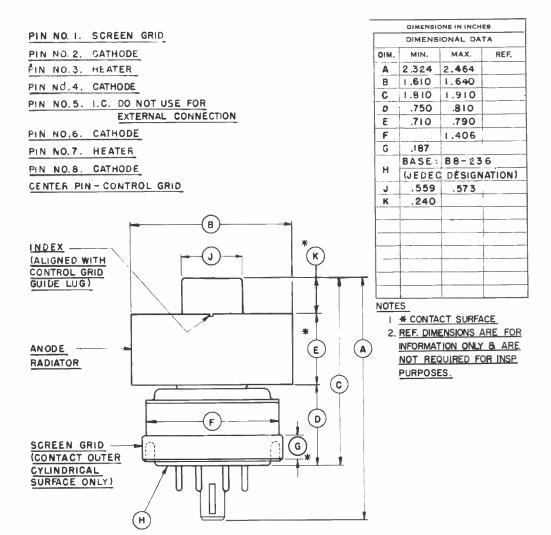
Protection for the screen can be provided by an overcurrent relay and by interlocking the screen supply so that the plate voltage must be applied before screen voltage can be applied.

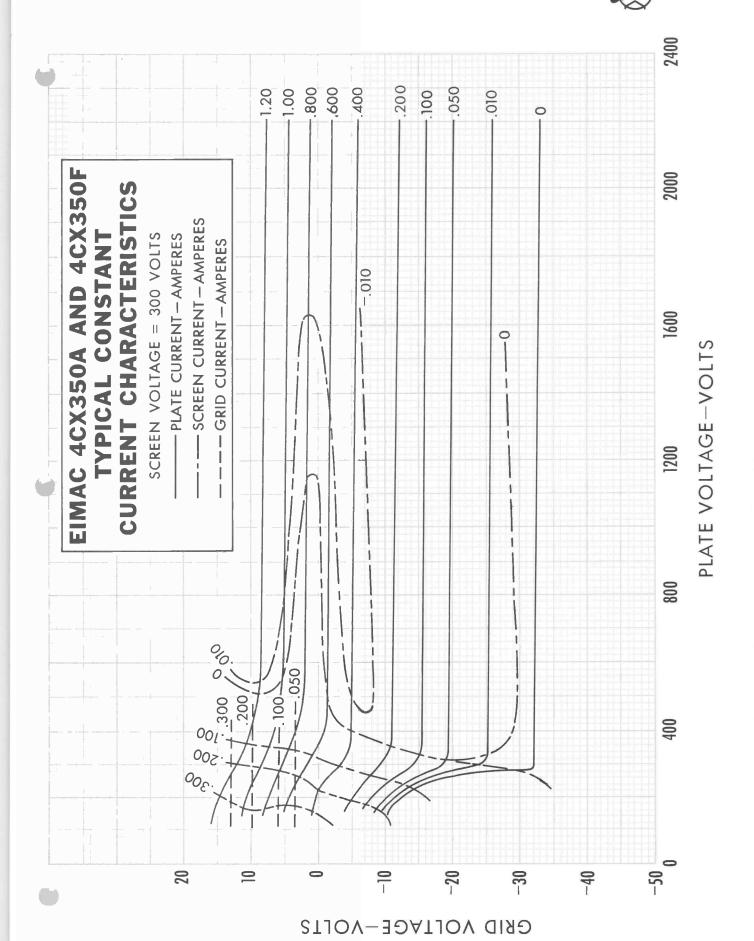
The screen current may reverse under certain conditions, and produce negative current indications on the screen milliameter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor or shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube series regulator can be used only when an adequate bleeder resistor is provided.

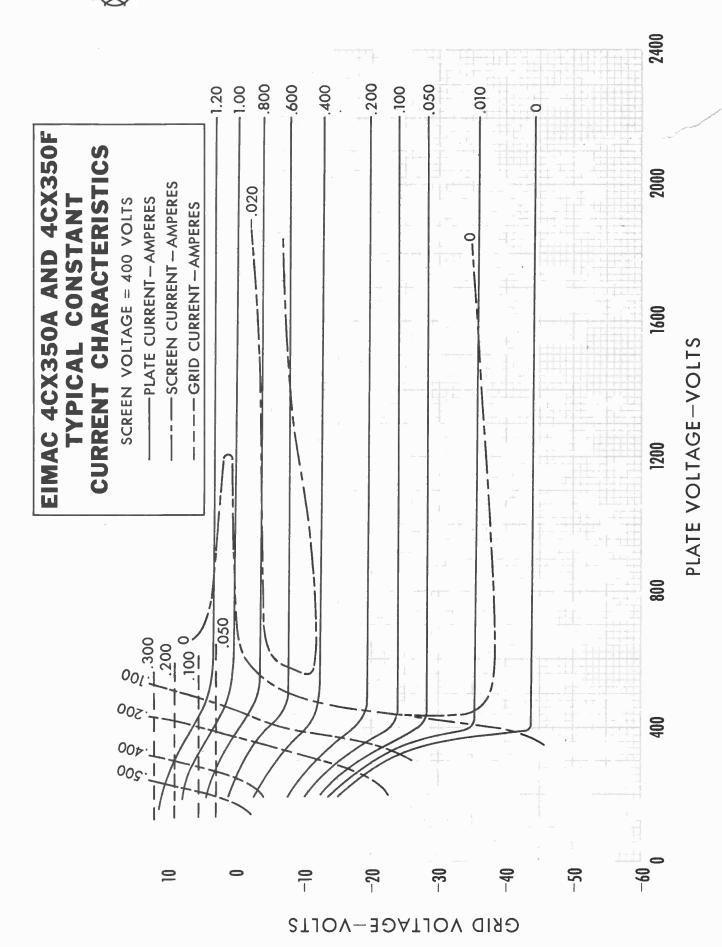
**PLATE OPERATION** — The maximum rated plate-dissipation power is 350 watts. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

At frequencies up to approximately 30 megacycles the top cap on the anode cooler may be used for a plate terminal. At higher frequencies a circular clamp or spring-finger collect encircling the cylindrical outer surface of the anode cooler should be used.

MULTIPLE OPERATION — Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide for individual metering and individual adjustment of the bias or screen voltage to equalize the inputs.


Where overload protection is provided, it should be capable of protecting the surviving tube/s in the event that one tube should fail.


UHF OPERATION — The 4CX350A and 4CX350F are useful in the UHF region. UHF operation should be conducted with heavy plate loading, minimum bias and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.


Some of the added circuit loss observed in UHF operation is in the base insulator of the tube. It is sometimes necessary to use more than the recommended minimum air-flow rates to maintain safe operating base temperatures at UHF.

These tubes may be used in frequency multiplier applications. Such operation results in low plate efficiency and requires high driving voltages. If the frequency multiplier is used as an output power stage, it is preferable to operate the final tube as a frequency doubler rather than a frequency tripler.

**SPECIAL APPLICATIONS** — If it is desired to operate these tubes under conditions widely different from those given here, write to Application Engineering Department, Eimac, Division of Varian, San Carlos, California for information and recommendations.









### TECHNICAL DATA

# 8904 4CX350FJ

RADIAL BEAM POWER TETRODE

The EIMAC 8904/4CX350FJ is a compact radial-beam tetrode with a maximum plate dissipation of 350 watts, intended for Class AB linear rf amplifier service. The tube has rugged internal construction features.

The 8904/4CX350FJ may be used as an exact replacement for the 8322/4CX350F in most applications, requiring only minor circuit adjustment and retuning. The tube has improved intermodulation distortion characteristics. It contains a 26.5 volt heater, and is recommended for new equipment designs.



# GENERAL CHARACTERISTICS<sup>1</sup>

#### **ELECTRICAL**

| Cathode: Oxide-coated, Unipotential                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage 26.5 ± 1.3 V                                                                                                                                                                                                                                                                            |
| Current, at 26.5 volts                                                                                                                                                                                                                                                                          |
| Transconductance (Average):                                                                                                                                                                                                                                                                     |
| $I_b = 150 \text{ mAdc} \dots 22,000 \mu \text{mhos}$                                                                                                                                                                                                                                           |
| Amplification Factor (Average):                                                                                                                                                                                                                                                                 |
| Grid to Screen                                                                                                                                                                                                                                                                                  |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup>                                                                                                                                                                                                                              |
| Cin                                                                                                                                                                                                                                                                                             |
| Cout 5.9 pF                                                                                                                                                                                                                                                                                     |
| Cgp                                                                                                                                                                                                                                                                                             |
| <ol> <li>Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.</li> </ol> |
| <ol><li>Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic In-<br/>dustries Association Standard RS-191.</li></ol>                                                                                                                  |
| MECHANICAL                                                                                                                                                                                                                                                                                      |
| Base Special 9-pin, JEDEC B8-236                                                                                                                                                                                                                                                                |
| Recommended Air-System Socket EIMAC SK-600 Series                                                                                                                                                                                                                                               |
| Recommended Air Chimney                                                                                                                                                                                                                                                                         |
| Maximum Overall Dimensions:                                                                                                                                                                                                                                                                     |
| Length                                                                                                                                                                                                                                                                                          |
| Diameter 1.64 in; 41.65 mm                                                                                                                                                                                                                                                                      |
| Operating Position                                                                                                                                                                                                                                                                              |
| Cooling Forced Air                                                                                                                                                                                                                                                                              |

(Effective 9-1-71) © by Varian

Printed in U.S.A.

| Net Weight (Approximate)           | 4 oz; 113 gm   |
|------------------------------------|----------------|
| Shipping Weight (Approximate)      | 1.6 lb; 3.5 kg |
| Maximum Operating Temperature:     |                |
| Anode Core and metal/ceramic seals | 250°C          |

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB 1

ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE 2500 | VOLTS |
|-----------------------|-------|
| DC SCREEN VOLTAGE 400 | VOLTS |
| DC PLATE CURRENT 300  | MA    |
| PLATE DISSIPATION 350 |       |
| SCREEN DISSIPATION 8  |       |
| GRID CURRENT 2        | MA    |

- 1. Adjust to specified Zero-Signal Plate Current.
- 2. Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz)
Class AB1, Grid Driven, Peak Envelope or Modulation
Crest Conditions

| Plate Voltage                 | 1400 | 2200 | Vdc      |
|-------------------------------|------|------|----------|
| Screen Voltage                | 300  | 400  | Vdc      |
| Grid Voltage 1                | -14  | -19  | Vdc      |
| Zero-Signal Plate Current     | 80   | 100  | mAdd     |
| Single-Tone Plate Current     | 165  | 227  | mAdd     |
| Single-Tone Screen Current 2, | 6    | 8    | mAdd     |
| Useful Output Power3          | 100  | 250  | W        |
| Resonant Load Impedance       | 3600 | 5000 | $\Omega$ |
| Intermodulation Distortion 4  |      |      |          |
| 3rd Order Products            | -45  | -40  | dB       |
| 5th Order Products            | -50  | -45  | db       |
|                               |      |      |          |

- 3. Power delivered to the load.
- The IMD products are referenced against one tone of a two-equal-tone signal.

NOTE: TYPICAL OPERATION data is obtained from direct measurement. Adjustment of the rf grid voltage to obtain the specified bias, screen, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in screen current, which is incidental and which will vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct screen grid voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                            | Min. | Max.     |
|--------------------------------------------------------------|------|----------|
| Heater: Current at 26.5 volts                                | 0.50 | 0.81 A   |
| Interelectrode Capacitances <sup>1</sup> (grounded cathode): |      |          |
| Cin                                                          | 20.0 | 24.0 pF  |
| Cout                                                         | 5.6  | 6.2 pF   |
| Cgp                                                          |      | 0.038 pF |

# **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CX350FJ may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen bypass capacitors and may be obtained with either grounded or ungrounded cathode terminals. Air chimneys are also available for these sockets, including a unit which securely clamps the tube into place in the

socket for applications where environmental stress is anticipated.

COOLING - Sufficient cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum value. Air requirements to maintain seal temperatures at 225°C in 50°C ambient air are shown. These values apply when the EIMAC

SK-600 or SK-610 socket is used with the SK-606 chimney, with air flowing in the base-to-anode direction.

|                        | Minimum           | Cooling Air                                    | Flow Requi         | rements                                        |
|------------------------|-------------------|------------------------------------------------|--------------------|------------------------------------------------|
| Plate                  | Sea Level         |                                                | 10,000 Feet        |                                                |
| Dissipation<br>(watts) | Air Flow<br>(cfm) | Approx.<br>Press.drop,<br>In. H <sub>2</sub> O | Air Flow<br>(cfm)  | Approx.<br>Press.drop,<br>In. H <sub>2</sub> O |
| 250<br>300<br>350      | 5.3<br>6.5<br>7.8 | 0.6<br>0.9<br>1.2                              | 7.7<br>9.5<br>12.0 | 0.85<br>1.25<br>1.90                           |

Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt, which may interfere with effective cooling.

The blower selected in any given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown, plus any drop encountered in ducts and filters, and the blower must be designed to deliver the air at the desired altitude.

It should be borne in mind that operating temperature is the sole criterion of cooling effectiveness. One method of measuring the surface temperature is by the use of a temperature-sensitive lacquer or paint. When these materials are used, thin applications must be used to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

SHOCK AND VIBRATION - The 4CX350F] is recommended for applications where environmental stress is anticipated and reliable operation must be maintained under these circumstances. The tube is routinely tested at a vibration level of 10 G, over the frequency range of 28 to 750 Hertz, with full operating voltages applied, and also tested under 90 G long-duration (11 milliseconds) shock conditions, also with voltages applied. When shock or vibration stressing is expected, it is extremely important that relative motion between socket and tube be prevented or restricted by clamping the tube into place. This may be done with EIMAC Air-System Socket SK-620 or SK-630 and the EIMAC SK-636B chimney, which includes a clamping mechanism.

### **ELECTRICAL**

<code>HEATER</code> - The heater voltage for the 4CX350FJ is 26.5 volts and should be maintained as closely as possible. Short-time variations of  $\pm 10\%$  of the rated value will not damage the tube, but voltage should be maintained within  $\pm 5\%$  of rated value to minimize variations in performance and to obtain maximum life.

CATHODE OPERATION - The cathode is internally connected to the four even-numbered base pins, and all four corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep cathode leads short and direct and to use conductors with large areas to minimize inductive reactance in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 60 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts, regardless of polarity.

STANDBY OPERATION - When equipment is designed for very low-duty operation, where standby periods of many hours or even days at one time are anticipated, it is good engineering practice to include circuitry for reduction of the heater voltage of an oxide-cathode tube during the standby periods. This will greatly minimize the release of sublimation products within the tube. A reduction in heater voltage of 10% from the nominal value is recommended during such long standby periods, with simultaneous switching to normal voltage when the equipment is switched from STANDBY to OPERATE. A reduction in heater voltage of more than 10% is possible if operation is not attempted for several seconds after switching from the STANDBY to the OPERATE mode.

CONTROL-GRID OPERATION - The grid dissipation rating of the 4CX350FJ is zero watts. The grid current rating of 2.0 milliamperes allows the flow of positive grid current for peak-signal monitoring purposes.

SCREEN-GRID OPERATION - The maximum rated power dissipation for the screen grid of the

4CX350FJ is 8.0 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

If tuning of a linear amplifier circuit is to be done under single-tone conditions, extra care should be exercised to be sure the screen dissipation rating is not exceeded, as this is often the limiting factor during this type of operation.

Protection for the screen can be provided by an over-current relay and by interlocking the screen supply so the plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliameter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from the screen to cathode must be provided by a bleeder resistor or shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. A series regulator circuit can be used only when an adequate bleeder resistor is provided.

PLATE OPERATION - The maximum rated plate-dissipation power for the 4CX350FJ is 350 watts. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

At frequencies up to approximately 30 Megahertz the top cap on the anode cooler may be used for a plate terminal. At higher frequencies a circular clamp or spring-finger collet encircling the outer surface of the anode cooler should be used.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide for individual metering and individual adjustment of the bias or screen voltage to equalize inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event one tube should fail.

UHF OPERATION - The 4CX350FJ is useful in the UHF region. Operation at these frequencies should be conducted with heavy plate loading and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - The 4CX350FJ operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-

voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.

PIN No. 1: SCREEN GRID

PIN No. 2: CATHODE

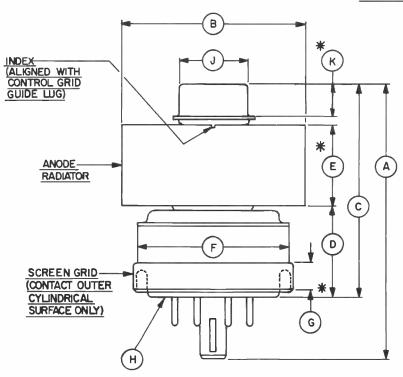
PIN No.3: HEATER

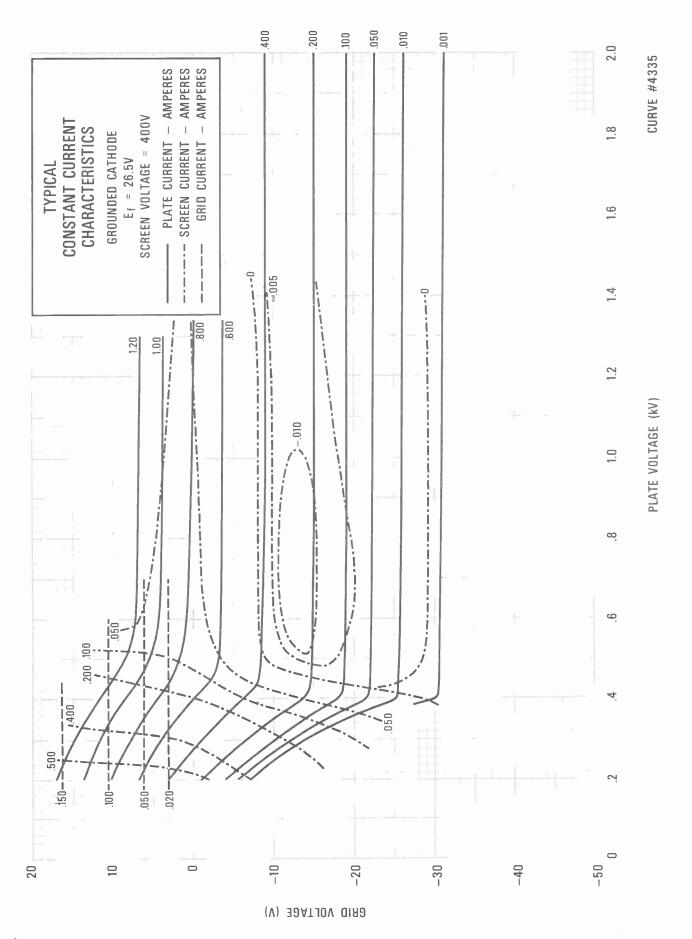
PIN No.4: CATHODE

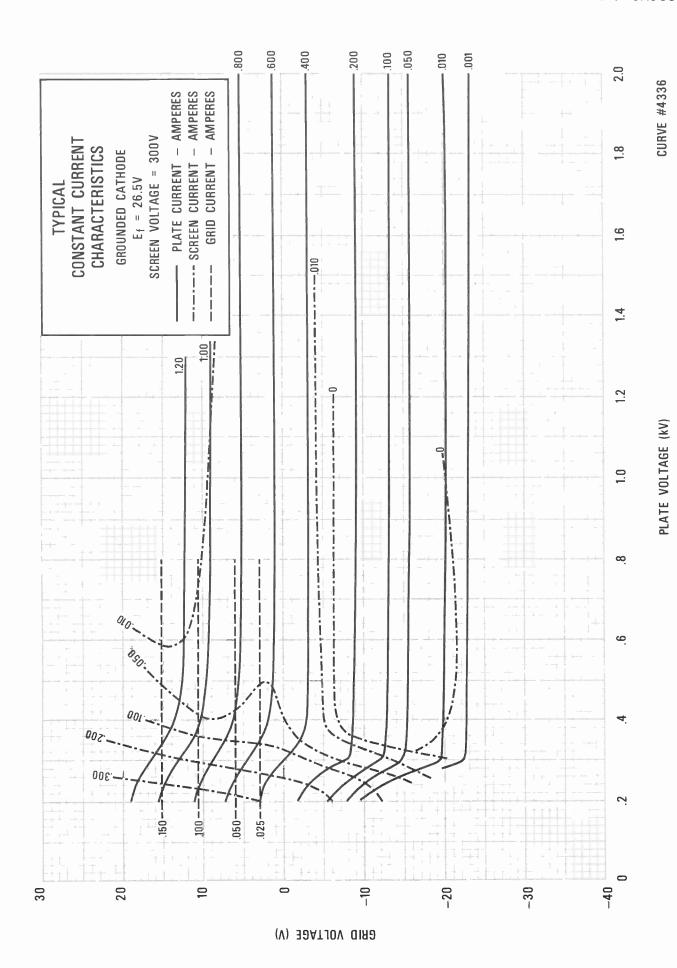
PIN No.5: I.C. DO NOT USE FOR EXTERNAL CONNECTION

PIN No.6: CATHODE

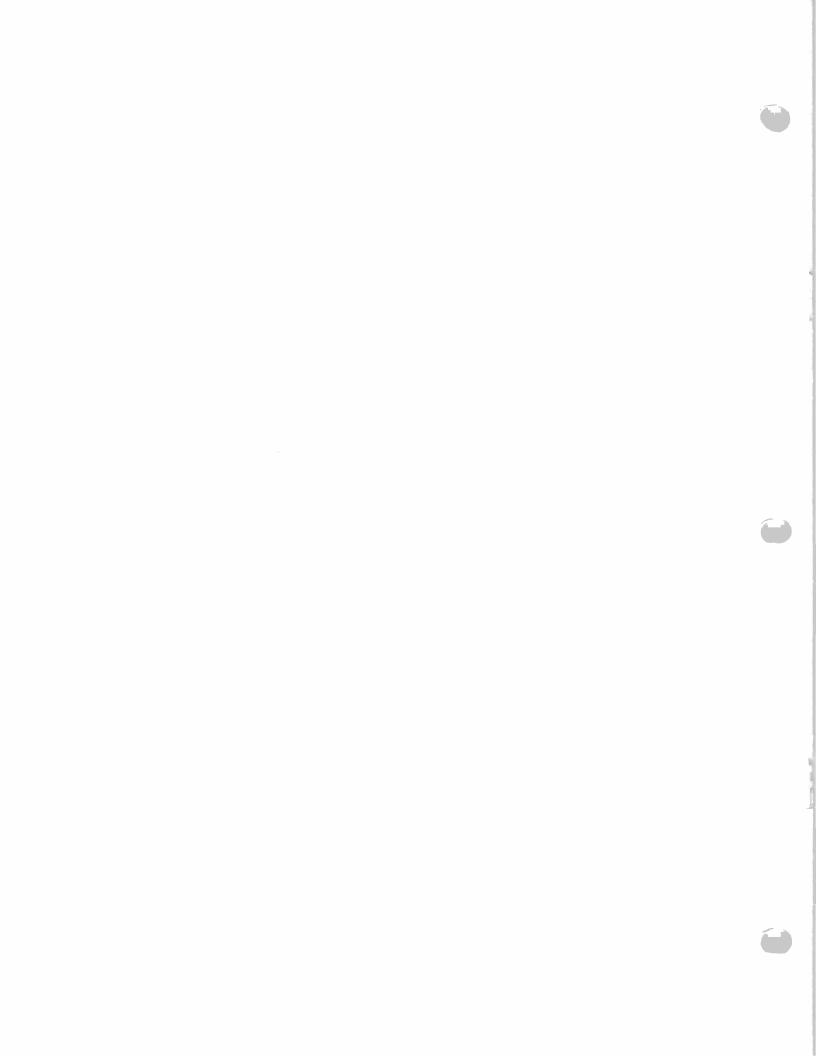
PIN No.7: HEATER


PIN No.8: CATHODE


CENTER PIN: CONTROL GRID


| DIMENSIONAL DATA |                     |       |             |            |  |
|------------------|---------------------|-------|-------------|------------|--|
| DIM.             | INCHES              |       | MILLIMETERS |            |  |
| Dilvi.           | MIN.                | MAX.  | MIN.        | MAX.       |  |
| Α                | 2.324               | 2.464 | 59.03       | 62.59      |  |
| В                | 1.610               | 1.640 | 40.89       | 41.66      |  |
| С                | 1.810               | 1.910 | 45.97       | 48.51      |  |
| D                | 0.750               | 0.810 | 19.05       | 20.57      |  |
| Е                | 0.710               | 0.790 | 18.03       | 20.07      |  |
| F                |                     | 1.406 |             | 35.71      |  |
| G                | 0.187               |       | 4.75        |            |  |
| н                |                     | BASE: | B8-236      |            |  |
| "                | (JEDEC DESIGNATION) |       |             |            |  |
| J                | 0.559               | 0.573 | 14.20       | 14.55      |  |
| K                | 0.240               |       | 6.10        | _ <b>_</b> |  |

#### NOTES:


- I. REF. DIMS. ARE FOR INFO. ONLY
  AND ARE NOT REQD. FOR
  INSPECTION PURPOSES.
- 2. (\*) CONTACT SURFACE





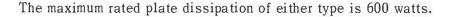


7





# TECHNICAL DATA


4CX600B

RADIAL BEAM POWER TETRODE

The EIMAC 4CX600B and 4CX600F are ceramic/metal, air cooled radial beam tetrodes designed for use in wideband amplifiers, particularly distributed amplifiers.

The mechanical and electrical features of these tubes are compatible with wideband amplifier circuit requirements; i.e., low lead inductance, low input and output capacitances, small size and high transconductance.

Rugged construction consisting of a unitized electrode structure and direct mounting to the chassis combine to make the 4CX600B and 4CX600F suitable for environments of severe shock and vibration.





# GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Cathode: (4CX600B) Oxide Coated, Unipotential                      |            |
|--------------------------------------------------------------------|------------|
| Heater: Voltage                                                    | V          |
| Current, at 6.0 volts                                              | Α          |
| Cathode: (4CX600F) Oxide Coated, Unipotential                      |            |
| Heater: Voltage                                                    | V          |
| Current, at 26.5 volts                                             | Α          |
| Transconductance (Average):                                        |            |
| $I_{b} = 0.6 \text{ Adc}$                                          | $\mu$ mhos |
| Input Conductance:                                                 |            |
| Ib = 0.6 Adc (F = 30 MHz)                                          | mhos       |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |            |
| Input 45                                                           | pF         |
| Output                                                             | pF         |
| Feedback                                                           | pF         |
| Frequency of Maximum Rating:                                       |            |
| CW 500                                                             | MHz        |

Characteristics and operating values are based upon performance tests. These figures may change without notice
as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
this information for final equipment design.

2. In Shielded Fixture.

(Effective 3-20-70) © 1970 by Varian

Printed in U.S.A.

# MECHANICAL

| 7.7       | A 11    | D           |
|-----------|---------|-------------|
| Mayımıım  | Uverall | Dimensions: |
| MUMANITUM | Ovciuii | Dimonorons. |

| Length             | 2.45 in; 62.23 mm |
|--------------------|-------------------|
| Diameter           | 2.08 in; 52.83 mm |
| Net Weight         | 7.0 oz; 198 gm    |
| Operating Position | Any               |

# Maximum Operating Temperature:

| Ceramic/Metal Seals and Anode Core | 250°C   |
|------------------------------------|---------|
| SK-680 capacitor when used         | 150°C   |
| Cooling                            | Air     |
| Base                               | Special |

### **BROADBAND LINEAR AMPLIFIER**

Class AB

### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 3000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC GRID VOLTAGE    | -150 | VOLTS  |
| DC PLATE CURRENT   | 0.6  | AMPERE |
| PLATE DISSIPATION  | 600  | WATTS  |
| SCREEN DISSIPATION | 15   | WATTS  |
| GRID DISSIPATION   | 3    | WATTS  |

### TYPICAL OPERATION

| Plate Voltage                | 1000 | 1500 | 2500 | Vdc      |
|------------------------------|------|------|------|----------|
| Screen Voltage               | 275  | 275  | 275  | Vdc      |
| Grid Voltage 1               | -40  | -40  | -40  | Vdc      |
| Zero-Signal Plate Current    | 100  | 100  | 100  | mAdd     |
| Single Tone Plate Current    | 570  | 580  | 585  | mAdd     |
| Single-Tone Screen Current 2 | 32   | 29   | 17   | mAdd     |
| Peak rf Grid Voltage         | 44   | 43   | 42   | V        |
| Screen Dissipation           | 8.8  | 8.0  | 4.7  | W        |
| Plate Input Power            | 570  | 870  | 1460 | W        |
| Plate Dissipation            | 250  | 280  | 460  | W        |
| Plate Output Power           | 320  | 590  | 1000 | W        |
| Rf Load Impedance            | 765  | 1225 | 2325 | $\Omega$ |
|                              |      |      |      |          |

- 1. Adjust to specified zero-signal dc plate current. 2. Approximate value.

| RADIO   | FREQUENCY | POWER | AMPLIFIER |
|---------|-----------|-------|-----------|
| Class A | AΒ        |       |           |

(Key-Down Conditions)

### ABSOLUTE MAXIMUM RATINGS (890 MHz):

| DC PLATE VOLTAGE   | 2500 | VOLTS         |
|--------------------|------|---------------|
| DC SCREEN VOLTAGE  | 400  | VOLTS         |
| DC GRID VOLTAGE    | -150 | VOLTS         |
| DC PLATE CURRENT   | 0.6  | <b>AMPERE</b> |
| PLATE DISSIPATION  | 600  | WATTS         |
| SCREEN DISSIPATION | 15   | WATTS         |
| GRID DISSIPATION   | 3    | WATTS         |
|                    |      |               |

- 1. Approximate value
- 2. Grid driven. Grounded screen, rf grounded cathode.
- 3. For CW operation on 865 MHz heater voltage is reduced 15%. Inquire for voltage recommended for other UHF conditions.

| 4CX600F TYPICAL OPERATION                 | NOTE  | NOTE |      |
|-------------------------------------------|-------|------|------|
|                                           | 2     | 4    |      |
| Frequency                                 | 432   | 865  | MHz  |
| Plate to Cathode Voltage                  | 1830  | 2000 | Vdc  |
| Screen to Cathode Voltage                 | 300   | 300  | Vdc  |
| Grid Voltage                              | -54   | -53  | Vdc  |
| Plate Current                             | 600   | 600  | mAdc |
| Screen Current 1                          | 7.5   | 8    | mAdc |
| Grid Current 1                            | 12    | -1.0 | mAdc |
| Zero-Signal dc Plate Current <sup>1</sup> | 20    | 15   | mAdc |
| Measured Driving Power <sup>1</sup>       | 25    | 52   | W    |
| Plate Input Power                         | 1 100 | 1200 | W    |
| Plate Dissipation                         | 350   | 550  | W    |
| Useful Output Power                       | 700   | 585  | W    |
| Heater Voltage 3                          | 22.0  | 22.0 | V    |
| Gain                                      | 15.0  | 10.4 | db   |
| Efficiency                                | 65    | 48   | %    |
| Bandwidth (3db) output circuit            | 10.7  | 13.5 | MHz  |

4. Grid driven. Neutralized cavity. Grounded screen.

#### RADIO-FREQUENCY POWER AMPLIFIER

Class-B, Television Service (Frequencies to 890 MHz)

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 2500 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC PLATÉ CURRENT   | 0.6  | AMPERE |
| PLATE DISSIPATION  | 600  | WATTS  |
| SCREEN DISSIPATION | 15   | WATTS  |
| GRID DISSIPATION   | 3    | WATTS  |
| DC GRID VOLTAGE    | -150 | VOLTS  |
| DC GRID VOLTAGE    | -150 | VOLTS  |

TYPICAL OPERATION (865 MHz)
Grid driven, neutralized cavity, grounded screen. Rf

grounded cathode, single tuned input and output circuits. Output circuit efficiency 80%.

| Plate to Cathode Voltage                                                                        |                                     | Vdc<br>Vdc<br>Vdc              |
|-------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|
| Bandwidth at 3 db points                                                                        | 9<br>100                            | MHz<br>mAdc                    |
| dc Plate Current                                                                                | 600<br>8<br>52<br>100<br>550<br>585 | mAdc<br>mAdc<br>W<br>mAdc<br>W |
| dc Plate Current Drive Power Zero-Signal dc Plate Current Plate Dissipation Useful Power Output | 450<br>25<br>100<br>550<br>350      | mAdc<br>W<br>mAdc<br>W<br>W    |

#### 1. Approximate

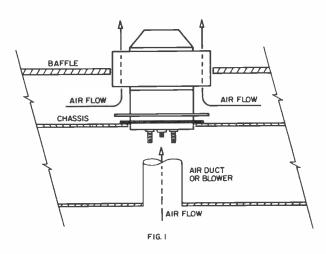
NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

#### RANGE VALUES FOR EQUIPMENT DESIGN

| 4CX600B                                                     | Min. | Max. | _    |
|-------------------------------------------------------------|------|------|------|
| Heater: Current at 6.0 volts                                | 4.0  | 4.7  | Α    |
| Cathode Warmup Time                                         | 180  |      | sec. |
| 4CX600F                                                     |      |      |      |
| Heater: Current at 26.5 volts                               | 0.85 | 1.25 | Α    |
| Cathode Warmup Time                                         | 180  |      | sec. |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |      |      |
| Input                                                       | 42   | 48   | pF   |
| Output                                                      | 5.3  | 6.3  | pF   |
| Feedback                                                    |      | 0.2  | pF   |

# APPLICATION

### MECHANICAL


MOUNTING - The 4CX600B and 4CX600F may be mounted in any position. No socket is required. The tube may be mounted directly on the SK-680 Screen Bypass Capacitor which in turn is mounted to the chassis with four screws. The chassis thickness should be 0.062 inches to insure adequate space for connections to the base of the tube and care should be exercised to insure a flat mounting surface to minimize cathode lead inductance.

COOLING - Sufficient forced-air cooling must be provided to maintain the anode core and seal temperatures below 250°C. The tabulation (page 4) lists the minimum cooling requirements at sea level and 10,000 feet with 50°C ambient air. At VHF and UHF, additional cooling air will be required due to circuit loss, a portion of which is chargeable to the tube.

Air cooling of the tube base is required. 10 CFM minimum should be directed straight up toward the center of tube base from a duct or blower, not more than 2-1/2 inches from the tube.

| PLATE                       | SEA L                | EVEL                         | 10,00                | O FEET                       |
|-----------------------------|----------------------|------------------------------|----------------------|------------------------------|
| DISSI-<br>PATION<br>(WATTS) | AIR<br>FLOW<br>(CFM) | STATIC<br>PRESSURE<br>(W.C.) | AIR<br>FLOW<br>(CFM) | STATIC<br>PRESSURE<br>(W.C.) |
| 300                         | 5.5                  | 0.14                         | 8,0                  | 0.20                         |
| 450                         | 11.4                 | 0.47                         | 16.6                 | 0.68                         |
| 600                         | 14.1                 | 0.65                         | 20.6                 | 0.94                         |

The following diagram illustrates a typical cooling installation.



In cases where there is any doubt regarding the adequacy of the supplied cooling, it should be borne in mind that operating temperature is the sole criterion of cooling effectiveness.

### **ELECTRICAL**

HEATER - The rated heater voltage is 6.0 volts for the 4CX600B and 26.5 volts for the 4CX600F. The voltage, as measured at the tube, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above the rated value. (See note 3 page 2).

The cathode and one side of the heater are internally connected.

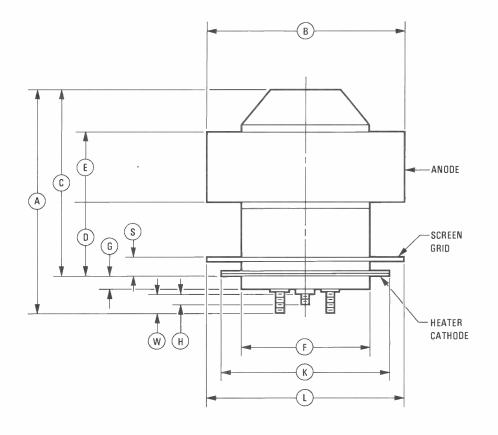
It is recommended that the heater voltage be applied for a period of not less than three minutes before current is drawn from the cathode. Tube operation will stabilize after a period of approximately five minutes from a cold start.

GRID OPERATION - The  $4\,\mathrm{C}\,\mathrm{X}\,6\,0\,0\,\mathrm{B}$  and  $4\,\mathrm{C}\,\mathrm{X}\,6\,0\,0\,\mathrm{F}$  control grid has a maximum dissipation of 3.0 watts and precautions should be observed to avoid exceeding this rating. Derating of the control grid dissipation will be necessary if the base flange temperature exceeds  $150^{\circ}\mathrm{C}$ .

The 4CX600B and 4CX600F have four threaded grid pins on the base of the tube. These pins can be used separately or in parallel to control the amount of grid lead inductance to suit the requirements of the circuit. The grid lead inductance for one pin is 2.4 nanohenries.

Caution should be excercised when tightening the nuts on the control grid pins. Maximum torque of three inch-pounds is sufficient for good electrical connection and should not be exceeded due to possible damage to the vacuum seal.

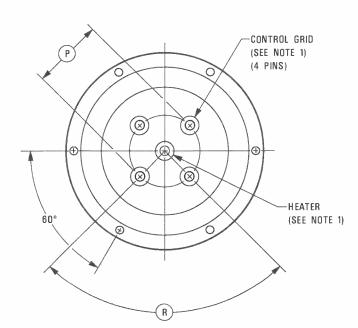
SCREEN OPERATION - The maximum rated screen dissipation for the 4CX600B and 4CX600F is 15 watts.

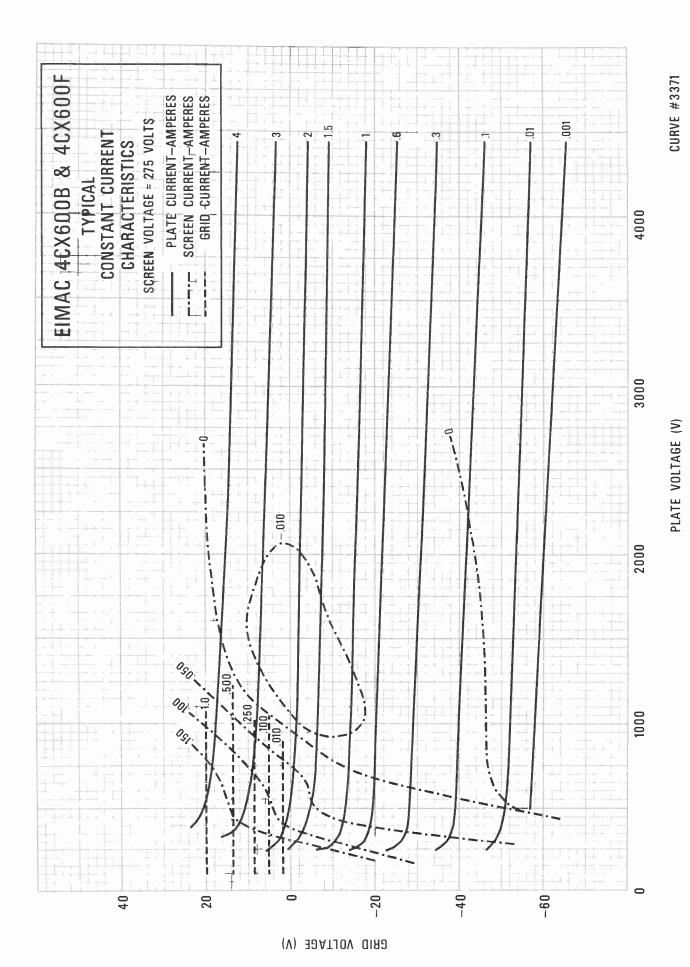

Under certain operating conditions the screen current of a tetrode may reverse as indicated on the screen current meter. This condition is the result of secondary emission from the screen and is normal for a power tetrode. If the impedance of the screen power supply is high, negative screen current will cause the screen voltage to approach the anode voltage, and the results will be a runaway condition which could lead to a catastrophic failure. This condition can be avoided if sufficient bleeder current is drawn from the screen supply by an appropriate bleeder or regulator tube. The recommended bleeder current for the 4CX600B and 4CX600F is 20 mA for each tube connected to a common screen power supply.

A low inductance screen bypass capacitor, Eimac SK-680, is available for the 4CX600B and 4CX600F. This capacitor is easily installed with six 0-80 screws. With the SK-680 capacitor installed, the screen self-resonant frequency of the 4CX600B or 4CX600F is in excess of 900 MHz.

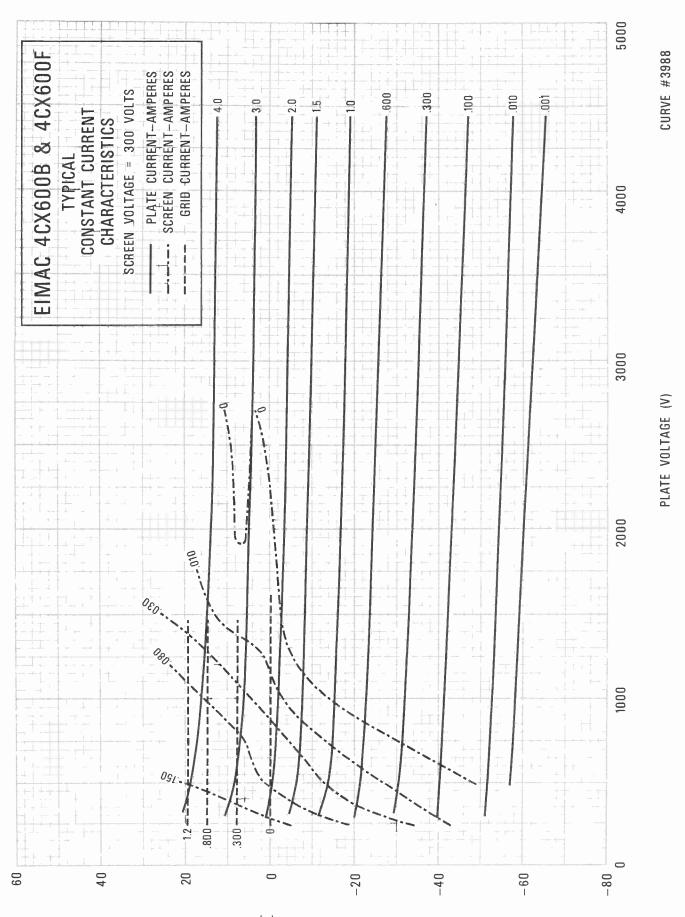
PLATE OPERATION - The maximum rated plate dissipation power for the 4CX600B and

4CX600F is 600 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded. Connection to the anode is accomplished by a clamp around the anode.


SPECIAL APPLICATIONS - If it is desired to operate the tube under conditions different from those given here, contact the Power Grid Division, EIMAC Division of Varian, San Carlos, California, 94070, for information and recommendations.




| DIMENSIONAL DATA |       |       |        |        |
|------------------|-------|-------|--------|--------|
| INCHES           |       | DIM.  | MILLIN | METERS |
| UIIVI.           | MIN.  | MAX.  | MIN.   | MAX.   |
| Α                |       | 2.450 |        | 62.23  |
| В                | 2.040 | 2.080 | 51.82  | 52.83  |
| С                | 1.825 | 1.975 | 46.35  | 50.16  |
| D                | .675  | .810  | 17.14  | 20.57  |
| Е                | .720  | .800  | 18.29  | 20.32  |
| F                | 1.305 | 1.325 | 33.15  | 33.65  |
| G                | .130  | .155  | 3.30   | 3.94   |
| Н                | .130  | .180  | 3.30   | 4.57   |
| K                | 1.710 | 1.750 | 43.43  | 44.45  |
| L                | 1.930 | 2.025 | 49.02  | 51.43  |
| Р                | .550  | .600  | 13.97  | 15.24  |
| R                | 88°   | 92°   | 88°    | 92°    |
| S                | .180  | .210  | 4.57   | 5.33   |
| W                | .250  | .300  | 6.35   | 7.62   |


### NOTES:

- 1. 2-56 UNC-2A
- 2. REF. DIM. ARE FOR INFO. ONLY AND ARE NOT REQ'D. FOR INSPECTION PURPOSES.





7



(V) 30ATJOV 01R0



### TECHNICAL DATA

8809 4CX600J 8921 4CX600JA ULTRA LINEAR POWER TETRODE

The EIMAC 8809/4CX600J is a ceramic/metal, forced-air cooled, radial beam tetrode with a rated maximum plate dissipation of 600 watts. It is a low-voltage, high-current tube specifically designed for exceptionally low intermodulation distortion and low grid interception. The low distortion characteristics make the 8809/4CX600J especially suitable for radio-frequency and audio-frequency linear amplifier service.



The 8921/4CX600JA has a larger anode cooler for reduced cooling air pressure-drop. It is electrically identical to the 4CX600J.

### GENERAL CHARACTERISTICS1

#### ELECTRICAL

| Cathode: Oxide Coated, Unipotential                               |              |            |
|-------------------------------------------------------------------|--------------|------------|
| Heater: Voltage                                                   | $6.0 \pm .3$ | V          |
| Current, at 6.0 volts                                             | 5.4          | Α          |
| Cathode - Heater Potential (maximum)                              | ±150         | V          |
| Transconductance (Average):                                       |              |            |
| $I_b = 0.3 \text{ Adc}, E_{c2} = 350 \text{ Vdc}$                 | 27,000       | $\mu$ mhos |
| Direct Interelectrode Capacitance (grounded cathode) <sup>2</sup> |              |            |
| Cin                                                               | 50.0         | pF         |
| Cout                                                              | 6.3          | pF         |
| Cgp                                                               | .13          | pF         |
|                                                                   |              |            |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# **MECHANICAL**

| Maximum Overall Dimensions:    | 4CX600J          | 4CX600JA         |
|--------------------------------|------------------|------------------|
| Length                         | 2.71 in; 68.8 mm | 2.71 in; 68.8 mm |
| Diameter                       | 2.08 in; 52.8 mm | 2.52 in; 64.0 mm |
| Net Weight                     | 7.7 oz; 218 gm   | 9.0 oz; 255 gm   |
| Operating Position             |                  | Any              |
| Maximum Operating Temperature: |                  |                  |
| Ceramic/Metal Seals            |                  | 250°C            |
| Anode Core                     |                  | 250°C            |

(Effective 8-15-71) © by Varian

Printed in U.S.A.

| Cooling                                                                                                                                     | JEDEC B8-236<br>SK-607<br>SK-646                       |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                           | <ul> <li>Two-Tone Screen Current<sup>3</sup></li></ul> |
| AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB, Grid Driven (Sinusoidal Wave)  ABSOLUTE MAXIMUM RATINGS (per tube)  DC PLATE VOLTAGE | TYPICAL OPERATION (Two Tubes) Class AB1  Plate Voltage |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN | Min. | Max.    |
|-----------------------------------|------|---------|
| Heater: Current at 6.0 volts      | 5.0  | 5.8 A   |
| Cathode Warmup Time               | 5    | minutes |

| Interelectrode Capacitances <sup>1</sup> (grounded cathode connection) | Min. | Max.   |
|------------------------------------------------------------------------|------|--------|
| Cin                                                                    |      |        |
| Cout                                                                   | 5.7  | 7.0 pF |
| Cgp                                                                    |      | .2 pF  |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# APPLICATION

COOLING - The maximum temperature rating for the anode core of the 4CX600J is 250°C. Sufficient forced air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air flow requirements to maintain seal temperature at 225°C in ambient air are tabulated below (for operation below 30 megahertz), for the tube mounted in the recommended air-system socket and chimney, and air flowing in the base-to-anode direction.

Since the power dissipated by the heater represents about 33 watts and since grid plus screen dissipation can represent additional power, allowance has been made in preparing this tabulation for an additional 40 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown below plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling.

|                      |                     | 4CX600J                    |                      |                            |  |
|----------------------|---------------------|----------------------------|----------------------|----------------------------|--|
| Plate                | Sea L               | Sea Level 10,000 FEET      |                      | FEET                       |  |
| Dissipation<br>Watts | Air Flow<br>CFM     | Press.Drop<br>in.<br>water | Air Flow<br>CFM      | Press.Drop<br>in.<br>water |  |
| 300<br>450<br>600    | 7.0<br>12.2<br>26.5 | .3<br>.53<br>.81           | 10.2<br>17.7<br>38.7 | .45<br>.78<br>1.18         |  |
|                      | 4CX600JA            |                            |                      |                            |  |
| 300<br>450<br>600    | 7.0<br>12.2<br>26.5 | .08<br>.13<br>.21          | 10.2<br>17.7<br>38.7 | .11<br>.19<br>.30          |  |

HEATER - The rated heater voltage for these tubes is 6.0 volts. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above the rated value except for short periods.

It is recommended that the heater voltage be applied for a period of not less than 5 minutes before other operating voltages are applied.

Refer to the EIMAC Division of Varian for special instructions if it is necessary to reduce cathode warmup time.

GRID OPERATION - The grid dissipation rating of these tubes is 1 watt. The design features which make these such extremely linear tubes also contribute to very low grid interception. The grid may be driven into the positive grid region in the typical operation of the tube.

SCREEN OPERATION - Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on the individual tube. The 4CX600J and 4CX600JA, under some operating conditions, may indicate negative screen currents in the order of 10 milliamperes.

The maximum rated power dissipation for the screen grid is 15 watts and the screen power should be kept below this level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage. Experience has shown that the screen will operate within the limits established for this tube if the indicated screen current, plate voltage and drive voltage approximate the "Typical Operation" values.

The screen supply voltage must be maintained constant for any values of negative and positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished in several different ways. A bleeder resistor may be connected from screen to cathode; a zener regulator may be connected from

screen to cathode; or an electron-tube regulator circuit may be used in the screen supply. It is absolutely essential to use a bleeder if a series regulator is employed. The screen bleeder current should approximate 20 milliamperes to adequately stabilize the screen voltage. It should be observed that this bleeder power may be usefully employed to energize low-power stages of the transmitter.

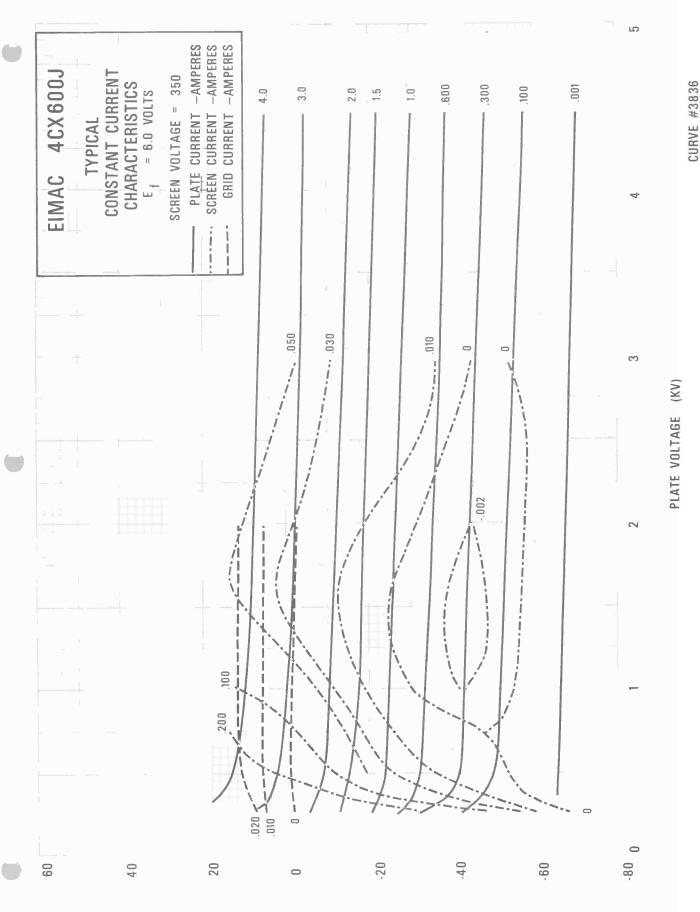
PLATE OPERATION - The maximum rated plate dissipation power is 600 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded.

The top cap on the anode cooler may be used as a plate terminal at low frequencies or a circular clamp or spring-finger collet encircling the cylindrical outer surface of the anode cooler may be used at high frequencies.

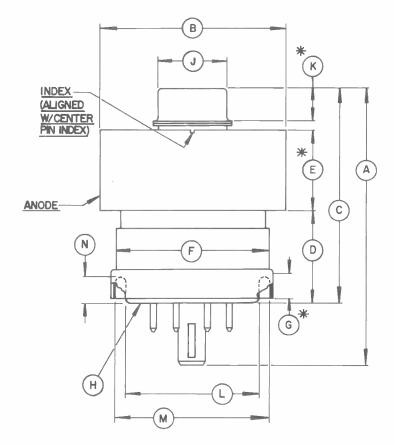
Points of electrical contact with the anode cooler should be kept clean and free of oxide to minimize radio-frequency loses. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

INTERMODULATION DISTORTION - The typical radio frequency linear amplifier operating conditions, including the distortion data, are based on actual operation in a grid-driven amplified. Because the 4CX600J and 4CX600JA have very low grid interception it is possible to drive the grid positive with minimum adverse effects upon the distortion level or upon the driver. Class AB2 linear amplifier operation is therefore possible and recommended. It is also recommended that a low impedance driver be used and that the input of the 4CX600J or 4CX600JA be swamped with a 1000 ohm resistor from grid to cathode so as to provide an almost constant load to the

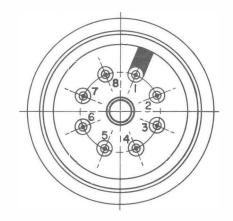
In general, linearity is improved as grid bias value is shifted toward Class A operation. Linearity may also be improved without sacrifice of efficiency by use of cathode resistors bypassed for rf, or with no bypass capacitor. See "Radio Frequency Linear Amplifier, Typical Operation".


CAUTION-HIGH VOLTAGE - Operating voltage for the 4CX600J and 4CX600JA can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design

equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.



(V) 30ATJOV DIRD



| 8809/4CX600J           |                                       |       |             |       |  |
|------------------------|---------------------------------------|-------|-------------|-------|--|
|                        | DIMENSIONAL DATA                      |       |             |       |  |
| DIM.                   | INCHES                                |       | MILLIMETERS |       |  |
| DIIVI.                 | MIN.                                  | MAX.  | MIN.        | MAX.  |  |
| Α                      | 2.507                                 | 2.707 | 63.68       | 68.76 |  |
| В                      | 2.050                                 | 2.080 | 52.07       | 52.83 |  |
| С                      | 1.973                                 | 2.173 | 50.11       | 55.19 |  |
| D                      | 0.910                                 | 1.030 | 23.11       | 26.16 |  |
| Ε                      | 0.710                                 | 0.790 | 18.03       | 20.07 |  |
| F                      |                                       | 1.406 |             | 35.71 |  |
| G                      | 0.187                                 |       | 4.75        |       |  |
|                        | H BASE: B8-236<br>(JEDEC DESIGNATION) |       |             |       |  |
| "                      |                                       |       |             |       |  |
| J                      | 0.559                                 | 0.573 | 14.20       | 14.55 |  |
| K                      | 0.240                                 |       | 6.10        |       |  |
| L                      | 1.175                                 | 1.190 | 29.85       | 30.23 |  |
| М                      | 1.325                                 | 1.360 | 33.66       | 34.54 |  |
| N                      | 0.205                                 |       | 5.21        |       |  |
| 8921/4CX600JA          |                                       |       |             |       |  |
| В                      | 2.485                                 | 2.515 | 63.00       | 63.80 |  |
| ALL ELSE SAME AS ABOVE |                                       |       |             |       |  |



PIN DATA
PIN 1 8/OR BASE RING-SCREEN GRID
PINS 2,4,7-CONTROL GRID
PINS 3,6,8-CATHODE
PIN 5-HEATER
CENTER PIN-HEATER



# TECHNICAL DATA

8168 4CX1000A

CERAMIC POWER TETRODE

The EIMAC 8168/4CX1000A is a ceramic/metal, forced-air cooled, radial-beam tetrode with a rated maximum plate dissipation of 1000 watts. It is a low-voltage, high-current tube specifically designed for Class-AB1 rf linear-amplifier or audio-amplifier applications where its high gain may be used to advantage. At its rated maximum plate voltage of 3000 volts, it is capable of producing 1630 watts of peak-envelope output power. Two 8168/4CX1000As operating in Class-AB1 will produce 3260 watts of audio power.



# GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL

| Cathode: Oxide Coated, Unipotential                                |            |
|--------------------------------------------------------------------|------------|
| Heater: Voltage 6.0 ± 0.3 V                                        |            |
| Current, at 6.0 volts 9.0 A                                        |            |
| Transconductance (Average):                                        |            |
| $I_b = 1.0 \text{ Adc} \dots 37,000 \mu \text{mhos}$               |            |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |            |
| Input 81 pF                                                        |            |
| Output 11.8 pF                                                     |            |
| Feedback 0.015 pF                                                  |            |
| Direct Interelectrode Capacitances (grounded grid and screen)2     |            |
| Input                                                              | . 35.5 pF  |
| Output                                                             | . 12 pF    |
| Feedback                                                           | . 0.004 pF |
| Frequency of Maximum Rating:                                       | •          |

- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before
  using this information for final equipment design.
- 2. In Shielded Fixture.

## MECHANICAL

| Maximum Overall Dimensions: |                 |
|-----------------------------|-----------------|
| Length                      | 4.80 in; 122 mm |
| Diameter                    | 3.37 in;85.5 mm |
| Net Weight                  | 27 oz; 768 gm   |
| Operating Position          | Any             |

(Revised 5-1-70) © 1963, 1966, 1967 Varian

Printed in U.S.A.

110 MHz



| Maximum Operating Temperature:              |
|---------------------------------------------|
| Ceramic/Metal Seals250°C                    |
| Anode Core                                  |
| Cooling Forced Air                          |
| Base Special, breechblock terminal surfaces |
| Recommended Socket EIMAC SK-800 Series      |
| Recommended Chimney                         |
|                                             |

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB<sub>1</sub>

#### MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 3000 | VOLTS         |
|--------------------|------|---------------|
| DC SCREEN VOLTAGE  | 400  | VOLTS         |
| DC PLATE CURRENT   | 1.0  | <b>AMPERE</b> |
| PLATE DISSIPATION  | 1000 | WATTS         |
| SCREEN DISSIPATION | 12   | WATTS         |
| GRID DISSIPATION   | 0    | WATT          |
|                    |      |               |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1 Grid Driven, Peak Envelope or Modulation Crest Conditions

| Plate Voltage               | 2000 | 2500 | 3000 | Vdc  |
|-----------------------------|------|------|------|------|
| Screen Voltage              | 325  | 325  | 325  | Vdc  |
| Grid Voltage <sup>T</sup>   | -60  | -60  | -60  | Vdc  |
| Zero-Signal Plate Current   | 250  | 250  | 250  | mAdc |
| Single Tone Plate Current   | 890  | 885  | 875  | mAdc |
| Two-Tone Plate Current      | 645  | 650  | 635  | mAdc |
| Zero-Signal Screen Current  | 8    | 6    | 5    | mAdc |
| Single-Tone Screen Current2 | 35   | 35   | 35   | mAdc |
| Two-Tone Screen Current2    | 10   | 8    | 8    | mAdc |
| Plate Output Power          | 930  | 1300 | 1630 | W    |
|                             |      |      |      |      |

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB<sub>1</sub>, Grid Driven(Sinusoidal Wave)

### MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 3000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC PLATE CURRENT   | 1.0  | AMPERE |
| PLATE DISSIPATION  | 1000 | WATTS  |
| SCREEN DISSIPATION | 12   | WATTS  |
| GRID DISSIPATION   | 0    | WATT   |

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage                | 2000 | 2500 | 3000 | Vdc  |
|------------------------------|------|------|------|------|
| Screen Voltage               | 325  | 325  | 325  | Vdc  |
| Grid Voltage 1.2             | -60  | -60  | -60  | Vdc  |
| Zero-Signal Plate Current    | 500  | 500  | 500  | mAdc |
| Max Signal Plate Current     | 1.78 | 1.77 | 1.75 | Adc  |
| Zero-Signal Screen Currentl  | 16   | 12   | 10   | mAdc |
| Max Signal Screen Current 1. | 70   | 70   | 70   | mAdc |
| Plate Output Power           | 1860 | 2600 | 3260 | W    |
| Load Resistance              |      |      |      |      |
| (plate to plate)             | 2040 | 2850 | 3860 | Ω    |
|                              |      |      |      |      |

- 1. Approximate value.
- 2. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. When grid drive is applied, the screen voltage required to obtain the specified value of plate current without drawing grid current may vary somewhat from the typical values shown.



M: ..



M ---

#### RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                        | IVI I II . | max. |      |
|------------------------------------------------------------------------|------------|------|------|
| Heater: Current at 6.0 volts                                           | 8.1        | 9.9  | Α    |
| Cathode Warmup Time                                                    | 3          |      | min. |
| Interelectrode Capacitances <sup>1</sup> (grounded cathode connection) |            |      |      |
| Input                                                                  | 75         | 88   | pF   |
| Output                                                                 |            |      |      |
| Feedback                                                               |            |      |      |

1. In shielded fixture

# **APPLICATION**

#### MECHANICAL

COOLING - Sufficient cooling must be provided for the anode and ceramic/metal seals to maintain operating temperatures below the rated maximum values:

Ceramic/Metal Seals 250°C Anode Core 250°C

A flow rate of 25 cubic feet per minute will be adequate for operation at maximum rated plate dissipation at sea level and with inlet air temperatures up to 40°C. Under these conditions, 25 cfm of air flow corresponds to a pressure difference across the tube and socket of 0.2 inch of water column. Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube.

At higher altitudes and at VHF increased air flow will be required. For example, at an altitube of 10,000 feet, a flow rate of 37 cfm will be required and will be obtained with a pressure drop across tube and socket of 0.3 inch of water column. In selecting a blower for use at high altitudes, care must be taken to assure that the blower is designed to deliver the desired volume of air at the corresponding pressure drop and at the particular altitude.

In cases where there is any doubt regarding the adequacy of the supplied cooling, it should be borne in mind that operating temperature is the sole criterion of cooling effectiveness. Surface temperatures may be easily and effectively measured by using one of the several temperature-sensitive paints or sticks available from various chemical or scientific-equipment suppliers. When these materials are used, extremely thin applications must be made to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

The 4CX1000A is tested for vibration (noise) from 10 Hz to 500 Hz. Vibration level is 10 G units peak 28 Hz to 500 Hz. Below 28 Hz vibration double amplitude is .25 inch.

The 4CX1000A is tested for shock, 50 G, 11 ms, three axes, after which the tube must be within specification for grid bias voltage and gas current.

#### **ELECTRICAL**

HEATER - The rated heater voltage for the 4CX1000A is 6.0 volts. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above the rated value.

The cathode and one side of the heater are internally connected.

It is recommended that the heater voltage be applied for a period of not less than 3 minutes before other operating voltages are applied. From an initial cold condition, tube operation will stabilize after a period of approximately 5 minutes.

GRID OPERATION - The grid dissipation rating of the 4CX1000A is zero watts. The design features which make the tube capable



of maximum power operation without driving the grid into the positive region also make it necessary to avoid positive-grid operation.

Although the average grid-current rating is zero, peak grid currents of less than five-milliamperes as read on a five-milliampere meter may be permitted to flow for peak-signal monitoring purposes.

SCREEN OPERATION - Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design. This characteristic is prominent in the 4CX1000A and, under some operating conditions, indicated negative screen currents in the order of 25 milliamperes may be encountered.

The maximum rated power dissipation for the screen grid in the 4CX1000A is 12 watts and the screen power should be kept below this level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage. Experience has shown that the screen will operate within the limits established for this tube if the indicated screen current, plate voltage and drive voltage approximate the "Typical Operation" values.

The screen supply voltage must be maintained constant for any values of negative and positive screen currents that may be encoun-

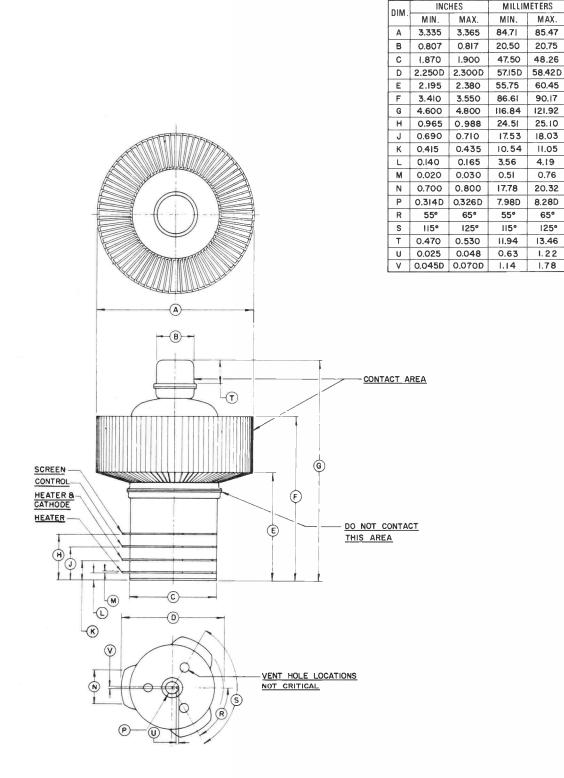
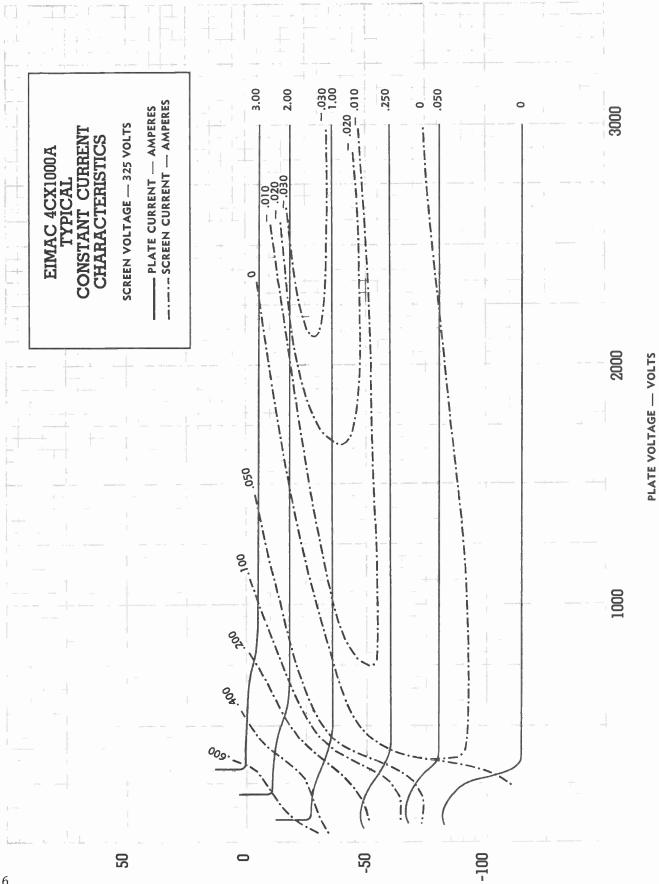

tered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished in several different ways. A bleeder resistor may be connected from screen to cathode; a combination of VR tubes may be connected from screen to cathode; or an electron-tube regulator circuit may be used in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed. The screen bleeder current should approximate 70 milliamperes to adequately stabilize the screen voltage. It should be observed that this bleeder power may be usefully employed to energize low-power stages of the transmitter.

PLATE OPERATION - The maximum rated plate dissipation power is 1000 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded.

The top cap on the anode cooler may be used as a plate terminal at low frequencies or a circular clamp or spring-finger collet encircling the cylindrical outer surface of the anode cooler may be used at high frequencies.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions different from those given here, write to the Power Grid Tube Marketing Department, EIMAC Division of Varian, San Carlos, California 94070, for information and recommendations.





DIMENSIONAL DATA









CERAMIC **POWER TETRODE** 

mag 4CX1000K

38.0 uuf 13 uuf

0.004 uuf

400 Mc

The Eimac 8352/4CX1000K is a ceramic and metal, forced-air cooled, radialbeam tetrode with a rated maximum plate dissipation of 1000 watts. It is a low-voltage, high-current tube specifically designed for Class-AB, rf linear-amplifier applications where its high gain and low distortion characteristics may be used to advantage. The 8352/4CX1000K is similar to the 8168/4CX1000A but contains a solid screen ring that improves isolation between input and output circuits and permits use of the tube in UHF service.

#### GENERAL CHARACTERISTICS

#### **ELECTRICAL**

| Cathod  | e: Oxide Coat  | ed. L | Jnipo | tenti | aĺ  |       |      |      |       |     | Min | ı. N | lom. | Max.  |         |   |   |      |     |       |          |
|---------|----------------|-------|-------|-------|-----|-------|------|------|-------|-----|-----|------|------|-------|---------|---|---|------|-----|-------|----------|
|         | Heating Ti     |       |       | _     | _   | -     | _    | _    | -     | _   | - 3 |      |      |       | minutes |   |   | (    |     |       |          |
| Heater  | : Voltage      | -     | -     | -     | -   | -     | -    | -    | -     | -   | -   | -    | 6.0  |       | volts   |   |   | 1    |     |       |          |
|         | Current        | -     | -     | -     | -   | -     | -    | -    | -     | -   | 8.1 |      |      | 9.9   | amperes |   |   |      | D.  |       |          |
| Transco | nductance (Ib  | -1.0  | am    | pere) | -   | -     | -    | -    | -     | -   |     | 37   | ,000 |       | umhos   |   |   |      | 1   |       |          |
| Direct  | Interelectrode | Сар   | acita | nces, | Gro | unded | Cath | ode: | *     |     |     |      |      |       |         |   |   |      | 1   |       |          |
|         | Input -        | -     | -     | -     | -   | -     | -    | -    | -     | -   | 77  |      |      | 90    | uuf     |   |   |      |     |       |          |
|         | Output         | -     | -     | -     | -   | -     | -    | -    | -     | -   | 11  |      |      | 13    | uuf     |   |   |      |     |       |          |
|         | Feedback       | -     | -     | -     | -   | -     | -    | -    | -     | -   | -   | -    | -    | 0.022 | uul     | : |   |      |     |       |          |
| Direct  | Interelectrode | Cap   | acita | nces, | Gro | unded | Grid | and  | Scree | n:* |     |      |      |       |         |   |   | Min. | Nom | . Max | <u>.</u> |
|         | Input -        | -     | -     | -     | -   | -     | -    | -    | •     | -   | -   | -    | -    | -     |         | - | - | 32.5 |     | 38.0  | ι        |
|         | Output         | -     | -     | -     | -   | -     | -    | -    | -     | -   | -   | -    | -    | -     |         | - | - | 11   |     | 13    | ι        |
|         | Feedback       | -     | -     | -     | -   | -     | -    | -    | -     | -   | -   | -    | -    | -     |         | - | - | -    | -   | 0.004 | ι        |

#### **MECHANICAL**

\*In shielded fixture.

Maximum Useable Frequency

| Base                 |       | -    | -    | - | _ | - | _ | - | _ | _ | - | _ | - | _ | Speci | al, | breec | hblocl | term  | inal | surfaces |
|----------------------|-------|------|------|---|---|---|---|---|---|---|---|---|---|---|-------|-----|-------|--------|-------|------|----------|
| Maximum Operating Te | mper  | ratu | res: |   |   |   |   |   |   |   |   |   |   |   | •     |     |       |        |       |      |          |
| Ceramic-to-M         | etal  | Sea  | ils  | - | - | - | _ | - | _ | - | _ | - | - | - | -     | -   | -     | -      | -     | -    | 250° C   |
| Anode Core           |       | -    | -    | - | - | - | - | - | - | - | - | _ | - | - | -     | -   | _     | -      | -     | -    | 250° C   |
| Recommended Socket   |       | -    | -    | - | - | - | - | - | - | - | - | - | - |   | _     | -   | -     | Eimac  | SK-82 | 0 or | SK-830   |
| Operating Position - |       | -    | -    | - | - | - | - | _ | - | - | - | _ | - | - | -     | -   | -     | -      | -     | -    | - Any    |
| Maximum Over-All Dim | ensio | ns:  |      |   |   |   |   |   |   |   |   |   |   |   |       |     |       |        |       |      | •        |
| Height -             |       |      | -    | - | - | - | - | _ | - | - | - | - | _ | _ | -     | _   | -     | -      | -     | 4.8  | inches   |
| Diameter -           |       | -    | -    | - | _ | - | - | - | - | - | - | - | - | - | -     | -   | -     | -      | -     | 3.37 | inches   |
| NI-1 Wat-ki          |       |      |      |   |   |   |   |   |   |   |   |   |   |   |       |     |       |        |       | 27   |          |

#### **RADIO-FREQUENCY** LINEAR AMPLIFIER—Class AB or B

(Single Side-Band Suppressed-Carrier Operation)

| MAXIMUM RATINGS    |   |   |   |   |      |            |
|--------------------|---|---|---|---|------|------------|
| DC PLATE VOLTAGE   | - | - | - | - | 3000 | MAX. WATTS |
| DC SCREEN VOLTAGE  | - | - | - | - | 400  | MAX. VOLTS |
| DC PLATE CURRENT   | - | - | - | - | 1.0  | MAX. AMP   |
| PLATE DISSIPATION  | - | - | - | - | 1000 | MAX. WATTS |
| SCREEN DISSIPATION | - | - | - | - | 12   | MAX. WATTS |
| GRID DISSIPATION   | - | - | - | - | 0    | MAX. WATTS |

| TYPICAL OPERATION (Frequencies below 30 | Mc)  |      |            |
|-----------------------------------------|------|------|------------|
| DC Plate Voltage                        | 2000 | 2500 | 3000 volts |
| DC Screen Voltage                       | 325  | 325  | 325 volts  |
| DC Grid Voltage <sup>1</sup>            | 60   | 60   | -60 volts  |
| Zero-Signal DC Plate Current            | 250  | 250  | 250 mA     |
| Single-Tone DC Plate Current            | 890  | 885  | 875 mA     |
| Two-Tone Average DC Plate Current -     | 645  | 650  | 635 mA     |
| Zero-Signal DC Screen Current*          | 8    | 6    | 5 mA       |
| Single-Tone DC Screen Current*          | 35   | 35   | 35 mA      |
| Two-Tone Average DC Screen Current*     | 10   | 8    | 8 mA       |
| Plate Output Power                      | 930  | 1300 | 1630 watts |
| *Approximate values.                    |      |      |            |
|                                         |      |      |            |

<sup>1</sup>Adjust grid bias to obtain listed zero-signal plate current.



#### AUDIO AMPLIFIER OR MODULATOR Class AB,

| MAXIMUM RATINGS    | - | - |   |   |      |      |       |
|--------------------|---|---|---|---|------|------|-------|
| DC PLATE VOLTAGE   | - | - | - | - | 3000 | мах. | VOLTS |
| DC SCREEN VOLTAGE  | - | - | - | - | 400  | MAX. | VOLTS |
| DC PLATE CURRENT   | - | - | - | - | 1.0  | MAX. | AMP   |
| PLATE DISSIPATION  | - | - | - | - | 1000 | MAX. | WATTS |
| SCREEN DISSIPATION | - | - | - | - | 12   | MAX. | WATTS |
| GRID DISSIPATION   | _ | - | _ | _ | 0    | MAX. | WATTS |

| TYPICAL OPERATION (Sinusoidal  | way | /e, | two | tubes | unless i | noted) |       |
|--------------------------------|-----|-----|-----|-------|----------|--------|-------|
| DC Plate Voltage               | -   | -   | -   | 2000  | 2500     | 3000   | volts |
| DC Screen Voltage              | -   | -   | -   | 325   | 325      | 325    | volts |
| DC Grid Voltage <sup>1</sup>   | -   |     | -   | 60    | 60       | 60     | volts |
| Zero-Signal DC Plate Current - | -   | -   | -   | 500   | 500      | 500    | mΑ    |
| Max-Signal DC Plate Current -  | -   | -   | -   | 1.78  | 1.77     | 1.75   | amps  |
| Zero-Signal DC Screen Current* | -   | -   | -   | 16    | 12       | 10     | mΑ    |
| Max-Signal DC Screen Current*  | -   |     | -   | 70    | 70       | 70     | mΑ    |
| Effective Load, Plate to Plate | -   | -   | -   | 2040  | 2850     | 3680   | ohms  |
| Driving Power                  | -   | -   | -   | 0     | 0        | 0      | watts |
| Max-Signal Plate Output Power  | -   | -   | -   | 1860  | 2600     | 3260   | watts |
| *Approximate values.           |     |     |     |       |          |        |       |

Adjust grid bias to obtain listed zero-signal plate current.

"TYPICAL OPERATION" data are obtained by calculation from published characteristic curves; NO ALLOWANCE is made for circuit losses.

Adjustment of the grid bias to obtain the specific zero-signal plate current is assumed. The screen voltage required to obtain the listed value of maximum plate current, without drawing grid current, MAY VARY from the typical values shown. These conditions are valid to approximately 100 Mc. at higher frequencies, power output will be lower due to tube and circuit losses.

#### APPLICATION

#### **MECHANICAL**

**Cooling**—Sufficient cooling must be provided for the anode and ceramic-to-metal seals to maintain operating temperatures below the rated maximum values:

| Ceramic-to-Metal Seals | 250°C |
|------------------------|-------|
| Anode Core             | 250°C |

A flow rate of 25 cubic feet per minute will be adequate for operation at maximum rated plate dissipation at sea level and with inlet air temperatures up to 40°C. Under these conditions, 25 cfm of air flow corresponds to a pressure difference across the tube and socket of 0.2 inch of water column. Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube.

At higher altitudes and at UHF increased air flow will be required. For example, at an altitude of 10,000 feet, a flow rate of 37 cfm will be required and will be obtained with a pressure drop across tube and socket of 0.3 inch of water column. In selecting a blower for use at high altitudes, care must be taken to assure that the blower is designed to deliver the desired volume of air at the corresponding pressure drop and at the particular altitude.

In cases where there is any doubt regarding the adequacy of the supplied cooling, it should be borne in mind that operating temperature is the sole criterion of cooling effectiveness. Surface temperatures may be easily and effectively measured by using one of the several temperature-sensitive paints or sticks available from various chemical or scientific-equipment suppliers. When these materials are used, extremely thin applications must be made to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

#### **ELECTRICAL**

**Heater**—The rated heater voltage for the 4CX1000K is 6.0 volts. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above or below the rated value.

The cathode and one side of the heater are internally connected.

It is recommended that the heater voltage be applied for a period of not less than 3 minutes before other operating voltages are applied. From an initial cold condition, tube operation will stabilize after a period of approximately 5 minutes.

**Control Grid Operation**—The grid dissipation rating of the 4CX1000K is zero watts. The design features which make the tube capable of maximum power operation without driving the grid into the positive region also make it necessary to avoid positive-grid operation.

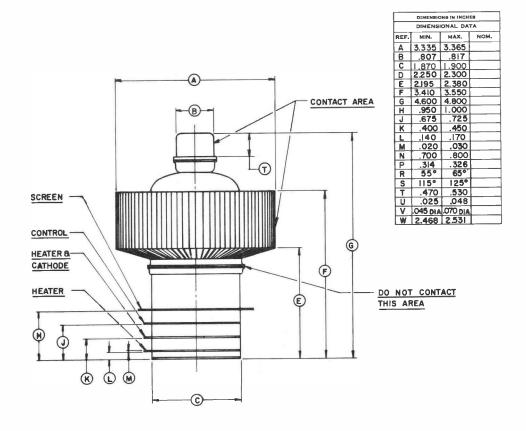
Although the average grid-current rating is zero, peak grid currents of less than five milliamperes as read on a five-milliamperes meter may be permitted to flow for peak-signal monitoring purposes.

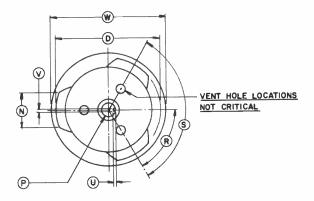
**Screen Grid Operation**—Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design. This characteristic is prominent in the 4CX1000K and, under some operating conditions, indicated negative screen currents in the order of 25 milliamperes may be encountered.

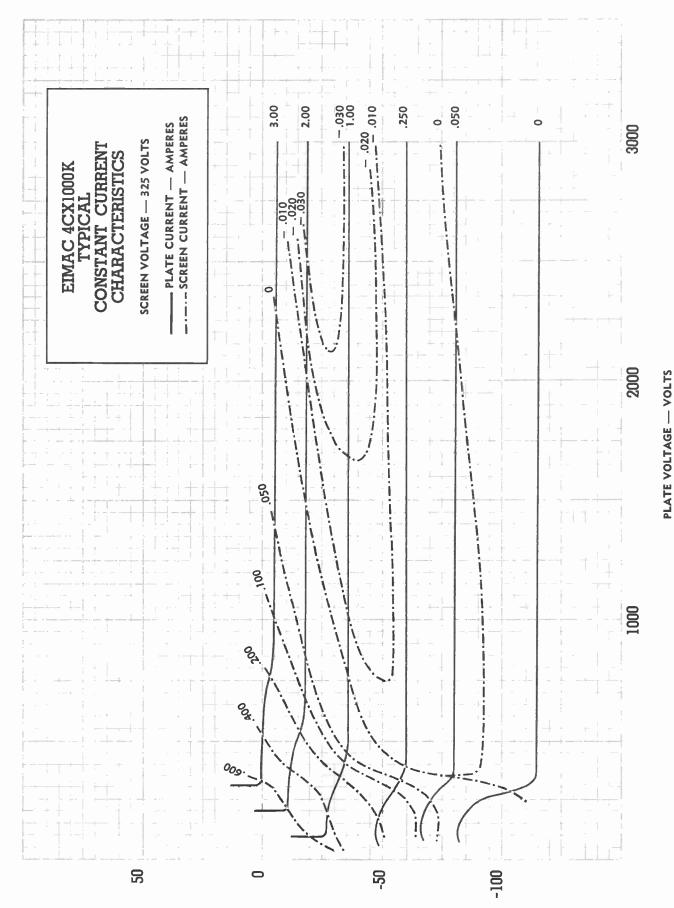
The maximum rated power dissipation for the screen grid in the 4CX1000K is 12 watts and the screen power should be kept below this level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage. Experience has shown that the screen will operate within the limits established for this tube if the indicated screen current, plate voltage and drive voltage approximate the "Typical Operation" values.

The screen supply voltage must be maintained constant for any values of negative and positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished in several different ways. A bleeder resistor may be connected from screen to cathode; a combination of VR tubes may be connected from screen to cathode; or an electron-tube regulator circuit may be used in the




screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed. The screen bleeder current should approximate 70 milliamperes to adequately stabilize the screen voltage. It should be observed that this bleeder power may be usefully employed to energize low-power stages of the transmitter.


**Plate Operation**—The maximum rated plate dissipation power is 1000 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded.


The top cap on the anode cooler may be used as a plate terminal at low frequencies or a circular clamp or spring-finger collet encircling the cylindrical outer surface of the anode cooler may be used at high frequencies.

Points of electrical contact with the anode cooler should be kept clean and free of oxide to minimize radio-frequency losses. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

**Special Applications** — If it is desired to operate this tube under conditions different from those given here, write to the Power Grid Tube Marketing, EIMAC, Division of Varian, San Carlos California, for information and recommendations.







GRID VOLTAGE -- VOLTS





RADIAL BEAM TETRODE

4CX1500A

The EIMAC 4CX1500A is a general purpose tetrode for use up to and through VHF. Insulation is ceramic and the thoriated tungsten filament is a rugged mesh design. The screen terminal is a continuous ring which allows good isolation between the plate circuit and the control grid circuit.

The 4CX1500A is recommended for use as a class C power amplifier, class B, or class  $AB_1$  linear amplifier, as a regulator, and in pulse modulator service.



#### ELECTRICAL

| Filament Voltage 5.0 volts                                         |        |      |
|--------------------------------------------------------------------|--------|------|
| Filament Current 38.5 amps                                         |        |      |
| Amplification Factor (Grid Screen) 5.5                             |        |      |
| Transconductance ( $I_b = 1$ ampere)                               |        |      |
| $Ec_2 = 500 \text{ volts}, Eb = 200 \text{ volts})$                | 26,000 | μmho |
| Frequency for Maximum Ratings                                      | 150    | MHz  |
| Direct Interelectrode Capacitances (Grounded Cathode) <sup>2</sup> |        |      |
| Cin                                                                | 78.0 j | pF   |
| Cout                                                               | 10.5   |      |
| Cgp                                                                | 0.25   | pF   |
| cgh                                                                | 0.25   | P*   |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Base                           | Special ring and breechblock terminal surfaces |
|--------------------------------|------------------------------------------------|
| Recommended Socket             | EIMAC S <u>K-831</u>                           |
| Recommended Air Chimney        | EIMAC SK-806                                   |
| Operating Position             | Axis Vertical                                  |
| Maximum Anode Core Temperature | 250°C                                          |
| Maximum Seal Temperature       | 250°C                                          |
| Cooling                        | Forced Air                                     |

(Effective 12-1-71) © by Varian

Printed in U.S.A.

| Maximum Dimensions  Height                                                                               | 3.37 in; 85.6 mm<br>30 oz; 850 gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RANGE VALUES FOR EQUIPMENT DESIGN                                                                        | Min Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Filament Current, E <sub>f</sub> = 5.0 V  Interelectrode Capacitance (grounded cathode circular)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cin                                                                                                      | 8.5 12.5 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Capacitance values are for a cold tube as measured in a dustries Association Standard RS-191.            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RADIO-FREQUENCY LINEAR AMPLIFIER Class AB                                                                | TYPICAL OPERATION Class AB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                       | DC Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                          | <ol> <li>Adjust to specified zero-signal dc plate current.</li> <li>Approximate values.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM (Continuous Operating Conditions) | TYPICAL OPERATION           Low Freq. Calculated         220 MHz Measured           DC Plate Voltage         3000 4000           DC Screen Voltage         500 500           500 500         500 V                                                                                                                                                                                                                                                                                                                          |
| MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                       | DC Grid Voltage       -200       -200       -116 V         DC Plate Current       800       800       1000 mA         DC Screen Current2       36       37       35 mA         DC Grid Current 2       17       15       0 mA         Peak RF Grid Voltage       240       240       v         Driving Power       4.1       3.6       31.5 W         Resonant Load Resistance       1720       2570       W         Plate Dissipation       600       700       W         Power Output       1800       2500       1500 W1 |

Useful Power Output
 Approximate values.

CONTROL GRID DISSIPATION ..... 25 WATTS

| PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER        | TYPICAL OPERATION                                                                                                                                                                                               | Low Frequency<br>Calculated                                                                                        |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Class C Telephony<br>(Carrier Conditions unless noted) | DC Plate Voltage                                                                                                                                                                                                | 2500 3400 V<br>500 500 V                                                                                           |
| MAXIMUM RATINGS:                                       | DC Grid Voltage  Peak Audio Screen Voltage                                                                                                                                                                      | -300 -300 V                                                                                                        |
| DC PLATE VOLTAGE                                       | (For 100% mod, approx.)  DC Plate Current  DC Screen Current 2.  DC Grid Current 2  Peak RF Grid Voltage  Grid Driving Power  Resonant Load Resonant  Plate Dissipation  Plate Power Out  2. Approximate value. | 500 500 v<br>800 900 mA<br>46 28 mA<br>27 28 mA<br>365 365 v<br>10 10 W<br>3200 1940 Ω<br>620 780 W<br>1600 2320 W |
| AUDIO-FREQUENCY AMPLIFIER OR                           | TYPICAL OPERATION (Two Tubes) (                                                                                                                                                                                 | Class AB <sub>1</sub>                                                                                              |
| MODULATOR Class AB                                     | DC Plate Voltage                                                                                                                                                                                                | 2500 3900 V                                                                                                        |
| MAXIMUM RATINGS:  DC PLATE VOLTAGE                     | DC Screen Voltage                                                                                                                                                                                               | 600 600 V<br>-105 -110 V<br>500 400 mA<br>1.530 1.500 A<br>90 80 mA<br>95 100 V<br>3340 5800 Ω                     |
| DC PLATE CURRENT                                       | Max-Signal Plate Dissipation 1 Max-Signal Plate Power Out                                                                                                                                                       | 820 1070 W<br>2160 3700 W                                                                                          |
| SCREEN DISSIPATION                                     | <ol> <li>Per Tube</li> <li>Approximate value.</li> </ol>                                                                                                                                                        | 2.33 3733 W                                                                                                        |

NOTE: TYPICAL OPERATION data is obtained by direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias screen and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In Class C service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CX1500A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-831 socket and SK-806 chimney have been designed especially for the 4CX1500A. The use of recommended airflow rates through these sockets provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the

tube terminals through the Air Chimney, and through the anode cooling fins.

COOLING - The maximum temperature rating for the anode core of the 4CX1500A is  $250^{\circ}$ C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below  $250^{\circ}$ C. Air-flow requirements to maintain seal temperature at  $225^{\circ}$ C in  $50^{\circ}$ C ambient air are tabulated on page 4 (for operation below 30 MHz).

|                                 | SEA LI            | VEL                                      | 6000 FEET         |                                          |  |  |  |
|---------------------------------|-------------------|------------------------------------------|-------------------|------------------------------------------|--|--|--|
| Plate<br>Dissipation<br>(Watts) | Air Flow<br>(CFM) | Pressure<br>Drop<br>(Inches<br>of Water) | Air Flow<br>(CFM) | Pressure<br>Drop<br>(Inches<br>of Water) |  |  |  |
| 1000<br>1500                    | 27<br>47          | 0.33<br>0.76                             | 33<br>58          | 0.40<br>0.95                             |  |  |  |

\*Since the power dissipated by the filament represents about 200 watts and since grid-plus-screen dissipation can, under some conditions, represent another 100 watts, allowance has been made in preparing this tabulation for an additional 300 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

#### **ELECTRICAL**

FILAMENT OPERATION - The rated filament voltage for the 4CX1500A is 5.0 volts. Filament voltage, as measured at the socket, should be maintained at this value or below to obtain maximum tube life.

CONTROL GRID OPERATION - The rated dissipation of the grid is 25 watts. This is approximately the product of dc grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

SCREEN GRID OPERATION - The power dissipated by the screen of the 4CX1500A must not exceed 75 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon RMS screen current and voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 75 watts in the event of circuit failure.

HIGH VOLTAGE - Normal operating voltages used with the 4CX1500A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground".

The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

MULTIPLE OPERATION - To obtain maximum power output with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

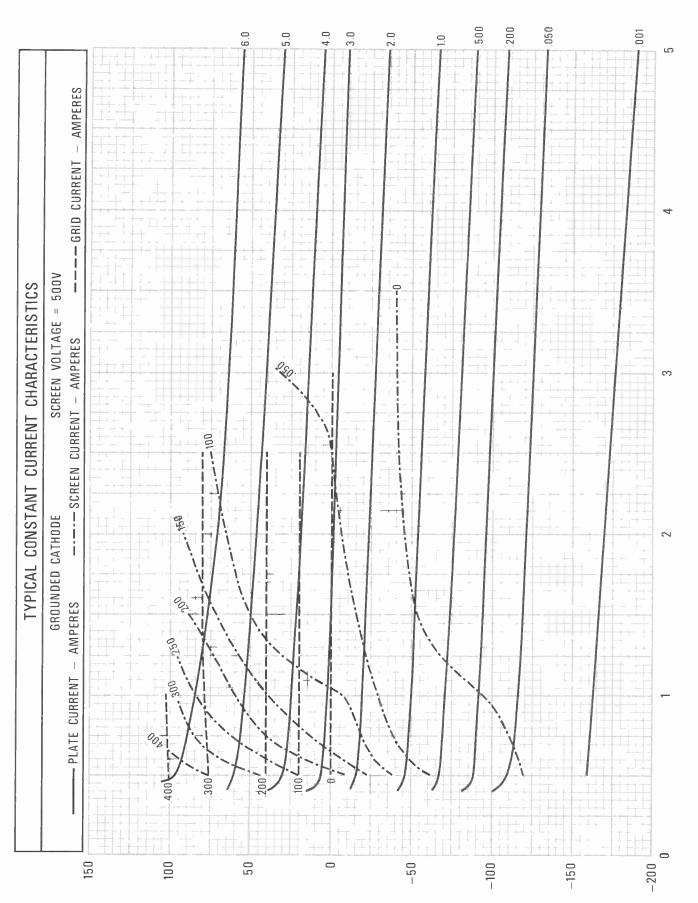
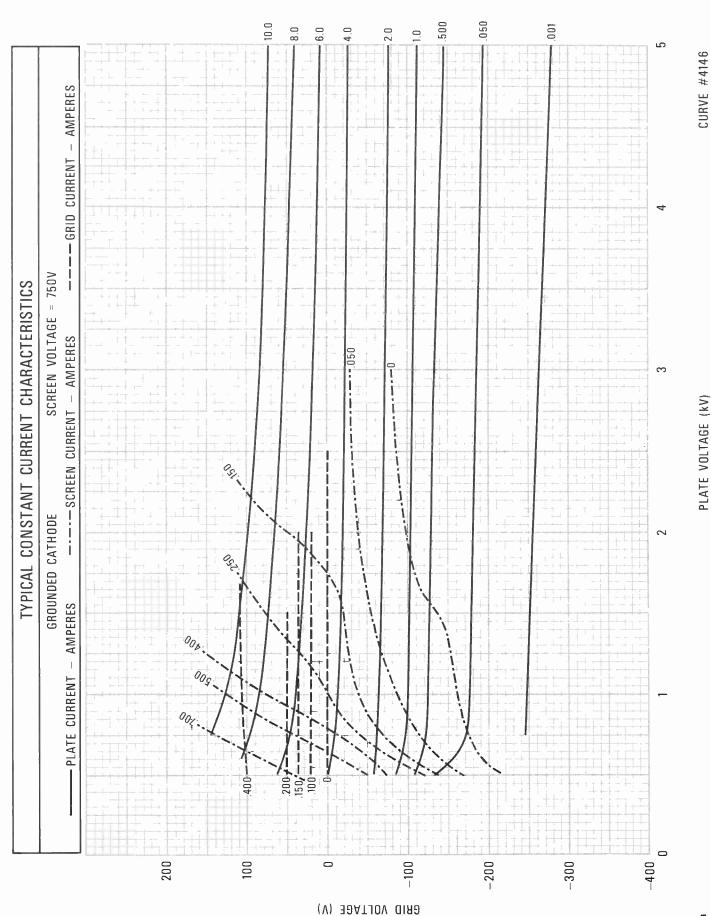
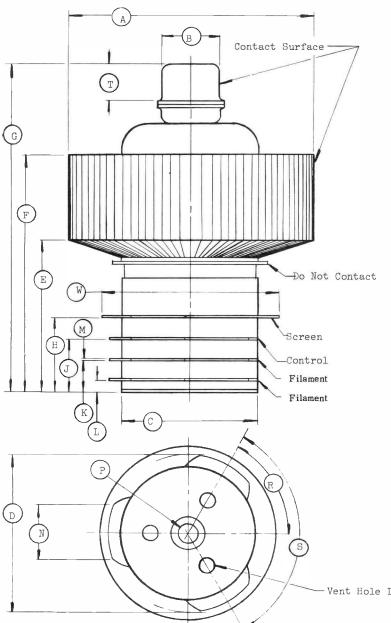





PLATE VOLTAGE (KV)

CURVE #4145





| _    |       |        | ENS | ONAL | DATA   | II I METE | DC : | _ |
|------|-------|--------|-----|------|--------|-----------|------|---|
| DIM. | 2001  | INCHES | -   |      |        | LLIMETE   |      | _ |
|      | MIN.  | MAX.   | Ft  | E)F  | MIN.   | MAX.      | R    | Œ |
| Α    | 3.335 | 3.370  |     |      | 84.71  | 85.60     | _    | _ |
| В    | 0.807 | 0.820  | _   | -    | 20.50  | 20.83     | -    | - |
| С    | 1.865 | 1.900  | -   | -    | 47.37  | 48.26     | -    | - |
| D    | 2.250 | 2.300  | -   | -    | 57.15  | 58.42     | _    | - |
| Ε    | 2.265 | 2.465  | -   | -    | 57.53  | 62.61     | -    | - |
| F    | 3.454 | 3.654  | -   | -    | 87.73  | 92.81     | -    | - |
| G    | 4.675 | 4.900  | -   | -    | 118.74 | 124.46    | 1-1  | - |
| Н    | 0.965 | 0.988  | -   | -    | 24.51  | 25.09     | _    | - |
| J    | 0.690 | 0.710  | -   | -    | 17.53  | 18.03     | -    | = |
| K    | 0.415 | 0.435  | -   | -    | 10.54  | 11.05     | -    | - |
| L    | 0.140 | 0.165  | -   | _    | 3.56   | 4.19      | -    | - |
| М    | 0.018 | 0.030  | -   | -    | 00.46  | 0.76      |      | - |
| N    | 0.700 | 0.800  | -   | -    | 17.78  | 20.32     | -    | - |
| Р    | 0.314 | 0.326  |     | -    | 7.97   | 8.28      | -    | _ |
| R    | 55°   | 65°    | -   | -    | 55°    | 65°       | -    | - |
| S    | 115°  | 125°   | -   | -    | II5°   | 125°      | -    | - |
| Т    | 0.470 | 0.530  | -   | -    | 11.94  | 13.46     | -    | - |
| W    | 2.468 | 2.531  | -   | -    | 62.69  | 64.29     | -    | - |
|      |       | 025    |     |      |        |           |      |   |
|      |       |        |     |      |        |           |      |   |
|      |       |        | _   |      |        |           | _    |   |
|      |       |        |     |      |        |           |      |   |

NOTES:
I. REF. DIMENSIONS ARE FOR INFO.
ONLY 8 ARE NOT REQUIRED FOR

- Vent Hole Location not critical



#### Division of Varian SAN CARLOS CALIFORNIA

RADIAL BEAM POWER TETRODE

JEDEC DESIGNATION

8660

The EIMAC 4CX1500B is ceramic and metal, forced-air cooled, radial beam tetrode with a rated maximum plate dissipation of 1500 watts. It is a low-voltage, high-current tube specifically designed for exceptionally low intermodulation distortion and low grid interception. The low distortion characteristics make the 4CX1500B especially suitable for radio-frequency and audio-frequency linear amplifier service.



| ELECTRICAL              | GENERAL              | CHARACTERIS      | TICS                |                 |
|-------------------------|----------------------|------------------|---------------------|-----------------|
| Cathode: Oxide C        |                      | Min. Nom. Max.   | min                 |                 |
|                         | g Time               | 6.0              | min<br>V            |                 |
| Current                 |                      | 9.0 11.0         | Å                   |                 |
| Transconductane         | e:                   |                  |                     | A Miller Street |
| $(I_n=0.5 \text{ amp})$ | peres, E.2=225 volts | 30,000           | umhos               |                 |
| Direct Interelectro     | ode Capacitances, Gr | ounded Cathode:* | $\underline{Min}$ . | Nom. Max.       |
| Input -                 |                      |                  | - 75                | 88              |
| 0                       |                      |                  | 400                 | 40.0            |

| Input                | -     | -   | -    | -     | -    | -     | -    | _    | -     | -     | -     | -   | 75   |    | 88    | pF |
|----------------------|-------|-----|------|-------|------|-------|------|------|-------|-------|-------|-----|------|----|-------|----|
| Output               | -     | -   | -    | -     | -    | -     | -    | -    | -     | -     | ~     | -   | 10.8 |    | 12.8  | pF |
| Feedbac              | k     | -   | -    | -     | _    | -     | -    | -    | -     | -     | -     | -   |      |    | .03   | pF |
| Direct Intere        | lectr | ode | Capa | acita | nces | . Gro | ound | ed G | rid a | and S | Scree | n:* |      |    |       | r- |
| Input                | -     | -   | -    | -     | -    | -     | -    | -    | _     | _     | _     | _   |      | 38 |       | рF |
| Output               | -     | -   | -    | -     | -    | -     | -    | -    | _     | _     | _     | _   |      | 12 |       | ρF |
| Feedbac              | k     | -   | -    | -     | -    | _     | -    | -    | -     | -     | -     | _   |      |    | 0.005 | pF |
| *In Shielded Fixture |       |     |      |       |      |       |      |      |       |       |       |     |      |    |       | F- |

#### **MECHANICAL**

| Base                   | -     | -     | -  | - | - | _ | _ | Spe | ecial, | bree | echl | olock | ter | minal s | urfaces    |
|------------------------|-------|-------|----|---|---|---|---|-----|--------|------|------|-------|-----|---------|------------|
| Maximum Operating Ter  | npera | ature | s: |   |   |   |   | •   | ,      |      |      |       |     |         |            |
| Ceramic-to-Metal Se    | eals  | -     | -  | - | - | - | - | -   | -      | -    | -    | -     | -   | -       | 250°C      |
| Anode Core             | -     | -     | -  | _ | - | - | - | _   | -      | -    | -    | _     | -   | -       | 250°C      |
| Recommended Socket -   | -     | -     | -  | _ | - | - | - | -   | -      | -    | _    | EIM   | [AC | SK-800  | Series     |
|                        | -     |       | -  | - | - | - | _ | -   | -      | -    | -    | -     | -   |         | - Any      |
| Maximum Over-All Dime  | ensio | ns:   |    |   |   |   |   |     |        |      |      |       |     |         | -          |
| Height <b>-</b>        | -     | -     | -  | - | - | - | - | -   | -      | -    | -    | -     | -   | 4.8     | in         |
| Diameter               | -     | -     | -  | - | - | - | - | -   | -      | -    | -    | -     | -   | 3.37    | in         |
| Net Weight             | -     | -     | -  | - | - | - | - | -   | -      | -    | -    | -     | -   | 27      | 0 <b>Z</b> |
| Shipping Weight (Appro | oxima | ite)  | -  | - | - | - | - | -   | -      | -    | -    | -     | -   | 3       | 1bs        |

#### RADIO-FREQUENCY LINEAR AMPLIFIER

Class AB

| MAXIMUM RATINGS    |   |   |   |            |
|--------------------|---|---|---|------------|
| DC PLATE VOLTAGE   | - | - | _ | 3000 VOLTS |
| DC SCREEN VOLTAGE  |   | - | - | 400 VOLTS  |
| DC PLATE CURRENT   | - | - | - | .900 AMP   |
| PLATE DISSIPATION  | - | - | - | 1500 WATTS |
| SCREEN DISSIPATION | - | ~ | - | 12 WATTS   |
| CONTROL GRID       |   |   |   |            |
| DISSIPATION -      | - | _ | _ | 1 WATT     |

\*Adjust to the specified Zero-Signal Plate Current.

\*\*The driving power specified includes the power dissipated in a 1000 ohm swamping resistor between the control grid and the cathode.

\*\*The intermodulation distortion products will be as specified or better for all levels from zero-signal to maximum output power and are referenced against one tone of a two equal tone signal.

#### TYPICAL OPERATION (Frequencies below 30 MHz)

Class AB<sub>2</sub>, Grid Driven, Peak Envelope or Modulation Crest Conditions

| Driving Power**                                   | -<br>-<br>-<br>-<br>t | 2500<br>225<br>—34<br>300<br>720<br>530<br>1.3<br>0.06<br>—7<br>—11<br>46<br>1.5 | 2750<br>225<br>—34<br>300<br>755<br>555<br>0.95<br>0.20<br>—14<br>—11<br>45 | 2900 V<br>225 V<br>34 V<br>300 m<br>710 m<br>542 m<br>0.53 m<br>0.06 m<br>11 m<br>41 V<br>1.5 W | olts<br>olts<br>iA<br>iA<br>iA<br>iA<br>iA<br>iA<br>olts |
|---------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Useful Output Power -                             |                       | 900<br>1900                                                                      | 1100                                                                        | 1100 W                                                                                          | atts                                                     |
| Intermodulation Distortion Products***— 3rd order |                       | 38                                                                               | 40                                                                          |                                                                                                 | В                                                        |



#### AUDIO AMPLIFIER OR MODULATOR

Class AB<sub>1</sub>

| MAXIMUM RATINGS    |   |   |   |     |              |
|--------------------|---|---|---|-----|--------------|
| DC PLATE VOLTAGE   | _ | _ | _ |     | <b>VOLTS</b> |
| DC SCREEN VOLTAGE  | - | - | - |     | VOLTS        |
| DC PLATE CURRENT   | - | - | - |     | AMP          |
| PLATE DISSIPATION  | - | - | ~ |     | WATTS        |
| SCREEN DISSIPATION | - | - | - |     | WATTS        |
| GRID DISSIPATION   | - | - | - | 1.0 | WATTS        |
|                    |   |   |   |     |              |

\*Approximate values. \*\*Adjust grid bias to obtain listed zero-signal plate current. TYPICAL OPERATION (Sinusoidal wave, 2 tubes unless noted)

| DC Plate Volt   | age      | -     | -     | -  | 2000 | 250 | 00 | 2900 | Volts |
|-----------------|----------|-------|-------|----|------|-----|----|------|-------|
| DC Screen Vo    | ltage    | -     | -     | -  | 325  | 3:  | 25 | 325  | Volts |
| DC Grid Volta   | age**    | -     | -     | -  | 60   |     | 50 | 60   | Volts |
| Zero-Signal Do  | C Plate  | Cur   | rent  | -  | 500  | 50  | 00 | 500  | mΑ    |
| MaxSignal D     | C Plate  | : Cui | rrent | -  | 1.68 | 1.6 | 59 | 1.69 | Amps  |
| Zero-Signal DO  | C Screer | n Cur | rent  | *  | 30   | 2   | 25 | 20   | mA    |
| MaxSignal Do    | C Scree  | n Cu  | rrent | *  | —27  |     | 33 | 32   | mΑ    |
| Effective Load, | , Plate  | to Pl | ate   | -  | 1948 | 27  | 15 | 3333 | Ohms  |
| Driving Power   | r -      | -     | -     | -  | 0    |     | 0  | 0    | Watts |
| MaxSignal Pl    | ate Out  | put l | Powe  | er | 1604 | 225 | 58 | 2774 | Watts |
|                 |          |       |       |    |      |     |    |      |       |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from the published characteristic curves and confirmed by direct tests. Adjustment of the grid bias to obtain the specified zero-signal plate current is assumed. When grid drive is applied, the screen voltage required to obtain the specified value of plate current without drawing grid current may vary somewhat from the typical values shown.

#### APPLICATION

Cooling — The maximum temperature rating for the anode core of the 4CX1500B is 250°C. Sufficient forced air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-to-metal seals to below 250°C. Air flow requirements to maintain seal temperature at 225°C in 50°C ambient air are tabulated below (for operation below 30 megahertz). Tube mounted in recommended socket and chimney.

|                               | Sea             | a Level                       | 10,000 feet     |                               |  |  |  |
|-------------------------------|-----------------|-------------------------------|-----------------|-------------------------------|--|--|--|
| Plate<br>Dissipation<br>watts | Air Flow<br>CFM | Pressure Drop<br>inches water | Air Flow<br>CFM | Pressure Drop<br>inches water |  |  |  |
| 1000<br>1500                  | 18<br>34        | .23<br>.60                    | 24<br>45        | .31<br>.80                    |  |  |  |

\*Since the power dissipated by the heater represents about 60 watts and since grid plus screen dissipation can, under some conditions, represent another 13 watts, allowance has been made in preparing this tabulation for an additional 73 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

Heater — The rated heater voltage for the 4CX1500B is 6.0 volts. The voltage, as measured at the socket, should be maintained at this value to minimize variations in operation and to obtain maximum tube life. In no case should the voltage be allowed to exceed 5% above or below the rated value.

The cathode and one side of the heater are internally connected.

It is recommended that the heater voltage be applied for a period of not less than 3 minutes before other operating voltages are applied. From an initial cold condition, tube operation will stabilize after a period of approximately 5 minutes.

Intermodulation Distortion — The Radio Frequency Linear Amplifier operating conditions including the distortion data are the results of actual operation in a neutralized grid-driven amplifier. Plots of IM distortion versus power output under two-tone conditions, as a function of zero-signal plate current, are included to illustrate the effect of this parameter upon distortion. Because the 4CX1500B has very low grid interception it is possible to drive the grid positive without any adverse effects upon the distortion level or upon the driver. Class AB2 linear amplifier operation is therefore possible and recommended. It is also recommended that a low impedance driver be used and that the input of the 4CX1500B be swamped with a 1000 ohm resistor from grid to cathode so as to provide an almost constant load to the driver.

Control-Grid Operation — The control grid dissipation rating of the 4CX1500B is 1 watt. The design features which make the 4CX1500B such an extremely linear tube also contribute to very low grid interception. It will be found that the grid will be driven into the positive grid region in the typical operation of the tube. The grid current will usually be less than 1.0 milliampere.

Screen-Grid Operation — Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design. This characteristic is prominent in the 4CX1500B and, under some operating conditions, indicated negative screen currents in the order of 35 milliamperes may be encountered.

The maximum rated power dissipation for the screen grid in the 4CX1500B is 12 watts and



the screen power should be kept below this level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage. Experience has shown that the screen will operate within the limits established for this tube if the indicated screen current, plate voltage and drive voltage approximate the "Typical Operation" values.

The screen supply voltage must be maintained constant for any values of negative and positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished in several different ways. A bleeder resistor may be connected from screen to cathode; a combination of VR tubes may be connected from screen to cathode; or an electron-tube regulator circuit may be used in the screen supply. It is absolutely essential to use a bleeder if a series electron-tube regulator is employed. The screen bleeder current should approximate 70 milliamperes to

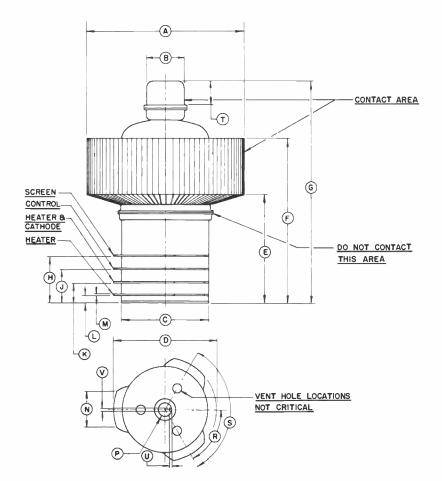
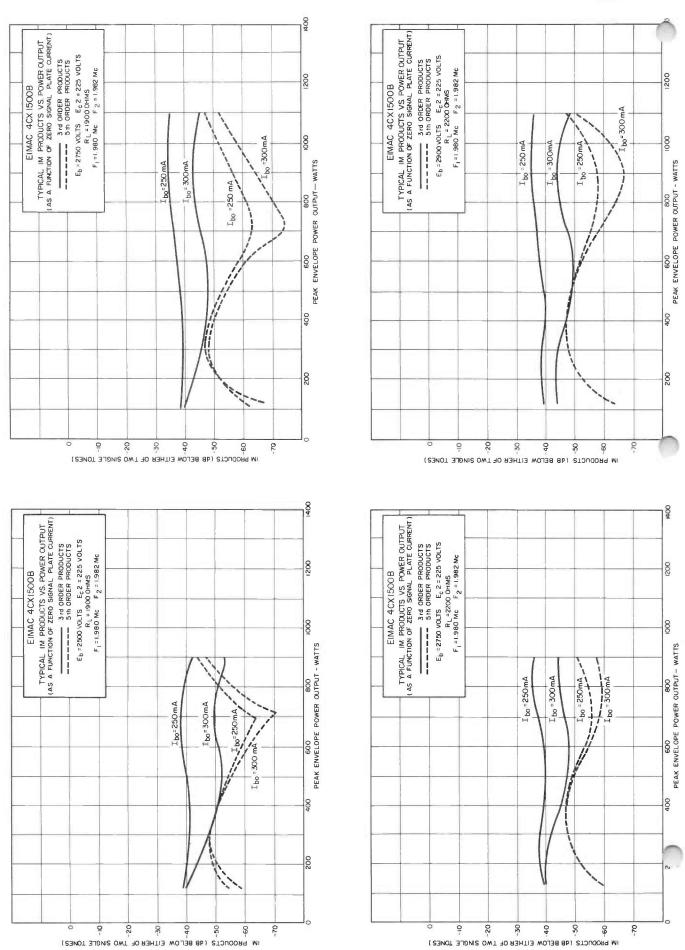

adequately stabilize the screen voltage. It should be observed that this bleeder power may be usefully employed to energize low-power stages of the transmitter.

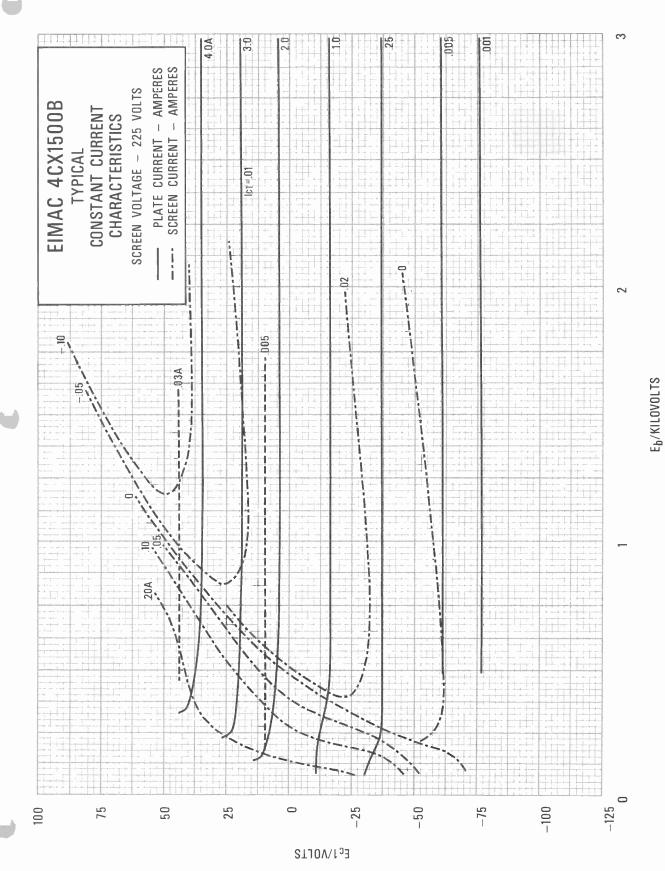
Plate Operation — The maximum rated plate dissipation power is 1500 watts. Except for brief periods during circuit adjustments, this maximum value should not be exceeded.

The top cap on the anode cooler may be used as a plate terminal at low frequencies or a circular clamp or spring-finger collet encircling the cylindrical outer surface of the anode cooler may be used at high frequencies.

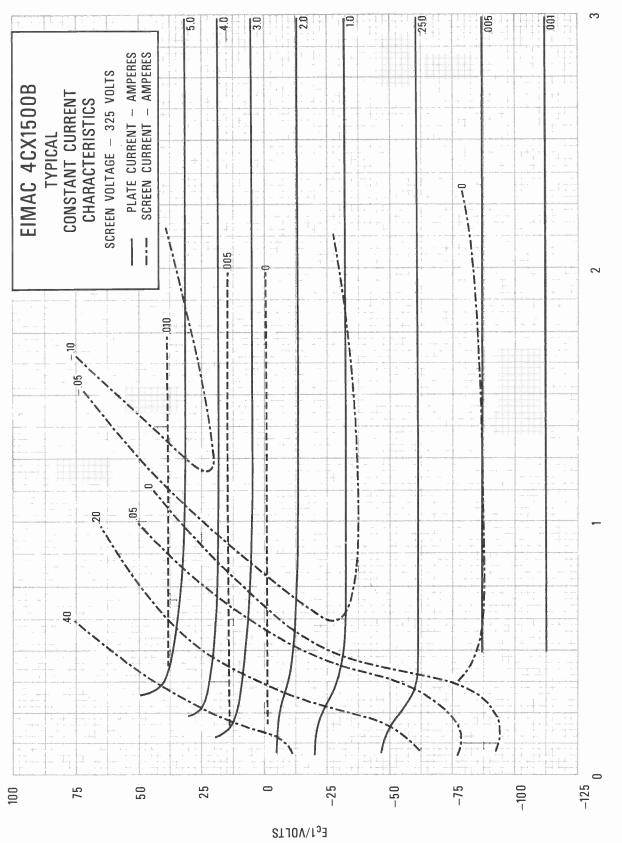
Points of electrical contact with the anode cooler should be kept clean and free of oxide to minimize radio-frequency losses. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.


Special Applications — If it is desired to operate this tube under conditions different from those given here, write to the Power Grid Product Manager, EIMAC Division of Varian Associates, San Carlos, California, for information and recommendations.




| DIMENSION DATA |      |            |            |  |  |  |  |  |  |  |  |  |
|----------------|------|------------|------------|--|--|--|--|--|--|--|--|--|
| REF.           | NOM. | MIN,       | MAX.       |  |  |  |  |  |  |  |  |  |
| Α              |      | 3,335      | 3,365      |  |  |  |  |  |  |  |  |  |
| 8              |      | ,807       | .817       |  |  |  |  |  |  |  |  |  |
| С              |      | 1.870      | 1.900      |  |  |  |  |  |  |  |  |  |
| D              |      | 2.250 DIA. | 2.300 DIA. |  |  |  |  |  |  |  |  |  |
| Ε              |      | 2.195      | 2.380      |  |  |  |  |  |  |  |  |  |
| F              |      | 3.410      | 3,550      |  |  |  |  |  |  |  |  |  |
| G              |      | 4.600      | 4.800      |  |  |  |  |  |  |  |  |  |
| Н              |      | .950       | 1.000      |  |  |  |  |  |  |  |  |  |
| J              |      | .675       | .725       |  |  |  |  |  |  |  |  |  |
| К              |      | .400       | .450       |  |  |  |  |  |  |  |  |  |
| L              |      | .140       | .170       |  |  |  |  |  |  |  |  |  |
| М              |      | .020       | .030       |  |  |  |  |  |  |  |  |  |
| N              |      | .700       | .800       |  |  |  |  |  |  |  |  |  |
| Р              |      | .314 DIA.  | .326 DIA.  |  |  |  |  |  |  |  |  |  |
| R              |      | 55°        | 65°        |  |  |  |  |  |  |  |  |  |
| S              |      | 115°       | 125°       |  |  |  |  |  |  |  |  |  |
| Т              |      | .470       | .530       |  |  |  |  |  |  |  |  |  |
| U              |      | .023_      | .043       |  |  |  |  |  |  |  |  |  |
| L V            |      | .057 DIA.  | .073 DIA.  |  |  |  |  |  |  |  |  |  |




IM PRODUCTS (48 BELOW EITHER OF TWO SINGLE TONES)











E<sub>b</sub>/KILOVOLTS



## E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

## 8169 4CX3000A

RADIAL-BEAM
POWER TETRODE

The EIMAC 8169/4CX3000A is a ceramic and metal power tetrode designed to be used as a Class-AB<sub>1</sub> linear amplifier in audio or radio-frequency applications. Its characteristics of low intermodulation distortion make it especially suitable for single sideband service.

This tube is unique in that a production test is included to insure minimum distortion products. The 8169/4CX3000A must produce a *minimum* of 5300 watts in Class  $AB_1$  service with IM distortion at least 32 db down, 3rd order.

The tube is also recommended for use as a Class-C radio-frequency power amplifier and plate-modulated radio-frequency power amplifier.

# Simor 8169 4CX3000A MAGESTULLA.

Special ring and breechblock terminal surfaces

#### **GENERAL CHARACTERISTICS**

#### **ELECTRICAL**

| Filament: Th                                                 | oriat | ted ' | Tung  | sten    | Min.    | Nom.    | Max.   |       |  |  |  |
|--------------------------------------------------------------|-------|-------|-------|---------|---------|---------|--------|-------|--|--|--|
| Voltage                                                      | -     | -     | -     | -       |         | 9.0     |        | volts |  |  |  |
| Current                                                      | -     | -     | -     | -       | 39.5    |         | 43.5   | amps  |  |  |  |
| Amplification                                                | Fac   | tor   | (Grio | d Scre  | en)     | 5.5     |        |       |  |  |  |
| Frequency For Maximum Ratings 150 MHz                        |       |       |       |         |         |         |        |       |  |  |  |
| Direct Interel                                               | ectro | ode   | Capa  | .citano | es, Gro | unded C | athode | :     |  |  |  |
| Input                                                        | -     | -     | -     | -       | 120     |         | 140    | pF    |  |  |  |
| Output                                                       | -     | -     | -     | -       | 10.5    |         | 14.5   | pF    |  |  |  |
| Feedback                                                     | k     | -     | -     | -       |         |         | 1.4    | pF    |  |  |  |
| Direct Interelectrode Capacitances, Grounded Grid and Screen |       |       |       |         |         |         |        |       |  |  |  |

|               |       |     |      |       |      |      |      |       |      | 1   |      |     |   |   |   |      |      |    |
|---------------|-------|-----|------|-------|------|------|------|-------|------|-----|------|-----|---|---|---|------|------|----|
| Direct Intere | lectr | ode | Capa | acita | nces | , Gr | ound | led ( | Grid | and | Scre | en: |   |   |   | Min. | Max. |    |
| Input         | -     | -   | -    | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - | 55   | 67   | pF |
| Output        |       | -   |      | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - | 10.5 | 14.5 | pF |
| Feedbac       | k     | -   | -    | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - |      | 0.2  | pF |

#### **MECHANICAL**

Base

|                            |        |     |   |   |   | - I |   |     |   |      |     |        |      |               |
|----------------------------|--------|-----|---|---|---|-----|---|-----|---|------|-----|--------|------|---------------|
| Maximum Seal Temperature   | -      | -   | - | - | - | 41  | - | Ξ., | - | 92   | -   | -      | -    | - 250°C       |
| Maximum Anode Core Temper  | rature | -   | - | - | - | -   | - | -   | - | -    | -   | -      | -    | - 250°C       |
| Recommended Socket         | -      | -   | - | ~ | - | -   | - | -   | - | -    | - ] | EIMA   | C SI | K-1400 series |
| Recommended Air Chimney    | _      | -   | _ | - | - | -   | - | -   | - | -    | -   | -      | EIM  | IAC SK-1406   |
| Operating Position         | -      | -   | - | - | - | -   | - | -   | - | Axis | ver | tical, | base | e up or down  |
| Maximum Dimensions:        |        |     |   |   |   |     |   |     |   |      |     |        |      |               |
| Height                     | -      | 1-  | - | - |   | -   | - | -   | - | -    | -   | -      |      | 7.9 inches    |
| Diameter                   | -      | - " | - | - | - | -   | - | -   | - | -    | -   | -      | -    | 4.6 inches    |
| Cooling                    | -      | -   | - | - | - | -   | - | н   | - | -    | _   | -      | -    | Forced air    |
| Net Weight                 | -      | _   | - | - |   | -   | - | -   | - | -    | -   | -      | _    | 5.5 pounds    |
| Shipping Weight (Approxima | ite)   | -   | - | - | - | -   | - | -   | - | -    | -   | -      | -    | 10 pounds     |



| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR  Class-C Telegraphy or FM Telephony (Key-down conditions)  MAXIMUM RATINGS  DC PLATE VOLTAGE 7000 VOLTS DC SCREEN VOLTAGE 1000 VOLTS DC PLATE CURRENT 2.0 AMPS PLATE DISSIPATION 3000 WATTS SCREEN DISSIPATION 175 WATTS GRID DISSIPATION 50 WATTS                                                                    | TYPICAL OPERATION  DC Plate Voltage 5000 7000 volts  DC Screen Voltage 500 500 volts  DC Grid Voltage 280 —300 volts  DC Plate Current 1.9 1.9 amps  DC Screen Current 250 230 mA  DC Grid Current 100 100 mA  Peak RF Grid Voltage 385 405 volts  Driving Power 39 41 watts  Plate Dissipation 7600 11,000 watts                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER  Class-C Telephony (Carrier Conditions unless noted)  MAXIMUM RATINGS  DC PLATE VOLTAGE 5000 VOLTS  DC SCREEN VOLTAGE 600 VOLTS  DC PLATE CURRENT 1.4 AMPS  PLATE DISSIPATION* 2000 WATTS  SCREEN DISSIPATION 175 WATTS  GRID DISSIPATION 50 WATTS  *Corresponds to 3000 watts at 100 percent sine-wave modulation. | TYPICAL OPERATION  DC Plate Voltage 5000 volts DC Screen Voltage 5000 volts Peak AF Screen Voltage (For 100% Modulation) 415 volts DC Grid Voltage 375 volts DC Plate Current 1.4 amps DC Screen Current 170 mA DC Grid Current 68 mA Peak RF Grid Voltage 455 volts Grid Driving Power 31 watts Plate Dissipation 1250 watts Plate Output Power 5750 watts                                                                                                                                                                                                                                         |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class-AB  MAXMUM RATINGS (Per Tube)  DC PLATE VOLTAGE 6000 VOLTS DC SCREEN VOLTAGE 1000 VOLTS DC PLATE CURRENT 2.0 AMPS PLATE DISSIPATION 3500 WATTS SCREEN DISSIPATION 175 WATTS GRID DISSIPATION 50 WATTS **Per tube **Approximate values  NOTE: In Class AB operation, maximum plate voltage and plate current mus        | TYPICAL OPERATION (Two Tubes), Class AB <sub>1</sub> DC Plate Voltage 5000 6000 volts DC Screen Voltage 850 850 volts DC Grid Voltage* 180 —200 volts Max-Signal Plate Current 3.6 3.1 amps Zero-Signal Screen Current** 1.0 0.7 amp Max-Signal Screen Current 170 120 mA Zero-Signal Screen Current 0 0 mA Peak AF Driving Voltage* 155 175 volts Driving Power 0 0 watts Load Resistance, Plate-to-Plate 3000 4160 ohms Max-Signal Plate Dissipation* 3300 3100 watts Max-Signal Plate Output Power - 11,400 12,400 watts that the applied simultaneously, as plate dissipation will be exceeded. |
| RADIO-FREQUENCY LINEAR AMPLIFIER Class-AB MAXIMUM RATINGS                                                                                                                                                                                                                                                                                                           | TYPICAL OPERATION Class AB <sub>1</sub> , Grid Driven  DC Plate Voltage 5000 volts  DC Screen Voltage 850 volts  DC Grid Voltage* 180 volts                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                    |        |          |         |      |                     | DC Screen Voltage 850 volts                  |
|------------------------------------|--------|----------|---------|------|---------------------|----------------------------------------------|
| MAXIMUM RATINGS                    |        |          |         |      |                     | DC Grid Voltage* 180 volts                   |
| DC PLATE VOLTAGE                   | _      | _        | _       | _    | 6000 VOLTS          | Zero-Signal DC Plate Current 0.5 amp         |
|                                    |        |          |         |      |                     | Single-Tone DC Plate Current 1.65 amps       |
| DC SCREEN VOLTAGE DC PLATE CURRENT | _      | -        | -       | -    | 1000 VOLTS          | Single-Tone DC Screen Current 25 mA          |
|                                    |        |          |         |      | 2.0 / 1/1/1 0       | Two-Tone DC Plate Current 1.10 amps          |
| PLATE DISSIPATION                  | -      | -        | -       | -    | 3500 WATTS          | Two-Tone DC Screen Current 20 mA             |
| SCREEN DISSIPATION                 | -      | -        | -       | -    | 175 WATTS           |                                              |
| GRID DISSIPATION                   | _      | _        | -       | _    | 50 WATTS            |                                              |
| 0.000                              |        |          |         |      | 30 WAT13            | Driving Power 0 watts                        |
| *Approximate values                |        |          |         |      |                     | Peak Envelope Useful Output Power 5300 watts |
| These values are obtained          | in ex  | xisting  | equin   | ment | A design test is    | Resonant Load Impedance 1700 ohms            |
| performed on a sampling basis      | , inst | uring t  | hat the | 4C)  | (3000A will perform | Intermodulation Distortion Products          |
| as indicated with respect to       | iM di  | istortic | n prod  | ucts | and power output.   | (without negative feedback) —32 db           |
|                                    |        |          |         |      |                     |                                              |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance is made for circuit losses. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed.



#### APPLICATION

#### **MECHANICAL**

Mounting — The 4CX3000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

Socket — The EIMAC SK-1400A and SK-1470A sockets have been designed especially for the 4CX3000A. The use of recommended air-flow rates through these sockets provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals through an Air Chimney, the SK-1406, and through the anode cooling fins.

Cooling — The maximum temperature rating for the external surfaces of the 4CX3000A is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-metal seals below 250°C. Air-flow requirements to maintain seal temperature at 200°C in 40°C ambient air are tabulated below (for operation below 30 megahertz).

| Γ |                                  | SEA               | LEVEL                                 | 10,000 FEET       |                                       |  |  |  |  |
|---|----------------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|--|--|--|--|
|   | Plate<br>Dissipation*<br>(Watts) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of water) | Air Flow<br>(CFM) | Pressure<br>Drop (inches<br>of water) |  |  |  |  |
| Γ | 1500                             | 36.5              | 0.3                                   | 53                | 0.4                                   |  |  |  |  |
| l | 2500                             | 60                | 0.8                                   | 88                | 1.2                                   |  |  |  |  |
|   | 3500                             | 86                | 1.6                                   | 125               | 2.3                                   |  |  |  |  |

\*Since the power dissipated by the filament represents about 450 watts and since grid-plus-screen dissipation can, under some conditions, represent another 225 watts, allowance has been made in preparing this tabulation for an additional 675 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

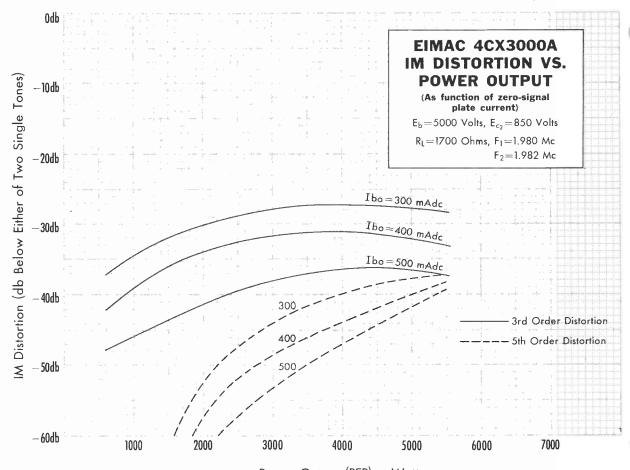
#### **ELECTRICAL**

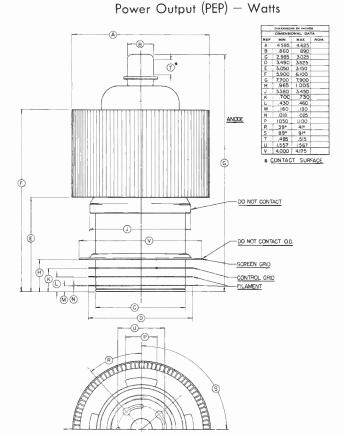
Filament Operation—The rated filament voltage for the 4CX3000A is 9.0 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

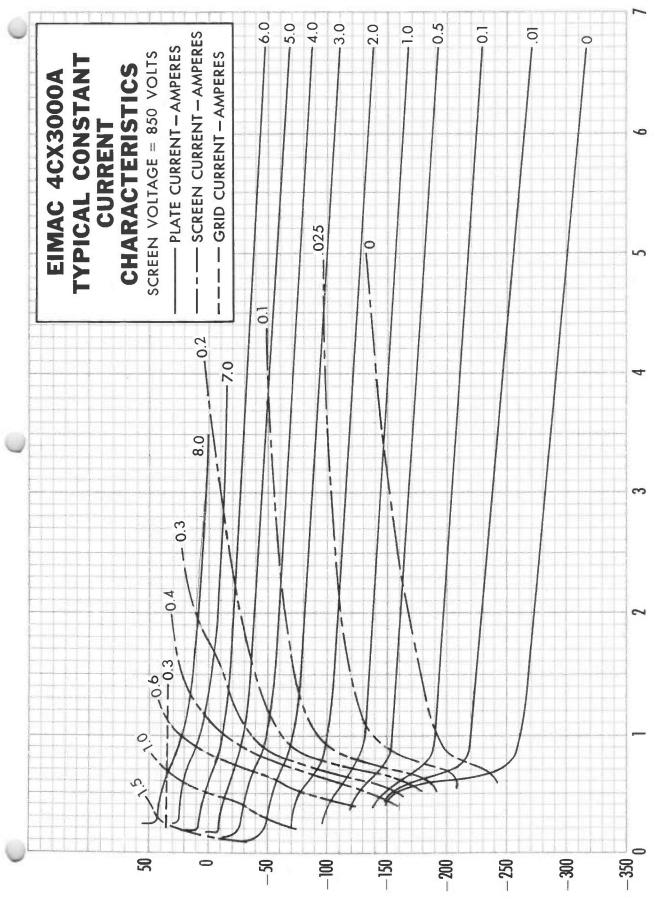
Intermodulation Distortion — The operating conditions including distortion data are the results of actual operation in a neutralized, griddriven amplifier. This test is performed on sample tubes from regular production runs. A plot of IM distortion versus power output under two-tone condition for a typical tube is shown on the next page.

Control Grid Operation — The rated dissipation of the grid is 50 watts. This is approximately the product of dc grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

Screen-Grid Operation — The power dissipated by the screen of the 4CX3000A must not exceed 175 watts.

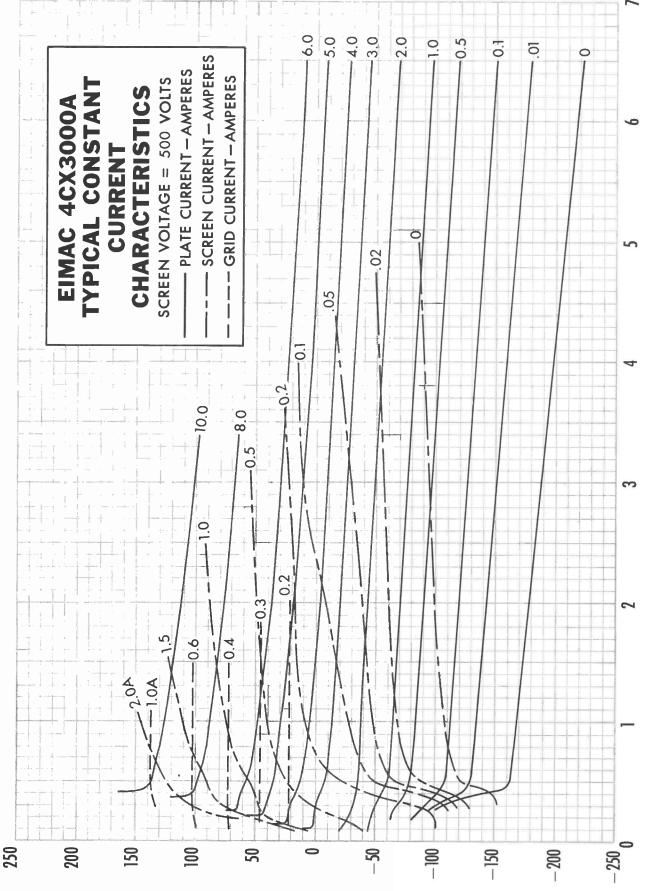

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.


Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 175 watts in the event of circuit failure.


Plate Dissipation—The plate-dissipation ratings for the 4CX3000A are 2000 watts for Class-C plate-modulated service and 3000 watts for Class-C telegraphy. In Class-AB operation this rating has been increased to 3500 watts to allow more input. In any Class-AB application maximum plate current and maximum plate voltage should not be applied simultaneously as the plate-dissipation rating would be exceeded.

Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to the Power Grid Tube Division or Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.










GRID VOLTAGE-VOLTS

PLATE VOLTAGE-KILOVOLTS



GRID VOLTAGE-VOLTS

PLATE VOLTAGE-KILOVOLTS



#### TECHNICAL DATA

#### 4CX3500A VHF RADIAL BEAM POWER TETRODE

111 pF12 pF0.5 pF

58.5 pF 10 pF 0.4 pF

220 MHz

Printed in U.S.A.

The EIMAC 4CX3500A is a compact ceramic/metal radial beam power tetrode intended for use in VHF power amplifier applications. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings to 220 MHz.

The 4CX3500A has a gain of over 18 dB in FM broadcast service, and is also recommended for rf linear power amplifier service and for VHF-TV linear amplifier service. The anode is rated for 3500 watts of dissipation with forced-air cooling.

#### GENERAL CHARACTERISTICS 1

394350 (Effective 16 Jan 84 - supersedes 30 Mar 82)

#### ELECTRICAL

| Filament: Thoriated Tungsten Mesh                                  |  |
|--------------------------------------------------------------------|--|
| Voltage                                                            |  |
| Current, at 5.0 voits                                              |  |
| Amplification Factor, average                                      |  |
| Grid to Screen • • • • • • • • • • • • • • • • • •                 |  |
| Direct Interelectrode Capacitances (cathode grounded) <sup>2</sup> |  |
| Cin                                                                |  |
| Cout                                                               |  |
| Cgp                                                                |  |
| Direct Interelectrode Capacitances (grids grounded) <sup>2</sup>   |  |
|                                                                    |  |

- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

VA4520

| Maximum Overall Dimensions:    |                                         |                        |
|--------------------------------|-----------------------------------------|------------------------|
| Length                         |                                         | 7.25 In; 18.42 cm      |
| Diameter                       | • • • • • • • • • • • • • • • • • • • • | 4.94 in; 12.55 cm      |
| Net Weight (approximate)       |                                         | 5•5 Lbs; 2•5 kg        |
| Operating Position • • • • •   | • • • • • • • • • • • • • • • Axis Ver  | tical, Base Up or Down |
| Cooling                        |                                         | Forced Air             |
| Maximum Operating Temperature, | Ceramic/Metal Seals & Anode Core        | 250 Deg.C              |
| Base                           |                                         | Special, Coaxial       |
| Recommended Air-System Socket  |                                         | HF: EIMAC SK-340       |
|                                |                                         | VHF: EIMAC SK-350      |
| Recommended Air-System Chimney | • • • • • • • • • • • • • • • • • • • • | HF: EIMAC SK-306       |
|                                |                                         | VHF: EIMAC SK-356      |
|                                |                                         |                        |



| RADIO FREQUENCY POWER  | AMPLIFIE | R       | TYPICAL OPERATION (frequencies to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 MHz) |      |          |
|------------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------|
| Class C Telegraphy or  | FM       |         | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0     | 5.0  | kVdc     |
| (Key-down Conditions)  |          |         | Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500     | 500  |          |
|                        |          |         | Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -200    | -250 | Vdc      |
| ABSOLUTE MAXIMUM COND  | ITIONS   |         | Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.32    | 0.80 | Adc      |
|                        |          |         | Screen Current *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75      | 43   | mAdc     |
| DC PLATE VOLTAGE       | 6000     | VOLTS   | Grid Current *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59      | 21   | mAdc     |
| DC SCREEN VOLTAGE      | 1500     | VOLTS   | Peak rf Grid Voltage * • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 335     | 290  | ٧        |
| DC GRID VOLTAGE        | -500     | VOLTS   | Calculated Driving Power • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25      | 7    | W        |
| DC PLATE CURRENT       | 2.0      | AMPERES | Plate Dissipation *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1320    | 640  | W        |
| PLATE DISSIPATION      | 3500     | WATTS   | Plate Output Power * • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5280    | 3360 | W        |
| SCREEN DISSIPATION     | 165      | WATTS   | Load Impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1700    | 2700 | Ohms     |
| GRID DISSIPATION       | 50       | WATTS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |          |
|                        |          |         | * Approximate value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      |          |
| RADIO FREQUENCY POWER  | AMPLIFIE | :R      | MEASURED DATA AT 100.5 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |          |
| FM BROADCAST SERVICE   |          |         | Dista Valtana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4000    | 4300 | Vdc      |
| ADDOLUTE MAYIMBA DATU  | 100      |         | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5     | 1.9  | Adc      |
| ABSOLUTE MAXIMUM RATII | 165      |         | Screen Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500     | 700  | Vdc      |
| DO DI ATE MOLTAGE      | 6000     | VOLTS   | Screen Current *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140     | 123  | mAdc     |
| DC PLATE VOLTAGE       | 1500     | VOLTS   | Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -300    | -400 | Vdc      |
| DC SCREEN VOLTAGE      | -500     | VOLTS   | Grid Current * • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84      | 63   | mAdc     |
| DC GRID VOLTAGE        |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3838    | 5531 | W        |
| DC PLATE CURRENT       | 2.0      | AMPERES | Useful Power Out * #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 68   | <b>%</b> |
| PLATE DISSIPATION      | 3500     | WATTS   | Efficiency *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64      |      | •        |
| SCREEN DISSIPATION     | 165      | WATTS   | Driving Power *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56      | 66   | W        |
| GRID DISSIPATION       | 50       | WATTS   | Power Gain *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18•4    | 19•2 | dΒ       |
|                        |          |         | * Approximate; will vary from tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to tube |      |          |
|                        |          |         | the state of the s |         |      |          |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjusted to produce the required bias voltage when the correct rf grid voltage is applied.

# Delivered to the load



#### APPLICATION

#### MECHAN I CAL

MOUNTING - The 4CX3500A must be mounted with its axis vertical, base up or down at the convenience of the circuit designer.

AIR-SYSTEM SOCKET & CHIMNEY - The EIMAC sockets type SK-340 and SK-350 are designed especially for the concentric base terminals of the 4CX3500A. The SK-340 is intended for use at HF, while the SK-350 is recommended for VHF applications. The SK-306 chimney should be used with the SK340 socket for the lower frequencies, while the SK-356 chimney is intended for use with the SK-350 socket. Use of the recommended air flow rates through either socket will provide effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through the chimney and into the anode cooling fins.

COOLING - At full rated anode dissipation, at sea level and with cooling air at 50 Deg.C maximum, for frequencies below 110 MHz, and with the tube mounted in either an SK-340 or SK-350 socket with a chimney in place, a minimum of 241 CFM of air must be passed through the socket and the tube anode cooling fins. Air flow should be in the base-to-anode direction. The pressure drop across the tube/ socket/chimney combination with this air flow rate will be approximately 1.87 inches of water.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to that shown, plus any drop encounted in ducts and filters.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and may be removed simultaneously with filament voltage. An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even a partial failure of the tube cooling air.

It is considered good engineering practice to supply more than the minimum required cooling air, to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some time.

#### ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

FILAMENT OPERATION - At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The filament voltage should then be increased a few tenths of a volt above the value where performance degradation was noted. The operating point should be rechecked after 24 hours. Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best life.

GRID OPERATION - The maximum control grid dissipation is 50 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage.



SCREEN OPERATION - The maximum screen grid dissipation is 165 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

SCREEN CURRENT - The screen current may reverse under certain conditions and produce negative indictions on the screen current meter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from the screen to cathode must be provided by a bleeder resistor or a shunt regulator connected between screen and cathode and arranged to pass approximately 10% of the average screen current per connected tube. A series regulated power supply can be used only when an adequate bleeder resistor is provided.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and air-flow interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to absorb power supply stored energy if an internal arc should occur. EIMAC's Application Bulletin #17 titled FAULT PROTECTION contains considerable detail, and is available on request.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors

whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

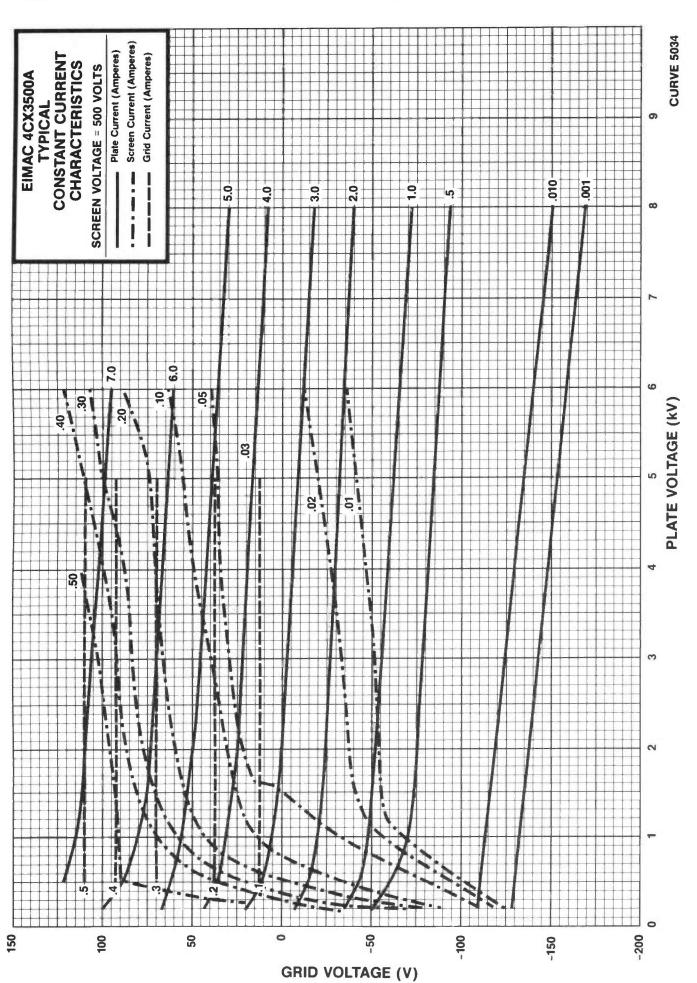
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown here are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal appliction. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn:Applications Engineering; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

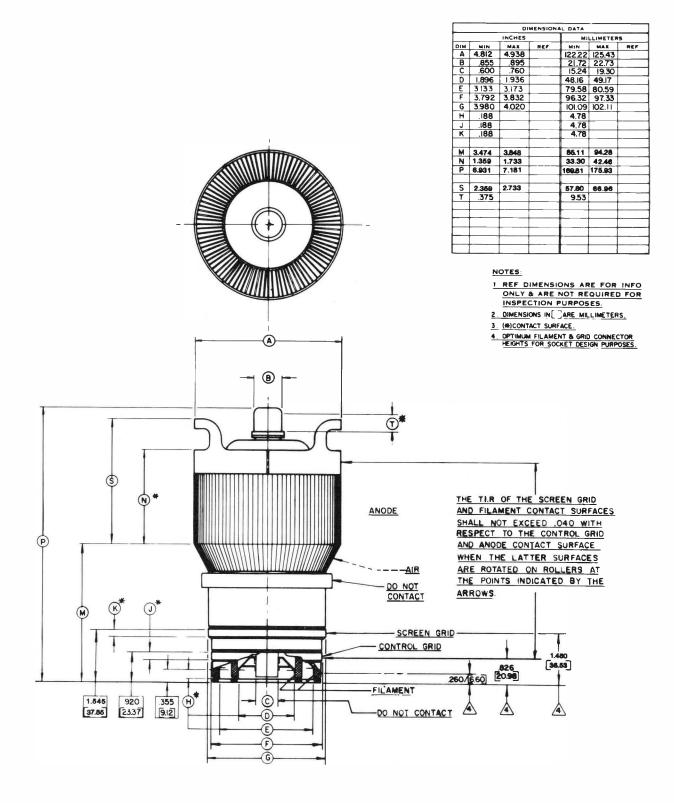


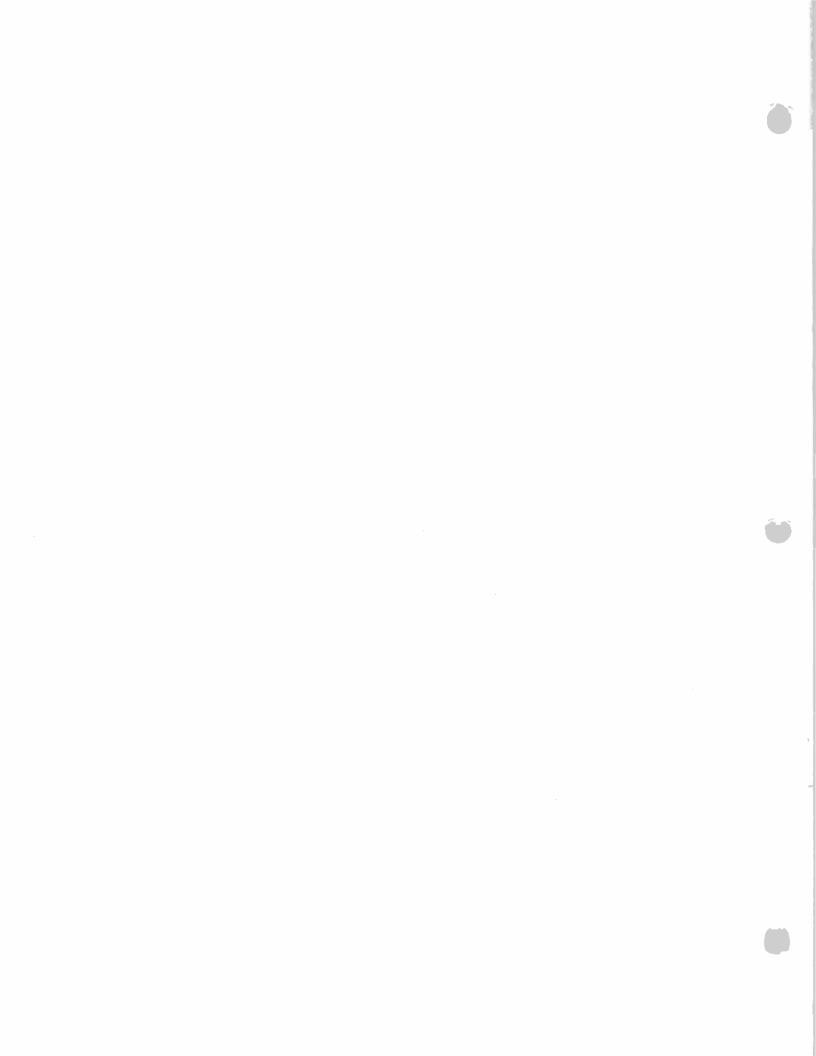
#### OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.


The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Always remember that HIGH VOLTAGE CAN KILL.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies
- and can cause serious bodily and eye injuries.


  CARDIAC PACEMAKERS MAY BE EFFECTED.
- c. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is removed.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Tube Division, 301 Industrial Way, San Carlos CA 94070.













#### TECHNICAL DATA

## 8170 4CX5000A

RADIAL-BEAM
POWER TETRODE

The EIMAC 8170/4CX5000A is a compact high-power ceramic and metal tetrode cooled by forced air. It is useful as an oscillator, amplifier, or modulator at frequencies up to 110 megahertz and is particularly suited for use as a linear single-sideband amplified, Class- $AB_1$  audio amplifier, or as a screen-modulated radio-frequency amplifier.

A pair of these tubes will deliver 17.5 kilowatts of audio-frequency or radio-frequency power with zero driving power. The rated plate dissipation is five kilowatts for most classes of services and six kilowatts for Class-AB operation.

#### GENERAL CHARACTERISTICS

| GENERAL CHARACIERISTICS |      |      |       |      |       |     |      |                     |               |            |         |
|-------------------------|------|------|-------|------|-------|-----|------|---------------------|---------------|------------|---------|
| <b>ELECTRICAL</b>       |      |      |       |      |       |     |      |                     |               |            |         |
| Filament: The           | oria | ted  | Tungs | sten |       |     |      | $\underline{Min}$ . | Nom.          | Max.       |         |
| Voltage                 | -    | -    | -     | •    | -     | -   | •    |                     | 7.5           |            | volts   |
| Current                 | -    | -    | -     | -    | -     | -   | -    | 73                  |               | 78         | amperes |
| Amplification           | Fac  | ctor | (Grid | Scr  | een)  | -   | -    |                     | 4.5           |            |         |
| Direct Interele         | ectr | ode  | Capac | itar | ices, | Gro | unde | d Catho             | od <b>e</b> : |            |         |
| Input                   | -    | -    | -     | -    | -     | -   | -    | 108                 |               | 122        | pF      |
| Output                  | -    | -    | -     | -    | -     | -   | -    | 18                  |               | <b>2</b> 3 | pF      |
| Feedback                | ζ.   | -    | -     | -    | -     | -   | -    |                     |               | 1.0        | pF      |
| Direct Interel          | ectr | ode  | Capa  | cita | nces, | Gr  | ound | ed Grid             | and Scr       | een:       |         |

| Direct Interel | ectr | ode | Capa | acita | nces | , Gr | ound | ded ( | Grid | and | Scre | en: |   |   |   | $\underline{Min.}$ | $\underline{Max}$ . |    |
|----------------|------|-----|------|-------|------|------|------|-------|------|-----|------|-----|---|---|---|--------------------|---------------------|----|
| Input          | -    | -   | -    | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - | 48                 | 58                  | pF |
| Output         |      | -   | -    | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - | 18                 | 23                  | pF |
| Feedbacl       | k    | -   | -    | -     | -    | -    | -    | -     | -    | -   | -    | -   | - | - | - |                    | 0.16                | pF |

#### MECHANICAL

| Bas | e      | -    | -     | -     | -    | -    | -    | - | - | - | - | - | - | - | - | -    | -     | 5     | Speci | ial c      | oncentric |
|-----|--------|------|-------|-------|------|------|------|---|---|---|---|---|---|---|---|------|-------|-------|-------|------------|-----------|
| Max | ximur  | m Se | al T  | emp   | erat | ure  | -    | - | - | - | - | - | - | - | - | -    | -     | -     | -     | -          | 250°C     |
| Max | ximuı  | m Ar | node  | -Core | e Te | mpei | atur | e | - | - | - | - | - | - | - | _    | -     | -     | -     | -          | 250°C     |
| Rec | omm    | ende | ed So | ocket | -    | -    | -    | - | - | - | • | - | - | - | - | -    | -     | -     | EIN   | <b>IAC</b> | SK-300A   |
| Rec | omm    | ende | ed Cl | himn  | ey   | -    | -    | - | - | _ | - | - | - | - | - | -    | -     | -     | El    | MA         | C SK-306  |
| Оре | eratin | g Po | sitio | n     | -    | -    | -    | - | - | - | - | - | - | - | - | Axis | s ver | tical | , bas | se uj      | or down   |
| Max | ximuı  | m Di | men   | sion  | S:   |      |      |   |   |   |   |   |   |   |   |      |       |       |       |            |           |
|     | Hei    | ght  | _     | -     | -    | -    | -    | - | - | - | - | - | - | - | - | -    | -     | -     | -     | 9.1        | 3 inches  |
|     | Dia    | mete | r     | -     | -    | -    | -    | - | - | - | - | - | - | - | - | -    | -     | -     | -     | 4.9        | 94 inches |
|     |        |      |       |       |      |      |      |   |   |   |   |   |   |   |   |      |       |       |       |            |           |

| j     | Heig | ht   | -   | -   | -    | -    | -   | - | - | - | - | - | - | - | - | - | - | - | - | 9.13 inches |
|-------|------|------|-----|-----|------|------|-----|---|---|---|---|---|---|---|---|---|---|---|---|-------------|
| ]     | Dian | nete | r   | -   | -    | -    | -   | - | - | - | - | - | - | - | • | - | - | - | - | 4.94 inches |
| Cooli | ng   | -    | -   | -   | -    | -    | -   | - | - | - | - | - | - | - | - | - | - | - | - | Forced air  |
| Net V | Weig | ht   | -   | -   | -    | _    | -   | - | - | - | - | - | - | - | - | - | - | - | - | 9.5 pounds  |
| Shipp | oing | Wei  | ght | (Ap | prox | xima | te) | - | - | - | - | - | - | - | - | - | - | - | - | 22 pounds   |

### RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR (Up to 30 megahertz)

Class-C Telegraphy (Key-down conditions)

| MAXI | MUM. | RATINGS |
|------|------|---------|
|      |      |         |

| DC PLATE VOLTAGE   | - | - | - | - | _ | 7500 VOLTS |
|--------------------|---|---|---|---|---|------------|
| DC SCREEN VOLTAGE  | - | - | - | - | - | 1500 VOLTS |
| DC PLATE CURRENT   | - | - | - | - | - | 3 AMPS     |
| PLATE DISSIPATION  | - | - | - | - | - | 5000 WATTS |
| SCREEN DISSIPATION | - | - | - | - | - | 250 WATTS  |
| GRID DISSIPATION - | _ | _ | _ | _ | _ | 75 WATTS   |

| TYPICAL OPERATIO<br>(Frequencies below |    | meg | aher | tz) |   |   |              |
|----------------------------------------|----|-----|------|-----|---|---|--------------|
| DC Plate Voltage                       | -  | -   | -    | -   | - | - | 7500 volts   |
| DC Screen Voltage                      | -  | -   | -    | -   | - | - | 500 volts    |
| DC Grid Voltage                        | -  | -   | -    | -   | - | - | 350 volts    |
| DC Plate Current                       | -  | -   | -    | -   | - | - | 2.8 amps     |
| DC Screen Current                      | -  | -   | -    | -   | - | - | 0.5 amp      |
| DC Grid Current                        | -  | -   | -    | -   | - | - | 0.25 amp     |
| Peak RF Grid Voltag                    | ge | -   | -    | -   | - | - | 590 volts    |
| Driving Power -                        |    | -   | -    | -   | - | - | 150 watts    |
| Plate Dissipation                      | -  | -   | -    | -   | - | - | 5000 watts   |
| Plate Output Powe                      | r  | -   | -    | -   | - | - | 16,000 watts |

(Revised 4-15-69) © 1967, 1969 by Varian

Printed in U.S.A.



# RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

(From 30 to 220 MHz)

Class-C Telegraphy or FM Telephony

| Class-C Telegraphy or FM Telephony                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAXIMUM RATINGS  DC PLATE VOLTAGE:  30 to 60 MHz 6500 VOLTS 60 to 110 MHz 6500 VOLTS 110 to 220 MHz 5800 VOLTS DC SCREEN VOLTAGE - 1500 VOLTS DC PLATE CURRENT: 30 to 60 MHz 2.8 AMPS 60 to 220 MHz 2.6 AMPS PLATE DISSIPATION - 5000 WATTS SCREEN DISSIPATION - 250 WATTS GRID DISSIPATION - 75 WATTS  PLATE-MODULATED RADIO- FREQUENCY POWER AMPLIFIER Class-C Telephony (Carrier conditions except where noted) MAXIMUM RATINGS DC PLATE VOLTAGE - 5500 VOLTS | TYPICAL OPERATION  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 megahertz) 5000 volts 500 volts modulation) - 450 volts 400 volts                                                                                                                                       |
| DC SCREEN VOLTAGE - 1000 VOLTS DC PLATE CURRENT - 2.5 AMPS PLATE DISSIPATION* - 3500 WATTS SCREEN DISSIPATION - 250 WATTS GRID DISSIPATION - 75 WATTS *Corresponds to 5000 watts at 100-percent sine-wave modulation.                                                                                                                                                                                                                                            | DC Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.26 ampere<br>0.05 ampere<br>520 volts<br>25 watts<br>1100 watts<br>5.8 kilowatts                                                                                                                         |
| SCREEN-MODULATED RADIO- FREQUENCY POWER AMPLIFIER  Class-C Telephony (Carrier conditions except where noted)  MAXIMUM RATINGS (Per Tube)  DC PLATE VOLTAGE - 7500 VOLTS DC SCREEN VOLTAGE - 750 VOLTS DC PLATE CURRENT - 3.0 AMPS PLATE DISSIPATION - 5000 WATTS SCREEN DISSIPATION - 250 WATTS GRID DISSIPATION - 75 WATTS NOTE: Two tubes can be employed under conditions listed in the second column to                                                      | TYPICAL OPERATION (Frequencies below DC Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                 | - 7500 7500 volts - 350 350 volts - 300 350 volts 300 300 volts 0.9 1.14 amperes 0.015 0.03 ampere - 350 375 volts - 7 11 watts - 2000 1600 ohms - 4000 5000 watts of plus or minus 20 milliamperes may be |
| AUDIO-FREQUENCY AMPLIFIER OR MODULATOR  Class-AB1  MAXIMUM RATINGS (Per Tube)  DC PLATE VOLTAGE - 7500 VOLTS  DC SCREEN VOLTAGE - 1500 VOLTS  DC PLATE CURRENT - 4.0 AMPS  PLATE DISSIPATION - 6000 WATTS  SCREEN DISSIPATION - 250 WATTS  GRID DISSIPATION - 75 WATTS                                                                                                                                                                                           | TYPICAL OPERATION, two tubes  DC Plate Voltage 4000  DC Screen Voltage 1250  DC Grid Voltage 270  Max-Signal Plate Current - 5.10  Zero-Signal Plate Current - 1.25  Max-Signal Screen Current - 0.35  Zero-Signal Screen Current - 0.35  Zero-Signal Screen Current - 0.35  Zero-Signal Screen Current - 1.25  Driving Power 0  Load Resistance, Plate-to-Plate  Max-Signal Plate Dissipation* 4200  Max-Signal Plate Output Power 11,500  *Per Tube | 1250 1250 1250 volts -280 -310 -325 volts 4.40 4.25 3.65 amperes 1.00 0.83 0.70 amperes 0.33 0.30 0.24 ampere 0 0 0 amperes 240 270 235 volts 0 0 0 watts 2370 2940 4100 ohms 4200 4200 watts              |
| RADIO-FREQUENCY LINEAR  AMPLIFIER  Class-AB1  MAXIMUM RATINGS  DC PLATE VOLTAGE - 7500 VOLTS  DC SCREEN VOLTAGE - 1500 VOLTS  DC PLATE CURRENT - 4.0 AMPS  PLATE DISSIPATION - 6000 WATTS  SCREEN DISSIPATION - 250 WATTS  GRID DISSIPATION - 75 WATTS                                                                                                                                                                                                           | TYPICAL OPERATION, Peak-Envelope or m (Frequencies below 30 megahertz)  DC Plate Voltage DC Screen Voltage DC Grid Voltage* Max-Signal Plate Current Zero-Signal Plate Current Peak RF Grid Voltage Peak RF Grid Voltage Plate Dissipation Plate Output Power ** *Adjust grid voltage to obtain specified Zero-Signal plate **PEP output or rf output power at crest of modulation er                                                                 | 7500 volts<br>1250 volts<br>300 volts<br>0.50 ampere<br>0.20 ampere<br>300 volts<br>4200 watts                                                                                                             |

NOTE: In most cases, "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made. Exceptions are distinguished by a listing of "Useful" output power as opposed to "Plate" output power. Values appearing in these groups have been obtained from existing equipment(s) and the output power is that measured at the load.



## **APPLICATION**

### **MECHANICAL**

Mounting — The 4CX5000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

Socket—The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX5000A. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-306, into the anode cooling fins. The SK-300 socket may be used instead of the SK-300A, but its use will result in a slightly less efficient cooling system at high dissipation levels.

Cooling — The maximum temperature rating for the external surfaces of the 4CX5000A is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-metal seals below 250°C. Sea level air-flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below (for operation below 30 megahertz).

|                                  | SK-300A Socket    |                                       | SK-30             | 0 Socket                              |
|----------------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|
| Plate<br>Dissipation*<br>(Watts) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of water) | Air Flow<br>(CFM) | Pressure<br>Drop (inches<br>of water) |
| 2000                             | 75                | 0.4                                   | 75                | 0.4                                   |
| 3000                             | 105               | 0.7                                   | 100               | 0.7                                   |
| 4000                             | 145               | 1.1                                   | 135               | 1.2                                   |
| 5000                             | 190               | 1.5                                   | 165               | 1.8                                   |
| 6000                             | 230               | 2.0                                   | 200               | 2.5                                   |

\*Since the power dissipated by the filament represents about 560 watts and since grid-plus-screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1000 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

#### **ELECTRICAL**

Filament Operation—The rated filament voltage for the 4CX5000A is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

Electrode Dissipation Ratings—The maximum dissipation ratings for the 4CX5000A must be respected to avoid damage to the tube. An exception is the plate dissipation, which may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.

Control Grid Operation — The 4CX5000A control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in "Typical Operation" sections of the data sheet whenever possible.

Screen-Grid Operation — The power dissipated by the screen of the 4CX5000A must not exceed 250 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

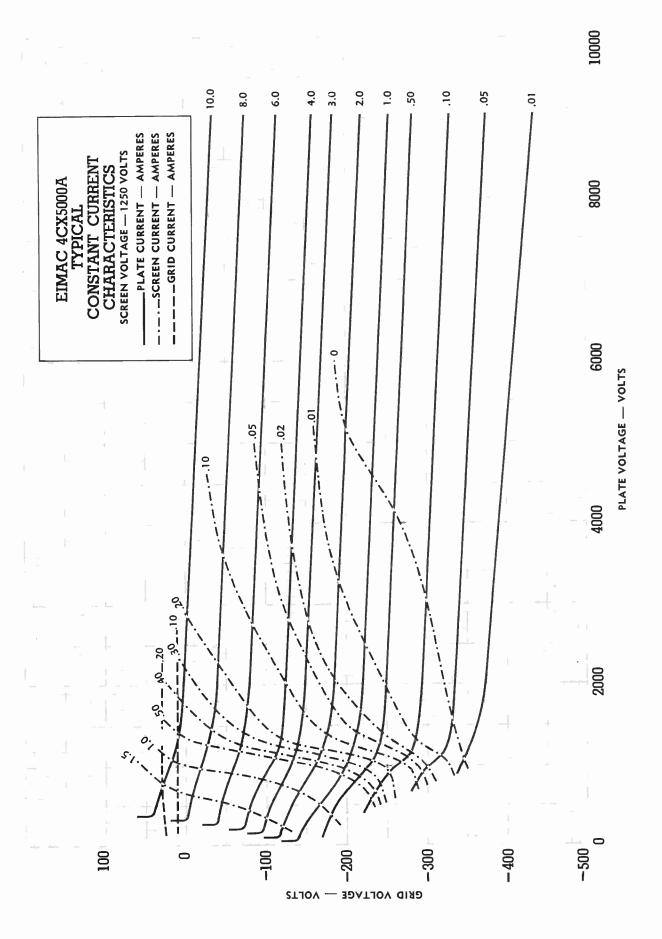
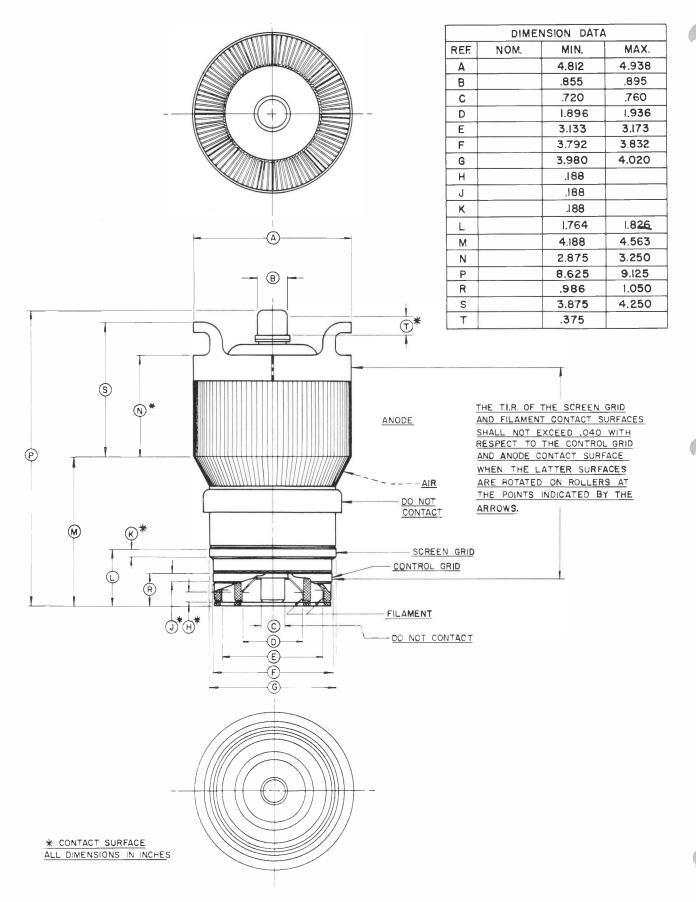
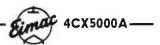
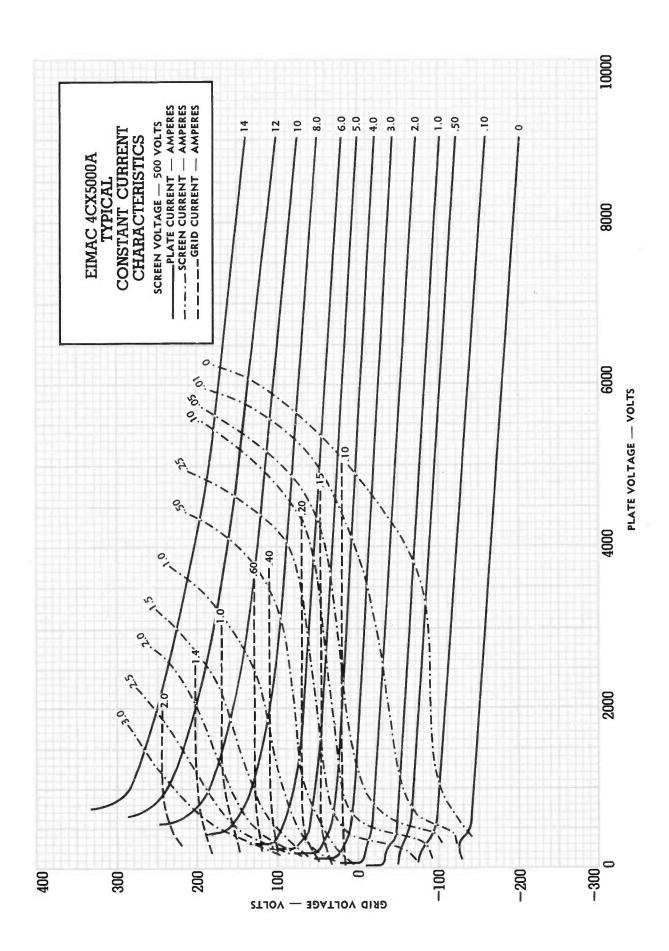

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.

Plate Dissipation—The plate-dissipation rating for the 4CX5000A is 5000 watts for most applications but for audio and SSB amplifier applications, the maximum allowable dissipation is 6000 watts.


When the 4CX5000A is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 3500-watt maximum plate dissipation rating will be exceeded.


Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.
















## TECHNICAL DATA

## 8909 4CX5000J

RADIAL-BEAM POWER TETRODE

4CX5000.

The EIMAC 8909/4CX5000J is a compact, high-power, ceramic/metal, forced-air cooled tetrode with a rated maximum plate dissipation of 6000 watts. It incorporates rugged internal construction features, including a mesh filament/cathode.

The 8909/4CX5000J is specifically designed for exceptionally low intermodulation distortion in radio-frequency linear amplifier service.

## GENERAL CHARACTERISTICS1

#### ELECTRICAL

| Filament: Thoriated Tungsten                                       |   |         |
|--------------------------------------------------------------------|---|---------|
| Voltage 7.5 ± 0.37                                                 | V |         |
| Current, at 7.5 volts                                              | A |         |
| Amplification Factor (Average):                                    |   |         |
| Grid to Screen 4.5                                                 |   |         |
| Direct Interelectrode Capacitance (grounded filament) <sup>2</sup> |   |         |
| Cin                                                                |   | 120 pF  |
| Cout                                                               |   | 20.5 pF |
| Cgp                                                                |   | 0.7 pF  |
| Direct Interelectrode Capacitance (grounded grid) <sup>2</sup>     |   |         |
| Cin                                                                |   | 56 pF   |
| Cout                                                               |   | 21.5 pF |
| Cpk                                                                |   | 0.10 pF |
| Frequency of Maximum Rating:                                       |   |         |
| CW                                                                 |   | 100 MHz |

- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

Maximum Overall Dimensions:

| Length             |             | 9.125 in; 23 | 31.77 mm |
|--------------------|-------------|--------------|----------|
| Diameter           |             | 4.938 in; 12 | 25.43 mm |
| Net Weight         |             | 9.5 lb;      | 4.31 kg  |
| Operating Position | Axis vertic | cal, base up | or down  |

(Effective 10-1-71) © by Varian

| Maximum Operating Temperature:  Ceramic/Metal Seals or Anode Core  Cooling  Base  Recommended Air System Socket  Recommended (Air) Chimney | Forced Air                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB 1                                                                                    | TYPICAL OPERATION (Frequencies to 100 MHz) Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation Crest Conditions |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                | Plate Voltage                                                                                                                |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in screen current. The screen current which results when the desired plate current is obtained is incidental and varies from tube to tube. This current variation causes no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                                       | Min. | _Max    |
|-------------------------------------------------------------------------|------|---------|
| Filament: Current at 7.5 volts                                          | 98   | 108 A   |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection) |      |         |
| Cin                                                                     | 113  | 127 pF  |
| Cout                                                                    |      |         |
| Cgp                                                                     |      | 1.0 pF  |
| Interelectrode Capacitances (grounded grid connection)                  |      |         |
| Cin                                                                     |      |         |
| Cout                                                                    | 19   | 24 pF   |
| Cpk                                                                     |      | 0.16 pF |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## **APPLICATION**

#### **MECHANICAL**

MOUNTING - The 4CX5000J must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX5000J. The use of recommended air-flow rates through this socket

provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-306, into the anode cooling fins. The SK-300 socket may be used instead of the SK-300A, but its use will result in a slightly less efficient cooling system at high dissipation levels.

COOLING - The maximum temperature rating for the external surfaces of the 4CX5000J is  $250^{\circ}$ C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below  $250^{\circ}$ C. Sea level airflow requirements to maintain seal temperatures at  $200^{\circ}$ C in  $50^{\circ}$ C ambient air are tabulated below (for operation below 30 megacycles).

|                                      | SK-300A Socket                 |                                      | SK-300 Socket                  |                                      |  |
|--------------------------------------|--------------------------------|--------------------------------------|--------------------------------|--------------------------------------|--|
| Plate<br>Dissipation<br>(Watts)      | Air Flow<br>(CFM)              | Pressure<br>Drop(Inches<br>of water) | Air Flow<br>(CFM)              | Pressure<br>Drop(Inches<br>of water) |  |
| 2000<br>3000<br>4000<br>5000<br>6000 | 75<br>105<br>145<br>190<br>230 | 0.4<br>0.7<br>1.1<br>1.5<br>2.0      | 75<br>100<br>135<br>165<br>200 | 0.4<br>0.7<br>1.2<br>1.8<br>2.5      |  |

Since the power dissipated by the filament represents about 770 watts and since grid-plus screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1200 watts dissipation.

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

IMPACT AND VIBRATION - The 4CX5000J is designed to operate under shock and vibration conditions which might disable a less rugged tube. Production tubes are subjected to testing to insure ability to withstand 15 G impact at 11 milliseconds duration and 2 G vibratory acceleration over the range of 5 to 55 Hz.

## **ELECTRICAL**

FILAMENT VOLTAGE - The rated filament voltage for the 4CX5000J is 7.5 volts. Filament voltage, as measured at the socket, should be

maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

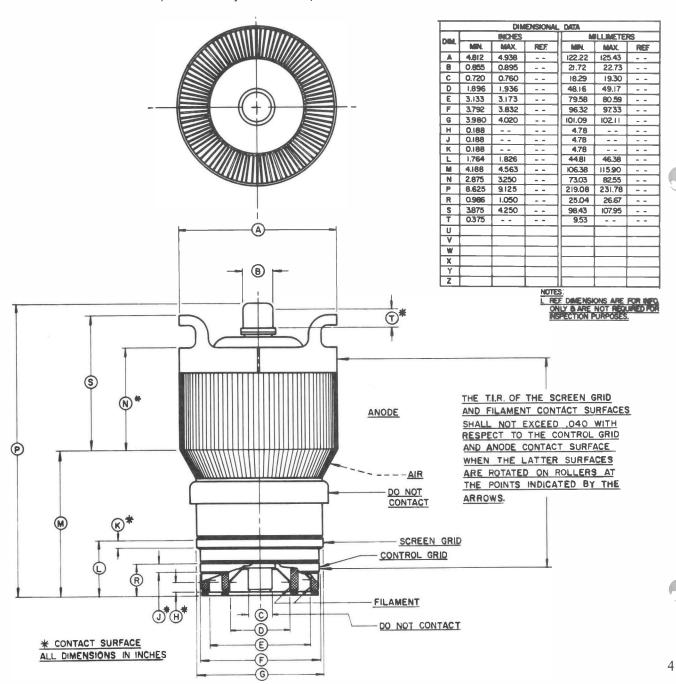
GRID DISSIPATION - The 4CX5000J control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is approximately the product of dc grid current and peak positive grid voltage. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible.

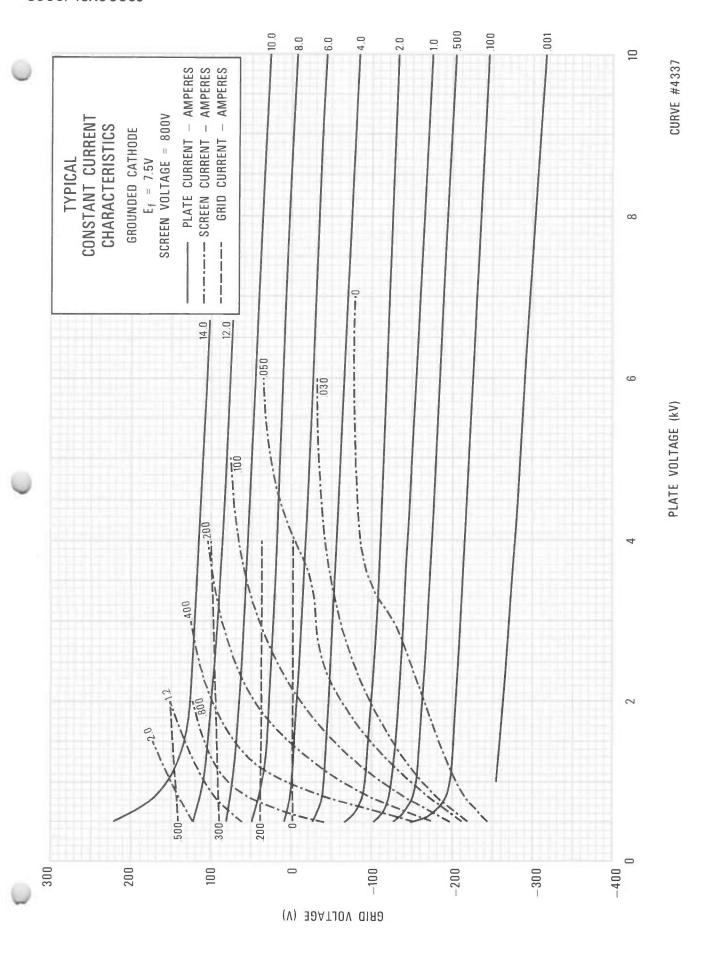
SCREEN DISSIPATION - The power dissipated by the screen of the 4CX5000J must not exceed 250 watts.

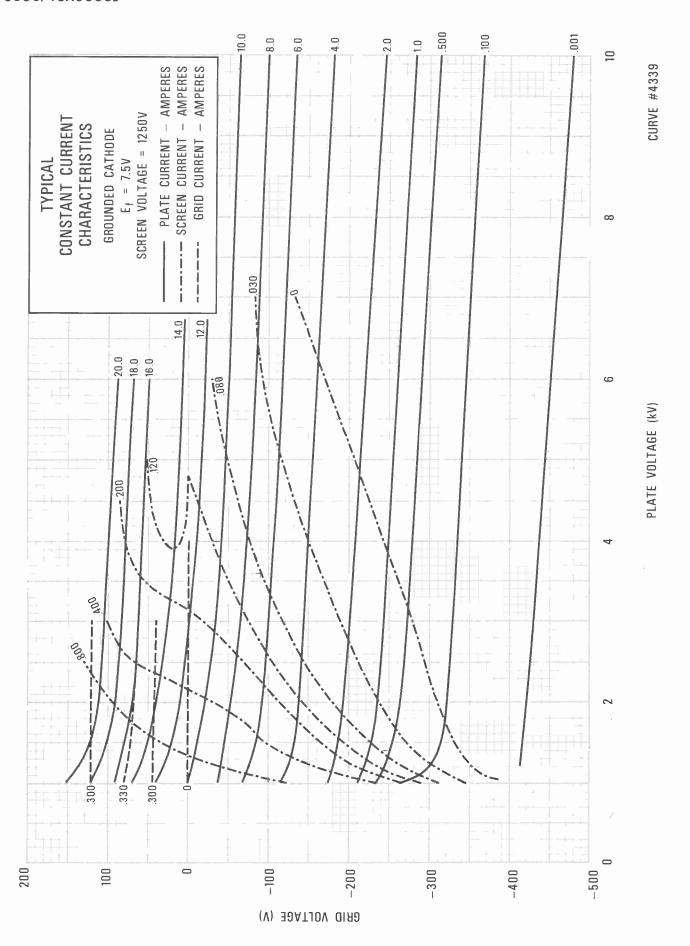
Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX5000J is 6000 watts. Plate dissipation may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.


HIGH VOLTAGE - The 4CX5000J operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and


wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.









### TECHNICAL DATA

## 8170W 4CX5000R

RADIAL-BEAM POWER TETRODE

The EIMAC 8170W/4CX5000R is a compact, high-power, ceramic/metal tetrode. It is directly interchangeable with the 8170/4CX5000A but incorporates more rugged internal construction features, including a sturdy mesh cathode, which allows it to meet demanding vibration and shock specifications.

The 8170W/4CX5000R is useful up to 110 Mc and is recommended for use as a radio-frequency linear amplifier, a Class-AB audio amplifier, or a Class-C power amplifier or plate-modulated amplifier.

## GENERAL CHARACTERISTICS 1

## ELECTRICAL

| Filament: Thoriated Tungsten                                       |      |     |
|--------------------------------------------------------------------|------|-----|
| Voltage                                                            |      |     |
| Current, at 7.5 volts                                              |      |     |
| Amplification Factor (Average):                                    |      |     |
| Grid to Screen                                                     |      |     |
| Direct Interelectrode Capacitance (grounded filament) <sup>2</sup> |      |     |
| Cin                                                                | 115  | pF  |
| Cout                                                               | 20   | pF  |
| Cgp                                                                | 0.7  | pF  |
| Direct Interelectrode Capacitance (grounded grid) <sup>2</sup>     |      |     |
| Cin                                                                | 53   | pF  |
| Cout                                                               | 22.5 | pF  |
| Cpk                                                                |      | pF  |
| Frequency of Maximum Rating:                                       |      |     |
| ĈW                                                                 | 100  | MHz |

- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

| Maximum Overall Dimensions: |                      |
|-----------------------------|----------------------|
| Length                      | 9.125 in;231.77 mm   |
| Diameter                    | 4.938 in:125.43 mm   |
| Diameter                    | 0.5.1b; 4.21 kg      |
| Net Weight                  | 9.5 1D, 4.51 kg      |
| Operating Position          | cal, base up or down |

(Effective 5-1-76) © 1963, 1970, 1971, 1976 by Varian

| Maximum Operating Temperature: Ceramic/Metal Seals or Anode Core                                                          | 250°C                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base                                                                                                                      |                                                                                                                                                                       |
|                                                                                                                           |                                                                                                                                                                       |
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB1                                                                    | TYPICAL OPERATION (Frequencies to 100 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions                                                       |
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                | Plate Voltage                                                                                                                                                         |
|                                                                                                                           |                                                                                                                                                                       |
| RADIO FREQUENCY POWER AMPLIFIER OR<br>OSCILLATOR<br>Class C Telegraphy or FM Telephony<br>(Key-Down Conditions)           | TYPICAL OPERATION (Frequencies to 100 MHz)  Plate Voltage                                                                                                             |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                               | Grid Voltage                                                                                                                                                          |
|                                                                                                                           |                                                                                                                                                                       |
| PLATE MODULATED RADIO FREQUENCY POWER<br>AMPLIFIER-GRID DRIVEN<br>Class C Telephony (Carrier Conditions)                  | TYPICAL OPERATION (Frequencies to 100 MHz)  Plate Voltage 5000 Vdc                                                                                                    |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                 | Screen Voltage                                                                                                                                                        |
| DC PLATE VOLTAGE 5000 VOLTS DC SCREEN VOLTAGE 1000 VOLTS DC PLATE CURRENT 2.5 AMPERES                                     | Plate Current         1.40 Adc           Screen Current 1         0.26 Adc           Grid Current 1         0.05 Adc           Peak af Screen Voltage 1         450 V |
| PLATE DISSIPATION 1                                                                                                       | (100% modulation)       450 v         Peak rf Grid Voltage1       520 v         Calculated Driving Power       25 W         Plate Dissipation       1200 W            |
| <ol> <li>Corresponds to 5000 watts at 100% sine-wave modulation.</li> <li>Average, with or without modulation.</li> </ol> | Plate Output Power                                                                                                                                                    |

## AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB<sub>1</sub>, Grid Driven (Sinusoidal Wave)

ABSOLUTE MAXIMUM RATINGS (per tube)

| DC PLATE VOLTAGE   | 7500 | VOLTS          |
|--------------------|------|----------------|
| DC SCREEN VOLTAGE  | 1500 | VOLTS          |
| DC PLATE CURRENT   | 4.0  | <b>AMPERES</b> |
| PLATE DISSIPATION  | 6000 | WATTS          |
| SCREEN DISSIPATION | 250  | WATTS          |
| GRID DISSIPATION   | 75   | WATTS          |
|                    |      |                |

- 1. Approximate value.
- 2. Per Tube.

TYPICAL OPERATION (Two Tubes)

| Plate Voltage Screen Voltage Grid Voltage 1/4 Zero-Signal Plate Current Max. Signal Plate Current | 4000<br>1250<br>-270<br>1.25<br>5.10 | 1250<br>-280<br>1.00 | 1250<br>-310<br>0.83    | -325<br>0.70 | Vdc<br>Vdc<br>Adc |
|---------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-------------------------|--------------|-------------------|
| Max. Signal Screen                                                                                | 5.10                                 | 4.40                 | 4.25                    | 3.65         | Adc               |
| Current <sup>1</sup>                                                                              | 0.35<br>250                          | 0.33<br>240          | 0.30<br>270             | 0.24<br>235  |                   |
| Dissipation1 Plate Output Power1 Load Resistance                                                  |                                      |                      | 4200<br>1 <b>7</b> ,000 |              | W<br>W            |
| (plate to plate)                                                                                  | 1500                                 | 2370                 | 2940                    | 4100         | $\Omega$          |

- 3. Nominal drive power is one-half peak power.
- 4. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias,
screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output
power when the tube is changed, even though there may be some variation in grid and screen current. The grid
and screen currents which result when the desired plate current is obtained are incidental and vary from tube
to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in
the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally
by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the
correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                       | Min. | Max. | ,  |
|-------------------------------------------------------------------------|------|------|----|
| Filament: Current at 7.5 volts                                          | 73   | 78   | _  |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection) |      |      |    |
| Cin                                                                     | 108  | 122  | pF |
| Cout                                                                    | 18   | 23   | pF |
| Cgp                                                                     |      | 1.0  | pF |
| Interelectrode Capacitances (grounded grid connection)                  |      |      |    |
| Cin                                                                     | 48   | 58   | pF |
| Cout                                                                    | 19   | 24   | pF |
| Cpk                                                                     |      | 0.16 | pF |
|                                                                         |      |      |    |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## APPLICATION

## MECHANICAL

MOUNTING - The 4CX5000R must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX5000R. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the

tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-306, into the anode cooling fins. The SK-300 socket may be used instead of the SK-300A, but its use will result in a slightly less efficient cooling system at high dissipation levels.

COOLING - The maximum temperature rating for the external surfaces of the 4CX5000R is 250°C. Sufficient forced-air circulation must be

provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Sea level air-flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below (for operation below 30 megacycles).

|                                 | SK-300A Socket    |                                       | SK-30             | 0 Socket                              |
|---------------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|
| Plate<br>Dissipation<br>(Watts) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of water) | Air Flow<br>(CFM) | Pressure<br>Drop (Inches<br>of water) |
| 2000                            | 75                | 0.4                                   | 75                | 0.4                                   |
| 3000                            | 105               | 0.7                                   | 100               | 0.7                                   |
| 4000                            | 145               | 1.1                                   | 135               | 1.2                                   |
| 5000                            | 190               | 1.5                                   | 165               | 1.8                                   |
| 6000                            | 230               | 2.0                                   | 200               | 2.5                                   |

Since the power dissipated by the filament represents about 560 watts and since grid-plus screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1000 watts dissipation

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

IMPACT AND VIBRATION - The 4CX5000R is designed to operate under shock and vibration that might disable a less rugged tube. Up to 50 g of impact of 11 millisecond duration can be sustained and vibratory acceleration up to 5 g from 14 to 200 Hz and 2 g from 200 to 500 Hz will not ordinarily injure the tube unless prolonged. Production tubes are subjected to testing to insure this ruggedness.

#### ELECTRICAL

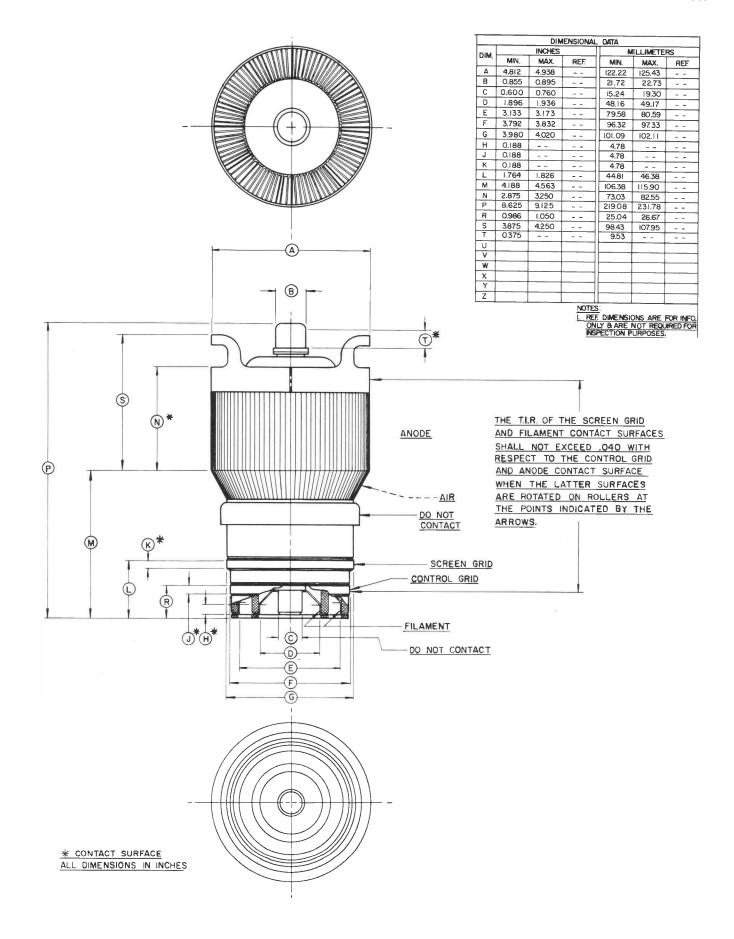
FILAMENT VOLTAGE - The rated filament voltage for the 4CX5000R is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

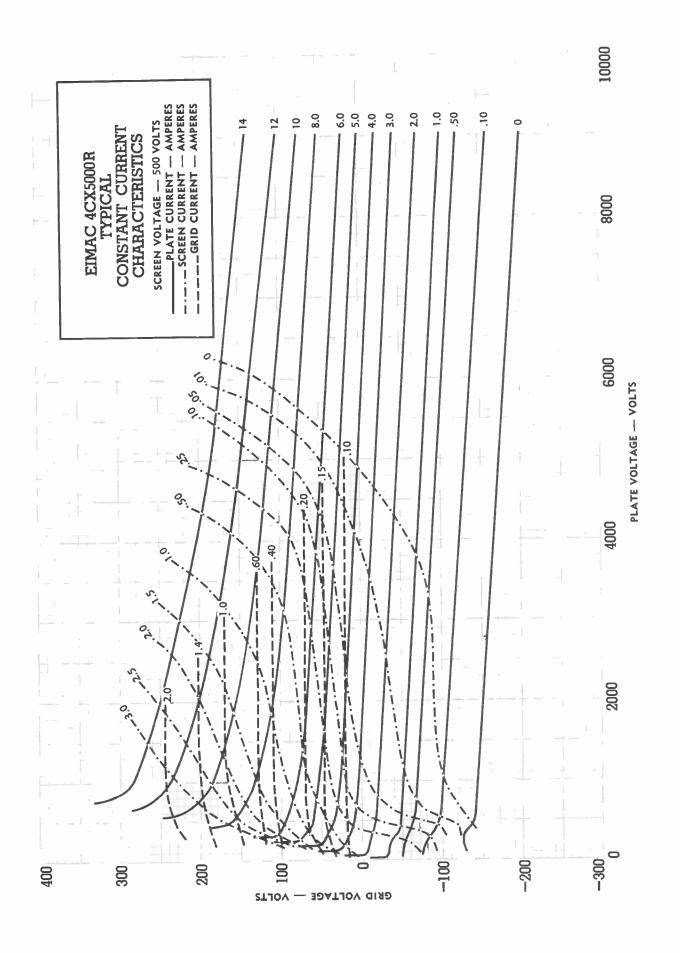
GRID DISSIPATION - The 4CX5000R control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. Grid Dissipation is approximately the product of dc grid current and

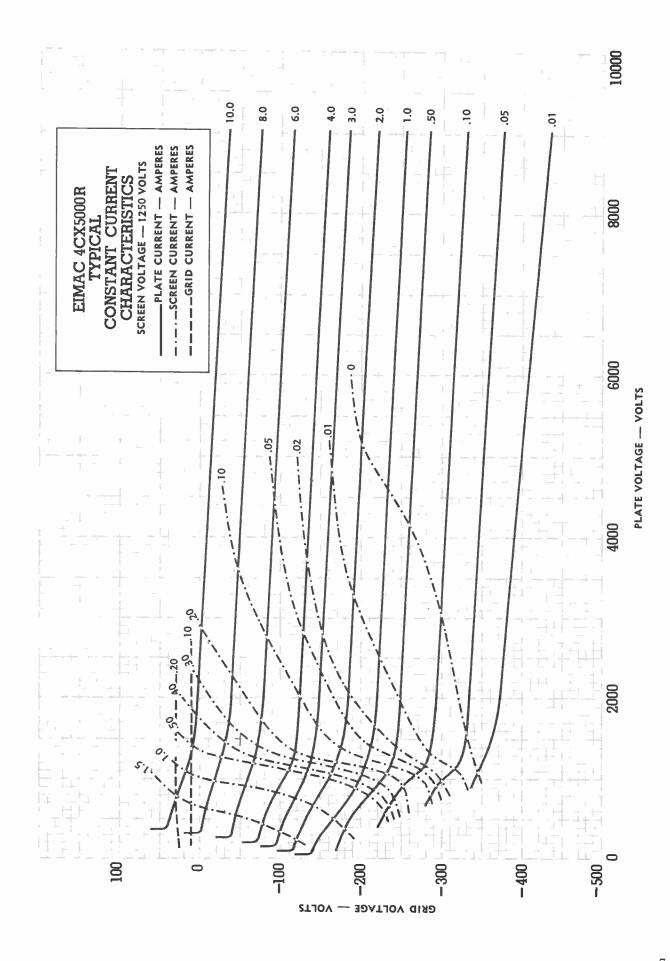
peak positive grid voltage. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible.

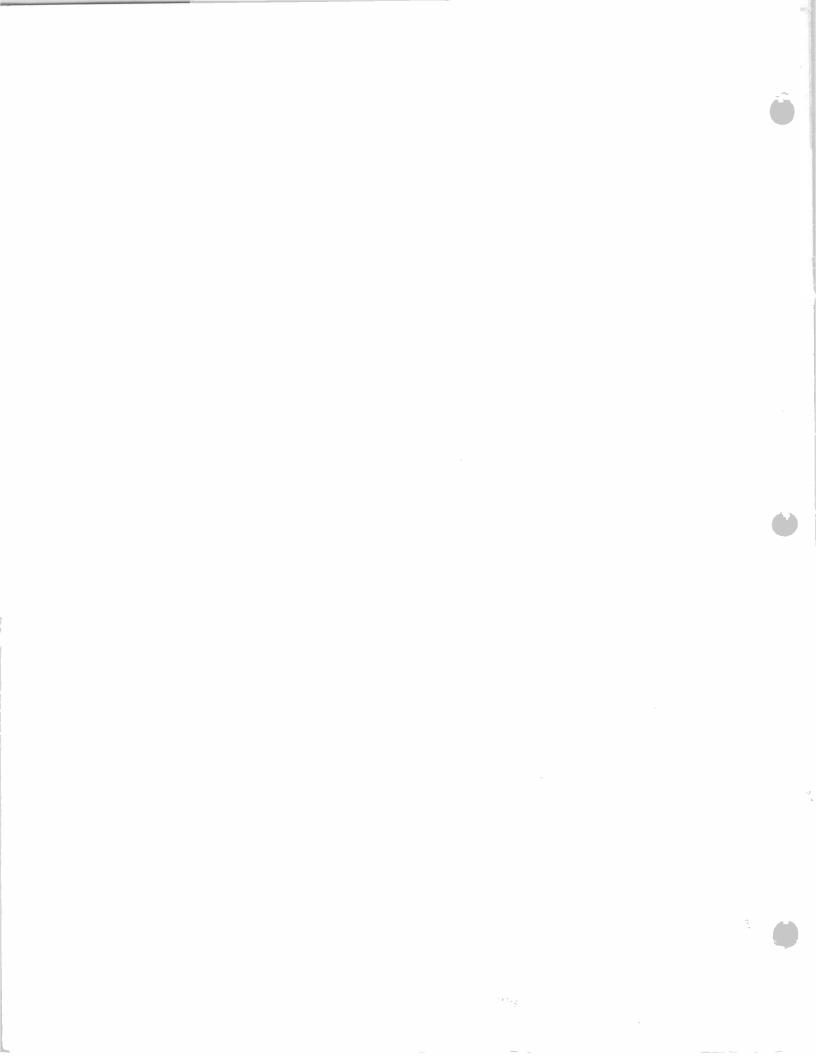
SCREEN DISSIPATION - The power dissipated by the screen of the 4CX5000R must not exceed 250 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.


Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.


PLATE DISSIPATION - The plate-dissipation rating for the 4CX5000R is 5000 watts for most applications but for audio and SSB amplifier applications, the maximum allowable dissipation is 6000 watts. Plate dissipation may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.


When the 4CX5000R is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 3500-watt maximum plate dissipation rating will be exceeded.


HIGH VOLTAGE - The 4CX5000R operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.













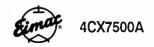


The EIMAC 4CX7500A is a compact ceramic/metal radial beam power tetrode intended for use in VHF power amplifier applications. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings to 220 MHz. A dense mesh filament is used which contributes to the high performance capability.

The 4CX7500A has a gain of over 20 dB in FM broadcast service, and is also recommended for rf linear power amplifier service and for VHF-TV linear amplifier service. The anode is rated for 7500 watts of dissipation with forced air cooling.

#### GENERAL CHARACTERISTICS<sup>1</sup>

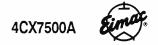
## **ELECTRICAL**


| Filament: Thoriated Tungsten Mesh                                  |     |
|--------------------------------------------------------------------|-----|
| Voltage                                                            | ٧   |
| Current, at 7.0 volts                                              | Α   |
| Amplification Factor, average                                      |     |
| Grid to Screen                                                     |     |
| Direct Interelectrode Capacitances (cathode grounded) <sup>2</sup> |     |
| Cin                                                                | pF  |
| Cout                                                               | pF  |
| Cgp                                                                | pF  |
| Direct Interelectrode Capacitances (grids grounded) <sup>2</sup>   | ·   |
| Cin                                                                | pF  |
| Cout                                                               | pF  |
| Cpk                                                                | pF  |
| Maximum Frequency for Full Ratings (CW)                            | MHz |

<sup>1</sup>Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian Power Grid & X-Ray Tube Products should be consulted before using this information for final equipment design.

<sup>2</sup>Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

394625 (Effective April 1985) VA4807 2216






#### MECHANICAL

| Maximum Overall Dimensions:  Length Diameter  Net Weight (approximate) Operating Position Cooling Maximum Operating Temperature, Ceramic/Metal Seals & Anode Core Base Recommended Air-System Socket  Available Screen Grid Bypass Capacitor Kit for SK-350 or SK-360 (8000 pF @ Recommended Air-System Chimney (for SK-350 or SK-360) Recommended EIMAC Cavity Assembly for FM Broadcast Service Available Anode Connector Clip |                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| RADIO FREQUENCY POWER AMPLIFIER                                                                                                                                                                                                                                                                                                                                                                                                  | TYPICAL OPERATION                                                                          |
| Class C Telegraphy or FM                                                                                                                                                                                                                                                                                                                                                                                                         | (Measured data in EIMAC CV2228 FM cavity at 100.5 MHz)                                     |
| (Key-down Conditions)                                                                                                                                                                                                                                                                                                                                                                                                            | Plate Voltage 6.5 6.5 6.5 kVdc                                                             |
| ABSOLUTE MAXIMUM CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                      | Screen Voltage                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grid Voltage                                                                               |
| DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                 | Plate Current 2.1 2.2 2.4 Adc                                                              |
| DC SCREEN VOLTAGE 1500 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                     | Screen Current                                                                             |
| DC GRID VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                  | Grid Current                                                                               |
| DC PLATE CURRENT 3.0 AMPERES                                                                                                                                                                                                                                                                                                                                                                                                     | Driving Power                                                                              |
| PLATE DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                | Efficiency                                                                                 |
| SCREEN DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                               | Useful Output Power 10.8 11.1 12.1 kW                                                      |
| GRID DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                 | Power Gain                                                                                 |
| RADIO FREQUENCY LINEAR AMPLIFIER Class AB1                                                                                                                                                                                                                                                                                                                                                                                       | Typical Operation, Peak Envelope or Modulation Crest Conditions (frequencies below 30 MHz) |
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                                                                                                                                                                                                                         | Plate Voltage                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zero Signal Plate Current                                                                  |
| DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                 | Max. Signal Plate Current 2.2 Adc                                                          |
| DC SCREEN VOLTAGE 1500 VOLTS                                                                                                                                                                                                                                                                                                                                                                                                     | Screen Voltage                                                                             |
| DC GRID VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                  | Screen Current MAdc                                                                        |
| DC PLATE CURRENT 3.0 AMPERES                                                                                                                                                                                                                                                                                                                                                                                                     | Grid Bias Voltage Vdc                                                                      |
| PLATE DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                | Grid Current 0 mAdc                                                                        |
| SCREEN DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                               | Useful Power Out***                                                                        |
| GRID DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                 | Driving Power                                                                              |
| * Approximate Value                                                                                                                                                                                                                                                                                                                                                                                                              | Intermodulation Distortion Products§                                                       |
| ** Adjust to specified zero-signal plate current                                                                                                                                                                                                                                                                                                                                                                                 | 3rd Order Products                                                                         |
| # PEP output or rf power at crest of modulation envelope                                                                                                                                                                                                                                                                                                                                                                         | 5th Order Products                                                                         |
| Referenced against one tone of a two equal-tone signal                                                                                                                                                                                                                                                                                                                                                                           | ""Delivered to the load                                                                    |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.



#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CX7500A must be mounted with its axis vertical, base up or down at the convenience of the equipment designer, and should be protected from shock and vibration which could damage the internal structure of the tube.

AIR-SYSTEM SOCKET & CHIMNEY - The EIMAC sockets type SK-340 and SK-350 are designed especially for the concentric base terminals of the 4CX7500A. The SK-340 is intended for use at HF, while the SK-350 is recommended for VHF applications. The SK-346 chimney is intended for use with either. Use of the recommended air flow rates through either socket will provide effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through the chimney and into the anode cooling fins.

COOLING - Forced-air cooling is required in all applications. The blower selected in a given application must be capable of supplying the desired air flow at a back pressure sufficient for the tube, plus any drop caused by ducts and filters. Air flow must be applied before or simultaneously with filament voltage.

Minimum air flow requirements for a maximum anode temperature of 225°C for various altitudes and dissipation levels are listed. The pressure drop values shown are approximate and are for the SK-340/tube/SK-346 combination. If an SK-350 is used air passages in addition to those in the socket may be required for low pressure drop.

Plate

Flow

Press.

Inlet Air Temperature = 25°C

Sea Level

|                         | Diss.        | Rate       | Drop      |
|-------------------------|--------------|------------|-----------|
|                         | <u>Watts</u> | CFM        | In. Water |
|                         | 5000         | 192        | 1.0       |
|                         | 7500         | 414        | 4.3       |
| 5000 Feet               | Plate        | Flow       | Press.    |
|                         | Diss.        | Rate       | Drop      |
|                         | Watts        | CFM        | In. Water |
|                         | 5000         | 232        | 1.2       |
|                         | 7500         | 501        | 5.1       |
|                         | 7300         | 501        | 5.1       |
| 10,000 Feet             | Plate        | Flow       | Press.    |
|                         | Diss.        | Rate       | Drop      |
|                         | Watts        | CFM        | In. Water |
|                         | 5000         | 281        | 1.4       |
|                         | 7500         | 607        | 6.1       |
| Inlet Air Temperature = | 35°C         |            |           |
|                         | <b>5</b>     |            | _         |
| Sea Level               | Plate        | Flow       | Press.    |
|                         | Diss.        | Rate       | Drop      |
|                         | <u>Watts</u> | <u>CFM</u> | In. Water |
|                         | 5000         | 220        | 1.25      |
|                         | 7500         | 476        | 5.42      |
|                         |              |            |           |

| <u>5000 Feet</u>           | Plate                                          | Flow                                     | Press.                         |
|----------------------------|------------------------------------------------|------------------------------------------|--------------------------------|
|                            | Diss.                                          | Rate                                     | Drop                           |
|                            | Watts                                          | <u>CFM</u>                               | <u>In. Water</u>               |
|                            | 5000                                           | 268                                      | 1.5                            |
|                            | 7500                                           | 576                                      | 6.5                            |
| 10,000 Feet                | Plate                                          | Flow                                     | Press.                         |
|                            | Diss.                                          | Rate                                     | Drop                           |
|                            | <u>Watts</u>                                   | <u>CFM</u>                               | In. Water                      |
|                            | 5000                                           | 324                                      | 1.75                           |
|                            | 7500                                           | 6.98                                     | 7.75                           |
| Inlet Air Temperature = 50 | o.c                                            |                                          |                                |
| <u>Sea Level</u>           | Plate                                          | Flow                                     | Press                          |
|                            | Diss.                                          | Rate                                     | Drop                           |
|                            | <u>Watts</u>                                   | <u>CFM</u>                               | In. Water                      |
|                            | 5000                                           | 280                                      | 1.8                            |
|                            | 7500                                           | 592                                      | 7.9                            |
| 5000 Feet                  | Plate                                          | Flow                                     | Press                          |
|                            | Diss.                                          | Rate                                     | Drop                           |
|                            | <u>Watts</u>                                   | <u>CFM</u>                               | In. Water                      |
|                            | 5000                                           | 332                                      | 2.1                            |
|                            | 7500                                           | 717                                      | 9.4                            |
| 10,000 Feet                | Plate<br>Diss.<br><u>Watts</u><br>5000<br>7500 | Flow<br>Rate<br><u>CFM</u><br>402<br>868 | Press. Drop In. Water 2.5 11.3 |

With operation at plate dissipation below 5.0 kW and lower air flow inherent with that operation, special attention is required for cooling the center of the stem (base), by means of special directors or some other provision. Temperature measurements in this area should be made, as well as the anode seal areas, during development of the equipment. Temperature-sensitive paints are available for this purpose, and Application Bulletin #20 titled TEMPERATURE MEASUREMENTS WITH EIMAC POWER TUBES is available from Varian Power Grid & X-Ray Tube Products on request.

An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even a partial failure of the tube cooling air.

It is considered good engineering practice to supply more than the minimum required cooling air, to allow for variables such as dirty air filters, rf seal heating, and dirty anode cooling fins if the tube has been in service for some time.

#### **ELECTRICAL**

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside



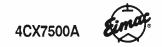
which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

FILAMENT OPERATION - At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The filament voltage should then be increased a few tenths of a volt above the value where performance degradation was noted. The operating point should be rechecked after 24 hours. Filament voltage should be closely regulated when voltage is to be reduced in this manner, to avoid any adverse influence by normal line voltage variations. Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best life.

GRID OPERATION - The maximum control grid dissipation is 50 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 165 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

SCREEN CURRENT - The screen current may reverse under certain conditions and produce negative indications on the screen current meter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from the screen to cathode must be provided by a bleeder resistor or a shunt regulator connected between screen and cathode and arranged to pass approximately 10% of the average screen current per connected tube. A series regulated power supply can be used only when an adequate bleeder resistor is provided.


FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and air-flow interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to absorb power supply stored energy if an internal arc should occur. EIMAC's Application Bulletin #17 titled FAULT PROTECTION contains considerable detail, and is available on request.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

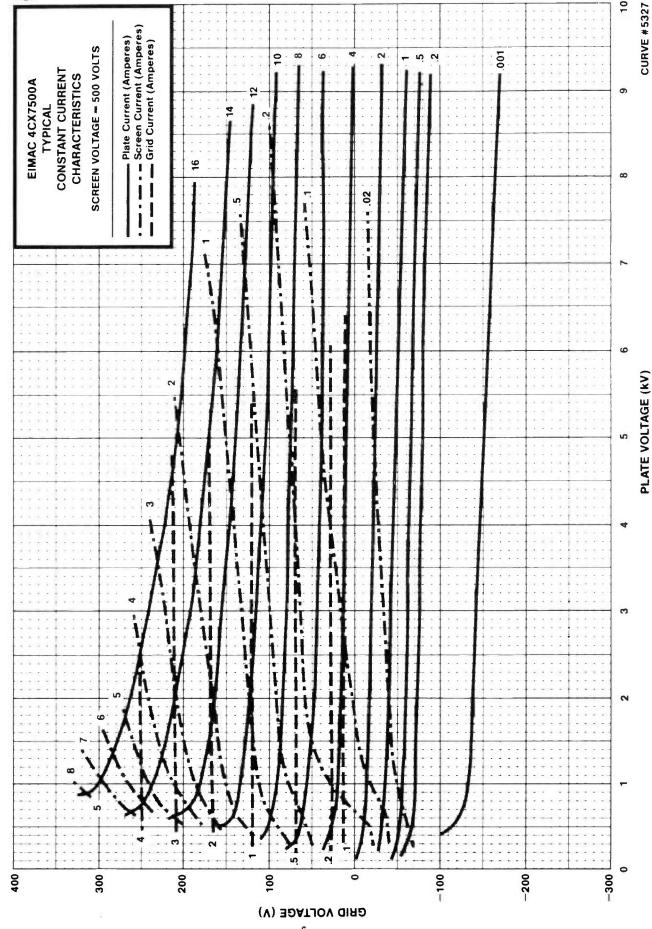
RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

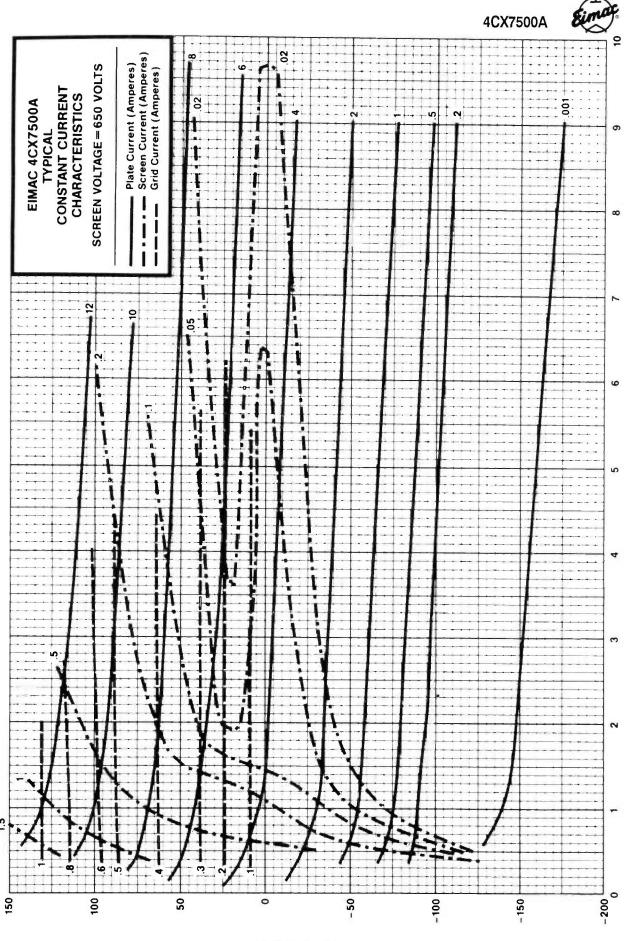
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground." The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown here are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian Power Grid & X-Ray Tube.Products, Attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

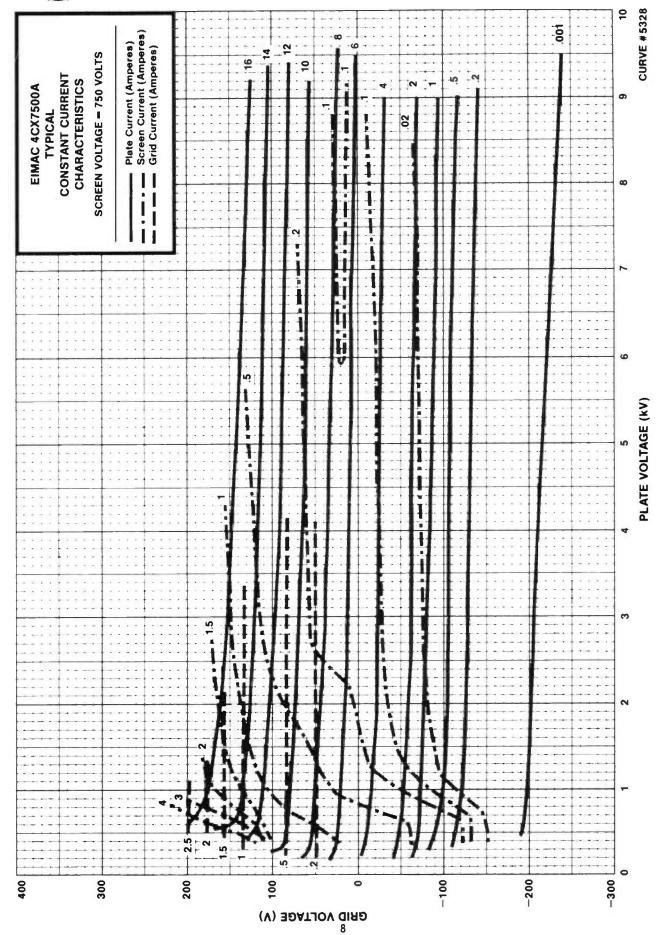


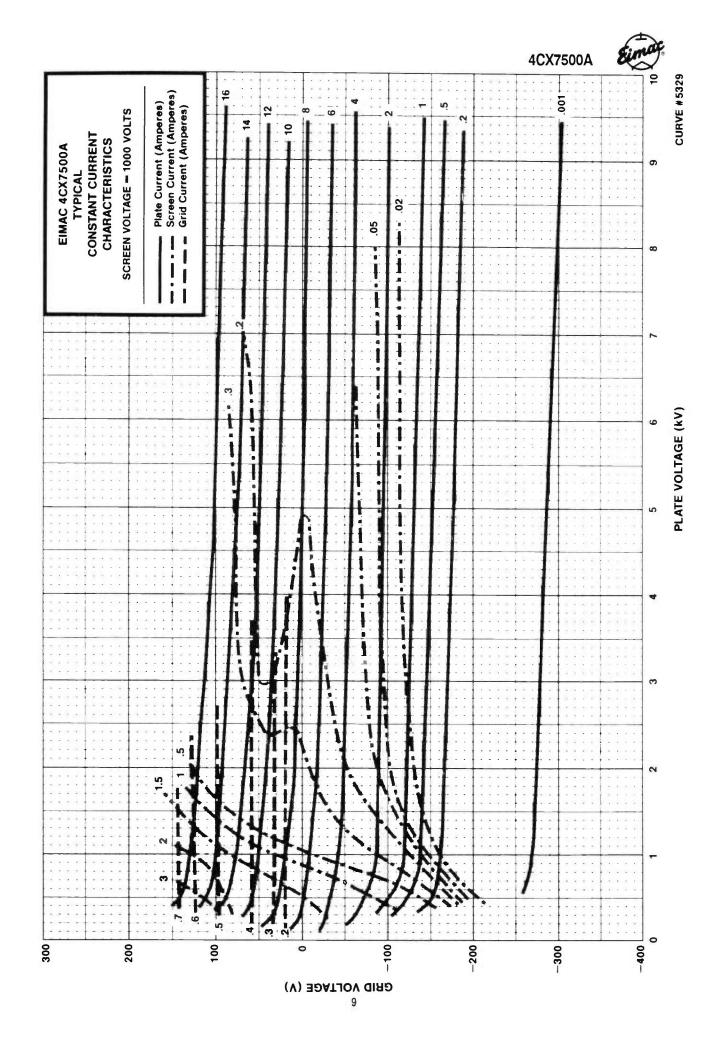
#### **OPERATING HAZARDS**


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

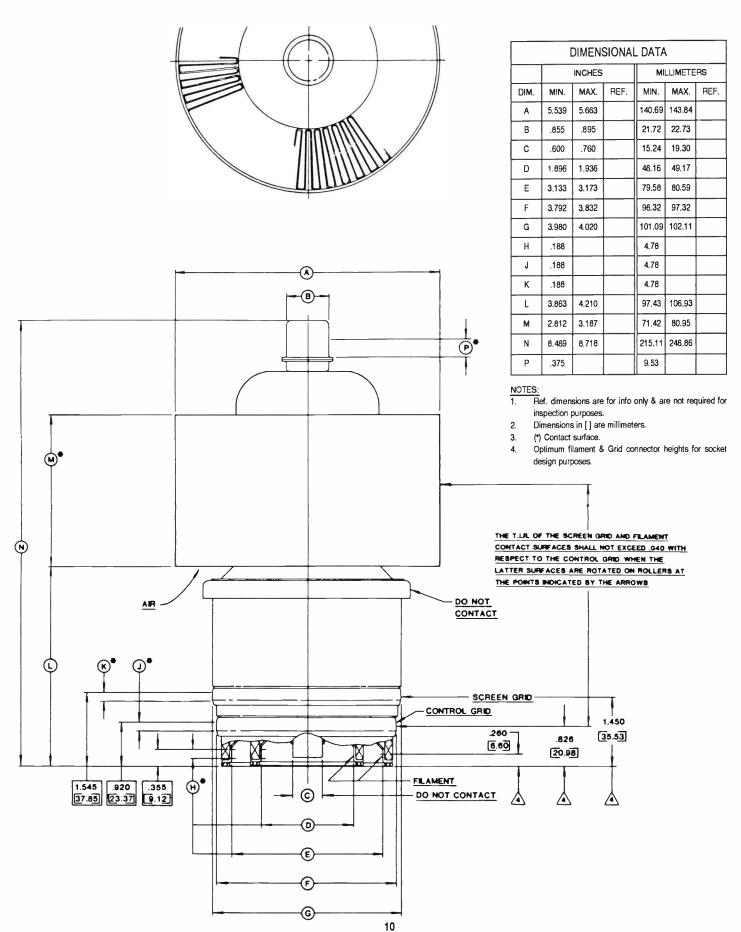

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- HIGH VOLTAGE Normal operating voltages can be deadly.
   Remember that HIGH VOLTAGE CAN KILL.
- LOW-VOLTAGE HIGH-CURRENT CIRCUITS personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields should be avoided,
- even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

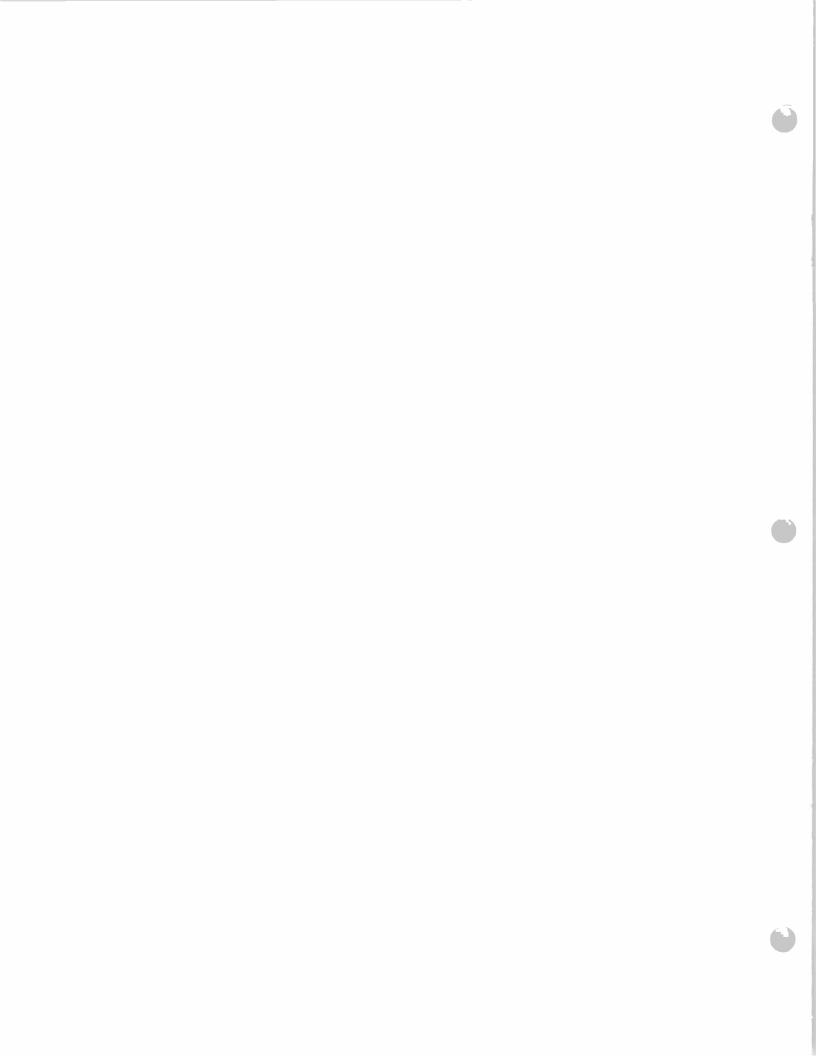

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian Power Grid & X-Ray Tube Products, Power Grid Application Engineering, 301 Industrial Way, San Carlos, CA 94070.






GRID VOLTAGE (V)
















## TECHNICAL DATA

RADIAL-BEAM POWER TETRODE

The EIMAC 4CX10,000] is a compact, high-power, ceramic/ metal, forced-air cooled tetrode with a rated maximum plate dissipation of 12,000 watts. It incorporates rugged internal construction features, including a mesh filament/cathode.

The 4CX10,000J is specifically designed for exceptionally low intermodulation distortion in radio-frequency linear amplifier service.





#### ELECTRICAL

| Filament: Thoriated Tungsten                                       |         |
|--------------------------------------------------------------------|---------|
| Voltage 7.5 ± 0.37                                                 | V       |
| Current, at 7.5 volts                                              | A       |
| Amplification Factor (Average):                                    |         |
| Grid to Screen 4.5                                                 |         |
| Direct Interelectrode Capacitance (grounded filament) <sup>2</sup> |         |
| Cin                                                                | 120 pF  |
| Cout                                                               | 20.5 pF |
| Cgp                                                                | 0.7 pF  |
| Direct Interelectrode Capacitance (grounded grid) <sup>2</sup>     |         |
| Cin                                                                | 56 pF   |
| Cout                                                               | 21.5 pF |
| Cpk                                                                | 0.10 pF |
| Frequency of Maximum Rating:                                       |         |
| C W                                                                | 100 MHz |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

Maximum Overall Dimensions:

| Length             | 9.125 in: 231.77   | mm   |
|--------------------|--------------------|------|
| Diameter           | 7.050 in; 179.07   | mm   |
| Net Weight         | 12.2 lb; 5.55      | kg   |
| Operating Position | rtical, base up or | down |

(Effective 2-1-72) © by Varian

| Maximum Operating Temperature:  Ceramic/Metal Seals or Anode Core  Cooling                                                       |                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| RADIO FREQUENCY LINEAR AMPLIFIER<br>GRID DRIVEN<br>Class AB1                                                                     | TYPICAL OPERATION Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation Crest Conditions |  |  |  |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |  |  |  |
| <ol> <li>Useful power is that delivered to the load.</li> <li>Referenced against one tone of a two equal-tone signal.</li> </ol> | Intermodulation Distortion Products 4:  3rd Order                                                   |  |  |  |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in screen current. The screen current which results when the desired plate current is obtained is incidental and varies from tube to tube. This current variation causes no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                                       | Min. | Max.    |
|-------------------------------------------------------------------------|------|---------|
| Filament: Current at 7.5 volts                                          | 98   | 108 A   |
| Interelectrode Capacitances <sup>1</sup> (grounded filament connection) |      |         |
| Cin                                                                     | 113  | 127 pF  |
| Cout                                                                    | 18   | 23 pF   |
| Cgp                                                                     |      | 1.0 pF  |
| Interelectrode Capacitances <sup>1</sup> (grounded grid connection)     |      |         |
| Cin                                                                     | 51   | 61 pF   |
| Cout                                                                    | 19   | 24 pF   |
| Cpk                                                                     |      | 0.16 pF |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CX10,000J must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX10,000J. The use of recommended air-flow rates through this socket pro-

vides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-1316, into the anode cooling fins.

COOLING - The maximum temperature rating for the external surfaces of the 4CX10,000J is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below (for operation below 30 megahertz). The pressure drop values shown are for the Tube/Socket/Chimney combination.

|                                        | SEA LEVEL                       |                                    | 10,000 FEET                     |                                    |
|----------------------------------------|---------------------------------|------------------------------------|---------------------------------|------------------------------------|
| Plate *<br>Dissipation<br>(Watts)      | Air Flow<br>(CFM)               | Pressure<br>Drop (In.<br>of water) | Air Flow<br>(CFM)               | Pressure<br>Drop (In.<br>of water) |
| 4000<br>6000<br>8000<br>10000<br>12000 | 110<br>200<br>315<br>445<br>600 | 0.4<br>0.8<br>1.7<br>2.8<br>4.4    | 160<br>290<br>460<br>645<br>870 | 0.6<br>1.2<br>2.5<br>4.1<br>6.4    |

\* Since the power dissipated by the filament represents about 770 watts and since grid-plus screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1200 watts dissipation.

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

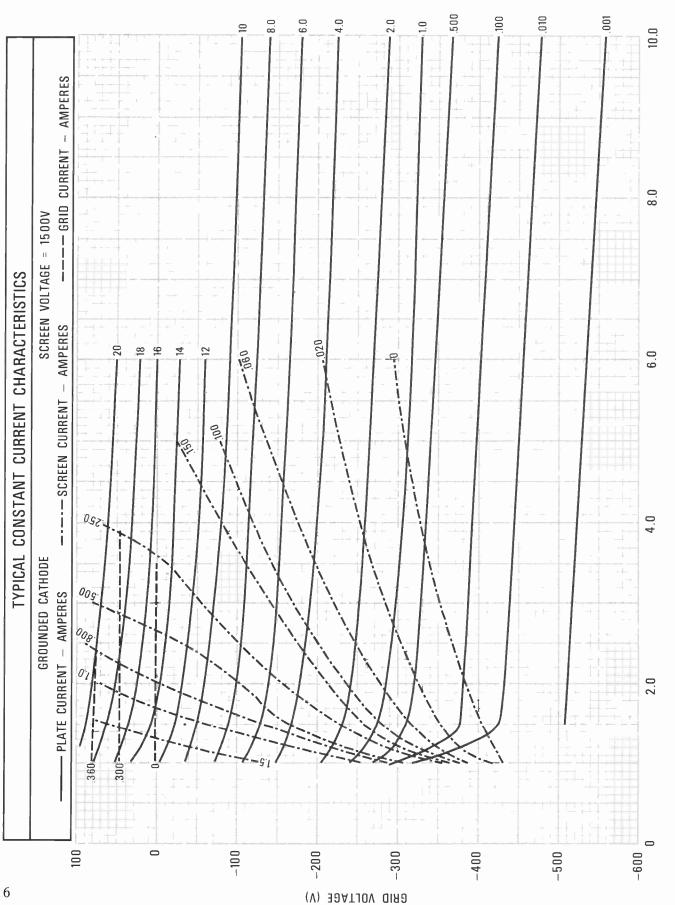
IMPACT AND VIBRATION - The 4CX10,000J is designed to operate under shock and vibration conditions which might disable a less rugged tube. Production tubes are subjected to testing to insure ability to withstand 15 G impact at 11 milliseconds duration and 2 G vibratory acceleration over the range of 5 to 55 Hz.

#### **ELECTRICAL**

FILAMENT VOLTAGE - The rated filament voltage for the 4CX10,000J is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

GRID DISSIPATION - The 4CX10,000J control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is approximately the product of dc grid current and peak positive grid voltage. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible.

SCREEN DISSIPATION - The power dissipated by the screen of the 4CX10,000J must not exceed 250 watts.


Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX10,000J is 12,000 watts. Plate dissipation may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.

HIGH VOLTAGE - The 4CX10,000J operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard



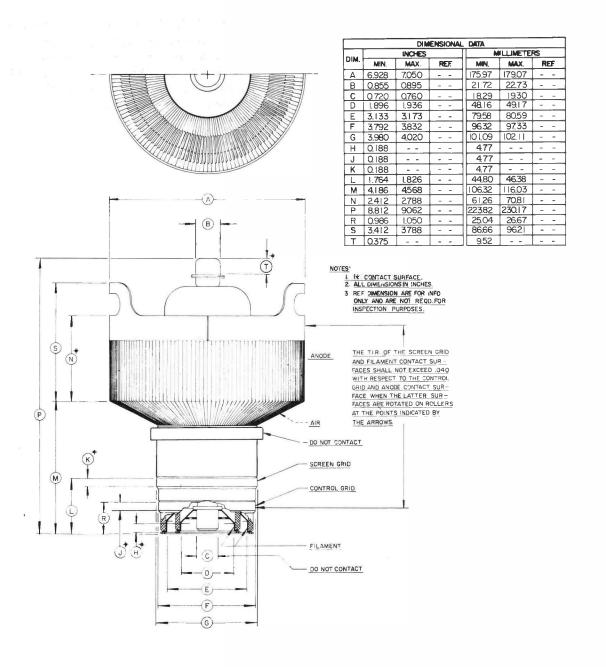

CURVE #4339

PLATE VOLTAGE (kV)

RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.



8989 4 C X 1 2 , 0 0 0 A VHF

# TECHNICAL DATA

RADIAL BEAM POWER TETRODE

The EIMAC 8989 is a ceramic/metal power tetrode intended for use in audio or radio frequency applications. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings up to 220 MHz.

The 8989 has a gain of over 18 dB in FM broadcast service, and is also recommended for radio-frequency linear power amplifier service, and for VHF television linear amplifier service. The anode is rated for 15 kilowatts of dissipation with forced-air cooling and incorporates a highly efficient cooler of new design.

#### CHARACTERISTICS 1 GENERAL

| ELECIKICAL   |                                                     |     |
|--------------|-----------------------------------------------------|-----|
| Filament: Th | noriated Tungsten                                   |     |
| Voltage      | 7.5 ± 0.37                                          | V   |
| Current @    | 2 7.5 volts                                         | Α   |
| Amplificatio | on Factor, average                                  |     |
| Grid to S    | Screen 6.7                                          |     |
| Direct Inter | relectrode Capacitances (grounded cathode):         |     |
| Cin .        |                                                     | pF  |
| Cout .       |                                                     | pF  |
| Cgp .        | 1.0                                                 | pF  |
| Direct Inter | relectrode Capacitances (grid and screen grounded): |     |
| Cin .        |                                                     | pF  |
| Cout .       | 18.6                                                | pF  |
| Cpk .        | 0.1                                                 | pF  |
| Frequency of | Maximum Ratings (CW)                                | MHz |

Characteristics and operating values are based on calculations and measured data. These figures may change without notice as a result of data or product refinement. Varian EIMAC Division should be consulted before using this information for final equipment design.

ELECTRICAL.



# MECHANICAL

|                                          |         |           | •                      |                |      |
|------------------------------------------|---------|-----------|------------------------|----------------|------|
| Maximum Overall Dimens                   | ions:   |           |                        |                |      |
| Length (height) .                        |         |           | • • • • • • • • •      | 9.84 in; 24.99 | cm   |
| Diameter                                 |         |           |                        | 7.76 in; 19.71 | . Cm |
| Net Weight (approximate                  | e)      | • • • • • |                        | 14 lbs; 6.4    | kg   |
| Operating Position .                     |         |           | Axis vertical          | , base up or d | lown |
| Cooling                                  |         |           | • • • • • • • •        | Forced         | Air  |
| Operating Temperature,                   | Maximu  | m:        |                        |                |      |
| Ceramic/Metal Seals                      | & Anod  | e Core    |                        | 250            | °C   |
| Base                                     |         | • • • • • | Sp                     | ecial, concent | ric  |
| Recommended Air System                   | Socket  |           |                        | EIMAC SK-3     | 300A |
| Recommended Air Chimne                   | у       |           | 0 • • • • • • •        | EIMAC SK-      | 336  |
|                                          |         |           |                        |                |      |
| RADIO FREQUENCY POWER A<br>OR OSCILLATOR | AMPLIFI | ER        | TYPICAL OPERATION (fre | quencies to 30 | -    |
| Class C Telegraphy or                    | FM      |           | Plate Voltage          | 9.0            | kVdc |
| (Key-Down Conditions)                    |         |           | Screen Voltage         | 750            | Vdc  |
| ABSOLUTE MAXIMUM RATIN                   | GS:     |           | Grid Voltage           | -250           | Vdc  |
|                                          |         |           | Plate Current          | 2.83           | Adc  |
| DC PLATE VOLTAGE                         | 10.0    | KILOVOLTS | Screen Current         | 135            | mAdc |
| DC SCREEN VOLTAGE                        | 2000    | VOLTS     | Grid Current 1         | 63             | mAdc |
| DC PLATE CURRENT                         | 3.5     | AMPERES   | Peak rf Grid Voltage 1 | 335            | V    |
| PLATE DISSIPATION                        | 15.0    | KILOWATTS | Calculated Drive Power | 23             | W    |
| SCREEN DISSIPATION                       | 300     | WATTS     | Plate Dissipation 1    | 5.47           | kW   |
| GRID DISSIPATION                         | 150     | WATTS     | Plate Output Power     | 20             | kW   |
|                                          |         |           | Load Impedance         | 1590           | Ω    |

1 Approximate value



TYPICAL OPERATION, COMMERCIAL FM SERVICE

(measured values at frequency shown, in EIMAC cavity amplifier)

| Frequency of Operation | 90.5 | 108.1 | MHz  |
|------------------------|------|-------|------|
| Plate Voltage          | 9.95 | 10.0  | kVdc |
| Screen Voltage         | 600  | 800   | Vdc  |
| Grid Voltage           | -300 | -300  | Vdc  |
| Plate Current          | 3.08 | 2.81  | Adc  |
| Screen Current         | 200  | 130   | mAdc |
| Grid Current           | 41   | 32    | mAdc |
| Driving Power          | 245  | 275   | W    |
| Useful Power Output 1  | 22.9 | 22.5  | kW   |
| Efficiency             | 74.7 | 80.2  | %    |
| Gain                   | 19.7 | 19.1  | dВ   |
|                        |      |       |      |

1 Delivered to the load

#### APPLICATION

MOUNTING - The 8989 must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

SOCKET & CHIMNEY - The EIMAC air-system socket SK-300A and air chimney SK-336 are recommended for use with the 8989. The use of the recommended air flow through this socket provides effective forced-air cooling of the tube base, with air then guided through the anode cooling fins by the air chimney.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250°C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below the rated maximum.

The cooling characteristics of the tube are shown in the attached graph. The designer is cauted to keep in mind that this is ABSOLUTE data, with pure dc power, with no safety factors added, and the pressure drop figures make no allowance for losses in filters, ducting, and the like.

It is considered good engineering practice to design for maximum anode core temperature of 225°C, and temperature-sensitive paints are available for checking tube temperatures before any design is finalized. It is also considered good practice to add a 15% safety factor to the indicated airflow, and allow for variables such as dirty air filters, rf seal heating at VHF, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time. Special cooling is required in the center of the stem (base), by means of special air directors or some other provision. An air interlock system should be incorporated into the design to



automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allow for tube cool-down.

FILAMENT OPERATION - The rated nominal filament voltage for the 8989 is 7.5 volts, as measured at the socket or tube base. Variation in voltage should be maintained within plus or minus five percent. During application of filament voltage the inrush current should be limited to no more than twice normal current.

The peak emission capability at nominal filament voltage is normally more than that required for communication service. A small decrease in filament temperature due to reduction in filament voltage can increase tube life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely effect equipment operation. This is done by measuring some important parameter of performance (such as power output or distortion) while filament voltage is reduced. At some point in filament voltage there will be a noticeable change in the operating parameter being monitored, and the operating filament voltage must be slightly higher than the level at which deterioration was noted. When filament voltage is to be reduced in this manner it should be regulated and held to plus or minus one percent, and the actual operating value should be checked periodically to maintain proper operation.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 8989 must be respected to avoid damage to the tube. An exception is the plate dissipation, which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

GRID OPERATION - The 8989 control grid has a maximum dissipation rating of 150 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should normally be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.

SCREEN OPERATION - The power dissipated by the screen grid of the 8989 must not exceed 300 watts. Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend on loading, driving power, and the carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with the filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 300 watts in the event of circuit failure. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering practice.

The 8989 may exhibit reversed (negative) screen current under some operating conditions. the screen supply voltage must be maintained constant for any values of negative and ositive screen currents which may be encountered. Dangerously high plate current may ow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, and this is absolutely essential if a series electronic regulator is employed.



FAULT PROTECTION - In addition to normal plate overcurrent interlock and screen current interlock, it is good practice to protect the tube from internal damage which could result from a plate arc at high voltage. In all cases some protective resistance, 10 to 50 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a tube arc should occur. If power supply stored energy is very high, some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a tube arc is recommended.

EIMAC APPLICATION BULLETIN #17 titled "FAULT PROTECTION" is available on request and includes detailed information on this subject.

HIGH VOLTAGE - Normal operating voltages used with the 8989 are deadly and the equipment must be designed properly and operating precautions must be followed. All equipment must be designed so that no one can come into contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminate any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different tube manufacturers. The capacitance values shown in the manufacturer's technical data, or test specification, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those listed here, write to Application Engineering, Power Grid Tube Division, Varian EIMAC Division, 301 Industrial Way, San Carlos, CA 94070 for recommendations.

KOFFELD ESSENCO, MAREHULS.A. 2 X 1 CYCLES

6

# GROUNDED CATHODE CONSTANT CURRENT CHARACTERISTICS

COORDINATES: EIMAC 7 H 10 8-17-54

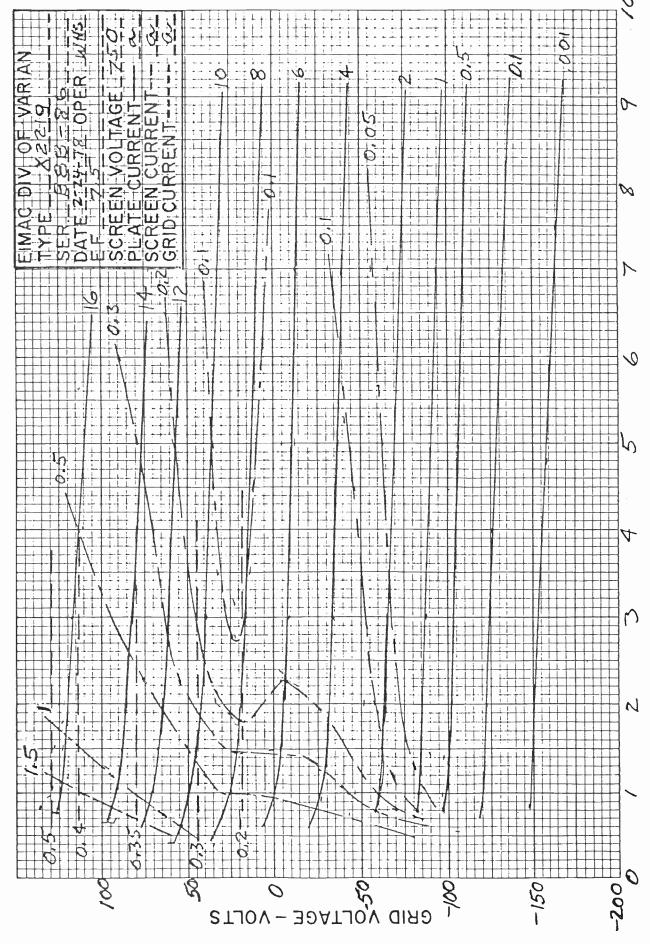
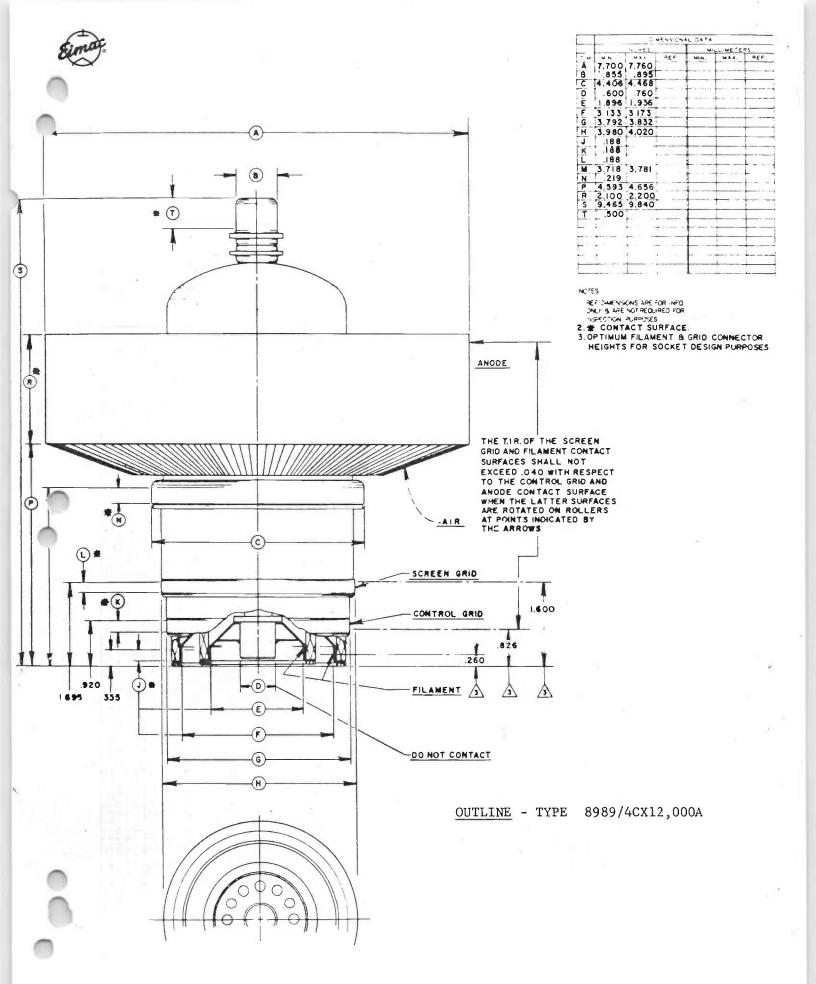




PLATE VOLTAGE - KILOVOLTS



MIL-E-1/1767B 2 May 1984 SUPERSEDING C MIL-E-1/1767A(EC) 31 July 1978

MILITARY SPECIFICATION SHEE

ELECTRON TUBE, POWER

#### **TYPE 8281**

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The complete requirements for acquiring the electron tube described herein shall consist of this specification and the latest issue of MIL-E-1.

DESCRIPTION: Tetrode, ceramic-metal

See figure 1

Mounting position: Vertical, base down or up Weight: 12.8 pounds (5.8 kg) nominal

ABSOLUTE RATINGS: F = 110 MHz

| Parameter:<br>Unit:<br><u>Maximum</u> : | Ef<br>V ac | Eb<br>k¥ dc | Ec2<br>kV dc | Ec1<br>kV dc | Ib<br>A dc | Pg1<br>W | Pg2 | Pp<br>kW | Anode<br>core &<br>seal T | Cooling<br>(Note 1) |
|-----------------------------------------|------------|-------------|--------------|--------------|------------|----------|-----|----------|---------------------------|---------------------|
| C Teleg:                                | 6.3 ±5%    | 10          | 2            | -1.5         | 5          | 200      | 450 | 15       | 250                       |                     |
| C Telep:<br>(anode mod)                 | 6.3 ±5%    | 8           | 1.5          | -1.5         | 4          | 200      | 450 | 10       | 250                       |                     |
| Class AB:                               | 6.3 ±53    | 10          | 2            |              | 6          | 200      | 450 | 15       | 250                       |                     |
| TEST CONDITIONS:                        | 6.3        | 2           | 0.75         | Adj          | 1          |          | ·.  |          |                           | Note 2              |

# B GENERAL:

Qualification - Required

RECEIVED 14 AUG 1984

denotes changes

|                              |                                                                     | ]<br> <br>     | <br>                                                                                 | I<br>I<br>AOL               | <br> <br> Inspection |                    | Lim            | its        | l ·            |          |
|------------------------------|---------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|-----------------------------|----------------------|--------------------|----------------|------------|----------------|----------|
| Method<br>                   | Requirement or test:                                                | Notes<br> <br> | Conditions<br> <br>                                                                  | (percent<br> defective)<br> | level                | Symbol             | i<br> Min<br>  | <br> Max   | Unit<br> <br>  | i        |
|                              | Quality conformance<br>inspection, part 1                           |                |                                                                                      | 1                           |                      |                    | 1              | ]<br> <br> |                | 1        |
| 1301                         | Filament current                                                    | -              | <br> t = 120 ±15                                                                     | 0.65                        | 11                   | If                 | 152            | 168        | Aac            |          |
| 1261                         | Electrode voltage (grid)                                            | - 1            |                                                                                      | 0.65                        | II                   | Ec1                | -110           | -146       | V dc           | -        |
| 1266                         | Total grid current                                                  | - 1            |                                                                                      | 0.65                        | 11                   | Ic1                |                | -25        | μA dc          |          |
|                              | Electrode current<br>(screen)                                       | -              | ,                                                                                    | 0.65                        | II                   | Ic2                | <br> <br>      | 25         | mA dc          | <u> </u> |
| 1231                         | Peak emission                                                       |                | eb = ec2 =<br>ec1 = 2.5 kv                                                           | 0.65                        | 11                   | is                 | l<br>  90<br>  | <br> <br>  | a .            | !        |
| 1266                         | Primary grid emission<br>(grid)                                     |                | <br> Pg1 = 200 W;<br> t = 120 max or<br> until stable;<br> anode and g2<br> floating | 0.65                        | 11                   | Isg1               | <br> <br> <br> | -500       | μA (dc         |          |
| 1266                         | Primary grid emission<br>(screen)                                   | -              | Pg2 = 450 W;<br>Ec1 = 0 V dc;<br>t = 120 max or<br>until stable;<br>anode floating   | 0.65                        | 11                   | Isg2               |                | -500<br>   | μ <b>A</b> (dc | 2        |
| Ац                           | Quality conformance                                                 |                |                                                                                      |                             | · .                  |                    |                | , į        | , 2<br>        |          |
| . , .                        | Direct-interelectrode<br>capacitance (ground<br>cathode connection) | -              |                                                                                      | }·                          | I                    | Cin<br>Cout<br>Cgp | 154<br>22      |            | pF<br>pF       |          |
| . 1                          | Direct-interelectrode capacitance (ground grid connection)          | -              |                                                                                      | }                           |                      | Cin<br>Cout<br>Cpk | 62<br>23       |            | pF .           |          |
| 1372<br>1372<br>1376<br>1376 | Current division<br>(method B, short pulse)                         | ! !<br>! !     | Eb = Ec2 =<br> 2,000 V dc;<br> Ec1 = -800<br> V dc; egk/ib =<br> 19 a                |                             | <br>                 | egk<br>ic2         | en 48 der      | 0<br>3.2   | V<br>a         |          |
| <b>J</b>                     | Power output                                                        |                | Class AB1 amp;<br> F = 1 MHz       (min); Eb = 9                                     | <del></del>                 |                      | Po                 | 20             | · :        | k₩<br>(useful) |          |

|                                        |                                                | 1         |                                                                                       | 1                           |            |                      | <u>, * _</u>             |                 |       |
|----------------------------------------|------------------------------------------------|-----------|---------------------------------------------------------------------------------------|-----------------------------|------------|----------------------|--------------------------|-----------------|-------|
| M M - 4                                |                                                |           |                                                                                       |                             | Inspection |                      | l<br>Lim                 | its             |       |
| Method                                 | Requirement or test                            | <br> <br> | Conditions<br> <br>                                                                   | (percent<br> defective)<br> |            | Symbol<br> <br>      | l<br> Min<br>            | ]<br> Max  <br> | Unit  |
|                                        | Quality conformance<br>inspection, part 3      |           |                                                                                       | 1                           |            | <br>                 | 1                        |                 |       |
|                                        | <br> Service-life guarantee                    | 3         |                                                                                       |                             |            |                      | !<br>!                   |                 |       |
| 1042                                   | Shock, specified pulse<br> <br> <br> <br> <br> | 1         | <br> No voltages<br> applied; shock<br> = 11 ms half-<br> sine; accel =<br> 15 G peak | <br> <br> <br> <br> <br>    |            | !<br> <br> <br> <br> | <br> <br> <br> <br> <br> | <br> <br> <br>  |       |
|                                        |                                                | 1         | <pre>(min); impacts l= 6 (3 each X land Z axes)</pre>                                 |                             |            |                      | ]<br> <br>               | , ; ;           |       |
| 1032                                   | Vibration, mechanical                          |           | No voltages lapplied; accel l= 2 G peak l(min); F = 10 lto 50 Hz, as- lcending only;  | <br> <br> <br>              | <br> <br>  |                      | <br> <br> <br> <br>      |                 |       |
| - 2<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <br>                                           | t         | Isweep t = 3 to<br>18 minutes; 1<br>Isweep each X<br>land Y axes                      | 1                           |            | !<br> <br>           |                          | 1               |       |
|                                        | Shock and vibration,<br>mechanical end points: |           | <br>                                                                                  | <br> <br>                   | ]<br> <br> | <br>                 | <br>                     |                 |       |
| _1261                                  | . Flectrode voltage<br>[ (grid)                | -         | <br> <br>                                                                             |                             | <br>!      | Ec1                  | <br> -100<br>            | 146             | -V-dc |
| 1266                                   | Total grid current                             | -         | <br> <br>                                                                             |                             | !<br>!     | Icl                  | · .                      | -30             | μA dc |
| 1301                                   | Filament current                               | 5         | [<br>i                                                                                |                             | <br> <br>  | l<br>  AIf<br>       | <br>                     | 3               | A ac  |

# HOTES:

<sup>1.</sup> Minimum airflow requirements for incoming air at 50°C maximum at sea level, for operation under 30 MHz, are shown. Additional cooling may be required for operation above 30 MHz. In all cases of operation a socket which provides for forced-air cooling of the base must be used, such as the EIMAC SK-300A, or equivalent, used with the EIMAC SK-316 Air Chimney, or equivalent, with air flowing in a base-to-anode direction. Where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial. Cooling air should be applied before or simultaneously with the application of electrode voltages, including the filament, and should normally be maintained for a short period after all voltages are removed to allow for tube cool-down. The cooling data shown is for the tube in a SK-300A socket with a SK-316 Air Chimney.

#### MIL-E-1/1767B

|                      | i<br>i                     | Sea level                                          | 10,000 feet      |          |                                            |  |  |
|----------------------|----------------------------|----------------------------------------------------|------------------|----------|--------------------------------------------|--|--|
| Anode<br>dissipation | l<br>  Airflow<br>  (cfm)/ | Approximate pressure<br>drop (In.H <sub>2</sub> 0) | Airflow<br>(cfm) | l Approl | oximate pressure rop (In.H <sub>2</sub> 0) |  |  |
| 7,500 W              | 220                        | 0.4                                                | - <b>3</b> 20    |          | 0.6                                        |  |  |
| 12,500 W             | 555                        | 2.5                                                | 810              | <u> </u> | 3.6                                        |  |  |
| 15,000 W             | 775                        | 5.0                                                | 1,130            |          | 7.3                                        |  |  |

- In all electrical tests involving application of filament voltage an air-system socket and chimney may be used and forced-air cooling is allowable.
- 3. The tube manufacturer warrants the tube for 1 year from date of shipment, or 1,000 hours of filament life, whichever first elapses. This warranty applies only when the tube is operated within the maximum ratings (see "Absolute Ratings" of MIL-E-1). A defective tube shall either be replaced, or at the option of the manufacturer, a credit shall be made in the amount of the original purchase price pro rated on the basis of 1,000 hours of "filament-on" time.
- 4. Testing shall be performed every 6 months, with sampling as follows:

$$\mathsf{n}_1 = 4 \qquad \mathsf{c}_1 = 0$$

where c<sub>2</sub> represents the total allowable failures for the first and second samples combined.

 $n_2 = 4$   $c_2 = 1;$ 

Separate samples may be used at the option of the manufacturer. Hone of the listed tests shall be considered destructive except in case of failure. In the event of failure after double sampling, that specific test shall become quality conformance inspection, part 2; after three consecutive successful submissions, the testing may revert to the quality conformance inspection, part 3 tests.

- 5. Any change in filament current resulting from the vibration or shock testing (considered individually) shall not exceed the specified limit for  $\Delta$ If.
- 6. During this test the tube shall be operated as a Class AB1 amplifier; the control grid shall not be driven positive, as indicated by grid current flow.

Custodians:

Army - ER Navy - EC Air Force - 85 Preparing activity: Navy - EC

(Project 5960-3331)

Review activities: Air Force - 99 DLA - ES

User activities: Navy - AS, OS, MC, CG Air Force - 11, 19

Agent: DLA - ES

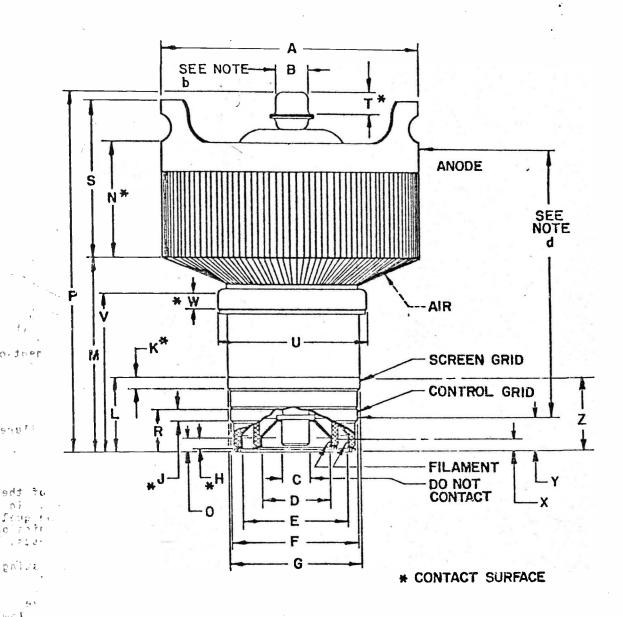



FIGURE 1. Outline drawing of electron tube type 8281.

|                                 | Ltr     | Dimensions in i<br>equivalents (mm | nches with metric<br>) in parentheses |  |  |  |  |
|---------------------------------|---------|------------------------------------|---------------------------------------|--|--|--|--|
| Į                               |         | Minimum                            | Maximum                               |  |  |  |  |
|                                 | Quali   | ity conformance i                  | nspection, part 2                     |  |  |  |  |
|                                 | С       | .600 (15.24)                       | .760 (19.30)                          |  |  |  |  |
|                                 | D       | 1.896 (48.16)                      | 1.936 (49.17)                         |  |  |  |  |
|                                 | Ε       | 3.133 (79.58)                      | 3.173 (80.59)                         |  |  |  |  |
| ĺ                               | F       | 3.792 (96.32)                      | 3.832 (97.33)                         |  |  |  |  |
|                                 | G       | 3.980 (101.09)                     | 4.020 (102.1])                        |  |  |  |  |
|                                 | Н       | .188 (4.78)                        |                                       |  |  |  |  |
|                                 | J       | .188 (4.78)                        |                                       |  |  |  |  |
|                                 | K       | .188 (4.78)                        |                                       |  |  |  |  |
| L 1.695 (43.05) BASIC (See note |         |                                    |                                       |  |  |  |  |
|                                 | 0       | .355 (9.02) B                      | ASIC (See note e)                     |  |  |  |  |
|                                 | Р       | 9.375 (238.12)                     |                                       |  |  |  |  |
|                                 | R       | .920 (23.37) B                     | ASIC (See note e)                     |  |  |  |  |
|                                 | T       | .375 (9.52)                        |                                       |  |  |  |  |
|                                 | U       | 4.406 (111.91)                     | 4.468 (113.49)                        |  |  |  |  |
|                                 | ٧       | 3.718 (94.44)                      | 3.781 (96.04)                         |  |  |  |  |
|                                 | W       | .219 (5.56)                        |                                       |  |  |  |  |
|                                 | Qua 1 i | ty conformance i<br>(See not       | nspection, part 3<br>e c)             |  |  |  |  |
| ł                               | Α       | 7.460 (189.48)                     | 7.580 (192.53)                        |  |  |  |  |
|                                 | В       | .855 (21.72)                       | .895 (22.73)                          |  |  |  |  |
|                                 | M       | 4.550 (115.57)                     | 4.783 (121.49)                        |  |  |  |  |
|                                 | N       | 2.412 (67.26)                      | 2.788 (70.82)                         |  |  |  |  |
|                                 | S       | 3.560 (90.42)                      | 3.684 (93.57)                         |  |  |  |  |
|                                 |         | Reference di<br>(See notes         |                                       |  |  |  |  |
|                                 | X       | .260 (6                            | .60)                                  |  |  |  |  |
|                                 | Υ       | .826 (20                           | .98)                                  |  |  |  |  |
|                                 | Z       | 1.600 (40                          | .64)                                  |  |  |  |  |

FIGURE 1. Outline drawing of electron tubes type 8281 - Continue

NOTES

The total indicator reading (T.I.R.) (the sum of the positive and negative deflection points indicated by the arrows. Quality conformance inspection part 2, shall apply. Top cap outline optional provided it meets requirements of dimensions B and T. shown by the indicator when measuring the eccentricity of the surface with respect contact surfaces shall not exceed .040 (1.02 mm) with respect to the control grid and anode contact surfaces when the latter surfaces are rotated on rollers at the to another, with the reference axis established) of the screen grid and filament പ് വ

failures for the first and second samples where c<sub>2</sub> represents the total allowable combined, --!i 0

Dimensions shall be checked every 6 months, with sampling as follows:

None of the listed inspection, part 2; after three consecutive successful submissions, the testing may failure after double sampling, that specific test shall become quality conformance tests shall be considered destructive except in case of failure. In the event of Separate samples may be used at the option of the manufacturer.

(1.02 mm) with respect to the control grid and anode contact surface when the latter surfaces are rotated on rollers at points indicated by the arrows. Basic dimension is a numerical value used to describe the theoretically exact size, revert to the quality conformance inspection, part 3 tests. The T.I.R. of the screen grid and filament contact surfaces shall not exceed <del>,</del> å

shape or location of a feature or datum target. It is the basis from which permissible Reference or nominal dimensions are listed for information only, and are not required variations are established by tolerances on other dimensions, in notes or by feature Optimum filament and grid connector heights for socket design purposes. control symbols.

Outline drawing of electron tube type 8281 - Continued.

for inspection purposes.

TATECO OPE THE LOSS AND I TH

7 of 5

7.4.4

^ E

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)

DEPARTMENT OF THE NAVY
Naval Electronic Systems Command
Washington, DC 20363



OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

# BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 12503 WASHINGTON D. C.

FIRST CLASS PERMIT NO. 12503 WASHINGTON D. C.
POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE NAVY

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
DEFENSE STANDARDIZATION PROGRAM BRANCH
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20363
ATTN: ELEX 8111

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Med French

The Office

AND AL PROPERTY.

per productive :

- Transconding

in production of the

| 2. DOCUMENT/NUMBER  2. DOCUMENT TITLE  3. NAME OF SUBMITTING ORGANIZATION  3. ADDRESS (Smerl, City, Stale, ZIP Code)  3. PROBLEM AREAS  a. Paregraph Number and Wording:  a. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. TYPE OF ORGANIZATION (Mark one)  VENDOR  USER  MANUFACTURER  OTHER (Specify): |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| A NAME OF SUBMITTING ORGANIZATION  ADDRESS (Sweet, City, Blass, ZIF Code)  PROBLEM AREAS  a. Paragraph Number and Wording:  b. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | USER  MANUFACTURER                                                               |
| PROBLEM AREAS  a. Paragraph Number and Wording:  b. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | USER  MANUFACTURER                                                               |
| PROBLEM AREAS  a. Paragraph Number and Wording:  b. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MANUFACTURER                                                                     |
| PROBLEM AREAS  a. Paragraph Number and Wording:  b. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MANUFACTURER                                                                     |
| PROBLEM AREAS  a. Paragraph Number and Wording:  b. Recommended Wording:  c. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |
| a. Peregraph Number and Wording:  b. Recommended Wording:  c. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| a. Paregraph Number and Wording:  b. Recommended Wording:  c. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OTHER (Speel/p):                                                                 |
| a. Peregraph Number and Wording:  b. Recommended Wording:  c. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| a. Paregraph Number and Wording:  b. Recommended Wording:  c. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| Beson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| z. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| z. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| z. Reston/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| c. Reston/Rationale for Ascommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| z. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| c. Reston/Rationale for Ascommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| z. Resson/Rationale for Ascommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| z. Resson/Rationale for Recommendation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n e "ig en".                                                                     |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| The first of the state of the s |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| s. NAME OF SUBMITTER (Last, First, NI) Optional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| MAILING ADDRESS (Street, City, State, ZIP Code) - Optional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b. WORK TELEPHONE NUMBER (Include Area<br>Code) — Optional                       |



## TECHNICAL DATA

8281 4CX15,000A

RADIAL BEAM POWER TETRODE

The EIMAC 8281/4CX15,000A is a ceramic/metal power tetrode intended for use in audio or radio frequency applications. It features a new type of internal mechanical structure which results in higher rf operating efficiency. Low rf losses in this mechanical structure permit operation of the 8281/4CX15,000A at full ratings up to 110 MHz, and at reduced ratings, to 225 MHz.

The 8281/4CX15,000A is also recommended for radio-frequency linear power amplifier service, and for VHF television linear amplifier service.



# GENERAL CHARACTERISTICS 1

| Ε | L | Ε | C | T | R | ICAI | L |
|---|---|---|---|---|---|------|---|
|---|---|---|---|---|---|------|---|

| Filament: Thoriated Tungsten                                                                                                                      |               |              |             |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------|--------|
| Voltage                                                                                                                                           | $6.3 \pm 0.3$ | V            |             |        |
| Current, at 6.3 volts                                                                                                                             | 160           | Α            |             |        |
| Amplification Factor, average                                                                                                                     |               |              |             |        |
| Grid to Screen                                                                                                                                    | 4.5           |              |             |        |
| Direct Interelectrode Capacitances (cathode grounded): <sup>2</sup>                                                                               |               |              |             |        |
| Cin                                                                                                                                               | • • • • • • • |              | 160.0       | рF     |
| Cout                                                                                                                                              |               |              | 24.5        | -      |
| Cgp                                                                                                                                               |               |              | 1.5         | -      |
| Direct Interelectrode Capacitances (grid and screen grounded                                                                                      |               |              |             | Γ-     |
| Cin                                                                                                                                               |               |              | 67.0        | рF     |
| Cout                                                                                                                                              |               |              | 25.5        | •      |
| Cpk                                                                                                                                               |               |              | 0.2         | •      |
| Maximum Frequency Ratings                                                                                                                         |               |              | 0.2         | Ρ.     |
| CW                                                                                                                                                |               |              | 110         | MHz    |
| 1. Characteristics and operating values are based on performance tests.  the result of additional data or product refinement. FIMAC Division of N | These figures | may change w | vithout not | ice as |

- additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

Length

#### Maximum Overall Dimensions:

| Deligii                               | n              |
|---------------------------------------|----------------|
| Diameter 7.580 in; 192.53 mr          | n              |
| Net Weight                            | 5              |
| Operating Position                    | n              |
| Cooling Forced ai                     | r              |
| Operating Temperature, maximum        |                |
| Ceramic/Metal Seals and Anode Core    | $\overline{C}$ |
| Base                                  | С              |
| Recommended Air System Socket SK-300/ | 4              |
| Recommended Air Chimney               |                |

(Revised 12-15-73)

1971 by Varian

Printed in U.S.A.



#### RADIO FREQUENCY LINEAR AMPLIFIER TYPICAL OPERATION GRID DRIVEN, Class AB1 Peak Envelope or Modulation Crest Conditions ABSOLUTE MAXIMUM RATINGS Plate Voltage ...... 7,500 10,000 Vdc Screen Voltage...... 1,500 1,500 Vdc DC PLATE VOLTAGE . . . . . . . . . . 10,000 VOLTS Grid Voltage 1 . . . . . . . . . . . . . . . . . . -350 -370 Vdc DC SCREEN VOLTAGE ..... 2000 VOLTS Zero-Signal Plate Current . . . . 1.0 1.0 Adc DC PLATE CURRENT ...... 6.0 AMPERES Single-Tone Plate Current . . . . 4.0 4.25 Adc PLATE DISSIPATION ..... 15,000 WATTS Single-Tone Screen Current 2 . . . 170 150 mAdc SCREEN DISSIPATION ...... 450 WATTS Peak rf Grid Voltage 2 . . . . . . . 330 340 v 200 WATTS Plate Dissipation ..... 14.0 kW 12.2 1. Adjust for specified zero-signal plate current. Single-Tone Plate Output Power . 20.8 28.5 kW Resonant Load Impedance . . . . . 2. Approximate value. 865 1,260 $\Omega$ RADIO FREQUENCY POWER AMPLIFIER OR TYPICAL OPERATION OSCILL ATOR Plate Voltage ...... 7,500 10,000 Vdc Class C Telegraphy or FM Telephony Screen Voltage....... 750 750 Vdc (Key-Down Conditions) Grid Voltage ...... -510 -550 Vdc Plate Current ..... 4.65 4.55 Adc ABSOLUTE MAXIMUM RATINGS Screen Current1..... 0.59 0.54 Adc Grid Current 1....... 0.27 Adc 0.30 DC PLATE VOLTAGE . . . . . . . . . 10,000 VOLTS Peak rf Grid Voltage1..... 730 790 v DC SCREEN VOLTAGE . . . . . . . . . . 2000 VOLTS Calculated Driving Power . . . . . 220 220 W 5.0 AMPERES DC PLATE CURRENT ...... Plate Dissipation . . . . . . . . . 8.1 9.0 kW PLATE DISSIPATION ..... 15,000 WATTS Plate Output Power . . . . . . . . 26.7 36.5 kW SCREEN DISSIPATION ..... 450 WATTS GRID DISSIPATION ...... 200 WATTS 1. Approximate value. PLATE MODULATED RADIO FREQUENCY POWER TYPICAL OPERATION **AMPLIFIER** 8,000 Vdc Plate Voltage ...... 6,000 GRID DRIVEN Class C Telephony Screen Voltage..... 750 750 Vdc (Carrier Conditions) Grid Voltage ..... -600 -640 Vdc 3.65 Adc 3.75 ABSOLUTE MAXIMUM RATINGS 0.45 0.43 Adc Grid Current 1..... 0.18 Adc 0.18 Peak af Screen Voltage 1 DC PLATE VOLTAGE . . . . . . . . . . . . . . . . . 8000 VOLTS 100% modulation..... 740 710 v DC SCREEN VOLTAGE . . . . . . . . . . . . 1500 VOLTS Peak rf Grid Voltage 1. . . . . . . . 800 840 v DC PLATE CURRENT ..... 4.0 AMPERES Calculated Driving Power . . . . . 150 150 W PLATE DISSIPATION ..... 10,000 WATTS Plate Dissipation ..... 5.1 5.8 kW SCREEN DISSIPATION ...... 450 WATTS Plate Output Power . . . . . . . . . 17.4 23.5 kW GRID DISSIPATION ...... 200 WATTS 1. Approximate value. AUDIO FREQUENCY POWER AMPLIFIER OR TYPICAL OPERATION (Two tubes) **MODULATOR** Plate Voltage ..... 10,000 Vdc 7,500 GRID DRIVEN, Class AB1 (Sinusoidal Wave) Screen Voltage ...... 1,500 1,500 Vdc Grid Voltage1...... -350-370 Vdc ABSOLUTE MAXIMUM RATINGS (per tube) Zero-Signal Plate Current<sup>3</sup>.... 1.00 1.00 Adc Maximum Signal Plate Current . . 8.50 Adc 8.80 DC PLATE VOLTAGE ..... 10,000 VOLTS 0.30 Adc Maximum Signal Screen Current2. 0.34 DC SCREEN VOLTAGE . . . . . . . . . 2000 VOLTS Peak af Grid Voltage 2..... 340 v 330 6.0 AMPERES Maximum Signal Plate Dissipation 3 14.0 kW 12.2 PLATE DISSIPATION ..... 15,000 WATTS Plate Output Power . . . . . . . . 41.6 57.0 kW Load Resistance 450 WATTS SCREEN DISSIPATION ...... 2,520 $\Omega$ 1,730 (plate to plate) ..... GRID DISSIPATION ...... 200 WATTS 1. Adjust for specified zero-signal plate current. 2. Approximate value. 3. Per Tube.

# **TELEVISION LINEAR AMPLIFIER**

Cathode Driven

# ABSOLUTE MAXIMUM RATINGS

| 110 MHz to 225 MHz     |       |
|------------------------|-------|
| DC PLATE VOLTAGE 6500  | VOLTS |
| DC SCREEN VOLTAGE      | VOLTS |
| DC PLATE CURRENT 5.0   |       |
| PLATE DISSIPATION      |       |
| SCREEN DISSIPATION 450 |       |
| GRID DISSIPATION 200   |       |

TYPICAL OPERATION, Composite Signal Black Level Unless Otherwise Stated

| Plate Voltage                    | 5000  | 6000  | Vdc      |
|----------------------------------|-------|-------|----------|
| Screen Voltage                   | 500   | 700   | Vdc      |
| Grid Voltage 1                   | -160  | -180  | Vdc      |
| Plate Current (zero sig.)        | .500  | .650  | Adc      |
| Plate Current                    | 2.800 | 3.335 | Adc      |
| Grid Current                     | .075  | .035  | Adc      |
| Screen Current                   | .060  | .040  | Adc      |
| Peak Cath. Volt. (pk synch.)     | 310   | 345   | V        |
| Cath. Driving Power (pk. synch.) | 975   | 1350  | W        |
| Plate Output Power (pk. synch.)  | 11.0  | 16.5  | kw       |
| Plate Load Resistance            | 600   | 600   | $\Omega$ |
|                                  |       |       |          |

1. Approximate value.

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                       | Min. | Max.     |
|---------------------------------------------------------|------|----------|
| Heater Current, at 6.3 volts                            | 152  | 168 A    |
| Interelectrode Capacitances, cathode grounded 1         |      |          |
| Cin                                                     |      | 167.0 pF |
| Cout                                                    | 22.0 | 27.0 pF  |
| Cgp                                                     |      | 2.0 pF   |
| Interelectrode Capacitances, grid and screen grounded 1 |      | •        |
| Cin                                                     | 62.0 | 72.0 pF  |
| Cout                                                    | 23.0 | 28.0 pF  |
| Cpk                                                     |      | 0.3 pF   |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

### MECHANICAL

#### **APPLICATION**

MOUNTING - The 4CX15,000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC Air-System Socket Type SK-300A is designed especially for the concentric base terminals of the 4CX15,000A. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through the SK-316 Air Chimney, into the anode cooling fins.

COOLING - The maximum temperature rating for the external surfaces of the 4CX15,000A is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperatures at 225°C in 50°C ambient air are tabulatted below (for operation below 30 megahertz). This data is for the tube mounted in an SK-300A socket with an SK-316 chimney.

| SEA LEVEL 10,000 FEE              |                   | FEET                                 |                   |                                      |
|-----------------------------------|-------------------|--------------------------------------|-------------------|--------------------------------------|
| Plate<br>Dissipation<br>* (Watts) | Air Flow<br>(CFM) | Pressure<br>Drop(Inches<br>of Water) | Air Flow<br>(CFM) | Pressure<br>Drop(Inches<br>of Water) |
| 7,500<br>12,500<br>15,000         | 230<br>490<br>645 | .7<br>2.7<br>4.6                     | 336<br>710<br>945 | 1.0<br>4.1<br>7.0                    |

\*Since the power dissipated by the filament represents about 1000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 600 watts, allowance has been made in preparing this tabulation for an additional 1600 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

#### **ELECTRICAL**

FILAMENT OPERATION - The rated filament voltage for the 4CX15,000A is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 4CX15,000A must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

GRID OPERATION - The 4CX15,000A control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CX15,000A must not exceed 450 watts.

Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX15,000A is 15,000 watts.

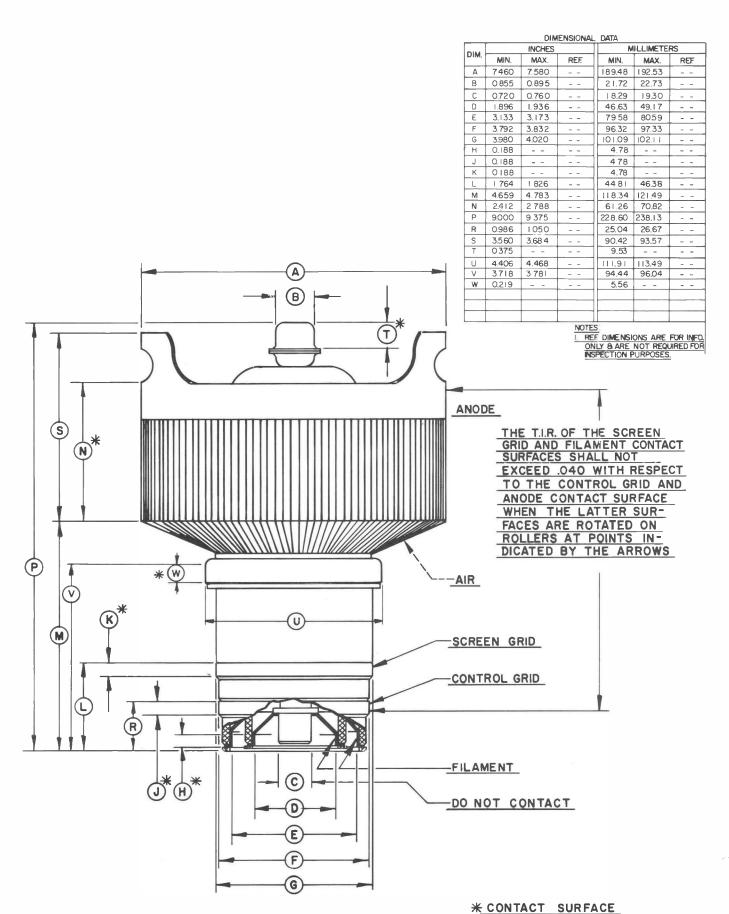
When the 4CX15,000A is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 10,000 watt maximum plate dissipation rating will be exceeded.

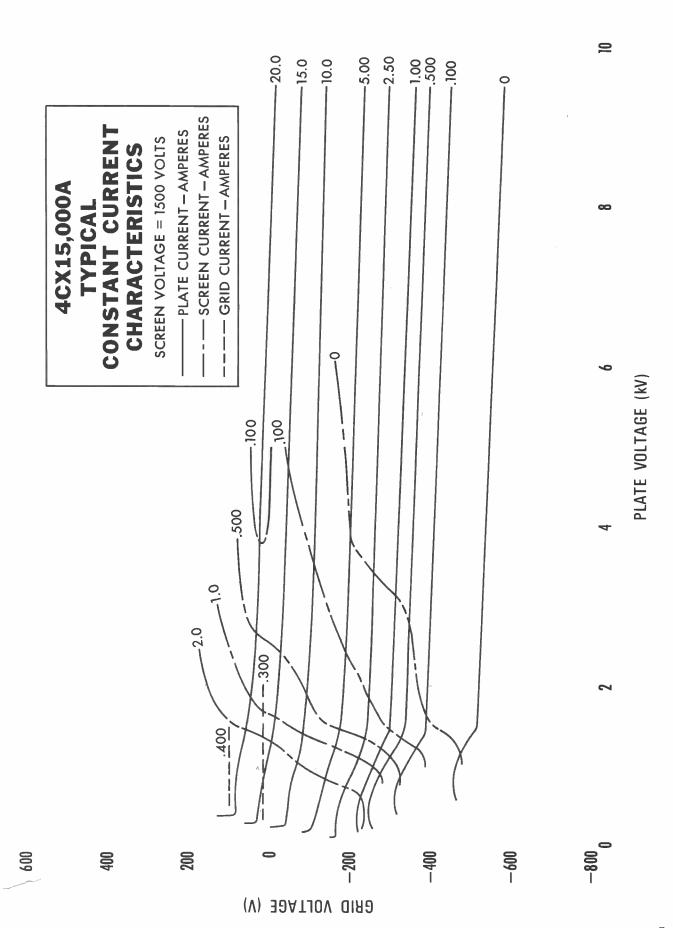
HIGH VOLTAGE - Normal operating voltages used with the 4CX15,000A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

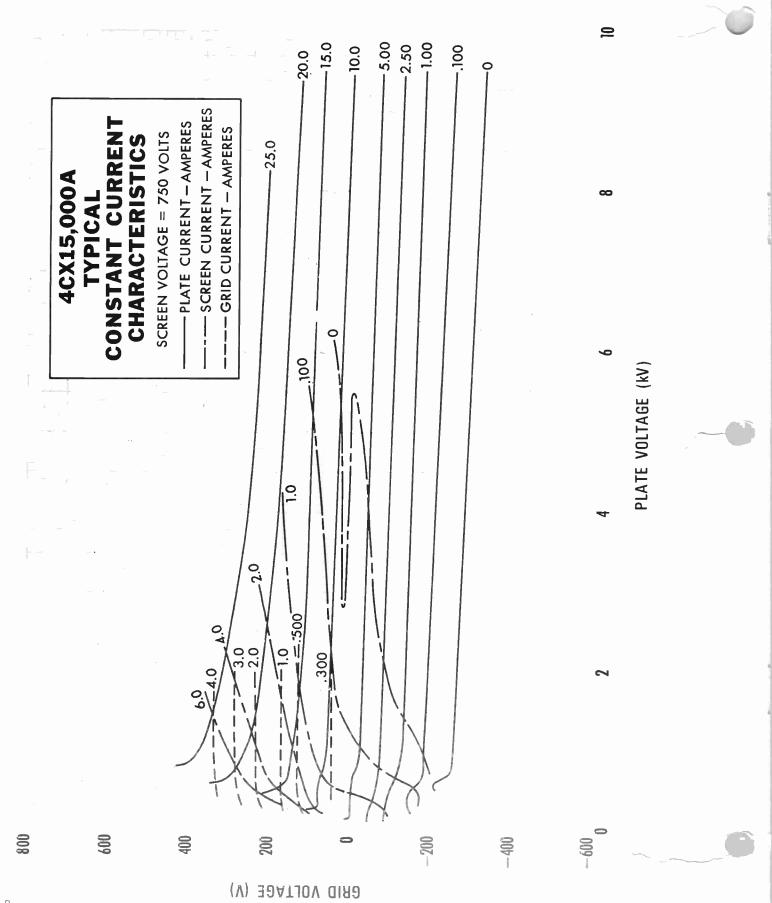
X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CX15,000A, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 4CX 15,000A, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry—the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground".


The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to the Application Engineering Dept., Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070 for information and recommendations.









# ADVANCE PRODUCT ANNOUNCEMENT

9019 YC130 VHF RADIAL BEAM **POWER** TETRODE

The EIMAC 9019/YC130 is a ceramic/metal VHF power tetrode. It is rated for full power input to 110 MHz and is recommended for use as a Class C power amplifier or plate modulated amplifier.

Air-system sockets and matching air chimneys are available from EIMAC. A connector clip is available for making the dc connection to the anode.

GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Filament: Thoriated Tungsten Mesh  Voltage         |         |
|----------------------------------------------------|---------|
| Cin                                                | 160 pF  |
| Cout                                               | 26.5 pF |
| Cgp                                                | 1.5 pF  |
| Direct Interelectrode Capacitance (grids grounded) |         |
| Cin                                                | 67 pF   |
| Cout                                               | 27.5 pF |
| Cpk                                                | 0.2 pF  |
| Maximum Frequency for Full Ratings (CW)            | 110 MHz |

- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Maximum Overall Dimensions:                                        |              |
|--------------------------------------------------------------------|--------------|
| Longon v v v v v v v v v v v v v v v v v v v                       | In; 23.81 cm |
| Didilicter                                                         | In; 19.25 cm |
|                                                                    | 8 Lb; 5.8 kg |
| Operating Position                                                 | e Up or Down |
| Maximum Operating Temperature, Ceramic/Metal Seals or Envelope     | 250°C        |
| Cooling                                                            | Forced Air   |
| Base                                                               | 1 Concentric |
| Recommended All System Socket. Tot Et of the Service               | IMAC SK-300A |
| TOT THE SCITTCE AS A A A A A A A A A A A A A A A A A A             | EIMAC SK-360 |
|                                                                    | EIMAC SK-316 |
| Recommended Screen Grid Bypass Capacitor Kit for the SK-360 Socket | EIMAC SK-355 |
| Available Anode Connector Clip                                     | EIMAC ACC-3  |

| RADIO FREQUENCY POWER AMPLIFIER                             | TYPICAL OPERATION (Frequencies to 110 MHz)         |         |            |
|-------------------------------------------------------------|----------------------------------------------------|---------|------------|
| Class C FM<br>(Key-down conditions)                         | DC Plate Voltage 7.5                               | 10.0 k  | k V d c    |
| ABSOLUTE MAXIMUM RATINGS                                    | DC Screen Voltage                                  | -550 V  | Vdc<br>Vdc |
| 10,000,000,00                                               | DC Plate Current * 4.65 DC Screen Current *        |         | Adc<br>Adc |
| DC PLATE VOLTAGE 10,000 VOLTS DC SCREEN VOLTAGE 2000 VOLTS  | DC Screen Current * 0.59 DC Grid Current * 0.30    |         | Adc        |
| DC GRID VOLTAGE750 VOLTS                                    | Peak rf Grid Voltage * 730                         | 790     |            |
| DC PLATE CURRENT 5.0 AMPERES PLATE DISSIPATION 18 KILOWATTS | Calculated Driving Power 220 Plate Dissipation 8.1 | 220 V   |            |
| SCREEN DISSIPATION 450 WATTS                                | Plate Output Power                                 | 36.5 k  | k W        |
| GRID DISSIPATION 200 WATTS                                  | * Annroximate value: will vary with circuit        | and tul | be         |

395035(Effective March 1986) VA4889

Printed in U.S.A.

\* Approximate value; will vary with circuit and tube



| PLATE MODULATED RF POWER AMPLIFIER<br>Grid Driven                                 | TYPICAL OPERATION                                                                    |                  |                  |                  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|------------------|------------------|
| Class C Telephony - Carrier Conditions                                            | DC Plate Voltage                                                                     | 6.0<br>750       | 8.0<br>750       | k V d c<br>V d c |
| ABSOLUTE MAXIMUM RATINGS                                                          | Peak Af Screen Voltage (100% Mod)                                                    | 740              | 710              | ٧                |
| DC PLATE VOLTAGE 8000 VOLTS                                                       | DC Grid Bias Voltage                                                                 | -600             | -640             | Vdc              |
| DC SCREEN VOLTAGE 2000 VOLTS                                                      | DC Plate Current                                                                     | 3.75<br>0.45     | 3.65<br>0.43     | Adc<br>Adc       |
| DC GRID VOLTAGE750 VOLTS                                                          | DC Grid Current *                                                                    | 0.43             | 0.43             | Adc              |
| DC PLATE CURRENT 4.0 AMPERES                                                      | Peak rf Grid Voltage *                                                               | 800              | 840              | V                |
| PLATE DISSIPATION # . 12 KILOWATTS SCREEN DISSIPATION ## 450 WATTS                | Grid Driving Power (calculated) *                                                    | 150              | 150              | W                |
| GRID DISSIPATION ## . 200 WATTS                                                   | Plate Dissipation *                                                                  | 5.1<br>17.4      | 5.8              |                  |
| # Corresponds to 18 kW at 100% sine-                                              |                                                                                      | 17.4             | 23.5             | kW               |
| wave modulation.                                                                  | <ul><li>* Approximate value.</li><li>## Average, with or without modulatio</li></ul> | n.               |                  |                  |
| AUDIO FREQUENCY AMPLIFIER OR MODULATOR<br>Grid Driven, Class AB1, Sinusoidal Wave | TYPICAL OPERATION (two tubes)                                                        |                  |                  |                  |
| ABSOLUTE MAXIMUM RATINGS                                                          | DC Plate Voltage                                                                     | 7.5              | 10.0             | k Vdc            |
|                                                                                   | DC Screen Voltage                                                                    | 1500             | 1500             | Vdc              |
| DC PLATE VOLTAGE 10.0 KILOVOLTS DC SCREEN VOLTAGE 2000 VOLTS                      | DC Grid Voltage ##                                                                   | -350             | -370             | Vdc              |
| DC PLATE CURRENT 6.0 AMPERES                                                      | Zero-Signal Plate Current<br>Maximum Signal Plate Current                            | 1.0<br>8.8       | 1.0<br>8.5       | Adc<br>Adc       |
| PLATE DISSIPATION 18.0 KILOWATTS                                                  | Mandaum Cdanal Coassa Coassa &                                                       | 0.34             | 0.30             | Adc              |
| SCOLLN DISSIBATION ACOUNTE                                                        | maximum Signal Screen Current *                                                      | 0.07             |                  |                  |
| SCREEN DISSIPATION 450 WATTS                                                      | Maximum Signal Screen Current *<br>Peak AF Grid Voltage * #                          | 330              | 340              | ٧                |
| GRID DISSIPATION 200 WATTS                                                        | Peak AF Grid Voltage * # Driving Power *                                             | 330<br>0         | 340<br>0         | W                |
| GRID DISSIPATION 200 WATTS  * Approximate value. # Per tube.                      | Peak AF Grid Voltage * #                                                             | 330<br>0<br>1730 | 340<br>0<br>2520 | W<br>Ohms        |
| GRID DISSIPATION 200 WATTS                                                        | Peak AF Grid Voltage * # Driving Power *                                             | 330<br>0         | 340<br>0         | W                |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.

| RANGE VALUES FOR EQUIPMENT DESIGN | Min.      | Max.             |                |
|-----------------------------------|-----------|------------------|----------------|
| Filament: Current at 7.5 volts    | 148       | 168              | Α              |
| Cin                               | 154<br>24 | 167<br>29<br>2.0 | pF<br>pF<br>pF |

<sup>1</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Standard RS-191.



#### A P P L I C A T I O N

#### MECHANICAL

MOUNTING - The tube must be mounted vertically, base up or down at the designer's convenience, and should be protected from vibration and shock.

STORAGE - If a tube is to be stored as a spare it should be kept in its original shipping carton, with the original packing material, to minimize the possibility of handling damage.

Before storage a new tube should be operated in the equipment for 100 to 200 hours to establish it has not been damaged and operates properly (See FILAMENT OPERATION for recommendations on initial value of filament voltage during this operation period). If the tube is still in storage 6 months later it again should be operated in the equipment for 100 to 200 hours to make sure there has been no degradation. If operation is satisfactory the tube can again be stored with great assurance of being a known-good spare.

SOCKETING - An air-system socket should be used in all applications to assure cooling of the tube base seals. The EIMAC SK-300A is recommended for audio or LF/HF rf operation; the SK-360 is recommended for VHF operation. The SK-360 incorporates low-inductance filament bypassing in the form of three 5000 pF copper-clad Kapton®capacitors. A screen grid bypass capacitor kit (the SK-355) is also available for the SK-360 socket, and includes eight 1000 pF 5000 DCWV capacitors (EIMAC P/N 050706), 16 mounting clips (EIMAC P/N 242859), and an assembly drawing (EIMAC P/N 243135) which shows how the parts are attached to the socket.

COOLING - The tube requires forced-air cooling in all applications. An air-system socket is recommended, with a matching air chimney. Normally the tube socket is mounted in a pressurized compartment so the cooling air passes through the socket and is then guided to the anode cooling fins by an air chimney. A chimney is available from EIMAC, the SK-316, for use with the SK-300A socket at frequencies below 30 MHz and with the SK-360 at VHF. If all cooling air is not passed around the base of the tube and through the socket, then arrangements must be made to assure adequate cooling of the tube base and the socket contacts themselves.

In this regard it should be noted the contact fingers used in the four contact collet assemblies (inner and outer filament, control grid and screen grid) are made of beryllium copper. If operated above 150°C for any appreciable length of time this material will lose its temper (or springy characteristic) and then will no longer make good contact to the base rings of the tube. This can lead to arcing which, in an extreme case, can burn through the metal of the tube base ring and the tube's vacuum integrity is then destroyed.

Thus adequate movement of cooling air around the base of the tube accomplishes a double purpose in keeping the tube base and the socket contact fingers at a safe operating temperature.

Though the maximum temperature rating for seals and the anode core is  $250^{\circ}\text{C}$ , it is considered good engineering practice to allow some safety factor

and the table shown is for sea level with cooling air at 50°C and maximum tube anode temperature of 225°C. Such a safety factor makes some allowance for variables such as dirty air filters, dirty tube anode cooling fins which will effect cooling efficiency, duct losses, etc. The figures shown are for the tube in an air-system socket with an air chimney in place, with air passing in a base-to-anode direction. Pressure drop values shown are approximate and are for the tube/socket/chimney combination.

| Plate Diss. (Watts) | Air Flow<br><u>(cfm)</u> | Press.Drop<br>Inches Water |
|---------------------|--------------------------|----------------------------|
| 7,500               | 230                      | 0.7                        |
| 12,500              | 490                      | 2.7                        |
| 15,000              | 645                      | 4.6                        |
| 18,000              | 970                      | 8.2                        |

At altitudes significantly above sea level flow rate must be increased for equivalent cooling. At 5000 feet both the flow rate and the pressure drop should be increased by a factor of 1.20, while at 10,000 feet both flow rate and pressure drop must be increased by 1.46.

Anode and base cooling should be applied before or simultaneously with filament voltage turnon and should normally continue for a brief period after shutdown to allow the tube to cool down properly.

IMPACT AND VIBRATION - The 9019/YC130 has a thoriated tungsten mesh filament and is intended for regular commercial service. Any tube with a thoriated tungsten filament should be protected from undue shock and vibration and if not installed in equipment should always be stored in its protective packing material in its shipping container.

#### ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FILAMENT OPERATION - With a new tube, or one which has been in storage for some period of time, operation with filament voltage only applied for a period of 30 to 60 minutes is recommended before full operation begins. This allows the active getter material mounted within the filament structure to absorb any residual gas molecules which have accumulated during storage. Once normal operation has been established a minimum filament warmup time of four to five seconds is normally sufficient.

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The voltage should then be increased a few tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked after 24 hours.

Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life.

EIMAC Application Bulletin #18 titled "EXTENDING TRANSMITTER TUBE LIFE" contains valuable information and is available on request.

GRID OPERATION - Maximum control grid dissipation is 200 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage. A protective spark-gap device should be connected between control grid and cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 450 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

PLATE DISSIPATION - The rated maximum plate dissipation of the tube is 18 kilowatts, which may be safely sustained with adequate air cooling. When the tube is used as a plate-modulated rf amplifier the dissipation under carrier conditions should be limited to 12 kilowatts.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and cooling air interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to help absorb power supply stored energy if an internal arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of #30 AWG copper wire. The wire will remain intact if protection is adequate.

EIMAC Application Bulletin #17 titled FAULT PRO-TECTION contains considerable detail and is available from EIMAC on request.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

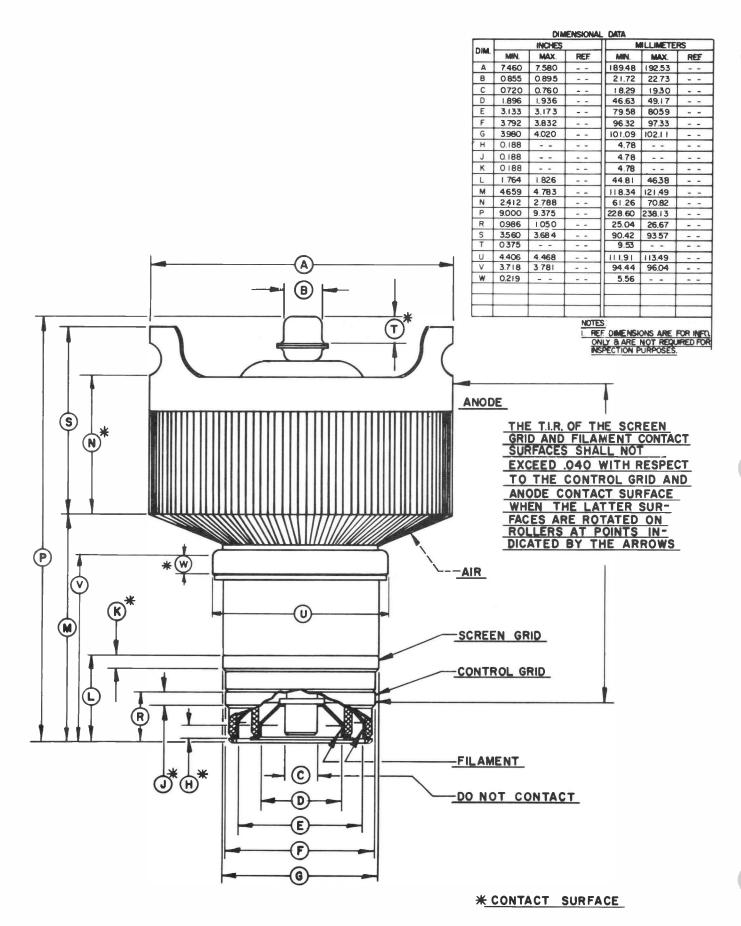
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of a specially constructed test fixture which shields all external tube leads or contacts from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191.

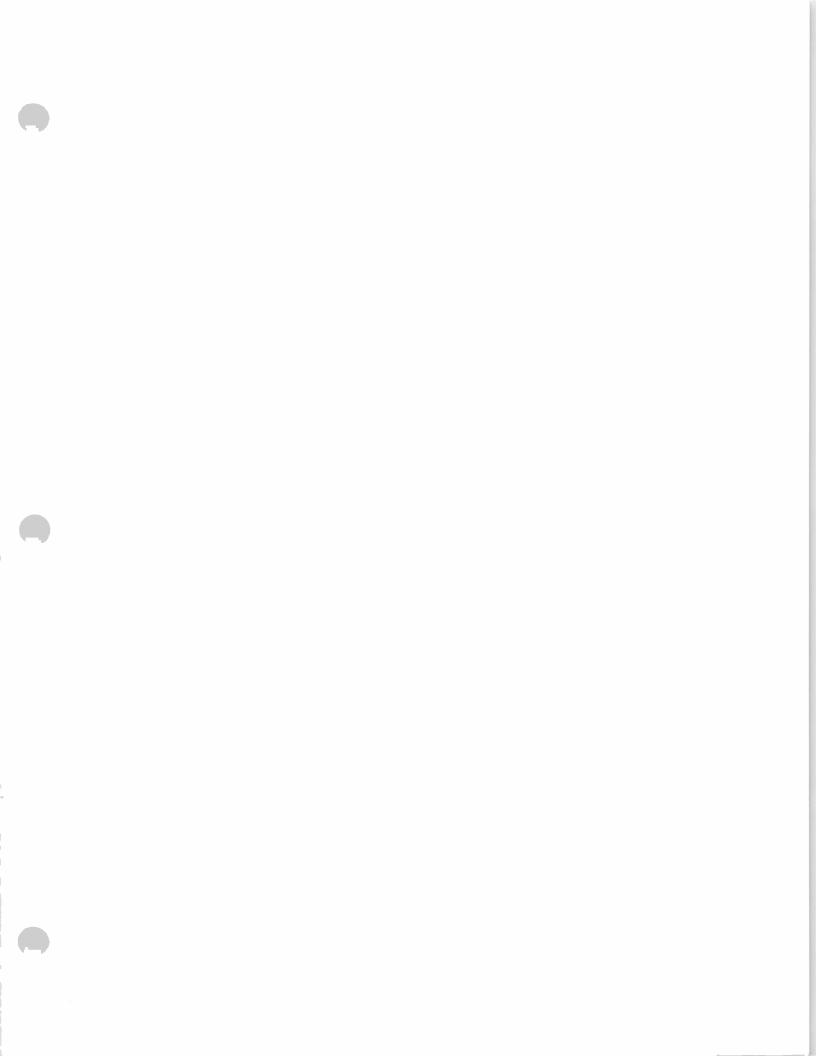
The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in the appliction. Measurements should be taken with the mounting which represents approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.



#### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.


The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:


- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.











ELECTRICAL

# TECHNICAL DATA

# 8910 4CX15,000J

RADIAL BEAM
POWER TETRODE

The EIMAC 8910/4CX15,000J is a ceramic/metal, forced-air cooled power tetrode intended for use in audio or radio frequency applications. The internal structure features a mesh filament and a mechanical design which assures good strength and high rf operating efficiency.

Full ratings on the 8910/4CX15,000J apply to 110 MHz, and it is especially recommended for radio frequency linear amplifier service.



160.0 pF

# GENERAL CHARACTERISTICS 1

| Filament; Thoriated Tungsten Mesh                                   |   |
|---------------------------------------------------------------------|---|
| Voltage 7.5 ± 0.3                                                   | V |
| Current, at 7.5 volts                                               | A |
| Amplification Factor, average                                       |   |
| Grid to Screen 4.5                                                  |   |
| Direct Interelectrode Capacitances (cathode grounded); <sup>2</sup> |   |
| Cin                                                                 |   |
| Cout                                                                |   |

| Cout                                                                        | 26.5 | pF   |
|-----------------------------------------------------------------------------|------|------|
| Cgp                                                                         |      |      |
| Direct Interelectrode Capacitances (grid and screen grounded): <sup>2</sup> |      | 1    |
| Cin                                                                         | 67.0 | pF   |
|                                                                             | 27.5 | 1    |
| Cpk                                                                         | 0.2  |      |
| Maximum Frequency Ratings                                                   |      | Γ-   |
| C W                                                                         | 110  | MH 2 |

- Characteristics and operating values are based on performance tests. These figures may change without notice as
  the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this
  information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# MECHANICAL

| Maximum Overall Dimensions:        |                       |
|------------------------------------|-----------------------|
| Length                             | 9.375 in; 238.13 mm   |
| Diameter                           | 7.580 in; 192.53 mm   |
| Net Weight                         | 12.8 lb; 5.81 kg      |
| Operating Position                 | ical, base up or down |
| Cooling                            |                       |
| Operating Temperature, maximum     |                       |
| Ceramic/Metal Seals and Anode Core | 250°C                 |

(Effective 10-15-71) © 1971 by Varian

Printed in U.S.A.

| Base                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                        | SK-300A                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, Class AB                                                                                                                                                                                                                            | TYPICAL OPERATION  Peak Envelope or Modulation Crest Con- Class AB1                                                                                                                                                                                                                                                                                                                                                    | ditions                                                                                                       |
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
| PLATE VOLTAGE                                                                                                                                                                                                                                                                     | Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                          | . 1250 Vdc<br>250 Vdc<br>. 1.25 Adc<br>. 2.90 Adc<br>. 200 mAdc<br>. 200 v<br>. 8300 W<br>. 12 kW<br>. 1450 Ω |
| <ol><li>Referenced against one tone of a two equal-tone<br/>signal.</li></ol>                                                                                                                                                                                                     | 3rd Order                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS  PLATE VOLTAGE 10.0 kVdc SCREEN VOLTAGE 2.0 kVdc PLATE CURRENT 5.0 Adc PLATE DISSIPATION 15.0 kW SCREEN DISSIPATION 450 W GRID DISSIPATION 200 W | TYPICAL OPERATION         Plate Voltage       7,500         Screen Voltage       750         Grid Voltage       -510         Plate Current       4,65         Screen Current 1       0.59         Grid Current 1       0.30         Peak rf Grid Voltage 1       730         Calculated Driving Power       220         Plate Dissipation       8.1         Plate Output Power       26.7         1. Approximate value | 750 Vdc<br>-550 Vdc<br>4.55 Adc<br>0.54 Adc<br>0.27 Adc<br>790 v<br>220 W<br>9.0 kW                           |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER                                                                                                                                                                                                                                   | TYPICAL OPERATION                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |
| GRID DRIVEN, Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                     | Plate Voltage 6,000 Screen Voltage 75 Grid Voltage -60 Plate Current 3.7 Screen Current 1 0.4 Grid Current 1 0.1                                                                                                                                                                                                                                                                                                       | 0 -640 Vdc<br>5 3.65 Adc<br>5 0.43 Adc                                                                        |
| PLATE VOLTAGE 8.0 kVdc SCREEN VOLTAGE 1.5 kVdc PLATE CURRENT 4.0 Adc PLATE DISSIPATION 10.0 kW SCREEN DISSIPATION 450 W GRID DISSIPATION 200 W                                                                                                                                    | Peak af Screen Voltage 1  100% modulation                                                                                                                                                                                                                                                                                                                                                                              | 0 710 v<br>0 840 v<br>0 150 W<br>1 5.8 kW                                                                     |

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

GRID DRIVEN , Class AB<sub>1</sub> (Sinusoidal Wave)

#### ABSOLUTE MAXIMUM RATINGS (per tube)

| PLATE VOLTAGE       |  |  |  |  |    |  |  | 10.0 | kVdd |
|---------------------|--|--|--|--|----|--|--|------|------|
| SCREEN VOLTAGE      |  |  |  |  |    |  |  | 2.0  | kVdd |
| PLATE CURRENT       |  |  |  |  |    |  |  | 6.0  | Adc  |
| PLATE DISSIPATION . |  |  |  |  | ., |  |  | 15.0 | kW   |
| SCREEN DISSIPATION  |  |  |  |  |    |  |  | 450  | W    |
| GRID DISSIPATION    |  |  |  |  |    |  |  | 200  | W    |

- 1. Adjust for specified zero-signal plate current.
- 2. Approximate value.

TYPICAL OPERATION (Two Tubes)

| Vdc      |
|----------|
| Vdc      |
| Vdc      |
| Adc      |
| Adc      |
| Adc      |
| V        |
|          |
| kW       |
| kW       |
|          |
| $\Omega$ |
|          |

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN               | Min.  | Max.     |
|-------------------------------------------------|-------|----------|
| Heater Current, at 7.5 volts                    | 148   | 168 A    |
| Interelectrode Capacitances, cathode grounded 1 |       |          |
| Cin                                             | 154.0 | 167.0 pF |
| Cout                                            | 24.0  | 29.0 pF  |
| Cgp                                             |       | 2.0 pF   |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### APPLICATION

#### MECHANICAL

MOUNTING - The 4CX15,000J must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC Air-System Socket Type SK-300A is designed especially for the concentric base terminals of the 4CX15,000J. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through the SK-316 Air Chimney, into the anode cooling fins.

COOLING - The maximum temperature rating for the external surfaces of the 4CX15,000J is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below  $250^{\circ}\text{C}$ . Air-flow requirements to maintain seal temperatures at  $225^{\circ}\text{C}$  in  $50^{\circ}\text{C}$  ambient air are tabulated below (for operation below 30 megahertz). This data is for the tube mounted in an SK-300A socket with an SK-316 chimney.

|                             | SEA LEVE          | 10,00                                | O FEET            |                                      |
|-----------------------------|-------------------|--------------------------------------|-------------------|--------------------------------------|
| Plate Dissipation * (Watts) | Air Flow<br>(CFM) | Pressure<br>Drop(Inches<br>of Water) | Air Flow<br>(CFM) | Pressure<br>Drop(Inches<br>of Water) |
| 7,500<br>12,500<br>15,000   | 230<br>490<br>645 | .7<br>2.7<br>4.6                     | 336<br>710<br>945 | 1.0<br>4.1<br>7.0                    |

<sup>\*</sup> Since the power dissipated by the filament represents about 1000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 600 watts, allowance has been made in preparing this tabulation for an additional 1600 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

<code>IMPACT AND VIBRATION - The 4CX15,000J</code> is designed to operate under shock and vibration conditions which might disable a less rugged tube. Production tubes are subjected to testing to insure ability to withstand 15 G impact at 11 milliseconds duration and 2 G vibratory acceleration over the range of 5 to 55 Hz.

#### ELECTRICAL

FILAMENT OPERATION - The rated filament voltage for the 4CX15,000J is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 4CX15,000J must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

GRID OPERATION - The 4CX15,000J control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CX15,000J must not exceed 450 watts.

Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX15,000J is 15,000 watts.

When the 4CX15,000J is operated as a plate-modulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 10,000 watt maximum plate dissipation rating will be exceeded.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as this, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry—the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used,

stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard-RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground".

The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to the Application Engineering Dept., Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070 for information and recommendations.

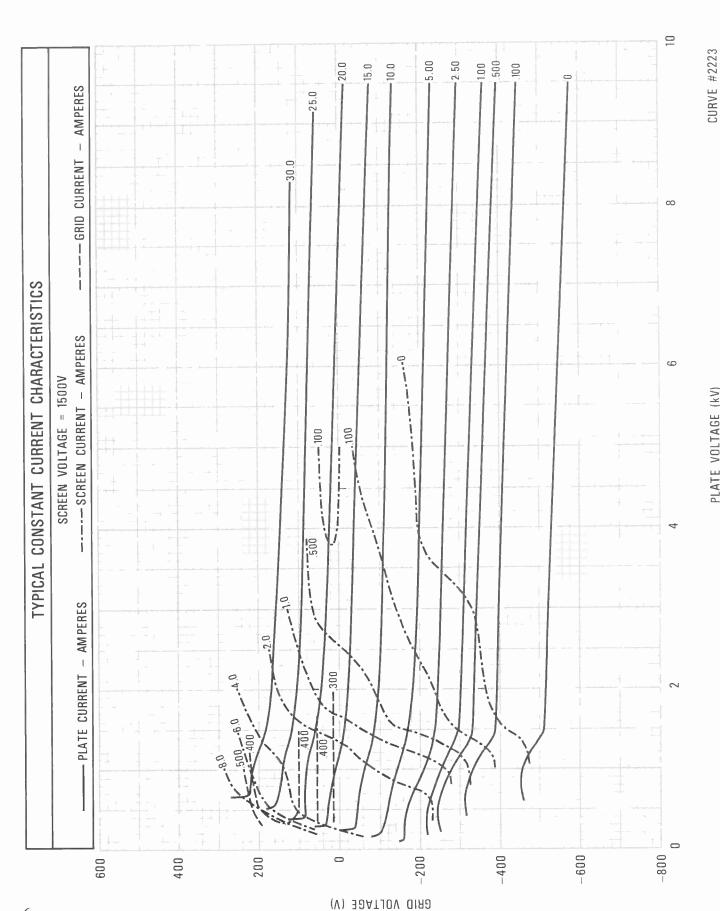
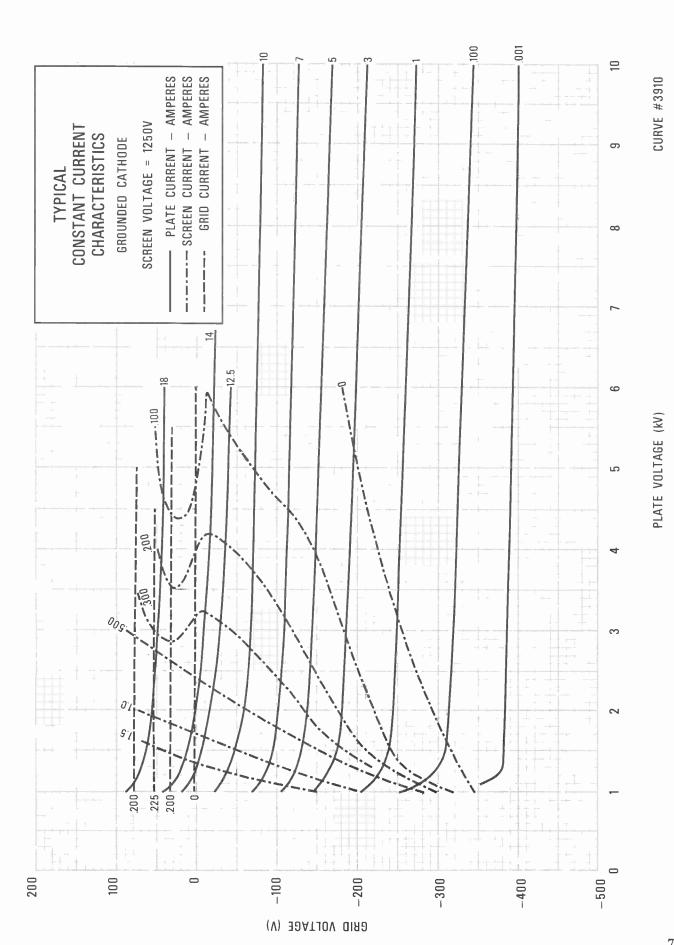
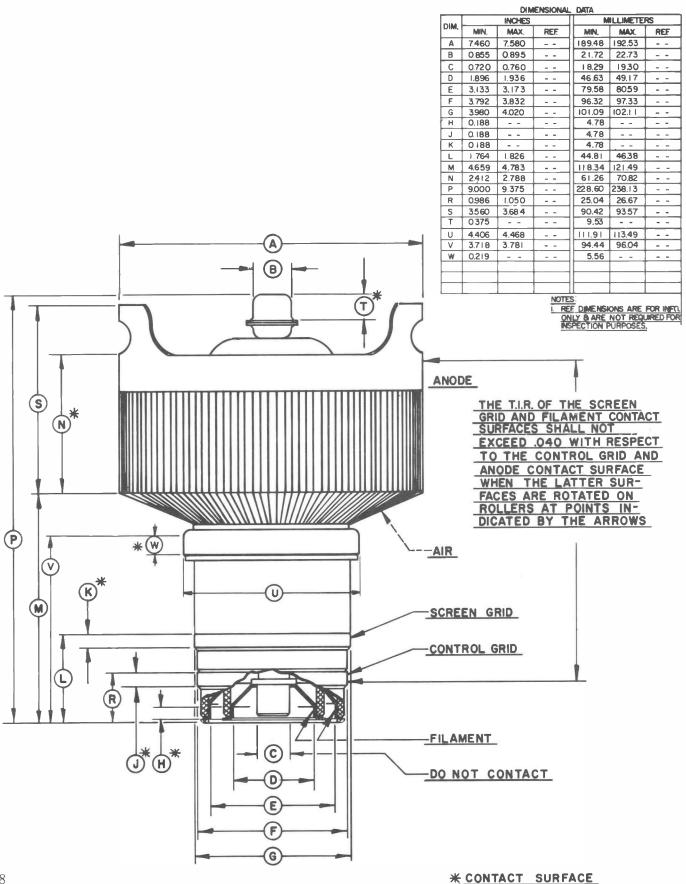
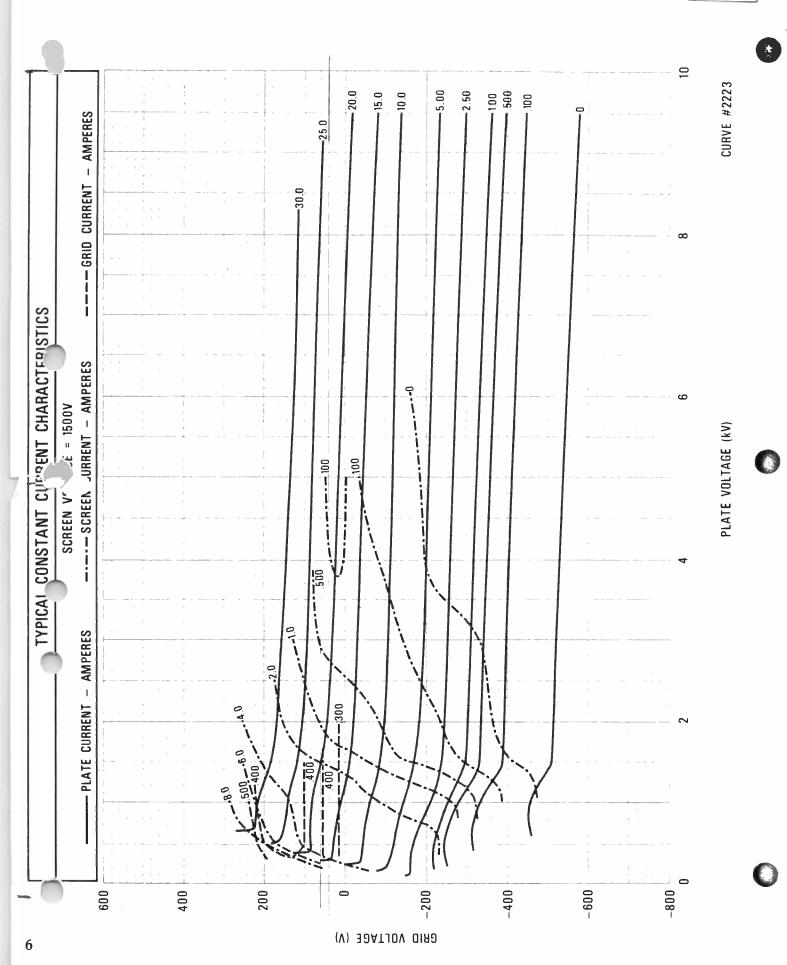
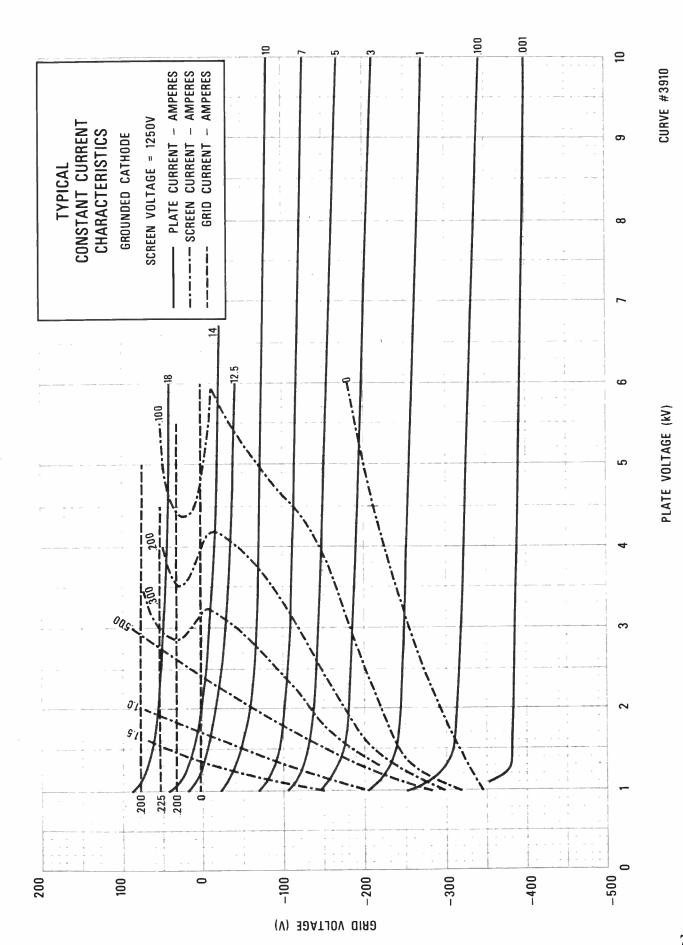







PLATE VOLTAGE (kV)







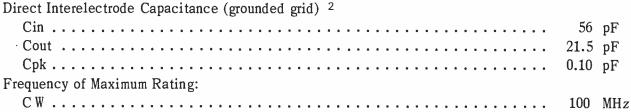




#### TECHNICAL DATA

RADIAL-BEAM POWER TETRODE

120 pF 20.5 pF 0.7 pF


The EIMAC 4CX10,000J is a compact, high-power, ceramic/metal, forced-air cooled tetrode with a rated maximum plate dissipation of 12,000 watts. It incorporates rugged internal construction features, including a mesh filament/cathode.

The 4CX10,000J is specifically designed for exceptionally low intermodulation distortion in radio-frequency linear amplifier service.

# GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Filament: Thoriated Tungsten                                       |                |   |      |
|--------------------------------------------------------------------|----------------|---|------|
| Voltage                                                            | $7.5 \pm 0.37$ | V |      |
| Current, at 7.5 volts                                              | 103            | Α |      |
| Amplification Factor (Average):                                    |                |   |      |
| Grid to Screen                                                     | 4.5            |   |      |
| Direct Interelectrode Capacitance (grounded filament) <sup>2</sup> |                |   |      |
| Cin                                                                |                |   | <br> |
| Cout                                                               |                |   | <br> |
| Cgp                                                                |                |   | <br> |
| Direct Interelectuals Constitutes (washing a wid) 2                |                |   |      |



Characteristics and operating values are based upon performance tests. These figures may change without notice
as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

#### Maximum Overall Dimensions:

| Length             | 9.125 in: 231.77 mm     |
|--------------------|-------------------------|
| Diameter           | 7.050 in; 179.07 mm     |
| Net Weight         | 12.2 lb; 5.55 kg        |
| Operating Position | rtical, base up or down |

Printed in U.S.A.

| Maximum Operating Temperature:  Ceramic/Metal Seals or Anode Core  Cooling  Base  Recommended Air System Socket  Recommended (Air) Chimney | Forced Air Special concentric SK-300A                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB1                                                                                     | TYPICAL OPERATION<br>Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation<br>Crest Conditions |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                      |
| <ul><li>3. Useful power is that delivered to the load.</li><li>4. Referenced against one tone of a two equal-tone signal.</li></ul>        | Intermodulation Distortion Products 4:  3rd Order                                                         |

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in screen current. The screen current which results when the desired plate current is obtained is incidental and varies from tube to tube. This current variation causes no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                      | Min. | Max. | _  |
|--------------------------------------------------------|------|------|----|
| Filament: Current at 7.5 volts                         | 98   | 108  | Α  |
| Cin                                                    | 113  | 127  | pF |
| Cout                                                   | 18   | 23   | pF |
| С gp                                                   |      | 1.0  | pF |
| Interelectrode Capacitances¹(grounded grid connection) |      |      |    |
| Cin                                                    | 51   | 61   | pF |
| Cout                                                   | 19   | 24   | pF |
| Cpk                                                    |      | 0.16 | pF |

<sup>1.</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4CX10,000J must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX10,000J. The use of recommended air-flow rates through this socket pro-

vides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-1316, into the anode cooling fins.

COOLING - The maximum temperature rating for the external surfaces of the 4CX10,000J is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperatures at 200°C in 50°C ambient air are tabulated below (for operation below 30 megahertz). The pressure drop values shown are for the Tube/Socket/Chimney combination.

|                                        | SEA                             | LEVEL                              | 10,00                           | 00 FEET                            |
|----------------------------------------|---------------------------------|------------------------------------|---------------------------------|------------------------------------|
| Plate *<br>Dissipation<br>(Watts)      | Air Flow<br>(CFM)               | Pressure<br>Drop (In.<br>of water) | Air Flow<br>(CFM)               | Pressure<br>Drop (In.<br>of water) |
| 4000<br>6000<br>8000<br>10000<br>12000 | 110<br>200<br>315<br>445<br>600 | 0.4<br>0.8<br>1.7<br>2.8           | 160<br>290<br>460<br>645<br>870 | 0.6<br>1.2<br>2.5<br>4.1<br>6.4    |

\* Since the power dissipated by the filament represents about 770 watts and since grid-plus screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1200 watts dissipation.

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

IMPACT AND VIBRATION - The 4CX10,000J is designed to operate under shock and vibration conditions which might disable a less rugged tube. Production tubes are subjected to testing to insure ability to withstand 15 G impact at 11 milliseconds duration and 2 G vibratory acceleration over the range of 5 to 55 Hz.

#### **ELECTRICAL**

FILAMENT VOLTAGE - The rated filament voltage for the 4CX10,000J is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

GRID DISSIPATION - The 4CX10,000J control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. Grid dissipation is approximately the product of dc grid current and peak positive grid voltage. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible.

SCREEN DISSIPATION - The power dissipated by the screen of the 4CX10,000J must not exceed 250 watts.

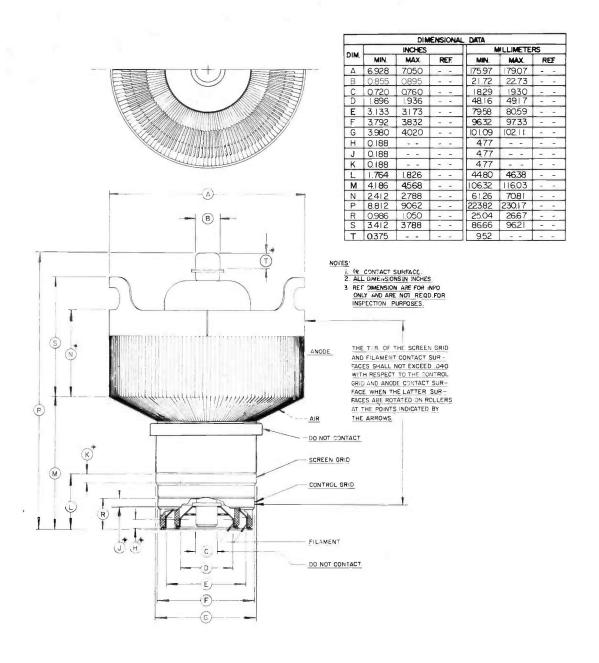
Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX10,000J is 12,000 watts. Plate dissipation may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.

HIGH VOLTAGE - The 4CX10,000J operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard


. . . . .

RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.





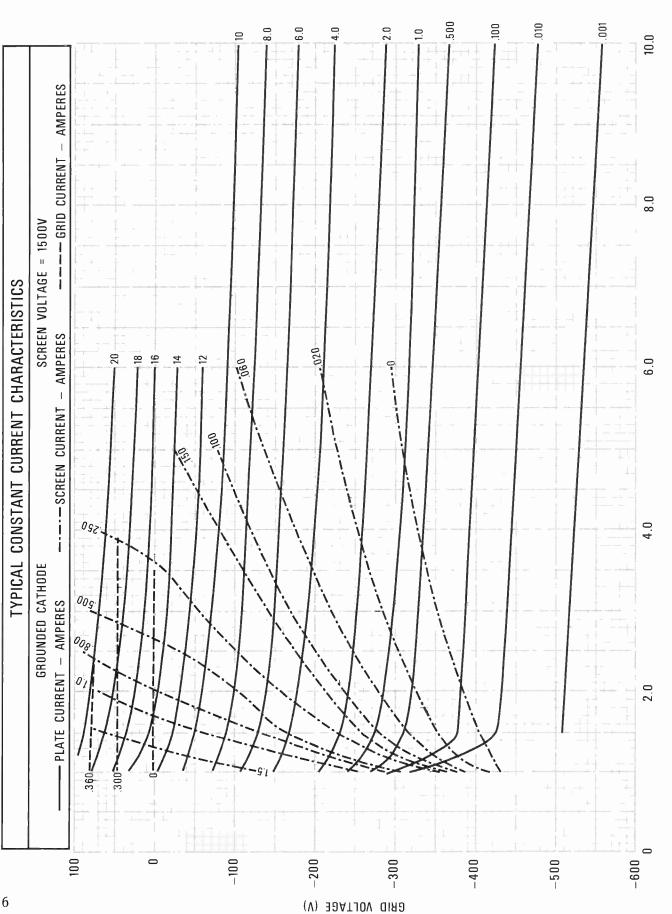



PLATE VOLTAGE (kV)

CURVE #4339

6



#### **TECHNICAL DATA**

# 8990 4CX20,000*F* 8990A

VHF RADIAL BEAM POWER TETRODE

The EIMAC 8990/4CX20,000A is a ceramic/metal power tetrode intended for use in audio or radio-frequency applications. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings up to 110 MHz.

The 8990/4CX20,000A has a gain of over 18 dB in FM broadcast service, and is also recommended for radio-frequency linear power amplifier service, and for VHF television linear amplifier service. The anode is rated for 20 kW of dissipation with forced-air cooling and incorporates a highly efficient cooler of new design.

The 8990A is recommended for high-level, plate modulated amplifier service.



#### GENERAL CHARACTERISTICS'

|    |    | $\sim$ | rni | A I |
|----|----|--------|-----|-----|
| EL | ⊏' | C i    | ını | ٦L  |

| Filament: Thoriated Tungsten  Voltage:                                      |         |
|-----------------------------------------------------------------------------|---------|
| Current, at 10.0 volts                                                      |         |
| Amplification Factor, average                                               |         |
| Grid to Screen                                                              |         |
| Direct Interelectrode Capacitances (cathode grounded): <sup>2</sup>         |         |
| Cin                                                                         | 190 pF  |
| Cout                                                                        | 23.5 pF |
| Cgp                                                                         | 1.5 pF  |
| Direct Interelectrode Capacitances (grid and screen grounded): <sup>2</sup> |         |
| Cin                                                                         | 83 pF   |
| Cout                                                                        |         |
| Cpk                                                                         |         |
| Frequency of Maximum Ratings (CW)                                           |         |

- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded findure in accordance with Electronic Industries Association Standard RS-191.

#### **MECHANICAL**

| Maximum Overall Dimensions:        |                                |
|------------------------------------|--------------------------------|
| Length                             | 9.840 in; 24.99 cm             |
| Diameter                           | 8.800 in; 22.35 cm             |
| Net Weight (Approximate)           |                                |
| Operating Position                 | Axis vertical, base up or down |
| Cooling                            | Forced air                     |
| Operating Temperature, maximum     | •                              |
| Ceramic/Metal Seals and Anode Core | 250°C                          |
| Base                               | Special, concentric            |
| Recommended Air System Socket      | SK-320                         |
| Recommended Air Chimney            |                                |

4402 (Effective 20 October 1980)

Printed in U.S.A.

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

## TYPICAL OPERATION (frequencies to 30 MHz)

Class C Telegraphy or FM (Key-Down Conditions)

## ABSOLUTE MAXIMUM RATINGS

|   | OC PLATE VOLTAGE  | 10,000 | VOLTS          |
|---|-------------------|--------|----------------|
|   | C SCREEN VOLTAGE  | 2,000  | VOLTS          |
|   | OC PLATE CURRENT  | 5.0    | <b>AMPERES</b> |
| F | LATE DISSIPATION  | 20,000 | WATTS          |
| S | CREEN DISSIPATION | 450    | WATTS          |
| C | GRID DISSIPATION  | 200    | WATTS          |
|   |                   |        |                |

| Plate Voltage                     | 7.5  | 9.0          | kVdc |
|-----------------------------------|------|--------------|------|
| Screen Voltage                    | 750  |              | Vdc  |
| Grid Voltage                      | -200 | <b>-2</b> 50 |      |
| Plate Current                     | 3.68 | _            | Adc  |
| Screen Current <sup>1</sup>       | 208  |              | mAdc |
| Grid Current <sup>1</sup>         | 91   |              | mAdc |
| Peak rf Grid Voltage <sup>1</sup> | 265  | 300          |      |
| Calculated Drive Power.           | 24.1 | 26.4         | - 3  |
| Plate Dissipation <sup>1</sup>    | 5.84 | 7.93         |      |
| Plate Output Power <sup>1</sup>   | 21.8 | 28.2         |      |
| Load Impedance                    | 1062 | 1136         |      |
|                                   | 1002 | 1130         | 12   |
| <sup>1</sup> Approximate value    |      |              |      |

# TYPICAL OPERATION, COMMERCIAL FM SERVICE (measured values at frequency shown, in EIMAC CV-2200 cavity amplifier)

| Frequency of Operation Plate Voltage Screen Voltage Grid Voltage Plate Current Screen Current Grid Current Drive Power Useful Power Output¹ | 88.3<br>9.0<br>800<br>-400<br>4.08<br>200<br>40<br>325<br>28.75 | 800<br>-300<br>4.15<br>200 | kVdc<br>Vdc<br>Vdc<br>Adc<br>mAdc<br>mAdc<br>W |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|------------------------------------------------|
| Drive Power                                                                                                                                 |                                                                 | <b>3</b> 60                | W                                              |
| Efficiency                                                                                                                                  | 80.5                                                            | 77.4                       | %                                              |
| Jan                                                                                                                                         | 19.5                                                            | 19.0                       | dB                                             |

<sup>&</sup>lt;sup>1</sup> Delivered to the load

#### PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER 8990A RECOMMENDED

GRID DRIVEN Class C Telephony (Carrier Conditions)

#### ABSOLUTE MAXIMUM RATINGS

| DC DLATE VOLTAGE   |        |                  |
|--------------------|--------|------------------|
| DC PLATE VOLTAGE   | 8,000  | VOLTS            |
| DC SCREEN VOLTAGE  | 2,000  | VOLTS            |
| DC GRID VOLTAGE    | -1,000 | VOLTS            |
| DC PLATE CURRENT   | 5      | AMPERES          |
| PLATE DISSIPATION  | 13.5   | <b>KILOWATTS</b> |
| SCREEN DISSIPATION | 450    | WATTS            |
| GRID DISSIPATION   | 200    | WATTS            |

#### TYPICAL OPERATION

| Plate Voltage                           | 7,800        | Vdc    |
|-----------------------------------------|--------------|--------|
| Screen Voltage                          | 750          | Vdc    |
| Grid Voltage                            | -300         | Vdc    |
| Peak af screen voltage(100% modulation) | 750          | Ψ .    |
| Plate Current                           | 4.6          | Adc    |
| Screen Current <sup>1</sup>             | 220          | mnAdc  |
| Grid Current <sup>1</sup>               | 108          | nn Adc |
| Calculated Driving Power.               | 35           | W      |
| Plate Impedance                         | <b>8</b> 45  | Ω      |
| Plate Output Power                      | 29           | kW     |
| Plate Dissipation                       | <b>6</b> 880 | W      |
| <sup>1</sup> Approximate                |              |        |

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

GRID DRIVEN, Class AB1 (sinusoidal wave)

#### ABSOLUTE MAXIMUM RATINGS (per tube)

| DC PLATE VOLTAGE   | 10,000 | VOLTS     |
|--------------------|--------|-----------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS     |
| DC PLATE CURRENT   |        | AMPERES   |
| PLATE DISSIPATION  |        | KILOWATTS |
| SCREEN DISSIPATION |        | WATTS     |
| GRID DISSIPATION   | 200    | WATTS     |
|                    |        |           |

#### TYPICAL OPERATION (2 tubes)

| Plate Voltage  Screen Voltage  Grid Voltage <sup>1</sup> Zero Signal Plate Current  Max. Signal Plate Current <sup>2</sup> Peak Grid Voltage <sup>2</sup> Max. Signal Plate Dissipation <sup>2</sup> Plate Output Power | 7,800<br>500<br>-70<br>0.75<br>3.4<br>90<br>65<br>6<br>14.5 | 7,800 7800<br>750 1500<br>-125 -250<br>0.75 1.0<br>5.2 9.2<br>220 600<br>115 200<br>7 13.5<br>26 44 | Vdc<br>Vdc<br>Adc<br>Adc<br>mAdc<br>v<br>kW<br>kW |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Load impedance p/p                                                                                                                                                                                                      | 6,300                                                       | 3,500 1600                                                                                          | Ω                                                 |
| 1 4 15 . 4                                                                                                                                                                                                              |                                                             |                                                                                                     |                                                   |

Adjust for specified zero-signal plate current.

<sup>&</sup>lt;sup>2</sup> Approximate value

<sup>&</sup>lt;sup>3</sup> Per tube



TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the right voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rigrid voltage is applied.

#### **APPLICATION**

MOUNTING – The 8990 must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

SOCKET & CHIMNEY – The EIMAC air-system socket SK-320 and air chimney SK-326 are designed especially for use with the 8990. The use of the recommended air flow through this socket provides effective forced-air cooling of the base, with air then guided through the anode cooling fins by the air chimney.

COOLING – The maximum temperature rating for the external surfaces of the tube is 250°C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below the rated maximum.

The cooling characteristics of the anode are shown in the attached graph, for power levels from 7.5 kW to 20 kW dissipation. The designer is cautioned to keep in mind that is ABSOLUTE data, with pure dc power, with no safety factors added, and the pressure drop figures make no allowance for losses in filters, ducting, and the like.

It is considered good engineering practice to design for a maximum anode core temperature of 225°C, and temperature sensitive paints are available for checking base and seal temperatures before any design is finalized. It is also considered good practice to add a 15% safety factor to the indicated airflow, and allow for variables such as dirty air filters, rf seal heating at VHF, and the fact that the anode coolings fins may not be clean if the tube has been in service for some length of time. Special attention is required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated into the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allowed for tube cooldown.

FILAMENT OPERATION – The rated nominal filament voltage for the 8990 is 10.0 volts, as measured at the socket or tube base. Variation in voltage should be maintained within plus or minus five percent. During application of filament voltage the inrush current should be limited to no more than twice normal current.

The peak emission capability at nominal filament voltage is normally more than that required for communication service. A small decrease in filament temperature due to reduction in filament voltage can increase tube life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance (such as plate current, power output; or distortion) while filament voltage is reduced. At some point in filament voltage there will be a noticeable change in the operating parameter being monitored, and the operating filament voltage must be slightly higher than the level at which deterioration was noted. When filament voltage is to be reduced in this manner it should be regulated and held to plus or minus one percent, and the actual operating value should be checked periodically to maintain proper operation.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 8990 must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods (10 seconds maximum) such as may occur during tuning.

GRID OPERATION - The 8990 control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should normally be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.

screen of the 8990 must not exceed 450 watts. Screen dissipation, in cases where there is no ac applied to the screen is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with the filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering practice.

The 8990 may exhibit reversed (negative) screen current under some operating conditions.

The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, to assure that net screen supply current is always positive. This is absolutely essential if a series electronic regulator is employed.

FAULT PROTECTION – In addition to normal plate overcurrent interlock and screen current interlock it is good practice to protect the tube from internal damage which could result from a plate arc at high voltage. In all cases some protective resistance, 10 to 50 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a tube arc should occur. If power supply stored energy is high some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a tube arc is recommended.

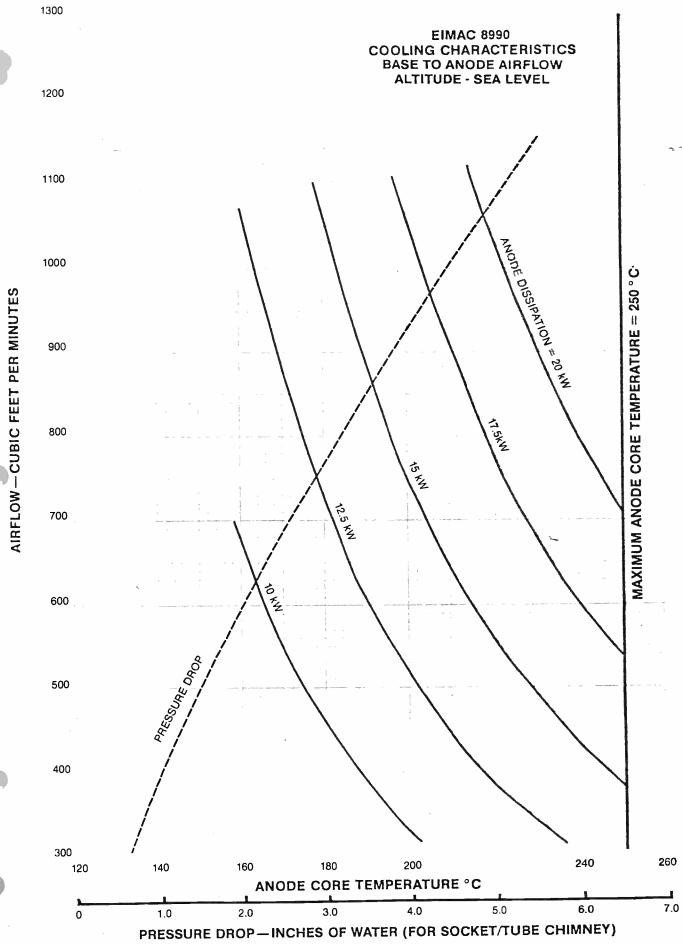
HIGH VOLTAGE – Normal operating voltages used with the 8990 are deadly and the equipment must be designed properly and operating precautions must be followed. All equipment must be designed so that no one can come into contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube termina's, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminate any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

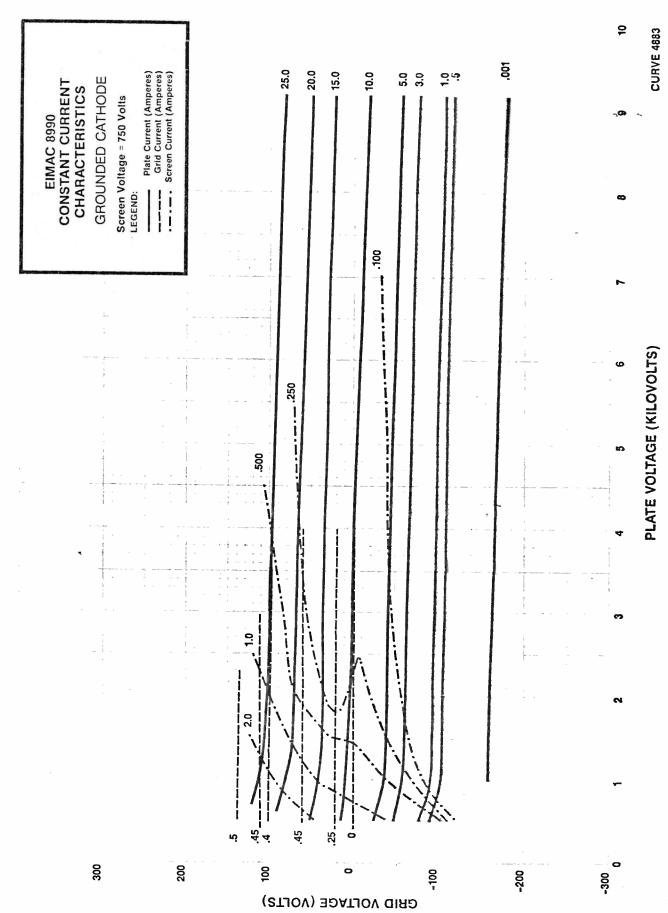
The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

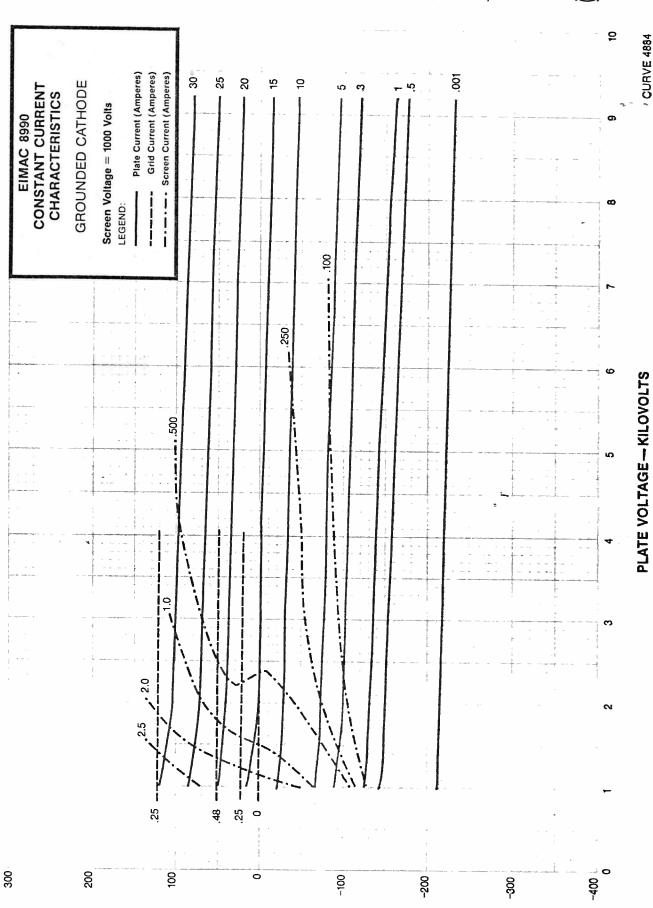
SPECIAL APPLICATIONS—If it is desired to operate this tube under conditions widely different from those listed here, write to Application Engineering, Power Grid Tube Division. EIMAC Division of Varian, 301 Industrial Way. San Carlos, CA 94070 for recommendations.

#### **OPERATING HAZARDS**

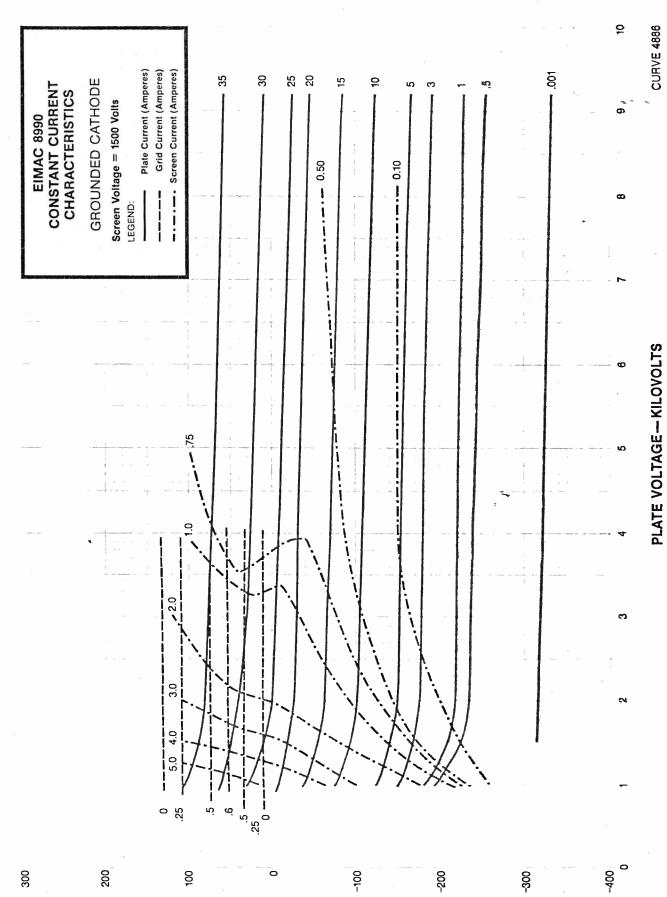

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECTTO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of power tubes involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

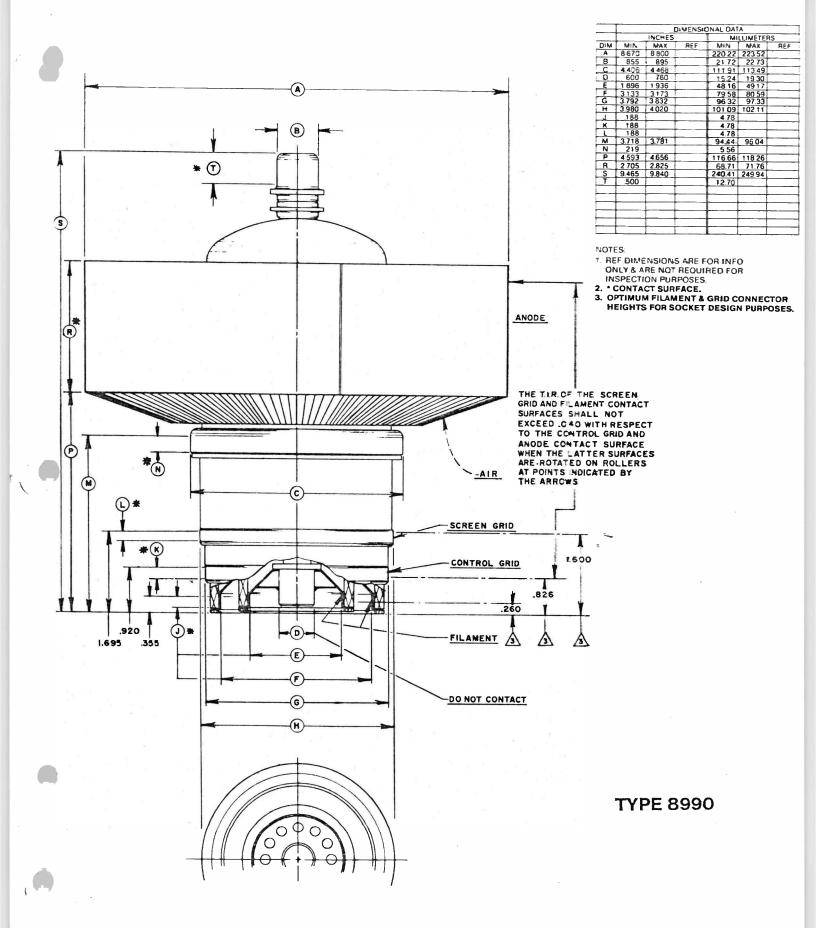

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to strong if fields should be avoided, even at relatively low frequencies. The dangers of if radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.

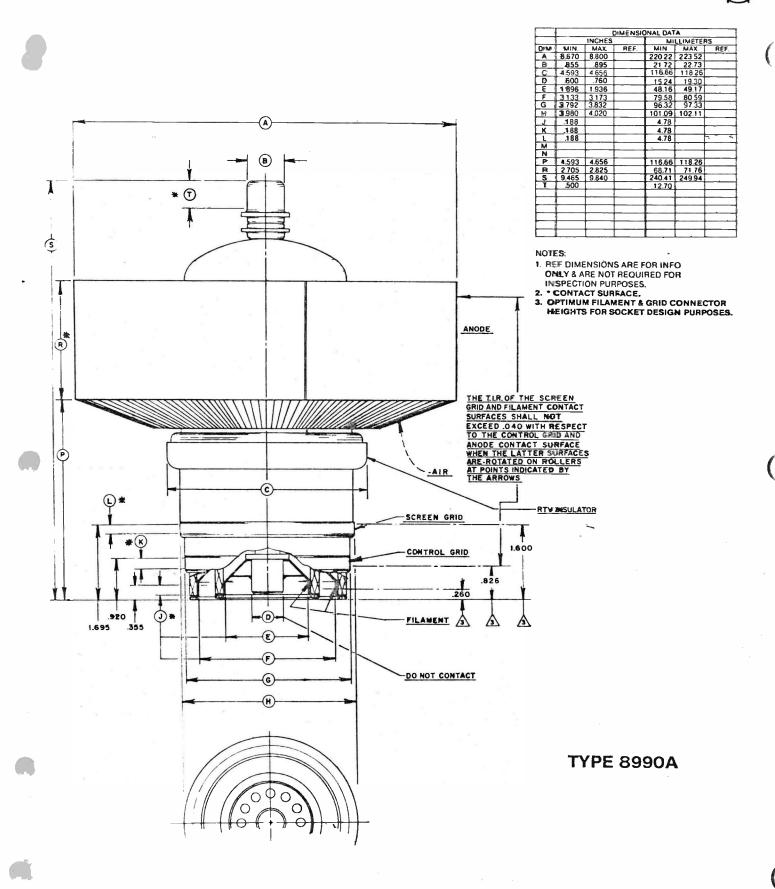

- X-RAY RADIATION High voltage tubes can produce dangerous and possibly fatal x-rays.
- d. BERYLLIUM OXIDE POISONING Dust or fumes from BeO ceramics used as thermal links with some conduction-copled power tubes are highly toxic and can cause serious injury or death.
- e. GLASS EXPLOSION Many electron tubes have glass envelopes. Breaking the glass can cause an implosion, which is it result in an explosive scattering of glass particles. Handle glass tubes carefully.
- f. HOT WATER Water used to cool tubes may reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- g. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched.

Please review the detailed operating hazards sheet enclosed with each tube or request a copy from the address shown below: Power Grid Tube Division, Varian, EIMAC division, 301 Industrial Way. San Carlos. California 94070.




ċ




GRID VOLTAGE-VOLTS











## ADVANCE PRODUCT ANNOUNCEMENT

4CX25,000A VHF POWER TETRODE

1111111111111

The EIMAC 4CX25,000A is a ceramic/metal power tetrode intended for use in VHF-TV linear amplifier service. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings to 230 MHz in TV linear amplifier service.

The anode is rated for 25 kW dissipation with forcedair cooling and uses a highly efficient cooler.

### GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Filamer           | it: | T   | ho  | ri  | iat   | ec | 1 I | ur | 199 | ste | en | Μe  | sh  | 1          |     |     |     |     |    |     |      |     |
|-------------------|-----|-----|-----|-----|-------|----|-----|----|-----|-----|----|-----|-----|------------|-----|-----|-----|-----|----|-----|------|-----|
| Volta             | ge  |     |     |     |       |    |     |    |     |     |    |     |     |            | •   |     |     | 9.  | 5  | +   | 0.5  | ٧   |
| Curre             | ent | ,   | a t |     | 10.   | 0  | VC  | 11 | ts  |     |    |     |     |            |     |     |     |     |    | -   | 150  |     |
| Maxin             | num | 1 ( | 01  | d   | St    | a  | rt  | I  | nrı | JS  | h  | Cui | rre | ent        | :   | •   |     |     |    |     | 300  | A   |
| Amplifi           | ica | ti  | or  | n I | ac    | t  | or  | (1 | Ave | era | ag | e)  | G   | ric        | 1 1 | 0   | Sc  | ree | n  |     | 6.7  | 2   |
| Amplifi<br>Direct | In  | te  | ere | 216 | ect   | r  | ode | 9  | Ca  | pa  | ci | tar | nce | 2 S        | (   | cat | ho  | de  | gı | rol | unde | 1)2 |
| Cin               |     |     |     |     |       |    |     |    |     |     |    |     |     | •          |     |     |     |     | -  |     | 171  | pF  |
| Cout              |     |     |     |     |       |    |     |    |     |     |    |     |     |            |     |     | •   |     |    | 1   | 18.4 | рF  |
| Cgp<br>Direct     | •   | •   |     |     | •     |    | •   | •  |     | •   | •  |     |     | •          | •   | •   |     |     |    | (   | 0.57 | pF  |
| Direct            | In  | te  | ere | el  | e c 1 | tr | ode | 2  | Ca  | pa  | сi | tar | nce | <b>e</b> S | (   | gr  | ids | gı  | 01 | und | ded) |     |
| Cir               | 1   | -   |     |     | 200   |    |     |    | 100 | -   | 12 | 12  | -   | 21         | -   |     | 100 | 2 2 |    |     |      |     |



- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Maximum Overall Dimensions:                                                   |                       |
|-------------------------------------------------------------------------------|-----------------------|
| Length                                                                        |                       |
| Diameter                                                                      | 8.85 In; 22.50 cm     |
| Net Weight (approximate)                                                      | 26.4 Lbs; 12.0 kg     |
| Operating Position                                                            | ical, Base Up or Down |
| Cooling                                                                       | Forced Air            |
| Operating Temperature, Absolute Maximum                                       |                       |
| Ceramic/Metal Seals and Anode Core                                            | 250°C                 |
| Base                                                                          |                       |
| Recommended Air-System Socket (for grid-driven dc or LF/HF applications)      | EIMAC SK-320          |
| Recommended Air Chimney (for use with SK-360 Socket)                          | EIMAC SK-326          |
| Recommended Air-System Socket (for grid-driven VHF applications)              |                       |
| Available Screen Grid Bypass Capacitor Kit for SK-360 (8000 pF @ DCWV = 5000) |                       |
| Available Anode Contact Connector                                             | EIMAC ACC-3           |
|                                                                               |                       |

| TELEVISION LINEAR AMPLIFIER    | TYPICAL OPERATION, Composite Signal Black Level unles |
|--------------------------------|-------------------------------------------------------|
| CHANNELS 7-13 - Cathode Driven | otherwise stated                                      |

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE . |  | 10.0 | KILOVOLTS |
|--------------------|--|------|-----------|
| DC SCREEN VOLTAGE  |  | 2.0  | KILOVOLTS |
| DC GRID VOLTAGE .  |  | -1.0 | KILOVOLT  |
| DC PLATE CURRENT . |  | 8.0  | AMPERES   |
| PLATE DISSIPATION  |  | 25   | KILOWATTS |
| SCREEN DISSIPATION |  | 300  | WATTS     |
| GRID DISSIPATION . |  | 180  | WATTS     |
|                    |  |      |           |

\* Approximate; will vary tube-to-tube. # Calculated; including circuit losses gain will be 1 to 2 dB lower.

| Plate Voltage                       | 7800 | Vdc   |
|-------------------------------------|------|-------|
| Screen Voltage                      | 1400 | Vdc   |
| Grid Bias Voltage *                 | -107 | Vdc   |
| Zero-Signal Plate Current           | 1.6  | Adc   |
| Plate Current                       | 5.3  | Adc   |
| Grid Current *                      | 100  | mAdc  |
| Screen Current *                    | 120  | mAdc  |
| Peak Cathode Voltage (peak sync)    | 173  | ٧     |
| Cathode Driving Power (peak sync) * | 1000 | W     |
| Plate Output Power (peak sync)      | 34.7 | k w   |
| Plate Load Resistance               | 634  | 0 hms |

395090(Effective March 1986) VA4857

Printed In U.S.A.

15

21

15.4

Ohms

dB

kW

Cathode Load Resistance . .

Gain # . . . . . . . . . . . . .

Plate Dissipation . . . .



VHF CLASS B CW RF AMPLIFIER Cathode Driven

#### TYPICAL OPERATION:

| ABSOLUTE MAXIMUM RATINGS                | Plate Voltage             | 6400<br>1200 | 7000<br>1200 | Vdc<br>Vdc |
|-----------------------------------------|---------------------------|--------------|--------------|------------|
| DC PLATE VOLTAGE 10.0 KILOVOLTS         | Grid Bias Voltage #       | -95          | -110         | Vdc        |
| DC SCREEN VOLTAGE 2.0 KILOVOLTS         | Zero-Signal Plate Current | 1.0          | 0.5          | Adc        |
| DC GRID VOLTAGE1.0 KILOVOLT             | Plate Current             | 4.05         | 3.4          | Adc        |
| DC PLATE CURRENT 8.0 AMPERES            | Grid Current *            | 77           | 40           | mAdc       |
| PLATE DISSIPATION 25 KILOWATTS          | Screen Current *          | 200          | 200          | mAdc       |
| SCREEN DISSIPATION 300 WATTS            | Plate Output Power        | 16.5         | 16.5         | k W        |
| GRID DISSIPATION 180 WATTS              | Plate Dissipation         | 9.8          | 7.8          | kW         |
| GRID DISSIFATION 100 WATES              | Plate Load Resistance     | 820          | 1090         | Ohms       |
| * Approximate; will vary tube-to-tube.  | Cathode Load Resistance   | 18           | 22           | Ohms       |
| # Adjust for zero-signal plate current. | Cathode Drive Power *     | 420          | 380          | W          |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in ouput power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.

#### APPLICATION

#### MECHANICAL

STORAGE - If a tube is to be stored as a spare it should be kept in its original shipping carton, with the original packing material, to minimize the possibility of handling damage.

Before storage a new tube should be operated in the equipment for 100 to 200 hours to establish it has not been damaged and operates properly (See FILAMENT OPERATION for recommendations on initial value of filament voltage during this operation period). If the tube is still in storage 6 months later it again should be operated in the equipment for 100 to 200 hours to make sure there has been no degradation. If operation is satisfactory the tube can again be stored with great assurance of being a known-good spare.

The 4CX25,000A must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the designer.

SOCKET & CHIMNEY - The EIMAC air-system socket SK-320 and air chimney SK-326 are designed for use with the 4CX25,000A in dc or LF/HF applications. For VHF applications the SK-360 air-system socket is recommended. The use of the recommended air flow through an air-system socket will provide effective forced-air cooling of the base, with air then guided through the anode cooling fins by the air chimney.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250 Deg.C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below this rated maximum.

It is considered good engineering practice to design for a maximum anode core temperature of 225°C and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. EIMAC Application Bulletin #20 titled "TEMPERATURE MEASUREMENTS WITH EIMAC TUBES" is available on request.

It is also good practice to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time. Special attention is required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

It should be noted the contact fingers used in the contact collet assemblies (inner and outer filament, control grid and screen grid) are made of beryllium copper. If operated above 150°C for any appreciable length of time this material will loose its temper (or springy characteristic) and then will no longer make good contact to the base contact areas of the tube. This can lead to arcing which can melt metal in a contact area (primarily the inner or outer filament contacts) and the tube's vacuum integrity is then destroyed.

If all cooling air is not passed around the base of the tube and through the socket, then arrangements must be made to assure adequate cooling of the tube base and the socket contacts. Movement of cooling air around the base of the tube accomplishes a double purpose in keeping the tube base and the socket contact fingers at a safe operating temperature.

Minimum air flow requirements for a maximum anode temperature of 225°C for various altitudes and dissipation levels are listed. The pressure drop values shown are approximate and are for the tube anode cooler only. Pressure drop in a typical installation will be higher because of system loss.



| Inlet Air Temperatur         | e = 25°C |            |                 |  |  |  |
|------------------------------|----------|------------|-----------------|--|--|--|
| Sea Level                    | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 150        | 0.3             |  |  |  |
|                              | 15       | 320        | 0.9             |  |  |  |
|                              | 20       | 550        | 2.2             |  |  |  |
|                              | 25       | 840        | 4.6             |  |  |  |
| <u>5000 Feet</u>             | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 190        | 0.3             |  |  |  |
|                              | 15       | 390        | 1.0             |  |  |  |
|                              | 20       | 660        | 2.5             |  |  |  |
|                              | 25       | 1010       | 5.2             |  |  |  |
| 10,000 Feet                  | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 230        | 0.4             |  |  |  |
|                              | 15       | 470        | 1.1             |  |  |  |
|                              | 20       | 800        | 2.8             |  |  |  |
|                              | 25       | 1230       | 5.9             |  |  |  |
| Inlet Air Temperatur         | e = 35°C |            |                 |  |  |  |
| Sea Level                    | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 180        | 0.4             |  |  |  |
|                              | 15       | 370        | 1.1             |  |  |  |
|                              | 20       | 630        | 2.7             |  |  |  |
|                              | 25       | 960        | 5.6             |  |  |  |
| 5000 Feet                    | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 210        | 0.4             |  |  |  |
|                              | 15       | 440        | 1.2             |  |  |  |
|                              | 20       | 590        | 2.0             |  |  |  |
|                              | 25       | 1170       | 6.4             |  |  |  |
| 10,000 Feet                  | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | <u>In.Water</u> |  |  |  |
|                              | 10       | 260        | 0.4             |  |  |  |
|                              | 15       | 540        | 1.4             |  |  |  |
|                              | 20       | 920        | 3.4             |  |  |  |
|                              | 25       | 1410       | 7.3             |  |  |  |
| Inlet Air Temperature = 50°C |          |            |                 |  |  |  |
| Sea Level                    | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | <u>CFM</u> | In.Water        |  |  |  |
|                              | 10       | 220        | 0.5             |  |  |  |
|                              | 15       | 460        | 1.5             |  |  |  |
|                              | 20       | 780        | 3.6             |  |  |  |
|                              | 25       | 1200       | 7.7             |  |  |  |
| 5000 Feet                    | Plate    | Flow       | Press.          |  |  |  |
|                              | Diss.    | Rate       | Drop            |  |  |  |
|                              | kW       | CFM        | In.Water        |  |  |  |
|                              | 10       | 270        | 0.5             |  |  |  |
|                              | 15       | 550        | 1.6             |  |  |  |
|                              | 20       | 950        | 4.1             |  |  |  |
|                              | 25       | 1450       | 8.9             |  |  |  |

| 10,000 Feet | Plate<br>Diss.<br>kW | Flow<br>Rate<br><u>CFM</u> | Press.<br>Drop<br><u>In.Water</u> |
|-------------|----------------------|----------------------------|-----------------------------------|
|             | 10                   | 320                        | 0.6                               |
|             | 15                   | 670                        | 1.8                               |
|             | 20                   | 1140                       | 4.7                               |
|             | 25                   | 1760                       | 10.3                              |

When long life and consistent performance are factors cooling in excess of minimum requirements is normally beneficial.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allow for tube cooldown.

#### ELECTRICAL

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FILAMENT OPERATION - This tube is designed for commercial service, with no more than one normal off/on filament cycle per day. If additional cycling is anticipated it is recommended the user contact Application Engineering at Varian EIMAC for additional information.

Filament inrush current should be limited to twice normal current. A suitable step-start procedure can accomplish this, with full operating temperature reached in as little as four seconds.

With a new tube, or one which has been in storage for some period of time, operation with filament voltage only applied for a period of 30 to 60 minutes is recommended before full operation begins. This allows the active getter material mounted within the filament structure to absorb any residual gas molecules which have accumulated during storage. Once normal operation has been established a minimum filament warmup time of four seconds is normally sufficient. (See current inrush limitation and step-start comment above.)

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The voltage should then be increased a few tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked after 24 hours.



Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life.

EIMAC Application Bulletin #18 titled "EXTENDING TRANSMITTER TUBE LIFE" contains valuable information and is available on request.

DISSIPATION RATINGS - Maximum dissipation ratings for the 4CX25,000A must be respected to avoid damage to the tube. An exception is plate dissipation which may be permitted to rise above the rated maximum during brief periods (10 seconds maximum) such as may occur during tuning.

GRID OPERATION - The maximum control grid dissipation is 180 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage. A protective spark-gap device should be connected between the control grid and the cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 300 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering practice.

The tube may exhibit reversed (negative) screen current under some operating conditions. Screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, to assure that net screen supply current is always positive. This is essential if a series electronic regulator is employed.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and coolant interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in

series with the tube anode (in the B+ line, to absorb power supply stored energy if an internal arc should occur. If power supply stored energy is high an electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch section of #30 AWG copper wire. The wire will remain intact if protection is adequate.

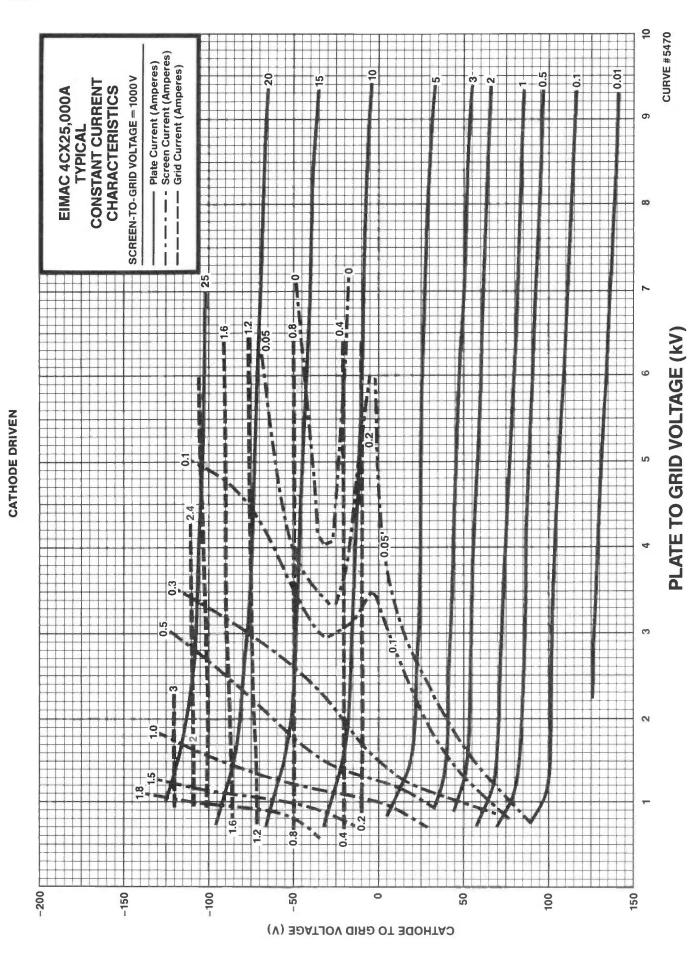
EIMAC's Application Bulletin #17 FAULT PROTECTION contains considerable detail, and is available on request.

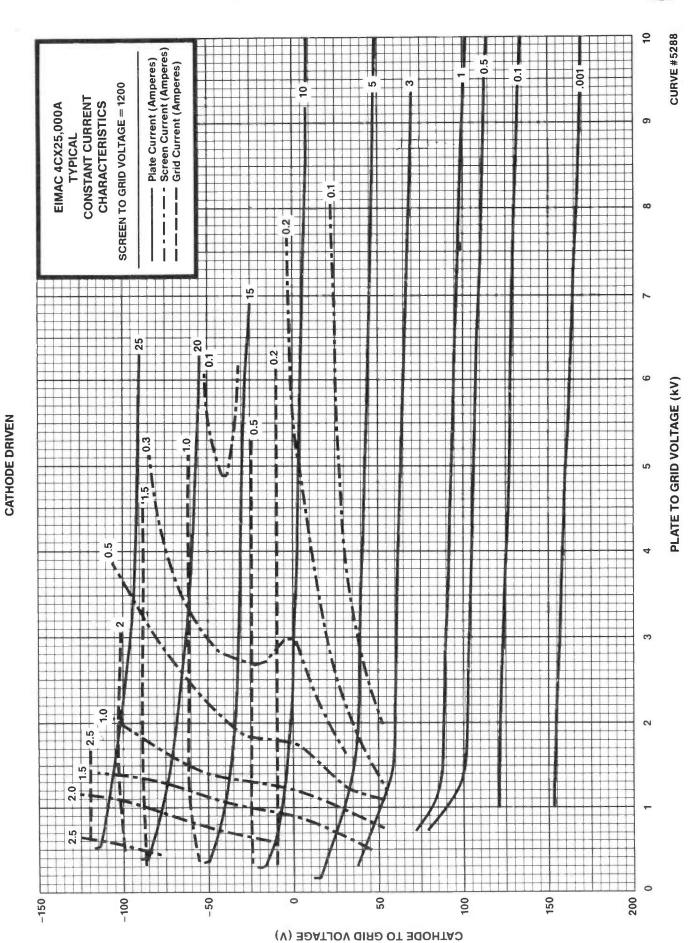
RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of a specially constructed test fixture which shields all external tube leads or contacts from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in the appliction. Measurements should be taken with the mounting which represents approximate final layout if capacitance values are highly significant in the design.

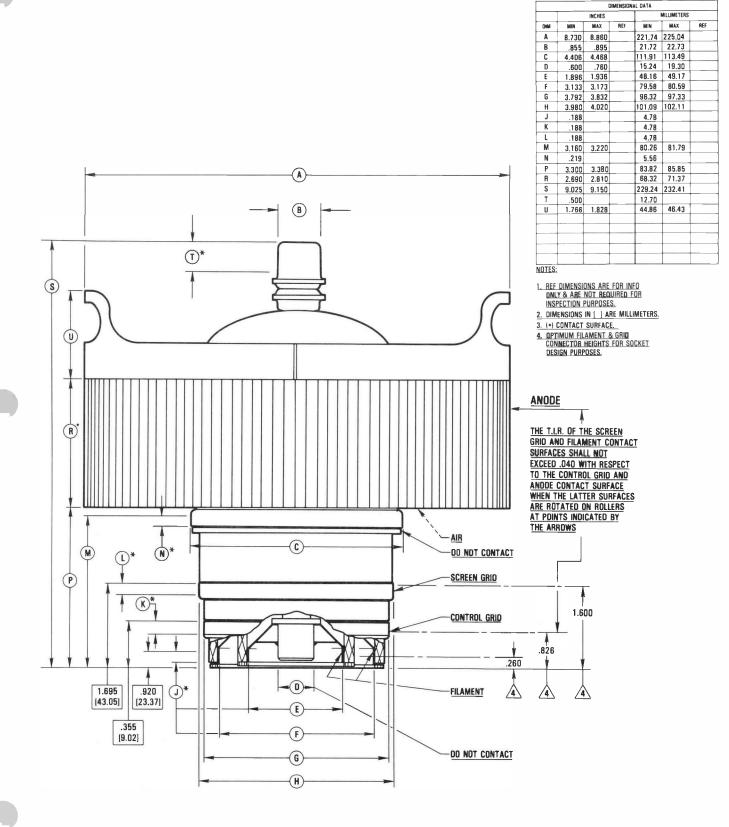
SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

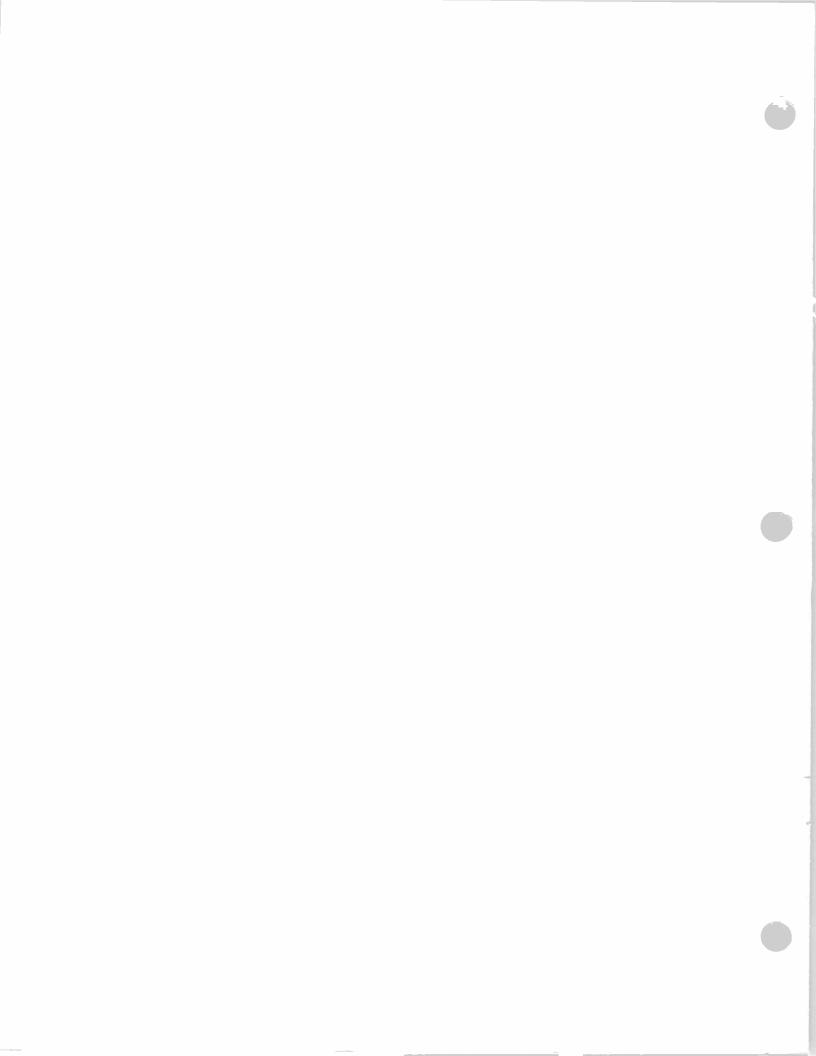


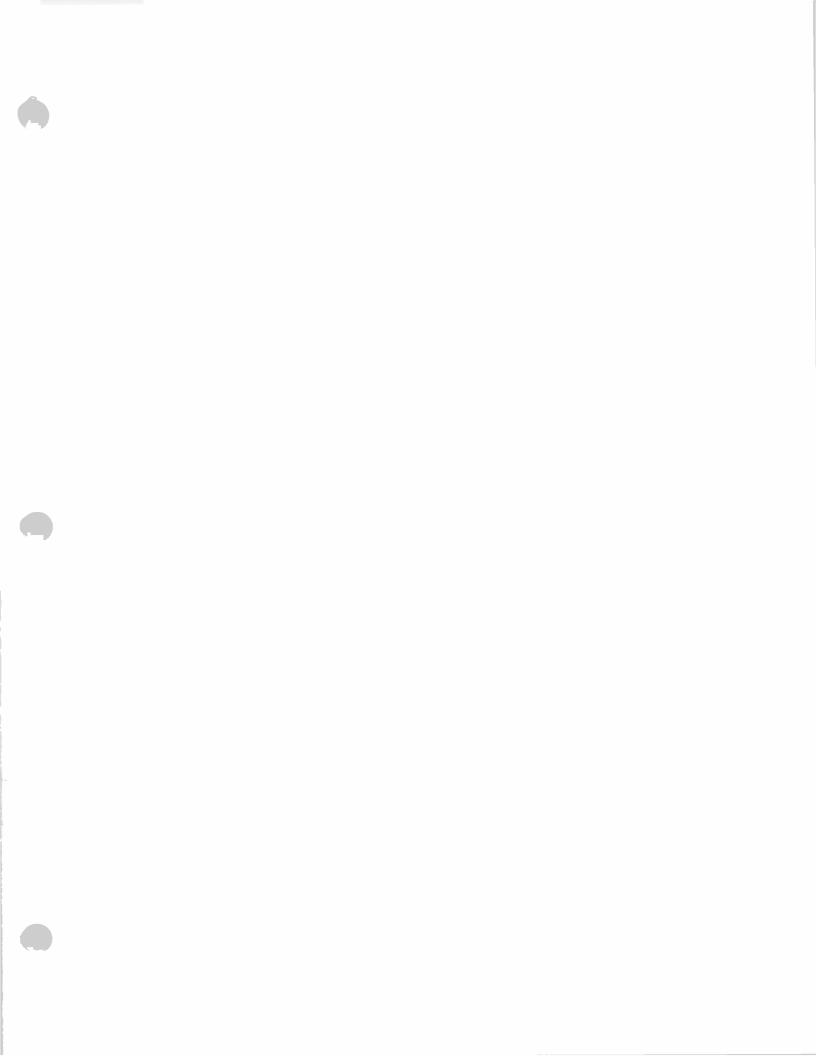

#### OPERATING HAZARDS

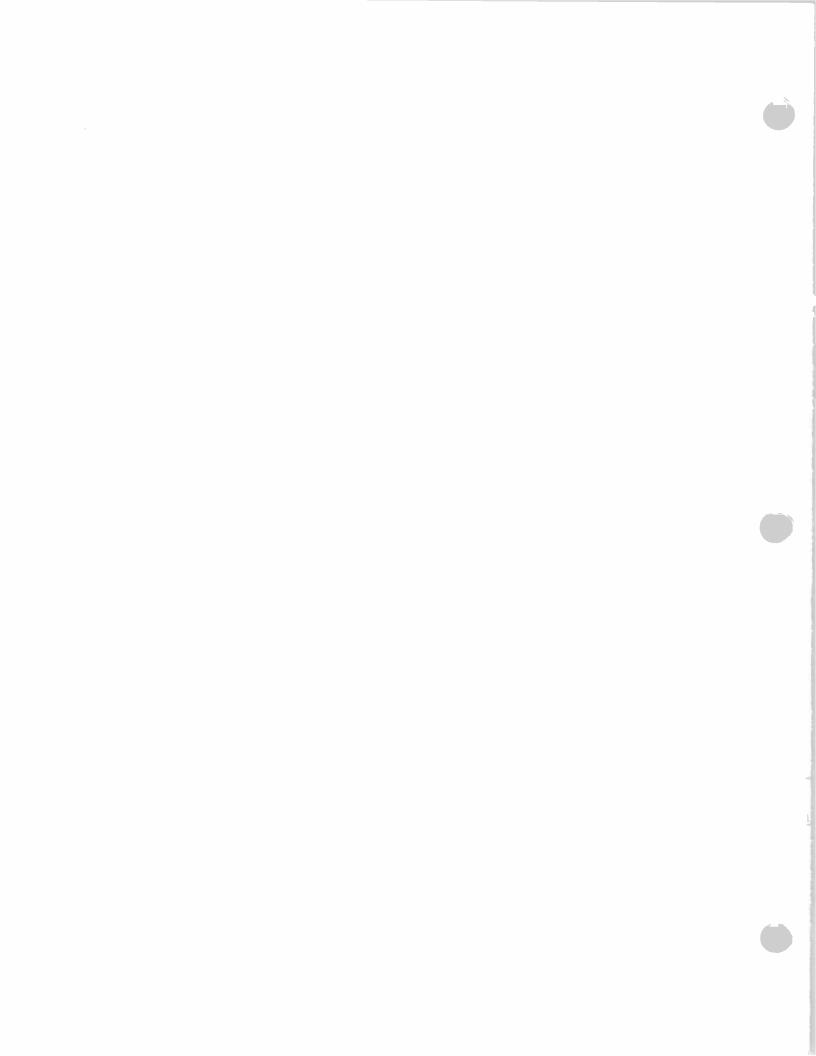

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:


- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.




CATHODE DRIVEN











## TECHNICAL DATA

## 8349 4CX35,000C

RADIAL-BEAM POWER TETRODE

The EIMAC 8349/4CX35,000C is a ceramic/metal, forced-air cooled power tetrode intended for use at the 50 to 150 kilowatt output power level. It is recommended for use as a Class-C rf amplifier or oscillator, a Class-AB rf linear amplifier, or a Class-AB push-pull af amplifier or modulator. The 8349/4CX35,000C is also useful as a plate and screen modulated Class-C rf amplifier.

The forced-air cooled anode is rated at 35 kilowatts maximum dissipation.

## GENERAL CHARACTERISTICS 1

## 

| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |     |      |
|--------------------------------------------------------------------|-----|------|
| Cin                                                                | 440 | pF   |
| Cout                                                               | 55  | pF   |
| Cgp                                                                | 2.3 | pF   |
| Frequency of Maximum Rating:                                       |     |      |
| CW                                                                 | 20  | MIT- |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

ELECTRICAL

| Maximum Overall Dimensions:                  |
|----------------------------------------------|
| Length 17.34 in; 440.4 mm                    |
| Diameter                                     |
| Net Weight                                   |
| Operating Position Vertical, base up or down |
| Maximum Operating Temperature:               |
| Ceramic/Metal Seals 250°C                    |
| Anode Core                                   |
| Cooling Forced Air                           |
| Base Special, graduated rings                |
| Recommended Socket EIMAC SK-1500             |

(Revised 12-1-70) © 1963, 1967, 1970 by Varian

Printed in U.S.A.

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB

### MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 20,000 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2500   | VOLTS          |
| DC PLATE CURRENT   |        | <b>AMPERES</b> |
| PLATE DISSIPATION  |        |                |
| SCREEN DISSIPATION | 1750   | WATTS          |
| GRID DISSIPATION   | 500    | WATTS          |
|                    |        |                |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation. Crest Conditions

| Plate Voltage                | 15.0 | kVdc |
|------------------------------|------|------|
| Screen Voltage               | 1.5  | kVdc |
| Grid Voltage <sup>1</sup>    | -400 | Vdc  |
| Zero-Signal Plate Current    | 1.0  | Adc  |
| Single Tone Plate Current    | 5.7  | Adc  |
| Single-Tone Screen Current 2 | 0.9  | Adc  |
| Peak rf Grid Voltage 2       | 250  | V    |
| Peak Driving Power 2         | 0    | W    |
| Plate Dissipation            | 30   | ķW   |
| Plate Output Power           | 55   | kW   |
|                              | 1280 | Ω    |

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM Telephony (Key-Down Conditions)

## MAXIMUM RATINGS:

| DC PLATE VOLTAGE         | VOLTS          |
|--------------------------|----------------|
| DC SCREEN VOLTAGE 2500   | VOLTS          |
| DC PLATE CURRENT 15.0    | <b>AMPERES</b> |
| PLATE DISSIPATION 35,000 | WATTS          |
| SCREEN DISSIPATION 1750  | WATTS          |
| GRID DISSIPATION 500     | WATTS          |

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage 10.0             | 15.0 | 19.0 | kVdc |
|--------------------------------|------|------|------|
| Screen Voltage 750             | 750  | 750  | Vdc  |
| Grid Voltage425                | -480 | -550 | Vdc  |
| Plate Current 7.5              | 6.8  | 6.96 | Adc  |
| Screen Current 1 0.84          | 0.51 | 0.80 | Adc  |
| Grid Current <sup>1</sup> 0.29 | 0.23 | 0.35 | Adc  |
| Peak rf Grid Voltage 1 600     | 660  | 730  | V    |
| Calculated Driving Power 1 180 | 150  | 258  | W    |
| Plate Dissipation19.3          | 19.0 | 21.0 | kW   |
| Plate Output Power 55.5        | 82.5 | 1 10 | kW   |
|                                |      |      |      |

1. Approximate value.

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

## MAXIMUM RATINGS:

| DC PLATE VOLTAGE 14,00           | VOLTS |
|----------------------------------|-------|
| DC SCREEN VOLTAGE 200            | VOLTS |
| DC PLATE CURRENT 15.             |       |
| PLATE DISSIPATION 1 23,00        | WATTS |
| SCREEN DISSIPATION <sup>2</sup>  |       |
| GRID DISSIPATION <sup>2</sup> 50 | WATTS |

- 1. Corresponds to 35,000 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                                                                                                                                                | <br>750<br>-600<br>5.4<br>0.52 | Vdc<br>Vdc<br>Adc<br>Adc |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|
| Peak af Screen Voltage 2 (100% modulation)  Peak rf Grid Voltage 1  Calculated Driving Power  Plate Dissipation  Plate Output Power  Resonant Load Impedance | <br>125<br>13.2<br>55.0        | v<br>W<br>kW             |

- 1. Approximate value.
- Approximate value, depending upon degree of driver modulation.



# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB, Grid Driven (Sinusoidal Wave)

#### MAXIMUM RATINGS (Per Tube):

| DC PLATE VOLTAGE   | 20,000 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  |        | VOLTS          |
| DC PLATE CURRENT   | 15.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 35,000 | WATTS          |
| SCREEN DISSIPATION | 1750   | WATTS          |
| GRID DISSIPATION   | 500    | WATTS          |

1. Approximate value.

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage                    | 12.0 | kVdo     |
|----------------------------------|------|----------|
| Screen Voltage                   | 1.5  | kVdo     |
| Grid Voltage 1/3                 | -400 | Vdc      |
| Zero-Signal Plate Current        | 3.0  | Adc      |
| Max Signal Plate Current         | 9.2  | Adc      |
| Max Signal Screen Current 1,     | 1.8  | Adc      |
| Peak af Grid Voltage 2           | 280  | V        |
| Max Signal Plate Dissipation 2   | 20   | kW       |
| Plate Output Power               | 70   | kW       |
| Load Resistance (plate to plate) | 2860 | $\Omega$ |

- 2. Per Tube
- 3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

## RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                        | Min. | Max.   |
|------------------------------------------------------------------------|------|--------|
| Heater: Current at 10.0 volts                                          | 280  | 310 A  |
| Interelectrode Capacitances (grounded cathode connection) <sup>2</sup> |      |        |
| Cin                                                                    | 410  | 470 pF |
| Cout                                                                   | 50   | 60 pF  |
| Cgp                                                                    | 1.5  | 3.2 pF |

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## APPLICATION

## **MECHANICAL**

MOUNTING - The 4CX35,000C must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC sockets, type SK-1500, and SK-1510 have been designed especially for the concentric base terminals of the 4CX35,000C.

COOLING - The maximum temperature rating for the external surfaces of the 4CX35,000C is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C.

Air-flow requirements to maintain core temperature at 225°C in 40° ambient air are tabulated below (for operation below 30 megahertz.) These data are for air flowing in the base-to-anode direction.

|                        | Base-to-Anode Air Flow |                          |                   |                          |
|------------------------|------------------------|--------------------------|-------------------|--------------------------|
|                        | Sea Level              |                          | 10,000            | Feet                     |
| Plate _                |                        | Pressure                 |                   | Pressure                 |
| Dissipation<br>(Watts) | Air Flow<br>(CFM)      | Drop(Inches<br>of Water) | Air Flow<br>(CFM) | Drop(Inches<br>of Water) |
| 15,000                 | 554                    | 1.2                      | 795               | 1.7                      |
| 20,000                 | 820                    | 2.1 —                    | 1100              | 3.0                      |
| 25,000                 | 1140                   | 3,6                      | 1665              | 5,2                      |
| 30,000                 | 1465                   | 5.0                      | 2140              | 7.4                      |
| 35,000                 | 1800                   | 7.2                      | 2630              | 10.3                     |

Since the power dissipated by the filament represents about 3000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 2250 watts, allowance has been made in preparing this tabulation for an additional 5250 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than 250°C. For most applications, 1 to 2 CFM of air directed through the center of the socket is sufficient for this purpose.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

## **ELECTRICAL**

FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CX35, 000C is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CX35,000C by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CX35,000C. At some point in filament voltage there will be a noticeable reduction in plate current, or power output. or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appears to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked to maintain proper operation.

Filament starting current must be limited to a maximum of 900 amperes.

Voltage between filament and the base plates of tube and SK-1500 socket, must not exceed 100 volts.

GRID OPERATION - The 4CX35,000C grid has a maximum dissipation rating of 500 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power

should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CX35,000C must not exceed 1750 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

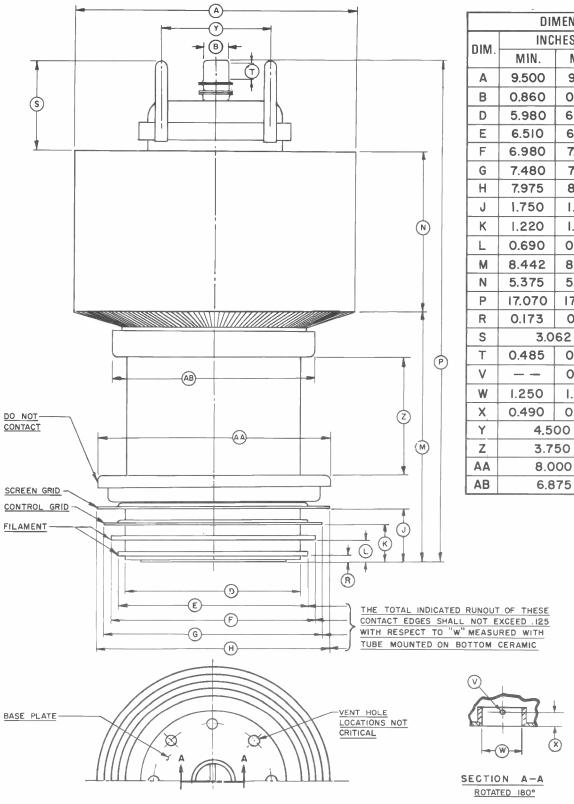
Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 1750 watts in the event of circuit failure.

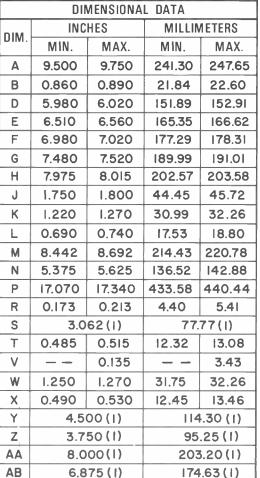
PLATE DISSIPATION - The plate-dissipation rating for the 4CX35,000C is 35,000 watts. When the 4CX35,000C is operated as a plate-modulated rf amplifier, under carrier conditions, the maximum plate dissipation is 23,000 watts.

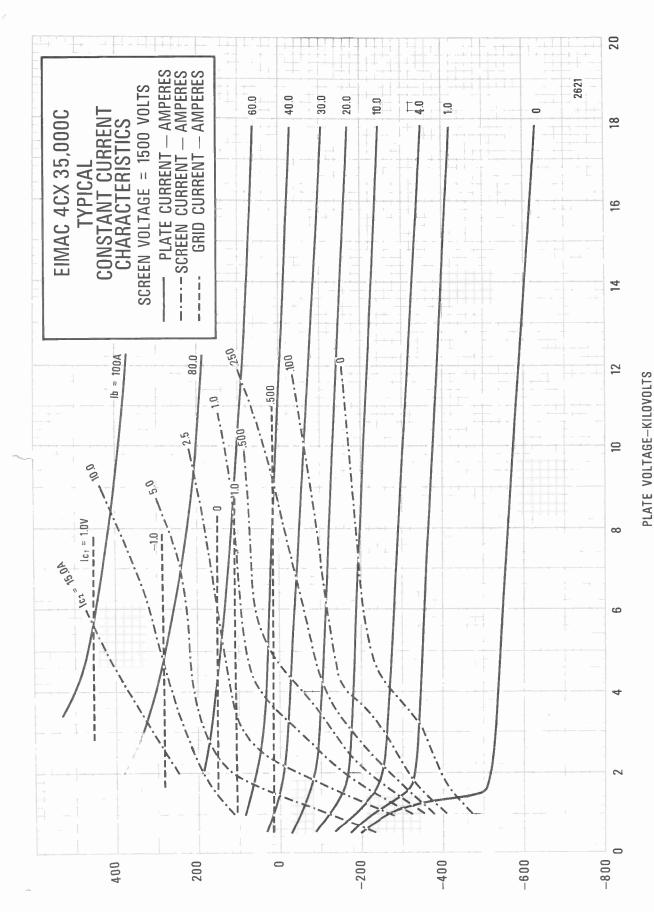
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capaci-

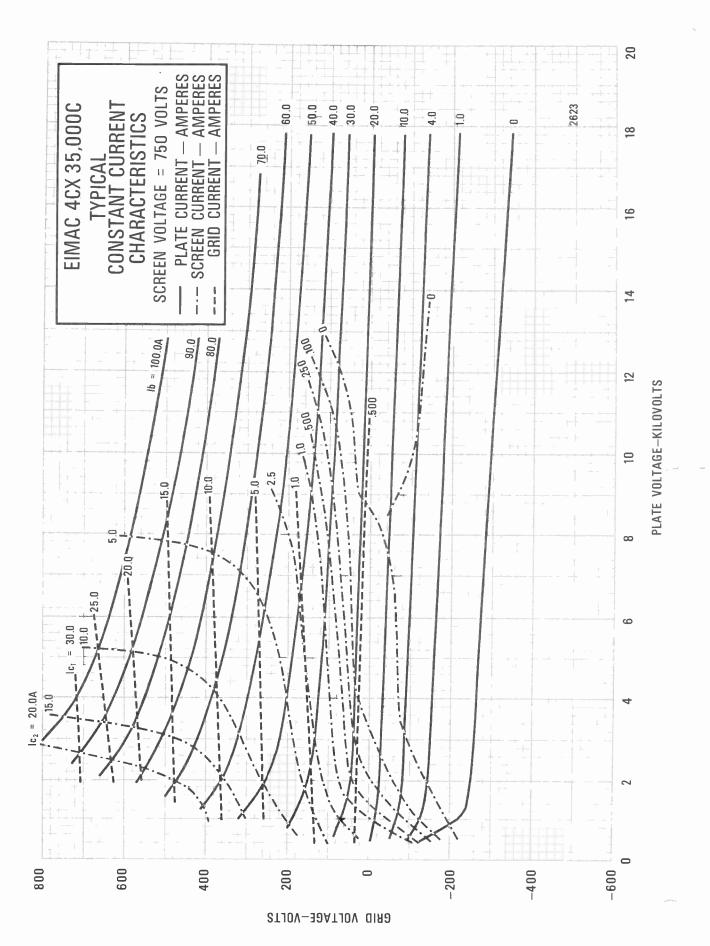
tance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


HIGH VOLTAGE - Normal operating voltages used with the 4CX35,000C are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CX35,000C, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radia-


tion level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.







GRID VOLTAGE-VOLTS





## TECHNICAL DATA

## 8349 4CX35,000C

RADIAL-BEAM POWER TETRODE

The EIMAC 8349/4CX35,000C is a ceramic/metal, forced-air cooled power tetrode intended for use at the 50 to 150 kilowatt output power level. It is recommended for use as a Class-C rf amplifier or oscillator, a Class-AB rf linear amplifier, or a Class-AB push-pull af amplifier or modulator. The 8349/4CX35,000C is also useful as a plate and screen modulated Class-C rf amplifier.

The forced-air cooled anode is rated at  $35\ \mathrm{kilowatts}\ \mathrm{maximum}\ \mathrm{dissipation.}$ 

## GENERAL CHARACTERISTICS 1

## Filament: Thoriated Tungsten 10.0 V 295 A Amplification Factor (Average): Grid to Screen ...... 4.5 Direct Interelectrode Capacitances (grounded cathode)2 440 pF 55 pF 2.3 pF Frequency of Maximum Rating:

CW ............

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

**ELECTRICAL** 

| Maximum Overall Dimensions:             |
|-----------------------------------------|
| Length                                  |
| Diameter                                |
| Net Weight                              |
| Operating Position                      |
| Maximum Operating Temperature:          |
| Ceramic/Metal Seals                     |
| Anode Core                              |
| Cooling Forced Air                      |
| Base Special, graduated rings           |
| Recommended Socket EIMAC SK-1500 Series |

(Revised 9-1-75) © 1963, 1967, 1970, 1975 by Varian

Printed in U.S.A.

30 MHz

## RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB

# TYPICAL OPERATION (Frequencies to 30 MHz) Class AB<sub>1</sub>, Grid Driven, Peak Envelope or Modulation Crest Conditions

## MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 20,000 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2500   | VOLTS          |
| DC PLATE CURRENT   |        | <b>AMPERES</b> |
| PLATE DISSIPATION  | 35,000 | WATTS          |
| SCREEN DISSIPATION | 1750   | WATTS          |
| GRID DISSIPATION   | 500    | WATTS          |
|                    |        |                |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.

| Plate Voltage                | 15.0 | kVdc     |
|------------------------------|------|----------|
| Screen Voltage               | 1.5  | kVdc     |
| Grid Voltage <sup>1</sup>    | -400 | Vdc      |
| Zero-Signal Plate Current    | 1.0  | Adc      |
| Single Tone Plate Current    | 5.7  | Adc      |
| Single-Tone Screen Current 2 | 0.9  | Adc      |
| Peak rf Grid Voltage 2       | 250  | V        |
| Peak Driving Power 2         | 0    | W        |
| Plate Dissipation            | 30   | kW       |
| Plate Output Power           | 55   | kW       |
| Resonant Load Impedance      | 1280 | $\Omega$ |
|                              |      |          |

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM (Key-Down Conditions)

### MAXIMUM RATINGS:

| DC PLATE VOLTAGE20,000   | VOLTS          |
|--------------------------|----------------|
| DC SCREEN VOLTAGE 2500   | VOLTS          |
| DC PLATE CURRENT 15.0    | <b>AMPERES</b> |
| PLATE DISSIPATION 35,000 | WATTS          |
| SCREEN DISSIPATION 1750  | WATTS          |
| GRID DISSIPATION 500     | WATTS          |

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage 10.0             | 15.0 | 19.0 | kVdc |
|--------------------------------|------|------|------|
| Screen Voltage 750             | 750  | 750  | Vdc  |
| Grid Voltage425                | -480 | -550 | Vdc  |
| Plate Current 7.5              | 6.8  | 6.96 | Adc  |
| Screen Current 10.84           | 0.51 | 0.80 | Adc  |
| Grid Current <sup>1</sup>      | 0.23 | 0.35 | Adc  |
| Peak rf Grid Voltage 1 600     | 660  | 730  | V    |
| Calculated Driving Power 1 180 | 1 50 | 258  | W    |
| Plate Dissipation19.3          | 19.0 | 21.0 | kW   |
| Plate Output Power55.5         | 82.5 | 110  | kW   |

1. Approximate value.

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

## MAXIMUM RATINGS:

| DC PLATE VOLTAGE     | 14,000 | VOLTS          |
|----------------------|--------|----------------|
| DC SCREEN VOLTAGE    | 2000   | VOLTS          |
| DC PLATE CURRENT     | 15.0   | <b>AMPERES</b> |
| PLATE DISSIPATION 1  | 23,000 | WATTS          |
| SCREEN DISSIPATION 2 | 1750   | WATTS          |
| GRID DISSIPATION 2   | 500    | WATTS          |

- Corresponds to 35,000 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                       | 12.0 | kVdc |
|-------------------------------------|------|------|
| Screen Voltage                      | 750  | Vdc  |
| Grid Voltage                        | -600 | Vdc  |
| Plate Current                       |      |      |
| Screen Current 1                    |      |      |
| Grid Current <sup>1</sup>           | 0.16 | Adc  |
| Peak af Screen Voltage <sup>2</sup> |      |      |
| (100% modulation)                   | 500  | V    |
| Peak rf Grid Voltage 1              | 740  | V    |
| Calculated Driving Power            | 125  | W    |
| Plate Dissipation                   | 13.2 | kW   |
| Plate Output Power                  | 55.0 | kW   |
| Resonant Load Impedance             | 1120 | Ω    |

- 1. Approximate value.
- Approximate value, depending upon degree of driver modulation.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB, Grid Driven (Sinusoidal Wave)

#### MAXIMUM RATINGS (Per Tube):

| DC PLATE VOLTAGE   | 20,000 | VOLTS          |
|--------------------|--------|----------------|
| DC SCREEN VOLTAGE  | 2,500  | VOLTS          |
| DC PLATE CURRENT   | 15.0   | <b>AMPERES</b> |
| PLATE DISSIPATION  | 35,000 | WATTS          |
| SCREEN DISSIPATION | 1750   | WATTS          |
| GRID DISSIPATION   | 500    | WATTS          |

1. Approximate value.

TYPICAL OPERATION (Two Tubes)

| Plate Voltage                    | 12.0 | kVdc     |
|----------------------------------|------|----------|
| Screen Voltage                   | 1.5  | kVdc     |
| Grid Voltage 1/3                 | -400 | Vdc      |
| Zero-Signal Plate Current        | 3.0  | Adc      |
| Max Signal Plate Current         | 9.2  | Adc      |
| Max Signal Screen Current 1      | 1.8  | Adc      |
| Peak af Grid Voltage 2           | 280  | V        |
| Max Signal Plate Dissipation 2   | 20   | kW       |
| Plate Output Power               | 70   | kW       |
| Load Resistance (plate to plate) | 2860 | $\Omega$ |

- 2. Per Tube
- 3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

## RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                        | Min. | Max.   |
|------------------------------------------------------------------------|------|--------|
| Heater: Current at 10.0 volts                                          | 280  | 310 A  |
| Interelectrode Capacitances (grounded cathode connection) <sup>2</sup> |      |        |
| Cin                                                                    |      |        |
| Cout                                                                   | 50   | 60 pF  |
| Cgp                                                                    | 1.5  | 3.2 pF |

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## **APPLICATION**

## **MECHANICAL**

MOUNTING - The 4CX35,000C must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC sockets, type SK-1500, and SK-1510 have been designed especially for the concentric base terminals of the 4CX35,000C.

COOLING - The maximum temperature rating for the external surfaces of the 4CX35,000C is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C.

Air-flow requirements to maintain core temperature at 225°C in 40° ambient air are tabulated below (for operation below 30 megahertz.) These data are for air flowing in the base-to-anode direction.

|                        | Base-to-Anode Air Flow |                       |                   |                          |
|------------------------|------------------------|-----------------------|-------------------|--------------------------|
|                        | Sea Level 10,0         |                       | 10,000            | Feet                     |
| Plate                  |                        | Pressure              |                   | Pressure                 |
| Dissipation<br>(Watts) | Air Flow<br>(CFM)      | Drop(Inches of Water) | Air Flow<br>(CFM) | Drop(Inches<br>of Water) |
| 15,000                 | 440                    | 1.0                   | 635               | 1.44                     |
| 20,000                 | 650                    | 2.0                   | 935               | 2.9                      |
| 25,000                 | 975                    | 3,8                   | 1400              | 5.5                      |
| 30,000                 | 1300                   | 6.0                   | 1870              | 8.6                      |
| 35,000                 | 1760                   | 9,6                   | 2535              | 13.8                     |

Since the power dissipated by the filament represents about 3000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 2250 watts, allowance has been made in preparing this tabulation for an additional 5250 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than 250°C. For most applications, 1 to 2 CFM of air directed through the center of the socket is sufficient for this purpose.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

## **ELECTRICAL**

FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CX35, 000C is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CX35,000C by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the 4CX35,000C. At some point in filament voltage there will be a noticeable reduction in plate current, or power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appears to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked to maintain proper operation.

Filament starting current must be limited to a maximum of  $900 \ \text{amperes}$ .

 $GRID\ OPERATION$  - The 4CX35,000C grid has a maximum dissipation rating of 500 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power

should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CX35,000C must not exceed 1750 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

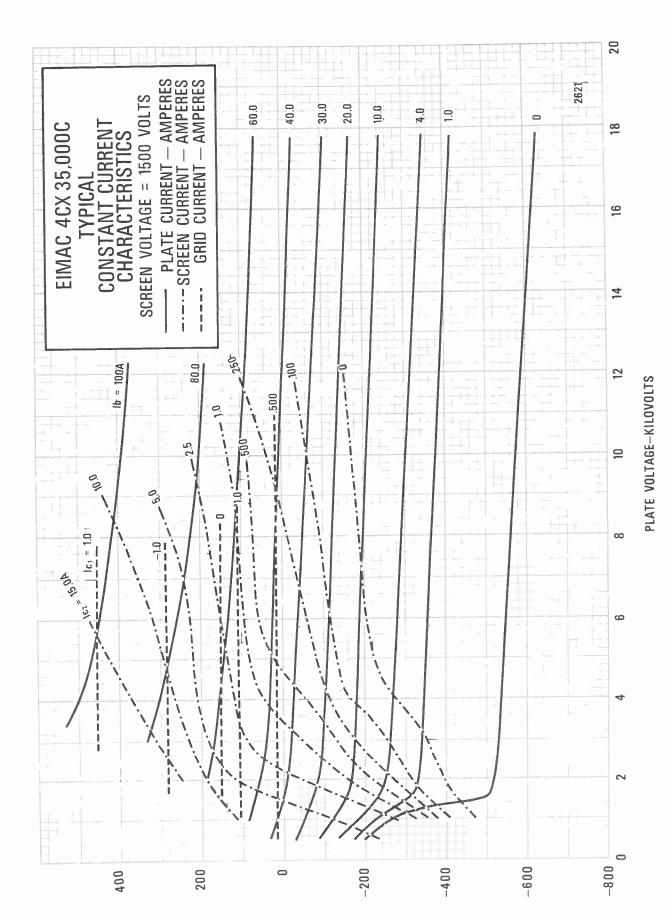
Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 1750 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX35,000C is 35,000 watts. When the 4CX35,000C is operated as a plate-modulated rf amplifier, under carrier conditions, the maximum plate dissipation is 23,000 watts.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

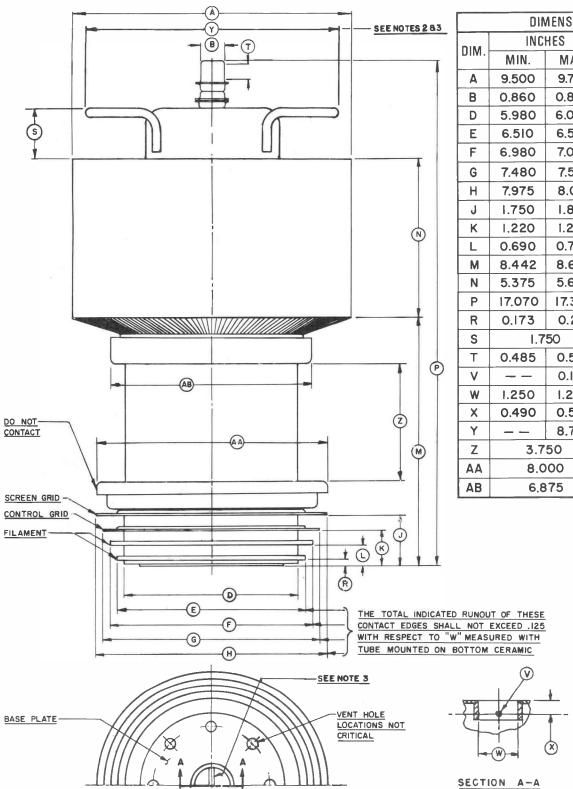
HIGH VOLTAGE - Normal operating voltages used with the 4CX35,000C are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


FAULT PROTECTION - In addition to normal cooling airflow interlock and plate and screen over-current interlocks, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high plate voltage.

In all cases some protective resistance, at least one or two ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. Where stored energy is high, it is recommended that some form of electronic crowbar be used which will discharge power supply capacitors in as short a time as possible following indication of start of a plate arc.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CX35,000C, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.



#2621

GRID VOLTAGE-VOLTS

#2623



| DIMENSIONAL DATA |          |        |             |        |  |  |
|------------------|----------|--------|-------------|--------|--|--|
| DIM              | INCHES   |        | MILLIMETERS |        |  |  |
| DIM.             | MIN.     | MAX.   | MIN.        | MAX.   |  |  |
| Α                | 9.500    | 9.750  | 241.30      | 247.65 |  |  |
| В                | 0.860    | 0.890  | 21.84       | 22.60  |  |  |
| D                | 5.980    | 6.020  | 151.89      | 152.91 |  |  |
| E                | 6.510    | 6.560  | 165.35      | 166.62 |  |  |
| F                | 6.980    | 7.020  | 177.29      | 178.31 |  |  |
| G                | 7.480    | 7.520  | 189.99      | 191.01 |  |  |
| Н                | 7.975    | 8.015  | 202.57      | 203.58 |  |  |
| J                | 1.750    | 1.800  | 44.45       | 45.72  |  |  |
| K                | 1.220    | 1.270  | 30.99       | 32.26  |  |  |
| L                | 0.690    | 0.740  | 17.53       | 18.80  |  |  |
| М                | 8.442    | 8.692  | 214.43      | 220.78 |  |  |
| N                | 5.375    | 5.625  | 136.52      | 142.88 |  |  |
| Р                | 17.070   | 17.340 | 433.58      | 440.44 |  |  |
| R                | 0.173    | 0.213  | 4.40        | 5.41   |  |  |
| S                | 1.7      | 50     | 44          | .45    |  |  |
| Т                | 0.485    | 0.515  | 12.32       | 13.08  |  |  |
| ٧                |          | 0.135  |             | 3.43   |  |  |
| W                | 1.250    | 1.270  | 31.75       | 32.26  |  |  |
| X                | 0.490    | 0.530  | 12.45       | 13.46  |  |  |
| Υ                |          | 8.750  |             | 222.25 |  |  |
| Z                | 3.750    |        | 95.25       |        |  |  |
| AA               | AA 8.000 |        | 203.20      |        |  |  |
| AB 6.875         |          |        | 174         | 1.63   |  |  |
|                  |          |        |             |        |  |  |

REFERENCE DIMENSIONS
ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR IN-SPECTION PURPOSES.

- 2. DIM. Y IS MAXIMUM DIA. ACROSS CORNERS
- 3. HANDLE LATERAL AXIS
  ORIENTATION WITH BASE LOCK PIN IS AS SHOWN.



EEV, INC.

7 Westchester Plaza Elmsford, New York 10523 Telephone (914) 592-8050 Telex 646180

| PAX NUMBER - | (914) | 592-8342 |
|--------------|-------|----------|
|--------------|-------|----------|

GROUP 3

|       | David wi      | 11000      |       |     |
|-------|---------------|------------|-------|-----|
|       |               |            |       | -   |
|       |               |            |       | _   |
|       |               |            |       |     |
| FROM  | C. Thew       | 5          |       | -   |
| NO. C | F PAGES TO FO | 1700       |       |     |
| .,,,, | ZAGES TO FO   |            |       |     |
|       | NTS:          |            |       |     |
| 0     | ference:      | Our US 948 | 7 FOR | RFQ |
| 1CA   |               | 5000c      |       |     |

## ELECTRONIC INDUSTRIES ASSOCIATION



2001 EYE STREET, N. W. WASHINGTON, D. C. 20006

TELEPHONE: (202) 889-2206 CASLES: ELECTRON WASHINGTON DC

Announcement

of

Electron Device Type Reregistration
Release No. 41230(final)

February 10, 1976

E. I. A.
REGISTRATION
FILE

The Joint Electron Davice Engineering Council announced the proposed reregistration of the following electron device designation:

8349

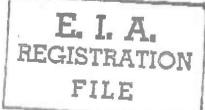
on December 2, 1975.

This announcement is notice that the proposed reregistration covered by Release No. 4123, dated February 4, 1963, may be considered "FINAL".

# ELECTRONIC INDUSTRIES ASSOCIATION



WASHINGTON, D. C. 20006


TELEPHONE 2021 BER-2200 CABLES ELECTRON WASHINGTON DC

Announcement

of

Electron Device Reregistration
Release No. 4123C(Tentative\*)

December 2, 1975



The Joint Electron Device Engineering Council announced the registration of the following electron device designation:

8349

on February 4, 1963, in Release No. 4123, under the sponsorhsip of Eimso Division of Varian

The sponsor now proposes reregistration as based on the attached data sheat. A summary of the changes which have been made are as follows:

- 1. Page 1 New photograph, as lifting handles have changed.
- 2. Page 3 Revised cooling data in tabulation.
- 3. Page 5 Paragraph added on FAULT PROTECTION.
- 4. Page 8 Revised outline drawing.

\*Unless valid written objection to this reregistration is lodged with the EIA Type Administration Office at the above address prior to February 2, 1975 this reregistration will be made and this information will be considered "FINAL".

## TECHNICAL DATA

8349 4CX35,000

RADIAL-BEAM POWER TETROD

The EIMAC 8349/4CX35,000C is a ceramic/metal, forced-air cooled power tetrode intended for use at the 50 to 150 kilowatt output power level. It is recommended for use as a Class-C rf amplifier or oscillator, a Class-AB rf linear amplifier, or a Class-AB push-pull af amplifier or modulator. The 8349/4CX35,000C is also useful as a plate and screen modulated Class-C rf amplifier.

The forced-sir cooled enode is rated at 35 kilowatts maximum dissipation.

## GENERAL CHARACTERISTICS 1

## ELECTRICAL

| Filament: Thoriated Tungsten                           |          |     |   | BL.    |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|----------|-----|---|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage                                                | 10.0     | V   | 5 | ES     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        | 295      |     |   | W.     | CHANGE OF THE | ATT TO SERVICE STATE OF THE PARTY OF THE PAR |
| Amplification Factor (Average):                        | 275      | 100 | V | Á      |               | SOLUTION STATE OF THE PARTY OF  |
| Grid to Screen                                         | 4.5      |     | 4 | -8-    | 9             | Chrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Direct Interelectrode Capacitances (grounded cathode)2 | 0.00     |     |   |        | •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cin                                                    | 0.000    |     |   |        | 440           | pF 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cout                                                   |          |     |   | 201010 | . 55          | of 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cgp                                                    |          |     |   |        | 2.3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency of Maximum Rating:                           |          |     |   |        | -             | 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CW                                                     | 0000 100 |     |   |        | . 30          | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement, EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

| Maximum Overall Dimensions:    |             |                 |
|--------------------------------|-------------|-----------------|
| Length                         | 17.3        | 4 in; 440.4 mm  |
| Diameter                       | 9.7         | 5 in: 247.7 mm  |
| Net Weight                     |             | 0 1b: 22.7 kg   |
| Operating Position             | Vertical, b | ase up or down  |
| Maximum Operating Temperature: |             |                 |
| Ceramic/Metal Seals            |             | 250°C           |
| Anode Core                     |             | 250°C           |
| Cooling                        |             | . Forced Air    |
| Base                           | Special     | graduated rings |
| Recommended Socket             | EIMAC       | SK-1500 Series  |
|                                |             |                 |

(Revised 9-1-75) @ 1963, 1967, 1970, 1975 by Varian

Printed in U.S.A.

# ADIO FREQUENCY LINEAR AMPLIFIER ARID DRIVEN Closs AB

### MAXIMUM RATINGS:

| DC PLATE VOLTAGE .   |   | , | , |   | ¥ |   | 2 | 1 | 4 | 20,000 | VOLTS        |
|----------------------|---|---|---|---|---|---|---|---|---|--------|--------------|
| DC SCREEN VOLTAGE    |   |   |   |   |   |   |   |   |   | 2500   | <b>VOLTS</b> |
| C PLATE CURRENT      |   |   |   |   |   |   |   |   |   |        | AMPERES      |
| SPLATE DISSIPATION . | , | 9 | 4 | ş | p | 0 |   | 4 | , |        | WATTS        |
| SCREEN DISSIPATION   |   |   |   |   |   |   |   |   |   | 1750   | WATTS        |
| GRID DISSIPATION .   |   |   |   |   |   |   |   |   |   |        | WATTS        |
|                      |   |   |   |   |   |   |   |   |   |        |              |

- 1. Adjust to specified zero-signal do plate current.
- Approximate value.

TYPICAL OPERATION (Frequencies to 30 MHz)
Class AB1, Grid Driven, Peak Envelope or Modulation
Crest Conditions

| Plate Voltage                | , , | 15.0 kVdc |
|------------------------------|-----|-----------|
| Screen Voltage               | + h | 1.5 kVdc  |
| Grid Voltage 1,              | 1 . | -400 Vdc  |
| Zero-Signal Plate Current    |     | 1.0 Adc   |
| Single Tone Plate Current    | 1 6 | 5.7 Adc   |
| Single-Tone Screen Current 2 | 8 7 | 0.9 Adc   |
| Peak of Grid Voltage 2       | 9 4 | 250 v     |
| Peak Driving Power 2         | 1 1 | 0 W       |
| Plate Dissipation            | h 1 | 30 kW     |
| Plate Output Power           |     | 55 KW     |
| Resonant Load Impedance      | 2 0 | 1280 Ω    |

## RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM (Key-Down Conditions)

### MAXIMUM RATINGS:

| DC PLATE VOLTAGE    | į, | ì | ı  | ÷ | × |   | ļ, | į. | ď | , 20,000 | VOLTS   |
|---------------------|----|---|----|---|---|---|----|----|---|----------|---------|
| DC SCREEN VOLTAGE   |    |   | į, | í |   | ı | ì  | 4  | ï | 2500     | VOLTS   |
| DC PLATE CURRENT    |    |   |    |   |   |   |    |    |   |          | AMPERES |
| PLATE DISSIPATION . |    |   |    |   |   |   |    |    |   |          | WATTS   |
| SCREEN DISSIPATION  |    |   |    |   |   |   |    |    |   |          | WATTS   |
| MID DISSIPATION     |    | ï |    |   |   |   |    | ş  | q | 500      | WATTS   |

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                  | 15.0 | 19.0 | kVd0 |
|--------------------------------|------|------|------|
| Screen Voltage                 | 750  | 750  | Vdc: |
| Grid Voltage425                | -460 | -560 | Vdc  |
| Plate Current 7.5              | 6.5  | 6.95 | Adc  |
| Screen Current 1               | 0.51 | 0.80 | Add  |
| Grid Current 1                 | 0.23 | 0.35 | Adc  |
| Peak of Grid Voltage 1         | 850  | 730  | V    |
| Calculated Driving Power 1 180 | 1.50 | 258  | W    |
| Plate Dissipation              | 19.0 | 21.0 | KW.  |
| Plate Output Power             | 82.5 | 110  | kW   |
|                                |      |      |      |

1. Approximate value.

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

## AXIMUM RATINGS:

| PLATE VOLTAGE        |    |    |   |    |  |   |    |   | ı | 14,000 | VOLTS   |
|----------------------|----|----|---|----|--|---|----|---|---|--------|---------|
| DC SCREEN VOLTAGE    |    |    |   |    |  |   |    |   |   |        | VOLTS   |
| DC PLATE CURRENT     |    |    |   |    |  |   |    |   |   |        | AMPERES |
| PLATE DISSIPATION 1  |    |    |   |    |  |   |    |   |   |        |         |
| SCREEN DISSIPATION 2 | ,  | ŧ, | ÷ | A. |  |   | 'n | , | ı | 1750   | WATTS   |
| GRID DISSIPATION2    | į, |    |   |    |  | , | v  |   | ï | 500    | WATTS   |

- Corresponds to 35,000 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

## TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                 | -0.0  |     |       | -00 | Tac. | 16    | è  | 12.0     | kVd |
|-------------------------------|-------|-----|-------|-----|------|-------|----|----------|-----|
| Screen Voltage                | C K W |     | 0.000 |     |      |       | j. | 7.60     | Vac |
| Grid Voltage<br>Plate Current | 1.    | 10  |       |     |      |       |    | -600     | Vdc |
| Plate Current                 |       |     |       |     |      | 22    | ī. | 8.4      | Ado |
| Spreen Current                | 4.0   | 100 |       |     |      | 6.5   |    | 0.52     | Add |
| Grid Current 1                |       | 100 |       |     |      |       |    | <br>0.16 | Add |
| Feak at Screen Vot            | tage  | 12  |       |     |      |       |    |          |     |
| (100% Modulatio               |       |     |       |     |      |       |    |          |     |
| Peak of Grid Voltag           | 0,    |     |       | - 0 |      | - 14: |    | <br>740  | W.  |
| Calculated Driving            | Poy   | ver |       |     |      |       |    | 125      | W   |
| Plate Dissipation             |       |     |       |     |      |       |    | 13.2     | RW  |
| Plate Output Power            |       |     | 1     |     |      |       |    | 55.0     | kW. |
| Resonant Load Impa            |       |     |       |     |      |       |    |          |     |
|                               |       |     |       |     |      |       |    |          |     |

- Approximate value.
- Approximate value, depending upon degree of driver modulation.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB, Grid Driven (Sinusoidal Wave)

## MAXIMUM RATINGS (Per Tube):

| DC PLATE VOLTAGE .  |   |   |   |   |   |   |   | a |   | ÷ | 20,000 | VQLT\$  |
|---------------------|---|---|---|---|---|---|---|---|---|---|--------|---------|
| DC SCREEN VOLTAGE   |   | r | v |   |   | 1 | и |   |   | , | 2,500  | VOLT\$  |
| DC PLATE CURRENT .  |   | r | į | r | 6 | ٠ |   | 1 | ı | 9 | 15.0   | AMPERES |
| PLATE DISSIPATION . |   |   |   | , | , |   |   | ě |   |   | 35,000 | WATTS   |
| SCREEN DISSIPATION  |   |   |   |   |   |   |   |   |   |   |        |         |
| GRID DISSIPATION    | , |   |   | ı | , | 4 | 1 | + | ) |   | 500    | WATTS   |

1. Approximate value.

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage.,,                  | 12.0 | kVdo |
|-----------------------------------|------|------|
| Screen Voltage                    | 1.5  | kVdo |
| Grid Voltage 1/3,                 | -400 | Vdc  |
| Zero-Signal Plate Current,        | 3.0  | Add  |
| Max Signal Plate Current          | 9,2  | Ado  |
| Max Signal Screen Current1        | 1.8  | Adc  |
| Peak af Grid Voltage 2            | 280  | ٧.   |
| Max Signal Flate Dissipation 2    | 20   | kW   |
| Plate Output Power                | 70   | kW   |
| Load Resistance (plate to plate), | 2860 | Ω    |
|                                   |      |      |

- 2. Per Tube
- 3. Adjust to give stated zero-signal plate current.

NOTE TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, acreen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current, in the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct if grid voltage is applied.

## RANGE VALUES FOR EQUIPMENT DESIGN

|                                                             |     | Max,   |
|-------------------------------------------------------------|-----|--------|
| Heater: Current at 10.0 volts                               | 280 | 310 A  |
| Interelectrode Capacitances (grounded cuthode connection) 2 |     |        |
| Cin                                                         | 410 | 470 pF |
| Cout                                                        |     |        |
| Cp                                                          | 1.5 | 3.2 pF |

2 Capacitance values are for a cold tupe as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## **APPLICATION**

## MECHANICAL

MOUNTING - The 4CX35,000C must be operated with its axis vertical. The base of the tube may he down or up at the convenience of the circuit designer.

SOCKET - The EIMAC sockets, type SK-1500, and SK-1510 have been designed especially for the concentric base terminals of the 4CX35,000C.

COOLING - The maximum temperature rating for the external surfaces of the 4CX35,000C is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C.

Air-flow requirements to maintain core temperature at 225°C in 40° ambient air are tabulated below (for operation below 30 megahertz.) These date are for air flowing in the base-to-anode direction.

|                        | Base-to-Anode Air Flow |                       |                   |                          |  |  |  |  |
|------------------------|------------------------|-----------------------|-------------------|--------------------------|--|--|--|--|
|                        | Sea                    | Level                 | 10,000            | Feet                     |  |  |  |  |
| Plate .                |                        | Pressure              |                   | Pressure                 |  |  |  |  |
| Dissipation<br>(Watts) | Air Flow<br>(CFM)      | Drop(Inches of Water) | Air Flow<br>(CFM) | Drop(Inches<br>of Water) |  |  |  |  |
| 16,000                 | 440                    | 1,0                   | 635               | 1,44                     |  |  |  |  |
| 20,000                 | 850                    | 2.0                   | 935               | 2.9                      |  |  |  |  |
| 25,000                 | 975                    | 3.8                   | 1400              | 5, 5                     |  |  |  |  |
| 30,000                 | 1300                   | 5.0                   | 1870              | 8,6                      |  |  |  |  |
| 35,000                 | 1760                   | 9,6                   | 2535              | 13,8                     |  |  |  |  |

Since the power dissipated by the fitament represents about 3000 watts and aince grid-plus-screen disaipation can, under some conditions, represent another 2250 watts, allowance has been made in preparing this tabulation for an additional 5250 watts dissipation.

4CX35,000C

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducta and filters.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelops temperatures less than 250°C. For most applications, 1 to 2 CFM of air directed through the center of the socket is sufficient for this purpose.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

## ELECTRICAL

FILAMENT OPERATION - The peak emission it rated filament voltage of the EIMAC 4CX35, 200C is normally many times the peak emission required for communication service A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 4CX35,000C by a substantial percentage It s good practice to determine the nominal filament voltage for a particular application that ill not affect the operation of the equipment. This is done by measuring some important paremeter of performance such as plate current, power output, or distortion while filement voltage is reduced on the 4CX35,000C At some point in filament voltage there will be a noticeble reduction in plate current, or power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appears to deteriorate. This voltage should be measured at the socket with a 1% meter and periodically checked to maintain proper operation.

Filament starting current must be limited to a maximum of 900 amperes.

Voltage between filement and the base plates of tube and SK-1500 socket, must not exceed 100 volts.

arid OPERATION - The 4CX35,000C grid has a maximum dissipation rating of 500 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power

should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the 4CX35,000C must not exceed 1750 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the acreen dissipation to 1750 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the 4CX35,000C is 35,000 watts. When the 4CX35,000C is operated as a plate-modulated if amplifier, under carrier conditions, the maximum plate dissipation is 23,000 watts

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, strey capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground", The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

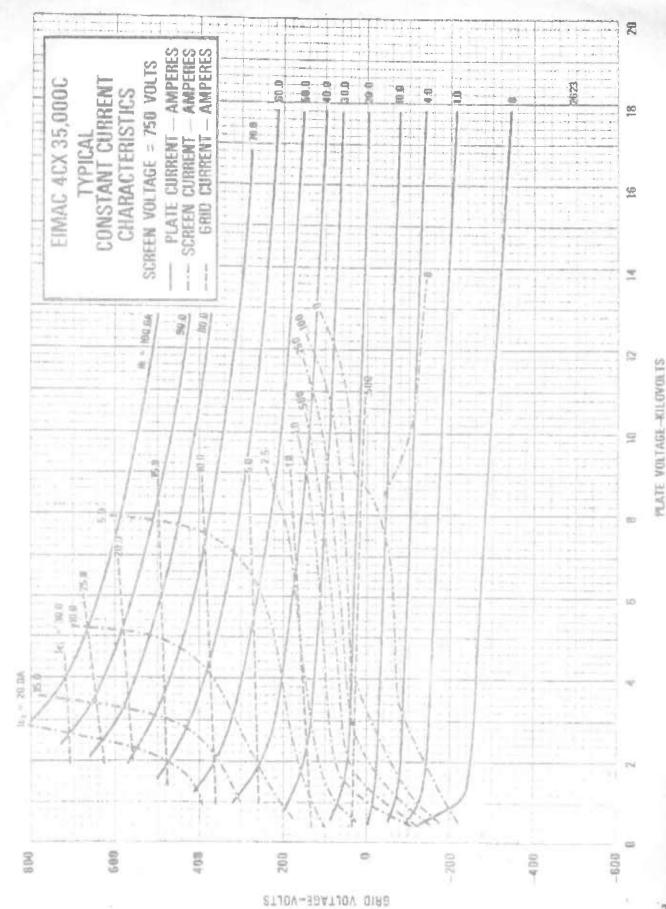
The equipment designer is therefore cautioned to make allowance for the actual capacitence values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

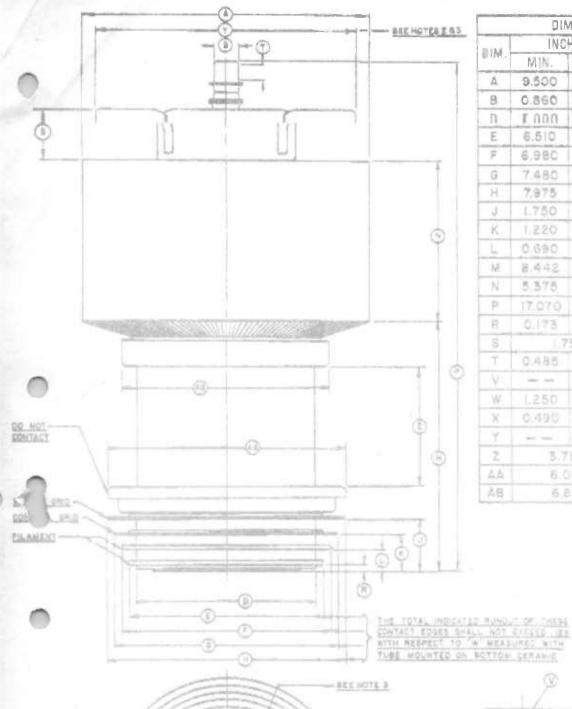
HIGH VOLTAGE - Normal operating voltages used with the 4CX35,000C are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FAULT PROTECTION - In addition to normal cooling airflow interlock and plate and screen over-current interlocks, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high plate voltage

In all cases some protective resistance, at least one or two ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. Where stored energy is high, it is recommended that some form of electronic crowber be used which will discharge power supply capacitors in as short a time as possible following indication of start of a plate arc.

X-RADIATION . High-vacuum tubes operating et voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4CX35,000C, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

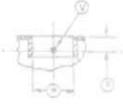
STJOV-30ATJOV OIRO

4CX35,000C

PLATE VOLTAGE-KILOVOLTS






|           | DIN    | ENSIONAL | DATA   |        |  |
|-----------|--------|----------|--------|--------|--|
| DIM.      | INC    | RES      | MILLIN | METERS |  |
| gi terr . | MIN.   | MAX.     | MIN.   | MAX.   |  |
| A         | 9,500  | 9.750    | 241.30 | 247.65 |  |
| 9         | 0.860  | 0.890    | 21.84  | 22.60  |  |
| n         | rana   | nnan     | TELDO  | HEADI  |  |
| E         | 6.510  | 6.560    | 195.35 | 166.62 |  |
| F         | 6,980  | 7.020    | 177.29 | 178.31 |  |
| G         | 7.480  | 7.520    | 189.99 | 191,01 |  |
| H         | 7.975  | 8.015    | 202.57 | 203.58 |  |
| J         | 1.750  | 1.800    | 44.45  | 45.72  |  |
| K         | 1,220  | 1,270    | 30.99  | 32.26  |  |
| L         | 0.690  | 0.740    | 17.53  | 18.80  |  |
| M         | 8.442  | 8.692    | 214,43 | 220.78 |  |
| N         | 5.375  | 5.625    | 136.52 | 142.88 |  |
| P         | 17.070 | 17.540   | 433.58 | 440.44 |  |
| R         | 0.173  | 0.2/5    | 4.40   | 5.41   |  |
| 8         | 1.7    | 50       | 94.45  |        |  |
| T         | 0.485  | 0.5/5    | 12.32  | 13.08  |  |
| .V        |        | 0.35     |        | 3.48   |  |
| W         | 1.250  | Lato     | 31.75  | 32.26  |  |
| Х         | 0.490  | 0.530    | 12,45  | 13.46  |  |
| Y         |        | 8.750    |        | 222.25 |  |
| Z         | 3.7    | 60       | 95.25  |        |  |
| AA        | 8.0    | 00       | 20     | 3.20   |  |
| AB        | 6.8    | 75       | 174    | 4.63   |  |

MILES!

AFFER MET DAY METERS AND THE CHES AND AFE HOT PEROVINED FOR JACPRESTOR PURPOSES.

ACROSS CORRESS





SECTION A-A

BASE PLATE





The EIMAC 4CX35,000D is a ceramic/metal forced-air cooled power tetrode intended for use at the 50 to 150 kW output power level. It is recommended for use as a Class-C rf amplifier, a Class-AB rf linear amplifier, or a Class-AB push-pull audio amplifier or modulator. It is also useful as a plate and screen modulated Class-C rf amplifier.

The tube utilizes a rugged thoriated tungsten mesh cathode. It is interchangeable with the 8349/4CX35,000C and provides improved performance in many applications.

The forced-air cooled anode is rated at 35 kW maximum dissipation.

## GENERAL CHARACTERISTICS 1

## ELECTRICAL

| Filament: Thoriated Tungsten                                      |                |          |
|-------------------------------------------------------------------|----------------|----------|
| Voltage                                                           | $10.0 \pm 0.5$ | V        |
| Current, at 10.0 volts                                            | 275            | Α        |
| Amplification Factor (average)                                    | 4.5            |          |
| Direct Interelectrode Capacitance (grounded cathode) <sup>2</sup> | 445            |          |
| Cin                                                               | 445<br>51      | pF       |
| Cout                                                              | 2.3            | pF<br>pF |
| Cgp                                                               | 2.5            | РΙ       |
| Cin                                                               | 195            | pF       |
| Cout                                                              | 55             | pF       |
| Cpk                                                               | 0.5            |          |
| Maximum Frequency for Full Ratings (CW)                           | 30             | MHz      |



Characteristics and operating values are based on performance tests. These figures may change
without notice as the result of additional data or product refinement. Varian EIMAC should be
consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

| Maximum Overall Dimensions:                                               |      |
|---------------------------------------------------------------------------|------|
| Length                                                                    |      |
| Diameter                                                                  |      |
| Net Weight                                                                |      |
| Operating                                                                 | lown |
| Maximum Operating Temperature, Anode Core or Ceramic/Metal Seals          | 0°C  |
| Cooling Forced                                                            | Air  |
| Base                                                                      |      |
| Recommended Air-System Socket                                             | 10A  |
| Available Screen Grid Bypass Capacitor Components 2300 pF - EIMAC P/N 149 | 089  |
| 1100 PF - EIMAC P/N 149                                                   | 1090 |
| Required Set of Insulator Bushings - EIMAC P/N 149                        | 8800 |
| Available Anode Connector Clip                                            | C-3  |

RADIO FREQUENCY LINEAR AMPLIFIER
GRID DRIVEN
Class AB
TYPICAL OPERATION (Frequencies to 30 MHz)
Class AB1, Grid Driven, Peak Envelope or Modulation
Crest Conditions

## ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE .                     |   |     | KILOVOLTS              |
|----------------------------------------|---|-----|------------------------|
| DO 0010 WOLTSOF                        |   |     | KILOVOLTS<br>KILOVOLTS |
| DC PLATE CURRENT . PLATE DISSIPATION . |   |     | AMPERES<br>KILOWATTS   |
| SCREEN DISSIPATION .                   | • |     | WATTS                  |
| GRID DISSIPATION .                     |   | 500 | WATTS                  |

\* Approximate; will vary tube to tube. # Adjust to specified zero-signal dc plate current.

| Plate Voltage |         |     |     |    |   |   |   |   | 10.00 | 15.0 | kVdc |
|---------------|---------|-----|-----|----|---|---|---|---|-------|------|------|
| Screen Voltag |         |     |     |    |   |   |   |   | 1500  | 1500 | Vdc  |
| Grid Voltage  |         |     |     |    |   |   |   |   | -350  | -400 | Vdc  |
| Zero-Signal P |         |     |     |    |   |   |   |   | 2.0   | 0.91 | Adc  |
| Single-Tone P |         |     |     |    |   |   |   |   | 8.7   | 7.9  | Adc  |
| Single-Tone S |         |     |     |    |   |   |   |   | 0.23  | 0.16 |      |
| Peak rf Grid  | Driving | Vo1 | tag | зe | * |   |   | • | 287   | 335  | V    |
| Peak Driving  | Power * |     |     |    |   |   |   |   | 0     | 0    | W    |
| Plate Dissipa | tion *  |     |     |    |   |   |   |   | 30    | 33   | k W  |
| Plate Output  | Power * |     |     |    |   |   |   |   | 56.5  | 85   | k W  |
| Resonant Load | Impedan | ce  |     | •  |   | ٠ | • |   | 593   | 1019 | Ohms |
|               |         |     |     |    |   |   |   |   |       |      |      |

395110(Effective March 1986) VA4898 Printed in U.S.A.



| RADIO FREQUENCY POWER AMPLIFIER                                                                                                                           | TYPICAL OPERATION (Frequencies to 30 MHz)                                                                                 |                                 |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|
| Class C Telegraphy or FM<br>(Key-Down Conditions)                                                                                                         | Plate Voltage                                                                                                             | 19.0<br>750<br>-550             | k Vdc<br>Vdc<br>Vdc       |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                 | Grid Voltage       -425       -480         Plate Current       7.1       6.6         Screen Current       0.35       0.39 | 8.7<br>0.25                     | Adc<br>Adc                |
| DC PLATE VOLTAGE 20 KILOVOLTS DC SCREEN VOLTAGE 2.5 KILOVOLTS DC GRID VOLTAGE2.0 KILOVOLTS DC PLATE CURRENT . 15 AMPERES PLATE DISSIPATION . 35 KILOWATTS | Grid Current *                                                                                                            | 0.30<br>690<br>197<br>25<br>140 | Adc<br>v<br>W<br>kW<br>kW |
| SCREEN DISSIPATION . 1750 WATTS GRID DISSIPATION 500 WATTS                                                                                                | * Approximate; will vary tube to tube.                                                                                    |                                 |                           |
| PLATE MODULATED RADIO-FREQUENCY POWER AMPLIFIER - GRID DRIVEN                                                                                             | TYPICAL OPERATION (Frequencies to 30 MHz)                                                                                 |                                 |                           |
| Class C Telephony (Carrier Conditions)                                                                                                                    | Plate Voltage                                                                                                             | 15                              | k Vdc                     |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                 | Screen Voltage                                                                                                            | 750<br>-540                     | Vdc<br>Vdc                |
|                                                                                                                                                           | Plate Current 7.1                                                                                                         | 6.9                             | Adc                       |
| DC PLATE VOLTAGE 17.5 KILOVOLTS DC SCREEN VOLTAGE 2.0 KILOVOLTS                                                                                           | Screen Current * 0.22 Grid Current * 0.18                                                                                 | 0.21<br>0.19                    | Adc<br>Adc                |
| DC GRID VOLTAGE2.0 KILOVOLTS                                                                                                                              | Peak af Screen Voltage (100% modulation)## 540                                                                            | 530                             | ٧                         |
| DC PLATE CURRENT 15 AMPERES                                                                                                                               | Peak rf Grid Driving Voltage * 640                                                                                        | 655                             | V                         |
| PLATE DISSIPATION ** 23 KILOWATTS SCREEN DISSIPATION # 1750 WATTS                                                                                         | Calculated Driving Power *                                                                                                | 120<br>13.6                     | W<br>kW                   |
| GRID DISSIPATION # 1750 WATTS                                                                                                                             | Plate Output Power * 60                                                                                                   | 90                              | kW                        |
|                                                                                                                                                           | Resonant Load Impedance                                                                                                   | 1110                            | Ohms                      |
| <pre>* Approximate; will vary tube to tube. ** Corresponds to 35 kilowatts at 100%;</pre>                                                                 | sino usuo modulation                                                                                                      |                                 |                           |
|                                                                                                                                                           | ## Approximate, depending on degree of drive                                                                              | r modul                         | ation.                    |
|                                                                                                                                                           |                                                                                                                           |                                 | _                         |
| AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR                                                                                                              | TYPICAL OPERATION (Two Tubes)                                                                                             |                                 |                           |
| Class AB, Grid Driven (Sinusoidal Wave)                                                                                                                   |                                                                                                                           | 15                              | k V d c                   |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                 | Screen Voltage                                                                                                            | 1500<br>-410                    | Vdc<br>Vdc                |
| ABSOLUTE MAXIMUM KATINGS.                                                                                                                                 | Zero-Signal Plate Current 4.0                                                                                             | 1.8                             | Adc                       |
| DC PLATE VOLTAGE 20 KILOVOLTS                                                                                                                             | Max.Signal Plate Current 17.4                                                                                             | 15.8                            | Adc                       |
| DC SCREEN VOLTAGE 2.5 KILOVOLTS DC GRID VOLTAGE2.0 KILOVOLTS                                                                                              | Max.Signal Screen Current * 0.46  Peak af Grid Driving Voltage * ## 287                                                   | 0.32<br>335                     | Adc<br>v                  |
| DC PLATE CURRENT 15 AMPERES                                                                                                                               | Max.Signal Plate Dissipation * ## 30.3                                                                                    | 33                              | kW                        |
| PLATE DISSIPATION 35 KILOWATTS SCREEN DISSIPATION . 1750 WATTS GRID DISSIPATION 500 WATTS                                                                 | Plate Output Power *                                                                                                      | 170<br>2040                     | kW<br>Ohms                |
| GRID DISSIPATION SOU WATES                                                                                                                                | # Adjust to give stated zero-signal plate current.                                                                        |                                 |                           |
| * Approximate; will vary tube to tube.                                                                                                                    | ## Per tube.                                                                                                              |                                 |                           |

TYPICAL OPERATION values are obtained by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.

| RANGE VALUES FOR EQUIPMENT DESIGN:                                    | MIN. | MAX.   |
|-----------------------------------------------------------------------|------|--------|
| Filament Current, at 10.0 Volts                                       | 260  | 290 A  |
| Interelectrode Capacitance (grounded cathode connection) <sup>1</sup> |      |        |
| Cin                                                                   | 410  | 480 pF |
| Cout                                                                  | 46   | 56 pF  |
| Cgp                                                                   | 1.5  | 3.2 pF |
| Interelectrode Capacitance (grounded grid connection)¹                |      | ·      |
| Cin                                                                   | 185  | 215 pF |
| Cout                                                                  | 50   | 60 pF  |
| Cpk                                                                   |      | 0.6 pF |

1 Measured in a specially shielded fixture in accordance with EIA Standard RS-191.



## APPLICATION

#### MECHANICAL

MOUNTING - The 4CX35,000D must be operated with its axis vertical, base up or down at the option of the equipment designer.

SOCKET - Air-system sockets SK-1500A and SK-1510A have been designed especially for the concentric base terminals of the 4CX35,000D. The SK-1510A includes a tube seating & locking device. Special screen bypass capacitor dielectrics are available and the EIMAC part numbers are shown on Page 1.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250°C. Sufficient forced-air cooling must be provided to maintain the anode at the base of the cooling fins, and the ceramic/metal seals, below 250°C.

Air flow requirements to maintain anode core temperature at  $225\,^{\circ}\text{C}$  with  $40\,^{\circ}\text{C}$  ambient cooling air are tabulated below (for operation below 30 MHz). This data is for flow in the base-to-anode direction; pressure drop figures are in inches of water, are for the anode cooler only, and are approximate.

|         | SEA   | LEVEL  | 10,00 | O FEET |
|---------|-------|--------|-------|--------|
| Plate   | Air   | Press. | Air   | Press. |
| Diss.   | Flow  | Drop   | Flow  | Drop   |
| (watts) | (cfm) | •      | (cfm) | ,      |
| 15,000  | 440   | 1.0    | 635   | 1.5    |
| 20,000  | 650   | 2.0    | 935   | 2.9    |
| 25,000  | 975   | 3.8    | 1400  | 5.5    |
| 30,000  | 1300  | 6.0    | 1870  | 8.6    |
| 35,000  | 1760  | 9.6    | 2535  | 13.8   |

The blower selected in any given application must be able to supply the desired air flow at a back pressure equal to the pressure drop shown above plus any drop(s) encountered in ducts and filters.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts. Temperature of spring contacts in the socket should not exceed 150°C to provide proper socket life.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than 250°C. For most applications, 1 to 2 cfm of air directed through the center of the socket is sufficient.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases. The designer is reminded that it is considered good engineering practice to allow some safety factor so the tube is not operated at the absolute maximum temperature rating. Temperature sensitive paints are available for testing before any equipment design is finalized, and Application Bulletin #20 titled TEMPERATURE MEASUREMENTS WITH EIMAC POWER TUBES is available on request.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after power is removed to allow for tube cooldown.

#### ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FILAMENT OPERATION - During turn-on the filament inrush current should be limited to 600 amperes.

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The filament voltage should then be increased a few tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked in 24 hours. Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life.

Where hum is an important system consideration it is permissible to operate the filaments with do rather than ac power. Contact Varian EIMAC Application Engineering for special precautions when using a dc filament supply.

This tube is designed for commercial service, with only one off/on filament cycle per day. If addi-



tional cycling is anticipated it is recommended the user contact Application Engineering at EIMAC.

BASE PLATE VOLTAGE - Any difference in potential between the base plate and the tube filament must be limited to 100 volts (peak).

GRID OPERATION - The maximum control grid dissipation is 500 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage. A protective spark-gap device should be connected between the grid and the cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 1750 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

The screen current may reverse under certain conditions and produce negative indictions on the screen current meter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from the screen to cathode in the form of a bleeder resistor or a shunt regulator, connected between screen and cathode, may be required. A series regulated power supply can be used only when an adequate bleeder resistor is provided.

PLATE OPERATION - The rated maximum dissipation for the tube is 35,000 watts. When operated as a plate-modulated rf amplifier, under carrier conditions the maximum dissipation rating is 23,000 watts, which corresponds to 35,000 watts at 100% sine-wave modulation.

Operation with significant plate current under some conditions of high instantaneous anode voltage (such as regulator service or low power and low impedance "tuning" conditions) can, as a result of the screen and grid voltages chosen, lead to anode damage and subsequent failure. If operation under such conditions is necessary EIMAC Application Engineering should be contacted for assistance in selection of operating parameters.

FAULT PROTECTION — In addition to the normal plate over-current interlock, screen current interlock, and coolant interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to help absorb power supply stored energy if an internal arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of \$30 AWG copper wire. The wire will remain intact if the protection is adequate.

EIMAC Application Bulletin #17 titled FAULT PRO-TECTION contains considerable detail; it is available on request.

X-RADIATION HAZARD - High-vacuum tubes operating at voltages higher than 15 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray source. Only limited shielding is afforded by the tube envelope. Moreover, the X-radiation level may increase significantly with tube aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding may be required on all sides of tubes operating at these voltages to provide adequate protection throughout the life of the tube. Periodic checks on the X-ray level should be made, and the tube should never be operated without required shielding in place. If there is any question as to the need for or the adequacy of shielding, an expert in this field should be contacted to perform an equipment X-ray survey.

In cases where shielding has been found to be required operation of high voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube [as the key component involved] the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires use of a specially constructed test fixture which shields all external tube leads or contacts from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191.

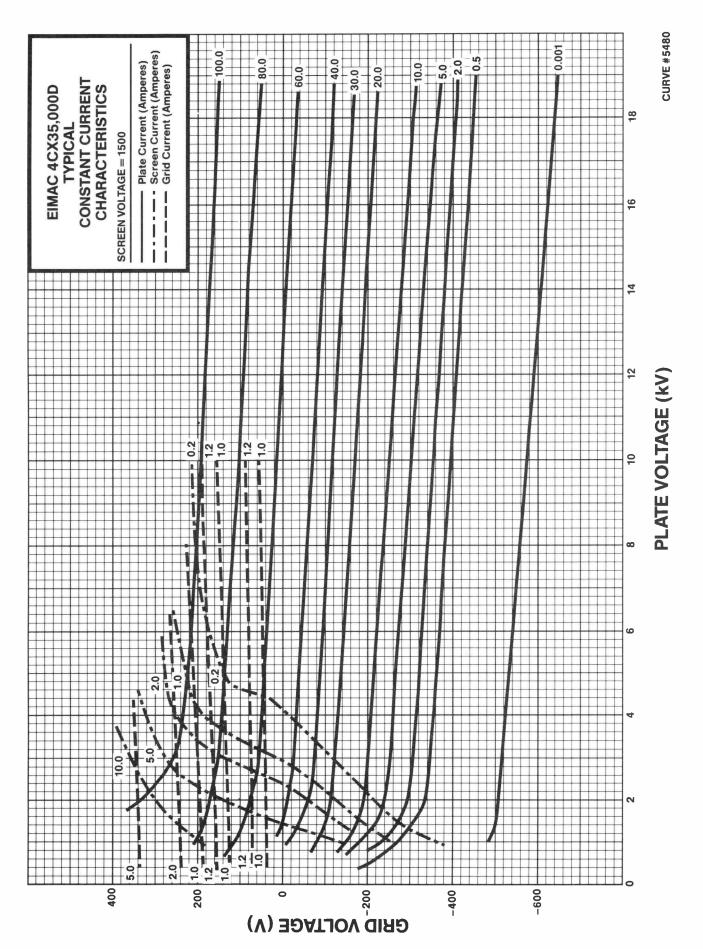
The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in the application. Measurements should be taken with the mounting which represents approximate final layout if capacitance values are highly significant in the design.

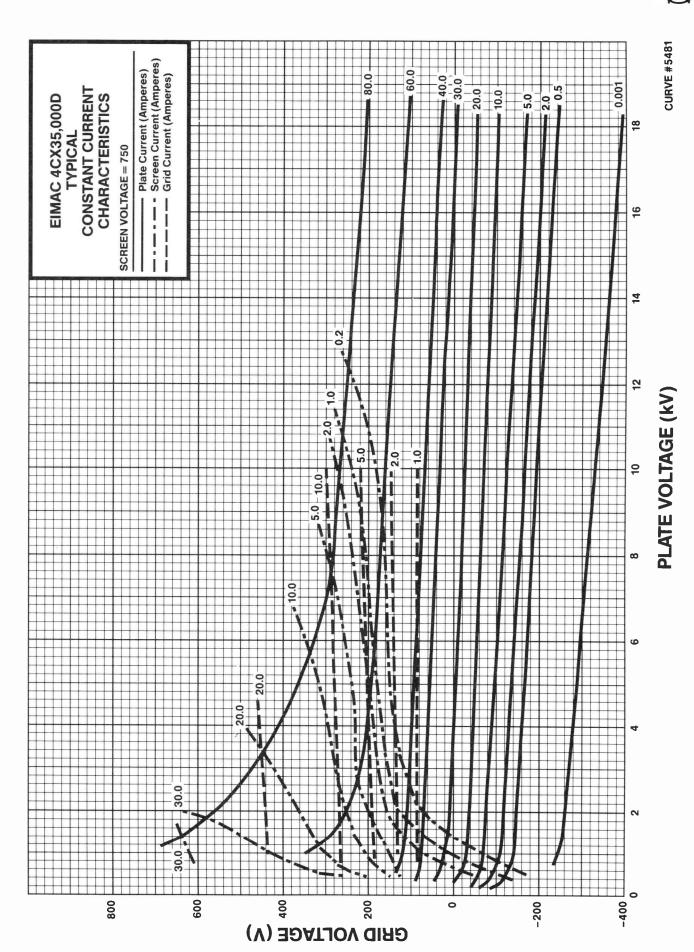
SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Applications Engineering; 301 Industrial Way; San Carlos, CA 94070 U.S.A.



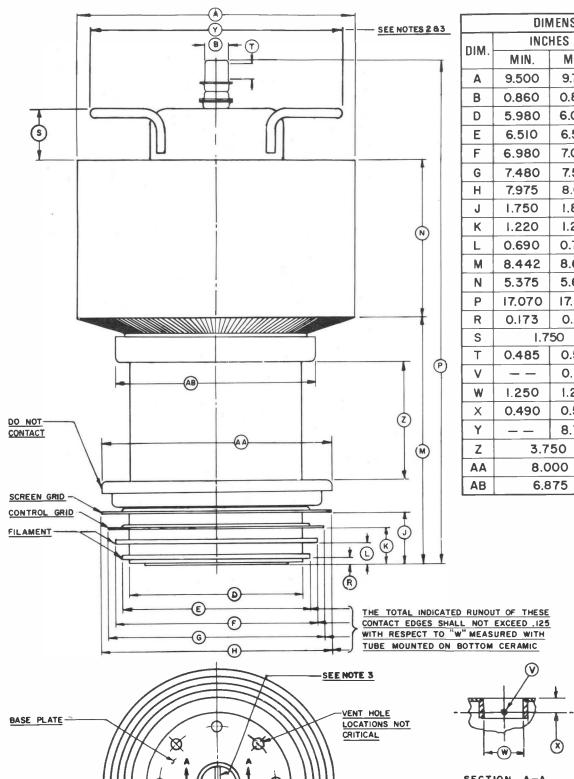
## OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.


The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:


- a. HIGH VOLTAGE Normal operating voltages can be deadly. Always remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. X-RAY RADIATION High-voltage pulse modulator tubes are a potential source of dangerous X-Ray radiation and shielding may be required on all

- sides of the tube. A survey may be required by an expert in this field.
- d. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- e. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.











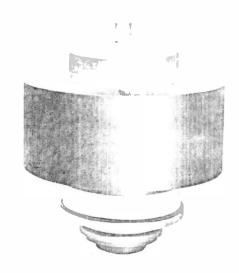
| DIMENSIONAL DATA |        |        |        |        |  |  |  |
|------------------|--------|--------|--------|--------|--|--|--|
| DIM.             | INC    | HES    | MILLIN | METERS |  |  |  |
| MIN.             |        | MAX.   | MIN.   | MAX.   |  |  |  |
| Α                | 9.500  | 9.750  | 241.30 | 247.65 |  |  |  |
| В                | 0.860  | 0.890  | 21.84  | 22.60  |  |  |  |
| D                | 5.980  | 6.020  | 151.89 | 152.91 |  |  |  |
| Ε                | 6.510  | 6.560  | 165.35 | 166.62 |  |  |  |
| F                | 6.980  | 7.020  | 177.29 | 178.31 |  |  |  |
| G                | 7.480  | 7.520  | 189.99 | 191.01 |  |  |  |
| Н                | 7.975  | 8.015  | 202.57 | 203.58 |  |  |  |
| J                | 1.750  | 1.800  | 44.45  | 45.72  |  |  |  |
| K                | 1.220  | 1.270  | 30.99  | 32.26  |  |  |  |
| L                | 0.690  | 0.740  | 17.53  | 18.80  |  |  |  |
| М                | 8.442  | 8.692  | 214.43 | 220.78 |  |  |  |
| N                | 5.375  | 5.625  | 136.52 | 142.88 |  |  |  |
| Р                | 17.070 | 17.340 | 433.58 | 440.44 |  |  |  |
| R                | 0.173  | 0.213  | 4.40   | 5.41   |  |  |  |
| S                | 1.7    | 50     | 44.    | .45    |  |  |  |
| Т                | 0.485  | 0.515  | 12.32  | 13.08  |  |  |  |
| ٧                |        | 0.135  |        | 3.43   |  |  |  |
| W                | 1.250  | 1.270  | 31.75  | 32.26  |  |  |  |
| Х                | 0.490  | 0.530  | 12.45  | 13.46  |  |  |  |
| Υ                |        | 8.750  |        | 222.25 |  |  |  |
| Z                | 3.7    | 50     | 95.25  |        |  |  |  |
| AA               | 8.0    | 00     | 203.20 |        |  |  |  |
| AB               | 6.8    | 75     | 174.63 |        |  |  |  |

REFERENCE DIMENSIONS
ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR IN-SPECTION PURPOSES.

> 2. DIM - Y IS MAXIMUM DIA. ACROSS CORNERS

3. HANDLE LATERAL AXIS ORIENTATION WITH BASE LOCK PIN IS AS SHOWN.




## TENTATIVE TECHNICAL DATA

4CX40,000G

VHF RADIAL BEAM POWER TETRODE

The EIMAC 4CX40,000G is a ceramic/metal power tetrode intended for use in audio or radio-frequency applications. It features a high-stability pyrolytic graphite grid and a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation of the tube at full ratings up to 220 MHz.

The 4CX40,000G is recommended for FM broadcast service, rf linear power amplifier service, and for VHF-TV linear amplifier service. The anode is rated for 40 kW of dissipation with preed-air cooling, and incorporates a highly efficient cooler of new design.



GENERAL CHARACTERISTICS 1

ELECTRICAL

| lament: Thoriated-tungsten Mesh                             |             |     |
|-------------------------------------------------------------|-------------|-----|
| Voltage                                                     | 15,0 ± 0.75 | V   |
| Current, 10 15 0 volts a commendation                       | 170         | Α   |
| plification Factor, average at Ib = 10 Adc                  |             |     |
| Grid to screen                                              | 8           |     |
| Direct Interelectrode Capacitances (cathode grounded)       |             |     |
| Cin                                                         | 447         | pF  |
| Cout                                                        | 33          | рF  |
| Cgp                                                         | 1 8         | př  |
| Direct Interelectrode Capacitances (grid & screen grounded) |             | ziń |
| Cin                                                         | 155         | pf  |
| Cout                                                        | 35          | PF  |
| Cfp                                                         | 0,15        | pF  |
| Frequency of Maximum Ratings (CW)                           | 220         | MH: |

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

Effective: September 1979



#### MECHANICAL

| Maximum Length                   | c c c   | s       | o 2  | <b>3</b> 1 | • | ÷ | 2  | 3   | د   |     | 2 2 | د   | ۵    | ,   |    | 11  | 85  | In  | ; 3 | 30 . 1 | 10   | Cm  |
|----------------------------------|---------|---------|------|------------|---|---|----|-----|-----|-----|-----|-----|------|-----|----|-----|-----|-----|-----|--------|------|-----|
| Maximum Diamete                  | r c c   | 5 0 0   | . 0  | < c        | ٥ | - | 2  |     | ,   |     |     | ,   | ,    | ,   |    | 10  | .08 | In  | ; 2 | 25.6   | 60   | Cm  |
| Net Weight (app                  | roxima  | te) 。   |      | s :        | a | c | ٥  | ÷   | 2   | ۵   | د د | ,   | 3    | 3   |    |     | 5   | 5 1 | bs  | ; 2    | 25   | kg  |
| Operating Position               |         |         |      |            |   |   |    |     |     | A   | Axi | S   | Ve   | rt: | ic | al. | В   | ase | Up  | or     | . Do | own |
| Cooling                          |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
| Operating Temperate              |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
| Ceramic/Metal S                  | eals am | nd Anod | le C | ore        |   |   | ,  | 4   |     |     |     |     |      | ٠   |    |     |     |     |     | 2      | 50   | °C  |
| Base                             |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     | Spe | eci | al. |        |      |     |
| Recommended Air-Sys              |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
| Recommended Air-Sys              |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
|                                  |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
|                                  |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
| RADIO FREQUENCY POWOR OSCILLATOR | VER AMP | LIFLER  |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
| OR OSCILLATOR                    |         |         |      |            |   |   | Т  | YP. | IC. | L   | OPI | ERA | \T I | 101 | ĵ  |     |     |     |     |        |      |     |
| Class C Telegraph o              | or FM   |         |      |            |   |   | С  | la  | SS  | С   | rf  | Ar  | np l | lif | ie | er  |     |     |     |        |      |     |
| ABSOLUTE MAXIMUM RA              | TINCC.  |         |      |            |   |   | -  | ,   |     |     |     |     |      |     |    |     |     |     |     |        |      |     |
|                                  |         |         |      |            |   |   |    |     |     |     | lta |     |      |     |    |     |     |     | ).6 |        |      | dc  |
| DC PLATE VOLTAGE                 | 14      | KILOV   | OLTS | S          |   |   |    |     |     |     | olt | `   |      |     |    |     |     |     | 300 |        | Vd   |     |
| DC SCREEN VOLTAGE                | 2000    | VOLTS   |      |            |   |   |    |     |     |     | tag |     |      |     |    |     |     |     | 00  |        | Vd   |     |
| DC GRID VOLTAGE                  | -1000   | VOLTS   |      |            |   |   |    |     |     |     | uri |     |      | 1   |    |     |     |     | .0  |        | Ad   |     |
| DO ONTD VOLINGE                  | -1000   | AODIS   |      |            |   |   |    |     |     |     |     |     |      |     |    |     |     |     | 40  |        |      | dc  |
| DC PLATE CURRENT                 | 10      | AMPER   | ES   |            |   |   |    |     |     |     | rer |     |      |     |    |     |     |     | 00  |        | mA   | dc  |
| PLATE DISSIPATION                | 40      | KILOW   | ATTS | 3          |   |   |    |     |     |     | eda |     |      |     |    |     |     |     | 00  |        | Ω    |     |
| SCREEN DISSIPATION               | 1500    | WATTS   |      |            |   |   |    |     |     |     | Pow |     |      |     |    | 2   |     | 2   | 50  |        | W    |     |
|                                  | 1300    | WATIS   |      |            |   |   | U: | sei | .ul | P   | owe | r   | Uτι  | Èр  | ut |     |     |     | 60  |        | kW   |     |
| GRID DISSIPATION                 | 1000    | WATTS   |      |            |   |   | 1  |     | Ар  | pro | oxi | ma  | te   | v   | al | ue  |     |     |     |        |      |     |
|                                  |         |         |      |            |   |   |    |     |     |     |     |     |      |     |    | -   |     |     |     |        |      |     |

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the right voltage is assumed if this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct right voltage is applied.

Measured at the load

#### APPLICATION

#### MECHANICAL

MOUNTING - The tube must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the designer.

SOCKET & CHIMNEY - The EIMAC air-system socket SK-2400 and air chimney SK-2406 are designed especially for use with the 4CX40,000G. The use of the recommended air flow through this socket provides effective forced-air cooling of the base, with air then guided through the anode cooling fins by the air chimney.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250°C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below the rated maximum.

The cooling characteristics of the anode are shown in the attached graphs, for power levels (anode dissipation) from 20 to 40 kW and for sea level, 5000 feet, and 10,000 feet. The designer is cautioned to keep in mind this is ABSOLUTE data, with pure dc power, with no safety factors added, and the pressure drop figures make no allowance for losses in filters, ducting, and the like.

It is considered good engineering practice to design for a maximum anode core temperature of 225 °C, and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. It is also considered good practice to add a 15% safety factor to the indicated air flow, and allow for variables such as dirty air filters, rf seal heating at VHF, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time. Special attention may be required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated into the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allow for tube cooldown.

#### ELECTRICAL

FILAMENT WARMUP RECOMMENDATION - Filament inrush surge current must be limited to two times rated current. The filament should be brought to rated voltage over a two-minute period. If a step-start sequence is used the initial voltage applied should be 1/3 to 1/2 the nominal rated filament voltage. After two minutes the voltage may then be increased to the rated value. In the event of power failure which does not exceed 60 seconds the full filament voltage may be applied to the tube instantaneously. If the power failure exceeds 60 seconds, the programmed warmup procedure should be used.

FILAMENT OPERATION - The rated nominal filament voltage for the tube is 15.0 volts, as measured at the socket or tube base. Variation in voltage should be maintained within plus or minus five percent, and the filament warmup procedure should be adhered to.



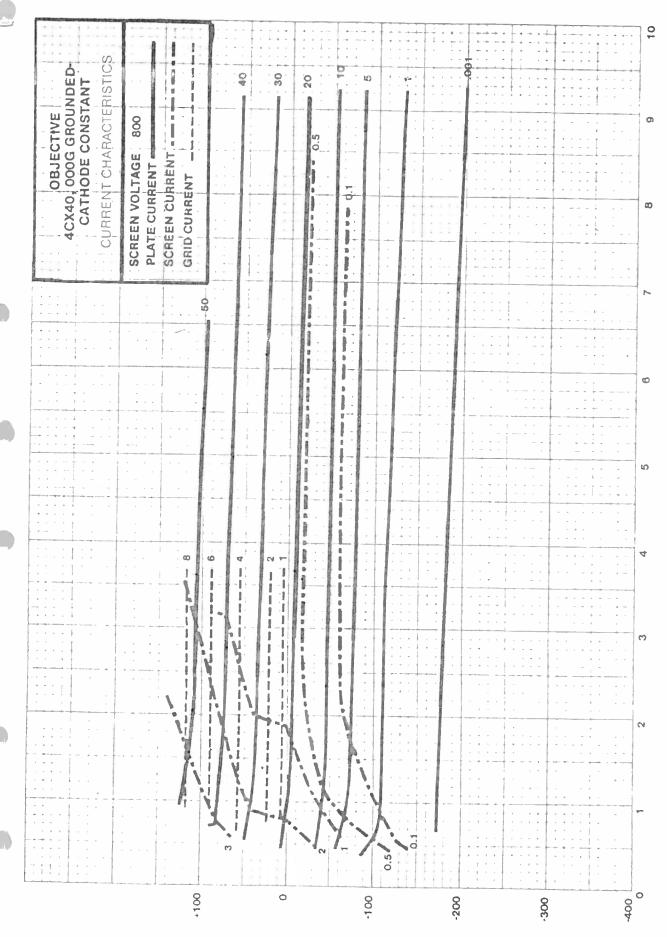
The peak emission capability at nominal filament voltage is normally more than that required for communication service. A small decrease in filament temperature due to a reduction in filament voltage can increase tube life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance (such as plate current, power output, or distortion) while filament voltage is reduced. At some point in filament voltage there will be a noticeable change in the operating parameter being monitored, and the operating filament voltage must be slightly higher than the level at which deterioration was noted. When filament voltage is to be reduced in this manner it should be regulated and held to plus or minus one percent, and the actual operating value should be checked periodically to maintain proper operation.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings of the tube must be respected to avoid damage. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods (10 seconds maximum) such as may occur during tuning.

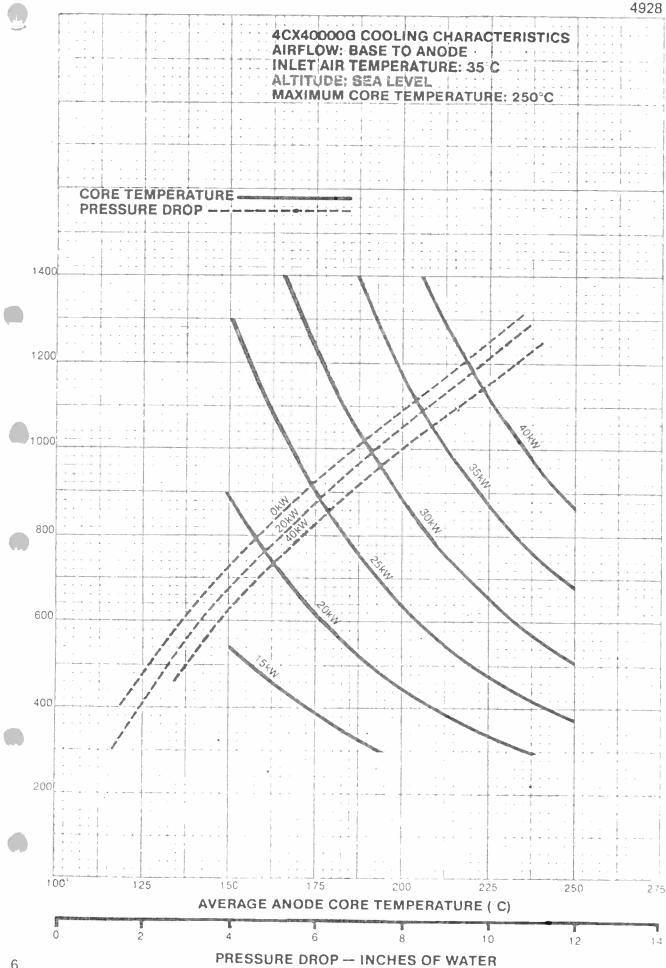
GRID OPERATION - The control grid has a maximum dissipation rating of 1000 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should normally be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.

SCREEN OPERATION - The power dissipated by the screen grid must not exceed 1500 watts. Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

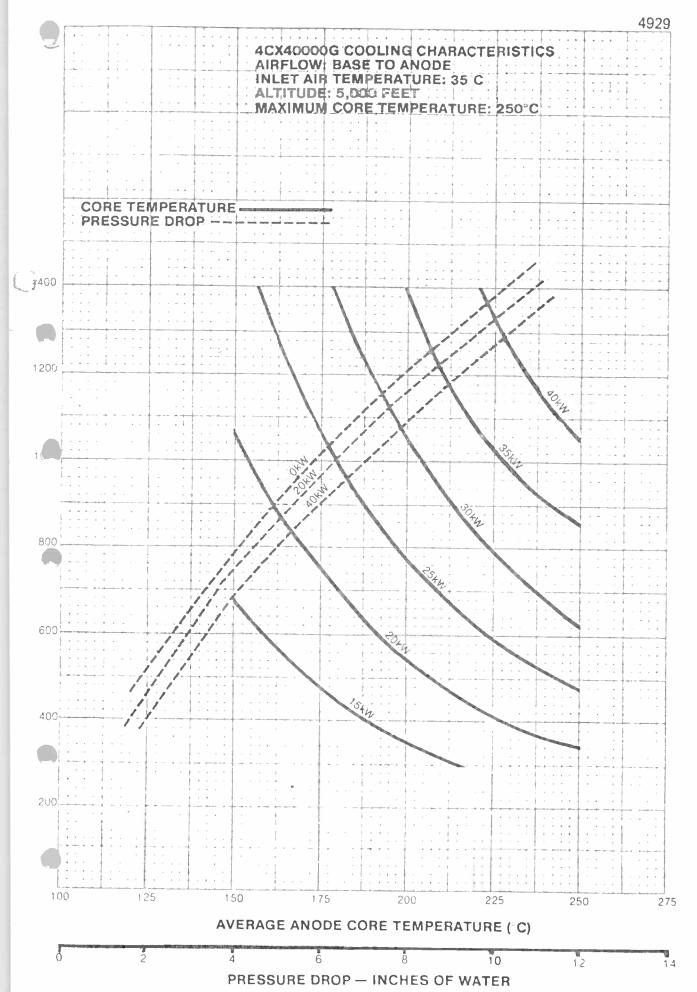
Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with the filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation in the event of circuit failure. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering proactice.

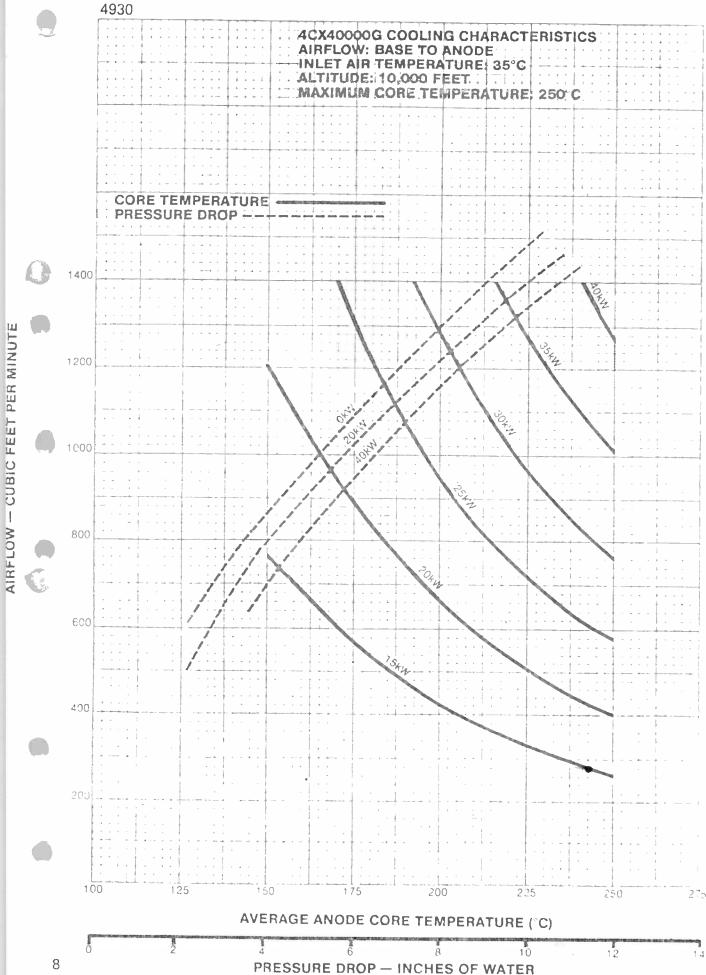

HIGH VOLTAGE - Normal operating voltages used with the 4CX40,000G are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FAULT PROTECTION - In addition to normal cooling airflow interlock and plate and screen over-current interlocks, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high voltage.


In all cases some protective resistance, at least one or two ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. When stored energy is high, it is recommended that some form of electronic crowbar be used which will discharge power supply capacitors in as short a time as possible following indication of start of a plate arc.




PLATE VOLTAGE - KILOVOLTS




GRID VOLTAGE - VOLTS









# - 14-20UNC + 17 DP 2 PLCS 180° A PART ON 3 500 DIA PC /A-B 040 (10) SEE NOTE 3 -X 0 ANODE -SCREEN CONTROL FILAMENT -H (1) (K) · A -✓ A - B | .020 (.5) A-B .020 (5) -8-

#### 4CX40,000G

|           | 1940        | HES    | I MILL ME"    | C 19.10       |
|-----------|-------------|--------|---------------|---------------|
| DIM       | M1100 M     | 44 947 | MIN MAS       | MER           |
| A         | 9 960 10 0  | 080    | 2550 256      | 0             |
| 8 -       |             | 90     | 218 22        | 6             |
| Č.        | 2 615 2 6   |        | 66 42 66 6    |               |
| Ď         | 1           | 3 825  |               | 97            |
| BICHDEFIG | 4 245 4 2   |        | 107 80 108.3  | o -           |
| F         | 4.490 4.5   |        | 114 05 114 81 | -             |
| Ğ         | 6.360 6.4   |        | 161 5 162 7   | -             |
| н         | 440         |        | 11.2          | manufer renae |
| J         | .640 .6     | SAO    | 16.2 17       | 3             |
| K -       | 260         |        |               | 4             |
| Ľ-        | .250        |        | 6 3           | -             |
| М         | .150        |        | 3.8           |               |
|           | 1.600       |        | 40.6          | -             |
| N         |             | 330'   | 20.1 21.      | F             |
|           |             | 30     | 8.9           | '             |
| STU       | 350         | 100    | 1060 111      |               |
| 2         |             | -      |               |               |
|           | 4.400 4 6   |        | 112 0 117     |               |
|           | 11.550 11.8 | 350    | 293,0 301,    | 0             |
| Y         | .500        |        | 12.7          |               |
| W         | 10 500 100  | 750    |               | 19            |
| X         | 10 500 10 8 | 100    | 267 0 276.0   | J             |

- NOTES

  I REF DIMENSIONS ARE FOR INFO
  ONLY & ARE NOT REQUIRED FOR
  INSPECT ON PURPOSES
  2. W CONTACT SURFACE
  3 SHIPPED WITH HANDLE
  ATTACHED REMOVE BEFORE
  OPERATION

Varian EIMAC San Carlos, California

Issue Date Here

#### TEST SPECIFICATION

### ELECTRON TUBE, TRANSMITTING TETRODE EXTERNAL ANODE, FORCED-AIR COOLED

TYPE 4CX40,000GM

F1 = 110 MHz

| ABSOLUTE MAXIMU              | JM RATINGS | : (See N | lote 1) |      |     |     |      |    | Anode<br>Oore & |         |        |
|------------------------------|------------|----------|---------|------|-----|-----|------|----|-----------------|---------|--------|
| Parameter:                   | Ef '       | Eb       | Ec2     | Ec1  | 16  | Pg1 | Pg2  | Pp | Seal T          | Cooling | Alt.   |
| Units:                       | Vac        | kVdc     | kVdc    | kVdc | Adc | W   | W    | kW | °C              |         | Ft.    |
|                              | Note 2     |          |         |      |     |     |      |    | Note 3          | Note 4  | Note 5 |
| Class AB1 :<br>(audio or rf) | 15.0+5%    | 14.0     | 2.0     | -1.0 | 10  | 500 | 1500 | 40 | 250             |         | 10,000 |
| TEST COND :                  | 15.0       |          | 1.4     |      |     |     |      |    |                 | Note 6  |        |

METHOD OR PAR. references: MIL-E-1 or MIL-STD-1311

recommended Air-System Socket: EIMAC SK-2400

Fault Protection: See Note 8

Mounting: See Note 7

Envelope: Ceramic & Metal

rf Radiation Hazard: See Note 9

| METHOD  |                     |                                |      | INSP. |            | LIN |            |       |
|---------|---------------------|--------------------------------|------|-------|------------|-----|------------|-------|
| OR PAR. | REQUIREMENT OR TEST | CONDITIONS                     | AQL% | LEVEL | SYMB.      | Min | Max        | UNITS |
|         | General             |                                |      |       |            |     |            |       |
|         | Cathode             | Thoriated-tungstem<br>filament | •    |       |            |     | The STA 44 |       |
| 4.8.5   | Holding Period      |                                |      |       | <b>†</b> : | 72  |            | hrs   |

011 001 103, 001

| METHOD   |                                                              |                                                                                |       | INSP. |             | LIM            | fITS            |       |
|----------|--------------------------------------------------------------|--------------------------------------------------------------------------------|-------|-------|-------------|----------------|-----------------|-------|
| OR PAR.  | REQUIREMENT OR TEST                                          | CONDITIONS                                                                     | AQL % | LEVEL | SYMB.       | CHICAGO STREET | Max             | UNITS |
| ).       | Quality Conformance Inspection - Part 1 (Production) Note 10 |                                                                                |       |       |             |                |                 |       |
| D-30(a), | Visual & Mechanical<br>Inspection Criteria                   |                                                                                |       |       | 60° 40° 400 |                | gille gate deal |       |
| 1301     | Filament Current                                             | t = 5 minutes minimum;<br>See Note 11                                          | 0.65  | 1 1   | lf:         | 168            | 182             | Aac   |
| 1261     | Grid Voltage (1)                                             | Eb = 10.5 <u>+</u> 0.5 kVdc;<br>Ec1/lb = 2.5 Adc                               | 0.65  | 11 .  | ~Ec1:       | 160            | 230             | Vdc   |
|          |                                                              |                                                                                |       |       | -Ic1:       |                | 1.0             | mAdc  |
| 1266     | Primary Grid Emission<br>(control)                           | Pg1 = 500 W;<br>+ = 120 minimum;<br>Ec2 = 0 Vdc;<br>anode = -500 to -1000 Vdc  | 0.65  | 1 !   | -Isg1:      |                | 1.0             | mAdc  |
| 1266     | Primary Grid Emission<br>(screen)                            | Ec1 = 0 Vdc;<br>t = 120 minimum;<br>Pg2 = 2000 W;<br>anode = -500 to -1000 Vdc | 0.65  | 11    | -Isg2:      | 70 a. 60       | 6.0             | mAdc  |
|          | Ion Current                                                  | Ec1 = 0 Vdc;<br>Ec2 = 75 Vdc;<br>Eb = -45 Vdc;<br>† = 180;<br>Ef/Ic2 = 25 mAdc | 0.65  | 11    | lz:         |                | 1.0             | uAdc  |
| 1261     | Grid Voltage (2)<br>(cut-off)                                | Eb = 16 kVdc;<br>Eco = Ec1/1b = 20 mAdc                                        | 0.65  | 11    | -Eco:       |                | 350             | Vdc   |
| 1372     | Current Division (1)                                         | Eb = 5000 Vdc;<br>Ec1 = -400 Vdc;                                              | 0.65  | 11    | egk:        |                | 0               | ٧     |
|          |                                                              | egk/ib = 17 a;<br>See Note 12                                                  |       |       | ic2:        |                | 2.0             | a     |
| 1372     | Current Division (2)                                         | Eb = Ec2 = 2000 Vdc;<br>Ec1 = -400 Vdc;                                        | 0.65  | 11    | egk:        |                | 0               | ٧     |
|          |                                                              | egk/ib = 27 a;<br>See Note 12                                                  |       |       | lc2:        |                | 5.0             | a     |
| 1231     | Pulsing Emission                                             | eb = ec2 = ec1 = 1000 v<br>e+d/lb = 100 a                                      | 0.65  | 11    | is:         | 200            |                 | a     |
|          | rf Operation                                                 | To Be Specified                                                                |       |       |             |                |                 |       |

| METHOD  |                                      |                     |      | INSP. |       | LIM | IITS |       |
|---------|--------------------------------------|---------------------|------|-------|-------|-----|------|-------|
| OR PAR. | REQUIREMENT OR TEST                  | CONDITIONS          | AQL% | LEVEL | SYMB. | Min | Max  | UNITS |
|         | Quality Conformance                  |                     |      |       |       |     |      |       |
| •       | Inspection - Part 2                  |                     |      |       |       |     |      |       |
|         | (Design) - Note 13                   |                     |      |       |       |     |      |       |
| D-30(b) | Dimensions                           | Per Outline Drawing | 6.5  | \$3   |       |     |      |       |
| 1331    | Direct Interelectrode<br>Capacitance |                     | 6.5  | \$3   | Cin:  | 420 | 480  | pF    |
|         | (gnd.cath.connection)                |                     |      |       | Cout: | 33  | 43   | pF    |
|         |                                      |                     |      |       | Cgp:  |     | 2.0  | pF    |
| 1331    | Direct Interelectrode<br>Capacitance |                     | 6.5  | S3    | Cin:  | 150 | 180  | pF    |
|         | (gnd.grid connection)                |                     |      |       | Cout: | 35  | 45   | pF    |
|         |                                      |                     |      |       | Cpk:  |     | 0.5  | pF    |

#### NOTES

- 1. The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.
- 2. Filament inrush surge current must be limited to 300 amperes. For best reliability experience has shown that the filament and its internal supporting structure should be raised to operating temperature over a two-minute period. This should be accomplished by a linear increase in voltage to the operating value over 120 seconds. This can be accomplished by a motor-driven variable transformer or an

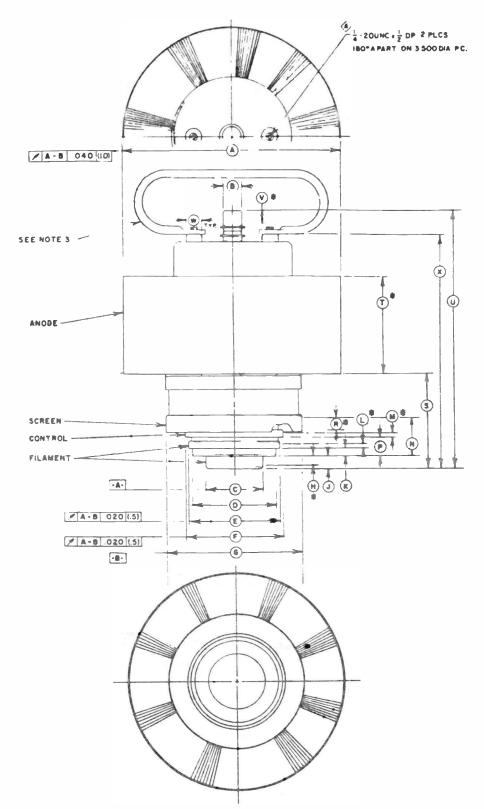
equivalent solid-state device. A step-start sequence can be used with equivalent reliability, as follow:

- 1) Turn on at 40% to 50% of operating voltage and maintain this value for 120 seconds.
- 2) Increase voltage to full operating value.

In the event of a power failure not exceeding 60 seconds the full operating voltage may be reapplied instantaneously. If the power failure exceeds 60 seconds, the programmed warmup procedure should be used. In case of emergency the turn-on program may be bypassed with no serious effect on reliability but normal startup should be programmed.

Filament voltage should be measured at the tube base or socket, using an known-accurate rms-responding meter.

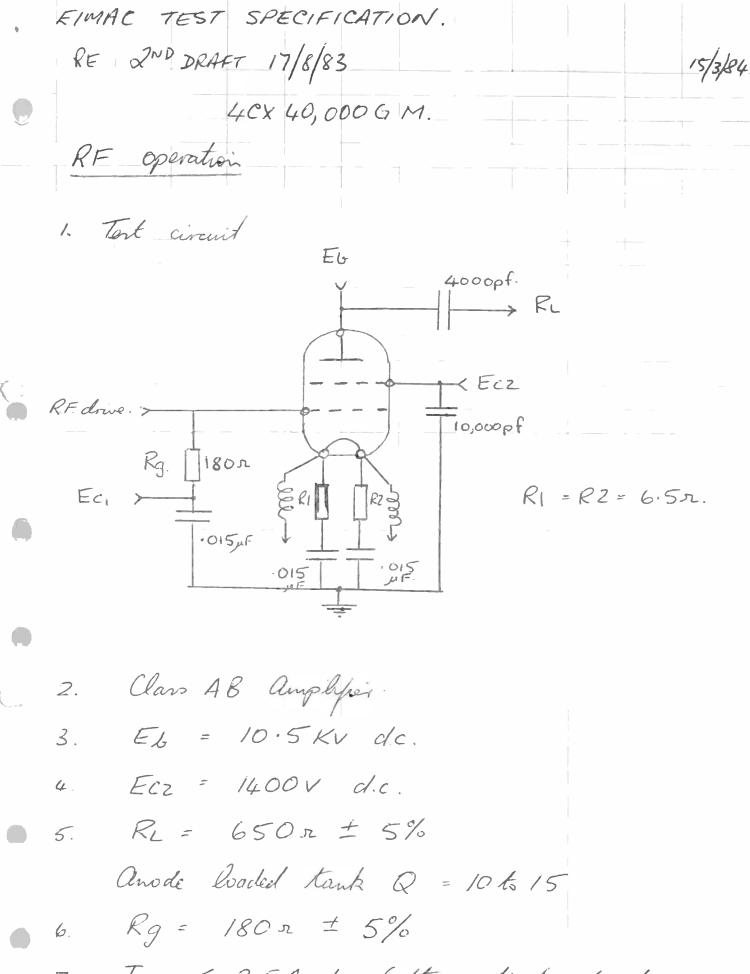
3. Under all operating conditions the specified maximum temperature should not be exceeded for the anode core or surface, the seals, and the envelope. Where long life and consistent performance are factors, maintaing temperature well below the rated maximum is normally beneficial. 4. In all cases of operation forced-air cooling of the anode and base is required. Minimum air flow requirements for the anode are shown, based on a maximum tube temperature of 225°C and a cooling air temperature of 35°C, with air flow through the anode cooler in a base-to-anode direction. The pressure drop values shown are in inches of water for the anode cooler and are approximate.


|       | SEA   | LEVEL  | 10,000 | FEET   |
|-------|-------|--------|--------|--------|
| Anode | AIr   |        | Air    |        |
| Diss. | Flow  | Press. | Flow   | Press. |
| (kW)  | (cfm) | Drop   | (cfm)  | Drop   |
| 20    | 340   | 1.6    | 510    | 2.2    |
| 30    | 660   | 4.2    | 970    | 6.3    |
| 40    | 1110  | 9.4    | 1600   | 13.6   |

Cooling of the base requires a minimum of 100 cfm of air (at a maximum temperature of 35°C) be directed horizontally through the socket from the sides. It is preferable to direct this air through three equally-spaced ducts.

Particular care should be taken to insure that the blower selected for anode cooling is capable of supplying the desired air flow at a back pressure equal to the pressure drop shown in the table plus any drop built up in ducts and/or filters. At higher altitudes or ambient temperatures the amount of cooling air must be modified to obtain equivalent cooling. Both base and anode cooling must be applied before or simultaneously with the application of electrode voltages (including the filament) and should normally be maintained for approximately 2 minutes after all electrode voltages are removed.

- 5. Operation at altitudes significantly above sea level may require that electrode voltages be set lower than the maximum values shown. Normally only the anode would require reduction.
- 6. In all electrical tests involving the application of filament voltage, the use of an airsystem socket is permissible and forced-air cooling of the anode and base is permissible.


- 7. The tube must be mounted vertically, base up or down.
- 8. In addition to the normal plate over-current interlock, screen current interlock, and airflow interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voitage. A protective resistance should always be connected in series with each tube anode, to absorb power supply stored energy if an internal arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a section of #30 AWG copper wire. The wire will remain intact if the criteria is met.
- 9. Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. A widely accepted standard is that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.
- 10. These tests are carried out 100% by the manufacturer as standard production tests. On final acceptance testing, sampling in accord with MIL-STD-105 may be used. The AQL for the combined defectives for attributes, excluding mechanical, shall be 1%. A tube having 1 or more defects shall be counted as 1 defective.
- 11. Filament voltage shall be maintained at the specified value for a minimum of 5 minutes before the filament current is read.
- 12. The symbol egk represents peak positive voltage between the control grid and the cathode.
- 13. Sampling shall be in accord with MIL-STD-105.



| _   |        |        | m[#8-0#+ | -      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------|--------|----------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -   |        |        |          |        | L. meren |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9:3 | W164   | 411    | PEP      | 2000   |          | -64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A   | 9 96 0 | 10 080 |          | 2530   | 256.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 960    | 890    |          | 218    | 22.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C   | 2 615  | 2 625  |          | 66 42  | 66 68    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | -      |        | 3 8 2 5  |        |          | 97.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E   | 4 245  | 4 265  |          | 107 80 | 108 30   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F   | 4 490  | 4 520  |          | 114 05 | 114 81   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G   | 6.360  | 6.405  | 314      | 161.5  | 162.7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H   | 440    |        |          | 11.2   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J   | 640    | 680    |          | 16.2   | 17.3     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f.  | 260    | .290   |          | 6.5    | 7.4      | Marie Communication of the Com |
| L   | .250   |        | 1        | 6.5    | ,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M   | .150   |        |          | 3.8    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di. | 1.600  |        |          | 40.6   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P   | 790    | 830    |          | 20.T   | 21.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R   | 350    | 420    | -        | 8 9    | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$  | 4,170  | 4 400  | -        | 106.0  | 111.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ÷   | 4 400  | 4 600  | -        | 112 0  | 117.0    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ü   |        |        | -        | 293.0  | 301.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _   | 500    | 11.850 |          | 1237   | 301.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ¥   | .300   | +      | 750      | 16.1   | -        | 19,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ×   | 10000  | A 685  | 1750     | 2620   | 276.0    | 19,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ä   | 10.500 | 10.650 | +        | 15010  | 216.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### NOTES

- PREF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES
- 2 M CONTACT SURFACE 3 SHIPPED WITH HANDLE
- SHIPPED WITH HANDLE
  ATTACHED. REMOVE BEFORE
  OPERATION



7. IBO < 2.5 A dc (after adjustment for optimum 1. M.D.)

8. Power Out and Intermodulation distortion. 8.1 The power out measured at the ande to be at least 56 KW PEP at 3MHZ with two equal tores spaced at 600HZ. 8.2. Peak R.F. grid voltage < 260V at 56KWPEP Icz < 400ma dc. at 56KW PEP. I.M.D. - measured relative to each tore at any level up to 56KW P.E.P. 3 RP 1M.D. < -4/db. 5TH 1MD < -46dl. The drive rignal I.M.D and Harmonics < -55db.

COMPARISON OF IMD PERFORMANCE OF VI, V3, V4 &V5 TEST CIRCUIT AS = 56 KW PEP. AT ANODE. BKI /95 -/ -3 -10 IBO = 2.8A IBO = 3.2A. 

BKZ/164

5/ -10 

|         | \// |    |      |      |    | - 200 |         |      |    |      |       | 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-----|----|------|------|----|-------|---------|------|----|------|-------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 14  | 1  | Bo = | 1.7A |    |       | TB0 = 2 | 2-0A |    | II30 | = 2.6 | 5A | DE SERVICE DE LA CONTRACTOR DE LA CONTRA |
| -0      | dB  | 5  | 3    | 3    | 5  | 5     | 3       | 3    | 5  | 5    | 3     | 3  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A (     | 0   | 49 | 39   | 38   | 49 | 58    | 47      | 43   | 58 | 51   | 44    | 42 | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BK2/213 | -/  | 54 | 39   | 38   | 54 | 53    | 44      | 44   | 54 | 46   | 44    | 43 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | -3  | 56 | 42   | 42   | 54 | 50    | 56      | 56   | 50 | 46   | 40    | 40 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | -6  | 56 | 58   | 58   | 56 | 52    | 45      | 45   | 52 | 50   | 38    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | -10 | 60 | 49   | 49   | 60 | 60    | 44      | 46   | 60 | 60   | 42    | 42 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F 3     | V5  |    |      | 1.0  |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | -   |    | Bo = | 1.84 |    |       | Bo = 2  |      |    |      | 30= 2 |    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | dB  | 5  | 3    | 3    | 5  | 5     | 3       | 3    | 5  | 5    | 3     | 3  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0       | 0   | 58 | 38   | 38   | 58 | 52    | 42      | 41   | 52 | 46   | 51    | 46 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BK3/51  | -/  | 56 | 38   | 38   | 58 | 48    | 44      | 43   | 48 | 44   | 50    | 46 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31-2/51 | -3  | 52 | 44   | 44   | 52 | 48    | 52      | 50   | 48 | 46   | 42    | 42 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | -6  | 52 | 54   | 52   | 50 | 52    | 44      | 43   | 52 | 5B   |       | 38 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6       | -10 | 55 | 44   | 44   | 55 | 58    | 43      | 43   | 56 | 62   |       | 42 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |     |    |      |      |    |       |         |      |    |      |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### TECHNICAL DATA

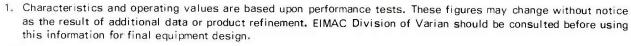
### 8249 4W300B

RADIAL BEAM POWER TETRODE

15.7 pF 4.5 pF 0.04 pF

13.0 pF

4.5 pF


0.01 pF

500 MHz

The EIMAC 8249/4W300B is a ceramic/metal, water cooled, external-anode radial-beam tetrode with a maximum plate dissipation rating of 300 watts and a maximum power input rating of 500 watts. The 8249/4W300B is designed to operate with a heater voltage of 6.0 volts. Electrically identical to the 4CX250B, it is intended for use where water cooling is preferred or where reserve anode dissipation is desired.

#### GENERAL CHARACTERISTICS1

| ELECTRICAL                                            | 4 |
|-------------------------------------------------------|---|
| Cathode: Oxide Coated, Unipotential                   |   |
| Heater: Voltage 6.0 ± 0.3 V                           | É |
| Current, at 6.0 volts                                 |   |
| Cathode - Heater Potential ±150 V                     |   |
| Transconductance (Average):                           |   |
| $I_b = 200 \text{ mAdc}$                              |   |
| Amplification Factor (Average):                       |   |
| Grid to Screen                                        |   |
| Direct Interelectrode Capacitance (grounded cathode)2 |   |
| Input                                                 |   |
| Output                                                |   |
| Feedback                                              |   |
| Direct Interelectrode Capacitance (grounded grid)2    |   |



2. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### MECHANICAL

| N | laximum | Overall | Dimensions: |  |
|---|---------|---------|-------------|--|
|   |         |         |             |  |

Frequency of Maximum Rating:

| Length                     | 3.407 in; 86.54 mm   |
|----------------------------|----------------------|
| Diameter                   | 1.562 in; 39.67 mm   |
| Net Weight                 | 5.75 oz; 163.0 gm    |
| Operating Position Vertice | cal, base up or down |

(Revised 11-1-73) © 1970, 1973 by Varian

Printed in U.S.A.

| Maximum Operating Temperature:  |
|---------------------------------|
| Ceramic/Metal Seals             |
| Cooling                         |
| Base Special 9-pin JEDEC-B8-236 |
| Recommended Air System Socket   |

| MAXIMUM RATINGS:                                                                                                          | Class<br>C<br>Plate<br>Mod           | Class<br>C<br>CW or<br>FM                     | Class<br>AB<br>Audio<br>or SSB   |                                                     | TYPICAL OPERATION:         | DC Plate<br>Voltage<br>(Volts) | Input                     | Driving<br>Power<br>(Watts) | Power<br>Output<br>(Watts) |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------------------|----------------------------|--------------------------------|---------------------------|-----------------------------|----------------------------|
| DC PLATE VOLTAGE DC SCREEN VOLTAGE DC GRID VOLTAGE DC PLATE CURRENT PLATE DISSIPATION SCREEN DISSIPATION GRID DISSIPATION | 300<br><b>-</b> 250<br>0 <b>.</b> 20 | 2000<br>300<br>-250<br>0.25<br>300<br>12<br>2 | 400<br>-250<br>0.25<br>300<br>12 | VOLTS<br>VOLTS<br>VOLTS<br>AMPERE<br>WATTS<br>WATTS | CLASS C AMPLIFIER CW or FM | . 2000<br>. 1500               | 500<br>300<br>1000<br>500 | 3<br>2<br>0<br>0            | 390<br>235<br>600<br>300   |

For full listing of ratings, constant current curves and typical operating conditions, see EIMAC data sheet for 7203/4CX250B.

| RANGE VALUES FOR EQUIPMENT DESIGN                           | Min. | Max.    |
|-------------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                                | 2.3  | 2.9 A   |
| Cathode Warmup Time                                         | 30   | sec.    |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |         |
| Input                                                       | 14.2 | 17.2 pF |
| Output                                                      |      |         |
| Feedback                                                    |      | 0.06 pF |

<sup>1.</sup> Capacitance values are for a cold tube as measured in a shielded fixture.

#### **APPLICATION**

COOLING - The water-cooled anode requires a minimum of 1/16 gallon of cooling water per minute for the rated plate dissipation of 300 watts. The outlet-water temperature should not exceed  $70^{\circ}\text{C}$  and the system pressure should not exceed 50 pounds per square inch.

The ceramic/metal seals must be cooled by forced air. At frequencies below 30 MHz and when one of the recommended sockets is used, a flow rate of 1.0 CFM is sufficient. As the operating frequency is increased, the air-flow rate must be increased. At 500 MHz a minimum of 3.8 CFM is required. In all cases, seal temperatures are the criteria which determine cooling effectiveness.

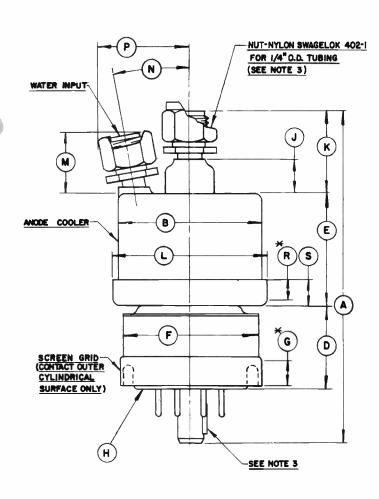


PIN NO. I. SCREEN GRID

PIN NO. 2. CATHODE

PIN NO. 3.HEATER

PIN NO. 4, CATHODE


PIN NO. 5. I.C-DO NOT USE FOR EXTERNAL CONNECTION

PIN NO. 6, CATHODE

PIN NO. 7. HEATER

PIN NO. 8. CATHODE

CENTER PIN-CONTROL GRID



|        | DIMENSIDNAL DATA |        |       |                    |       |       |  |  |  |  |  |  |
|--------|------------------|--------|-------|--------------------|-------|-------|--|--|--|--|--|--|
| DIM    |                  | INCHES |       | MILLIMET ERS       |       |       |  |  |  |  |  |  |
| ואווטן | MIN.             | MAX.   | REF.  | MIN.               | MAX.  | REF.  |  |  |  |  |  |  |
| Α      | - <del>-</del>   | 3.407  |       |                    | 86.54 |       |  |  |  |  |  |  |
| В      | 1.450            | 1.490  |       | 36.83              | 37.85 |       |  |  |  |  |  |  |
| D      | 0.750            | 0.810  |       | 19.05              | 20.57 |       |  |  |  |  |  |  |
| E      | 1.106            | 1.186  |       | 28.09              | 30.12 | •     |  |  |  |  |  |  |
| F      |                  | 1,406  | }     |                    | 3571  |       |  |  |  |  |  |  |
| G      | 0.187            |        |       | 4.75               |       |       |  |  |  |  |  |  |
| Н      | -                | (JI    |       | B8-236<br>SIGNATIO | N)    |       |  |  |  |  |  |  |
| J      |                  |        | 0.244 |                    |       | 6.20  |  |  |  |  |  |  |
| K      | 0.797            | 0.857  |       | 20.24              | 21.77 |       |  |  |  |  |  |  |
| L      |                  | 1.562  |       |                    | 39.67 |       |  |  |  |  |  |  |
| М      |                  |        | 0.670 |                    |       | 17.02 |  |  |  |  |  |  |
| N      |                  |        | 10°   |                    |       | 10°   |  |  |  |  |  |  |
| R      | 0.156            |        |       | 3.96               |       |       |  |  |  |  |  |  |
| S      |                  |        | 0.250 |                    |       | 6.35  |  |  |  |  |  |  |
| Р      |                  | 1.063  |       | [ ]                | 27.00 |       |  |  |  |  |  |  |
|        |                  |        |       |                    |       |       |  |  |  |  |  |  |

#### NOTES:

I. REF. DIMENSIONS ARE FOR

INFORMATION ONLY & ARE NOT REO'D FOR INSPECTION PURPOSES.

2.(\*) CONTACT SURFACE

3. AXIS OF FITTINGS IS

ON AXIS OF INDEX OF CENTER PIN AS SHOWN.





#### TECHNICAL DATA

7034 4X150A

7609
RADIAL-BEAM
POWER TETRODE

The 7034/4X150A and 7609 are forced-air cooled, external-anode radial-beam tetrodes with a maximum plate dissipation rating of 250 watts and a maximum input-power rating of 500 watts up to 150 MHz, with reduced ratings applicable to 500 MHz. The 7034/4X150A is designed to operate with a heater voltage of 6.0 volts, while the 7609 is designed for operation at a heater voltage of 26.5 volts. Otherwise, the two tube types have identical characteristics.

#### GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL

| ELECTRICAL                                                         |  |
|--------------------------------------------------------------------|--|
| Cathode: Oxide Coated, Unipotential                                |  |
| Heater: Voltage (7034) 6.0 ± 0.6 V                                 |  |
| Current, at 6.0 volts 2.6 A                                        |  |
| Cathode - Heater Potential ±150 V                                  |  |
| Heater: Voltage (7609)                                             |  |
| Current at 26.5 volts 0.51 A                                       |  |
| Cathode Heater Potential ±150 V                                    |  |
| Amplification Factor (Average):                                    |  |
| Grid to Screen                                                     |  |
| Direct Interelectrode Capacitances (Grounded Cathode) <sup>2</sup> |  |
| Input                                                              |  |
| Output (7034)                                                      |  |



15.7 pF

4.5 pF

4.2 pF

150 MHz

500 MHz

0.03 pF

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the results of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

Output (7609)......

Frequency of Maximum Rating: .......

2. In Shielded Fixture.

#### MECHANICAL

Maximum Overall Dimensions:

| Length             |                    |
|--------------------|--------------------|
| Diameter           | 1.640 in; 41.66 mm |
| Net Weight         | 4 oz; 113 gm       |
| Operating Position | Any                |

Printed in U.S.A.

| TYPICAL OPERATION(Frequencies to 150 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions |
|----------------------------------------------------------------------------------------------------------------|
| Plate Voltage                                                                                                  |
| TYPICAL OPERATION (Frequencies to 150 MHz) Class AB1, Grid Driven                                              |
| Plate Voltage                                                                                                  |
| TYPICAL OPERATION (Frequencies to 150 MHz) 500 MHz 3 Plate Voltage 500 1000 1500 2000 1250 Vdc                 |
| Screen Voltage                                                                                                 |
| Screen Current 2                                                                                               |
|                                                                                                                |

#### PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

#### MAXIMUM RATINGS:

#### TYPICAL OPERATION (Frequencies to 150 MHz)

| DC PLATE VOLTAGE <sup>1</sup>            | 1600  | VOLTS   | Plate Voltage               |     |     |     |      |
|------------------------------------------|-------|---------|-----------------------------|-----|-----|-----|------|
| DC SCREEN VOLTAGE                        | 300   | VOLTS   | Screen Voltage              |     |     |     |      |
| DC GRID VOLTAGE                          |       |         | Grid Voltage                |     |     |     |      |
| DC PLATE CURRENT                         |       |         | Plate Current               | 200 | 200 | 200 | mAdc |
|                                          |       |         | Screen Current <sup>4</sup> | 25  | 20  | 18  | mAdc |
| PLATE DISSIPATION 2                      |       |         | Grid Current 4              | 23  | 21  | 21  | mAdc |
| SCREEN DISSIPATION 3                     |       |         | Peak rf Grid Voltage 4      | 173 | 172 | 172 | V    |
| GRID DISSIPATION <sup>3</sup>            | 2     | WATTS   | Calculated Driving Power 4  |     |     |     |      |
| 1. Dc plate voltage rating is 1250 volts | about | 150 MH- | Plate Input Power           | 100 | 200 | 320 | W    |
|                                          |       |         | Plate Output Power          | 47  | 140 | 250 | W    |
| 0 0 1 . 050 10                           | 100/  | •       | •                           |     |     |     |      |

2000 VOLTS

- 1
- 2. Corresponds to 250 watts at 100% sine-wave modulation.
- 3. Average, with or without modulation.

4. Approximate value.

#### AUDIO FREQUENCY POWER AMPLIFIER **OR MODULATOR**

Class AB<sub>1</sub>, Grid Driven (Sinusoidal Wave)

| MAXIMUM RATINGS (Pe | r | T | ul | bε | <b>e</b> ) | : |
|---------------------|---|---|----|----|------------|---|
| DC PLATE VOLTAGE .  |   |   |    |    |            |   |

| - | O I DATE V  | OLIAGE   |    | • | • | • | • | • | ٠ | • | • | • | 2000         | VOLIO  |
|---|-------------|----------|----|---|---|---|---|---|---|---|---|---|--------------|--------|
|   | C SCREEN '  | VOLTAGI  | Ε. |   |   |   |   |   |   |   |   |   | 400          | VOLTS  |
|   | C GRID VO   | LTAGE    |    |   |   |   |   |   |   |   |   |   | <b>-</b> 250 | VOLTS  |
|   | C PLATE C   | URRENT   |    |   |   |   |   |   |   |   |   |   | 0.25         | AMPERE |
| F | LATE DISSI  | PATION   |    |   |   |   |   |   |   |   |   |   | 250          | WATTS  |
| S | CREEN DISS  | SIPATION |    |   |   |   |   |   |   |   |   |   | 12           | WATTS  |
| ( | GRID DISSIP | ATION    |    |   |   |   |   |   |   |   |   |   | 2            | WATTS  |
|   |             |          |    |   |   |   |   |   |   |   |   |   |              |        |

- 1. Approximate value.
- 2. Per Tube.

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage               | 1000        | 1500            | 2000            | Vdc      |
|-----------------------------|-------------|-----------------|-----------------|----------|
| Screen Voltage              | 350         | 350             | 350             | Vdc      |
| Grid Voltage 1/3            | <b>-</b> 55 | <del>-</del> 55 | <del>-</del> 55 | Vdc      |
| Zero-Signal Plate Current   | 200         | 200             | 200             | mAdc     |
| Max Signal Plate Current    | <b>50</b> 0 | 500             | 500             | mAdc     |
| Max Signal Screen Current 1 | 20          | 16              | 10              | mAdc     |
| Max Signal Grid Current 1   | 0           | 0               | 0               | mAdc     |
| Peak af Grid Voltage 2      | 50          | 50              | 50              | V        |
| Peak Driving Power          | 0           | 0               | 0               | W        |
| Plate Input Power           | 500         | 750             | 1000            | W        |
| Plate Output Power          | 240         | 430             | 600             | W        |
| Load Resistance             |             |                 |                 |          |
| (Plate to Plate)            | 3500        | 6200            | 9500            | $\Omega$ |

3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                      | Min. | Nom. | . Max.  |
|------------------------------------------------------------------------|------|------|---------|
| Heater: 7034-Current at 6.0 volts                                      | 2.3  |      | 2.9 A   |
| Heater: 7609-Current at 26.5 volts                                     | 0.40 |      | 0.62 A  |
| Cathode Warmup Time                                                    | 30   | 60   | sec     |
| Interelectrode Capacitances <sup>1</sup> (grounded cathode connection) |      |      |         |
| Input                                                                  |      |      |         |
| Output (7034)                                                          |      |      |         |
| Output (7609)                                                          | 3.7  |      | 4.45 pF |
| Feedback                                                               |      |      | 0.05 pF |

1. In Shielded Fixture.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 7034 and 7609 may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen capacitors and may be obtained with either grounded or ungrounded cathode terminals.

COOLING - Sufficient forced-air cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum values. Air requirements to maintain anode core temperatures at 200°C with an inlet air temperature of 50°C are tabulated below. These requirements apply when a socket of the EIMAC SK-600 series and an EIMAC SK-606 chimney are used with air flow in the base to anode direction.

| SEA                              | LEVEL             | 10,000 F                          | EET               |                                   |
|----------------------------------|-------------------|-----------------------------------|-------------------|-----------------------------------|
| Plate<br>Dissipa-<br>tion(watts) | Air Flow<br>(CFM) | Pressure<br>Drop(In. of<br>water) | Air Flow<br>(CFM) | Pressure<br>Drop(In. of<br>water) |
| 200<br>250                       | 5.2<br>6.1        | 0.58<br>0.79                      | 7.8<br>9.0        | 0.85<br>1.10                      |

The blower selected in a given application must be capable of supplying the desired airflow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters. The blower must be designed to deliver the air at the desired altitude.

At 500 MHz or below, base cooling air requirements are satisfied automatically when the tube is operated in an EIMAC Air-System Socket and the recommended air flow rates are used. Experience has shown that if reliable long life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

VIBRATION - These tubes are capable of satisfactorily withstanding ordinary shock and vibration, such as encountered in shipment and normal handling. The tubes will function well in automobile and truck mobile installations and similar environments. However, when shock and vibration more severe than this is expected, it is suggested that the EIMAC 4CX300A or 4CX250R be employed.

#### **ELECTRICAL**

<code>HEATER</code> - The rated heater voltage for the 7034 and 7609 is 6.0 volts and 26.5 volts, respectively, and the voltage should be maintained as closely as practicable. Short-time changes of  $\pm$  10% will not damage the tube, but variations in performance must be expected. The heater voltage must be maintained within  $\pm$  5% to minimize these variations and to obtain maximum tube life.

At frequencies above approximately 300 MHz transit-time effects begin to influence the cathode temperature. The amount of driving power diverted to heating the cathode by back-bombardment will depend upon frequency, plate current, and driving power. When the tube is driven to maximum input as a class-C amplifier, the heater voltage should be reduced according to the table below:

| Frequency MHz | 7034       | 7609       |
|---------------|------------|------------|
| 300 and lower | 6.00 volts | 26.5 volts |
| 301 to 400    | 5.75 volts | 25.3 volts |
| 401 to 500    | 5.50 volts | 24.3 volts |

CATHODE OPERATION - The oxide coated unipotential cathode must be protected against excessively high emission currents. The maximum rated dc input current is 200 mA for platemodulated operation and 250 mA for all other types of operation except pulse.

The cathode is internally connected to the four even-numbered base pins and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 30 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts regardless of polarity.

GRID OPERATION - The maximum rated dc grid bias voltage is -250 volts and the maximum grid dissipation rating is 2.0 watts. In ordinary audio and radio-frequency amplifiers the grid dissipation usually will not approach the maximum rating. At operating frequencies above the 100 MHz region, driving-power requirements for

amplifiers increase noticeably. At 500 MHz as much as 20 watts of driving power may have to be supplied. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory 500 MHz operation of the tube in a stable amplifier is indicated by grid-current values below approximately 15 mA.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull circuits, to assure equal load sharing.

The maximum permissible grid-circuit resistance per tube is 100,000 ohms.

SCREEN OPERATION - The maximum rated power dissipation for the screen is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes, or an electron tube *shunt* regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube *series* regulator can be used only when an adequate bleeder resistor is provided.

Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result in 100% modulation for plate-modulated rf amplifiers using the 7034 or 7609.

PLATE OPERATION - The maximum rated plate dissipation power is 250 watts. In plate-modulated applications the carrier plate dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that one tube fails.

VHF OPERATION - The 7034 and 7609 are suitable for use in the VHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

HIGH VOLTAGE - The 7034 and 7609 operate at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS-If it is desired to operate these tubes under conditions widely different from those given here, write to Application Engineering Dept., EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.

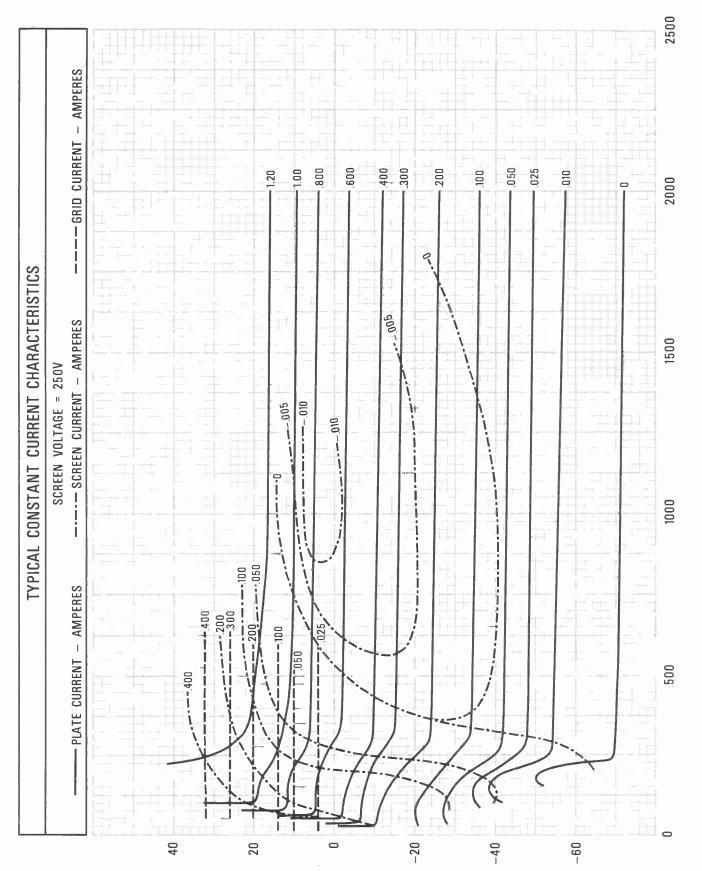
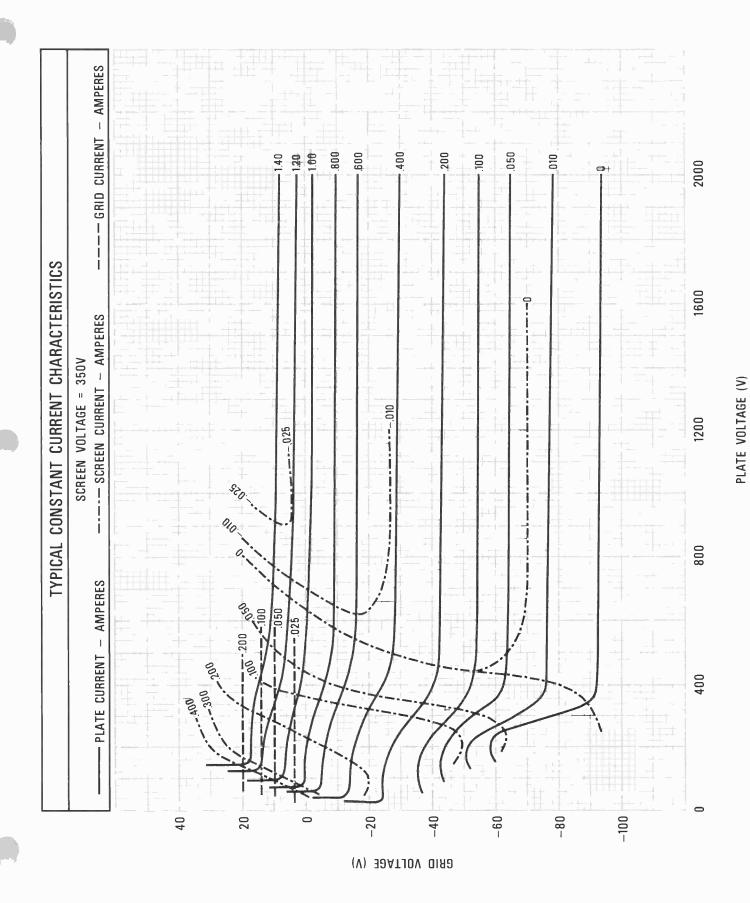
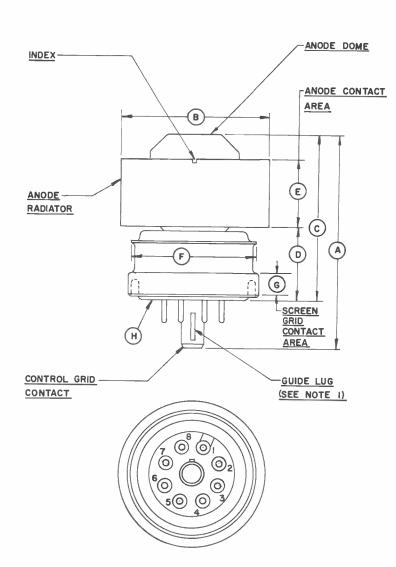





PLATE VOLTAGE (V)





7



|                                       | DIMENSIONAL DATA |       |             |       |       |  |  |
|---------------------------------------|------------------|-------|-------------|-------|-------|--|--|
|                                       | - 16             | CHES  | MILLIMETERS |       |       |  |  |
| DIM.                                  | MIN.             | MAX.  | NOM.        | MIN.  | NOM.  |  |  |
| _A                                    | 2.224            | 2.414 |             | 59.03 | 62.59 |  |  |
| В                                     | 1.610            | 1.640 |             | 40.89 | 41.65 |  |  |
| С                                     | 1.710            | 1.860 |             | 43.43 | 47.24 |  |  |
| D                                     | .750             | .810  |             | 19.05 | 20.57 |  |  |
| E                                     | .710             | .790  |             | 18,03 | 20.07 |  |  |
| F                                     |                  | 1.406 |             |       | 35.71 |  |  |
| G                                     | .187             |       |             | 4.75  |       |  |  |
| H BASE: B8-236<br>(JEDEC DESIGNATION) |                  |       |             |       |       |  |  |

#### NOTES:

I. LOCATION OF GUIDE LUG OF
CONTROL GRID CONTACT MAY
BE REFERENCED BY AN ARROW
OR NOTCH ON THE ANODE
RADIATOR IN THE POSITION
SHOWN.

#### PIN DATA

PIN NO. 1 SCREEN GRID
PIN NO. 2 CATHODE
PIN NO. 3 HEATER
PIN NO. 4 CATHODE
PIN NO. 5 I.C.-DO NOT USE FOR EXTERNAL
CONNECTION
PIN NO. 6 CATHODE
PIN NO. 7 HEATER
PIN NO. 8 CATHODE
CENTER PIN - CONTROL GRID



CLCCTDICAL

#### TECHNICAL DATA

### 8172 4X150G

RADIAL-BEAM POWER TETRODE

The EIMAC 8172/4X150G is an extremely compact external-anode tetrode intended for use as a radio-frequency amplifier, frequency multiplier, or oscillator at frequencies well into the UHF region or as an amplifier in any service requiring a high-gain tube capable of delivering high power-output at low plate-voltage. The combination of a high ratio of transconductance to capacitance and a plate dissipation capability of 250 watts makes the tube an excellent wide-band amplifier for video applications.

The cathode, grid and screen electrodes are mounted on conical and cylindrical supports giving a minimum of circuit discontinuities and lead inductance. The rugged cylindrical terminals, progressively larger in size, allow the tube to be inserted in coaxial line cavities. The screen support and terminal provide maximum isolation between the grid-cathode terminals and the plate circuit.

In amplifier service at 500 megahertz, output power of 140 watts per tube, with a stage power-gain of 14, can be obtained. At 1000 megahertz an output power of 50 watts per tube is obtained with a power-gain of five.

GENERAL CHARACTERISTICS



| ELECTRICAL                     | G            | EIA  | CKA                                   |      | ПАГ       | KAC  | IEKI          | 31  | 103             |    |      |      |      |   |   |      | - 4 |       | 9        |
|--------------------------------|--------------|------|---------------------------------------|------|-----------|------|---------------|-----|-----------------|----|------|------|------|---|---|------|-----|-------|----------|
| Cathode: Oxide-<br>Heating Tir | Coate<br>ne  |      | Jnipo<br>-                            |      | tial<br>- | _    | <i>Min</i> 30 |     | <i>Nom</i> . 60 | 1  | Мах. | seco | onds |   |   |      |     | U     |          |
| Cathode-to-l                   |              | r Po | tenti                                 | al   | -         | -    |               |     |                 |    | 150  | volt | S    |   |   |      |     |       |          |
| Heater: Voltage                | _            | -    | -                                     | -    | _         | _    |               |     | 2.5             |    |      | volt | S    |   |   |      |     |       |          |
| Current -                      |              | -    | -                                     | -    | _         | -    | 6.2           |     |                 |    | 7.3  |      | eres |   |   |      |     |       |          |
| Amplification Fa               | ctor         | (Gri | d-to-                                 | Scre | een)      | -    |               |     | 5               |    |      | 1    |      |   |   |      |     |       |          |
| Direct Interelect              |              |      |                                       |      | ,         | ound | led C         | ath | ode:            |    |      |      |      |   |   | Min. | M   | ax.   |          |
| Input -                        | -            | -    | _                                     | -    | -         | -    | _             | _   |                 | _  | _    | _    |      | _ |   | 25.0 |     | 9.0   | pf       |
| Output -                       | _            | _    | _                                     | _    | _         | -    | _             | _   | _               | _  |      | _    |      |   |   | 4.0  |     | 4.9   |          |
| Feedback                       |              | _    | _                                     | _    | _         | _    | -             | _   | _               | _  |      |      |      |   |   | 4.0  |     | .05   | pf<br>pf |
| Direct Interelect              | rode (       | Capa | acita                                 | nces | Gro       | und  | ed Gr         | rid | and Sc          | re | en   |      | _    | _ |   | Min. |     | ax.   | Ρı       |
| Input -                        | -            | _    | -                                     | -    | -         | -    | _             | -   | -               | _  | _    | -    | _    | - |   | 14.5 | 171 | 19    | рf       |
| Output -                       | _            | _    | -                                     | -    | _         | -    | -             | -   | -               | _  | _    | _    | _    | _ |   | 4.0  |     | 4.9   | pf       |
| Feedback                       | -            | _    | _                                     | _    | _         | _    | -             | _   | -               | -  | _    | _    | _    | _ |   | 1.0  |     | 0.01  | pf       |
| Frequency for M                | a <b>xim</b> | um 1 | Ratir                                 | os i | CW        | )    | _             | _   | _               |    |      |      |      | _ |   |      |     | 500 I | -        |
| 1                              |              |      | · · · · · · · · · · · · · · · · · · · |      | puls      |      | -             | _   | _               | _  | _    | _    |      |   |   |      |     | 500 I |          |
|                                |              |      |                                       | `    | (Pull     | cuj  |               |     |                 |    |      |      |      |   |   | _    | 1   | 0001  | VIIIZ    |
| MECHANICAL                     |              |      |                                       |      |           |      |               |     |                 |    |      |      |      |   |   |      |     |       |          |
| Base                           | -            | -    | -                                     | -    | -         | -    | -             | -   | -               | -  | -    | -    | -    | - | - | -    | -   | Coa   | axial    |
| Maximum Opera                  | ating        | Ten  | npera                                 | itur | es:       |      |               |     |                 |    |      |      |      |   |   |      |     |       |          |
| Glass-to-Me                    | tal Še       | eals | -                                     | -    | -         | _    | -             | -   | -               | _  | -    | -    | -    | - | - | _    | _   | 17    | 5°C      |
| Ceramic-to-                    |              |      |                                       |      | -         | -    | -             | -   | -               | -  | -    | -    | -    | - | _ | -    | _   | 25    | 0°C      |
| Anode Core                     | -            | -    | -                                     | -    | -         | -    | -             | -   | -               | -  | -    | -    | -    | - | - | -    | -   | 25    | 0°C      |
| Operating Position             | n -          | -    | -                                     | _    | -         | -    | _             | _   | -               | _  | _    | -    |      | - | _ | _    | _   | _     | Any      |
| Maximum Dime                   |              | S:   |                                       |      |           |      |               |     |                 |    |      |      |      |   |   |      |     |       |          |
| Height -                       | -            | -    | _                                     | -    | _         | _    | _             | _   | _               | _  |      | _    |      |   | _ | _    | 9'  | 75 in | ches     |
| Diameter                       | -            | _    | _                                     | _    | _         | _    | _             | _   | -               | _  | _    | _    | _    | _ | _ | _    |     | 35 in |          |
| Cooling                        | -            | _    | _                                     | _    |           |      |               | _   |                 |    |      |      |      |   |   |      |     | orced |          |
| Net Weight -                   |              |      |                                       |      |           |      |               | _   |                 | _  |      | -    |      | - | _ | _    |     |       |          |
| _                              | -<br>- ( A   | -    |                                       | -    | -         | -    | -             | -   | -               | -  | -    | -    | -    | - | - | -    |     | 6 ou  |          |
| Shipping Weight                | . (Ap        | prox | ama                                   | te)  | -         | -    | -             | -   | -               | -  | -    | -    | -    | - | - | -    | 1.  | 6 poi | ınds     |
|                                |              |      |                                       |      |           |      |               |     |                 |    |      |      |      |   |   |      |     |       |          |

(Revised 10-15-73)© 1959, 1966, 1973 Varian

Printed in U.S.A.



| YOY .                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR  Class-C Telegraphy or FM Telephony (Key-down Conditions)  MAXIMUM RATINGS DC PLATE VOLTAGE 1250 VOLTS DC SCREEN VOLTAGE 300 VOLTS DC GRID VOLTAGE 250 VOLTS DC PLATE CURRENT 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS                                          | TYPICAL OPERATION (Frequencies up to 165 MHz)  DC Plate Voltage - 600 750 1000 1250 1250 volts DC Screen Voltage - 250 250 250 250 250 volts DC Grid Voltage - 75 -80 -80 -90 -80 volts DC Plate Current - 200 200 200 200 200 mA DC Screen Current* - 37 37 30 20 7 mA† DC Grid Current* - 10 10 10 10 10 mA† Peak RF Grid Voltage* - 90 95 95 105 - volts Driving Power* - 0.7 0.7 0.7 0.8 10 watts† Plate Input Power - 120 150 200 250 250 watts Plate Output Power - 85 110 150 195 140 watts† *Approximate values. **Measured values for a typical cavity amplifier circuit.**                                                                                                                                |
| PLATE-MODULATED RADIO-FREQUENCY AMPLIFIER Class-C Telephony (Carrier conditions)  MAXIMUM RATINGS DC PLATE VOLTAGE 1000 VOLTS DC SCREEN VOLTAGE 300 VOLTS DC GRID VOLTAGE 250 VOLTS DC PLATE CURRENT 200 MA PLATE DISSIPATION 165 WATTS SCREEN DISSIPATION 2 WATTS GRID DISSIPATION 2 WATTS                                         | TYPICAL OPERATION (Frequencies up to 165 MHz)  DC Plate Voltage 600 800 1000 volts  DC Screen Voltage 250 250 250 volts  DC Grid Voltage95100105 volts  DC Plate Current 200 200 200 mA  DC Screen Current* 8 10 15 mA  Peak RF Grid Input Voltage* - 120 120 125 volts  Driving Power* 1 1.5 2 watts  Plate Input Power 40 60 60 watts  Plate Output Power 120 160 200 watts  *Approximate values.                                                                                                                                                                                                                                                                                                                 |
| RADIO-FREQUENCY POWER AMPLIFIER Class-B Linear, Television Visual Service (per tube)  MAXIMUM RATINGS  DC PLATE VOLTAGE 1250 VOLTS DC SCREEN VOLTAGE 400 VOLTS DC GRID VOLTAGE 250 VOLTS DC PLATE CURRENT (Average) - 250 MA PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS                       | TYPICAL OPERATION (Frequencies up to 216 MHz, 5-MHz bandwidth)  DC Plate Voltage 750 1000 1250 volts  DC Screen Voltage 300 300 300 volts  DC Grid Voltage 60 -65 -70 volts  During Sync-Pulse Peak:  DC Plate Current 335 330 305 mA  DC Screen Current 50 45 45 mA  DC Grid Current 15 20 25 mA  Peak RF Grid Voltage - 85 95 100 volts  RF Driving Power (approx.) - 7 8 9 watts  Useful Power Output - 135 200 250 watts  Black Level:  DC Plate Current 245 240 230 mA  DC Screen Current 245 240 230 mA  DC Screen Current 4 4 4 mA  Peak RF Grid Voltage (approx.) 65 70 75 volts  RF Driver Power (approx.) - 4.25 4.7 5.5 watts  Plate Power Input 185 240 290 watts  Useful Power Output 75 110 140 watts |
| PLATE PULSED RADIO FREQUENCY AMPLIFIER OR OSCILLATOR  MAXIMUM RATINGS PULSED PLATE VOLTAGE 7000 VOLTS PULSED SCREEN VOLTAGE 1500 VOLTS DC GRID VOLTAGE 500 VOLTS PULSE DURATION 5 USEC PULSED CATHODE CURRENT 7 AMPS AVERAGE POWER INPUT 250 WATTS PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS | TYPICAL PULSE OPERATION Single tube oscillator, 1200-MHz  Pulsed Plate Voltage 5 7 kV Pulsed Plate Current 4.0 6.0 amps Pulsed Screen Voltage 800 1200 volts Pulsed Screen Current 0.3 0.4 amps DC Grid Voltage 200 —250 volts Pulsed Grid Current 0.5 0.6 amps Pulse Duration 4 5 μsec Pulse Repetition Rate 2500 1000 pps Peak Power Output 7 17 kW                                                                                                                                                                                                                                                                                                                                                               |
| RADIO-FREQUENCY LINEAR AMPLIFIER  Class-AB <sub>1</sub> (Single-Sideband Suppressed-Carrier Operation)  MAXIMUM RATINGS  DC PLATE VOLTAGE 2000 VOLTS  DC SCREEN VOLTAGE 400 VOLTS  DC PLATE CURRENT 250 MA  PLATE DISSIPATION 250 WATTS  SCREEN DISSIPATION 2 WATTS  GRID DISSIPATION 2 WATTS                                       | TYPICAL OPERATION (Frequencies up to 165 MHz peak-envelope conditions except where noted)  DC Plate Voltage 1000 1250 volts DC Screen Voltage 350 350 volts DC Grid Voltage* 55 —55 volts Zero-Signal DC Plate Current 100 100 mA Peak RF Grid Voltage** 50 50 volts DC Plate Current 250 50 wolts DC Plate Current 250 50 mA DC Screen Current** 10 9 mA Plate Input Power 250 310 watts Plate Output Power 120 170 watts Two-Tone Average DC Plate Current 190 190 mA Two-Tone Average DC Screen Current** 2 2 —1 mA *Approximate values.  **Adjust grid bias to obtain listed zero-signal plate current.                                                                                                         |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf driving voltage is applied.

# Eimac.

#### APPLICATION

#### **MECHANICAL**

Mounting—The 4X150G may be mounted in any position. The concentric arrangements of the electrode terminals permits the use of the tube in coaxial line or cavity type circuits to advantage.

Connections to the contact surfaces should be made by means of spring-finger collets which have sufficient pressure to maintain a good electrical contact at all fingers. Points of electrical contact should be kept clean and free of oxidation to minimize rf losses.

Cooling — The 4X150G requires sufficient forced air to keep the glass-to-metal seals below 175°C and the ceramic-metal seals and anode core below 250°C. The air flow must be started when power is applied to the heater and must continue without interruption until all electrode voltages have been removed from the tube.

Effective cooling of the anode is accomplished by directing six cubic feet per minute of air

through the anode cooler. This flow is obtained at a pressure drop across the cooler of approximately 0.25 inch of water column. The grid, cathode and heater terminals are cooled by high velocity air directed at the terminals and the connecting collets which aid in the removal of heat from the terminals by conduction. The volume required will depend upon the socket arrangement and should be adequate to keep the metal-to-glass seals below 175°C and the center heater terminal below 250°C.

The air requirements stated above are based on operation at sea level an ambient temperature of 20°C. Operation at high altitudes or at high ambient temperatures requires a greater volume of air flow.

Temperature of the external parts of a tube may be measured with the aid of a temperature-sensitive lacquer.

#### **ELECTRICAL**

Heater — The rated heater voltage for the 4X150G is 2.5 volts, and should be maintained at this value plus or minus five percent. At frequencies above 300 megahertz, transit time effects begin to influence the cathode temperature. The amount of driving power diverted to cathode heating will depend on frequency, plate current and driving power. When the tube is driven to maximum input as a class-C CW amplifier, the heater voltage should be reduced according to the following table.

| Frequency                        | Heater Voltage      |
|----------------------------------|---------------------|
| 301 to 400 MHz<br>401 to 500 MHz | 2.4 volts 2.3 volts |

At low duty, in pulse service, no reduction in heater voltage is normally required up to 1500 MHz

Cathode — The oxide-coated unipotential cathode must be protected against excessively high emission currents. The maximum dc plate current must be limited to 250 mA under CW conditions. Pulse current must never exceed 6.0 amperes.

Where it is necessary to operate with some heater-to-cathode potential, the maximum heater-to-cathode voltage is 150 volts regardless of polarity.

Grid Dissipation—Maximum grid dissipation is 2.0 watts. In ordinary af and rf amplifiers the grid dissipation usually will not reach this level. Above 100 MHz drive power requirements increase, but most of this increase is absorbed in circuit losses rather than in grid dissipation. Satisfactory operation at 500 MHz in a "straight through" amplifier is indicated by grid currents

below approximately 15 milliamperes. Grid circuit resistance should not exceed 100,000 ohms per tube.

Screen-Grid Operation — The maximum rated power dissipation for the screen grid is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When screen voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

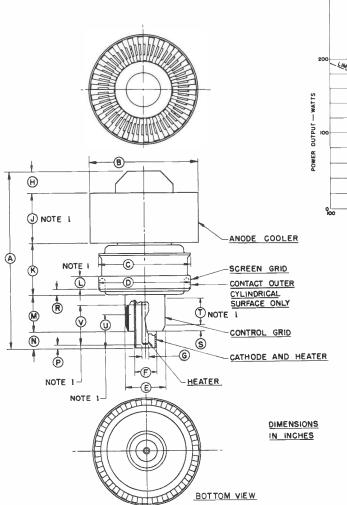
The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes or an electron tube shunt regulator connected



between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube series regulator can be used only when an adequate bleeder resistor is provided.

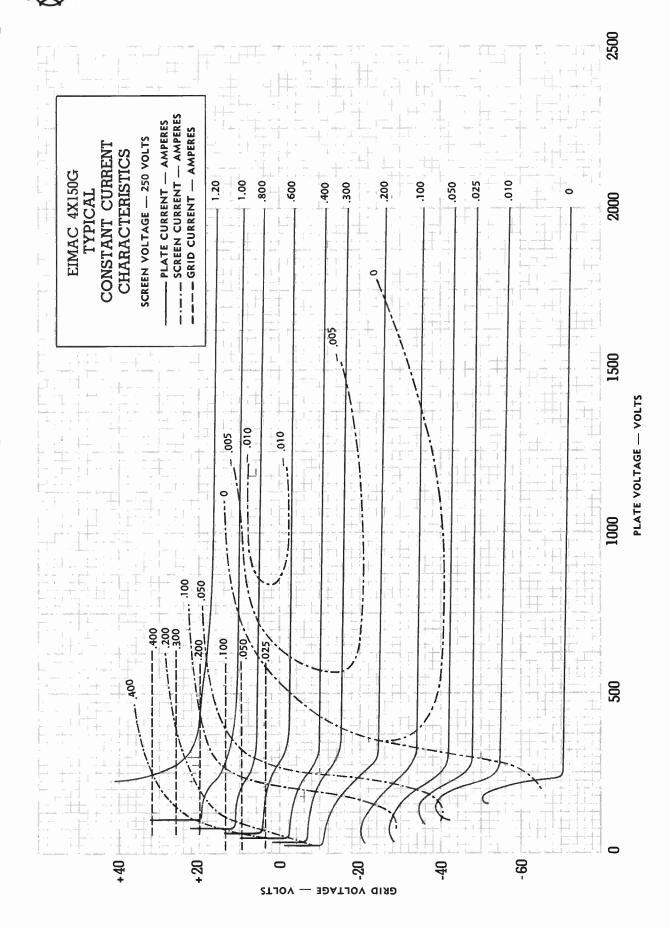
Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result in 100% modulation for plate-modulated rf amplifiers using the 4X150G.

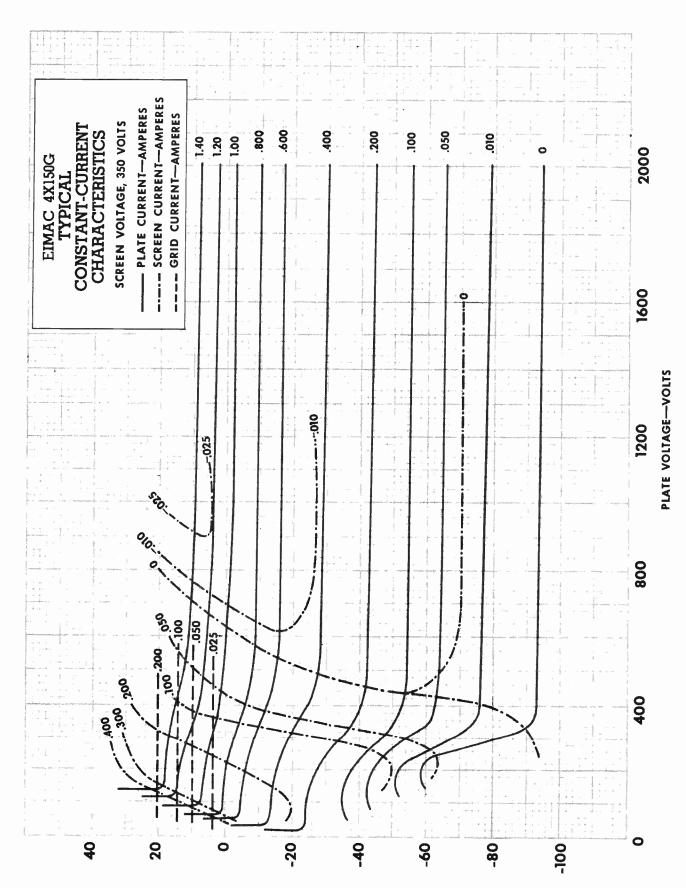
Plate Operation — The maximum rated plate-dissipation power is 250 watts. In plate-modulated applications the carrier plate-dissipation power must be limited to 165 watts to avoid exceeding the plate-dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage


to the tube.

UHF Operation — The 4X150G is suitable use in the UHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

Multiple Operation—Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustments of bias or screen voltage to equalize the inputs.


Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that one tube fails.


Special Applications—If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.



|                        | EIMAC 4XI5OG POWER AMPLIFIER<br>PERFORMANCE VS. FREQUENCY                                                      |     |
|------------------------|----------------------------------------------------------------------------------------------------------------|-----|
| CROWNED BY FOWER MADE  |                                                                                                                |     |
| LIMITEO BY POWER INDUT | es de la companya de | 20  |
| BY POWER INPUT         | 264                                                                                                            | 16  |
|                        | MATING                                                                                                         | 14  |
| ÖUTP                   | UT                                                                                                             | 12  |
|                        | <del>+ + + \                               </del>                                                              | -10 |
|                        | S. C.                                                                      |     |
|                        |                                                                                                                | 4   |
|                        |                                                                                                                | - 2 |
| 100 200 300            | 400 500 700 900 1200 500                                                                                       | 200 |

| DIMENSION                    |                |         |         |  |  |  |  |
|------------------------------|----------------|---------|---------|--|--|--|--|
| REF                          | NOMINAL        | MINIMUM | MAXIMUM |  |  |  |  |
| Α                            |                |         | 23/4    |  |  |  |  |
| В                            |                | 1.615   | 1.635   |  |  |  |  |
| С                            |                |         | 1.406   |  |  |  |  |
| ۵                            |                | 1.417   | 1.433   |  |  |  |  |
| Ε                            |                | .587    | .597    |  |  |  |  |
| F                            |                | -317    | -327    |  |  |  |  |
| G                            |                | .088    | .098    |  |  |  |  |
| Н                            |                |         | 5/16    |  |  |  |  |
| J                            |                | 23/32   | 25/32   |  |  |  |  |
| ĸ                            |                | 3/4     | 13/16   |  |  |  |  |
| L                            |                | 3/16    |         |  |  |  |  |
| М                            |                | .500    | .578    |  |  |  |  |
| N.                           |                | 15/64   | 17/64   |  |  |  |  |
| Р                            |                | 1/32    | 1/16    |  |  |  |  |
| R                            | 3/32           |         |         |  |  |  |  |
| S                            | V <sub>8</sub> |         |         |  |  |  |  |
| T                            |                | 11/32   |         |  |  |  |  |
| Ù                            |                | 13/32   |         |  |  |  |  |
| ٧                            |                | 15/32   |         |  |  |  |  |
| NOTE I. LENGTH AVAILABLE FOR |                |         |         |  |  |  |  |
| CONTACT.                     |                |         |         |  |  |  |  |







# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

# 4X500A

RADIAL-BEAM POWER TETRODE

The Eimac 4X500A is an external-anode tetrode having a maximum plate dissipation rating of 500 watts. Its small size and low-inductance leads permit efficient operation at relatively large outputs well into the VHF region. The screen grid is mounted on a disc which terminates in a connector ring located between grid and plate, thus making possible effective shielding between the grid and plate circuits. The grid terminal is located at the center of the glass base to facilitate single-tube operation in coaxial circuits.

The combination of low grid-plate capacitance, low screen-lead inductance and functionally located terminals contributes to the stable operation of the 4X500A at high frequencies, making neutralization unnecessary in most cases and greatly simplifying it in others.

### **GENERAL CHARACTERISTICS**

### **ELECTRICAL**

| <br>                  |              |         |       |       |       |       |                |     |   |      |      |        |        |
|-----------------------|--------------|---------|-------|-------|-------|-------|----------------|-----|---|------|------|--------|--------|
| Filament: Thoriated   | Tung         | sten    |       |       |       |       |                |     |   | Min. | Nom. | Max.   |        |
| Voltage               | -            | -       | -     | -     | -     | -     | -              | -   | - |      | 5    |        | volts  |
| Current               | -            | -       | -     | -     | -     | -     | -              | -   | - | 12.2 |      | 13.7 a | mperes |
| Amplification Facto   | r (6         | Grid-to | -Scr  | een)  | -     | -     | -              | -   | - | 4.5  |      | 6.5    |        |
| Transconductance (1   | ь <b>= 2</b> | 00 ma   | ., Еь | = 250 | 00v., | E.2 = | 500v.          | ) - | - |      | 5200 |        | umhos  |
| Direct Interelectrode | Ca           | pacita  | nces  | Grou  | ınded | Cat   | ho <b>d</b> e: |     |   |      |      |        |        |
| Input                 | -            | -       | -     | -     | -     | -     | -              | -   | - | 10.6 |      | 14.4   | uuf    |
| Output                | -            | -       | -     | -     | -     | -     | -              | -   | - | 4.9  |      | 6.9    | uuf    |
| Feedback              | -            | -       | -     | -     | -     | -     | -              | -   | - |      | -    | 0.1    | цuf    |
| Frequency for Maxi    | num          | Ratin   | gs    | -     | -     | -     | -              | -   | - |      | -    | 120    | mc.    |
|                       |              |         |       |       |       |       |                |     |   |      |      |        |        |



### MECHANICAL

| Base                   | -   | -      | -    | - | _ | - | - | _ | - | - | - | - | - | - | - | - | -  | -        | Special 4 pin   |
|------------------------|-----|--------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----------|-----------------|
| Maximum Operating T    | em  | peratu | res: |   |   |   |   |   |   |   |   |   |   |   |   |   |    |          |                 |
| Glass-to-Met           | tal | Seals  |      | - | _ | _ | _ | _ |   | _ | _ | - | - | - | - | _ | -  | -        | 175° C          |
| Anode Core             | 9   | -      | -    | _ | _ | _ | _ | _ | _ | _ |   | _ | _ | - | - | - | -  | -        | 175° C          |
| Recommended Socket     |     | -      |      | _ | - | • | _ | _ | - | _ | _ | _ | _ | - | - | - | -  | -        | Eimac SK900     |
| Operating Position     | -   | -      | -    | - | - | - | - | _ | _ | _ | _ | _ | - | - | - | - | ٧e | ertical, | base up or down |
| Maximum Dimension:     |     |        |      |   |   |   |   |   |   |   |   |   |   |   |   |   |    |          |                 |
| Height                 | -   | -      | _    | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | - | - | -  |          | 4.75 inches     |
| Diameter               |     | -      | -    | - | _ | _ | - | _ | _ | - | _ | - | _ | - | - | - | -  |          | 2.625 inches    |
| Cooling (See following | g p | age)   | -    | - | - | _ |   | _ | _ | _ | _ | - | - | - | - | - | -  | -        | Forced Air      |
| Net Weight -           | _   | - '    | _    | - | _ | - |   | - | - | _ | _ | - | _ | _ |   | - | -  | -        | 1.7 pounds      |
| Shipping Weight (Ap    | pro | ximate | )    | - |   | _ |   | _ |   | - |   | - | _ | _ | - | - | -  | -        | 6 pounds        |

# RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C FM or Telegraphy (Key-down conditions, I tube) MAXIMUM RATINGS (Frequencies up to 120 Mc.)

| D-C PLATE VOLTAGE  | - | - | - | - | 4000 | MAX. | VOLTS |
|--------------------|---|---|---|---|------|------|-------|
| D-C SCREEN VOLTAG  | E | - | - | - | 500  | MAX. | VOLTS |
| D-C GRID VOLTAGE   | - | - | - | - | 500  | MAX. | VOLTS |
| D-C PLATE CURRENT  | - | - | - | ~ | 350  | MAX. | MA.   |
| PLATE DISSIPATION  | - | - | - | - | 500  | MAX. | WATTS |
| SCREEN DISSIPATION | - | - | - | - | 30   | MAX. | WATTS |
| GRID DISSIPATION   | _ | - | - | _ | 10   | MAX. | WATTS |

### TYPICAL OPERATION (Per tube, at 110 Mc.)

| D-C Plate Voltage    | -   | - | - | - | - | 2500 | 3000         | 4000        | Volts |
|----------------------|-----|---|---|---|---|------|--------------|-------------|-------|
| D-C Plate Current -  | -   | - | - | - | - | 310  | 310          | 315         | Ma.   |
| D-C Screen Voltage   | -   | - | - | - | - | 500  | 500          | 500         | Volts |
| D-C Screen Current   | -   | - | - |   | - | 26   | 24           | 22          | Ma.   |
| D-C Grid Voltage -   | -   | - | - | - | - | 150  | <u>—</u> 150 | <u>—150</u> | Volts |
| D-C Grid Current -   | -   | - | - | - | - | 15   | 16           | 16          | Ma.   |
| Driving Power (appro | x.) | - | - | - | - | 5    | 5            | 5           | Watts |
| Useful Power Output  |     |   |   |   |   |      |              |             |       |



### RADIO FREQUENCY POWER AMPLIFIER

Class-B Linear Amplifier, Television Visual Service MAXIMUM RATINGS (Frequencies below 220 mc.) D-C PLATE VOLTAGE -- 3000 MAX. VOLTS D-C PLATE CURRENT 350 MAX. MA. D-C SCREEN VOLTAGE -500 MAX. VOLTS D-C GRID VOLTAGE -- -500 MAX. VOLTS PLATE DISSIPATION 500 MAX, WATTS SCREEN DISSIPATION -30 MAX. WATTS GRID DISSIPATION 10 MAX. WATTS

| ITPICAL OPERATION                                                          |       |      |      |        |     |     |      |                   |                    |                   |
|----------------------------------------------------------------------------|-------|------|------|--------|-----|-----|------|-------------------|--------------------|-------------------|
| (Per tube at peak s<br>resistance 3,000 ohms                               |       |      |      | level, | 5-1 | Иc. | band | lwidth,           | assumed            | load              |
| D-C Plate Voltage                                                          | -     | -    | -    | -      | -   | -   | -    | 1850              | 2400               | Volts             |
| D-C Screen Voltage                                                         | -     | -    | -    | -      | -   | -   | -    | 500               | 500                | Volts             |
| D-C Grid Voltage                                                           | -     | -    | -    | -      | -   | -   | -    | 100               | -100               | Volts             |
| D-C Plate Current                                                          | -     | -    | -    | -      | -   | -   | -    | 285               | 4001               | Ma.               |
| D-C Screen Current                                                         | (ap   | ргох | .)   | -      | -   | -   | -    | 20                | 35                 | Ma.               |
| D-C Grid Current (a                                                        | ppro  | x.)  | -    | -      | -   | -   | -    | 10                | 15                 | Ma.               |
| Peak R-F Grid Volta                                                        | ge    | -    | -    |        | -   | -   | -    | 140               | 185                | Volts             |
| Driving Power, 220                                                         | Mc.   | (ap  | ргоз | c.)    | -   | -   | -    | 15                | 25                 | Watts             |
|                                                                            | -     |      |      |        | -   | -   | -    | 525               | 960                | Watts             |
| Power Output -                                                             | -     |      | -    | -      | -   | -   | -    | 300               | 600                | Watts             |
| BLACK LEVEL                                                                |       |      |      |        |     |     |      |                   |                    |                   |
| D-C Plate Current                                                          | _     | _    | -    | -      | -   | -   | -    | 215               | 300                | Ma.               |
| D-C Screen Current                                                         | _     | _    | -    | -      | _   | -   | -    | 2                 | 3                  | Ma.               |
| D-C Grid Current                                                           | _     | _    |      | -      |     |     | -    | 2                 | 5                  | Ma.               |
| Plate Power Input                                                          | -     |      | -    | -      |     | -   | -    | 400               | 720                | Watts             |
| Plate Dissipation                                                          | _     | _    | -    | -      | -   | -   | -    | 230               | 380                | Watts             |
| Power Output -                                                             | -     | -    | -    | -      | -   | -   | -    | 170               | 340                | Watts             |
| <sup>1</sup> Operating conditio<br>exceed maximum ra<br>Maximum ratings ap | tings | of   | the  | tube   | bec | aus | e of | may be<br>the lov | e permit<br>w duty | ted to<br>factor. |

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. Adjustment of the r-f grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct r-f driving voltage is applied.

TYPICAL OPERATION

# APPLICATION

### **MECHANICAL**

**Mounting**—The 4X500A must be operated vertically. The base may be down or up. The recommended socket for this tube is the SK-900 Air-System Socket.

**Cooling**—Forced-air cooling must be provided to hold the glass-to-metal seals and the anode cooler core below the maximum rated temperature of  $150\,^{\circ}\text{C}$ .

A flow rate of 20 cfm will be adequate for operation at sea level and with an inlet air temperature up to 50°C. Under these conditions, 20 cfm of air flow corresponds to a pressure difference across the tube and SK-900 socket of 2.25 inch of water column. Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube.

At higher altitudes increased air flow will be required. For example, at an altitude of 10,000 feet, a flow-rate of 29 cfm will be required and will be obtained with a pressure drop across tube and socket of 3.25 inch of water column. In selecting a blower for use at high altitudes, care must be taken to assure that the blower is designed to deliver the desired volume of air at the corresponding pressure drop and at the particular altitude.

The pressure drop figures indicated above are those measured directly at the air gage hole in the SK-900 air system socket. In the event that a socket is not used, and a plenum pressure drop measurement is required, this plenum pressure drop rating must equal the pressure drop figures indicated above multiplied by 1.5 for the specific application.

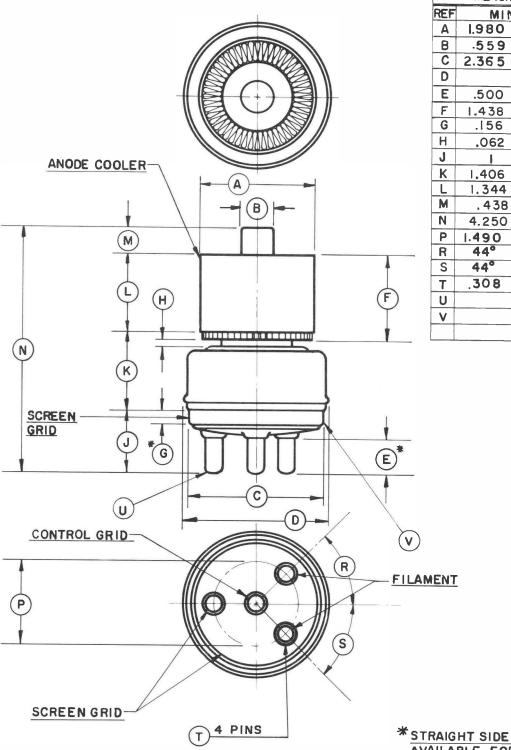
### **ELECTRICAL**

Filament Operation—For maximum tube life the filament voltage, as measured directly at the filament

pins, should be the rated voltage of 5.0 volts. Variations in filament voltage must be kept within the range from 4.75 to 5.25 volts.

**Control Grid Operation**—The d-c voltage for the 4X500A should not exceed 500 volts. If grid leak bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 Mc., it is advisable to keep the bias voltage as low as is practicable.

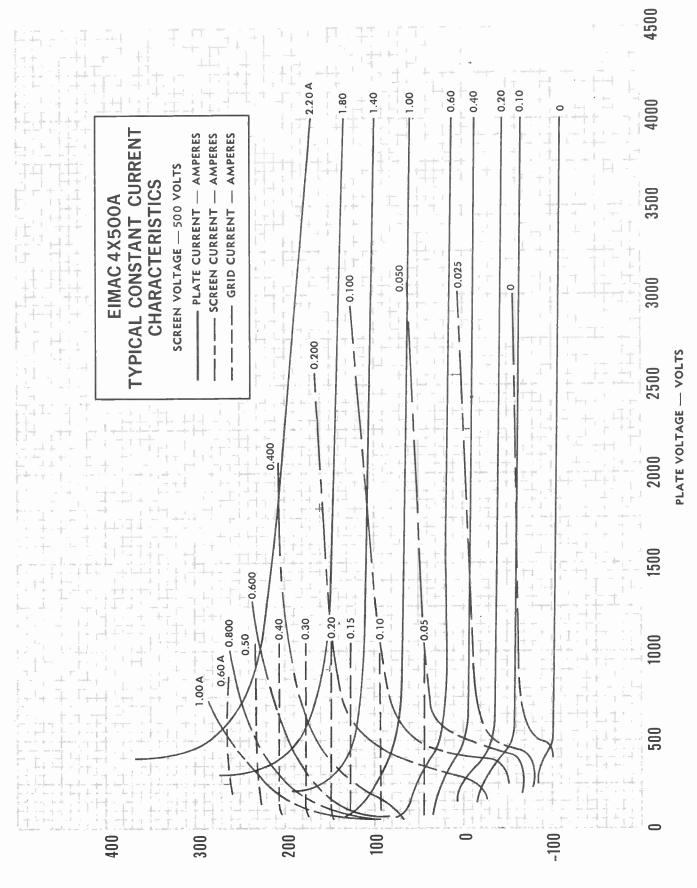
**Screen Grid Operation**—Power dissipated by the screen of the 4X500A must not exceed 30 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 30 watts in event of circuit failure.


**Plate Operation**—The maximum rated plate-dissipation power is 500 watts. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

Multiple Operation—Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide for individual metering and individual adjustment of the bias or screen voltage to equalize the inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube/s in the event that one tube should fail.

**Special Applications**— If it is desired to operate this tube under conditions widely different from those given here, write to Application Engineering Department, Eimac Division of Varian, San Carlos, California for information and recommendations.






|     | Diversion  |        |        |
|-----|------------|--------|--------|
|     | DIMENSIONS | IN     | INCHES |
| REF | MIN.       |        | MAX.   |
| _A  | 1.980      |        | 2.020  |
| В   | .559       |        | .573   |
| С   | 2.365      |        | 2.385  |
| D   |            |        | 2.625  |
| Е   | .500       |        |        |
| F   | 1.438      |        | 1.562  |
| G   | .156       |        |        |
| Н   | .062       |        |        |
| J   |            |        | 1.125  |
| K   | 1.406      |        | 1.594  |
| L   | 1.344      |        | 1.406  |
| M   | . 438      |        | .562   |
| N   | 4.250      |        | 4.750  |
| Р   | 1.490      |        | 1.510  |
| R   | 440        |        | 4 6°   |
| S   | 44°        |        | 4 6°   |
| T   | .308       |        | .318   |
| U   |            | 03     | IR     |
| V   | ).         | )9     | 4R     |
|     |            | $\top$ |        |

AVAILABLE FOR

CONTACT





6816 6884 7843

RADIAL-BEAM
POWER TETRODES

The EIMAC 6816, 6884, and 7843 are compact external anode ceramic/metal radial-beam tetrodes for use in rf power amplifier or oscillator service, linear rf power amplifier applications, and as audio amplifiers or modulators. The 6816 has a 6.3 volt heater, while the 6884 has a 26.5 volt heater, and both are designed for transverse-flow forced-air cooling of the anode. The 7843 has a 26.5 volt heater and its anode is designed for conduction cooling.

All three types have an F1 rating of 1215 MHz for full-rated power input, and are tested to give a useful power output of 80 watts at 400 MHz and 40 watts at 1200 MHz.



6816/6884

# GENERAL CHARACTERISTICS1

### ELECTRICAL

| Cathode: Oxide Coated Unipotential              |                 |    |      |       |       |
|-------------------------------------------------|-----------------|----|------|-------|-------|
| Heater Voltage (6816)                           | $6.3 \pm 10\%$  | V  |      |       |       |
| Heater Current (at 6.3 V)                       | 2.0             | Α  |      |       |       |
| Heater Voltage (6884, 7843)                     | $26.5 \pm 10\%$ | V  |      |       |       |
| Heater Current (at 26.5 V)                      | 0.53            | Α  | 1    |       |       |
| Amplification Factor (Average):                 |                 |    |      |       |       |
| Grid to screen                                  | 18              |    |      |       |       |
| Direct Interelectrode Capacitances <sup>2</sup> |                 |    | . Co |       |       |
| Control Grid to Cathode                         | 13.0            | pF | 7    | 843   |       |
| Control Grid to Screen Grid                     | 17.5            | pF | •    | 0 10  |       |
| Screen Grid to Anode                            |                 |    | <br> | . 4   | .7 pF |
| Control Grid to Anode                           |                 |    | <br> | . 0.0 | 05 pF |
| Anode to Cathode                                |                 |    | <br> | . 0.0 | )1 pF |
| Screen Grid to Cathode                          |                 |    | <br> | . 0.3 | 33 pF |

- Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture, in accordance with Electronic Industries Association Standard RS-191.

### MECHANICAL

| Maximum Overall Dimensions: | _6816 & 6884       | 7843               |
|-----------------------------|--------------------|--------------------|
| Length                      | 1.930 In; 49.02 mm | 1.955 In; 49.66 mm |
| Diameter                    | 1.265 In; 32.13 mm | 1.120 In; 28.45 mm |
| Net Weight                  |                    | 1.7 oz; 48.2 gm    |
| Operating Position          | Any                | Any                |

(Effective 11-15-71) © by Varian

Printed in U.S.A.

| Cooling: Type 6816, 6884                                                                                      | Forced Air Conduction Cooled                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating Temperature, Maximum, all three types:<br>Ceramic/Metal Seals and Anode Core                        | 250°C                                                                                                                                                                                                                          |
| Base (all types)                                                                                              |                                                                                                                                                                                                                                |
| Recommended Sockets (Screen Grid bypass capacito                                                              |                                                                                                                                                                                                                                |
|                                                                                                               | E.F. Johnson 124-152-1                                                                                                                                                                                                         |
| D 110 0111                                                                                                    | Jettron 89-001                                                                                                                                                                                                                 |
| Recommended Screen Grid bypass capacitor (separa                                                              | te unit): Erie 2929-001                                                                                                                                                                                                        |
| RANGE VALUES FOR EQUIPMENT DESIGN                                                                             | Min. Max.                                                                                                                                                                                                                      |
| Heater Current (Type 6816, at 6.3 volts)                                                                      |                                                                                                                                                                                                                                |
| (Type 6884, 7843, at 26.5 volts)                                                                              |                                                                                                                                                                                                                                |
| Cathode Warmup Time (all types)                                                                               | 60 Sec                                                                                                                                                                                                                         |
| Interelectrode Capacitances <sup>1</sup>                                                                      | 44.0                                                                                                                                                                                                                           |
| Control Grid to Cathode                                                                                       | *                                                                                                                                                                                                                              |
| Control Grid to Screen Grid  Screen Grid to Anode                                                             | A. A.                                                                                                                                                                                                                          |
| Control Grid to Anode                                                                                         | *                                                                                                                                                                                                                              |
| Anode to Cathode                                                                                              |                                                                                                                                                                                                                                |
| Screen Grid to Cathode                                                                                        |                                                                                                                                                                                                                                |
| Capacitance values are for a cold tube as measured in a sp<br>dustries Association Standard RS-191.           | pecial shielded fixture, in accordance with Electronic In-                                                                                                                                                                     |
| RADIO FREQUENCY LINEAR AMPLIFIER Grid-driven, Class AB 1                                                      | Two-Tone Plate Current                                                                                                                                                                                                         |
| ABSOLUTE MAXIMUM RATINGS:                                                                                     | Resonant Load Impedance                                                                                                                                                                                                        |
| DC PLATE VOLTAGE                                                                                              | Distortion Products 6 3rd:35 -30 dB 5th:40 -35 dB                                                                                                                                                                              |
| DC PLATE CURRENT 1                                                                                            | The maximum rating for a signal having a minimum peak-to-average power ratio less than 2.0, such as single-tone operation, is 180 mAdc. During short periods of circuit adjustment and periods.                                |
| TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1 Grid Driven, Peak Envelope or Modulation Crest Conditions | periods of circuit adjustment under single-tone conditions, the average anode current may reach the level of 250 mAdc.  2. With proper cooling for Types 6816 and 6884 and                                                     |
| Plate Voltage                                                                                                 | with adequate heat sink for Type 7843.  3. Adjust for the specified zero-signal plate current.  4. Approximate value.  5. Approximate value delivered to the load.  6. Referenced against one tone of a two equal-tone signal. |

| Plate Voltage                                                                                                                                                                                                                                                                                              | 900 900<br>300 300<br>-30 -22<br>170 170<br>1 1<br>10 4<br>3 5<br>80 40<br>816 and 688                                                   |                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Screen Voltage Grid Voltage Plate Current Screen Current <sup>2</sup> Grid Current <sup>2</sup> Peak Screen Voltage 2 (100% modulation) Driving Power <sup>2</sup> Useful Power Output <sup>3</sup> 1. With proper cooling for Types 68 with adequate heat sink for Type <sup>7</sup> 2. Approximate value | 200 250<br>-20 -50<br>100 130<br>5 10<br>5 10<br>150 150<br>2 3<br>16 45<br>316 and 688<br>7843.                                         | Vdc<br>Vdc<br>mAdc<br>mAdc<br>mAdc<br>W<br>W                                                      |
| TYPICAL OPERATION, Class AB <sub>1</sub> Values are for 2 tubes                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                   |
| Plate Voltage 6                                                                                                                                                                                                                                                                                            | S50 850                                                                                                                                  | Vdc                                                                                               |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                   |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                   |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | Vdc                                                                                               |
|                                                                                                                                                                                                                                                                                                            | 30 30                                                                                                                                    | Vdc                                                                                               |
|                                                                                                                                                                                                                                                                                                            | 30 30<br>80 80                                                                                                                           | ٧                                                                                                 |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80                                                                                                                                    | v<br>mAdc                                                                                         |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200                                                                                                                         | v<br>mAdc<br>mAdc                                                                                 |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0                                                                                                                  | v<br>mAdc                                                                                         |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0                                                                                                                  | v<br>mAdc<br>mAdc<br>mAdc<br>mAdc                                                                 |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000                                                                                             | v<br>mAdc<br>mAdc<br>mAdc<br>mAdc                                                                 |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80                                                                                    | v<br>mAdc<br>mAdc<br>mAdc<br>mAdc                                                                 |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80                                                                                    | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>W                                                            |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>350 850<br>300 300<br>-15 -15                                                   | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>Vdc<br>Vdc<br>Vdc                                            |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>450 850<br>300 300<br>-15 -15<br>46 46                                          | V<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>W<br>Vdc<br>Vdc<br>Vdc<br>Vdc                                |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>50 850<br>46 46<br>80 80                                                        | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>W<br>Vdc<br>Vdc<br>Vdc                                       |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>350 850<br>300 300<br>-15 -15<br>46 46<br>80 80<br>855 355<br>0 0               | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>Vdc<br>Vdc<br>Vdc<br>Vdc<br>v<br>mAdc<br>mAdc                |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>350 850<br>300 300<br>-15 -15<br>46 46<br>46 46<br>80 85<br>355<br>0 0<br>25 25 | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>W<br>Vdc<br>Vdc<br>Vdc<br>Vdc<br>v<br>mAdc<br>mAdc<br>mAdc   |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>350 850<br>300 300<br>-15 -15<br>46 46<br>46 46<br>80 85<br>355<br>0 0<br>25 25 | v<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>Vdc<br>Vdc<br>Vdc<br>Vdc<br>v<br>mAdc<br>mAdc                |
| Zero Signal Plate Current                                                                                                                                                                                                                                                                                  | 80 80<br>200 200<br>0 0<br>20 20<br>330 7000<br>50 80<br>350 850<br>300 300<br>-15 -15<br>46 46<br>46 46<br>80 85<br>355<br>0 0<br>25 25 | V<br>mAdc<br>mAdc<br>mAdc<br>MAdc<br>W<br>Vdc<br>Vdc<br>Vdc<br>Vdc<br>Vdc<br>mAdc<br>mAdc<br>mAdc |
| _                                                                                                                                                                                                                                                                                                          | Plate Voltage                                                                                                                            | A00 MHz   1200                                                                                    |

### **APPLICATION**

### ELECTRICAL

HEATER/CATHODE OPERATION - The rated heater voltage for the 6884 and the 7843 is 26.5 volts, and for the 6816, 6.3 volts, as measured at the base of the tube. Variations must be restricted to plus or minus ten percent, and where long life and consistent performance are factors, variation from the nominal value should be held to plus or minus five percent.

Because the cathode is subjected to considerable back bombardment (transit-time heating) as the frequency is increased, with resultant increase in cathode temperature, the heater voltage should be reduced in some applications, depending on operating conditions and frequency, to prevent overheating of the cathode and resultant short tube life.

ANODE CURRENT - The 6816, 6884, and 7843 are rated for 180 mAdc of continuous anode current. During short periods of circuit adjustment under CW or single-tone conditions, the average anode current may be as high as 250 mAdc, but care must be taken to keep the time period when the current is above the rating as brief as possible in order to prevent tube overheating.

HIGH VOLTAGE - The 6816, 6884, and 7843 operate at voltages which can be deadly and the equipment must be designed properly and operating precautions must be followed. Equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

### MECHANICAL

MOUNTING & SOCKETING - The 6816, 6884, and 7843 may be mounted in any position. Sockets such as the E.F. Johnson 124-152-1, Erie 2948-000, Jettron 89-001, or equivalent may be used as long as there are no unusual circumstances which would allow the ceramic/metal base seal temperatures to exceed the rated maximum of 250°C. Mounting should be such that free movement of air past the base by convection is possible, or when forced-air cooling is being pro-

vided for the anode, some of this air may be bled off to provide for come circulation past the tube base.

The 7843 mounting is normally controlled by its heat-sink configuration and location. If air movement is restricted in the base area, the socket may also require coupling to a heat sink in order to limit base seal temperatures.

VIBRATION - These tubes are capable of satisfactorily withstanding ordinary shock and vibration, such as encountered in shipment and normal handling. The tubes will function well in automobile and truck mobile installations and similar environments. However, when shock and vibration more severe than this are expected, it is suggested the EIMAC 7457 be employed.

COOLING (6816 & 6884) - Forced-air cooling must be provided to maintain the anode core and seal temperatures within the maximum rating. For best cooling efficiency a close-fitting insulated cowl assembly should be used to direct air past the anode cooling fins, and with such a cowl 12 cfm of air at 50°C maximum at sea level is sufficient to limit the anode core temperature to 225°C. With a short section of cowl, the required pressure drop to produce this air flow is approximately 0.1 inch of water. At higher altitudes, additional air is required. For 10,000 feet, for example, flow rate and pressure drop values will both increase by a factor of 1.46. The equipment designer is cautioned to allow for some air circulation around the base of the tube to maintain temperatures well within ratings, and if necessary some of the air available for anode cooling should be bled into the vicinity of the base to provide a small amount of forced circulation.

COOLING (7843) - This tube is designed for use in a conduction-cooled system, where tube anode heat is transferred to a heat sink, which in turn may be cooled by natural (free) convection, forced-air convection, liquid cooling, or a combination of these methods. Anode dissipation is normally limited only by the allowable temperature rise for the seals and the anode core. The nominal dissipation rating of 115 watts may be realized with relatively simple heat sink configurations, with higher dissipation levels possible with more

thorough designs. In all cases, however, the cooling system must maintain the anode and ceramic/metal seal temperatures below 250°C, and in cases where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial.

Intimacy of contact and pressure are two factors which will effect transfer of heat from the tube anode to the heat sink. A good thermally conductive compound should be used in the interface between the anode and the sink to reduce thermal resistance of the joint. Examples of commercially available thermal joint compound are:

WAKEFIELD 120-Wakefield Engineering Co., Wakefield, MA 01880.

DOW CORNING 340-Dow Corning Corp., Midland, MI 48640.

ASTRODYNE THERMAL BOND 312-Astrodyne Inc., Burlington, MA 01803.

G.E. INSULGREASE G641-General Electric Co., Cleveland, OH 44117.

The designer is cautioned to allow for some movement in the socket mount to assure that the anode makes good contact to its heat sink without interference. If the tube anode and the sink are not making intimate contact, heat transfer will be seriously affected. The designer is encouraged to use temperature-sensitive paint or other temperature-sensing devices in connection with any equipment design before the layout is finalized.

GRID OPERATION - The maximum rated dc grid bias voltage is -100 volts and the maximum grid dissipation rating is 1.0 watts. In normal applications the grid dissipation will not approach the maximum rating.

At operating frequencies above the 100 MHz region, driving-power requirements for amplifiers increase noticeably. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory VHF/UHF operation of the tube in a stable amplifier is indicated by grid current values below approximately 15 mAdc.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull

circuits, to assure equal load sharing. The maximum permissible grid-circuit resistance per tube is 25,000 ohms.

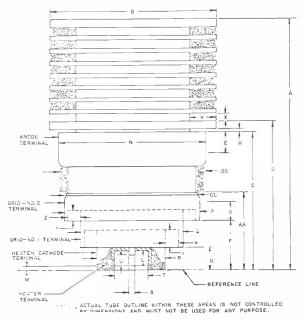
SCREEN OPERATION - The maximum rated power dissipation for the screen grid is 4.5 watts, and the screen input power should be kept below this level. The product of peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

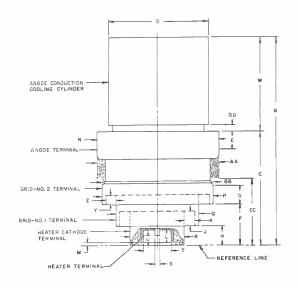
The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor or shunt regulator connected between screen and cathode. A series regulator circuit can be used only when an adequate bleeder resistor is provided.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be on before screen voltage can be applied.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is a good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.


Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event one tube fails.

VHF OPERATION - The 6816, 6884, and 7843 are suitable for use in the VHF/UHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is increased by many variables in most applications, such as stray capacitance to the chassis,

capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the additional capacitance values which will exist in any normal application. Actual measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate any of these tubes under conditions widely different from those given here, write to Power Grid Division, Attention: Applications, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.



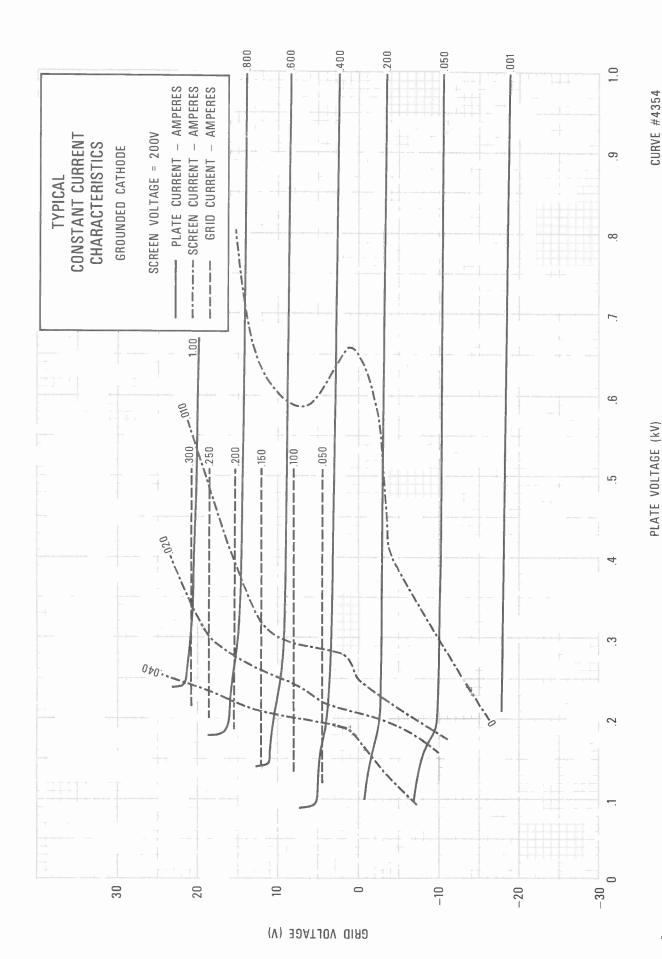
6816/6884

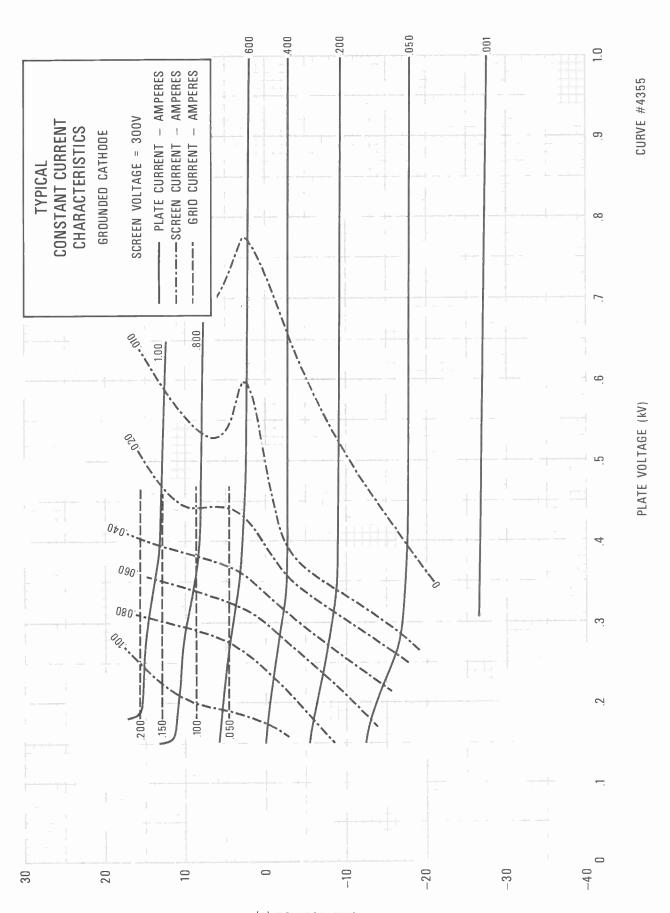


ACTUAL TUBE OUTLINE WITHIN THESE AREAS IS NOT CONTROLLED BY DIMENSIONS AND MUST NOT BE USED FOR ANY PURPOSE,

7843

| DIMENSIONAL DATA |       |        |     |         |       |     |  |  |  |  |  |
|------------------|-------|--------|-----|---------|-------|-----|--|--|--|--|--|
| DIM.             |       | INCHES | M   | LLIMETE | 7S    |     |  |  |  |  |  |
| MIN.             |       | MAX.   | REF | MIN.    | MAX.  | REF |  |  |  |  |  |
| Α                | 1830  | 1 930  |     | 46 48   | 49.02 |     |  |  |  |  |  |
| 8                | 1 235 | 1,265  |     | 3   37  | 32 (3 |     |  |  |  |  |  |
| С                | 1.000 | 1 060  |     | 25 40   | 2692  |     |  |  |  |  |  |
| D                | 1090  | 1 180  |     | 2726    | 2997  | ~ ~ |  |  |  |  |  |
| Ē                | 0 165 |        |     | 4.19    |       |     |  |  |  |  |  |
| F                | 0 350 | 0 390  |     | 8.89    | 9.91  |     |  |  |  |  |  |
| G                | 0 140 |        |     | 3,56    |       |     |  |  |  |  |  |
| Н                | 0 160 | 0 190  |     | 4 06    | 483   |     |  |  |  |  |  |
| J                | 0.120 |        |     | 3 05    |       |     |  |  |  |  |  |
| K                | 0.095 |        |     | 2.41    |       |     |  |  |  |  |  |
| L                | 0.100 |        |     | 3.05    |       |     |  |  |  |  |  |
| М                |       | 0.050  |     |         | 127   |     |  |  |  |  |  |
| N                | 1.085 |        |     | 27.56   |       |     |  |  |  |  |  |
| Р                | 0.985 |        |     | 25.02   |       |     |  |  |  |  |  |
| Q                | 0.735 |        |     | 1867    |       |     |  |  |  |  |  |
| R                | 0.480 |        |     | 12 19   |       |     |  |  |  |  |  |
| S                |       | 0 072  |     |         | 183   |     |  |  |  |  |  |
| T                | 0 240 | 0 260  |     | 610     | 6.60  |     |  |  |  |  |  |
| U                | 0 054 |        |     | 1 37    |       |     |  |  |  |  |  |
| V                | 0.200 |        |     | 5 08    |       |     |  |  |  |  |  |
| W                | 0 035 |        |     | 0.89    |       |     |  |  |  |  |  |
| Х                | 0.050 |        |     | 1 27    | ~ -   |     |  |  |  |  |  |
| Υ                | 0 060 |        |     | 1,52    |       |     |  |  |  |  |  |
| Z                | 0 090 |        |     | 2.29    |       |     |  |  |  |  |  |
| AA               | 0 600 |        |     | 15,24   |       |     |  |  |  |  |  |
| 88               |       | 1,120  | T   | ~ -     | 28.45 |     |  |  |  |  |  |
| CC               |       | 1.020  |     |         | 25.91 |     |  |  |  |  |  |


NOTE: With the cylindrical surfaces of anode terminal, screen grid terminal, control grid terminal, heater-cathode terminal, and heater terminal clean, smooth, and free from burns, the tube shall enter a gage which defines diameters which are concentric within 0.001 inch (0.03 mm), with diameters as follows:


| Radiator band                 | 1.316 ln. | 33.43 mm |
|-------------------------------|-----------|----------|
| Anode terminal                | 1.120     | 28.45    |
| Grid No. 2 (screen) terminal  | 1.020     | 25.91    |
| Grid No. 1 (control) terminal | 0.765     | 19.43    |
| Heater-cathode terminal       | 0.520     | 13.21    |
| Heater terminal               | 0.240     | 6.10     |
| Heater terminal               | 0.240     | 6.10     |
| Axial Pin                     | 0.072     | 1.83     |

NOTE: With the cylindrical surfaces of anode terminal, screen grid terminal, control grid terminal, heater-cathode terminal, and heater terminal clean, smooth, and free from burs, the tube shall enter a gage which defines diameters which are concentric within 0.001 inch (0.03 mm), with diameters as follows:

| Anode proper                  | 0.952 In. | 24.19 mm |
|-------------------------------|-----------|----------|
| Anode terminal                | 1,120     | 28.45    |
| Grid No. 2 (screen) terminal  | 1.020     | 25.91    |
| Grid No. 1 (control) terminal | 0.765     | 19.43    |
| Heater-cathode terminal       | 0.520     | 13.21    |
| Heater terminal               | 0.240     | 6.10     |
| Avial nin                     | 0.072     | 1 02     |

| DIMENSIONAL DATA |         |        |     |             |         |   |
|------------------|---------|--------|-----|-------------|---------|---|
|                  |         | INCHES |     | MILLIMETERS |         |   |
| DIM.             | MIN.    | MAX    | REF | MIN         | MIN MAX |   |
| 8                | 1805    | 1955   |     | 45.85       | 4966    |   |
| С                | 0 990   | 1.080  |     | 25.15       | 2743    | ] |
| D                | 0.895   | 0.905  |     | 2273        | 2299    | [ |
| É                | 0, 165  |        |     | 4.19        |         |   |
| F                | 0 3 4 0 | 0410   |     | 8 64        | 10.41   |   |
| G                | 0 140   |        |     | 3.56        |         |   |
| Н                | 0 150   | 0 200  |     | 381         | 5 08    |   |
| J                | 0 120   | - ~    |     | 3.05        | + -     |   |
| K                | 0.095   |        |     | 2.41        |         |   |
| L                | 0.100   |        | ]   | 2 5 4       |         |   |
| М                | 0       | 0.050  |     | 0           | 1,27    |   |
| N                | 1.085   |        |     | 27.56       |         |   |
| P                | 0.985   |        | ]   | 25.02       |         |   |
| Q                | 0 735   |        |     | 1867        |         |   |
| R                | 0 480   |        |     | 12 12       |         |   |
| S                |         | 0 072  |     |             | ∣ 83    |   |
| T                |         | 0,260  |     |             | 6.60    |   |
| U                | 0.054   |        |     | 1.37        |         |   |
| W                | 0 780   |        |     | 1 9.81      |         |   |
| Y                | 0.060   |        | ~ ~ | 52          |         |   |
| Z                | 0.090   |        |     | 2 29        |         |   |
| AA               |         | 1120   |     |             | 2845    |   |
| 88               |         | 1020   |     |             | 25.91   |   |
| CC               | 0 600   |        |     | 1524        |         |   |
| OD               | 0       |        |     | 0_          |         |   |









# TECHNICAL DATA

CONDUCTION-COOLED
RADIAL-BEAM
POWER TETRODE

Printed in U.S.A.

The 8560A is a ceramic/metal conduction-cooled, external-anode radial-beam tetrode intended for use as an rf amplifier or oscillator or in audio amplifier or modulator service.

The 8560A has electrical characteristics which are similar but not identical to the 7203/4CX250B.

Anode dissipation is limited only by heat-sink capability, and the tube is designed for operation at a heater voltage of 6.0 volts.

# GENERAL CHARACTERISTICS<sup>1</sup>

| GENERAL CHARACTERISTICS*                                                                                                                                                                                                                                  |                |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| ELECTRICAL                                                                                                                                                                                                                                                |                |          |
| Cathode: Oxide Coated, Unipotential                                                                                                                                                                                                                       |                |          |
| Heater: Voltage 6.0 ± 0.3 V                                                                                                                                                                                                                               | 1              | <b>.</b> |
| Current, at 6.0 volts 2.6 A                                                                                                                                                                                                                               |                |          |
| Cathode-Heater Potential, Maximum ±150 V                                                                                                                                                                                                                  |                |          |
| Amplification Factor (Average):                                                                                                                                                                                                                           |                |          |
| Grid-to-screen                                                                                                                                                                                                                                            | 5              |          |
| Direct Interelectrode Capacitances (Grounded Cathode) <sup>2</sup>                                                                                                                                                                                        |                |          |
| Cin                                                                                                                                                                                                                                                       | 16.5           | pF       |
| Cout                                                                                                                                                                                                                                                      | 4.6            | pF       |
| Cgp                                                                                                                                                                                                                                                       | 0.04           | pF       |
| Frequency of Maximum Rating:                                                                                                                                                                                                                              |                |          |
| CW                                                                                                                                                                                                                                                        | 500            | MHz      |
| <ol> <li>Characteristics and operating values are based on performance tests. These figures may chang the result of additional data or product refinement. EIMAC Division of Varian should be consulte information for final equipment design.</li> </ol> |                |          |
| <ol><li>Capacitance values are for a cold tube as measured in a special shielded fixture in accordance<br/>dustries Association Standard RS-191.</li></ol>                                                                                                | e with Electro | onic In- |
| MECHANICAL                                                                                                                                                                                                                                                |                |          |
| Maximum Overall Dimensions:                                                                                                                                                                                                                               |                |          |
| Length                                                                                                                                                                                                                                                    | .445 in; 62.   | .1 mm    |
| Diameter                                                                                                                                                                                                                                                  | .630 in; 41.   | 4 mm     |
| Net Weight                                                                                                                                                                                                                                                |                |          |
| Operating Position                                                                                                                                                                                                                                        |                | _        |
| Maximum Operating Temperature:                                                                                                                                                                                                                            |                | -        |
| Ceramic/Metal Seals and Anode Core                                                                                                                                                                                                                        | 2              | 250°C    |
| Cooling: Conduction Cooled                                                                                                                                                                                                                                |                |          |
| Recommended Beryllium Oxide thermal link                                                                                                                                                                                                                  | EIMAC SK       | -1920    |
| Recommended Socket EIMA                                                                                                                                                                                                                                   | C SK-660 S     | Series   |
| Base Special 9-Pin                                                                                                                                                                                                                                        | ı JEDEC B      | 8-236    |
|                                                                                                                                                                                                                                                           |                |          |

(Effective 7-15-71) © by Varian

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN (SSB)

Class AB<sub>1</sub>

### MAXIMUM RATINGS

| DC PLATE VOLTAGE         | 2000             | VOLTS  |
|--------------------------|------------------|--------|
| DC SCREEN VOLTAGE        | 400              | VOLTS  |
| DC GRID VOLTAGE          | <del>-</del> 250 | VOLTS  |
| DC PLATE CURRENT         | 0.25             | AMPERE |
| PLATE DISSIPATION See Co | OOLIN            | g note |
| SCREEN DISSIPATION       | 12               | WATTS  |
| GRID DISSIPATION         | 2                | WATTS  |

TYPICAL OPERATION (Frequencies to 175 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions

| Plate Voltage               | 1000        | 1500        | 2000        | Vdc      |
|-----------------------------|-------------|-------------|-------------|----------|
| Screen Voltage              | 350         | 350         | 350         | Vdc      |
| Grid Voltage 1              | <b>-</b> 55 | <b>-</b> 55 | <b>-</b> 55 | Vdc      |
| Zero-Signal Plate Current   | 100         | 100         | 100         | mAdc     |
| Single Tone Plate Current   | 250         | 250         | 250         | mAdc     |
| Two-Tone Plate Current      | 190         | 190         | 190         | mAdc     |
| Single-Tone Screen Current2 | 10          | 8           | 5           | mAdc     |
| Two-Tone Screen Current 2   | 2           | -1          | <b>-</b> 2  | mAdc     |
| Single-Tone Grid Current 2  | 0           | 0           | 0           | mAdc     |
| Peak rf Grid Voltage2       | 50          | 50          | 50          | V        |
| Plate Output Power          | 120         | 215         | 300         | W        |
| Resonant Load Impedance     | 2000        | 3000        | 4000        | $\Omega$ |

- 1. Adjust to specified zero-signal dc plate current.
- 2. Approximate value.

# RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, CARRIER CONDITIONS

Class AB<sub>1</sub>

#### MAXIMUM RATINGS

| DC PLATE VOLTAGE        | 2000         | VOLTS  |
|-------------------------|--------------|--------|
| DC SCREEN VOLTAGE       | 400          | VOLTS  |
| DC GRID VOLTAGE         | <b>-2</b> 50 | VOLTS  |
| DC PLATE CURRENT        | 0.25         | AMPERE |
| PLATE DISSIPATION See C | OOLIN        | G NOTE |
| SCREEN DISSIPATION      | 12           | WATTS  |
| GRID DISSIPATION        | 2            | WATTS  |

TYPICAL OPERATION (Frequencies to 175 MHz) Class  $AB_1$ , Grid Driven

| Plate Voltage             | 1000        | 1500        | 2000        | Vdc  |
|---------------------------|-------------|-------------|-------------|------|
| Screen Voltage            | 350         | 350         | 350         | Vdc  |
| Grid Voltage 1            | <b>-</b> 55 | <b>-</b> 55 | <b>-</b> 55 | Vdc  |
| Zero-Signal Plate Current | 100         | 100         | 100         | mAdc |
| Carrier Plate Current     | 150         | 150         | 150         | mAdc |
| Carrier Screen Current    | -3          | -4          | -4          | mAdc |
| Peak rf Grid Voltage 2    | 25          | 25          | 25          | v    |
| Plate Output Power        | 30          | 50          | 65          | W    |
|                           |             |             |             |      |

- 1. Adjust to specified zero-signal dc plate current
- 2. Approximate value.

# RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM Telephony (Key-Down Conditions)

### **MAXIMUM RATINGS**

| DC PLATE VOLTAGE        | 2000         | VOLTS   |
|-------------------------|--------------|---------|
| DC SCREEN VOLTAGE       | 300          | VOLTS   |
| DC GRID VOLTAGE         | <b>-2</b> 50 | VOLTS   |
| DC PLATE CURRENT        | 0.25         | AMPERE  |
| PLATE DISSIPATION See C | OOLIN        | IG NOTE |
| SCREEN DISSIPATION      | 12           | WATTS   |
| GRID DISSIPATION        | 2            | WATTS   |

### TYPICAL OPERATION(Frequencies to 175 MHz) | 500 MHz

| Plate Voltage 500 Screen Voltage                                           | 1000<br>250<br>-90<br>250<br>38<br>31<br>114 | 1500<br>250<br>-90<br>250<br>21<br>28<br>112 | 2000<br>250<br>-90<br>250<br>19<br>26<br>112 | -90<br>250<br>10 | Vdc<br>Vdc<br>mAdc<br>mAdc<br>mAdc |
|----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------|------------------------------------|
| Power 1 4.0 Plate Input Power 125 Plate Output Power 70 Heater Voltage 6.0 | 3.5<br>250<br>190<br>6.0                     | 3.2<br>375<br>280<br>6.0                     | 2.9<br>500<br>390<br>6.0                     | """              | W<br>W<br>W                        |

1. Approximate value.

COOLING NOTE: When using the SK-1920 BeO thermal link between the anode and heat sink, the maximum allowable thermal gradient from the hottest part of the anode to the heat sink is 1.9°C per watt of anode dissipation. Example: Maximum anode temperature = 250°C; maximum heat sink temperature for 200 watts of anode dissipation is then 250°C -  $\frac{200 \, \text{W}}{1.9$ °C/W

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

#### MAXIMUM RATINGS

| DC PLATE VOLTAGE         | 1500  | VOLTS   |
|--------------------------|-------|---------|
| DC SCREEN VOLTAGE        | 300   | VOLTS   |
| DC GRID VOLTAGE          |       | VOLTS   |
| DC PLATE CURRENT         | 0.20  | AMPERE  |
| PLATE DISSIPATION1 See C | OOLIN | IG NOTE |
| SCREEN DISSIPATION2      | 12    | WATTS   |
| GRID DISSIPATION2        | 2     | WATTS   |

- Corresponds to 250 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.

# TYPICAL OPERATION (Frequencies to 175 MHz)

| Plate Voltage            | 500  | 1000         | 1500 | Vdc  |
|--------------------------|------|--------------|------|------|
| Screen Voltage           | 250  | 250          | 250  | Vdc  |
| Grid Voltage             | -100 | <b>-1</b> 00 | -100 | Vdc  |
| Plate Current            | 200  | 200          | 200  | mAdc |
| Screen Current3          | 31   | <b>2</b> 2   | 20   | mAdc |
| Grid Current 3           | 15   | 14           | 14   | mAdc |
| Peak rf Grid Voltage     | 118  | 117          | 117  | V    |
| Calculated Driving Power | 1.8  | 1.7          | 1.7  | W    |
| Plate Input Power        | 100  | 200          | 300  | W    |
| Plate Output Power       | 60   | 145          | 235  | W    |
|                          |      |              |      |      |

3. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB , Grid Driven (Sinusoidal Wave)

MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   |     | . 2000 | VOLTS   |
|--------------------|-----|--------|---------|
| DC SCREEN VOLTAGE  |     | . 400  | VOLTS   |
| DC GRID VOLTAGE    |     | 250    | VOLTS   |
| DC PLATE CURRENT   |     | . 0.25 | AMPERE  |
| PLATE DISSIPATION  | See | COOLIN | IG NOTE |
| SCREEN DISSIPATION |     | . 12   | WATTS   |
| GRID DISSIPATION   |     | . 2    | WATTS   |
|                    |     |        |         |

- 1. Approximate value.
- 2. Per Tube.

#### TYPICAL OPERATION (Two Tubes)

| Plate Voltage               | 1000        | 1500        | 2000        | vac  |
|-----------------------------|-------------|-------------|-------------|------|
| Screen Voltage              | 350         | 350         | 350         | Vdc  |
| Grid Voltage 1/3            | <b>-</b> 55 | <b>-</b> 55 | <b>-</b> 55 | Vdc  |
| Zero-Signal Plate Current   | 200         | 200         | 200         | mAdc |
| Max Signal Plate Current    | 500         | 500         | 500         | mAdc |
| Max Signal Screen Current 1 | 20          | 16          | 10          | mAdc |
| Max Signal Grid Current1    | 0           | 0           | 0           | mAdc |
| Peak af Grid Voltage 2      | 50          | 50          | 50          | V    |
| Peak Driving Power          | 0           | 0           | 0           | w    |
| Plate Input Power           | 500         | 750         | 1000        | W    |
| Plate Output Power          | 240         | 430         | 600         | W    |
| Load Resistance             |             |             |             |      |
| (plate to plate)            | 3500        | 6200        | 9500        | Ω    |
|                             |             |             |             |      |

3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                | Min. | Max.    |
|--------------------------------------------------|------|---------|
| Heater Current, at 6.0 volts                     | 2.3  | 2,9 A   |
| Interelectrode Capacitances (grounded cathode) 1 |      |         |
| Cin                                              | 14.2 | 17.2 pF |
| Cout                                             |      |         |
| Cgp                                              |      |         |
| Cathode Warmup Time                              | 30   | sec     |

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with EIA Standard RS-191. (See APPLICATION NOTE on Capacitance)

MOUNTING & SOCKETING - The 8560A may be mounted in any position, but its mounting is normally controlled by the heat sink configuration and location. Where possible, the socket can be mounted on a bracket which in turn is mounted to the heat sink so that the one sink will act for removal of heat from the tube anode and also the tube base. The EIMAC SK-1920 beryllium oxide (BeO) thermal link is available for use between the tube anode and the heat sink. BeO is a ceramic material which exhibits high thermal conductance, similar to aluminum, and high electrical resistance and low loss typical of ceramics. Properly installed, it provides a low thermal resistance path allowing the anode heat to be transferred to the heat sink, while providing electrical isolation between the anode and the sink.

The EIMAC SK-660 series of sockets are designed for use in heat-sink applications. The SK-660 and SK-660A both use a high-alumina ceramic body, while the SK-661 and the SK-661A use a BeO body. The SK-661A includes a bracket which is adaptable to some heat-sink design applications.

VIBRATION & SHOCK - The 8560A is capable of satisfactorily withstanding ordinary shock and vibration, such as encountered in shipment and normal handling. The tube will function well in automobile and truck mobile installations and similar environments. However, when shock and vibration more severe than this are expected, it is suggested that other, more rugged, EIMAC tube types be considered.

COOLING - This tube is designed for use in a conduction-cooled system, where the anode is in direct intimate contact with a heat sink, or coupled to the heat sink by means of a BeO thermal link. The heat sink in turn can be cooled by natural (free) convection, forced-air convection, liquid cooling, or a combination of these methods. The design choice is determined by the tube application, but in all cases the cooling system must maintain the anode and the ceramic/metal seal temperatures below 250°C.

Intimacy of contact and pressure are two factors which will effect transfer of heat from the tube anode to the heat sink, whether direct or through a thermal link such as the EIMAC SK-1920. A good thermally conductive compound should be used in the interface between mating parts to reduce thermal resistance of the joints.

Examples of commercially available thermal joint compound are:

WAKEFIELD 120 - Wakefield Engineering Co., Wakefield, Mass. 01880.

DOW CORNING 340 - Dow Corning Corp., Midland, Mich. 48640

ASTRODYNE THERMAL BOND 312 - Astrodyne Inc., Burlington, Mass. 01803.

G.E. INSULGREASE G641 - G.E. Company, Cleveland, Ohio 44117.

The method of fastening the tube to the heat sink should provide reasonable compression to reduce interface thermal resistance. When it is desired to insulate the anode from the heat sink, the EIMAC SK-1920 thermal link is recommended, as it is the correct size and thickness to match the physical and electrical characteristics of the 8560A tube.

Socketing is accomplished with one of the units mentioned earlier, mounted so as to provide a path for heat from the base of the tube to a heat-sink surface. The designer is cautioned to allow for some lateral movement in the socket mount, and to make sure the anode (or anode/thermal link combination) is flat against the heat sink before the socket mounts are tightened, or heat transfer may be seriously affected.

In all cases, temperature of the tube anode and the ceramic/metal seals is the limiting factor, and the equipment designer is encouraged to use temperature-sensitive paint or other temperaturesensing devices in connection with any equipment design before the layout is finalized.

<code>HEATER</code> - The rated heater voltage for the 8560A is 6.0 volts and should be maintained as closely as practical. Short-time changes of  $\pm 10\%$  will not damage the tube, but variations in performance must be expected. The heater voltage must be maintained within  $\pm 5\%$  to minimize these variations and to obtain maximum tube life.

At frequencies above approximately 300 MHz, transit-time effects begin to influence the cathode temperature. The amount of driving power diverted to heating the cathode by back-bombardment will depend on frequency, plate current, and driving power. When the tube is driven to maximum input as a Class-C amplifier, the heater voltage should be reduced according to the following table:

| 6.00<br>5.75<br>5.50 |
|----------------------|
|                      |

CATHODE OPERATION - The oxide coated unipotential cathode must be protected against excessively high emission currents. The maximum rated dc input current is 200 mA for platemodulated operation and 250 mA for all other types of operation except pulse.

The cathode is internally connected to the four even-numbered base pins and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 30 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts regardless of polarity.

GRID OPERATION - The maximum rated dc grid bias voltage is -250 volts and the maximum grid dissipation rating is 2.0 watts. In ordinary audio and radio-frequency amplifiers the grid dissipation usually will not approach the maximum rating. At operating frequencies above the 100 MHz region, driving-power requirements for amplifiers increase noticeably. At 500 MHz as much as 20 watts of driving power may have to be supplied. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory 500 MHz operation of the tube in a stable amplifier is indicated by grid-current values below approximately 15 mA.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull circuits, to assure equal load sharing.

The maximum permissible grid-circuit resistance per tube is 100,000 ohms.

SCREEN OPERATION - The maximum rated power dissipation for the screen is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes, or an electron tube shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube series regulator can be used only when an adequate bleeder resistor is provided.

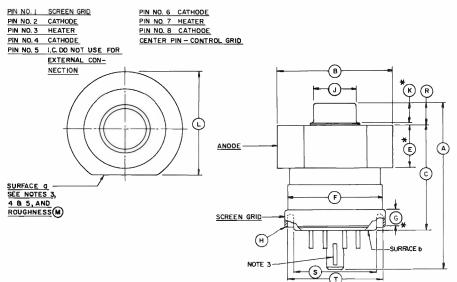
Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result in 100% modulation for plate-modulated rf amplifiers using the 8560A.

PLATE OPERATION - The maximum rated plate dissipation power is 250 watts. In plate-modulated applications the carrier plate dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.

Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event that one tube fails.

VHF OPERATION - The 8560A is suitable for use in the VHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.


DANGER-BERYLLIUM OXIDE CERAMICS (BeO) Do not alter, grind, lap, fire, chemically clean, or perform any other operation on the SK-1920 Beryllium Oxide thermal link used with the 8560A or any other equivalent section of BeO used with the 8560A. Normal use of Beryllium Oxide ceramics parts is not hazardous, but the user is cautioned that breathing small quantities of the dust or fumes from Beryllium Oxide can seriously injure or kill.

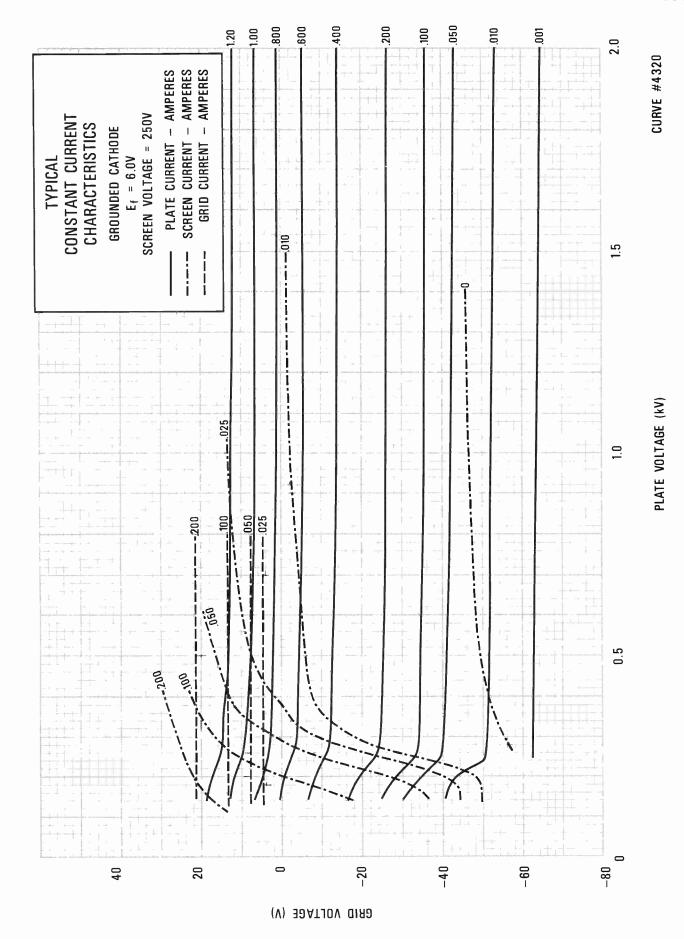
HIGH VOLTAGE - The 8560A operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLT-AGE CAN KILL.

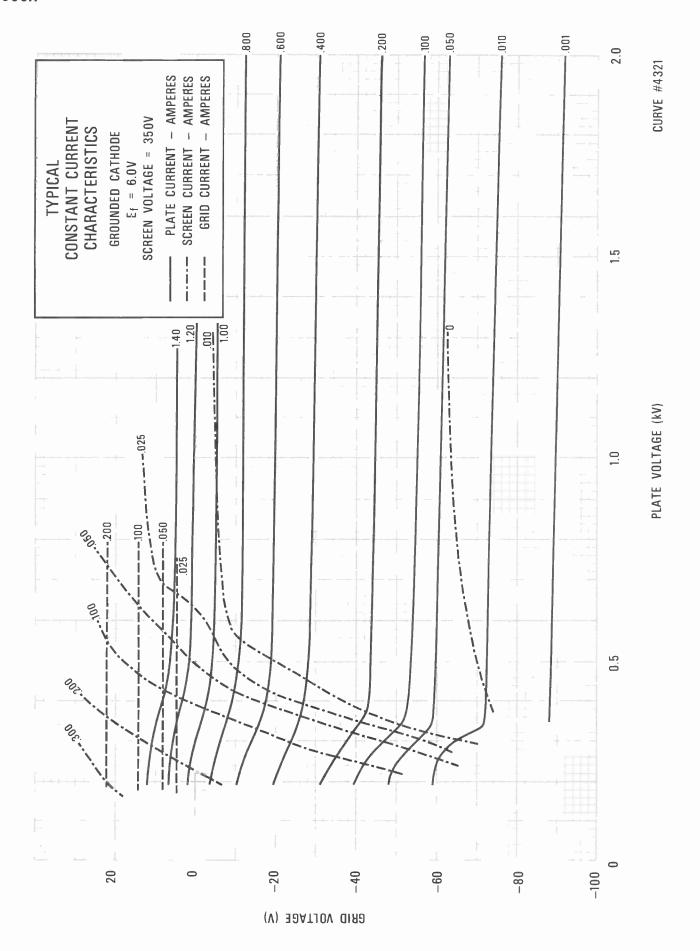
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS-If it is desired to operate these tubes under conditions widely different from those given here, write to Application Engineering Dept., EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.




|      |        | DIM    | ENSIONAL | DATA        |       |     |  |
|------|--------|--------|----------|-------------|-------|-----|--|
|      |        | INCHES |          | MILLIMETERS |       |     |  |
| DIM. | MIN.   | MAX.   | REF      | MIN         | MAX.  | REF |  |
| Α    | 2.305  | 2445   |          | 58 55       | 6210  |     |  |
| В    | 1.620  | 1.630  |          | 41.15       | 41.40 |     |  |
| С    | 1.530  | 1,590  |          | 38.86       | 40.39 |     |  |
| D    |        |        |          |             |       |     |  |
| Ε    | 0.660  | 0.740  |          | 16.76       | 18.80 |     |  |
| F    |        | 1.406  |          |             | 35.71 |     |  |
| G    | 0.187  |        |          | 4.75        |       |     |  |
|      | BASE:  | B8-236 |          |             |       |     |  |
| н    | (JEDEC | DESIGN | IATION)  |             |       |     |  |
| J    | 0.559  | 0.572  |          | 14.20       | 14.53 |     |  |
| K    | 0.240  |        |          | 610         |       |     |  |
| L    | 1.525  | 1.540  |          | 38.74       | 39.12 |     |  |
| М    |        | 32AA   |          |             | 32AA  |     |  |
| N    | 89°    | 91°    |          | 89°         | 91°   |     |  |
| Р    | 88°    | 92°    | T        | 88°         | 92°   |     |  |
| R    | 0.270  | 0.310  |          | 6.86        | 7.87  |     |  |
| S    |        | 1.194  |          |             | 30.33 |     |  |
| T    | 1.338  |        |          | 33.98       |       |     |  |


NOTES: . \* CONTACT SURFACE 2. REF, DIMS, ARE FOR INF. ONLY AND ARE NOT REQO. FOR INSP PURPOSES. 3. SUR. a TO BE PERP. TO

ON SAME SIDE.

WITHIN OOI & PERP. TO SUR. D WITHIN (N) LIMITS. 5. SUR, a TO BE FREE OF ANY CODING & LABELING. INDEX KEY LATERAL AXIS WITHIN (P) LIMITS AND

4. SUR G MUST BE FLAT







# TECHNICAL DATA

RADIAL-BEAM
POWER TETRODE

The 8876 is a ceramic/metal forced-air cooled, external-anode radial-beam tetrode with a maximum plate dissipation rating of 250 watts and a maximum input-power rating of 500 watts. The 8876 is designed for very long life and reliable performance in oscillator, amplifier, or modulator service. In most applications, it may be used as a direct replacement for the 7203/4CX250B, with only minor circuit retuning required.

# GENERAL CHARACTERISTICS<sup>1</sup>

# ELECTRICAL

Cathode: Oxide Coated, Uninotential

| Camode. Oxide Coaled, Onipotential                            |               | - | The Real Property lies |
|---------------------------------------------------------------|---------------|---|------------------------|
| Heater: Voltage                                               | $6.0 \pm 0.3$ | V | 100000                 |
| Current, at 6.0 volts                                         | 2.4           | A |                        |
| Cathode-Heater Potential, maximum                             | ±150          | V |                        |
| Amplification Factor (Average):                               |               |   |                        |
| Grid to Screen                                                | 5             |   |                        |
| Direct Interelectrode Capacitances (grounded cathode) 2       |               |   |                        |
| Cin                                                           |               |   | . 17.0 pF              |
| Cout                                                          |               |   | . 4.5 pF               |
| Cgp                                                           |               |   | . 0.04 pF              |
| Direct Interelectrode Capacitances (grounded grid and screen) | 2             |   |                        |
| Cin                                                           |               |   | . 13.6 pF              |
| Cout                                                          |               |   | . 4.5 pF               |
| Cpk                                                           |               |   |                        |
| Frequency of Maximum Rating:                                  |               |   | •                      |

Characteristics and operating values are based upon performance tests. These figures may change without notice
as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
this information for final equipment design.

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

### MECHANICAL

| 3.6     | 0 11     | T .    |         |
|---------|----------|--------|---------|
| Maximum | LIVATALL | 11tme  | neione. |
| manimum | Overall  | DIIIIC | motomo. |

| Length                         | 2.46 in; 62.5 mm |
|--------------------------------|------------------|
| Diameter                       | 1.64 in; 41.7 mm |
| Net Weight                     | 4 oz; 113 gm     |
| Operating Position             |                  |
| Maximum Operating Temperature: | v                |
| Ceramic/Metal Seals            | 250°C            |
| Anode Core                     |                  |

(Effective 6-15-71) © 1971 Varian

Printed in U.S.A.

500 MHz

| Recommended Socket                                                                                                                                                                                                                                                               |                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN (SSB) Class AB1  MAXIMUM RATINGS:  DC PLATE VOLTAGE 2000 VOLTS DC SCREEN VOLTAGE 400 VOLTS DC GRID VOLTAGE -250 VOLTS DC PLATE CURRENT 0.25 AMPERE PLATE DISSIPATION 250 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS | TYPICAL OPERATION (Frequencies to 175 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions  Plate Voltage            |
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, CARRIER CONDITIONS Class AB 1  MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                                                  | TYPICAL OPERATION (Frequencies to 175 MHz) Class AB1, Grid Driven  Plate Voltage                                                          |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                       | TYPICAL OPERATION (Frequencies to 175 MHz)  Plate Voltage 500 1000 1500 2000 2000 Vdc Screen Voltage 250 250 250 250 300 Vdc Grid Voltage |

# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

#### MAXIMUM RATINGS:

| DC PLATE VOLTAGE               | 1500 | VOLTS  |
|--------------------------------|------|--------|
| DC SCREEN VOLTAGE              | 300  | VOLTS  |
| DC GRID VOLTAGE                | -250 | VOLTS  |
| DC PLATE CURRENT               | 0.20 | AMPERE |
| PLATE DISSIPATION <sup>1</sup> | 165  | WATTS  |
| SCREEN DISSIPATION 2           | 12   | WATTS  |
| GRID DISSIPATION 2             | 2    | WATTS  |

### TYPICAL OPERATION (Frequencies to 175 MHz)

| Plate Voltage             | 500  | 1000 | 1500 | Vdc  |
|---------------------------|------|------|------|------|
| Screen Voltage            | 250  | 250  | 250  | Vdc  |
| Grid Voltage              | -100 | -100 | -100 | Vdc  |
| Plate Current             | 200  | 200  | 200  | mAdc |
| Screen Current 3          | 31   | 22   | 20   | mAdc |
| Grid Current <sup>3</sup> | 15   | 14   | 14   | mAdc |
| Peak rf Grid Voltage 3    | 118  | 117  | 117  | V    |
| Calculated Driving Power  | 1.8  | 1.7  | 1.7  | W    |
| Plate Input Power         | 100  | 200  | 235  | W    |

- 1. Corresponds to 250 watts at 100% sine-wave modulation.
- 2. Average, with or without modulation.
- 3. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB , Grid Driven (Sinusoidal Wave)

MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | 2000 | VOLTS  |
|--------------------|------|--------|
| DC SCREEN VOLTAGE  | 400  | VOLTS  |
| DC GRID VOLTAGE    | -250 | VOLTS  |
| DC PLATE CURRENT   | 0.25 | AMPERE |
| PLATE DISSIPATION  | 250  | WATTS  |
| SCREEN DISSIPATION | 12   | WATTS  |
| GRID DISSIPATION   | 2    | WATTS  |

1. Approximate value

### TYPICAL OPERATION (Two Tubes)

| Plate Voltage               | 1000 | 1500 | 2000  | Vdc      |
|-----------------------------|------|------|-------|----------|
| Screen Voltage              | 350  | 350  | 350   | Vdc      |
| Grid Voltage 1/3            | -55  | -55  | -55   | Vdc      |
| Zero-Signal Plate Current   | 200  | 200  | 200   | mAdc     |
| Max Signal Plate Current    | 500  | 500  | 500   | mAdc     |
| Max Signal Screen Current 1 | 20   | 16   | 10    | mAdc     |
| Max Signal Grid Current 1   | 0    | 0    | 0     | mAdc     |
| Peak af Grid Voltage 2      | 50   | 50   | 50    | V        |
| Peak Driving Power          | 0    | 0    | 0     | W        |
| Plate Input Power           | 500  | 750  | 1 000 | W        |
| Plate Output Power          | 240  | 430  | 600   | W        |
| Load Resistance             |      |      |       |          |
| (plate to plate)            | 3500 | 6200 | 9500  | $\Omega$ |
| 0 0                         |      |      |       |          |

- 2. Per tube.
- 3. Adjust to give stated zero-signal plate current.

B/C:--

Morr

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

# RANGE VALUES FOR EQUIPMENT DESIGN

|                                                                        | IVI (III. | wa.    | <u>X.</u> |
|------------------------------------------------------------------------|-----------|--------|-----------|
| Heater: Current at 6.0 volts                                           | 2.2       | 2.7    | Α         |
| Cathode Warmup Time                                                    | 60        |        | sec.      |
| Interelectrode Capacitances <sup>1</sup> (grounded cathode connection) |           |        |           |
| Cin                                                                    | 15.0      | - 18.0 | pF        |
| Cout                                                                   | 4.0       | 5.0    | pF        |
| Cgp                                                                    |           | - 0.06 | pF        |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# **APPLICATION**

### MECHANICAL

MOUNTING - The 8876 may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen capacitors and may be obtained with either grounded or ungrounded cathode terminals.

COOLING - Sufficient forced-air cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum values. Air requirements to maintain anode core temperatures at 200°C with an inlet air temperature of 50°C are tabulated below. These requirements apply when a socket of the EIMAC SK-600 series and an EIMAC SK-606 chimney are used with air flow in the base to anode direction.

| S           | EA LEVEL                                  | 10,000 FEET |                          |            |          |          |  |
|-------------|-------------------------------------------|-------------|--------------------------|------------|----------|----------|--|
| Plate       | Plate Air Flow Dissipa- (CFM) tion(watts) |             | late Air Flow Pressure A |            | Air Flow | Pressure |  |
| Dissipa-    |                                           |             | (CFM)                    | Drop(In.of |          |          |  |
| tion(watts) |                                           |             |                          | water)     |          |          |  |
| 200         | 5.0                                       | 0.52        | 7.3                      | 0.76       |          |          |  |
| 250         | 250 6.4                                   |             | 9.3                      | 1.20       |          |          |  |
|             |                                           |             |                          |            |          |          |  |

The blower selected in a given application must be capable of supplying the desired airflow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters. The blower must be designed to deliver the air at the desired altitude.

At 500 MHz or below, base cooling air requirements are satisfied automatically when the tube is operated in an EIMAC Air-System Socket and the recommended air flow rates are used. Experience has shown that if reliable long life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

VIBRATION - This tube is designed to provide reliable service under ordinary shock and vibration conditions, such as encountered in mobile installations. However, when severe shock, or high-level and high-frequency vibration are expected, it is suggested that the EIMAC 4CX300A or 4CX250R be employed.

### ELECTRICAL

<code>HEATER</code> - The rated heater voltage for the 8876 is 6.0 volts and the voltage must be maintained within  $\pm 5\%$  to obtain good tube life and stable performance. Regulation to a tolerance better than  $\pm 5\%$  normally will be beneficial as regards life expectancy.

At frequencies above approximately 300 MHz transit-time effects begin to influence the cathode temperature. The amount of driving power diverted to heating the cathode by back-bombardment will depend upon frequency, plate current, and driving power. When the tube is driven to maximum input as a class-C amplifier, the heater voltage should be reduced according to the table below;

| 300 MHz or lower | 6.00 volts |
|------------------|------------|
| 301 to 400 MHz   | 5.85 volts |
| 401 to 500 MHz   | 5.70 volts |

CATHODE OPERATION - The oxide coated unipotential cathode must be protected against excessively high emission currents. The maximum rated dc input current is 200 mA for platemodulated operation and 250 mA for all other types of operation except pulse.

The cathode is internally connected to the four even-numbered base pins and all four of the corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep the cathode leads short and direct and to use conductors with large areas to minimize the inductive reactances in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 60 seconds before other operating voltages are applied. If faster warmup is required, an over-voltage of 8.0 volts may be applied to the heater and held for 30 seconds, at which time the voltage must be reduced to the rated value. Full operating cathode temperature is reached in 30 seconds with this technique. From a cold start, it is imperative that the over-voltage be held not over 30 seconds, and if the tube has not completely cooled since previous use, a shorter period of over-voltage must be used.

Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts regardless of polarity.

GRID OPERATION - The maximum rated dc grid bias voltage is -250 volts and the maximum grid dissipation rating is 2.0 watts. In ordinary audio and radio-frequency amplifiers the grid dissipation usually will not approach the maximum rating. At operating frequencies above the 100 MHz region, driving power requirements for amplifiers increase noticeably. At 500 MHz as much as 20 watts of driving power may have to be supplied. However, most of the driving power is absorbed in circuit losses other than grid dissipation, so that grid dissipation is increased only slightly. Satisfactory 500 MHz operation of the tube in a stable amplifier is indicated by grid-current values below approximately 15 mA.

The grid voltage required by different tubes may vary between limits approximately 20% above and below the center value, and means should be provided in the equipment to accommodate such variation. It is especially important that variations between individual tubes be compensated when tubes are operated in parallel or push-pull circuits, to assure equal load sharing.

The maximum permissible grid-circuit resistance per tube is 100,000 ohms.

SCREEN OPERATION - The maximum rated power dissipation for the screen is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative.

In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

When signal voltages appear between screen and cathode, as in the case of screen-modulated amplifiers or cathode-driven tetrode amplifiers, the peak screen-to-cathode voltage is the sum of the dc screen voltage and the peak ac or rf signal voltage applied to screen or cathode.

Protection for the screen should be provided by an over-current relay and by interlocking the screen supply so that plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliammeter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor, gaseous voltage regulator tubes, or an electron

tube *shunt* regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. An electron tube *series* regulator can be used only when an adequate bleeder resistor is provided.

Self-modulation of the screen in plate-modulated tetrode amplifiers using these tubes may not be satisfactory because of the screen-voltage screen-current characteristics. Screen modulation from a tertiary winding on the modulation transformer or by means of a small separate modulator tube will usually be more satisfactory. Screen-voltage modulation factors between 0.75 and 1.0 will result 100% modulation for plate-modulated rf amplifiers using the 8876.

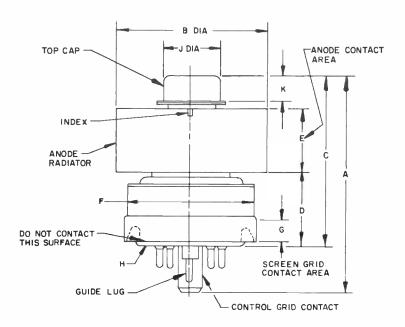
PLATE OPERATION - The maximum rated plate dissipation power is 250 watts. In plate-modulated applications the carrier plate dissipation power must be limited to 165 watts to avoid exceeding the plate dissipation rating with 100% sine wave modulation. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

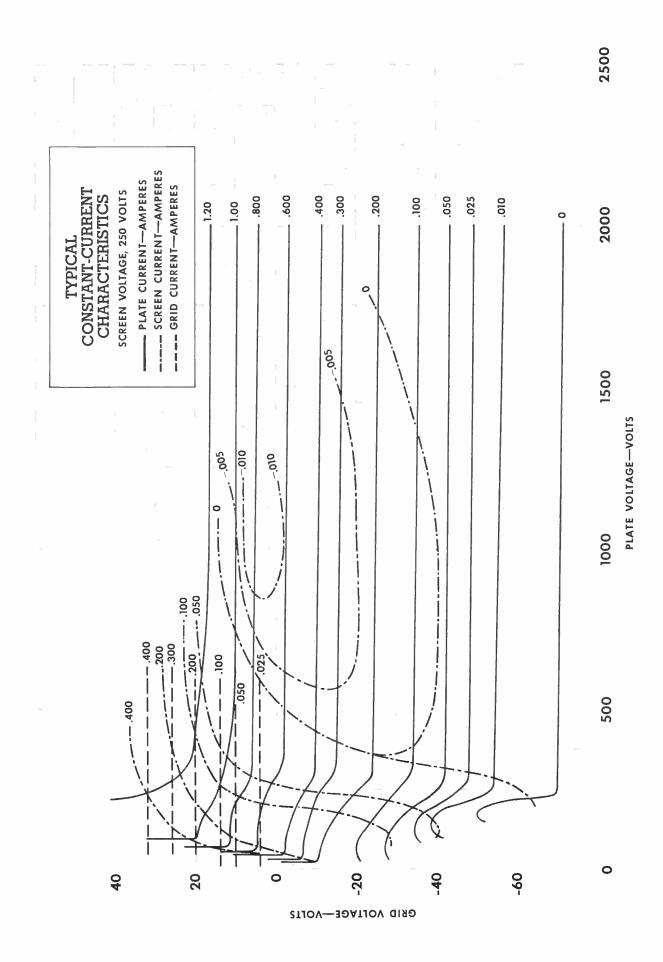
MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide individual metering and individual adjustment of bias or screen voltage to equalize the inputs.

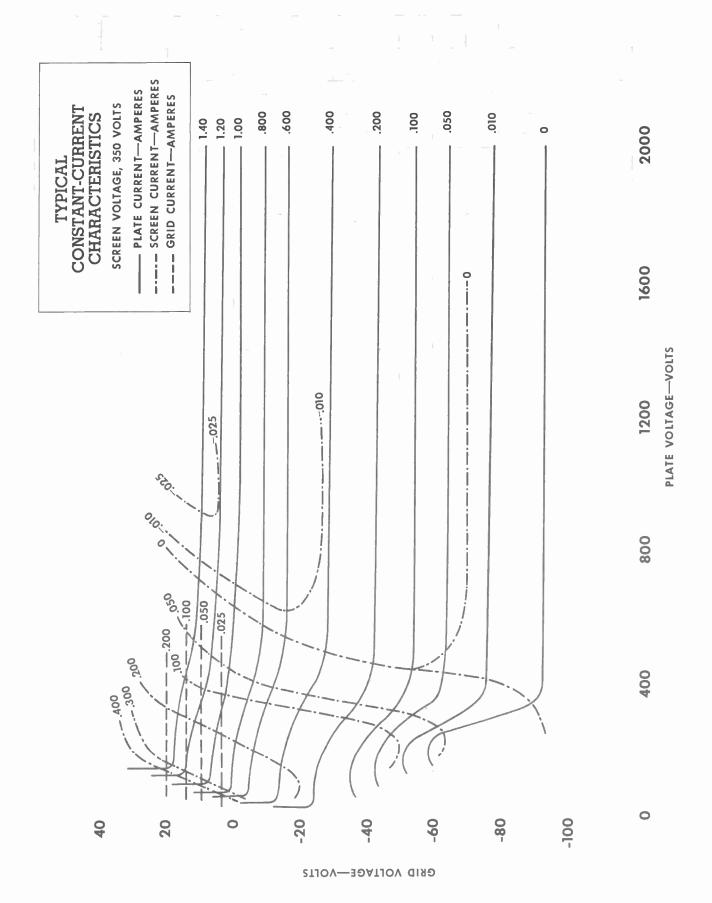
Where overload protection is provided, it should be capable of protecting the surviving tube (s) in the event that one tube fails.

VHF OPERATION - The 8876 is suitable for use in the VHF region. Such operation should be conducted with heavy plate loading, minimum bias, and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

HIGH VOLTAGE - Normal operating voltages used with the 8876 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.


The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.

| PIN D      | ESIGNATION                               |
|------------|------------------------------------------|
| PIN NO. I  | SCREEN GRID                              |
| PIN NO. 2  | CATHODE                                  |
| PIN NO.3   | HEATER                                   |
| PIN NO.4   | CATHODE                                  |
| PIN NO.5   | I.C. DO NOT USE FOR EXTERNAL CONNECTION. |
| PIN NO.6   | CATHODE                                  |
| PIN NO.7   | HEATER                                   |
| PIN NO.8   | CATHODE                                  |
| CENTER PIN | I-CONTROL GRID                           |

| DIMENSIONAL DATA |       |       |             |       |  |  |  |
|------------------|-------|-------|-------------|-------|--|--|--|
| DIM              | INC   | HES   | MILLIMETERS |       |  |  |  |
| DIIAI            | MIN   | MAX   | MIN.        | MAX.  |  |  |  |
| Α                | 2.342 | 2.464 | 59.03       | 62.59 |  |  |  |
| В                | 1.610 | 1.640 | 40.89       | 41.66 |  |  |  |
| С                | 1810  | 1.910 | 45.97       | 48.51 |  |  |  |
| D                | 0.750 | 0.810 | 19.05       | 20.57 |  |  |  |
| E                | 0.710 | 0.790 | 18.03       | 20.07 |  |  |  |
| F                |       | 1.406 |             | 35.71 |  |  |  |
| G                | 0.187 |       | 4.75        |       |  |  |  |
| BASE B8-236      |       |       |             |       |  |  |  |
| Н                | }     |       |             |       |  |  |  |
| J                | 0.559 | 0.573 | 14.20       | 14.55 |  |  |  |
| K                | 0.240 |       | 6.10        |       |  |  |  |











RADIAL BEAM POWER TETRODE

The EIMAC 8930 is a compact, high-perveance tetrode with a maximum plate dissipation of 350 watts. It is electrically identical to the EIMAC 7589W/4CX250R but the larger anode radiator assembly allows higher dissipation with low air flow and pressure drop characteristics.

The tube has rugged internal construction features for reliable operation under heavy shock or vibration conditions.



# GENERAL CHARACTERISTICS<sup>1</sup>

| EI | $\sim$ 1 | rbi |     |   |
|----|----------|-----|-----|---|
|    | <br>v I  | K   | ICA | ᄂ |

| Cathode: Oxide-coated, Unipotential                                                                                                                                                                         |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Voltage 6.0 $\pm$ 0.3 V                                                                                                                                                                                     |                                        |
| Current, at 6.0 volts                                                                                                                                                                                       |                                        |
| Frequency of Maximum Rating                                                                                                                                                                                 | 500 MHz                                |
| Amplification Factor (Average):                                                                                                                                                                             |                                        |
| Grid to Screen                                                                                                                                                                                              | 5                                      |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup>                                                                                                                                          |                                        |
| Cin                                                                                                                                                                                                         | 17.5 pF                                |
| Cout                                                                                                                                                                                                        | 4.9 pF                                 |
| Cgp                                                                                                                                                                                                         | 0.04 pF                                |
| 1. Characteristics and operating values are based on performance tests. These figures may change verified the result of additional data or product refinement. EIMAC Division of Varian should be consulted | vithout notice as<br>before using this |

- information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

# MECHANICAL

| Base Special 9-pin, JEDEC B8-236                  |
|---------------------------------------------------|
| Recommended Air-System Socket EIMAC SK-600 Series |
| Recommended Air-System Chimney                    |
| Maximum Overall Dimensions:                       |
| Length                                            |
| Diameter 2.08 in; 52.83 mm                        |
| Operating Position                                |
| Cooling Forced Air                                |
| Net Weight (Approximate)                          |
| Maximum Operating Temperature:                    |
| Anode Core & Ceramic/Metal Seals                  |

(Effective 12-1-73) © by Varian

Printed in U.S.A.



| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB (SSB)                                                                                                                                                                                                                                                                                                      | TYPICAL OPERATION (Frequencies to 30 MHz) Class AB <sub>1</sub> , Grid Driven, Peak Envelope or Modulation                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                                                                                                                                                         | Crest Conditions                                                                                                                                                                                      |
| DC PLATE VOLTAGE . 2400 VOLTS DC SCREEN VOLTAGE . 500 VOLTS DC PLATE CURRENT . 0.25 AMPERE PLATE DISSIPATION . 350 WATTS SCREEN DISSIPATION . 12 WATTS GRID DISSIPATION . 2 WATTS                                                                                                                                                                                | Plate Voltage       2000 Vdc         Screen Voltage       350 Vdc         Grid Voltage 1       -63 Vdc         Zero-Signal Plate Current       90 mAdc         One-Tone Plate Current2       290 mAdc |
| <ol> <li>Approximate; adjust for specified zero-signal plate current.</li> <li>Approximate; should be held above Absolute Maximum rating of 250 mAdc only for brief periods of tuning.</li> <li>Approximate; rated screen dissipation should not be exceeded.</li> <li>Approximate value.</li> <li>The Intermodulation Distortion Products are refer-</li> </ol> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |
| enced against one tone of a two equal tone signal.                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, CARRIER CONDITIONS Class AB                                                                                                                                                                                                                                                                                        | TYPICAL OPERATION (Measured data at 400 MHz)<br>Class AB <sub>1</sub> , Grid Driven                                                                                                                   |
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                       | Plate Voltage                                                                                                                                                                                         |
| AUDIO FREQUENCY POWER AMPLIFIER OR<br>MODULATOR Class AB, Grid Driven (Sinusoidal Wave)                                                                                                                                                                                                                                                                          | TYPICAL OPERATION (Two Tubes) Class AB1                                                                                                                                                               |
| ABSOLUTE MAXIMUM RATINGS (Per Tube)  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  |
| ABSOLUTE MAXIMUM RATINGS FO                                                                                                                                                                                                                                                                                                                                      | OR OTHER TYPES OF OPERATION                                                                                                                                                                           |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM                                                                                                                                                                                                                                                                                           | PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER, GRID DRIVEN Class C Telephony (Carrier Conditions)                                                                                                   |
| DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                                                                 | DC PLATE VOLTAGE 1800 VOLTS DC SCREEN VOLTAGE 300 VOLTS DC PLATE CURRENT 0.20 AMPERE PLATE DISSIPATION 280 WATTS SCREEN DISSIPATION 12 WATTS GRID DISSIPATION 2 WATTS                                 |

NOTE: TYPICAL OPERATION data is obtained from direct measurement. Adjustment of the rf grid voltage to obtain the specified bias, screen, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in screen current, which is incidental and which will vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct screen grid voltage in the presence of the variations in current.

| RANGE VALUES FOR EQUIPMENT DESIGN                    | Min. | Max.    |
|------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                         | 2.3  | 2.9 A   |
| Interelectrode Capacitances¹(grounded cathode):  Cin | 16.0 | 18.5 pF |
| Cout                                                 | 4.2  | 5.2 pF  |
| Cgp                                                  |      | 0.06 pF |

<sup>1.</sup> In a shielded fixture (see INTERELECTRODE CAPACITANCE)

# **APPLICATION**

### MECHANICAL

MOUNTING - The 8930 may be operated in any position. An EIMAC Air-System Socket, SK-600 series, or a socket having equivalent characteristics, is required. Sockets are available with or without built-in screen bypass capacitors and may be obtained with either grounded or ungrounded cathode terminals. The SK-646 Air Chimney is also available.

When environmental stress (such as shock and/ or vibration) is anticipated, special attention should be given to securing the tube, to prevent relative motion between the tube and socket during stress, as such motion could effect both the electrical and mechanical performance.

COOLING - Sufficient cooling must be provided for the anode, base seals, and body seals to maintain operating temperatures below the rated maximum value. Air requirements to maintain seal temperatures at 225°C in 50°C ambient air are shown. These values apply when the EIMAC SK-600 or SK-610 socket is used with the SK-646 chimney, with air flowing in the base-to-anode direction.

|                        | Minimum Cooling Air Flow Requirements |                                                |                    |                                               |  |
|------------------------|---------------------------------------|------------------------------------------------|--------------------|-----------------------------------------------|--|
| Plate                  | Sea L                                 | ea Level 10,000 Fee                            |                    | Feet                                          |  |
| Dissipation<br>(watts) | Air Flow<br>(cfm)                     | Approx.<br>Press.drop,<br>In. H <sub>2</sub> O | Air Flow<br>(cfm)  | Approx.<br>Press.drop<br>In. H <sub>2</sub> O |  |
| 250<br>300<br>350      | 4.5<br>5.8<br>7.0                     | 0.35<br>0.56<br>0.85                           | 6.5<br>8.5<br>10.2 | 0.51<br>0.82<br>1.24                          |  |

Experience has shown that if reliable long-life operation is to be obtained, the cooling air flow must be maintained during standby periods when only the heater voltage is applied to the tube. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt, which may interfere with effective cooling.

The blower selected in any given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown, plus any drop encountered in ducts and filters, and the blower must be designed to deliver the air at the desired altitude.

It should be borne in mind that operating temperature is the sole criterion of cooling effectiveness. One method of measuring the surface temperature is by the use of a temperature-sensitive lacquer or paint. When these materials are used, thin applications must be used to avoid interference with the transfer of heat from the tube to the air stream, which would cause inaccurate indications.

SHOCK AND VIBRATION - The 8930 is recommended for applications where environmental stress is anticipated and reliable operation must be maintained under these circumstances. The tube structure is routinely tested at a vibration level of 10 G, over the frequency range of 28 to 2000 Hz, with full operating voltages applied, and also tested under 90 G long-duration (11 milliseconds) shock conditions, also with voltages



applied. When shock or vibration stressing is expected, it is extremely important that relative motion between socket and tube be prevented or restricted by clamping the tube into place.

#### **ELECTRICAL**

**HEATER** - The heater voltage for the 8930 is 6.0 volts and should be maintained within  $\pm 5\%$  of rated value to minimize variations in performance and maximum life.

Above approximately 300 MHz some transit-time heating of the cathode will occur, and heater voltage should be lowered. For operation in the 300 to 400 MHz range, heater voltage should be 5.75 volts; in the 400 to 500 MHz range, 5.5 volts. Under no circumstances should heater voltage be allowed lower than 5.4 volts.

CATHODE OPERATION - The cathode is internally connected to the four even-numbered base pins, and all four corresponding socket terminals should be used to make connection to the external circuits. At radio frequencies it is important to keep cathode leads short and direct and to use conductors with large areas to minimize inductive reactance in series with the cathode leads.

It is recommended that rated heater voltage be applied for a minimum of 30 seconds before other operating voltages are applied. Where the circuit design requires the cathode and heater to be operated at different potentials, the rated maximum heater-to-cathode voltage is 150 volts, regardless of polarity.

STANDBY OPERATION - When equipment is designed for very low-duty operation, where standby periods of many hours or even days at one time are anticipated, it is good engineering practice to include circuitry for reduction of the heater voltage of an oxide-cathode tube during the standby periods. This will greatly minimize the release of sublimation products within the tube. A reduction in heater voltage of 10% from the nominal value is recommended during such long standby periods, with simultaneous switching to normal voltage when the equipment is switched from STANDBY to OPERATE. A reduction in heater voltage of more than 10% is possible if operation is not attempted for several seconds after switching from the STANDBY to the OPERATE mode.

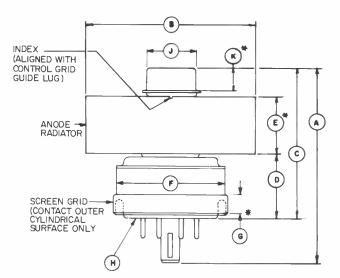
CONTROL GRID - The grid is rated for a maximum dissipation of 2 watts. The maximum dc bias voltage rating is -250 volts.

SCREEN-GRID OPERATION - The maximum rated power dissipation for the screen grid of the 8930 is 12 watts, and the screen input power should be kept below that level. The product of the peak screen voltage and the indicated dc screen current approximates the screen input power except when the screen current indication is near zero or negative. In the usual tetrode amplifier, where no signal voltage appears between cathode and screen, the peak screen voltage is equal to the dc screen voltage.

If tuning of a linear amplifier circuit is to be done under single-tone conditions, extra care should be exercised to be sure the screen dissipation rating is not exceeded, as this is often the limiting factor during this type of operation.

Protection for the screen can be provided by an over-current relay and by interlocking the screen supply so the plate voltage must be applied before screen voltage can be applied.

The screen current may reverse under certain conditions and produce negative current indications on the screen milliameter. This is a normal characteristic of most tetrodes. The screen power supply should be designed with this characteristic in mind, so that the correct operating voltage will be maintained on the screen under all conditions. A current path from the screen to cathode must be provided by a bleeder resistor or shunt regulator connected between screen and cathode and arranged to pass approximately 15 milliamperes per connected screen. A series regulator circuit can be used only when an adequate bleeder resistor is provided.


PLATE OPERATION - The maximum rated plate-dissipation power for the 8930 is 350 watts. The maximum dissipation rating may be exceeded for brief periods during circuit adjustment without damage to the tube.

At frequencies up to approximately 30 Megahertz the top cap on the anode cooler may be used for a plate terminal. At higher frequencies a circular clamp or spring-finger collet encircling the outer surface of the anode cooler should be used.

MULTIPLE OPERATION - Tubes operating in parallel or push-pull must share the load equally. It is good engineering practice to provide for individual metering and individual adjustment of the bias or screen voltage to equalize inputs. Where overload protection is provided, it should be capable of protecting the surviving tube(s) in the event one tube should fail.

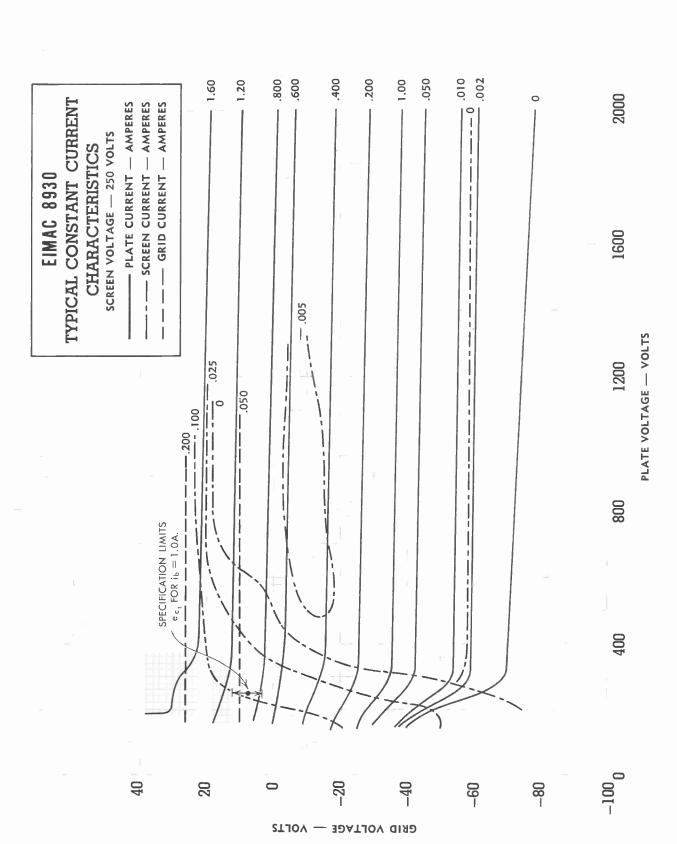
UHF OPERATION - The 8930 is useful in the UHF region. Operation at these frequencies should be conducted with heavy plate loading and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

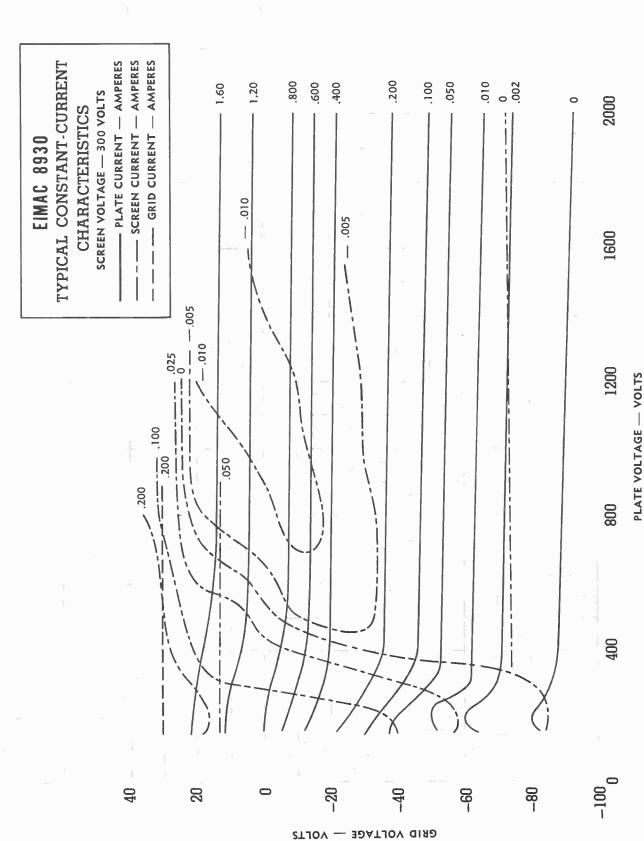
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.



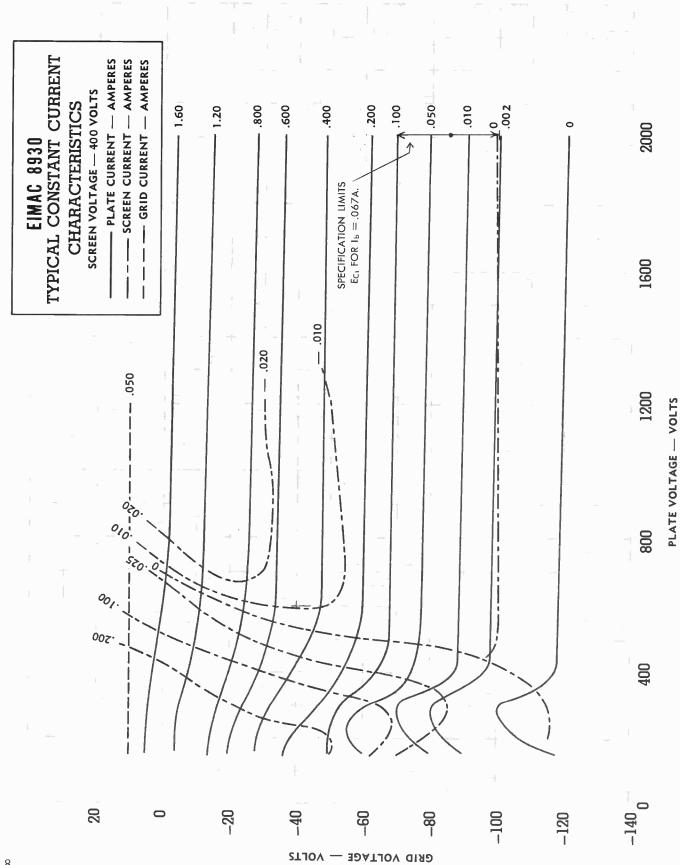
The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - The 8930 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLT-AGE CAN KILL.


RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.

| DIMENSIONAL DATA    |                                                        |                                                                                                                |       |              |       |  |  |
|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|--------------|-------|--|--|
| INCHES              |                                                        |                                                                                                                | MIL   | S            |       |  |  |
| MIN.                | MAX.                                                   | REF.                                                                                                           | MIN.  | MAX.         | REF.  |  |  |
| 2.324               | 2.464                                                  |                                                                                                                | 59.03 | 62.58        |       |  |  |
| 2.050               | 2.080                                                  |                                                                                                                | 52.07 | 52.83        |       |  |  |
| 1.810               | 1.910                                                  |                                                                                                                | 45.97 | 48.51        |       |  |  |
| 0.750               | 0.810                                                  |                                                                                                                | 19.05 | 20.57        |       |  |  |
| 0.710               | 0.790                                                  |                                                                                                                | 18.03 | 20.07        |       |  |  |
|                     | 1.406                                                  |                                                                                                                |       | 35,71        |       |  |  |
| 0.187               |                                                        |                                                                                                                | 4.75  |              |       |  |  |
|                     | BASE: B                                                | 8-236                                                                                                          |       |              |       |  |  |
| (JEDEC DESIGNATION) |                                                        |                                                                                                                |       |              |       |  |  |
| 0.559               | 0.573                                                  |                                                                                                                | 14.20 | 14.55        |       |  |  |
| 0.240               |                                                        |                                                                                                                | 6.10  |              |       |  |  |
|                     |                                                        |                                                                                                                |       |              |       |  |  |
|                     | 2.324<br>2.050<br>1.8IO<br>0.750<br>0.7IO<br><br>0.187 | MIN. MAX. 2.324 2.464 2.050 2.080 1.810 1.910 0.750 0.810 0.710 0.790 - 1.406 0.187 BASE: B (JEDEC 0.559 0.573 | NCHES | NCHES   MIN. | NCHES |  |  |


(本) CONTACT SURFACE











# Eimac

#### TECHNICAL DATA

VOLTAGE REGULATOR
OR SWITCH TUBE
POWER TETRODE

The EIMAC 8954 is designed for switch-tube (or modulator) and voltage regulator service, with anode current up to 8 amperes with short pulses (to 2 microseconds) and derated values of anode current at longer pulse lengths.

The tube has an oxide cathode and all electrical connections are made to solder tabs which are integral to the tube elements.

The 8954 is supplied bare-anode and is intended to be cooled by heat sink, or liquid immersion, or a combination, and is nominally rated for 600 watts of anode dissipation.

The tube is rated to operate at 5.5~kVdc in air, at sea level, or 7.5~kVdc in an insulating oil environment. The tube is designed to withstand brief fault conditions which may raise the instantaneous anode voltage to 12~kv.



#### GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL

| Cathode: Oxide Coated, Unipotential                               |      |      |
|-------------------------------------------------------------------|------|------|
| Heater                                                            | 6.0  | V    |
| Current                                                           | 5.6  | Α    |
| Cathode Heating Time (Minimum)                                    | 2.0  | Min. |
| Direct Interelectrode Capacitance (Grounded Cathode) <sup>2</sup> |      |      |
| Cin                                                               | 50   | pF   |
| Cout                                                              | 6.2  | pF   |
| Cgp ,                                                             | 0.14 | pF   |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Base Special, With Solder-Tab Termi                              | inals |
|------------------------------------------------------------------|-------|
| Operating Position                                               | Any   |
| Maximum Operating Temperatures: Anode Core & Ceramic/Metal Seals | 50°C  |
| Cooling Heat Sink/Liquid Immer                                   | sion  |

(Effective 6-1-74) © 1974 by Varian

Printed in U.S.A.



#### Maximum Overall Dimensions:

| RANGE VALUES FOR FOUR MENT DESIGN |                   |
|-----------------------------------|-------------------|
| Net Weight                        | 6.0 Oz; 170 gms   |
| Diameter                          | 1.77 In; 44.96 mm |
| Length                            | 2.52 In; 64.01 mm |

|                                                          | _Min. | Max.    |
|----------------------------------------------------------|-------|---------|
| Heater: Current at 6.0 Volts                             | 5.0   | 6.3 A   |
| Cathode Warmup Time                                      | 120   | Sec     |
| Interelectrode Capacitances (grounded cathode circuit) 1 |       |         |
| Cin                                                      | 40.0  | 60.0 pF |
| Cout                                                     | 5.2   | 7.2 pF  |
| C gp                                                     |       | 0.15 pF |

<sup>1.</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### ABSOLUTE MAXIMUM RATINGS:

|                   | <u>In Air</u> | <u>In Oil</u> |           |
|-------------------|---------------|---------------|-----------|
| HEATER VOLTAGE    | 6.0±5%        | 6.0±5%        | VOLTS     |
| DC PLATE VOLTAGE  | 5.5           | 7.5           | KILOVOLTS |
| PEAK POSITIVE     |               |               |           |
| PLATE VOLTAGE     | 12            | 12            | KILOVOLTS |
| DC SCREEN VOLTAGE | 800           | 800           | VOLTS     |
| DC GRID VOLTAGE   | -200          | -200          | VOLTS     |
|                   |               |               |           |

|                                 | In Air | In C  | Dil       |
|---------------------------------|--------|-------|-----------|
| PEAK PLATE CURRENT <sup>1</sup> | 8.0    | 8.0   | AMPERES   |
| PULSE LENGTH AND DUTY 1         | See D  | erati | ing Chart |
| PLATE DISSIPATION 2             | 600    | 600   | WATTS     |
| SCREEN DISSIPATION              | 15     | 15    | WATTS     |
| GRID DISSIPATION                | 4      | 4     | WATTS     |

- 1. Pulse length, peak current, and duty are inter-related. See DERATING CHART.
- 2. 600 W nominal; capability is dependent on cooling technique and design.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 8954 may be operated in any position, with mounting normally controlled by the anode heat-sink configuration and location. No socket is required since all electrical connections are made to solder tabs which are integral to the tube elements.

COOLING - The tube is designed for use in a conduction-cooled or liquid-immersion-cooled system, where tube anode heat is transferred to a heat sink or the liquid dielectric coolant. Anode dissipation is normally limited only by the allowable temperature rise for the anode ceramic/ metal seal and the anode core. In all cases, however, the cooling system must maintain the anode and ceramic/metal seal temperatures below 250°C, and in cases where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial.

In an air mounted heat-sink system, intimacy of contact between the anode surface and the sink is a factor which will effect heat transfer, and the designer is encouraged to use temperature-sensitive paint or other temperature-sensing devices in connection with any equipment design before the layout is finalized. In such a system, some air circulation around the base of the tube may also be required to maintain these ceramic/ metal seals and the connection points at the solder tabs within the allowable temperature range.

#### ELECTRICAL

HEATER/CATHODE OPERATION - The rated heater voltage for the 8954 is 6.0 volts, as measured at the base of the tube, and variations should be restricted to plus or minus 0.3 volt for long life and consistent performance. One side of the heater is internally connected to the cathode. Heater voltage should be applied for a minimum of two minutes before high voltage is applied to the other tube elements, to allow the cathode to reach operating temperature.

ANODE CURRENT - For pulse service, either as a switch tube or modulator, or for voltage regulator applications, an anode current (during the



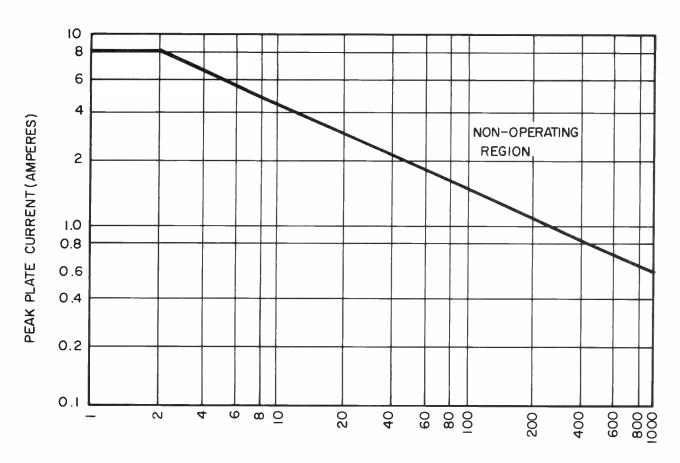
pulse) of 8 amperes is available with short pulses (up to 2  $\mu s$ ). Peak current capability, pulse length, and duty factor are inter-related and for pulse durations longer than 2  $\mu s$  the DERATING CHART should be consulted. For very long pulses (1 millisecond or longer) or pure dc service, the anode current should be limited to 0.6 ampere.

HIGH VOLTAGE - For air operation, anode voltage should not exceed 5.5 kVdc at sea level. This value allows some safety factor, but at higher altitudes a reduction in voltage may be required to preclude the possibility of external tube flash-over, and the external insulating surfaces of the tube must be kept clean and free of dirt or any accumulation of grime to minimize the possibility of external breakdown. When the tube is immersed in a liquid dielectric coolant with suitable insulating properties, the allowable anode voltage is 7.5 kVdc at any altitude.

The operating voltages for this tube must be considered as potentially lethal and the equipment must be designed properly and operating precautions must be followed. The equipment must include safety enclosures for the high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors or covers are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

PLATE SURGE-LIMITING IMPEDANCE - Beampower tetrodes, such as the 8954, are built with closely spaced electrodes. This results in high voltage gradients even at normal operating voltages. A high-energy arcover between electrodes may be destructive, and therefore a series impedance in the anode lead is recommended, or the anode supply should be designed so that it has sufficient self impedance, to limit the short-circuit current to 10 times the maximum pulse-current rating. Normal overload protection techniques should also be used, not only in the anode circuit but also in the screen grid circuit, to prevent tube damage in the event of a fault condition.

GRID OPERATION - The maximum rated dc grid bias voltage is -200 Vdc and the maximum grid dissipation rating is 4 watts. In normal applications the grid dissipation will not approach the maximum rating.


SCREEN OPERATION - The maximum rated power dissipation for the screen grid is 15 watts, and the average screen input power should be kept below this level.

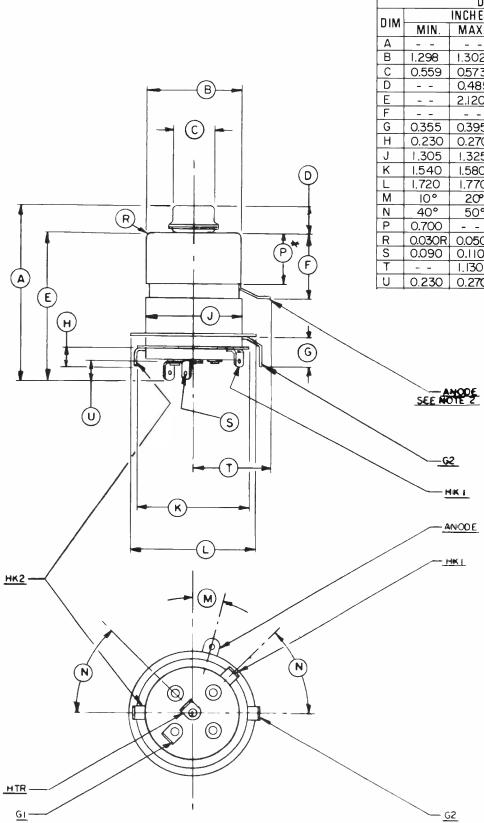
It is a normal characteristic of most tetrodes for the screen current to instantaneously reverse with some combinations of element voltages and currents. The screen power supply should be designed with this in mind so that the correct operating voltage will be maintained on the screen under all conditions. A current path from screen to cathode must be provided by a bleeder resistor or shunt regulator connected between screen and cathode. A series regulator circuit can be used only when an adequate bleeder resistor is provided.

Over-current protection should be provided for the screen and it may be desirable to interlock the screen power supply so that plate voltage must be on before screen voltage can be applied.

PLATE OPERATION - The anode of the 8954 is nominally rated for 600 watts of dissipation capability. This capability is dependent on a properly designed heat sink, or the use of liquid-immersion cooling with a dielectric fluid of suitable characteristics, or a combination of both. Average anode dissipation may be calculated as the product of pulse anode current, pulse tube-voltage drop during conduction, and the duty factor. Actual dissipation may often exceed the calculated value if pulse rise and fall times are appreciable compared to pulse duration. This occurs because long rise and fall times slow down the plate voltage swing and allow plate current to flow for longer periods in the high tube-voltagedrop region.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to: Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

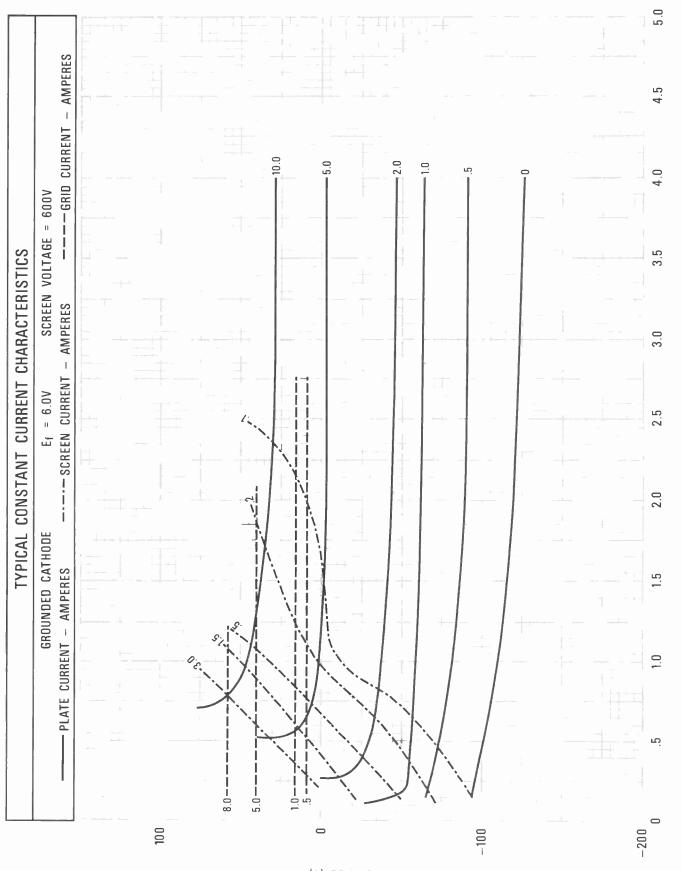



PULSE DURATION, MICROSECONDS

PEAK (PULSE) PLATE CURRENT CAPABILITY IS DEPENDENT ON PULSE DURATION (tp) AND DUTY FACTOR (Du). MAXIMUM PEAK PLATE CURRENT FOR A GIVEN PULSE DURATION IS SHOWN. MAXIMUM DUTY MAY THEN BE DERIVED FROM THE RELATIONSHIP:

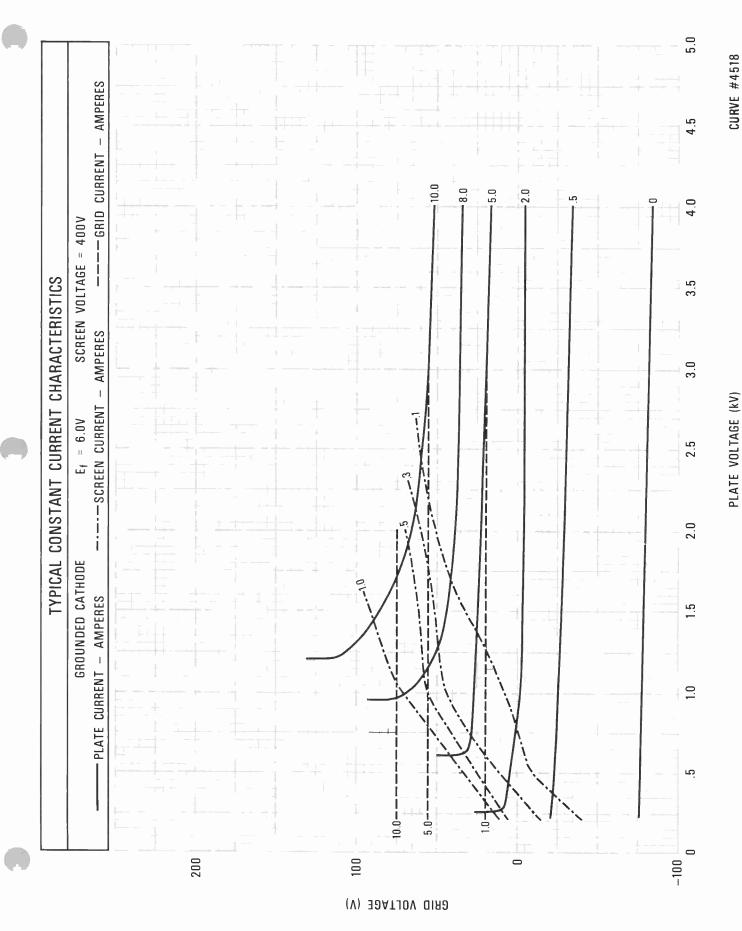
$$0.6 = ib \sqrt{Du}$$

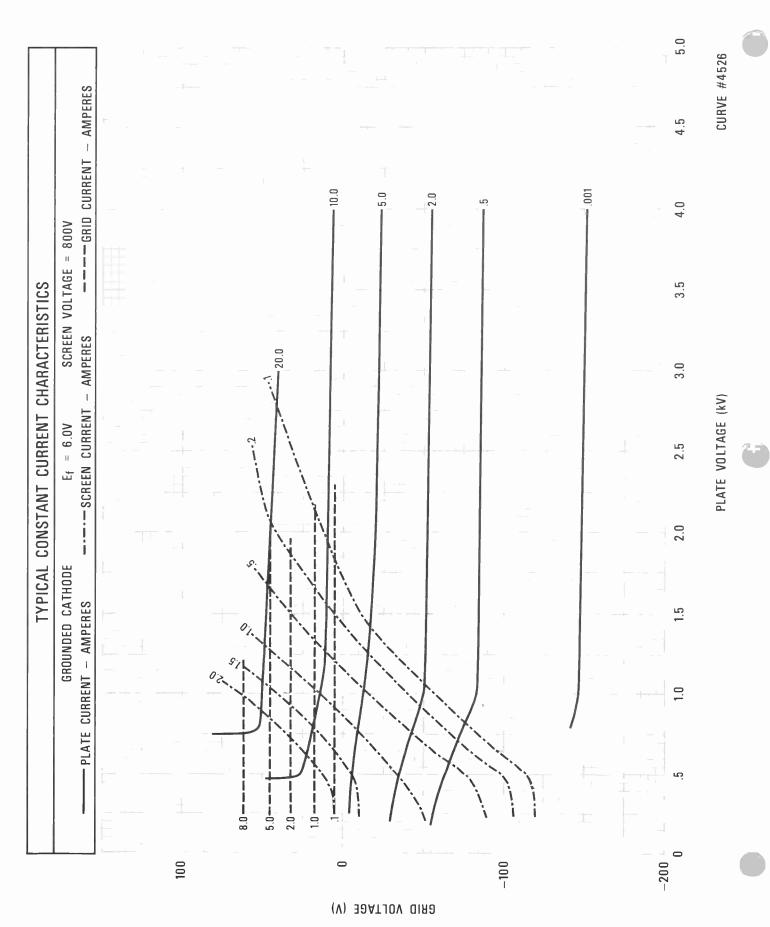
PULSE DE-RATING DATA, TYPE 8954






|                  |                    |        |       | _ |       |       |     |    |
|------------------|--------------------|--------|-------|---|-------|-------|-----|----|
| DIMENSIONAL DATA |                    |        |       |   |       |       |     |    |
| DIM              | INCHES MILLIMETERS |        |       |   |       |       |     |    |
| ואוו ט           | MIN.               | MAX.   | REF.  |   | MIN.  | MAX.  | RE  | F. |
| Α                |                    |        | 2.500 |   |       |       | 63. | 50 |
| В                | 1.298              | 1.302  | ~ -   |   | 32.96 | 33.07 | _   | _  |
| С                | 0.559              | 0.573  |       |   | 14.19 | 14.55 | -   | -  |
| D                |                    | 0.485  |       |   |       | 12.31 | _   | -  |
| Ε                |                    | 2.120  |       |   |       | 53.84 | _   | _  |
| F                |                    |        | 0.887 |   |       |       | 22. | 52 |
| G                | 0.355              | 0.395  |       |   | 9.01  | 10.03 | -   | -  |
| Н                | 0.230              | 0.270  |       |   | 5.84  | 6.85  | -   | -  |
| J                | 1.305              | 1.325  |       |   | 33.14 | 33.65 | -   | -  |
| K                | 1.540              | 1.580  |       |   | 39.11 | 40.13 | _   | _  |
| L                | 1.720              | 1.770  |       |   | 43.68 | 44.95 | -   | _  |
| М                | 10°                | 20°    | ]     |   | 10°   | 20°   | _   | _  |
| N                | _40°               | 50°    |       |   | 40°   | 50°   | _   | _  |
| Ρ                | 0.700              |        |       |   | 17.78 |       | _   |    |
| R                | 0.030R             | 0.050R |       |   | 0.76R | 1.27R |     | _  |
| S                | 0.090              | 0.110  |       |   | 2.28  | 2.79  | _   | _  |
| T                |                    | 1.130  |       |   |       | 28.70 | -   | _  |
| U                | 0.230              | 0.270  |       |   | 5.84  | 6.85  | _   | -  |


#### NOTES:


- REF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR IN-SPECTION PURPOSES.
- 2. ANODE TAB IS ROTATED 75°. SEE BOTTOM VIEW FOR TAB ORIENTATION.
- 3. (\*) CONTACT SURFACE.



CURVE #4516

PLATE VOLTAGE (kV)







#### TECHNICAL DATA

HIGH-POWER WATER-COOLED TETRODE

The EIMAC 8959 is a ceramic/metal high power tetrode for applications requiring tube outputs from 100 to 250 kilowatts. It is ideal for use as a Class C rf amplifier or oscillator, a Class AB rf linear amplifier, or a Class AB push-pull audio amplifier or modulator, as well as a plate and screen modulated Class C rf amplifier.

In pulse modulator service it can deliver a peak output of 4 megawatts.

The tube is characterized by low input and feedback capacitances and low internal lead inductances. Its rugged mesh thoriated tungsten filament provides ample emission for long operating life.

The water-cooled anode dissipates 100 kilowatts when used with an EIMAC SK-2100 series water jacket.



#### GENERAL CHARACTERISTICS<sup>1</sup>

| F | П | EC  | T | RI  | C        | ۸ |   |
|---|---|-----|---|-----|----------|---|---|
| - | - | - ∨ |   | RΝΙ | <b>I</b> | - | _ |

| Filament: Thoriated Tungsten Mesh                     |                 |                |
|-------------------------------------------------------|-----------------|----------------|
| Voltage                                               | $15.5 \pm 0.75$ | V              |
| Current, @ 15.5 V                                     | 215             | Α              |
| Direct Interelectrode Capacitances (Grounded Cathode) |                 |                |
| Cin                                                   | 370             | pF             |
| Cout                                                  | 60              | pF             |
| Cgp                                                   | 1.0             | pF             |
| Direct Interelectrode Capacitances (Grounded Grid)    |                 |                |
| Cin                                                   | 175             | pF             |
| Cout                                                  | 60              | pF             |
| Cpk                                                   | 0.35            | pF             |
| Frequency of Maximum Rating, CW                       | 108             | $\mathrm{MH}z$ |

Characteristics and operating values are based on performance tests. These figures may change without notice as
the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this
information for final equipment design.

#### MECHANICAL

| Maximum Overall Dimensions                                                 | See Outline Drawing   |
|----------------------------------------------------------------------------|-----------------------|
| Net Weight (approximate): Tube Only                                        | 38.5 lb; 17.5 kg      |
| Tube and Water Jacket SK-2110                                              | 47.0 lb; 21.4 kg      |
| Operating Position Verti                                                   | ical, base up or down |
| Anode Cooling (EIMAC SK-2100 series water jacket required, to be ordered s | separately) Water     |
| Base Cooling                                                               | Forced Air            |

(Effective 11-1-74) © 1974 Varian

Printed in U.S.A.

| Maximum Operating Temperature: Ceramic/Metal S Recommended Air-System Socket                                                                                                                   | EIMAC SK-200                                | 250°C<br>00 Series<br>1 Coaxial                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER Class AB, Grid Driven                                                                                                                                         | TYPICAL OPERATION Class AB1, Grid Driven    |                                                                      |
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                       | Peak Envelope or Modulation Crest Condition | ıs                                                                   |
| DC PLATE VOLTAGE . 20 KILOVOLTS DC SCREEN VOLTAGE . 2.5 KILOVOLTS DC PLATE CURRENT . 16 AMPERES PLATE DISSIPATION . 100 KILOWATTS SCREEN DISSIPATION . 1750 WATTS GRID DISSIPATION . 500 WATTS | Zero-Signal Plate Current                   | 18 kVdc<br>1.5 kVdc<br>-320 Vdc<br>4.0 Adc<br>13.5 Adc<br>300 v      |
| <ol> <li>Adjust for specified zero-signal plate current.</li> <li>Approximate value.</li> </ol>                                                                                                | Plate Output Power ?                        | 75 kW<br>168 kW<br>697 Ω                                             |
| RADIO FREQUENCY POWER AMPLIFIER OR                                                                                                                                                             | TYPICAL OPERATION                           |                                                                      |
| OSCILLATOR - Class C Telegraphy or FM (Key-down Conditions)  ABSOLUTE MAXIMUM RATINGS                                                                                                          |                                             | 20 kVdc<br>1.5 kVdc<br>800 Vdc                                       |
| DC PLATE VOLTAGE . 20 KILOVOLTS DC SCREEN VOLTAGE . 2.5 KILOVOLTS DC PLATE CURRENT . 16 AMPERES PLATE DISSIPATION . 100 KILOWATTS SCREEN DISSIPATION . 1750 WATTS GRID DISSIPATION . 500 WATTS | Plate Current                               | 5.2 Adc<br>570 mAdc<br>125 mAdc<br>900 v<br>120 W<br>54 kW<br>220 kW |
| 1. Approximate value                                                                                                                                                                           |                                             | 575 Ω                                                                |
| PLATE MODULATED RADIO FREQUENCY<br>AMPLIFIER, GRID DRIVEN<br>Class C Telephony - Carrier Conditions                                                                                            | TYPICAL OPERATION  Plate Voltage            | 15 kVdc                                                              |
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                       | Grid Voltage                                | 750 Vdc<br>600 Vdc<br>1.7 Adc                                        |
| DC PLATE VOLTAGE                                                                                                                                                                               | Screen Current 1                            | 875 mAdc<br>660 mAdc                                                 |
| PLATE DISSIPATION 2                                                                                                                                                                            | Peak rf Grid Voltage 1                      | 750 v<br>800 v<br>530 W<br>35 kW                                     |
| <ol> <li>Approximate value.</li> <li>Corresponds to 100 kW at 100% sine-wave modulation.</li> </ol>                                                                                            | •                                           | 140 kW<br>620 Ω                                                      |
| AUDIO FREQUENCY POWER AMPLIFIER OR<br>MODULATOR, GRID DRIVEN<br>Class AB1, Sinusoidal Wave                                                                                                     | TYPICAL OPERATION (2 Tubes)  Plate Voltage  | 15 kVdc                                                              |
| ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 20 KILOVOLTS                                                                                                                                        | Screen Voltage                              | 1.5 kVdc<br>345 Vdc<br>6.0 Adc                                       |
| DC SCREEN VOLTAGE . 2.5 KILOVOLTS DC PLATE CURRENT . 16 AMPERES PLATE DISSIPATION . 100 KILOWATTS SCREEN DISSIPATION . 1750 WATTS GRID DISSIPATION . 500 WATTS                                 | Max. Signal Plate Current                   | 19.5 Adc<br>83.0 mAdc<br>275 v<br>46 kW<br>200 kW                    |
| <ol> <li>Adjust for specified zero-signal plate current.</li> <li>Approximate value.</li> </ol>                                                                                                | · ·                                         | 825 Ω                                                                |



#### TYPICAL OPERATION PULSE MODULATOR SERVICE 40 kVdc ABSOLUTE MAXIMUM RATINGS 110 a Plate Current, pulse ...... 2.5 kVdc 40 KILOVOLTS DC SCREEN VOLTAGE ..... 2.5 KILOVOLTS 12 a DC GRID VOLTAGE .....-2.0 KILOVOLTS PEAK CATHODE CURRENT ...... 200 AMPERES -1.2 kVdc 400 ma Positive Grid Voltage, pulse 2 . . . . . . . 110 v PLATE DISSIPATION 1 6 % (DURING PULSE) ..... 1.0 MEGAWATT Duty Factor ...........

PLATE DISSIPATION

(AVERAGE)

SCREEN DISSIPATION

(AVERAGE)

100 KILOWATTS

Input Power, pulse

Output Voltage, pulse 2

1.44 Mw

Output Power, pulse

4.4 Mw

Output Power, pulse

Cathode Current, pulse 2

122 a

GRID DISSIPATION

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                                                               | Min. | Max.     |
|-------------------------------------------------------------------------------------------------|------|----------|
| Filament Current, at 15.5 volts                                                                 | 200  | 230 A    |
| Cutoff Bias, at $E_b = 25 \text{ kVdc}$ , $E_{c2} = 1500 \text{ Vdc}$ , $I_b = 10 \text{ mAdc}$ |      | -625 Vdc |
| Interelectrode Capacitances (measurement without shielded fixture)                              |      |          |
| Grounded Cathode Connection:                                                                    |      |          |
| Cin                                                                                             | 350  | 390 pF   |
| Cout                                                                                            | 55   | 65 pF    |
| Cgp                                                                                             |      | 1.2 pF   |
| Grounded Grid Connection:                                                                       |      |          |
| Cin                                                                                             | 160  | 190 pF   |
| Cout                                                                                            | 55   | 65 pF    |
| Cpk                                                                                             |      | 0.5 pF   |

#### **APPLICATION**

MOUNTING - The 8959 must be mounted with its major axis vertical. The tube base may be either up or down, at the discretion of the circuit designer.

SOCKETING - An EIMAC SK-2000 Series Socket, or equivalent, is recommended.

ANODE WATER JACKET - An EIMAC SK-2100 or SK-2110 Water Jacket must be used to provide anode cooling. To achieve an anode dissipation of 100 kilowatts, the water jacket must be installed over the tube anode and adequate water flow provided.

COOLING - Anode cooling is accomplished by circulating water through an SK-2100 series Water Jacket. Insufficient water flow will cause the anode temperature to rise to levels which will shorten tube life. Also, if the coolant lines become clogged, enough steam pressure may be generated to rupture the water jacket and destroy the tube. The following table lists the minimum cooling water requirements at various dissipation levels with a maximum inlet water temperature

of 50°C. Anode Minimum Approximate Dissipation Water Flow Pressure Drop (kW) (psi) (gpm) 20 5.0 2.8 40 9.0 5.8 60 9.3 12.5 80 16.5 14.2 100 20.0 19.2

Note: Since the filament dissipates about 3500 watts, and the grid-plus-screen can, under some conditions, dissipate another 2250 watts, the table allows for an additional dissipation of 5750 watts.

Outlet water temperature must never exceed 70°C and inlet water pressure should be limited to 80 psi. Direction of water flow is optional.

Tube life can be seriously affected by the condition of the cooling water. If it becomes ionized, copper-oxide deposits form on the inside of the water jacket causing localized anode heating and eventual tube failure.

To insure minimum electrolysis, and power loss, the water resistance at  $20^{\circ}\text{C}$  should be greater than 50,000 ohms/cm<sup>3</sup>, preferably 250,000 ohms/cm<sup>3</sup> or higher. The relative water resistance can be continuously monitored by measuring the leakage current through a short section of the insulating hose, using metal nipples or fittings as electrodes.

Auxiliary forced-air cooling, of the tube base is required to maintain filament- and grid-seal temperatures below 250°C. An air flow of approximately 120 ft 3/min at 50°C maximum and sea level should be directed, through an EIMAC SK-2000 Series Socket or equivalent, toward the filament- and grid-seal areas.

Both anode and base cooling should be applied before or simultaneously with the application of electrode voltages, including the filament. Base cooling should continue for about three minutes after the removal of electrode voltages to allow the tube to cool properly.

FILAMENT OPERATION - At rated filament voltage, the peak emission of the 8959 is many times greater than the amount needed for communication service. Reducing the filament voltage decreases the filament temperature. A small decrease in filament temperature substantially increases filament life. The correct value of filament-voltage should be determined for the particular applications. First, gradually reduce the filament voltage to the point where there is a noticeable reduction in plate current or power output, or an increase in distortion. Then increase the voltage several tenths of a volt above the value where performance degradation occurred; this is the proper operating voltage. Filament voltage should always be measured at the tube base or socket using an rms responding meter. The above procedure should be performed periodically to assure optimum tube life.

GRID OPERATION - The maximum control-grid dissipation is 500 watts, determined approximately by the product of grid current and peak positive grid voltage.

Under some operating conditions, the control grid may exhibit a negative-resistance characteristic. This may occur when, with high screengrid voltage, increasing the drive voltage decreases the grid current. As a result, large values of instantaneous negative grid current can be produced, causing the amplifier to become regenerative. Because this may happen, the driver stage must be designed to tolerate this condition. One technique is to swamp the driver so that the change in load, due to secondary grid emission, is a small percentage of the total driver load.

SCREEN OPERATION - The maximum screengrid dissipation is 1750 watts. With no ac applied to the screen, dissipation is simply the product of dc screen voltage and dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current.



Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since the screen dissipation rating will be exceeded. Suitable protective circuitry should be provided.

The 8959 may exhibit reverse screen current to a greater or lesser degree depending on operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, or an electron-tube regulator circuit may be employed in the screen supply. A bleeder resistor must be used if a series electron-tube regulator is employed.

PLATE DISSIPATION - The rated plate dissipation of 100 kilowatts, attainable with water

cooling, provides a large margin of safety in most applications. This rating may be exceeded briefly during tuning. When the 8959 is used as a platemodulated rf amplifier, plate dissipation under carrier conditions should be limited to 67 kilowatts.

FAULT PROTECTION - In addition to the normal plate-overcurrent interlock, screen-current interlock, and coolant-flow interlock, it is good practice to protect the tube from internal damage caused by an internal plate arc which may occur at high plate voltages.

A protective resistance of 5 to 25 ohms should always be connected in series with each tube anode, to absorb power-supply stored energy if a plate arc should occur. An electronic crowbar, which will discharge power-supply capacitors in a few microseconds after the start of a plate arc, is recommended.

#### OPERATING HAZARDS

Read the following and take all necessary precautions to safeguard personnel. Safe operating conditions are the responsibility of the equipment designer and the user.

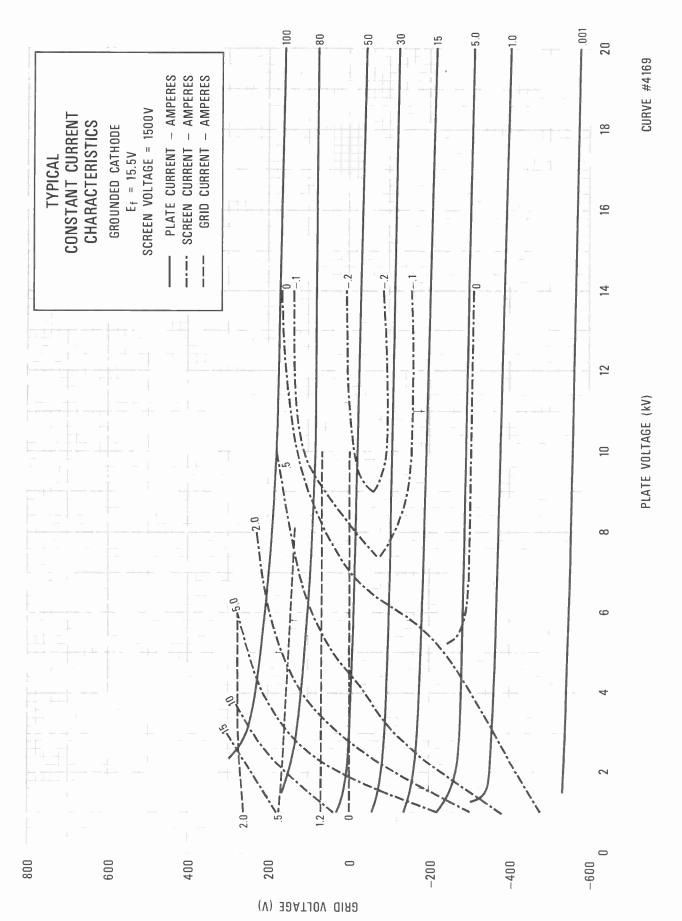
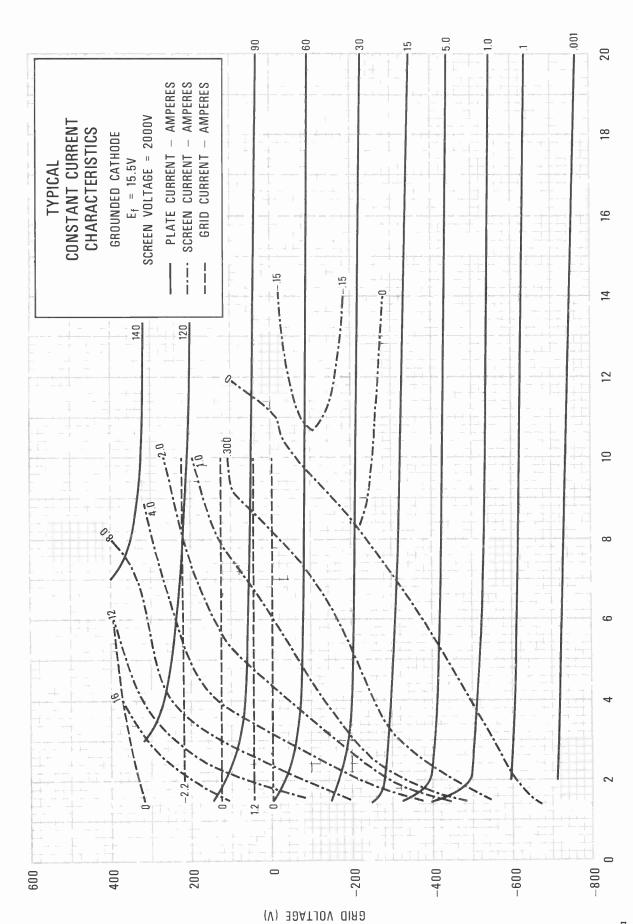
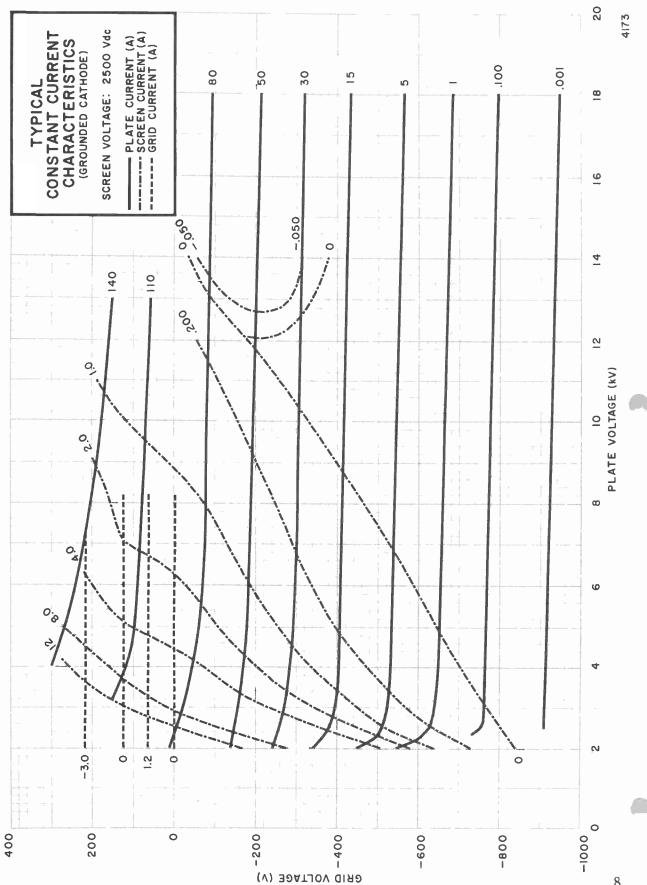
HIGH VOLTAGE - This tube operates at voltages which can be deadly. Equipment must be designed so personnel cannot come in contact with operating voltages. Enclose high-voltage circuits and terminals and provide fail-safe interlocking switch circuits to open the primary circuits of the power supply and to discharge high-voltage condensers whenever access into the enclosure is required.

X-RAY RADIATION - The EIMAC 8959, operating at its rated voltages and currents, is a potential X-ray hazard. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to changes in leakage paths or emission characteristics as they are affected by high voltage. Only limited

shielding is afforded by the tube envelope. Additional X-ray shielding must be provided on all sides of the tube to provide adequate protection to operating personnel throughout the tube's life. When this tube is used as a pulse modulator, shielding of the pulse transformer may also be necessary. X-ray caution signs or labels must be permanently attached to equipment using this tube directing operating personnel never to operate this device without X-ray shielding in place.

RADIO FREQUENCY RADIATION - Exposure of the human body to rf radiation becomes increasingly more hazardous as the power level and/or frequency are increased. Exposure to highpower rf radiation must be strictly prevented at any frequency.

Equipment must be designed to fully safeguard all personnel from these hazards. Labels and caution notices must be provided on equipment and in manuals clearly warning of these hazards.

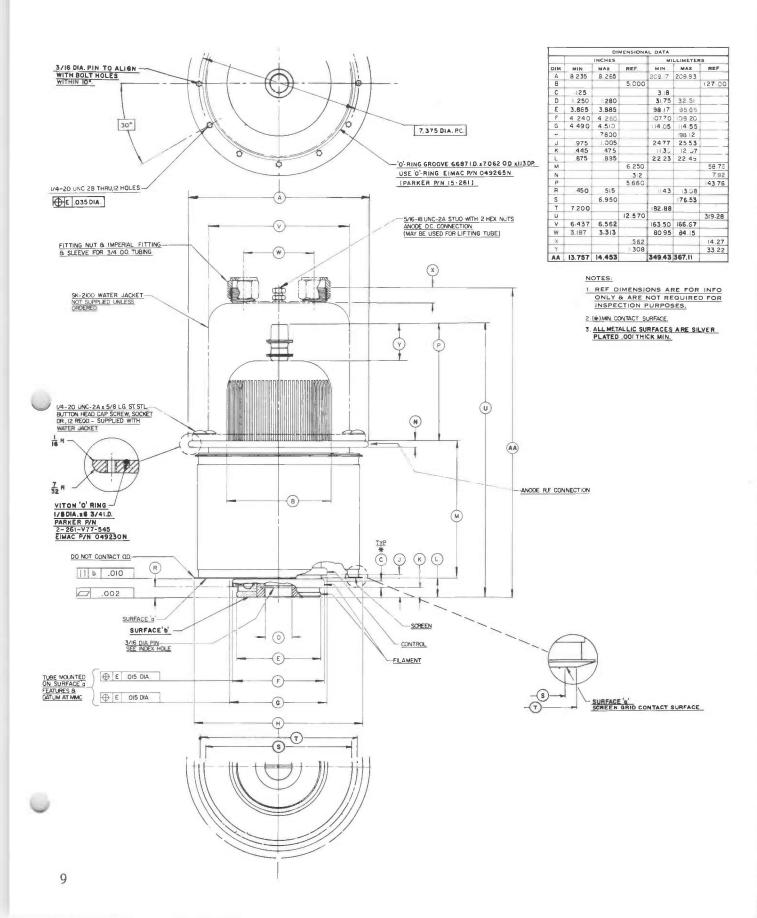




PLATE VOLTAGE (kV)











WATER-COOLED POWER TETRODE

The EIMAC X-2159 is a ceramic/metal, water-cooled power tetrode designed for very-high-powered medium-frequency or high-frequency broadcast service and very-low-frequency communication in the megawatt power range.

The X-2159 has a two-section thoriated-tungsten filament mounted on water-cooled supports. The two sections may be fed in quadrature to reduce hum contributed by an ac power source. The maximum anode dissipation rating is 1250 kilowatts steady state.

Large-diameter coaxial terminals are used for the control grid and the three rf filament terminals. Filament power and filament support cooling-water connections are made through three special couplings with knurled and threaded clamping rings.



### GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL

| Filament: Thoriated-tungsten, two-section                           |                |    |
|---------------------------------------------------------------------|----------------|----|
| Voltage per section                                                 | $18.5 \pm 0.9$ | V  |
| Current at 18.5 V per section                                       | 700            | Α  |
| Amplification Factor (Average), Grid to Screen                      | 4.5            |    |
| Direct Interelectrode Capacitance (grounded cathode) <sup>2</sup> : |                |    |
| Cin                                                                 | 1650           | pF |
| Cout                                                                | 260            | pF |
| Cgp                                                                 | 10             | pF |
| Direct Interelectrode Capacitance (grounded grid) <sup>2</sup> :    |                |    |
| Cin                                                                 | 675            | pF |
| Cout                                                                | 260            | pF |
| Cpk                                                                 | 1.0            | pF |
| Frequency of Operation: for use above 30 MHz, contact:              |                |    |

- 1. The design of this tube is subject to change. The data supplied is for guidance only. Before establishing a final equipment design with this tube, contact: Product Manager, Power Grid Division, EIMAC Division of Varian.
- 2. Capacitance values shown are nominal, measured with no special shielding.

Product Manager, Power Grid Division, EIMAC Div. of Varian.

(Effective 7-1-73) © 1973 by Varian

Printed in U.S.A.

## MECHANICAL

| Maximum Overall Dimensions:                                                                                                                                                                                                                                                                            |                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Maximum Overall Dimensions:  Length Diameter  Net Weight Operating Position Cooling Base Terminals Recommended Filament Connectors (not supplied with Filament Power/Water Connector (3 required) Filament rf Connector (1 required)  Maximum Operating Temperature: Envelope, and Ceramic/Metal Seals |                                                                                                                  |
| Envelope, and Ceramic/Metal Sears                                                                                                                                                                                                                                                                      | 200-C                                                                                                            |
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN                                                                                                                                                                                                                                                           | TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Peak Envelope Conditions                                    |
| Class AB                                                                                                                                                                                                                                                                                               | Plate Voltage                                                                                                    |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                                                                                                                                            | Screen Voltage                                                                                                   |
| DC SCREEN VOLTAGE 2.5 KILOVOLTS  2.5 KILOVOLTS                                                                                                                                                                                                                                                         | Peak rf Grid Voltage 2                                                                                           |
| DC PLATE CURRENT 125 AMPERES                                                                                                                                                                                                                                                                           | Plate Load Resistance                                                                                            |
| PLATE DISSIPATION 1250 KILOWATTS                                                                                                                                                                                                                                                                       | Efficiency                                                                                                       |
| SCREEN DISSIPATION 15 KILOWATTS GRID DISSIPATION 4.0 KILOWATTS                                                                                                                                                                                                                                         | <ol> <li>Adjust to specified zero-signal plate current.</li> <li>Approximate value.</li> </ol>                   |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM                                                                                                                                                                                                                                 | TYPICAL OPERATION (Frequencies to 30 MHz)                                                                        |
| (Key-down Conditions)                                                                                                                                                                                                                                                                                  | Plate Voltage       21.5 kVdc         Screen Voltage       1000 Vdc         Grid Voltage       -700 Vdc          |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                                                                                                              | Plate Current         125 Adc           Screen Current !         12 Adc           Grid Current !         7.2 Adc |
| DC PLATE VOLTAGE 22.5 KILOVOLTS                                                                                                                                                                                                                                                                        | Calculated Driving Power 7.0 kW                                                                                  |
| DC SCREEN VOLTAGE 2.5 KILOVOLTS                                                                                                                                                                                                                                                                        | Plate Dissipation1                                                                                               |
| DC PLATE CURRENT                                                                                                                                                                                                                                                                                       | Grid Dissipation1                                                                                                |
| SCREEN DISSIPATION 15 KILOWATTS                                                                                                                                                                                                                                                                        | Plate Power Output                                                                                               |
| GRID DISSIPATION 4.0 KILOWATTS                                                                                                                                                                                                                                                                         |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                        | <ol> <li>Approximate value.</li> </ol>                                                                           |

#### PLATE MODULATED RADIO FREQUENCY POWER

#### AMPLIFIER Class C Telephony

(Carrier Conditions)

#### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE VOLTAGE   | 17.5 | KILOVOLTS |
|--------------------|------|-----------|
| DC SCREEN VOLTAGE  | 2.0  | KILOVOLTS |
| DC PLATE CURRENT   | 100  | AMPERES   |
| PLATE DISSIPATION  | 800  | KILOWATTS |
| SCREEN DISSIPATION | 15   | KILOWATTS |
| GRID DISSIPATION   | 4.0  | KILOWATTS |

#### TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage                 | 17.5  | kVdc     |
|-------------------------------|-------|----------|
| Screen Voltage                | 1000  | Vdc      |
| Grid Voltage                  | -1000 | Vdc      |
| Plate Current                 | 95.0  | Adc      |
| Screen Current 1              | 8.0   | Adc      |
| Grid Current 1                | 4.4   | Adc      |
| Pk. Screen Voltage (100% Mod) | 1000  | V        |
| Pk. rf Grid Voltage           | 1280  | V        |
| Calculated Driving Power      | 6465  | W        |
| Plate Dissipation             | 279   | kW       |
| Screen Dissipation 1          | 8.0   | kW       |
| Grid Dissipation 1            | 2.05  | kW       |
| Plate Load Resistance         | 85.6  | $\Omega$ |
| Plate Output Power            | 1384  | kW       |
| Efficiency                    | 83.3  | %        |
| ,                             |       |          |
|                               |       |          |

#### 1. Approximate value.

# AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB

#### ABSOLUTE MAXIMUM RATINGS (per tube):

| DC PLATE VOLTAGE   | 22.5 | KILOVOLTS |
|--------------------|------|-----------|
| DC SCREEN VOLTAGE  | 2.5  | KILOVOLTS |
| DC PLATE CURRENT   | 125  | AMPERES   |
| PLATE DISSIPATION  | 1250 | KILOWATTS |
| SCREEN DISSIPATION | 15   | KILOWATTS |
| GRID DISSIPATION   | 4.0  | KILOWATTS |

#### TYPICAL OPERATION Two Tubes - Sinusoidal Wave

| Plate Voltage                   | 17.5  | kVdd     |
|---------------------------------|-------|----------|
| Screen Voltage                  | 1500  | Vdc      |
| Grid Voltage 1                  | -455  | Vdc      |
| Zero Signal Plate Current       | 10    | Adc      |
| Max. Signal Plate Current       | 146.2 | Adc      |
| Max. Signal Screen Current 2    | 7.8   | Adc      |
| Pk. Audio Freq. Grid Voltage 3  | 455   | V        |
| Max. Signal Plate Dissipation 3 | 275   | kW       |
| Plate/Plate Load Resistance     | 238.5 | $\Omega$ |
| Plate Output Power              | 2015  | kW       |
|                                 |       |          |

- 1. Adjust for stated zero-signal plate current.
- 2. Approximate value.
- 3. Per Tube.

NOTE: TYPICAL OPERATION data are obtained by calculation from the published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power then the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

#### **APPLICATION**

#### **MECHANICAL**

MOUNTING - The X-2159 must be mounted vertically, base down. The full weight of the tube should rest on the main screen-grid contact flange at the base of the tube, and all lifting of the tube should be done with the lifting eye which is attached to the top of the anode cooling jacket.

COOLING - It is essential that high purity water be used for anode cooling to minimize power loss and corrosion of metal fittings. Good distilled or de-ionized water will have a resistance of 1 to 2 megohms per cm<sup>3</sup>. Water should be discarded if resistivity falls to 50,000 ohms/cm<sup>3</sup>. Since the anode is normally

at high potential to ground, water connections to the anode are made through insulating tubing. These insulating sections should be long enough so that column resistance is above 100,000 ohms per 1000 plate supply volts. The table shows minimum anode cooling water requirements for several plate dissipation levels.

| P1 | ate Dissipation | Water Flow | Pressure Drop |
|----|-----------------|------------|---------------|
|    | (Kilowatts)     | (GPM)      | (PSI)         |
|    | 500             | 130        | 15            |
|    | 800             | 205        | 30            |
|    | 1000            | 250        | 45            |
|    | 1250            | 310        | 66            |

This data is based on an inlet water temperature of 40°C and an outlet temperature of 70°C. In no case should the outlet water temperature be allowed to exceed 70°C, and system pressure should be limited to 85 PSI maximum.

Water cooling is also required for the screen grid, with a minimum flow of 2.0 GPM, at an approximate pressure drop of 25 PSI. The tube outline drawing shows which of the two connections should be used for inlet water.

Water cooling of the filament supports is required. Each of the three water connections includes both an inlet and outlet line, with the proper section for the inlet water shown on the outline drawing. Minimum flow for the F1 and F3 connectors should be 2.0 GPM, with an approximate pressure drop of 10 PSI for each connector; minimum flow for the F2 connector should be 4.0 GPM, with an approximate pressure drop of 55 PSI.

Base water cooling requirements can sometimes be simplified if the screen grid and filament connectors F1 and F3 are all cooled in series, with suitable insulation between terminals.

In addition to the water-cooling requirements, cooling air should be directed against the lower envelope surface, in the area of the ceramic/metal seals, and particularly from below, up into the recesses involving the control grid and screen grid contact surfaces. Under normal circumstances, a general purpose blower capable of supplying a minimum of one hundred CFM (at zero head), properly directed, will provide adequate cooling in the recessed base area. Temperatures of the ceramic/metal seals and the lower envelope areas are the controlling and final

limiting factor. Temperature-sensitive paints are available for use in checking temperatures in these areas before equipment design and aircooling arrangements are finalized.

All base cooling, air and water, must be applied before power is applied to the filaments. For standby operation, with no direct anode dissipation, a minimum flow of 5 GPM of anode cooling water is still required to prevent anode overheating, in addition to base cooling.

In all cases, both air-flow and water-flow interlocks should be used to remove all power from the tube in case of a cooling failure. However, cooling normally should be maintained for a brief period after all power is removed to allow for tube cool-down.

#### **ELECTRICAL**

FILAMENT OPERATION - Special procedures must be used in the application and removal of filament power. Cooling water flow must be on and at the correct level before any voltage is applied. Then a voltage of (approximately) 4 volts should be applied (per section), and held for a minimum of 30 seconds. Voltage can then be gradually increased until the full operating filament voltage level is achieved, but at no time should surge current be allowed to exceed 1600 amperes per section. To remove filament power, the voltage should be reduced gradually to (approximately) 4 volts and held at this level for a minimum of 30 seconds before all voltage is removed.

The peak emission capability at the rated, or nominal, filament voltage is normally many times that required for communication service. A small decrease in filament temperature due to a reduction of filament voltage can increase tube life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance, such as plate current, power output, or an increase in distortion, while filament voltage is reduced in small steps. At some value of filament voltage there will be a noticeable reduction in plate current or power output, or an increase in distortion. Operation should then be at a filament voltage slightly higher than the point at which performance degradation was noted. The voltage should be measured at the tube base terminals with a 1% accuracy rms responding meter and periodically checked.

GRID OPERATION - The X-2159 grid is rated at 4000 watts of dissipation. Protective measures should be included in the circuitry to insure that this rating is not exceeded. Grid dissipation is the approximate product of dc grid current and peak positive grid voltage.

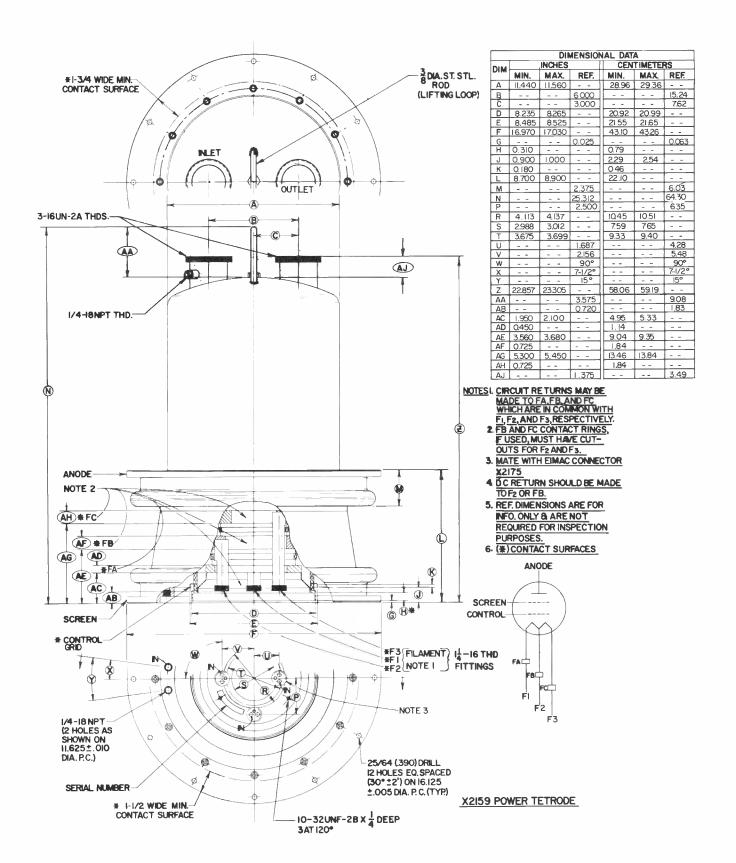
SCREEN OPERATION - Base cooling (air and water) must be on and at the correct level before tube operation is started. The power applied to the screen grid must not exceed 15 kilowatts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is the product of rms screen current and rms screen voltage.

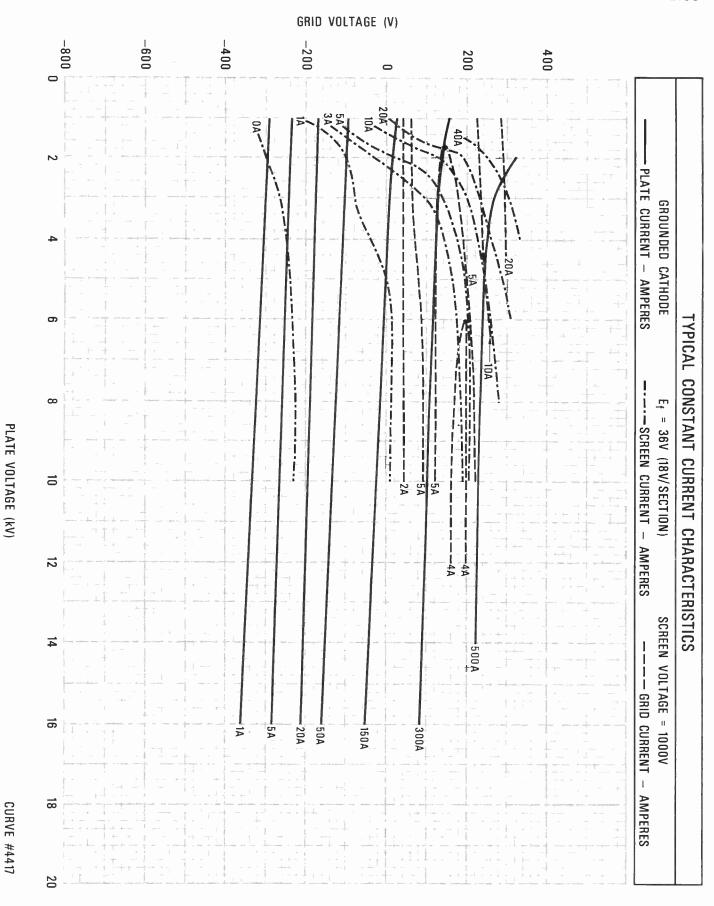
Plate voltage, plate load, or grid bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective circuitry must be provided to remove screen power in case of such a fault condition. Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design and operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished by use of a shunt regulator circuit in the screen voltage supply, or other suitable techniques.

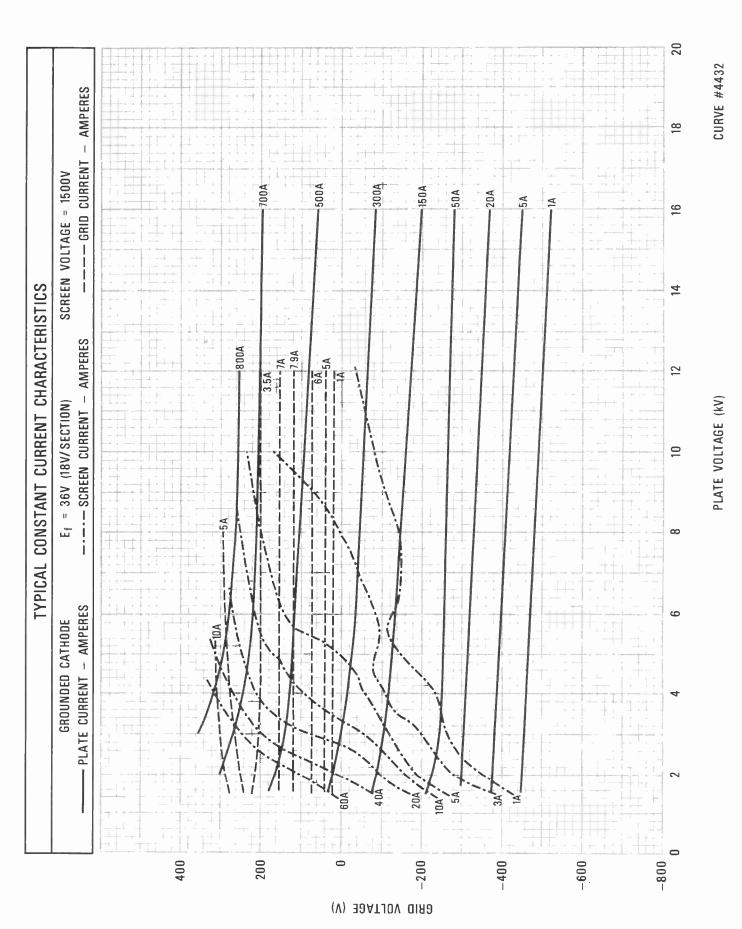
PLATE OPERATION - The maximum dissipation rating of the X-2159 is 1250 kilowatts with water cooling. When used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 800 kilowatts.

FAULT PROTECTION - In addition to the normal plate-overcurrent interlock, screen-current interlock, and coolant (both air and water) interlocks, it is good practice to protect the tube from internal damage caused by an internal plate arc which may occur at high plate voltages. An electronic crowbar, which will discharge powersupply capacitors in a few microseconds after the start of a plate arc, is recommended.

HIGH VOLTAGE - Normal operating voltages used with the X-2159 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The X-2159, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.


RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid

Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, Ca. 94070, for information and recommendations.







TETRODE



#### TECHNICAL DATA

THIS IS EMAL'S EQUIV TO

The EIMAC Y834 is a ceramic/metal, forced—air cooled, radial—beam tetrode with a rated maximum plate dissipation of 4.5 kW. It is especially designed for UHF LPTV, TV translator and linear amplifier operation requiring low intermodulation distortion up to 1000 MHz. IMD level is better than -52dB.



## GENERAL CHARACTERISTICS

#### ELECTRICAL

| Type of Cathode                             | ated Tungsten       |
|---------------------------------------------|---------------------|
| Heating                                     | Direct              |
| Filament Voltage                            | $0.0 \pm 2\%$ volts |
| Filament Current, approximately             | . 34 amps           |
| Peak Cathode Current                        | 6 amps              |
| Interelectrode Capacitances, approximately: | • 0 amps            |
| Input (g2 tied to g1)                       | 40 pF               |
| Output (g2 tied to g1)                      | 9 2 -F              |
| Cathode/Anode                               | 8.2 pF              |
| Amilification Feature (4.4.0                | • • 0.02 pF         |
| Amplification Factor (g1 - g2 average)      | 7                   |
| Transconductance, average                   | 40 mmhos 1          |

#### MECHANICAL

| Mounting Position Vertical     |
|--------------------------------|
| Anode Cooling Forced Air       |
| Minimum AinClaus               |
| Minimum Airflow <sup>2</sup>   |
| Corresponding Pressure Drop    |
| Maying Talet Air Tanagatus     |
| Maximum Inlet Air Temperature  |
| Maximum Outlet Air Temperature |
| M                              |
| maximum remperature 250°C      |
| Net Weight                     |
| Dimensions                     |
| See Drawing                    |

<sup>&</sup>lt;sup>1</sup>In the high frequency operation the cathode is subjected to considerable back bombardment which raises its temperature. After the circuit has been adjusted for proper tube operation, the filament voltage must be reduced to prevent overheating of the cathode with resulting short life.

20April84; Revised April 86

 $<sup>^2\</sup>mbox{For }30\,^0\mbox{C}$  inlet air temperature and 2 kW anode dissipation.

<sup>&</sup>lt;sup>3</sup>At any point on the ceramic insulators. For maximum tube life, this temperature must not exceed 200 °C. The cooling air flow must be established before application of any voltage and maintained for at least one minute after filament voltage has been removed.

#### OPERATING CONDITIONS

## MAXIMUM RATINGS (all potentials refer to cathode)

| DC Anode Voltage     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |  |   |   |  | 5 kV     |
|----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|---|--|---|---|--|----------|
| DC Grid g2 Voltage . |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |  |   |   |  | 650 V    |
| DC Grid g1 Voltage . | • | • | • | • | • | • | • | • | • | • | • | • | • |   |   |  | • |  | • | • |  | –200 V   |
| Peak Cathode Current | • | • | • |   | • | • | • | • | • |   | • |   |   | • |   |  |   |  |   | • |  | 6 A      |
| DC Anode Current     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |  |   |   |  | 2 A      |
| Anode Dissipation .  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |  |   |   |  | 4.5 kW   |
| Grid g2 Dissipation  | • | • | • | • |   |   |   | • |   | • | • |   | • | • | • |  |   |  |   |   |  | 25 W     |
| Grid g1 Dissipation  | • |   | • | • |   |   |   | • |   |   |   |   |   |   |   |  |   |  |   |   |  | 5 W      |
| Frequency            |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |   |  |   |   |  | 1000 MHz |

#### CLASS A — LINEAR AMPLIFIER FOR TELEVISION TRANSLATOR

Aural and Video Signals Simultaneously

#### TYPICAL OPERATION

| Operating Frequency                       | 474-850 MHz |
|-------------------------------------------|-------------|
| Bandwidth                                 | 10 MHz      |
| Filament Voltage                          | 6 V         |
| DC Anode Voltage                          | 4 kV        |
| DC Grid g2 Voltage                        | 400 V       |
| DC Anode Current (no signal)              | 0.4 A       |
| Peak Video Power                          | 1.1 kW      |
| Anode Current (black level + audio)       | 0.8 A       |
| Gain                                      | 15.0dB      |
| Intermodulation Products                  | -54 dB (*)  |
| Distance Between Audio and Video Carriers | 4.5 MHz     |

<sup>(\*)</sup> Under video level (3-tone test) typical; depending on the cavity/circuit used and adjustments made.

ABSOLUTE MAXIMUM RATINGS: Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HIGH VOLTAGE: Normal operating voltages used with this tube are deadly. Equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HICH VOLTAGE CAN KILL.

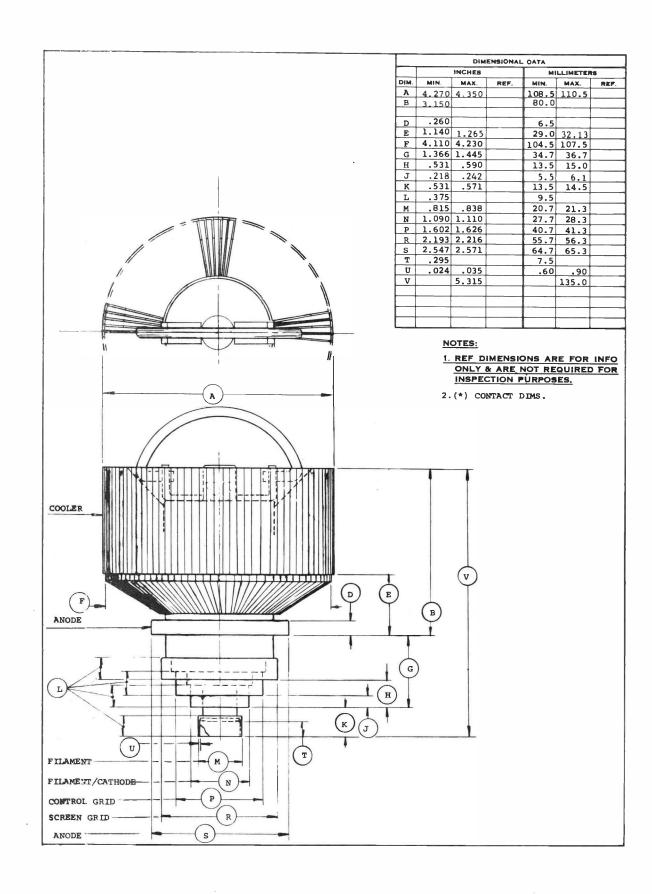
INTERELECTRODE CAPACITANCE: The actual internal internelectrode capacitance of a tube is influenced by many variables in most applications such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between the tube terminals, and wiring effects. To control the actual capacitance values within the tube as the key component involved, the industry and military services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminate any capacitance reading to "ground." The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even if the tube is made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is, therefore, cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

GRID OPERATION: Maximum control grid dissipation is 5 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage.

SCREEN GRID OPERATION: Maximum screen grid dissipation is 25 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

ABSOLUT ystem" values absolut value i absolut the eq ratings


HIGH V designe one can high-vo power s switche remembe

influen
capacit
effects
the in
Industr
fixture
capacit
control
tubes c
values
accorda

The equivalues and mound cant in

GRID OF product

screen
With sc
Plate v
Voltage
device
voltage





# TECHNICAL DATA

VHF - TETRODE
TO REPLACE
8F76R
DATA INCLUDES
YC112
RETROFIT KIT

The EIMAC Y863 is a ceramic/metal VHF power tetrode intended for use as a retrofit for the 8F76R in VHF-TV amplifier service. A retrofit kit is available which allows use of the Y863 in NEC 10-15 kW visual TV cavities. No other changes are required. The Y863 features an electro-mechanical structure which provides high rf operating efficiency. Low losses in the structure permit operation at full ratings to 250 MHz in TV linear amplifier service.

Improved electron optics provide higher gain than the 8F76R, particularly in the high channels, easing exciter problems. Improved grid construction reduces tube-to-tube differences and contributes to extended life.

The anode is rated for  $15\ \text{kilowatts}$  dissipation with forced air cooling.



#### ELECTRICAL

| Filament: Thoriated Tungsten Mesh Voltage |                               | 7.5 ± 0.4 V             |
|-------------------------------------------|-------------------------------|-------------------------|
| mplification Factor, average              |                               |                         |
| Grid to Screen                            |                               | 8.5                     |
| Priect Interelectrode Capacitances        | (cath. grounded) <sup>2</sup> |                         |
| Cin                                       |                               | 170 pF                  |
| Cout                                      |                               | 16 pF                   |
| cgp                                       |                               | 0.5 pF                  |
| Direct Interelectrode Capacitances        | (grids grounded) <sup>2</sup> |                         |
| Cin                                       |                               | 72.5 pF                 |
| Cout                                      |                               | 17.5 pF                 |
| срк                                       |                               | • • • • • • • • 0.08 pF |
| Maximum frequency for Full Ratings        | (TV)                          | 250 MHz                 |

- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement.
- Capacitance values are for a cold tube, as measured with no special shielding, in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Maximum Overall Dimensions:                                                             |                                    |
|-----------------------------------------------------------------------------------------|------------------------------------|
| Length                                                                                  | 9.3 In; 23.6 cm<br>7.4 In; 18.8 cm |
| Net Weight (approximate)                                                                | 14 Lbs; 6.4 kg                     |
| Operating Position                                                                      | , Base Up or Down                  |
| Cooling                                                                                 | Forced Air                         |
| Operating Temperature Absolute Maximum                                                  |                                    |
| Ceramic/Metal Seals and Anode Core                                                      | 250°C                              |
| Base                                                                                    | Special, Coaxial                   |
| PEIMAC Retrofit Kit, for Installation in NEC PCN-1200 VHF-TV Visual Cavity (See Page 2) | EIMAC YC112                        |

Effective August 86 VA4928

Printed in U.S.A.



## ADVANCE PRODUCT ANNOUNCEMENT

9019 YC130 VHF RADIAL BEAM POWER TETRODE

The EIMAC 9019/YC130 is a ceramic/metal VHF power tetrode. It is rated for full power input to 110 MHz and is recommended for use as a Class C power amplifier or plate modulated amplifier.

Air-system sockets and matching air chimneys are available from EIMAC. A connector clip is available for making the dc connection to the anode.

GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Filament: Thoriated Tungster  | en Mesh                    |            |   |           |
|-------------------------------|----------------------------|------------|---|-----------|
| Voltage                       | 7                          | 7.5 + 0.37 | V |           |
| Current, at 7.5 volts         |                            | 160        | A |           |
| Amplification Factor (average | age), Grid to Screen       | 2 4.5      |   | -         |
| Direct Interelectrode Capaci  | citance (cathode grounded) | ) ~        |   |           |
| Cin                           |                            |            |   | . 160 pF  |
| Cout                          |                            |            |   | 26.5 DF   |
| Cgp                           |                            |            |   | . 1.5 pF  |
| Cgp                           | citance (grids grounded) 2 | 4          |   |           |
| Cin                           |                            |            |   | • 67 pF   |
| cout                          |                            |            |   | 27.5 pF   |
| Upk                           |                            |            |   | 0.2 pF    |
| Maximum Frequency for Full F  | Ratings (CW)               |            |   | . 110 MHz |

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **MECHANICAL**

| Maximum Overall Dimensions:                                             |                |
|-------------------------------------------------------------------------|----------------|
| Length                                                                  | 5 In; 23.81 cm |
| Diameter                                                                | 0 In; 19.25 cm |
| net weight                                                              | 2.8 Lb; 5.8 kg |
| Operating Position                                                      | ase Up or Down |
| maximum operating temperature, teramic/metal Seals or Envelope          | 250°C          |
| Cooling                                                                 | Forced Air     |
| base                                                                    | ial Concentric |
| Recommended Air-System Socket: For LF or HF Service                     | EIMAC SK-300A  |
| For VHF Service                                                         | EIMAC SK-360   |
| Recommended Air-System Chimney: For Either the SK-300A or SK-360 Socket | EIMAC SK-316   |
| Recommended Screen Grid Bypass Capacitor Kit for the SK-360 Socket      | EIMAC SK-355   |
| Available Anode Connector Clip                                          | EIMAC ACC-3    |
|                                                                         |                |

| RADIO FREQUENCY | POWER  | AMPLIFIER |
|-----------------|--------|-----------|
| Class C FM      |        |           |
| (Key-down condi | tions) |           |

#### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE . |  | 10,000 | VOLTS     |
|--------------------|--|--------|-----------|
| DC SCREEN VOLTAGE  |  |        |           |
| DC GRID VOLTAGE .  |  | -750   | VOLTS     |
| DC PLATE CURRENT . |  | 5.0    | AMPERES   |
| PLATE DISSIPATION  |  | 18     | KILOWATTS |
| SCREEN DISSIPATION |  |        |           |
| GRID DISSIPATION . |  | 200    | WATTS     |

#### TYPICAL OPERATION (Frequencies to 110 MHz)

| DC Plate | · Volt | age .  |    |   | • | • | • |   | • | 7.5  | 10.0 | k Vdc |
|----------|--------|--------|----|---|---|---|---|---|---|------|------|-------|
| DC Scree | en Vol | tage   |    |   |   |   |   |   |   | 750  | 750  | Vdc   |
| DC Grid  | Volta  | ige .  |    |   |   |   |   |   |   | -510 | -550 | Vdc   |
| DC Plate | e Curr | rent . |    |   |   |   | • |   |   | 4.65 | 4.55 | Adc   |
| DC Scree |        |        |    |   |   |   |   |   |   | 0.59 | 0.54 | Adc   |
| DC Grid  | Curre  | ent *  |    |   |   |   |   |   |   | 0.30 | 0.27 | Adc   |
| Peak rf  | Grid   | Volta  | ge | * |   |   |   |   |   | 730  | 790  | V     |
| Calculat |        |        |    |   |   |   |   |   |   | 220  | 220  | W     |
| Plate Di | ssipa  | tion   |    |   |   |   |   |   |   | 8.1  | 9.0  | kW    |
| Plate Ou |        |        |    |   |   |   |   |   |   | 26.7 | 36.5 | kW    |
|          |        |        |    |   | - | - |   | - | - |      |      |       |

\* Approximate value; will vary with circuit and tube

395035(Effective March 1986) VA4889

Printed in U.S.A.



| PLATE MODULATED RF POWER AMPLIFIER<br>Grid Driven                                                                                                                                                                                                    | TYPICAL OPERATION                                                                     |                                                |                                                        |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
| Class C Telephony - Carrier Conditions                                                                                                                                                                                                               | DC Plate Voltage DC Screen Voltage                                                    | 6.0<br>750                                     | 8.0<br>750                                             | k V d c<br>V d c                          |
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                                             | Peak AF Screen Voltage (100% Mod)<br>DC Grid Bias Voltage                             | 740<br>-600                                    | 710<br>-640                                            | v<br>Vdc                                  |
| DC PLATE VOLTAGE 8000 VOLTS DC SCREEN VOLTAGE 2000 VOLTS                                                                                                                                                                                             | DC Plate Current DC Screen Current *                                                  | 3.75<br>0.45                                   | 3.65<br>0.43                                           | Adc<br>Adc                                |
| DC GRID VOLTAGE750 VOLTS DC PLATE CURRENT 4.0 AMPERES PLATE DISSIPATION # . 12 KILOWATTS                                                                                                                                                             | DC Grid Current * Peak rf Grid Voltage * Grid Driving Power (calculated) *            | 0.18<br>800<br>150                             | 0.18<br>840<br>150                                     | Adc<br>v<br>W                             |
| SCREEN DISSIPATION ## 450 WATTS GRID DISSIPATION ## . 200 WATTS                                                                                                                                                                                      | Plate Dissipation * Plate Output Power *                                              | 5.1<br>17.4                                    | 5.8<br>23.5                                            | kW<br>kW                                  |
| # Corresponds to 18 kW at 100% sine-<br>wave modulation.                                                                                                                                                                                             | <ul><li>* Approximate value.</li><li>## Average, with or without modulation</li></ul> | n.                                             |                                                        |                                           |
|                                                                                                                                                                                                                                                      |                                                                                       |                                                |                                                        |                                           |
| AUDIO FREQUENCY AMPLIFIER OR MODULATOR<br>Grid Driven, Class AB1, Sinusoidal Wave                                                                                                                                                                    | TYPICAL OPERATION (two tubes)                                                         |                                                |                                                        |                                           |
| Grid Driven, Class AB1, Sinusoidal Wave                                                                                                                                                                                                              | DC Plate Voltage                                                                      |                                                | 10.0                                                   | k Vdc                                     |
| Grid Driven, Class AB1, Sinusoidal Wave ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                     | DC Plate Voltage                                                                      | 1500                                           | 1500                                                   | Vdc                                       |
| Grid Driven, Class AB1, Sinusoidal Wave                                                                                                                                                                                                              | DC Plate Voltage                                                                      |                                                |                                                        |                                           |
| Grid Driven, Class AB1, Sinusoidal Wave ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 10.0 KILOVOLTS DC SCREEN VOLTAGE 2000 VOLTS DC PLATE CURRENT 6.0 AMPERES                                                                                          | DC Plate Voltage                                                                      | 1500<br>-350<br>1.0<br>8.8                     | 1500<br>-370<br>1.0<br>8.5                             | Vdc<br>Vdc<br>Adc<br>Adc                  |
| Grid Driven, Class AB1, Sinusoidal Wave ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 10.0 KILOVOLTS DC SCREEN VOLTAGE 2000 VOLTS DC PLATE CURRENT 6.0 AMPERES PLATE DISSIPATION 18.0 KILOWATTS                                                         | DC Plate Voltage                                                                      | 1500<br>-350<br>1.0<br>8.8<br>0.34             | 1500<br>-370<br>1.0<br>8.5<br>0.30                     | Vdc<br>Vdc<br>Adc<br>Adc<br>Adc           |
| Grid Driven, Class AB1, Sinusoidal Wave  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 10.0 KILOVOLTS  DC SCREEN VOLTAGE 2000 VOLTS  DC PLATE CURRENT 6.0 AMPERES  PLATE DISSIPATION 18.0 KILOWATTS  SCREEN DISSIPATION 450 WATTS                       | DC Plate Voltage                                                                      | 1500<br>-350<br>1.0<br>8.8                     | 1500<br>-370<br>1.0<br>8.5                             | Vdc<br>Vdc<br>Adc<br>Adc                  |
| Grid Driven, Class AB1, Sinusoidal Wave ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 10.0 KILOVOLTS DC SCREEN VOLTAGE 2000 VOLTS DC PLATE CURRENT 6.0 AMPERES PLATE DISSIPATION 18.0 KILOWATTS SCREEN DISSIPATION 450 WATTS GRID DISSIPATION 200 WATTS | DC Plate Voltage                                                                      | 1500<br>-350<br>1.0<br>8.8<br>0.34<br>330<br>0 | 1500<br>-370<br>1.0<br>8.5<br>0.30<br>340<br>0<br>2520 | Vdc<br>Vdc<br>Adc<br>Adc<br>Adc<br>V<br>W |
| Grid Driven, Class AB1, Sinusoidal Wave  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE 10.0 KILOVOLTS  DC SCREEN VOLTAGE 2000 VOLTS  DC PLATE CURRENT 6.0 AMPERES  PLATE DISSIPATION 18.0 KILOWATTS  SCREEN DISSIPATION 450 WATTS                       | DC Plate Voltage                                                                      | 1500<br>-350<br>1.0<br>8.8<br>0.34<br>330      | 1500<br>-370<br>1.0<br>8.5<br>0.30<br>340              | Vdc<br>Vdc<br>Adc<br>Adc<br>Adc<br>V      |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.

| RANGE VALUES FOR EQUIPMENT DESIGN                              | Min. | Max.                      |
|----------------------------------------------------------------|------|---------------------------|
| Filament: Current at 7.5 volts                                 | 148  | 168 A                     |
| Interelectrode Capacitance (grounded filament connection)  Cin | 24   | 167 pF<br>29 pF<br>2.0 pF |

<sup>1</sup> Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Standard RS-191.



#### APPLICATION

#### MECHANICAL

MOUNTING - The tube must be mounted vertically, base up or down at the designer's convenience, and should be protected from vibration and shock.

STORAGE - If a tube is to be stored as a spare it should be kept in its original shipping carton, with the original packing material, to minimize the possibility of handling damage.

Before storage a new tube should be operated in the equipment for 100 to 200 hours to establish it has not been damaged and operates properly (See FILAMENT OPERATION for recommendations on initial value of filament voltage during this operation period). If the tube is still in storage 6 months later it again should be operated in the equipment for 100 to 200 hours to make sure there has been no degradation. If operation is satisfactory the tube can again be stored with great assurance of being a known-good spare.

SOCKETING - An air-system socket should be used in all applications to assure cooling of the tube base seals. The EIMAC SK-300A is recommended for audio or LF/HF rf operation; the SK-360 is recommended for VHF operation. The SK-360 incorporates low-inductance filament bypassing in the form of three 5000 pF copper-clad Kapton®capacitors. A screen grid bypass capacitor kit (the SK-355) is also available for the SK-360 socket, and includes eight 1000 pF 5000 DCWV capacitors (EIMAC P/N 050706), 16 mounting clips (EIMAC P/N 242859), and an assembly drawing (EIMAC P/N 243135) which shows how the parts are attached to the socket.

COOLING - The tube requires forced-air cooling in all applications. An air-system socket is recommended, with a matching air chimney. Normally the tube socket is mounted in a pressurized compartment so the cooling air passes through the socket and is then guided to the anode cooling fins by an air chimney. A chimney is available from EIMAC, the SK-316, for use with the SK-300A socket at frequencies below 30 MHz and with the SK-360 at VHF. If all cooling air is not passed around the base of the tube and through the socket, then arrangements must be made to assure adequate cooling of the tube base and the socket contacts themselves.

In this regard it should be noted the contact fingers used in the four contact collet assemblies (inner and outer filament, control grid and screen grid) are made of beryllium copper. If operated above 150°C for any appreciable length of time this material will lose its temper (or springy characteristic) and then will no longer make good contact to the base rings of the tube. This can lead to arcing which, in an extreme case, can burn through the metal of the tube base ring and the tube's vacuum integrity is then destroyed.

Thus adequate movement of cooling air around the base of the tube accomplishes a double purpose in keeping the tube base and the socket contact fingers at a safe operating temperature.

Though the maximum temperature rating for seals and the anode core is 250°C, it is considered good engineering practice to allow some safety factor

and the table shown is for sea level with cooling air at 50°C and maximum tube anode temperature of 225°C. Such a safety factor makes some allowance for variables such as dirty air filters, dirty tube anode cooling fins which will effect cooling efficiency, duct losses, etc. The figures shown are for the tube in an air-system socket with an air chimney in place, with air passing in a base-to-anode direction. Pressure drop values shown are approximate and are for the tube/socket/chimney combination.

| Plate Diss.      | Air Flow   | Press.Drop          |
|------------------|------------|---------------------|
| <u>(Watts)</u>   | _(cfm)     | <u>Inches Water</u> |
| 7,500            | 230        | 0.7                 |
| 12,500<br>15,000 | 490<br>645 | 2.7                 |
| 18,000           | 970        | 4.6<br>8.2          |
| 10,000           | 370        | 0.2                 |

At altitudes significantly above sea level flow rate must be increased for equivalent cooling. At 5000 feet both the flow rate and the pressure drop should be increased by a factor of 1.20, while at 10,000 feet both flow rate and pressure drop must be increased by 1.46.

Anode and base cooling should be applied before or simultaneously with filament voltage turnon and should normally continue for a brief period after shutdown to allow the tube to cool down properly.

IMPACT AND VIBRATION - The 9019/YC130 has a thoriated tungsten mesh filament and is intended for regular commercial service. Any tube with a thoriated tungsten filament should be protected from undue shock and vibration and if not installed in equipment should always be stored in its protective packing material in its shipping container.

#### ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.



FILAMENT OPERATION - With a new tube, or one which has been in storage for some period of time, operation with filament voltage only applied for a period of 30 to 60 minutes is recommended before full operation begins. This allows the active getter material mounted within the filament structure to absorb any residual gas molecules which have accumulated during storage. Once normal operation has been established a minimum filament warmup time of four to five seconds is normally sufficient.

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The voltage should then be increased a few tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked after 24 hours.

Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life.

EIMAC Application Bulletin #18 titled "EXTENDING TRANSMITTER TUBE LIFE" contains valuable information and is available on request.

GRID OPERATION - Maximum control grid dissipation is 200 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage. A protective spark-gap device should be connected between control grid and cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 450 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

PLATE DISSIPATION - The rated maximum plate dissipation of the tube is 18 kilowatts, which may be safely sustained with adequate air cooling. When the tube is used as a plate-modulated rf amplifier the dissipation under carrier conditions should be limited to 12 kilowatts.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and cooling air interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to help absorb power supply stored energy if an internal arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of #30 AWG copper wire. The wire will remain intact if protection is adequate.

EIMAC Application Bulletin #17 titled FAULT PROTECTION contains considerable detail and is available from EIMAC on request.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

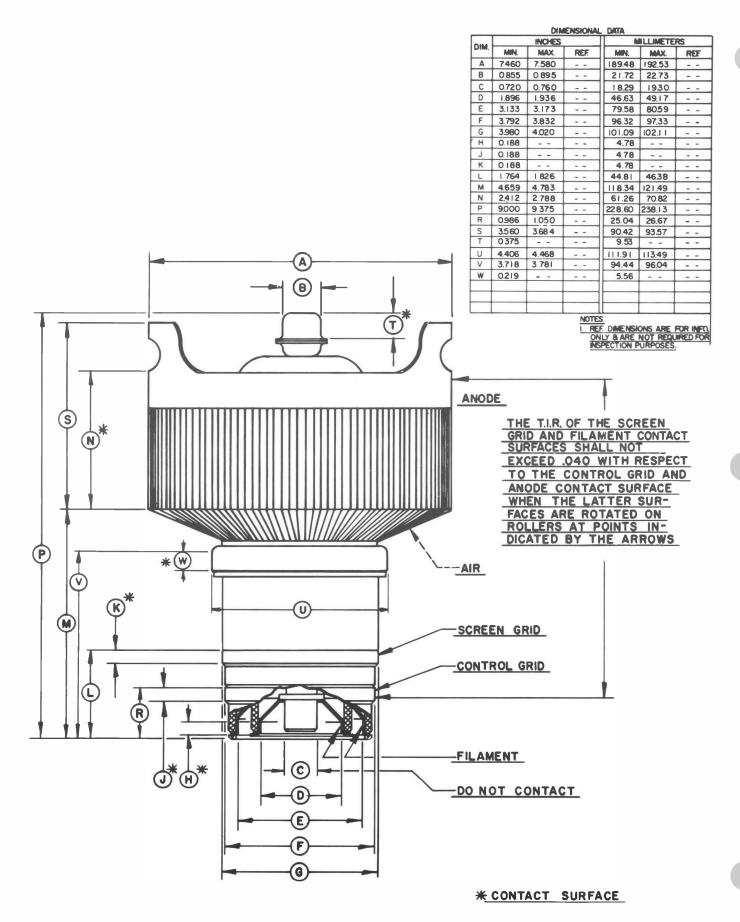
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of a specially constructed test fixture which shields all external tube leads or contacts from each other and eliminates any capacitance reading 'ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in the appliction. Measurements should be taken with the mounting which represents approximate final layout if capacitance values are highly significant in the design.

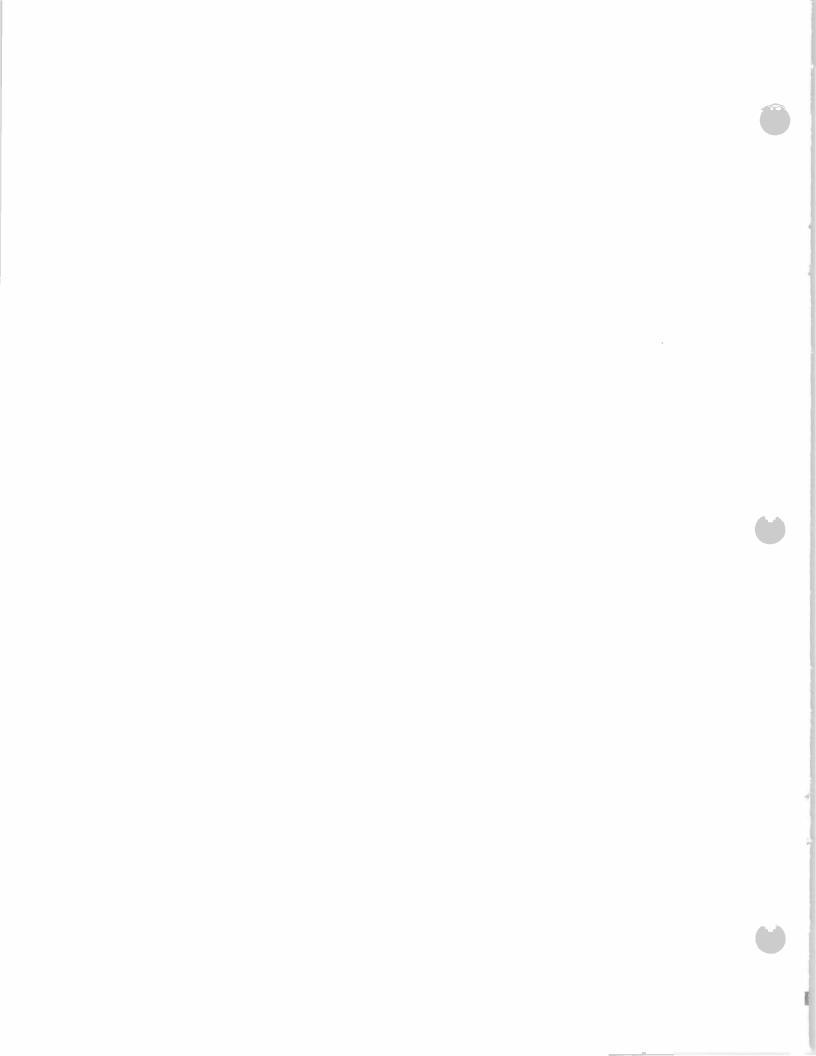
SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.



#### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:


- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.



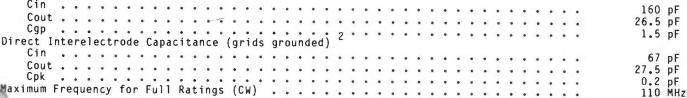








## ADVANCE PRODUCT ANNOUNCEMENT


PM3 9019 VHF **RADIAL BEAM POWER** TETRODE

The EIMAC 9019/YC130 is a ceramic/metal VHF power tetrode. It is rated for full power input to  $110\,$  MHz and is recommended for use as a Class C power amplifier or plate modulated amplifier.

Air-system sockets and matching air chimneys are available from EIMAC. A connector clip is available for making the dc connection to the anode.

### GENERAL CHARACTERISTICS 1

| Filament: Thoriated Tungsten Mesh                    |     |   |   |     |   |   |
|------------------------------------------------------|-----|---|---|-----|---|---|
|                                                      | 7.5 | + | 0 | .37 | 1 | 1 |
| Current, at 7.5 volts                                |     | - |   | 160 | F | 1 |
| Amplification Factor (average), Grid to Screen       | 2   |   |   | 4.5 |   |   |
| Direct Interelectrode Capacitance (cathode grounded) | 2   |   |   |     |   |   |
| Cin                                                  |     |   |   |     |   |   |
| Cout                                                 |     |   |   |     |   |   |



- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

### MECHANICAL

ELECTRICAL

| Maximum Overall Dimensions:                                             |                       |
|-------------------------------------------------------------------------|-----------------------|
| Length                                                                  | 9.375 In: 23.81 cm    |
| Diameter                                                                | 7.580 In; 19.25 cm    |
| net weight                                                              | 12.8 Lb; 5.8 kg       |
| Operating Position                                                      | ical, Base Up or Down |
| maximum Uperating Temperature, Ceramic/Metal Seals or Envelope          | 250°C                 |
| cooling                                                                 | Forced Air            |
| base                                                                    | Special Concentric    |
| Recommended Air-System Socket: For LF or HF Service                     | EIMAC SK-300A         |
| For VHF Service                                                         | EIMAC SK-360          |
| Recommended Air-System Chimney: For Fither the SK-300A or SK-360 Socket | EIMAC SK-316          |
| Recommended Screen Grid Bypass Capacitor Kit for the SK-360 Socket      | EIMAC SK-355          |
| Available Anode Connector Clip                                          | EIMAC ACC-3           |
|                                                                         |                       |

| ADIO FREQUENCY POWER AMPLIFIER                                                      | TYPICAL OPERATION (Frequencies to 110 MHz)                                                      |     |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|
| (Key-down conditions)                                                               | DC Plate Voltage 7.5 10.0 kV                                                                    | /dc |
| ABSOLUTE MAXIMUM RATINGS                                                            | DC Screen Voltage                                                                               | tc  |
| DC PLATE VOLTAGE 10,000 VOLTS DC SCREEN VOLTAGE 2000 VOLTS DC GRID VOLTAGE750 VOLTS | DC Screen Current *                                                                             | lc  |
| C PLATE CURRENT 5.0 AMPERES ATE DISSIPATION 18 KILOWATTS EN DISSIPATION 450 WATTS   | Calculated Driving Power 220 220 W Plate Dissipation 8.1 9.0 kW Plate Output Power 26.7 36.5 kW |     |

395035(Effective March 1986) VA4889

200 WATTS

ur. ID DISSIPATION . . .

Printed in U.S.A.

\* Approximate value; will vary with circuit and tube



### TECHNICAL DATA

\* 8973

WATER-COOLED POWER TETRODE

\* Previous designation was X-2170

The EIMAC 8973 is a ceramic/metal, water-cooled power tetrode designed for very-high-powered medium-frequency or high-frequency broadcast service and very-low-frequency communication in the half-megawatt power range.

The 8973 has a thoriated-tungsten mesh filament mounted on water-cooled supports. The maximum anode dissipation rating is 650 kilowatts steady state.

Large-diameter coaxial terminals are used for the control grid and the rf filament terminals. Filament power and filament support cooling-water connections are made through special couplings.



### GENERAL CHARACTERISTICS 1

### ELECTRICAL

| Filament: Thoriated-tungsten Mesh                   |                          |
|-----------------------------------------------------|--------------------------|
| Voltage                                             | $18.5 \pm 0.9 \text{ V}$ |
| Current at 18.5 V                                   | 650 A                    |
| Amplification Factor (Average), Grid to Screen      | 4.5                      |
| Direct Interelectrode Capacitance (grounded cathode | e): <sup>2</sup>         |
| Cin                                                 | 1000 pF                  |
| Cout                                                | 165 pF                   |
| С gp                                                | 5 pF                     |
|                                                     |                          |

Frequency of Operation: useful to 100 MHz.

- Characteristics and operating values are based upon performance tests. These figures may change without notice as
  the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this
  information for final equipment design.
- 2. Capacitance values shown are nominal, measured with no special shielding.

### MECHANICAL

| - 78 |             | O 11              | D'          |
|------|-------------|-------------------|-------------|
| 110  | Ovimiim     | [ [ 177 🗅 4 7 ] ] | limonatona' |
| TA   | Idaliiiulii | UVELAII           | Dimensions: |

| Length             | 18.75 in; 47.62 cm   |
|--------------------|----------------------|
| Diameter           | 17.03 in; 43.26 cm   |
| Net Weight         | 153 lbs; 69.5 kg     |
| Operating Position | Vertical, base down  |
| Cooling            | Water and Forced Air |
| Base Terminals     | Special              |

(Effective 7-1-78) © 1978 by Varian

Printed in U.S.A.

| Recommended Filament Connectors ( Filament Power/Water Connector Filament rf Connector (1 required Recommended Anode Cooling Water ( Note: 2 SK-2320 or SK-2321 conn Complete fitting, with knurled nut 20-inch length canvas hose, coron pipe fitting to mate to rigid pipe. | (2 required))                                             | t supplied with tube): sired per tube. electrolytic target, 2-1/2-inch female                                                                        | EIMAC SK-2310<br>EIMAC SK-2315                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Fitting similar to SK-2320 but doe                                                                                                                                                                                                                                            |                                                           |                                                                                                                                                      |                                                             |
| of canvas hose and pipe fitting                                                                                                                                                                                                                                               |                                                           | 9                                                                                                                                                    | EIMAC SK-2321                                               |
| Maximum Operating Temperature: Envelope, and Ceramic/Metal Sea                                                                                                                                                                                                                | ıls                                                       |                                                                                                                                                      | 200 ℃                                                       |
| RADIO FREQUENCY LINEAR AMPLIFIER                                                                                                                                                                                                                                              |                                                           | TYPICAL OPERATION (Frequencies to<br>Class AB1, Peak Envelope Condition                                                                              |                                                             |
| GRID DRIVEN Class AB                                                                                                                                                                                                                                                          |                                                           | •                                                                                                                                                    |                                                             |
| ABSOLUTE MAXIMUM RATINGS.  DC PLATE VOLTAGE                                                                                                                                                                                                                                   | KILOVOLTS<br>KILOVOLTS                                    | Plate Voltage Screen Voltage Grid Voltage 1 Zero Signal Plate Current Single Tone Plate Current Single Tone Screen Current 2 Peak rf Grid Voltage 2. | 1500 Vdc<br>360 Vdc<br>10 Adc<br>45 Adc<br>2.0 Adc<br>360 v |
|                                                                                                                                                                                                                                                                               | AMPERES<br>KILOWATTS                                      | Plate Dissipation                                                                                                                                    | $\ldots$ 264 $\Omega$                                       |
|                                                                                                                                                                                                                                                                               | KILOWATTS<br>KILOWATTS                                    | <ol> <li>Adjust to specified zero-signal p</li> <li>Approximate value.</li> </ol>                                                                    | plate current.                                              |
| RADIO FREQUENCY POWER AMPLIFIER OF                                                                                                                                                                                                                                            | R                                                         | TYPICAL OPERATION (Frequencies to                                                                                                                    | o 30 MHz)                                                   |
| OSCILLATOR Class C Telegraphy or FM (Key-down Conditions)                                                                                                                                                                                                                     |                                                           | Plate Voltage                                                                                                                                        | 2.5 Vdc                                                     |
| ABSOLUTE MAXIMUM RATINGS:                                                                                                                                                                                                                                                     |                                                           | Grid Voltage                                                                                                                                         | 63 Adc                                                      |
| DC SCREEN VOLTAGE 2.5 k DC PLATE CURRENT                                                                                                                                                                                                                                      | KILOVOLTS KILOVOLTS AMPERES KILOWATTS KILOWATTS KILOWATTS | Grid Current 1 Calculated Driving Power Plate Dissipation 1. Plate Load Resistance Plate Power Output  1. Approximate value.                         | $3.5$ Adc $3.5$ kW $273$ kW $166$ $\Omega$                  |



# PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER Class C Telephony

(Carrier Conditions)

DC PLATE VOLTAGE

#### ABSOLUTE MAXIMUM RATINGS

| DO TEATE VOLINGE   |     | 1.5 KILOVOLIS |
|--------------------|-----|---------------|
| DC SCREEN VOLTAGE  |     | 2.0 KILOVOLTS |
| DC PLATE CURRENT   |     | 50 AMPERES    |
| PLATE DISSIPATION  | 4   | 00 KILOWATTS  |
| SCREEN DISSIPATION |     | 7.5 KILOWATTS |
| GRID DISSIPATION   | . 2 | 2.0 KILOWATTS |

175 KILOVOLTS

### TYPICAL OPERATION (Frequencies to 30 MHz)

| _                             |      |      |
|-------------------------------|------|------|
| Plate Voltage                 | 17.5 | kVd  |
| Screen Voltage                | 800  | Vdc  |
| Grid Voltage                  | -800 | Vdc  |
| Plate Current                 | 50   | Adc  |
| Screen Current I              | 4    | Adc  |
| Grid Current I                | 2.2  | Adc  |
| Pk. Screen Voltage (100% Mod) | 800  | V    |
| Pk. rf Grid Voltage           | 1060 | V    |
| Calculated Driving Power      | 2400 | W    |
| Plate Dissipation             | 175  |      |
| Plate Load Resistance         | 165  |      |
| Plate Output Power            | 700  |      |
| 1. Approximate value          | ,00  | 1/44 |

## AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB

### ABSOLUTE MAXIMUM RATINGS (per tube).

| DC PLATE VOLTAGE   | 22.5 | <b>KILOVOLTS</b> |
|--------------------|------|------------------|
| DC SCREEN VOLTAGE  | 2.5  | <b>KILOVOLTS</b> |
| DC PLATE CURRENT   | 65   | <b>AMPERES</b>   |
| PLATE DISSIPATION  | 650  | KILOWATTS        |
| SCREEN DISSIPATION | 7.5  | KILOWATTS        |
| GRID DISSIPATION   | 2.0  | <b>KILOWATTS</b> |

- 1. Adjust for stated zero-signal plate current.
- 2. Approximate value.

### TYPICAL OPERATION Two Tubes - Sinusoidal Wave

| Plate Voltage                   | 17.5 | kVdc |
|---------------------------------|------|------|
| Screen Voltage                  | 1500 | Vdc  |
| Grid Voltage 1                  | -400 | Vdc  |
| Zero Signal Plate Current       | 5    | Adc  |
| Max. Signal Plate Current       | 78   | Adc  |
| Max Signal Screen Current 2     | 2.8  | Adc  |
| Pk. Audio Freq. Grid Voltage 3  | 370  | V    |
| Max. Signal Plate Dissipation 3 | 550  | kW   |
| Plate Plate Load Resistance     | 444  | Ω    |
| Plate Output Power 4            | 950  | kW   |

- 3. Per Tube.
- 4. Suitable to modulate a carrier power of 1.25 Megawatts.

NOTE: TYPICAL OPERATION data are obtained by calculation from the published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power then the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

### APPLICATION

### MECHANICAL

MOUNTING - The 8973 must be mounted vertically, base down. The full weight of the tube should rest on the main screen-grid contact flange at the base of the tube, and all lifting of the tube should be done with the lifting eye which is attached to the top of the anode cooling jacket.

COOLING - Minimum cooling water requirements for the anode are shown in the table, for an outlet water temperature not to exceed 70°C and an inlet water temperature of 50°C. System pressure should not exceed 100 psi. High-purity water must be used to minimize power loss, corrosion of metal fittings, and loss of anode dissipation capability. Water resistivity must be maintained at 1 megohm/cm (at 25°C) or better for long-term

operation. EIMAC Application Bulletin #16 should be consulted for details on maintenance of water quality standards and use of a water purification loop in the installation. Since the anode is normally at high potential to ground, water connections to the anode are made through insulating tubing, with long enough sections that column resistance is above 4 megohms per 1000 plate supply volts, or 10 megohms total, whichever is less.

| Anode       | Water | Apprx. Jacket |
|-------------|-------|---------------|
| Dissipation | Flow  | Press. Drop   |
| (kW)        | (gpm) | (psi)         |
| 250         | 120   | 20            |
| 450         | 165   | 30            |
| 650         | 200   | 40            |



The tube base requires air cooling, with a minimum of 50 cfm of air at 50°C maximum at sea level, directed toward the base seal areas from a general purpose fan.

Water cooling of the filament and screen grid supports is also required, with inlet water temperature not to exceed 50°C. Each of the 2 filament connectors includes both an inlet and outlet line, with the proper section for the inlet water shown on the outline drawing. Minimum flow for the F1 connector is 2.0 gpm, at an approximate pressure drop of 12 psi. Minimum flow for the F2 connector is 4.0 gpm, at an approximate pressure drop of 50 psi. The screen grid cooling water is fed by means of 1'4-18 NPT tapped holes shown on the outline drawing, with a minimum flow of 2.0 gpm required, at an approximate pressure drop of 12 psi.

All cooling must be applied before or simultaneously with the application of electrode voltages, including the filament, and should be maintained for at least two minutes after all voltages are removed to allow for tube cooldown.

As regards base air cooling, temperatures of the ceramic/metal seals and the lower envelope areas are the controlling and final limiting factor. Temperature-sensitive paints are available for use in checking temperatures in these areas before equipment design and air-cooling arrangements are finalized.

### ELECTRICAL

FILAMENT OPERATION - Filament turn-on and turn-off should be programmed in accordance with a special procedure. Filament voltage should be smoothly increased from zero to the operating level over a period of two minutes, and a motor-driven VARIAC or POWERSTAT is suggested. Inrush current must never be allowed to exceed twice the normal operating current. Turnoff procedure should be a smooth decrease from the operating voltage to zero over a period of two minutes, such as would be provided by a motor-driven VARIAC, POWERSTAT or solid-state regulator circuit.

Filament voltage should be measured at the tube base with an accurate meter. When operating at the nominal voltage, variations of  $\pm 5\%$  are tolerable and should have little effect on the electrical performance of the tube. When very long life and consistent performance are factors, the filament voltage can often be reduced to a lower value than the nominal, but should be regulated and held to  $\pm 1\%$  when this is done. To achieve a regulated voltage and still have it adjustable a typical procedure would involve a one-to-one regulating transformer

feeding a variable-ratio transformer, which in turn feeds the filament transformer. The equipment is first operated with nominal filament voltage, and when stable operation is achieved the voltage is then reduced in small steps, until a point is reached where performance of the tube is clearly affected. The voltage is then raised a few tenths of a volt above this level for operation. Periodically the procedure should be repeated and the operating value of filament voltage readjusted if necessary. This value is normally 16.5 to 17.0 volts rms (initially).

Where hum is an important system consideration it may be necessary to operate the filaments with dc rather than ac power, or provide suitable hum-bucking circuits.

Care should be exercised to keep any rf power out of the filament of the tube, as this can cause excessive operating temperatures. A HEWLETT-PACKARD Vector Impedance meter is useful in detecting the presence of impedance that will support rf buildups in the filament "backcavity" circuit.

VACION PUMP OPERATION - The tube is supplied with an ion pump and magnet, mounted inside the filament structure at the base (stem). A power supply (Varian Part #921-0015) and 8-foot cable (Varian Part #924-0020) are required for operation.

It is recommended that the VACION pump be operated continuously if possible; otherwise it should be operated at least once a year until the indicator meter shows  $1.0 \mu A$  or less of current.

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation, load variation, or manufacturing variations in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

GRID OPERATION - The 8973 control grid is rated at 2000 watts of dissipation. Protective measures should be included in the circuitry to insure that this rating is not exceeded. Control grid



dissipation is the approximate product of the dc grid current and peak positive grid voltage.

SCREEN GRID OPERATION - Base cooling (air and water) must be on and at the correct level before tube operation is started. The power applied to the screen grid must not exceed 7500 watts. Where no ac is applied to the screen, dissipation is the product of dc screen voltage and dc screen current. With screen modulation the dissipation is the product of rms screen current and rms screen voltage.

Plate voltage, plate load, or grid bias voltage must never be removed while filament and screen voltages are present since the screen dissipation rating will be exceeded. Suitable protective circuitry must be provided to remove screen power in case of such a fault condition. Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design and operating conditions. The screen supply voltage must be maintained constant for any values of negative or positive screen currents that may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished by use of a shunt regulator circuit in the screen voltage supply, bleeder resistors, or other suitable techniques.

PLATE OPERATION - The maximum dissipation rating of the 8973 is 650 kilowatts with water cooling. When used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 400 kilowatts.

Specified anode dissipation ratings assume 10 kilovolts maximum anode voltage during conduction. If full rated dissipation at a tube drop greater than this value for periods greater than 200 milliseconds is desired, contact EIMAC's Power Grid Tube Application Engineering Office.

FAULT PROTECTION - To assure nondestruction of tube elements from high-energy power supplies, during a fault condition, all supplies must be checked for proper operation of their protective circuits. An approved method to meet the tube protection criteria would be the use of foil, solder wire, or small diameter wire to produce a controlled short on the power supply. The simplest technique is to short the plate to cathode, screen grid to cathode, control grid to cathode, and screen grid to anode (individually, one at a time) using a vacuum relay through a section of #30 AWG copper wire, which should be approximately inches long.

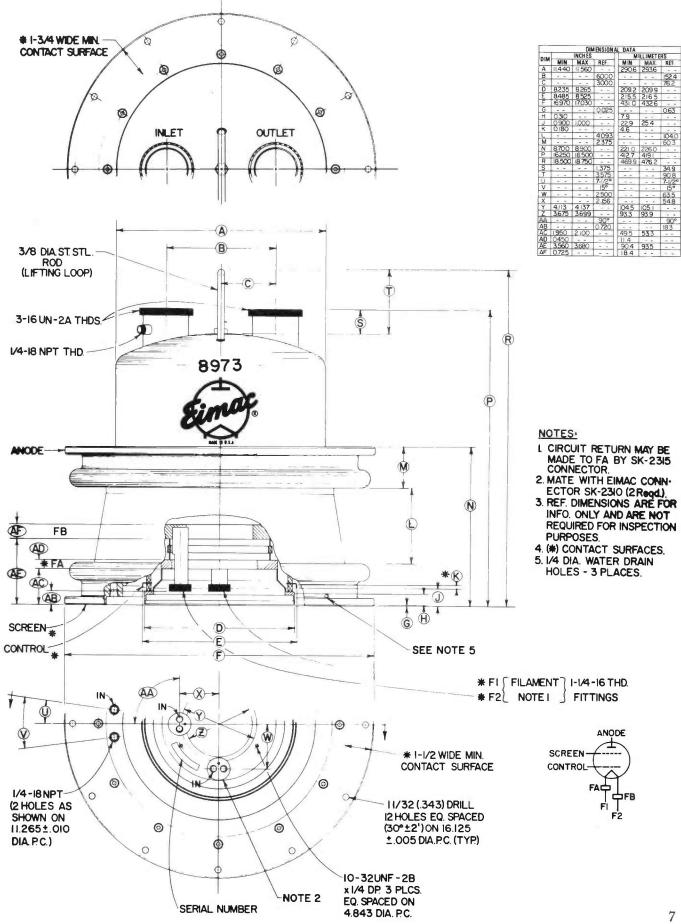
The wire will remain intact if the power supply protective circuitry is operating properly. An electronic crowbar will be required on the anode supply, and may be required on the other electrode supplies if the test outlined above is not passed. See ElMAC Application Bulletin #17 for further details.

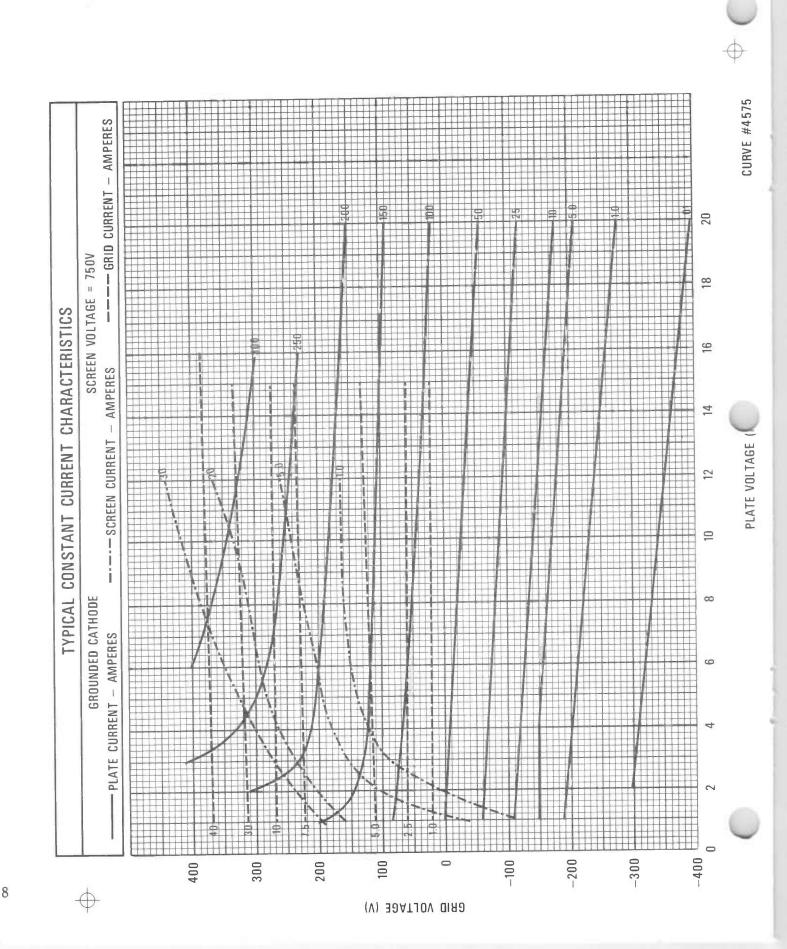
Properly rated spark gaps should be located between the screen grid and cathode, and between the control grid and cathode, to meet over-voltage protection criteria. A series resistance of 10 to 50 ohms is recommended in the screen and control grid power supply leads.

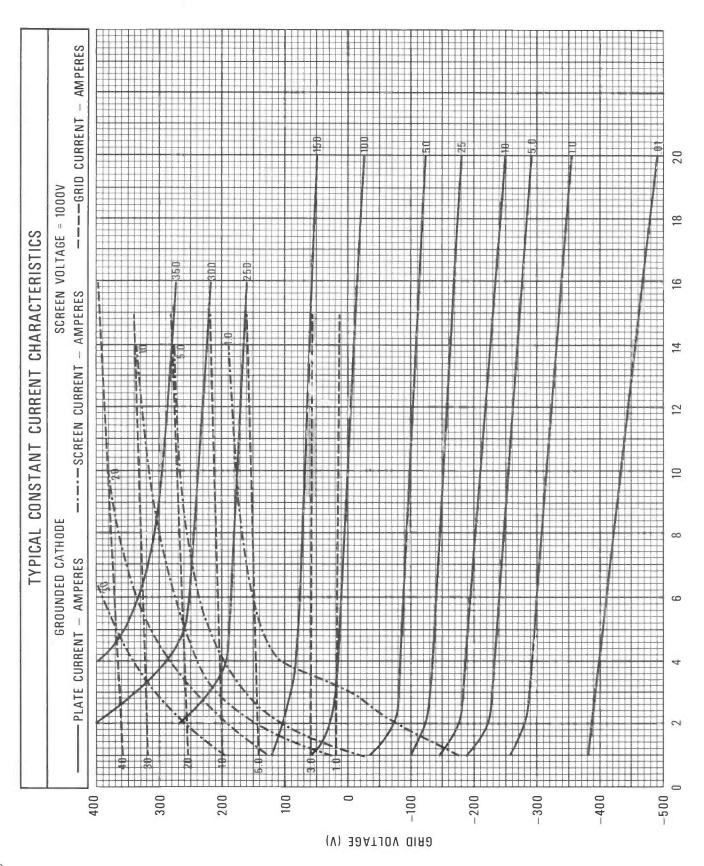
HIGH VOLTAGE - Normal operating voltages used with the 8973 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

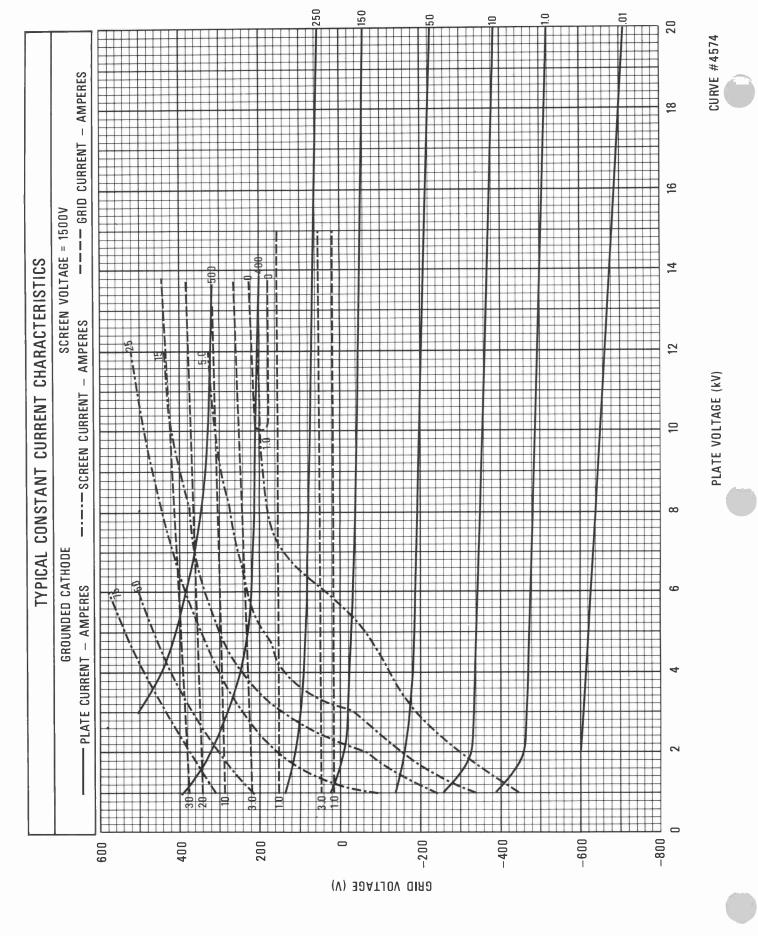
LOAD VSWR - The load VSWR should be monitored and the detected signal used to operate the interlock system to remove the plate voltage within 20 milliseconds after a fault occurs. In the case of high stored energy in the load system, care must be taken to avoid excessive return energy from damaging the tube and associated circuit components.

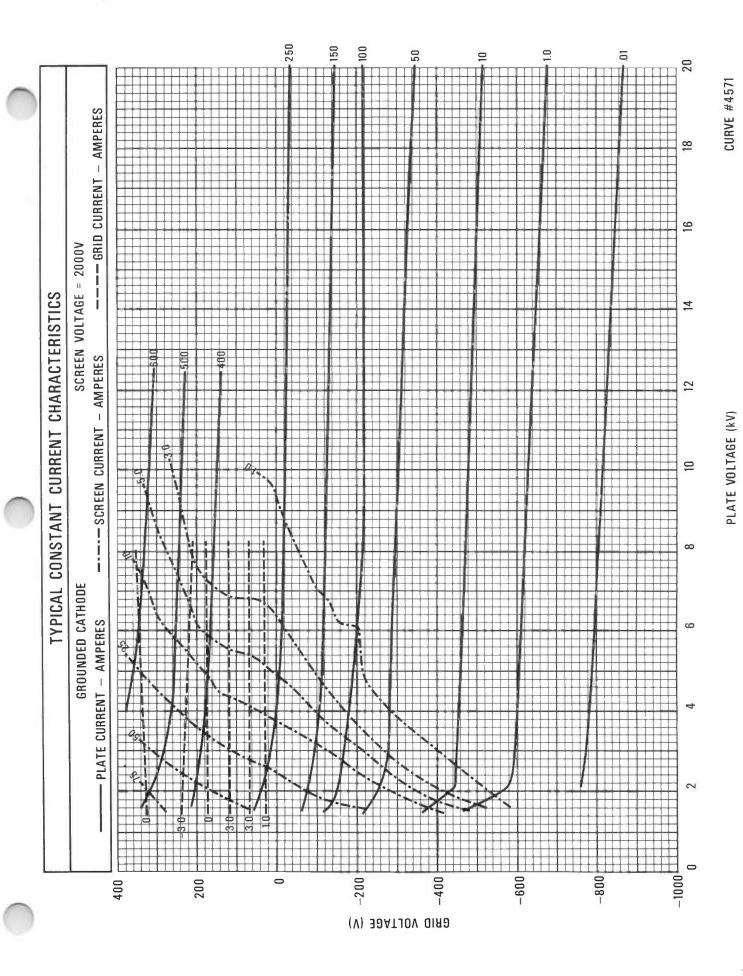
X-RADIATION - High-vacuum tubes operating at voltages in excess of 15 kilovolts produce progressively more dangerous X-Radiation as the voltage is increased. The 8973, operating at its rated voltages and currents, is a potential X-Ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-Radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-Ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-Radiation level should be made, and the tube should never be operated without adequate shielding in place when voltages above 15 kilovolts are in use. Lead glass, which attenuates X-Radiation, is available for viewing windows. If there is any doubt as to the requirements for or the adequacy of shielding, an expert in this field should be contacted to perform an X-Radiation survey of

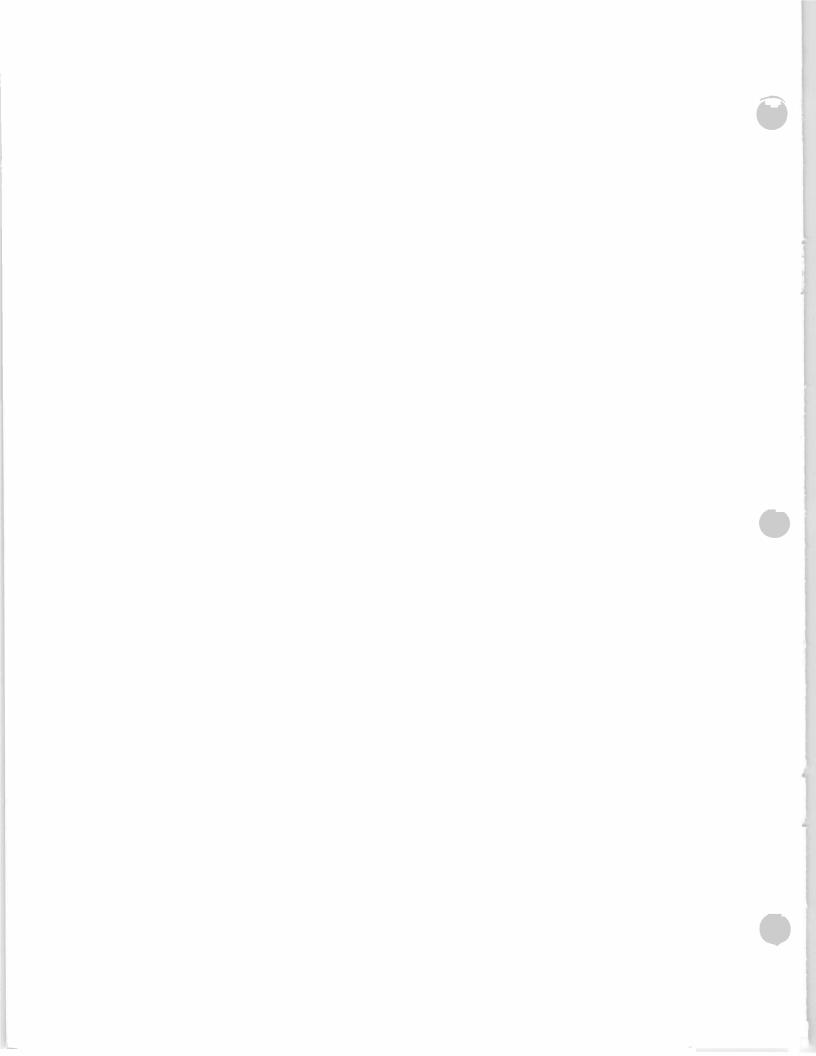

the equipment.


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-Radiation exposure.


RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


ELECTRODE RF TUNING CHARACTERISTICS - Typical electrode tuning characteristics may be obtained by contacting the EIMAC Power Grid Tube Application Engineering Office.


SPECIAL APPLICATIONS - Where it is desired to operate this tube under conditions widely different from those listed here, write to: Product Line Manager, High Power Tubes, Varian EIMAC Division, 301 Industrial Way, San Carlos, CA 94070.
















### TECHNICAL DATA

The EIMAC 8974 is a ceramic/metal, water-cooled power tetrode designed for very-high-power medium and high frequency broadcast service in the megawatt power range.

The 8974 has a two-section thoriated-tungsten mesh filament mounted on water-cooled supports. The two sections may be fed from an ac or dc power source. The maximum anode dissipation rating is 1500 kilowatts steady state.

Large-diameter coaxial terminals are used for the control grid and the rf filament terminals. Filament power and filament support cooling-water connections are made through three special connectors. Anode cooling water connections are made with available hand-tightened fittings with 0-ring seals.

### GENERAL CHARACTERISTICS 1

### ELECTRICAL

| Filament: Thoriated-tungsten Mesh, two-section                     | 20 · 40                      |
|--------------------------------------------------------------------|------------------------------|
| Voltage, per section (See FILAMENT OPERATION note)                 | <br>$18.5 \pm 0.9 \text{ V}$ |
| Current @ 18.5 volts, per section (nominal)                        | <br>650 A                    |
| Maximum Frequency for Full Ratings (CW)                            | <br>30 MHz                   |
| Amplification Factor, Average, Grid to Screen                      | <br>4.5                      |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |                              |
| Cin                                                                | <br>1600 pF                  |
| Cout                                                               | <br>260 pF                   |
| Cgp                                                                | <br>7.5 pF                   |
| Direct Interelectrode Capacitances (grounded grid) <sup>2</sup>    |                              |
| Cin                                                                | <br>690 pF                   |
| Cout                                                               | <br>265 pF                   |
| Cpk                                                                | <br>1.5 pF                   |

- 1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. VARIAN EIMAC should be consulted before using this information for final equipment design.
- 2. Capacitance values shown are nominal, measured with no special shielding, in accordance with Electronic Industries Association Standard RS-191.

#### MECHANICAL

| Net Weight                                                          | 175 lb; 80 kg          |  |  |  |
|---------------------------------------------------------------------|------------------------|--|--|--|
| Operating Position                                                  | Vertical, Base Down    |  |  |  |
| Cooling                                                             | Water and Forced Air   |  |  |  |
| Maximum Overall Dimensions:                                         |                        |  |  |  |
| Length                                                              | 25.50 in; 64.78 cm     |  |  |  |
| Diameter                                                            | 17.03 in; 43.26 cm     |  |  |  |
| Maximum Operating Temperature, Envelope and Ceramic/Metal Seals     | 200 °C                 |  |  |  |
| Recommended Filament Power Connector (not supplied with tube):      |                        |  |  |  |
| Filament Power/Water Connector (3 required)                         | EIMAC SK-2310          |  |  |  |
| Filament rf Connector (1 required)                                  | EIMAC SK-2315          |  |  |  |
| Recommended Anode Cooling Water Connectors (not supplied with tube) | EIMAC SK-2320, SK-2321 |  |  |  |
| Note: 2 connectors are required per tube                            | SK-2322 or SK-2323     |  |  |  |

396300 (Effective March 1986 - supersedes March 1984) VA4896

Printed in U.S.A.



| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN                                                                                                                                                                                                                                                                                                                                                             | TYPICAL OPERATION (Frequencies to 30 MHz) CLASS AB1, Peak Envelope Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class AB  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 22.5 KILOVOLTS DC SCREEN VOLTAGE 2.0 KILOVOLTS DC GRID VOLTAGE 125 AMPERES PLATE DISSIPATION 1500 KILOWATTS SCREEN DISSIPATION 15 KILOWATTS GRID DISSIPATION 4.0 KILOWATTS                                                                                                                                                                         | Plate Voltage         20.0 kVdc           Screen Voltage         1500 Vdc           Grid Voltage         -380 Vdc           Zero Signal Plate Current         20 Adc           Single Tone Plate Current         86.5 Adc           Single Tone Screen Current         3.8 Adc           Peak rf Grid Voltage         380 v           Plate Dissipation         505 kW           Plate Load Resistance         132.2 Ohms           Plate Power Output         1225 kW           Efficiency         70.8 %           * Approximate value.           ** Adjust for specified value of zero-signal plate current.                                     |
| RADIO FREQUENCY POWER AMPLIFIER Class C Telegraphy or FM (Key-down Conditions)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE KILOVOLTS DC SCREEN VOLTAGE KILOVOLTS DC GRID VOLTAGE                                                                                                                                                                                                                        | TYPICAL OPERATION (Frequencies to 30 MHz)         Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE 17.5 KILOVOLTS DC SCREEN VOLTAGE 2.0 KILOVOLTS DC GRID VOLTAGE2.0 KILOVOLTS DC PLATE CURRENT 100 AMPERES PLATE DISSIPATION 1000 KILOWATTS SCREEN DISSIPATION 15 KILOWATTS GRID DISSIPATION 4.0 KILOWATTS  * Approximate value # 1500 kW at 100% sine-wave modulation | TYPICAL OPERATION (Frequencies to 30 MHz)         Plate Voltage       17.5 kVdc         Screen Voltage       1000 Vdc         Grid Voltage       -1000 Vdc         Plate Current       95 Adc         Screen Current *       8 Adc         Grid Current *       4.4 Adc         Peak Screen Voltage (100% modulation)       1000 v         Peak rf Grid Driving Voltage *       1280 v         Calculated Driving Power       6465 W         Plate Dissipation *       279 kW         Screen Dissipation *       2.05 kW         Plate Load Resistance       85.6 Ohms         Plate Output Power *       1384 kW         Efficiency *       83.3 % |
| AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR Class AB  ABSOLUTE MAXIMUM RATINGS (per tube):  DC PLATE VOLTAGE 22.5 KILOVOLTS DC SCREEN VOLTAGE2.0 KILOVOLTS DC GRID VOLTAGE2.0 KILOVOLTS DC PLATE CURRENT 125 AMPERES PLATE DISSIPATION 1500 KILOWATTS SCREEN DISSIPATION 15 KILOWATTS GRID DISSIPATION 4.0 KILOWATTS  * Approximate value.  ** Adjust for stated zero-signal plate cur                  | TYPICAL OPERATION (Two Tubes - Sinusoidal wave)  Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| RADIO FREQUENCY POWER AMPLIFIER Doherty Amplifier Service | Carrier Tube - Carrier Conditions                        |
|-----------------------------------------------------------|----------------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS:                                 | Plate Voltage 19.0 kVdc                                  |
| ADSOLUTE MAXIMUM KATINGS:                                 |                                                          |
| DC PLATE VOLTAGE 22.5 KILOVOLTS                           |                                                          |
| DC SCREEN VOLTAGE 2.5 KILOVOLTS                           |                                                          |
|                                                           | Screen Current *                                         |
| DC GRID VOLTAGE2.0 KILOVOLTS DC PLATE CURRENT 125 AMPERES | Plate Current                                            |
|                                                           | Peak Grid Driving Voltage * 443 v                        |
| PLATE DISSIPATION 1500 KILOWATTS                          | Grid Driving Power * 65 W                                |
| SCREEN DISSIPATION 15 KILOWATTS                           | Plate Power Output * 1380 kW                             |
| GRID DISSIPATION 4 KILOWATTS                              | Plate Dissipation * 510 kW                               |
|                                                           | Plate Efficiency *                                       |
| TYPICAL OPERATION (Frequencies to 30 MHz)                 | Plate Load Resistance 102 Ohms                           |
|                                                           | Carrier Tube - Peak of Modulation                        |
| Peak Tube - Peak of Modulation                            |                                                          |
|                                                           | Peak Grid Drive Voltage * 668 v                          |
| Plate Voltage 19.0 kVdc                                   | Peak Grid Driving Power * 1090 w                         |
| Screen Voltage 1600 Vdc                                   | Plate Power Output * 2750 kW                             |
| Grid Voltage *1.8 kVdc                                    | Plate Load Resistance 51.5 Ohms                          |
| Peak Grid Drive Voltage * 2220 v                          |                                                          |
| Peak Grid Drive Power * 10 kw                             | Actual Load Resistance at Combining Point = 25.7 Ohms    |
| Peak Plate Power Out * 2750 kw                            | Screen dissipation averaged over a sinusoidal modulation |
| Plate Load Resistance 51.5 Ohms                           | cycle - Modulation Index 1                               |
|                                                           | Carrier Tube 14.0 kW                                     |
| * Approximate value.                                      | Peak Tube 8.5 kW                                         |
|                                                           |                                                          |

TYPICAL OPERATION values are obtained by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltages in the presence of the current variations.

| RANGE VALUES FOR EQUIPMENT DESIGN Filament Current, Per Section, at 18.5 Volts ac | Min.<br>600 | Max.<br>700 | <u>Unit</u><br>Aac |
|-----------------------------------------------------------------------------------|-------------|-------------|--------------------|
| Interelectrode Capacitance (grounded cathode) $^{ m 1}$                           |             |             | _                  |
| Cin                                                                               | 1525        | 1675        | pΕ                 |
| Cout                                                                              | 230         | 290         | рF                 |
| Cgp                                                                               |             | 10          | рF                 |
| Interelectrode Capacitance (grounded grid) <sup>1</sup>                           |             |             |                    |
| Cin                                                                               | 650         | 730         | pF                 |
| Cout                                                                              | 235         | 295         | ρF                 |
| Cpk                                                                               |             | 2.5         | pF                 |

<sup>1</sup> Measured with no special shielding, in accordance with Electronic Industries Association Standard RS-191.



### APPLICATION

#### MECHANICAL

INITIAL UNPACKING - To insure the safety of the tube, the following unpacking instructions should be followed:

- The shippping crate is opened by removing the four hex-head bolts just above the carrying handles.
- Attach a lifting hoist to the lifting loop and raise slightly to support the weight of the tube.
- 3. Remove 8 bolts securing the mounting brackets to the corner flanges.
- Lift the tube and place on blocks or on a stand so that its weight is supported by the lower flange.
- Remove the mounting brackets from the tube by removing the eight hex bolts and nuts.

MOUNTING - The 8974 must be mounted vertically, base down. The full weight of the tube should rest on the screen-grid contact flange at the base of the tube, and all lifting of the tube should be done with the lifting eye which is attached to the top of the anode cooling jacket.

ANODE COOLING - Tube life can be seriously compromised by cooling water condition. If it becomes contaminated, deposits will form on the inside of the water jacket, causing localized anode heating and eventual tube failure. To insure minimum electrolysis and power loss, the water resistance at 25 Deg C should always be one megohm per cubic centimeter or higher. Relative water resistance can be continuously monitored in the reservoir by readily available instruments.

Minimum water flow requirements for the anode are shown in the table for an outlet water temperature not to exceed  $70\,^{\circ}\text{C}$  and with an inlet water temperature of  $50\,^{\circ}\text{C}$ . System pressure should not exceed  $100\,^{\circ}\text{psi}$ .

| Anode<br>Dissipation<br>(kW) | Water<br>Flow<br>(gpm) | Approx.Jacket<br>Press. Drop<br>(psi) |
|------------------------------|------------------------|---------------------------------------|
| Fil.Only                     | 35                     | 5                                     |
| 500                          | 130                    | 25                                    |
| 1000                         | 250                    | 75                                    |
| 1500                         | 300                    | 100                                   |

High velocity water flow is required to maintain high thermal efficiency. Cooling water must be well filtered, with effectivness the equivalent of a 100-mesh screen, to eliminate any solid material and avoid the possibility of blockage of any cooling passages, as this would immediately affect cooling efficiency and could produce localized anode overheating and failure of the tube.

EIMAC Application Bulletin #16, WATER PURITY RE-QUIREMENTS IN LIQUID COOLING SYSTEMS, is available on request, and contains considerable detail on purity requirements and maintenance systems.

BASE COOLING - The tube base requires air cooling with a minimum of 50 cfm of air at 50°C maximum at sea level, directed toward the base seal areas from a general purpose fan. At higher frequencies considerably greater flow may be required. It should be noted that temperatures of the ceramic/

metal seals and the lower envelope areas are the controlling and final limiting factor.

Temperature-sensitive paints are available for use in checking temperatures in these areas before equipment design and air-cooling arrangements are finalized. Additional detail is given in EIMAC Application Bulletin #20, available on request.

Water cooling of the filament and screen grid supports is also required, with inlet water temperature not to exceed 50°C. Each of the three filament connectors includes both an inlet and an outlet line, with the proper connector for the inlet water shown on the tube outline drawing. Minimum flow for the F1 and F3 connectors is 1.0 gpm, at an approximate pressure drop of 15 psi. Minimum flow for the F2 connector is 4.0 gpm, at an approximate pressure drop of 55 psi. The screen grid cooling water is fed by means of 1/4-18 NPT tapped holes shown on the tube outline drawing, with a minimum flow of 2.0 gpm required, at an approximate pressure drop of 25 psi.

ALL COOLING MUST BE APPLIED BEFORE OR SIMULTANE-OUSLY WITH THE APPLICATION OF ELECTRODE VOLTAGES, INCLUDING THE FILAMENT, AND SHOULD NORMALLY BE MAINTAINED FOR SEVERAL MINUTES AFTER ALL VOLTAGES ARE REMOVED TO ALLOW FOR TUBE COOLDOWN.

#### ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supplyvoltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

FILAMENT OPERATION - Filament turn-on and turn-off should be programmed. Filament voltage should be smoothly increased from zero to the operating level over a period of two minutes, and a motor-driven continuously variable autotransformer (such as a VARIAC® or a POWERSTAT®) is suggested. Inrush current must never be allowed to exceed twice normal operating current. Normal turnoff procedure should be a smooth decrease from the operating voltage to zero over a period of two minutes.

Filament life will be substantially improved if the filament is maintained at a standby voltage of 3.5 to 4.0 volts per section when the tube is not in use. It is recommended the filament be cycled up from and down to this standby level (rather than to 0 volts) in the manner indicated above in order to maximize filament life. A minimum cooling water flow of at least 1.0 gpm is required through all cooling circuits (including the anode) during standby operation.

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in

filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The filament voltage should then be increased several tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked after 24 hours. Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations. A filament voltage of 17.5 volts per section is adequate for most applications.

Filament voltage should be measured at the tube base, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for voltage reduction should be repeated, resetting voltage as required, to assure best tube life.

EIMAC Application Bulletin #18, titled "EXTENDING TRANSMITTER TUBE LIFE", contains detailed information and is available on request.

Where hum is an important system consideration it is permissible to operate the filaments with dc rather than ac power. Contact Varian EIMAC Application Engineering for special precautions when using a dc filament supply.

Care should be exercised to keep any rf power out of the filament of the tube, as this can cause excessive operating temperatures. Both sides of the filament must be bypassed to assure monopotential operation. It should be ascertained that no resonance exists in the filament circuit which could be excited during operation.

This tube is designed for commercial service, with one off/on filament cycle per day. If additional cycling is anticipated it is recommended the user contact Application Engineering at VARIAN EIMAC for additional information.

VACION® PUMP OPERATION - The tube is supplied with an ion pump and magnet, mounted on the filament structure at the base (stem). A power supply (Varian Part #921-0015) and an 8-foot cable (Varian Part #924-0020) are required for operation. The primary function of this device is to allow monitoring of the condition of the tube vacuum, as shown by an ion current meter.

With an operational tube it is recommended the VACION pump be operated full time so tube vacuum may be monitored on a continuous basis. A reading of less than 10 uAdc should be considered as normal, indicating excellent tube vacuum. In addition to other interlock circuitry it is recommended that full advantage be taken of the VACION pump readout by providing circuitry which will shut down all power to the tube in the event the readout current exceeds 50 uAdc. In the event of such a shutdown, the VACION pump should be operated alone until vacuum recovery is indicated by a reading of 10 uAdc or less, at which point the tube may again be made operational. If the vacuum current rises again it should be considered as

indicating a circuit problem such that some tube element may be over-dissipating and outgassing.

In the case of a spare tube (non-operational) it is recommended the VACION pump be operated continuously if possible. Otherwise it should be operated periodically to check the condition of tube vacuum, and operated as long as necessary to achieve a reading of 10 uAdc or better.

Figure 1 shows the relationship between tube vacuum and the ion current reading. Electrode voltages should never be applied if a reading of 50 uAdc or higher is obtained. Filament voltage should never be applied with a VacIon pump current of 1.0 mA or higher. In the event poor vacuum cannot be improved by operation of the VACION pump the user should contact EIMAC and review the case with an Applications Engineering specialist.

PLATE OPERATION - The plate dissipation maximum rating of 1500 kilowatts provides a large margin of safety for most applications. The rating may be exceeded for very brief periods during setup or tuning. When used as a plate-modulated rf amplifier, plate dissipation under carrier conditions is limited to 1000 kilowatts.

Operation with significant plate current under some conditions of high instantaneous anode voltage (such as regulator service or low power and low impedance "tuning" conditions) can, as a result of the screen and grid voltages chosen, lead to anode damage and subsequent failure. If operation under such conditions is necessary EIMAC Application Engineering should be contacted for assistance in selection of operating parameters.

GRID OPERATION - The maximum grid dissipation is 4000 watts and protective measures should be taken to insure that this rating is not exceeded. Grid dissipation is approximately equal to the product of dc grid current and peak positive grid voltage. A protective spark gap device should be connected between the control grid and the cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 15,000 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. Suitable protective circuitry must be provided to remove screen power in case of a fault condition. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

Tetrode tubes may exhibit reversed screen current to a greater or lesser degree depending on individual tube design and operating conditions. The screen supply voltage must be maintained constant for any values of negative or positive screen currents which may be encountered. Dangerously high plate currents may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished by use of a shunt regulator circuit in the screen voltage supply, bleeder resistors, or other suitable techniques.



PULSE OPERATION - The thermal time constants of the internal tube elements vary from a few milliseconds in the case of the grids to about 200 milliseconds for the anode. In many applications the meaning of duty as applied to a pulse chain is lost because the interpulse period is very long. For pulse lengths greater than 10 milliseconds, where the interpulse period is more than 10 times the pulse duration, the element dissipations and required cooling are governed by the watt-seconds during the pulse. Provided the watt-seconds are less than the listed maximum dissipation rating and sufficient cooling is supplied, tube life will be protected. To maintain high cooling efficiency the anode water flow must be sufficient to insure turbulent flow. EIMAC has determined that a minimum flow of 35 gpm (130 lpm) is required.

FAULT PROTECTION - In addition to the normal plate over-current interlock and coolant interlock, the tube must be protected from internal damage caused by any arc which may occur. A protective resistance should always be connected in series with the grid and anode to help absorb power supply stored energy if an arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection test for each supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of #30 AWG copper wire. The wire will remain intact if protection is adequate. As noted in GRID OPERATION and SCREEN OPERATION a protective spark gap should be connected from grid to ground and from screen grid to ground.

EIMAC Application Bulletin #17 titled FAULT PROTECTION contains considerable detail, and is available on request.

LOAD VSWR - The load VSWR should be monitored and the detected signal used to operate the interlock system to remove plate voltage within 20 milliseconds after a fault occurs. In the case of high stored energy in the load system, care must be taken to avoid excessive return energy from damaging the tube and associated circuit components.

X-RADIATION HAZARD - High-vacuum tubes operating at voltages higher than 15 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray source. Only limited shielding is afforded by the tube envelope. Moreover, the X-radiation level may increase significantly with tube aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding may be required on all sides of tubes operating at these voltages to provide adequate protection throughout the life of the tube. Periodic checks on the X-ray level should be made, and the tube should never be operated without required shielding in place. If there is any question as to the need for or the adequacy of shielding, an expert in this field should be contacted to perform an equipment X-ray survey.

In cases where shielding has been found to be required operation of the equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

INTERELECTRODE RF TUNING CHARACTERISTICS - Typical interelectrode tuning characteristics may be obtained by contacting VARIAN EIMAC Power Grid Tube Application Engineering.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis from the tube terminals and associated wiring. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. The test is performed on a cold tube, and in the case of the 8974, with no special shielding. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the test specification or technical data are taken in accordance with Standard RS-191.

The equipment designer is cautioned to make allowance for the capacitance values, including tube-to-tube variation and strays, which will exist in any normal application. Measurements should be taken with mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to VARIAN EIMAC; attn: Applications Engineering; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

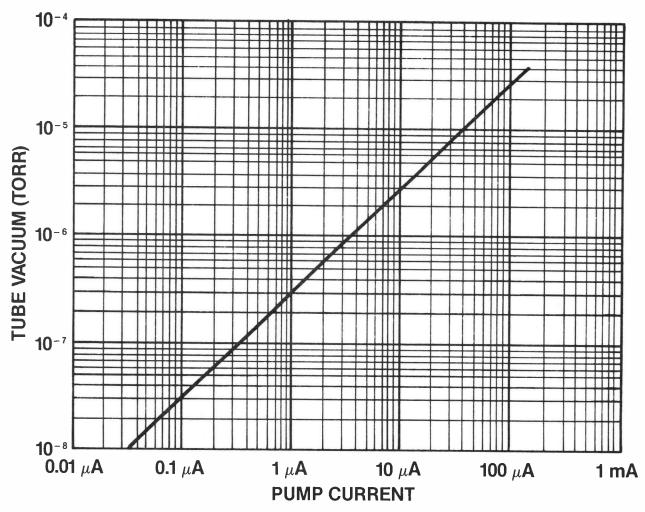
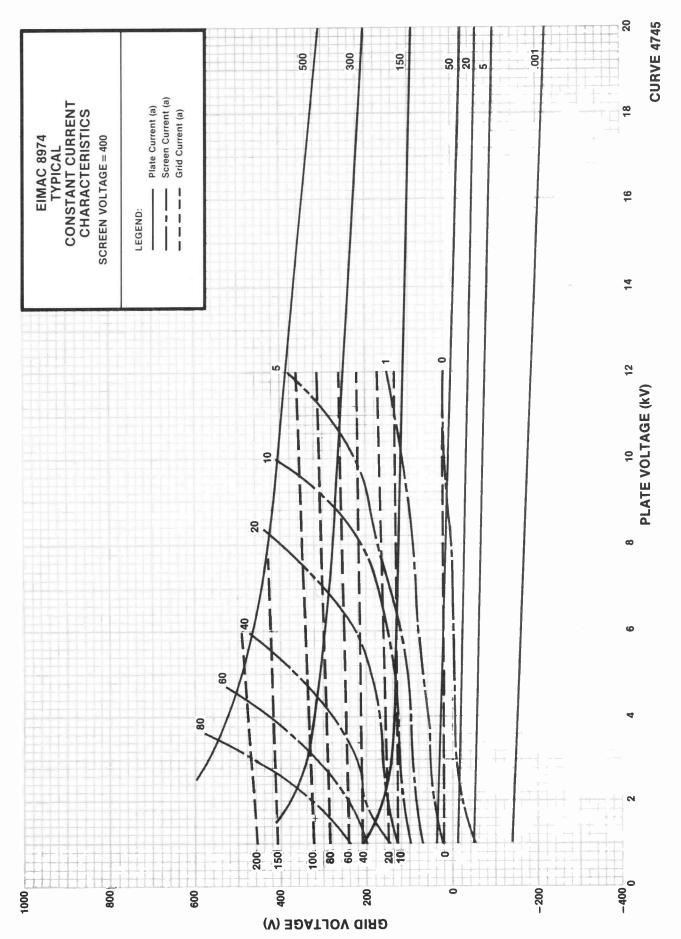
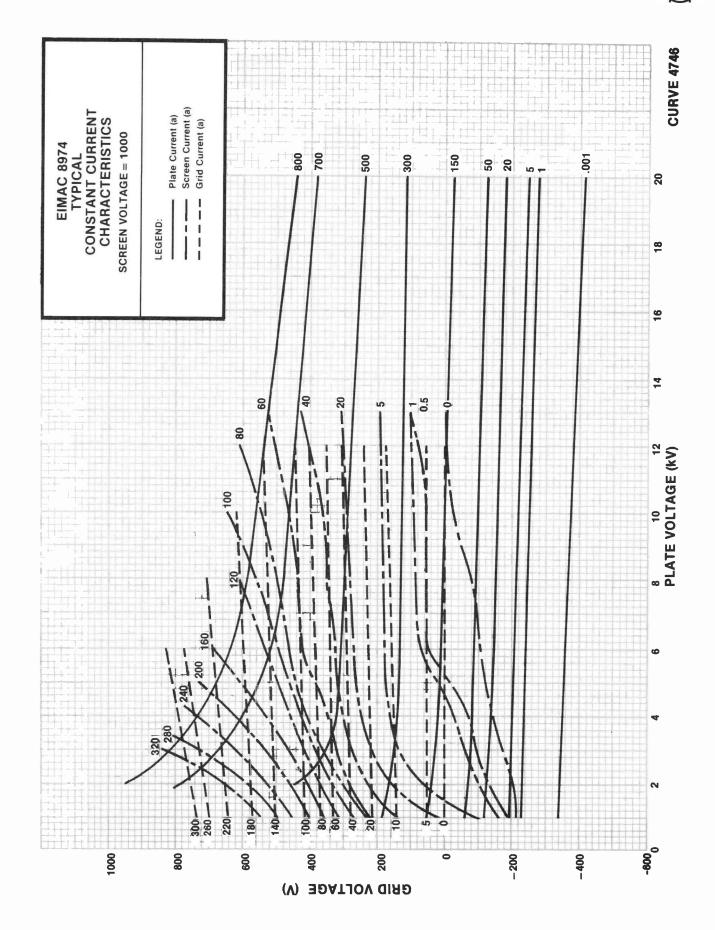


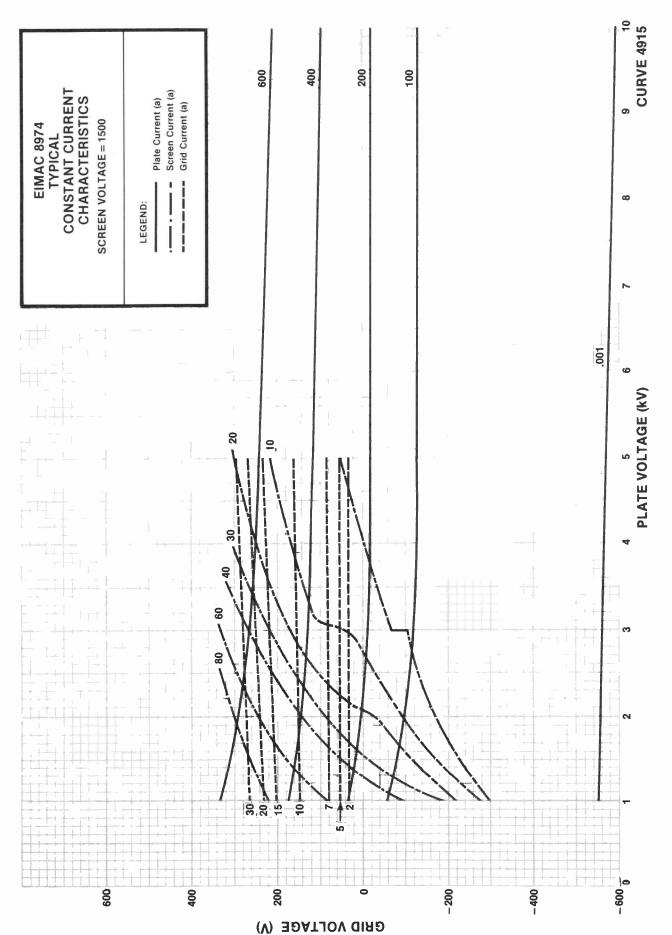

Figure 1 - Tube Vacuum VS Ion Current

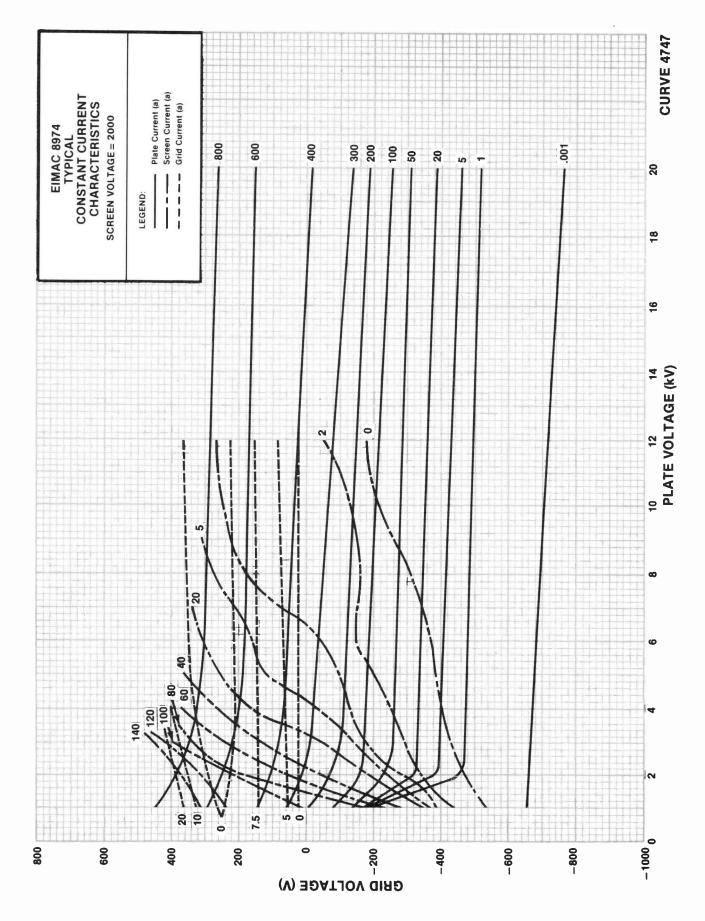
### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

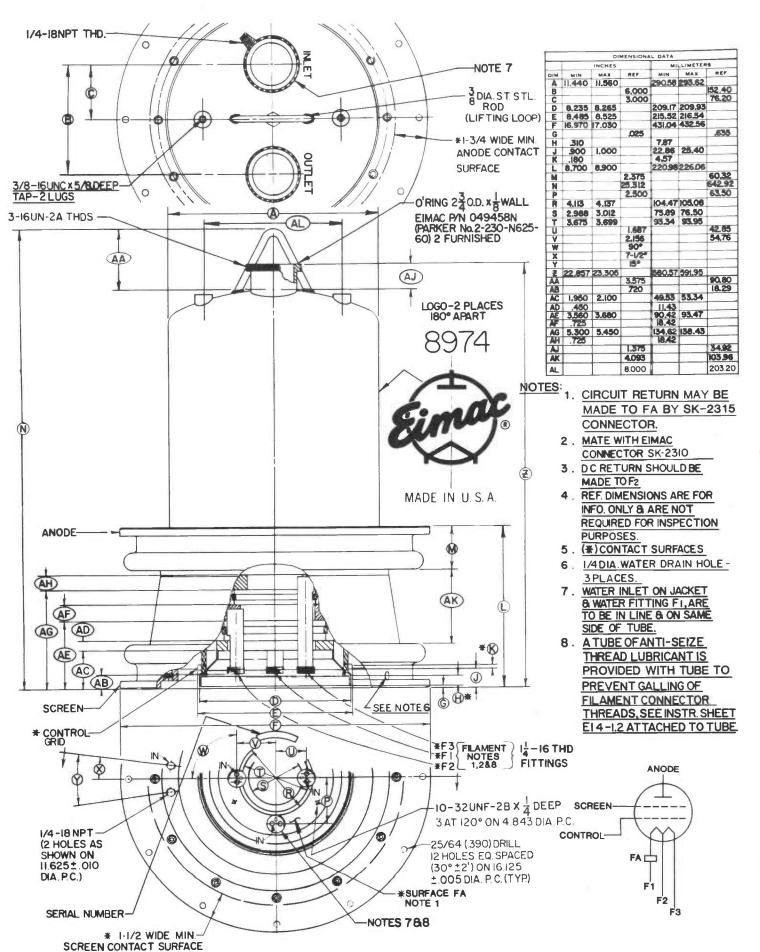

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. CARDIAC PACEMAKERS MAY BE EFFECTED.
- c. X-RADIATION High voltage tubes can produce dangerous and possibly fatal X-Rays.
- d. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when
- working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- e. HOT WATER Water used to cool tubes may reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- f. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is removed.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: VARIAN EIMAC, Power Grid Tube Division, 301 Industrial Way, San Carlos CA 94070.


















### TECHNICAL DATA

9000
4CM300,000G
HIGH POWER
MULTIPHASE
COOLED TETRODE

The EIMAC 4CM300,000G is a ceramic/metal, multiphase-cooled (water/vapor) power tetrode designed for high-power broadcast service. Pyrolytic graphite grids are used to provide high dissipation capability in combination with low secondary emission characteristics.

The 4CM300,000G has a thoriated-tungsten mesh filament mounted on water-cooled supports. The maximum anode dissipation rating is  $300\ \text{kilowatts}$  steady state.

Large-diameter coaxial terminals are used for the screen grid, control grid and filament connections.

### GENERAL CHARACTERISTICS 1



### ELECTRICAL

| Filament: Thoriated-tungsten Mesh                                               |                 |
|---------------------------------------------------------------------------------|-----------------|
| Voltage                                                                         | 15.0 + 0.75 V   |
| Current @ 15.0 volts (nominal)                                                  | - 480 A         |
| Frequency of Maximum Ratings (CW) <sup>3</sup>                                  | 50 MHz          |
| Amplification Factor, Average, Grid to Screen                                   | 4.5             |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup>              |                 |
| Cin                                                                             | 750 pF          |
| Cout                                                                            | 79 pF           |
| Cgp                                                                             | 5.6 pF          |
| Direct Interelectrode Capacitances (grounded grid) <sup>2</sup>                 |                 |
| Cin                                                                             | 284 pF          |
| Cout                                                                            | 83 pF           |
| Cpk                                                                             | 0.9 pF          |
| 1 Characteristics and operating values are based on tosts and calculations. The | oso figuros may |

- Characteristics and operating values are based on tests and calculations. These figures may change without notice as the result of additional data or product refinement. VARIAN EIMAC should be consulted before using this information for final equipment design.
- 2. Capacitance values shown are nominal measured in accordance with Electronic Industries Association Standard RS-191.
- 3. The tube is projected to have excellent rf characteristics up to  $150\ \mathrm{MHz}$ .

### MECHANICAL

| Net Weight                                                      | <del>-</del>                         |
|-----------------------------------------------------------------|--------------------------------------|
| Cooling                                                         |                                      |
| Maximum Overall Dimensions:  Length                             | 22.5 in; 57.1 cm<br>13.3 in; 33.8 cm |
| Maximum Operating Temperature, Envelope and Ceramic/Metal Seals | 200°C                                |
| Base                                                            | Special Coaxial                      |
| Recommended Socket                                              | EIMAC SK-2450                        |

390850(Effective April 1985) VA4816 Printed in U.S.A.

| RADIO FREQUENCY LINEAR AMPLIFIER                                     | TYPICAL OPERATION (Frequencies to 30 MHz)                             |                       |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|
| GRID DRIVEN                                                          | CLASS AB1, Single Sideband Peak Envelope Conditi                      | ons                   |
| Class AB                                                             | Plate Voltage                                                         | 18.0 kVdc<br>2000 Vdc |
| ABSOLUTE MAXIMUM RATINGS:                                            | Grid Voltage **                                                       | -460 Vdc<br>-3.0 Adc  |
| DC PLATE VOLTAGE 20.0 KILOVOLTS                                      | Single Tone Plate Current                                             | 30.5 Adc              |
| DC SCREEN VOLTAGE 2.0 KILOVOLTS DC PLATE CURRENT 50 AMPERES          | Single Tone Screen Current * Peak rf Grid Voltage *                   | 1.4 Adc<br>460 v      |
| PLATE DISSIPATION 300 KILOWATTTS SCREEN DISSIPATION 6.0 KILOWATTS    | Plate Dissipation *                                                   | 145 kW<br>340 Ohms    |
| GRID DISSIPATION 2.0 KILOWATTS                                       | Plate Power Output *                                                  | 400 kW                |
| * Approximate value. ** Adjust f                                     | or specified value of zero-signal plate current.                      |                       |
| RADIO FREQUENCY POWER AMPLIFIER OR                                   | TYPICAL OPERATION (Frequencies to 30 MHz)                             |                       |
| OSCILLATOR Class C Telegraphy or FM (Key-down Conditions)            | Plate Voltage 18.0                                                    | 18.0 kVdc             |
| ABSOLUTE MAXIMUM RATINGS:                                            | Screen Voltage                                                        | 1500 Vdc<br>-900 Vdc  |
|                                                                      | Plate Current                                                         | 45 Adc<br>3.5 Adc     |
| DC SCREEN VOLTAGE 2.0 KILOVOLTS                                      | Grid Current * 5.5                                                    | 1.7 Adc               |
| DC PLATE CURRENT 50 AMPERES PLATE DISSIPATION 300 KILOWATTS          | Calculated Driving Power 5.7 Plate Dissipation * 140                  | 1.8 kW<br>154 kW      |
| SCREEN DISSIPATION 6.0 KILOWATTS GRID DISSIPATION 2.0 KILOWATTS      | Plate Load Resistance 205 Plate Power Output * 650                    | 202 Ohms<br>650 kW    |
| unib bissiration Elso kiewanis                                       | * Approximate value.                                                  | OJO KI                |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER Class C Telephony    | TYPICAL OPERATION (Frequencies to 30 MHz)                             |                       |
| (Carrier Conditions)                                                 | Plate Voltage                                                         | 11.0 kVdc<br>1000 Vdc |
| ABSOLUTE MAXIMUM RATINGS:                                            | Grid Voltage                                                          | -450 Vdc<br>35 Adc    |
| DC PLATE VOLTAGE 13.0 KILOVOLTS                                      | Screen Current *                                                      | 1.75 Adc              |
| DC SCREEN VOLTAGE 1.5 KILOVOLTS DC PLATE CURRENT 39 AMPERES          | Grid Current *                                                        | 2.25 Adc<br>2000 v    |
| PLATE DISSIPATION # 195 KILOWATTS SCREEN DISSIPATION 6.0 KILOWATT    | Calculated Driving Power                                              | 1440 W<br>85 kW       |
| GRID DISSIPATION 2.0 KILOWATTS                                       | Plate Load Resistance                                                 | 155 Ohms              |
| <pre>* Approximate value # 300 kW at 100% sine-wave modulation</pre> | Plate Power Output *                                                  | 300 kW                |
| AUDIO FREQUENCY POWER AMPLIFIER OR                                   |                                                                       |                       |
| MODULATOR Class AB                                                   | TYPICAL OPERATION (Two Tubes - Sinusoidal wave)                       |                       |
| ABSOLUTE MAXIMUM RATINGS (per tube):                                 | Plate Voltage                                                         | 8.0 kVdc<br>2000 Vdc  |
| DC PLATE VOLTAGE 20.0 KILOVOLTS DC SCREEN VOLTAGE 2.0 KILOVOLTS      | Grid Voltage **                                                       | -460 Vdc<br>6.0 Adc   |
| DC PLATE CURRENT 50 AMPERES                                          | Max.Signal Plate Current 53                                           | 29 Adc                |
| SCREEN DISSIPATION 6.0 KILOWATTS                                     | Max.Signal Screen Current * 1.0  Peak Audio Freq.Grid Voltage * # 400 | 1.0 Adc<br>455 v      |
| GRID DISSIPATION 2.0 KILOWATTS                                       | Max.Signal Plate Dissipation * # 106 Plate/Plate Load Resistance 440  | 148 kW<br>680 Ohms    |
| <pre># Per tube. * Approximate value.</pre>                          | Plate Power Output * 420                                              | 760 kW                |
| ** Adjust for stated zero-sig. plate currer                          | n† .                                                                  |                       |

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. Following this procedure, there will be little variation in outure power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.



### APPLICATION

#### MECHANICAL

MOUNTING - The 4CM300,000G must be mounted vertically, base down. The full weight of the tube should rest on the screen-grid contact flange at the base of the tube, and all lifting of the tube should be done with the lifting eye which is attached to the top of the anode cooling jacket.

ANODE COOLING - The anode is cooled by circulating water through the structure. Water/vapor cooling provides efficient anode heat removal and allows extra capacity for temporary overloads.

Tube life can be seriously compromised by water condition. With contaminated water deposits will form on the inside of the water jacket, causing localized anode heating and eventual tube failure. To minimize electrolysis and power loss, water resistivity at 25°C should always be one megohm per cubic centimeter or higher. Water resistivity can be continuously monitored in the reservoir by readily available instruments.

Minimum water flow requirements for the anode are shown in the table for an outlet water temperature not to exceed 100°C and inlet water temperature at 60°C. System pressure should not exceed 100 psi.

| Anode       | Water        | Approx.Jacket |
|-------------|--------------|---------------|
| Dissipation | Flow         | Press. Drop   |
| (kW)        | <u>(gpm)</u> | (psi)         |
| Fil.Only    | 1            | 1             |
| 100         | 15           | 7.5           |
| 200         | 25           | 15            |
| 300         | 29           | 17            |

Cooling water must be well filtered, with effectiveness the equivalent of a 100-mesh screen, to eliminate any solid material and avoid the possibility of blockage of cooling passages, as this would immediately affect cooling efficiency and could produce localized anode overheating and failure of the tube.

EIMAC Application Bulletin #16, WATER PURITY RE-QUIREMENTS IN LIQUID COOLING SYSTEMS, is available on request, and contains considerable detail on purity requirements and maintenance systems.

BASE COOLING - The tube base requires air cooling with a minimum of 100 cfm of air at 50°C maximum at sea level, directed through the SK-2450 series socket toward the base seal areas. It should be noted that temperatures of the ceramic/metal seals and the lower envelope areas are the controlling and final limiting factor and that the maximum allowable temperature is 200°C. In addition, the socket contact finger temperature should not exceed 150°C. Temperature-sensitive paint is available for use in checking temperatures in these areas before equipment design and air cooling arrangements are finalized.

EIMAC Application Bulletin #20 titled TEMPERATURE MEASUREMENTS WITH EIMAC POWER TUBES contains considerable information and is available on request.

ALL COOLING MUST BE APPLIED BEFORE OR SIMULTANE-OUSLY WITH THE APPLICATION OF ELECTRODE VOLTAGES, INCLUDING THE FILAMENT, AND SHOULD NORMALLY BE MAINTAINED FOR SEVERAL MINUTES AFTER ALL VOLTAGES ARE REMOVED TO ALLOW FOR TUBE COOLDOWN.

### ELECTRICAL

FILAMENT OPERATION - Filament turn-on and turn-off should be programmed. Filament voltage should be smoothly increased from zero to the operating level over a period of two minutes. A motor-driven continuously variable autotransformer (such as a VARIAC® or a POWERSTAT®) is suggested. Inrush current must never be allowed to exceed twice normal operating current. Normal turnoff procedure should be a smooth decrease from the operating voltage to zero over a period of two minutes.

At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communication service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). For operation The voltage should then be increased several tenths of a volt above the value where performance degradation was noted. The operating point should be rechecked after 24 hours. Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence caused by normal line voltage variations.

Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life. EIMAC Application Bulletin #18, titled "EXTENDING TRANSMITTER TUBE LIFE", contains detailed information and is available on request.

Where hum is an important system consideration it is permissible to operate the filament with do rather than ac power.

Care should be exercised to keep any rf power out of the filament of the tube, as this can cause excessive operating temperatures. Proper bypassing of the filament must be used to assure monopotential operation. It should be ascertained that no resonance exists in the filament circuit which could be excited during operation.

This tube is designed for commercial service, with no more than one normal off/on filament cycle per day. If additional cycling is anticipated it is recommended the user contact Application Engineering at Varian EIMAC for additional information.

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed these ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of the rating by a safety factor so that the absolute values will never be

exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

PLATE OPERATION - The 300 KW plate dissipation maximum rating may be exceeded for very brief periods during setup or tuning. When used as a plate-modulated rf amplifier, dissipation under carrier conditions is limited to 195 kilowatts.

GRID OPERATION - The maximum grid dissipation is 2000 watts and protective measures should be taken to insure that this rating is not exceeded. Grid dissipation is approximately equal to the product of dc grid current and peak positive grid voltage. A protective spark gap device should be connected between the control grid and the cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 6000 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. Suitable protective circuitry must be provided to remove screen power in case of a fault condition. A protective spark-gap device should be connected between the screen grid and the cathode to guard against excessive voltage.

PULSE OPERATION - The thermal time constants of the internal tube elements vary from a few milliseconds in the case of the grids to about 200 milliseconds for the anode. In many applications the meaning of duty as applied to a pulse chain is lost because the interpulse period is very long. For pulse lengths greater than 10 milliseconds, where the interpulse period is more than 10 times the pulse duration, the element dissipations and required cooling are governed by the watt-seconds during the pulse. Provided the watt-seconds are less than the listed maximum dissipation rating and sufficient cooling is supplied, tube life will be protected. EIMAC has determined that a minimum flow of 2 gpm (7.6 lpm) is required.

FAULT PROTECTION - In addition to the normal plate over-current interlock and coolant interlock, the tube must be protected from internal damage caused by any arc which may occur. A protective resistance should always be connected in series with the grid and anode to help absorb power supply stored energy if an arc should occur. An electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of #30 AWG copper wire. The wire will remain intact if criteria is met.

As noted under GRID OPERATION and SCREEN OPERATION a protective spark gap should be connected from the control grid to ground and from the screen grid to ground. EIMAC Application Bulletin #17 titled FAULT PROTECTION contains considerable detail and is available on request.

LOAD VSWR - The load VSWR should be monitored and the detected signal used to operate the interlock system to remove plate voltage within 20 milliseconds after a fault occurs. In the case of high stored energy in the load system, care must be taken to avoid excessive return energy from damaging the tube and associated circuit components.

X-RADIATION HAZARD - High-vacuum tubes operating at voltages higher than 15 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray source. Only limited shielding is afforded by the tube envelope. Moreover, the X-radiation level may increase significantly with tube aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding may be required on all sides of tubes operating at these voltages to provide adequate protection throughout the life of the tube. Periodic checks on the X-ray level should be made, and the tube should never be operated without required shielding in place. If there is any question as to the need for or the adequacy of shielding, an expert in this field should be contacted to perform an equipment X-ray survey.

In cases where shielding has been found to be required operation of the equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

INTERELECTRODE RF TUNING CHARACTERISTICS - Typical interelectrode tuning characteristics may be obtained by contacting Varian EIMAC Power Grid Tube Application Engineering.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis from the tube terminals and associated wiring. To control actual capacitance values within the tube, as the key component involved, the industry and Military



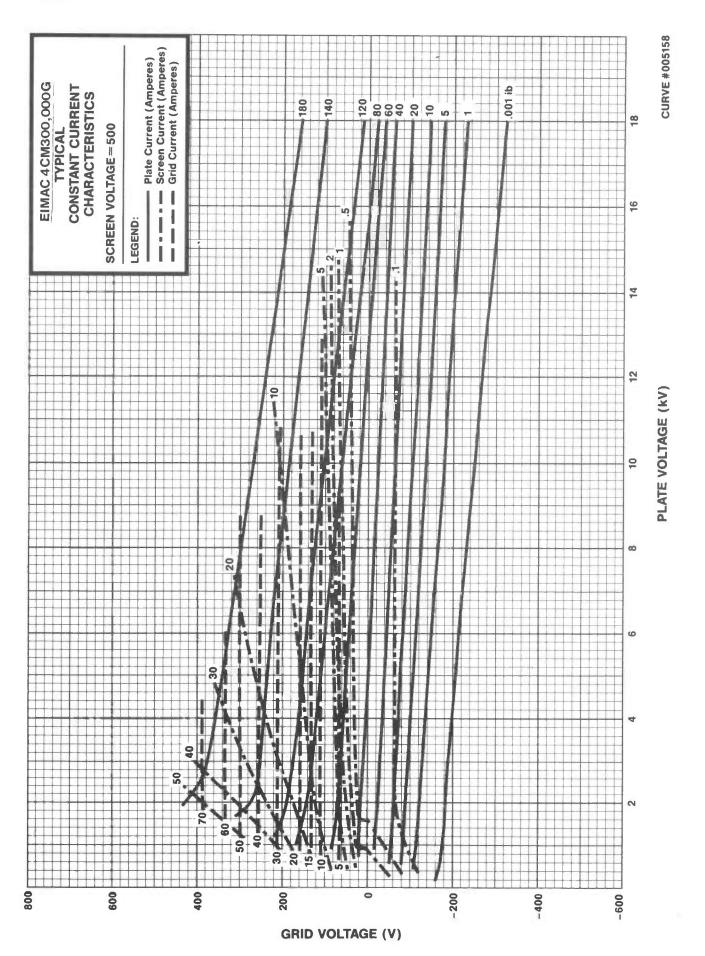
Services use a standard test procedure described in Electronic Industries Association Standard RS-191. The test is performed on a cold tube which is mounted in a shielded fixture.

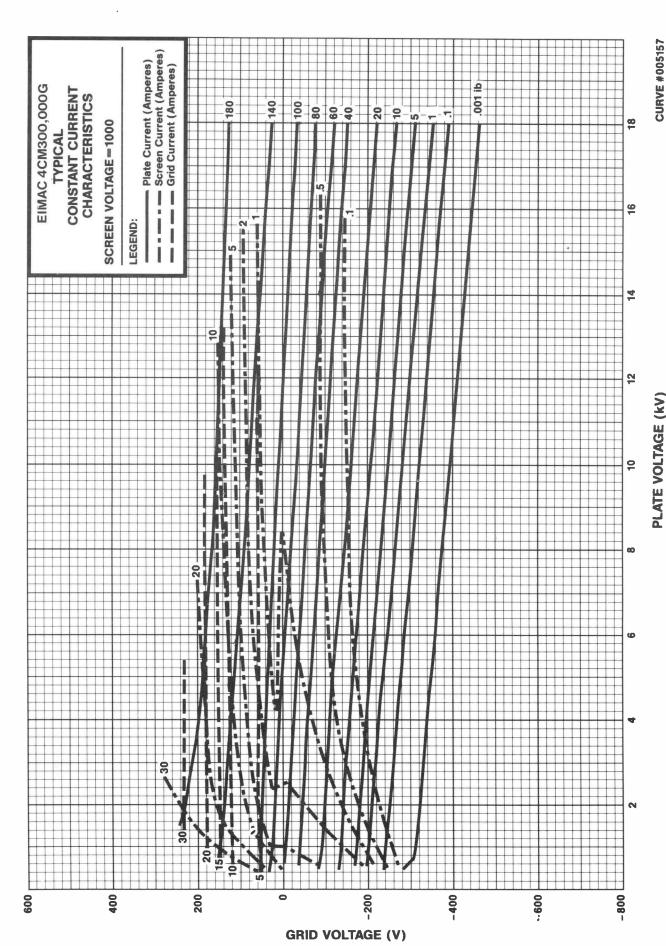
Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191 but with no special shielding.

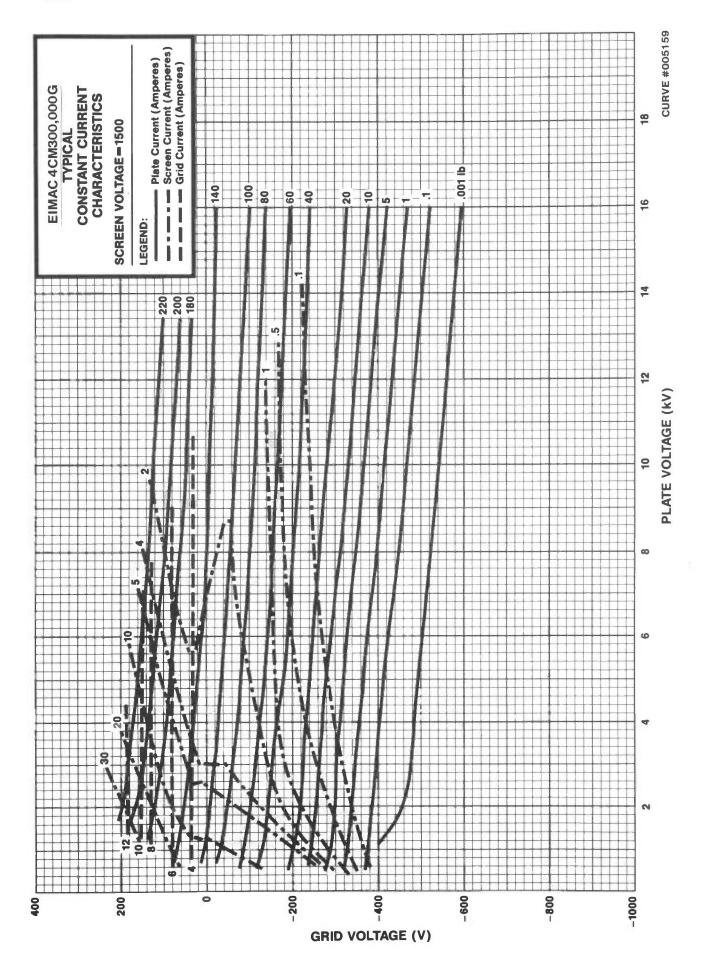
The equipment designer is cautioned to make allow-

ance for the capacitance values, including tubeto-tube variation and strays, which will exist in any normal application. Measurements should be taken with mounting which represent approximate final layout if capacitance values are highly significant in the design.

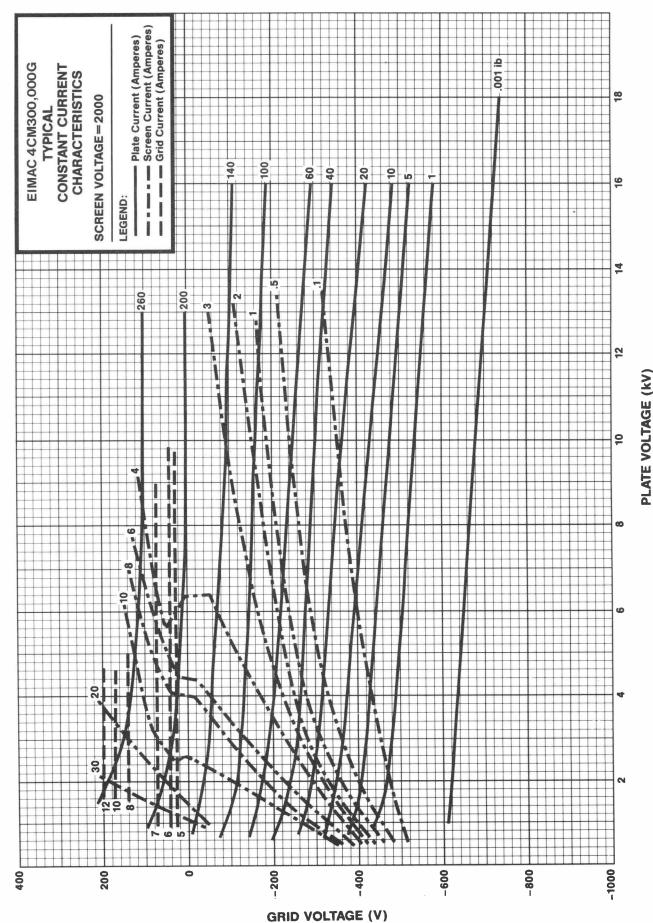
SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager High Power Tubes, 301 Industrial Way; San Carlos, CA 94070 U.S.A.

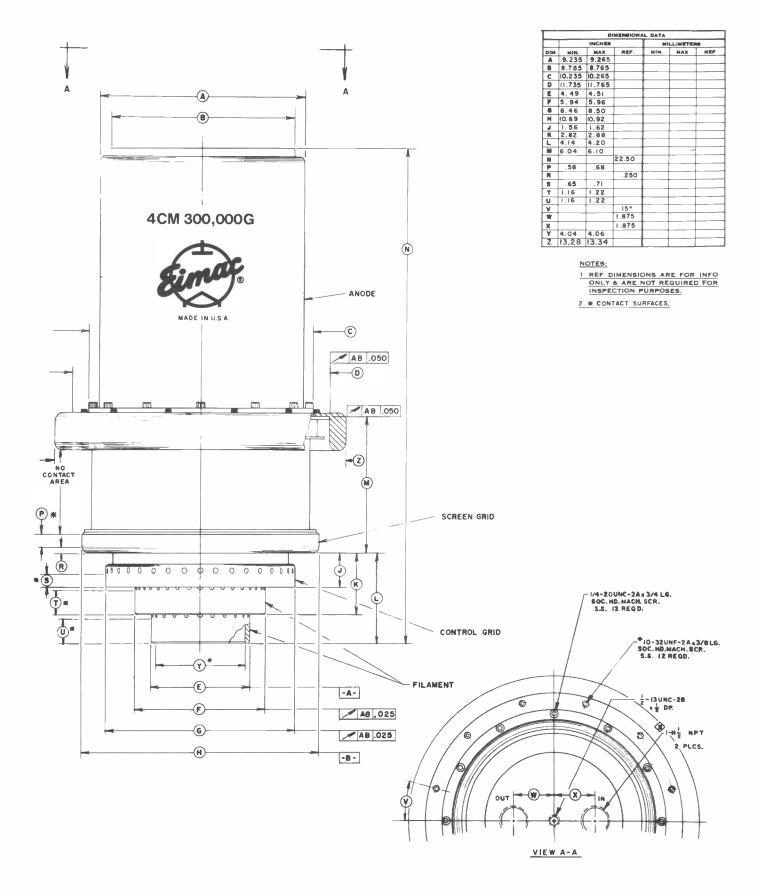

### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

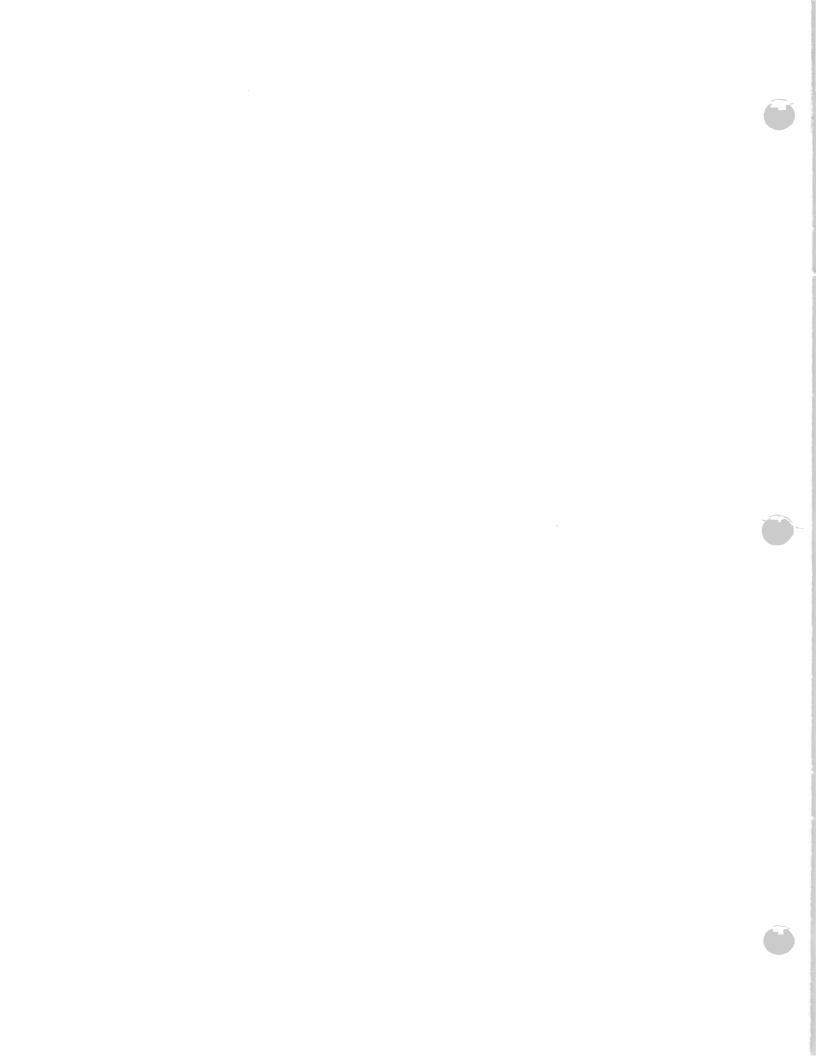

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

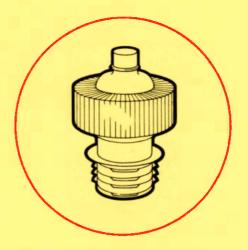
- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT WATER Water used to cool tubes may reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- e. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.
- f. X-RAY RADIATION High-voltage tubes can produce dangerous and possibly fatal X-rays and comprehensive shielding may be required. If shielding is provided, equipment should never be operated without all such shielding in place.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.
















# pentodes

## EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

## Look in the general section forquick guide to EIMAC products and services offered in this catalog.

Including ...

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

## Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.



CARLOS CALIFORNIA

**POWER PENTODE** 

MODULATOR **OSCILLATOR AMPLIFIER** 

The Eimac 4E27A/5-125B is a power pentode intended for use as a modulator, oscillator or The Eimac 4EZ/A/5-125B is a power pentode intended for use as a modulator, oscillator or amplifier. The driving-power requirement is very low, and neutralization problems are simplified or eliminated entirely. The tube has a maximum plate-dissipation rating of 125 watts and a maximum plate voltage rating of 4000 volts at frequencies up to 75 Mc. Cooling is by convection and radiation. Type 4E27A/5-125B unilaterally replaces type 4E27.

The 4E27A/5-125B in class-C r-f service will deliver up to 375 watts plate power output with less than 2 watts driving power. It will deliver up to 75 watts of carrier for suppressor modulation.

Two 4E27A/5-125B's will deliver up to 300 watts maximum-signal plate power output in class AB modulator service 400 watts in class AB, with less than 1 watt driving power.

AB, modulator service, 400 watts in class AB2 with less than I watt driving power.

#### GENERAL CHARACTERISTICS

| ELECTRIC  | AL          |                 |       |                    |      |         |              |       |            |      |   |     |     |        |             |
|-----------|-------------|-----------------|-------|--------------------|------|---------|--------------|-------|------------|------|---|-----|-----|--------|-------------|
| Filament: | Thoriated   | tung            | sten  |                    |      |         |              |       |            |      |   |     |     |        |             |
|           | Voltage     |                 | -     | 14                 | -    | -       | -            | 41    |            | -    | - | 1.5 | -   |        | 5.0 volts   |
|           | Current     | -               | -     | 150                | -    | -       | -1           | -1    | 100        | -    | - | -   | 1-  | -      | 7.5 amperes |
| Grid-Scre | en Ampli    | ficati          | on Fa | actor              | (Ave | erage   | -            | -1    | -          | -    | - | 144 | -   | -      | - 5.0       |
| Direct In | terelectroc | le Ca           | pacit | ances              | (Av  | erage   | )            |       |            |      |   |     |     |        |             |
|           | Grid-Plat   | e               | -     | -                  | *    | -       | $\omega_{i}$ |       | -          | -    | - |     | 100 | -      | 0.08 μμfd   |
|           | Input       | -               | -     | -                  | -    | -       | -            | -     | -          | -    | - | -   | -   | -      | 10.5 μμfd   |
|           | Output      |                 | -     |                    | -    | -       |              | 20    |            | ×    | - |     | 100 | -      | 4.7 μμfd    |
| Transcond | ductance (  | $l_{\rm b} = 5$ | 0ma.  | , E <sub>b</sub> = | 2500 | )v., E, | 2=5          | 00v., | $E_{c3} =$ | 0v.) |   | -   | -   |        | 2150 μmhos  |
| Highest   | Frequenci   | es foi          | г Ма  | ximun              | Rai  | tings   | -            | -     | -          | -    | - | -   | -   | -      | 75 Mc.      |
| MECHAN    | ICAL        |                 |       |                    |      |         |              |       |            |      |   |     |     |        |             |
| Base      |             |                 | -     |                    | -    | -       | -            | -     | **         | -    | - | -   |     | 7-pin, | metal shell |

Connections Socket\* -E. F. Johnson Co. No. 122-237, or equivalent Mounting Position - - Vertical, base down or up Convection and radiation Recommended Heat Dissipating Plate Connector Maximum Over-All Dimensions:

Length - -6.19 inches Diameter 2.75 inches Net Weight (Average) -6.0 ounces Shipping Weight -2.0 pounds \*See "Cooling" under Application Notes.

Note: Typical operation data are based on conditions of adjusting the r-f grid drive to specified plate current, maintaining fixed conditions of grid bias, screen voltage and suppressor voltage. It will be found that if this procedure is followed, there will be little variation in power output between tubes even though there may be some variation in grid, screen and suppressor currents. Where grid bias is oblained principally by means of a grid resistor, to control plate current it is necessary to make the resistor adjustable.

#### RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class-C Telegraphy or FM Telephony, Frequencies up to 75 Mc. (Key-down conditions, per tube) MAXIMUM RATINGS
D-C PLATE VOLTAGE
D-C SCREEN VOLTAGE
D-C GRID VOLTAGE
D-C PLATE CURRENT 4000 MAX. VOLTS 750 MAX. VOLTS -500 MAX. VOLTS 200 MAX. MA 125 MAX. WATTS
20 MAX. WATTS
20 MAX. WATTS
5 MAX. WATTS PLATE DISSIPATION SUPPRESSOR DISSIPATION SCREEN DISSIPATION -GRID DISSIPATION TYPICAL OPERATION

| TITIOAL OFERATIO     | .14 |       |      |       |
|----------------------|-----|-------|------|-------|
| 60 Suppressor Volts, | 500 | Scree | en V | olts. |
| D-C Plate Voltage    | -   | -     | -    | -     |
| D.C. Grid Voltage    |     |       |      |       |

| D-C Plate Voltage   | -    | -    | - | _ | 1000 | 1500 | 2000 | 2500 | 3000 | volts |
|---------------------|------|------|---|---|------|------|------|------|------|-------|
| D-C Grid Voltage    | -    | -    | - | - | -120 | -130 | -150 | -170 | -200 | volts |
| D-C Plate Current   | -    | -    |   | - | 167  | 200  | 200  | 186  | 167  | ma    |
| D-C Suppressor Curr | ent* |      | - | - | 6    | 5    | 4    | 3    | 3    | ma    |
| D-C Screen Current* |      | -    | - | - | 11   | - 11 | - 11 | 7    | 5    | ma    |
| D-C Grid Current*   | -    | -    | - | - | 6    | 8    | 8    | 7    | 6    | ma    |
| Peak R-F Grid Input | Vol  | tage |   | - | 170  | 200  | 222  | 240  | 260  | volts |
| Driving Power*      | -    | -    | - | - | 1.0  | 1.6  | 1.8  | 1.7  | 1.6  | watts |
| Grid Dissipation*   | -    | -    | - | - | .3   | .6   | .6   | .5   | .6   | watts |
| Screen Dissipation* | -    | -    | - | - | 5.5  | 5.5  | 5.5  | 3.5  | 2.5  | watts |
| Plate Dissipation   | -    | -    | - | - | 47   | 85   | 100  | 115  | 125  | watts |
| Plate Power Input   | -    | -    | - | - | 167  | 300  | 400  | 465  | 500  | watts |
| Plate Power Output  |      | -    | - | - | 120  | 215  | 300  | 350  | ₹75  | watts |

| D-C Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TYPICAL OPERATION      |     |        |      |            |      |      |      |      |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|--------|------|------------|------|------|------|------|-------|
| D-C Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zero Suppressor Volts, | 500 | Scree  | ı Vo | its        |      |      |      |      |       |
| D-C Plate Current 145 180 200 184 167 m D-C Screen Current* 17 20 23 18 12 m D-C Grid Current* 6 8 111 9 7 m Peak R-F Grid Input Voltage - 170 200 240 250 270 vc Driving Power* 1.0 1.6 2.6 2.3 1.9 wc Grid Dissipation* 3.3 .6 1.0 .8 .5 wc Screen Dissipation* 8.5 10 12 9 6 wc Plate Dissipation 55 95 125 125 125 wc Plate Power Input 145 270 400 460 500 wc Plate Power Output 90 175 275 335 375 wc TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts D-C Plate Voltage 1000 1500 2000 2500 3000 vc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-C Plate Voltage -    |     |        | -    | 1000       | 1500 | 2000 | 2500 | 3000 | volts |
| D-C Screen Current* 17 20 23 18 12 m D-C Grid Current* 6 8 11 9 7 m Peak R-F Grid Input Voltage - 170 200 240 250 270 vc Driving Power* 1.0 1.6 2.6 2.3 1.9 wc Grid Dissipation* 3 3 .6 1.0 18 .5 wc Screen Dissipation* 8.5 10 12 9 6 wc Plate Dissipation 55 95 125 125 125 wc Plate Power Input 145 270 400 460 500 wc Plate Power Output 90 175 275 335 375 wc TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D-C Grid Voltage -     |     |        |      | -120       | -130 | -150 | -170 | -200 | volts |
| D-C Grid Current* 6 8 11 9 7 m  Peak R-F Grid Input Voltage - 170 200 240 250 270 vc  Driving Power* 1.0 1.6 2.6 2.3 1.9 w.  Grid Dissipation* 3 .6 1.0 8. 5. w.  Screen Dissipation* 8.5 10 12 9 6 w.  Plate Dissipation 55 95 125 125 125 w.  Plate Power Input 145 270 400 460 500 w.  Plate Power Output 90 175 275 335 375 w.  TYPICAL OPERATION  Zero Suppressor Volts, 750 Screen Volts  D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D-C Plate Current -    |     |        | -    | 145        | 180  | 200  | 184  | 167  | ma    |
| Peak R-F Grid Input Voltage         -         170         200         240         250         270         voltage           Driving Power*         -         -         -         1.0         1.6         2.6         2.3         1.9         we           Grid Dissipation*         -         -         -         3         .6         1.0         .8         .5         we           Screen Dissipation*         -         -         -         8.5         10         12         9         6         we           Plate Dissipation         -         -         -         55         95         125         125         125         we           Plate Power Input         -         -         -         145         270         400         460         500         we           TYPICAL OPERATION         2         -         -         90         175         275         335         375         we           TYPICAL OPERATION         2         -         -         -         -         0         100         200         2500         300         vol           D-C Plate Voltage         -         -         -         -         -         - <td>D-C Screen Current*</td> <td></td> <td></td> <td>-</td> <td>17</td> <td>20</td> <td>23</td> <td>18</td> <td>12</td> <td>ma</td> | D-C Screen Current*    |     |        | -    | 17         | 20   | 23   | 18   | 12   | ma    |
| Driving Power*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D-C Grid Current* -    |     |        | -    | 6          | 8    | 11   | 9    | 7    | ma    |
| Grid Dissipation* 3 .6 1.0 .8 .5 w. Screen Dissipation* 8.5 10 12 9 6 w. Plate Dissipation 55 95 125 125 125 w. Plate Power Input 145 270 400 460 500 w. Plate Power Output 90 175 275 335 375 w.  TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak R-F Grid Input    | Vol | tage   | -    | 170        | 200  | 240  | 250  | 270  | volts |
| Screen Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Driving Power* -       |     |        | -    | 1.0        | 1.6  | 2.6  | 2.3  | 1.9  | watts |
| Plate Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grid Dissipation* -    |     |        | -    | .3         | .6   | 1.0  | .8   | .5   | watts |
| Plate Power Input         -         -         -         145         270         400         400         500         well           Plate Power Output         -         -         -         90         175         275         335         375         well           TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts         -         -         -         1000         1500         2000         2500         3000         vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Screen Dissipation* -  |     |        | -    | 8.5        | 10   | 12   | 9    | 6    | watts |
| Plate Power Output 90 175 275 335 375 w.  TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plate Dissipation -    |     |        | -    | 5 <b>5</b> | 95   | 125  | 125  | 125  | watts |
| TYPICAL OPERATION Zero Suppressor Volts, 750 Screen Volts D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plate Power Input -    |     |        | -    | 145        | 270  | 400  | 460  | 500  | watts |
| Zero Suppressor Volts, 750 Screen Volts  D-C Plate Voltage 1000 1500 2000 2500 3000 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plate Power Output     |     |        | -    | 90         | 175  | 275  | 335  | 375  | watts |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 750 | Screen | Vol  | ts         |      |      |      |      |       |
| D-C Grid Voltage 170 180 200 225 250 vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-C Plate Voltage -    |     |        | -    | 1000       | 1500 | 2000 | 2500 | 3000 | volts |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D-C Grid Voltage -     |     | - ,-   | -    | -170       | -180 | -200 | -225 | -250 | volts |

| TYPICAL OPERATION        |        |      |     |      |      |      |      |      |       |
|--------------------------|--------|------|-----|------|------|------|------|------|-------|
| Zero Suppressor Volts, 1 | 750 Sc | reen | ۷o۱ | ts   |      |      |      |      |       |
| D-C Plate Voltage -      | -      | -    | -   | 1000 | 1500 | 2000 | 2500 | 3000 | volts |
| D-C Grid Voltage -       | -      |      | -   | -170 | -180 | -200 | -225 | -250 | volts |
| D-C Plate Current -      | -      | `-   | -   | 160  | 200  | 200  | 186  | 167  | ma    |
| D-C Screen Current*      | -      | -    | -   | 21   | 24   | 22   | 12   | 9    | ma    |
| D-C Grid Current* -      | -      | -    | -   | 3    | 6    | 6    | 4    | 3    | ma    |
| Peak R-F Grid Input      | Volta  | ige  | -   | 205  | 235  | 257  | 270  | 290  | volts |
| Driving Power* -         | -      | -    | -   | .6   | 1.4  | 1.5  | 1.1  | .9   | watt  |
| Grid Dissipation* -      | -      | -    | -   | .1   | .4   | .3   | .2   | .2   | watt: |
| Screen Dissipation*      | -      | -    | -   | 16   | 18   | 17   | 9    | 7    | watt  |
|                          |        |      |     |      |      |      |      |      |       |

Plate Power Input Plate Power Output \*Approximate Values

Eimac HR-5

#### PLATE-MODULATED RADIO-FREQUENCY **AMPLIFIER**

Class-C Telephony, Frequencies up to 75 Mc. (Carrier conditions, per tube, unless otherwise specified)

MAXIMUM RATINGS D-C PLATE VOLTAGE 3200 MAX. VOLTS D-C SCREEN VOLTAGE 750 MAX. VOLTS -500 MAX. VOLTS D-C GRID VOLTAGE -160 MAX, MA D-C PLATE CURRENT PLATE DISSIPATION -85 MAX. WATTS 20 MAX. WATTS SUPPRESSOR DISSIPATION SCREEN DISSIPATION 20 MAX. WATTS GRID DISSIPATION -5 MAX. WATTS TYPICAL OPERATION Zero Suppressor Volts, 500 Screen Volts

D-C Plate Voltage - 1000 1500 2000 2500 volts D-C Grid Voltage - -190 -195 -200 -205volts D-C Plate Current 150 151 152 ma 149 D-C Screen Current\* 20 18 17 16 ma D-C Grid Current\* ma Peak A-F Screen Voltage (100% Modulation) 350 350 Peak R-F Grid Input Voltage 260 265 valts watts Driving Power\* Grid Dissipation\* 0.5 0.5 0.5 watts 0.5 Screen Dissipation\* 8.5 watts 10 8 Plate Dissipation 80 64 72 85 watts 149 Plate Power Input 225 300 380 watts Plate Power Output 85 153 220 295 watts

#### SUPPRESSOR-MODULATED RADIO-FREQUENCY AMPLIFIER

Class-C Telephony, Frequencies up to 75 Mc. (Carrier conditions, per tube, unless otherwise specified)

MAXIMUM RATINGS

D-C PLATE VOLTAGE 4000 MAX. VOLTS 750 MAX. VOLTS D-C SCREEN VOLTAGE -500 MAX. VOLTS D-C GRID VOLTAGE -200 MAX. MA D-C PLATE CURRENT PLATE DISSIPATION -125 MAX, WATTS 20 MAX. WATTS SUPPRESSOR DISSIPATION SCREEN DISSIPATION 20 MAX. WATTS GRID DISSIPATION -5 MAX. WATTS

#### TYPICAL OPERATION

| D-C Plate Voltage    | -      | -  | - | - | - | 1500 | 2000 | 2500         | 3000 | volts |
|----------------------|--------|----|---|---|---|------|------|--------------|------|-------|
| D-C Suppressor Volta | ge     | -  | - | - | - | -220 | -260 | <b>—30</b> 5 | -350 | volts |
| Peak A-F Suppressor  | Volta  | ge |   |   |   |      |      |              |      |       |
| (100% Modulatio      | n)     | -  | - | - | - | 220  | 260  | 305          | 350  | volts |
| D-C Screen Voltage   | -      | -  | - | - | - | 400  | 400  | 400          | 400  | volts |
| Fixed D-C Screen Vo  | itage  |    | - | - | - | 610  | 645  | 650          | 610  | volts |
| Screen Dropping Res  | sistor | 1  | - | - | - | 5500 | 9100 | 10,000       | 8300 | ohms  |
| D-C Grid Voltage     | -      | -  | - | - | - | -170 | -180 | -190         | -200 | volts |
| D-C Plate Current    | -      | -  | - | - | - | 59   | 59   | 59           | 60   | ma    |
| D-C Screen Current*  |        | -  | - | - | - | 38   | 27   | 25           | 25   | ma    |
| D-C Grid Current*    | -      | -  | - | - | - | 6    | 5    | 5            | 4    | ma    |
| Peak R-F Grid Input  | Volta  | ge | - | - | • | 230  | 235  | 245          | 250  | voits |
| Driving Power* -     | -      | -  | - | - | - | 1.4  | 1.3  | 1.2          | 1.2  | watts |
| Grid Dissipation*    | -      | -  | - | - | - | .35  | .25  | .25          | .20  | watts |
| Screen Dissipation*  | -      | -  | - | - | - | 15   | - 11 | 10           | 10   | watts |
| Plate Dissipation    | -      | -  | - | - | - | 54   | 68   | 87           | 105  | watts |
| Plate Power Input    | -      | -  | - | - | - | 89   | 118  | 148          | 180  | watts |
| Plate Power Output   | -      | -  | - | - | - | 35   | 50   | 61           | 75   | watts |
|                      |        |    |   |   |   |      |      |              |      |       |

#### **AUDIO-FREQUENCY POWER AMPLIFIER** OR MODULATOR

Class-AB, Sinusoidal Wave

MAXIMUM RATINGS (Per Tube)

4000 MAX. VOLTS D-C PLATE VOLTAGE 750 MAX. VOLTS D-C SCREEN VOLTAGE -500 MAX. VOLTS D-C GRID VOLTAGE -200 MAX. MA D-C PLATE CURRENT PLATE DISSIPATION -125 MAX. WATTS 20 MAX. WATTS SUPPRESSOR DISSIPATION 20 MAX. WATTS SCREEN DISSIPATION 5 MAX. WATTS GRID DISSIPATION -

## TYPICAL OPERATION (Two tubes unless otherwise specified)

Adjust to stated dic screen voltage.

| 0.033 7.0           |           |          |     |        |          |             |              |         |
|---------------------|-----------|----------|-----|--------|----------|-------------|--------------|---------|
| D-C Plate Voltag    | е -       |          |     | -      | 1500     | 2000        | 2500         | volts   |
| D-C Suppressor V    | /oltage   |          |     | -      | 0        | 0           | 0            | valts   |
| D-C Screen Volta    | ge -      |          |     | -      | 500      | 500         | 500          | volts   |
| D-C Grid Voltage    | e¹ -      |          | -   | -      | -70      | <b>- 80</b> | <b>- 8</b> 5 | volts   |
| Zero-Signal D-C     | Plate Co  | urrent   | -   | -      | 110      | 85          | 65           | ma      |
| Max-Signal D-C      | Plate Co  | urrent   | -   | -      | 205      | 210         | 220          | ma      |
| Zero-Signal D-C     | Screen C  | Current' | ٠.  | -      | 0        | 0           | 0            | ma      |
| Max-Signal D-C      | Screen C  | Current' | • . | -      | 15       | 13          | 8            | ma      |
| Effective Plate-to  | -Plate Lo | oad -    |     | -      | 13,700   | 18,000 2    | 0,000        | ohms    |
| Peak A-F Grid V     | /oltage ( | per tu   | be) | -      | 70       | 80          | 85           | volts   |
| Max-Signal Driving  | ng Powe   | r* -     |     | -      | 0        | 0           | 0            | watts   |
| Max-Signal Plate    | Power I   | nput -   | _   | -      | 310      | 420         | 550          | watts   |
| Max-Signal Plate    |           |          |     | -      | 200      | 250         | 300          | watts   |
| 'Adjust to stated   |           |          |     | e curr | ent. The | effecti     | ve gri       | id cir- |
| quit registance for |           |          |     |        |          |             |              |         |

cuit resistance for each tube must not exceed 250,000 ohms

#### TYPICAL OPERATION (Two tubes unless otherwise specified) Class-AB.

| 0.400        |                      |         |         |      |      |   |            |          |        |       |
|--------------|----------------------|---------|---------|------|------|---|------------|----------|--------|-------|
| D-C Plate    | Voltage              | -       | -       |      | -    | - | 1500       | 2000     | 2500   | volts |
| D-C Suppre   | ssor Vo              | itage   | -       | -    | -    | - | 60         | 0        | 0      | volts |
| D-C Screen   | Voltage              | е -     | -       | -    | -    | - | 500        | 500      | 500    | valts |
| D-C Grid \   | Voltage <sup>1</sup> | -       | -       | -    | -    | - | <b> 70</b> | -80      | -85    | valts |
| Zero-Signal  | D-C P                | late C  | urrent  |      | -    | - | 110        | 85       | 65     | ma    |
| Max-Signal   | D-C P                | late C  | urrent  |      | -    | - | 365        | 295      | 250    | nıa   |
| Zero-Signal  | D-C S                | creen   | Current | .*   | -    | - | 0          | 0        | 0      | ma    |
| Max-Signal   | D-C Sc               | creen ' | Current |      | -    | - | 11         | 16       | 13     | ma    |
| Effective Pl | ate-to-P             | 'late L | oad     | -    | -    | - | 7300       | 13,000 2 | 20,000 | ohms  |
| Peak A-F G   | rid Inpu             | ut Volt | age (p  | er t | ube) | - | 100        | 100      | 95     | voits |
| Max-Signal   | Driving              | g Pow   | er*     | -    | -    | - | 0.5        | 0.3      | 0.2    | watts |
| Max-Signal   | Plate                | Power   | Input   |      | -    | - | 550        | 590      | 625    | watts |
| Max-Signal   | Plate                | Power   | Outpu   | t    | -    | - | 300        | 350      | 400    | watts |
|              |                      |         |         |      |      |   |            |          |        |       |

'Adjust to stated zero signal dic plate current.

\*Approximate values.

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION" POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC, DIVISION OF VARIAN, FOR INFORMATION AND RECOMMENDATIONS.



#### **APPLICATION**

#### **MECHANICAL**

Mounting—The 4E27A/5-125B must be mounted vertically, base down or up. The plate lead should be flexible, and the tube must be protected from vibration and shock.

Cooling—A heat dissipating connector (Eimac HR-5 or equivalent) is required at the plate terminal, and provision must be made for the free circulation of air through the socket and through the holes in the base. If the E. F Johnson Co. 122-237 socket recommended under "General Characteristics" is to be used, the model incorporating a ventilating hole should be specified.

At high ambient temperatures, at frequencies above 75 Mc. or when the flow of air is restricted, it may become necessary to provide forced air circulation in sufficient quantity to prevent the temperature of the plate and base seals from exceeding 225°C. Forced movement of air across the tube seals and envelope is always beneficial, though not necessarily required.

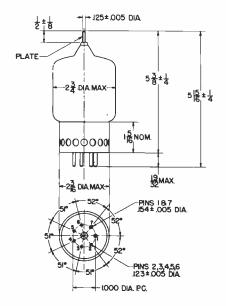
Tube temperatures may be measured with the aid of "Tempilaq," a temperature-sensitive lacquer manufactured by the Tempil Corporation, 132 West 22nd Street, New York 11, N. Y.

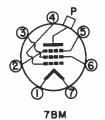
#### **ELECTRICAL**

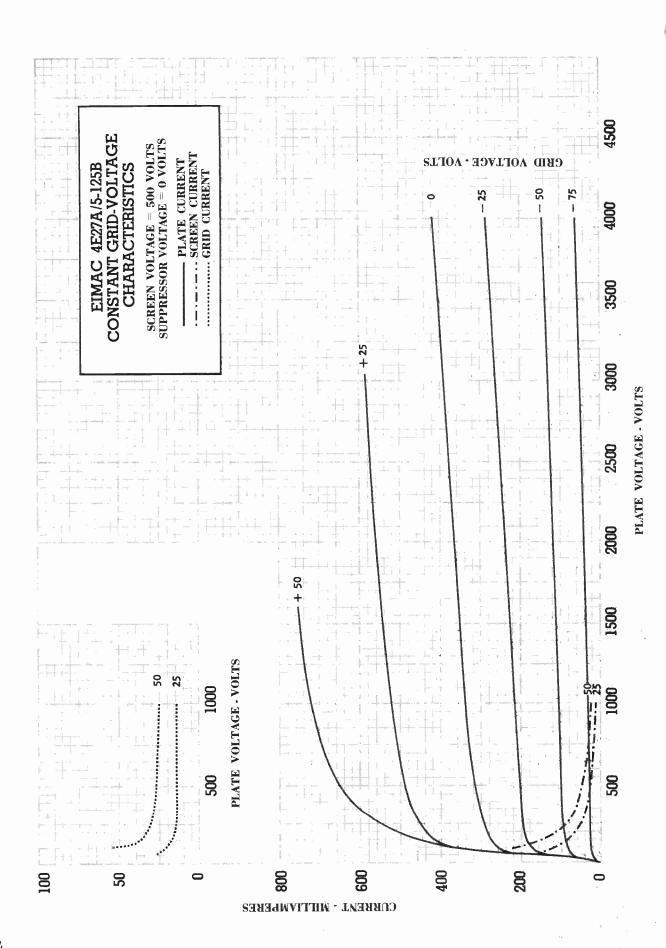
Filament Voltage—For maximum tube life the filament voltage, as measured directly at the base pins, should be the rated value of 5.0 volts. Variations should be held within the range of 4.75 to 5.25 volts.

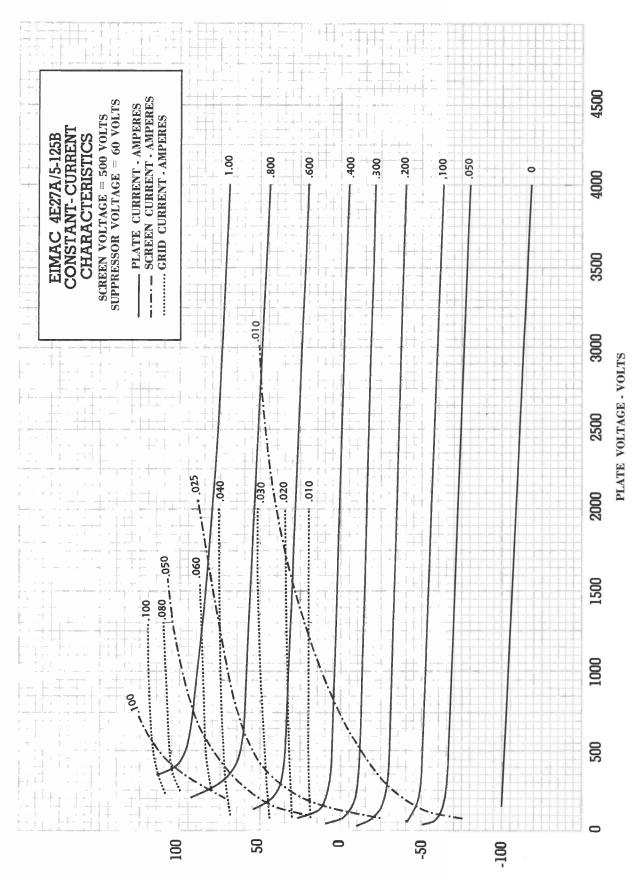
Grid Voltage—Although a maximum of —500 volts bias may be applied to the grid, there is little advantage in using bias voltages in excess of those listed under "Typical Operation," except in certain specialized applications.

When grid-leak bias is used, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired value from tube to tube. In class-C operation, particularly at high frequency, both grid bias and grid drive should be only great enough to provide satisfactory operation at good plate efficiency.

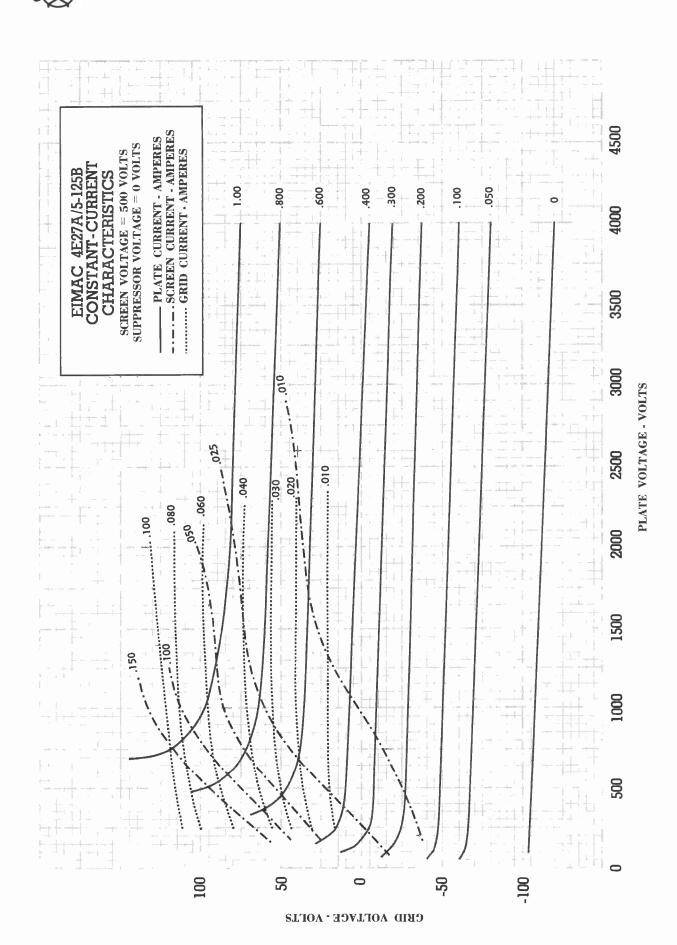

Screen Dissipation —Decrease or removal of plate load, plate voltage or bias voltage may result in screen dissipation in excess of the 20 watt maximum rating. The tube may be protected by an overload relay in the screen circuit set to remove the screen voltage when the dissipation exceeds 20 watts.


Resistors placed in the screen circuit for the purpose of developing an audio modulating voltage on the screen in modulated radio-frequency amplifiers should be made variable to permit adjustment when replacing tubes.


Plote Dissipation —Plate dissipation in excess of the 125-watt maximum rating is permissible for short periods of time, such as during tuning procedures.


Operation—If reasonable precautions are taken to prevent coupling between the input and output circuits, the 4E27A/5-125B may usually be operated at frequencies up to 75 Mc. without neutralization. A conventional method of obtaining the necessary shielding between the grid and plate circuits is to use a suitable metal chassis with the grid circuit mounted below the deck and the plate circuit above. The tube socket should be mounted flush with the under side of the chassis deck, and spring fingers mounted around the socket opening should make contact between the chassis and the metal base shell of the tube. Power-supply leads entering the amplifier should be bypassed to ground and properly shielded. The output circuit and antenna feeders should be arranged so as to preclude any possibility of feedback to other circuits.

Feedback at high frequencies may be due to the inductance of leads, particularly those of the screen and suppressor-grids. By-passing methods and means of placing these grids at r-f ground potential are discussed in Application Bulletin Number Eight, "The Care and Feeding of Power Tetrodes," available from Eimac, Division of Varian. Much of the material contained in this bulletin may be applied to pentodes.











CRID VOLTAGE - VOLTS





**FLECTRICAL** 



5-5UUA RADIAL-BEAM POWER PENTODE

> MODULATOR OSCILLATOR AMPLIFIER

The Eimac 5-500A is a compact, ruggedly constructed radial-beam power pentode having a maximum plate dissipation rating of 500 watts. It is intended for use as an amplifier, oscillator or modulator. The high plate current rating, low grid-plate capacitance and low driving power requirements permit maximum power capability to be combined with circuit simplicity and economic driver requirements.

The Eimac 5-500A is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope and over the plate seal. Cooling may be greatly simplified by the use of the Eimac SK-400 or SK-410 Air System Socket and the accompanying Eimac SK-426 glass chimney. These sockets are designed to maintain the correct balance of cooling air between the component parts of the tube.

The suppressor element of the 5-500A terminates at the tube base shell, and is designed to be operated at ground (zero) potential. The base shell must be grounded by means of suitable spring clips.



#### GENERAL CHARACTERISTICS

| IKICAL    |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          |                                               |                                                |                                                |                                                 |                                                 |                                                 |                                                 |                                                 |                                        |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filament  | : Th                                                                                                                                           | oria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted '                                                                                                                                                                                                                                           | Tung                                                                                                                                                                                                                                                             | gster                                                                                                                                                                                                                                                                                    | ı, ba                                                                                                                                                                                                                                                                                                         | lanc                                                                                                                                                                                                                                                                                                     | ed                                            |                                                |                                                |                                                 |                                                 |                                                 |                                                 |                                                 |                                        |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volt      | tage                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | - `                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | 1                                               | l0.0 v                                          | olts                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cur       | rent                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | 1                                               | 10.2 a                                          | mperes                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Grid-Scre | een A                                                                                                                                          | <b>I</b> mpl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ifica                                                                                                                                                                                                                                           | ation                                                                                                                                                                                                                                                            | Fac                                                                                                                                                                                                                                                                                      | tor (                                                                                                                                                                                                                                                                                                         | Ave                                                                                                                                                                                                                                                                                                      | rage)                                         | ) -                                            | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      |                                                 | 5.5                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Direct Ir | itere                                                                                                                                          | lectr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ode                                                                                                                                                                                                                                             | Cap                                                                                                                                                                                                                                                              | acita                                                                                                                                                                                                                                                                                    | ance                                                                                                                                                                                                                                                                                                          | s, G                                                                                                                                                                                                                                                                                                     | round                                         | led                                            | Cath                                           | ode                                             |                                                 |                                                 |                                                 | Min.                                            |                                        |                                                 | Max.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Grid      | l-Pla                                                                                                                                          | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               |                                                 |                                                 |                                        |                                                 | .10                                             | pf                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inp       | ut                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               |                                                 | 15.0                                            |                                        |                                                 | 19.0                                            | $\overline{pf}$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Out       | put                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               |                                                 | 9.5                                             |                                        |                                                 | 12.0                                            | pf                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HANICAL   |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          |                                               |                                                |                                                |                                                 |                                                 |                                                 |                                                 |                                                 |                                        |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Base -    | -                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | _                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | see                                             | drawing                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Basing    | -                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | _                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | see                                             | drawing                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mountin   | g Po                                                                                                                                           | sitio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | Vert                                            | ical                                   | , ba                                            | se up                                           | or down                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cooling   | _                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                        | _                                             | _                                              | _                                              | _                                               | _                                               | _                                               | _                                               | Ra                                              | diat                                   | ion                                             | and f                                           | orced air                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Recomm    | ende                                                                                                                                           | ed He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eat I                                                                                                                                                                                                                                           | Dissi                                                                                                                                                                                                                                                            | patii                                                                                                                                                                                                                                                                                    | ng C                                                                                                                                                                                                                                                                                                          | onne                                                                                                                                                                                                                                                                                                     | ector                                         | _                                              | _                                              | -                                               | -                                               | _                                               | _                                               | -                                               | _                                      | _                                               | Eim                                             | ac HR-6                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                               |                                                | -                                              | Eim                                             | ac S                                            | K-400                                           | ) o                                             | r SK-4                                          | 10                                     | Air                                             | Syste                                           | m Socket                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Recomm    | ende                                                                                                                                           | ed Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nim                                                                                                                                                                                                                                             | ney                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | _                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | Eima                                            | c SK-426                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Maximu    | m O                                                                                                                                            | veral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l Di                                                                                                                                                                                                                                            | imen                                                                                                                                                                                                                                                             | sion                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                               |                                                |                                                |                                                 |                                                 |                                                 |                                                 |                                                 |                                        |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Len       | gth                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               |                                                 | 0 inches                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dia       | mete                                                                                                                                           | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | 3.5                                             | 6 inches                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Net Wei   | ght                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | 1                                               | 1 ounces                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Shipping  | , We                                                                                                                                           | ight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                        | -                                             | -                                              | -                                              | -                                               | -                                               | -                                               | -                                               | -                                               | -                                      | -                                               | 2.5                                             | 5 pounds                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Filament Volt Cur Grid-Scre Direct Ir Grid Inpr Out CHANICAL Base - Basing Mountin Cooling Recomm Recomm Recomm Recomm Maximu: Len Dia Net Wei | Filament: The Voltage Current Voltage Current Grid-Screen A Direct Interest Grid-Plate Input Output CHANICAL  Base - Basing - Mounting Pot Cooling - Recommender Recommender Recommender Recommender Recommender Necommender N | Filament: Thoria Voltage - Current - Grid-Screen Ampl Direct Interelectr Grid-Plate Input - Output -  CHANICAL Base Basing Mounting Position Cooling Recommended He Recommended So Recommended CI Maximum Overal Length - Diameter Net Weight - | Filament: Thoriated Voltage Current Current Grid-Screen Amplificated Direct Interelectrode Grid-Plate - Input CHANICAL  Base Basing Mounting Position  Cooling Recommended Heat I Recommended Socke Recommended Chimm Maximum Overall Diameter - Diameter Change | Filament: Thoriated Tung Voltage Current Grid-Screen Amplification Direct Interelectrode Cap Grid-Plate Input Output  CHANICAL  Base Basing Mounting Position - Cooling Recommended Heat Dissi Recommended Socket - Recommended Chimney Maximum Overall Dimen Length Diameter Net Weight | Filament: Thoriated Tungster Voltage Current Grid-Screen Amplification Face Direct Interelectrode Capacita Grid-Plate Input Output CHANICAL  Base Basing Mounting Position Cooling Recommended Heat Dissipating Recommended Socket Recommended Chimney - Maximum Overall Dimension Length Diameter Net Weight | Filament: Thoriated Tungsten, ba Voltage Current Grid-Screen Amplification Factor ( Direct Interelectrode Capacitance Grid-Plate Input Output  CHANICAL  Base Basing Cooling Recommended Heat Dissipating C Recommended Socket Recommended Chimney Maximum Overall Dimensions Length Diameter Net Weight | Filament: Thoriated Tungsten, balance Voltage | Filament: Thoriated Tungsten, balanced Voltage | Filament: Thoriated Tungsten, balanced Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage | Filament: Thoriated Tungsten, balanced  Voltage 10.0 v Current 10.2 a  Grid-Screen Amplification Factor (Average) 5.5  Direct Interelectrode Capacitances, Grounded Cathode  Grid-Plate 15.0  Input 15.0  Output 15.0  CHANICAL  Base see  Basing see  Mounting Position Radiation and f  Recommended Heat Dissipating Connector Eimac  Recommended Socket Eimac SK-400 or SK-410 Air System  Maximum Overall Dimensions  Length |

NOTE: Typical operation data are based on conditions of adjusting the r-f grid drive to a specified plate current, maintaining fixed conditions of grid bias and screen voltage. It will be found that if this procedure is followed there will be little variation in power output between tubes even though there may be some variation in grid and screen currents. Where grid bias is obtained principally by means of a grid resistor, to control plate current it is necessary to make the resistor adjustable.



## RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony

#### MAXIMUM RATINGS

| D-C PLATE VOLTAGE - | -      | - | 4000 | Max. | Volts |
|---------------------|--------|---|------|------|-------|
| D-C SCREEN VOLTAGE  | -      | - | 600  | Max. | Volts |
| D-C SUPPRESSOR VOLT | rage . | - | 100  | Max. | Volts |
| D-C PLATE CURRENT - | -      | - | 450  | Max. | ma    |
| PLATE DISSIPATION - | -      | - | 500  | Max. | Watts |
| SCREEN DISSIPATION  | -      | - | 35   | Max. | Watts |
| GRID DISSIPATION -  | _      |   | 12   | Max. | Watts |

#### TYPICAL OPERATION

| D-C Plate Voltage   | _     | -    | _    | -   | 2500       | 3000    | 4000 | Volts |
|---------------------|-------|------|------|-----|------------|---------|------|-------|
| D-C Screen Voltage  | -     | -    | -    | -   | 500        | 500     | 500  | Volts |
| D-C Grid Voltage    | -     | -    | -    | -   | 210        | 220     | 240  | Volts |
| D-C Suppressor Volt | lage  | -    | -    | -   | 0          | 0       | 0    | Volts |
| D-C Plate Current   | -     | -    |      | -   | 405        | 432     | 450  | ma    |
| D-C Screen Current  |       | -    | -    | -   | 55         | 65      | 65   | ma    |
| D-C Grid Current    | -     | -    | -    | -   | 28         | 35      | 38   | ma    |
| Screen Dissipation  | -     |      | -    | -   | 27.5       | 32.5    | 33   | Watts |
| Grid Dissipation    | -     | -    | -    | -   | 2.8        | 3.8     | 5.0  | Watts |
| Peak R-F Grid Input | Vol   | tage | -    | -   | 310        | 330     | 365  | Volts |
| MF Driving Power*   | -     | -    | -    | -   | 8.7        | 12      | 14   | Watts |
| Plate Power Input   | -     | -    | -    | -   | 1015       | 1300    | 1800 | Watts |
| Plate Dissipation   | -     | -    | -    | -   | 265        | 495     | 500  | Watts |
| Plate Power Output  | -     | -    | -    | -   | 750        | 805     | 1300 | Watts |
| *Driving Power inci | rease | s as | frea | uen | cv is inci | reased. |      |       |

## TYPICAL OPERATION (Frequencies below 30 Mc.) Peak-Envelope or Modulation-Crest Conditions.

Adjusted for minimum distortion.

| DC Plate Voltage               | _ | 2000 | 3000 | 4000 Volts |
|--------------------------------|---|------|------|------------|
| DC Screen Voltage              | - | 750  | 750  | 750 Volts  |
| DC Suppressor Voltage          | - | 0    | 0    | 0 Volts    |
| DC Control Grid Voltage* -     | - | —100 | —112 | —121 Volts |
| Zero-Signal DC Plate Current - | - | 150  | 100  | 80 mA      |
| Single-Tone DC Plate Current   | - | 338  | 320  | 322 mA     |
| Two-Tone DC Plate Current -    | - | 252  | 221  | 212 mA     |
| Single-Tone DC Screen Current  | - | 31   | 26   | 24 mA      |
| Two-Tone DC Screen Current     | - | 15   | 12   | 10 mA      |
| Peak RF Grid Voltage           | - | 100  | 112  | 121 Volts  |
| Useful Output Power            | - | 395  | 612  | 832 Watts  |
| Resonant Load Impedance -      | - | 3600 | 5800 | 7700 Ohms  |
| Third Order Intermodulation    |   |      |      |            |
| Products * *                   | - | —52  | 33   | —28 db     |
| Fifth Order Intermodulation    |   |      |      |            |
| Products**                     | ~ | —49  | 41   | 37 db      |

\*1. Adjust to the specified zero-signal plate current.

#### RADIO-FREQUENCY LINEAR AMPLIFIER

Class AB<sub>1</sub>, Grounded Cathode, one tube

#### MAXIMUM RATINGS

| -  | -            | 4000 | Max.                           | Volts                                 |
|----|--------------|------|--------------------------------|---------------------------------------|
| -  | -            | 1000 | Max.                           | Volts                                 |
| GE | -            | 100  | Max.                           | Volts                                 |
| -  | -            | 450  | Max.                           | ma                                    |
| -  | -            | 500  | Max.                           | Watts                                 |
| -  | -            | 35   | Max.                           | Watts                                 |
|    | GE<br>-<br>- | GE - | 1000<br>GE - 100<br>450<br>500 | GE - 100 Max.<br>450 Max.<br>500 Max. |

## PLATE MODULATED RADIO FREQUENCY AMPLIFIER

Class-C Telephony (Carrier conditions unless otherwise specified.) MAXIMUM RATINGS

| DC PLATE VOLTAGE -  | -   | - | - | 4000 | Volts |
|---------------------|-----|---|---|------|-------|
| DC SCREEN VOLTAGE   | -   | - | - | 600  | Volts |
| DC SUPPRESSOR VOLTA | AGE | - | - | 100  | Volts |
| DC GRID VOLTAGE -   | _   | - |   | 500  | Volts |
| DC PLATE CURRENT -  | -   | - | _ | 340  | ma    |
| PLATE DISSIPATION - | -   | - | - | 330  | Watts |
| SCREEN DISSIPATION  | -   | - | - | 35   | Watts |
| GRID DISSIPATION -  | -   | - | - | 12   | Watts |

#### TYPICAL OPERATION

| DC Plate Voltage -      | -    | -     | -  | 2700 | 3100 | 3500 Volts |
|-------------------------|------|-------|----|------|------|------------|
| DC Screen Voltage -     | _    | -     | _  | 450  | 470  | 500 Volts  |
| DC Grid Voltage -       | _    | _     | _  | 270  | -310 | -300 Volts |
| DC Suppressor Voltage   | _    | _     | _  | 0    | 0    | 0 Volts    |
| DC Plate Current -      | _    | _     | _  | 285  | 260  | 305 ma     |
|                         |      |       |    |      |      |            |
| DC Screen Current -     | -    | -     | -  | 68   | 50   | 55 ma      |
| DC Grid Current -       | -    | -     | -  | 20   | 15   | 18 ma      |
| Screen Dissipation -    | -    | -     | -  | 31   | 23   | 27 Watts   |
| Peak A-F Screen Voltage | je / | Appro | X. |      |      |            |
| (100% Modulation)       | _    | -     | -  | 350  | 330  | 350 Volts  |
| Peak R-F Grid Voltage   | _    | _     | _  | 355  | 385  | 375 Volts  |
| MF Grid Driving Power   |      | _     | -  | 7    | 6    | 7 Watts    |
| Plate Dissipation -     | -    | -     | -  | 160  | 220  | 280 Watts  |
| Plate Power Output      | -    | -     | -  | 580  | 580  | 780 Watts  |

## AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR

Class AB

#### MAXIMUM RATINGS (Per Tube)

| D-C PLATE VOLTAGE -  | -  | - | 4000        | Max. | Volts |
|----------------------|----|---|-------------|------|-------|
| D-C SCREEN VOLTAGE   | -  | - | 1000        | Max. | Volts |
| D-C SUPPRESSOR VOLTA | GE | - | 100         | Max. | Volts |
| MAX-SIGNAL D-C PLATE |    |   |             |      |       |
| CURRENT              | -  | - | 450         | ma   |       |
| PLATE DISSIPATION -  | -  | - | 50 <b>0</b> | Max. | Watts |
| SCREEN DISSIPATION   | -  | - | 35          | Max. | Watts |
| GRID DISSIPATION -   | -  | - | 12          | Max. | Watts |

#### TYPICAL OPERATION CLASS AB1

(Sinusoidal wave, two tubes unless otherwise specified)

| D-C Plate Voltage                            | _    | _    | _ | 3000    | 4000 Volts      |
|----------------------------------------------|------|------|---|---------|-----------------|
| D-C Screen Voltage                           |      | -    | _ | 750     | 750 Volts       |
| D-C Suppressor Voltage                       | _    | _    | - | 0       | 0 Volts         |
| D-C Grid Voltage (approx.)* -                | _    | _    | - | 112     | 121 Volts       |
| Zero-Signal D-C Plate Current                | -    | _    | - | 200     | 160 ma          |
| Max-Signal D-C Plate Current                 | -    | -    | - | 640     | 645 ma          |
| Zero-Signal D-C Screen Current               | -    | -    | - | 0       | 0 ma            |
| Max-Signal D-C Screen Current                | -    | -    | - | 52      | 48 ma           |
| Effective Load, Plate-to-plate -             | -    | -    | - | 11,600  | 15,400 Ohms     |
| Peak A-F Grid Input Voltage (per             | · tu | ıbe) | - | 112     | 121 Volts       |
| Driving Power                                | _    | _    | - | 0       | 0 Watts         |
| Max-Signal Plate Power Output                | -    | -    | - | 1224    | 1664 Watts      |
| * A altitude to college extended more of our | ъI.  | _1_+ |   | ant The | D.C. rosistance |

\*Adjust to give stated zero-signal plate current. The D-C resistance in series with the control grid of each tube should not exceed 250,000 ohms.

If it is desired to operate this tube under conditions widely different from those given under "Typical Operation," possibly exceeding the maximum ratings given for CW service, write Eimac, A Division of Varian Associates, for information and recommendations.

<sup>\*\*2.</sup> Equal or better than stated for all signal levels up to indicated useful output power. Reference to one tone of a two-tone test signal.

#### APPLICATION

#### **MECHANICAL**

MOUNTING—The 5-500A must be mounted vertically, base up or base down. The socket must be constructed so as to allow an unimpeded flow of air through the holes in the base of the tube and must also provide clearance for the glass tip-off which extends from the center of the base. The metal tube-base shell should be grounded by means of suitable spring fingers. The above requirements are met by the Eimac SK-400 and SK-410 Air-System Sockets. A flexible connecting strap should be provided between the Eimac HR-6 cooler on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock.

COOLING—Adequate forced-air cooling must be provided to maintain the base seals at a temperature below 200°C., and the plate seal at a temperature below 225°C.

When the Eimac SK-400 or SK-410 Air-System Sockets and SK-426 chimney are used, a minimum air flow of 14 cubic feet per minute at a static pressure of 0.25 inches of water, as measured in the socket at sea level, is required to provide adequate cooling under all conditions of operation. Seal temperature limitations require that cooling air be supplied to the tube even when the filament alone is on during standby periods.

In the event an Air-System socket is not used, provision must be made to supply equivalent cooling of the base, the envelope, and the plate lead.

Tube temperatures may be measured with the aid of "Tempilaq," a temperature-sensitive laquer manufactured by the Tempil Corporation, 132 West 22nd Street, New York 11, N.Y.

#### **ELECTRICAL**

FILAMENT VOLTAGE—For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated voltage of 10.0 volts. Variations in filament voltage must be kept within the range of 9.5 to 10.5 volts.

The 5-500A features a balanced filament structure to help the designer meet FCC hum and noise specifications in AM service.

BIAS VOLTAGE — The d-c bias voltage for the 5-500A should not exceed 500 volts. If grid leak bias is used, suitable means must be provided to prevent excessive plate or screen dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to

facilitate maintaining the bias voltage and plate current at the desired values from tube to tube. In operation above 50 Mc., it is advisable to keep the bias voltage as low as is practicable.

SCREEN VOLTAGE—The d-c screen voltage for the 5-500A should not exceed 800 volts in r-f applications. In audio applications a maximum d-c screen voltage of 1,000 volts may be used. The screen voltages shown under "Typical Operation" are representative voltages for the type of operation involved.

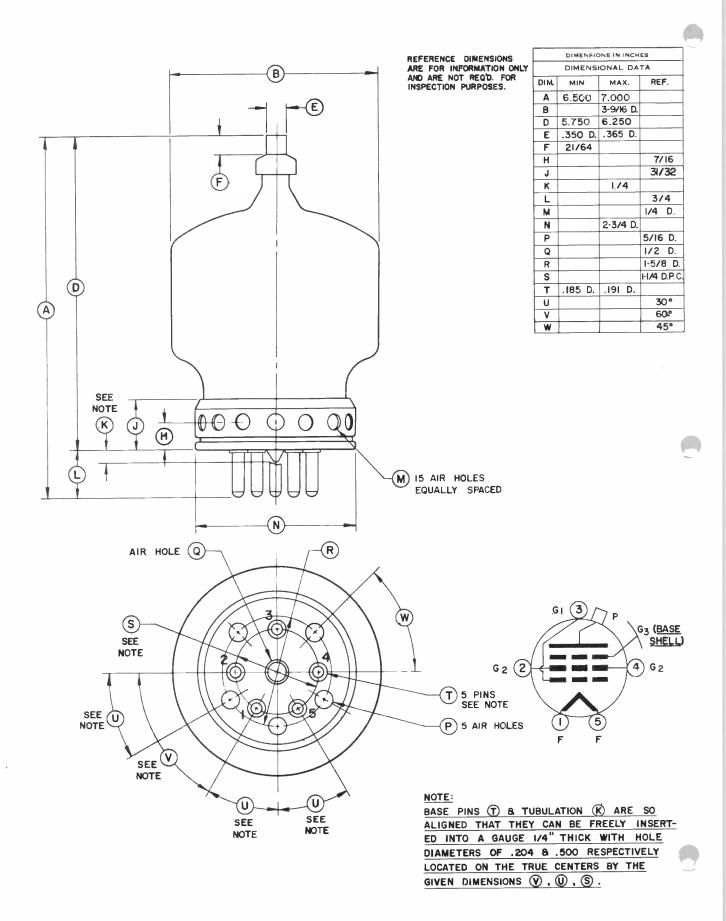
PLATE VOLTAGE—The plate-supply voltage for the 5-500A should not exceed 4000 volts in CW and audio applications. In plate-modulated telephony service the d-c plate-supply voltage should not exceed 3200 volts, except below 30 Mc., intermittent service, where 4000 volts may be used.

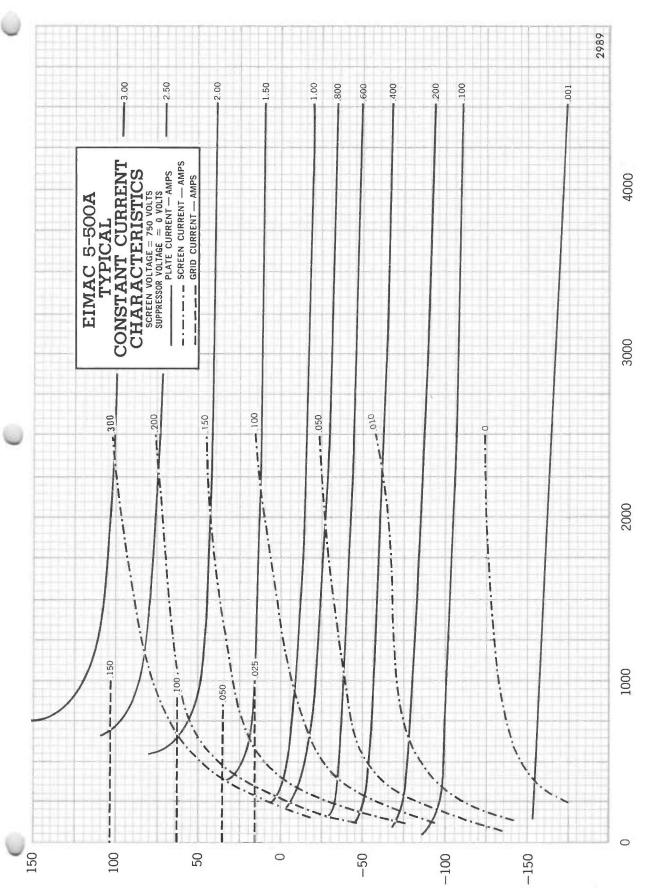
GRID DISSIPATION — Grid dissipation for the 5-500A should not be allowed to exceed 12 watts. Grid dissipation may be calculated from the following expression,

Pg = εcmpIc where Pg = Grid Dissipation εcmp = Peak positive grid to cathode voltage, and

Ic = D-C grid current

εcmp may be measured by means of a suitable peak voltmeter connected between filament and grid.

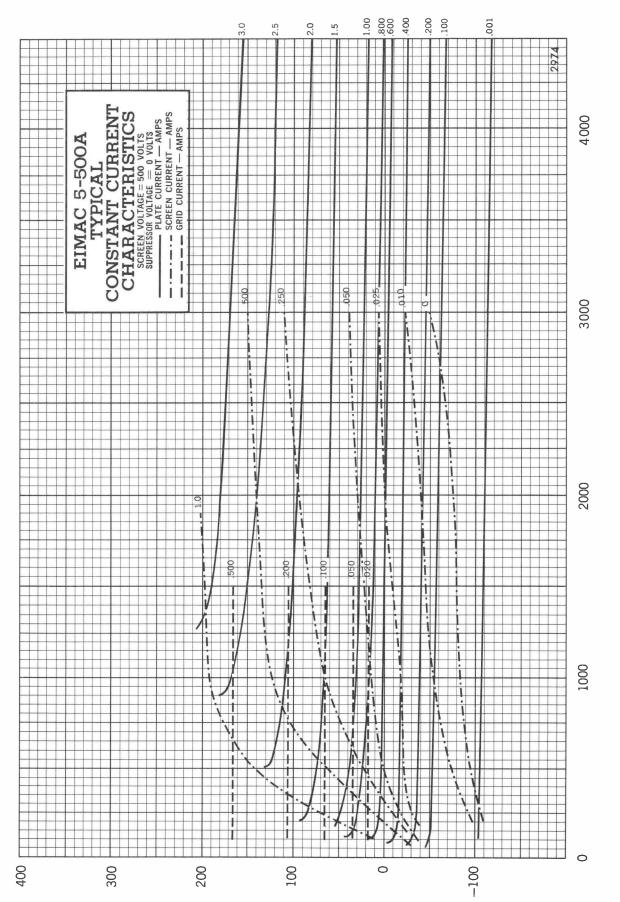

SCREEN DISSIPATION — The power dissipated by the screen of the 5-500A must not exceed 35 watts. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit screen dissipation to 35 watts in event of circuit failure.


PLATE DISSIPATION—Under normal operating conditions, the plate dissipation of the 5-500A should not be allowed to exceed 500 watts.

In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is 330 watts. The plate dissipation may rise to 500 watts under 100% sinusoidal modulation.

Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

General information pertaining to the operation of the 5-500A may be found in Application Bulletin No. 8, "The Care and Feeding of Power Tetrodes." This Bulletin is available upon request.






GRID VOLTAGE - VOLTS

PLATE VOLTAGE - VOLTS

GRID VOLTAGE - VOLTS



5-500A

PLATE VOLTAGE — VOLTS





#### TECHNICAL DATA

RADIAL BEAM POWER PENTODE

The EIMAC 5CX1500A is a ceramic/metal power pentode designed for use as a Class AB1 linear amplifier in audio or radio frequency applications. Its characteristic low intermodulation distortion makes it especially suitable for single sideband service. The filament is a rugged mesh type.

The tube is also recommended for use as a Class  ${\sf C}$  rf power amplifier in  ${\sf CW},$   ${\sf FM}$  and  ${\sf AM}$  service.



| Filament: Thoriated Tungsten Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LECTRICAL                                                  |       |      |    |      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|------|----|------|---|
| Current, at 5.0 volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilament: Thoriated Tungsten                                |       |      |    |      |   |
| $\label{eq:total_conductance} Transconductance (Average): $$ I_b = 1.0 Adc, E_{c2} = 500 Vdc \dots 24,000 \ \mu mhos $$$ Amplification Factor (Average): $$$ Grid to Screen \dots 5.5 $$$ Direct Interelectrode Capacitance (grounded cathode)2 $$$ Input \dots \$ | Voltage 5.0 ±                                              | 0.25  | V    |    | 4    |   |
| $\begin{array}{c} \text{I}_b = 1.0 \text{ Adc, E}_{\text{C2}} = 500 \text{ Vdc} \dots & 24,000  \mu \text{mhos} \\ \text{Amplification Factor (Average):} & 5.5 \\ \text{Direct Interelectrode Capacitance (grounded cathode)2} \\ \text{Input} \dots & \dots & \dots & \dots & \dots \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Current, at 5.0 volts                                      | 40    | Α    |    | 4    | 1 |
| Amplification Factor (Average): Grid to Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ransconductance (Average):                                 |       |      |    | 4    |   |
| Amplification Factor (Average): Grid to Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_b = 1.0 \text{ Adc}, E_{c2} = 500 \text{ Vdc} \dots 24$ | 1,000 | μmho | )S |      |   |
| Direct Interelectrode Capacitance (grounded cathode)2 Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            | ,     | ,    |    |      |   |
| Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grid to Screen                                             | 5.5   |      |    |      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | irect Interelectrode Capacitance (grounded cathode)2       |       |      |    |      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input                                                      |       |      |    | <br> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |       |      |    |      |   |
| Feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feedback                                                   |       |      |    | <br> | , |
| Frequency of Maximum Rating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |       |      |    |      |   |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### MECHANICAL

| ${\tt Maximum}$ | Overall | Dimensions: |
|-----------------|---------|-------------|
|-----------------|---------|-------------|

| Length                         | 4.950 in; 125.73 mm  |
|--------------------------------|----------------------|
| Diameter                       | 3.370 in; 85.60 mm   |
| Net Weight                     | 30 oz; 850.5 gm      |
| Operating Position Axis verti  | cal, base down or up |
| Maximum Operating Temperature: | •                    |
| Ceramic/Metal Seals            | 25000                |

 Ceramic/Metal Seals
 250°C

 Anode Core
 250°C

(Effective 6-6-70) © 1965,1967,1970 Varian

Printed in U.S.A.

75 pF 16.5 pF 0.20 pF

110 MHz



| Base                                                                                                                                                                                                                                                                                                                                                   | Special ring and breechblock terminal surfaces EIMAC SK-840 series EIMAC SK-806                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB <sub>1</sub>                                                                                                                                                                                                                                                                                     | TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions |
| ABSOLUTE MAXIMUM RATINGS:  DC PLATE VOLTAGE                                                                                                                                                                                                                                                                                                            | Conditions         Plate Voltage                                                                               |
| RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR Class C Telegraphy or FM Telephony (Key-Down Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE . 5000 VOLTS DC SCREEN VOLTAGE . 750 VOLTS DC PLATE CURRENT . 1.0 AMPERE PLATE DISSIPATION . 1500 WATTS SUPPRESSOR DISSIPATION . 25 WATTS SCREEN DISSIPATION . 75 WATTS GRID DISSIPATION . 25 WATTS | TYPICAL OPERATION (Frequencies to 30 MHz)  Plate Voltage                                                       |
| PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN Class C Telephony (Carrier Conditions)  ABSOLUTE MAXIMUM RATINGS  DC PLATE VOLTAGE                                                                                                                                                                                                         | TYPICAL OPERATION (Frequencies to 30 MHz)  Plate Voltage                                                       |



| AUDIO FREQUENCY POWER AMPLIFIER OR                | TYPICAL OPERATION (Two Tubes)       |                    |
|---------------------------------------------------|-------------------------------------|--------------------|
| MODULATOR Class AB, Grid Driven (Sinusoidal Wave) | Plate Voltage 280                   | 00 3800 Vdc        |
|                                                   |                                     | 0 0 Vdc            |
| ABSOLUTE MAXIMUM RATINGS (per tube)               |                                     | 00 500 Vdc         |
|                                                   | Grid Voltage                        | 81 <b>-</b> 83 Vdc |
| DC PLATE VOLTAGE 4000 VOLTS                       | Zero-Signal Plate Current 0.        |                    |
| - <del>-</del>                                    | Max. Signal Plate Current 1.3       | 30 1.33 Adc        |
| DC SCREEN VOLTAGE 750 VOLTS                       | Zero-Signal Plate Current 2         | 20 mAdc            |
| DC PLATE CURRENT 1.0 AMPERE                       |                                     | 0 106 mAdc         |
| PLATE DISSIPATION 1500 WATTS                      |                                     | 81 83 v            |
| SUPPRESSOR DISSIPATION 25 WATTS                   | Peak Driving Power                  | 0 0 w              |
|                                                   | Max. Signal Plate Dissipation 72    | 20 1130 W          |
| SCREEN DISSIPATION 75 WATTS                       | Plate Output Power 220              | 00 3220 W          |
| GRID DISSIPATION 25 WATTS                         | Load Resistance(plate to plate) 480 |                    |

- 1. Approximate value.
- 2. Per tube .
- 3. Nominal drive power is one-half peak power.
- 4. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                           | Min. | Max.    |
|-------------------------------------------------------------|------|---------|
| Filament: Current at 5.0 volts                              | 38   | 43 A    |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |         |
| Input                                                       | 70   | 80 pF   |
| Output                                                      | 14.5 | 18.5 pF |
| Feedback                                                    |      | 0.25 pF |
| Interelectrode Capacitances 1 (grounded grid connection)    |      |         |
| Input                                                       | 32   | 37 pF   |
| Output                                                      | 14.5 | 18.5 pF |
| Feedback                                                    |      | 0.05 pF |

### **APPLICATION**

#### MECHANICAL

MOUNTING - The 5CX1500A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-840 socket and SK-806 chimney have been designed especially

for the 5CX1500A. The use of recommended airflow rates through these sockets provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals through the Air Chimney, and exits through the anode cooling fins.



COOLING - The maximum temperature rating for the anode core of the 5CX1500A is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperature at 225°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

|                                 | SEA I             | LEVEL                                     | 6000              | FEET                                     |
|---------------------------------|-------------------|-------------------------------------------|-------------------|------------------------------------------|
| PLATE<br>DISSIPATION<br>(WATTS) | AIR FLOW<br>(CFM) | PRESSURE<br>DROP<br>(INCHES<br>of WATER ) | AIR FLOW<br>(CFM) | PRESSURE<br>DROP<br>(INCHES<br>of WATER) |
| 1000<br>1500                    | 27<br>47          | .33                                       | 33<br>58          | .40                                      |

<sup>\*</sup> Since the power dissipated by the filament represents about 200 watts and since grid-plus-screen-plus-suppressor dissipation can, under some conditions, represent another 125 watts, allowance has been made in preparing this tabulation for an additional 325 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

#### ELECTRICAL

FILAMENT OPERATION - The rated filament voltage for the 5CX1500A is 5.0 volts. Filament voltage, as measured at the socket, should be maintained within  $\pm 5\%$  of this value or below to obtain maximum tube life.

INTERMODULATION DISTORTION - The Radio Frequency Linear Amplifier operating conditions including distortion data are the results of operation in a neutralized, grid-driven amplifier. Plots of IM distortion versus power output under two-tone condition for a typical tube are shown on next page.

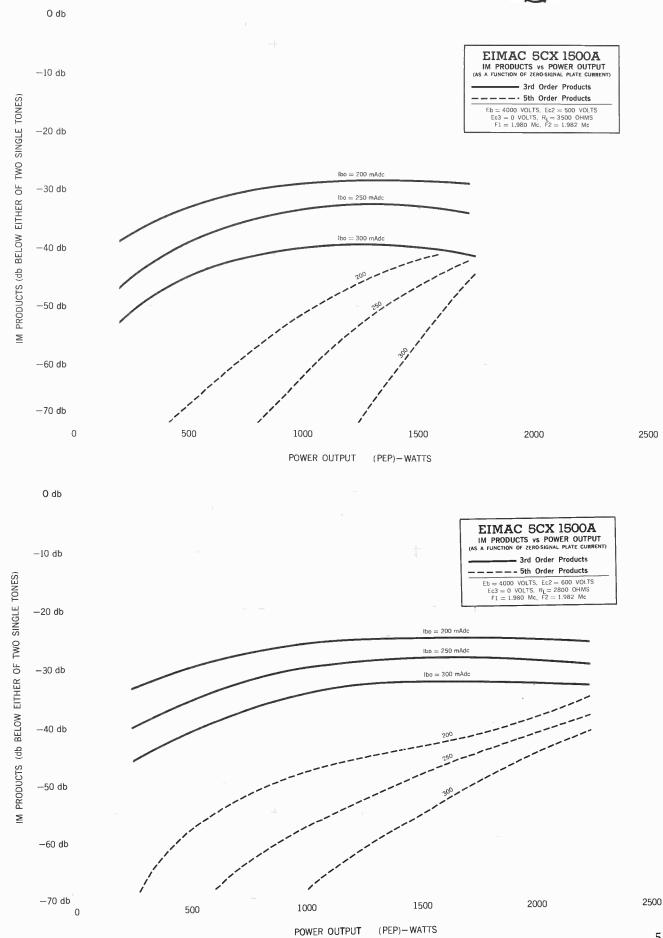
GRID OPERATION - The rated dissipation of the grid is 25 watts. This is approximately the

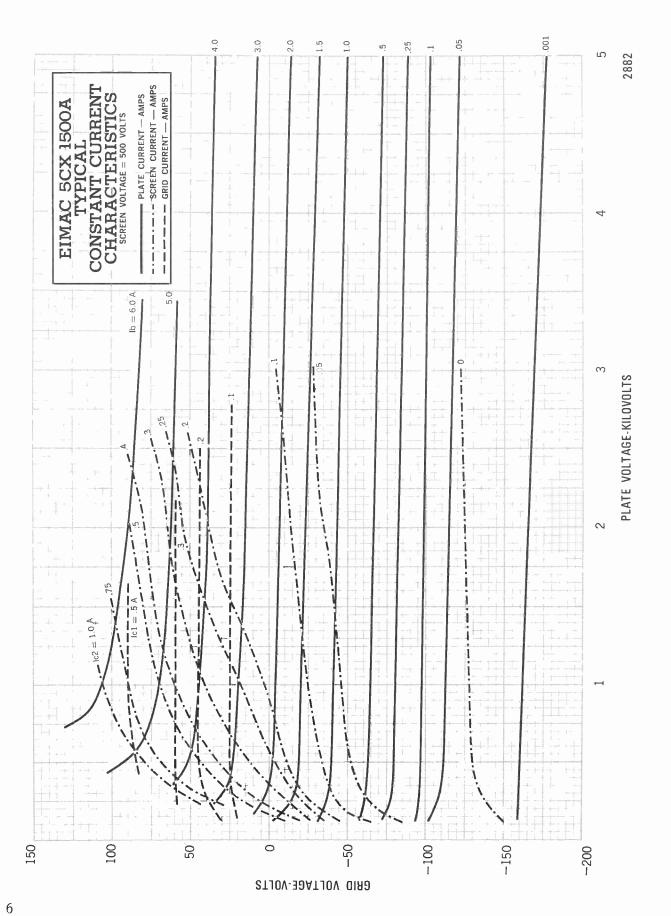
product of dc grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

SCREEN OPERATION - The power dissipated by the screen of the 5CX1500A must not exceed 75 watts.

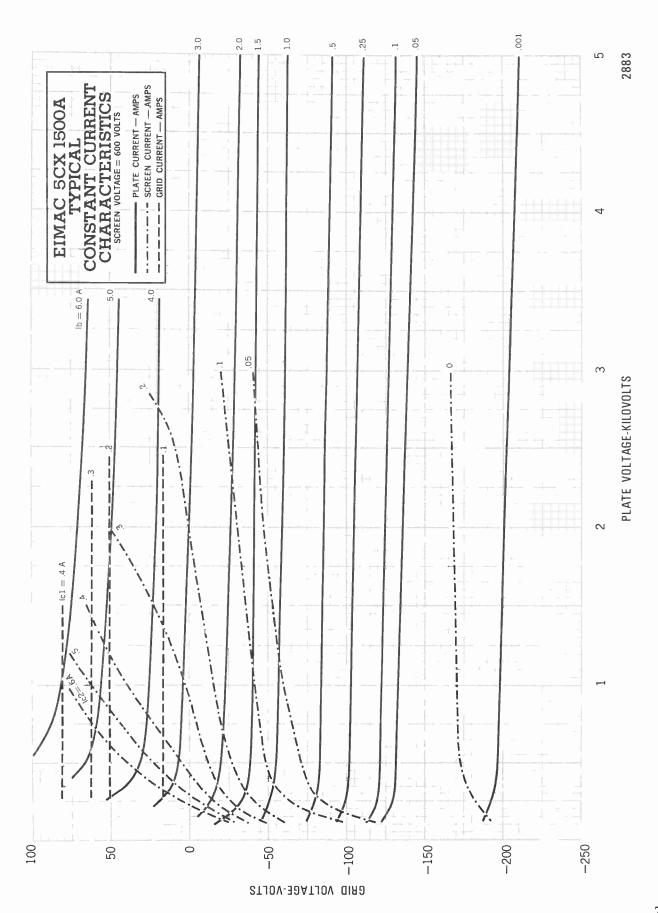
Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon rms screen current and voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 75 watts in the event of circuit failure.

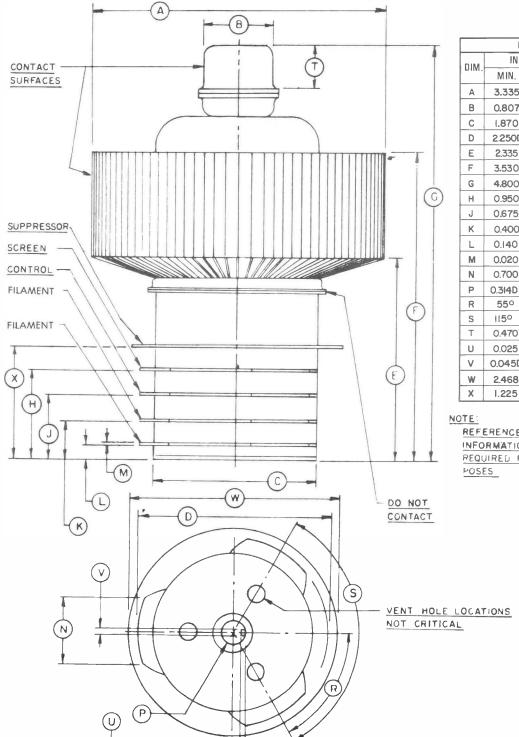

SUPPRESSOR OPERATION - The rated dissipation of the suppressor is 25 watts. Suppressor current will be zero or very nearly zero for all typical operating conditions specified. The 5CX1500A has been designed for zero voltage operation of the suppressor grid for most applications.


PLATE DISSIPATION - The plate-dissipation ratings for the 5CX1500A is 1000 watts for Class-C plate-modulated service and 1500 watts for Class-C telegraphy. In Class-AB service the plate dissipation rating is 1500 watts.

HIGH VOLTAGE - The 5CX1500A operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here write to the Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.
















|         | DIMENSIONAL DATA |        |             |        |  |  |  |  |
|---------|------------------|--------|-------------|--------|--|--|--|--|
| DIM.    | INC              | HES    | MILLIMETERS |        |  |  |  |  |
| Dilly1. | MIN.             | MAX.   | MIN.        | MAX.   |  |  |  |  |
| Α       | 3.335            | 3.370  | 84.71       | 85.60  |  |  |  |  |
| В       | 0.807            | 0.820  | 20.50       | 20.83  |  |  |  |  |
| С       | 1.870            | 1.900  | 47.50       | 48.26  |  |  |  |  |
| D       | 2.250D           | 2.3000 | 57.I5D      | 58.42D |  |  |  |  |
| Ε       | 2.335            | 2.535  | 59.31       | 64.39  |  |  |  |  |
| F       | 3.530            | 3.730  | 89.66       | 94.74  |  |  |  |  |
| G       | 4.800            | 4.950  | 121.92      | 125.73 |  |  |  |  |
| Н       | 0.950            | 1.000  | 24.13       | 25.40  |  |  |  |  |
| J       | 0.675            | 0.725  | 17.15       | 18.42  |  |  |  |  |
| K       | 0.400            | 0.450  | 10.16       | 11.43  |  |  |  |  |
| L       | 0.140            | 0.170  | 3.56        | 4.32   |  |  |  |  |
| М       | 0.020            | 0.030  | 0.51        | 0.76   |  |  |  |  |
| N       | 0.700            | 0.800  | 17.78       | 20.32  |  |  |  |  |
| Р       | 0.3I4D           | 0.326D | 7.98D       | 8.28D  |  |  |  |  |
| R       | 55°              | 65°    | 55°         | 65°    |  |  |  |  |
| S       | 1150             | 125°   | 1150        | 125°   |  |  |  |  |
| Т       | 0.470            | 0.530  | 11.94       | 13.46  |  |  |  |  |
| U       | 0.025            | 0.048  | 0.63        | 1.22   |  |  |  |  |
| V       | 0.045D           | 0.070D | 1.I4D       | 1.78D  |  |  |  |  |
| W       | 2.468            | 2.531  | 62.69       | 64.29  |  |  |  |  |
| Х       | 1.225            | 1.275  | 31.12       | 32.39  |  |  |  |  |

REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES



# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

## 5CX3000A

RADIAL-BEAM
POWER PENTODE

The EIMAC 5CX3000A is a ceramic and metal power pentode designed to be used as a Class- $AB_1$  linear amplifier in audio or radio-frequency applications. Its characteristics of low intermodulation distortion make it especially suitable for single side-band service.

#### GENERAL CHARACTERISTICS

#### **ELECTRICAL**

| Filament: Th                                          | oria                                                          | ted  | Tung  | ster | ı     |   |   |   | $\underline{Min}$ . | Nom. | Max. |       |
|-------------------------------------------------------|---------------------------------------------------------------|------|-------|------|-------|---|---|---|---------------------|------|------|-------|
| Voltage                                               | -                                                             | -    | -     | -    | -     | - | - | - |                     | 9.0  |      | volts |
| Current                                               | -                                                             | -    | -     | -    | -     | - | - | - | 39.5                |      | 43.5 | amps  |
| Amplification                                         | Fac                                                           | ctor | (Grid | Sci  | reen) | - | - | - |                     | 5.5  |      |       |
| Frequency for                                         | r Ma                                                          | axin | num F | (ati | ngs   | - | - | - |                     |      | 150  | MHz   |
| Direct Interelectrode Capacitances, Grounded Cathode: |                                                               |      |       |      |       |   |   |   |                     |      |      |       |
| Input                                                 | -                                                             | -    | -     | -    | -     | - | - | - | 125                 |      | 145  | pF    |
| Output                                                | -                                                             | -    | -     | -    | -     | - | - | - | 18                  |      | 24   | pF    |
| Feedbac                                               | k                                                             | -    | -     | _    | -     | _ | - | - |                     |      | .60  | pF    |
| Direct Interel                                        | Direct Interelectrode Capacitances, Grounded Grid and Screen: |      |       |      |       |   |   |   |                     |      |      |       |
| Input                                                 | -                                                             | -    | _     | -    | -     | _ | - | _ | 55                  |      | 67   | рF    |
| Output                                                | -                                                             | -    | -     | -    | -     | - | - | - | 18                  |      | 24   | рF    |



#### **MECHANICAL**

| Base                           | - | - | - | _ | Spe | cial | ring | and | l bree | chb | lock   | term | inal surfaces |
|--------------------------------|---|---|---|---|-----|------|------|-----|--------|-----|--------|------|---------------|
| Maximum Seal Temperature -     | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | - 250°C       |
| Maximum Anode Core Temperature | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | - 250°C       |
| Recommended Socket             | - | - | - | - | -   | -    | -    | -   | -      | - ] | EIMA   | C S  | K-1420 series |
| Recommended Air Chimney -      | _ | - | - | - | -   | -    | -    | -   | -      | -   | -      | EIM  | IAC SK-1426   |
| Operating Position             | - | - | - | _ | -   | -    | -    | -   | Axis   | ver | tical, | bas  | e up or down  |
| Maximum Dimensions:            |   |   |   |   |     |      |      |     |        |     |        |      |               |
| Height                         | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | 6.8 inches    |
| Diameter                       | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | 4.6 inches    |
| Cooling                        | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | Forced air    |
| Net Weight                     | - | - | - | - | -   | -    | -    | -   | -      | -   | -      | -    | 5.5 pounds    |
| Shipping Weight (Approximate)  | - | - | - | _ | -   | _    | -    | _   | -      | -   | _      | _    | 10 pounds     |

## RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions)

#### MAXIMUM RATINGS

| DC PLATE VOLTAGE    | -   | - | - | - | 7000 | VOLTS |
|---------------------|-----|---|---|---|------|-------|
| DC SCREEN VOLTAGE   | -   | - | - | - | 1000 | VOLTS |
| DC PLATE CURRENT    | -   | - | - | - | 2.0  | AMPS  |
| PLATE DISSIPATION   | -   | - | - | - | 4000 | WATTS |
| SCREEN DISSIPATION  | -   | - | - | - | 175  | WATTS |
| GRID DISSIPATION -  | -   | - | - | - | 50   | WATTS |
| SUPPRESSOR DISSIPAT | ION | - | - | - | 100  | WATTS |

| DC Plate Voltage   | _   | _ | _ | - | _ | - | - | 6800 | volts |
|--------------------|-----|---|---|---|---|---|---|------|-------|
| DC Screen Voltage  |     | _ | _ | - | - | - | - | 500  | volts |
| DC Grid Voltage    | -   | - | - | - | - | - | - | -200 |       |
| Suppressor Grid    | -   | - | - | - | - | - | - | _    | volts |
| DC Plate Current   | -   | - | - | - | - | - | - |      | amps  |
| DC Screen Current  | t   | - | - | - | - | - | - | 276  | mΑ    |
| DC Grid Current    | -   | - | - | - | - | - | - |      | mΑ    |
| Peak RF Grid Volta | age | - | - | - | - | - | - | 300  | volts |
| Driving Power      | _   | _ | - | - | - | - | - | 52   | watts |
| Plate Dissipation  | _   | _ | _ | _ | - | _ | - | 2600 | watts |
| Plate Output Pow   |     | - | - | _ | _ | - | - | 8500 | watts |
|                    |     |   |   |   |   |   |   |      |       |



## AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB

MAXIMUM RATINGS (Per Tube)

| DC PLATE VOLTAGE   | -  | - | - | _ | 7000 | <b>VOLTS</b> |
|--------------------|----|---|---|---|------|--------------|
| DC SCREEN VOLTAGE  | -  | - | - | - | 1000 | <b>VOLTS</b> |
| DC PLATE CURRENT   | -  | - | - | - | 2.0  | AMPS         |
| PLATE DISSIPATION  | ** | - | - | - | 4000 | WATTS        |
| SCREEN DISSIPATION |    | - |   |   |      | WATTS        |
| GRID DISSIPATION - |    |   |   |   |      | WATTS        |
| SUPPRESSOR GRID -  | -  | - | - | - | 100  | WATTS        |

TYPICAL OPERATION (Two Tubes), Class AB<sub>1</sub>

| DC Plate V  | 'oltage | -     | -      | -   | - | - | - | - | 6000   | volts |
|-------------|---------|-------|--------|-----|---|---|---|---|--------|-------|
| DC Screen   | Voltag  | е     | _      | -   | - | - | - | - | 850    | volts |
| DC Grid Vo  | ltage*  | -     | -      | -   | - | - | - | - | -147   | volts |
| DC Suppre   | ssor Gi | rid V | oltag  | е   | - | - | - | _ | 0      | volts |
| Max-Signal  |         |       |        | -   | - | - | - | - | 2.9    | amps  |
| Zero-Signal | l Plate | Cur   | rent   | -   | - |   | _ | - | 1.0    | amp   |
| Max-Signal  | Scree   | n Cu  | rrent  | * * | - | - | - | - | 200    | mΑ    |
| Zero-Signa  | Scree   | n Cu  | rrent  | -   | - | - | - | - | 0      | mΑ    |
| Peak AF D   | riving  | Volt  | age*   | -   | - | - | - | - | 138    | volts |
| Driving Po  | wer     | -     | -      | -   | - | - | - | _ | 0      | watts |
| Load Resist | ance,   | Plate | -to-Pl | ate | - | - | - | - | 4700   | ohms  |
| Max-Signal  | Plate   | Diss  | ipatio | n*  | - | - | - | - | 3000   | watts |
| Max-Signal  | Plate   | Outp  | out Po | wer | - | - | - | - | 11,000 | watts |
|             |         |       |        |     |   |   |   |   |        |       |

Note: In Class AB operation, maximum plate voltage and plate current must not be applied simultaneously, as plate dissipation will be exceeded.

#### RADIO-FREQUENCY LINEAR AMPLIFIER

Class-AB

\*Per Tube

\*\*Approximate Values

#### MAXIMUM RATINGS

| DC PLATE VOLTAGE    | -   | - | - | - | 7000 | VOLTS |
|---------------------|-----|---|---|---|------|-------|
| DC SCREEN VOLTAGE   | -   | - | - | - | 1000 | VOLTS |
| DC PLATE CURRENT    | -   | - | - | - | 2.0  | AMPS  |
| PLATE DISSIPATION   | -   | - | - | - | 4000 | WATTS |
| SCREEN DISSIPATION  | -   | - | - | - | 175  | WATTS |
| GRID DISSIPATION -  | -   | - | - | - | 50   | WATTS |
| SUPPRESSOR DISSIPAT | ION | - | - | - | 100  | WATTS |
|                     |     |   |   |   |      |       |

<sup>\*</sup>Adjust to the specified Zero-Signal Ib

#### TYPICAL OPERATION Class AB<sub>1</sub> Grid Driven

| Zero-Signal DC Plate Current600 .500 a<br>Single-Tone DC Plate Current 1.510 1.445 a                                  |        |
|-----------------------------------------------------------------------------------------------------------------------|--------|
| DC Grid Voltage*                                                                                                      | volts. |
| DC Suppressor Voltage 0 0 v<br>Zero-Signal DC Plate Current600 .500 a<br>Single-Tone DC Plate Current - 1.510 1.445 a |        |
| Zero-Signal DC Plate Current600 .500 a<br>Single-Tone DC Plate Current 1.510 1.445 a                                  | volts  |
| Single-Tone DC Plate Current 1.510 1.445 a                                                                            |        |
|                                                                                                                       |        |
|                                                                                                                       | mΑ     |
| Two-Tone DC Plate Current 1,770 1,010 a                                                                               | amps   |
|                                                                                                                       | mA     |
| Peak RF Grid Voltage 116 128 v                                                                                        | volts  |
| Peak Envelope Useful Output Power - 3300 5500 \                                                                       | watts  |
| Resonant Load Impedance 1300 2350 c                                                                                   | ohms   |
| Intermodulation Distortion Products**                                                                                 |        |
| (no negative feedback)                                                                                                |        |
| 3rd Order46 -41 dl                                                                                                    | 3      |
| 5th Order50 -53 dl                                                                                                    | 3      |

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance is made for circuit losses. Adjustment of the rf grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed.

#### APPLICATION

#### **MECHANICAL**

Mounting — The 5CX3000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

Socket — The EIMAC SK-1420 socket and SK-1426 chimney have been designed especially for the 5CX3000A. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals through an Air Chimney, the SK-1426, and through the anode cooling fins.

Cooling — The maximum temperature rating for the 5CX3000A is 250°C. Sufficient forcedair circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramicmetal seals below 250°C. Air-flow requirements to maintain seal temperature at 200°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

|                               | SE.               | A LEVEL                               | 5,000 FEET        |                                       |  |  |
|-------------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|--|--|
| Plate Dissipation*<br>(Watts) | Air Flow<br>(CFM) | Pressure Drop<br>(Inches of<br>Water) | Air Flow<br>(CFM) | Pressure Drop<br>(Inches of<br>Water) |  |  |
| 2500                          | 67                | 1.24                                  | 80                | 1.5                                   |  |  |
| 3500                          | 100               | 2.4                                   | 121               | 3.2                                   |  |  |
| 4000                          | 117               | 3.1                                   | 140               | 4.3                                   |  |  |

\*Since the power dissipated by the filament represents about 450 watts and since grid-plus-screen dissipation can, under some conditions, represent another 225 watts, allowance has been made in preparing this tabulation for an additional 675 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

<sup>\*\*</sup>The intermodultaion distortion products will be as specified or better for all levels from zero-signal to maximum output power and are referenced against one tone of a two equal tone signal.



#### ELECTRICAL

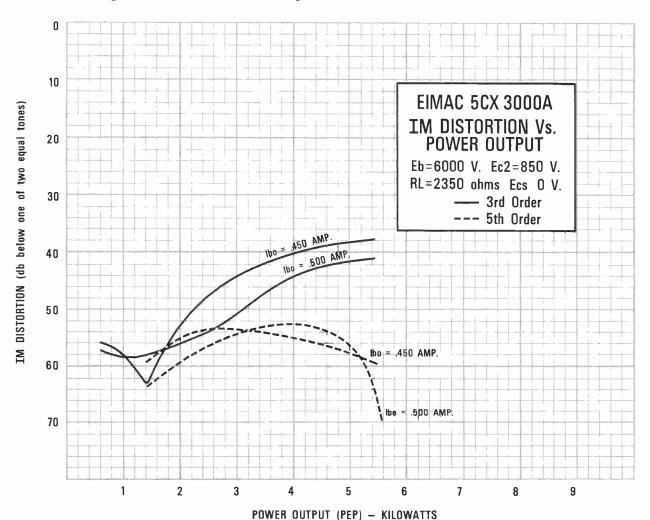
Filament Operation — The rated filament voltage for the 5CX3000A is 9 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

Intermodulation Distortion — The operating conditions including distortion data are the results of actual operation in a neutralized, griddriven amplifier. A plot of IM distortion versus power output under two-tone condition for a typical tube is shown on the next page.

Control Grid Operation—The rated dissipation of the grid is 50 watts. This is approximately the product of dc grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

*Screen-Grid Operation*—The power dissipated by the screen of the 5CX3000A must not exceed 175 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipa-


tion will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 175 watts in the event of circuit failure.

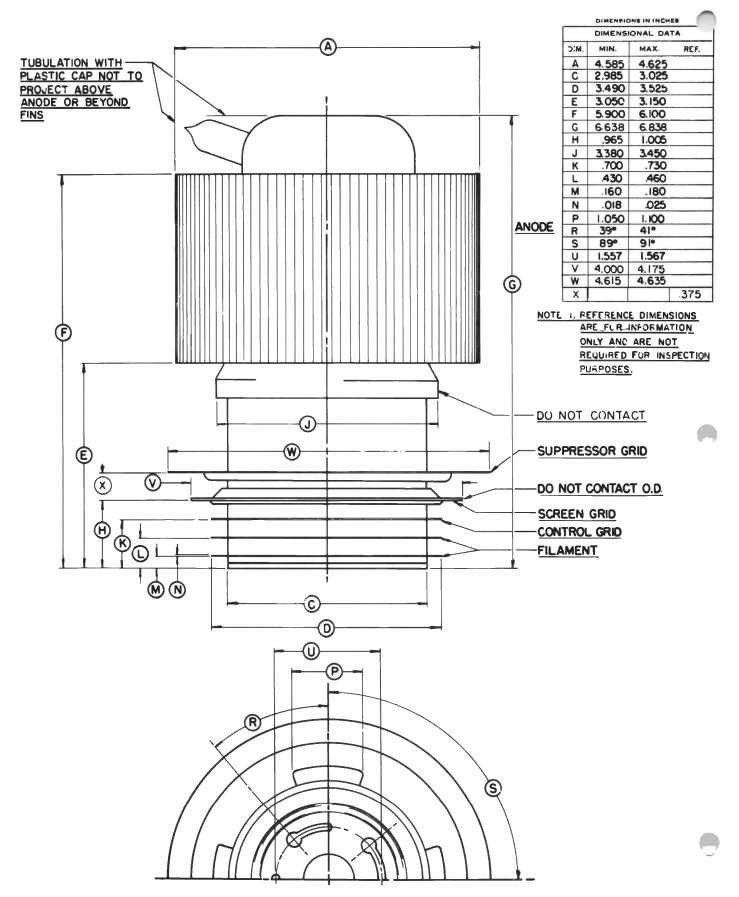
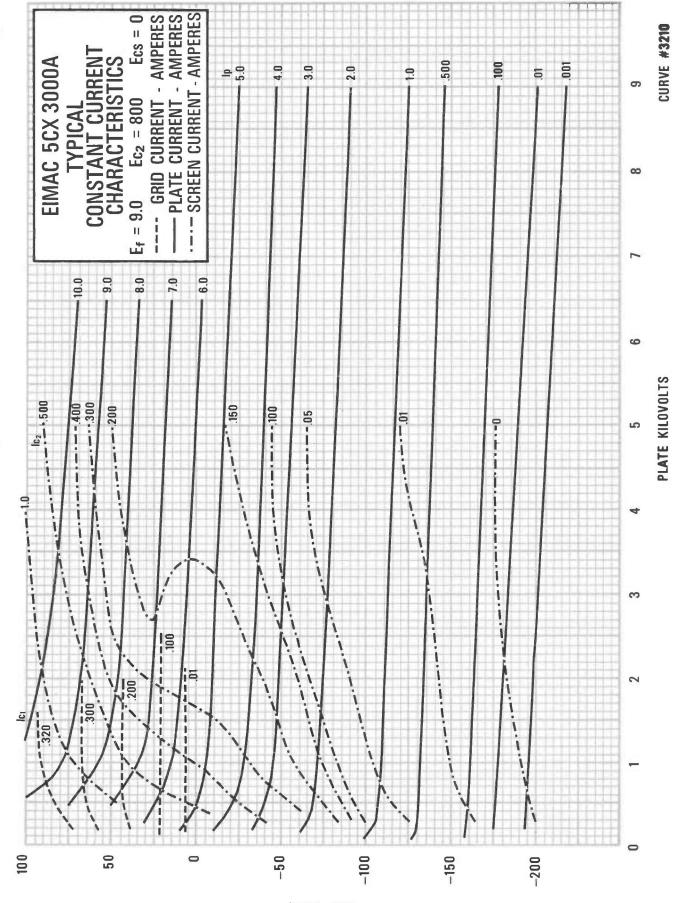
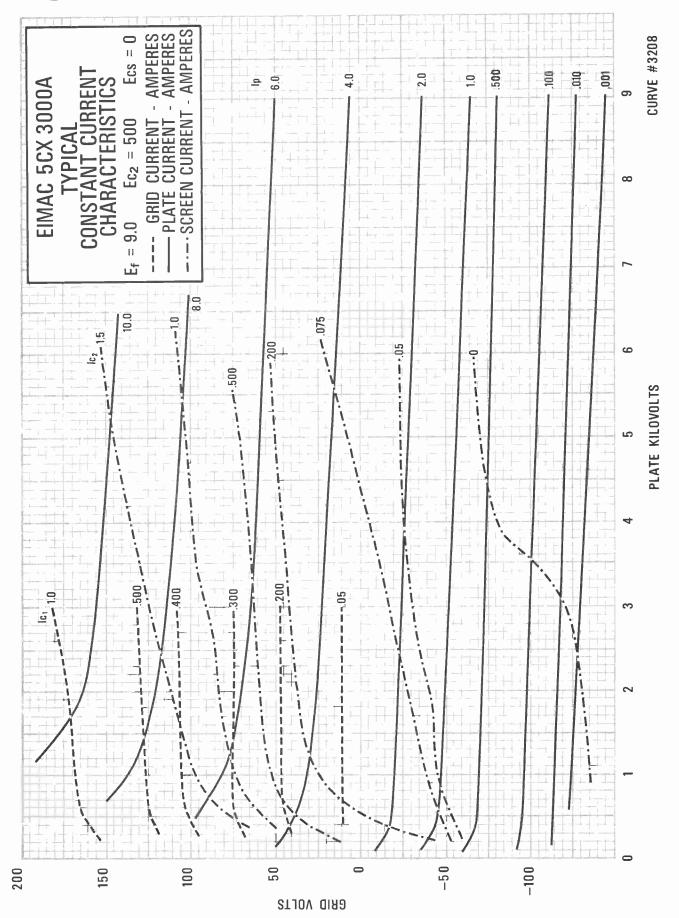

Suppressor Grid — The rated dissipation of the suppressor grid is 100 watts. Suppressor current will be zero or very nearly zero for all typical operating conditions specified. The 5CX-3000A has been designed for zero voltage operation of the suppressor grid for most applications.

Plate Dissipation — The plate-dissipation ratings for the 5CX3000A are 2650 watts for Class-C plate-modulated service and 4000 watts for Class-C telegraphy and Class-AB operation. In any Class-AB application maximum plate current and maximum plate voltage should not be applied simultaneously as the plate-dissipation rating would be exceeded.


Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to the Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.


















#### TECHNICAL DATA

264 8576

RADIAL BEAM POWER PENTODE

The EIMAC 264/8576 is a ceramic/metal, forced-air cooled, radial beam pentode with a rated maximum plate dissipation of 3000 watts. The tube has very low input capacitance for its power-handling capability. It is well suited for use in broad-band linear amplifiers or in other high-performance Class  $AB_1$  amplifier applications.

### GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| Cathode: Oxide Coated, Unipotential                                |               |            |
|--------------------------------------------------------------------|---------------|------------|
| Heater: Voltage                                                    | $6.0 \pm 0.3$ | V          |
| Current, at 6.0 volts                                              | 17            | Α          |
| Transconductance (Average):                                        |               |            |
| $I_b = 2.0 \text{ Adc}, E_{c_2} = 750 \text{ Vdc} \dots$           | 37,000        | $\mu$ mhos |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |               |            |
| Input                                                              | 55            | pF         |
| Output                                                             | 18            | pF         |
| Feedback                                                           | 0.13          | pF         |
| Frequency of Maximum Rating:                                       |               |            |
| CW                                                                 | 30            | MHz        |



- Characteristics and operating values are based upon performance tests. These figures
  may change without notice as the result of additional data or product refinement.
  EIMAC Division of Varian should be consulted before using this information for final
  equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### **MECHANICAL**

| Maximum Overall Dimensions: |        |
|-----------------------------|--------|
| Length 6.188 in; 157.18 mr  | n      |
| Diameter                    |        |
| Net Weight 3.9 1b;1.77 kg   | y<br>5 |
| Operating Position An       | y      |
|                             |        |

| Maximum | Operating | Temperature: |
|---------|-----------|--------------|
|---------|-----------|--------------|

| Ceramic/Metal Seals                                         |
|-------------------------------------------------------------|
| Anode Core                                                  |
| Cooling Forced Air                                          |
| Base                                                        |
| Recommended Air-System Socket EIMAC SK-265A                 |
| Recommended Air Chimney (included with SK-265A) EIMAC C-265 |

Effective 6-5-70 © Varian

Printed in U.S.A.



MANUALIM DATINGS:

#### RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB<sub>1</sub>

| MAXIMUM RATINGS       |      |         |
|-----------------------|------|---------|
| DC PLATE VOLTAGE      | 5000 | VOLTS   |
| DC SUPPRESSOR VOLTAGE | 100  | VOLTS   |
| DC SCREEN VOLTAGE     | 1000 | VOLTS   |
| DC GRID VOLTAGE       | -250 | VOLTS   |
| DC PLATE CURRENT      | 2.0  | AMPERES |
| PLATE DISSIPATION     | 3000 | WATTS   |
| SCREEN DISSIPATION    | 50   | WATTS   |
| GRID DISSIPATION      | 2    | WATTS   |
|                       |      |         |

- 1. Adjust to specified zero-signal do plate current.
- 2. Except for brief tuneup periods, operation under single tone conditions may not be possible due to excessive screen current.
- 3. The intermodulation distortion products will be as specified or better for all levels from zero-signal to maximum output power and are referenced against one tone of a two equal tone signal. No degenerative feedback.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions

| Plate Voltage                                   | dc<br>dc |
|-------------------------------------------------|----------|
| Single-Tone Plate Current 1.43 1.36 1.69 Ad     |          |
| Two-Tone Plate Current 0.95 0.91 1.09 Ac        | dc       |
| Zero-Signal Screen Current4 7 6 7 m/            | 4dc      |
| Single-Tone Screen Current 2, 4 58 55 80 m/     | ٩dc      |
| Two-Tone Screen Current 4 26 23 32 m/           | ٩dc      |
| Peak rf Grid Voltage 4 92 90 108 v              |          |
| Useful Output Power 5 3300 4400 5500 W          |          |
| Resonant Load Impedance 1350 1950 1550 $\Omega$ |          |
| Intermodulation Distortion Products3            |          |
| 3rd Order28 -29 -26 dt                          | )        |
| 5th Order45 -45 -40 dt                          | )        |

- 4. Approximate values.
- 5. Actual power output delivered to the load from a typical amplifier.

#### **APPLICATION**

MOUNTING - The 264/8576 may be operated in any position, and should normally be mounted in the airsystem socket EIMAC type SK-265A, with a C-265 chimney. The SK-265A has a built-in bypass capacitor for the screen grid, and the suppressor grid contacts are grounded.

AIR SYSTEM SOCKET AND CHIMNEY - The SK-265A socket makes all electrical contacts to the 264/8576 except to the anode. The suppressor grid contact is grounded to the socket shell. An integral screen grid bypass capacitor is included, with a capacitance of 2000 pF and rated for 1000 Vdc maximum.

The C-265 air chimney is designed to mate with the SK-265A socket and guide the cooling air through the anode cooling fins of the tube.

COOLING - Forced-air cooling is required in all applications, and the use of an air-system socket, such as the EIMAC SK-265A, with a C-265 chimney, is recommended. Cooling is simplified if air is directed in a base-to-anode direction; when so directed, with full rated anode dissipation and with air at 50°C at sea level, an air flow of 110 cubic feet per minute, with a resultant pressure drop of approximately 0.95 inch of water for the tube/socket/ chimney combination, is sufficient to limit the maximum tube temperature to 225°C. If air is not directed in the base-to-anode direction, additional cooling may be required for the base section of the tube.

Cooling air should be supplied before or simultaneously with the application of electrode voltages, including heater, and should normally be maintained for a brief period after electrode voltages are removed to allow for tube cooldown.

HEATER - The rated heater voltage for the 264/8576 is 6.0 volts, as measured at the socket or tube base pins. Variations should be restricted to plus or minus 0.3 volts for long tube life and consistent performance.

GRID OPERATION - Grid-bias voltage must be obtained from a fixed bias supply in Class AB applications. The internal resistance of the bias source should not exceed 2500 ohms.

SCREEN OPERATION - In linear amplifier service, the screen voltage must be obtained from a well regulated source, to prevent excessive screen voltage variations due to changes in screen current which occur between zero-signal and full-signal conditions. The circuit should be arranged so that it is impossible to apply screen voltage without plate voltage. The use of a screen grid over-current relay is recommended, to remove screen voltage immediately in case of excessive screen current due to circuit problems, grid bias failure, or accidental removal of plate circuit loading. The relay should not break the screen-cathode d-c ground return path.

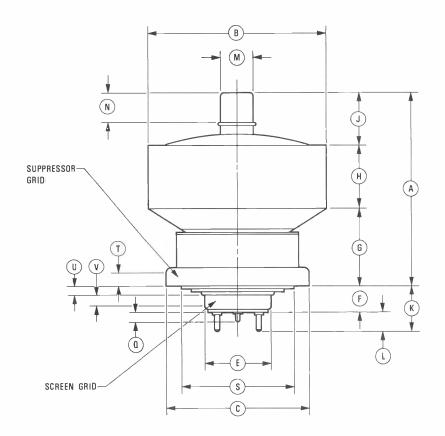


PLATE OPERATION - The maximum rated plate dissipation power for the 264/8576 is 3000 watts. Except for brief periods during circuit adjustment, this maximum value should not be exceeded. Contact to the plate may be made either at the top cap or by means of a circular clamp or spring-finger collet award the outer surface of the anode cooler itself. Points of electrical contact with the anode should be kept clean and free of oxide to minimize rf loss. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

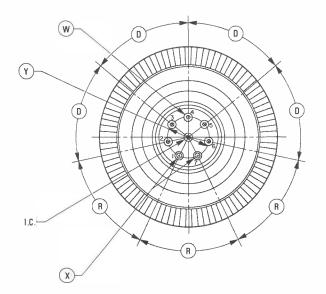
NEUTRALIZATION FOR RF OPERATION - For minimum-distortion Class AB1 linear amplifier service, where reaction on the driver circuit should be eliminated completely, it will usually be found advisable to neutralize the small feedback capacitance of the tube.

GENERAL OPERATION NOTES - A metal chassis or equivalent means should be provided to separate the input and output circuits of an rf amplifier employing the 264/8576. Reasonable precautions should be observed in regard to bypassing and shielding of supply leads to prevent coupling between input and output through external circuits. The use of the EIMAC SK-265A air-system socket, with its integral screen grid bypass capacitance built in, is helpful in these respects.

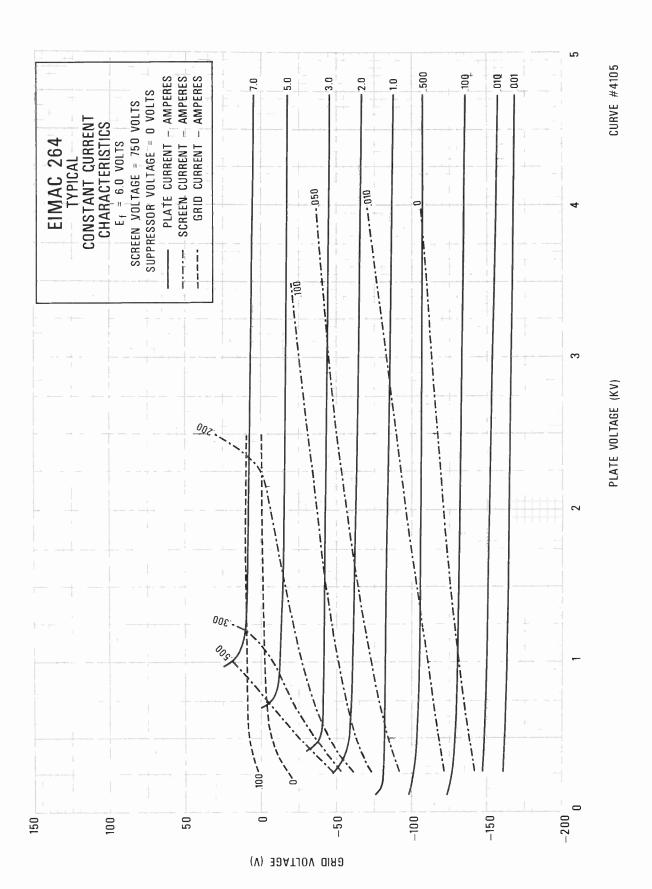
SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.


NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.

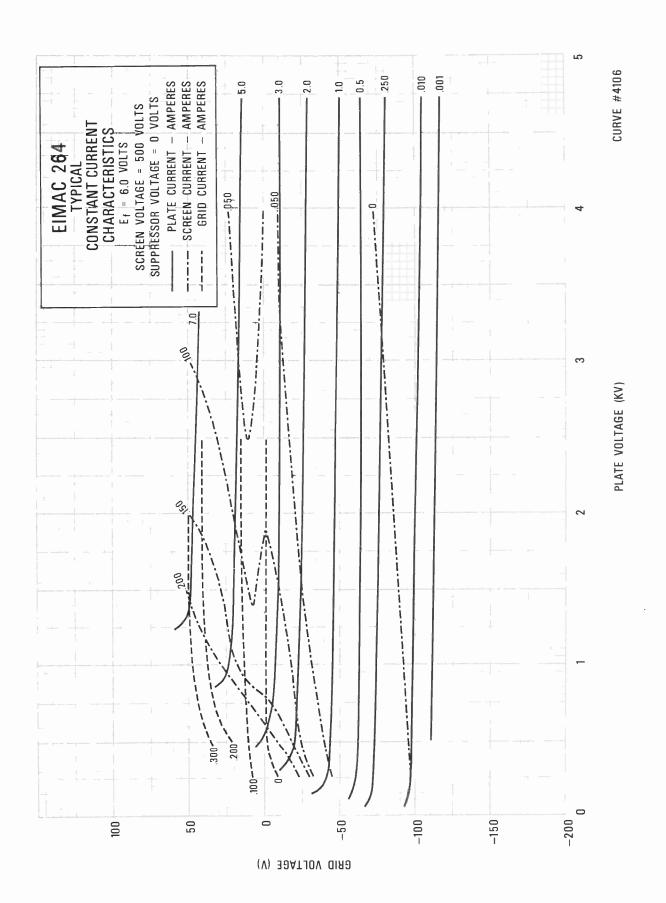
#### RANGE VALUES FOR EQUIPMENT DESIGN


|                                                                        | Win. | Max.    |
|------------------------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                                           |      | 18.5 A  |
| Cathode Warmup Time <sup>1</sup>                                       | 5    | minutes |
| Interelectrode Capacitances <sup>2</sup> (grounded cathode connection) |      |         |
| Input                                                                  | 51.0 | 61.0 pF |
| Output                                                                 | 14.0 | 22.0 pF |
| Feedback                                                               |      | 0.16 pF |

- 1. Heater voltage should normally be applied for the stated time before voltages are applied to the other tube elements.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture.







| DIMENSIONAL DATA |                  |                  |                  |        |
|------------------|------------------|------------------|------------------|--------|
| DIM.             | INC              | INCHES MILLIMETE |                  | METERS |
| DIIVI.           | MIN.             | MAX.             | MIN.             | MAX.   |
| Α                |                  | 4.828            |                  | 122.63 |
| В                | 4.374            | 4.438            | 111.09           | 112.72 |
| С                | 3.484            | 3.516            | 88.49            | 89.31  |
| E                | 1.615            | 1.630            | 41.02            | 41.40  |
| F                | 0.625            | 0.750            | 15.87            | 19.05  |
| G                | 1.813            | 1.937            | 46.05            | 49.20  |
| Н                | 1.530            | 1.560            | 38.86            | 39.62  |
| J                | 1.219            | 1.343            | 30.96            | 34.11  |
| K                | 1.160            | 1.360            | 29.46            | 34.54  |
| L                | 0.540            | 0.600            | 13.72            | 15.24  |
| М                | 0.805            | 0.819            | 20.45            | 20.80  |
| N                | 0.688            |                  | 17.47            |        |
| S                |                  | 2.812            |                  | 71.42  |
| Т                | 0.350            |                  | 8.89             |        |
| ٧                | 0.220            |                  | 5.60             |        |
| W                | 0,122            | 0,128            | 3.10             | 3.25   |
| X                | 0.149            | 0.159            | 3.78             | 4.04   |
|                  | REFE             | RENCE DI         | MENSIONS         |        |
| D                | 51°              |                  | 51°              |        |
| Q                | 0.205            |                  | 5.21             |        |
| R                | 52°              |                  | 52°              |        |
| U                | 0.250            |                  | 6.35             |        |
| Y                | 1,000 DIA. P. C. |                  | 25.40 DIA. P. C. |        |



| PIN CONNECTIONS |           |  |
|-----------------|-----------|--|
| PIN NO.         | ELEMENT   |  |
| 1               | k         |  |
| 2               | gl        |  |
| 3               | h         |  |
| 4               | k         |  |
| 5               | h         |  |
| 6               | gl        |  |
| 7               | k         |  |
| CENTER PIN      | INT. CON. |  |
| LOWER RING      | g2        |  |
| UPPER RING      | g3        |  |
| CAP             | р         |  |

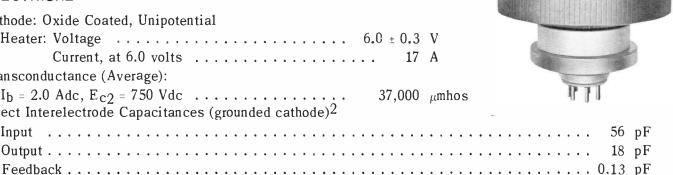








# SAN CARLOS CALIFORNIA


RADIAL BEAM POWER PENTODE

The EIMAC 290 is a ceramic/metal, forced-air cooled, radial beam pentode with a rated maximum plate dissipation of 5000 watts. The tube has very low input capacitance for its power-handling capability. It is well suited for use in broad-band linear amplifiers or other high-performance Class AB1 amplifier applications.

#### GENERAL CHARACTERISTICS 1

#### ELECTRICAL

| 1     |
|-------|
| A     |
|       |
| umhos |
|       |
|       |
| ١     |



- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the results of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### MECHANICAL

Frequency of Maximum Rating:

| Maximum Overall Dimensions:    |
|--------------------------------|
| Length 7.250 in; 184.15 mm     |
| Diameter                       |
| Net Weight                     |
| Operating Position             |
| Maximum Operating Temperature: |
| Ceramic/Metal Seals            |
| Anode Core                     |
| Cooling Forced Air             |
| Base 7-Pin Special             |

Recommended Air System Socket ..... EIMAC SK-291A

Recommended Air Chimney (included with SK-291A) .....

FIMAC C-290



### RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

Class AB<sub>1</sub>

MAXIMUM RATINGS:

| DC PLATE VOLTAGE      | 6000 | VOLTS          |
|-----------------------|------|----------------|
| DC SUPPRESSOR VOLTAGE | 100  | VOLTS          |
| DC SCREEN VOLTAGE     | 1000 | VOLTS          |
| DC GRID VOLTAGE       | -250 | VOLTS          |
| DC PLATE CURRENT      | 2.0  | <b>AMPERES</b> |
| PLATE DISSIPATION     | 5000 | WATTS          |
| SCREEN DISSIPATION    | 50   | WATTS          |
| GRID DISSIPATION      | 2    | WATTS          |

- 1. Adjust to specified zero-signal dc plate current.
- The intermodulation distortion products will be as specified or better for all levels from zero-signal to maximum output power and are referenced against one tone of a two equal tone signal.
- 3. Approximate values.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB1, Grid Driven, Peak Envelope or Modulation Crest Conditions

| Plate Voltage                       | 5000           | 5000 | 6000 | V/dc     |
|-------------------------------------|----------------|------|------|----------|
| Plate Voltage                       | 5000           | 00-0 |      |          |
| Suppressor Voltage                  | 0              | 0    | 0    | Vdc      |
| Screen Voltage                      | 650            | 750  | 750  | Vdc      |
| Grid Voltage 1                      | -93            | -109 | -111 | Vdc      |
| Zero-Signal Plate Current           | 400            | 400  | 400  | mAdc     |
| Single Tone Plate Current           | 1.36           | 1.69 | 1.74 | Adc      |
| Two-Tone Plate Current              | 0.91           | 1.09 | 1.11 | Adc      |
| Zero-Signal Screen Current 3        | 6              | 7    | 6    | mAdc     |
| Single-Tone Screen Current 3/5      | 55             | 80   | 60   | mAdc     |
| Two-Tone Screen Current 3           | 23             | 32   | 25   | mAdc     |
| Peak rf Grid Voltage3               | 90             | 108  | 111  | V        |
| Useful Output Power4                | 4400           | 5500 | 6275 | W        |
| Resonant Load Impedance             | 1950           | 1550 | 1600 | $\Omega$ |
| Intermodulation Distortion Products | <sub>5</sub> 2 |      |      |          |
| 3rd Order                           | -29            | -26  | -25  | db       |
| 5th Order                           | -45            | -40  | -40  | db       |
|                                     |                |      |      |          |

- Actual power output delivered to the load from a typical amplifier.
- Except for brief tuneup periods, operation under single tone conditions may not be possible due to excessive screen dissipation.

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

| RANGE VALUES FOR EQUIPMENT DESIGN                           | Min. | Max.    |
|-------------------------------------------------------------|------|---------|
| Heater: Current at 6.0 volts                                | 15.5 | 18.5 A  |
| Cathode Warmup Time                                         | 5    | minutes |
| Interelectrode Capacitances 1 (grounded cathode connection) |      |         |
| Input                                                       | 51.0 | 61.0 pF |
| Output                                                      | 14.0 | 22.0 pF |
| Feedback                                                    |      | 0.16 pF |

1. Capacitance values are for a cold tube as measured in a special shielded fixture.

#### **APPLICATION**

MOUNTING - The EIMAC Type 290 may be operated in any position, and should normally be mounted in the air-system socket EIMAC type SK-291A, with a C-290 chimney. The SK-291A has a built-in bypass capacitor for the screen grid, and the suppressor grid contact is grounded.

AIR SYSTEM SOCKET AND CHIMNEY - The SK-291A socket makes all electrical contacts to the Type 290 except to the anode. The suppressor grid contact is grounded to the socket shell. An integral screen grid bypass capacitor is included, with a capacitance of 2000 pF and rated for 1000 Vdc maximum.

The C-290 chimney is designed to mate with the SK-291A socket and guide the cooling air through the anode cooling fins of the tube. The chimney is included with the socket and only when required as a replacement unit would separate procurement be necessary.

COOLING - Forced-air cooling is required in all applications, and the use of an air-system socket, such as the EIMAC SK-291A, with a C-290 chimney, is recommended. Cooling is simplified if air is directed, in a base-to-anode direction; when so directed, with air at  $50^{\circ}$ C at sea level, minimum air



flow requirements are shown, with approximate pressure drop values for the tube/socket/chimney combination, to limit the maximum anode core temperature to 200°C. If air is not directed in a base-to-anode direction, additional cooling may be required for the base section of the tube. Cooling air should be applied before or simultaneously with the application of electrode voltages, including the heater, and should normally be maintained for a brief period after electrode voltages are removed to allow for tube cooldown.

| Anode Diss. | Air Flow | Press. Drop               |
|-------------|----------|---------------------------|
| 3000 W      | 78 cfm   | 0.32 In. H <sub>2</sub> 0 |
| 4000        | 124      | 0.50                      |
| 5000        | 166      | 0.72                      |

HEATER - The rated heater voltage for the Type 290 is 6.0 volts, as measured at the socket or tube base pins. Variations should be restricted to plus or minus 0.3 volt for long tube life and consistent performance.

GRID OPERATION - Grid-bias voltage must be obtained from a fixed bias supply in Class AB applications. The internal resistance of the source should not exceed 2500 ohms.

SCREEN OPERATION - In linear amplifier service, the screen voltage must be obtained from a well regulated source, to prevent excessive screen voltage variations due to changes in screen current which occur between zero-signal and full-signal conditions. The circuit should be arranged so that it is impossible to apply screen voltage without plate voltage.

The use of a screen grid over-current relay is recommended, to remove screen voltage immediately in case of excessive screen current due to circuit problems, grid bias failure, or accidental removal of plate circuit loading.


PLATE OPERATION - The maximum rated plate dissipation power for the Type 290 is 5000 watts. Except for brief periods during circuit adjustment, this maximum value should not be exceeded. Contact to the plate may be made either at the top cap or by means of a circular clamp or spring-finger collet around the outer surface of the anode cooler itself. Points of electrical contact with the anode should be kept clean and free of oxide to minimize rf loss. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

NEUTRALIZATION FOR RF OPERATION - For minimum-distortion Class AB1 linear amplifier service, where reaction on the driver circuit should be eliminated completely, it will usually be found advisable to neutralize the small feedback capacitance of the tube.

GENERAL OPERATION NOTES - A metal chassis or equivalent means should be provided to separate the input and output circuits of an rf amplifier employing the Type 290. Reasonable precautions should be observed in regard to bypassing and shielding of supply leads to prevent coupling between input and output through external circuits. The use of the EIMAC SK-291A air-system socket, with its integral screen grid bypass capacitance built in, is helpful in these respects.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.





| PINS W U U U U U U U U U U U U U U U U U U U | X |
|----------------------------------------------|---|
| V 2 PINS                                     |   |

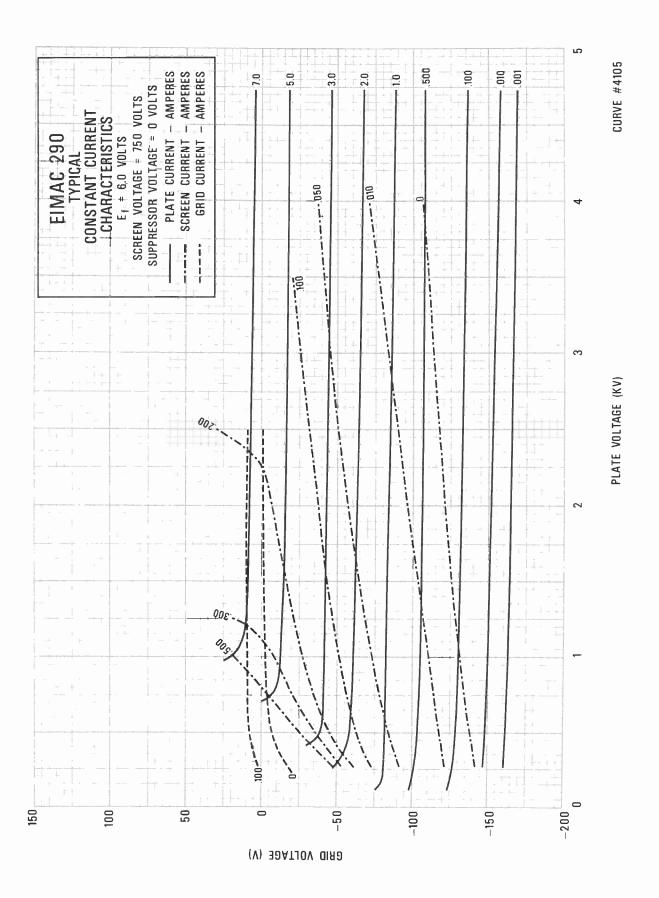
|        |                    | DIN   | MENSIONAL | DATA   |        |       |
|--------|--------------------|-------|-----------|--------|--------|-------|
| пім.   | INCHES MILLIMETERS |       |           | RS     |        |       |
| Dilly. | MIN.               | MAX.  | REF.      | MIN.   | MAX.   | REF.  |
| Α      | 5.468              | 5.532 |           | 138.89 | 140.51 |       |
| В      | .805               | .819  |           | 20.45  | 20.80  |       |
| C      | .688               |       |           | 17.48  |        |       |
| D      | .937               | 1.062 |           | 23.80  | 26.98  |       |
| E      | 2.624              | 2.688 |           | 66.65  | 68.28  |       |
| F      | 1.625              | 1.750 |           | 41.28  | 44.45  |       |
| G      | .624               | .688  |           | 15.85  | 17.48  |       |
| Н      |                    |       | .187      |        |        | 4.75  |
| J      | 1.062              | 1.250 |           | 26.97  | 31.75  |       |
| К      |                    | .125  |           |        | 3.18   |       |
| L      |                    | 6.000 |           |        | 152.40 |       |
| M      | .375               |       |           | 9.53   |        |       |
| N      | .220               |       |           | 5.59   |        |       |
| Р      | .437               | .562  |           | 11.10  | 14.27  |       |
| R      | 1.615              | 1.629 |           | 41.02  | 41,38  |       |
| 5      |                    | 2.812 |           |        | 46.02  |       |
| T      | 3.484              | 3.516 |           | 88.49  | 89.31  |       |
| U      |                    |       | 51°       |        |        | 51°   |
| ٧      |                    |       | 52°       |        |        | 52°   |
| W      | .122               | .128  |           | 3.10   | 3.25   |       |
| Х      |                    |       | 1.000     |        |        | 25.40 |
| Υ      | .149               | .159  |           | 3.78   | 4.04   |       |

#### NOTES:

- 1. (\*) CONTACT SURFACE
- 2. REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

#### PIN CONNECTIONS

| PIN NO.    | ELEMENT  |
|------------|----------|
| 1          | k        |
| 2          | gi       |
| 3          | ħ        |
| 4          | k        |
| 5          | h        |
| 6          | gl       |
| 7          | k        |
| CENTER PIN | int.con. |
| LOWER RING | 92       |
| UPPER RING | g3       |
| CAP        | P        |
|            |          |


(V) 30ATJOV OIRO

CURVE #4106

PLATE VOLTAGE (KV)

5







RADIAL BEAM
POWER PENTODE

The EIMAC 8295A is a ceramic/metal, forced-air cooled, radial beam pentode with a rated maximum plate dissipation of 1000 watts. It is capable of high power gain and excellent efficiency at relatively low plate voltage. The 8295A is a direct replacement for the 8295.

This external-anode tube is especially suited for Class AB1 linear rf amplifier service, but will also provide excellent performance in Class AB2, Class B, and Class C service.





#### **ELECTRICAL**

| Cathode: Oxide Coated, Unipotential                                |                         |
|--------------------------------------------------------------------|-------------------------|
| Heater: Voltage                                                    | $6.0 \pm 0.3 \text{ V}$ |
| Current, at 6.0 volts                                              | 8.2 A                   |
| Amplification Factor (Average):                                    |                         |
| Grid to Screen                                                     | 3.4                     |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |                         |
| Input                                                              |                         |

 Input
 40 pF

 Output
 18.5 pF

 Feedback
 0.09 pF

 Frequency of Maximum Rating:
 30 MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this infor-

mation for final equipment design.

Capacitance values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **MECHANICAL**

Maximum Overall Dimensions:

| Length             | 5.05 in; 128 mm |
|--------------------|-----------------|
| Diameter           | ,               |
| Net Weight         | 2.8 lb; 1.27 kg |
| Operating Position | Any             |

(Revised 1-15-73) © 1970 Varian

Printed in U.S.A.

| Maximum Operating Temperature                                        |           |
|----------------------------------------------------------------------|-----------|
| Ceramic/Metal Seals                                                  | 250 °C    |
| Anode Core                                                           | 250 °C    |
| Cooling F                                                            |           |
| Base 7-Pi                                                            | n Special |
| Recommended Socket (includes integral chimney) EIMAC SK-184 or EIMAC | SK-184A   |

### RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN, Class AB1

| MAXIMUM RATINGS:      |      |        |
|-----------------------|------|--------|
| DC PLATE VOLTAGE      | 3000 | VOLTS  |
| DC SUPPRESSOR VOLTAGE | 100  | VOLTS  |
| DC SCREEN VOLTAGE     | 600  | VOLTS  |
| DC PLATE CURRENT      | 0.8  | AMPERE |
| PLATE DISSIPATION     | 1000 | WATTS  |
| SCREEN DISSIPATION    | 30   | WATTS  |
|                       |      |        |

- 1. Adjust to specified zero-signal dc plate current.
- The intermodulation distortion products are referenced against one tone of a two equal tone signal.
- 3. Approximate value

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB<sub>1</sub>, Grid Driven, Peak Envelope or Modulation Crest Conditions

| Plate Voltage                     | 2000  | 2500 | 3000 | Vdc      |
|-----------------------------------|-------|------|------|----------|
| Suppressor Voltage                | 35    | 0    | 35   | Vdc      |
| Screen Voltage                    | 500   | 500  | 500  | Vdc      |
| Grid Voltage 1                    | -116  | -119 | -120 | Vdc      |
| Zero-Signal Plate Current         | 200   | 200  | 200  | mAdc     |
| Single Tone Plate Current 4.      | 800   | 800  | 800  | mAdc     |
| Zero-Signal Screen Current .      | 5     | 5    | 4    | mAdc     |
| Single-Tone Screen Current 3/4    | 4 7.5 | 43   | 54   | mAdc     |
| Peak rf Grid Voltage 3            | 116   | 119  | 120  | V        |
| Single Tone Useful                |       |      |      |          |
| Output Power                      | 1100  | 1250 | 1700 | W        |
| Resonant Load Impedance           | 1400  | 1500 | 2100 | $\Omega$ |
| Intermodulation Distortion        |       |      |      |          |
| Products <sup>2</sup> - 3rd Order | -24   | -22  | -23  | db       |
| 5th Order                         | -37   | -50  | -40  | db       |
|                                   |       |      |      |          |

4. For peak conditions, or for single-tone modulation at full signal. Except for brief tuneup periods, operation under single-tone conditions may not be possible because of excessive screen dissipation.

### RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM Telephony (Key-Down Conditions)

#### MAXIMUM RATINGS:

| DC PLATE VOLTAGE      | 3000 | VULIS        |
|-----------------------|------|--------------|
| DC SUPPRESSOR VOLTAGE | 75   | <b>VOLTS</b> |
| DC SCREEN VOLTAGE     | 500  | VOLTS        |
| DC GRID VOLTAGE       | -200 | VOLTS        |
| DC PLATE CURRENT      | 1.0  | AMPERE       |
| PLATE DISSIPATION     | 1000 | WATTS        |
| SCREEN DISSIPATION    | 30   | WATTS        |
|                       |      |              |

#### TYPICAL OPERATION (Frequencies to 30 MHz)

| Plate Voltage             | 2000               | 2500                                                                                                                                                                                                                                                                                                                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                               | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suppressor Voltage        | 35                 | 35                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                                                                                                                                 | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Screen Voltage            | 500                | 500                                                                                                                                                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Grid Voltage              | -175               | -200                                                                                                                                                                                                                                                                                                                      | -200                                                                                                                                                                                                                                                                                                                                                                                                               | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Plate Current             | 850                | 840                                                                                                                                                                                                                                                                                                                       | 820                                                                                                                                                                                                                                                                                                                                                                                                                | mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Screen Current 1          | 42                 | 40                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                 | mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grid Current 1            | 10                 | 10                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                 | mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak rf Grid Voltage 1    | 188                | 210                                                                                                                                                                                                                                                                                                                       | 210                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calculated Driving Power1 | 1.9                | 2.1                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Plate Input Power         | 1700               | 2100                                                                                                                                                                                                                                                                                                                      | 2460                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Useful Output Power       | 1155               | 1440                                                                                                                                                                                                                                                                                                                      | 1770                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | Suppressor Voltage | Suppressor Voltage       35         Screen Voltage       500         Grid Voltage       -175         Plate Current       850         Screen Current 1       42         Grid Current 1       10         Peak rf Grid Voltage 1       188         Calculated Driving Power 1       1.9         Plate Input Power       1700 | Suppressor Voltage       35       35         Screen Voltage       500       500         Grid Voltage       -175       -200         Plate Current       850       840         Screen Current 1       42       40         Grid Current 1       10       10         Peak rf Grid Voltage 1       188       210         Calculated Driving Power 1       1.9       2.1         Plate Input Power       1700       2100 | Suppressor Voltage       35       35       35         Screen Voltage       500       500       500         Grid Voltage       -175       -200       -200         Plate Current       850       840       820         Screen Current 1       42       40       42         Grid Current 1       10       10       10         Peak rf Grid Voltage 1       188       210       .210         Calculated Driving Power 1       1.9       2.1       2.1         Plate Input Power       1700       2100       2460 |

1. Approximate value.

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

#### RANGE VALUES FOR EQUIPMENT DESIGN

|                                                           | Min. | Max.               |
|-----------------------------------------------------------|------|--------------------|
| Heater: Current at 6.0 volts                              | 7.7  | $\overline{8.7}$ A |
| Cathode Warmup Time                                       | 3    | minutes            |
| Interelectrode Capacitances (grounded cathode connection) |      |                    |
| Input                                                     | 36.0 | 44.0 pF            |
| Output                                                    |      |                    |
| Feedback                                                  |      |                    |
| Amplification Factor                                      |      | • -                |
| Grid to Screen                                            | 3.0  | 3.8                |

Capacitance values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **APPLICATION**

MOUNTING - The 8295A may be operated in any position, and should normally be mounted in the EIMAC air-system socket SK-184 or SK-184A, or equivalent. The SK-184 socket has built-in bypass capacitors for the screen grid and suppressor grid. The SK-184A socket has a built-in bypass capacitor for the screen grid and has grounded suppressor grid contacts.

HEATER - The rated heater voltage for the 8295A is 6.0 volts, as measured at the socket or tube base pins. Variations should be restricted to plus or minus 0.3 volts for long tube life and consistent performance.

COOLING - Forced-air cooling is required in all applications, and the use of an air-system socket. such as the EIMAC SK-184 or EIMAC SK-184A, is recommended. Each of these sockets includes an integral chimney to direct air through the anode cooling fins. Cooling is simplified if air is directed in a base-to-anode direction. At full rated dissipation, with air at 50°C at sea level, an air flow of 25 cubic feet per minute, with a resulting pressure drop of approximately 0.15 inches of water, is sufficient to limit maximum tube temperature to 225°C. If air is not directed in the base-to-anode direction, additional cooling may be required for the base section of the tube. Cooling air should be applied before or simultaneously with the application of electrode voltages, including heater, and may be removed simultaneously with them.

CATHODE WARMUP TIME - Heater voltage should be applied for a minimum of three minutes before the application of other electrode voltages to allow proper conditioning of the cathode surface.

GRID OPERATION - In Class AB applications, grid bias voltage must be obtained from a fixed bias supply. The internal resistance of the bias source should not exceed 5000 ohms in Class AB<sub>1</sub> applications or 2000 ohms in Class AB<sub>2</sub> applications. Either fixed bias or cathode bias, or a combination of the two, is recommended for Class C applications. Partial grid leak bias, in combination with fixed or cathode bias, or both, may be used in Class C application provided the total resistance of the grid leak plus the bias source does not exceed 5000 ohms.

SCREEN OPERATION - If the screen voltage is obtained from a power supply separate from the plate voltage supply, the circuit should be arranged so that it is impossible to apply screen voltage without plate voltage. The use of a screen over-current relay is recommended, to remove screen voltage immediately in case of excessive screen current due to circuit problems, grid bias failure, or accidental removal of plate circuit loading. In linear amplifier service, the screen voltage must be obtained from a well regulated source, to prevent excessive screen voltage variation due to changes in screen current which occur between zero-signal and full-signal conditions.

SUPPRESSOR OPERATION - The 8295A performs well with the suppressor operated at cathode potential. For maximum efficiency at high power input and low plate voltages, a positive voltage of about 35 volts should be applied to the suppressor. However, the actual value is not critical, and voltages between 25 and 45 volts may be used with only minor differences in performance. The internal resistance of the suppressor grid voltage supply should not exceed 3000 ohms.

PLATE OPERATION - The maximum rated plate dissipation power for the 8295A is 1000 watts. Except for brief periods during circuit adjustment, this maximum value should not be exceeded. Contact to the plate may be made either at the top cap or by means of a circular clamp or spring-finger collet around the outer surface of the anode cooler itself. Points of electrical contact with the anode should be kept clean and free of oxide to minimize rf loss. The anode cooler should be inspected periodically and cleaned when necessary to remove any dirt which might interfere with effective cooling.

GENERAL OPERATION NOTES - A metal chassis or equivalent means should be provided to separate the input and output circuits of an amplifier employing the 8295A. Reasonable precautions should be observed in regard to bypassing and shielding of the supply leads to prevent coupling between input and output through external circuits. The use of the EIMAC SK-184 or SK-184A air-system sockets, with integral bypass capacitance built in, is helpful in these respects. When it is desired to apply voltage to the suppressor of the tube, it is recommended that any suppressor bypass capacitance be located on the anode side of a chassis. Total suppressor bypass capacitance should be sufficient to result in a reactance of 3 ohms or less at the operating frequency. The dc supply lead to the suppressor should either be located entirely on the anode side of the shielding (chassis), or fed through an effective rf choke located well out of the field of the plate tank circuit and again bypassed before passing through the shielding into any compartment exposed to the control grid circuit.

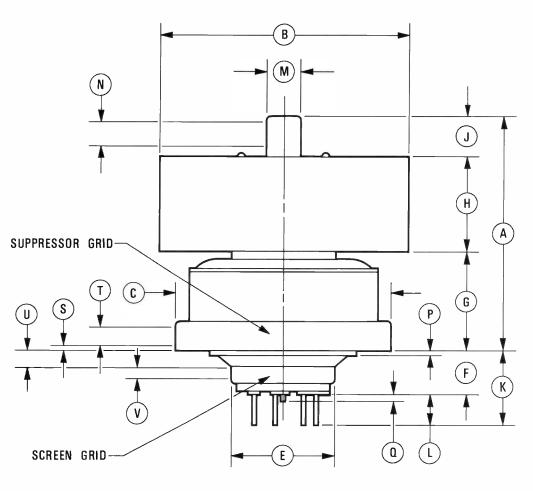
NEUTRALIZATION FOR RF OPERATION - In most Class C applications, the 8295A may be operated without neutralization provided the suppressor

grid and screen grid are effectively grounded for radio frequencies. The use of the EIMAC air-system sockets is helpful in this respect. For minimum-distortion Class AB1 linear amplifier service, where reaction on the driver circuit should be eliminated completely, it will usually be found advisable to neutralize the small feedback capacitance of the tube.

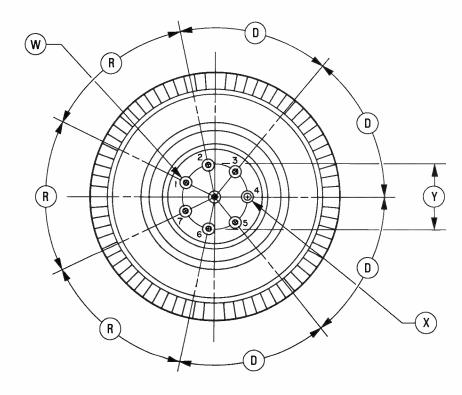
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

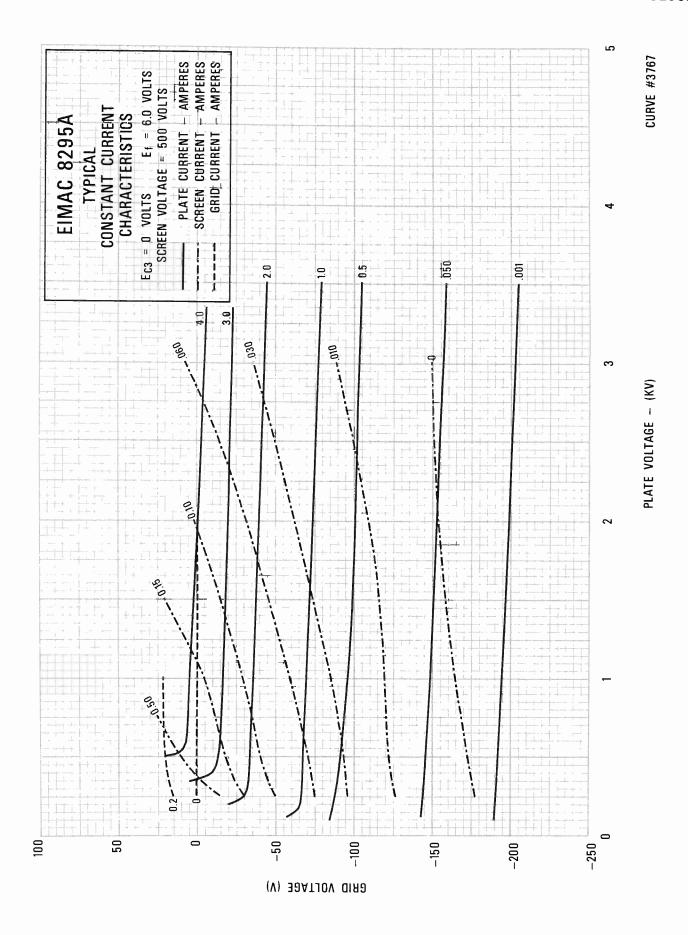
which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

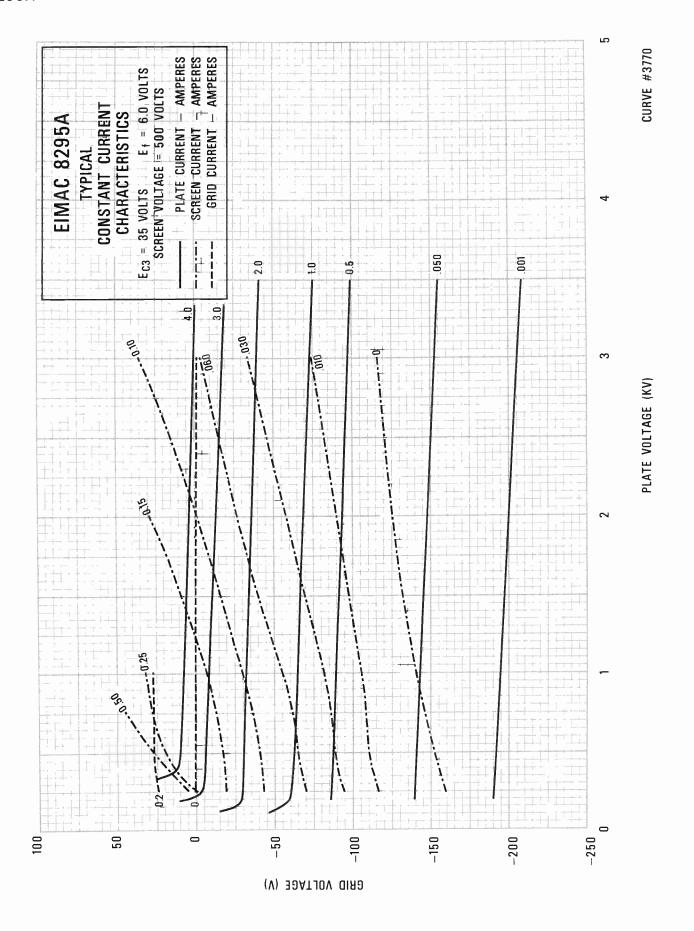

#### AIR-SYSTEM SOCKETS

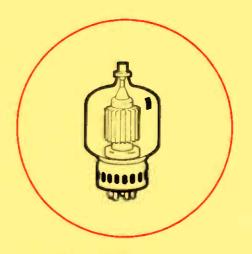
Two air-system sockets are available for the 8295A, each of which makes all electrical contacts to the tube except to the anode. The characteristics of these sockets are as follows:


|                                     | EIMAC SK-184     | EIMAC SK-184A     |
|-------------------------------------|------------------|-------------------|
| Screen Grid Bypass Capacitor        | 2000 pF,1000 Vdc | 2000 pF, 1000 Vdc |
| Suppressor Grid Bypass Capacitor    | 2500 pF, 500 Vdc | none              |
| Grounded Contacts (to socket frame) | none             | Suppressor Grid   |
| Anode Air Chimney                   | Integral         | Integral          |

#### SPECIAL APPLICATION


If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.





| DIMENSIONAL DATA |        |         |             |        |  |
|------------------|--------|---------|-------------|--------|--|
| DIM.             | INCHES |         | MILLIMETERS |        |  |
| DIW.             | MIN.   | MAX.    | MIN.        | MAX.   |  |
| Α                | 3.458  | 3.832   | 87.83       | 97.33  |  |
| В                | 3.968  | 4.032   | 100.79      | 102.41 |  |
| C                | 3.485  | 3.515   | 88.52       | 89.28  |  |
| E                | 1.615  | 1.630   | 41.02       | 41.40  |  |
| F                | .655   | .719    | 16.64       | 18.26  |  |
| G                | 1.395  | 1.645   | 35.43       | 41.78  |  |
| Н                | 1.468  | 1.532   | 37.29       | 38.91  |  |
| J                | .593   | .657    | 15.06       | 16.69  |  |
| K                | 1.056  | 1.219   | 26.82       | 30.96  |  |
| L                | .438   | .562    | 11.13       | 14.27  |  |
| M                | .559   | .573    | 14.20       | 14.55  |  |
| N                | .400   |         | 10.16       |        |  |
| Р                |        | .125    |             | 3.18   |  |
| T                | .250   |         | 6.35        |        |  |
| ٧                | .220   |         | 5.59        |        |  |
| W                | .056   | .062    | 1.42        | 1.57   |  |
| Х                | .120   | .127    | 3.05        | 3.23   |  |
|                  | RE     | FERENCE | DIMENSIO    | NS     |  |
| D                |        | 5       | l°          |        |  |
| Q                | .12    | 25      | 3.          | 18     |  |
| R                |        | 5       | 2°          |        |  |
| S                | .12    | 25      | 3.          | 18     |  |
| U                | .25    | 50      | 6.3         | 35     |  |
| Υ                | 1.0    | 00      | 25.40       |        |  |



| PIN CONNECTIONS |           |  |  |  |
|-----------------|-----------|--|--|--|
| PIN NO.         | ELEMENT   |  |  |  |
| 1               | k         |  |  |  |
| 2               | gl        |  |  |  |
| 3               | h         |  |  |  |
| 4               | k         |  |  |  |
| 5               | h         |  |  |  |
| 6               | gl        |  |  |  |
| 7               | k         |  |  |  |
| CENTER PIN      | INT. CON. |  |  |  |
| LOWER RING      | g2        |  |  |  |
| UPPER RING      | g3        |  |  |  |
| CAP             | a         |  |  |  |







# pulse modulators

### **EIMAC** division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for-

### A quick guide to EIMAC products and services offered in this catalog.

Including . . .

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

### Important EIMAC extras...

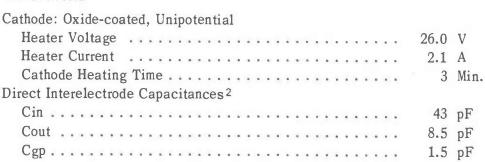
APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.



#### TECHNICAL DATA

### 8252W 4PR60C


PULSE MODULATOR TETRODE

The EIMAC 8252W/4PR60C is a high-vacuum tetrode intended for pulse-modulator service in circuits employing inductive or resistive loads. This tube unilaterally replaces the 715C and the 5D21 and supersedes the 8252/4PR60B. The internal structure of the tube has been strengthened to minimize the effects of shock and vibration.

The 8252W/4PR60C has a maximum plate dissipation rating of 60 watts, is cooled by radiation and convection, and delivers pulse output power in the region of 300 kilowatts with less than one kilowatt of pulse driving power.

#### GENERAL CHARACTERISTICS<sup>1</sup>

#### ELECTRICAL





- Characteristics and operating values are based upon performance tests. These figures may change without notice
  as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
  this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191A.

#### MECHANICAL

| Environmental Capability See Application Note                  |
|----------------------------------------------------------------|
| Base Fits E.F. Johnson Co. Socket Number 122-234 or equivalent |
| Mounting Position                                              |
| Cooling Radiation and Convection                               |
| Recommended Heat Dissipating Plate Connector EIMAC HR-8        |
| Maximum Seal and Envelope Temperatures                         |
| Maximum Over-All Dimensions                                    |
| Length 6.000 in; 152.4 mm                                      |
| Diameter 3.063 in; 77.9 mm                                     |
| Net Weight                                                     |
| Shipping Weight                                                |

(Revised 6-30-71) © 1962, 1966, 1971 Varian

Printed in U.S.A.

#### PULSE MODULATOR OR SWITCH TUBE SERVICE

#### TYPICAL OPERATION

| <b>ARSOI</b> | LITE | MAN   | DAL IDA  | DATI | NICC |
|--------------|------|-------|----------|------|------|
| ABSUL        | Ulir | IVIAX | HVIL HVI | BALL | CLIN |

| DC PLATE VOLTAGE             | 20   | KILOVOLTS    |
|------------------------------|------|--------------|
| DC SCREEN VOLTAGE            | 1.5  | KILOVOLTS    |
| DC GRID VOLTAGE?             | -1.0 | KILOVOLT     |
| PEAK POSITIVE GRID VOLTAGE   | 300  | VOLTS        |
| PEAK PLATE CURRENT           | 18   | AMPERES      |
| PEAK POSITIVE PLATE VOLTAGE  | 25   | KILOVOLTS    |
| PLATE DISSIPATION(Average)   | 60   | WATTS        |
| SCREEN DISSIPATION (Average) | 8    | WATTS        |
| GRID DISSIPATION(Average)    | 1    | WATT         |
| DUTY                         | See  | chart page 6 |
|                              |      |              |

| Pulse Modulator (Per Tube)  |      |       |         |
|-----------------------------|------|-------|---------|
| DC Plate Voltage            | 16.0 | 20.0  | kVdc    |
| Pulse Plate Current         | 10.0 | 18.0  | а       |
| DC Screen Voltage           | 1.25 | 1.25  | kVdc    |
| Pulse Screen Current 1      | 1.8  | 2.7   | а       |
| DC Grid Voltage             | -550 | -600  | Vdc     |
| Pulse Grid Current 1        | 0,20 | 0.75  | а       |
| Pulse Positive Grid Voltage | 30   | 150   | V       |
| Duty                        | 0025 | .001  |         |
| Pulse Duration              | 5    | 2     | $\mu$ s |
| Peak Positive Plate Voltage | 25   | 25    | kv      |
| Pulse Input Power           | 160  | 360   | kw      |
| Pulse Output Power          | 150  | 337   | kw      |
| Pulse Output Voltage        | 15.0 | 18.75 | kv      |
|                             |      |       |         |

The effective grid-circuit resistance must not exceed 100,000 ohms.

Approximate value.

| RANGE VALUES FOR EQUIPMENT DESIGN                                      | Min. | Max.   |
|------------------------------------------------------------------------|------|--------|
| Heater Current at E <sub>f</sub> = 27.0 volts                          | 1.95 | 2.35 A |
| Interelectrode Capacitances <sup>1</sup> (grounded cathode connection) |      |        |
| Cin                                                                    | 35   | 50 pF  |
| Cout                                                                   | 6.0  | 11 pF  |
| Cgp                                                                    |      | 2.0 pF |

Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

#### **APPLICATION**

#### MECHANICAL

MOUNTING - The 4PR60C may be mounted and operated in any position. A flexible connecting strap should be provided between the plate terminal and the external plate circuit.

If environmental stress, such as shock or vibration is expected, the tube must be clamped into position by means of clamps on the metal skirt. Such clamps must be shaped to fit the contour of the skirt and must be fastened to the tube before being tightened to the chassis in order that no distorting force will be applied. No lateral pressure or clamping action should be applied to the base pins or to any part of the tube other than the skirt. The skirt is internally connected to the cathode.

COOLING - Adequate ventilation must be provided so that seal and/or envelope temperatures do not exceed 200°C under any operating or standby condition. When the 4PR60C is operated where air circulation is restricted, these temperatures can easily reach 225°C or more which will accelerate seal deterioration and cause early tube failure.

Adequate control of the base temperature, in particular, is necessary. Envelope and plate-seal temperatures do not ordinarily require special attention provided that an HR-8 heat dissipating plate connector is used. However, each individual application of the 4PR60C should be carefully evaluated to assure safe operating temperatures. A blower is usually required only when normal air circulation is restricted, when the ambient temperature exceeds 25°C, when the altitude is other than sea level, or when a combination of these factors exists.

#### **ELECTRICAL**

HEATER OPERATION - The heater voltage, as measured directly at the heater pins, should be maintained at the rated value of 26.0 volts. Maximum variations in heater voltage must be kept within the range of 23.4 to 28.6 volts. Where consistent performance and long tube life are factors, the heater voltage must be kept within range of 24.7 to 27.3 volts. The peak pulse-emission capability of the cathode may be impaired at low

heater voltages, and high heater voltages contribute to short tube life.

A heater noise test is conducted periodically on 4PR60C samples. This test insures that the heater/cathode assembly will not generate excessive rf noise during vibration over the frequency range of 10 to 50 cps.

A 500-hour heater cycling test is also conducted periodically on 4PR60C samples. This test consists of at least 1000 complete on-off cycles and insures that <code>grid-to-cathode</code> shorts will not occur as a result of cumulative hysteresis effects upon mechanical joints in the cathode assembly.

CATHODE OPERATION - It is essential that the minimum cathode heating time of three minutes be observed prior to the flow of cathode current. Conservative design for reliable tube operation in pulse circuits dictates the use of five minutes minimum heating time.

The "Cathode Current Derating Chart" depicts the current capabilities of the 4PR60C cathode at various pulse durations and duty factors. To use this chart, enter with pulse duration and note the intersection with desired pulse cathode current (the total of plate, screen, and grid currents during particular pulse condition). At this intersection read off values of maximum duty and/or pulse repetition rate.

Under a given set of operating conditions, element dissipations may limit the maximum permissible duty to a value less than that which cathode considerations would dictate. When this occurs, it will usually be found that screen dissipation is the limiting factor under low tube-voltage-drop conditions and that plate dissipation limits the maximum duty under high tube-voltage-drop conditions.

CONTROL-GRID OPERATION - The average power dissipated by the control grid of the 4PR-60C must not exceed one watt. Control-grid dissipation is not usually a limiting factor with this tube, but can be computed as the product of pulse grid current, pulse positive grid voltage, and duty factor. Similarly, pulse driving power is pulse grid current times pulse grid voltage swing (bias voltage plus positive grid voltage).

SCREEN-GRID OPERATION - The average power dissipated by the screen of the 4PR60C must not exceed eight watts. Screen dissipation is the product of dc screen voltage, pulse screen current, and duty factor. Excessive screen dissipation is likely to occur under conditions of low tube-voltage drop during conduction. This condition can be

relieved by using a lower plate load resistance which will cause higher tube-voltage drop during conduction.

A bleeder resistance designed to draw at least 10 milliamperes of current should be connected directly from screen to cathode of the 4PR60C. This bleeder resistance will insure that only a positive current load is presented to the screen supply.

PLATE OPERATION - The plate of the 4PR60C is radiation cooled and is rated at 60 watts maximum dissipation. Average plate dissipation must not exceed 60 watts. The 4PR60C should not be operated without a heat-dissipating plate connector such as the recommended EIMAC HR-8.

Average plate dissipation may be calculated as the product of pulse plate current, pulse tubevoltage drop, and duty factor. Excessive average plate dissipation is likely to occur at high values of pulse tube-voltage drop. The calculated value of plate dissipation may be well below 60 watts in a given case, but excessive dissipation may result if pulse rise and fall times are appreciable compared to pulse duration. This excessive plate dissipation occurs because long rise and fall times slow down the plate voltage swing and allow plate current to flow for longer periods in the high voltage-drop region.

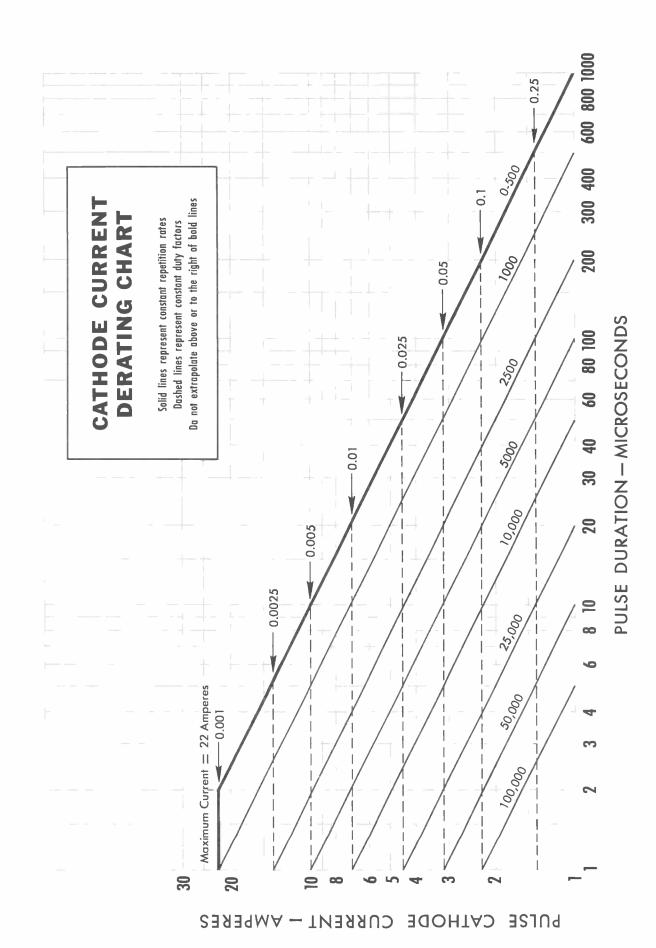
The plate-supply voltage for the 4PR60C should not exceed 20 kilovolts. In circuits employing inductive loading, the peak instantaneous plate voltage should not exceed 25 kilovolts.

CAUTION-HIGH VOLTAGE - Operating voltage for the 4PR60C can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

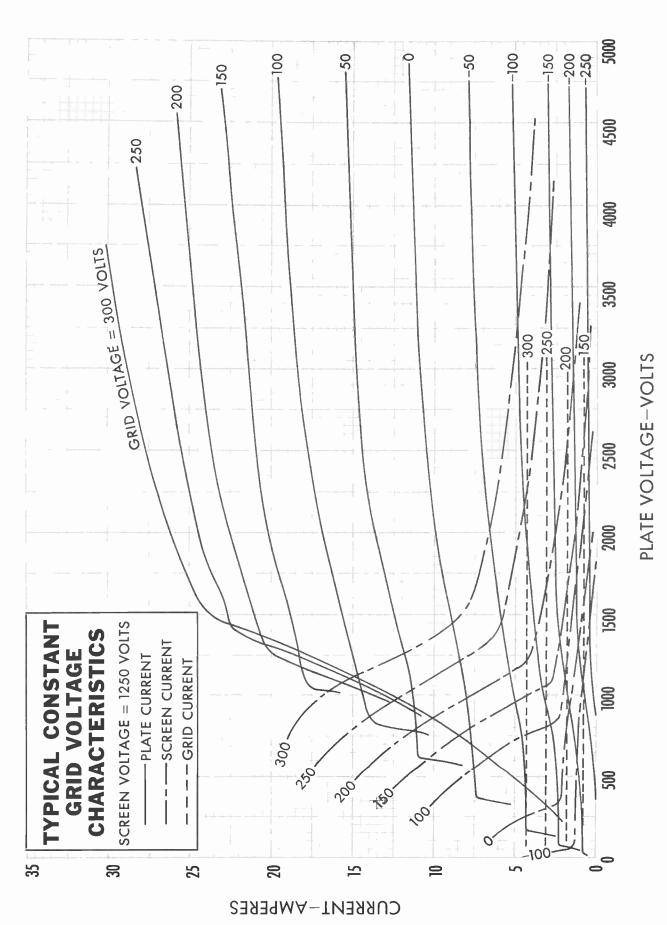
SHOCK/VIBRATION - The internal structure of the 4PR60C has been reinforced to minimize the effects of shock and vibration in the grid-cathode section of the tube. When environmental stress is expected, proper mounting is extremely important (see MOUNTING).

Production samples are periodically tested for ability to survive 50 G, 11 millisecond shock im-

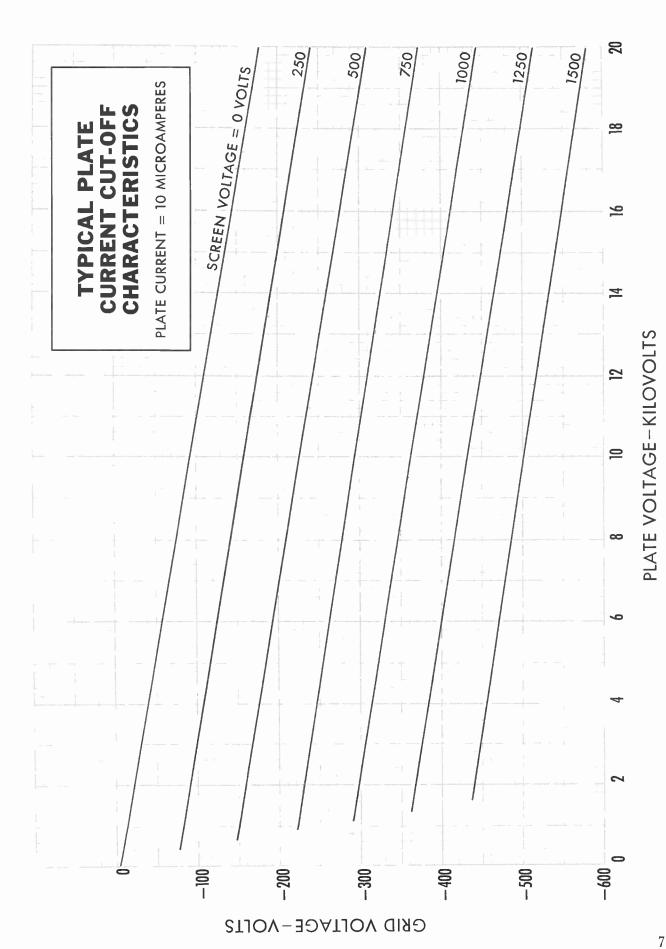
pact, and vibration at a fixed double-amplitude of 0.08 inch over the range of 10 to 50 Hz and 10 G of acceleration over the range of 50 to 200 Hz.

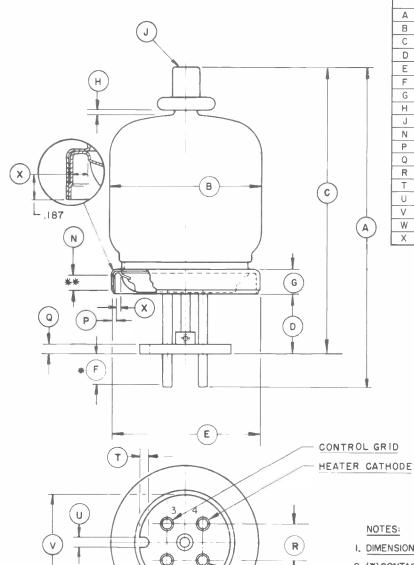

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 4PR60C, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding,

an expert in this field should be contacted to perform an X-ray survey of the equipment.


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

CAUTION-GLASS IMPLOSION - The EIMAC 4PR60C is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.




8252W/4PR60C



6





R

|       |       | DIN     | /ENSIONA | L        | . DATA   |         |      |
|-------|-------|---------|----------|----------|----------|---------|------|
| DIM.  |       | INCHES  |          | LLIMETER | RS       |         |      |
| DINI. | MIN.  | MAX.    | REF.     | П        | MIN.     | MAX.    | REF. |
| Α     | 5.750 | 6.000   |          |          | 146.10   | 152.40  |      |
| В     |       | 3.063   |          | 1        |          | 77.80   |      |
| С     | 5.344 | 5.594   |          | 1        | 135.7    | 142.1   |      |
| D     | 1.125 | 1.250   |          |          | 28.57    | 31.75   |      |
| Ε     | 2.885 | 2.905   |          | 1        | 73.28    | 73.79   |      |
| F     | 0.328 |         |          | 1        | 8.33     |         |      |
| G     | 0.438 | 0.500   |          |          | 11.13    | 12.70   |      |
| Н     | 0.016 |         |          |          | 0.41     |         |      |
| J     |       | CAP: CI | -41 (JE  | Οl       | EC DESIG | NATION) |      |
| N     | 0.250 |         |          |          | 6.35     |         |      |
| Р     | 0.043 | 0.057   |          |          | 1.09     | 1.45    |      |
| Q     |       |         | 0.188    | Ш        |          | 4.77    |      |
| R     |       |         | 0.687    |          |          | 17.45   |      |
| Т     | 0.171 | 0.203   |          |          | 4.34     | 5.16    |      |
| U     | 0.171 | 0.203   |          |          | 4.34     | 5.16    |      |
| ٧     | 1.788 | 1.813   |          |          | 45.42    | 46.05   |      |
| W     | 0.183 | 0.191   |          |          | 4.65     | 4.85    |      |
| X     | 0.157 |         |          |          | 3.99     |         |      |

NOTES:

HEATER

- I. DIMENSIONS IN INCHES.
- 2, (\*) CONTACT AREA.
- 3. (\*\*) DEFINES CYLINDRICAL AREA AVAILABLE FOR CLAMPING WHICH MUST NOT BE DISTORTED BY CLAMPING ACTION.
- 4. THE BASE PINS SHALL BE CAPABLE OF ENTERING A GAUGE 1/4 INCH THICK HAVING FOUR .214" DIA. HOLES LOCATED ON 11/16 CENTERS AND A CENTER HOLE .250 DIA

SCREEN GRID

( W ) 5 PINS-(SEE NOTE 4)



# SAN CARLOS CALIFORNIA

**PULSE TETRODE** 

MODULATOR **OSCILLATOR AMPLIFIER** 

The Eimac 8187/4PR65A is a pulse tetrode intended for use in pulse-modulator, pulsed-amplifier, and pulsed-oscillator service. This compact, high vacuum, radial-beam tetrode, incorporating a Pyrovac plate and non-emitting grids, is recommended for use in new equipments where high voltage, high current, or high duty factor is encountered.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope.

#### GENERAL CHARACTERISTICS

| ELECTRIC  | CAL       |          |   |  |  |  |
|-----------|-----------|----------|---|--|--|--|
| Filament: | Thoriated | tungsten |   |  |  |  |
|           | Voltage   | -        | - |  |  |  |

| Filament:                                              | Thoriated t | lungs | ten   |     |         |   |   |   |   |   | Min. | N | lom. | Max. |         |
|--------------------------------------------------------|-------------|-------|-------|-----|---------|---|---|---|---|---|------|---|------|------|---------|
|                                                        | Voltage     | -     | -     | -   | -       | - |   | - | ~ | - | -    | - | 6.0  |      | volts   |
|                                                        | Current     | -     | -     | -   | -       | - | - | - | - | - | 3.2  |   |      | 3.8  | amperes |
| Amplifica                                              | tion Factor | (Gr   | id to | Sci | reen)   | - | - | 4 |   | - | -    | - | 6.0  |      |         |
| Direct Interelectrode Capacitances, Grounded Cathode:† |             |       |       |     |         |   |   |   |   |   |      |   |      |      |         |
|                                                        | Grid-Plate  |       |       |     |         | - |   | - | - | - | -    | - | -    | 0.12 | uuf     |
|                                                        | Input       | -     | -     | -   | -       | - | - | - | - | - | 6.0  |   |      | 8.3  | uuf     |
|                                                        | Output      |       | -     | -   | -       | - | - |   | - | - | 1.9  |   |      | 2.6  | uuf     |
| Highest                                                | Frequency f | or M  | laxim | um  | Ratings | - |   | - | - | - | -    |   | -    | 150  | mc      |



#### MECHANICAL

| Base            | -     | -     | -     | -     | -    | -     | -    | - | - | - | 40 | - | - | - | 1.5 |   | -       | -   | -       |       | -      | 5-pin     |
|-----------------|-------|-------|-------|-------|------|-------|------|---|---|---|----|---|---|---|-----|---|---------|-----|---------|-------|--------|-----------|
| Basing -        | -     | -     | -     | -     |      | -     |      |   | - | - | -  | - | - | - | -   | - |         | -   | -       | 4     | See    | drawing   |
| Recommend So    | cket  |       | -     | -     | -    | -     | _    |   | - | - | -  | - | - | - |     |   | Nationa | I H | X-29    | or J  | ohnson | 122-101   |
| Operating Posit | ion   | -     | -     |       |      | -     | -    | - | _ |   | -  | - |   | - | -   |   |         | Ver | rtical, | bas   | e dow  | or up     |
| Maximum Oper    | ating | Tem   | pera  | tures | ::   |       |      |   |   |   |    |   |   |   |     |   |         |     |         |       |        |           |
|                 | Seal  |       |       | -     |      | -     |      |   | - | - |    | - | - | - | -   | - | -       | -   | -       | -     | -      | 200°C     |
| Plate           | Sea   | 1     | -     | -     | -    | -     | -    | - | - | - | -  | - | ٠ | - | -   | - |         | -   |         | 4     |        | 225°C     |
| Cooling -       | -     | -     | -     | -     | *    | -     | -    |   | - |   | -  |   | - | - | -   |   |         | -   | Radi    | ation | and fe | orced-air |
| Recommended     | Heat- | Dissi | pati  | ng P  | late | Соппе | ctor | - | - | - | -  | - | - | - | _   | - | -       | -   | -       | -     | Eime   | ac HR-6   |
| Maximum Over    | all D | imen  | sions | s:    |      |       |      |   |   |   |    |   |   |   |     |   |         |     |         |       |        |           |
| Leng            | th    | -     | -     | -     | -    | -     | -    | - | - | - | -  | - | - | - | -   | - |         | -   | -       | -     | 4.19   | inches    |
| Diam            | eter  | -     | -     | -     | -    | -     | -    | - | - | - | -  | - | - | - | -   | - | -       | -   | -       |       | 2.38   | inches    |
| Net Weight (t   | ube d | only) |       |       |      | -     | -    | - | - | - | -  | - | - | - | -   | - | -       | -   | -       | -     | 3      | ounces    |
| Shipping Weigh  | nt    | - '   | -     | -     | -    | -     | -    | - | - | - | _  |   | - | - | -   |   | -       | -   | -       | ٠     | 1.5    | pounds    |

#### PULSE MODULATOR SERVICE

†In Shielded Fixture

| MAXIMUM RATINGS           |     |              |      |           |
|---------------------------|-----|--------------|------|-----------|
| DC PLATE VOLTAGE -        | 5 5 | 15           | MAX. | KILOVOLTS |
| DC SCREEN VOLTAGE -       |     | 2.0          | MAX. | KILOVOLTS |
| DC GRID VOLTAGE -         |     | <b>—</b> 1.0 | MAX. | KILOVOLT  |
| PEAK PLATE CURRENT        |     | 1.0          | MAX. | AMPERES   |
| PLATE DISSIPATION (AVG.)  |     | 65           | MAX. | WATTS     |
| SCREEN DISSIPATION (AVG.) | ) - | 10           | MAX. | WATTS     |
| GRID DISSIPATION (AVG.)   |     | 5            | MAX. | WATTS     |

#### TYPICAL OPERATION

| THE STATE OF THE S |      |   |   |      |             |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|------|-------------|-----------------|
| DC Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 6  | - |   | 5    | 10          | 15 kilovolts    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   | - | 500  | 500         | 500 volts       |
| DC Grid Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | - |   | -180 | <b>—225</b> | -270 volts      |
| Pulse Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   | - | 4.35 | 9.35        | 14_35 kilovolts |
| Peak Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |   | - | 0.95 | 0.95        | 0.95 amperes    |
| Pulse Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |   | - | 0.20 | 0.20        | 0.20 ampere     |
| Pulse Grid Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _    |   | - | 0.12 | 0.12        | 0.12 ampere     |
| Pulse Pos, Grid Voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ie . |   | _ | 100  | 100         | 100 volts       |
| Pulse Drive Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   | - | 33.6 | 39.0        | 44.5 watts      |
| Pulse Plate Input Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er   | - | - | 4.75 | 9.50        | 14.25 kilowatts |
| Pulse Plate Output Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |   | 4.10 | 8.85        | 13.60 kilowatts |
| Duty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    | - |   | 10   | 10          | 10 percent      |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |   |      |             |                 |

#### RADIO-FREQUENCY PLATE AND SCREEN-PULSED AMPLIFIER AND OSCILLATOR\*

| MAXIMUM RATINGS            |       |       |      |           |
|----------------------------|-------|-------|------|-----------|
| PEAK DC PLATE VOLTAGE -    | -     | 10    | MAX. | KILOVOLTS |
| DC SCREEN VOLTAGE          | -     | 2.0   | MAX. | KILOVOLTS |
| D-C GRID VOLTAGE           | -     | -1.0  | MAX. | KOLOVOLT  |
| PEAK CATHODE CURRENT (N    | ote 1 | ) 1.5 | MAX. | AMPERES   |
| PLATE DISSIPATION (AVG.) - | -     | 65    | MAX. | WATTS     |
| SCREEN DISSIPATION (AVG.)  | -     | 10    | MAX. | WATTS     |
| GRID DISSIPATION (AVG.) -  | -     | 5     | MAX. | WATTS     |

\*When used as a RF Plate-and Screen-Pulsed Amplifier, the grid drive must also be pulsed to avoid overheating this element during the inter-pulse periods.

| Pulse Plate Voltage | -     | -  | - | 5    | 7.5  | 10 kilovolts |
|---------------------|-------|----|---|------|------|--------------|
| Pulse Screen Voltag | je -  | -  |   | 500  | 500  | 500 volts    |
| DC Grid Voltage     | -     | -  |   | -265 | 300  | —335 volts   |
| Pulse Plate Current | (Note | 1) | - | 200  | 200  | 200 mA       |
| Pulse Screen Curre  | nt -  | -  | - | 20   | 20   | 20 mA        |
| Pulse Grid Current  | -     | -  | - | 12   | 12   | 12 mA        |
| Peak RF Grid Volta  | ge -  | -  | - | 370  | 405  | 440 volts    |
| Pulse Drive Power   | -     | -  | - | 4.5  | 4.85 | 5.3 watts    |
| Pulse Plate Input P | ower  | -  |   | 1000 | 1500 | 2000 watts   |
| Pulse Plate Output  | Power | -  | - | 815  | 1270 | 1720 watts   |
| Duty                | -     | -  | - | 35   | 28   | 23 percent   |
|                     |       |    |   |      |      |              |

### RADIO-FREQUENCY GRID-PULSED AMPLIFIER AND OSCILLATOR

| DC  | PLATE  | VO   | LTAG  | E    | -    | -     | -  | 7.5  | MAX. | KILOVOLT | S |
|-----|--------|------|-------|------|------|-------|----|------|------|----------|---|
| DC  | SCREE  | N \  | /OLTA | GE   | -    | -     | -  | 2.0  | MAX. | KILOVOLT | S |
| DC  | GRID   | ۷٥١  | TAGE  |      | -    | -     |    | -1.0 | MAX. | KILOVOLT |   |
| PEA | K CAT  | HOI  | DE CU | RRE  | NT ( | (Note | 1) | 1.5  | MAX. | AMPERES  |   |
| PLA | TE DIS | SIPA | ATION | (A)  | (G.) | -     | -  | 65   | MAX. | WATTS    |   |
| SCR | EEN D  | ISSI | PATIO | N (, | ٩٧G  | .)    | -  | 10   | MAX. | WATTS    |   |
| GRI | D DIS  | SIPA | NOIT  | (AV  | 'G.) | -     | -  | 25   | MAX. | WATTS    |   |
|     |        |      |       |      |      |       |    |      |      |          |   |

#### TYPICAL OPERATION DC Plate Voltage 4.5 6.0 7.5 kilovolts DC Screen Voltage - 500 500 500 volts DC Grid Voltage -300 volts -260 -280 Pulse Plate Current (Note 1) 200 200 200 mA Pulse Screen Current -20 20 mA 20 Pulse Grid Current 12 12 12 mA Peak RF Grid Voltage 365 385 405 volts Pulse Drive Power 4.4 4.6 4.9 watts Pulse Plate Input Power 1500 watts 900 1200 Pulse Plate Output Power 725 1000 1265 watts

37

32

27 percent

Note 1: The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation section refers to the dc plate current component during the pulse.

Duty -

### APPLICATION

#### MECHANICAL

Mounting—The 8187/4PR65A must be operated vertically, base up or down. The socket must provide clearance for the glass tip-off which extends from the center of the base. A flexible connecting strap should be provided between the plate terminal and the external plate circuit, and the Eimac HR-6 connector (or equivalent) used on the tube plate lead. The socket must not apply lateral pressure against the base pins. The tube must be protected from severe vibration and shock.

**Cooling**—When the inlet air temperature does not exceed 30° C it will not ordinarily be necessary to provide forced-air cooling of the envelope or the plate seal at frequencies below 30 Mc. provided the HR-6 Heat-Radiating plate connector is used and the tube is so located that normal circulation of air past the envelope is not impeded.

In the event the inlet air temperature is expected to be greater than 30° C, adequate forced-air cooling must be provided to maintain base-seal and plate-seal temperatures below 200° C and 225° C, respectively. In all classes of operation it is recommended that a heat radiating connector, the Eimac HR-6 or equivalent, be installed on the anode terminal, and that a socket be employed which provides for proper seal cooling. When the Eimac 8187/4PR65A, utilizing an HR-6 heat radiator, is operated at dc or low frequencies in a Johnson 122-101 socket, the minimum airflow requirements to maintain seal temperatures at 200° C in 50° C inlet air are tabulated below:

|                                      | Sea Lev           | el                                            | 10,000 Feet       |                                               |  |
|--------------------------------------|-------------------|-----------------------------------------------|-------------------|-----------------------------------------------|--|
| Avg. Plate<br>Dissipation<br>(watts) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop. (Inches<br>of Water) | Air Flow<br>(CFM) | Ptenum Pressure<br>Drop. (Inches<br>of Water) |  |
| 40                                   | 1.7               | 0.013                                         | 2.5               | 0.02                                          |  |
| <b>5</b> 0                           | 2.4               | 0.024                                         | 3.5               | 0.04                                          |  |
| 65                                   | 3.3               | 0.036                                         | 4.8               | 0.06                                          |  |

When the Eimac 8187/4PR65A is used as a pulsed-amplifier or oscillator at frequencies above 30 Mc, additional cooling may be required to compensate for the effects of plate and base-seal heating caused by rf charging currents and dielectric losses. Since the amount of seal heating varies with the particular application, it is suggested that the user monitor the seal temperatures to determine the adequacy of the cooling air.

Cooling air should be applied before or simultaneously with the application of filament voltage and may be removed simultaneously with filament voltage. In any questionable situation, the only criterion for adequate cooling is temperature. Tube temperature may be measured conveniently by using a temperature-sensitive paint.

#### **ELECTRICAL**

Filament Voltage—For maximum tube life the filament voltage, as measured directly at the filament pins, should be 6.0 volts. Variations in filament voltage must

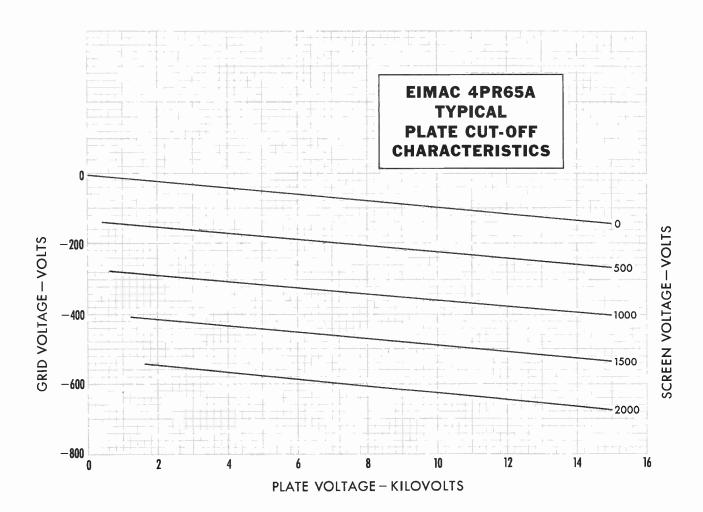


be kept within the range of 5.7 to 6.3 volts.

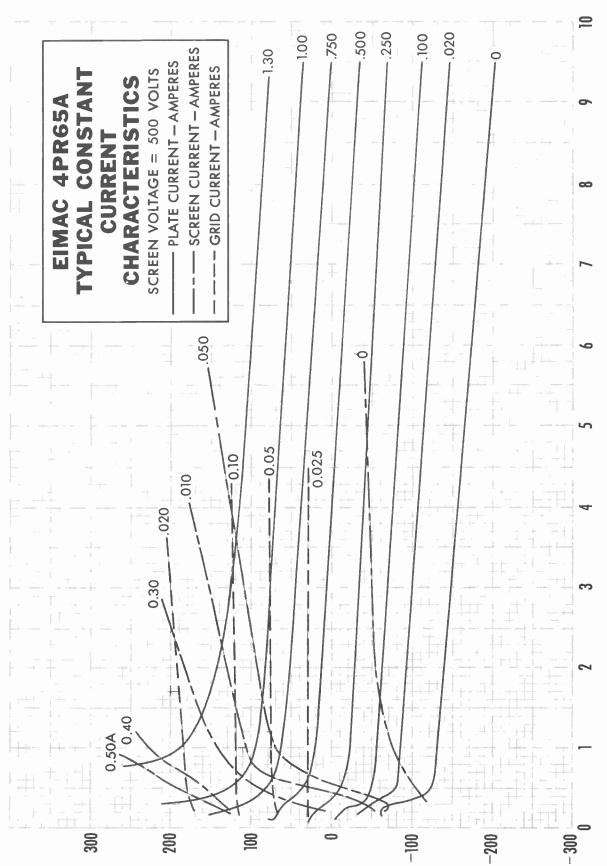
When the 8187/4PR65A is utilized in pulse applications where high peak currents are demanded, filament voltage must be maintained at the rated value; the normally allowable five-percent variation in this voltage cannot be tolerated if the tube's peak-current capabilities are to be realized.

**Element Dissipation**—Under normal operating conditions, the average plate dissipation of the 8187/4PR65A should not be allowed to exceed 65 watts. Dissipation in excess of this maximum rating is permissable for short periods of time, such as during tuning procedures.

The average power dissipated by the screen-grid and the control-grid must not exceed 10 watts and 5 watts, respectively.


**Cut-Off Characteristics**—The Plate Current Cut-Off Characteristics of the 8187/4PR65A are shown in the graph below. These curves indicate the value of negative grid voltage required to maintain a plate-current flow of 50 microamperes or less at the various plate and screen voltages noted. These curves were plotted from a "typical" tube whose electrical characteristics closely approximate the mean value in the tube test specification.

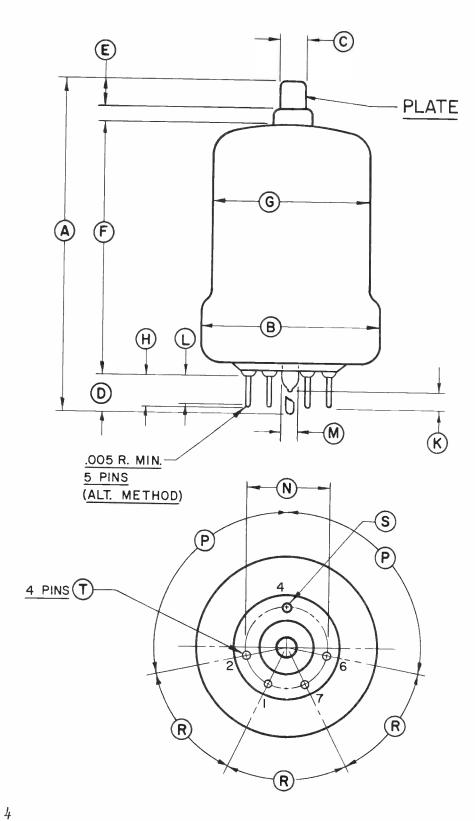
Each 8187/4PR65A is tested to insure proper cut-off characteristics at maximum ratings. This cut-off test is made with a plate voltage of 15 KV, a screen voltage


of 1.5 KV with the grid voltage adjusted to maintain a plate current of 10 microamperes. Under these test conditions the negative grid bias must not exceed 575 volts. Due to tube-to-tube variations this cut-off point will vary and the typical range can be expected to be between 350 volts and 500 volts.

Pulse-Modulator Service—The data shown in the "Typical Operating" section of Pulse-Modulator Service was calculated assuming a rectangular plate voltage wave-form, ignoring the effects of shunt capacity. In reality, the total shunt capacitance (including the output capacity of the tube, stray capacitance, etc.) affects the output wave form and can have considerable effect on plate dissipation. Since the actual plate waveform is not rectangular, even though the grid pulse is, additional power will be dissipated during the rise time and can, under some circumstances, be much greater than that dissipated during the remainder of the pulse. The total power dissipated is then the sum of the power dissipated during the rise time and the power dissipated during the remainder of the pulse.

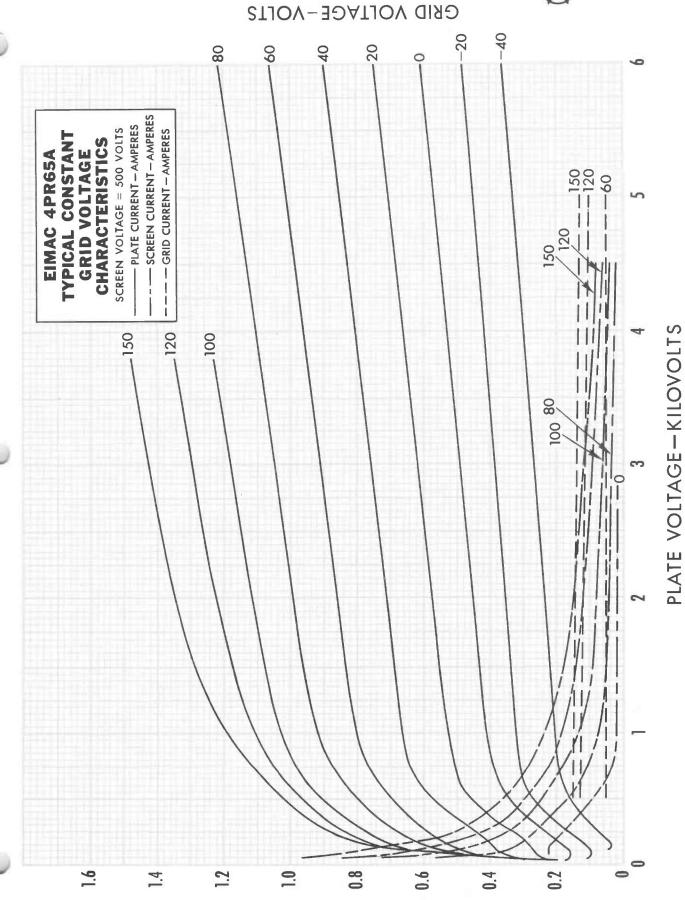
**Special Applications**—If it is desired to operate this tube under conditions widely different from those given here, please write to Power Grid Tube Marketing, Eimac, Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.








GRID VOLTAGE-VOLTS


PLATE VOLTAGE - KILOVOLTS





|      | DIMENSI        | ONS IN INCH | ES .  |  |  |  |
|------|----------------|-------------|-------|--|--|--|
|      | DIMENS         | SIONAL DA   | TA    |  |  |  |
| REF. | MIN. MAX, NOM. |             |       |  |  |  |
| Α    | 4              | 4-3/16      |       |  |  |  |
| В    |                | 2-3/8       |       |  |  |  |
| С    | .350           | .365        |       |  |  |  |
| _ D  | 7/16           | 9/16        |       |  |  |  |
| Ε    | 21/64          |             |       |  |  |  |
| F    | 2-15/16        | 3-5/16      |       |  |  |  |
| G    |                | 2-1/8       |       |  |  |  |
| Н    | 3/8            | 1/2         |       |  |  |  |
| K    | .000           | -           |       |  |  |  |
| L    | 5/16           |             |       |  |  |  |
| М    |                | 3/8         |       |  |  |  |
| N    |                |             | 1,000 |  |  |  |
| P    |                |             | 102°  |  |  |  |
| R    |                |             | 52°   |  |  |  |
| S    | .122 DIA.      | .128 DIA.   |       |  |  |  |
| T    | .055 DIA.      | .061 DIA.   |       |  |  |  |
|      |                |             |       |  |  |  |

5







#### TECHNICAL DATA

4PR125A
RADIAL-BEAM
PULSE TETRODE
MODULATOR
OSCILLATOR
AMPLIFIER

The Eimac 8247/4PR125A is a pulse tetrode intended for use in pulse-modulator, pulsed-amplifier, and pulsed-oscillator service. This compact, high vacuum, radial-beam tetrode, incorporating a Pyrovac plate and non-emitting grids, is recommended for use in new equipments where high voltage, high current, or high duty factor is encountered.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope. Cooling can be simplified by the use of the Eimac SK-410 Air-System Socket and the SK-406 Air Chimney.

#### **GENERAL CHARACTERISTICS**

| ELECTRICAL                       | OLIVERA     | AL CIII  | ANAC     | IEKIJ   | 1103 |       |      |         |
|----------------------------------|-------------|----------|----------|---------|------|-------|------|---------|
| Filament: Thoriated to           | ıngsten     |          |          |         | Min. | Nom.  | Max. |         |
| Voltage -                        | _           | -        | -        | -       | -    | 5.0   |      | volts   |
| Current -                        | -           | -        | -        | -       | 6.0  |       | 7.0  | amperes |
| Amplification Factor (           | Grid to Sci | reen)    | -        | -       |      | 5.9   |      |         |
| Direct Interelectrode            | Capacitanc  | es, Grou | inded Ca | athode: | †    |       |      |         |
| Grid-Plate                       | -           | -        | -        | -       | -    | -     | 0.07 | uuf     |
| Input –                          | -           | -        | -        | -       | 9.2  | -     | 12.4 | uuf     |
| Output –                         | -           | _        | _        | _       | 2.5  | _     | 3.5  | uuf     |
| Transconductance (1 <sub>b</sub> | = 50 ma)    | -        | -        | _       | -    | 2,450 |      | umhos   |
| Highest Frequency for            | Maximum     | Ratings  |          | -       | -    | -     | 120  | me      |
|                                  |             |          |          |         |      |       |      |         |



#### **MECHANICAL**

| Base           | _          | -       | -     | -        | -    | _ | - | - | - | -     | -       | 5-pir   | n metal shel       | 11 |
|----------------|------------|---------|-------|----------|------|---|---|---|---|-------|---------|---------|--------------------|----|
| Basing         | -          | -       | -     | -        | -    | - | - | - | - | -     | -       | _       | See drawing        | g  |
| Recommend So   | cket       | -       | -     | -        | -    | - | - | - | - | Eimac | SK-410  | Air-Sy  | stem Socke         | t  |
| Operating Posi | ition      | -       | -     | -        | -    | - | - | - |   | ***   | Vertica | al, bas | e down or u        | р  |
| Maximum Oper   | rating Ter | nperat  | ures: |          |      |   |   |   |   |       |         |         |                    | -  |
| Base           | Seals      | -       | -     | _        | _    | _ | _ | - | _ | _     | _       | _       | 200°0              | C  |
| Plate          | Seal       | -       | _     | -        | _    | _ | _ | _ | _ | _     | _       | _       | 170 <sup>0</sup> ( | C  |
| Cooling        | -          | -       | -     | -        | -    | - | - | - | _ | _     | Radia   | tion an | d forced-air       | r  |
| Recommended    |            |         |       | Connecto | or - | - | - | - | - | -     | _       |         | Eimac HR-          | 6  |
| Maximum Over   | r-all Dime | ensions | 3:    |          |      |   |   |   |   |       |         |         |                    |    |
| Lengtl         | h          | -       | -     | -        | -    | - | - | - | - | -     | -       | -       | 5.69 inches        | S  |
| Diame          | eter       | -       | -     | -        | -    | - | - | - | - | -     | -       | -       | 2.81 inches        | S  |
| Net Weight (tu |            | -       | -     | -        | -    | - | - | - | - | _     | -       | -       | 6.5 ounces         | S  |
| Shipping Weigh | ıt         | _       | -     | -        | -    | - | - | - | - | -     | -       | -       | 1.5 pounds         | S  |
| † in Shielded  |            |         |       |          |      |   |   |   |   |       |         |         |                    |    |

TYPICAL OPERATION

#### **PULSE MODULATOR SERVICE**

|                           |                    | DC Plate Voltage         | 10   | 14   | 18 kilovolts   |
|---------------------------|--------------------|--------------------------|------|------|----------------|
| MAXIMUM RATINGS           |                    | DC Screen Voltage        | 1.0  | 1.0  | 1.0 kilovolts  |
| DC PLATE VOLTAGE          | 18 MAX, KILOVOLTS  | DC Grid Voltage          | -245 | -260 | -275 volts     |
| DC SCREEN VOLTAGE         | 2.0 MAX, KILOVOLTS | Pulse Plate Voltage      | 9.0  | 13.0 | 17.0 kilovolts |
| DC GRID VOLTAGE           | -1.0 MAX, KILOVOLT | Peak Plate Current       | 1.0  | 1.0  | 1.0 ampere     |
| PEAK PLATE CURRENT        | 1.5 MAX. AMPERES   | Pulse Screen Current     | 0.2  | 0.2  | 0.2 ampere     |
| PLATE DISSIPATION (AVG.)  | 125 MAX. WATTS     | Pulse Grid Current       | 25   | 25   | 25 ma          |
| SCREEN DISSIPATION (AVG.) | 20 MAX. WATTS      | Pulse Pos. Grid Voltage  | 30   | 30   | 30 volts       |
| GRID DISSIPATION (AVG.)   | 5 MAX. WATTS       | Pulse Drive Power        | 6.9  | 7.3  | 7.7 watts      |
|                           |                    | Pulse Plate Input Power  | 10   | 14   | 18 kilowatts   |
|                           |                    | Pulse Plate Output Power | 9    | 13   | 17 kilowatts   |
|                           |                    | Duty                     | 10   | 10   | 10 percent     |

(Effective 3-15-64) © Copyright 1962, 1964 by Eitel-McCullough, Inc.

#### RADIO-FREQUENCY PLATE AND SCREEN-PULSED AMPLIFIER AND OSCILLATOR\*

MAXIMUM RATINGS
PEAK DC PLATE VOLTAGE
DC SCREEN VOLTAGE
DC GRID VOLTAGE
PEAK CATHODE CURRENT\*\*
PLATE DISSIPATION (AVG.)
SCREEN DISSIPATION (AVG.)
GRID DISSIPATION (AVG.)

12 MAX, KILOVOLTS
2.0 MAX, KILOVOLTS
-1.0 MAX, KILOVOLT
2.5 MAX, AMPERES
125 MAX, WATTS
20 MAX, WATTS
5 MAX, WATTS

TYPICAL OPERATION
Pulse Plate Voltage
Pulse Screen Voltage
DC Grid Voltage
Pulse Plate Current \*\*
Pulse Screen Current
Pulse Grid Current
Peak RF Grid Voltage
Pulse Drive Power
Pulse Plate Input Power
Pulse Plate Output Power
Duty

8 10 12 kilovolts 1.0 kilovolt 1.0 1.0 -380 -390 -400 volts 416 416 416 ma 36 36 36 ma 6 ma 6 520 530 540 volts 3.12 3.18 3.25 watts 3.33 4.16 5.0 kilowatts 4.0 kilowatts 2.52 3.24 12 percent 15 13

\*When used as a rf Plate-and Screen-Pulsed Amplifier the grid drive must also be pulsed to avoid overheating this element during the inter-pulse periods.

#### ▶ RADIO-FREQUENCY GRID-PULSED AMPLIFIER AND OSCILLATOR

MAXIMUM RATINGS
DC PLATE VOLTAGE
DC SCREEN VOLTAGE
DC GRID VOLTAGE
PEAK CATHODE CURRENT\*\*
PLATE DISSIPATION (AVG.)
SCREEN DISSIPATION (AVG.)
GRID DISSIPATION (AVG.)

9.0 MAX, KILOVOLTS
2.0 MAX, KILOVOLTS
-1.0 MAX, KILOVOLT\_
2.5 MAX, AMPERES
125 MAX, WATTS
20 MAX, WATTS
5 MAX, WATTS

TYPICAL OPERATION
DC Plate Voltage
DC Screen Voltage
DC Grid Voltage
Pulse Plate Current
Pulse Screen Current
Pulse Grid Current
Peak RF Grid Voltage
Pulse Drive Power
Pulse Plate Input Power
Pulse Plate Output Power
Duty

9 kilovolts 1.0 1.0 1.0 kilovolts -365 -375 -385 volts 416 416 416 ma 36 36 36 ma 6 6 ma 6 505 515 525 volts 3.0 3.13.2 watts 2.08 2.92 3.75 kilowatts 1.44 2.16 2.88 kilowatts 19 16 14 percent

The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation section refers to the dc plate current component during the pulse.

### **APPLICATION**

#### **MECHANICAL**

**Mounting**— The 4PR125A must be operated vertically, base up or down. When the SK-410 Air-System Socket is used in conjunction with the SK-406 Air Chimney, the socket must be mounted to the under surface of the chassis to maintain proper air space between the plate seal and the chimney opening, otherwise plate seal cooling will be seriously impaired.

In the event the SK-410 Air-System Socket is not used, the socket must provide clearance for the glass tip-off which extends from the center of the tube. The metal tube-base shell should be grounded by means of suitable spring fingers.

Cooling—Adequate forced-air cooling must be provided to maintain base-seal and plate-seal temperatures below 200°C and 170°C, respectively. In all classes of operation it is recommended that a heat-radiating connector, the Eimac HR-6 or equivalent, be installed on the anode terminal, and that a socket and chimney be employed which provides for proper seal cooling. When the Eimac 4PR125A is operated at d-c or low frequencies in an Eimac SK-410 Air-System Socket, complete with SK-406 Air Chimney and HR-6 Heat Radiator, the minimum airflow requirements to maintain seal temperatures at 170°C in 50°C inlet air are tabulated:

|                                      |                   | Seo Level                                     | 10,000 Feet       |                                               |  |  |
|--------------------------------------|-------------------|-----------------------------------------------|-------------------|-----------------------------------------------|--|--|
| Ave. Plate<br>Dissipation<br>(watts) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop. (Inches<br>of Woter) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop. (Inches<br>of Water) |  |  |
| 50                                   | 5.0               | 0.014                                         | 7.2               | 0.020                                         |  |  |
| 100                                  | 8.0               | 0.016                                         | 10.2              | 0.023                                         |  |  |
| 125                                  | 10.0              | 0.018                                         | 14.2              | 0.026                                         |  |  |

When the Eimac 4PR125A is used as a pulsed-amplifier or oscillator at frequencies above 30 Mc, additional cooling may be required to compensate for the effects of plate and base-seal heating caused by r-f charging currents and dielectric losses. Since the amount of seal heating varies with the particular application, it is suggested that the user monitor the seal temperatures to determine the adequacy of the cooling air.

Cooling air should be applied before or simultaneously with the application of filament voltage and may be removed simultaneously with filament voltage. In any questionable situation, the only criterion for adequate cooling is temperature. Tube temperature may be measured conveniently by using a temperature-sensitive paint.



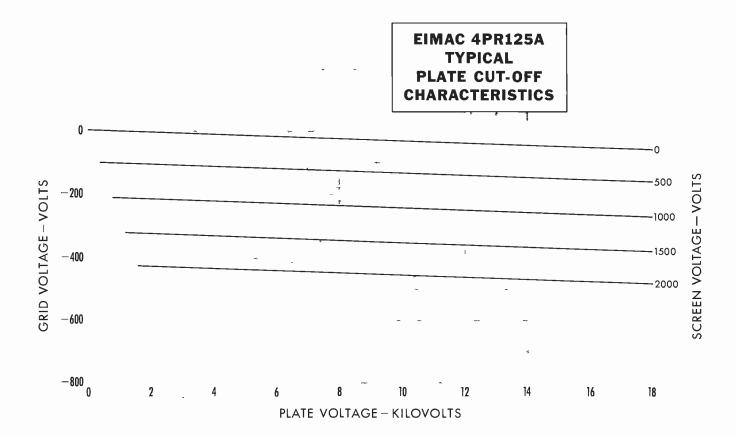
#### **ELECTRICAL**

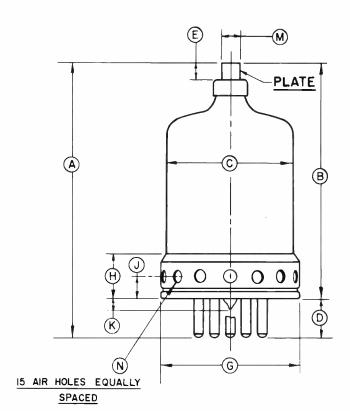
**Filament Voltage**— For maximum tube life the filament voltage, as measured directly at the filament pins, should be 5.0 volts. Variations in filament voltage must be kept within the range of 4.75 to 5.25 volts.

When the 4PR125A is utilized in pulse applications where high peak currents are demanded, filament voltage must be maintained at the rated value; the normally allowable five-percent variation in this voltage cannot be tolerated if the tube's peak-current capabilities are to be realized.

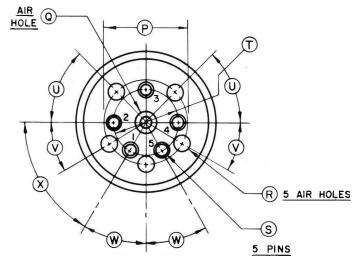
**Element Dissipation**—Under normal operating conditions, the average plate dissipation of the 4PR125A should not be allowed to exceed 125 watts. Dissipation in excess of this maximum rating is permissable for short periods of time, such as during tuning procedures.

The average power dissipated by the screen-grid and the control-grid must not exceed 20 watts and 5 watts, respectively.

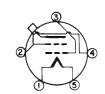

**Cut-Off Characteristics**— The Plate Current Cut-Off Characteristics of the 4PR125A are shown in the graph below. These curves indicate the value of negative grid voltage required to maintain a plate-current flow of 50 microamperes or less at the various plate and screen voltages noted. These curves were plotted from a "typical" tube whose electrical characteristics closely approximate the mean value in the tube test specification.

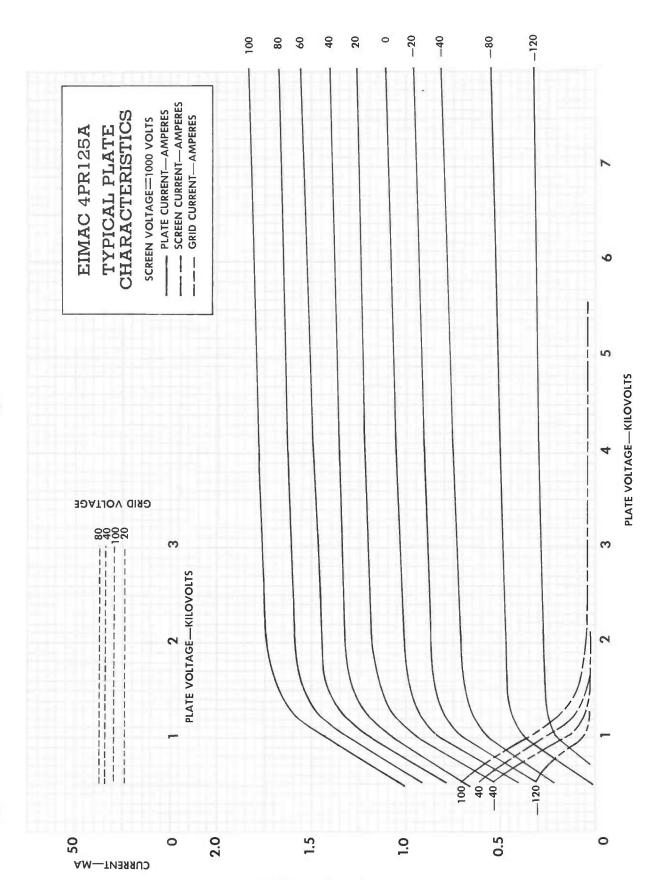

Each 4PR125A is tested to insure proper cut-off characteristics at maximum ratings. This cut-off test is made

with a plate voltage of 18 KV, a screen voltage of 1.5 KV with the grid voltage adjusted to maintain a plate current of 10 microamperes. Under these test conditions the negative grid bias must not exceed 450 volts. Due to tube-to-tube variation this cut-off point will vary and the typical range can be expected to be between -370 volts and -445 volts.


Pulse-Modulator Service— The data shown in the "Typical Operating" section of Pulse-Modulator Service was calculated assuming a rectangular plate voltage waveform, ignoring the effects of shunt capacity. In reality, the total shunt capacitance (including the output capacity of the tube, stray capacitance, etc.) affects the output wave form and can have considerable effect on plate dissipation. Since the actual plate waveform is not rectangular, even though the grid pulse is, additional power will be dissipated during the rise time and can, under some circumstances, be much greater than that dissipated during the remainder of the pulse. The total power dissipated is then the sum of the power dissipated during the rise time and the power dissipated during the remainder of the pulse.

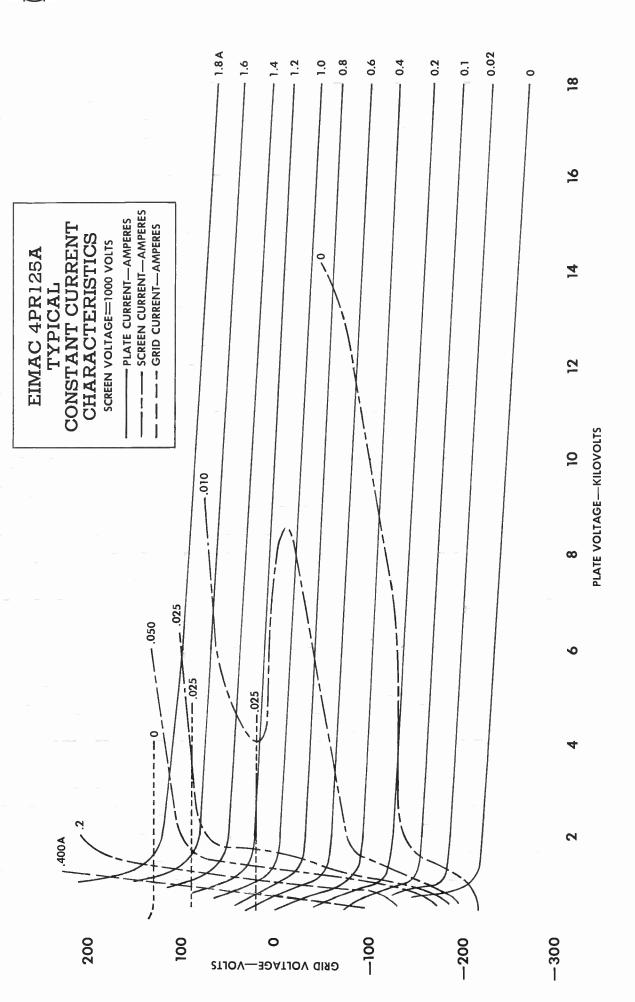
**Special Applications—** If it is desired to operate this tube under conditions widely different from those given here write to Power Grid Tube Marketing, Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California, for information and recommendations.




|      | DIMENSIONS IN INCHES |            |          |  |  |  |  |  |  |
|------|----------------------|------------|----------|--|--|--|--|--|--|
|      | DIMENSIONAL DATA     |            |          |  |  |  |  |  |  |
| REF. | MIN.                 | MAX.       | NOM.     |  |  |  |  |  |  |
| Α    | 5-3/16               | 5-11/16    | 5-7/16   |  |  |  |  |  |  |
| В    | 4 - 7/16             | 4-15/16    | 4-11/16  |  |  |  |  |  |  |
| С    |                      | 2-5/8 D.   |          |  |  |  |  |  |  |
| D    |                      |            | 3/4      |  |  |  |  |  |  |
| Ε    | 21/64                |            |          |  |  |  |  |  |  |
| F    |                      | 2-13/16 D. |          |  |  |  |  |  |  |
| G    |                      | 2-3/4 D.   |          |  |  |  |  |  |  |
| Н    |                      | 31/32      |          |  |  |  |  |  |  |
| J    |                      |            | 7/16     |  |  |  |  |  |  |
| K    |                      | 1/4        |          |  |  |  |  |  |  |
| L    |                      |            | 7/16     |  |  |  |  |  |  |
| M    | .350 D.              | .365 D.    | .360 D.  |  |  |  |  |  |  |
| N    |                      |            | 1/4 D.   |  |  |  |  |  |  |
| Р    |                      |            | I 5/8 D. |  |  |  |  |  |  |
| Q    |                      |            | 1/2 D.   |  |  |  |  |  |  |
| R    |                      |            | 5/16 D.  |  |  |  |  |  |  |
| S    | .185 D.              | .191 D.    | .188 D.  |  |  |  |  |  |  |
| T    |                      |            | I/4 D.   |  |  |  |  |  |  |
| U_   |                      |            | 45°      |  |  |  |  |  |  |
| V    |                      |            | 30°      |  |  |  |  |  |  |
| W    |                      |            | 30°      |  |  |  |  |  |  |
| X    |                      |            | 60°      |  |  |  |  |  |  |




BOTTOM VIEW





GRID VOLTAGE-VOLTS

- 4PR125A Eimac -





E I M A C
Division of Varian
S A N C A R L O S
C A L I F O R N I A

8248 4PR250C

RADIAL-BEAM PULSE TETRODE

The EIMAC 8248/4PR250C is a pulse tetrode intended for use in pulse-modulator, switch tube, pulsed-amplifier, and pulsed-oscillator service. This compact, high vacuum, radial-beam tetrode, incorporating a tantalum plate and non-emitting grids, is recommended for use in new equipments where voltages to 50 kilovolts are required.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope. Cooling can be simplified by the use of the EIMAC SK-410 Air-System Socket.

#### GENERAL CHARACTERISTICS 1

#### **ELECTRICAL**

| Filament: Thoriated Tungsten                                       |  |
|--------------------------------------------------------------------|--|
| Voltage 5.0 ± 0.25 V                                               |  |
| Current, at 5.0 volts 14 A                                         |  |
| Amplification Factor (Average):                                    |  |
| Grid to Screen                                                     |  |
| Direct Interelectrode Capacitances (grounded cathode) <sup>2</sup> |  |
|                                                                    |  |

| Sideria de Capacitandos (Sideriada Catacida) |             |  |
|----------------------------------------------|-------------|--|
| Input                                        | <br>13.0 pF |  |
| Output                                       | <br>3.3 pF  |  |
| Feedback                                     | <br>0.10 pF |  |

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. In Shielded Fixture.

#### MECHANICAL

| Maximum Overall Dimensions:                  |
|----------------------------------------------|
| Length 7.63 in; 191.8 mm                     |
| Diameter 3.60 in; 91.3 mm                    |
| Net Weight 12.5 oz; 355 gm                   |
| Operating Position Vertical, base down or up |
| Maximum Operating Temperature:               |
| Plate and Base Seals 200 °C                  |
| Cooling Radiation and forced-air             |
| Base 5-pin metal shell                       |
| Recommended Socket EIMAC SK-410              |
| Recommended Heat-Dissipating Connector:      |
| Plate EIMAC HR-8                             |



#### PULSE MODULATOR SERVICE

| Maximum rati | MG2: |  |
|--------------|------|--|
|--------------|------|--|

| DC PLATE VOLTAGE 50      | KILOVOLTS |
|--------------------------|-----------|
| DC SCREEN VOLTAGE 2.0    | KILOVOLTS |
| DC GRID VOLTAGE1.0       |           |
| PEAK PLATE CURRENT 1 4.0 |           |
| PLATE DISSIPATION 2 250  |           |
| SCREEN DISSIPATION 2 25  | WATTS     |
| GRID DISSIPATION 2 5     | WATTS     |

- In switch tube applications with capacitive loads, plate current may be increased to 6.0 amperes.
- 2. Average value.

#### TYPICAL OPERATION

| Plate Voltage               | 30   | 40   | 50   | kVdc |
|-----------------------------|------|------|------|------|
| Screen Voltage              | 1.5  | 1.5  | 1.5  | kVdc |
| Grid Voltage                | -600 | -650 | -700 | Vdc  |
| Pulse Plate Voltage         | 28   | 38   | 48   | kv   |
| Peak Pulse Current          | 4.0  | 4.0  | 4.0  | а    |
| Pulse Screen Current        | 0.5  | 0.5  | 0.5  | а    |
| Pulse Grid Current          | 0.03 | 0.03 | 0.03 | а    |
| Pulse Input Power           | 120  | 160  | 200  | kw   |
| Pulse Output Power          | 112  | 152  | 192  | kw   |
| Pulse Drive Power           | 25   | 25   | 25   | W    |
| Pulse Positive Grid Voltage | 130  | 130  | 130  | V    |
| Duty                        | 3    | 3    | 3    | %    |
|                             |      |      |      |      |

#### RF POWER AMPLIFIER AND OSCILLATOR

Plate and Screen Pulsed

#### MAXIMUM RATINGS:

| PEAK DC PLATE VOLTAGE |   | 35   | KILOVOLTS |
|-----------------------|---|------|-----------|
| DC SCREEN VOLTAGE     |   | 2.0  | KILOVOLTS |
| DC GRID VOLTAGE       |   | -1.0 | KILOVOLT  |
| PEAK CATHODE CURRENT  | 1 | 5.5  | AMPERES   |
| PLATE DISSIPATION 2   |   | 250  | WATTS     |
| SCREEN DISSIPATION 2  |   |      |           |
| GRID DISSIPATION 2    |   | 5    | WATTS     |

1. The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation section refers to the dc plate current component during the pulse.

# TYPICAL OPERATION Class C, Grounded filament

| Plate Voltage (Pulsed) 25   | 30               | 35   | kv  |
|-----------------------------|------------------|------|-----|
| Screen Voltage (Pulsed) 1.5 | 1.5              | 1.5  | kv  |
| Grid Voltage650             | <del>-</del> 675 | -700 | Vdc |
| Pulse Plate Current 1 940   | 925              | 900  | ma  |
| Pulse Screen Current 30     | 30               | 30   | ma  |
| Pulse Grid Current 6        | 6                | 6    | ma  |
| Peak Grid Voltage 3 780     | 805              | 830  | V   |
| Pulse Driving Power 3 4.7   | 5.0              | 4.5  | W   |
| Pulse Input Power 23.5      | 27.7             | 31.5 | kw  |
| Pulse Output Power 19.0     | 23.0             | 26.5 | kW  |
| Duty 5.5                    | 5                | 5    | %   |
|                             |                  |      |     |

- 2. Average value.
- When used as a rf plate and screen-pulsed amplifier, the grid drive must also be pulsed to avoid overheating this element during the interpulse period.

#### RF POWER AMPLIFIER AND OSCILLATOR

Grid Pulsed

#### MAXIMUM RATINGS:

| DC PLATE VOLTAGE 25        | KILOVOLTS |
|----------------------------|-----------|
| DC SCREEN VOLTAGE 2.0      | KILOVOLTS |
| DC GRID VOLTAGE1.0         |           |
| PEAK CATHODE CURRENT 1 5.5 |           |
| PLATE DISSIPATION 2 250    |           |
| SCREEN DISSIPATION 2 25    | WATTS     |
| GRID DISSIPATION 2         | WATTS     |

1. The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation section refers to the dc plate current component during the pulse.

#### TYPICAL OPERATION

| Dieta Valtara                    | 20   | 25   | kVdc |
|----------------------------------|------|------|------|
| Plate Voltage                    | 20   |      |      |
| Screen Voltage                   | 1.5  | 1.5  | kVdc |
| Grid Voltage                     | -600 | -650 | Vdc  |
| Peak Grid Voltage (Pulsed)       | 730  | 780  | V    |
| Pulse Plate Current <sup>1</sup> | 940  | 940  | ma   |
| Pulse Screen Current             | 30   | 30   | ma   |
| Pulse Grid Current               | 6    | 6    | ma   |
| Pulse Driving Power              | 4.4  | 4.7  | w    |
| Pulse Input Power                | 18.8 | 23.5 | kw   |
| Pulse Output Power               | 15.0 | 19.0 | k w  |
| Duty                             |      | 5.5  | %    |

- 2. Average Value.
- When used as a rf plate and screen-pulsed amplifier, the grid drive must also be pulsed to avoid overheating this element during the interpulse period.

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves. Adjustment of the grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current.



| RANGE VALUES FOR EQUIPMENT DESIGN                            | Min. | Max.    |
|--------------------------------------------------------------|------|---------|
| Filament: Current at 5.0 volts                               | 13.5 | 14.7 A  |
| Interelectrode Capacitances 1 (grounded filament connection) |      |         |
| Input                                                        | 11.0 | 15.0 pF |
| Output                                                       | 2.5  | 4.0 pF  |
| Feedback                                                     |      | 0.15 pF |
|                                                              |      |         |

1. In shielded fixture.

#### APPLICATION

#### MECHANICAL

MOUNTING - The 4PR250C must be operated vertically base up or down. The SK-410 Air-System Socket may be used to aid in directing air to the metal base shell.

In the event the SK-410 Air-System Socket is not used, the socket must provide clearance for the glass tip-off which extends from the center of the tube. The metal tube-base shell should be grounded by means of suitable spring fingers. The tube must be protected from severe shock and vibration.

COOLING - Adequate forced-air cooling must be provided to maintain base-seal and plate-seal temperatures below 200°C. In all classes of operation it is recommended that a heat-radiating connector, the EIMAC HR-8 or equivalent, be installed on the anode terminal, and that a socket be employed which provides for proper base seal cooling. When the EIMAC 4PR250C is operated at dc or low frequencies in an EIMAC SK-410 Air System Socket, the minimum airflow requirements to maintain seal temperatures at 200°C in 25°C inlet air are approximately 2 to 5 cfm.

When the EIMAC 4PR250C is used as a pulsed-amplifier or oscillator at frequencies above 30 MHz, additional cooling may be required to compensate for the effects of plate and base-seal heating caused by rf charging currents and dielectric losses. Since the amount of seal heating varies with the particular application, it is suggested that the user monitor the seal temperatures to determine the adequacy of the cooling air.

Cooling air should be applied before or simultaneously with the application of filament voltage and may be removed simultaneously with filament voltage. In any questionable situation, the only criterion for adequate cooling is temperature. Tube temperature may be measured

by using a temperature-sensitive paint.

#### ELECTRICAL

FILAMENT VOLTAGE - For maximum tube life the filament voltage, as measured directly at the filament pins, should be 5.0 volts. Variations in filament voltage must be kept within the range of 4.75 to 5.25 volts.

When the 4PR250C is used in pulse applications where high peak currents are demanded, filament voltage must be maintained at the rated value; the normally allowable five-percent variation in this voltage cannot be tolerated if the tube's peak-current capabilities are to be realized.

ELEMENT DISSIPATION - Under normal operating conditions, the average plate dissipation of the 4PR250C should not be allowed to exceed 250 watts. Dissipation in excess of this maximum rating is permissible for short periods of time, such as during tuning procedures.

The average power dissipated by the screengrid and the control-grid must not exceed 25 watts and 5 watts, respectively.

CUT-OFF CHARACTERISTICS - The plate current cut-off characteristics of the 4PR250C are shown in the tollowing graph. These curves indicate the value of negative grid voltage required to maintain a plate-current flow of 50 microamperes or less at the various plate and screen voltages noted. These curves were plotted from a "typical" tube whose electrical characteristic closely approximate the mean value in the tube test specification.

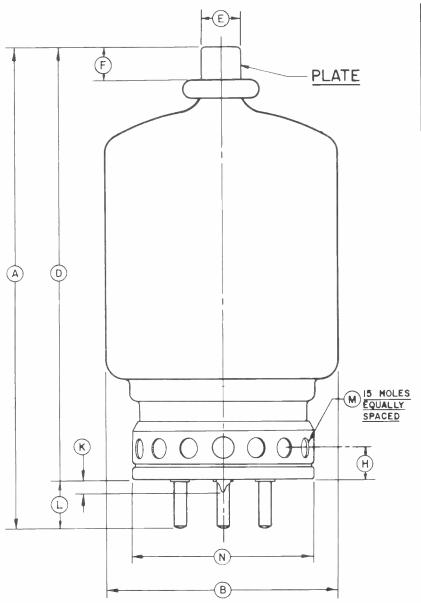
Each 4PR250C is tested to insure proper cutoff characteristics at maximum ratings. This cut-off test is made with a plate voltage of 50kV, a screen voltage of 1.5 kV, with the grid voltage adjusted to maintain a plate current of



10 microamperes. Under these test conditions the negative grid bias must not exceed 675 volts. Due to tube-to-tube variation this cut-off point will vary and the typical range can be expected to be between -500 volts and -650 volts.

PULSE-MODULATOR SERVICE-The data shown in the "Typical Operating" section of Pulse-Modulator Service was calculated assuming a rectangular plate voltage wave-form, ignoring the effects of shunt capacity. In reality, the total shunt capacitance (including the output capacity of the tube, stray capacitance, etc.) affects the output wave form and can have considerable effect on plate dissipation. Since the actual plate wave form is not rectangular, even though the grid pulse is, additional power will be dissipated during the rise time and can, under some circumstances, be much greater than that dissipated during the remainder of the pulse. The total power dissipated is then the sum of the power dissipated during the rise time and the power dissipated during the remainder of the pulse.

As a switch tube with capacitive loading, as in a floating deck modulator, the peak plate current during the pulse may reach 6.0 amperes. This can be tolerated since under capacitive load conditions the plate voltage at the beginning of the pulse is equal to applied dc voltage, with high plate current and low screen grid current. As the load is charged, plate current falls while screen current rises. Protection for the screen must be provided to limit dissipation at the end of the pulse.


X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased, and are therefore potential X-ray hazards. Very little shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly on older tubes with aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. When pulse

transformers are involved, shielding may also be required for these. Periodic checks on the X-ray level should be made, and such tubes must never be operated without shielding in place. Lead glass which attenuates X-rays is available for viewing windows. If there is any doubt as to the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment. Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

Reference: MEDICAL X-RAY PROTECTION UP
TO THREE MILLION VOLTS,
National Bureau of Standards Handbook 76. Available from Superintendent of Documents, Washington, DC
20402. Price: 25 cents.
NCRP REPORT #33-MEDICAL
X-RAY AND GAMMA RAY PROTECTION FOR ENERGIES UP TO
10 MEV. Available from N.C.R.P.
Publications, P.O. Box 4867, Washington, DC 20008. Price: 75 cents.

HIGH VOLTAGE - The 4PR250C operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS-If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

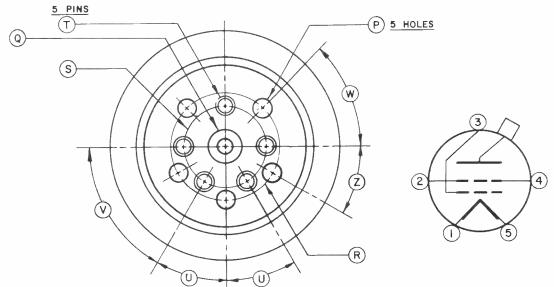


| DIMENSIONAL DATA |         |           |                    |         |  |
|------------------|---------|-----------|--------------------|---------|--|
| DIM.             | INCHES  |           | MILLIMETERS        |         |  |
| DIIVI.           | MIN.    | MAX.      | MIN.               | MAX.    |  |
| Α                | 7.062   | 7.625     | 179.37             | 193.68  |  |
| В                | 3.406   | 3.594     | 86.51              | 91.29   |  |
| D                | 6.313   | 6.813     | 160.35             | 173.05  |  |
| E                | 0.557D  | 0.567D    | 14.15              | 14.40   |  |
| F                | 0.469   | 0.531     | 11.91              | 13.49   |  |
| Н                | 0.375   | 0.500     | 9.53               | 12.70   |  |
| K                | 0.250 ( | NOTE I)   | 6.35 (1            | NOTE I) |  |
| L                | 0.688   | 0.875     | 17.48              | 22.23   |  |
| M                | 0.219D  | 0.28ID    | 5.57 7.14          |         |  |
| N                |         | 2.750     |                    | 69.86   |  |
| Р                | 0.281   | 0.344     | 7.14 8.74          |         |  |
| Q                | 0.469   | 0.531     | 12.60              | 13.49   |  |
| R                | 1.594   | 1.656     | 40.49              | 42.06   |  |
| S                | 0.250 ( | NOTE I)   | 6.35 (1            | NOTE I) |  |
| T                | 0.185D  | 0.1910(1) | 4.70D              | 4.85(1) |  |
| U                | 30° (N  | IOTE I)   | TE I) 30° (NOTE I) |         |  |
| ٧                | 60° (N  | IOTE I)   | 60° (N             | IOTE I) |  |
| W                | 45° (N  | IOTE I)   | 45° (N             | IOTE I) |  |
| Z                | 30° (N  | IOTE I)   | 30° (NOTE I)       |         |  |

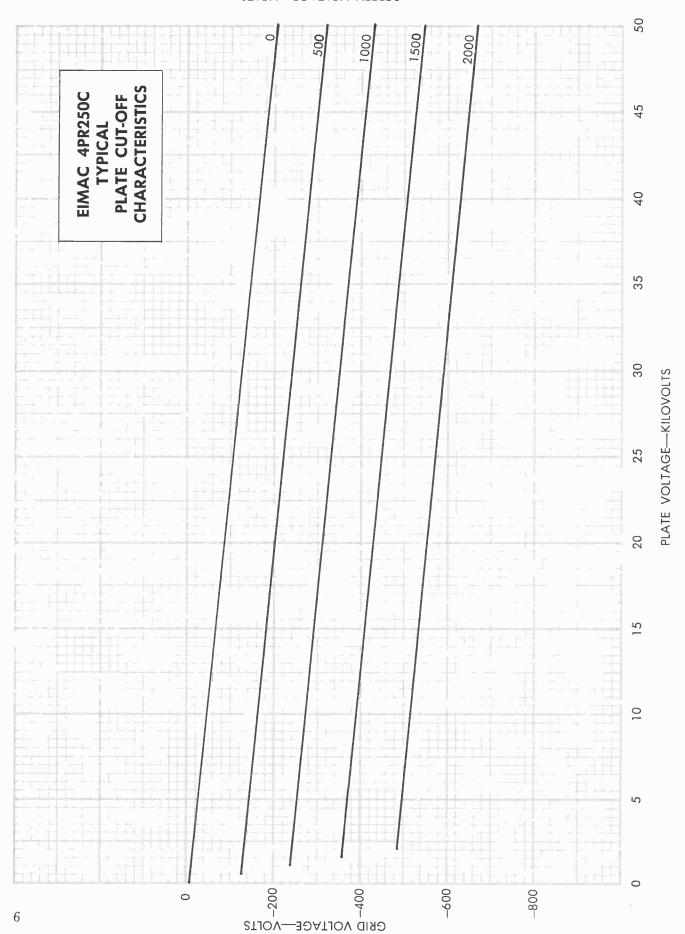
NOTES:
BASE PINS (T) AND TUBULATION

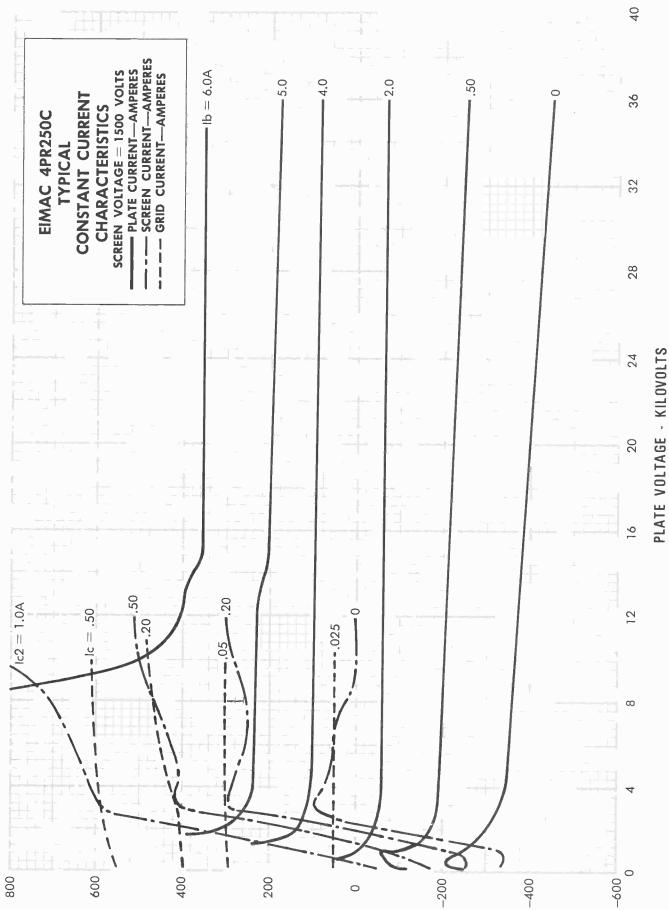
(M) MUST BE ALIGNED SO THAT

THEY CAN BE FREELY INSERTED


IN A GAUGE 1/4" THICK WITH

MOLE DIAMETERS OF 204 8 500


FOR PINS AND TUBULATION


RESPECTIVELY LOCATED ON TRUE

CENTERS DEFINED BY (S) (U) (V).



#### SCREEN VOLTAGE-VOLTS





8



#### EIMAC

A Division of Varian Associates

8188 4PR400A

RADIAL-BEAM
PULSE TETRODE
MODULATOR
OSCILLATOR
AMPLIFIER

The Eimac 8188/4PR400A is a pulse tetrode intended for use in pulse-modulator, pulsed-amplifier, and pulsed-oscillator service. This compact, high vacuum, radial-beam tetrode, incorporating a Pyrovac plate and non-emitting grids, is recommended for use in new equipments where high voltage, high current, or high duty factor is encountered.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope. Cooling can be simplified by the use of the Eimac SK-410 Air-System Socket and the SK-406 Air Chimney.

#### GENERAL CHARACTERISTICS

#### ELECTRICAL

| Filament:   | Thoriated ?  | Cungsten    |          |           |       | Min. | Nom.  | Max. |         |
|-------------|--------------|-------------|----------|-----------|-------|------|-------|------|---------|
|             | Voltage      | -           | -        | ~         | -     | -    | 5.0   |      | volts   |
|             | Current      | -           | _        | -         | _     | 13.5 |       | 14.7 | amperes |
| Amplificat  | ion Factor ( | Grid to Sci | reen)    | -         | _     | _    | 5.1   |      | •       |
| Direct Inte | relectrode   | Capacitance | es, Grou | nded Cath | ode:* |      |       |      |         |
|             | Grid-Plate   | -           | -        | _         | -     | -    | _     | 0.17 | uuf     |
|             | Input        |             | _        | -         |       | 10.7 |       | 14.5 | uuf     |
|             | Output       | 17-1        | _        | -         | _     | 4.2  |       | 5.6  | uuf     |
| Transcond   | uctance (1b  | = 100 ma)   | -        |           | _     | _    | 4,000 |      | umhos   |
| Highest Fr  | requency for | Maximum     | Ratings  | -         | -     | -    | -     | 110  | me      |



#### MECHANICAL

| Base        | -           | -               | -         |           | -   | - | - 1 | - | -     | - 8       | o-pin | metal shell |
|-------------|-------------|-----------------|-----------|-----------|-----|---|-----|---|-------|-----------|-------|-------------|
| Basing      | -           | -               | -         | -         | -   | - | -   | _ | _     | -         | S     | ee drawing  |
| Recommen    | d Socket    | - 1             | -         | -         | _   | - | -   | - | Eimac | SK-410 Ai | r-Sys | tem Socket  |
| Operating 1 | Position    | _               | -         | -         | *** | - | -   | - | -     | Vertical, | base  | down or up  |
| Maximum (   | Operating 7 | <b>Femperat</b> | ures:     |           |     |   |     |   |       |           |       | 1           |
|             | Base Seals  | -               | -         | -         | -   | - | -   | - | -     | -         | _     | 200° C      |
|             | Plate Seal  | -               | -         | -         | -   | _ | -   | - | -     | _         | -     | 225° C      |
| Cooling     | -           | -               | -         | -         | -   | - | -   | - | -     | Radiatio  | n and | forced-air  |
| Recommen    | ded Heat-I  | Dissipatin      | g Plate ( | Connector | r   | - | _   | - | _     | -         | - E   | imac HR-6   |
| Maximum (   | Over-all D  | imensions       | 3         |           |     |   |     |   |       |           |       |             |
|             | Length      | -               | -         | -         | -   | _ | -   | _ | _     | _         | - 6   | 3.38 inches |
|             | Diameter    | -               | -         | - 1       | -   | - | -   | - | _     | -         | - 3   | 3.56 inches |
| Net Weight  |             | )               |           | -         | -   | - | -   | - |       | _         | ian . | 9 ounces    |
| Shipping W  | eight       | -               | -         | -         | -   | - | -   | - | -     | -         | -     | 2.5 pounds  |

<sup>\*</sup>In Shielded Fixture

#### **PULSE MODULATOR SERVICE**

| MAXIMUM RATINGS           |           |           | TYPICAL OPERATION        |      |       |                 |
|---------------------------|-----------|-----------|--------------------------|------|-------|-----------------|
| DC PLATE VOLTAGE          | 20 MAX.   | KILOVOLTS | DC Plate Voltage         | 10   | 15    | 20 kilovolts    |
| DC SCREEN VOLTAGE         | 2.5 MAX.  | KILOVOLTS | DC Screen Voltage        | 1.5  | 1.5   | 1.5 kilovolts   |
| DC GRID VOLTAGE           | -1.0 MAX. | KILOVOLT  | DC Grid Voltage          | -450 | -490  | -525 volts      |
| PEAK PLATE CURRENT        | 4.0 MAX.  | AMPERES   | Pulse Plate Voltage      | 8.25 | 13.25 | 18.25 kilovolts |
| PLATE DISSIPATION (AVG.)  | 400 MAX.  | WATTS     | Peak Pulse Current       | 3.5  | 3.5   | 3.5 amperes     |
| SCREEN DISSIPATION (AVG.) | 35 MAX.   | WATTS     | Pulse Screen Current     | 0.40 | 0.40  | 0.40 ampere     |
| GRID DISSIPATION (AVG.)   | 10 MAX.   | WATTS     | Pulse Grid Current       | 0.06 | 0.06  | 0.06 ampere     |
|                           |           |           | Pulse Pos. Grid Voltage  | 60   | 60    | 60 volts        |
|                           |           |           | Pulse Drive Power        | 31.0 | 33.0  | 35.0 watts      |
|                           |           |           | Pulse Plate Input Power  | 35.0 | 52.5  | 70.0 kilowatts  |
|                           |           |           | Pulse Plate Output Power | 29.0 | 46.5  | 64.0 kilowatts  |
|                           |           |           | Duty                     | 5.5  | 5.5   | 5.5 percent     |

#### RADIO-FREQUENCY PLATE AND SCREEN-PULSED AMPLIFIER AND OSCILLATOR\*

| MAXIMUM RATINGS           |                    |
|---------------------------|--------------------|
| PEAK DC PLATE VOLTAGE     | 15 MAX. KILOVOLTS  |
| DC SCREEN VOLTAGE         | 2.5 MAX. KILOVOLTS |
| DC GRID VOLTAGE           | -1.0 MAX. KILOVOLT |
| PEAK CATHODE CURRENT**    | 5.4 MAX, AMPERES   |
| PLATE DISSIPATION (AVG.)  | 400 MAX. WATTS     |
| SCREEN DISSIPATION (AVG.) | 35 MAX. WATTS      |
| GRID DISSIPATION (AVG.)   | 10 MAX. WATTS      |

\*When used as a rf Plate-and Screen-Pulsed Amplifier, the grid drive must also be pulsed to avoid over-heating this element during the inter-pulse periods.

| TYPICAL OPERATION        |      |      |                |
|--------------------------|------|------|----------------|
| Pulse Plate Voltage      | 10   | 12.5 | 15 kilovolts   |
| Pulse Screen Voltage     | 1.5  | 1.5  | 1.5 kilovolt   |
| DC Grid Voltage          | -725 | -750 | -785 volts     |
| Pulse Plate Current**    | 0.87 | 0.87 | 0.87 ampere    |
| Pulse Screen Current     | 70   | 70   | 70 ma          |
| Pulse Grid Current       | 10   | 10   | 10 ma          |
| Peak RF Grid Voltage     | 845  | 870  | 905 volts      |
| Pulse Drive Power        | 8.5  | 8.7  | 9.0 watts      |
| Pulse Plate Input Power  | 8.7  | 11.0 | 13.0 kilowatts |
| Pulse Plate Output Power | 6.8  | 8.8  | 10.5 kilowatts |
| Duty                     | 20   | 18   | 16 percent     |
|                          |      |      |                |

#### RADIO-FREQUENCY GRID-PULSED AMPLIFIER AND OSCILLATOR

| MAXIMUM RATINGS           |                    |
|---------------------------|--------------------|
| DC PLATE VOLTAGE          | 10 MAX. KILOVOLTS  |
| DC SCREEN VOLTAGE         | 2.5 MAX. KILOVOLTS |
| DC GRID VOLTAGE           | -1.0 MAX. KILOVOLT |
| PEAK CATHODE CURRENT**    | 5.4 MAX. AMPERES   |
| PLATE DISSIPATION (AVG.)  | 400 MAX. WATTS     |
| SCREEN DISSIPATION (AVG.) | 35 MAX. WATTS      |
| GRID DISSIPATION (AVG.)   | 10 MAX, WATTS      |

| TYPICAL OPERATION DC Plate Voltage DC Screen Voltage DC Grid Voltage | 5<br>1.5<br>-680 | 7.5<br>1.5<br>-700 | 10 kilovolts<br>1.5 kilovolts<br>-725 volts |
|----------------------------------------------------------------------|------------------|--------------------|---------------------------------------------|
| Pulse Plate Current**                                                | 0.87             | 0.87               | 0.87 ampere                                 |
| Pulse Screen Current                                                 | 70               | 70                 | 70 ma                                       |
| Pulse Grid Current                                                   | 10               | 10                 | 10 ma                                       |
| Peak RF Grid Voltage                                                 | 800              | 820                | 845 volts                                   |
| Pulse Drive Power                                                    | 8.0              | 8.2                | 8.5 watts                                   |
| Pulse Plate Input Power                                              | 4.3              | 6.5                | 8.7 kilowatts                               |
| Pulse Plate Output Power                                             | 2.7              | 4.7                | 6.6 kilowatts                               |
| Duty                                                                 | 25               | 22                 | 19 percent                                  |

\*\* The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation section refers to the dc plate current component during the pulse.

# **APPLICATION**

#### MECHANICAL

**Mounting**— The 4PR400A must be operated vertically, base up or down. When the SK-410 Air-System Socket is used in conjunction with the SK-406 Air Chimney, the socket must be mounted to the under surface of the chassis to maintain proper air space between the plate seal and the chimney opening, otherwise plate seal cooling will be seriously impaired.

| In the event the SK-410 Air-System Socket is not used, the    |
|---------------------------------------------------------------|
| socket must provide clearance for the glass tip-off which     |
| extends from the center of the tube. The metal tube-base      |
| shell should be grounded by means of suitable spring fingers. |

Cooling— Adequate forced-air cooling must be provided to maintain base-seal and plate-seal temperatures below 200°C and 225°C, respectively. In all classes of operation it is recommended that a heat-radiating connector, the Eimac HR-6 or equivalent, be installed on the anodeterminal, and that a socket and chimney be employed which provides for proper seal cooling. When the Eimac 4PR400A is operated at d-c or low frequencies in an Eimac SK-410 Air System Socket, complete with SK-406 Air Chimney and HR-6 Heat Radiator, the minimum airflow requirements to maintain seal temperatures at 200°C in 50°C inlet air are tabulated:

|                                      | S                 | eo Level                                      | 10,000 Feet       |                                               |  |  |
|--------------------------------------|-------------------|-----------------------------------------------|-------------------|-----------------------------------------------|--|--|
| Ave. Plate<br>Dissipation<br>(watts) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop. (Inches<br>of Woter) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop. (Inches<br>of Water) |  |  |
| 200                                  | 6.5               | 0.045                                         | 9.5               | 0.063                                         |  |  |
| 300                                  | 8.5               | 0.076                                         | 12.5              | 0.110                                         |  |  |
| 400                                  | 10.5              | 0.125                                         | 15.5              | 0.180                                         |  |  |

When the Eimac 4PR400A is used as a pulsed-amplifier or oscillator at frequencies above 30 Mc, additional cooling may be required to compensate for the effects of plate and base-seal heating caused by r-f charging currents and dielectric losses. Since the amount of seal heating varies with the particular application, it is suggested that the user monitor the seal temperatures to determine the adequacy of the cooling air.

Cooling air should be applied before or simultaneously with the application of filament voltage and may be removed simultaneously with filament voltage. In any questionable situation, the only criterion for adequate cooling is temperature. Tube temperature may be measured conveniently by using a temperature-sensitive paint.

#### ELECTRICAL

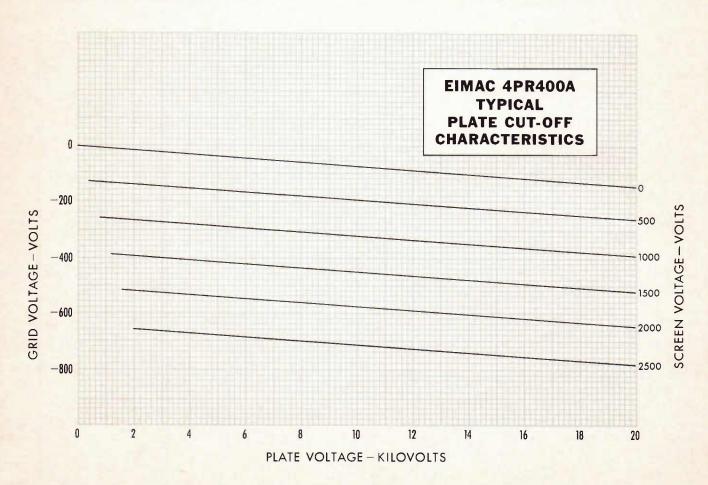
**Filament Voltage**— For maximum tube life the filament voltage, as measured directly at the filament pins, should be 5.0 volts. Variations in filament voltage must be kept within the range of 4.75 to 5.25 volts.



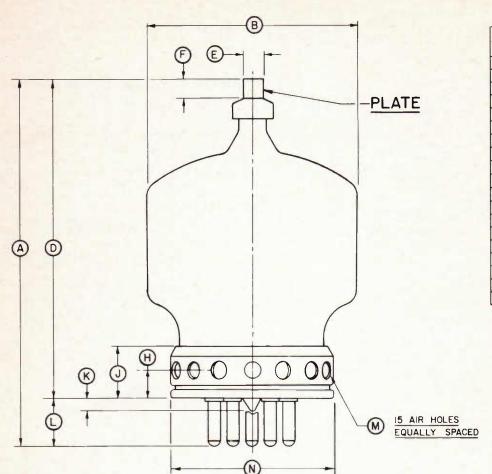
When the 4PR400A is utilized in pulse applications where high peak currents are demanded, filament voltage must be maintained at the rated value; the normally allowable five-percent variation in this voltage cannot be tolerated if the tube's peak-current capabilities are to be realized.

Element Dissipation— Under normal operating conditions, the average plate dissipation of the 4PR400A should not be allowed to exceed 400 watts. Dissipation in excess of this maximum rating is permissable for short periods of time, such as during tuning procedures.

The average power dissipated by the screen-grid and the control-grid must not exceed 35 watts and 10 watts, respectively.


Cut-Off Characteristics— The Plate Current Cut-Off Characteristics of the 4PR400A are shown in the graph below. These curves indicate the value of negative grid voltage required to maintain a plate-current flow of 50 microamperes or less at the various plate and screen voltages noted. These curves were plotted from a "typical" tube whose electrical characteristics closely approximate the mean value in the tube test specification.

Each 4PR400A is tested to insure proper cut-off characteristics at maximum ratings. This cut-off test is made with a plate voltage of 20 KV, a screen voltage of 1.5 KV, with the grid voltage adjusted to maintain a plate current of 10 microamperes. Under these test conditions the negative grid bias must not exceed 675 volts. Due to tube-to-tube variation this cut-off point will vary and the typical range can be expected to be between -500 volts and -650 volts.


Pulse-Modulator Service— The data shown in the "Typical Operating" section of Pulse-Modulator Service was calculated assuming a rectangular plate voltage waveform, ignoring the effects of shunt capacity. In reality, the total shunt capacitance (including the output capacity of the tube, stray capacitance, etc.) affects the output wave form and can have considerable effect on plate dissipation. Since the actual plate wave form is not rectangular, even though the grid pulse is, additional power will be dissipated during the rise time and can, under some circumstances, be much greater than that dissipated during the remainder of the pulse. The total power dissipated is then the sum of the power dissipated during the rise time and the power dissipated during the remainder of the pulse.

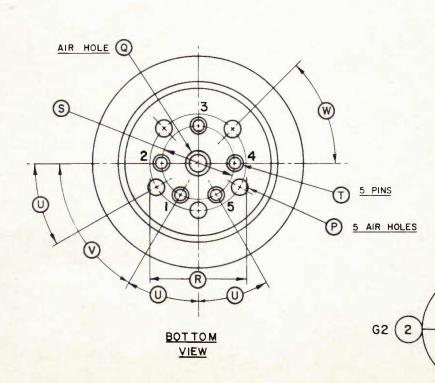
#### Special Applications

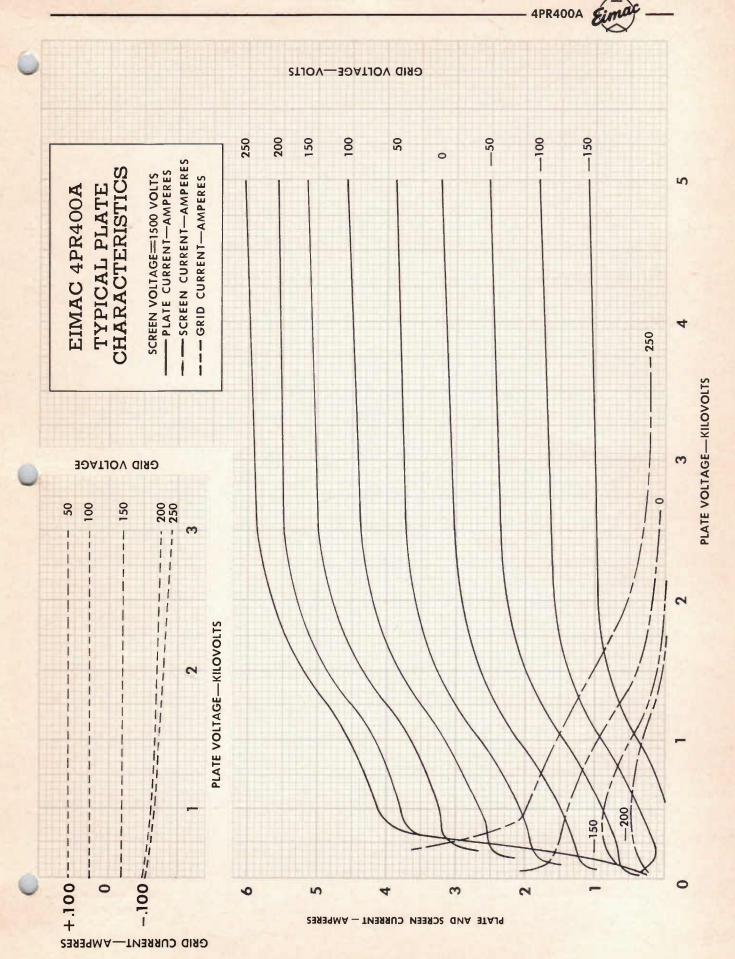
If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, Eimac Division of Varian Associates, 301 Industrial Way, San Carlos, California, for information and recommendations.

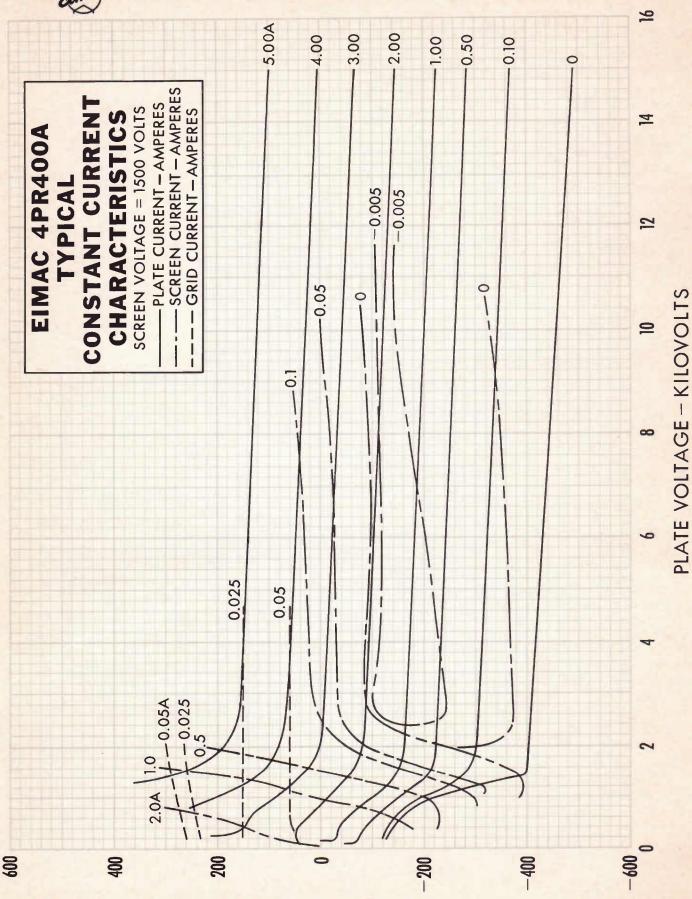







# DIMENSIONS IN INCHES


| DIMENSIONAL DATA |           |           |               |  |  |  |  |  |  |  |
|------------------|-----------|-----------|---------------|--|--|--|--|--|--|--|
| REF.             | MIN.      | MAX.      | NOM.          |  |  |  |  |  |  |  |
| Α                | 5-7/8     | 6-3/8     |               |  |  |  |  |  |  |  |
| В                |           | 3·9/16 D. |               |  |  |  |  |  |  |  |
| D                | 5 - 1/8   | 5-5/8     |               |  |  |  |  |  |  |  |
| E                | .350 DIA. | .365 DIA. |               |  |  |  |  |  |  |  |
| F                | 21/64     |           |               |  |  |  |  |  |  |  |
| Н                |           |           | 7/16          |  |  |  |  |  |  |  |
| J                |           | 31/32     |               |  |  |  |  |  |  |  |
| K                |           | 1/4       |               |  |  |  |  |  |  |  |
| L                |           |           | 3/4           |  |  |  |  |  |  |  |
| М                |           |           | 1/4 D.        |  |  |  |  |  |  |  |
| N                |           | 2-3/4 D.  |               |  |  |  |  |  |  |  |
| Р                |           |           | 5/16 D.       |  |  |  |  |  |  |  |
| Q                |           |           | 1/2 D.        |  |  |  |  |  |  |  |
| R                |           |           | 1-5/8 D.      |  |  |  |  |  |  |  |
| S                |           |           | 1-1/4 D. P.C. |  |  |  |  |  |  |  |
| T                | .185 DIA. | .191 DIA. |               |  |  |  |  |  |  |  |
| U                |           |           | 30°           |  |  |  |  |  |  |  |
| ٧                |           |           | 60°           |  |  |  |  |  |  |  |
| W                |           |           | 45°           |  |  |  |  |  |  |  |


GI (3

4 ) G2

5







GRID VOLTAGE - VOLTS



E I M A C
Division of Varian
S A N C A R L O S
C A L I F O R N I A

8189 4PR1000A RADIAL-BEAM PULSE TETRODE

MODULATOR OSCILLATOR AMPLIFIER

The Eimac 8189/4PR1000A is a pulse tetrode intended for use in pulse-modulator, pulsed-amplifier, and pulsed-oscillator service. This compact, high vacuum, radial-beam tetrode, incorporating a Pyrovac plate and non-emitting grids, is recommended for use in new equipments where high voltage, high current, or high duty factor is encountered.

Cooling of the tube is accomplished by radiation from the plate and by circulation of forced-air through the base and around the envelope. Cooling can be simplified by the use of the Eimac SK-510 Air-System Socket and the SK-506 Air Chimney.

#### **GENERAL CHARACTERISTICS**

| Filament: Thoriated   | lungs            | sten   |       |        |       |      |       |      |   | Min. | Nom.   | Max. |         |
|-----------------------|------------------|--------|-------|--------|-------|------|-------|------|---|------|--------|------|---------|
| Voltage               | -                | -      | -     | -      | -     | -    | -     | -    | - | -    | - 7.5  |      | volts   |
| Current               | -                | -      | -     | -      | -     | -    | -     | -    | - | 20.0 |        | 22.7 | amperes |
| Amplification Factor  | (Gi              | rid to | Scre  | en)    | -     | -    | -     | -    | - | -    | - 6.9  |      |         |
| Direct Interelectrode | Ca               | pacit  | апсез | , Gre  | ounde | ed C | athod | le:† |   |      |        |      |         |
| Grid-Plate            | •                | -      | -     | -      | -     | -    | -     | -    | - | -    |        | 0.35 | uuf     |
| Input                 | -                | -      | -     | -      | -     | -    | -     | -    | - | 23.8 |        | 32.4 | uuf     |
| Output                | -                | -      | -     | -      | -     | -    | -     | -    | - | 6.8  |        | 9.4  | uuf     |
| Transconductance (1   | ь <del>=</del> 3 | 00 m   | a)    | -      | -     | -    | -     | -    | - | -    | 10,000 |      | umhos   |
| Highest Frequency f   | or M             | faxim  | um R  | atings | -     | -    | -     | -    | - | •    |        | 110  | mc      |



#### **MECHANICAL**

| Base -     |          | -       | •      | -      | -    | -     | -     | - | - | - | - | - | - | - | - | • | -    |           | 5-p   | in met | tal sh | ell |
|------------|----------|---------|--------|--------|------|-------|-------|---|---|---|---|---|---|---|---|---|------|-----------|-------|--------|--------|-----|
| Basing     |          | -       | -      | -      | -    | -     | -     | - | - | - | - | - | - | - | - | - | -    |           | _     | See    | drawi  | пg  |
| Recommen   | nd Sock  | cet -   | -      | -      | -    | -     | -     | - | - | - | - |   | - | - | _ | - | Eima | SK-510    | Air-  | System | Sock   | tet |
| Operating  | Positio  | on -    | -      | -      | -    | -     | -     | - | - | - | - |   | - |   |   | _ |      | Vertcial, |       | •      |        |     |
| Maximum    | Operat   | ing Te  | mper   | ature: | s:   |       |       |   |   |   |   |   |   |   |   |   |      | ,         |       |        |        |     |
|            | Base     | Seals   | -      |        | -    | -     | -     | - | - | - | - |   | _ | _ | _ | _ | -    |           | _     | _      | 1509   | °C  |
|            | Plate    | Seal    | -      |        | -    | -     | -     | _ | _ | - | _ |   | - | - | _ |   |      |           | -     | _      | 200°   | °Č  |
| Cooling    |          | -       | -      | -      | -    | -     | -     | - | - |   |   | - | - | - | - | - | -    | Radi      | ation | and to | rced-  | air |
| Recommen   | nded H   | eat-Dis | sipati | ing P  | late | Соппе | ector | - | - | - | - |   | - | - | _ | _ | -    |           | -     | Eima   | c HR   | ₹-8 |
| Maximum    | Over-a   | ll Dime | nsion  | s:     |      |       |       |   |   |   |   |   |   |   |   |   |      |           |       |        |        |     |
|            | Length   | 1 -     | -      | -      | -    | -     | -     | - | - | - | - | - | - | - | - | - | -    |           | -     | 9.63   | inch   | ıes |
|            | Diame    | ter -   | -      | -      | -    | -     | -     | - | - | - | - | - | - | - | - | - | -    |           | -     | 5.25   | inch   | 105 |
| Net Weig   | iht (tuk | e only  | () -   | -      | -    | -     | -     | - | - | - | - | - | - | - | - | - | -    |           |       | 1.5    | poun   | ıds |
| Shipping ' | Weight   | -       | -      | -      | -    | -     | -     | - | • | - | - | - | - | - | - | - | -    |           |       |        | •      |     |
| †In Shie   | elded F  | ixture  |        |        |      |       |       |   |   |   |   |   |   |   |   |   |      |           |       |        |        |     |

#### **PULSE MODULATOR SERVICE**

| MAXIMUM RATINGS          |    |   |                     |
|--------------------------|----|---|---------------------|
| D-C PLATE VOLTAGE -      | -  | - | 30 MAX. KILOVOLTS   |
| D-C SCREEN VOLTAGE -     | -  | - | 2.5 MAX. KILOVOLTS  |
| D-C GRID VOLTAGE -       | -  | - | —1.0 MAX. KILOVOLTS |
| PEAK PLATE CURRENT -     | -  | - | 8.0 MAX. AMPERES    |
| PLATE DISSIPATION (AVE.) | -  | - | 1000 MAX, WATTS     |
| SCREEN DISSIPATION (AVE  | .) | - | 75 MAX. WATTS       |
| GRID DISSIPATION (AVE.)  |    | - | 25 MAX, WATTS       |
|                          |    |   |                     |

| TVDICAL | <b>OPERATION</b> |
|---------|------------------|
| TRICAL  | OPERATION        |

| TYPICAL OPERATION        |   |        |              |                |
|--------------------------|---|--------|--------------|----------------|
| D-C Plate Voltage -      | - | - 20   | 25           | 30 Kilovolts   |
| D-C Screen Voltage -     | - | - 1.5  | 1.5          | 1.5 Kilovolts  |
| D-C Grid Voltage -       | - | 335    | <b>—</b> 360 | —380 Volts     |
| Pulse Plate Voltage -    | - | - 17.7 | 22.7         | 27.7 Kilovolts |
| Peak Plate Current -     | - | - 8.0  | 8.0          | 8.0 Amperes    |
| Pulse Screen Current -   | - | - 1.25 | 1.25         | 1.25 Amperes   |
| Pulse Grid Current -     | - | - 0.2  | 0.2          | 0.2 Ampere     |
| Pulse Pos. Grid Voltage  | - | - 200  | 200          | 200 Volts      |
| Pulse Drive Power -      | - | - 107  | 112          | 116 Watts      |
| Pulse Plate Input Power  | - | - 160  | 200          | 240 Kilowatts  |
| Pulse Plate Output Power | - | - 140  | 180          | 220 Kilowatts  |
| Duty                     | - | - 4.0  | 4.0          | 4.0 Percent    |



#### RADIO-FREQUENCY PLATE AND SCREEN-PULSED AMPLIFIER AND OSCILLATOR\*

| MAXIMUM RATINGS          |       |         |                |
|--------------------------|-------|---------|----------------|
| PEAK D-C PLATE VOLTAGE   | -     | - 20    | MAX. KILOVOLTS |
| D-C SCREEN VOLTAGE -     | -     | - 2.5   | MAX. KILOVOLTS |
| D-C GRID VOLTAGE -       | -     | 1.0     | MAX. KILOVOLTS |
| PEAK CATHODE CURRENT     | (Note | 1) 12.0 | MAX. AMPERES   |
| PLATE DISSIPATION (AVE.) | -     | - 1000  | MAX. WATTS     |
| SCREEN DISSIPATION (AVE  | ≣.)   | - 75    | MAX. WATTS     |
| GRID DISSIPATION (AVE.)  | -     | - 25    | MAX. WATTS     |
|                          |       |         |                |

\*When used as a R-F Plate and Screen-Pulsed Amplifier, the grid drive must also be pulsed to avoid overheating this element during the inter-pulse periods.

| TYPICAL OPERATION         |    |   |                 |             |                |
|---------------------------|----|---|-----------------|-------------|----------------|
| Pulse Plate Voltage -     | -  | - | 10              | 15          | 20 Kilovolts   |
| Pulse Screen Voltage -    | -  | - | 1.5             | 1.5         | 1.5 Kilovolts  |
| D-C Grid Voltage -        | -  |   | <del>4</del> 80 | <b>—510</b> | —535 Volts     |
| Pulse Plate Current (Note | 1) | - | 1.95            | 1.95        | 1.95 Amperes   |
| Pulse Screen Current -    | -  | - | 0.32            | 0.32        | 0.32 Ampere    |
| Pulse Grid Current -      | -  | - | 0.02            | 0.02        | 0.02 Ampere    |
| Peak R-F Grid Voltage     | -  | - | 735             | 760         | 785 Volts      |
| Pulse Drive Power -       | -  | - | 14.7            | 15.2        | 15.7 Watts     |
| Pulse Plate Input Power   | -  | - | 19.5            | 29.3        | 39.0 Kilowatts |
| Pulse Plate Output Power  | -  | - | 17.0            | 23.0        | 31.5 Kilowatts |
| Duty                      | -  | - | 15.0            | 15.0        | 12.0 Percent   |

#### RADIO-FREQUENCY GRID-PULSED AMPLIFIER AND OSCILLATOR

| MAXIMUM RATIN    | GS        |      |         |      |           |
|------------------|-----------|------|---------|------|-----------|
| D-C PLATE VOLTA  | GE -      | -    | - 15    | MAX. | KILOVOLTS |
| D-C SCREEN VOL   | TAGE -    | -    | - 2.5   | MAX. | KILOVOLTS |
| D-C GRID VOLTA   | GE -      | -    | 1.0     | MAX. | KILOVOLTS |
| PEAK CATHODE C   | CURRENT ( | Note | 1) 12.0 | MAX. | AMPERES   |
| PLATE DISSIPATIO | N (AVE.)  | -    | - 1000  | MAX. | WATTS     |
| SCREEN DISSIPAT  | ION (AVE. | )    | - 75    | MAX. | WATTS     |
| GRID DISSIPATIO  | N (AVE.)  | -    | - 25    | MAX. | WATTS     |

| TYPICAL OPERATION           |     |        |                 |                |
|-----------------------------|-----|--------|-----------------|----------------|
| D-C Plate Voltage           |     | - 10   | 12.5            | 15 Kilovolts   |
| D-C Screen Voltage          |     | - 1.5  | 1.5             | 1.5 Kilovolts  |
| D-C Grid Voltage            |     | 480    | <del>4</del> 95 | —510 Volts     |
| Pulse Plate Current (Note 1 | ) . | - 1.95 | 1.95            | 1.95 Amperes   |
| Pulse Screen Current        |     | - 0.32 | 0.32            | 0.32 Ampere    |
| Pulse Grid Current          |     | - 0.02 | 0.02            | 0.02 Ampere    |
| Peak R-F Grid Voltage -     |     | - 735  | 745             | 760 Volts      |
| Pulse Drive Power           |     | - 14.7 | 15.0            | 15.2 Watts     |
| Pulse Plate Input Power -   |     | - 19.5 | 24.4            | 29.3 Kilowatts |
| Pulse Plate Output Power -  |     | - 17.0 | 18.6            | 23.0 Kilowatts |
| Duty                        | -   | - 15.0 | 15.0            | 15.0 Percent   |
|                             |     |        |                 |                |

Note 1: The maximum peak cathode current rating refers to the instantaneous peak cathode current available. This rating is based on an available emission throughout life of 80 milliamperes per watt of filament power. The pulse plate current data shown under the Typical Operation sections refers to the d-c plate current component during the pulse.

#### APPLICATION

#### **MECHANICAL**

**Mounting**—The 4PR1000A must be operated vertically, base up or down. When the SK-510 Air-System Socket is used in conjunction with the SK-506 Air Chimney, the socket must be mounted to the under surface of the chassis to maintain proper air space between the plate seal and the chimney opening, otherwise plate seal cooling will be seriously impaired.

In the event the SK-510 Air-System Socket is not used, the socket must provide clearance for the glass tip-off which extends from the center of the tube. The metal tube-base shell should be grounded by means of suitable spring fingers.

**COOLING**—Adequate forced-air cooling must be provided to maintain base-seal and plate-seal temperatures below 150° C and 200° C, respectively. In all classes of operation it is recommended that a heat-radiating connector, the Eimac HR-8 or equivalent, be installed on the anode terminal, and that a socket and chimney be employed which provides for proper seal cooling. When the Eimac 4PR1000A is operated at d-c or low frequencies in an Eimac SK-510 Air System Socket, complete with SK-506 Air Chimney and HR-8 Heat Radiator, the minimum airflow requirements to maintain seal temperatures at 150° C in 50° C inlet air are tabulated below:

|                                      | :                 | Sea Level                                     | 10,000 Feet       |                                               |  |  |
|--------------------------------------|-------------------|-----------------------------------------------|-------------------|-----------------------------------------------|--|--|
| Ave. Plate<br>Dissipation<br>(watts) | Air Flow<br>(CFM) | Plenum Pressure<br>Drop, (Inches<br>of Water) | Air Flow<br>(CFM) | Ptenum Pressure<br>Drop. (Inches<br>of Water) |  |  |
| 600                                  | 17.0              | 0.30                                          | 24.0              | 0.45                                          |  |  |
| 800                                  | 20.0              | 0.40                                          | 28.0              | 0.56                                          |  |  |
| 1000                                 | 25.0              | 0.55                                          | 36.0              | 0.80                                          |  |  |

When the Eimac 4PR1000A is used as a pulsed-amplifier or oscillator at frequencies above 30 Mc, additional cooling may be required to compensate for the effects of plate and base-seal heating caused by r-f charging currents and dielectric losses. Since the amount of seal heating varies with the particular application, it is suggested that the user monitor the seal temperatures to determine the adequacy of the cooling air.

Cooling air should be applied before or simultaneously with the application of filament voltage and may be removed simultaneously with filament voltage. In any questionable situation, the only criterion for adequate cooling is temperature. Tube temperature may be measured conveniently by using a temperature-sensitive paint.

#### **ELECTRICAL**

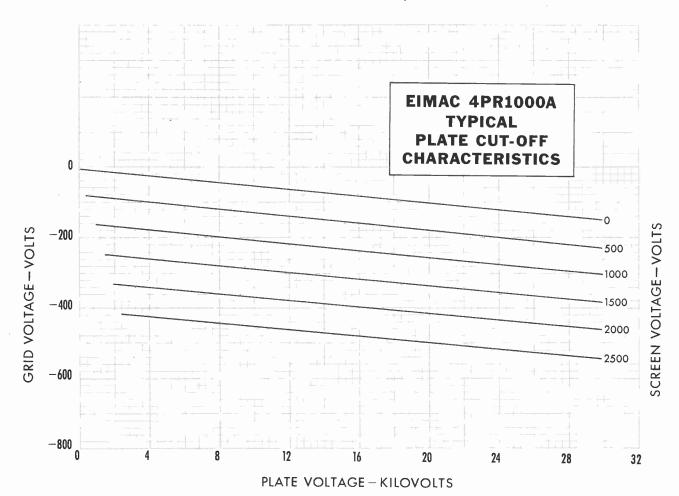
Filament Voltage—For maximum tube life the filament voltage, as measured directly at the filament pins,

should be 7.5 volts. Variations in filament voltage must be kept within the range of 7.13 to 7.87 volts.

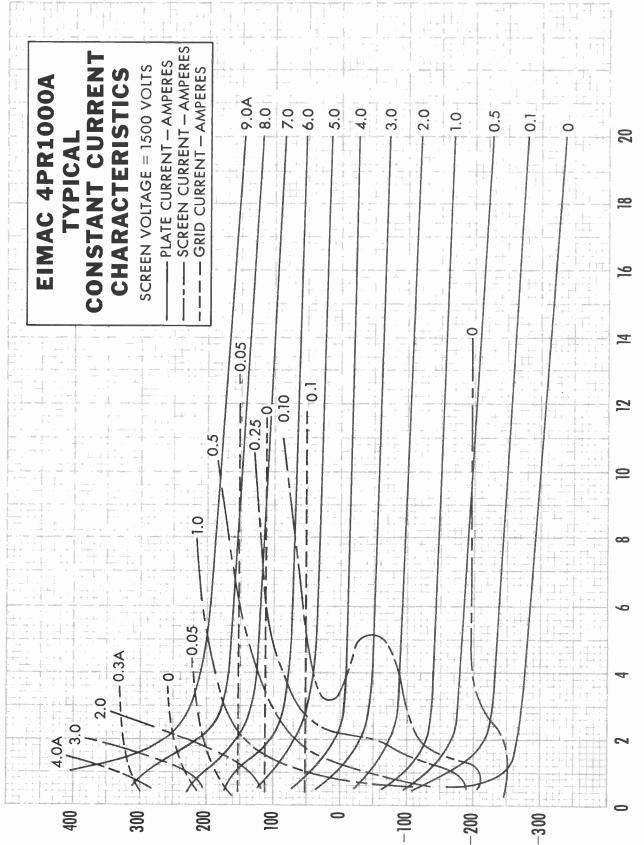
When the 4PR1000A is utilized in pulse applications where high peak currents are demanded, filament voltage must be maintained at the rated value; the normally allowable five-percent variation in this voltage cannot be tolerated if the tube's peak-current capabilities are to be realized.

**Element Dissipation**—Under normal operating conditions, the average plate dissipation of the 4PR1000A should not be allowed to exceed 1000 watts. Dissipation in excess of this maximum rating is permissable for short periods of time, such as during tuning procedures.

The average power dissipated by the screen-grid and the control-grid must not exceed 75 watts and 25 watts, respectively.


**Cut-Off Characteristics**—The Plate Current Cut-Off Characteristics of the 4PR1000A are shown in the graph below. These curves indicate the value of negative grid voltage required to maintain a plate-current flow of 50 microamperes or less at the various plate and screen voltages noted. These curves were plotted from a "typical" tube whose electrical characteristics closely approximate the mean value in the tube test specification.

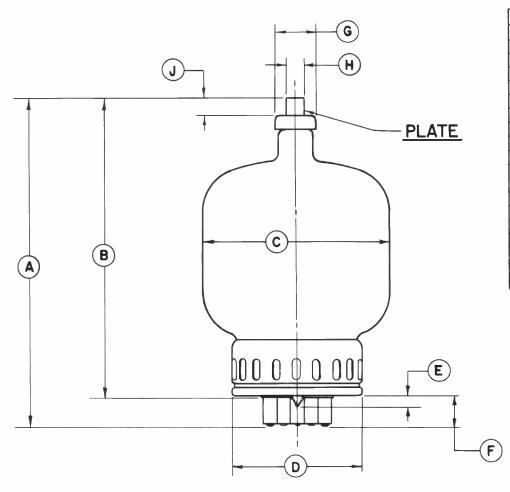
Each 4PR1000A is tested to insure proper cut-off characteristics at maximum ratings. This cut-off test


is made with a plate voltage of 30 KV, a screen voltage of 2.5 KV with the grid voltage adjusted to maintain a plate current of 10 microamperes. Under these test conditions the negative grid bias must not exceed 600 volts. Due to tube-to-tube variation this cut-off point will vary and the typical range can be expected to be between -470 volts and -585 volts.

Pulse-Modulator Service—The data shown in the "Typical Operating" section of Pulse-Modulator Service was calculated assuming a rectangular plate voltage wave-form, ignoring the effects of shunt capacity. In reality, the total shunt capacitance (including the output capacity of the tube, stray capacitance, etc.) affects the output wave form and can have considerable effect on plate dissipation. Since the actual plate waveform is not rectangular, even though the grid pulse is, additional power will be dissipated during the rise time and can, under some circumstances, be much greater than that dissipated during the remainder of the pulse. The total power dissipated is then the sum of the power dissipated during the rise time and the power dissipated during the remainder of the pulse.

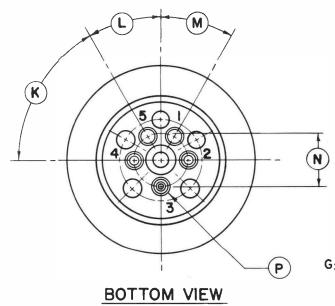
**Special Applications** — If it is desired to operate this tube under conditions widely different from those given here, please write to Power Grid Tube Marketing, Eimac, a division of Varian Associates, 301 Industrial way, San Carlos, California, for information and recommendations.

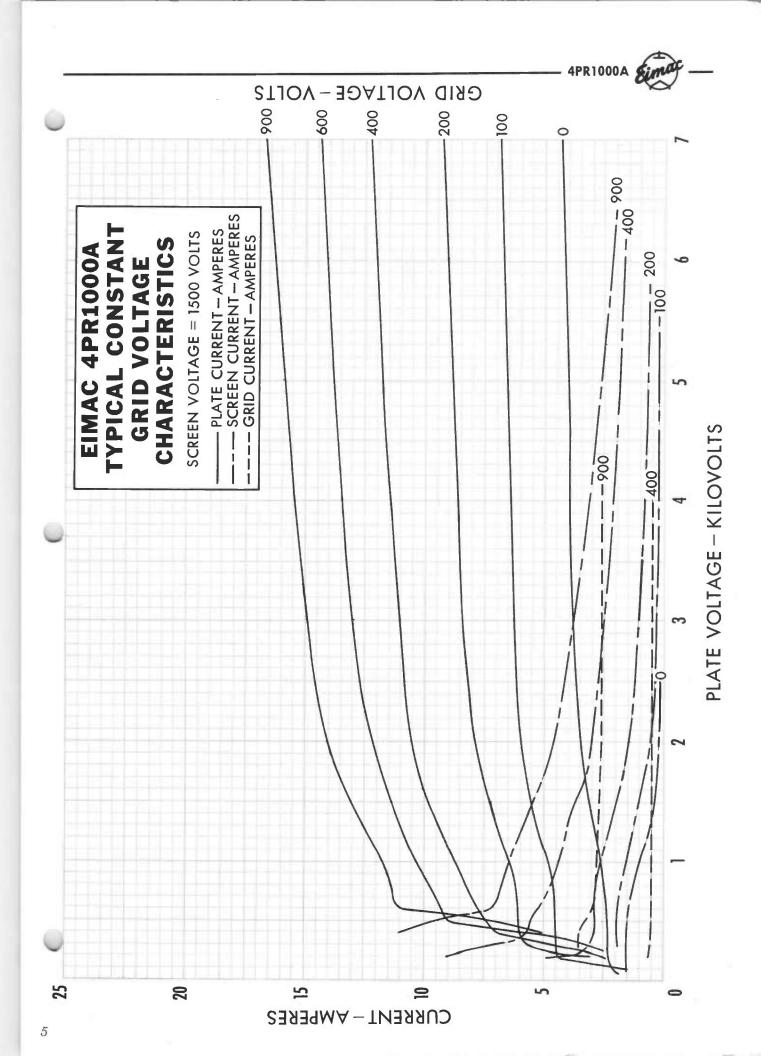



3



GRID VOLTAGE - VOLTS


PLATE VOLTAGE—KILOVOLTS






#### DIMENSIONS IN INCHES

|      | DIMENS | IONAL DA | TA    |
|------|--------|----------|-------|
| REF. | MIN.   | MAX.     | NOM.  |
| A    | 8.875  | 9,625    | 9,250 |
| В    | 8.000  | 8,750    | 8.375 |
| С    |        | 5.250    |       |
| D    |        | 3,625    |       |
| E    |        | .313     |       |
| F.   | .825   | .925     | .875  |
| G    | 1.110  | 1,140    | 1.250 |
| Н    | .559   | .573     | .566  |
| J    | .484   |          |       |
| K    |        |          | 60°   |
| L    |        |          | 30°   |
| М    |        |          | 30°   |
| N    | 1,495  | 1,505    | 1.500 |
| Р    | .371   | .377     | .374  |
|      |        |          |       |
|      |        |          |       |
|      |        |          |       |
|      |        |          |       |







#### EIMAC

A Division of Varian Associates

bulse triode

Modulator

**AMPLIFIER** 

The Eimac 6C21 is a high-vacuum power triode designed for pulse-modulator service at d-c plate voltages up to 30 kilovolts and peak plate currents as high as 15 amperes.

The 6C21 is forced-air and radiation cooled, has a maximum plate-dissipation rating of 300 watts, and, in pulse modulator service, will deliver up to 375 kilowatts to a resistive load with 7.5 kilowatts of driving power.

#### GENERAL CHARACTERISTICS

| GE                      | ITEK         | AL C    | ,ma                 | NAC    | LKI   | 3110 |        |      |                        |        |               |         |
|-------------------------|--------------|---------|---------------------|--------|-------|------|--------|------|------------------------|--------|---------------|---------|
| ELECTRICAL              |              |         |                     |        |       |      |        |      |                        |        | 1 K           |         |
| Filament: Thoriated     | d Tung       | ısten   |                     |        |       |      |        |      |                        |        | 1             | 790     |
| _                       |              |         |                     |        |       |      |        |      | volts                  |        | 60            |         |
| Current                 |              |         |                     |        |       |      | -      | 17.0 | amperes                |        | and and a     |         |
| Amplification Fact      | or (A        | verage  | e )                 | -      | -     | -    | -      | -    | - 30                   |        | H             |         |
| Direct Interelectro     | de Ca        | pacita  | nces                | (Aver  | age)  |      |        |      |                        |        |               |         |
| Grid-Pla                | te -         | -       | -                   | -      | -     | -    | -      | -    | 4.3 $\mu\mu$ f         |        | 100           | 7       |
| Input                   | -            | -       | -                   | -      | -     | -    | -      |      | <b>9.5</b> μμ <b>f</b> |        |               |         |
| Output                  | -            | -       | -                   | -      |       | -    | -      | -    | 0.7 $\mu\mu$ f         |        |               | 5       |
| Transconductance        | $\{\}_{b}=1$ | 00 ma   | ., E <sub>b</sub> : | =2000  | v.)   | -    | -      | 610  | 0 μmhos                |        | 6.0           |         |
| MECHANICAL              |              |         |                     |        |       |      |        |      |                        |        |               |         |
| Base                    | -            | -       | -                   | -      | -     | -    |        | -    |                        | - 5    | 0-watt jumbo  | 4-pin   |
| Connections -<br>Socket | -            | -       | -                   | -      | -     |      | -      | -    |                        |        | - See dr      | awing   |
| Socket                  | -            | -       | -                   | -      | -     | -    | -      | -    |                        |        | I Co. XM-50   |         |
| Mounting Position       | -            | _       | _                   | -      |       |      | -      | -    |                        | Vertic | al, base down | or up   |
| Cooling                 | _            | _       | -                   | -      | -     | -    | -      | -    |                        | Force  | Air and Rad   | liation |
| Maximum Temper          | ature        | of Gri  | id &                | Plate  | Seals | -    | -      | -    |                        |        | - 22          | 25° C.  |
| Recommended He          | at Dis       | sipatir | ıq Pla              | te and | Grid  | Con  | nector | 's   |                        | -      | Eimac         | : HR-8  |
| Maximum Overall         |              |         |                     |        |       |      |        |      |                        |        |               |         |
| Length                  | _            | _       | _                   | _      |       | -    | -      | _    |                        |        | - 12-%        | inches  |
| Diamete                 |              |         |                     |        | _     | -    | -      | -    |                        |        | - 5-1/8       | inches  |
| Net Weight -            | _            | -       | -                   | -      | _     | _    | -      |      |                        |        | - 1.3         | pounds  |
| Shipping Weight         |              |         |                     |        |       |      |        |      |                        |        |               | pounds  |
|                         |              |         |                     |        |       |      |        |      |                        |        |               |         |

### MAXIMUM RATINGS

| Pulse Modulator Service (Per Tube) | 1                    |  |
|------------------------------------|----------------------|--|
| D-C PLATE VOLTAGE                  | - 30 MAX, KILOVOLTS  |  |
| D-C GRID VOLTAGE                   | 2.0 MAX. KILOVOLTS   |  |
| PEAK POSITIVE PLATE VOLTAGE        | - 35 MAX. KILOVOLTS  |  |
| PEAK POSITIVE GRID VOLTAGE         | - I,6 MAX. KILOVOLTS |  |
| PEAK PLATE CURRENT                 | - 15 MAX. AMPERES    |  |
| AVERAGE GRID DISSIPATION           | - 50 MAX. WATTS      |  |
| AVERAGE PLATE DISSIPATON           | - 300 MAX, WATTS     |  |

#### TYPICAL OPERATION

\*Approximate values.

| TIPICAL OFERAL          | IOIT  |   |   |   |   |                |
|-------------------------|-------|---|---|---|---|----------------|
| D-C Plate Voltage -     | -     | - | - | - | - | 28 kilovolts   |
| D-C Grid Voltage -      | -     | - | - | - | - | -1.5 kilovolts |
| Pulse Plate Current     | -     | - | - | - | - | 15 amperes     |
| Pulse Grid Current*     | -     | - | - | - | - | 3.0 amperes    |
| Pulse Positive Grid Vol | ltage | - | - | - | - | 1000 volts     |
| Pulse Grid Driving Pov  | /er*  | - | - | - | - | 7.5 kilowatts  |
| Load: Resistive -       | -     | - | - | - | - | 1650 ohms      |
| Duty                    | -     | - | - | - | - | .002           |
| Pulse Voltage Output    | -     | - | _ | - | - | 25 kilovolts   |
| Pulse Power Input -     | -     | - | - | - | - | 420 kilowatts  |
| Pulse Plate Dissipation | -     | - | - | - | - | 45 kilowatts   |
| Pulse Power Output      | -     | - | - | - | - | 375 kilowatts  |
|                         |       |   |   |   |   |                |

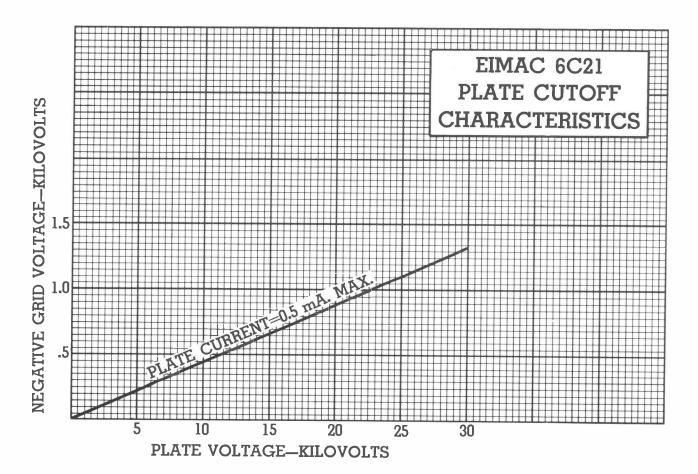


#### **APPLICATION**

Mounting—The 6C21 must be mounted vertically, base down or up. The leads to the plate and grid terminals should be flexible, and the tube must be protected from vibration and shock.

Cooling—Forced-air cooling of the filament stem structure is required. Base cooling requires a minimum air flow of 21/2 cubic feet per minute directed through the tube base toward the filament press. If the hole in the socket is at least I inch in diameter and the manifold is the same diameter, a static pressure of 1/4 inch of water is required at the manifold to provide the 21/2 cubic feet per minute. Heat Dissipating Connectors (Eimac HR-8 or equivalent) must be used at the plate and grid terminals and unobstructed circulation of air around the tube is required in sufficient quantity to prevent the temperatures of grid and plate seals from exceeding 225°C. Forced ventilation of compartments or equipment in which the tube is located is always beneficial, though not necessarily required.

Tube temperatures may be measured with the aid of "Tempilaq", a temperature-sensitive lacquer manufactured by the Tempil Corporation, 132 West 22nd Street, New York II, N. Y. For satisfactory results, Tempilaq must be sprayed on the surface to be measured in a thin coat, covering as small an area as will serve the purpose.


#### **ELECTRICAL**

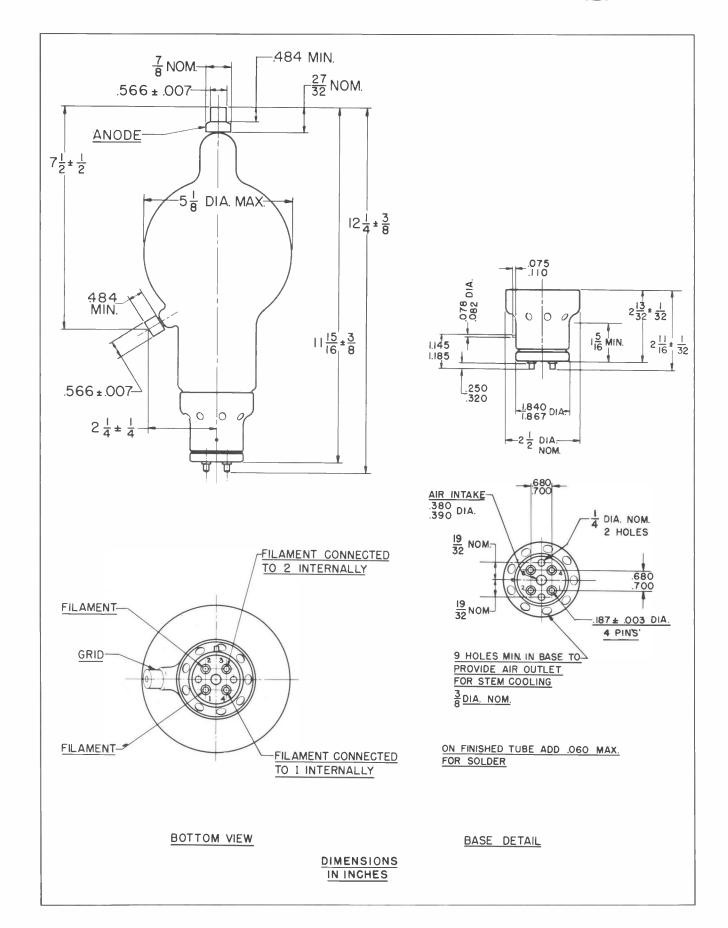

Filament Voltage—For optimum tube life the filament voltage, as measured directly at the base pins, should be the rated value of 8.2 volts. Variations should be kept within the range of 7.9 to 8.5 volts. All four socket terminals should be used, with two placed in parallel for each filament connection.

Plate Dissipation—Under normal operating conditions, the plate dissipation should not be allowed to exceed the maximum rating of 300 watts. Plate dissipation in excess of the maximum rating is permissable for short periods of time, such as during adjustment procedures.

Operation—The 6C21 may be operated with inductive or resistive loads, provided only that the maximum ratings are not exceeded. The ratings listed for pulse modulator service are for operation at peak plate currents of 15 amperes and pulse lengths up to 100 milliseconds. Further information on pulse operation, such as tube limitations under long (100 milliseconds or more) pulse conditions, is contained in "Pulse Service Notes" obtainable from Eimac Division of Varian on request. If it is desired to operate the 6C21 under conditions widely different from those given for pulse modulator service, write Eimac Division of Varian for information and recommendations.

Useful information about pulse circuits may be obtained from such publications as "Pulse Generators," volume 5 of the MIT Radiation Laboratory Series, by McGraw-Hill, 1948.





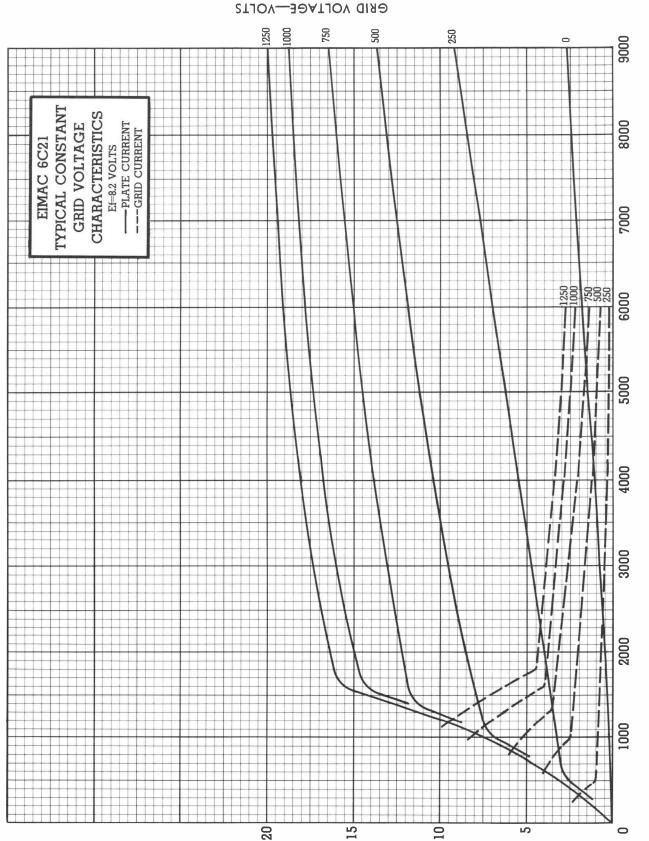



PLATE VOLTAGE—VOLTS





# other products

## EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for-

# A quick guide to EIMAC products and services offered in this catalog.

Including . . .

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

# Important EIMAC extras...

APPLICATION ENGINEERING. The ElMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.



#### TECHNICAL DATA

VS-2 VS-4 VS-6

VACUUM SWITCH

EIMAC VS-2, VS-4 and VS-6 are single pole, double throw, electromagnetically actuated vacuum switches designed for high voltage applications where a compact, fast-acting vacuum switch is required.

The VS-2 and VS-4 are identical electrically and are intended for switching radio-frequency circuits at moderate values of current. These two switches differ only in physical characteristics, the VS-4 being shorter.

The VS-6 is intended for pulse switching applications where high peak currents are encountered. These switches are designed to be used with EIMAC 12 volts and 24 volts direct-current coils.



#### GENERAL CHARACTERISTICS<sup>1</sup>

| ELECTRICAL                              | VS-2   | VS-4   | VS-6         |
|-----------------------------------------|--------|--------|--------------|
| Peak rf hold-off voltage                | 20,000 | 20,000 | 22,000 volts |
| Rf Contact Current (1-15 MHz)           | 7.5    | 7.5    | amperes      |
| $(30 \text{ MH}z) \ldots \ldots \ldots$ | 5.0    | 5.0    | amperes      |
| Pulse Current (see note)                |        |        | 150 amperes  |

(Note) Pulse duration less than 2.5 microseconds, pulse repetition rate less than 400 pps. Pulse train = 0.5 seconds.

#### Maximum Contact Resistance:

| Normally closed contact      | 0.03 | 0.03 | 0.03 ohms    |
|------------------------------|------|------|--------------|
| Normally open contact        | 0.05 | 0.05 | 0.05 ohms    |
| Maximum Contact closing time | 20   | 20   | 20 millisec. |

#### MECHANICAL

| Dimensions           |   | See drawings |
|----------------------|---|--------------|
| Weight (Approximate) | 2 | oz; 56.7 gm  |
|                      |   |              |

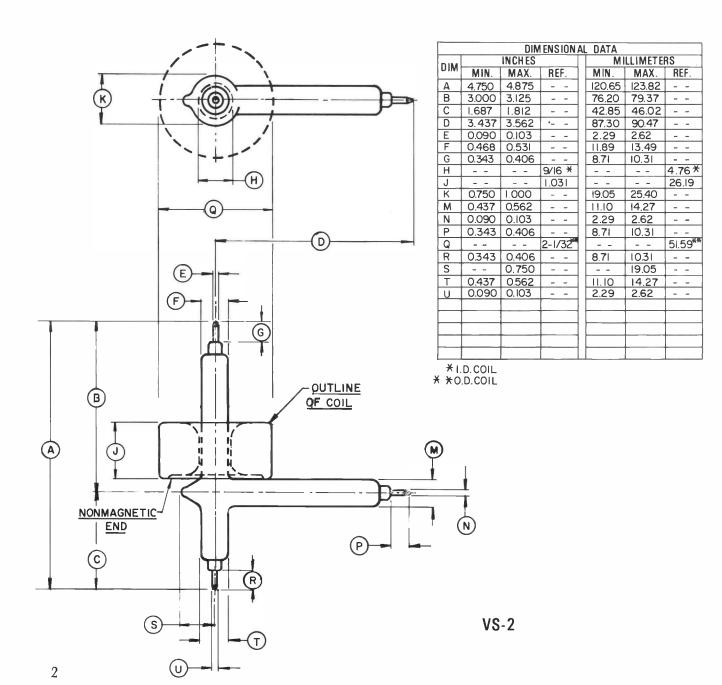
| Coil Data:           | 12 volt coil | 24 volt coil |
|----------------------|--------------|--------------|
| Part Number          |              | 051271       |
| Resistance (nominal) | 30           | 115 ohms     |

Characteristics and operating values are based upon performance tests. These figures may change without notice
as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using
this information for final equipment design.

(Effective 9-1-75) © 1970, 1975 EIMAC division of Varian

Printed in U.S.A.




MOUNTING - The operating coil is mounted in rubber grommets over the glass barrel on the arm containing the iron core. The non-magnetic end of the coil is placed toward the contacts.

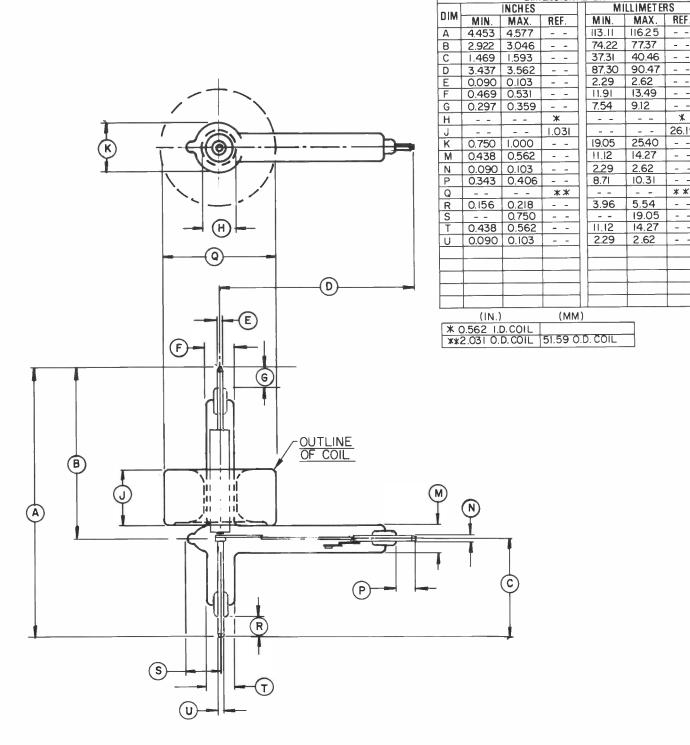
In order to prevent damage from shock and vibration, the switch should be fastened to the equipment with rubber covered metal strips over the glass tubing.

CONTACTS - The normally open contact is housed in the glass barrel containing the iron core: the normally closed contact being directly oposite this core.

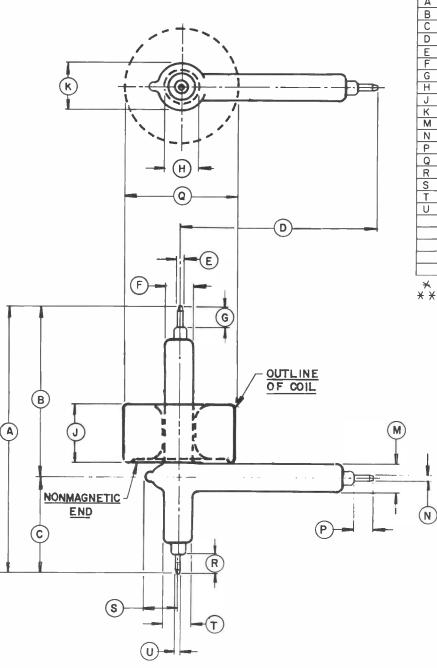
DC RATINGS - While not designed for dc applications, the VS series may be used at reduced ratings in dc service. The following ratings have been established:

Voltage - VS-2 VS-4 VS-6 Voltage - 14,000 14,000 Vdc Current - 4 4 6 Adc




DIMENSIONAL DATA




\*

26.19

\* \*







|     |       |        | 1 ENS | SION              | Αl | DATA        |        |      |     |  |  |  |  |
|-----|-------|--------|-------|-------------------|----|-------------|--------|------|-----|--|--|--|--|
| DIM |       | INCHES |       |                   |    | MILLIMETERS |        |      |     |  |  |  |  |
| UIM | MIN.  | MAX.   | R     | EF.               |    | MIN.        | MAX.   | R    | F.  |  |  |  |  |
| Α   | 4.750 | 4.875  | -     | _                 |    | 120.65      | 123.82 | T -  | _   |  |  |  |  |
| В   | 3,000 | 3.125  | -     | _                 |    | 76.20       | 7937   | _    | _   |  |  |  |  |
| С   | 1.687 | 1.812  | -     | -                 | ]  | 42.85       | 46.02  | -    | -   |  |  |  |  |
| D   | 3.437 | 3.562  | Γ-    | -                 |    | 87.30       | 90.47  | -    | _   |  |  |  |  |
| Ε   | 0.090 | 0.103  | -     | -                 |    | 2.29        | 2.62   | -    | _   |  |  |  |  |
| F   | 0.484 | 0.515  | -     | -                 | П  | 12.29       | 13.08  | -    | -   |  |  |  |  |
| G   | 0.343 | 0.406  | -     | - *               |    | 8.71        | 10.31  | -    | -   |  |  |  |  |
| Н   |       |        | 9/1   | 6 <b>*</b>        |    |             |        | 4.7  | ,6+ |  |  |  |  |
| J   |       |        | 1.0   | 31                |    |             |        | 26   | 19  |  |  |  |  |
| K   | 0.750 | 1.000  | _     | _                 |    | 19.05       | 25.40  | _    | -   |  |  |  |  |
| М   | 0.468 | 0.531  |       | -                 | 1  | 11.89       | 13.49  | _    | -   |  |  |  |  |
| N   | 0.090 | 0.103  | _     | -                 |    | 2.29        | 2.62   | _    | -   |  |  |  |  |
| Ρ   | 0.343 | 0.406  |       | -                 |    | 8.71        | 10.31  | _    | -   |  |  |  |  |
| Q   |       |        | 2-1/  | '32 <sup>×¥</sup> |    |             |        | 51.5 | 9** |  |  |  |  |
| R   | 0.343 | 0.406  |       | -                 |    | 8.71        | 10.31  | _    | -   |  |  |  |  |
| S   |       | 0.750  | _     | -                 |    |             | 19.05  | -    | -   |  |  |  |  |
| T   | 0.468 | 0.531  | -     | -                 | [  | 11.89       | 13.49  | -    | -   |  |  |  |  |
| U   | 0.090 | 0.103  | _     | -                 |    | 2.29        | 2.62   | -    | -   |  |  |  |  |
|     |       |        |       |                   |    |             |        |      |     |  |  |  |  |
|     |       |        |       |                   |    |             |        |      |     |  |  |  |  |
|     |       |        |       |                   |    |             |        |      |     |  |  |  |  |
|     |       |        |       |                   |    |             |        |      |     |  |  |  |  |
| ı   |       |        |       |                   |    |             |        |      |     |  |  |  |  |

★ I.D. COIL

★ ★ O.D. COIL



#### TECHNICAL DATA

CONTACT FINGER STOCK

CF-100 THROUGH CF-900

#### CONTACT FINGER STOCK

EIMAC Preformed Finger Stock is a prepared strip of spring material, slotted and formed into a series of fingers, designed to make a sliding contact.

EIMAC Finger Stock provides excellent circuit continuity between components with adjustable or moving contact surfaces. It is especially suitable for making connections to tubes with coaxial terminals or to moving parts, such as long line and cavity circuits. It is also useful as an electrical "weather stripping" around doors in equipment cabinets and "screen" rooms.

The base material is a non-ferrous spring alloy, heat treated for more positive spring action and silver plated for better rf conductivity.

CF-100, CF-700, and CF-800 incorporate "spooned" fingers to prevent scratching the contact surface (see drawings on reverse side of sheet)

EIMAC Contact Finger Stock is supplied in 36-inch lengths (91 cm).



#### FINGER STOCK CURRENT RATING

|        | MINIM<br>DEFLEC |       | MAXIMUM CURRENT     |                              |      |  |  |  |  |  |  |  |  |
|--------|-----------------|-------|---------------------|------------------------------|------|--|--|--|--|--|--|--|--|
| TYPE   | INCH            | MM    | AMPS. PER<br>FINGER | AMPS. PER CM OF FINGER STOCK |      |  |  |  |  |  |  |  |  |
| CF-100 | .015            | (.38) | 7.8                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |
| CF-200 | .015            | (.38) | 7.8                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |
| CF-300 | .025            | (.63) | 5.7                 | 34.6                         | 13.6 |  |  |  |  |  |  |  |  |
| CF-400 | .025            | (.63) | 5.7                 | 34.6                         | 13.6 |  |  |  |  |  |  |  |  |
| CF-500 | .030            | (.76) | 7.8                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |
| CF-600 | .030            | (.76) | 7.8                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |
| CF-700 | .015            | (.38) | 7.8                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |
| CF-800 | .035            | (.89) | 6.4                 | 38.7                         | 15.3 |  |  |  |  |  |  |  |  |
| CF-900 | .015            | (.38) | 3.9                 | 47.2                         | 18.7 |  |  |  |  |  |  |  |  |

(Revised 6-15-71) © 1962, 1966, 1971 Varian

Printed in U.S.A.

EIMAC Contact Finger Stock is heat treated to a minimum tensile strength of 170,000 pounds per square inch.

No further forming of the material should be attempted. The minimum bending radius of curvature for the material is 0.75 inch. It may be secured by any suitable mechanical means or by soft soldering. If torch-soldering is attempted, extreme care must be exercised to prevent overheating which will anneal the material, resulting in loss of its elastic properties.

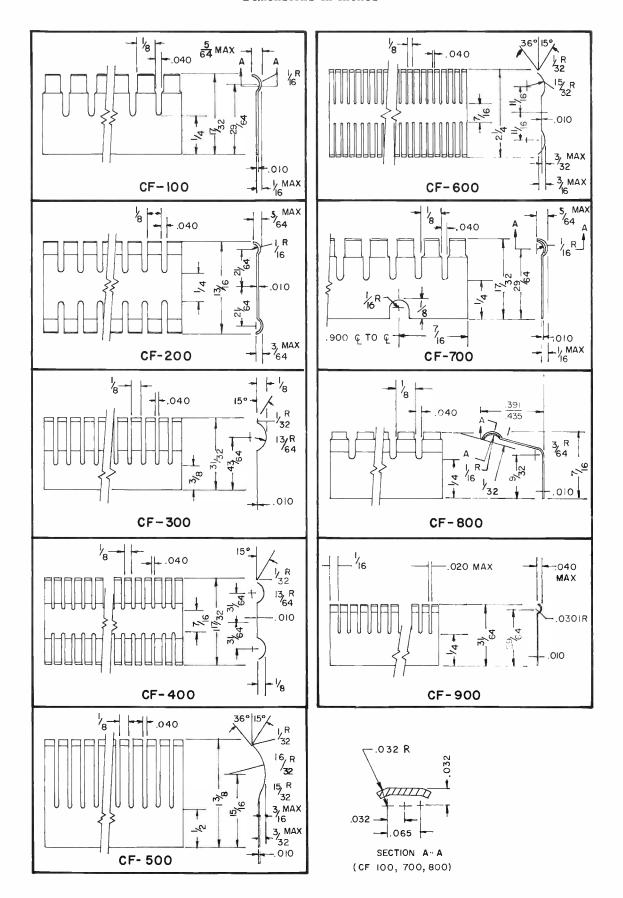
EIMAC Contact Finger Stock is available in the following semi-finished states:

CF-101 through CF-901: Slotted and formed (Not heat treated or plated)

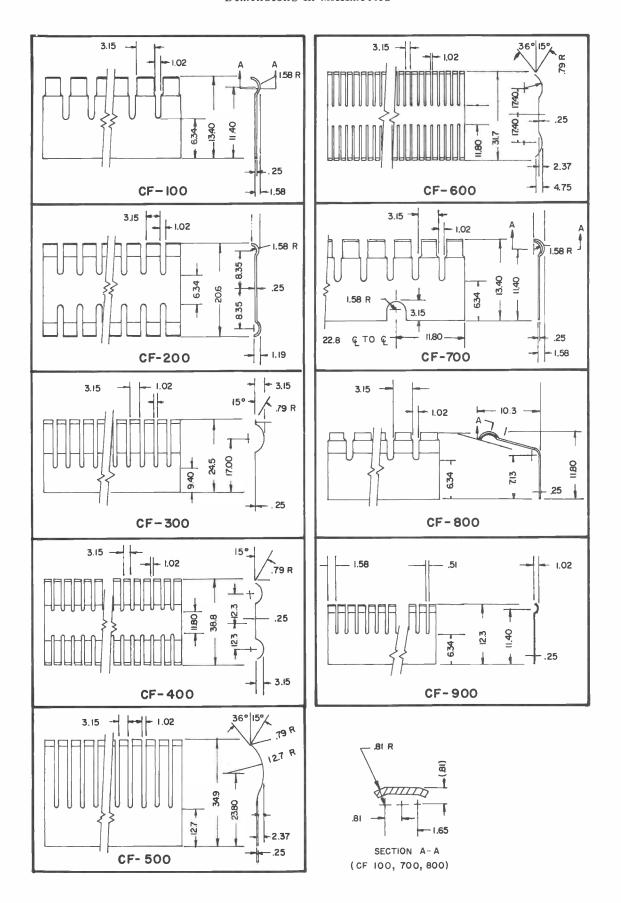
CF-102 through CF-902: Slotted, formed, and heat treated (Not plated)

CF-103 through CF-903: Slotted, formed, and plated (Not heat treated)

Contact Finger Stock which has not been heat treated can be formed to different shapes by the user, after which it may be heat treated.


A suitable heat treating schedule consists of holding the unplated material at  $600^{\circ}\pm5^{\circ}F$  for 2.5 hours in air, after which it must be cleaned and plated. Heat treating the material in a controlled atmosphere such as cracked natural gas, disassociated ammonia, or forming gas will minimize oxidation. Finger stock should be held in a suitable jig or fixture during heat treating to prevent deformation.

The Finger Stock current rating is based on a temperature rise of 50°C at the point of contact with one piece of finger stock making contact with another identical piece. Contact pressure is controlled by assuring that the deflection at the point of contact is at least as great as indicated in the table on page 1.


For long term operation the finger stock temperature should not exceed 150°C (300°F). The material may be heated to 260°C (500°F) for a short period such as required for soft soldering.

Temperature rise is proportional to current squared. It will be affected by the temperature of the surface to which contact is made and by the amount and temperature of cooling air if used.

#### Dimensions in Inches



#### Dimensions in Millimeters

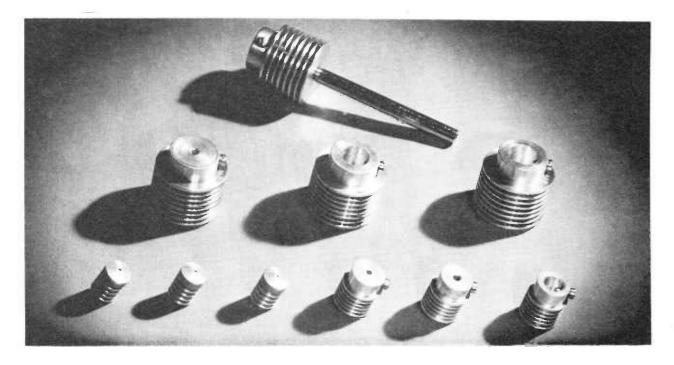


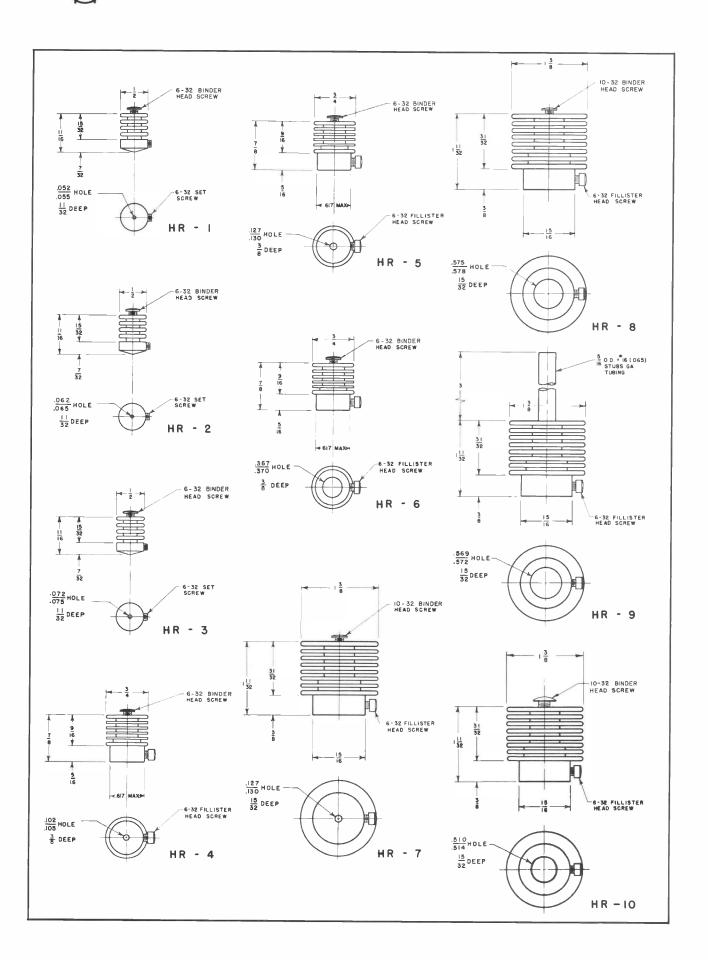


#### EIMAC

A Division of Varian Associates

# HR HEAT DISSIPATING CONNECTORS


Eimac HR Heat-Dissipating Connectors are used to make electrical connections to the plate and grid terminals of Eimac tubes, and, at the same time, provide efficient heat transfer from the tube element and glass seal to the air. The HR connectors aid materially in keeping seal temperatures at safe values. However, it is sometimes necessary to forced-air cool the connector by means of a small fan or blower. In such cases the air flow should be


parallel with the fins of the connector. Designed for use on the larger tubes, the HR-9 Heat-Dissipating Connector is provided with an air duct to conduct the cooling air directly to the glass seal.

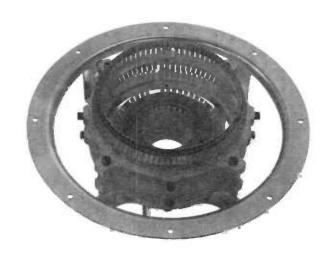
HR Heat-Dissipating Connectors are machined from solid dural rod, and are supplied with the necessary machine screws. The table below lists the proper connectors for use with each Eimac tube type.

| TUBE           | PLATE<br>CONNECTOR | GRID<br>CONNECTOR                       | TUBE            | PLATE<br>CONNECTOR | GRID<br>CONNECTOR |  |  |
|----------------|--------------------|-----------------------------------------|-----------------|--------------------|-------------------|--|--|
| 2-25A          | HR-1               |                                         | 75TH-TL         | HR-3               | HR-2              |  |  |
| 2-50A          | HR-3               | *******                                 | 100R            | HR-8               |                   |  |  |
| 2-150D         | HR-6               |                                         | 100TH-TL        | HR-6               | HR-2              |  |  |
| 2-240A         | HR-6               |                                         | VT127A          | HR-3               | HR-3              |  |  |
| 2-2000A        | H R-8              |                                         | 152TH-TL        | HR-5               | HR-6              |  |  |
| 3C24           | HR-1               | HR-1                                    | 250TH-TL        | HR-6               | HR-3              |  |  |
| 4-65A          | HR-6               |                                         | 250R            | HR-6               |                   |  |  |
| 4-125A         | HR-6               | ************                            | 253             | HR-8               |                   |  |  |
| 4-250A         | HR-6               | *************************************** | 253             | F1K-0              | ** ** ** **       |  |  |
| 4-400 A        | HR-6               | *************************************** | 304TH-TL        | HR-7               | HR-6              |  |  |
| 4-1000A        | HR-8               |                                         | 327A            | HR-4               | HR-3              |  |  |
| 4E27A / 5-125B | HR-5               |                                         | 1               |                    |                   |  |  |
| 4PR60A         | HR-8               |                                         | 450TH-TL        | HR-8               | HR-8*             |  |  |
| 6C21           | H R-8              | H R-8                                   | 592 / 3-200 A 3 | HR-10              | H R-5             |  |  |
| KY21A          | HR-3               |                                         | 750TL           | HR-8               | HR-8              |  |  |
| RX21A          | HR-3               |                                         | 866A            | HR-8               |                   |  |  |
| 25T            | HR-1               |                                         | 872A            | HR-8               |                   |  |  |
| 35T            | HR-3               | 1                                       | 1000T           | HR-9               | HR-9              |  |  |
| 35TG           | HR-3               | HR-3                                    | 1500T           | HR-8               | HR-8              |  |  |
| UH50           | HR-2               | HR-2                                    | 2000T           | HR-8               | HR-8              |  |  |

\*The grid terminal of the 450TH-TL type tube is now .563" in diometer. To accommodate existing equipment designed for the older style 450TH-TL having .098" diameter grid terminals, an adapter pin is provided with the newer tubes. This adapter pin is threaded so that it may be removed from the grid terminal of the tube. The small grid terminal requires an HR-4 connector.










# SK-300A

AIR-SYSTEM SOCKET

The Eimac SK-300A Air-System Socket is recommended for use with those tube types listed at the bottom of the data sheet. The Eimac SK-306, SK-316 and SK-1306 Air Chimneys are available for use with this socket. When this socket is used, connection is made to each of the tube electrodes except the anode, by means of concentric rings of spring-finger contacts. The SK-300A is an improved version of the SK-300 with significantly reduced pressure drop at the air-flow rates used with these tubes. The cooling air horsepower requirements are appreciably lower for these tube types in an SK-300A as compared to the SK-300.



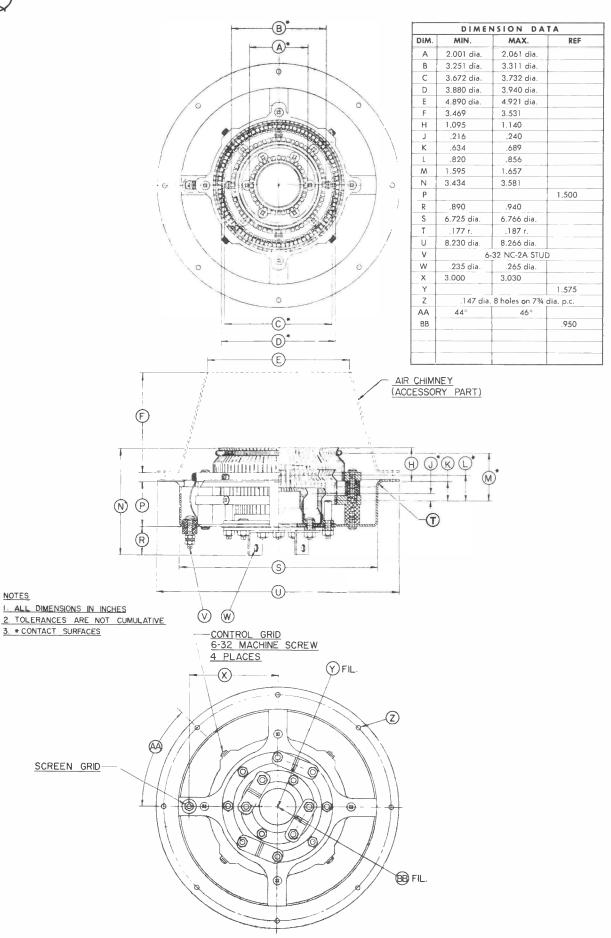
#### BASE CONNECTION

The SK-300A Air-System Socket consists of four concentric rings of spring-finger contacts. The socket is provided with two filament connectors with a ¼" diameter hole in each connector for making connection to the inner and outer filament contacts, one 6-32 terminal is provided for DC connection to the screen-grid. RF connection to the screen-grid may be made directly to the collet. The SK-300A has four 8-32 terminals for connection to the control-grid. The four contact rings are shown on the outline drawing.

#### MAXIMUM WORKING VOLTAGE:

| Screen-Grid . |  | ٠ | • | • | ٠ | ٠ | ٠ | • | • | 4 |  | • |  |  | • |  | • | • | • |  | 3000 | Vd | С |
|---------------|--|---|---|---|---|---|---|---|---|---|--|---|--|--|---|--|---|---|---|--|------|----|---|
| Control-Grid  |  |   |   |   |   |   |   |   |   |   |  |   |  |  |   |  |   |   |   |  | 3000 | Va | C |

#### MATERIALS AND FINISHES


The socket body is made from brass silver-plated. The contact material is a non-ferrous spring alloy, Beryllium-copper, per QQ-C-533, heat treated for spring action and silver-plated, per QQ-S-365, for good RF conductivity. The insulation material is Teflon and Alsimag 665 ceramic.

#### INSTALLATION

The SK-300A Air-System Socket can be mounted on a chassis deck, partition or pressurized compartment. Chassis mounting is accomplished by cutting a 7-3/16" hole in the chassis deck or partition. The socket is then placed in the hole and fastened in place by eight 6-32 machine screws through the eight holes provided for fastening. The SK-300A Air-System Socket is recommended for use with the following tubes:

| 8170/4CX5000A  | 8171/4CX10,000D |
|----------------|-----------------|
| 8170W/4CX5000R | 8281/4CX15,000A |
| 4CW10,000A     |                 |

NOTES







SK-306 SK-316

CHIMNEYS

The SK-306 and SK-316 Air-System Chimneys are intended for use with the tube and socket combinations listed below. They are used to direct cooling air to the tube's anode cooling fins after it has been forced through the companion Air-System Socket.

### MATERIALS

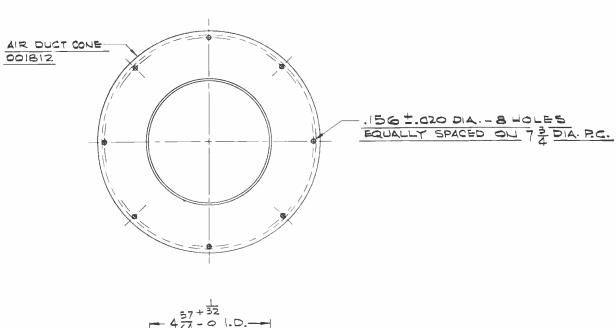
These chimneys are molded from a gray thermosetting polyester premix compound.

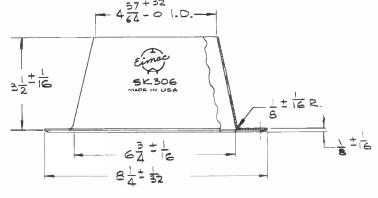
### INSTALLATION

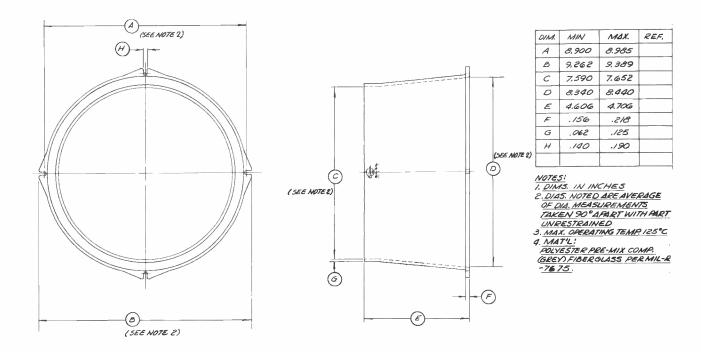
The SK-306 mounts above the chassis or plenum and is secured by the eight mounting screws that secure the SK-300 or SK-300A socket.

The SK-316 mounts above the chassis with four separate mounting screws on 8-15/16" diameter pitch circle.

### CHIMNEY/TUBE/SOCKET COMBINATIONS


| CHIMNEY | TUBE                 | SOCKET  |
|---------|----------------------|---------|
| SK-306  | 4CX5000A<br>4CX5000R | SK-300  |
| SK-316  | 4CX15,000A           | SK-300A |






SK-306 Chimney shown with 4CX5000A and SK-300 socket









## E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

SK-400

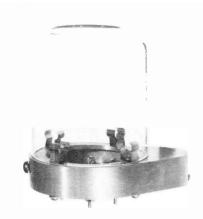
AIR-SYSTEM

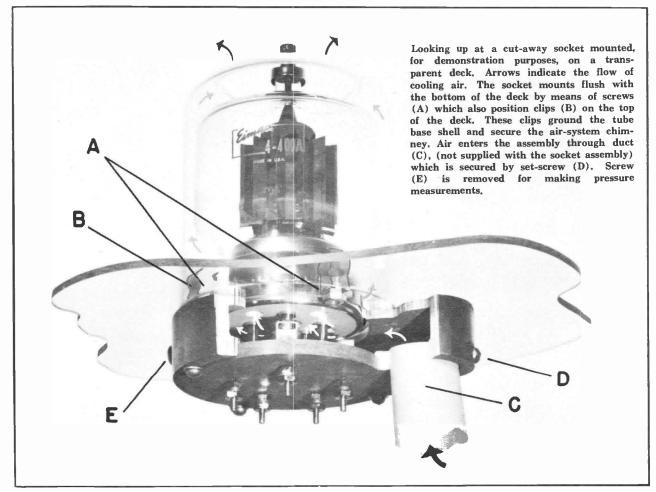
SOCKET

The SK-400 Air-System Socket is the recommended socket for use with the 4-400A tetrode, and it may be used as well with 4-250A, 4-125A and other tubes having the same physical dimensions. The SK-400 provides efficient connection between the tube and its external circuits, acts as a firm mechanical support for the tube, and controls the flow of cooling air around the tube envelope.

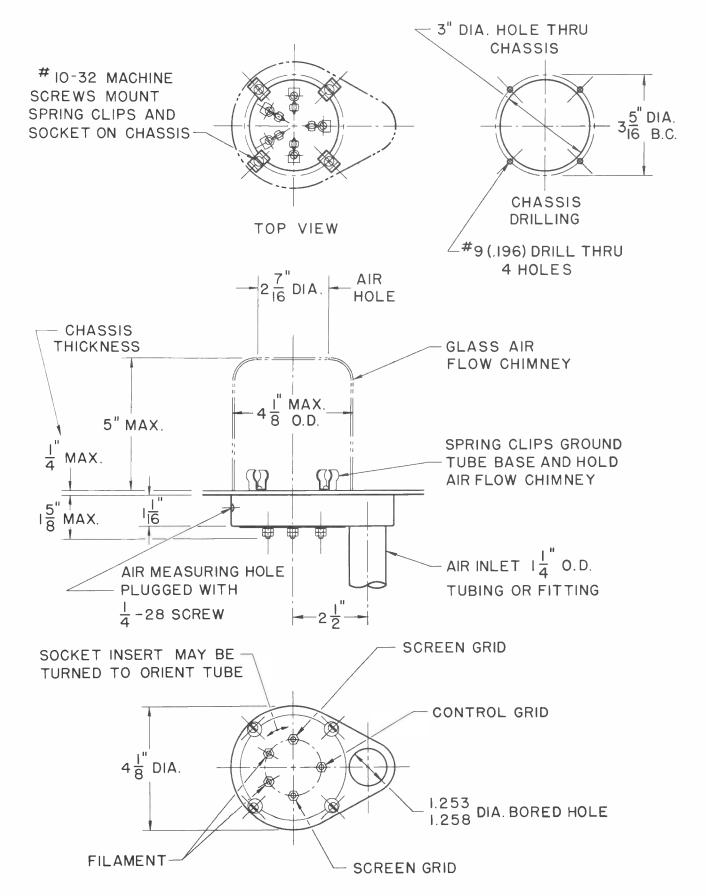
The SK-400 Air-System Socket consists of a cast aluminum body, which supports the electrical insulation for the terminals and acts as an air-duct to guide the air flow into the base of the tube. The air passes through the base of the tube and is guided past the tube envelope and plate seal by the Air-Chimney SK-406.

Most applications of the SK-400 Air-System Socket require the use of the SK-406 Air Chimney to guide the air over the envelope of the tube and past the plate seal. The SK-406 Air Chimney may be omitted only in the few special cases where other provisions for cooling the tube envelope and plate seal are made.


The electrical insulation for the connecting jacks and their terminals is a disk of low-loss insulating material, resting on a shoulder turned into the bottom of the socket body. The insulating disk is held in place by four machine screws which act as clamps. The design permits the insulation and terminal assembly to be rotated to any convenient direction and clamped firmly in place, so that no compromise with wiring requirements will have to be made when the socket is installed.


An air blower must be connected to the socket air-inlet. This can be done by means of a duct terminating in a cylindrical fitting of 11/4 inches O.D., or the chassis may be enclosed and connected to the blower. In either case, the pressure drops and corresponding flow-rates will depend upon the tube type, power level, operating frequency and ambient conditions, and must be obtained from the data sheet for the tube in use.

Socket air pressure can be measured conveniently by a manometer arranged to indicate the pressure difference between the air in the socket and the air in its surroundings. To facilitate and standardize this measurement, a 1/4-28-threaded hole is provided in the wall of the socket opposite the air inlet. A probe or fitting can be screwed into this hole for connection to a manometer; it should be screwed into the socket until its end is flush with the inner wall of the socket base. It should not be permitted to protrude inside the inner wall of the socket.


The SK-400 Air-System Socket is designed for under-chassis mounting and requires a three-inch diameter hole through the chassis deck. The socket is fastened in place by four 10-32 machine screws, running in tapped holes in the cast aluminum socket body. These four screws also hold four small, double clips which serve to hold the SK-406 Air-Chimney in place.

When a tube is inserted in the socket, the five pins on the tube base are engaged by five self-aligning pin jacks in the socket. The connecting leads to the socket must be sufficiently flexible to permit free movement of the pin-jacks, or the self-aligning feature may be impaired.











AIR-SYSTEM SOCKET

The EIMAC SK-410 is an Air-System Socket recommended for use with the tube types listed below, or other types having the same special five-pin base. Three different glass Air-Chimneys are available from EIMAC for use with the SK-410, depending on the tube type to be used.

The SK-410 is especially recommended for pressurized-chassis installations. Cooling air then cools the base, envelope, and plate-seal areas of the tube, when directed by the proper Air Chimney.

Contact terminals are provided for all five of the tube base connections, with the anode connection made separately at the top of the tube.

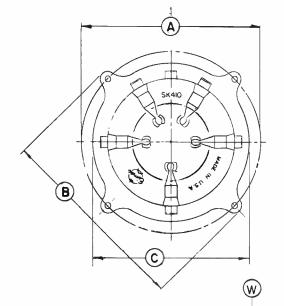
The SK-410 and its contact assemblies are humidity and saltspray resistant.





### BASE CONNECTIONS, MATERIALS, AND FINISHES

The socket shell or body is of a molded plastic with excellent insulation characteristics to match the tube types for which this unit was designed. The base contact terminals are made of beryllium-copper and are silver plated. A set of four clips are provided, for locating and holding the recommended Air Chimney. These clips are also made of beryllium-copper and are cadmium plated. Additional clips, of the same type, are required to ground the metal base shell of some tube types; see INSTALL ATION notes, below.


### INSTALLATION

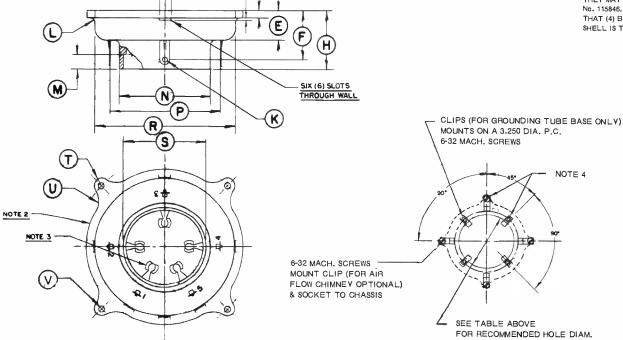
The SK-410 Air-System Socket can be mounted on a chassis deck, partition, or pressurized compartment. Mounting is accomplished by cutting a proper size hole in the mounting surface, placing the socket below the hole, and fastening it into place with four 6-32 maching screws (not supplied), through the four mounting holes in the "ears" of the socket body. The proper chassis hole size required is dependent on the tube type to be used, and is indicated with the tabulation of tubes and recommended Air-Chimneys shown below. The socket has a 2.4 inch 0.D. round neck extending 3/4 inch below the main socket body to provide a means for connecting a standard air duct to the base. Four metal clips are provided for retention and positioning of the Air Chimney. Tube types with a metal base shell will require four additional clips (not supplied) to ground the base shell. The EIMAC Part Number for this clip is 115846.

The following listing shows the EIMAC tube types which may be used with the SK-410, and the recommended Air Chimney. The proper mounting hole size is indicated, and the need for the additional clips for grounding of the tube base shell is shown.

(Revised 12-1-73) 1962, 1973 by Varian

| TUBE TYPE*     | AIR CHIMNEY    | TUBE TYPE†                   | AIR CHIMNEY              |
|----------------|----------------|------------------------------|--------------------------|
| 4-125A / 4D21  | None Available | 6155                         | None Available           |
| 4D21A          | None Available | 3-400Z / 8163                | SK-416                   |
| 4PR125A / 8247 | None Available | 3-500Z                       | SK-406                   |
| 4-250A / 5D22  | SK-406         | 6156                         | SK-406                   |
| 4-400A / 8438  | SK-406         | 4-400B / 7627                | SK-406                   |
| 4-400C / 6775  | SK-406         |                              |                          |
| 4PR400A/8188   | SK-406         | * These types all have a me  | etal base shell. Chassis |
| 4PR250C / 8248 | None Available | mounting hole size should    | be 2-5/8 inch diameter.  |
| 4-500A         | SK-426         | Four extra base clips shou   |                          |
| 5-500A         | SK-426         | grounding if Air Chimney is  | to be used.              |
| 175A           | SK-406         |                              |                          |
| 5867A          | SK-406         | † These types have no base   |                          |
| 6569           | SK-406         | hole size should be 3-5/8    |                          |
| 6580           | SK-406         | tional base clips are requir | ed.                      |




|         |        |        | MENSION | AL DATA     |        |       |  |  |  |  |  |
|---------|--------|--------|---------|-------------|--------|-------|--|--|--|--|--|
| DIM     |        | INCHES |         | MILLIMETERS |        |       |  |  |  |  |  |
| D 11111 | MIN.   | MAX.   | REF.    | MIN.        | MAX.   | REF.  |  |  |  |  |  |
| Α       | 4.593  | 4.656  |         | 116.66      | 118.26 |       |  |  |  |  |  |
| В       | 4.968  | 5.031  | ]       | 126.19      | 127.79 |       |  |  |  |  |  |
| C       | 4.031  | 4.093  |         | 102.39      | 103.96 | ~ -   |  |  |  |  |  |
| D       | 0.156  | 0.218  |         | 3.96        | 5.54   |       |  |  |  |  |  |
| E       | 0.718  | 0.781  |         | 18.24       | 19.84  |       |  |  |  |  |  |
| F       |        |        | 1.250   |             | 31.75  |       |  |  |  |  |  |
| Н       | 1.468  | 1.531  |         | 37.29       | 38.89  |       |  |  |  |  |  |
| J       | 0.281  | 0.343  |         | 7.14        | 8.71   |       |  |  |  |  |  |
| K_      | 0.093  | 0.156  |         | 2.36        | 3.96   |       |  |  |  |  |  |
| L       | 0.093R | 0.156R | ]       | 2.36R       | 3.96R  |       |  |  |  |  |  |
| M       | 0.343  | 0.406  |         | 8.71        | 10.31  |       |  |  |  |  |  |
| N       | 2.343  | 2.406  |         | 59.51       | 61.11  |       |  |  |  |  |  |
| Ρ       |        |        | 2.890   |             | 73.41  |       |  |  |  |  |  |
| R       | 3.593  | 3.656  |         | 91.27       | 82.87  |       |  |  |  |  |  |
| S       | 2.140  | 2.203  |         | 54.36       | 55.96  |       |  |  |  |  |  |
| Т       |        |        | 0.187R  |             |        | 4.75  |  |  |  |  |  |
| Ų       |        |        | 0.500R  |             |        | 12.70 |  |  |  |  |  |
| V       | 0.139  | 0.152  |         | 3.53        | 3.86   |       |  |  |  |  |  |
| W       | 0.031  | 0.093  |         | 0.79        | 2.36   |       |  |  |  |  |  |
|         |        |        |         |             |        |       |  |  |  |  |  |
|         |        |        |         |             |        |       |  |  |  |  |  |
| _       |        |        |         | $\vdash$    |        |       |  |  |  |  |  |
|         |        |        |         | 1 1         | 1      |       |  |  |  |  |  |

### NOTES:

1. REF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

- 2. SOCKET AND SHELL:
- MAT'L: DIALLYL PHTHALATE.
  3. TUBE PIN CONTACT CLIPS, MAT'L: BERYLLIUM COPPER FINISH: SILVER PLATED.
- CHIMNEY/GROUNDING CLIP PART No. 115846 MAT'L: BERYLLIUM COPPER, HEAT TREATED
  - FINISH: CADMIUM PLATED.

    (4) SUPPLIED WITH SOCKET FOR SECURING CHIMNEY, WHEN ADDITIONAL CHIMNEY/GROUNDING CLIPS ARE REQ'D TO GROUND THE METAL SHELL OF SOME TUBE TYPES THEY MAY BE ORDERED AS PART No. 115846, IT IS RECOMMENDED THAT (4) BE USED WHEN THE METAL SHELL IS TO BE GROUNDED.



(D)



### TECHNICAL DATA

SK-406 SK-416 SK-426

AIR-SYSTEM CHIMNEYS

The SK-406, SK-416, and SK-426 Air-System Chimneys are intended for use with those tube and socket combinations listed below. They are used to direct cooling air from the socket across the glass envelope of the tube, past the plate seal and heat-radiating connector.

### MATERIALS

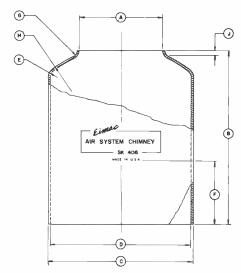
The SK-406, SK-416, and SK-426, Air-System Chimneys are made of sturdy, heat resistant Pyrex glass. The bottom edge is flat for a tight seal against the chassis while the top edge has been fired for smoothness.

### INSTALLATION

These chimneys are designed for installation above the chassis or plenum that holds the companion Air-System Socket. The four spring clips supplied with the SK-400 and SK-410 sockets act as retaining clips for the chimney. After the socket and spring clips are installed, the chimney is pressed down over the spring clips.

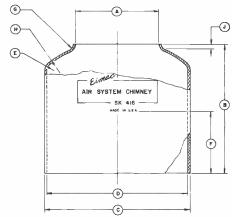


### CHIMNEY/TUBE/SOCKET COMBINATIONS


| CHIMNEY | TUBE                                                                                                   | SOCKET                            |
|---------|--------------------------------------------------------------------------------------------------------|-----------------------------------|
| SK-406  | 3-500Z 4PR400<br>4-250A/5D22 175A<br>4-400A/8438 6156<br>5867A<br>4-400B/7527 6569<br>4-400C/6775 6580 | OA/8188<br>SK-400<br>OR<br>SK-410 |
| SK-416  | 3-400Z/8163                                                                                            |                                   |
| SK-426  | 4-500A<br>5-500A                                                                                       |                                   |

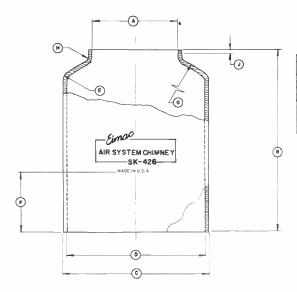
Net Weight ..... SK-406 - 8 ounces SK-416 - 7 ounces SK-426 - 8 ounces

(Revised 12-1-73)


1963, 1965, 1967, 1973 by Varian






|       |       |        | MENSION A |             |        |       |  |  |  |  |  |  |
|-------|-------|--------|-----------|-------------|--------|-------|--|--|--|--|--|--|
| DIM   |       | TNCHES |           | MILLIMETERS |        |       |  |  |  |  |  |  |
| LITTE | MIN.  | MAX.   | REF.      | MIN.        | MAX.   | REF.  |  |  |  |  |  |  |
| Α     | 2.312 | 2438   |           | 58.72       | 61.92  |       |  |  |  |  |  |  |
| В     | 4.813 | 5.000  |           | 122.25      | 127,00 |       |  |  |  |  |  |  |
| С     |       | 4125   |           | ~ ~         | 10477  |       |  |  |  |  |  |  |
| D     | 3.718 | 3 906  |           | 9444        | 99.23  |       |  |  |  |  |  |  |
| Е     |       |        | 0.250     |             |        | 6 35  |  |  |  |  |  |  |
| F     | 1625  | 1875   |           | 4127        | 47.62  |       |  |  |  |  |  |  |
| G     |       | 0 188  |           |             | 477    |       |  |  |  |  |  |  |
| Н     |       |        | 3250      |             |        | 82 55 |  |  |  |  |  |  |
| J     |       | 0.188  |           |             | 477    |       |  |  |  |  |  |  |

SK-406



|         | DIM ENSIONAL DATA |        |       |             |        |       |  |  |  |  |  |  |  |
|---------|-------------------|--------|-------|-------------|--------|-------|--|--|--|--|--|--|--|
| MIC     |                   | INCHES |       | MILLIMETERS |        |       |  |  |  |  |  |  |  |
| ) (III) | MIN.              | MAX.   | REF   | MIN.        | MAX.   | REF.  |  |  |  |  |  |  |  |
| A       | 2.312             | 2.438  |       | 58.72       | 61.92  |       |  |  |  |  |  |  |  |
| B<br>C  | 4000              | 4.188  |       | 101 60      | 106 37 |       |  |  |  |  |  |  |  |
| c       |                   | 4125   |       |             | 10477  |       |  |  |  |  |  |  |  |
| D       | 3718              | 3 906  |       | 9444        | 99.23  |       |  |  |  |  |  |  |  |
| Ε       |                   |        | 0.250 |             |        | 6 35  |  |  |  |  |  |  |  |
| F       | 1.187             | 1.312  |       | 30.15       | 33.32  |       |  |  |  |  |  |  |  |
| G       |                   | 0188   |       |             | 4.77   |       |  |  |  |  |  |  |  |
| Н       |                   |        | 3.250 |             |        | 82.55 |  |  |  |  |  |  |  |
| J       |                   | 0.188  |       |             | 4,77   |       |  |  |  |  |  |  |  |

SK-416



|     | UIMENSIUNAL UATA |        |       |        |           |       |  |  |  |  |  |  |
|-----|------------------|--------|-------|--------|-----------|-------|--|--|--|--|--|--|
| DIM |                  | INCHES |       | MIL    | LIMET ERS |       |  |  |  |  |  |  |
| DIM | MIN.             | MAX.   | REF.  | MIN.   | MAX.      | REF.  |  |  |  |  |  |  |
| A   | 2 312            | 2.438  |       | 58.72  | 61 92     |       |  |  |  |  |  |  |
| В   | 5 063            | 5.250  |       | 128.60 | 133.35    | ~ ~   |  |  |  |  |  |  |
| С   |                  | 4125   |       |        | 10477     |       |  |  |  |  |  |  |
| D   | 3718             | 3.906  |       | 94.44  | 9923      |       |  |  |  |  |  |  |
| E   |                  |        | 0 250 |        |           | 635   |  |  |  |  |  |  |
| F   | 1.625            | 1.875  |       | 41.27  | 4762      |       |  |  |  |  |  |  |
| G   |                  |        | 3 250 |        |           | 82.55 |  |  |  |  |  |  |
| Н   |                  |        | 0 188 | ~ ~    |           | 4,77  |  |  |  |  |  |  |
| J   |                  |        | 0.125 |        |           | 3.17  |  |  |  |  |  |  |
|     |                  |        |       |        |           |       |  |  |  |  |  |  |
|     |                  |        |       |        |           |       |  |  |  |  |  |  |

SK-426



E I M A C
Division of Varian
S A N C A R L O S
C A L I F O R N I A

SK-500

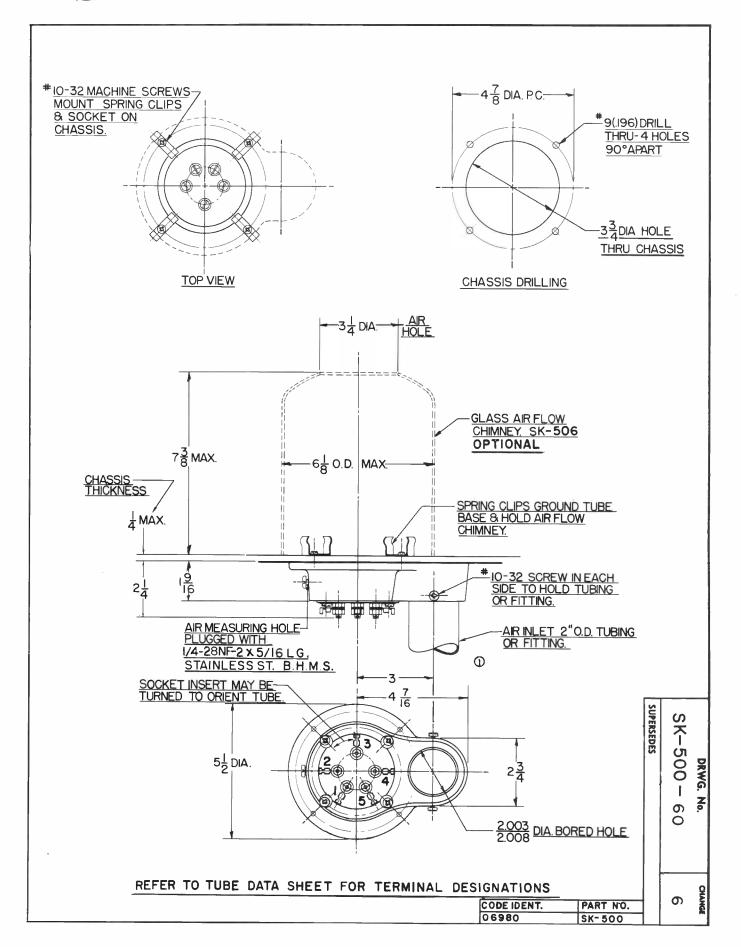
AIR-SYSTEM
SOCKET
AND CHIMNEY

The SK-500 Air-System Socket is the recommended socket for use with the 4-1000A tetrode, and it may be used as well with any other tubes having the same physical dimensions. The SK-500 provides efficient connection between the tube and its external circuits, acts as a firm mechanical support for the tube, and controls the flow of cooling air around the tube envelope.

The SK-500 Air-System Socket consists of a cast aluminum body which supports the electrical insulation for the terminals and acts as an air-duct to guide the air flow into the base of the tube. The air passes through the base of the tube and is guided past the tube envelope and plate seal by the glass Air Chimney, SK-506.

Most applications of the SK-500 Air-System Socket require the use of the SK-506 Air Chimney to guide the air over the envelope of the tube and past the plate seal. The SK-506 Air Chimney may be omitted only in the few special cases where other definite provisions for cooling the tube envelope and plate seal have been made.




The electrical insulation for the connecting jacks and their terminals is a disk of low-loss insulating material, resting on a shoulder turned into the bottom of the socket body. The insulating disk is held in place by four machine screws which act as clamps. The design permits the insulation and terminal assembly to be rotated to any convenient direction and clamped firmly in place, so no compromise with wiring requirements will have to be made when the socket is installed.

An air blower must be connected to the socket air-inlet. This can be done by means of a duct terminating in a cylindrical fitting of two inches O.D., or the chassis may be enclosed and connected to the blower. In either case the pressure drops and corresponding flow-rates will depend upon the tube type, power level, operating frequency and ambient conditions, and must be obtained from the data sheet for the specific tube type being used.

Socket air pressure can be measured conveniently by a manometer arranged to indicate the pressure difference between the air in the socket and the air in its surroundings. To facilitate and standardize this measurement, ¼-28-threaded hole is provided in the wall of the socket body opposite the air inlet. A probe or fitting can be screwed into this hole for connection to a manometer; it should be screwed into the socket until its end is flush with the inner wall of the socket base. It should not be permitted to protrude inside the inner surface of the socket wall.

The SK-500 Air-System Socket is designed for under-chassis mounting and requires a 3-¾-inch diameter hole through the chassis deck. The socket is fastened in place by four No. 10 32 machine screws, running in tapped holes in the cast aluminum body. These four screws also hold four small, double clips, which serve to ground the metal base of the tube and to hold the SK-506 Air Chimney in place.

When a tube is inserted in the socket, the five pins on the tube are engaged by five self-aligning pinjacks in the socket. The connecting leads to the socket must be sufficiently flexible to permit free movement of the pin-jacks, or the self-aligning feature may be impaired.







SK-506 SK-516

AIR-SYSTEM CHIMNEY

The SK-506 and SK-516 Air-System Chimneys are intended for use with those tube and socket combinations listed below. They are used to direct cooling air from the socket across the glass envelope of the tube, past the plate seal and heat radiating connector.

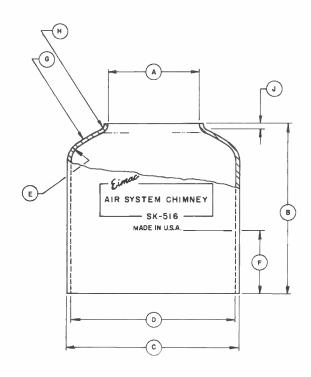
### MATERIALS

The SK-506 and SK-516 Air-System Chimneys are made of heat resistant Pyrex glass. The bottom edge is ground flat for a tight air seal against the chassis while the top edge has been fired for smoothness.



### INSTALLATION

These chimneys are designed for above-chassis installation over the companion Air-System Socket. Four Spring Clips supplied with the SK-500 and SK-510 sockets ground the metal tube base and act as retaining clips for the chimney.


### CHIMNEY/TUBE/SOCKET COMBINATIONS

| CHIMNEY | TUBE                            | SOCKET |  |  |  |
|---------|---------------------------------|--------|--|--|--|
| SK-506  | 4-1000A<br>4PR1000A<br>4PR1000B | SK-500 |  |  |  |
| SK-516  | 3-1000Z                         | SK-510 |  |  |  |

| I | Net Weight |      |  |  |   |  |  |  |  |  |  |  |  |  |  |      |          |   |
|---|------------|------|--|--|---|--|--|--|--|--|--|--|--|--|--|------|----------|---|
|   | SK-506     | <br> |  |  | ٠ |  |  |  |  |  |  |  |  |  |  | 10 o | unces    | S |
|   | SK_516     |      |  |  |   |  |  |  |  |  |  |  |  |  |  | 8 6  | VIIII CO | c |



| DIMENSIONAL DATA |       |       |       |  |  |  |  |  |  |
|------------------|-------|-------|-------|--|--|--|--|--|--|
| REF.             | MIN.  | MAX.  | NOM.  |  |  |  |  |  |  |
| A                | 3.188 | 3.313 |       |  |  |  |  |  |  |
| В                | 7.187 | 7.375 |       |  |  |  |  |  |  |
| C                |       | 6.125 |       |  |  |  |  |  |  |
| D                | 5.625 | 5.875 |       |  |  |  |  |  |  |
| E                |       |       | .750  |  |  |  |  |  |  |
| F                | 2.937 | 3.062 |       |  |  |  |  |  |  |
| G                |       |       | 4,625 |  |  |  |  |  |  |
| н                |       |       | .188  |  |  |  |  |  |  |
| J                |       |       | .188  |  |  |  |  |  |  |
|                  | _     |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |
|                  |       |       |       |  |  |  |  |  |  |



|      | DIMENSI | ONS IN INCH | ES    |
|------|---------|-------------|-------|
|      | DIMENS  | IONAL DA    | TA    |
| REF. | MIN.    | MAX.        | NOM   |
| Α    | 3.188   | 3.313       |       |
| В    | 6,437   | 6.625       |       |
| С    |         | 6.125       |       |
| D    | 5.625   | 5.875       |       |
| Е    |         |             | .750  |
| F    | 2.187   | 2.312       |       |
| G    |         |             | 4.625 |
| Н    |         |             | .188  |
| J    |         |             | .188  |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |
|      |         |             |       |





The EIMAC SK-510 is an Air-System Socket recommended for use with the tube types listed below, or other types having the same special five-pin base. Two different glass Air-Chimneys are available from EIMAC for use with the SK-510, depending on the tube type used.

The SK-510 is especially recommended for pressurized-chassis installations. Cooling air then cools the base, envelope, and plateseal areas of the tube, when directed by the proper Air-Chimney.

Contact terminals are provided for all five of the tube base connections, with the anode connection made separately at the top of the tube.

The SK-510 and its contact assemblies are humidity and salt-spray resistant.



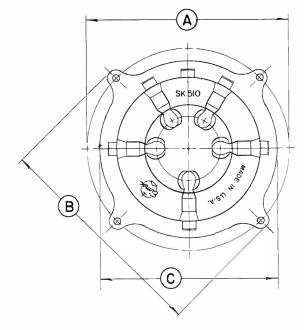
### BASE CONNECTIONS, MATERIALS, AND FINISHES

The socket shell or body is of a molded plastic with excellent insulation characteristics to match the tube types for which this unit was designed. The base contact terminals are made of beryllium-copper and are silver plated. A set of four clips are provided, for locating and holding the recommended Air-Chimney concentric with the tube. These clips are double-ended so they will ground the metal base shell of some tube types which require this. The clips are also made of beryllium copper but are cadmium plated.

NET WEIGHT (Approximate) ..... 6.5 oz; 184 gms

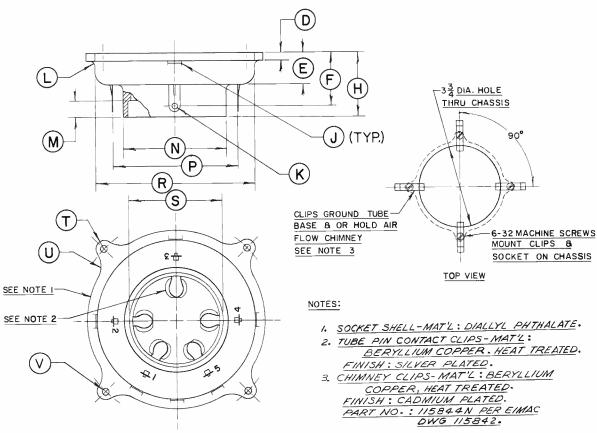
### INSTALLATION

The SK-510 Air-System Socket can be mounted on a chassis deck, partition, or pressurized compartment. Mounting is accomplished by cutting a 3-3/4 inch hole in the mounting surface, placing the socket below the hole, and fastening it into place with four 6-32 machine screws (not supplied) through the four mounting holes in the "ears" of the socket body.


The socket also has a 2-3/8 inch O.D. round neck extending 3/4 inch below the main socket body which provides a means for connecting a standard air duct to the base.

The following listing shows the EIMAC tube types which may be used with the SK-510 and the

| recommended Air-Chimney. | TUBE TYPE        | AIR CHIMNEY |  |  |  |  |
|--------------------------|------------------|-------------|--|--|--|--|
|                          | 3-1000Z (8164)   | SK-516      |  |  |  |  |
|                          | 4-1000A (8166)   | SK-506      |  |  |  |  |
|                          | 4PR1000A (8189)  | SK-506      |  |  |  |  |
|                          | 4PR1000B (8189W) | SK-506      |  |  |  |  |
|                          | TYPE 279         | SK-506      |  |  |  |  |
|                          | TYPE 284         | SK-506      |  |  |  |  |
|                          | TYPE 8960        | SK-506      |  |  |  |  |


(Revised 3-15-75) © 1963, 1966, 1975 by Varian





|                 | DIMENSIONAL DATA |                |            |  |                |               |                |  |
|-----------------|------------------|----------------|------------|--|----------------|---------------|----------------|--|
| DIM             |                  | INCHES         |            |  | MI             | LLIMETE       | RS             |  |
| DIM             | MIN.             | MAX.           | REF.       |  | MIN.           | MAX.          | REF.           |  |
| Α               | 4.593*           | 4.656*         |            |  | 116.7          | 118.3         |                |  |
| В               | 4.968            | 5.031          |            |  | 126.2          | 127.8         | - <b>-</b>     |  |
| С               | 4.031*           | 4.093*         |            |  | 102.4          | 104.0         |                |  |
| D               | 0.156            | 0.218          |            |  | 3.96           | 5.54          |                |  |
| Ε               | 0.718            | 0.781          | - <b>-</b> |  | 18.24          | 19.83         | - <b>-</b>     |  |
| F               |                  |                | 1.250      |  |                |               | 31.75          |  |
| Н               | 1.468            | 1.531          |            |  | 37.29          | 38.89         |                |  |
| J <del>××</del> |                  |                |            |  |                |               | <b>-</b> -     |  |
| К               | 0.093*           | 0.156*         |            |  | 2.36 *         | 3.96 <b>*</b> |                |  |
| L               | 0.093R           | 0.156R         |            |  | 2.36R          | 3.96R         |                |  |
| М               | 0.343            | 0.406          |            |  | 8.71           | 10.31         |                |  |
| N               | 2.343*           | 2.406*         |            |  | 59.51 <b>*</b> | 61.11 *       | - <del>-</del> |  |
| Р               |                  |                | 2.890      |  |                | !<br>!        | 73.41          |  |
| R               | 3.593*           | 3.656 <b>*</b> |            |  | 91.26*         | 92.86*        |                |  |
| S               | 2.140*           | 2.203*         |            |  | 54.36 <b>*</b> | 55.96*        |                |  |
| T               |                  |                | 0.187R     |  |                |               | 4.75R          |  |
| U               |                  |                | 0.500R     |  |                |               | 12.70R         |  |
| V               | 0.139*           | 0.152*         |            |  | 3.53 <b>*</b>  | 3.86*         |                |  |

- \* DIAMETER
- \*\* 0.031 x 0.281, 0.093 x 0.343 (IN.) 0.79 x 7.14, 2.36 x 8.71 (MIL.)







SK-600A SK-610A

AIR-SYSTEM SOCKETS

This series of sockets provide terminal connection, cooling air direction, and a low inductance screen bypass capacitor for the power tubes listed below. The SK-600 series sockets may be used with other tube types having similar basing.

These Air-System Sockets are recommended for use with the following tubes:

| 7034/4X150A   | 8249/4W300B   | 8904/4CX350FJ |
|---------------|---------------|---------------|
| 7203/4CX250B  | 8321/4CX350A  | 8930          |
| 7580W/4CX250R | 8322/4CX350F  | 8957/4CX250BC |
| 7609          | 8621/4CX250FG |               |



Normally the ceramic chimney SK-606 is used with these two sockets to direct the cooling air past the body of the tube as it flows from pressurized chassis through the socket, then through the tube anode fins. Reverse air direction may be used. (Type 8930 uses Chimney SK-646).

The base contact fingers and the screen terminal fingers are heat treated beryllium copper. The base contact fingers are supported and insulated by polytrifluoroethylene, an excellent insulating material even at ultra high frequencies. All contact fingers, and the brass shell are silver plated to insure good contact and to resist corrosion.

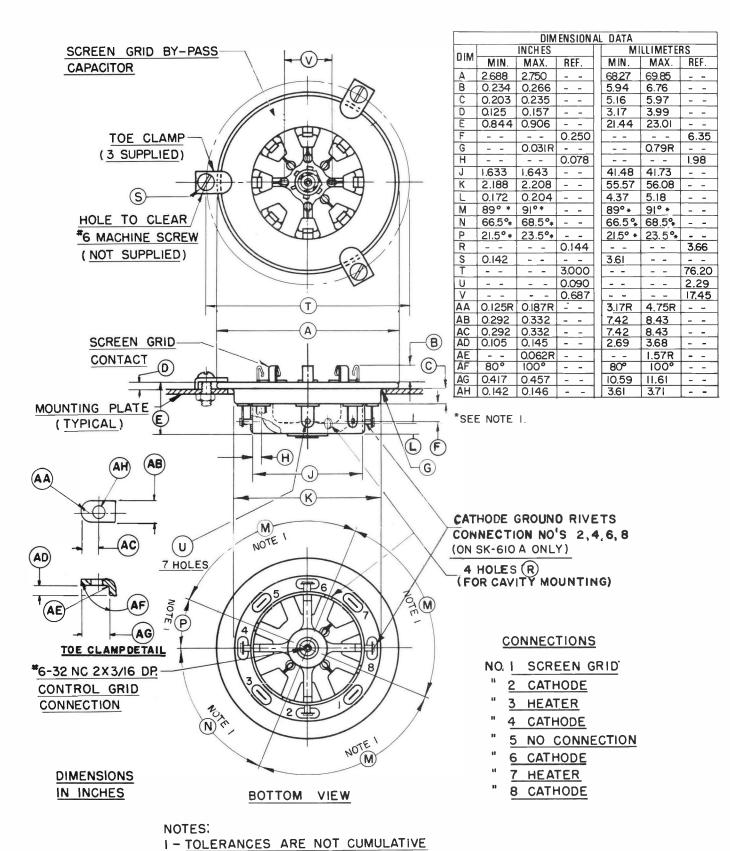
These sockets have hermetically sealed screen bypass capacitors to protect against moisture and dirt.

The SK-600A socket has all base terminals brought out separately. The SK-610A has cathode terminals 2, 4, 6 and 8 connected to the shell.

### INSTALLATION

These Air-System Sockets can be mounted on chassis decks or partitions or in coaxial tuning devices with no modification to the socket. Chassis mounting is accomplished by cutting a  $2\frac{1}{4}$  diameter hole in the chassis deck or partition. The socket is then placed in the hole and held securely by the three toe clamps provided.

If the socket is to be used in a coaxial line, it may be mounted directly on the end of the input line outer conductor. The socket skirt fits snugly on a 15%" diameter cylinder and four screw holes are provided for fastening as shown in the outline drawing.


### CHARACTERISTICS

|               |      |             |     |      |      |     |       |     |      |      |     |       | SK-600A        | SK-610A         |
|---------------|------|-------------|-----|------|------|-----|-------|-----|------|------|-----|-------|----------------|-----------------|
| SCREEN BYPASS | CAPA | ACIT        | ΓOR | WOF  | RKIN | ١G  | VOL   | ΓAG | E DO | C -  | -   | -     | 1000           | 1000            |
| SCREEN BYPASS | CAP  | ACI         | ΓΑΝ | CE(p | F)   | -   | -     | -   | -    | -    | -   | -     | $2700 \pm 500$ | $2700 \pm 500$  |
| CATHODE TERM  | INAL | S C         | NNC | ECT  | ТО   | SH  | IELL  | -   | -    | -    | -   | -     | No             | Yes             |
| SCREEN BYPASS | CAP  | <b>AC</b> I | ГOR | HER  | ME   | TIC | CALLY | Y E | NCA. | PSUI | LAT | ED    | Yes            | Yes             |
| NET WEIGHT    |      | -           | -   | -    | -    |     | -     | -   | -    | -    | 3.  | 5 oz. | (99 gms) 3     | 3.5 oz. (99 gms |

(Revised 11-1-74)

1961, 1965, 1971, 1974 Varian





SK-600A SK-610-A



### TECHNICAL DATA

SK-606 SK-626 SK-636B SK-646 AIR-SYSTEM CHIMNEYS

The EIMAC SK-606, SK-626, SK-636B, and SK-646 Air-System Chimneys are intended for use with those tube and socket combinations listed below.

They are used to direct cooling air into the anode radiator on the tube types listed.

The SK-636B is also designed to hold the tube in use in place by means of a clamping band around the tube's radiator.



### MATERIALS

The SK-606 and SK-626 are made of high-temperature ceramic. The SK-636B is molded of diallyl meta-phthalate, and the clamping band is of beryllium copper. A neoprene "O" ring is furnished in a recess at the bottom of the chimney to more effectively seal the chimney to the socket. The SK-646 is molded of silicone resin glass fiber.



The SK-606 and SK-626 ceramic chimneys are installed by slipping them over the tube's radiator. They are held in place by their own weight or by a suitable clamping means.

The SK-646 also slips over the tube's radiator, and four clips are provided to secure the chimney in position.

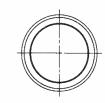
The SK-636B is secured to the chassis over the companion Air-System Socket by means of four #6 screws (not provided). The clamping band includes two solder lugs to facilitate making electrical contact to the tube anode.

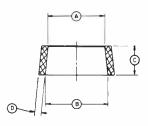


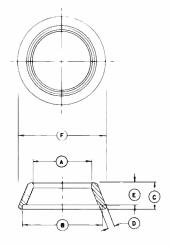
### CHIMNEY/TUBE/SOCKET COMBINATIONS

| Chimney | Socket  | Tube          | Chimney | Socket  | Tube         |
|---------|---------|---------------|---------|---------|--------------|
|         | SK-600  | 7203/4CX250B  | SK-646  | SK-607  | 8809/4CX600J |
|         | SK-600A | 8957/4CX250BC | SK-646  | SK-600  | 8930         |
| SK-606  | SK-610  | 8621/4CX250FG |         | SK-600A |              |
|         | SK-610A | 7580W/4CX250R |         | SK-610  |              |
|         | SK-640  | 8321/4CX350A  |         | SK-610A |              |
|         | SK-620  | 8322/4CX350F  |         | SK- 640 |              |
| SK-626  | SK-620A | 8904/4CX350FJ | SK-606  | SK-700  | 8167/4CX300A |
| SK-636B | SK-630  | 7034/4X150A   |         | SK-710  | 8561/4CX300Y |
|         | SK-630A | 7609          |         | SK-710A |              |
|         |         |               |         | SK-711  |              |
|         |         |               |         | SK-711A |              |

Net Weight (approximate) ..... SK-606, SK-626, SK-636B


SK-646


1.4 oz; 49.5 gms 2.7 oz; 76.5 gms

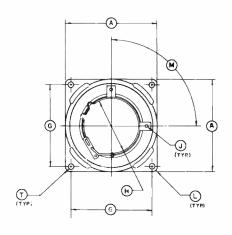

(Effective 11-1-74) © 1963, 1966, 1974 Varian

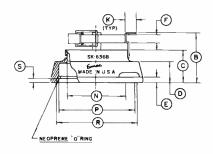


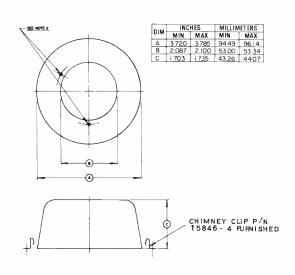
| DIM | INC    | HES   | MILLIMETERS |       |  |  |
|-----|--------|-------|-------------|-------|--|--|
| DIM | MIN    | MAX   | MIN         | MAX   |  |  |
| Α   | 1635   | 1 700 | 41 53       | 43 18 |  |  |
| В   | 1 781  | 1881  | 4524        | 47 78 |  |  |
| С   | 0.812  | 0 875 | 2062        | 22 23 |  |  |
| D   | 0   56 | 0.518 | 3 96        | 554   |  |  |









| ВΙΜ |       | HES   | MILLIMETERS |       |  |  |
|-----|-------|-------|-------------|-------|--|--|
| UIM | MIN.  | MAX.  | MIN         | MAX   |  |  |
| Α   | 1.650 | 1.720 | 41,91       | 43.69 |  |  |
| В   | 2.300 | 2.362 | 58.42       | 60 00 |  |  |
| С   | 0698  | 0.738 | 1773        | 18.75 |  |  |
| D   | 0.156 | 0.218 | 3 96        | 5.54  |  |  |
| Ē   | 0.573 | 0.613 | 1455        | 15 57 |  |  |
| F   |       | 2 560 |             | 65.02 |  |  |


SK-606

SK-626

|     |       | DIM    | ENSION | AL | DATA        |       |    |    |
|-----|-------|--------|--------|----|-------------|-------|----|----|
| DIM |       | INCHES |        | T  | MILLIMETERS |       |    |    |
| DIM | MIN   | MAX    | REF    | Ī  | MIN         | MAX   | RE | F  |
| Α   | 2 609 | 2 641  |        | [  | 66 27       | 6708  | -  | -  |
| В   | 1607  | 1677   |        | -[ | 40.82       | 4260  | -  |    |
| С   | 1109  | 1 141  |        |    | 28 17       | 28 98 | -  | -  |
| D   | 0560  | 0 600  |        |    | 14 22       | 15 24 |    | -  |
| E   | 0 (55 | 0 187  |        |    | 3 94        | 4 75  | ~  | ~  |
| F   | 0 219 | 0.281  |        |    | 5 56        | 714   | -  | -  |
| G   | 2 335 | 2 365  |        |    | 59 31       | 60 07 | -  | -  |
| н   | 1 580 | 1 620  |        |    | 40 13       | 41 15 | -  | -  |
| J   | 0.083 | 0 103  |        |    | 2 [1        | 262   | -  | -  |
| К   | 0 281 | 0 343  |        |    | 714         | 871   | -  | -  |
| L   |       |        | 1/8 R  | ľ  |             |       | 31 | 8R |
| M   |       |        | 90°    | ľ  |             |       | 90 | )° |
| N   | 1651  | 1661   |        | ľ  | 4194        | 42 19 | -  | -  |
| Р   | 2306  | 2340   |        |    | 58,57       | 5944  | -  | -  |
| R   | 2 480 | 2.510  |        | 1  | 6300        | 6375  | -  | -  |
| S   | 0111  | 0 121  |        |    | 2 8 2       | 3 07  | -  | -  |
| Т   | 0151  | 0161   |        |    | 384         | 4 09  | -  | -  |







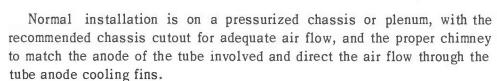
### NOTES

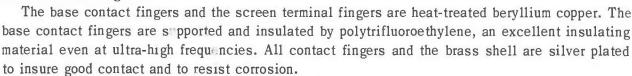
- 1 MATL. CHIMNEY, GLASS FIBER, REINFORCED SILICONE RESIN. (MAX. TEMP. 370°C) CHIMNEY CLIP, BE.-CU
  - ALLOV NO. 172, (CADMIUM PLTD.)
- 2 THE TWO HOLES NOTED HAVE NO FUNCTION WITH THIS CHIMNEY.

- NOTES
  1 STRAP & BRACKETS OF CLAMP MATL BE CU
  SILVER PLATED
  2 CHIMNEY-MATL DIALLYL META-PHTHALATE
  3 CLAMP PROVIDES A MIN. 3 LBS. RETENTION ON A 1.625 DIA. TUBE






AIR-SYSTEM SOCKET


The SK-607 socket provides terminal connections and a low-inductance screen bypass capacitor for the power tubes listed below. The SK-607 may be used with other tube types having similar basing which require a full complement of base-pin contacts.

This air-system socket is recommended for use with the following tubes:

8809/4CX6001

8921/4CX600TA





All base terminals are brought out separately. The screen bypass capacitor is hermetically sealed to protect against moisture and dirt.

The bypass capacitor has a capacitance of  $2700 \pm 500$  pF and is rated for a working voltage of 1000 Vdc.

### INSTALLATION

The socket can be mounted on a chassis deck or partition with no modification to the socket. Chassis mounting is accomplished by cutting a 2-17/64 inch diameter hole in the chassis, and additional air-flow slots as shown with the outline drawing and marked CHASSIS CUTOUT PATTERN REQUIRED. The socket is held securely by the four toe clamps provided. The provision of the additional air-flow slots is important in order to keep system pressure drop at a low level for the required cooling air for the tube anode cooling fins.

If the socket is to be used in a coaxial line, it may be mounted directly on the end of the input line outer conductor. The socket skirt fits snugly on a 1-5/8 inch diameter cylinder and four screw holes are provided for fastening as shown in the outline drawing. The designer is cautioned to allow for additional air passage around the socket in order to keep required system pressure at a low level.

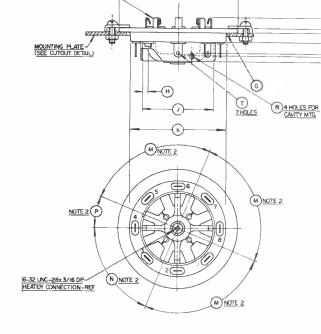
### CHIMNEY

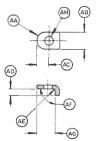
The SK-646 chimney is available for use with the 8809/4CX600J. The SK-656 chimney is designed for use with the 8921/4CX600JA. The chimney is mounted above the chassis deck and is held in place with four chimney clips, which are supplied with the chimney. The required mounting holes for the chimney clips are shown on the CHASSIS CUTOUT PATTERN drawing.

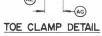
NET WEIGHT FOR SK-607 SOCKET (Approximate) ..... 3.5 oz; 99.3 gm

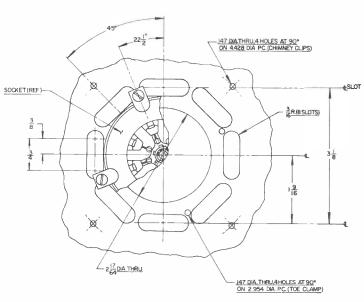
(Effective 8-15-71) © by Varian




SCREEN GRID CONTACT


| 60    | INNECTIONS   |
|-------|--------------|
| NO I. | SCREEN GRID  |
| NO.2. | CONTROL GRID |
| NO 3. | CATHODE      |
| NO.4  | CONTROL GRID |
| NO 5  | HEATER       |
| NO.6  | CATHODE      |
| NO.7  | CONTROL GRID |
| NO.B  | CATHODE      |


|      |         | DIM     | ENSIONAL  | DATA  |         | -        |
|------|---------|---------|-----------|-------|---------|----------|
| DIM. |         | INCHES  |           | M     | LLIMETE | RS       |
| DIM. | MIN.    | MAX.    | REF       | MIN.  | MAX.    | REF      |
| Α    | 2.688   | 2.750   |           | 68.27 | 69.85   |          |
| В    | .234    | .266    |           | 5.94  | 6.76    |          |
| С    | .203    | .235    |           | 5.16  | 5.97    |          |
| D    | .125    | .157    | -1 1-     | 3.17  | 3.99    |          |
| Ε    | .844    | .906    |           | 21.44 | 23.01   |          |
| F    |         |         | .250      |       |         | .635     |
| G    |         | .03IR   |           |       | 0.79R   |          |
| Н    |         |         | .078      |       |         | 1.98     |
| J    | 1.633ID | 1643ID. |           | 41.48 | 41.73   |          |
| K    | 2.188   | 2.208   |           | 55.57 | 56.08   |          |
| L    | .172    | .204    |           | 4.37  | 5.18    |          |
| М    | 89°     | 91°     |           | 89°   | 91°     |          |
| N    | 66.5°   | 68.5°   |           | 66.5° | 68.5°   |          |
| Р    | 21.5°   | 23.5°   |           | 21.5° | 23.5°   |          |
| R    |         |         | .144 DIA. |       |         | 3.66DIA  |
| Т    | 1-11-   |         | .090Dia.  | i-i - |         | 2.29DIA  |
| V    |         |         | .687DIA.  |       |         | 17.45DIA |
| AA   | .l25R   | .187R   |           | 3.17R | 4.75R   |          |
| AB   | .292    | .332    |           | 7.42  | 8.43    |          |
| AC   | .292    | .332    |           | 7.42  | 8.43    |          |
| AD   | .105    | .145    |           | 2.67  | 3.68    |          |
| AE   |         | .062R   |           |       | 1.57    |          |
| AF   | 80°     | 100°    |           | 80°   | 100°    |          |
| AG   | .417    | .457    |           | 10.59 | 11.61   |          |
| AH   | . 142   | .146    |           | 3.61  | 3.71    |          |


NOTES:

L REF DIMENSIONS ARE FOR INFO.
ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.









CHASSIS CUTOUT PATERN REOD, FOR ADEQUATE COOLING.

USE SK 646 CHIMNEY WITH THIS SOCKET.



### TECHNICAL DATA

SK-620 SK-620A

AIR-SYSTEM SOCKET

The EIMAC SK-620 is one of the Air-System Sockets recommended for use with those tubes listed at the bottom of this data sheet or other tube types having the same special nine-pin base. A ceramic SK-626 Air Chimney or a fiberglass-reinforced EIMAC resin SK-636 Air Chimney are also available and are recommended for use with the socket when air-cooled tubes are to be employed, except the 8930.

When this socket is used, connection is made to each of the tube electrodes except the anode, and to one side of the integral screen-grid by-pass capacitor. The SK-620 Air-System Socket is humidity and salt-spray resistant. The SK-620A is an improved SK-620 which includes a slightly modified screen by-pass capacitor sealed with an improved encapsulating material to insure reliable performance under high humidity or moisture conditions.

# J. Pi

### **BASE CONNECTIONS**

The SK-620 Air-System Socket consists of eight screen-grid contact fingers, seven pin contacting terminals (no contact is made to pin No. 5), a center control-grid terminal, and an integral screen by-pass capacitor. The cathode of the tube is connected to its external circuits by the four even-numbered base pins which are connected in parallel to minimize the effects of lead inductance; these terminal lugs are insulated from the socket body.

### **SCREEN-GRID BY-PASS CAPACITOR**

Incorporated in the socket structure is a low-inductance screen by-pass capacitor,  $1100~\rm pF \pm 20\%$ , which provides a short radio-frequency path to ground. The silvered-mica dielectric, encapsulated in epoxy resin, is humidity and salt-spray resistant. The sockets are hi-voltage tested at 2000 volts dc and are rated for use at 1000 volts dc.

When this socket is mounted on a grounded chassis, one side of the screen-grid by-pass capacitor will automatically be grounded.

### MATERIALS AND FINISHES

The metal shell, or body, of the socket is silver-plated brass. The screen-grid contact fingers and base pin terminals are fabricated of beryllium-copper, heat-treated after forming, then silver-plated. The center control-grid terminal is silver-plated brass as are the toe clamps which are supplied for mounting purposes.

The socket insulating material, polytrifluorochloroethylene, is chemically inert, non-flammable, will not absorb water or water vapors, and is not affected by acids or alkalies. It will not react to normal solvents, except in the case of halogenated compounds which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of -196°C to +199°C and it is resistant to embrittlement and thermal shock.

### INSTALLATION

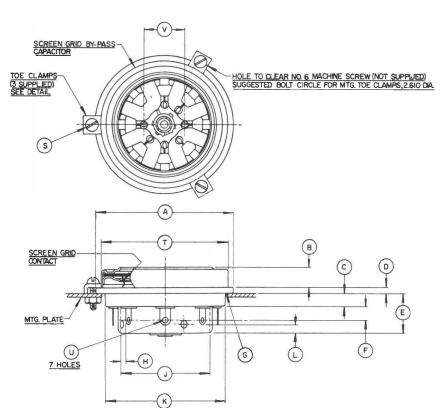
The SK-620 and SK-620A Air-System Sockets can be mounted on chassis decks or partitions or in coaxial tuning devices with no modification to the socket. Chassis mounting is accomplished by cutting a 2-¼" diameter hole in the chassis deck or partition. The socket is then placed in the hole and held securely by the three toe clamps provided.

If the socket is to be used in a coaxial line, it may be mounted directly on the end of the input line outer conductor. The socket skirt fits snugly on a 1-%" diameter cylinder and four screw holes are provided for fastening as shown in the outline drawing.

### **TUBE EXTRACTOR**

The SK-604 is a spring-steel device useful for inserting and extracting tubes of the type used in the SK-620 Air-System Socket. It is recommended for use where the construction of the equipment makes it difficult or impossible to grasp the tube by hand or when it is necessary to handle the tubes while they are still hot from recent use.

### THE SK-620 AND SK620A AIR-SYSTEM SOCKETS ARE RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:


 7034/4X150A
 8249/4W300B
 8904/4CX350FJ

 7203/4CX250B
 8321/4CX350A
 8930

 7580W/4CX250R
 8322/4CX350F
 8957/4CX250BC

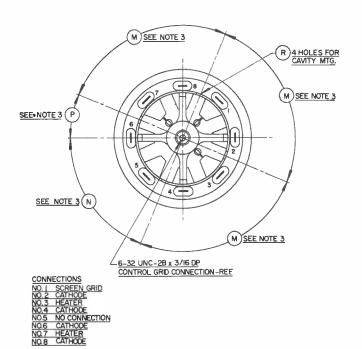
 7609
 8621/4CX250FG

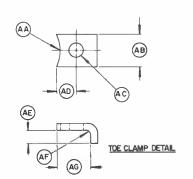
(Revised 7-1-75) © 1961, 1967, 1975 by Varian



|         |         |         | <u>iension</u> . | Αl |        |         |       |
|---------|---------|---------|------------------|----|--------|---------|-------|
| DIM     |         | INCHES  |                  |    | M      | LLIMETE | RS    |
| D IIIVI | MIN.    | MAX.    | REF.             |    | MIN.   | MAX.    | REF.  |
| Α       | 2.438   | 2.478   |                  |    | 61.92  | 62.94   |       |
| В       | 0.348   | 0.378   |                  |    | 8.84   | 9.60    |       |
| С       | 0.203   | 0.235   |                  |    | 5.16   | 5.97    |       |
| D       | 0.105   | 0.145   |                  |    | 2.67   | 3.68    |       |
| Ë       | 0.700   | 0.740   |                  |    | 17.78  | 18.80   |       |
| F       |         |         | 0.250            |    |        |         | 6.35  |
| G       |         | 0.03IR  |                  |    |        | 0.79R   |       |
| Н       |         |         | 0.078            |    |        |         | 1.98  |
| J       | 1.633   | 1.643   |                  |    | 41.48  | 41.73   |       |
| K       | 2.188   | 2.208   |                  |    | 55.57  | 56.08   |       |
| Г       | 0.172   | 0.204   |                  | П  | 4.37   | 5.18    |       |
| М       | 89°     | 91°     |                  |    | 89°    | 91°     |       |
| N       | 66.5°   | 68.5°   |                  |    | 66.5°  | 68.5°   |       |
| Р       | 21.5°   | 23.5°   |                  |    | 21.5°  | 23.5°   |       |
| R       |         |         | 0.144*           |    |        |         | 3.66* |
| S       | 0.142*  |         |                  |    | 3.61 * |         |       |
| Т       | 2.285   | 2.305   |                  |    | 58.04  | 58.55   |       |
| U       |         |         | 0.090*           |    |        |         | 2.29* |
| V       |         |         | 0.687            |    |        |         | 17.45 |
| AA      | 1.230R  | 1.270R  |                  |    | 31.24  | 32.26   |       |
| AB      | 0.292   | 0.332   |                  |    | 7.42   | 8.43    |       |
| AC      | 0.142 * | 0.146 * |                  |    | 3.61 * | 3.71*   |       |
| AD      | 0.136   | 0.176   |                  |    | 3.45   | 4.47    |       |
| AE      | 0.105   | 0.145   |                  |    | 2.67   | 3.68    |       |
| AF      |         | 0.062R  |                  |    |        | 1.57R   |       |
| AG      | 0.261   | 0.301   |                  |    | 6.63   | 7.64    |       |

↑ DIAMETER


NOTES:


I. REF. DIMS. ARE FOR INFO. ONLY
AND ARE NOT REQ'D. FOR
INSPECTION PURPOSES.

I. CAPACITANCE, IDO MMFD ± 20 %
VOLTAGE, 2000 VDC. TEST,
IOOO WVDC.

3. TOLERANCES ARE NOT
CUMULATIVE.

4. WORD EIMAC IN SOCKET
IDENTIFICATION LABEL, IS
LOCATED (APPROX.) NEXT TO
PIN 5.







E I M A C
Division of Varian
S A N C A R L O S
C A L I F O R N I A

SK-630A SK-630A AIR-SYSTEM SOCKET

The EIMAC SK-630 is one of the Air-System Sockets recommended for use with those tubes listed at the bottom of this data sheet or other tube types having the same special nine-pin base. A ceramic SK-626 Air Chimney or a fiberglass-reinforced silicone resin SK-636 Air Chimney are also available and are recommended for use with the socket when air-cooled tubes are to be employed.

When this socket is used, connection is made to each of the tube electrodes except the anode, and to one side of the integral screen-grid by-pass capacitor. The SK-630 Air-System Socket is humidity and salt-spray resistant. The SK-630A is an improved SK-630 which includes a slightly modified screen by-pass capacitor sealed with an improved encapsulating material to insure reliable performance under high humidity or moisture conditions.



The SK-630 Air-System Socket consists of eight screen-grid contact fingers, seven pin contacting terminals (no contact is made to pin No. 5), a center control-grid terminal, and an integral screen by-pass capacitor. The cathode of the tube is connected to its external circuits by the four even-numbered base pins which are connected in parallel to minimize the effects of lead inductance. These terminal lugs are connected directly to the metal shell of the socket and will automatically be grounded when the socket is mounted to a metal chassis.



### **SCREEN-GRID BY-PASS CAPACITOR**

Incorporated in the socket structure is a low-inductance screen by-pass capacitor,  $1100 \text{ pF} \pm 20\%$ , which provides a short radio-frequency path to ground. The silvered-mica dielectric, encapsulated in epoxy resin, is humidity and salt-spray resistant. The sockets are hi-voltage breakdown tested at 2000 volts dc and are rated for use at 1000 volts dc.

When this socket is mounted on a grounded chassis, one side of the screen-grid by-pass capacitor will automatically be grounded.

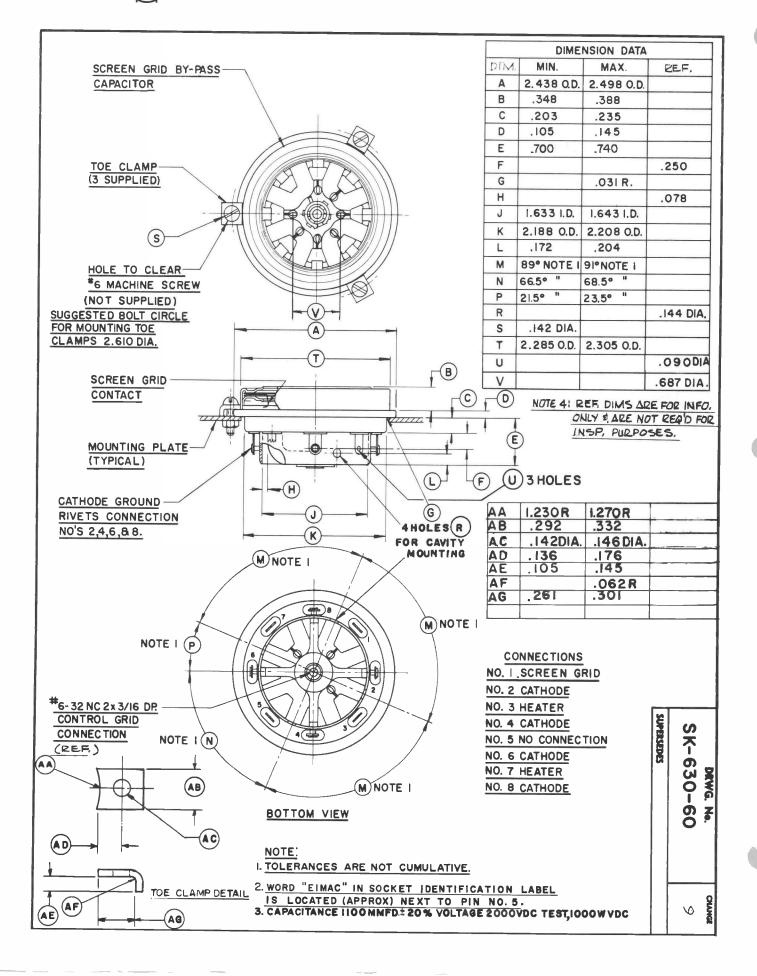
### MATERIALS AND FINISHES

The metal shell, or body, of the socket is silver-plated brass. The screen-grid contact fingers and base pin terminals are fabricated of beryllium-copper, heat-treated after forming, then silver-plated. The center control-grid terminal is silver-plated brass as are the toe clamps which are supplied for mounting purposes.

The socket insulating material, polytrifluorochloroethylene, is chemically inert, non-flammable, will not absorb water or water vapors, and is not affected by acids or alkalies. It will not react to normal solvents, except in the case of halogenated compounds which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of -196°C to +199°C and it is resistant to embritlement and thermal shock.

### **INSTALLATION**

The SK-630 and SK-630A Air-System Socket can be mounted on chassis decks or partitions or in coaxial tuning devices with no modification to the socket. Chassis mounting is accomplished by cutting a 2-¼" diameter hole in the chassis deck or partition. The socket is then placed in the hole and held securely by the three toe clamps provided.


If the socket is to be used in a coaxial line, it may be mounted directly on the end of the input line outer conductor. The socket skirt fits snugly on a 1-%" diameter cylinder and four screw holes are provided for fastening as shown in the outline drawing.

### TUBE EXTRACTOR

The SK-604 is a spring-steel device useful for inserting and extracting tubes of the type used in the SK-630 Air-System Socket. It is recommended for use where the construction of the equipment makes it difficult or impossible to grasp the tube by hand or when it is necessary to handle the tubes while they are still hot from recent use.

### THE SK-630 AND SK-630A AIR-SYSTEM SOCKETS ARE RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:

7034/4X150A 7035/4X150D 7203/4CX250B 7204/4CX250F 7580W/4CX250R 8249/4W300B 8321/4CX350A 8322/4CX350F 7580





### TECHNICAL DATA

SK-640

AIR-SYSTEM SOCKET

The EIMAC SK-640 is one of the air system sockets recommended for use with those tubes listed at bottom of the page, or other tube types having the same special nine-pin base, when an integral screen by-pass capacitor is either not required or desired. When this socket is used, connection is made to each of the tube electrodes except the anode. The SK-640 Air-System Socket is humidity and salt-spray resistant. SK-606 Air Chimney is used with most air cooled tubes.

### **BASE CONNECTIONS**

The SK-640 Air-System Socket consists of seven base pin contacting terminals (no contact is made to Pin #5) and a center control-grid terminal. The cathode of the tube is connected to its external circuits by the four even-numbered base pins which are connected in parallel to minimize the effects of lead inductance. These terminal lugs are insulated from the socket body. Connection to the screen-grid is made via Pin #1 while control-grid contact is accomplished by the use of a 6/32" screw at the center terminal.



### MATERIALS AND FINISHES

The metal shell, or body, of the socket is nickel-plated brass and the base pin contact terminals are fabricated from beryllium-copper, heat treated after forming, then silver-plated. The center control-grid terminal is silver-plated brass.

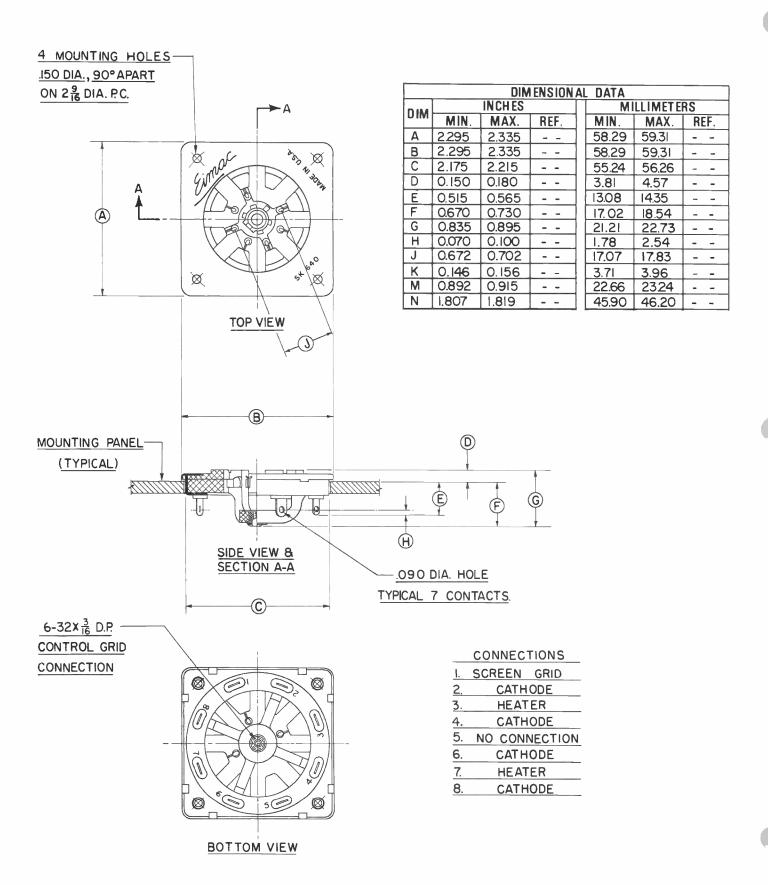
The socket insulating material, polytriflourochloroethylene, is chemically inert, non-flammable, will not absorb water or water-vapors and is not affected by acids or alkalies. It will not react to normal solvents except in the case of halogenated compounds which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of -196°C to +199°C and it is resistant to embrittlement and thermal shock.

### INSTALLATION

The SK-640 Air-System Socket can be mounted on a chassis decks or partitions by the four 0.150 inch diameter holes provided in the socket body. These holes are  $90^{\circ}$  apart and are drilled on a 2-9/16" diameter pitch circle. A 2-1/4" hole is required to accept the socket body.

### **TUBE EXTRACTOR**

The SK-640A is a spring-steel device useful for inserting and extracting tubes of the type used in the SK-640 Air-System Socket. It is recommended for use where the construction of the equipment makes it difficult or impossible to grasp the tube by hand or when it is necessary to handle the tubes while they are still hot from recent use.


### THE SK-640 AIR-SYSTEM SOCKET IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:

| 7034/4X150A   | 8249/4W300B   | 8904/4CX350FJ |
|---------------|---------------|---------------|
| 7203/4CX250B  | 8321/4CX350A  | 8930          |
| 7580W/4CX250R | 8322/4CX350F  | 8957/4CX250BC |
| 7609          | 8621/4CX250FG |               |

(Revised 7-1-75) ©

ල 10

1961, 1966, 1975 by Varian





### EIMAC

A Division of Varian Associates EAN CAPLOS CALIFORNIA

SK-650 SK-655

AIR-SYSTEM SOCKET

The Eimac SK-650 is one of the Air-System Sockets recommended for use with those tubes listed at the bottom of the page, or other tube types having the same special nine-pin base, when a compact, low-cost, special purpose socket is required. When this socket is used, connection is made to each of the tube electrodes except

The SK-655 Screen By-Pass Capacitor is a separate encapsulated capacitor designed for use with the SK-650 Air-System Socket. When this combination is used, the screen by-pass capacitor can be replaced without troublesome or costly repairs.

Both the SK-650 and the SK-655 are humidity and salt-spray resistant.

### **BASE CONNECTIONS**

The SK-650 Air-System Socket consists of seven base pin contacting terminals (no contact is made to Pin #5) and a center control-grid terminal. The cathode of the tube is connected to its external circuits by the four even-numbered base pins which, in turn, are connected to the four socket mounting tabs. Connections are made in this manner to minimize the effects of lead inductance. When the SK-650 Air-System Socket is used alone, connection is made to the screen-grid via Pin #1. Control grid contact is accomplished by means of a 6/32" screw at the center terminal.

### THE SK-655 SCREEN-GRID BY-PASS CAPACITOR

The SK-655 Screen-Grid By-Pass Capacitor is an independent encapsulated capacitor which is mounted to the SK-650 Air-System Socket by the same four socket mounting screws. This is a low-inductance capacitor, 1100 uuf  $\pm 20\%$ , which provides a short radio-frequency path to ground. The capacitor is hi-voltage breakdown tested at 2000 volts d-c and rated at 1000 volts d-c. When the SK-655 is mounted on a grounded chassis, one side of the screen by-pass capacitor is automatically grounded.

### MATERIALS AND FINISHES

In the SK-650 Air-System Socket, the base pin terminals and the four mounting lugs are fabricated of beryllium-copper, heat treated after forming, then silver-plated. The center control-grid terminal is silver-plated brass.

The insulating material, polytrifluorochloroethylene, is chemically inert, non-flammable, will not absorb water or water-vapors and is not affected by acids or alkalies. It will not react to normal solvents except in the case of halogenated compounds which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of -196°C to +199°C and it is resistant to embrittlement and thermal shock.

The SK-655 Screen By-Pass Capacitor has a body, or shell, constructed of silverplated brass while the eight screen-grid contacting fingers are heat treated, silver-plated beryllium-copper. The capacitor dielectric is silvered-mica and is encapsulated in epoxy resin.

| Net Weight of the SK-650 Air-System Socket             | 1.2 | ounces |
|--------------------------------------------------------|-----|--------|
| Net Weight of the SK-655 Screen-Grid By-Pass Capacitor | 1.5 | ounces |
| INSTALLATION                                           |     |        |

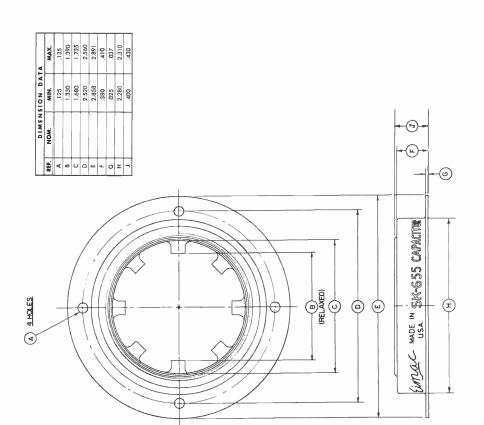
Both the SK-650 Air-System Socket and the SK-655 Screen-Grid By-Pass Capacitor can be mounted to a chassis deck or partition by the four 0.130" diameter holes provided in each of the assemblies. Both units have holes which are 90° apart and are drilled on 2-17/32" diameter pitch circle.

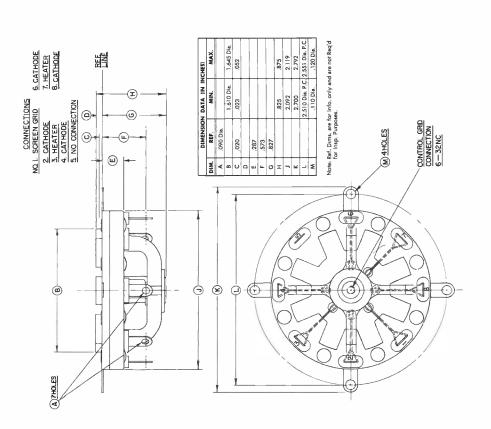
The SK-650 Air-System Socket requires a 2-1/8" diameter hole to accept the socket body.

### TUBE EXTRACTOR

The SK-604A is a spring-steel device useful for inserting and extracting tubes of the type used in the SK-650 Air-System Socket. It is recommended for use where the construction of the equipment makes it difficult or impossible to grasp the tube by hand or when it is necessary to handle the tubes while they are still hot from recent use.

### THE SK-650 AIR-SYSTEM SOCKET IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:


7034/4X150A 7204/4CX250F 8321/4CX350A 8322/4CX350F 7035/4X150D 7580W/4CX250R 7203/4CX250B 8249/4W300B 7580




SK-650 Air-System Socket



SK-655 Screen **By-Pass Capacitor** 





# SK-650 OUTLINE DRAWING

SK-655 OUTLINE DRAWING



## E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

SK-700 AND SK-710 AIR-SYSTEM SOCKETS

The EIMAC SK-700 and SK-710 Air-System Sockets are designed to socket the EIMAC 4CX300A. Connections are made to each of the tube electrodes except the anode. An integral screen-grid by-pass capacitor is built into the socket.

### SK-700

The cathode contacts are insulated from ground.

### SK-710

All six of the cathode contacts are connected directly to the metal body.

### **HEATER CONNECTIONS**

In both socket types, one heater contact is connected directly to the metal body.

### SCREEN-GRID BY-PASS CAPACITOR

The capacitor is built into the socket and provides a low-impedance path to ground for screen-grid rf currents. It is tested at 1000 volts dc and rated at 400 volts dc. Capacitance is 1100 picofarads  $\pm 20\%$ .

### MATERIALS AND FINISHES

The metal shell, or body, of the socket is made of silver-plated brass. The non-ferrous alloy contacts are heat treated after forming and then silver-plated. Three silver-plated brass toe clamps are supplied for mounting purposes.

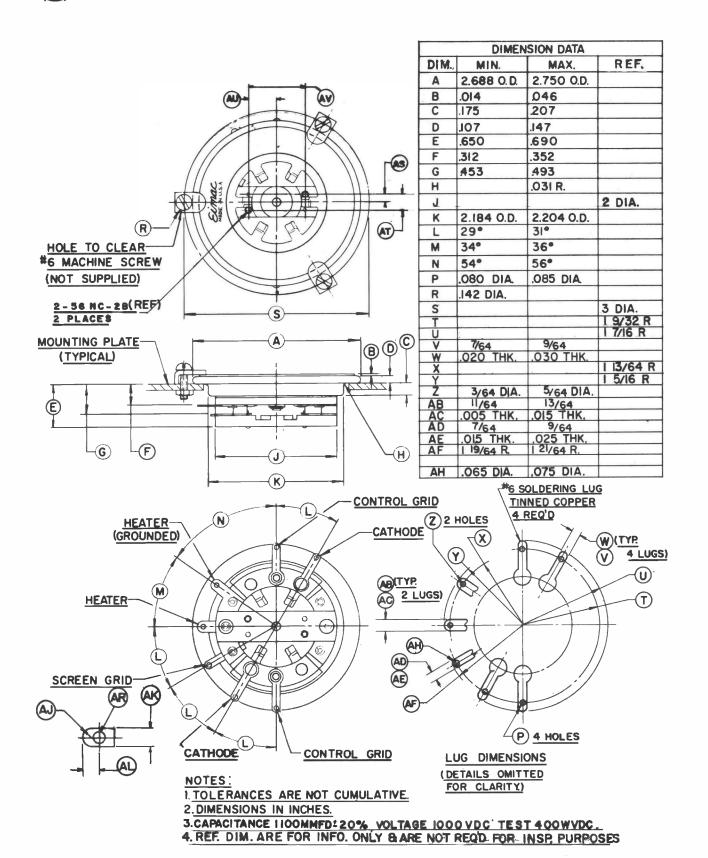
The socket insulating material is chemically inert, non-flammable, and will not absorb water or water vapor. It is not affected by strong or weak acids or alkalies. It will not react to normal solvents except in the case of halogenated compounds, which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of  $-150\,^{\circ}\mathrm{C}$  to  $+275\,^{\circ}\mathrm{C}$  and it is resistant to embrittlement and thermal shock.

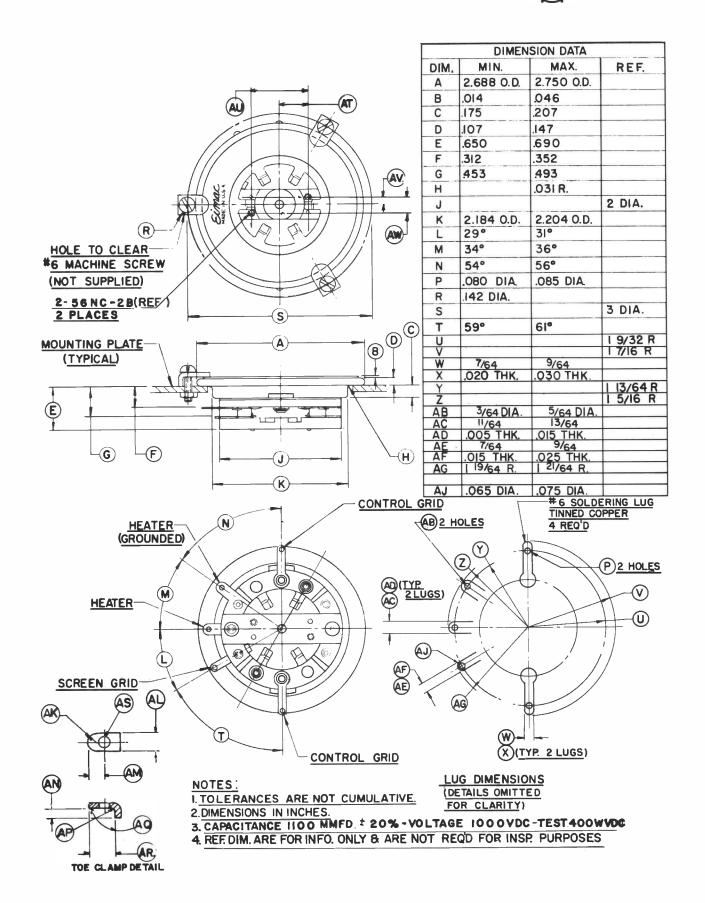
A silvered-mica dielectric is used in the screen-grid by-pass capacitor.

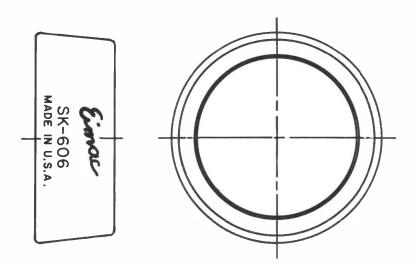
### AIR CHIMNEY

The SK-606 is intended to be used with the 4CX300A mounted vertically with the anode up. If horizontal mounting or vertical mounting with the anode down is required, means should be provided to retain the chimney. The air chimney is made of high-temperature ceramic and serves to direct the flow of air emerging from the socket into the anode cooling fins. It is recommended that the SK-606 chimney, or its equivalent, be used with each SK-700 or SK-710 socket.



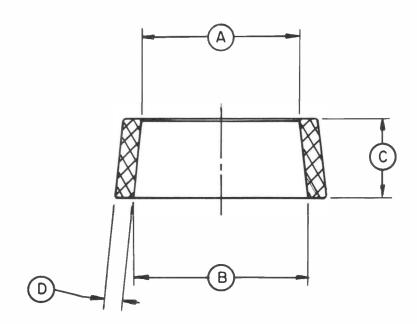

SK-700





SK-700 WITH SK-606



SOCKET, TUBE, AND CHIMNEY








### DIMENSIONS IN INCHES

| DIMENSIONAL DATA |       |       |      |  |  |
|------------------|-------|-------|------|--|--|
| DIM.             | MIN.  | MAX.  | REF. |  |  |
| Α                | 1.635 | 1.700 |      |  |  |
| 8                | 1.781 | 1.881 |      |  |  |
| С                | .812  | .875  |      |  |  |
| D                | .156  | .218  |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |
|                  |       |       |      |  |  |





### TECHNICAL DATA

SK-711A SK-712A

AIR SYSTEM SOCKETS

The EIMAC SK-711A Air System Socket is designed to socket the EIMAC 4CX300A and other members of this family listed below. Connections are made to each of the tube electrodes except the anode. An integral screen bypass capacitor is built into the socket.

### CONTACTS

SK-711A: The cathode and one heater contact are connected directly to the metal body.

SK-712A: One heater contact is connected directly to the metal body.



### SCREEN BYPASS CAPACITOR

The capacitor is built into the socket and provides a low-impedance path to ground for screen grid rf currents. It is tested at 1000 volts dc and rated at 400 volts dc. Capacitance is 900 pF to 1500 pF. The screen bypass capacitor is sealed with epoxy. The sealing provides a longer voltage breakdown path and prevents contamination. It is usable in high humidity environments. It may be used with 350 volts dc at an altitude of 60,000 feet.

### MATERIALS AND FINISHES

The metal shell, or body, of the socket is made of silver plated brass. The non-ferrous alloy contacts are heat treated after forming and then silver plated. Three silver plated brass toe clamps are supplied for mounting purposes.

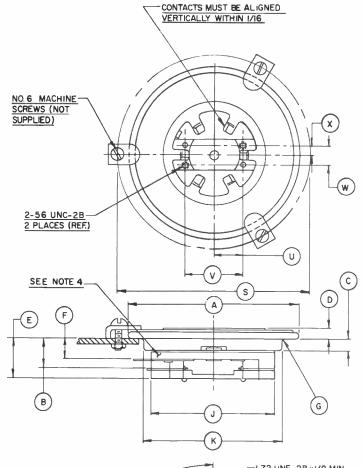
The socket insulating material is Diallyl Phthalate. Its physical characteristics are stable over a temperature range of -65 $^{\circ}$ C to +185 $^{\circ}$ C and it is resistant to embrittlement and thermal shock.

A silver mica dielectric is used in the screen bypass capacitor.

### AIR CHIMNEY

The SK-606 is intended to be used with the 4CX300A mounted vertically with the anode up. If horizontal mounting or vertical mounting with the anode down is required, means should be provided to retain the chimney. The air chimney is made of high temperature ceramic and serves to direct the flow of air emerging from the socket into the anode cooling fins. It is recommended that the SK-606 chimney, or its equivalent, be used with each SK-711A socket.

### THE SK-711A IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:


4CX300A 4CX300Y

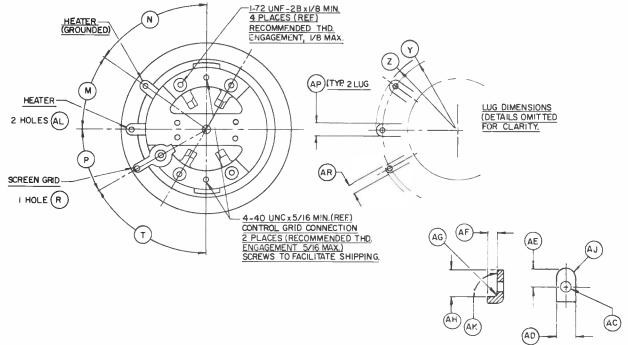
4CX125C

4CX125F

4CN15A

(Revised 3-15-71) © by Varian




|       |        | DIN   | <b>IENSIONAL</b> | DATA  |             |       |  |
|-------|--------|-------|------------------|-------|-------------|-------|--|
| DIM.  | INCHES |       |                  | M     | MILLIMETERS |       |  |
| L/IM. | MIN.   | MAX.  | REF              | MIN.  | MAX.        | REF   |  |
| A     | 2.688  | 2.750 |                  | 68.28 | 69.85       |       |  |
| С     | 0.175  | 0.207 |                  | 4.45  | 5.26        |       |  |
| D     | 0.156  | 0.218 |                  | 3.96  | 5.54        |       |  |
| Ε     | 0.600  | 0.650 |                  | 15.24 | 16.51       |       |  |
| F     | 0.312  | 0.352 |                  | 7.92  | 8.94        |       |  |
| G     | 0.453  | 0 493 |                  | 11.51 | 12.52       |       |  |
| Н     |        |       | 0.031            |       |             | 0.79  |  |
| J     |        |       | 2.000            | ~ -   |             | 50.80 |  |
| K     | 2.184  | 2.210 |                  | 55.47 | 56.13       |       |  |
| L     |        |       | 30°              |       |             | 30°   |  |
| M     |        |       | 35°              |       |             | 35°   |  |
| N     |        |       | 55°              |       |             | 55°   |  |
| Р     | 0.109  | 0.161 |                  | 2.77  | 3.58        |       |  |
| R     | 0.234  | 0.266 |                  | 594   | 6.76        |       |  |
| Т     |        |       | 60°              |       |             | 60°   |  |
| U     | 0.437  | 0.469 |                  | 01,11 | 11.91       |       |  |
| V     | 0.890  | 0.922 |                  | 22.61 | 23.42       |       |  |
| Υ     |        |       | 1.203            |       |             | 30.56 |  |
| Z     |        |       | 1.312            |       |             | 33.52 |  |
| AB    |        |       | 0.062            |       |             | 1.57  |  |
| AC    |        |       | 0.188            |       |             | 4.78  |  |
| AD    |        |       | 0.031            |       |             | 0.79  |  |
| AE    |        |       | 0.125            |       |             | 3.18  |  |
| AF    |        |       | 0.020            |       |             | 0.51  |  |
| AJ    |        |       | 0.062            |       |             | 1.57  |  |

### NOTES:

- I. REF CIMS. ARE FOR INFO. ONLY AND ARE NOT REQD. FOR INSP. PURPOSES.
- 2. TOLERANCES ARE NOT CUMULATIVE.
- 3. BYPASS CAPACITOR RATINGS: CAPACITANCE-900/I500 P.f

VOLTAGE BREAKDOWN- 350 VDC AT 60,000 FT.

- 4 INSULATING BODY RING MADE OF DIALLYL ISOPHTHALATE
  PER MIL-M-19833
- 5 THE CAPACITOR IS A SEALED UNIT SOCKET CAPABLE OF OPERATING AT 350 VDC IN AN AMBIENT TEMP OF-65°C TO 185°C.
- 6 BODY OF THE SOCKET & CONTACTS ARE SILVER PLATEL



TOE CLAMP DETAIL







The EIMAC SK-740 Air-System Socket is recommended for use with those tubes listed at the bottom of the page or other tube types having this special breech-block base. This socket is not intended for use with an Air-Chimney, but is particularly useful in applications where transverse air cooling, heat-sink or immersion cooling is intended. When this socket is used, connection is made to each of the tube electrodes except the anode.

### **BASE CONNECTIONS**

The SK-740 socket consists of five sets of ring contacts: they are from top to bottom: 1.screen-grid, 2.control-grid, 3.cathode, 4.heater, 5.heater. Each set of contacts consist of six separate contacting tabs. The tube elements are connected to their external circuits by two diametrically-opposed solder tabs. The SK-740 has no grounded contacts.



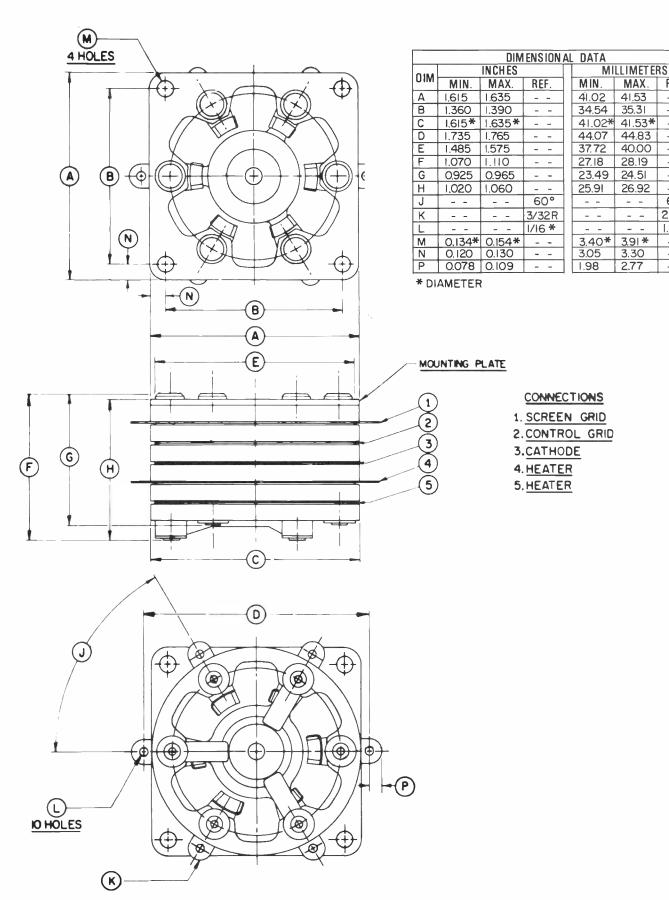
### MATERIALS AND FINISHES

The mounting plate of the socket is fabricated of nickel-plated brass. The contact rings and tabs are of beryllium copper, heat-treated after forming, then silver-plated. The rivets and washers are of brass, silver and nickel-plated respectively. The ten contact terminals are solder-dipped to insure firm, dependable solder contact. The insulating wafers and the stop yoke of the socket are molded of a flameproof diallyl meta-phthalate.

### INSTALLATION

The SK-740 Air-System Socket is designed for under-chassis mounting and requires a 1.593 inches diameter hole through the chassis deck. Four screw holes are provided for fastening as shown in the outline drawing.

### THE SK-740 AIR-SYSTEM SOCKET IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBE TYPES:


| 4N 15A  | 4CX300A/8167 |
|---------|--------------|
| 4CX125C | 4CX300Y/8561 |
| 4CX125F |              |

Note: A separate means of directing air is required when using the SK-740 with the 4CX300A and 4CX300Y. For applications using these two tubes, the SK-760 and SK-770 Air-System Sockets are recommended. These contain an integral chimney.

| NET WEIGHT (Approximate) 1 | 1.50 | 0z.; (42.5) | gm) | ) |
|----------------------------|------|-------------|-----|---|
|----------------------------|------|-------------|-----|---|

(Revised 7-15-75) © 1963, 1966, 1975 by Varian





60°

2.34R

1.57\*



# TECHNICAL DATA

SK-760 SK-770

AIR-SYSTEM SOCKETS

The EIMAC SK-760 and SK-770 Air-System Sockets are recommended for use with those tubes listed at the bottom of the page or other tube types having this special breech-block base. These sockets incorporate a built-in integral chimney. When these sockets are used, connection is made to each of the tube electrodes except the anode. The screen contacts on the SK-760 are not connected to the metal mounting plate, while the screen contacts on the SK-770 are connected to the metal mounting plate. The SK-760 has no grounded contacts.

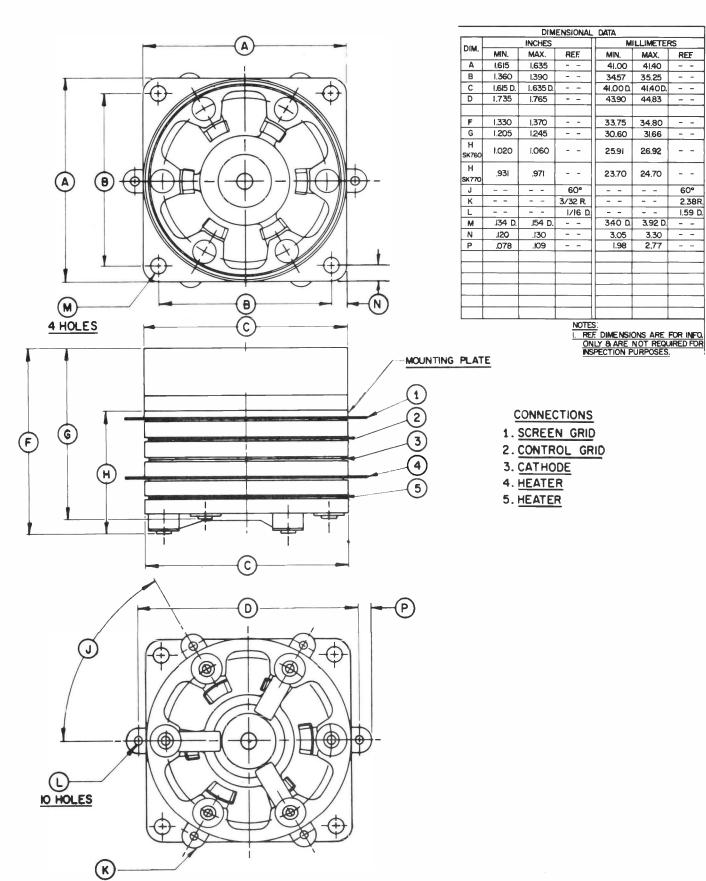


#### **BASE CONNECTIONS**

The SK-760 and SK-770 Air-System Sockets consist of five sets of ring contacts. They are (from top to bottom): 1)-screen-grid, 2)-control-grid, 3)-cathode, 4)-heater, 5)-heater. Each set of contacts consist of six separate contact tabs. The tube elements are connected to their external circuits by two diametrically opposed solder terminals.

#### MATERIALS AND FINISHES

The mounting plates of these sockets are fabricated of nickel-plated brass. Contact rings and tabs are made of beryllium copper, heat-treated after forming, then silver-plated. The rivets and washers are of brass, silver and nickel-plated respectively. The ten contact terminals are solder-dipped to insure firm, dependable solder contact. The insulating wafers and the stop yoke of the sockets are molded of a flameproof diallyl meta-phthalate.


#### INSTALLATION

The SK-760 and SK-770 Air-System Sockets were designed for under-chassis mounting and require a 1.593 inches diameter hole through the chassis deck. Four screw holes are provided for fastening as shown on the outline drawing.

THE SK-760 AND SK-770 AIR-SYSTEM SOCKETS ARE RECOMMENDED FOR USE WITH THE FOLLOWING TUBE TYPES:

(Revised 7-15-75) © 1963, 1966, 1970, 1975 by Varian





MILLIMETERS

41.40

35.25

41.40D.

44.83

34.80

31,66

26.92

24.70

3.92 D.

3.30

2.77

60°

2.38R

1.59 D.

MAX. REF

MIN.

41.00

34.57

43.90

3.05

1.98



# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

SK-800B

AIR-SYSTEM SOCKET

UNGROUNDED

CATHODE TERMINALS

SK-806

The Eimac SK-800B is one of the air-system sockets recommended for use with the Eimac 4CX1000A or 4CW2000A tetrodes. A companion SK-806 Air Chimney is also available and is recommended for use with the socket when the air-cooled 4CX1000A is to be employed.

When this socket is used, connection is made to each of the tube electrodes, except the anode, and to one side of the integral screengrid by-pass capacitor. The SK-800B is humidity and salt-spray resistant.

The SK-800B is an improved version of the SK-800A and directly replaces the SK-800A in any equipment. The SK-800B features a stronger, one piece base and improved contact tabs.

## BASE CONNECTIONS

The SK-800B socket consists of three sets of spring-finger contact tabs for each tube electrode (to assure low-inductance contact), a center guide pin to facilitate tube installation, and an integral screen by-pass capacitor. The terminals are shown on the outline drawing.

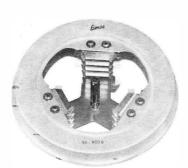
When the socket is mounted on a grounded chassis, no tube electrodes are automatically grounded. Connection to the cathode and one side of the heater is made via the second set of spring-finger contacts from the bottom of the socket.

#### SCREEN-GRID BY-PASS CAPACITOR

This capacitor utilizes Mylar film as a dielectric and is encapsulated in silicone resin. Its capacitance is  $1500~\rm uufds \pm 20$  percent and it is rated at 400 dc working volts. One side connects to the three screen-grid tabs on the tube and the other side is connected directly to the socket body.

# MATERIALS AND FINISHES

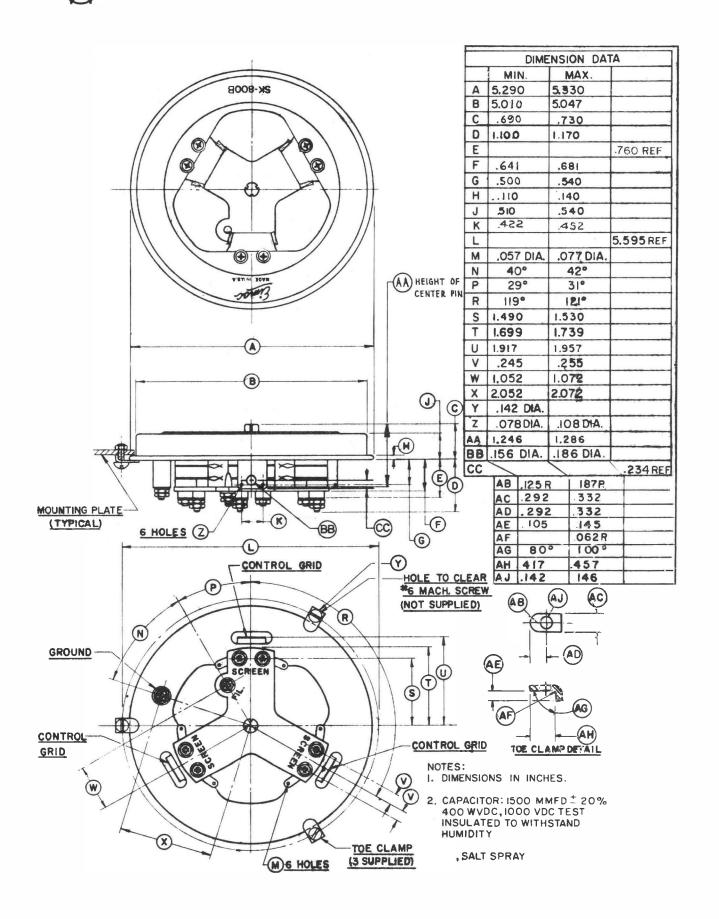
The metal shell, or body, of the socket is fabricated of silverplated brass, while the mounting base and centering pin are a one-piece, nickel-plated die casting. All contacts are formed of a non-ferrous alloy, heat-treated and silver-plated. Contact insulating material is high-temperature ceramic.


#### INSTALLATION

The SK-800B Air-System Socket is designed for under-chassis mounting and requires a 5-1/16-inch hole through the chassis deck. The socket is held in place by the three toe clamps provided. One side of the screen-grid by-pass capacitor is automatically grounded to the chassis when this mounting method is used.

#### AIR CHIMNEY

The SK-806 Air Chimney is moulded of fiberglass-reinforced silicone resin. It effectively directs the flow of air to the anode cooling fins with minimum pressure drop and is recommended for use with each SK-800B when the air-cooled 4CX1000A is to be socketed.


#### SK-800B:



SK-800B



SK-800B WITH CHIMNEY





# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

SK-810B

AIR-SYSTEM SOCKET

GROUNDED

CATHODE TERMINALS

SK-806 AIR CHIMNEY

The EIMAC SK-810B is one of the air-system sockets recommended for use with the EIMAC 4CX1000A or 4CW2000A tetrodes. A companion SK-806 Air Chimney is also available and is recommended for use with the socket when the air-cooled 4CX1000A is to be employed.

When this socket is used, connection is made to each of the tube electrodes except the anode, and to one side of the integral screen-grid by-pass capacitor. The SK-810B is humidity and salt-spray resistant.

The SK-810B is an improved version of the SK-810 and directly replaces the SK-810 in any equipment. The SK-810B features a stronger, one-piece base and improved contact tabs.

#### **BASE CONNECTIONS**

The SK-810B socket consists of three sets of spring-finger contact tabs for each tube electrode (to assure low-inductance contact), a center guide pin to facilitate tube installation, and an integral screen by-pass capacitor. The terminals are shown on the outline drawing.

When this socket is mounted on a grounded chassis, the cathode and one side of the heater will be automatically grounded. A grounding terminal is provided and may be used for positive connection if desired.

# **SCREEN GRID BY-PASS CAPACITOR**

This capacitor utilizes Mylar film as a dielectric and is encapsulated in silicone resin. Its capacitance is  $1500~\rm pF \pm 20$  percent and it is rated at  $400~\rm dc$  working volts. One side connects to the three screen-grid tabs on the tube and the other side is connected directly to the socket body.

#### **MATERIALS AND FINISHES**

The metal shell, or body, of the socket is fabricated of silver-plated brass, while the mounting base and centering pin are a one-piece, nickel-plated die casting. All contacts are formed on a non-ferrous alloy, heat-treated and silver-plated. Contact insulating material is high-temperature ceramic.

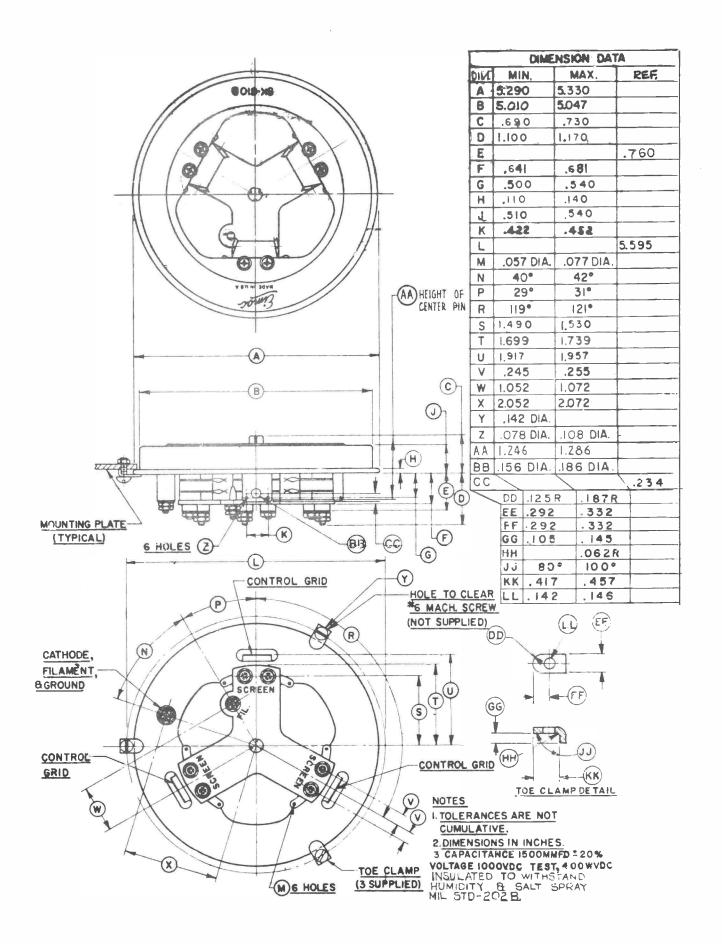
# INSTALLATION

The SK-810B Air-System Socket is designed for under-chassis mounting and requires a 5-1/16 inch hole through the chassis deck. The socket is held in place by the three toe clamps provided. One side of the screen-grid by-pass capacitor is automatically grounded to the chassis when this mounting method is used.





SK-810B WITH CHIMNEY


#### AIR CHIMNEY

The SK-806 Air Chimney is molded of fiberglass-reinforced silicone resin. It effectively directs the flow of air to the anode cooling fins with minimum pressure drop and is recommended for use with each SK-810B when the air-cooled 4CX1000A is to be socketed.

#### **SK-810B**

| Net Weight       | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | <u> </u> | 18 ounces   |
|------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|-------------|
| SK-806           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |          |             |
| Net Weight       | _ | - | _ | _ | _ | _ | - | - | _ | _ | - | - | - | - | - | - | - | _ | -        | 3-¼ ounces  |
| Maximum Height   | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -        | I-% inches  |
| Maximum Diameter | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -        | 0-78 Inches |

(Revised 6-1-67) © 1964, 1967 by Varian





#### TECHNICAL DATA

SK-816 SK-860 SK-870 AIR-SYSTEM SOCKET and CHIMNEY

The EIMAC SK-860 and SK-870 are air-system sockets recommended for use with the EIMAC 3CX1000A7 triode. A companion SK-816 Air Chimney is also available and is recommended for use with the socket.

When this socket is used, connection is made to each of the tube electrodes except the anode. The SK-860 and SK-870 are humidity and salt-spray resistant.

#### **BASE CONNECTIONS**

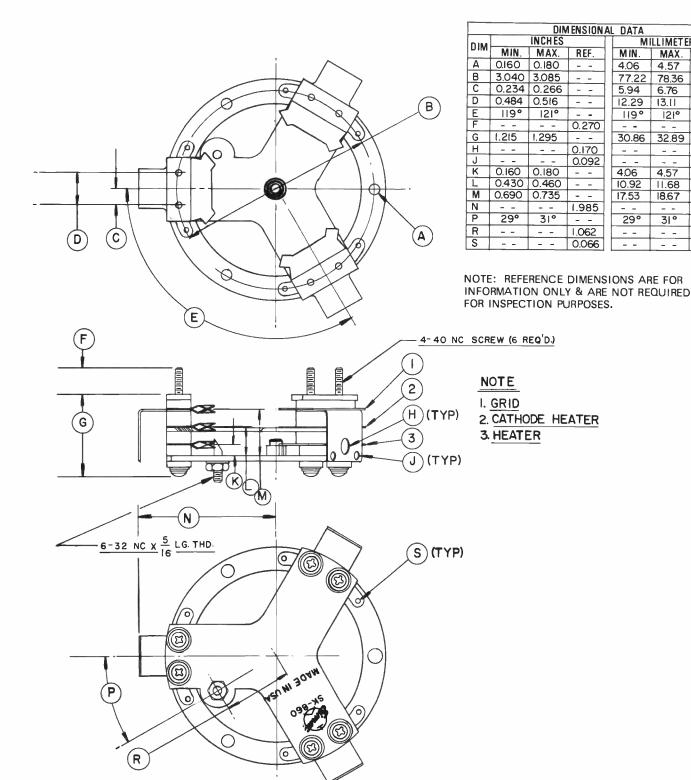
The SK-860 and SK-870 sockets consist of three sets of spring-finger contacts for each tube electrode (to assure low-inductance contact) and a center guide to facilitate tube installation. The terminals are shown on the outline drawing.

No contacts are grounded on the SK-860, while the SK-870 has the grid contacts grounded to the equipment chassis when installed.



#### MATERIALS and FINISHES

The metal shell, or body, of the socket is fabricated of silver-plated brass, while the mounting base is a one-piece nickle-plated die casting. All contacts are formed of a non-ferrous alloy, heat treated and silver-plated. Contact insulating material is high-temperature ceramic.


## INSTALLATION

The SK-860 and SK-870 are designed for under-chassis mounting and require a 2-3/4" diameter hole through the chassis deck. The socket is held in place by the six 4-40 studs provided on the socket. The grid of the SK-870 is automatically grounded to the chassis when this mounting method is used.

#### AIR CHIMNEY

The SK-816 Air Chimney is molded of fiberglass-reinforced silicone resin. It effectively directs the flow of air to the anode cooling fins with minimum pressure drop and is recommended for use with each SK-860 and SK-870.

(Revised 3-25-75) © 1963, 1967, 1975 by Varian



MILLIMETERS

MAX.

4.57

78.36

6.76

13.11

121°

32.89

4.57

11.68

18.67

31°

REF.

6.86

4.32

2.34

50.42

26.97

1.68



# E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

SK-890B

AIR-SYSTEM SOCKET

GROUNDED

CATHODE TERMINALS

SK-806 AIR CHIMNEY

The EIMAC SK-890B is one of the air-system sockets recommended for use with the EIMAC 4CX1000A or 4CW2000A tetrodes. The SK-890B is especially designed for use at frequencies where series screen neutralization is employed and is so constructed that the screen-grid can be series tuned to ground through the screen by-pass capacitor. A companion SK-806 Air Chimney is also available and is recommended for use with the socket when the air-cooled 4CX1000A is to be employed.

When this socket is used, connection is made to each of the tube electrodes except the anode. The SK-890B is humidity and salt-spray resistant.

The SK-890B is an improved version of the SK-890 and directly replaces the SK-890 in any equipment. The SK-890B features a stronger, one-piece base and improved contact tabs.

#### **BASE CONNECTIONS**

The SK-890B socket consists of three sets of spring-finger contact tabs for each tube electrode (to assure low-inductance contact), a center guide pin to facilitate tube installation, and an integral screen by-pass capacitor. The terminals are shown on the outline drawing.

When this socket is mounted on a grounded chassis, the cathode and one side of the heater will be automatically grounded. A grounding terminal is provided and may be used for positive connection if desired.

# SCREEN-GRID BY-PASS CAPACITOR

This capacitor utilizes Mylar film as a dielectric and is encapsulated in silicone resin. Its capacitance is 1500 pF  $\pm 20$  percent and it is rated at 400 dc working volts. The socket is so orientated that the three sets of spring finger contacts which connect to the screen-grid tabs of the tube are not connected to the upper, ungrounded side of the screen-grid capacitor. A series of six holes are provided to the upper capacitor deck to allow the installation of the screen neutralizing device; this device is connected between each of the solder terminals provided in the screen spring finger contacts and the upper capacitor deck. The lower capacitor deck is connected directly to the socket body.

#### **MATERIALS AND FINISHES**

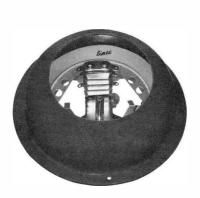
The metal shell, or body, of the socket is fabricated of silver-plated brass, while the mounting base and centering pin are a one-piece, nickel-plated die-casting. All contacts are formed of a non-ferrous alloy, heat-treated and silver-plated. Contact insulating material is high-temperature ceramic.

## INSTALLATION

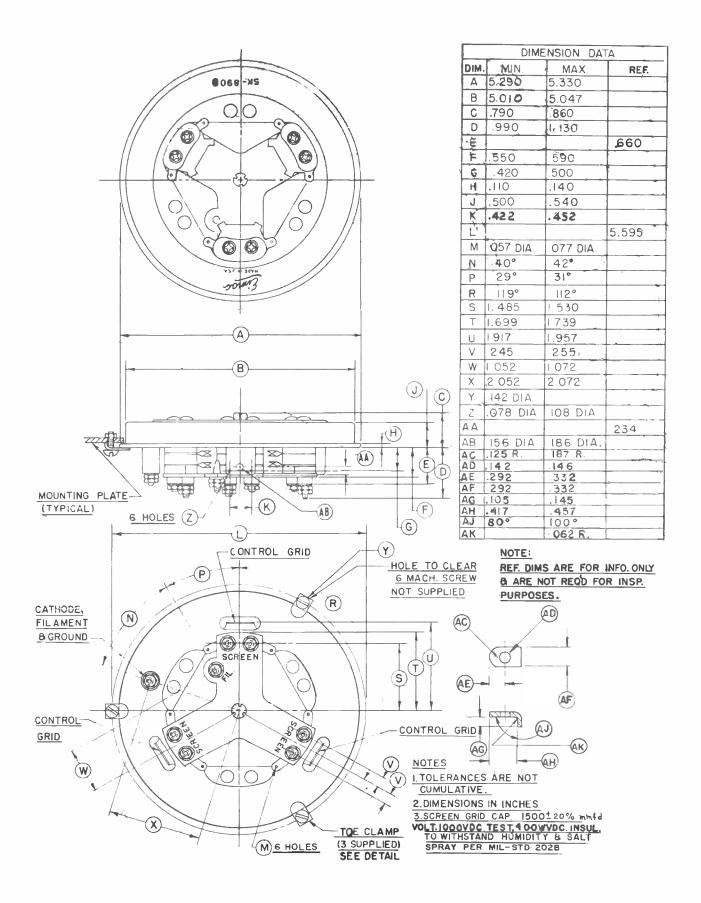
The SK-890B Air-System Socket is designed for under-chassis mounting and requires a 5-1/16 inch hole through the chassis deck. The socket is held in place by the three toe clamps provided. One side of the screen-grid by-pass capacitor is automatically grounded to the chassis when this mounting method is used.

#### **AIR CHIMNEY**

The SK-806 Air Chimney is moulded of fiberglass-reinforced silicone resin. It effectively directs the flow of air to the anode cooling fins with minimum pressure drop and is recommended for use with each SK-890B when the air-cooled 4CX1000A is to be socketed.


#### SK-890B

| Net Weight       | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 18 ounces  |
|------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------------|
| SK-806           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |            |
| Net Weight       | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3-¼ ounces |
| Maximum Height _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1-% inches |
| Maximum Diameter | _ | _ | _ | _ | _ | _ | _ | _ |   |   | _ | _ |   | _ | _ | _ | _ | _ | _ | 6-% inches |


(Revised 6-1-67) © 1964, 1967 by Varian



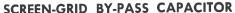
SK-890B



SK-890B WITH CHIMNEY






E I M A C
Division of Varian
S A N C A R L O S
C A L I F O R N I A

SK-900 socket and SK-906

The EIMAC SK-900 Air-System Socket and companion SK-906 Air Chimney are intended for use with the EIMAC 4X500A. The socket makes connection to each of the tube electrodes except the anode. A screen-grid by-pass capacitor is incorporated as an integral part of the socket.

#### **BASE CONNECTIONS**

Filament, control-grid, and screen-grid pins of the tube are engaged by four self-aligning pin-jacks supported in a disk of low-loss material and terminating in 10-32 studs. The connecting leads to these studs must be sufficiently flexible to allow free movement of the pin-jacks or the self-aligning feature will be impaired. The supporting insulating disk rests on a shoulder turned into the bottom of the socket body and is held in place by four machine screws which act as clamps. This design permits the insulation and terminal assembly to be rotated to any convenient position and clamped firmly in place.



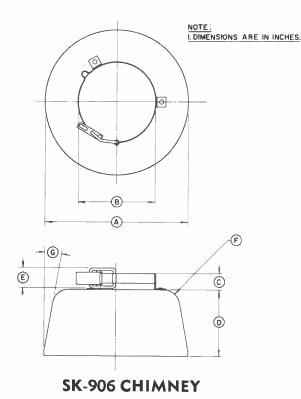
This capacitor utilizes polyester film as the dielectric and is encapsulated in epoxy resin. The capacitance is 650  $\mu\mu f\pm 20\%$  and is rated at 700 working volts. One side of the by-pass capacitor contacts the screengrid flange of the tube through eight spring fingers and the other side is directly connected to the socket body.



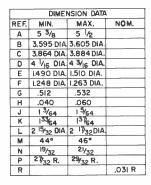


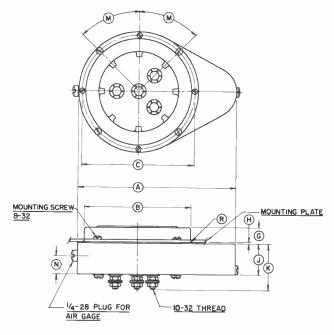
#### INSTALLATION

The SK-900 Air-System Socket is designed for under-chassis mounting and requires a 3%-inch hole through the chassis deck. The socket is held in place by four 8-32 machine screws running through the chassis and into tapped holes in the cast aluminum socket body. One side of the screengrid by-pass capacitor is automatically grounded to the chassis when this mounting method is used.


An air blower may be connected to the socket air-inlet by means of a duct terminating in a cylindrical fitting of 1¼-inch OD or the entire chassis may be pressurized.

Pressure drop across the socket and tube (with SK-906 installed may be measured by a manometer arranged to indicate the pressure difference between the air in the socket (or pressurized chassis) and the surrounding air. A  $\frac{1}{4}$ -28 tapped hole is provided in the socket body to facilitate the installation of a fitting. A suitable fitting will have a hole diameter of approximately  $\frac{1}{64}$ -inch and when installed, must be flush with the inner wall of the socket to avoid inaccurate pressure measurements.


## **SK-906 AIR CHIMNEY**


The air chimney is molded of fiber-glass reinforced silicone resin and fitted with an anode clamp. It effectively directs the flow of air to the anode cooling fins with minimum pressure drop and is recommended for use with each SK-900 Air-System Socket.

| DIMENSION DATA |            |            |          |  |  |  |  |  |
|----------------|------------|------------|----------|--|--|--|--|--|
| REF            | MIN.       | MAX.       | NOM.     |  |  |  |  |  |
| Α              | 3.720 DIA. | 3.785 DIA  |          |  |  |  |  |  |
| В              | 1.990 I.D. | 2.010 I.D. | · ·      |  |  |  |  |  |
| С              | 3/8        | 7/16       |          |  |  |  |  |  |
| D              | 1.715      | 1.735      |          |  |  |  |  |  |
| E              | .510       | .530       |          |  |  |  |  |  |
| F              |            |            | 13/32 R. |  |  |  |  |  |
| G              | 9°         | II°        |          |  |  |  |  |  |



# 19 (.166) DRILL THRU (TO CLEAR 8-32)
4 HOLES







3K-900 30CKE1

# SK-900 CHASSIS DRILLING





SK-650 SK-655

AIR-SYSTEM SOCKET

The Eimac SK-650 is one of the Air-System Sockets recommended for use with those tubes listed at the bottom of the page, or other tube types having the same special nine-pin base, when a compact, low-cost, special purpose socket is required. When this socket is used, connection is made to each of the tube electrodes except the anode.

The SK-655 Screen By-Pass Capacitor is a separate encapsulated capacitor designed for use with the SK-650 Air-System Socket. When this combination is used, the screen by-pass capacitor can be replaced without troublesome or costly repairs.

Both the SK-650 and the SK-655 are humidity and salt-spray resistant.

#### **BASE CONNECTIONS**

The SK-650 Air-System Socket consists of seven base pin contacting terminals (no contact is made to Pin #5) and a center control-grid terminal. The cathode of the tube is connected to its external circuits by the four even-numbered base pins which, in turn, are connected to the four socket mounting tabs. Connections are made in this manner to minimize the effects of lead inductance. When the SK-650 Air-System Socket is used alone, connection is made to the screen-grid via Pin #1. Control grid contact is accomplished by means of a 6/32" screw at the center terminal.

## THE SK-655 SCREEN-GRID BY-PASS CAPACITOR

The SK-655 Screen-Grid By-Pass Capacitor is an independent encapsulated capacitor which is mounted to the SK-650 Air-System Socket by the same four socket mounting screws. This is a low-inductance capacitor, 1100 uuf  $\pm$  20%, which provides a short radio-frequency path to ground. The capacitor is hi-voltage breakdown tested at 2000 volts d-c and rated at 1000 volts d-c. When the SK-655 is mounted on a grounded chassis, one side of the screen by-pass capacitor is automatically grounded.

#### MATERIALS AND FINISHES

In the SK-650 Air-System Socket, the base pin terminals and the four mounting lugs are fabricated of beryllium-copper, heat treated after forming, then silver-plated. The center control-grid terminal is silver-plated brass.

The insulating material, polytrifluorochloroethylene, is chemically inert, non-flammable, will not absorb water or water-vapors and is not affected by acids or alkalies. It will not react to normal solvents except in the case of halogenated compounds which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of  $-196\,^{\circ}\text{C}$  to  $+199\,^{\circ}\text{C}$  and it is resistant to embrittlement and thermal shock.

The SK-655 Screen By-Pass Capacitor has a body, or shell, constructed of silverplated brass while the eight screen-grid contacting fingers are heat treated, silver-plated beryllium-copper. The capacitor dielectric is silvered-mica and is encapsulated in epoxy resin.

| Net Weight of the SK-650 Air-System Socket             |            |
|--------------------------------------------------------|------------|
| Net Weight of the SK-655 Screen-Grid By-Pass Capacitor | 1.5 ounces |
| INSTALLATION                                           |            |

Both the SK-650 Air-System Socket and the SK-655 Screen-Grid By-Pass Capacitor can be mounted to a chassis deck or partition by the four 0.130" diameter holes provided in each of the assemblies. Both units have holes which are 90° apart and are drilled on 2-17/32" diameter pitch circle.

The SK-650 Air-System Socket requires a 2-1/8" diameter hole to accept the socket body.

# **TUBE EXTRACTOR**

The SK-604 is a spring-steel device useful for inserting and extracting tubes of the type used in the SK-650 Air-System Socket. It is recommended for use where the construction of the equipment makes it difficult or impossible to grasp the tube by hand or when it is necessary to handle the tubes while they are still hot from recent use.

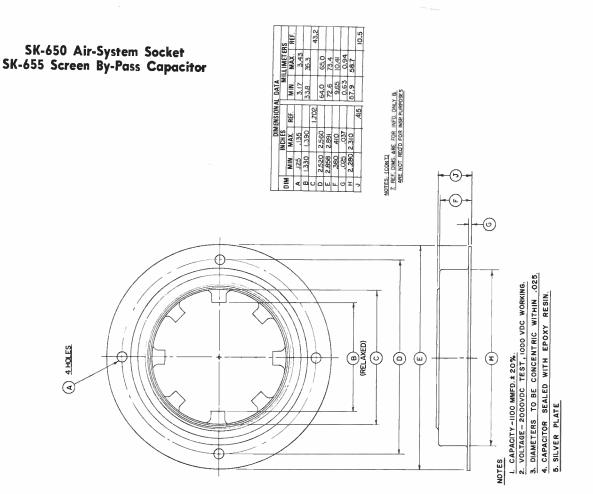
# THE SK-650 AIR-SYSTEM SOCKET IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBES:

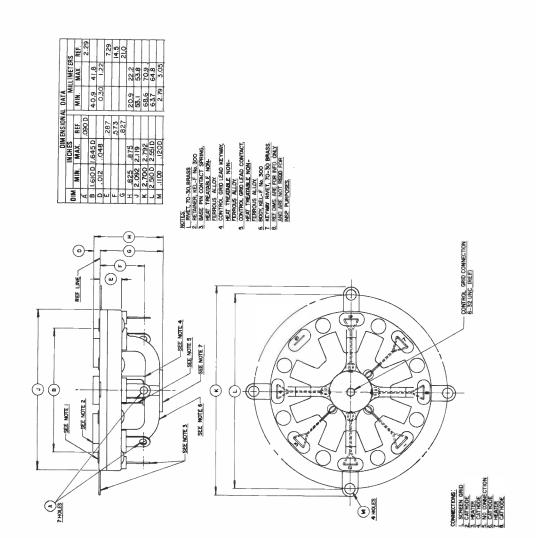
 7034/4CX150A
 8621/4CX250FG
 8321/4CX350A

 7609
 7580W/4CX250R
 8322/4CX350F

 7203/4CX250B
 8249/4W300B
 8904/4CX350FJ

 8957/4CX250BC


(Revised 5-1-76) 1961, 1966, 1976 by Varian




SK-650 Air-System Socket



SK-655 Screen
By-Pass Capacitor





SK-655 OUTLINE DRAWING

SK-650 OUTLINE DRAWING





SK-1300 SK-1310 SK-1320

AIR-SYSTEM SOCKETS

These sockets have been designed for use with the tube types listed below. The SK-1300 and the SK-1320 are intended for mounting on a pressurized chassis or plenum, allowing air-cooling of the tube base and terminals.

## **BASE CONNECTIONS**

All these sockets are provided with three concentric rings of spring contact fingers for making contact to the filament and the grid of the coaxial triodes listed below.

The filament contact fingers are terminated on two bus connections to insure good high frequency current distribution. Each of these two bus rings is provided with two lugs for making external connections.

The grid spring-finger contacts are terminated on a heavy support assembly. The grid contact assembly is insulated from the socket mounting cup in the SK-1300; it is grounded to the cup in the SK-1320, for grounded-grid operation. The SK-1310 is a version intended for use with vapor-cooled versions of these coaxial triodes and has no grounded contacts.



SK-1300



SK-1310



SK-1320

#### MATERIALS AND FINISHES

The contact fingers are non-ferrous spring alloy, heat-treated for positive spring action and silver-plated for good rf conductivity. The main socket body and cup assemblies are made of brass and are also silver plated.

#### INSTALLATION

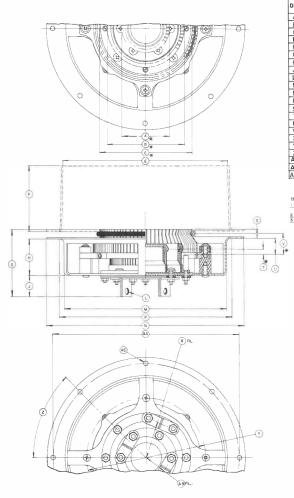
The SK-1300 and SK-1320 are supported by the socket cup on a pressurized compartment or chassis. A 7-1/8 inch diameter hole is required in the supporting chassis or plenum and the socket is secured by eight #6 machine screws on a 7-3/4 inch pitch circle. The socket cup on both these sockets is open so that air may be directed through them for cooling of the tube base terminals.

The SK-1310, which is designed for use on vapor-cooled versions of these tubes, has no mounting/support cup; it is held into place on the base of the tube only by its contact finger assemblies for the grid and filament.

(Revised 3-1-72) © 1963, 1966, 1972 Varian

# CHIMNEY

A companion Air-Chimney, the SK-1306, is available for use with the SK-1300 and SK-1320 and some of the air-cooled triode types, as listed below. The chimney is mounted above the chassis deck and is installed using the same eight mounting screws used for securing the socket to the chassis or deck.


Use of an Air-Chimney allows simplified cooling of the tube; air forced through the socket is directed through the chimney and then through the tube's anode cooling fins.

# SOCKET/CHIMNEY/TUBE TYPE GUIDE

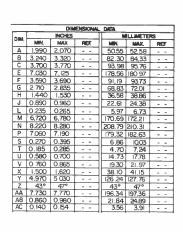
| SOCKET  | TUBE TYPE NUMBER | RECOMMENDED AIR CHIMNEY  |
|---------|------------------|--------------------------|
|         | 3CW10,000A3      | none - water cooled tube |
|         | 3CW20,000A1      | none - water cooled tube |
|         | 3CW20,000A3      | none - water cooled tube |
|         | 3CW20,000A7      | none-water cooled tube   |
| SK-1300 | 3CW25,000A3      | none-water cooled tube   |
| and     | 3CX5000A3        | special - EIMAC Y-463    |
| SK-1320 | 3CX10,000A1/8158 | SK-1306                  |
|         | 3CX10,000A3/8159 | SK-1306                  |
|         | 3CX10,000A7/8160 | SK-1306                  |
|         | 3CX15,000A3      | SK-1306                  |
|         | 3CX20,000A3      | none available           |
| SK-1310 | 3CV30,000A1      | none-vapor cooled tube   |
| 511910  | 3CV30,000A3      | none-vapor cooled tube   |

#### **NET WEIGHTS**

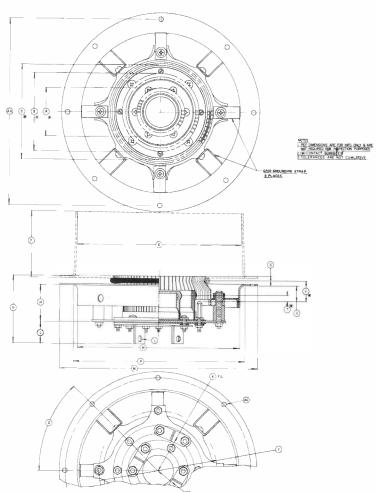
SK-1300, SK-1310, SK-1320 ..... 2.3 lbs; 1.04 kg

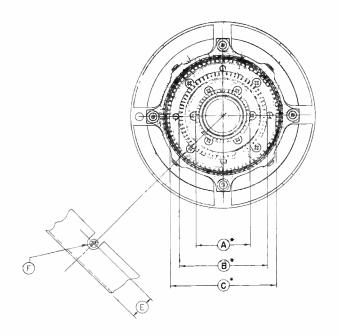


|      |       | INCHES | ENSIONAL |        | ILLIMETE | DC . |
|------|-------|--------|----------|--------|----------|------|
| DIM. | MIN   | MAX.   | REF      | MIN    | MAX      | REF  |
| Α    | 1.990 | 2.070  |          | 50 55  | 52.58    |      |
| В    | 3,240 | 3,320  |          | 82.30  | 84.33    |      |
| C    | 3.700 | 3.770  |          | 93.98  | 95.76    |      |
| ε    | 7.030 | 7.125  |          | 178.56 | 180.97   |      |
| F    | 3.590 | 3.690  |          | 91.19  | 93.73    |      |
| G    | 2.710 | 2.835  |          | 68.83  | 72.01    |      |
| Н    | 1.440 | 1.530  |          | 36.58  | 38.86    |      |
| J    | 0.890 | 0.960  |          | 22.61  | 24.38    |      |
| L    | 0.235 | 0.265  |          | 5,97   | 6.73     |      |
| M    | 6.720 | 6.780  |          | 170,69 | 172.21   |      |
| N    | 8.220 | 8280   |          | 208.79 | 210.31   |      |
| Р    | 7.060 | 7.190  |          | 179.32 | 182.63   |      |
| S    | 0.270 | 0.395  |          | 686    | 10 03    |      |
| Т    | 0.185 | 0.285  |          | 4.70   | 7.24     |      |
| U    | 0.580 | 0.700  |          | 14.73  | 17.78    |      |
| V    | 0.760 | 0865   |          | 1930   | 21.97    |      |
| Χ    | 1 500 | L620   |          | 38.10  | 41.15    |      |
| Υ    | 4970  | 5030   |          | 126.24 | 12776    |      |
| Z    | 43°   | 47°    |          | 43°    | 47°      |      |
| AA   | 7730  | 7.770  |          | 196,34 | 19736    |      |
| 8A   | 0.860 | 0.980  |          | 21.84  | 24.89    |      |
| AC   | 0.140 | 0.154  |          | 3.56   | 3.91     |      |


NOTES:

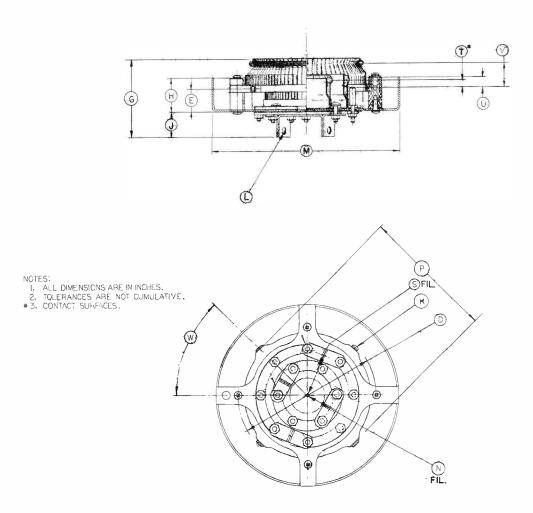
REF DIMS ARE FOR INFO CMLY AND ARE NOT RECO FOR INSP PURPOSES.


2. (94) CONTROL SURFACES.


3. TOLERANCES ARE NOT CUMLATIVE.

SK-1300




SK-1320





|        |         | DIM    | ENSION | WL | DATA     |         |     |
|--------|---------|--------|--------|----|----------|---------|-----|
| DIM    |         | INCHES |        |    | M        | LLIMETE | 45  |
| CZINI. | MAX     | MIN.   | REE    |    | MIN      | MAX     | REF |
| Α      | 2.061   | 2001   | ~ -    |    | 50.82    | 52.35   |     |
| В      | 3,311   | 3.251  |        |    | 82.57    | 84.10   |     |
| С      | 3.732   | 3.672  |        |    | 93.27    | 94.79   |     |
| D      | 5030    | 4.970  |        |    | 126.24   | 127.76  |     |
| Ē      | 0.890   | 0.860  |        | ┚  | 21,84    | 22.61   |     |
| F      | 0.267   | 0.233  |        |    | 5.92     | 6.78    |     |
| G      | 2.835   | 2.710  |        |    | 68.83    | 72 01   |     |
| Н      | 1.187   | 1.156  |        | _] | 29.36    | 30.15   |     |
| J      | 0.960   | 0.890  |        |    | 22.61    | 24.38   |     |
| K      | 6-32 NC |        |        |    |          |         |     |
| L      | I/4DIA  | HOLE   |        |    | 6.35 DIA |         |     |
| М      | 6780    | 6.720  |        |    | 170.69   | 172.21  |     |
| N      | 0.980   | 0.860  |        | _, | 21.84    | 24.89   |     |
| Р      | 4.690   | 4.620  |        |    | 117.35   | 119.13  |     |
| S      | 1.620   | 1.500  |        |    | 38.10    | 41.15   |     |
| T      | 0.285   | 0.185  |        |    | 4,70     | 7,24    |     |
| U      | 0.314   | 0280   |        |    | 7.11     | 7.97    |     |
| V      | 0.856   | 0.826  |        |    | 20.98    | 21.74   |     |
| W      | 47°     | 43°    |        | 7  | 43°      | 47°     |     |

SK-1310







SK-1306 SK-1406 AIR-SYSTEM

CHIMNEYS

The SK-1306 and SK-1406 Air-System Chimneys are intended for use with the tube and socket combinations listed below. They are used to direct cooling air to the tube's anode cooling fins after it has been forced through the companion Air-System Socket.

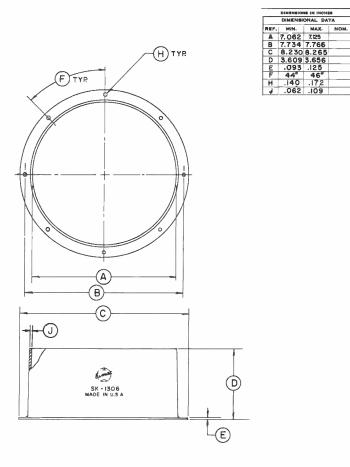
# **MATERIALS**

These chimneys are molded from a grey, thermosetting polyester premix compound .

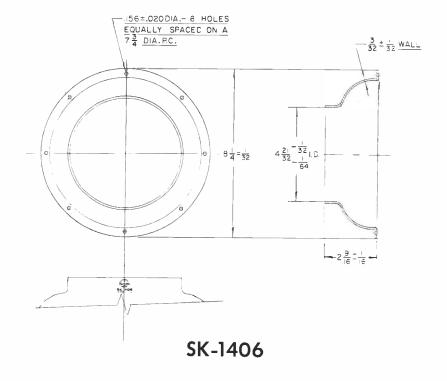
### **INSTALLATION**

The SK-1306 and SK-1406 Air-System Chimneys are mounted above the chassis or pressurized compartment, directly over the companion socket. The chimneys are secured by the eight equally spaced machine screws on a a  $734^{\prime\prime\prime}$  P.C. that are used to install the socket.




| CHIMNEY | TUBE                                      | SOCKET               |
|---------|-------------------------------------------|----------------------|
| SK-1306 | 3CX10,000A1<br>3CX10,000A3<br>3CX10,000A7 | SK-1300              |
|         | 4CX10,000D                                | SK-300<br>SK300A     |
| SK-1406 | 4CX3000A                                  | SK-1400A<br>SK-1470A |

4CX10.000D






SK-1306 Chimney shown with 4CX10,000 and SK-300 socket



SK-1306







SK-1400A SK-1470A

AIR-SYSTEM SOCKETS

The EIMAC SK-1400A and SK-1470A Air-System Sockets are intended for use with the 4CX3000A and the 4CV8000A. The SK-1400A incorporates an integral screen by-pass capacitor and has no grounded contacts. The SK-1470A does not include a by-pass capacitor but does have the screen contacts grounded to the socket mounting plate.

#### **BASE CONNECTIONS**

A continuous screen grid contact finger assembly is provided for making contact with the solid screen ring flange on the 4CX3000A or 4CV8000A. Grid and filament connections to the tube are made by four rows of contact tab assemblies that provide for breech-block electrical and mechanical contact.

Each grid contact is terminated in two machine screws at the bottom of the socket base. Filament connections are to a terminal strap and to the socket base.



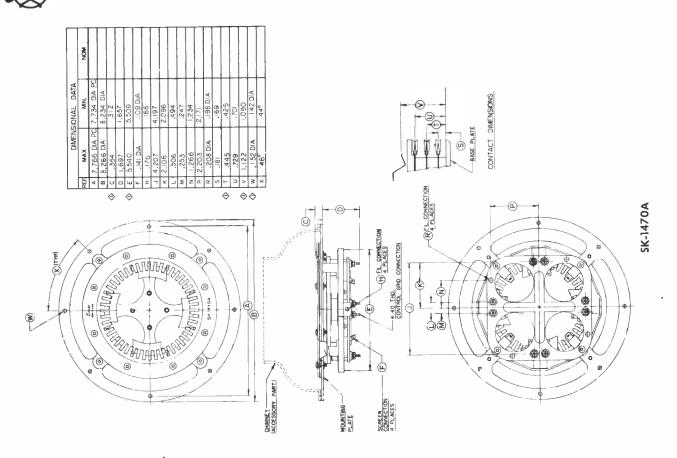
#### **BY-PASS CAPACITOR**

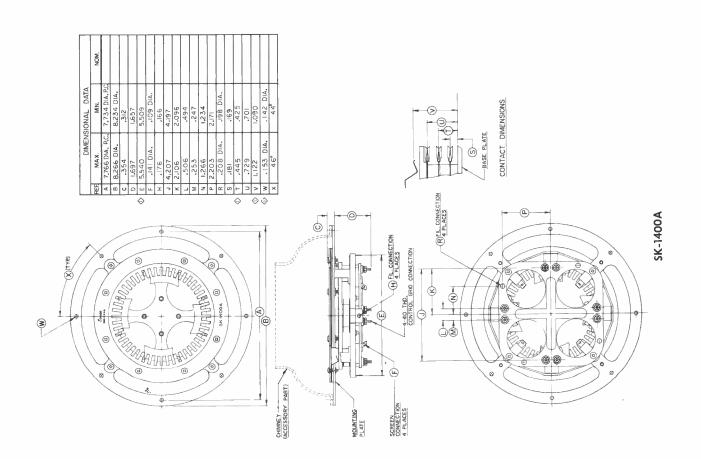
The SK-1400A is provided with an integral 1800 picofarad screen by-pass capacitor rated at 1000 volts dc. The screen contact fingers are attached to one side of this capacitor. The SK-1470A does not contain this capacitor; instead the screen contacts are grounded directly to the socket shell.

# **INSTALLATION**

When mounted on a chassis or pressurized compartment, a  $7\frac{1}{4}$ " diameter hole is required for the socket. The socket is secured by eight #6 screws on a  $7\frac{3}{4}$ " bolt circle. These same screws are used to install the companion SK-1406 chimney used with the air-cooled 4CX3000A.

## **MATERIALS**


The contact fingers and tabs are non-ferrous spring alloy, heat-treated and silver-plated. The socket body is made of silver-plated brass.

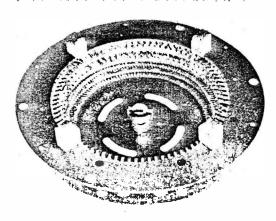

# CHIMNEY

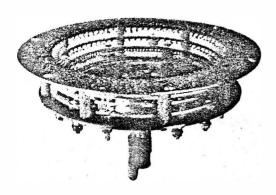
The SK-1406 chimney is available for use with the SK-1400A or SK-1470A and the air-cooled 4CX3000A. It effectively directs air that has passed through the socket into the anode cooling fins.

*Note:* Where a "floating" socket is desired — especially for the 4CV8000A—the SK-1490 is available. This is a SK-1470 without the mounting ring and is intended for use where the tube is fixed and the socket is to be removable.

Net Weight - - - - - - - - - 30 ounces






# TECHNICAL DATA

SK-1510A TUBE SOCKETS

SK-1511
TUBE POSITIONER





SK-1500A

SK-1510A

These sockets are designed to be used with EIMAC tube types 8349/4CX35,000C, 8351/4CV100,000C, and 4CW100,000D, providing contact to the filament, control grid, and screen grid of the socketed tube.

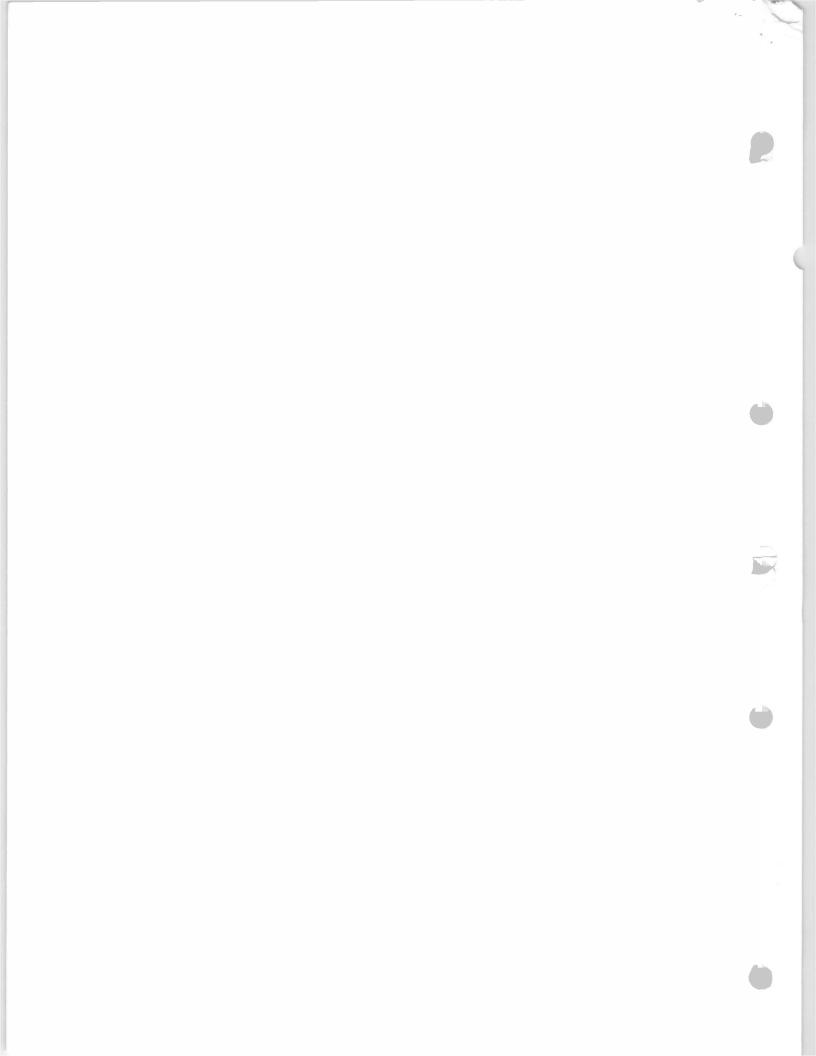
Screen grid bypass capacitor components are available but must be ordered separately:

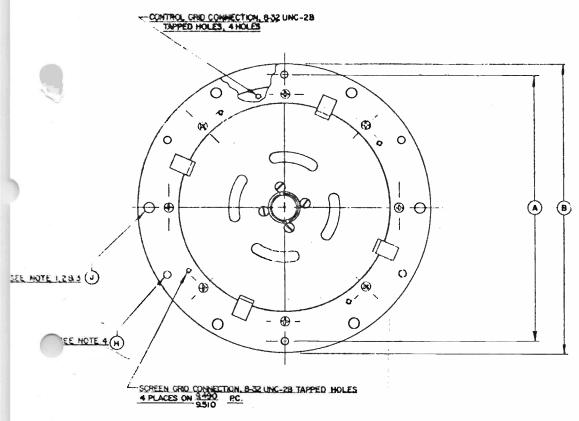
2300 pF Dielectric - EIMAC P/N 149089 (one supplied) Set of Insulator Bushings - EIMAC P/N 149088 (six supplied)

1100 pF Dielectric - EIMAC P/N 149090 (one supplied) Set of Insulator Bushings - EIMAC P/N 149088 (six supplied)

For a grounded-screen application the screen flange of the socket is mounted directly to the equipment chassis, using the eight 3/16-inch holes provided in the flange.

The SK-1500 has four guides mounted to the screen flange for proper centering of the tube. When in place, the tube is turned to engage a bayonet retainer in the base of the socket.


The SK-1510 has the four locating guides removed and includes a base tube positioner. With the tube set into place in the socket, this positioner engages the base of the tube and the positioner handle is then turned to pull the tube securely into the socket and retain it.


The special positioner is available separately as the SK-1511, and the SK-1500 socket, which does not include it, may be modified to include the positioner.

The SK-1500 and SK-1510 are not air-system sockets, since the anode-cooling air for a forced-air cooled tube, such as the 4CX35,000C, does not pass through the socket on its way to the anode. Base cooling of the tube in use is therefore accomplished by directing air across the socket, and both also include a central connection for an air hose for tube base cooling.

Tube contacts in both sockets are of heat-treated beryllium-copper alloy attached to brass support — flanges. All metal parts are silver plated. The contact insulating material is high-temperature ceramic.

4090 (Effective 3-15-79) © 1979 by Varian





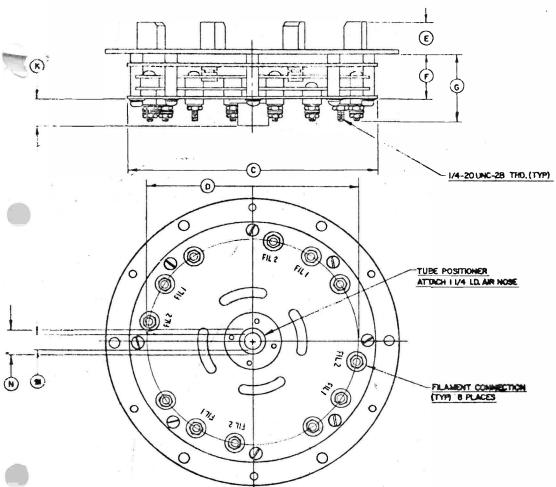
#### DIMENSIONAL DATA

|     | INCHES |        | MILLIN  | ETERS  |
|-----|--------|--------|---------|--------|
| REF | MIN.   | MAX    | MIN     | MAX    |
| Α   | 11.240 | 11.250 | 285 50  | 296 00 |
| В   | 11 960 | 12 040 | \$7.000 | 305 82 |
| C   | 10.094 | 10 156 | 255 39  | 257.96 |
| b   | B 470  | 8 590  | 215 14  | 214 19 |
| L.  | 1.214  | 1 286  | 36 H3   | 32 86  |
| F   | 1.956  | 2.040  | 49 68   | 51 82  |
| G   | 2 823  | 3.110  | 71 70   | 78.99  |
| н   | 0 171  | U 203  | 4 23    | 5 16   |
| J   | 0 422  | 0 453  | 10 72   | 11 51  |
| К   | 1.210  | 1 290  | 30.73   | 32 77  |
| м   | 0.725  | 0 775  | 18 4:   | 19 68  |
| N   | 1.230  | 1 240  | 31 24   | 31 50  |
|     | 1      |        |         |        |
|     |        |        |         | 7      |
|     | T      | T      | 1       |        |

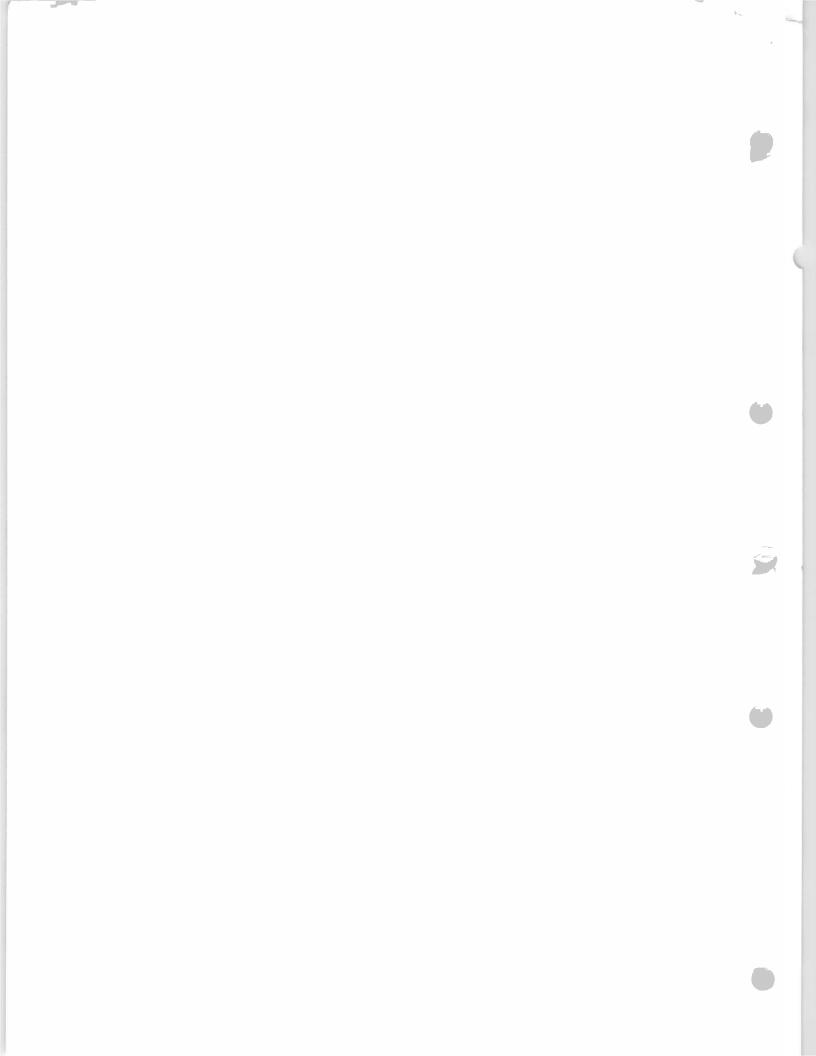
NOTES:

- I SCREEN BYPASS CAPACITOR COMPONENTS
  LISTED BELOW ARE OPTIONAL PARTS &
- MUST BE CRIDERED SEPARATELY.

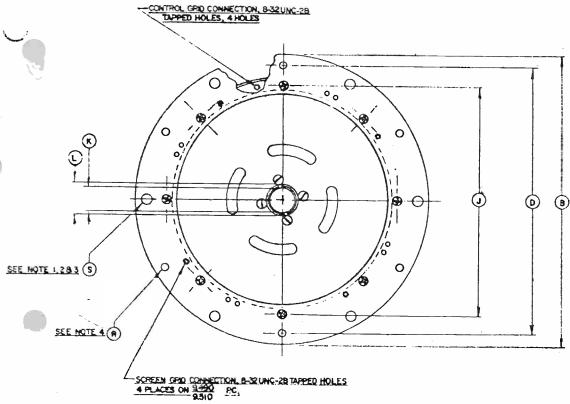
  2 DELECTRIC .005 THK, FOR APPROX.


  2000 PFD, PART NO, H9069, CHE REQ'D,
  INSULATOR BUSHING PART NO, H9068

  SIX REQ'D.
- 3. DIELECTRIC .OIQ THK. FOR APPROX.


  IIOO PFD, PART HO, M9090 ONE REQ'D.

  INSULATOR BUSHING PART NO. M9088


  SIX REQ'D.
- 4. FOR GROUNDED SCREEN APPLICATION
  B SCREW IN 3/45 DIA. HOLES TO INCUMT
  SCREEN DIRECTLY TO CHASSIS.




SK-1500A





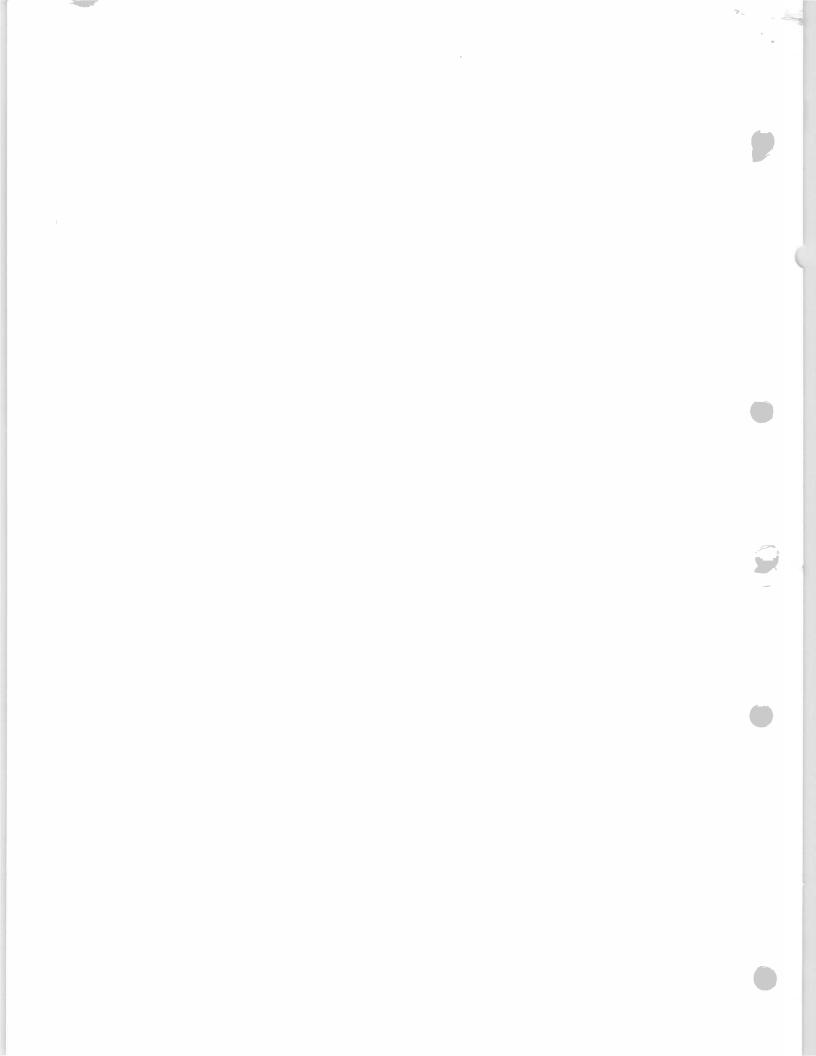


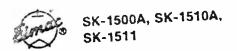


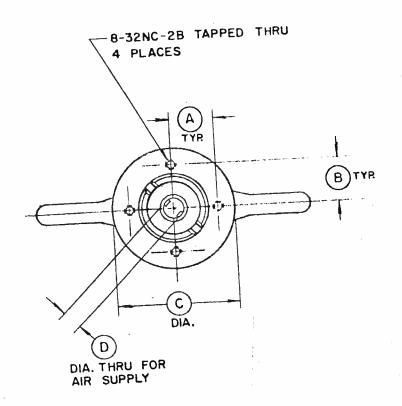
#### DIMENSIONAL DATA

|      | INCHES |        | MILLI  | METERS |
|------|--------|--------|--------|--------|
| REF. | MIN.   | MAX.   | MIN.   | MAX.   |
| Α    | 0.725  | 0 775  | 18.41  | 19 88  |
| В    | 11 960 | 12 040 | 303 78 | 305.82 |
| C    | 2.941  | 3.241  | 74 70  | 82 32  |
| b    | 11.240 | 11 260 | 285 50 | 288 00 |
| F    | 10.094 | 10 156 | 255.30 | 257.96 |
| G    | 2.799  | 2.946  | 71.09  | 74.83  |
| н    | 4.500  | 6.312  | 114.30 | 160.32 |
| J    | 9.400  | 9.410  | 238.76 | 239.01 |
| К    | 0.912  | 0 962  | 23.16  | 24.43  |
| L    | 1.230  | 1.240  | 31 24  | 31 50  |
| M    | 4.875  | 5 125  | 123 82 | 130.17 |
| N    | 8.470  | 8.590  | 215 14 | 218.19 |
| Р    | 0.984  | 1.016  | 24 99  | 25.81  |
| R    | 0.171  | 0.203  | 4.34   | 5.18   |
| S    | 0.422  | 0.45.7 | 10.72  | 11.51  |
|      |        |        |        |        |
| S    | 0 422  | 0.453  | 10.72  |        |

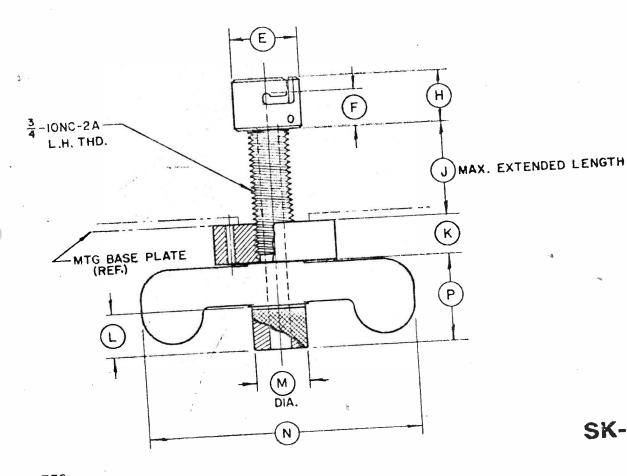
#### HOTES!


- L. SCIEEN MASS CAPACITOR COMPONENTS LISTED BELDFANE OPTIONAL PRETSAND MAST BE ORDERED SEPMATELY. 2. DIELECTRIC COS THEIR TOR APPROXIZATION
- PFD; MAT MOLIFFORM, CHE MESS., INSULATOR BUSINESS, MAT NO, INFORM, SIX READ.
- BH READ.


  5. DIELECTHIC JOINTHUICH APPROULING PTO, PART MOLHSOSO, OME REGIO.
  HISULATON BUSHINS, PART MOLHSOSM, SIX REGIO.


  4. FOR CHOLHDED SCREEN APPLICATION, B SCREWS IN SIME BOALBOLES, TO MOUNT SCREEN DRECKLY TO CHASSISS.

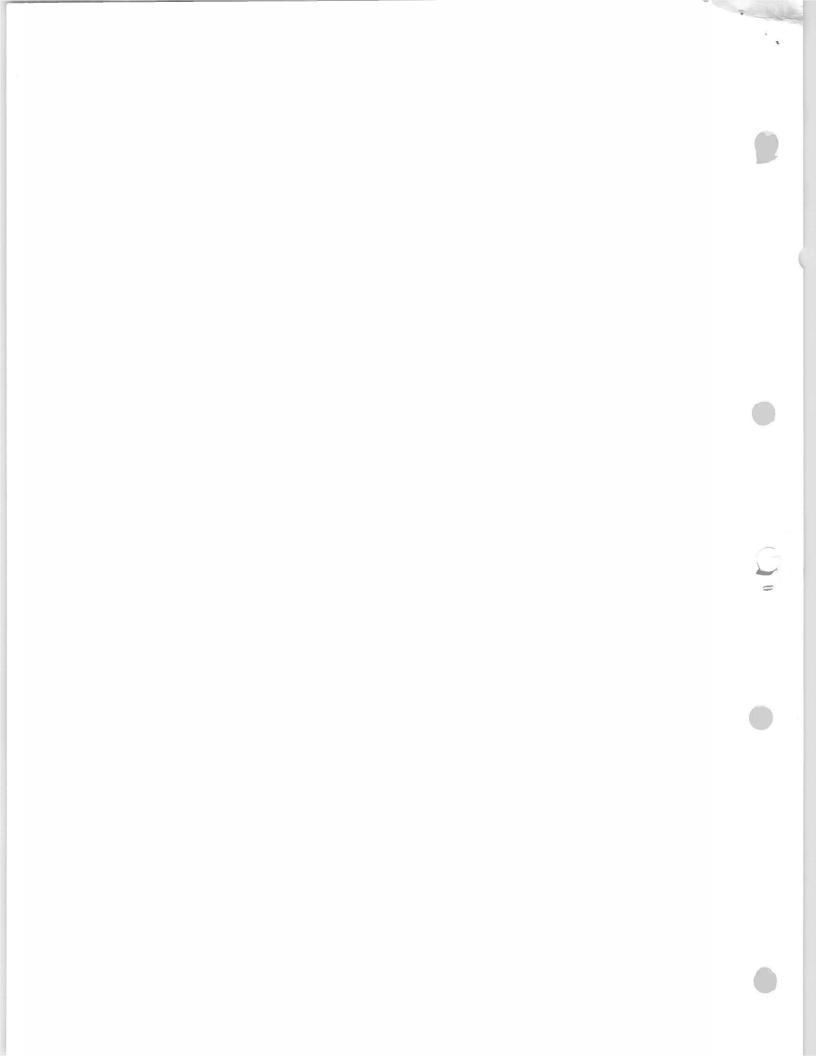
  5. REF. DIMERSIONS ARE FOR HIMOLONLY B ARE NOT REGION RED FOR MI SPECTION PURPOSES.


SK-1510A








|   |        | AIG    | ENSIUNA |        |        |
|---|--------|--------|---------|--------|--------|
| Г |        | INCHES | 3       | MILLIM | ETERS  |
| - | REF.   | MIN.   | MAX.    | MIN.   | MAX.   |
| Ľ | A      | 8G7    | .817    | 20.50  | 20.75  |
| H | В      | .807   | .817    | 20.50  | 20.75  |
| H | C      | 2.234  | 2.266   | 56.74  | 57.56  |
| 1 |        | .370   | .380    | 9.40   | 9 65   |
| - | E      | 1.230  | 1.240   | 31.24  | 31 50  |
| ł |        | EST    | 134     | 1/73   | 18 7/1 |
| 1 | Н      | 1.109  | 1.141   | 28.17  | 26.98  |
| 1 | 3      | 1.745  | 1.815   | 44 32  | 46.10  |
|   | K      | .734   | 1766    | 18.64  | 19.46  |
|   | -\`\-\ | .787   | .837    | 19.99  | 21.28  |
|   | M      | .084   | 1.016   | 24 99  | 25 81  |
|   | N      | 4.953  | 5.047   | 125.81 | 128.19 |
|   | P      | 1.598  | 1,648   | 40 54  | 41.86  |
|   | -      | -      | -       |        |        |
|   | -      | -      | 1       |        |        |
|   | -      | -      | 1       |        |        |
|   | -      | -      |         |        |        |
|   | -      |        |         |        |        |



SK-1511

# NOTES:

1. CONNECT AIR SUPPLY TUBING OVER (M) DIA.





SK-2200 SK-2210 AIR SYSTEM SOCKET

The EIMAC SK-2200 and SK-2210 are air-system sockets recommended for use with the EIMAC 8877/3CX1500A7 triode. Two companion chimneys are available, either of which will operate with either socket.

With these sockets, connection is made to each tube element except the anode.

No contacts are grounded on the SK-2200, while the SK-2210 has the grid contacts grounded to the equipment chassis when installed.

#### INSTALLATION

The SK-2200 and SK-2210 are designed for under-chassis mounting, and require a  $3\frac{1}{4}$  inch hole through the chassis deck. Each socket is held in place by four 6-32 screws.

#### AIR CHIMNEYS

Two chimneys are available. The SK-2206 is made of fiber glass and is recommended for general purpose use at low and medium frequencies. For high frequency applications where losses must be held to a minimum, the SK-2216 chimney should be used as it is made of low-loss teflon. The SK-2206 is held in place with four clips (supplied with the chimney). The SK-2216 is held in place with four toe clamps (supplied with the chimney).

#### **NET WEIGHTS**

| SK-2210 Socket                  | SK-2200 Socket | <br>4.5 oz: 128 | gm |
|---------------------------------|----------------|-----------------|----|
|                                 |                | •               | _  |
| D11 2200 On111110               |                | •               | _  |
| SK-2216 Chimney 2.0 oz; 56.7 gm | •              | •               | _  |



SK-2200

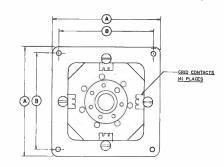


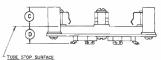
SK-2210



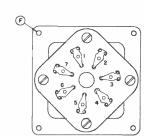
SK-2206




SK-2216

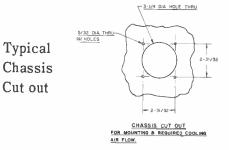

# SK-2200/SK-2210



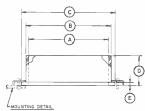

| DIMENSIONAL DATA |         |       |   |    |             |       |       |     |
|------------------|---------|-------|---|----|-------------|-------|-------|-----|
| OIM              | INCHES  |       |   | П  | MILLIMETERS |       |       |     |
| CIM              | MIN     | MAX   | F | EE | 11          | MIN   | MAX   | REF |
| Α                | 3 3 7 3 | 3.413 |   | ~  | 11          | 8567  | 86 70 |     |
| В                | 2 953   | 2 983 |   | -  | 11          | 7501  | 75 77 |     |
| С                | 0 500   | 0 550 |   |    | 11          | 12.70 | 13 97 |     |
| D                |         | 0630  | - | -  | 11          |       | 16 00 |     |










SK-2200 Socket

SK-2210 Socket



| DIMENSIONAL DATA |       |        |     |             |       |     |  |  |
|------------------|-------|--------|-----|-------------|-------|-----|--|--|
| DIM.             |       | INCHES |     | MILLIMÉTERS |       |     |  |  |
| Dist.            | MIN   | MAX    | REE | MIN         | MAX   | REF |  |  |
| A                | 3 385 | 3 415  | + - | 85 98       | 8674  |     |  |  |
| В                | 3 532 | 3 592  |     | 8971        | 91.24 |     |  |  |
| C                | 3 907 | 3 967  | ~ - | 99.24       | 10076 |     |  |  |
| D                | 1 220 | 1.280  |     | 3099        | 3251  |     |  |  |
| E_               | 0110  | 0 140  |     | 279         | 356   |     |  |  |
| F                | 0417  | 0.457  |     | 1059        | 11.61 |     |  |  |
| G                | 0.292 | 0.332  |     | 742         | 843   |     |  |  |
| Н                | 0.292 | 0 332  | ~ - | 742         | 843   |     |  |  |
| J                | 0105  | 0 145  |     | 2.67        | 368   |     |  |  |
| K                | 80°   | 100°   |     | 80°         | 100°  |     |  |  |
| L                | 0 142 | 0 146  |     | 361         | 371   |     |  |  |

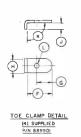


CHIMNEY CLIP
PENILISSAS
(a FURNISHED)

A
B
E

MOUNTING DETAIL

| DIMENSIONAL DATA |       |         |       |             |       |       |  |
|------------------|-------|---------|-------|-------------|-------|-------|--|
| OIM,             |       | INCHES  |       | MILLIMETERS |       |       |  |
|                  | MIN   | MAX     | REF   | MIN         | MAX   | REF   |  |
| Α                | 3 187 | 3.281   |       | 80 95       | 83.34 |       |  |
| В                | 3 374 | 3 4 4 5 |       | 85.70       | 8750  |       |  |
| C                | 0.055 | 0 135   |       | 1 40        | 343   |       |  |
| D                | 1510  | 290     |       | 30.73       | 3277  |       |  |
| E                | ~ -   |         | 4.562 |             |       | 115 9 |  |


NOTES
REF DIMENSIONS ARE FOR INFO.
ONLY BARE NOT REQUIRED FOR
RESPECTION PURPOSES.

MATERIAL.

- CHIMMEY: POLYESTER
PREMIX COMPOUND. FIBERGLASS PER MIL-9-1140,
RESIN PER MIL-8-7575.
MAX OPERATING TEMP
125°C.

RESIN PER MIL-R-7578 MAX OPERATING TEMP 125°C CHIMNEY CLIP: BERYL-LUM COPPER, HEAT TREATED & CADMIUM PLATED.





SK-2206 Chimney

**CHIWNEAS AIR-SYSTEM** 

# TECHNICAL DATA







SK-300 socket with 4CX5000A and SK-306 Chimney shown

the companion Air-System Socket. cooling air to the tube's anode cooling fins after it has been forced through with the tube and socket combinations listed below. They are used to direct The SK-306 and SK-316 Air-System Chimneys are intended for use

# **MATERIALS**

compound. These chimneys are molded from a gray thermosetting polyester premix

# *NOITALLATION*

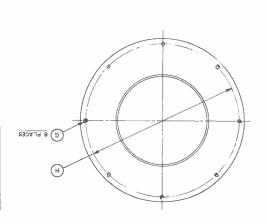
screws on 8-15/16" diameter pitch circle. The SK-316 mounts above the chassis with four separate mounting eight mounting screws that secure the SK-300 or SK-300A socket. The SK-306 mounts above the chassis or plenum and is secured by the

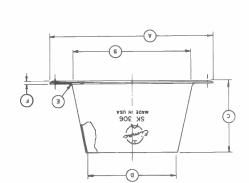
# CHIMNEY/TUBE/SOCKET COMBINATIONS

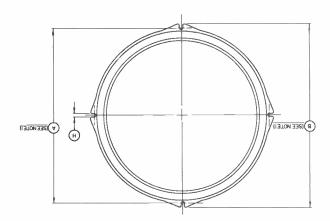
|         | 8281/4CX15,000A |         |
|---------|-----------------|---------|
| SK-300∀ | 8910/4CX12'0001 | 2K-316  |
|         | 8170W/4CX5000R  |         |
|         | 8909/4CX20001   |         |
| 2K-300  | 8170/4CX5000A   | 2K-306  |
| SOCKET  | TUBE            | CHIMNEX |

SK-316 — 11 ounces SK-306 - 5.5 ounces 

Net Weight


Printed in U.S.A.


(Revised 3-1-76) © 1963, 1966, 1976 by Varian




| 28.89f |             |        | 09 <i>L.</i> T |       |       | H    |
|--------|-------------|--------|----------------|-------|-------|------|
|        | 74.A        | 3.45   |                | 971.  | 9E1.  | 9    |
|        | <b>G7.4</b> | 78.1   |                | 781.  | S80.  | 4    |
| 3.17   |             |        | 125            |       |       | 3    |
|        | 125.98      | 12.421 |                | 096.4 | 068.4 | 0    |
|        | 74.09       | 96.38  |                | 3.562 | 3.400 | 0    |
|        | 173.02      | 28.691 |                | 518.8 | 788.8 | 8    |
|        | 210.34      | ₽7.80S |                | 182.8 | 812.8 | A    |
| .43A   | .XAM        | 'NIM   | .43A           | .XAM  | .NIM  |      |
| SF     | LLIMETE     | IM     |                | NCHES | ĺ     | .MIQ |
|        |             |        |                |       |       | •    |

NOTES: 1. REF DIMS ARE FOR INF CONLY AND ARE HOR RECD FOR INSP PURPOSES.







| - | (SEE NOLE I) |    | <u>a</u> |
|---|--------------|----|----------|
|   |              |    | 1        |
|   |              |    | 3        |
|   |              |    |          |
|   | (SEE NOTE 1) | -0 | )        |

|             |             | _      |      |       |       |      |
|-------------|-------------|--------|------|-------|-------|------|
|             | 80.2        | 3.56   |      | 002.  | 041.  | H    |
|             | 3.17        | 73.1   |      | 125   | S90.  | 9    |
|             | <b>5.54</b> | 3.96   |      | 812.  | 96 L. | 4    |
|             | 119.53      | 66.911 |      | 4.706 | 909.4 | 3    |
|             | 214.38      | 211.84 |      | 044.8 | 046.8 | a    |
|             | 194.36      | 192.02 |      | 7.652 | 095.7 | )    |
|             | 238.48      | 235.25 |      | 9.389 | 9.262 | 8    |
|             | 22.822      | 226.06 |      | 286.8 | 006.8 | A    |
| .43A        | .XAM        | 'NIM   | .43A | .XAM  | .NIM  | .MIQ |
| MILLIMETERS |             |        |      | ICHES | 11    | MIU  |

| ARVI OPERATING TEMPERATURE  | 2  |  |
|-----------------------------|----|--|
| UNRESTRAINED.               |    |  |
| 90 DEGREES APART WITH PART  |    |  |
| OF DIA. MEASUREMENTS TAKEN  |    |  |
| DIAMETERS NOTED ARE AVERAGE | Ή. |  |
| DIES:                       | N  |  |

2. MAX. OPERATING TEMPERATURE 125 DEGREES C.

3. MATL: POLYESTER PRE-MIX COMP. (GREY) FIBERGLASS.



## TECHNICAL DATA

SK-700 SK-710

AIR-SYSTEM
SOCKETS

The EIMAC SK-700 and SK-710 Air-System Sockets are designed to socket the EIMAC 8167/4CX300A or 8561/4CX300Y. Connections are made to each of the tube electrodes except the anode. An integral screen-grid by-pass capacitor is built into the socket.

#### SK-700

The cathode contacts are insulated from ground.

#### SK-710

All six of the cathode contacts are connected directly to the metal body.

#### **HEATER CONNECTIONS**

In both socket types, one heater contact is connected directly to the metal body.

#### SCREEN-GRID BY-PASS CAPACITOR

The capacitor is built into the socket and provides a low-impedance path to ground for screen-grid rf currents. It is tested at 1000 volts dc and rated at 400 volts dc. Capacitance is 1100 picofarads  $\pm 20\%$ .

# MATERIALS AND FINISHES

The metal shell, or body, of the socket is made of silver-plated brass. The non-ferrous alloy contacts are heat treated after forming and then silver-plated. Three silver-plated brass toe clamps are supplied for mounting purposes.

The socket insulating material is chemically inert, non-flammable, and will not absorb water or water vapor. It is not affected by strong or weak acids or alkalies. It will not react to normal solvents except in the case of halogenated compounds, which will induce minor dimensional changes. Its physical characteristics are stable over a temperature range of  $-150\,^{\circ}\mathrm{C}$  to  $+275\,^{\circ}\mathrm{C}$  and it is resistant to embrittlement and thermal shock.

A silvered-mica dielectric is used in the screen-grid by-pass capacitor.

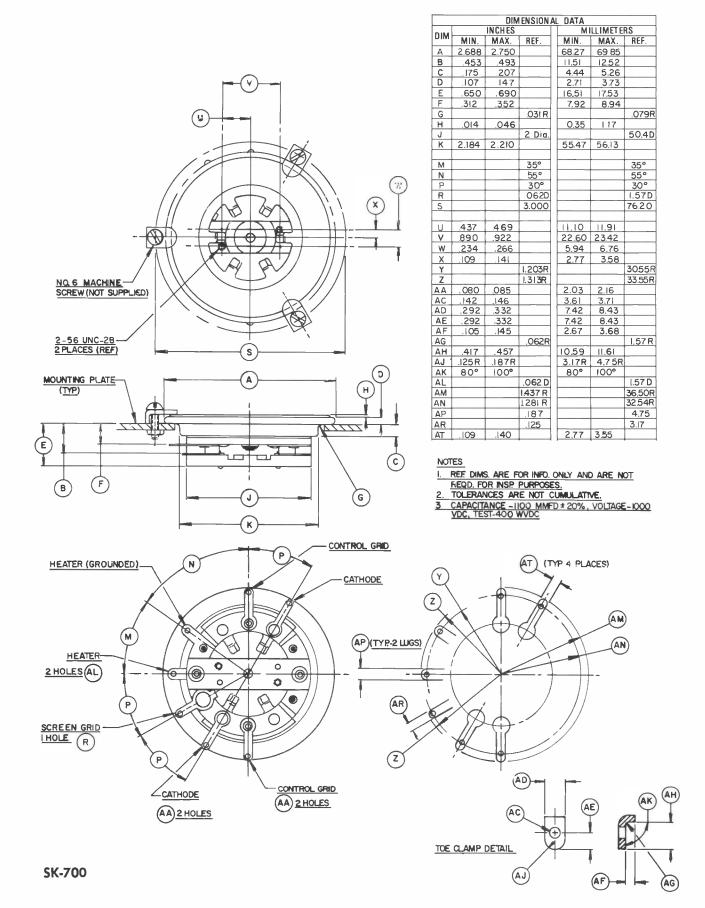
#### AIR CHIMNEY

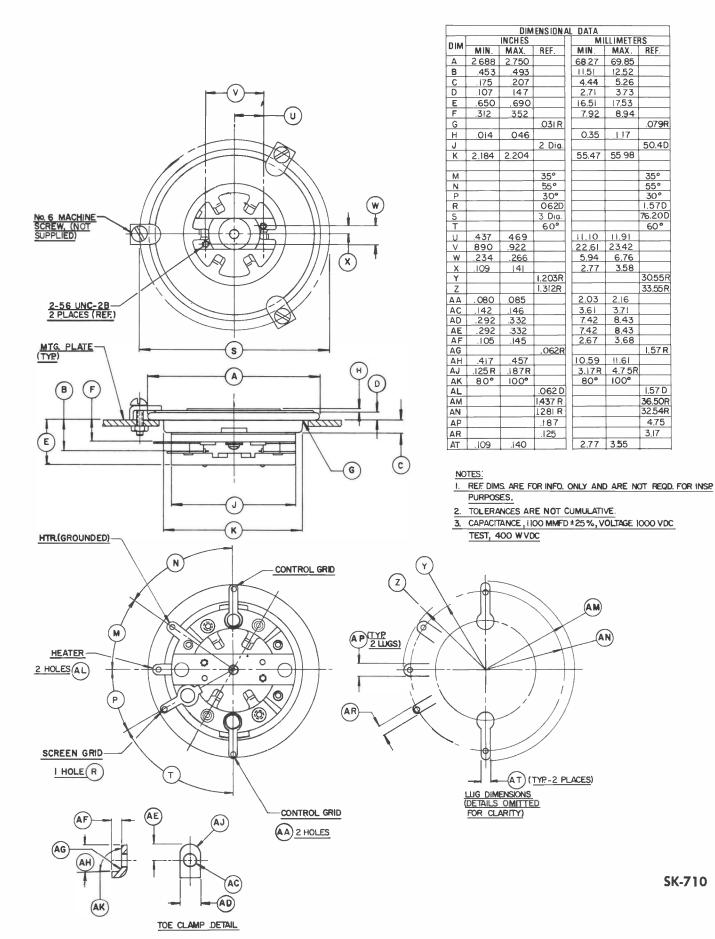
The SK-606 is intended to be used with the tube mounted vertically with the anode up. If horizontal mounting or vertical mounting with the anode down is required, means should be provided to retain the chimney. The air chimney is made of high-temperature ceramic and serves to direct the flow of air emerging from the socket into the anode cooling fins. It is recommended that the SK-606 chimney, or its equivalent, be used with each SK-700 or SK-710 socket.

(Revised 5-1-76) • 1958, 1966, 1976 Varian



SK-700



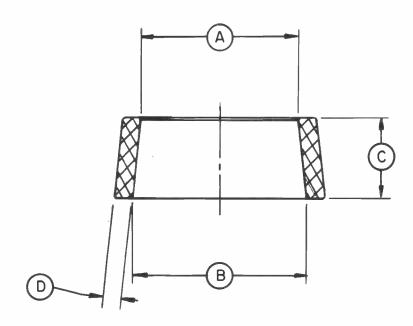


SK-700 WITH SK-606



SOCKET, TUBE, AND CHIMNEY









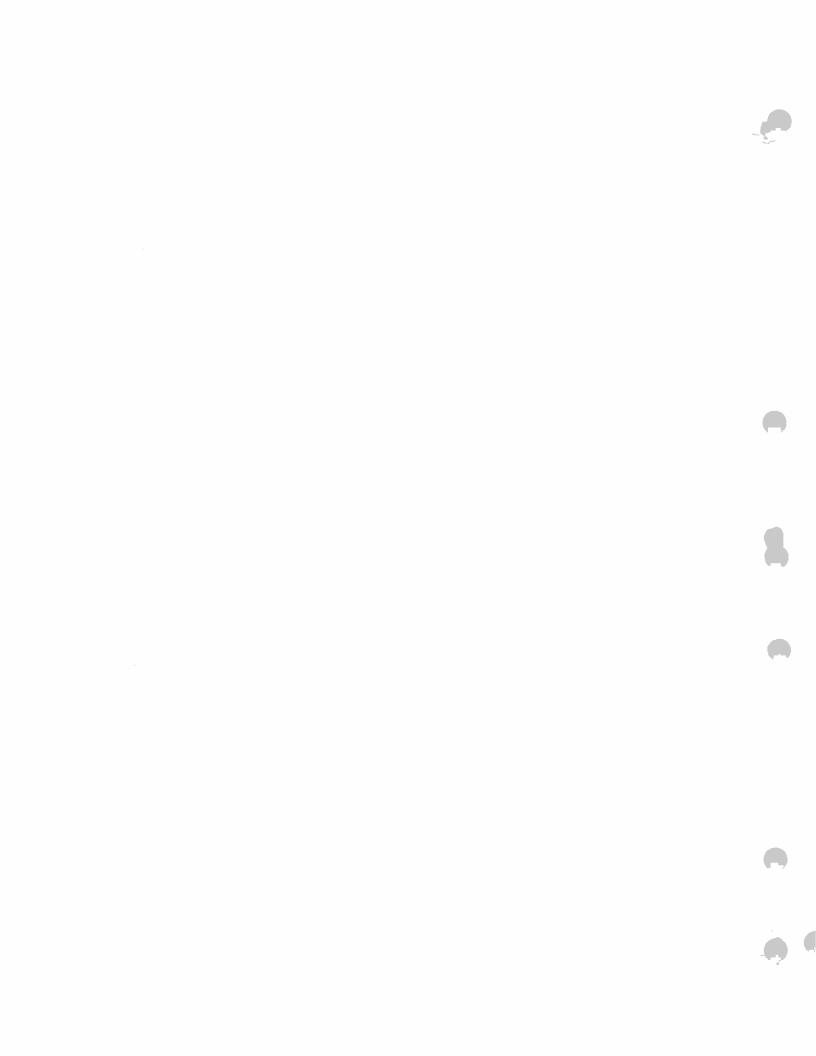



### DIMENSIONS IN INCHES

| DIMENSIONAL DATA |       |       |      |  |  |  |  |  |  |  |  |  |  |
|------------------|-------|-------|------|--|--|--|--|--|--|--|--|--|--|
| DIM.             | MIN.  | MAX.  | REF. |  |  |  |  |  |  |  |  |  |  |
| Α                | 1.635 | 1.700 |      |  |  |  |  |  |  |  |  |  |  |
| В                | 1.781 | 1.881 |      |  |  |  |  |  |  |  |  |  |  |
| С                | .812  | .875  |      |  |  |  |  |  |  |  |  |  |  |
| D                | .156  | .218  |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |
|                  |       |       |      |  |  |  |  |  |  |  |  |  |  |



# **EIMAC CAVITIES FOR FM BROADCAST**


Varian EIMAC cavity amplifiers for FM broadcast service cover the international frequency assignment of 86–108 MHz. Stock amplifiers provide power levels of 35 to 0.75 kW. An EIMAC solid-state driver is available for use as an intermediate stage, if desired. Anticipate reduced transmitter down-time and higher revenues with this modern amplifier concept. For full information contact Product Manager, Varian EIMAC, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221.

# **EIMAC CAVITIES FOR FM BROADCAST**

| OUTPUT<br>POWER | CAVITY<br>TYPE | TUBE<br>TYPE |      | ATE<br>CURRENT | SCR<br>VOLTAGE | SIZE<br>H W D |     |              |
|-----------------|----------------|--------------|------|----------------|----------------|---------------|-----|--------------|
| kW              |                |              | kV   | Α              | V              | Α             | W   | (INCHES)     |
| 35              | CV-2202        | 4CX20,000C   | 10.0 | 4.65           | 1000           | 0.253         | 375 | 31.5 19 21   |
| 20              | CV-2200        | 4CX20,000A   | 10.0 | 3.25           | 750            | 0.220         | 300 | 36.0 19 21   |
| 15              | CV-2210        | 4CX12,000A   | 8.0  | 2.60           | 800            | 0.120         | 250 | 19.8 19 21   |
| 10              | CV-2228        | 4CX7500A     | 6.5  | 2,2            | 750            | 0.128         | 100 | 19.8 19 21   |
| 5.5             | CV-2225        | 4CX3500A     | 4.3  | 1.9            | 700            | 0.123         | 66  | 6.6 19 16    |
| 1.5             | CV-2223        | 3CX800A7(2)  | 2.2  | 1.0            | _              | _             | 43  | 6.6 17 12    |
| 0.75            | CV-2222        | 3CX800A7     | 2.2  | 0.5            |                |               | 21  | 6.13 17 12   |
| 0.15            | AM2215A        | Solid State  | .028 | 12             |                | _             | 15  | 2.63 5.6 8.2 |

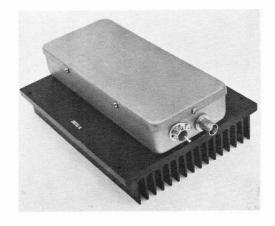


VARIAN EIMAC 301 Industrial Way San Carlos, CA 94070 415•592-1221





# **TECHNICAL DATA**


AM-2215A VHF AMPLIFIER MODULE

The EIMAC AM-2215A is a solid-state power amplifier module for use in the FM broadcast service.

The broad-band design permits operation over the entire FM band (86 to 108 MHz) without tuning.

These amplifiers are intended for use as drivers for EIMAC cavity amplifiers which deliver power output levels from 1.5 to 60 kilowatts.

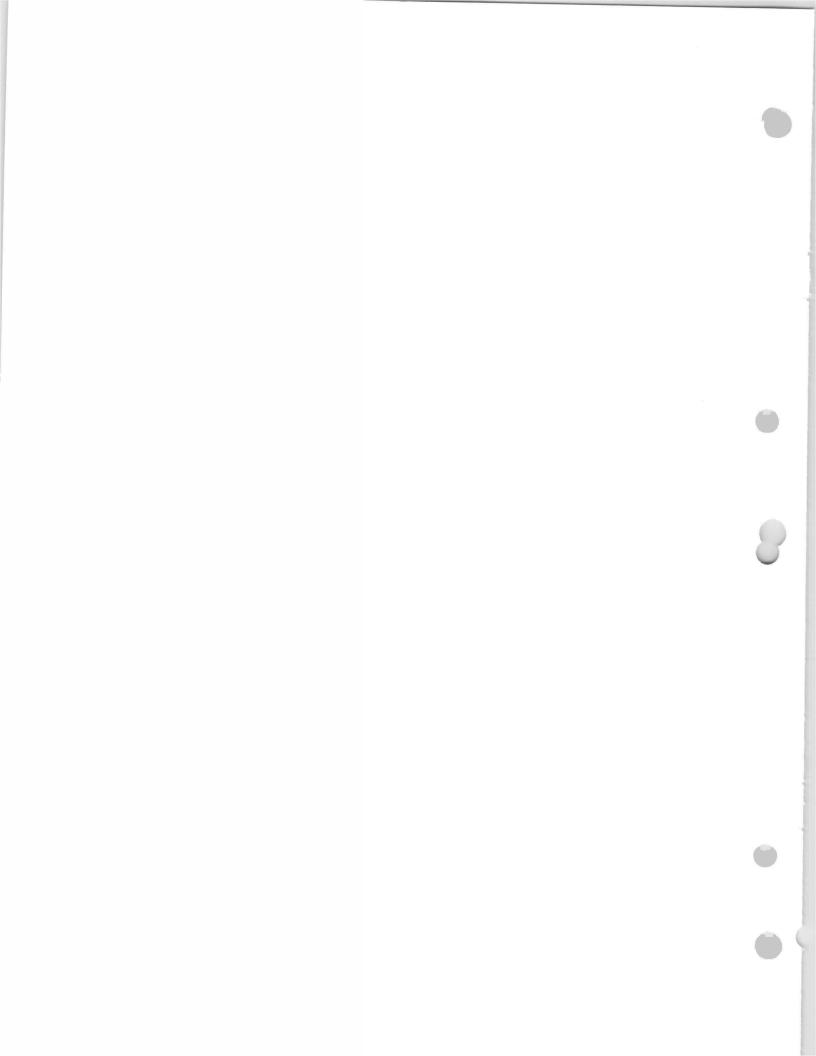
The AM-2215A utilizes rugged bipolar transistors with emitter ballasting which provides protection from varying load impedance which may occur during tuneup of following stages. The semiconductor devices employed are well established types available from many sources.

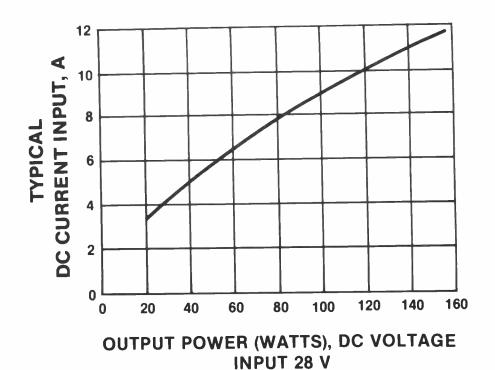


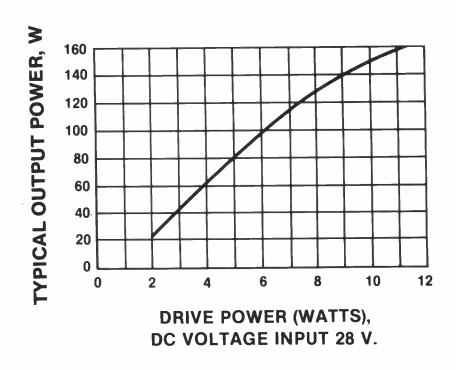
# CHARACTERISTICS 1

### **ELECTRICAL**

| Power Output                                                                                  |
|-----------------------------------------------------------------------------------------------|
| MECHAN I CAL                                                                                  |
| Cooling Requirements                                                                          |
| Maximum Operating Temperature • • • • • • • • • • • • • • • • • • •                           |
| Input rf Connector                                                                            |
| Output rf Connector                                                                           |
| Nominal Overall Dimensions:                                                                   |
| Height                                                                                        |
| Width                                                                                         |
| Length                                                                                        |
| Weight                                                                                        |
| Note 1 Characteristics and operating values are based on performance tests. These figures may |
| change without notice as the result of additional data or product refinement. Varian EIMAC    |

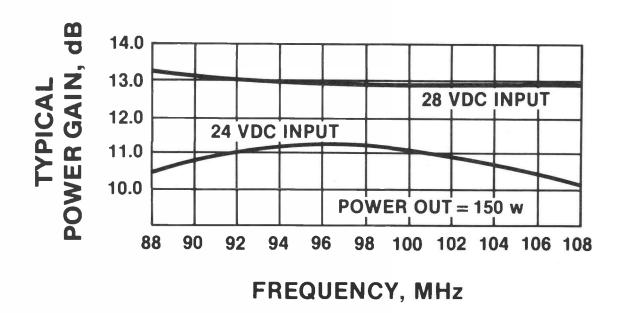

should be consulted before using this information for final equipment design.

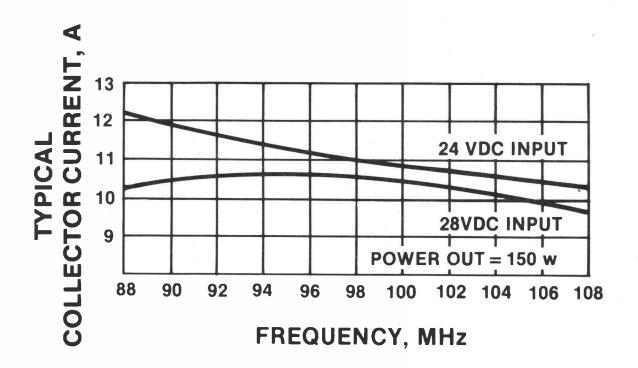

Note 2 Dc voltage may be varied over the range from 24 to a maximum of 28 volts to vary rf output.

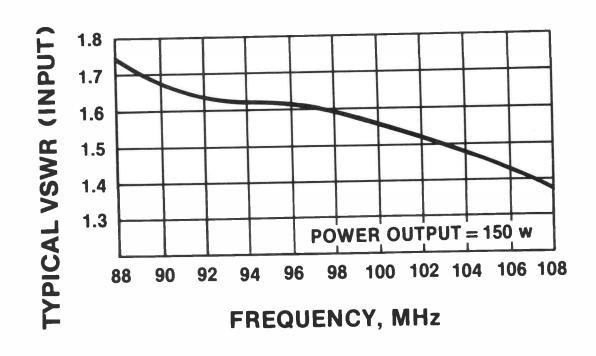

Note 3 Forced-air cooling is required for output power over 25 W. The absolute requirements depend on power output, amblent temperature, and cooling technique used.

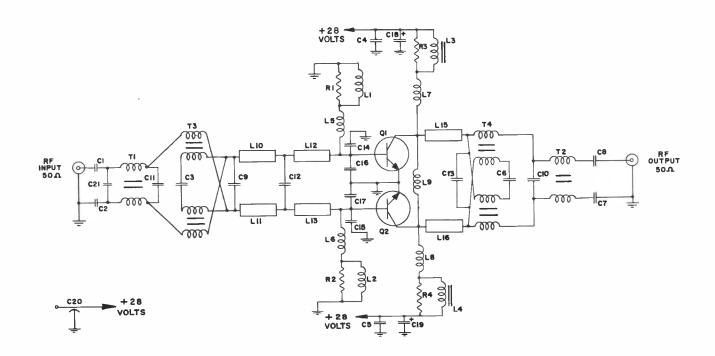
Note 4 Measured at the hottest point on the heat sink. This value should not be exceeded.

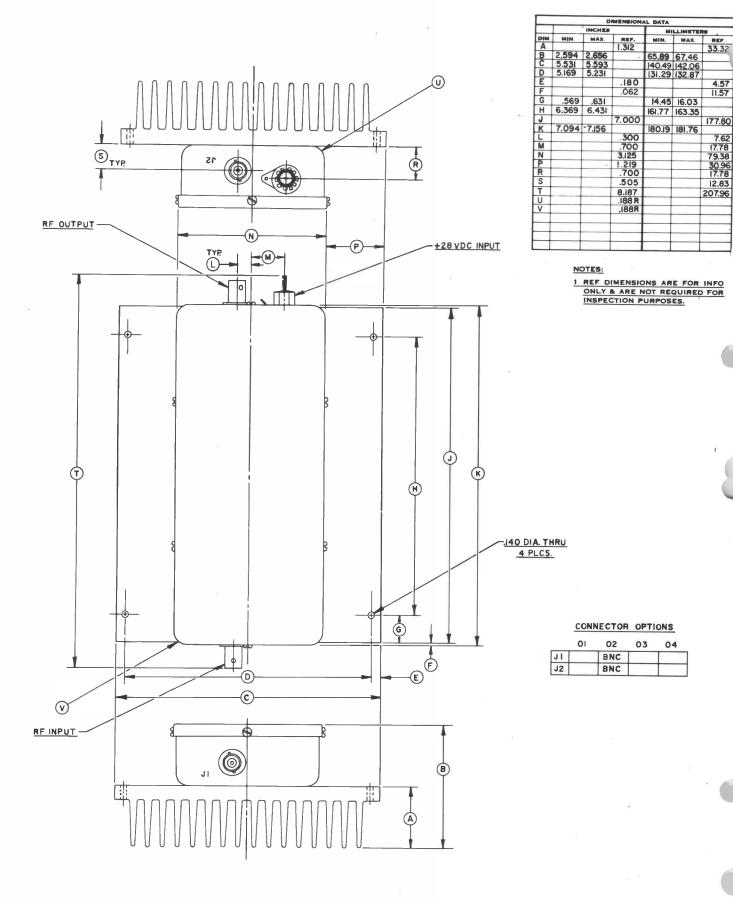
398099 (Effective February 1984) VA4666 Printed in U.S.A.

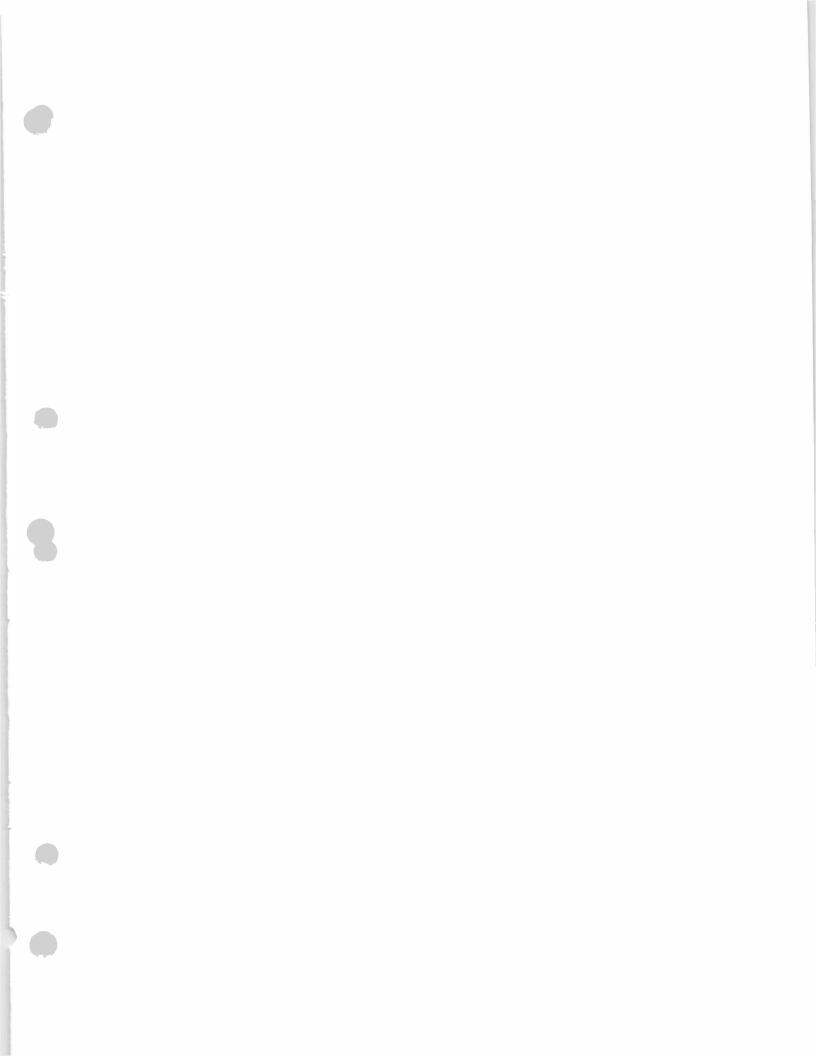


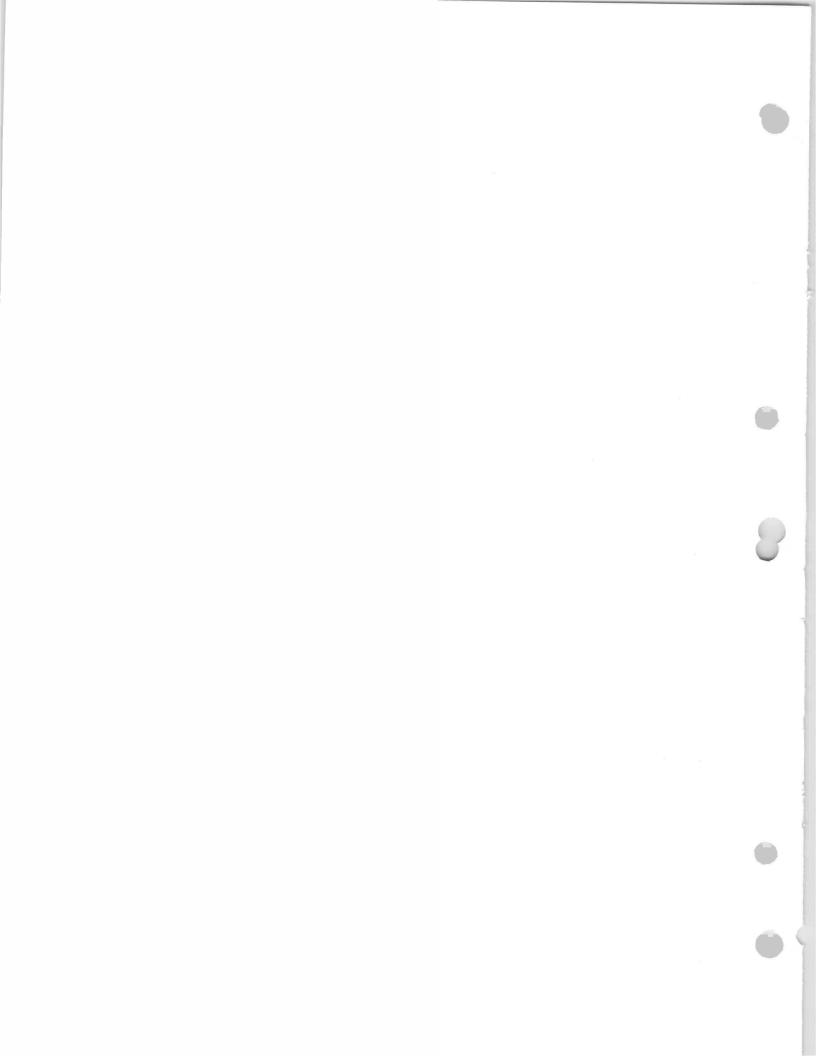





STABILITY - The amplifier, when operated at 100 W output and within the collector voltage range (see Note 2, page 1), will not be damaged when operated into a 3:1 load mismatch at all phase angles. At power over 100 W output, the VSWR should not exceed 2:1. Sensing circuitry for protection is recommended.


The output will contain no spurious non-harmonic related products when operated at any frequency from 86 to 108 MHz. When not driven and with the output terminated in a 50-ohm load, the amplifier is stable while the input is terminated into an impedance representing an infinite VSWR at all phase angles.
















# ADVANCE PRODUCT ANNOUNCEMENT

VHF CAVITY CV-2223 FOR FM BROADCAST SERVICE

The EIMAC CV-2223 amplifier cavity is designed for use as a final amplifier stage in an FM transmitter. It is designed for fixed frequency operation within the 88-108 MHz band for broadcast service. It is also useful as a reliable intermediate power amplifier for driving higher power tube amplifiers.

Cavity design is straightforward with reliability and simplicity as major features. Two EIMAC 3CX800A7 high performance focus-cathode triodes are used. They are designed for grounded grid service. Overall stage gain of this cavity assembly is approximately 15 dB with no neutralization required.

GENERAL CHARACTERISTICS 1



### ELECTRICAL

| Tuning Range       88 to 108 MHz         Input Impedance (nominal)       50 Ohms         Output Impedance (nominal)       50 Ohms         Power Tubes (3CX800A7) Heater Voltage       13.5 ± 0.6 V         Power Tubes Heater Current, Approximate       3.0 A |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| MECHANICAL                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| Power Tubes Used (not supplied with cavity)                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Output rf Connector                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Cooling Forced Air                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Mounting                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Height                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| Net Weight (Approximate)                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Shipping Weight (Approximate; Tubes Not Installed)                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| l Characteristics and operating values are based on performance tests. These figures may change<br>without notice as a result of additional data or product refinement. EIMAC should be consulted<br>before using this information for final equipment design. |  |  |  |  |  |  |  |  |  |

# RADIO FREQUENCY POWER AMPLIFIER FM BROADCAST SERVICE

### ABSOLUTE MAXIMUM RATINGS:

| DC PL | ATE  | VOLT  | AGE  |   |  | 2250  | VOLTS  |
|-------|------|-------|------|---|--|-------|--------|
| DC PI | LATE | CURR  | ENT  |   |  | 1.2   | AMPERE |
| PLATE | DIS  | SIPA  | TIOI | N |  | 1600  | WATTS  |
| GRID  | CURR | RENT  |      |   |  | 0.12  | AMPERE |
| GRID  | DISS | SIPAT | ION  |   |  | 8     | WATTS  |
| LOAD  | VSWR | ₹ .   |      |   |  | 1.5:1 |        |
|       |      |       |      |   |  |       |        |

<sup>\*</sup> Approximate value

Typical Operation (Measured data at 98.1 MHz)

| Plate Voltage                                                                           |    |          |     |     |     |   |   |   |      | 2200                        | Vdc          |
|-----------------------------------------------------------------------------------------|----|----------|-----|-----|-----|---|---|---|------|-----------------------------|--------------|
| Cathode Bias Voltage                                                                    | 5  |          |     |     |     |   |   |   |      | +12.0                       | Vdc          |
| Plate Current                                                                           |    |          |     |     |     |   |   |   |      |                             | Adc          |
| Grid Current *                                                                          |    |          |     |     |     |   |   |   |      | 64                          | mAdc         |
| Useful Power Output                                                                     | #  |          |     |     |     |   |   |   |      | 1100                        | W            |
| Driving Power                                                                           |    |          |     |     |     |   |   |   |      | 31                          | W            |
|                                                                                         |    |          |     |     |     |   |   |   |      | 62.5                        | %            |
| Power Gain                                                                              |    |          |     |     |     |   |   |   |      | 15.5                        | dВ           |
| Maximum Input VSWR,                                                                     | 88 | 3 – 3    | 108 | 3 1 | MНz |   |   |   |      | 1.2:1                       |              |
| Plate Dissipation *                                                                     |    |          |     |     |     |   |   |   |      |                             | W            |
| Useful Power Output<br>Driving Power<br>Efficiency<br>Power Gain<br>Maximum Input VSWR, | #  | :<br>3-1 |     | :   | MHz | • | • | • | <br> | 31<br>62.5<br>15.5<br>1.2:1 | W<br>%<br>dB |

398026(Effective March 1986) VA4902 Printed in U.S.A.

<sup>#</sup> Power delivered to the load



### A P P L I C A T I O N

### MECHANICAL

COOLING - The maximum temperature limit for external tube surfaces and the anode core is 250°C but tube life is prolonged if these areas are maintained at lower temperatures. An air interlock system should be provided to remove all voltages from the tube in case of failure of or a significant reduction in normal cooling air flow.

Minimum air flow requirements for a maximum (tube) anode core temperature of 225°C are listed for two altitudes and inlet air temperatures, for three power levels. The pressure drop values shown are in inches of water and are for the cavity and tube combination.

### Cooling Air at 25°C

|       | SE/  | <u>LE</u> VEL | 500  | O FEET   |
|-------|------|---------------|------|----------|
| Anode | Flow | Press.        | Flow | Press.   |
| Diss. | Rate | Drop          | Rate | Drop     |
| W     | cfm  | In.Water      | cfm  | In.Water |
| 400   | 12   | 0.20          | 15   | 0.30     |
| 600   | 22   | 0.30          | 28   | 0.40     |
| 800   | 38   | 0.9           | 46   | 1.20     |

### Cooling Air at 50°C

|       | SE#  | LEVEL    | 5000 FEET |          |  |  |  |  |
|-------|------|----------|-----------|----------|--|--|--|--|
| Anode | Flow | Press.   | Flow      | Press.   |  |  |  |  |
| Diss. | Rate | Drop     | Rate      | Drop     |  |  |  |  |
| W     | cfm  | In.Water | cfm       | In.Water |  |  |  |  |
| 400   | 16   | 0.40     | 20        | 0.50     |  |  |  |  |
| 600   | 32   | 1.00     | 38        | 1.20     |  |  |  |  |
| 800   | 54   | 1.70     | 65        | 2.10     |  |  |  |  |

Air flow must be applied before or simultaneously with the application of tube electrode voltages, including the heater voltage, and should be maintained for a brief period after all voltages are removed to allow for tube cooldown.

### ELECTRICAL

HEATER & CATHODE OPERATION - Rated filament voltage for the 3CX800A7 is 13.5 volts. Voltage should be measured at the cavity heater terminals with an accurate rms-responding meter, and should be maintained at this value to obtain optimum performance and good tube life. In no case should the voltage be allowed to deviate from 13.5 volts by more than plus or minus five percent.

GRID OPERATION - The two 3CX800A7 control grids have a total maximum dissipation rating of 4.0 watts. Care should be taken to avoid exceeding this rating. The cathode bias should be kept near the value shown in the TYPICAL OPERATION section of this data sheet. An interlock circuit should be used so that driving power cannot be applied to the cavity unless plate voltage is on the tube. Drive power should be removed if grid current exceeds 120 milliamperes.

PLATE INDUCTOR - The plate inductor has a movable shorting bar which serves as the plate circuit coarse tuning. The position of the bar is set according to the frequency range selected for operation. Detailed information is supplied with the cavity.

INPUT & OUTPUT TUNING - Both input and output fine tuning are adjustable from the front panel.

OUTPUT LOADING - Output loading is adjustable from the front panel.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in cases where large amounts of stored energy or follow-on current are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 25 ohms (50 W) in the positive plate power supply lead will help protect the tube in the event of an internal arc. Additional information is found in EIMAC Application Bulletin #17 "FAULT PROTECTION". Copies are available on request.

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

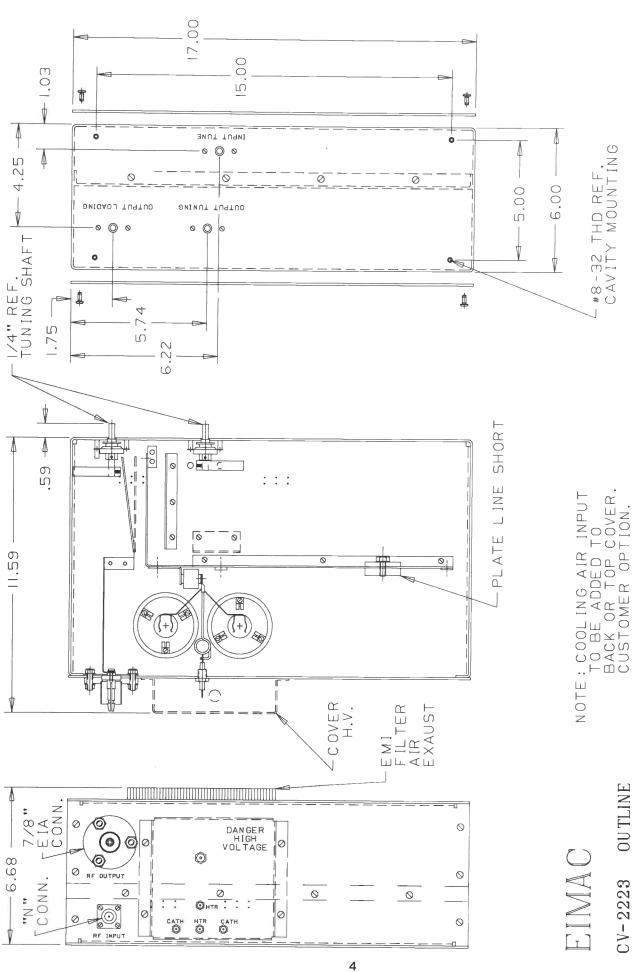
HIGH VOLTAGE - Normal operating voltages used with the CV-2223 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. Equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Remember: HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

SPECIAL APPLICATIONS - When it is desired to operate this cavity assembly under conditions widely different from those listed here, write to Varian EIMAC; Attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.



### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES AND THEIR CIRCUITS ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this cavity may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each device or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.







# ADVANCE PRODUCT ANNOUNCEMENT

VHF CAVITY CV-2222 FOR FM BROADCAST SERVICE

The EIMAC CV-2222 amplifier cavity is designed for use as a final amplifier stage in an FM transmitter. It is designed for fixed frequency operation within the 88-108 MHz band for broadcast service. It is also useful as a reliable intermediate power amplifier for driving higher power tube amplifiers.

Cavity design is straightforward with reliability and simplicity as major features. The EIMAC 3CX800A7 high performance focus-cathode triode is used. It is designed for grounded grid service. Overall stage gain of this cavity assembly is approximately 15 dB with no neutralization required.

GENERAL CHARACTERISTICS 1

### ELECTRICAL

| Tuning Range                           | 88 to | 108 MHz |
|----------------------------------------|-------|---------|
| Input Impedance (nominal)              |       | 50 Ohms |
| Output Impedance (nominal)             |       | 50 Ohms |
| Power Tube (3CX800A7) Heater Voltage   | 13.5  | + 0.6 V |
| Power Tube Heater Current, Approximate |       | 1.5 A   |

### MECHANICAL

| Power Tube Used (not supplied | with | cav | ity) |     |     |   |  |   |       |    |    |     |    |     | •  | EIMAC 3CX800A7          |
|-------------------------------|------|-----|------|-----|-----|---|--|---|-------|----|----|-----|----|-----|----|-------------------------|
| Input rf Connector            |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    | Type BNC                |
| Output rf Connector           |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    | Type N                  |
| Cooling                       |      |     |      |     |     |   |  |   | <br>• | •  | •  |     |    |     |    | Forced Air              |
| Mounting                      |      |     |      |     |     | • |  |   |       | St | ar | nda | ar | d : | 19 | In. Rack (Not Supplied) |
| Overall Dimensions (nominal): |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    |                         |
| Height                        |      |     |      |     |     |   |  | • |       |    |    |     |    |     | •  | 6.125 In; 15.56 cm      |
| Width                         |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    | 17.00 In; 43.18 cm      |
| Depth                         |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    | 11.59 In; 29.44 cm      |
| Net Weight (Approximate)      |      |     |      |     |     |   |  |   |       |    |    |     |    |     |    | 7.3 Lbs; 3.3 kg         |
| Shipping Weight (Approximate; | Tube | Not | Inst | all | ed) |   |  |   |       |    |    | •   |    |     |    | 13 Lbs; 6.0 kg          |

1 Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement. EIMAC should be consulted before using this information for final equipment design.

RADIO FREQUENCY POWER AMPLIFIER FM BROADCAST SERVICE

### ABSOLUTE MAXIMUM RATINGS:

| DC PLATE | VOLTA   | GE . |  | 2250  | VOLTS  |
|----------|---------|------|--|-------|--------|
| DC PLATE | CURRE   | NT . |  | 0.6   | AMPERE |
| PLATE DI | SSIPAT  | ION  |  | 800   | WATTS  |
| GRID CUF | RRENT . |      |  | 0.06  | AMPERE |
| GRID DIS | SSIPATI | ON . |  | 4     | WATTS  |
| LOAD VSV | VR      |      |  | 1.5:1 |        |
|          |         |      |  |       |        |

<sup>\*</sup> Approximate value

Typical Operation (Measured data at 107.9 MHz)

| Plate Voltag | ie . |     |     |    |     |    |     |      |   |  |  | 2200  | Vdc  |
|--------------|------|-----|-----|----|-----|----|-----|------|---|--|--|-------|------|
| Cathode Bias | S Vo | lt  | age |    |     |    |     |      |   |  |  | +12.0 | Vdc  |
| Plate Currer |      |     |     |    |     |    |     |      |   |  |  | 0.5   | Adc  |
| Grid Current | *    |     |     |    |     |    |     |      |   |  |  | 47    | mAdc |
| Useful Power | · 01 | ıtp | ut  | #  |     |    |     |      |   |  |  | 756   | W    |
| Driving Powe | er.  |     |     |    |     |    |     |      |   |  |  | 21    | W    |
| Efficiency   |      |     |     |    |     |    |     |      |   |  |  | 68.7  | %    |
| Power Gain   |      |     |     |    |     |    |     |      |   |  |  | 15.5  | dB   |
| Maximum Inpu | it \ | VSW | R,  | 88 | 3-1 | 80 | 3 1 | 1H z | 7 |  |  | 1.2:1 |      |
| Plate Dissip | oati | on  | *   |    |     |    |     |      |   |  |  | 330   | W    |
|              |      |     |     | -  |     |    |     |      |   |  |  |       |      |

398025(Effective March 1986) VA4901 Printed in U.S.A.

<sup>#</sup> Power delivered to the load



### A P P L I C A T I O N

### MECHANICAL

COOLING - The maximum temperature limit for external tube surfaces and the anode core is 250°C but tube life is prolonged if these areas are maintained at lower temperatures. An air interlock system should be provided to remove all voltages from the tube in case of failure of or a significant reduction in normal cooling air flow.

Minimum air flow requirements for a maximum (tube) anode core temperature of 225°C are listed for two altitudes and inlet air temperatures, for three power levels. The pressure drop values shown are in inches of water and are for the cavity and tube combination.

### Cooling Air at 25°C

|       | SE/  | A LEVEL         | 500  | OO FEET  |
|-------|------|-----------------|------|----------|
| Anode | Flow | Press.          | Flow | Press.   |
| Diss. | Rate | Drop            | Rate | Drop     |
| W     | cfm  | <u>In.Water</u> | cfm  | In.Water |
| 400   | 8    | 0.20            | 9    | 0.25     |
| 600   | 15   | 0.40            | 19   | 0.50     |
| 800   | 25   | 0.80            | 31   | 1.00     |

### Cooling Air at 50°C

|       | SE <i>A</i> | LEVEL    | 500  | O FEET   |
|-------|-------------|----------|------|----------|
| Anode | Flow        | Press.   | Flow | Press.   |
| Diss. | Rate        | Drop     | Rate | Drop     |
| W     | cfm         | In.Water | cfm  | In.Water |
| 400   | 11          | 0.30     | 13   | 0.40     |
| 600   | 21          | 0.60     | 25   | 0.80     |
| 800   | 36          | 1.20     | 44   | 1.70     |

Air flow must be applied before or simultaneously with the application of tube electrode voltages, including the heater voltage, and should be maintained for a brief period after all voltages are removed to allow for tube cooldown.

### ELECTRICAL

HEATER & CATHODE OPERATION - Rated filament voltage for the 3CX800A7 is 13.5 volts. Voltage should be measured at the cavity heater terminals with an accurate rms-responding meter, and should be maintained at this value to obtain optimum performance and good tube life. In no case should the voltage be allowed to deviate from 13.5 volts by more than plus or minus five percent.

GRID OPERATION - The 3CX800A7 control grid has a maximum dissipation rating of 4.0 watts. Care should be taken to avoid exceeding this rating. The cathode bias should be kept near the value shown in the TYPICAL OPERATION section of this data sheet. An interlock circuit should be used so that driving power cannot be applied to the cavity unless plate voltage is on the tube. Drive power should be removed if grid current exceeds 60 milliamperes.

PLATE INDUCTOR - The plate inductor has a movable shorting bar which serves as the plate circuit coarse tuning. The position of the bar is set according to the frequency range selected for operation. Detailed information is supplied with the cavity.

INPUT & OUTPUT TUNING - Both input and output fine tuning are adjustable from the front panel.

OUTPUT LOADING - Output loading is adjustable from the front panel.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in cases where large amounts of stored energy or follow-on current are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 50 ohms (50 W) in the positive plate power supply lead will help protect the tube in the event of an internal arc. Additional information is found in EIMAC Application Bulletin #17 "FAULT PROTECTION". Copies are available on request.

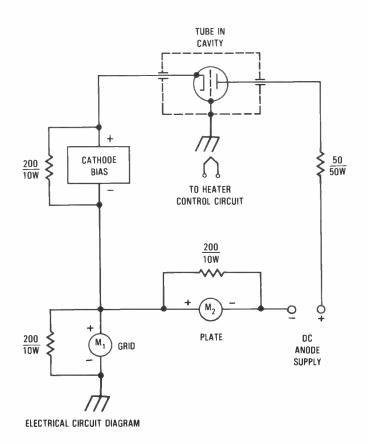
ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HIGH VOLTAGE - Normal operating voltages used with the CV-2222 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. Equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Remember: HIGH VOLTAGE CAN KILL.

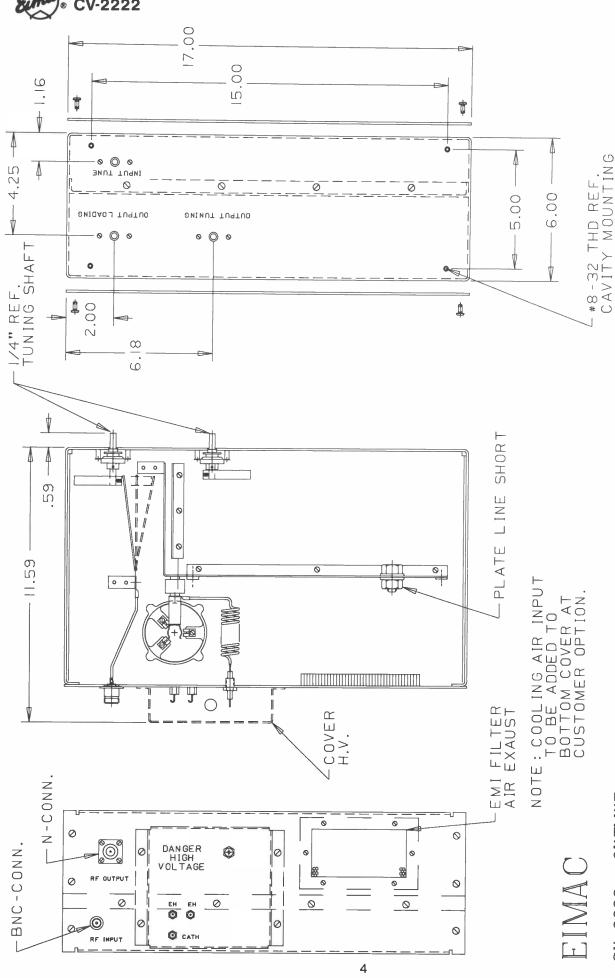
RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

SPECIAL APPLICATIONS - When it is desired to operate this cavity assembly under conditions widely different from those listed here, write to Varian EIMAC; Attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.




### OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES AND THEIR CIRCUITS ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.


The operation of this cavity may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each device or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.







CV-2222 OUTLINE



# TECHNICAL DATA

VHF CAVITY CV-2202

FOR FM BROADCAST SERVICE

The EIMAC CV-2202 is a power amplifier cavity assembly designed for use as the final amplifier of a 30 kW FM transmitter in the 86--108 MHz band assigned for broadcast service.

The amplifier tube used is the EIMAC 4CX20,000C high-performance tetrode designed especially for VHF applications. In this cavity assembly the tube is grid driven for a stage gain of 18 to 20 dB with a useful power output of 30 kilowatts.

### GENERAL CHARACTERISTICS

### ELECTRICAL

| Tuning Range                | • | • | • |   | • | ٠ |   | 86 | to | 108 MHz |
|-----------------------------|---|---|---|---|---|---|---|----|----|---------|
| Input Impedance (nominal) . | • |   | • | • | • |   | • |    |    | 50 Ohms |
| Output Impedance (nominal)  |   |   |   | ٠ |   |   |   |    |    | 50 Ohms |

### MECHANICAL

| Power Tube Used (not supplied with cavity)   | EIMAC 4CX20,000C  |
|----------------------------------------------|-------------------|
| Imput rf Connector                           | Type N            |
| Output rf Connector                          | Inch EIA Coaxial  |
| Cooling Required                             | Forced Air        |
| Mounting                                     | ndard 19 In. Rack |
| Overall Dimensions (nominal):                |                   |
| Height (exclusive of tuning rods)            | 31.5 ln; 80.0 cm  |
| Width                                        | 19 In; 48.3 cm    |
| Depth                                        | 21 in; 53.3 cm    |
| Net Weight (approximate; tube not installed) | 60 lb; 27.3 kg    |

# RADIO FREQUENCY POWER AMPLIFIER FM Broadcast Service

### ABSOLUTE MAXIMUM RATINGS

| DC PLATE VOLTAGE . | •  | •     | •  | •   | •   | •  | 12.5    | KILOVOLTS |
|--------------------|----|-------|----|-----|-----|----|---------|-----------|
| DC SCREEN VOLTAGE  |    |       |    |     |     | •  | 2000    | VOLTS     |
| DC GRID VOLTAGE .  | •  | •     | •  | •   | •   | •  | -1000   | VOLTS     |
| DC PLATE CURRENT . | •  | •     | •  | •   | •   | •  | 5.0     | AMPERES   |
| PLATE DISSIPATION  |    |       | •  | •   | •   | •  | 20      | KILOWATTS |
| SCREEN DISSIPATION | •  |       | •  | •   | •   | •  | 450     | WATTS     |
| GRID DISSIPATION . | •  | •     | •  | •   | •   | •  | 200     | WATTS     |
| * Annroximate #    | De | e I i | VE | ere | ed. | to | the loa | d         |

### Typical Operation, Measured Data at 100.0 MHz

| Plate Voltage                  | 11.6 | kVdc      |
|--------------------------------|------|-----------|
| Screen Voltage                 | 800  | Vdc       |
| Grid Voltage                   | -500 | Vdc       |
| Plate Current                  | 3.35 | Adc       |
| Screen Current *               | 103  | mAdc      |
| Grid Current *                 | 61   | mAdc      |
| Driving Power *                | 249  | W         |
| Plate Dissipation              | 7.7  | kW        |
| Useful Power Output * #        | 31.2 | <b>kW</b> |
| Efficiency *                   | 80.4 | %         |
| Gain * • • • • • • • • • • • • | 21   | dB        |

398015 (Effective April 1984) VA4693 Printed in U.S.A.



### APPLICATION

### MECHAN I CAL

COOLING - The maximum temperature for the external surfaces of the 4CX20,000C tube used with this cavity is 250°C. Sufficient forced-air cooling must be provided to maintain the anode at the base of the cooling fins, and the ceramic/metal seals, below 250°C. A rectangular air-inlet port with an integral EMI filter is provided for the introduction of the required cooling air to the cavity. During normal operation of the CV-2202 the plate dissipation of the tube may approach 12 kilowatts. At this dissipation level air flow requirements to maintain anode core temperature at 225°C with 50°C ambient cooling air at sea level and elevations of 5000 feet and 10,000 feet are:

|                 | SEA LEVEL | 5000 FT | 10,000 FT |
|-----------------|-----------|---------|-----------|
| Flow rate (cfm) | 435       | 514     | 613       |
| Pressure Drop   | 1.2       | 1.3     | 1.5       |

Pressure drop is in inches of water and is approximate, and is for the cavity and tube combination. The blower selected in any given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop(s) encountered in ducts and filters. The designer is reminded that the data shown represent minimum cooling requirements (with some safety factor). Cooling in excess of minimum requirements is normally beneficial to allow for pressure loss due to dirty filters, etc.

Air flow must be applied before, or simultaneously with, the application of power, including the tube filament, and should normally be maintained for a short period of time after power is removed to allow for tube cooldown.

An air interlock switch should be incorporated into the control system to remove all voltages (including the filament) automatically in the event of failure or even partial loss of cooling air flow to the cavity.

### **ELECTRICAL**

FILAMENT OPERATION - Rated filament voltage for the 4CX20,000C is 10.0 volts. The voltage should be measured at the cavity Ef terminals with an accurate rms-responding meter, and should be maintained at this value to obtain optimum performance and good tube life.

GRID OPERATION - The 4CX20,000C control grid has a maximum dissipation rating of 200 watts. Care should be taken to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.

SCREEN GRID OPERATION - The maximum screen grid dissipation rating is 450 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation rating will be exceeded. Suitable protective means must be provided to limit screen dissipation in the event of a circuit failure.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and air-flow interlock, the tube must be protected from damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance (5 to 10 ohms at 225 watts, of suitable design) should always be connected in series with the tube anode to help absorb power supply stored energy if an internal arc should occur. The protection test for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6-inch length of #30 AWG copper wire. The wire will remain intact if the protection is adequate.

EIMAC Application Bulletin #17 titled FAULT PROTECTION contains considerable detail, and is available on request.

HIGH VOLTAGE - Normal operating voltages used with the CV-2202 are deadly. The equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any



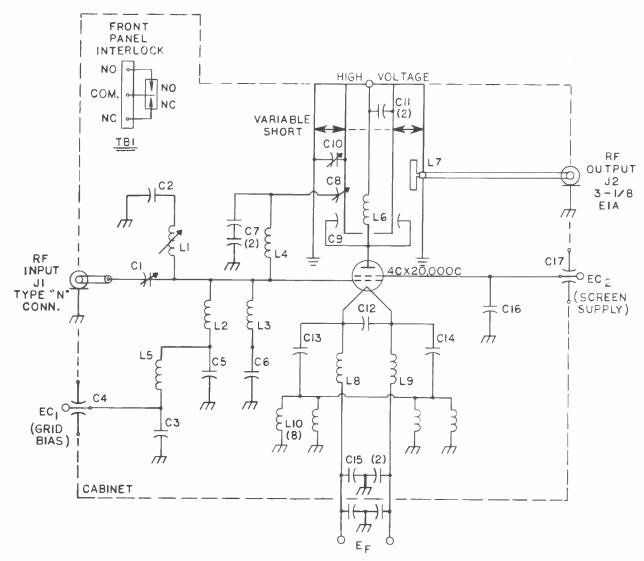
service conditions. These ratings are limiting values outside which the serviceability of the tube or cavity assembly may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency.

Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

SPECIAL APPLICATIONS - When it is desired to operate this cavity assembly under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager, 301 Industrial Way; San Carlos, CA 94070 U.S.A.

### OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this cavity involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Always remember that HIGH VOLTAGE CAN KILL.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies
- and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- c. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.





NOTE: CENTER TAP OF FILAMENT TRANSFORMER SECONDARY IS GROUNDED.

NOTE: 4CX20,000C TUBE NOT SUPPLIED WITH CAVITY.

- INPUT MATCH VARIABLE CAP. 3.8-21.6 PFD 1500 V #48-APL-21 (ALL STAR PRODUCTS) C2--- BYPASS, INPUT TUNING SLIDE (A-244920) - CAP. 500 PF ± 20% 5KVDC (JENNINGS) C4,C17 EMI FILTER, PI TYPE, 1250 PF # 1280-060 (ERIE) C5,C6 CAP. 200 PF 7.5 KV #JIDT03CG20IJ752 (JENNINGS) C7-CAP. 100 PF ±5% 15 KV # JIDTO2 (JENNINGS) C8 --- NEUTRALIZER PADDLE. ASSY # B-244927 C9 --- ANODE BLOCKER ASSY CIO-PLATE TUNING CAP. ASSY #C-241355 CII --- H.V. FEED THRU CAR # C-244868

#C-243131

CI2, CI3, CI4 - FILAMENT BYPASS

CI5 — FILAMENT FEEDTHRU CAP. #B-241477 (DUAL)

CI6 — SCREEN BLOCKER #C-244103

LI — ASSY INPUT TUNER

L2,L3 — INDUCTOR COIL \*FREQUENCY DEPENDENT"
SEE CHART ON TUNING MATRIX. #D-248032

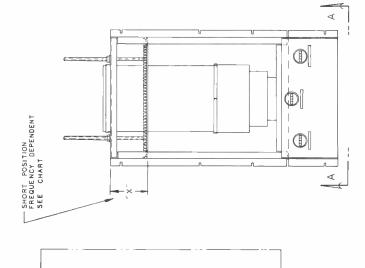
L4 — FIXED INDUCTOR #B-244934

L5 — CHOKE #Z-144 (OHMITE)

L6 — ANODE RF CHOKE #B-248355

L7 — OUTPUT COUPLER ASSY #241366

L8 — UPPER FILAMENT CHOKE #C-244923


L9 — LOWER FILAMENT CHOKE #C-244922

LIO — INDUCTOR POSTS \*FREQUENCY DEPENDENT"
SEE CHART ON TUNING MATRIX #D-248032



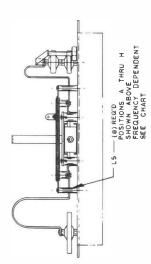
| FREQUENCY   | SHORT POSITION DIM. "X" | L5 INDUCTOR POSTS<br>PT. # A-248030                 | L2 # L3<br>INDUCTOR COILS |
|-------------|-------------------------|-----------------------------------------------------|---------------------------|
| 88 - 89 MHZ | 5,25                    | (4) REG'D. AT<br>POSITIONS A,C,E, & G               | PT. # 244934              |
| ZHW 16-06   | 5.50                    | (4) INSULATORS<br>PT. # A-244928                    | ZHW 66-88                 |
| 92-93 MHZ   | 6.12 (155.45)           | AT POSITIONS B,D,F FH                               |                           |
| 94-95 MHZ   | 6.63 (168.40)           | (6) REG'D (A-248030) AT<br>POSITIONS A,B,C,E,F, & 6 |                           |
| ZHW 26-96   | 7.38 (187.45)           | (2) REQ'D (A-244928)<br>AT POSITIONS D # H          |                           |
| 98-99 MHZ   | 7.88 (200.15)           | (7) REQ'D (A-248030) AT                             |                           |
| ZHW 101-001 | 8.63 (219.20)           | (1) INSULATOR<br>PT # A - 244928                    | PT. # B-248031            |
| 102-103 MHZ | 9.12                    | AT POSITION H                                       | 100-108 MHZ               |
| 104-105 MHZ | 9.62 (244.35)           | (8) REQ'D (A-248030)<br>POST INDUCTORS              |                           |
| 106-107 MHZ | 10.12                   | POSITIONS A THRU H                                  |                           |
| 108 MHZ     | 10.62 (269.75)          |                                                     |                           |

NOTE: DIMENSIONS MARKED THUS () ARE IN MILLIMETERS.
SHORT POSITION DIM. "X" DETERMINES TUNING RANGE OF
FRONT PANEL CONTROL. DIMENSIONS SHOWN ARE APPROXIMATE.



-L3 -- FREQUENCY DEPENDENT SEE CHART

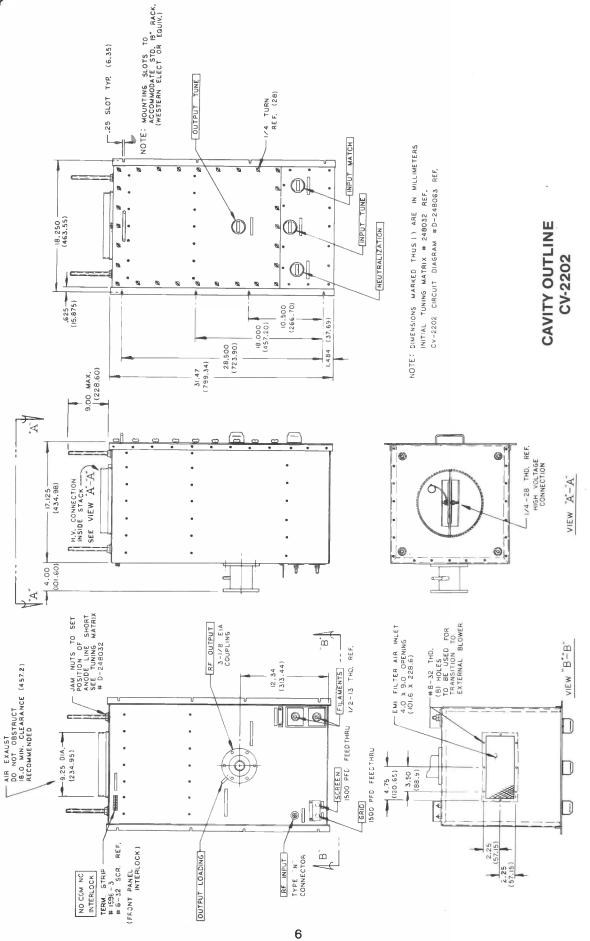
.L2 — FREQUENCY DEPENDENT
SEE CHART

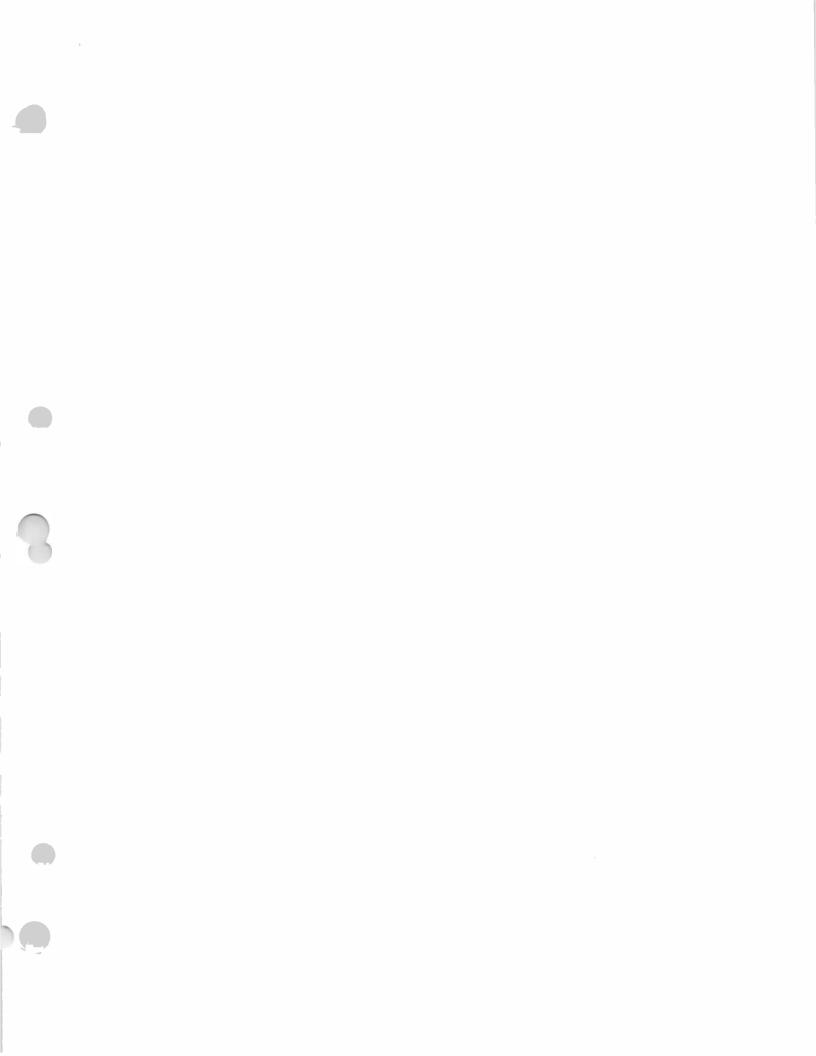

PLAN VIEW 1/4 X SIZE PPER SINZE TO SHOW INITIAL SHORT POSITION

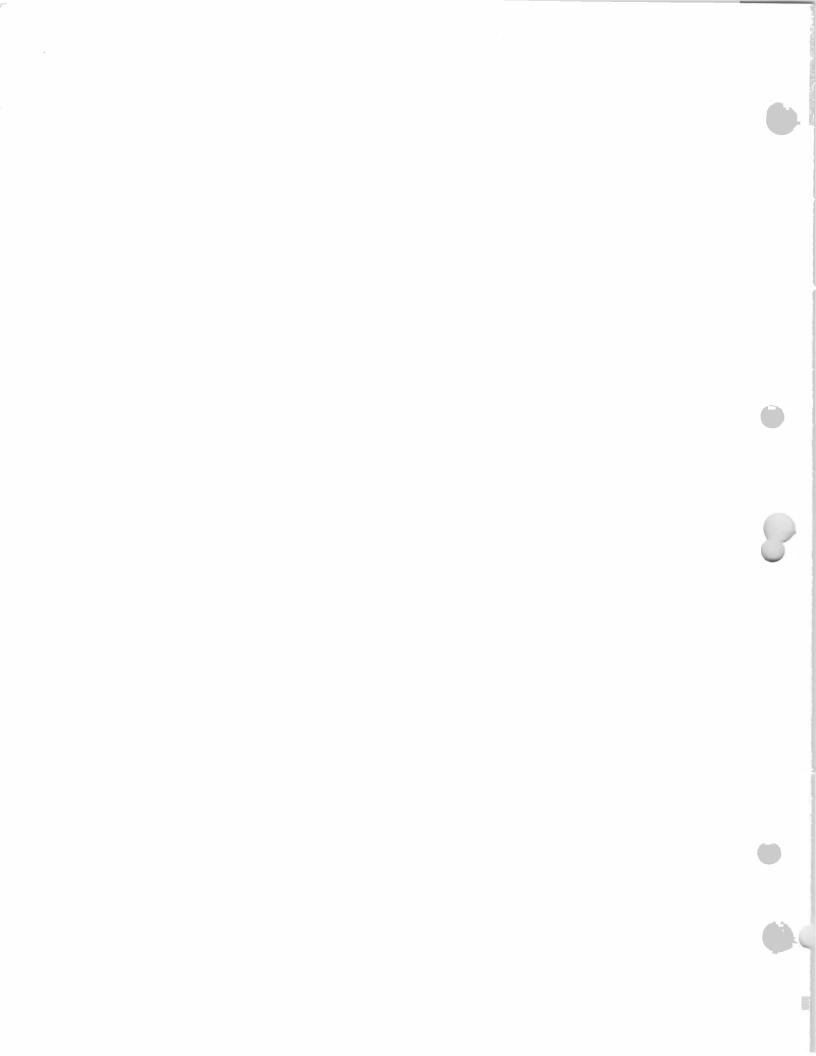
L4 -FIXED

LI TUNING

BOTTOM COVER REMOVED
1/2 x SIZE
DETAIL OMITTED FOR CLARITY


VIEW A-A





# INITIAL TUNING MATRIX CV-2202

(8)











# **TECHNICAL DATA**

VHF Cavity
CV-2250
FOR
TV BROADCAST
SERVICE

The EIMAC CV-2250 cavity is designed for VHF high-band TV broadcast service. It is designed to utilize the EIMAC 3CX10,000U7 high-mu triode power amplifier tube. The tube and cavity combination is capable of delivering up to 10 kW peak-of-sync in video service, with typical power gain of 12 to 15 dB. In translator service the cavity can be operated at 2.5 kW peak-of-sync output with intermodulation products of -52 dB or better.

The cavity is designed to be mounted behind a 19-inch panel. Operating frequency range is CH-7 through CH-13 Domestic and CH-7 through CH-E2 in Europe. Excellent linearity and efficiency make this tube and cavity combination a good choice for high-band television broadcast service.

# GENERAL CHARACTERISTICS 1

### ELECTRICAL

Tuning Range (USA Channels 7-13) . . . . . 177 - 228 MHz
(Europe Channels 7 - E2)

Input impedance (nominal) . . . . . . . . . . . . 50 Ohms
Output Impedance (nominal) . . . . . . . . . . . . . . . . . . 50 Ohms

### MECHANICAL

| Power Tube Used (not supplied): Ell               | MAC 3CX10,000U7 |
|---------------------------------------------------|-----------------|
| Input rf Connector                                | Type N          |
| Output rf Connector                               | In. EIA Coaxial |
| Cooling Required (see APPLICATION note)           | Forced Air      |
| Mounting                                          | fit 19-in. Rack |
| Overall Dimensions (nominal):                     |                 |
| Height (minimum)                                  | 1.75 ln; 106 cm |
| Width (maximum) 15                                | .5 In; 39.37 cm |
| Depth                                             | .25 In; 31.1 cm |
| Net Weight (approximate; tube not installed)      | 80 lbs; 36.3 kg |
| Shipping Weight (approximate; tube not installed) | 150 lbs; 68 kg  |

<sup>1</sup> Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement. EIMAC should be consulted before using this information for final equipment design.

398050 (Effective 18 Jan 82)

Printed In U.S.A.

RADIO FREQUENCY POWER AMPLIFIER, Television Service

| ABSOLUTE MAXIMUM F | RATINGS:   |           | Typical Performance:         | Visual <sup>1</sup> |      | Combined<br>Visual<br>& Aural <sup>2</sup> |     |
|--------------------|------------|-----------|------------------------------|---------------------|------|--------------------------------------------|-----|
| HEATER VOLTAGE     | 15.0 ± 0.5 | VOLTS     | Heater Voltage               | 15.0                | 15.0 | 15.0                                       | Vac |
| WARMUP TIME 3      | 5          | MINUTES   | Heater Current               | 13.5                | 13.5 | 13.5                                       | Aac |
| DC PLATE VOLTAGE   | 6500       | VOLTS     | Plate Voltage                | 4000                | 5500 | 4800                                       | Vdc |
| DC PLATE CURRENT   | 4.0        | AMPERES   | Zero Signal Plate Current    | 0.9                 | 1.0  | 1.9                                        | Adc |
| PLATE DISSIPATION  | 10         | KILOWATTS | Max.Signal Plate Current     | 2,5                 | 5.0  | 2.25                                       | Adc |
| GRID DISSIPATION   | 100        | WATTS     | Cathode Bias Voltage 4       | +22                 | +31  | +15                                        | Vdc |
| LOAD VSWR          | 1.5:1      |           | Driving Pwr (peak-of-sync)   | 200                 | 335  | 60                                         | W   |
|                    |            |           | Useful Pwr Out (peak-of-sync | ) 5.0               | 10.5 | 2.5                                        | kW  |
|                    |            |           | Bandwidth ( ± 1 dB)          | 6.28                | 6.28 | 6.25                                       | MHz |

- 1 Measurements made under CW conditions to reflect peak-of-sync operation.
- 2 Intermodulation distortion better than -52 dB measured under CCIR loading: Video -8 dB Sound -7 dB Color -17 dB
- 3 Heater voltage must be applied to the tube for 5 minutes minimum (to allow for cathode warmup) before high voltage is applied to the tube.
- 4 Adjust to obtain the specified zero-signal plate current.

### APPLICATION

### **MECHANICAL**

MOUNTING - The cavity is designed to mount on a standard 19-inch rack panel. The panel is not supplied by EIMAC. A drawing showing the position of the panel mounting holes and the position of tuning controls is available on request. Order: Panel Layout CV-2250, Drawing #D242148 from EIMAC at the address shown on page 1.

COOLING - Two air inlet ports are provided; a large rectangular port which directs cooling air to the anode fins (plate cavity air inlet), and a smaller circular port which directs air to the cavity proper and cools the 3CX10,000U7 stem (input cavity air inlet). The pressure drop existing at the input cavity air inlet exceeds that at the rectangular port except at the highest anode dissipation levels. Therefore a separate system is necessary for the input cavity air inlet at low anode dissipation levels.

The maximum temperature limit for external tube surfaces and the anode core is 250 Deg.C. Tube life is prolonged if these areas are maintained at lower temperatures. The minimum cooling requirements stated here are for inlet air temperatures not to exceed 50 Oeg.C.

### Sea Level

| Plate<br>Diss.<br>Watts | Flow<br>Rate<br>CFM | Press.<br>Drop |
|-------------------------|---------------------|----------------|
| Plate Cavity Air        |                     | In.Water       |
| 2000                    | 117                 | 0.28           |
| 4000                    | 117                 | 0.20           |
| 6000                    | 190                 | 0,66           |
| 8000                    | 318                 |                |
|                         |                     | 1.60           |
| 10,000                  | 462                 | 3, 12          |
| Input cavity Air        | Inlet:              |                |
| All levels:             | 19                  | 2.98           |

### 5000 feet - 1524 meters

| Plate            | Flow   | Press.   |
|------------------|--------|----------|
| Diss.            | Rate   | Drop     |
| Watts            | CFM    | In.Water |
| Plate Cavity Air | Inlet: | _        |
| 2000             | 141    | 0.34     |
| 4000             | 141    | 0.36     |
| 6000             | 229    | 0.79     |
| 8000             | 393    | 1.92     |
| 10,000           | 558    | 3.76     |
| Input cavity Air | Inlet: |          |
| All levels:      | 22     | 3.59     |

### 10,000 feet - 3048 meters

| Plate<br>Diss.   | Flow<br>Rate | Press.<br>Drop |
|------------------|--------------|----------------|
| Watts            | CFM          | In.Water       |
| Plate Cavity Air | Inlet:       |                |
| 2000             | 170          | 0.41           |
| 4000             | 170          | 0.43           |
| 6000             | 276          | 0.96           |
| 8000             | 462          | 2.32           |
| 10,000           | 672          | 4.53           |
| Input cavity Air | Inlet:       |                |
| All levels:      | 27           | 4.30           |

### **ELECTRICAL**

**CONTROL CIRCUIT** - EIMAC recommends the following turn-on sequence:

- 1. Primary line power
- 2. Control-circuit power
- 3. Cooling air
- 4. Heater power
- 5. Five-minute time delay
- 6. Bias voltage
- 7. Anode voltage
- 8. Drive power

The shut-down procedure is simply reversed, disregarding the five-minute delay. Cooling air should normally be kept on for 3 minutes to allow for tube cooldown.

HEATER & CATHODE OPERATION - Rated heater voltage for the 3CX10,000U7 is 15.0 volts. Heater voltage should be measured at the socket with an accurate rms-responding meter, and should be maintained at this value to obtain optimum performance and good tube life. In no case should heater voltage be allowed to deviate from 15.0 volts by more than plus or minus five percent.

The required minimum warmup time for a cold cathode is 5 minutes before applying high voltage. In the event of a fault or loss of power during normal operation all voltages must be removed from the tube immediately. When the fault has cleared, voltage should be reapplied according to the recommended control circuit sequence. The heater warmup may be shortened if the power-off time was less than 5 minutes. In such a case, heater warmup time must equal or exceed the power-off time.

TUNING PROCEDURE - Detailed tuning instructions are available on request from EIMAC.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in those cases where large amounts of stored energy or follow-on current are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the anode circuit to limit peak current and provide a means of dissipating the energy in the event of a tube or circuit arc. A resistance of 10 ohms in the positive plate power supply lead together with the protective spark gap (Siemens #B1-C145) built into the CV2250 cavity will help protect the 3CX10,000U7 in the event of an internal arc. A maximum of four (4) joules total energy may be permitted to dissipate into an internal grid-tocathode arc. Amounts in excess of this will permanently damage the cathode or the grid structure. Additional information is found in EIMAC's Application Bulletin #17 "FAULT PROTECTION" and a copy is available on request.

HIGH VOLTAGE - Normal operating voltages used with this cavity are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interiock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interiock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting

values outside which the serviceability of the tube or cavity may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is

dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 MHz and 27 MHz bands.

SPECIAL APPLICATIONS - When it is desired to operate this cavity under conditions widely different from those listed here, write to:

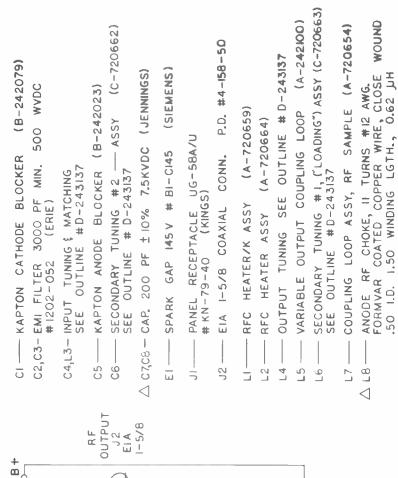
Varian EIMAC; attn: Applications Engineering; 301
Industrial Way; San Carlos, CA 94070 U.S.A.

### OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this cavity involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies


and can cause serious bodily and eye injuries.

CARDIAC PACEMAKERS MAY BE EFFECTED.

c. HOT SURFACES - Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Tube Division, 301 Industrial Way, San Carlos CA 94070.





BULKHEAD JACK

RF SAMPLE BNC BULKH

HTR

HTR/K

HEATER P.S. & METERS 15V 13A

24

9 V

L<sup>8</sup>∑

% %

3CXICC00U7

C 6

CI 1L

RF INPUT

TYPE 'N

△72]

15 15

7

27

C218

70.05 225 ₩

PLATE POWER SUPPLY

0-5A

- 5 -

**3** 

UNLESS OTHERWISE SPECIFIED, ALL COMFONENTS WITHIN DOTTED LINES, EXCEPT FOR TUBE, SUPPLIED WITH CV-2250 CAVITY. NOTE:

F

POWER SUPPLY

BIAS

0-300 MA

≥

25 ₪ 100 ₩

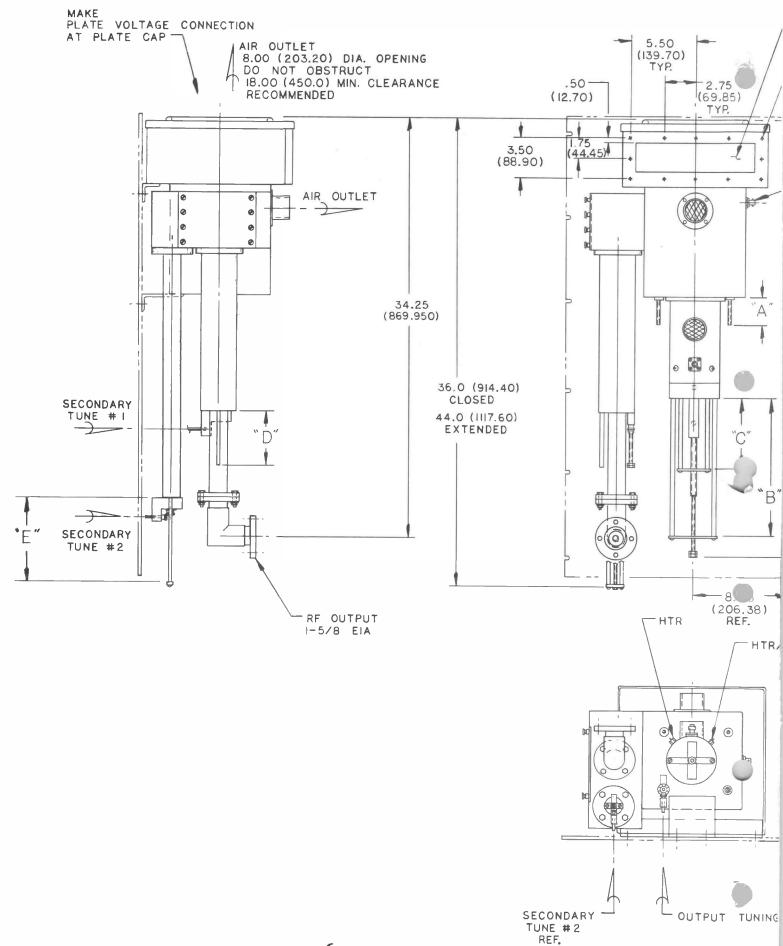
3AF-6

✡

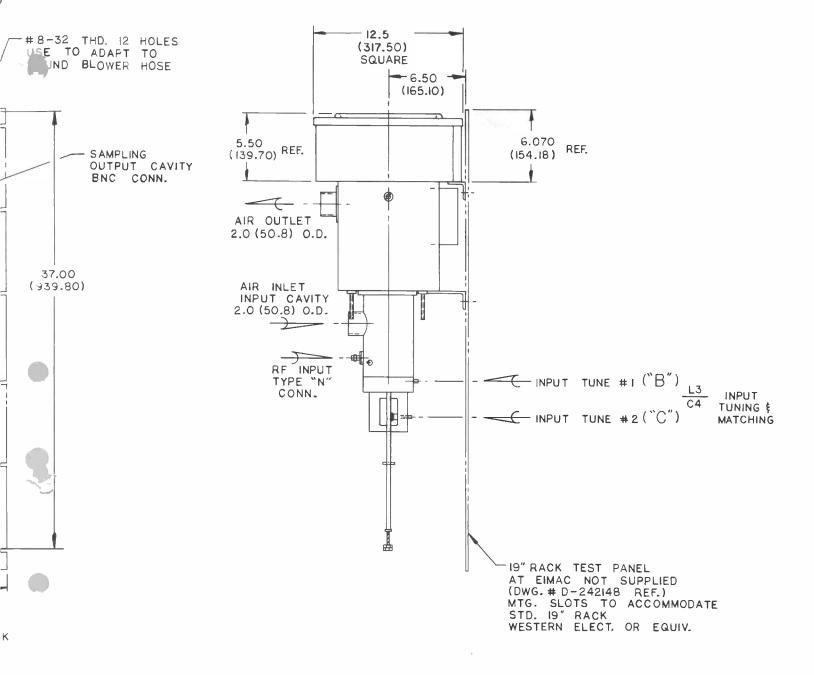
700 n 12 ₩

3AF-6

\*


A RECOMMENDED COMPONENTS NOT SUPPLIED BY EIMAC

\* VALUE DEPENDS ON MODULATION FREQUENCY.


CV-2250 OUTLINE # D-243137 REF.

CIRCUIT DIAGRAM CV-2250









NOTE: DIMENSIONS MARKED THUS () ARE IN MILLIMETERS

FOR TUNING DATA, DIMS. "A", B", "C", "D" & E"

REFER TO EIMAC CV-2250 TUNING PROCEDURE

CV-2250 CIRCUIT DIAGRAM # C-243340 REF.

OUTLINE CV-2250





## **TECHNICAL DATA**

VHF CAVITY
CV-2225
FOR
FM BROADCAST
SERVICE

-00... page 74...

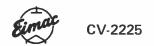
The EIMAC CV-2225 is a power amplifier cavity assembly designed for use as the main component of the final amplifier of an FM transmitter in the 88--108 MHz band assigned for broadcast service.

Cavity design is straightforward and relatively simple. The amplifier tube used is the EIMAC 4CX3500A high performance tetrode designed especially for VHF applications. In this cavity assembly the tube is grid driven for a stage gain of approximately 18 dB with a useful power output of 5000 watts.

An EIMAC solid-state amplifier module is available for use as an intermediate power amplifier for the  ${\sf CV-2225}_{ullet}$ 

GENERAL CHARACTERISTICS 1

### ELECTRICAL


Solid-State Intermediate Power Amplifier (if required) . . . . . . . . . . . . . EIMAC AM-2215A

### **MECHANICAL**

| Height                                            | 19 ln; | 48.3 cm |
|---------------------------------------------------|--------|---------|
| Width                                             | 19 ln; | 48.3 cm |
| Depth                                             | 21 In; | 53.3 cm |
| Net Weight (approximate; tube not installed)      | 38 Lb; | 17.3 kg |
| Shipping Weight (approximate; tube not installed) | 84 Lb; | 38.1 kg |

<sup>1</sup> Characteristics and operating values are based on performance tests. These figures may change without notice as a result of additional data or product refinement. EIMAC should be consulted before using this information for final equipment design.

Printed in U.S.A.



### RADIO FREQUENCY POWER AMPLIFIER, FM BROADCAST SERVICE

| ABSOLUTE MA | XIMUM | RAT | INGS: |
|-------------|-------|-----|-------|
|-------------|-------|-----|-------|

### TYPICAL OPERATION (100.5 MHz)

| F | FILAMENT VOLTAGE   | 5.0 + 0.25 | VOLTS   | Plate Voltage             | 4000 | 4300 | Vdc  |
|---|--------------------|------------|---------|---------------------------|------|------|------|
|   | OC PLATE VOLTAGE   | 5500       | VOLTS   | Plate Current             | 1.5  | 1.9  | Adc  |
| [ | DC SCREEN VOLTAGE  | 1500       | VOLTS   | Screen Grid Voltage       | 500  | 700  | Vdc  |
| E | OC GRID VOLTAGE    | -500       | VOLTS   | Screen Current 1          | 140  | 123  | mAdc |
| C | OC PLATE CURRENT   | 2.0        | AMPERES | Grid Bias Voltage         | -300 | -400 | Vdc  |
| F | PLATE DISSIPATION  | 3500       | WATTS   | Grid Current <sup>1</sup> | 84   | 63   | mAdc |
| 5 | SCREEN DISSIPATION | 165        | WATTS   | Useful Power Out 1,2      | 3838 | 5531 | W    |
| ( | GRID DISSIPATION   | 50         | WATTS   | Efficiency 1              | 64   | 68   | 4    |
| L | OAD VSWR           | 1.5:1      |         | Driving Power             | 56   | 66   | W    |
|   |                    |            |         | Power Gain                | 18.4 | 19.2 | dB   |
| 1 | Approximate value  |            |         | Filament Voltage          | 5.0  | 5.0  | Vac  |
| 2 | Power delivered to | the load   |         | Filament Current 1        | 90   | 90   | Aac  |
|   |                    |            |         |                           |      |      |      |

### APPLICATION

### **MECHANICAL**

COOLING - The maximum temperature limit for external tube surfaces and the anode core is 250 Deg.C but tube life is prolonged if these areas are maintained at lower temperatures. The minimum cavity cooling requirements stated here are for inlet air temperatures of 35 Deg.C. and 50 Deg.C. Pressure drop is measured at the air inlet port, which is located on the bottom cover of the cavity assembly. The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown plus any drop encountered in ducts and filters.

### Sea Level - 0 Meters

| Plate<br>Diss.<br>Watts | Flow<br>Rate<br>CFM | Press.<br>Drop<br>In.Water | Flow<br>Rate<br>M <sup>3</sup> /min | Press.<br>Drop<br>Millibars |
|-------------------------|---------------------|----------------------------|-------------------------------------|-----------------------------|
| 2500<br>(When           | 238<br>inlet air    | 2.20<br>is 50 Deg.C.)      | 6.7                                 | 5.48                        |
| 2500<br>(When           | 188<br>inlet air    | 1.48<br>is 35 Deg.C.)      | 5.3                                 | 3,69                        |

# 5000 feet - 1524 meters

| Plate  | Flow        | Press.        | Flow                | Press.    |
|--------|-------------|---------------|---------------------|-----------|
| Diss.  | Rate        | Drop          | Rate                | Drop      |
| Watts  | CFM         | In.Water      | M <sup>3</sup> /min | Millibars |
|        |             |               |                     |           |
| 2500   | 287         | 2.60          | 8.1                 | 6.48      |
| (When  | inlet air   | is 50 Deg.C.) |                     |           |
| 2500   | 207         | 1 74          |                     | 4 74      |
| 2500   |             | 1.74          | 6.4                 | 4.34      |
| (When  | inlet air   | is 35 Deg.C.) |                     |           |
|        |             |               |                     |           |
| 10,000 | ) feet - 30 | )48 meters    |                     |           |
| Plate  | Flow        | Press.        | Flow                | Press.    |
| Diss.  | Rate        | Drop          | _Rate               | Drop      |
| Watts  | CFM         | In.Water      | M <sup>3</sup> /min | Millibars |
|        |             |               |                     |           |
| 2500   | 346         | 3.09          | 9.8                 | 7.68      |
| (When  | inlet air   | is 50 Deg.C.) |                     |           |
|        |             |               |                     |           |
| 2500   | 273         | 2.06          | 7.7                 | 5.13      |
| (When  | inlet air   | is 35 Deq.C.) |                     |           |



### **ELECTRICAL**

FILAMENT & CATHODE OPERATION - Rated filament voltage for the 4CX3500A is 5.0 volts. Filament voltage should be measured at the cavity Ef terminals with an accurate rms-responding meter, and should be maintained at this value to obtain optimum performance and good tube life. In no case should filament voltage be allowed to deviate from 5.0 volts by more than plus or minus five percent.

GRID OPERATION - The 4CX3500A control grid has a maximum dissipation rating of 50 watts. Care should be taken to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.

SCREEN GRID OPERATION - The maximum screen grid dissipation rating is 165 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. Suitable protective means must be provided to limit screen dissipation in the event of a circuit failure.

FAULT PROTECTION - In addition to normal cooling airflow interlock and plate and screen over current interlocks, it is good practice to protect the tube from internal damage which could result from a plate arc at high plate voltage. In all cases some protective resistance (20 to 50 ohms) should be used in series with the cavity +HV terminal to absorb power supply stored energy in case a plate arc should occur. The resistor should be rated for 50 to 100 watts dissipation to be able to withstand the energy surge.

FREQUENCY DETERMINED PARTS - These parts are supplied with the cavity. The input inductors L3 and L4 are identified for each part of the 88-108 MHz band as follows:

| Inductor | Frequency   | EIMAC    |
|----------|-------------|----------|
| Ident.   | Range       | Part No. |
| Α        | 88-96 MHz   | 243332   |
| В        | 95-103 MHz  | 243333   |
| С        | 102-108 MHz | 243334   |

The positions of input inductors L3 and L4 are shown in drawing #243134 packed with the CV-2225 cavity assembly.

PLATE INDUCTORS - Plate inductor L7 has a movable shorting bar which serves as coarse plate circuit tuning. The position of this shorting bar is defined by counting the pairs of mounting holes from the bottom. The nominal position of the bar should be as follows:

| Frequency | L7 Shorting  |  |  |  |
|-----------|--------------|--|--|--|
| Range     | Bar Position |  |  |  |
| 88-90 MHz | N            |  |  |  |
| 89-92     | 7            |  |  |  |
| 91-94     | 6            |  |  |  |
| 93-96     | 5            |  |  |  |
| 95-99     | 4            |  |  |  |
| 98-102    | 3            |  |  |  |
| 101-105   | 2            |  |  |  |
| 104-108   | 1            |  |  |  |

These shorting bar positions are nominal. Improved performance may be obtained by trying two or three adjacent positions.

OUTPUT COUPLING - Output coupling is adjusted with a movable tap on plate inductor L9. The nominal position for the tap is as follows:

| Power  | Output Coupling |
|--------|-----------------|
| Level  | Tap Position    |
| 3500 W | 5               |
| 5500 W | 7               |

Tap position is defined by the holes in the straps where the output line connects to L9. The tap position is determined by counting from the bottom hole. Depending on the power level, load, etc., better performance may be obtained by trying several adjacent tap positions.

NEUTRALIZATION - With filament, grid bias, and cooling applied, with a 50 ohm load, set the neutralization control (C19) for minimum signal through the amplifier. With low-level drive at the operating frequency and a sensitive indicator at the output, adjust the input and output tuning controls for maximum and the neutralization control for a null. These adjustments are interactive so the adjustment must be repeated several times for the best null. Final adjustment of neutralization should be made at full power by moving the neutralization control slightly so that maximum screen grid current and maximum power output are coincidental with output (C13) tuning.

Screen grid current should be kept below 150 mAdc during the tuning procedure.

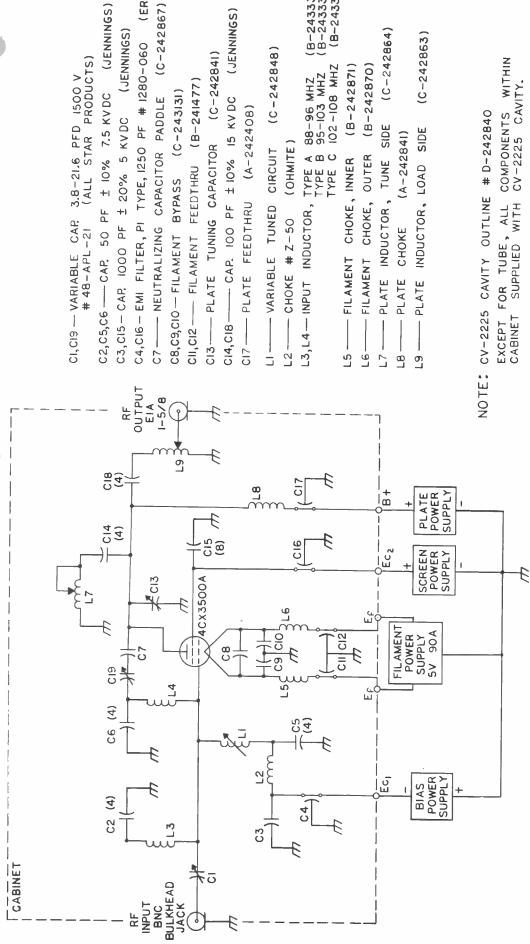
HIGH VOLTAGE - Normal operating voltages used with the CV-2225 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube or cavity assembly may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an

average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply voltage variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 MHz and 27 MHz bands.

SPECIAL APPLICATIONS - When it is desired to operate this cavity assembly under conditions widely different from those listed here, write to Varian EIMAC; attn:Applications Engineering; 301 Industrial Way; San Carlos, CA 94070 U.S.A.


### OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this cavity involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies
- and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- c. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Tube Division, 301 Industrial Way, San Carlos CA 94070.



(B-243334) (B-243332) (B-243333) (C-242864) (C-242863) (C-242848) L3,L4—INPUT INDUCTOR, TYPE A 88-96 MHZ TYPE B 95-103 MHZ TYPE C 102-108 MHZ (B-242870) (B-242871) PLATE INDUCTOR, TUNE SIDE PLATE INDUCTOR, LOAD SIDE (A-242841) VARIABLE TUNED CIRCUIT (OHMITE) FILAMENT CHOKE, OUTER FILAMENT CHOKE, INNER CHOKE # Z-50 PLATE CHOKE

(ERIE)

(C-242867)

- NEUTRALIZING CAPACITOR PADDLE

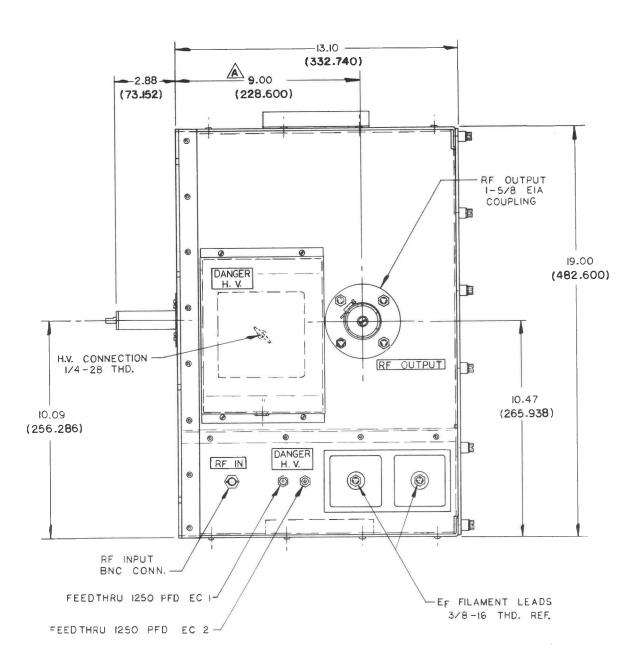
(JENNINGS)

- PLATE TUNING CAPACITOR (C-242841)

- CAP. 100 PF ± 10% 15 KV DC

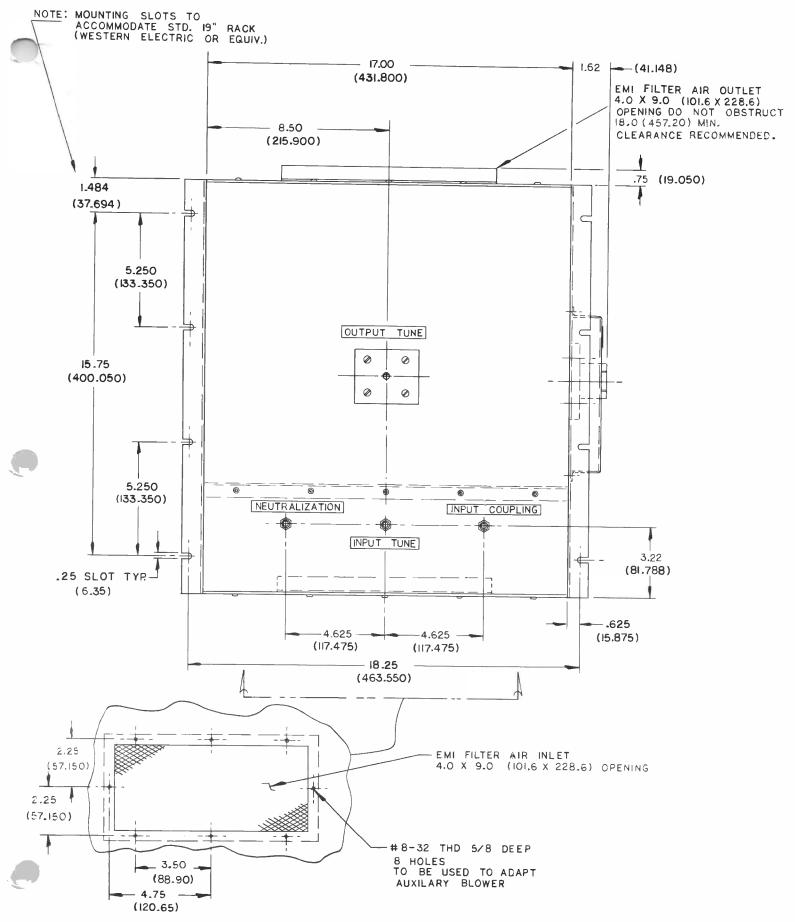
(A-242408)

PLATE FEEDTHRU


- FILAMENT FEEDTHRU (B-241477)

(C-243131)

EXCEPT FOR TUBE, ALL COMPONENTS WITHIN CABINET SUPPLIED WITH CV-2225 CAVITY. NOTE: CV-2225 CAVITY OUTLINE # D-242840


|                           |                                         | _                           | 7 7    | _     |
|---------------------------|-----------------------------------------|-----------------------------|--------|-------|
| E 13                      |                                         | Æ                           | m      | ŀ     |
| 2 15<br>2 15<br>2 15      |                                         |                             |        | 2     |
| EIMAC, Division of Varian | EIMAC LAB<br>CIRCUIT DIAGRAM<br>CV-2225 | WG NO.                      | 243086 | CHEET |
|                           | EIM<br>CIRCU<br>CV                      | SIZE   CODE IDENT   DWG NO. |        |       |
| ≥IQ                       |                                         | SIZE                        | ပ      | SCALE |
|                           |                                         |                             |        |       |





NOTE: DIMENSIONS MARKED THUS ( ) ARE IN MILLIMETERS CV-2225 CIRCUIT DIAGRAM # C-243086 REF.





