

Effective

Date

EIMAC

Division of Varian S A N C A R L O S C A L I F O R N I A

Effective

Date

TABLE OF CONTENTS VOLUME II

Effective

POWER KLYSTRONS

3K2500LX
3K2500SG 4-22-58
3K3000LQ 6-6-58
3K50,000LA, F, Q 5-9-58
3KM3LB 4-1-63
3KM300LA 7-1-66
3KM3000LA 7-15-65
3KM4000LT11-15-62
3KM50,000PA 7-15-60
4K3SJ 7-1-66
4K3SK
4K3SL 7-15-65
4K5SL-1
\$K50,000LQ 5-28-58
4KM50LB 4-2-63
4KM50SJ 10-5-64
4KM50SK 5-2-63
4KM70LA 7-15-65
4KM70SJ
4KM100LA
4KM150LA 9-15-65
4KM3000LR 6-15-66
4KM50,000LA310-20-61
4KM50,000LA5
4KM50,000LQ 8-15-60
4KM50,000LR 5-15-66
4KM170,000LA 10-1-60
4KMP10,000LF 10-1-60
5K50CB 7-15-65
5K70SG10-15-65
5K70SH 8-1-66
5KM50SJ 7-15-65
5KM70SF11-15-62
5K M300SI 11-1-65
X602K 11-15-62
X626AC10-20-61
X780 7-15-65
X841D 6-1-65
X3002
X3034 11-1-65
X3054 7-15-65

INDUSTRIAL MAGNETRONS*

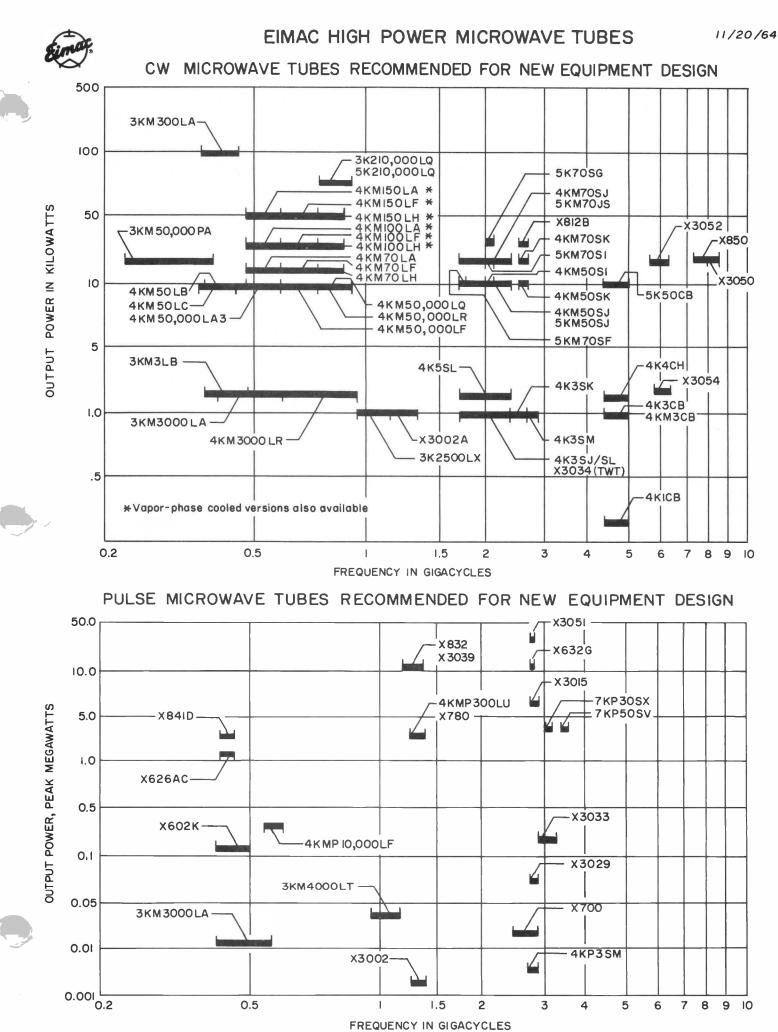
EM15LS..... 5-1-65 WATER LOAD*

WL-120, 130,140		6-1-64
WL-150,151,160,161	••••	12-1-64

Divider Sheets Not Available

REFLEX	KLYSTRONS – TWT – VTM
	REFLEX KLYSTRONS *

1K20XD-A12-27-62
1K20XD-S12-29-62
1K20XF-B 4-1-64
1K20XK
1K20XN-A12-27-62
1K20XS
1K75CH, CK
1K75CLA 3-15-64
1K75CS 8-10-60
1K125CA 3-15-64
1K125CB
X1075-A 8-10-62
EM1114 3-15-64
X1115 4-1-64
X1115B
X1116 4-1-64
X1116A 3-5-63
X1116B 4-1-64
X1117 4-1-64
X1117A 4-1-64
X1117B 4-1-64
X1118 4-1-64
X1118A 4-1-64
X1118B 4-1-64
X1120 6-19-63
X1123 4-1-64
X1126B 4-1-64
X1130 6-19-63
X1138 4-1-65
X1149
EM1188 1-15-66


т₩Т*

EM108
EM113 3-15-64
EM114
EM116
EM118
EM778/8198 4-1-62
EM1006
EM1010 4-15-66
EM1015 4-1-62
EM1030 4-1-62
EM1031 4-1-62
X1044 6-20-64
EM1045 4-1-62
EM1050 4-1-62
X1059 3-4-64
EM1060 4-1-62
X1131
X1132

	VTM*					
EM747		3-15-64				
EM1080		6-14-63				
X1081		2-15-63				
X1083B		3-15-64				
X1084		8-1-62				
EM1086		10-27-62				
X1088B		3-15-64				
X1091	• • • • • • • • • • • • • • • • • •	10-27-62				
X1092		3-5-63				
EM1093		3-15-64				
X1094		3-15-64				
X1097		6-14-63				
X1098		3-1-64				
X1099		3-15-64				
X1150		3-15-64				
X1153-C		10-16-64				
EM1300		12-15-65				
EM1310		12-15-65				
EM1320		12-15-65				
EM1331		12-15-65				

OTHER PRODUCTS

EM4500 1-1-64
EM4501 11-1-63
EM4504, EM4537 4-1-66
EM4505 11-1-64
EM4506 1-1-64
EM4512A
EM4516 11-1-63
EM4522-5, EM5422-6, EM4538-2,
EM4538-5, EM4591 5-1-66
EM4523
EM4524A 9-15-65
EM4527 2-15-66
X4528 2-15-66
EM4529, EM4581, EM4582, EM4583 5-15-66
EM4534
EM4539
EM4543
EM4546 2-15-65
EM4547
EM4555
EM4564
EM4567 1-15-66
EM4574, EM4585, EM4586 2-15-65
EM4575 2-1-65
X4576 5-15-66
EM4577 6-1-65
EM4578 6-1-65
EM4580 6-1-65
EM4581, EM4582, EM4583 5-1-65
EM4590 1-1-66
X4592 5-15-66
EM4596 ———

klystrons)

Look in the general section for---

- Your nearest distributor of modern, fully guaranteed Eimac electron tubes and electron tube accessories.
- Your nearest Eimac Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or provide other information not found in the catalog.
- Eimac tube type numbering system.
- Tube Replacement Chart.
- Prices on Eimac products.

IMPORTANT EIMAC "EXTRAS"

Application Engineering. The Eimac Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proved by Eimac engineers, whose combined knowledge and experience are at your service. Additional contributions by this Eimac department are its Application Bulletins, a service which you receive without obligation.

Field Engineering. Serving as an extension of the Application Engineering Department outside the Eimac plant, Eimac Field Engineers cover the United States, operating out of offices in major cities. They will help you personally with experimental work, problems of technique, etc. Engineers from Eitel-McCullough, Inc. are available, too, for field consultation throughout the country. As Eimac tubes are world renowned, the same services extend to various countries overseas through the Eimac Export Department.

EITEL-MCCULLOUGH, INC.

POWER-AMPLIFIER

L-BAND KLYSTRON

TENTATIVE DATA

3K2500LX

The Eimac 3K2500LX is a ceramic and metal, three cavity, magnetically focused, power-amplifier klystron designed for use at frequencies between 980 and 1200 megacycles. It will deliver a minimum CW output power of one kilowatt with a power gain of more than 25 db.

The resonant cavities of the 3K2500LX have cylindrical ceramic windows and are completed by tuning boxes external to the tube. This design permits a wide tuning range, and allows repeated tuning cycling without damage to vacuum seals.

An Eimac Klystron Amplifier Circuit Assembly (Catalog Number H-114) has been designed for use with this tube. The klystron must not be operated in any other circuit assembly without design guidance and final approval by Eitel-McCullough, Inc.

CHARACTERISTICS

Cathode:	Unipotent	tial, Ox	ide Coat	ed			
	Minimum	Heating	g Time	-	-	5	minutes
Heater:	Voltage	-	-	-	-	7.5	volts
	Current	-	-	-	-	5.8	amperes
	Maximum	Startin	g Current		-	15	amperes
Power Ga	in -	-	-	—	-	25	db
Output Po	ower -	-		14	-	1000	watts
Frequency	y Range	-	-	-	980 to	1200	mc

MECHANICAL

ELECTRICAL

Operating Position* R-F Coupling:	E	E.	-	-	Axis vertical
Input	-	-	- T	vpe "N	" coaxial fitting
Output	-	-			50-ohm air line
Cooling (See Applica	tion)	-	-	-	- Forced air
Net Weight -	-	-	-	-	- 22 pounds
Shipping Weight (App	oroxim	ate)	1-	-	- 80 pounds
Maximum Over-All D	imens	ions:			
Length	-	-	-	-	25 7/8 inches
Diameter	-	-	-	-	5 1/8 inches

MAGNETIC-COIL POWER-SUPPLY REQUIREMENTS (Using H-114 Coils)

Prefocus-Coil Voltag	je -	-	-	-	7	-	0 to 35	volts
Prefocus-Coil Curre	nt –	-	-	-	-	-	0 to 1.0	ampere
Body-Coil Voltage	-	-	· —	-	-	-	0 to 165	volts
Body-Coil Current	-	_	-	_	-	-	0 to 2.5	amperes

*Cathode end up when installed in the Eimac H-114 circuit assembly. (Effective 9-15-58) Copyright 1958 by Eitel-McCullough, Inc.

MAXIMUM RATINGS

D-C BEAM VOLTAGE -	-	-	-	-	-	7000	MAX. VOLTS
D-C BEAM CURRENT -	-	-	-	-	-	600	MAX. MA
D-C BODY CURRENT (CONT	INUOUS)	-	-	-	-	60	MAX. MA
D-C BODY CURRENT (TUNIN	IG ONLY)	-	-	-	-	90	MAX. MA
D-C FOCUS-ELECTRODE VC	LTAGE	-	-	-	-	-100	MAX. VOLTS
COLLECTOR DISSIPATION	-	-	-	-	-	2500	MAX. WATTS

TYPICAL OPERATION

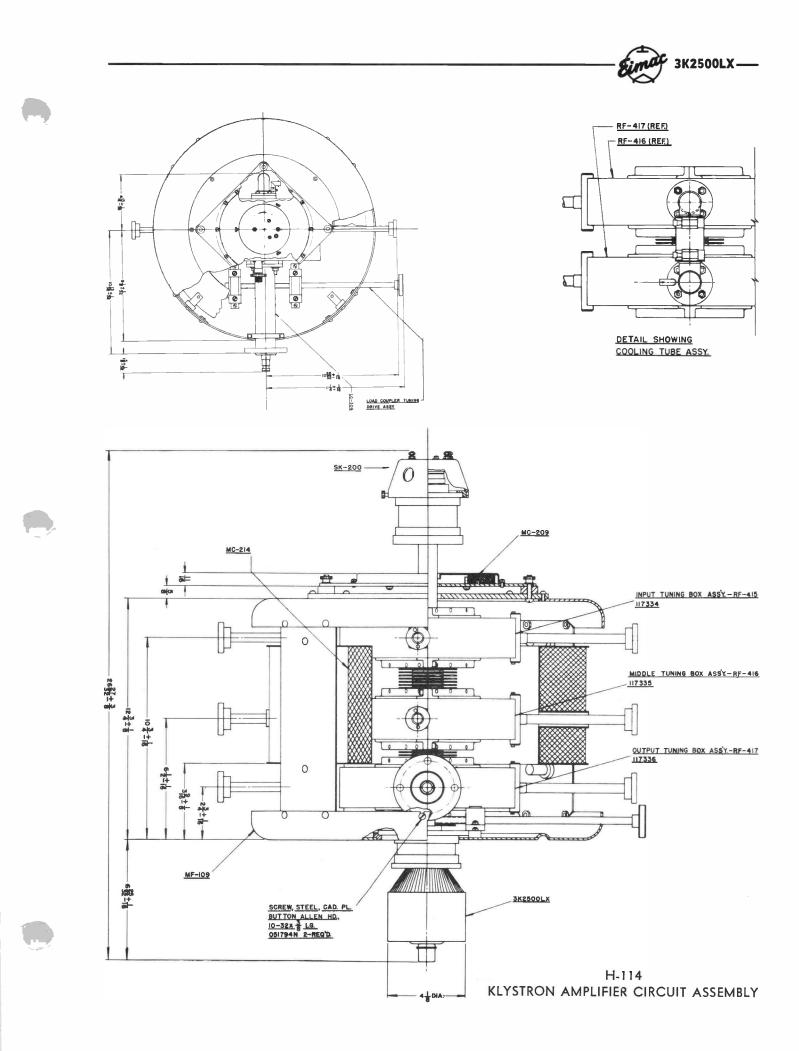
NARROW-BAND CW AMPLIFIER (In H-114 Circuit Assembly)

Frequency – Output Power – Driving Power – Power Gain –		-	- - -			1000 830 2 26.1	1000 1320 2 28.2	megacycles watts watts db
D-C Beam Voltage D-C Beam Current Beam Input Power	-	-	-	-	-	6000 350 2100	7000 455 3180	volts milliamperes watts
Beam Power Efficiency D-C Body Current	-	-	-	-	-	39.5 40	41.4 30	percent milliamperes
D-C Collector Current Collector Dissipation*	-	-	-	-		310 1030	425 1650	milliamperes watts
Focus-Electrode Voltage Heater Voltage – Heater Current –	e - -	-		- -		-100 7.5 5.8	-100 7.5 5.8	volts volts amperes
Magnetic-Coil Currents Prefocus - Body	5: * _	-	-	-	-	0.5	0.5 2.0	ampere amperes

*Approximate values.

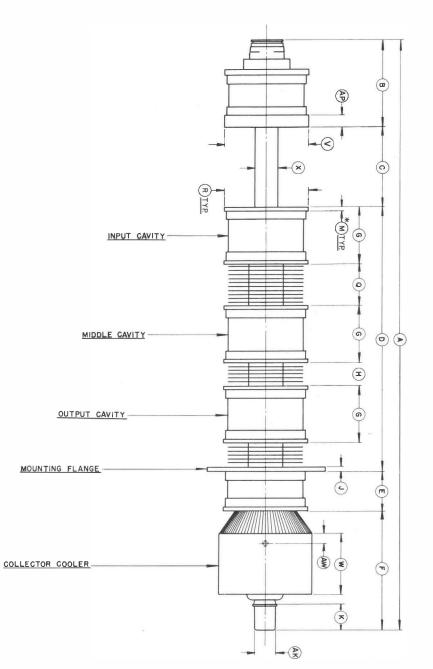
APPLICATION

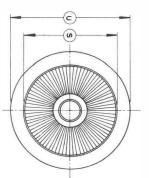
<u>Cooling</u>--When the 3K2500LX is operated at sea level, with an ambient air temperature of less than 30° C (86° F), the cathode will normally require only convection air cooling. At higher altitudes or temperatures, forced-air cooling must be used to maintain the temperature of the metal button at the cathode end of the tube below 150° C.


With a maximum ambient temperature of 25° C (77° F) and at sea level, the air-flow rates tabulated below are sufficient for operation at maximum ratings.

Output and Middle Cavities (Combined)	50 cfm
Collector	150 cfm

At higher temperatures or altitudes, the air-flow rate must be increased to obtain equivalent cooling.


Body cooling is normally provided by the escaping air from the tuning boxes. However, if the ambient air temperature exceeds 30° C, forced air will also be required on the body cooling fins.


<u>Special Applications</u>--If it is desired to operate this tube under conditions not covered by this data sheet or if more information is required, write to the Application Engineering Department, Eitel-McCullough, Inc., San Carlos, California.

	DIMEN	SION DAT	۹.
REF	NOM.	MIN.	MAX.
A		25.438	26.188
8		3.730	3.980
C		3.406	3.470
D		11.107	11.357
E	1.976		
F		5.187	5.437
G		2.464	2.528
н		.971	1.033
J		.220	.240
к		1.115	1.135
м		.187	
Q		1.710	1.774
R		3.615 DIA.	3.635 DIA.
S		3.985 DIA.	4.015 DIA.
U		5.118 DIA.	5.148 DIA.
V		3.615 DIA.	3.635 DIA.
W	2.625		
X		.992 DIA.	1.008 DIA
AK		.865 DIA	.885 DIA
AP		.490	.510
AW		.428	.448

NOTES:

I.*MINIMUM CONTACT SURFACES.

2. DIMENSIONS IN INCHES

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA

3KM4000LT

PULSE AMPLIFIER L-BAND KLYSTRON

The Eimac 3KM4000LT is a three-cavity, magnetically focused, pulse-amplifier klystron. It will deliver a peak output power of 40 kilowatts with an average power of one kilowatt at frequencies between 960 and 1215 megacycles. Nominal power gain is 33 db.

This klystron employs the Eimac Modulating Anode which provides an effective means of pulse modulating the output power without changing the beam voltage. A modulating anode voltage of approximately one half the beam voltage is sufficient to realize full rated pulse output power.

All tuning is accomplished outside of the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. This design affords a wide tuning range and permits external cavity loading for broadband applications. For spares or replacements, only the basic vacuum tube, without cavities, need be purchased.

Eimac Klystron Amplifier Circuit Assembly H-116 has been designed for use with the 3KM4000LT to cover the frequency range of 960 to 1215 megacycles. This assembly includes a klystron supporting structure, focus coils, tuning cavities and an adjustable output load coupler.

CHARACTERISTICS

ELECTRICAL

Cathode:	Unipotenti	al,	Oxi	de-	Coa	ted					
	Minimum	Hea	ating	T:	ime	-	-	-		5	minutes
Heater:	Voltage	-	-	-	-	-	-	-	-	7.5	volts
	Current	-	-	-	-	-	-	-	-	5.5	amperes
	Maximum	Sta	rtin	g C	Curr	ent	-	-	-	11	amperes
Modulating	Anode Cap	acit	tanc	e ('	То а	1 11					
	other elec		des)	-	-	-	-	-	-	22	uuf
Power Gain	(Nominal)	-	-	-	-	-	-	-	-	33	db
Average Ou		-	-	-	-	-	-	-	-	1	kilowatt
Peak Output	t Power	-	-	-	-	-	-	-	_	40	kilowatts
Frequency 2	Range (In H	I-11	16 A	SSe	emb	ly)	96	0 to	12	215	megacycles

MECHANICAL

Operating Position	-	÷	-	-	-	-	-	-	-	-	-	-	Ve	erti	cal,	cathod	e end up
RF Input Coupling	-	-	-	-		-	-	-	-	-	-	-	-	-	50·	-ohm T	ype "N"
RF Output Coupling	-	-	_	-	-	-	-	-	-	10	-	-	1	-5/	8 ind	ch, 50-0	hm line
Weight (Tube Only)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	21	pounds
Approximate Shippin	ıg ĭ	Weig	ght	(Kly	ystr	on	only	y)	-	-	-	-	-	-	-	120	pounds
Weight (H-116 Circu	it 4	Ass	eml	bly)	-	-	-	-	-	-	-	-	-	-	-	240	pounds

(Effective 11-15-62) Copyright 1961 by Eitel-McCullough, Inc. Printed in U.S.A.

MECHANICAL (Cont'd)

Maximum	Dimension	5 (T1	ube)	:														
	Length -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31	inches
	Diameter	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.3	inches
Maximum	Dimensions	5 (Ti	ube	and	Ci	rcu	it A	SSE	emb	ly):								
	Length -	-	-	-	-	-	-	-	-		-		-	-	-	-	31	inches
	Diameter	-	-	-	stars	-	-	-	-	-	-	-	-	-	-	-	19	inches
Cooling:																		
Cathode	and Drift T	ube																
																		ing may
				be :	req	uir	ed a	at h	ighe	er a	ltit	ude	s or	۰ hig	ghe:	r tei	mper	atures.
Collecto	or	-		150 C in								e dr	op	of 1	.85	inc	hes H	Η ₂ Ο (25°

FOCUS COIL POWER-SUPPLY REQUIREMENTS

Prefocus-Coil Voltage -	-	-	-	-	-	-	-	-	-	-	-	0 to 25	volts
Prefocus-Coil Current -	-	-	-	-	-	-	-	-	-	-	-	0 to 1.5	amperes
Body-Coil Voltage -	-	-	-	-	-	-	-	-	-	-	-	0 to 25	volts
Body-Coil Current -		-	-	-	-	-	-	-	-	-	-	0 to 10	amperes
Collector-Coil Voltage -		-	-	-	-	-	-	-	-	-	-	0 to 50	volts
Collector-Coil Current -	•	-	-	~	-		-	-	-	-	-	0 to 2.5	amperes

MAXIMUM RATINGS

DC BEAM VOLTAGE	-	-	-	-	-	-	-	28	KILOVOLTS
PEAK MODULATING-ANODE VOLTAGE		-	-	-	-	-	-	14	KILOVOLTS
PEAK BEAM CURRENT	-	-	-	-	-	-	-	6	AMPERES
AVERAGE BEAM CURRENT ·	_	-	-	-	-	-	-	500	MILLIAMPERES
DC BODY CURRENT (CONTINUOUS)	-	-	-	-	-	-	where	20	MILLIAMPERES
DC BODY CURRENT (TUNING ONLY)	-	-	-	-	-	-	-	40	MILLIAMPERES
DC FOCUS ELECTRODE VOLTAGE -	-	-	-	-	-	-	-	-400	VOLTS
COLLECTOR DISSIPATION	-	-	-	-	-	-	-	4	KILOWATTS
SEAL TEMPERATURE	-	-	-	-	-	-	-	175	DEGREES C

TYPICAL OPERATION

(In H-116 Circuit Assembly)

NARROW-BAND PULSE AMPLIFIER, SQUARE PULSE, 0.025 DUTY, MODULATING ANODE PULSED

DC Beam Voltage	-	-	-	-	-	-	-	24	26	28	kilovolts
Peak Output Power	_		-	-	-	-	-	30	36	40	kilowatts
Peak Driving Power		-	-	-	-	-	-	5	5	5	watts
Power Gain	-	-	-	-	-	-	-	37.7	38.5	39	db
Peak Beam Current	-	-	-	-	-	-	-	2.8	3.3	3.7	amperes
Average Beam Curr	ent	-	-	-	-	-	-	71	82	90	milliamperes
DC Body Current	-	_	_	-	-	-	-	13	14	15	milliamperes
Peak Modulating-An	ode	Vo	ltag	çe	_	-	-	12	13	14	kilovolts
Focus-Electrode Vol	ltage	Э	-	_	_	-	-	-75	-75	-75	volts
Focus Coil Currents	:										
Prefocus	-	-	-	-	_	-	-	0.92	1.1	1.2	amperes
Body	~	-	-	_	_	_	-	6.8	7	7	amperes
Collector	~	-	-	-	-	-	-	0.95	1.0	1.0	ampere

For additional information or information regarding any specific application, write to Eitel-McCullough, Inc., San Carlos, California.

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA TENTATIVE DATA 4K3CB POWER AMPLIFIER C-BAND KLYSTRON

The Eimac 4K3CB is an air cooled, permanent magnet focused, power amplifier klystron. It will deliver a minimum CW output power of one kilowatt at frequencies from 4.4 to 5.0 kMc, with a minimum power gain of 43 db. The 4K3CB is designed for use in transmitters where compactness and light weight are essential.

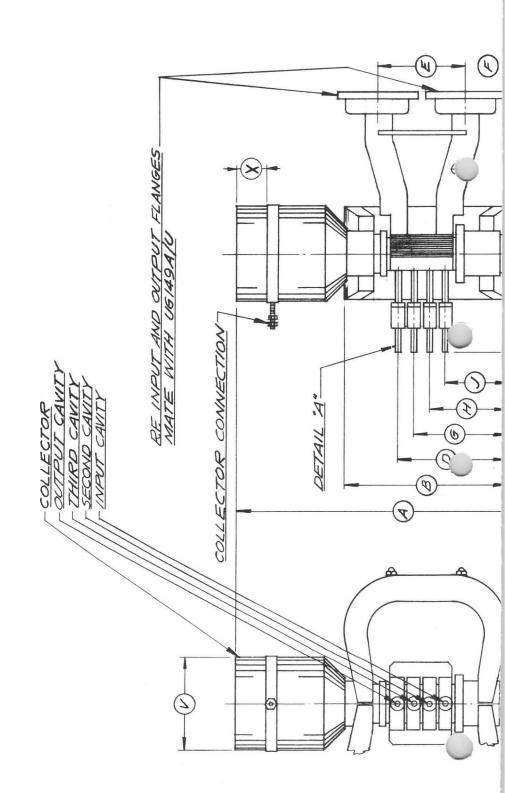
FEATURES

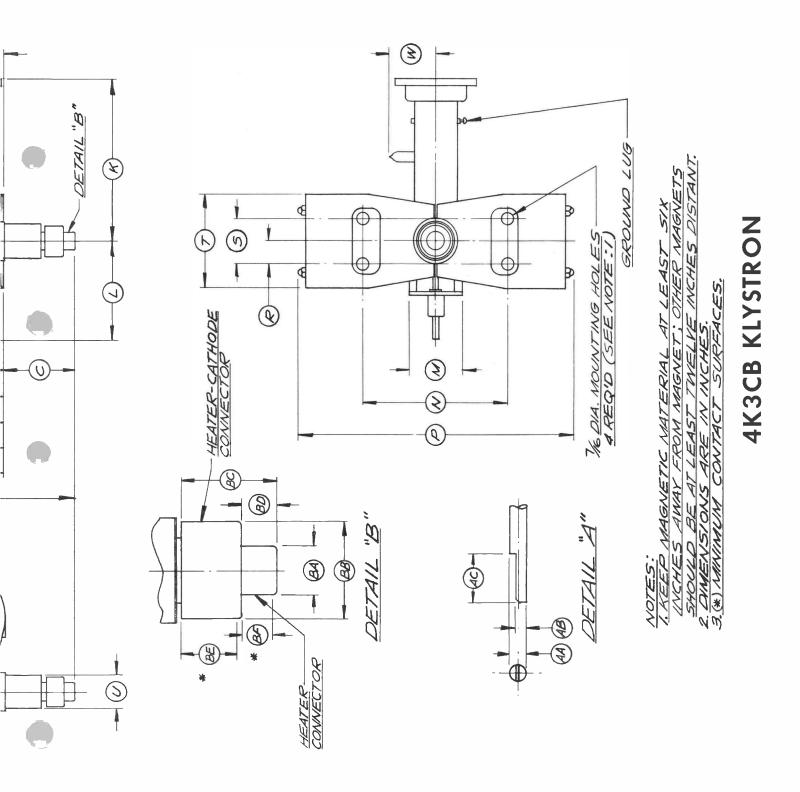
FREQUENCY	4.4-5.0	kMc
MINIMUM OUTPUT POWER	1	kW
HALF POWER BANDWIDTH	7.5	Mc
MINIMUM POWER GAIN	43	db
AIR COOLING		
PERMANENT MAGNET FOC	USING	
FOUR INTEGRAL CAVITIES		
FIXED INPUT AND OUTPU	T COUL	PLING
INSTANT FAULT RECYCLIN	IG	

CHARACTERISTICS

ELECTRICAL

w


Cathode:	Impregnated, Unipotential	
	Heating Time	minutes
Heater:	Voltage	volts
	Current	amperes
	Maximum Starting Current 15	amperes


MECHANICAL

Maximum Dimensions:	
Length	inches
Width	inches
Depth	inches
Maximum Weight (Tube and Magnet)	pounds
Input Coupling	waveguide
Output Coupling UG149A/U	waveguide
Maximum Tuner Torque	in-oz
Mounting Position Preferred Vertica	l, cathode down

DIA	MENSIO	NAL D	ATA
REF.	NOM.	MIN.	MAX.
\mathcal{A}	// 0////		15.500
B			7.900
C	2.723		
0	5.104		
E		3.629	3.879
F	2.281		
G	4.409		
H	3.714		
1	3.019		
K		7.038	7.288
2		4.481	4.605
M		2.328	2.359
N		6.500	6.625
P			12.812
R		.937	1.000
5		1.969	2.03/
T			4.600
U			1.627
V		4.333	4.433
W			2.750
X		.875	1.125
AA		.248	.250
AB		.170	.180
AC		.740	.760
		_	
BA		.740	.760
BB		1.485	1.505
BC		1.450	1.490
BD		.530	
BE		.830	
BF		.450	
			_

Sima 4K3CB

MECHANICAL (continued)

Cooling: Forced Air (20° C at Sea Level)

	Flow Rate	Pressure Drop
Tuner (Ducted)	60 cfm	0.25 inches H_2O
Body	60 cfm	free
Collecter (Ducted)	200 cfm	2 inches H_2O

MAXIMUM RATINGS

DC BEAM VOLTAGE	8.0	KILOVOLTS
DC BEAM CURRENT	0.6	AMPERE
DC BEAM INPUT POWER	4	KILOWATTS
DC BODY CURRENT	60	MILLIAMPS
COLLECTOR DISSIPATION	4	KILOWATTS
LOAD VSWR	2:1	
TEMPERATURE OF COLLECTOR, BODY AND TUNER FINS 15	50° C	

TYPICAL OPERATION - TUNED FOR MAXIMUM EFFICIENCY

Frequency									4.4	4.7	5.0	kilomegacycles
Output Power												kilowatts
Driving Power										40	40	milliwatts
Gain										45	44.8	decibels
DC Beam Voltage									7.5	7.5	7.5	kilovolts
DC Beam Current												ampere
Beam Power Efficience	y.								40.7	37.8	35	percent
Half Power Bandwidth											9	0, 2
DC Body Current									21	21	18	milliamperes
-												

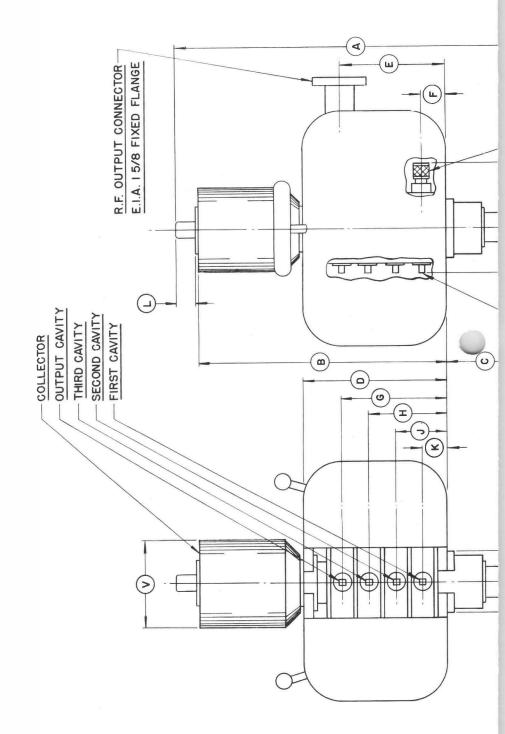
For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.

EIMAC Division of Varian **4K3SJ** POWER AMPLIFIER S-BAND KLYSTRON

The EIMAC 4K3SJ is an air cooled, permanent magnet focused, power-amplifier klystron designed to operate at frequencies from 1700 to 2400 MHz. It will deliver a minimum output power of 1 kilowatt with minimum power gain of 40 decibels. The 4K3SJ is intended for use in applications where light weight and compactness are essential.

FEATURES

- PERMANENT MAGNET FOCUSING
- FOUR INTEGRAL CAVITIES
- LOW NOISE LEVEL
- FIXED INPUT AND OUTPUT COUPLING
- TWO LIFTING HANDLES FOR EASE OF HANDLING
- INSTANT FAULT RECYCLING


CHARACTERISTICS

ELECTRICAL																	
Frequency -	-	-	-	-	-	-	-	-	-	-	-	- 1	-	17	00-2	400	MHz
Minimum Output	Pow	/er	-	-	-	-	-	-	-	-	-	-	-	-	-	1	kW
Minimum Power G	Gain	-	-	r.	-	-	-	-	-	-	-	-	-	-	-	40	db
Cathode: Impregn	ated	l Un	ipot	entia	ıl												
Starting Time	e	-	-	-	-	-	-	-	10	-	-	-	-		-	3	minutes
Heater: Voltage	~	~		-	-	-	-	-	-	-	-	-	-	_	-	6	volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.5	amperes
Maximum Sta	artir	ng Ci	urre	nt	-	-1	-	-	-	-	-	-	-	-	-	9	amperes

(Revised 7-1-66) © 1962, 1966 Varian

	DIMENSIC	NAL DA	ГА
REF.	NOM,	MIN.	MAX.
Α			19.000
В	13.475		
С	4.544		
D			7.874
Ε	5.820		
F	1.470		
G	5.820		
Н	4.370		
J	2.920		
К	1.470		
L			.750
М	2.472		
Ν	3.475		
Ρ	7.910		
R		4.888	5.012
S		2.444	2.506
Т			13.196
U			3.042
V	4.383		
AA		.248	.252
AB		.647	
AC		.340	
BA		.740	.760
BB		1.485	1.505
BC		1.450	1.490
BD		.530	
BE		.830	
BF		.450	

3. (*) MINIMUM CONTACT.

انہ

DIMENSIONS ARE IN INCHES.

INCHES DISTANT.

MAGNETS SHOULD BE AT LEAST TWELVE INCHES AWAY FROM MAGNET: OTHER

I. KEEP MAGNETIC MATERIALS AT LEAST SIX

NOTES:

5/16 DIA. MOUNTING HOLE

-TUNER SHAFT

DETAIL "A"

(AC)

A A

B

Φ

BODY CONNECTOR

GROUND LUG

4 REQ'D. (SEE NOTE 1)

٩

6

 $\overline{\otimes}$

0

6

R

E

DETAIL "B"

R.F. INPUT CONNECTOR

UG - 21D/U

¢

z

۲

ł

DETAIL "A"

G

DETAIL "B"

HEATER-CATHODE CONNECTION

HEATER CONNECTION-

8

8

+| **(b)** *

┠╞

4K3SJ Simo

MECHANICAL

Operating P	ositio	n (pr	eferr	ed)	-	-	-	-	-	-	-	-	-	-	-	Verti	cal, o	cathod	e down
Cavity Tuni						-	-	-	-	-	-	-	-	-	-	-	12	inch	pounds
Cooling -	-	-	-	_	-	-	-	-	-	-	-	-	-	Force	ed /	Air (2	20°C	at se	a level)
Collector Fl		_	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	- 2	00 cfm
Collector Pi		e Droj	р	-	-	-	-	-	-	-	-	-	-	-	-	-	1.	5 incł	nes H ₂ O
Body and c				uire	cool	ing	only	at h	ighe	r ten	npera	ature	es o	r lowe	er p	ressu	ires.		
Maximum	Dimer	sions	5:															18 /	inches
Length	h -	-	-	-	-	**	-	-	-	-	-	-	-	-	-	-	-		inches
Width	. –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Depth	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	inches
RF Input C	Couplir	ıg -	-	-	-	-	-	-	-	-	-	-	-		-	UG-2	1 D	/U Co	nnector
-																15/	ten al.		
RF Output	Coupl	ing	-	-	-	-	-	-	-	-	-	-	-	-	-	1 %8	incr	1, 50-0	hm line

MAXIMUM RATINGS

DC BEAM VOLTAGE -	-	-	-	-	-	-	-	-	-	-	-	-	7.0 KILOVOLTS
DC BEAM CURRENT -	-	-	-	-	-	-	-	-	-	-	-	-	0.6 AMPERE
DC BEAM INPUT POWI	ER	-	-	-	-	-	-	-	-	-	-	-	4 KILOWATTS
COLLECTOR DISSIPAT	ION	-	-	-	-	-	-	-	-	-	-	-	4 KILOWATTS
CATHODE SEAL TEMP	ERAT	URE	-	-	-	-	-	-	-	-	-	-	150 DEGREES C
LOAD VSWR													

TYPICAL OPERATION - TUNED FOR MAXIMUM EFFICIENCY

Frequency	-	-	-	-	-	-	1700	2000	2400 megahertz
Output Power	-	-	-	-	-	-	1.17	1.08	1.03 kilowatts
Driving Power	-	-		-	-	-	20	25	30 milliwatts
Gain	-	-	-	-	-	-	47.6	46.3	45.3 decibels
DC Beam Voltage	-	-	-	-	-	-	6	6	6.2 kilovolts
DC Beam Current	-	-	-	-	-	-	0.54	0.54	0.56 ampere
Beam Power Efficiency	-	-	-	-	-	-	36.2	33.4	31.8 percent
3 db Bandwidth	-	-	-	-	-	-	4	4.5	6 megahertz

For additional data or information regarding a specific application, write to EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California.

TENTATIVE DATA 4K50,000LQ power Amplifier L-BAND KLYSTRON

The Eimac 4K50,000LQ is a ceramic and metal, four-cavity, magnetically focused, power-amplifier klystron designed for use at frequencies between 600 and 985 megacycles. It will deliver a minimum CW output power of 10 kilowatts with a power gain of more than 55 db. In applications requiring a 6-megacycle bandwidth at the 0.5-db power points, the 4K50,000LQ will deliver 10 kilowatts output power with a power gain of 30 db.

The resonant cavities for the 4K50,000LQ are completed through the cylindrical ceramic windows of the klystron and all tuning is accomplished outside the vacuum envelope. This design permits a wide tuning range and allows repeated tuning cycling without damage to vacuum seals.

An Eimac Klystron Amplifier Circuit Assembly (Catalog Number H-101A) has been designed for use with this tube and covers the frequency range of 720 to 985 megacycles. Other frequency ranges can be provided if required. This assembly includes an electromagnetic frame and coils, external tuning boxes, an adjustable output coupler, and an Eimac SK-110 Air-System Socket.

CHARACTERISTICS

ELECTRICAL

Simac

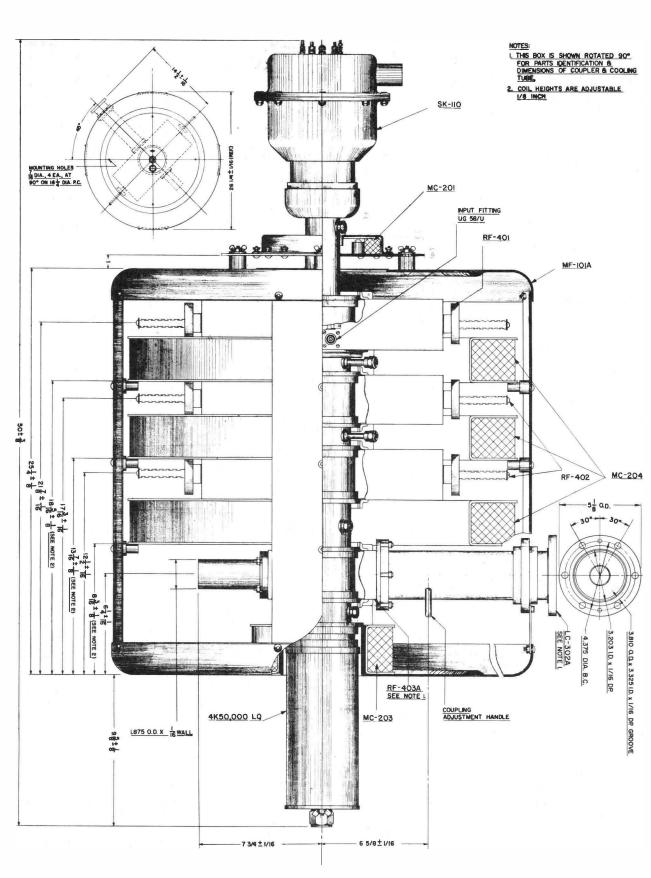
	Filament:	Pure Tungst	en						
		Voltage	-	-	-	-	8.0	volts	
		Current	-	-	-	-	40	amperes	
		Maximum St	arting (Current	a .	-	80	amperes	
	Cathode:	Unipotentia.	l, Bomb	ardment	Heated				
		Voltage	-	-	-	-	2250	volts	
		Current	-	-	-	-	0.71	ampere	
		Power	-	-	-	-	1600	watts	1
	Power Gat	ln:							
		Narrow Band	ł	-	-	-	55	db	
		Broad Band	(6 mc at	0.5-db	points)	*	30	db	
1	Output Po	wer	-	-	-	- 1	0,000	watts	
	Frequency	v Range (In H	I-101A A	Assembly	y)	720	to 985	mc	
*	(9 mc at 3	-db points)							

MECHANICAL

Operating Position	<u></u>	-	- 1	/ertical, c	athode end up
R-F Input Coupling	-	-	- '	Type "N"	coaxial fitting
R-F Output Coupling	-	-	3 1	/8-inch 5	0-ohm air line
Net Weight	-	-	-	-	53 pounds
Shipping Weight (app	roxima	te)	_	_	135 pounds
Cooling: Water and	Forced	Air	-	-	Flow Rate
Cathode (W	Vith SK	-110)	-	-	52 cfm air
Output Cav	vity		-	-	50 cfm air
Body	-	-	-	-	l gpm water
Collector	-	- 57	-		25 gpm water

-	Pressure Drop
-	5 inches H_2O
-	1.5 inches H ₂ O
-	- 8 psi
-	- 28 psi

(Effective 5-28-58) Copyright 1958 by Eitel-McCullough, Inc.

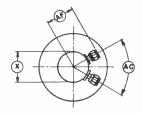

MAGNETIC-COIL POWER-SUPPLY REQUIREMENTS

Prefocus-Coil Voltage	_	_	_	_	-	-	0 to 25	volts
Prefocus-Coil Current	-	_	-	_	-	-	0 to 1	ampere
Each of Three Body Coil	ls:							
Voltage -	_	_	_	-	-	-	0 to 175	volts
Current -	_	-	-	_	-	-	0 to 3	amperes
Collector-Coil Voltage	-	_	-	-	-	-	0 to 50	volts
Collector-Coil Current	-	-	-	-	-	-	0 to 1.5	amperes
••••••			MAXIMUM	1 RAT	INGS			
D-C BEAM VOLTAGE	_	_	-	_	_	-	20 MAX.	KILOVOLTS
D-C BEAM CURRENT	-	_	_	-	-	-	2.5 MAX.	AMPERES
D-C BODY CURRENT (C	ONTINI	IOUS	- (2	-	_	-		AMPERE
D-C BODY CURRENT (C				-	-	-	0.15 MAX.	
FOCUS-ELECTRODE VOI		-	-	-	-	_	-500 MAX.	
BOMBARDED CATHODE:								
D-C VOLTAGE -	-	-	_	_	-	-	2.4 MAX.	KILOVOLTS
D-C CURRENT -	_	_	_	_	_	-	0.75 MAX.	
D-C POWER -		-	_	_	_	_		KILOWATTS
COLLECTOR DISSIPATIO	N	-	-	-		_		KILOWATTS
COLLECTOR DISBILATIC			TYPICAL (OPERA	TION			
Frequency -	_	_	-	-	-	900	900	megacycles
Output Power -	_	_	_	_	_	10.15	11.2	kilowatts
Bandwidth (0.5-db pow	or note		_	_	_	6.85	1.05	megacycles
Driving Power -	-		-	_	_	5	0.02	watts
Power Gain -	-		-	_	_	33	57.5	db
Fower Game -	-	-	_					
D-C Beam Voltage	-	-	-	-	-	17	16	kilovolts
D-C Beam Current	-	-	-	-	-	1.78	1.59	amperes
Beam Input Power	-	-	-	-	-	30.2	25.4	kilowatts
Beam Power Efficiency	-	-	-	-	-	33.6	44.1	percent
D-C Body Current	-	-	-	-	-	80	80	milliamperes
D-C Collector Current	-	-	-	-	-	1.7	1.51	amperes
Collector Dissipation*	-	-	-	-	-	11.51	12.92	kilowa tts
Focus-Electrode Voltage	e -	-	-	-	-	-200	-200	volts
Filament Voltage -	-	-	-	-	-	8.0	8.0	volts
Filament Current –	-	-	-	-	-	40	40	amperes
Bombarded Cathode:								
Voltage* -	-	-	-	-	-	2250	2250	volts
Current* -	-	-	-	-	-	0.71	0.71	ampere
Power	-	-	-	-	-	1600	1600	watts
Magnetic-Coil Currents	s:* (Us	sing]	H-101A Co	mpone	ents)			
Prefocus -	-	-	-	-	-	0.8	0.75	ampere
First Body -	-	-	-	-	-	1.2	1.2	amperes
Second Body -	-	-	-	-	-	1.9	1.8	amperes
Third Body -	-	-	-	-	-	2.5	2.3	amperes
Collector -	-	-	-	-	-	0.85	0.85	ampere

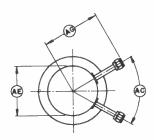
*Approximate values.

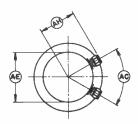
APPLICATION

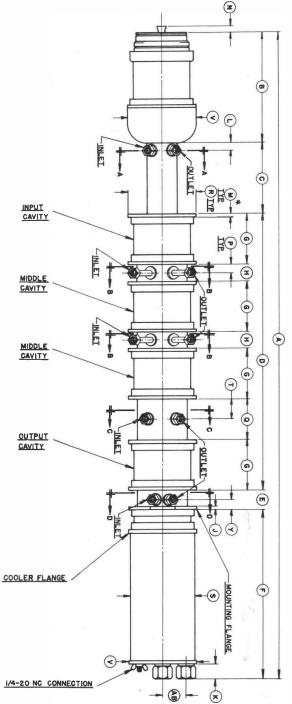
For additional information or information regarding any specific application, write to the Application Engineering Department, Eitel-McCullough, Inc., San Bruno, California. All such requests will be handled confidentially and without charge.



H-101A KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY

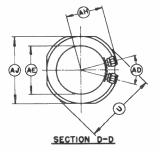

4K50,000LQ -


13 - 7 5


SECTION A-A

SECTION B-B

SECTION C-C


DIMENSION DATA MAX. MIN. REF NOM. 44.560 44.690 A 7.470 7.510 B 4.985 5.040 C 20.064 19.994 D .626 E 12.620 F 12.515 3.530 G 3.495 1.205 н 1.170 .255 J .230 1.100 ĸ 1.030 L .515 .645 Μ .187 N .750 Ρ .560 .650 Q 2.735 2.770 4.630 D R 4.610 D 4.510 D 4.490 D **\$** T 1.320 1.425 5.130 D U 5.115 D 4.640 D 4.610 D ٧ Х 2.120 2 140 Y .645 .705 AB 1.585 1.630 AC 60* AD 30° AE 3.485 3.510 AF 1.875 AG 4.000 AH 2.563 AJ 4.615 4.635

IMPERIAL FLEX FITTINGS FOR 5/16 OD. TUBING OUTLET

IMPERIAL FLEX FITTINGS-FOR 3/4 O.D. TUBING

NOTES:

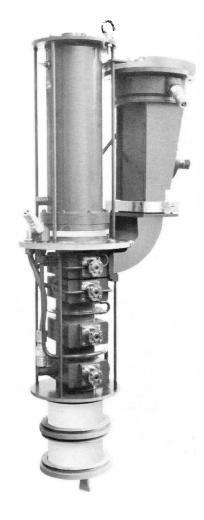
- I.* MINIMUM CONTACT SURFACES FOR ALL CAVITY PLATES.
- 2. DIMENSIONS IN INCHES.
- 3. FOR ELECTRICAL CONTACT SURFACE DIMENSIONS SEE GUN NO. 2 OUTLINE, DRWG. NO. GUN NO. 2-6001.

4K50,000LQ OUTLINE DRAWING

EITEL-MCCULLOUGH, INC.

POWER AMPLIFIER KLYSTRON 12 kW 1.7 - 2.4 Gc

The 4KM50SJ is a four-cavity, power amplifier klystron intended primarily for use in tropospheric scatter communications systems. When tuned for maximum efficiency, it produces a minimum output power of 12 kilowatts, at frequencies from 1.7 to 2.4 gigacycles, with a minimum gain of 40 decibels.


The electron gun of this klystron has a confined flow configuration which minimizes focusing adjustments and produces a stable beam. The current of the focusing electromagnet can be varied over a wide range without appreciably affecting rf output or body current. Only one electromagnet power supply is required. Cathode current loading is less than 200 milliamperes per square centimeter. This light cathode loading contributes to long life.

Both input and output couplings of the 4KM50SJ are fixed. The only adjustments required are therefore the tuning of the four integral cavities. The output window is a thick beryllium oxide disc which is protected by a photo-cell arc detector.

The 4KM50SJ incorporates a built-in vacuum pump in the form of a titanium getter which should be energized whenever heater power is applied. Effective protection against internal arcs is provided by the Eimac Modulating Anode.

A focusing electromagnet and klystron supporting structure, Catalog Number H-158, has been designed for use with the 4KM50SJ.

Eimac Water Load WL-202 is recommended for use with the 4KM50SJ.

CHARACTERISTICS

Cathode: Unipotential														
Heating time	-	-	-	-	-	-	-	-	-	-	-	-	-	5 minutes
Heater: Voltage (±5%)	-	-	-	-	-	-	-	-	-	-	-	-	-	7.5 volts
Current	-	-	-	-		-	-	-	-	-	-	-	-	12 amperes
Getter: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	4 volts ac
Amperes	-	-	-	-	-	-	-	-	-	-		-	-	24 amperes ac
Power Gain	-	-	-	-	-	-	-	-	-	-	-	-	-	40 decibels
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	-	12 kilowatts
Frequency Range	-	-	-	-	-	-	-	-	-	-	-	-	1.'	7-2.4 gigacycles
Phase sensitivity to beam	volta	.ge	-	-	-	-	-	-	-	-	-	-	0	.058 degrees/volt

(Effective 10-5-64) Copyright 1964 by Eitel-McCullough, Inc.

ELECTRICAL

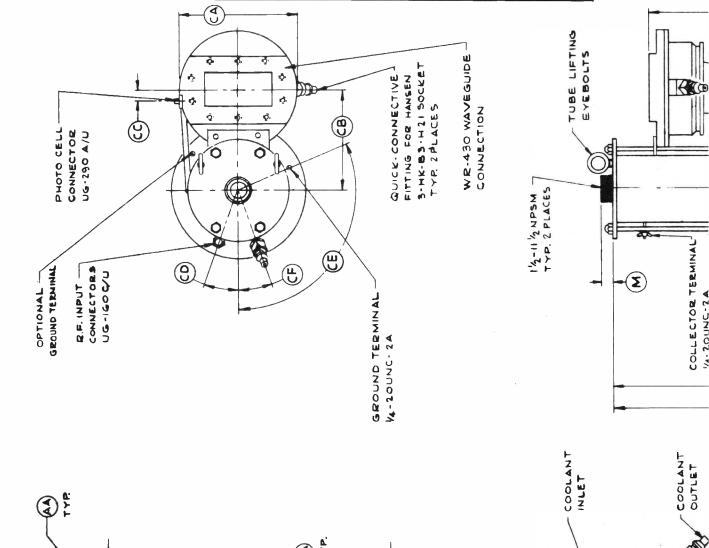
MECHANICAL

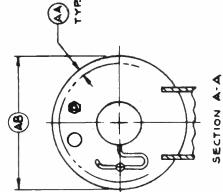
Maximum Dimension	s (4)	KM5	osj	and	H E	158	Ele	ectro	oma	igno	et)							
Length	-	-	-	-	-		-	-	-	-	, í	-	-		-		- 33 inch	nes
Diameter -	-	-	-	-	-		-	-	-	-		-	-		-		- 18 inch	ies
Weight (4KM50SJ)	-	-	-	-	-		-	-	-	-		-	-		-		- 90 pou	nds
Weight (H-158 Electr	oma	gnet) -	-	-		-	-	-	-		-	-		-		- 170 pou	nds
Input Coupling (rf)		-	-	-	-		-	-	-	-		-	-		-		- Type N	Coaxial
Output Coupling (rf)	-	-	-	-	-		-	-	-	-		-	-		-		- UG435A	/U Flange
Maximum Tuner Star	t To	que	-	-			-	-	+	-		-	-		-		- 70 in-o	Z
Maximum Tuner Stop	o Tor	que	-	-	-		-	-	-	-		-	-		-		- 30 in-ll	DS
Mounting Position Pr		-	-	-	-		-	-	-	-		-	-	•	-		- vertical,	cathode down
Cooling: Water and H	Force	d Ai	r															
0																	Flow Rate	Pressure Drop
Cathode	-	-		-	-	-	-	-		-	-			-		-	20 cfm	free
Body		-		-	-	-	-	-		-	-		-	-		-	1.2 gpm	50 psi
Collector		-		-	-	-	-	-		-	-		-	-		-	18 gpm	30 psi
Electromagnet -		-		-	-	-	-	-		-	-		-	-		-	1.5 gpm	15 psi

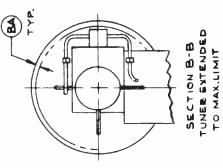
ELECTROMAGNET POWER SUPPLY REQUIREMENTS

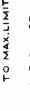
Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	150 volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15 amperes

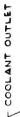
MAXIMUM RATINGS

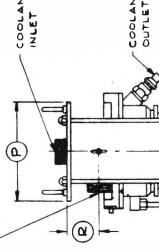

BEAM VOLTAGE (dc) -	-	-	-	-	-	-	-	-	-	-	-	-	20 KILOVOLTS
BEAM CURRENT (dc)	-	-	-	-	-	-		-	-	-	-	-	3 AMPERES
BEAM INPUT POWER													
BODY CURRENT (dc)	-	-	-	-	-	-	-	-	-	-	-	-	75 MILLIAMPERES
COLLECTOR DISSIPATIO	DN	-	-	-	-	-	-	-	-	-	-	-	50 KILOWATTS
LOAD VSWR													
INLET WATER PRESSUF	ЯE	-	-	-	-	-	-	-	-	-	-	-	80 PSIG
OUTLET WATER TEMPE	ERAT	URI	Ε-	-	-	-	-	-	-	-	-	-	80 DEGREES C

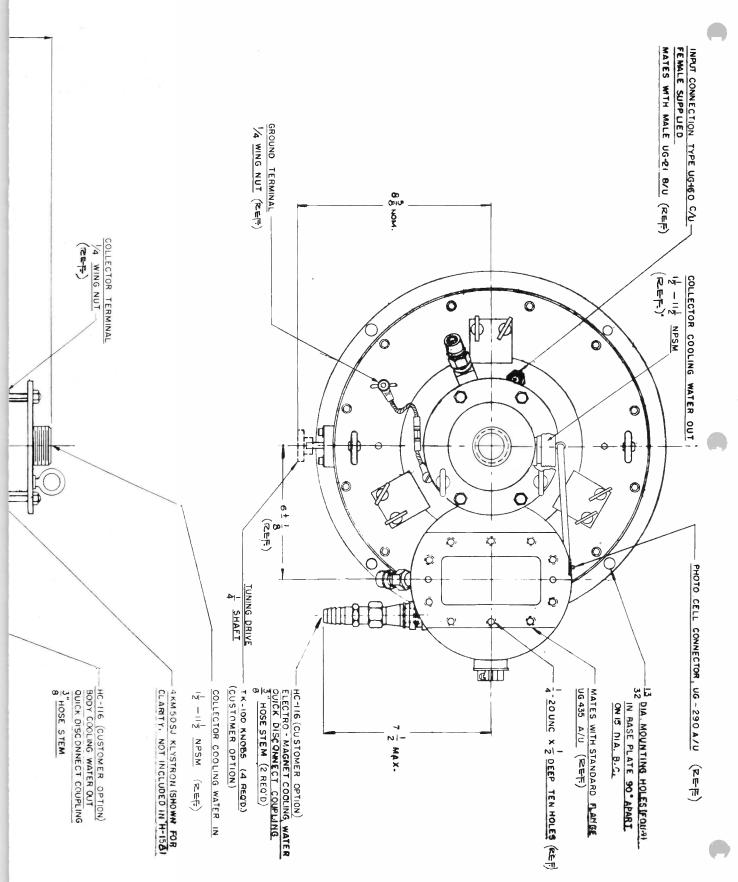

TYPICAL OPERATION

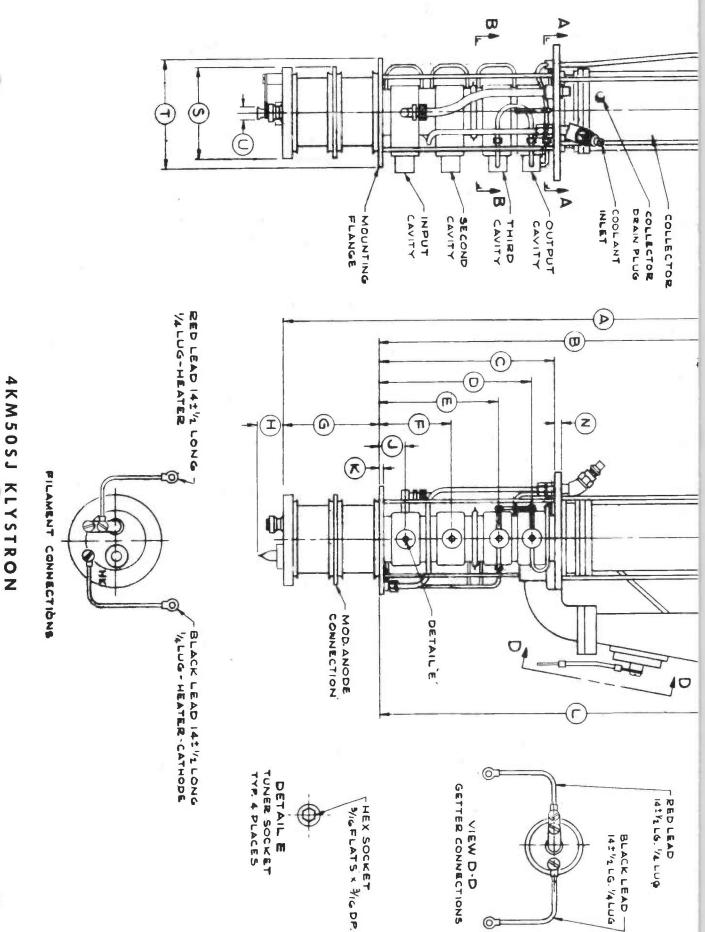

								High E	ff. Tuned	Broadban	d Tuned
Frequency -	-	-	-	-	-	-	-	1.7	2.4	1.7	2.4 gigacycles
Output Power	-	-	-	-	-	-	-	14.5	12.3	12.1	10.5 kilowatts
Driving Power	-	-	-	-	-	-	-	1	1	1	1 watt
Gain	-	-	-	-	-	-	-	41.6	40.9	40.8	40.2 decibels
Beam Voltage	-	-	-	-	-	-	-	18	18	18	18 kilovolts dc
Beam Current	-	-	-	-	-	-	-	1.8	1.8	1.8	1.8 amperes dc
Modulating Anod	e Vo	ltage	(to	cath	lode)	-	-	10.4	10.4	10.4	10.4 kilovolts dc
Beam Power Effic	eienc	y Č	-	-	-	-	-	44.5	38.0	37.2	32.4 percent
Half Power Bandy	widtl	h	-	-	-	-	-	5	8	10	12 megacycles
Body Current -	-	-	-	-	-	-	-	65	50	55	35 milliamperes dc
Electromagnet Cu	irrer	ıt	-	_	_	-	-	12.5	12.5	12.5	12.5 amperes

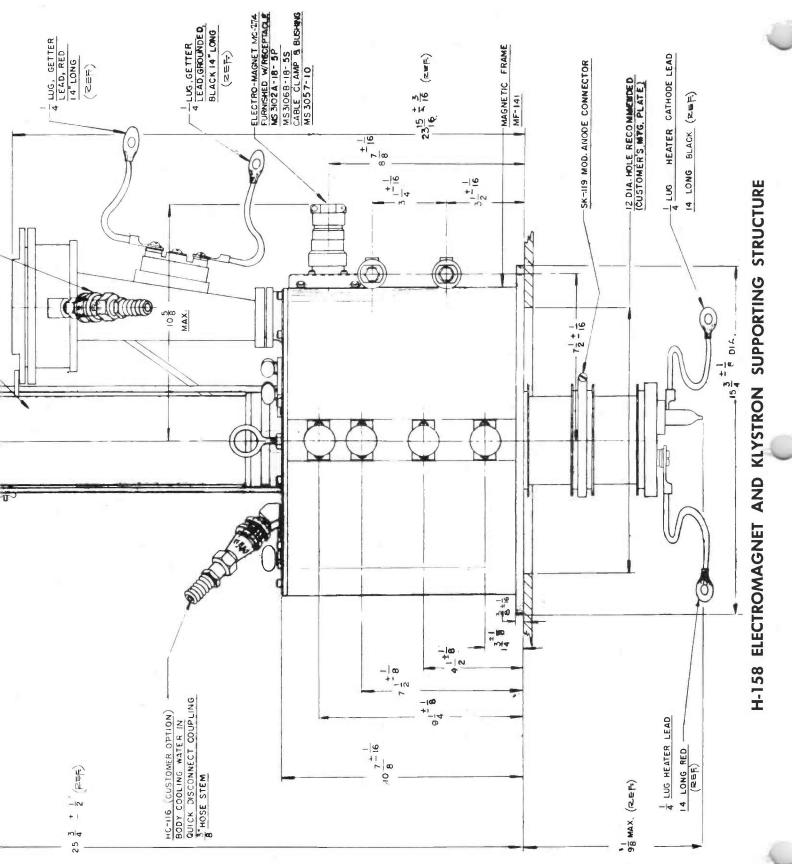

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.


- DATA				5 10.525							012. 0	0 24.000		5 .405	0	-	5.280	-	1.188		8.000		0	 0 7.030	0	.610	15°	1200	250	
DIMENSIONAL	NIN.		0	10.32	2	10	8	9	0	0	.230	23.600		.346	5.950	1.470		6.490		124	-		.380	 6.970	5.750	.510	5	°011	ŝ	
DIMEN	NON	30.366	24.67		9156	7.375	4.388	3.696	2.188	1.638														_						
	REF	٩	۵Û	υ	٥	W	u	v	I	ר	R	L	Σ	z	٥	Q	ທ	+	С	A A	4		8 ₽	♦ U	B U	U U		ш U	Ц U	









EITEL-McCULLOUGH, INC.

SAN BRUNO, CALIFORNIA

TENTATIVE DATA

4KM100LA

POWER AMPLIFIER

L-BAND KLYSTRON

The Eimac 4KM100LA is a four-cavity, magnetically focused, power-amplifier klystron designed for use at frequencies from 470 to 610 megacycles. Intended primarily for television visual service, it is also suitable for aural TV, or for tropospheric-scatter communications service.

When adjusted for narrow-band CW operation the 4KM100LA will deliver a minimum output power of 35 kilowatts with a power gain of 45 decibels. In television visual service it will provide more than 25 kilowatts of peak synchronizing power, with a power gain of 30 decibels, and 1db bandwidth of 8 megacycles. Random AM noise is more than 60db below black level.

The electron gun of this klystron utilizes a semi-confined flow field which minimizes focusing adjustments and produces a very stable beam. The cathode loading of only 100 milliamperes per square centimeter, at a beam voltage of 18 kilovolts, is ultra conservative in the interest of long life. Effective protection from internal arcs is provided by the Eimac Modulating Anode.

All tuning is accomplished outside of the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. Load couplers are provided to permit external loading of these cavities for extreme wideband operation. However, external cavity loading is not ordinarily required in TV visual service.

The 4KM100LA incorporates a built-in vacuum pump in the form of a titanium getter. This getter should be energized whenever heater power is applied. Its normal operating voltage is 3.7 volts at approximately 20 amperes. When a new tube is first placed in operation the getter should be flashed for 5 minutes at a voltage of 7.5 volts (\pm 5%) which produces a current of approximately 33 amperes. The getter should also be flashed whenever a tube exhibits symptoms of high gas pressure.

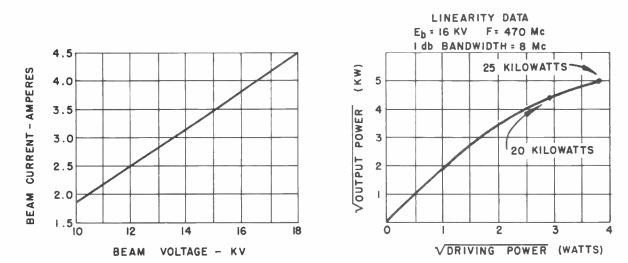
Eimac Klystron Amplifier Circuit Assembly H133 has been designed for use with the 4KM100LA to cover the specified frequency range. This assembly includes a klystron supporting structure, magnetic focusing coils, tuning cavities, and adjustable load couplers for each cavity.

CHARACTERISTICS

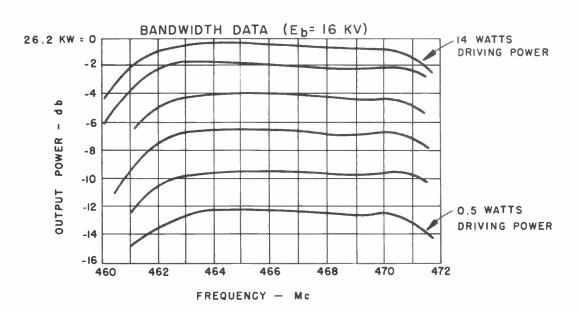
ELECTRICAL

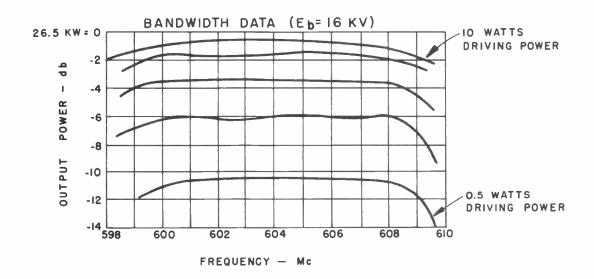
Heater:	Voltage		-	_		26.0	volts
11000011	Current	-	-	_		11.5	amperes
	Maximum Start	ing Current		_		23	amperes
Cathode:	EMA, Unipoter	-				25	amperes
	Heating Time	-	-	-		5	minutes
Getter	(Operating):						
	A-C Voltage ((±5%)	-	-		3.7	volts
-	A-C Current		-	-		20	amperes
Getter	(Flash) :						
	A-C Voltage ((±5 %)	-	-		7.5	volts
	A-C Current		-	-		33	amperes
Power Gain	n: Narrow H	Band	-	-		45	decibels
	Televisi	lon Visual S	ervice	-		30	decibels
Output Por	wer: Narrow H	Band	-	-		35	kilowatts
	Televisi	lon Visual S	ervice	-		25	kilowatts
Frequency	Range (1133 A	Assembly)		-	470 to	610	megacycles

	(4KM100LA			w
MECHANICAL					
Operating Position	-	-	-	Axis vert:	ical, cathode up
RF Coupling:					
Input	-	-	-	Type "N"	coaxial fitting
Output	-	-	-		nch, 50-ohm line
Input and 2nd Ca	wity Loading	g -	-		coaxial fitting
3rd Cavity Loadi	-	-	-	~ •	nch, 50-ohm line
Shipping Weights:	0			,	
Klystron Only	-	-	_		119 1bs (Net)
H-133 RF Circuit	Assembly	-	-		1188 lbs (Net)
	Forced Air				1100 100 (100)
••••••••••••••••••••••••••••••••••••••			F	Low Rate	Pressure Drop
Cathode	_	_		*5 cfm	
Cavity	_	_		50 cfm	TBS
Klystron Body (5	drift-tube	sections		J0 C111	100
	n series)	Seccions	\$	2	25 mot
				2 gpm	35 psi
Klystron Collect	or	-		30 gpm	7.5 psi
MAGNE	TIC-COIL PO	WER-SUPPL	Y REOUTREMEN	ITS	
Each of Four Body Coils an	d Collector	Coil:			
Voltage	-	-	-	0 to 50	volts
Current	-	-	-	0 to 10	amperes
	MAXII	MUM RATIN	GS		
D-C BEAM VOLTAGE	_	_	-	20	KILOVOLTS
	-	-	-		
D-C BEAM CURRENT	-	-	-	6.0	AMPERES
D-C BODY CURRENT	-	-	-	150	MILLIAMPERES
COLLECTOR DISSIPATION	-	-		100	KILOWATTS
INLET WATER PRESSURE	-	-	-	100	PSI
	TYPIC	AL OPERAT	ION		
	TV	Visual A	mplifier	Narrow Band	1 CW
Frequency	-	550		550	megacycles
Output Power	-	26.4	(peak sync.		kilowatts
Driving Power	-	20	11 11	1.0	watts
Power Gain	-	31	11 11	45	decibels
D-C Beam Voltage	_	16		18	kilovolts
D-C Beam Current	_	3.82		4.54	amperes
Beam Power Efficiency	_		(peak sync.		percent
D-C Body Current	_	 	(peak sync.	90	_
1 db Bandwidth	-	8			milliamperes
	-	0			megacycles
Magnetic Coil Currents:				<u> </u>	
First Body Coil	-	9.0		9.0	amperes
Second Body Coil	-	9.0		9.2	amperes
Third Body Coil	-	8.6		9.8	amperes
Fourth Body Coil	-	7.1		6.0	amperes
Collector Coil	-	3.3		6.3	amperes

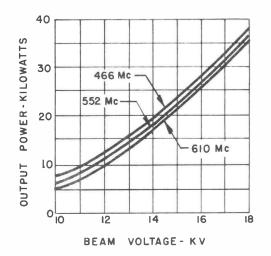

* Required only if ambient air temperature exceeds 25° C.

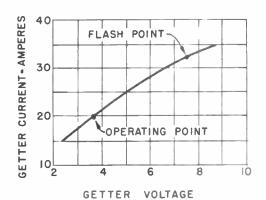
For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., San Bruno, California.

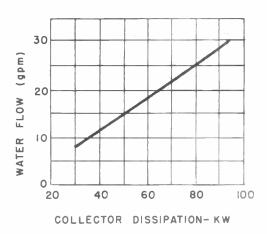

May 15, 1961

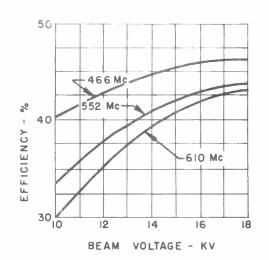

PKM79

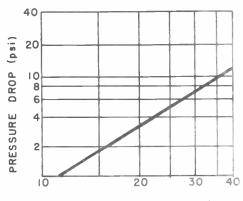
Simo 4KMIOOLA -

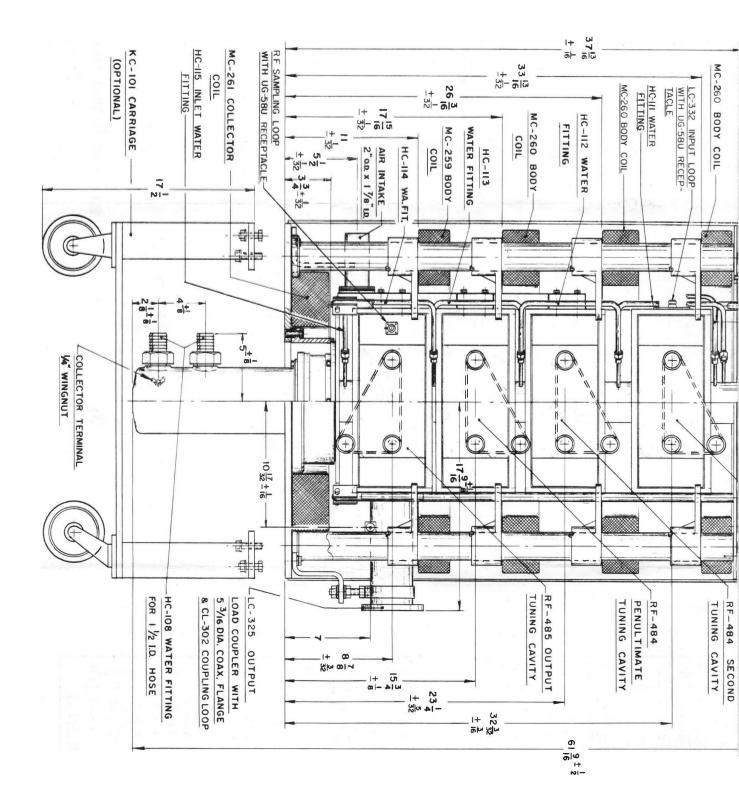


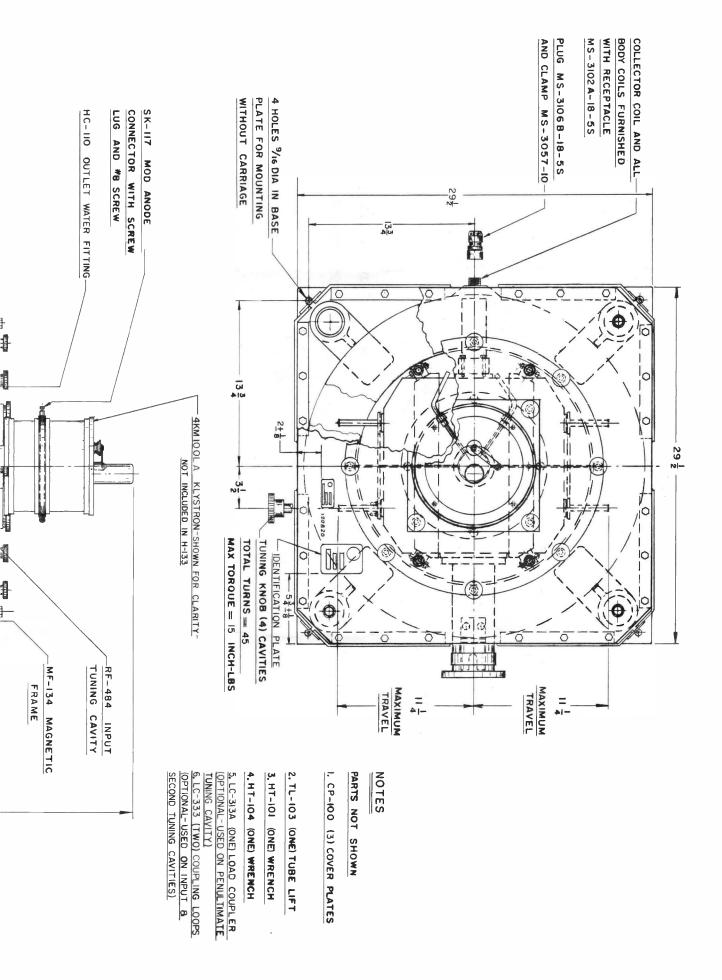

ł

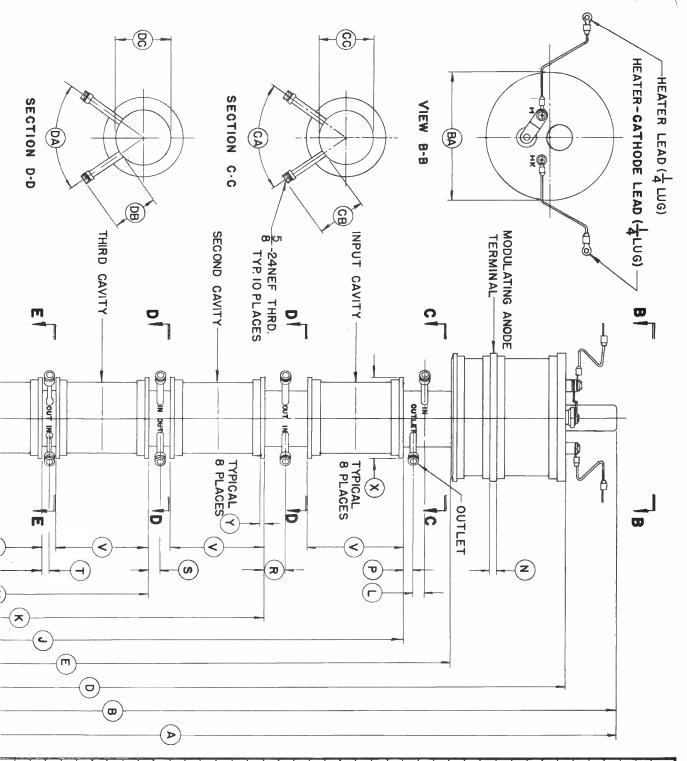




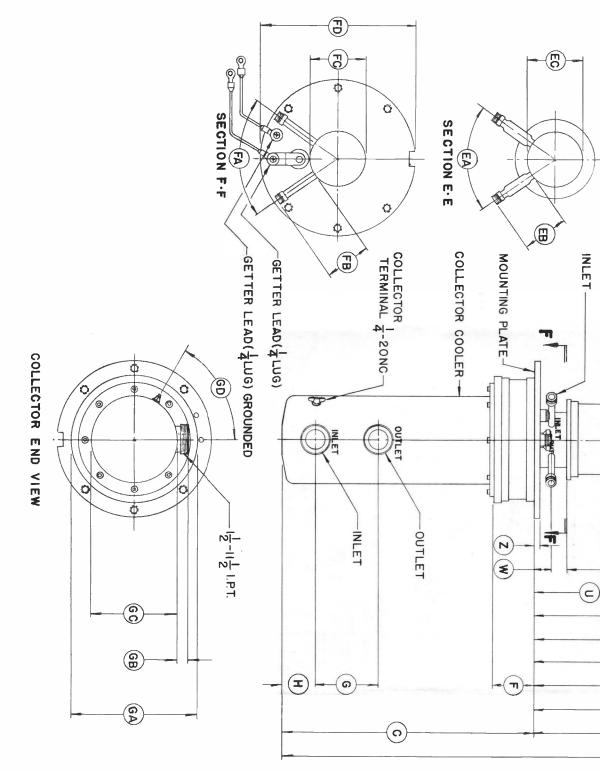







COLLECTOR WATER FLOW (gpm)

.


H-133 KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY

		3.500 DIA	DC
		3.000	DB
		70*	DA
		3.500 DIA	cc
		3,000	СВ
		70*	CA
3			
		8.125 DIA	ΒA
		.375	Ч
		.250	~
		5,125	×
		1.124	≤
		6.000	<
		8.124	С
		.453	-
		.875	S
		1.433	ע
		.636	ס
		.375	z
		14.999	z
		.625	Ē
		22.499	ѫ
		31.341	ب
		2.125	н
		4.000	ရ
		2.600	п
		34.467	m
		41900	σ
		16,475	ဂ
		45.150	B
		61,625	Þ
MAXIMUM	MINIMUM	NOMINAL	REF.
TA	ION DA	DIMENS	

		_	_		_			 				_	-			-4-		
				GD	ရင	GB	GA		FD	FC	FB	F۵			EC	EB	ΕA	
				80*	5.500 DIA	.840	8.125 DIA		10.000 DIA	3.500 DIA	3.000	70*			3.500 DIA	3,000	70*	

UUIPUI CAVIIT-

<

4KM 100 LA KLYSTRON

EITEL-McCULLOUGH, INC.

SAN CARLOS, CALIFORNIA

TENTATIVE DATA

4KM100LA power-amplifier l-band klystron

The Eimac 4KM100LA is a four-cavity, magnetically focused, poweramplifier klystron designed for use at frequencies from 470 to 610 megacycles. Intended primarily for television visual service, it is also suitable for aural TV, or for tropospheric-scatter communications service.

When adjusted for narrow-band CW operation the 4KM100LA will deliver a minimum output power of 35 kilowatts with a power gain of 45 decibels. In television visual service it will provide more than 25 kilowatts of peak synchronizing power, with a power gain of 30 decibels, and 1db bandwidth of 8 megacycles. Random AM noise is more than 60db below black level.

The electron gun of this klystron utilizes a semi-confined flow field which minimizes focusing adjustments and produces a very stable beam. The cathode loading of only 100 milliamperes per square centimeter, at a beam voltage of 18 kilovolts, is ultra conservative in the interest of long life. Effective protection from internal arcs is provided by the Eimac Modulating Anode.

All tuning is accomplished outside of the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. Load couplers are provided to permit external loading of these cavities for extreme wideband operation. However, external cavity loading is not ordinarily required in TV visual service.

The 4KM100LA incorporates a built-in vacuum pump in the form of a titanium getter. This getter should be energized whenever heater power is applied. Its normal operating voltage is 3.7 volts at approximately 20 amperes. When a new tube is first placed in operation the getter should be flashed for 5 minutes at a voltage of 7.5 volts ($^+5\%$) which produces a current of approximately 33 amperes. The getter should also be flashed whenever a tube exhibits symptoms of high gas pressure.

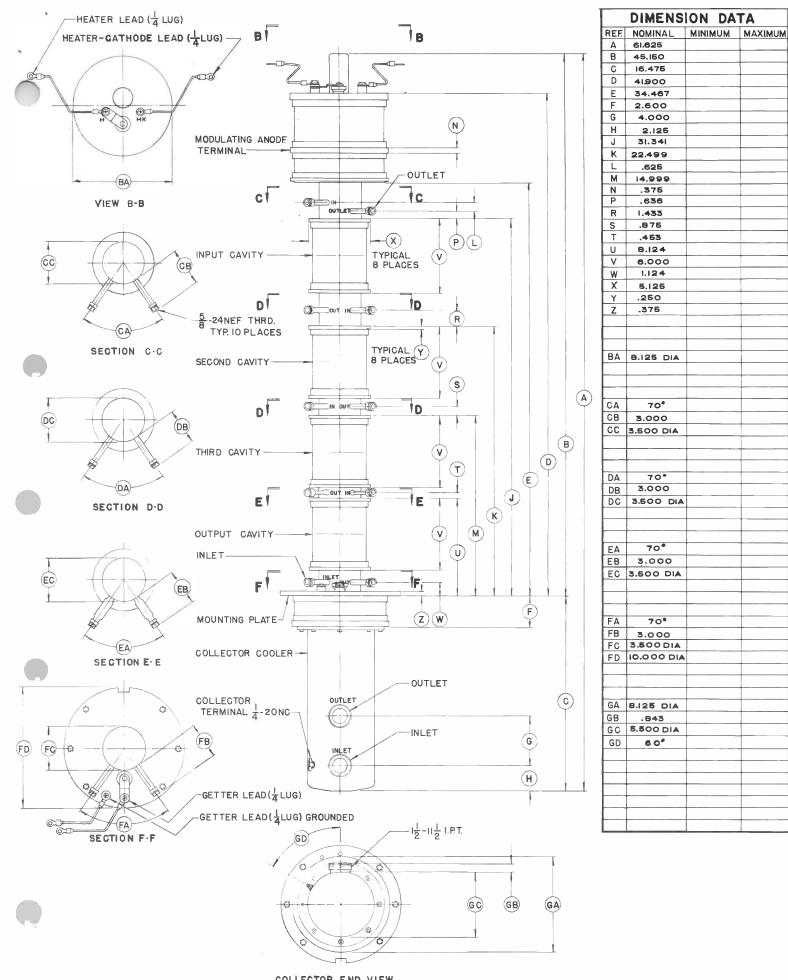
Eimac Klystron Amplifier Circuit Assembly H-133 has been designed for use with the 4KM100LA to cover the specified frequency range. This assembly includes a klystron supporting structure, magnetic focusing coils, tuning cavities, and adjustable load couplers for each cavity.

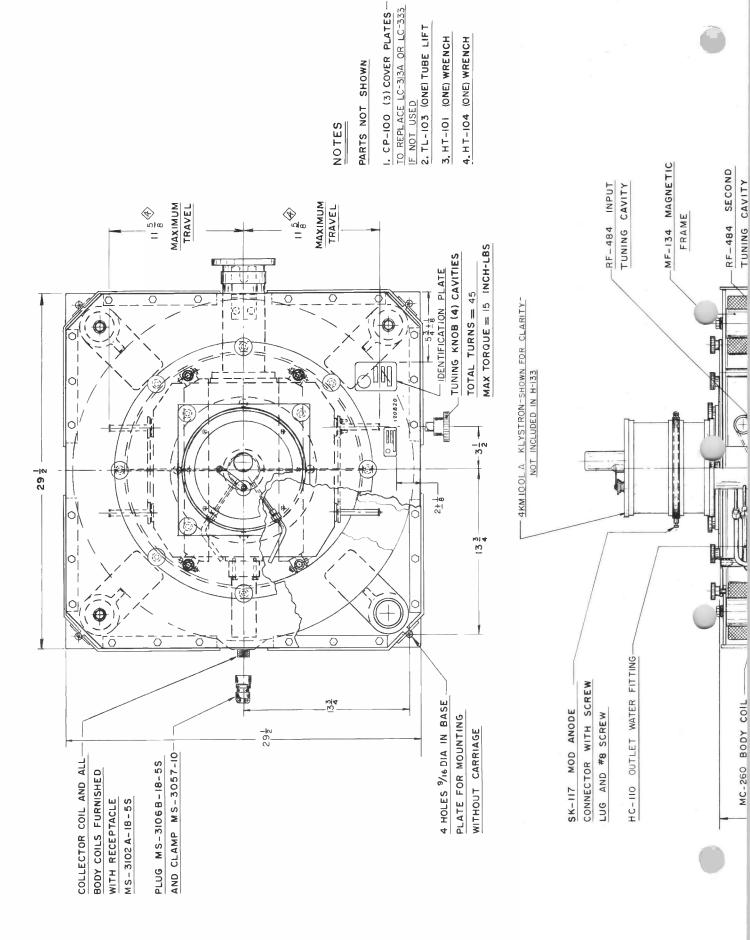
CHARACTERISTICS

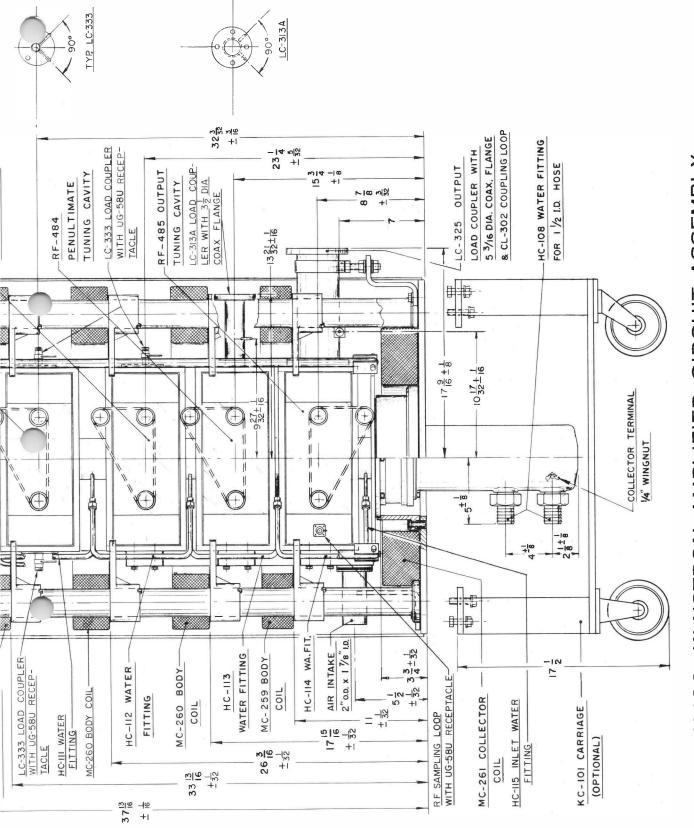
Voltage –	-	-	-	26.0	volts
Current -	-	-	-	11.5	amperes
Maxim <mark>u</mark> m Sta	rting (Current		23	amperes
EMA, Unipot	ential				
Heating Time	-	-	-	5	minutes
rating):					
	(±5%)	-	-	3.7	volts
A-C Current	-	-	-	20	amperes
h):					
A-C Voltage	(±5%)	-	-	7.5	volts
A-C Current	-	-		33	amperes
Narrow Ba	and	-	-	45	decibels
Televisio	n Visu	al Serv	vice	30	decibels
r: Narrow Ba	and	1.	-	35	kilowatts
Televisio	n Visua	al Serv	vice	25	kilowatts
ange (H-133.	Asseml	oly)	470	to 610	megacycles
	Current - Maximum Sta EMA, Unipot Heating Time rating): A-C Voltage A-C Current h): A-C Voltage A-C Current Narrow Ba Televisio r: Narrow Ba Televisio	Current Maximum Starting (EMA, Unipotential Heating Time - rating): A-C Voltage (±5%) A-C Current - h): A-C Voltage (±5%) A-C Current - Narrow Band Television Visua Television Visua	Current Maximum Starting Current EMA, Unipotential Heating Time rating): A-C Voltage (±5%) - A-C Current h): A-C Voltage (±5%) - A-C Current Narrow Band - Television Visual Servert: Narrow Band -	Current Maximum Starting Current EMA, Unipotential Heating Time rating): A-C Voltage (±5%) A-C Current h): A-C Voltage (±5%) A-C Current Narrow Band Television Visual Service r: Narrow Band Television Visual Service	Current 11.5 Maximum Starting Current 23 EMA, Unipotential Heating Time 5 rating): A-C Voltage (±5%) 3.7 A-C Current 20 h): A-C Voltage (±5%) 7.5 A-C Current 33 Narrow Band - 45 Television Visual Service 30 r: Narrow Band - 35 Television Visual Service 25

(Effective 10-20-61) Copyright 1961 by Eitel-McCullough, Inc. Printed in U.S.A.

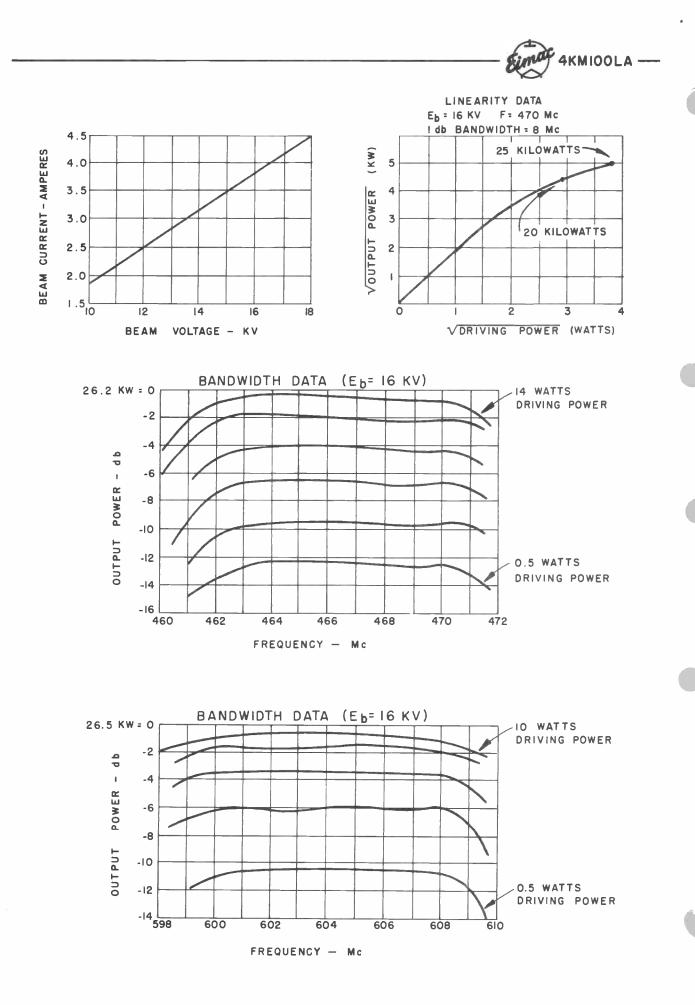
									
Éimar			4k	KM 100	LA				
MECHANICAL									
Maximum Height of Klystr	on and	H-13	33 Dee	ombly	inclu	ding			
KC-101 Carriage	on and	11 10	10 422	empty	meru	ang			67 inches
Operating Position	_	_	_	_	_		Axis v e	ertical,	cathode up
R-F Coupling:								,	
Input	-	-	-	-	-		Type	"N" coa	axial fitting
Output	-	-	-	-	-	-	3-1/8	inch,	50-ohm line
Input and 2nd Cavit			-	-	-	-			axial fitting
3rd Cavity Loading	-	-	-	-	-	-	1-5/8	inch, S	50-ohm line
Weights: Klystron Only			_	_	_	_			119 pounds
H-133 RF Circuit As		-	_	_	_	_			188 pounds
Cooling: Water and For								1	100 pounds
						Flow		Pre	essure_Drop
Cathode	-	-	-	-		*5 c			
Cavity	-	-	-	-		50 c:	tm		TBS
Klystron Body (5 dri: in se		secu	lons,			2 g	nm		35 psi
Klystron Collector	-	_	_	_		30 g			7. 5 psi
Mijstrom Corrector									
MAGNE	TIC-CC	DIL PO	OWER	-SUPP1	LY REC	QUIREN	IENTS		
Each of Four Body Coils and	Collect	or Co	oil:						
Voltage	-	-	-	-) to 50		volts
Current	-	-	-	-		() to 10		amperes
		MAX	IMUM	I RATIN	IGS				
D-C BEAM VOLTAGE	_	_	_	_			20		KILOVOLTS
D-C BEAM CURRENT	-	_	_	_			6.0		AMPERES
D-C BODY CURRENT	_	_	_	_			150	MII	LIAMPERES
COLLECTOR DISSIPATION	-	-	-	-			100		KILOWATTS
INLET WATER PRESSURE	-	-	-	-			100		PSI
		TYPI	CAL O	PERATI	ION				
		Т	'V Visu	ıal Am	plifier	Narı	ow Band	CW	
Frequency	_			550			550		megacycles
Output Power	_	_		26.4(1	beak s	vnc)	35.4	1	kilowatts
Driving Power	_	_		20.4()	n n	1	1.0		watts
Power Gain	-	-		31	н	н	45		decibels
D-C Beam Voltage	-	-		16			18		kilovolts
D-C Beam Current	-	-		3.82			4.54		amperes
Beam Power Efficiency	-	-			peak s	sync.)	43.3		percent
D-C Body Current	-	-					90		illiamperes
l db Bandwidth	-	-		8				1	megacycles
Magnetic-Coil Currents:				0 0			0 0		20000000
First Body Coil	_	-		9.0 9.0			9.0 9.2		amperes
Second Body Coil Third Body Coil	_	_		9.0 8.6			9.2		amperes amperes
Fourth Body Coil	_	_		7.1			9.0 6.0		amperes
Collector Coil	-	_		3.3			6.3		amperes
									-

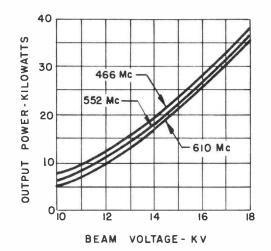

£ -

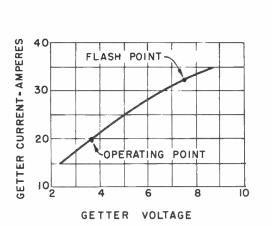

* Required only if ambient air temperature exceeds $25^{\circ}C$.

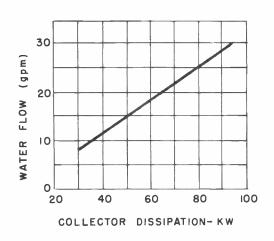

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., San Carlos, California.

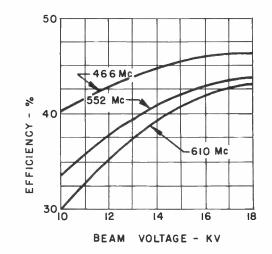
4KM100LA KLYSTRON

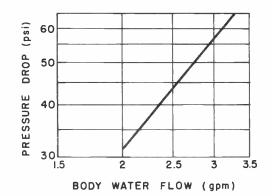

COLLECTOR END VIEW

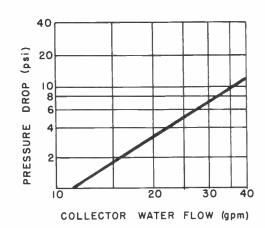





KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY H-133







EITEL-MCCULLOUGH, INC.

4KM100LA 25KW POWER-AMPLIFIER

L-BAND KLYSTRON

TENTATIVE DATA

The Eimac 4KM100LA is a four-cavity, magnetically focused, power-amplifier klystron designed for use at frequencies from 470 to 610 megacycles. Intended primarily for television visual service, it is also suitable for aural TV, or for tropospheric-scatter communications service.

In television visual service the 4KM100LA will provide more than 25 kilowatts of peak synchronizing power, with a power gain of 30 decibels, and ldb bandwidth of 8 megacycles. Random AM noise is more than 60db below black level.

The electron gun of this klystron utilizes a semi-confined flow field which minimizes focusing adjustments and produces a very stable beam. The cathode loading of only 100 milliamperes per square centimeter, at a beam voltage of 18 kilovolts, is ultra conservative in the interest of long life. Effective protection from internal arcs is provided by the Eimac Modulating Anode.

All tuning is accomplished outside of the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. Load couplers are provided to permit external loading of these cavities for extreme wideband operation.

The 4KM100LA incorporates a built-in vacuum pump in the form of a titanium getter. This getter should be energized whenever heater power is applied. Its normal operating voltage is 3.7 volts at approximately 20 amperes.

Eimac Klystron Amplifier Circuit Assembly H-163 has been designed for use with the 4KM100LA to cover the specified frequency range. This assembly includes a klystron supporting structure, focusing electromagnet, tuning cavities, and adjustable load couplers for each cavity.

CHARACTERISTICS

ELECTRICAL

Heater: DC Voltage	
DC Current	
Maximum Starting Current 23 amperes	
Cathode: EMA, Unipotential	
Heating Time	
Getter (Operating):	
AC Voltage $(\pm 5\%)$	
AC Current	
Power Gain:	
Television Visual Service	
Output Power:	
Television Visual Service 25 kilowatts	
Frequency Range (H-163 Assembly)470 to 610 megacycles	

MECHANICAL
Maximum Height of Klystron and H-163 Assembly including
KC-102 Carriage 67 inches
Operating Position
R-F Coupling:
Input
Output
Input and 2nd Cavity Loading
3rd Cavity Loading
Weights:
Klystron Only
H-163 RF Circuit Assembly
Cooling: Water and Forced Air

Cathode	Flow Rate	Pressure Drop
Cavity		TBS
Klystron Body and Electromagnet		
in Series	. 2 gpm	45 psi
Klystron Collector	. 30 gpm	7.5 psi

ELECTROMAGNET POWER-SUPPLY REQUIREMENTS

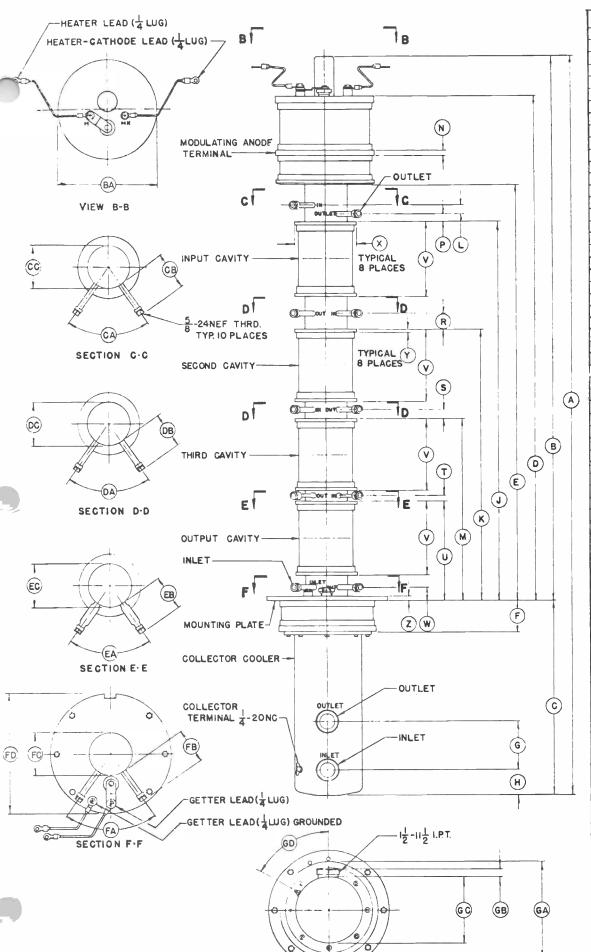
Voltage	volts
Current	amperes

MAXIMUM RATINGS

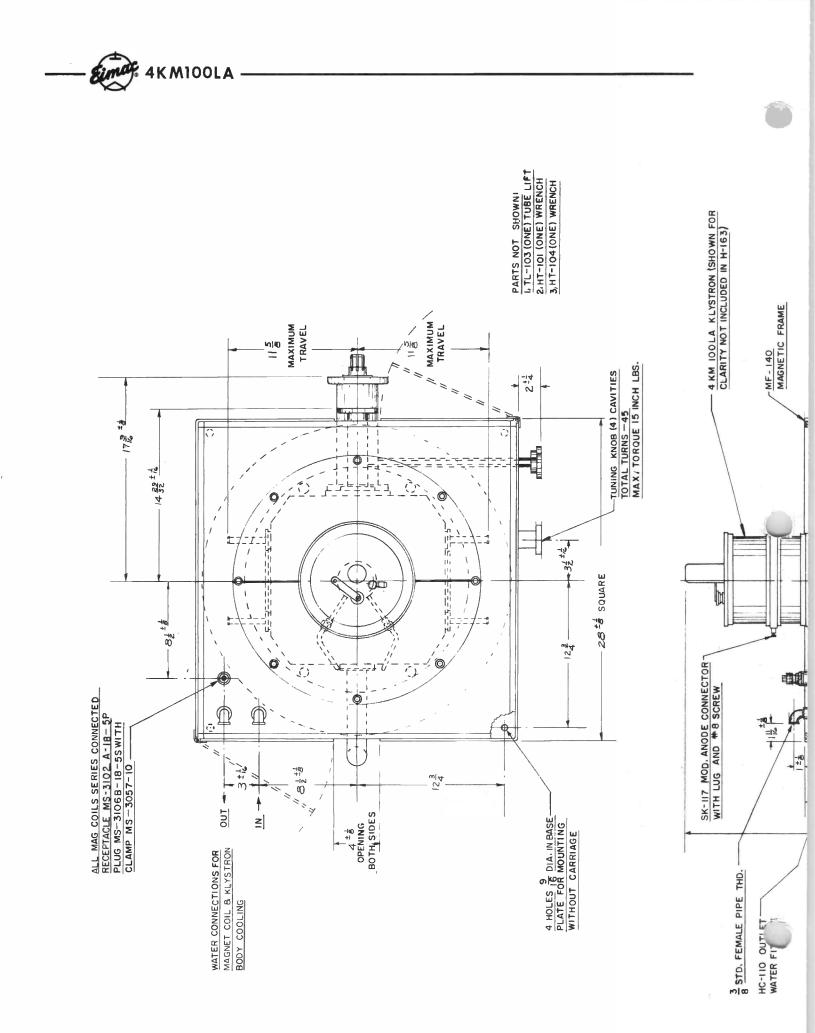
DC BEAM VOLTAGE											20	KILOVOLTS
DC BEAM CURRENT .											6.0	AMPERES
DC BODY CURRENT .							•	•			150	MILLIAMPERES
COLLECTOR DISSIPATION	Ν.										100	KILOWATTS
INLET WATER PRESSURE	Ε.					•	•				100	PSI

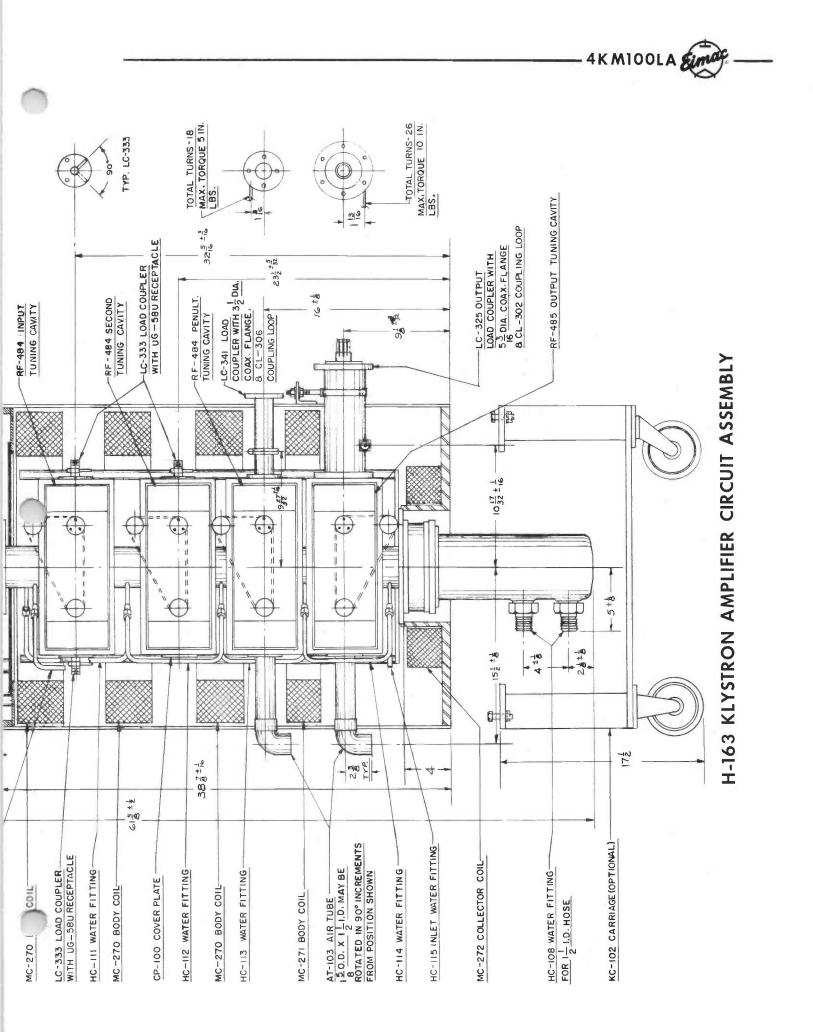
TYPICAL OPERATION

TV Visual Amplifier

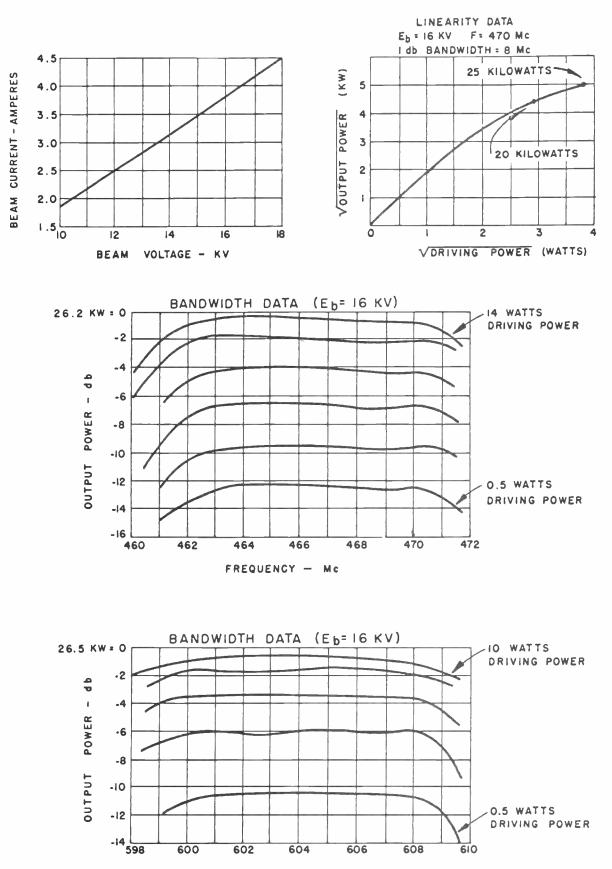

Frequency	550	megacycles
Output Power	26.4 (peak sync.)	kilowatts
Driving Power	20	watts
Power Gain	31 '' ''	decibels
DC Beam Voltage	16	kilovolts
DC Beam Current	3.82	amperes
Beam Power Efficiency	43 (peak sync.)	percent
1 db Bandwidth	8	megacycles
Electromagnet Current	8.9	amperes

* Required only if ambient air temperature exceeds 25° C.

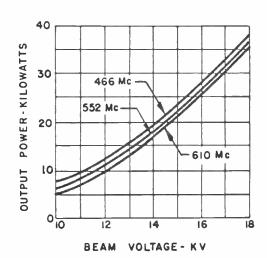

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.

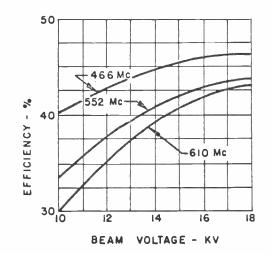

4KM100LA KLYSTRON

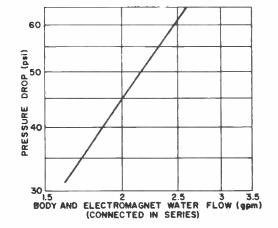
COLLECTOR END VIEW

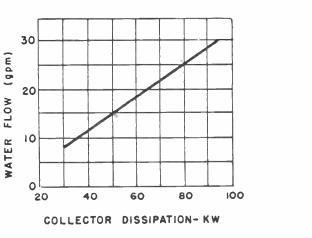


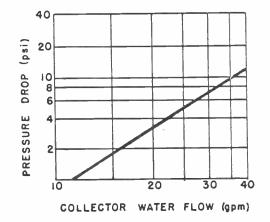
	DIMENSI	ON DA	TA
REE	NOMINAL		
	61.625	MINIMUM	MAAIMU
A	45.150		<u> </u>
6			+
C	16,475		i —
D	41900		
E	34.467		
F	2.600		
G	4.000		
Н	2,125		
J	31.341		
ĸ	22.499		1
L	.625		
М	14.999		
N	.375		
Ρ	.636		
R	1,433		
S	.875		
Т	.453		1
Ū.	8.124		
v	6.000		+
	1.124		1
<u>w</u>	+		
<u>X</u>	5.125		
<u>Y</u>	.250	1	+
Z	.375		
			+
BA	8.125 DIA		
_			
	[
CA	70*		
CB	3.000		
CC	3.500 DIA		+
	5.500 DIK		1
	<u> </u>		
			-
DA	70*		
	3.000		
DB			
DC	3.500 DIA		· T
	l		
EA	70*		
EB	3.000		
EC	3.500 DIA		
		1	
	1		1
	 _	+	
FA	70*	+	
FB			+
_	3.000 3.500 DIA		+
FC	10.000 DIA		
FD	.0.000 DIA	1	+
	I		
GA	8.125 DIA		
GΒ	.843		
GC	5.500 DIA		
GD	60"		
	1		
	+	1	
	+	+	








FREQUENCY - Mc



EITEL-MCCULLOUGH, INC.

4KM3000LQ power-amplifier L-band klystron

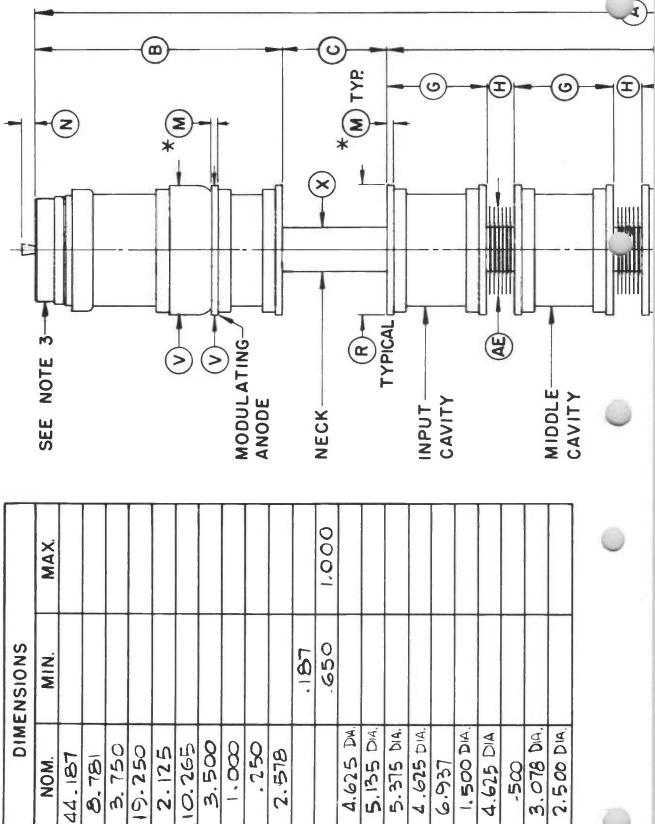
TENTATIVE DATA

The Eimac 4KM3000LQ is a four-cavity, magnetically focused, power-amplifier klystron of ceramic and metal. It is designed for use at frequencies between 710 and 985 megacycles and will deliver a minimum CW output power of two kilowatts with a minimum power gain of 25 decibels when operated at 50% collector depression.

The collector is designed to operate at less than the cathode to anode voltage, thereby realizing an improvement in efficiency.

This klystron employs the Eimac Modulating Anode which provides an effective means of amplitude or pulse modulating the output power without changing the beam voltage. It is also useful as a protective device, either in conjunction with external circuits, or when grounded through a resistor.

The resonant cavities for the 4KM3000LQ are completed by tuning boxes which enclose the cylindrical ceramic windows of the klystron and all tuning is accomplished outside the vacuum envelope. This design permits a wide tuning range and allows external cavity loading for broad-band applications. It also permits an unlimited number of tuning cycles without risk of damage to the vacuum seals.


Eimac Klystron Amplifier Circuit Assembly H-118, for use with the 4KM3000LQ, covers the frequency range of 710 to 985 megacycles. This assembly includes a klystron supporting structure, electromagnetic focusing coils, tuning boxes, output r-f load coupler and an Eimac SK-100 Air-System Socket.

CHARACTERISTICS

ELECTRICAL					
Cathode, Unipotential, (Oxide Coat	ted			
Minimum Heating Time	-	-	water	5	minutes
Heater: Voltage	-	-	-	5	volts
Current	-		-	33	amperes
Maximum Star	ting Curre	nt	-	65	amperes
Modulating Anode Capac:	itance				
(To other electrodes)	-	-	-	21	uuf
Power Gain (Narrow Band	CW)	-	-	25	decibels
Output Power (Narrow Ba:	nd CW)	-	2	000	watts
Frequency Range (In H-1	18 –		710 to	985	megacycles
Circuit Assem	bly)				

(Effective 9-1-60) Copyright 1960 by Eitel-McCullough, Inc.

¥

9

I

7

Σ

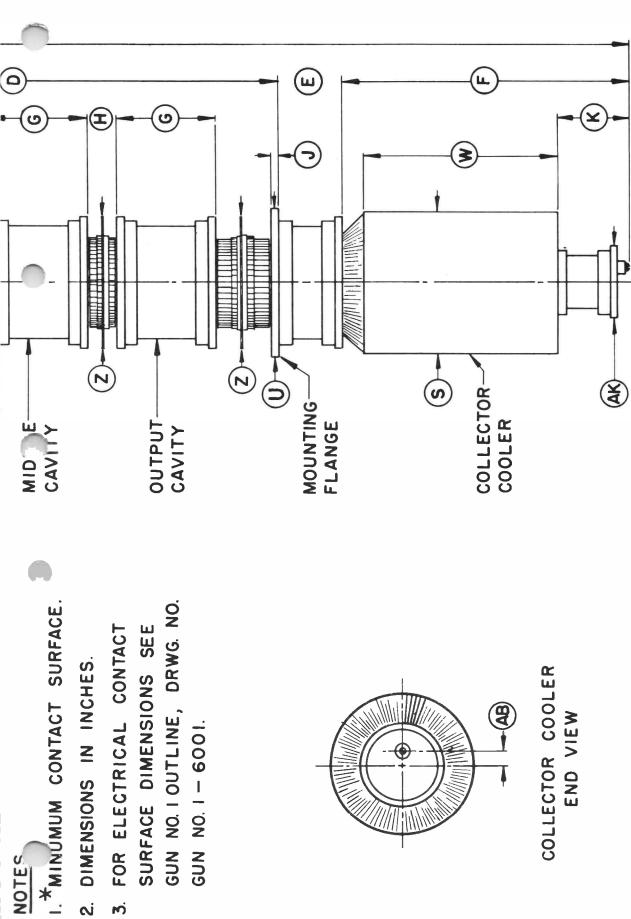
Z

æ

S

> AB

3


×

N

AK AE

REF

٩ B C 0 ш LL.

4KM3000LQ OUTLINE DRAWING

4KM3000LQ -

MECHINNICAL								
MECHANICAL		_	_	-	_	۸vi	e vertical	, cathode up
Operating Position R-F Coupling		_	_			- AVI	5 verticat	, camoue up
Input -	_	_	_	_	_	Тъ		oaxial fitting
Output -	-	_	_	_	_	-		50-ohm line
-	*	-	-	-	-	-	1-5/0 men	1 50 -01111 11 11e
Shipping Weights:			_	_	_ 4	10 lbe	(Not) · 13	8 lbs (Gross)
Klystron Only H-118 R - F Amplif	- ior Circu	it Accor	- ably	_			• • •	3 lbs (Gross)
Cooling:		IL ASSE	прту			., 100	(1(0.1), 1)	0 100 (01000)
The 4KM3000LQ i	is cooled	by for	ed air	At sea	level an	d with	h inlet air	temperature
of 20°C (68°F) th		-						
ratings and at ma							oporation	
-				brom or o	0 /0 •			
Cathode (with SK-10		stem So	cket)	-	-	-	-	5 cfm
Penultimate Cavity	-	-	-	-	-	-	-	50 cfm
Output Cavity	-	-	-	-	-	-	_	75 cfm
Collector -	-	-	-	-	-	_	-	150 cfm
Operation at hi					let temp	eratur	es require	es increased
volumes of air flow	to obtair	ı eq u iva	lent co	oling.				
		_						
1	MAGNETI	C-COIL	POWE	R SUPPLY	-REQUIR	EMEN	TS	
Prefocus Coil Voltage	-	-	-	-	-	-	0 to 50	volts
Prefocus Coil Current		-	-	-	-	-	2.0	amperes
Each of Three Body Co	oils							
Voltage -	-	-	_	-	-	-	0 to 100	volts
Current -	-	-	-	-	-	-	3.0	amperes
Collector Coil Voltage		-	-	-	-	-	0 to 50	volts
Collector Coil Current	-	-		-	-		0 to 1.5	amperes
		N	AXIMU	JM RATIN	IGS			
D. C. DEANG MOLENCE							10 000	VOITO
D-C BEAM VOLTAGE	-	-	_	-	-	_	10,000 0.750	VOLTS
D-C BEAM CURRENT D-C FOCUS ELECTRO		-	-	-	-	_	-500	AMPERE VOLTS
COLLECTOR DISSIPATI		GE	-	_	_	_	-500	WATTS
SEAL TEMPERATURES	-	_	_	_	_	_	175	DEGREES C
SLAL ILWITLATORES							175	DEGITERO
TYPICAL OPERAI	ION - NOI			W AMPT	IFIFR - C	OTTE	CTOR DEP	RESSED
Frequency -	-	_		-		-	900	megacycles
Output Power -	_	_	_	_	_	_	2150	watts
Driving Power -	_	_	_	_	_	_	4.0	watts
Power Gain -	-	_	_	_	_	_	27	decibels
D-C Beam Voltage	_	_	_	_	_	_	9000	volts
D-C Beam Current	-	_	_	_		_	0.580	amperes
D-C Collector Voltage	e (from Ca	athode	_	-	-	_	4500	volts
D-C Collector Current		-	-	_	-	-	0.210	amperes
D-C Body Current	_	_	_	_	_	_	0.370	amperes
Focus Electrode Voltag	ae	_	_	-	-	-	-200	volts
Efficiency -	_	_	_	-	_	-	50.0	percent
4								1

For additional information or information regarding any specific application, write to Eitel-McCullough, Inc., San Carlos, California. All such requests will be handled confidentially.

EITEL-MCCULLOUGH, INC.

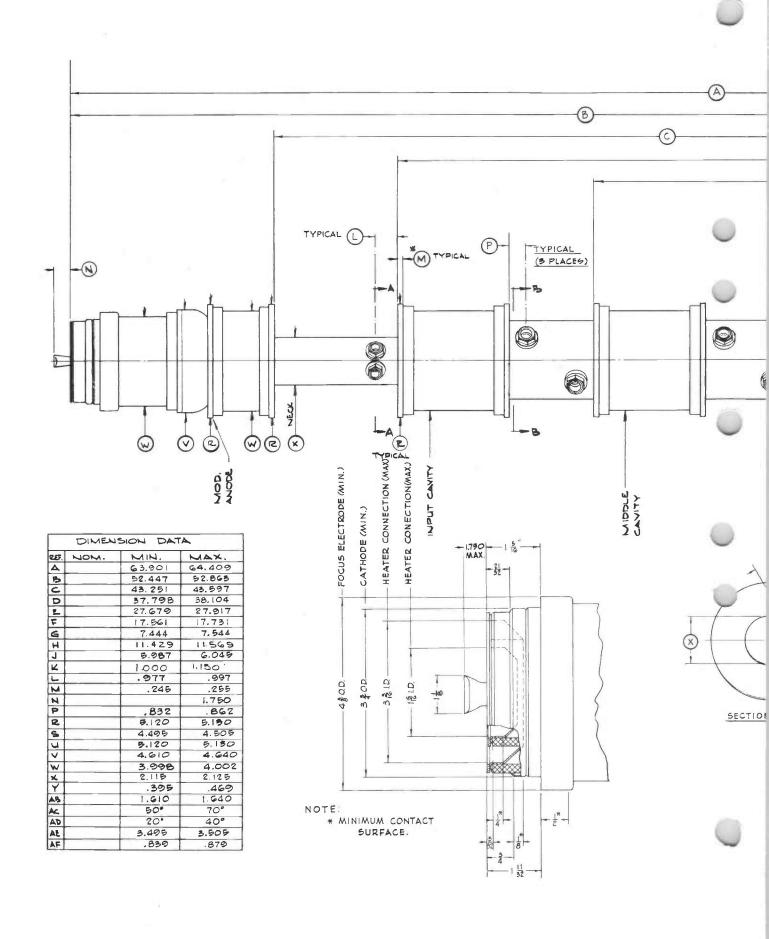
TENTATIVE DATA 4KM50,000LA power-amplifier L-band klystron

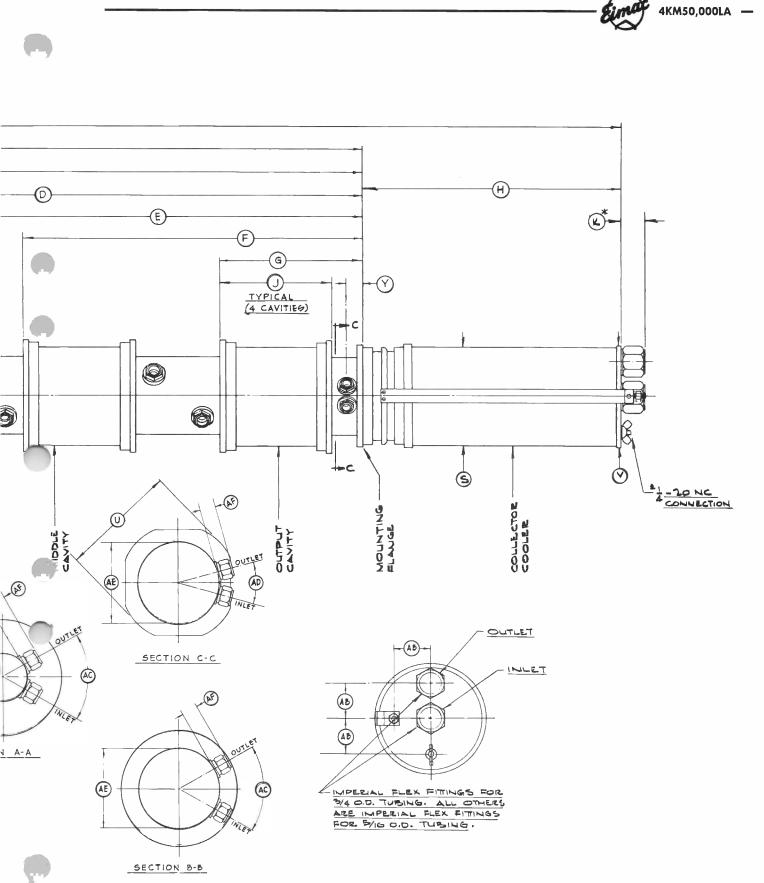
The Eimac 4KM50,000LA is a four-cavity, magnetically focused, power-amplifier klystron of ceramic and metal. It is designed for use at frequencies between 400 and 610 megacycles and will deliver a minimum CW output power of 10 kilowatts with a minimum power gain of 50 decibels.

This klystron employs the Eimac Modulating Anode which provides an effective means of amplitude or pulse modulating the output power without changing the beam voltage. It is also useful as a protective device, either in conjunction with external circuits or when grounded through a resistor.

The resonant cavities for the 4KM50,000LA are completed by tuning boxes which enclose the cylindrical ceramic windows of the klystron and all tuning is accomplished outside the vacuum envelope. This design permits a wide tuning range and allows external cavity loading for broad-band applications. It also permits an unlimited number of tuning cycles without risk of damage to the vacuum seals.

Eimac Klystron Amplifier Circuit Assembly H-121, for use with the 4KM50,000LA, covers the frequency range of 400 to 610 megacycles. This assembly includes a klystron supporting structure, electro-magnetic focusing coils, tuning boxes, adjustable load couplers for the second, third and output cavities, and an Eimac SK-110 Air-System Socket.


CHARACTERISTICS


ELECTRICAL

Heater:	Voltage	-	-	-	7.5	volts
	Current	-	-	-	40.0	amperes
	Maximum S	Starting	Curre	ent	80.0	amperes
Cathode:	EMA, Unip	otential				
	Heating Tir	ne	-	-	5	minutes
Getter (O	perating):					
	Voltage	-	- 1	-	2.0	volts
	Current	-	-	-	36.0	amperes
Power Gain	n: (Narrow	Band)	-	-	50	decibels
Output Pow	ver -	-	-	-	10	kilowatts
Frequency	Range (H-1	21 Asse	embly)	400	to 610	megacycles

- 5000 4KM50,000LA

4KM50,000LA OUTLINE DRAWING

MECHANICAL

O perating Po	sition	-	-	-		-	Axis vertical, cathode up
R-F Coupling	:						
Input	-	-	-	-	-	-	Type "N" coaxial fitting
Output	-	-	-	-	-	-	3 1/8 inch 50 ohm line
Input Cav	vity L	oading	-	-	-	-	Type "N" coaxial fitting
2nd and			oading	-	-	-	15/8 inch 50 ohm line
Shipping Weig	ghts:	-	0				
4KM50, 0	OOLA	Klystr	on Only	-	-	-	64 lbs (Net)
-		•	· ·				155 lbs (Gross)
H-121 R-	-F Ci	rcuit As	ssembly	-	-	-	767 lbs (Net)
			·				1084 lbs (Gross)
							1084 lbs (Gross)

Cooling: Water and Forced Air

	Flow hate	Fressure Drop
Cathode (with SK-110 Air-System Socket)	*25 cfm	1 inch H ₂ 0
Output Cavity	• *50 cfm	1.5 inches H_2^{-0}
Klystron Body (5 drift-tube sections, in series) 1 gpm	28 psīa
Klystron Collector	- 25 gpm	28 psia

Elow Data

т.

aguno Dron

MAGNETIC-COIL POWER-SUPPLY REQUIREMENTS

Prefocus-Coil:	Voltage	-	-	-	-	-	0 to 50	volts
	Current	-	-	-	-	-	0 to 1.5	amperes
Three Body Coi	ils and Col	lecto	or Coil ir	n Series	:			
-	Voltage	-	-	-	-	-	0 to 500	volts
	Current	-	_	-	-	-	0 to 2. 5	amperes

MAXIMUM RATINGS

D-C BEAM VOLTAGE -	-	-	-	-	-	20	KILOVOLTS
D-C Beam Current -	-	-	-	-		2.5	AMPERES
D-C BODY CURRENT (CONTINUC	OUS)	-	-			100	MILLIAMPERES
D-C BODY CURRENT (TUNING C	NLY)	-	-	-		150	MILLIAMPERES
A-C GETTER CURRENT	-	-	-			50	AMPERES
FOCUS ELECTRODE VOLTAGE		-	-	-		-500	VOLTS
COLLECTOR DISSIPATION	-	-	-	-		50	KILOWATTS

TYPICAL OPERATION, NARROW BAND, CW AMPLIFIER

Frequency	-	-	-	_	-	400	610	megacycles
Output Power	· -	-	-	-		13.1	12.0	kilowatts
Driving Power -	· –	-	-	-	-	.050	.050	watts
Power Gain	· –	-	-	-		54	5 3. 8	decibels
D-C Beam Voltage	-	-	-	-	_	17	17	kilovolts
D-C Beam Current	-	-	-	-	-	1.8	1.8	amperes
Beam Power Efficiend	cy -	-	-	-	-	42.8	39.2	percent
D-C Body Current	-	_	-	-	-	90	80	milliamperes
D-C Collector Curren	it -	-	-	-	-	1.71	1.72	amperes
Focus-Electrode Volt	age	-	-	-	-	-201	-211	volts
Magnetic-Coil Curren	ts (H-	121 Comp	onents):					
Prefocus Coil	-	-	-	-	-	1.0	0.97	ampere
Three Body Coi	ls and	Collector	r Coil in	Series	-	2.0	2.0	amperes

* At Sea level with 20° C inlet air temperature.

For additional information or information regarding any specific application, write to Eitel-McCullough, Inc., San Carlos, California. All such requests will be handled confidentially.

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA 4KM50,000LF power-amplifier L-band klystron

The Eimac 4KM50,000LF is a four-cavity, magnetically focused, power-amplifierklystron designed for use at frequencies from 610 to 790 megacycles. Although intended primarily for UHF television visual service this klystron may also be used for FM, for aural TV, or for tropospheric-scatter communications service.

When tuned for narrow band CW operation this klystron will deliver a minimum output power of 10 kilowatts with a power gain of 45 db. In television visual service it will provide more than 10 kilowatts of peak synchronizing output power with a power gain of 30 db. The AM random noise is more than 50 db below black level. Minimum bandwidth at the 3 db power level is 8 megacycles with a minimum of 7 megacycles at the 1 db level.

The 4KM50,000LF employs the Eimac Modulating Anode which provides an effective means of protecting the tube from internal arcs.

All tuning is accomplished outside of the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. This design permits a wide tuning range and allows external cavity loading for broadband applications. For spares or replacements, only the basic vacuum tube, without cavities, need be purchased.

Eimac Klystron Amplifier Circuit Assembly H-139 has been designed for use with the 4KM50,000LF to cover the specified frequency range. This assembly includes a klystron supporting structure, magnetic focusing coils, tuning cavities, adjustable load couplers for the second, third and output cavities and an Eimac SK-110 Air System Socket.

CHARACTERISTICS

ELECTRICAL

Heater:	Voltage	-	-	-	-	7.5	volts			
	Current	-	-	-	-	40.0	amperes			
	Maximum Sta	rting	Current	-	-	80.0	amperes			
Cathode:	EMA, Unipot	ential								
	Heating Time	-	-	-	-	5	minutes			
Getter (Operating):										
	Voltage	-	-	-	-	2.0	volts			
	Current	-	-	-	-	36.0	amperes			
Power Gain:	: Narrow Ba	ind	—	-	-	45	decibels			
	Televisio	n Visu	al Serv	ice	-	30	decibels			
Output Powe	er: Televisio	n Visu	al Serv	ice	_	10	kilowatts			
Frequency R	Range (H-139 .		610 to	790 m	egacycles					

MECHANICAL

Operating Position	-	-	-	-	
R-F Coupling:					
Input	-	-	-	-	-
Output	-	-	-	-	-
Input Cavity Loading	-	-	-	-	14
2nd and 3rd Cavity Lo	bading	_	-	-	-

Axis vertical, cathode up

Type "N" coaxial fitting 3 1/8 inch, 50-ohm line Type "N" coaxial fitting 1 5/8 inch, 50-ohm line

(Effective 10-20-61) Copyright 1961 by Eitel-McCullough, Inc. Printed in U.S.A.

Simat
MECHANICAL (cont'd)
Shipping Weights:

INLET WATER PRESSURE

4KM50,000LF Klystron only -

H-139 RF Circuit Assembly -

Cooling: Water and Forced Air Flow Rate Pressure Drop Cathode (with SK-110 Air System Socket) *25 cfm l inch H₂O Output Cavity _ _ _ _ *50 cfm 1.5 inches $H_2^{-}O$ Klystron Body (5 drift-tube sections, in series) -l gpm 28 psi (See collector cooling curves) Klystron Collector ---MAGNETIC-COIL POWER-SUPPLY REQUIREMENTS 0 to 50 Prefocus Coil: Voltage volts 0 to 1.5 Current amperes Three Body Coils and Collector Coil in Series: 0 to 500 volts Voltage _ _ -Current 0 to 2.5 amperes MAXIMUM RATINGS D-C BEAM VOLTAGE 20 KILOVOLTS 2.5 D-C BEAM CURRENT _ ----AMPERES D-C BODY CURRENT _ _ _ 150 MILLIAMPERES _ A-C GETTER CURRENT 50 AMPERES ---_ _ FOCUS-ELECTRODE VOLTAGE -_ _ -500 VOLTS COLLECTOR DISSIPATION _ _ 60 KILOWATTS

-4KM50,000LF----

64

767

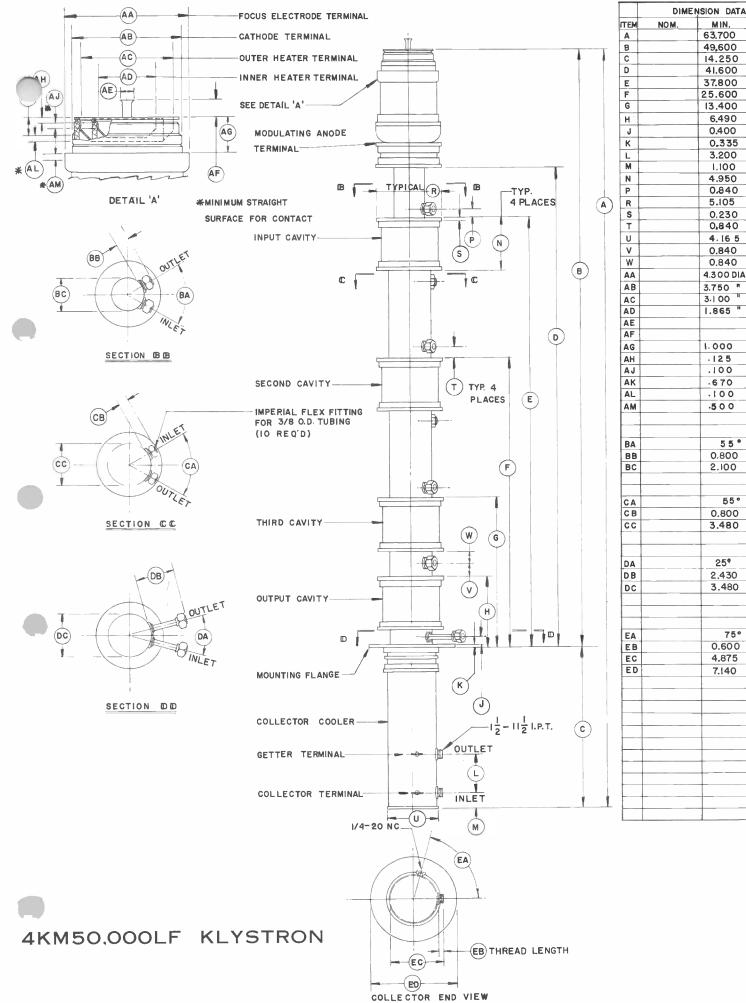
pounds

pounds

PSI

TYPICAL OPERATION

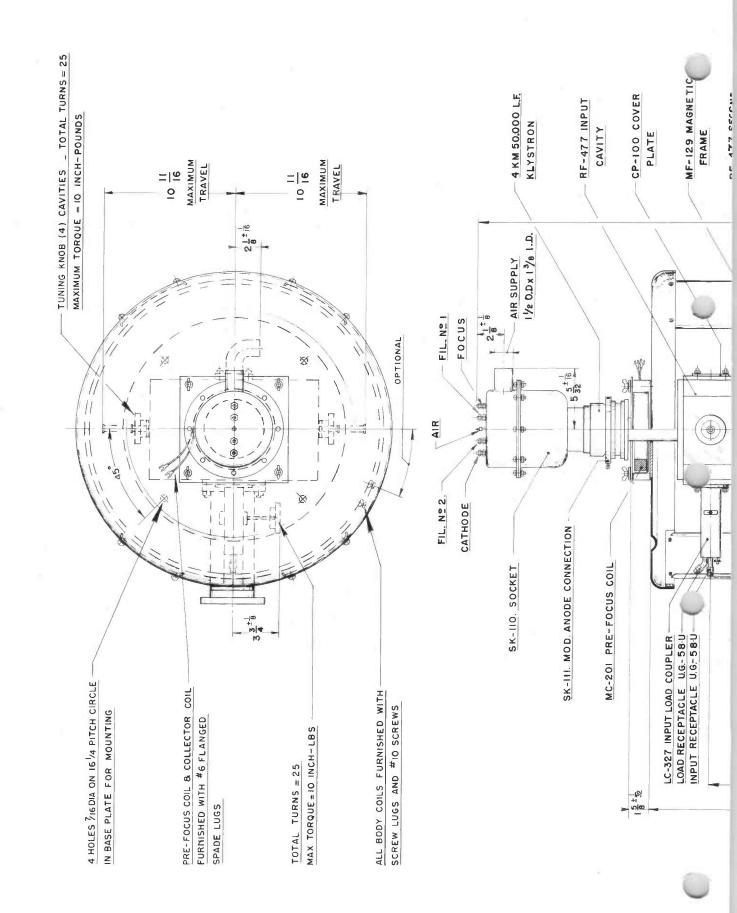
_

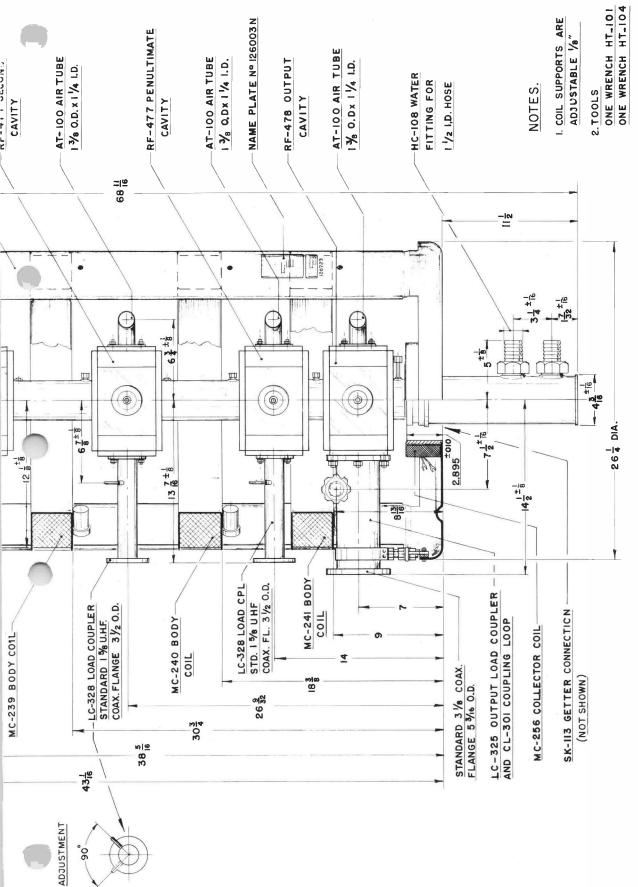

50

_

		TV Visual Service	Narrow Band	
Frequency	-	610	735	megacycles
Output Power	-	12.6	15.6	kilowatts
Driving Power	-	10	0.30	watts
Power Gain	-	30.3	47.2	decibels
D-C Beam Voltage	-	18	18	kilovolts
D-C Beam Current	-	2.03	2.03	amperes
Beam Power Efficiency	-	34.5	43	percent
D-C Body Current	-	75	45	milliamperes
Focus-Electrode Voltage	-	-200	-200	volts
Cavity Loading:				
lst Cavity	-	0.47		watts
2nd Cavity	-	116		watts
3rd Cavity	-	390		watts
Magnetic-Coil Currents:				
Prefocus Coil	-	1.15	1.15	amperes
Three Body Coils and				
Collector Coil in Se	ries	2.3	2.3	amperes

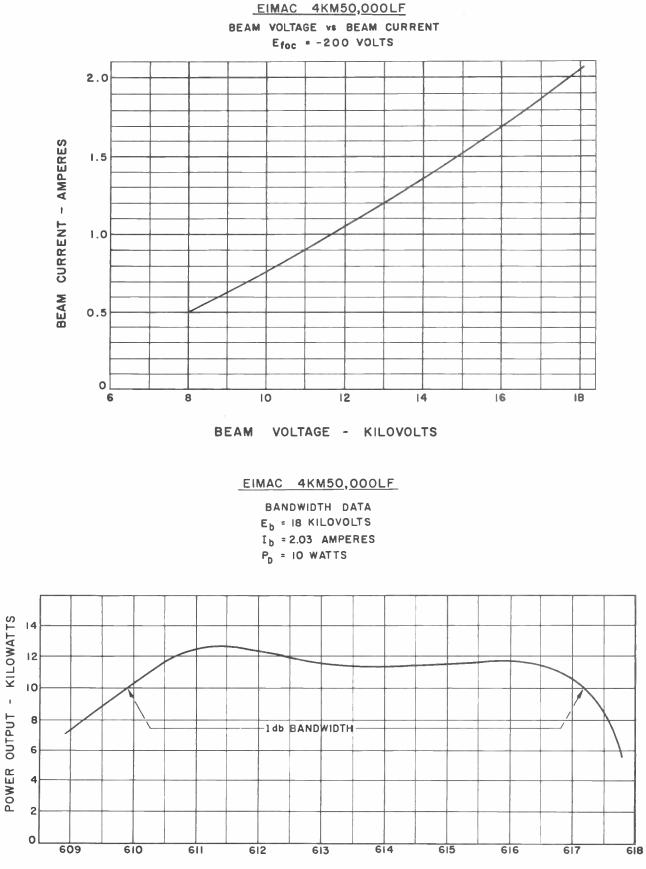
* At sea level with 20[°] C inlet air temperature.

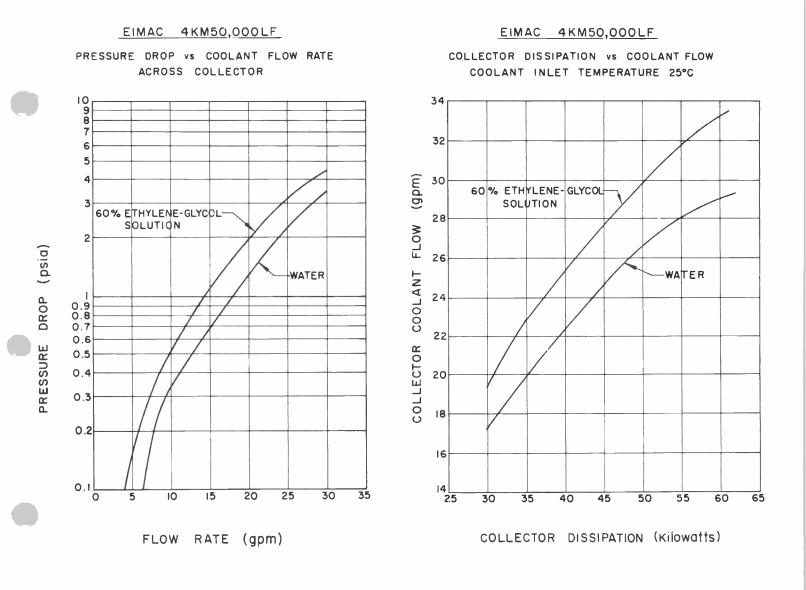

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., San Carlos, California.



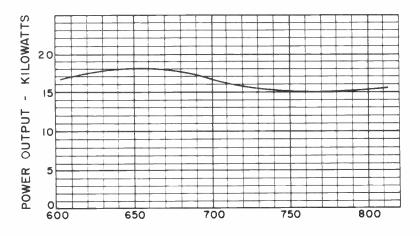
63,700 65.200 49,600 50.300 14.750 14.250 41.600 42.100 37.800 38.325 25.600 26.000 13.400 13.700 6.490 6.650 0.400 0.500 0.335 0.365 3.200 3.300 1,100 1.300 5.040 4.950 0.840 1,100 5.105 5.145 0.230 0.270 0,840 4.16.5 4-215 0.840 0.840 4.300 DIA. 4.450 DIA 3.750 * 3.8 35 " -3.2 00 3.100 1.865 1.950 1.188 1.750 1.000 1.500 .125 .175 .100 .670 .775 .100 .500 55° 65* 0.800 1.000 2.100 2.140 55° 65° 0.800 1.000 3.480 3.520 25° 35* 2.630 2.430 3.480 3.520 75° 85° 0.600 5.125 4.875 7.140 7,165

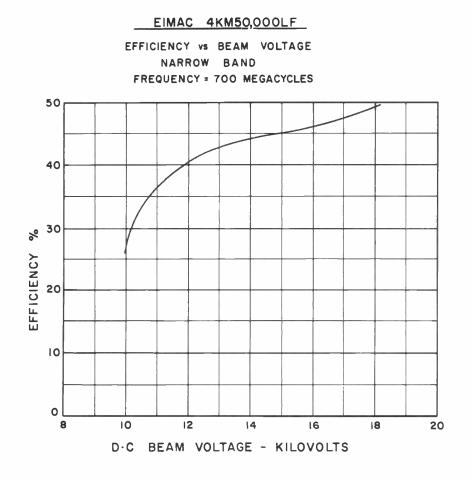
MIN.


MAX

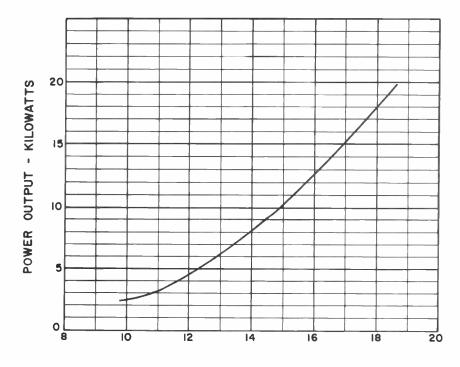


KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY H-139


~ `


FREQUENCY - MEGACYCLES

EIMAC 4KM50,000LF POWER OUTPUT vs FREQUENCY NARROW BAND I_b = 2.03 AMPERES P_d = 0.3 WATTS E_{foc} = -200 VOLTS E_b = 18 KILOVOLTS



FREQUENCY - MEGACYCLES

EIMAC 4KM50,000LF

POWER OUTPUT vs BEAM VOLTAGE NARROW BAND FREQUENCY = 700 MEGACYCLES

D-C BEAM VOLTAGE - KILOVOLTS

EITEL-MCCULLOUGH, INC.

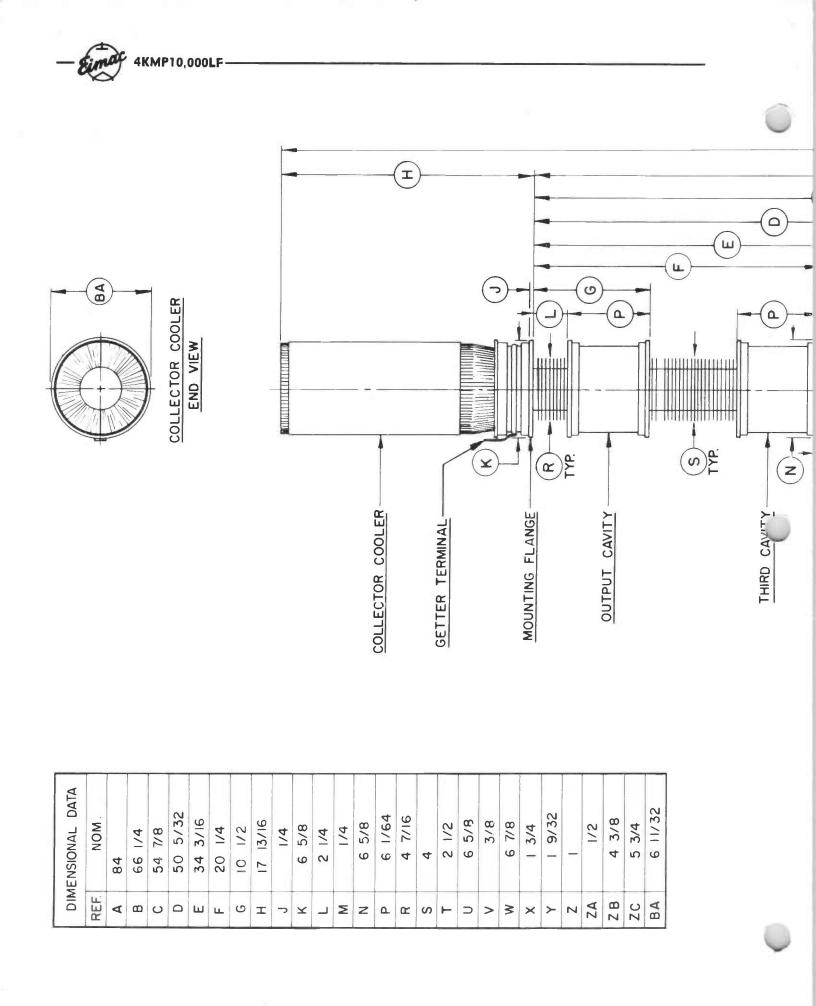
TENTATIVE DATA **4KMP10,000LF** PULSE AMPLIFIER L-BAND KLYSTRON

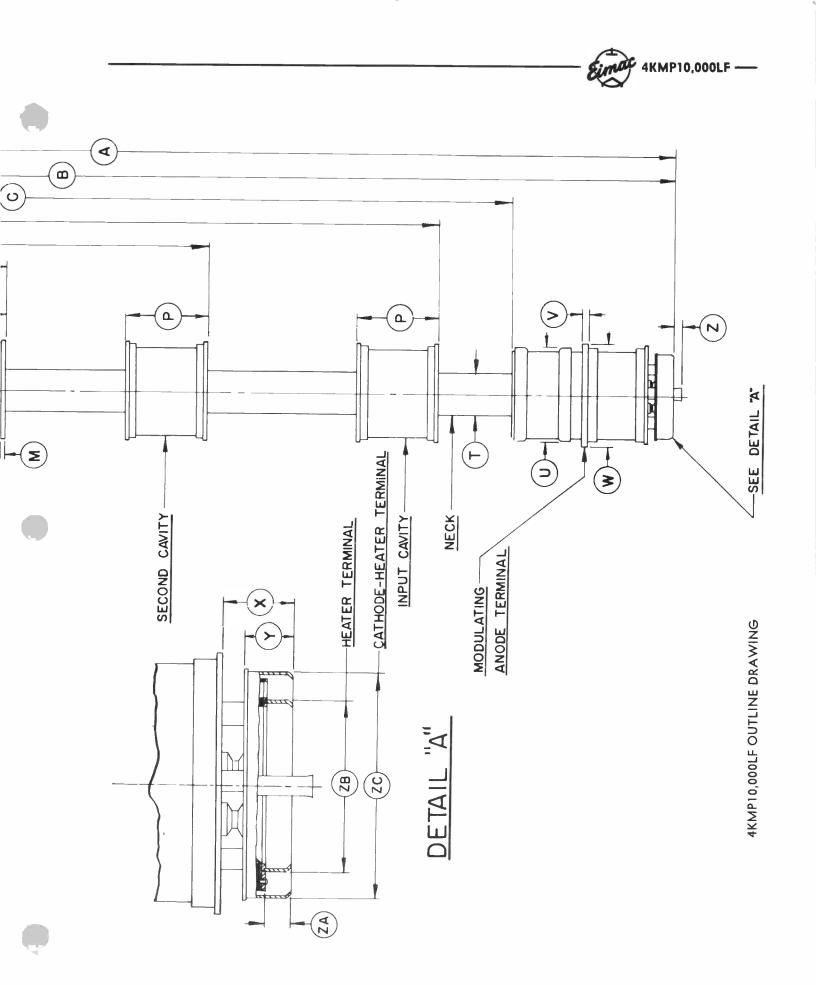
The Eimac 4KMP10,000LF is a four-cavity, magnetically focused, pulseamplifier klystron of ceramic and metal. It is designed for use at frequencies between 570 and 630 megacycles and will deliver a minimum pulse output power of 200 kilowatts at two percent duty, or 400 kilowatts at one percent duty, with an average power of four kilowatts. Nominal power gain is 57 db.

This klystron employs the Eimac Modulating Anode which provides an effective means of pulse modulating the output power without changing the beam voltage. A modulating anode voltage of approximately one half the beam voltage is sufficient to realize full rated pulse output power.

The resonant cavities for the 4KMP10,000LF are completed through tuning boxes which enclose the cylindrical ceramic windows of the klystron and all tuning is accomplished outside the vacuum envelope. This design permits a wide tuning range, and allows external cavity loading for broad-band operation. It also permits an unlimited number of tuning cycles without risk of damage to the vacuum seals.

Eimac Klystron Amplifier Circuit Assembly H-127, for use with the 4KMP10,000LF, covers the frequency range of 570 to 630 megacycles. This assembly includes a klystron supporting structure, electromagnetic focusing coils, tuning boxes, adjustable output load coupler, and an Eimac SK-1200 socket.


CHARACTERISTICS


Е	LECTRICAL							
	Heater:	Voltage	(±5%)	-	-	-	11	volts
		Current	(Normal)	-	-	-	22	amperes
		Maximu	m Starting	Curren	t –	-	50	amperes
	Cathode:	Unipote	ntial, Oxid	le Coat	ed			
		Heating	Time	-	-	-	10	minutes
	Getter (C	perating): Voltage	(Nomi	nal)	-	5.	l volts
			Current	-	-	-	36	amperes
			Maximu	m Start	ing Curren	nt	50	amperes
	Power Gai	n: (Narr	ow Band)	-	-	-	57	decibels
	Output Po	wer:						
	2% Duty	Y -	-	-	-	-	200	kilowatts
	1% Duty	- 1	~	-	-	-	400	kilowatts
	Average	-	-	-	-	-	4	kilowatts
	Frequency	Range	-	-	-	570 to	630	megacycles
	Capacitan	ice betwe	een Modula	iting Ar	node and a	ll other	Tube	Elements:
						C C		
	Maximu	ım –	-	-	-	_ 60	micr	omicrofarads
	FTT 1 7					2 -	7 .	

micromicrofarads

(Effective 10-1-60) Copyright 1960 by Eitel-McCullough. Inc.

Typical

-Eimac	4KMP10,000LF -
--------	----------------

NEGUANICAT								
MECHANICAL Operating Position	_	_	_	_	- 4	Axis Vertical Ca	thode d	own (in oil)
R-F Input Coupling	_	_	_	_	_			xial Fitting
R-F Output Coupling	_	_	_	_	_			Waveguide
Weight (Tube only)	_	_	_	_	_			140 pounds
Cooling: Forced Air	and Oil							I.
Cathode (With SK-		ket) -	oil					
						Flow Rate	Pre	essure Drop
Body -	-	-	-	-	-	*100 cfm air		l inch H ₂ O
Output Cavity	-	-	_	-	-	*50 cfm air		l inch H ₂ O
Collector -	-	-	-	-	-	*400 cfm air	2.5	inches H ₂ O
						JIREMENTS		
	(Eimac H	[-127	Klystron .	Amplifie	er Circui	t Assembly)		
					N 4 4 44	D.(
	(-1-)				Min.	Max.		
Prefocus Coil: Voltage		-	-	-	0	40		volts
Current		-	-	-	0	2.5		amperes
Each of Five Body Coils					0	40		volts
Voltage Current		_	_	_	0	12.5		amperes
Current	(uc)	_	_	_	0	12.0		amperes
			MAXIMUI	M RATIN	GS			
					0.0			
D-C BEAM VOLTAGE	_	_	_	_	_	70		KILOVOLTS
PEAK D-C BEAM CURRE	NT	-	_	_	_	22.5		AMPERES
PEAK MODULATING ANG	DE VOLT.	AGE	_	_	-	44		KILOVOLTS
AVERAGE D-C BODY CU		_	_	_	_	15	MII	LIAMPERES
COLLECTOR DISSIPATIO		_	-	_	-	10		KILOWATTS
PULSE LENGTH	_	_	-	_	-	60	MICR	OSECONDS
SEAL TEMPERATURES	-	-	-	-	-	175		DEGREES C
A-C GETTER CURRENT	-	-	-	-	-	50		AMPERES
TYF	PICAL OPE	RATIC	N, NARR	ow ban	D PULS	E AMPLIFIER		
7						600		
Frequency -	-	-	-	-	_	600 466	1	megacycles
Peak Output Power	-	-	-	-	-			kilowatts
Average Output Power	_	-	-	-	-	4.66 0.8		kilowatts
Peak Driving Power Power Gain –	-	-	_	-	_	57.4		watts decibels
D-C Beam Voltage	_	_	_	_	_	65		kilovolts
Average D-C Beam Curr	ont	_	_	_	_	165	m	illiamperes
Peak D-C Beam Current		_	_	_	_	16.5	111	amperes
Peak Modulating Anode		_	_	_	_	32		kilovolts
D-C Body Current (Ave		-	_	_	_	9.5	m	illiamperes
D-C Collector Current			-	_	_	156		illiamperes
Beam Input Efficiency			_	-	_	43.4	111	percent
beam input billerency	niverage,					10.1		percent
MAGNETIC-COIL CURR	ENTS (H-1	127 Ci	rcuit Ass	embly)				
Prefocus Coil	-	-	-	-	-	-	1.9	amperes
First Body Coil	-	-	-	-	-	-	6.3	amperes
Second Body Coil	-	-	-	-	-	-	7.5	amperes
Third Body Coil	-	-	-	-	-	-	7.5	amperes
Fourth Body Coil	-	-	-	-	-	-	8.5	amperes
Fifth Body Coil	-	-	-	-	-	-	8.5	amperes
	-							

*At Sea Level with 20° C inlet air temperature.

For additional information or information regarding any specific application, write to Eitel-McCullough, Inc., San Bruno, California. All such requests will be handled confidentially.

ELECTRICAL

EIMAC A Division of Varian Associates SAN CARLOS, CALIFORNIA

Tentative Data

5K50CB

10 KW CW POWER AMPLIFIER C-BAND KLYSTRON

The Eimac 5K50CB power-amplifier klystron operates at frequencies from 4.4-5.0 kilomegacycles with a rated output power of 10 kilowatts and a minimum gain of 60 decibels. This klystron is intended primarily for use in tropospheric scatter communications systems.

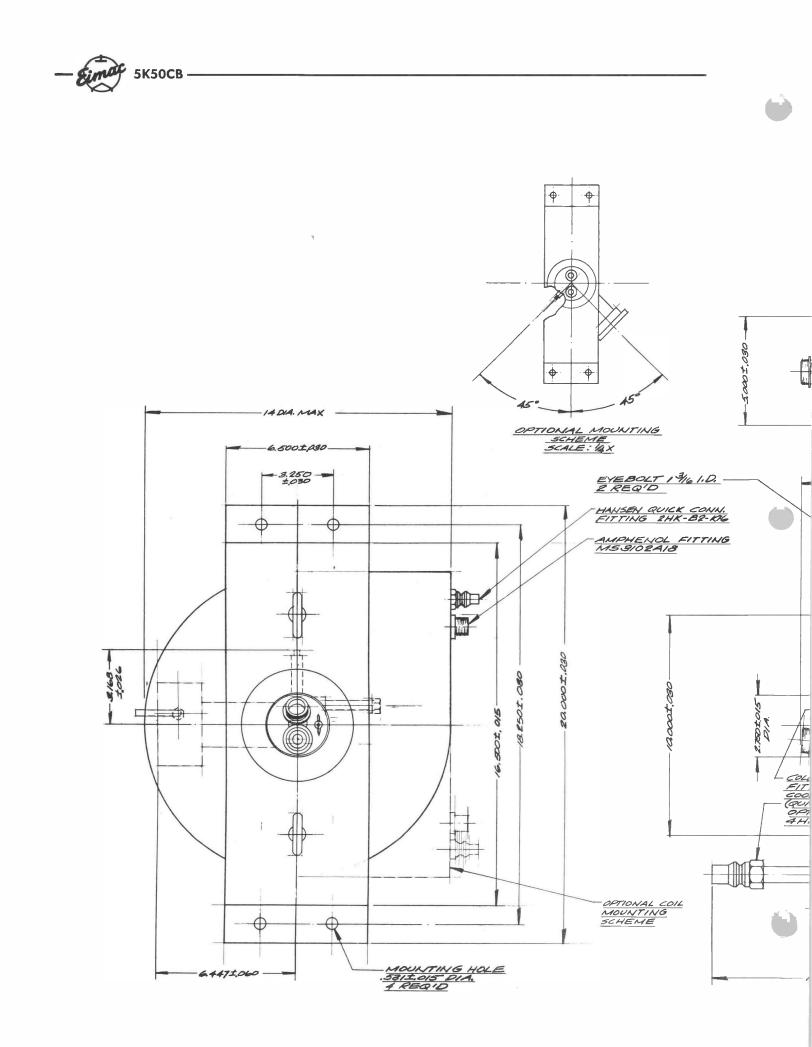
A confined flow configuration is used in the electron gun of the 5K50CB to minimize focusing adjustments and to provide a thoroughly stable beam.

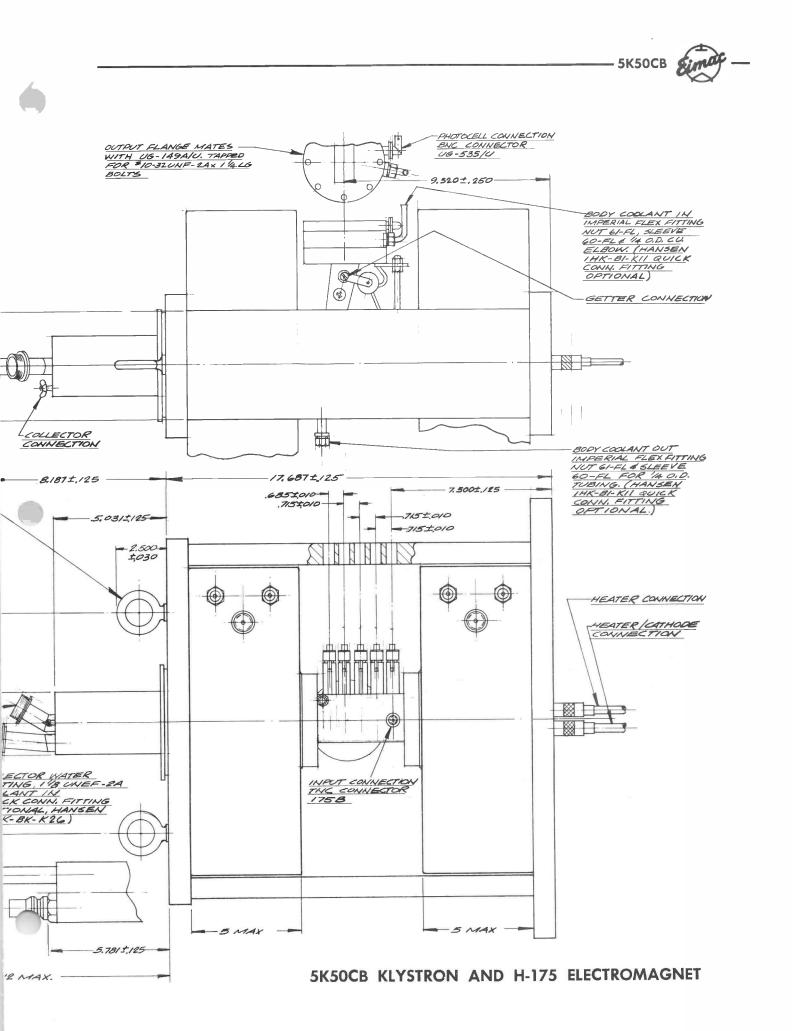
This electron gun is completely enclosed in a metal shield with integral shielded connecting leads to reduce the high voltage hazard to a minimum.

The small size and light weight of the 5K50CB make it suitable, where necessary, for mounting on the antenna structure of the system in which it is used.

Five integral cavities are used in the 5K50CB. Both input and output couplings are fixed. Unusual stability, for this power and frequency, is achieved through the use of improved body cooling.

The 5K50CB incorporates a built-in vacuum pump in the form of a titanium getter which should be energized whenever heater power is applied.


A focusing electromagnet and klystron supporting structure, Catalog Number H-175, has been designed for use with the 5K50CB.


CHARACTERISTICS

	Heater: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	10 volts
	Current	-	-	-	-	-	-	-	-	-	-	-	-	-	3.0 amperes
	Cathode: Impregnated, Unipotential														
	Heating	Tin	ne	-	-	-	-	-	-	-	-	-	-	-	5 minutes
	Getter: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0 volts
	Current	-	-	-	-	-	-	-	-	-	-	-	-	-	25 amperes
	Power Gain -	-	-	-	-	-	-	-	-	-	-	-	-	-	60 decibels
	Output Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	10 kilowatts
-	Frequency Range	-	-	-	-	-	-	-	-	-	-	-	-	-	4.4-5.0 kilomegacycles
	Phase sensitivity	to be	am '	volta	ıge	-	-	-	-	-	-	-	-	-	0.06 degrees/volt

(Revised 7-15-65) © Copyright 1964 by Varian Associates

MECHANICAL

Operatin	g Positio	n	-	-	-	-	-	-	-	-	-	-	-	Ax	is Ve	ertica	l, C	athode	e Down
Output r	f Couplin	ıg	-	-	-	-	-	-	-	-	-	-	-	-	-	RG	49/1	U Wav	veguide
Input rf	Coupling	<u>z</u> -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	TNC
Dimensio	5		~		-	-	-	-	-	-	-	-	-	-	-	6 2	к7х	: 26½	inches
	Elec	trom	agne	et:															
		Heig	ght	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18.5	inches
		Wid	th	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.5	inches
		Dept	th	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2 0	inches
Weight:	Klystron	only	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	30	lbs
	Electrom	agne	t	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2 70	lbs
Cooling:	52.5/47.	5 Sol	lutio	n, E	thyle	ene (Slyco	ol an	d Wa	ater		0			Flow	Rat	e P	ressur	e Drop
Body		-	-	-	-	-	-	-	-	-	-	_	-	-		gpm		50 ן	~
Collector	-	-	-	-	-	-	-	-	-	-	_	-	-	-		gpm		50 j	•
Electrom	agnet	-	-	-	-	-	-	-	-	-	-	-	-	_		gpm		ر 50 آ	-
																			•

ELECTROMAGNET POWER-SUPPLY REQUIREMENTS

Voltage	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	170 volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	10 amperes

MAXIMUM RATINGS

DC BEAM VOLTAGE	-	-	-	-	-	-	-	-	17.5 KILOVOLTS
DC BEAM CURRENT	-	-	-	-	-	-	-	-	2.5 AMPERES
DC BEAM INPUT POWER	-	-	-	-	-	-	-	-	50 KILOWATTS
DC BODY CURRENT (with rf drive)	-	-	-	-	-	-	-	-	80 MILLIAMPERES
COLLECTOR DISSIPATION	-	-	-	-	-	_	-	-	50 KILOWATTS
INLET WATER PRESSURE	-	-	-	-	-	-	-	-	120 PSI
OUTLET WATER TEMPERATURE -	-	-	-	-	-	-	-	-	80 DEGREES C
LOAD VSWR	-	-	-	_	_	-	_	-	1.2:1

TYPICAL OPERATION - TUNED FOR HIGH EFFICIENCY

Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4700 megacycles
Output Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10 kilowatts
Driving Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10 milliwatts
Power Gain -	-	-	-	-	-	-	-	-	~	-	-	-	-	-	60 decibels
DC Beam Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15 kilovolts
DC Beam Current	-	-	-	-	-	-	-	-	-	-	_	-	-	-	2.0 amperes
Beam Power Efficie	ency	-	-	-	-	-	-	-	-	-	_	-	-	-	33 percent
DC Body Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40 milliamperes
3 db Bandwidth	-	-	-	-	-	-	-	-	-	-	_	-	_	-	15 megacycles
Electromagnet Cur	rent	-	-	-	-	-	-	-	-	-	-	-	-	-	9.5 amperes

For additional information or information regarding a specific application, write to Eimac Division, Varian Associates, 301 Industrial Way, San Carlos, California

EIMAC Division of Varian SANCARLOS CAL'FORNIA 5K70SH s-band 30 kw cw power amplifier klystron

The EIMAC 5K70SH power amplifier klystron was designed specifically for industrial heating applications. The outstanding characteristic of this klystron is its high efficiency at full power. The 5K70SH delivers 30 kilowatts output power at better than 50% efficiency at 2450 MHz with a minimum gain of 50 db.

An extra large cathode is used in the 5K70SH to assure long life. Five integral cavities are employed for high gain, and all are pre-tuned at the factory. Also, input and output couplings are factory adjusted. In short, no tuning of any kind is required.

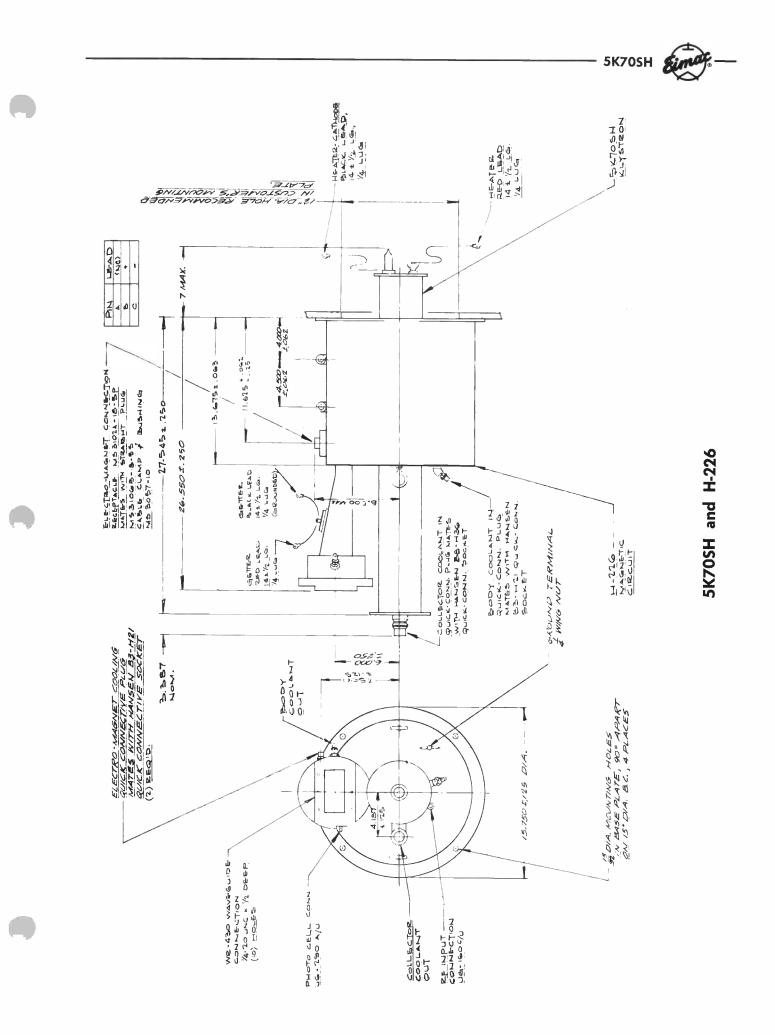
The output "window," where microwave power is transferred from the vacuum within the klystron to the external waveguide, is made of beryllium oxide. This insulating material has extremely good heat-transfer and mechanical characteristics. It is virtually indestructible in this application.

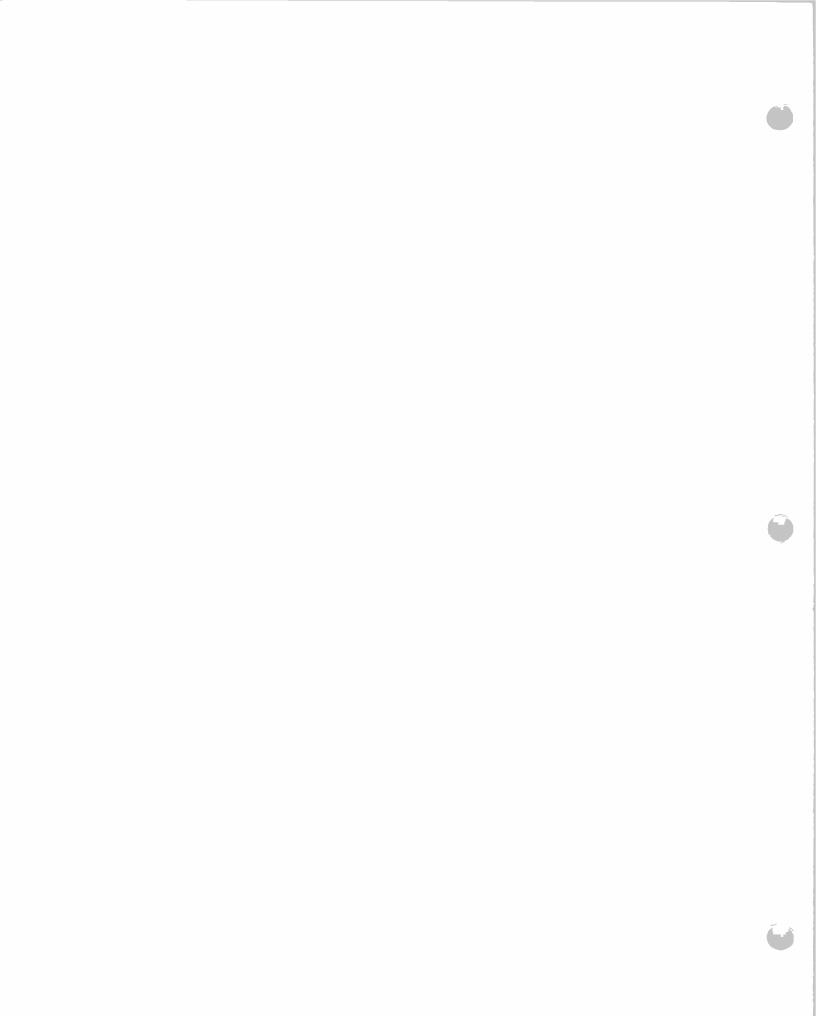
A focusing electromagnet, Catalog Number H-226, has been designed for use with the 5K70SH. EIMAC Water Load WL-204 is recommended for use with this klystron.

CHARACTERISTICS

ELECTRICAL

Heater: Voltage (: Current (non		-	-					-				Vac Aac
Cathode: Oxide Co Heating Time		-	-	-	-	-	-	-	-	-	5	Min
Getter: Voltage Current -		-	-	-	-	-	-	-	-	-	_	Vac Aac
Power Gain -		-	-	-	-	-	-	-	-	-	50	db
Output Power		-	-	-	-	-	-	-	-	-	30	kW
Frequency -		-	-	-	-	-	-	-	-	2	450	MHz
Phase Shift as a F	unction	of B	eam	Volt	age	-	-	-	-	0.0	935	°/V





MECHANICAL

Operating Position - Input rf Coupling	-	-	-	-	-	-	-	-	-	-	-	 - Tvne	- N C	Any oaxial Fitting
Output rf Coupling -	_	-	_	-	-	_	_	-	-	_	_	~ -		5A/U Flange
Weights: 5K70SH -	_	-	-	_	-	-	-	-	-	_	_		-	- 100 lbs
H-226 Electromagne	et	-	-	-	-	-	-	-	-	-	-		-	- 186 lbs
Cooling: Forced Air and	Wate	r									Flor	v Rate	F	Pressure Drop
Cathode	-	-	-	-	-	-	-	-	-	-		cfm		Free
Klystron Body -	-	-	-	-	-	-	-	-	-	-		gpm		50 psi
Klystron Collector Electromagnet -	-	-	-	-	-	-	-	-	-	-		gpm gpm		30 psi 30 psi
Electromagnet -	-	-	-	-	-	-	-	-	-	-	2	gpm		So ha
	ELEC1	RON	IAGN	VET	POV	VER	SUP	PLY	REG	UIR	EMEN'	rs		
Voltage, Adjustable to -	-	-	-	-	-	-	-	-	-	-	-		-	150 Vdc
Current, Adjustable to -	-	-	-	-	-	-	-	-	-	-	-		-	25 Adc
				MAX	xIMU	IM F	ITAS	NGS						
BEAM VOLTAGE	-	-	-	-	-	-	-	-	-	-	-		-	23 kVdc
BEAM CURRENT -	-	-	-	-	-	-	-	-	-	-	-		-	3 Adc
BEAM INPUT POWER	-	-	-	-	-	-	-	-	-	-	-		-	70 kW
BODY CURRENT	-	-	-	-	-	-	-	-	-	-	-		-	100 mAdc
COLLECTOR DISSIPATI	ON	-	-	-	-	-	-	-	-	-	-		-	70 kW
INLET COOLANT PRES	SURE	- 1	-	-	-	-	-	-	-	-	-		-	125 psig
COOLANT OUTLET TEN	MPEF	ATU	IRE	-	-	-	-	-	-	-	-		-	80 °C
LOAD VSWR (NON DES	TRU	CTIV	E)	-	-	-	-	-	-	-	-		-	3:1
			1	ΓΥΡΙ	CAL	OPF	RΔT	ION						
Frequency	-	_	- '	-	-	-	-	-	-	-	_		_	2450 MHz
Output Power	-	-	-	_	-	-	-	-	-	_	-		_	31.5 kW
Driving Power	-	-	-	-	-	-	-	-	-	-	-		-	100 mW
Power Gain	-	-	-	-	-	-	-	-	-	-	-		-	55 db
Beam Voltage	-	-	-	-	-	-	-	-	-	-	-		-	22.5 kVdc
Beam Current	-	-	-	-	-	-	-	-	-	-	-		-	2.66 Adc
Body Current	-	-	-	-	-	-	-	-	-	-	-		-	50 mAdc
Efficiency	-	-	-	-	-	-	-	-	-	-	-		-	52.5 %
Electromagnet Current	-	-	-	-	-	-	-	-	-	-	-		-	16.5 Adc

For additional data or information regarding a specific application, write to EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California.

EIMAC

A Division of Varian Associates

SAN CARLOS, CALIFORNIA

S-BAND 100 KW CW POWER AMPLIFIER KLYSTRON

Tentative Data

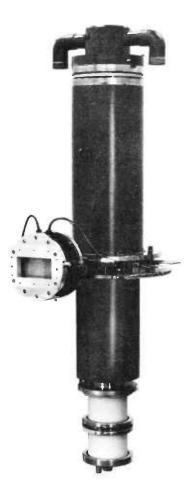
The Eimac 5KM300SI power amplifier klystron was designed specifically for use in the ground transmitters of spacecraft communications systems. The 5KM300SI has a rated output power of 100 kilowatts at frequencies from 2100 to 2400 megacycles with a 3 db bandwidth of 15 megacycles and a minimum gain of 55 decibels.

Five integral cavities are used in the 5KM300SI. Both input and output couplings are fixed. The output window is a thick beryllium oxide disc which will withstand severe abuse. An arc detector is provided to protect this window.

The electron gun of this klystron provides an exceptionally uniform beam which contributes greatly to stability and high efficiency. This gun incorporates the Eimac Modulating Anode which provides a versatile means for controlling the beam.

The 5KM300SI incorporates an ion pump which maintains a low gas pressure in the klystron and also provides a continuous indication of this pressure during operation.

A focusing electromagnet, Catalog Number H-225, has been designed for use with the 5KM300SI.

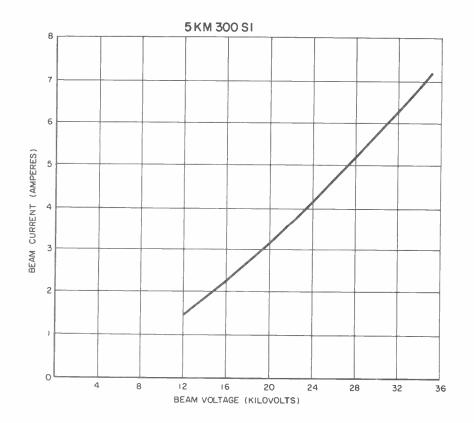

CHARACTERISTICS

ELECTRICAL			~ ~ /											
Heater: Voltage ($\pm 5\%$)	-	-	-	-	-	-	-	-	13 Vac			
Current (Nomi	nal)	-	-	-	-	-	-	-	-	5.4 Aac			
Cathode: Impregnated, Unipotential Heating Time 5 Min Ion Pump Supply														
Ion Pump Supply														
Ion Pump Supply														
Voltage	-	-	-	-	-	-	-	-	-	-	3 to 4 kVdc			
Current		-		-	-	-	. e		-	-	1 mAdc			
Power Gain -	-	-	-	-	-	-	-	H.	-	-	55 db			
Output Power -	1	2		н.	-	_	-	-	_	-	100 kW			
Frequency Range		-	-		-	-	-	-	21	00 to	o 2400 Mc			
Phase shift as a fu	inctio	n of	bear	m vo	ltage	e -	-	-	-	-	0.026 °/V			

MECHANICAL

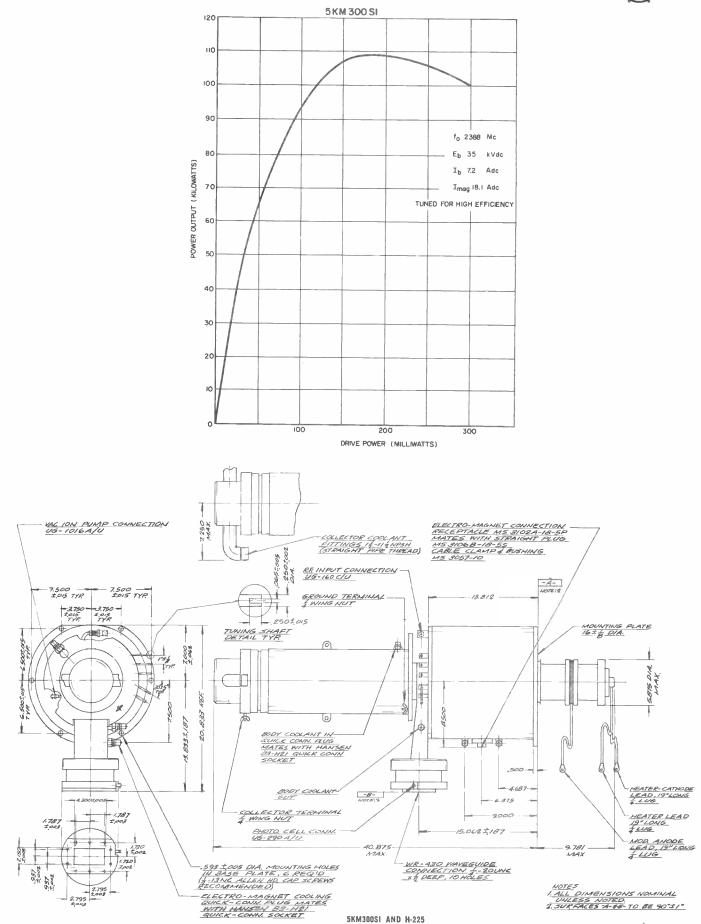
Operating Position -	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	any
Input Coupling (rf)	-	-	-	-	-	-	-	-		-	-	-	-	-	7	UG	-23	D/U
Output Coupling (rf)	-	21	-	-	-	-	•		-	\mathbf{x}	-	-	-	W	R-4 3	0 W	aveg	guide
Weights: 5KM300SI	-	-	-	-	-	-	-	-		-	-	\sim	-	-	-	-	23	5 lbs
H-225 Electr	oma	agne	t -	-	-	-	-	-	-	-	-	-	-	-	-	-	18	0 lbs
Tuner Starting Torque	(m	ax)-		-	-	-		-	-	-	14	-	-	4	-	-	50 i	n-oz
Tuner Stop Torque	-	-	-	-	-	-	-	-	-	-	-		-			-	6 i	n-lbs
Cooling: Forced Air an	nd V	Vater	ſ									Fle	ow R	late	P	ress	ure]	Drop
Cathode -	-	-	-	-		-	-	-	-		~	2	25 cf	m			Free	
Klystron Bod		-	-	-		-	-	-	-		-		.3 gr				0 ps:	
Klystron Coll	ecto	r -	-	-	-	-	-	-	-	-	-	6	65 gr	m		2	3 ps:	i
Electromagne	et	-	-	-	-	-	-	-	-	-	-	2	.5 gr	m		4	$5 \mathrm{ps}$	i

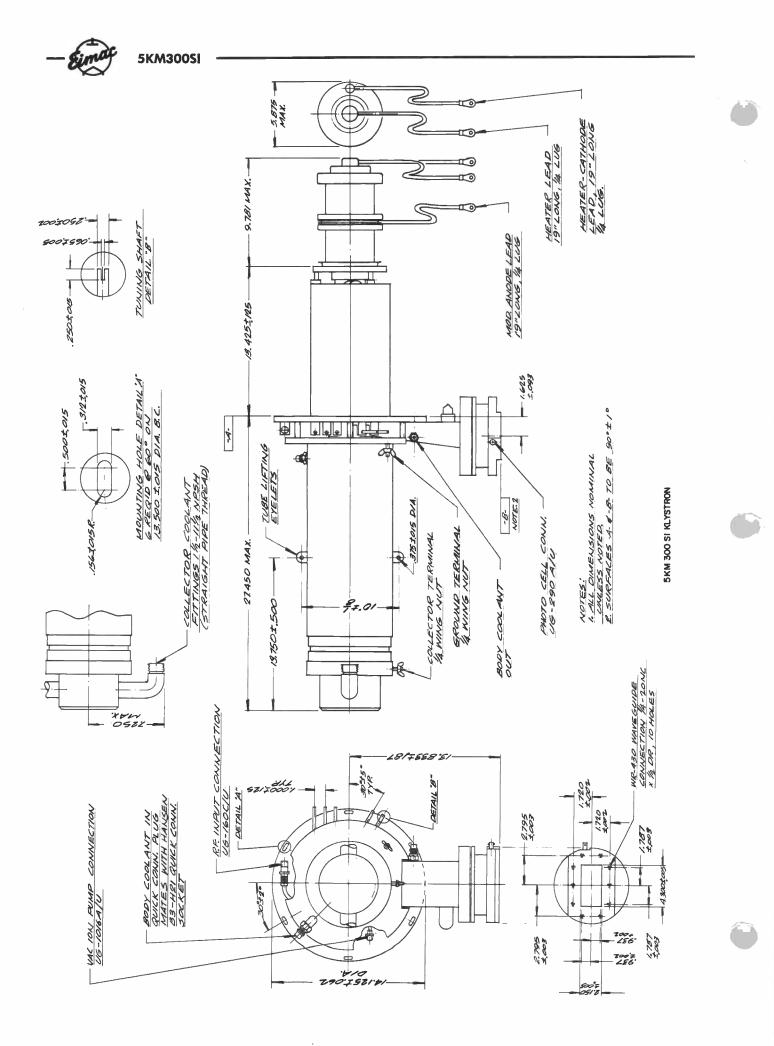
(Effective 11-1-65) Copyright 1965 by Varian Associates


ELECTROMAGNET POWER SUPPLY REQUIREMENTS

Voltage, adjustable to - Current, adjustable to -															
				MA	ΧΙΜΙ	JM I	RATI	NGS							
BEAM VOLTAGE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	38 kVdc
BEAM CURRENT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.9 Adc
BEAM INPUT POWER	_	-	-	_	_	-	_	_	_	_	_	_	_	_	300 FW

BEAM INPUT PUT																
BODY CURRENT	(WITH	DUT I	DRI	VE)	-	-	-	-	-	-	-	-	-	-	-	50 mAdc
BODY CURRENT	(WITH)	DRIV	E)	-	-	-	-	-	-	-	-	-	-	-	-	350 mAdc
COLLECTOR DISS	SIPATIO	N	-	-	-	-	-	-	-	-	-	-	-	-	-	300 kW
INLET COOLANT	PRESS	URE	-	-	-	-	-	-	-	-	-	-	-	-	-	125 psig
COOLANT OUTLE																
LOAD VSWR -				-	-	-	-	-	÷	-	-	-	-	-	-	1.2:1


TYPICAL OPERATION


								Synchrono	usly Tuned	High Efficie	ncy Tuned	
Frequency		-	-	-	-	-	-	2115	2388	2115	2388	Mc
Output Power		-	-	-	-	-	~	74	79	104	109	kW
Driving Power -		-	-	-	-	-	-	1	1.15	215	190	mW
Power Gain		-	-	-	-	-	-	78	78	57	57.3	db
Beam Voltage		-	-	-	-	-	-	35	35	35	35	kVdc
Beam Current -		-	-	-	-	-	-	7.2	7.2	7.2	7.2	Adc
Body Current		-	-	-	-	-	-	135	85	340	190	mAdc
Modulating Anode V	Volt	age										
(with respect to o	cath	ode	e)	-	-	-	-	35	35	35	35	kVdc
3 db Bandwidth -		-	-	-	-	-	-	3.5	4	15	15	Mc
Efficiency		-	-	-	-	-	-	29.4	31.5	41.3	45.3	%
Electromagnet Curr	ent		-	-	-	-	-	18.1	18.1	18.1	18.1	Adc
Load VSWR		-	-	-		-	-	1.1:1	1.1:1	1.1:1	1.1:1	

5KM300SI

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA 5K210,000LQ POWER-AMPLIFIER L-BAND KLYSTRON

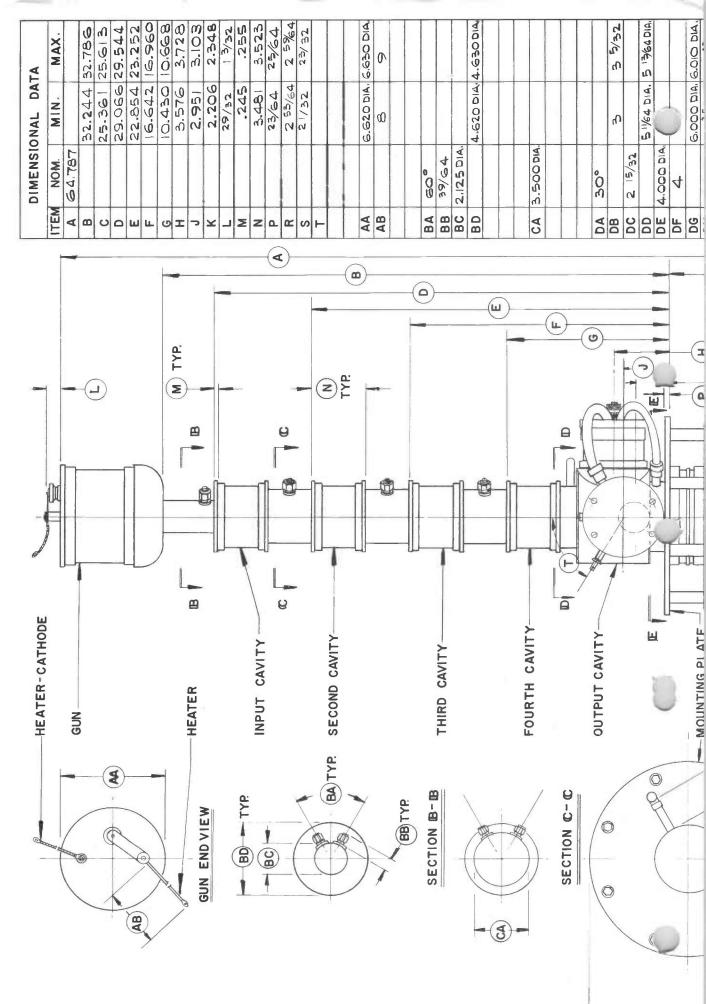
The Eimac 5K210,000LQ is a high-gain, power-amplifier klystron designed for wide-band, tropospheric-scatter, communications service at frequencies from 755 to 985 megacycles. This klystron will deliver a CW output power of 75 kilowatts, with a minimum power gain of 42 decibels, and half-power band-width of 10 megacycles.

Five resonant cavities are used in the 5K210,000LQ. Four are external and one, the output cavity, is integral. Output coupling is achieved by means of a fixed loop and a quarter-wave, variableimpedance, coaxial coupling section which terminates in a waveguide transition.

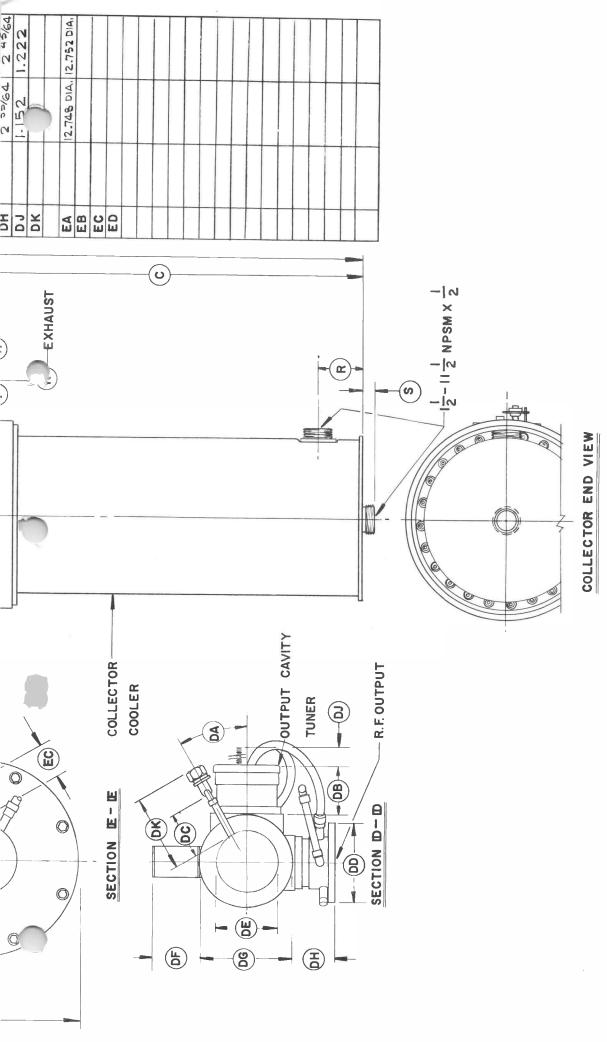
The 5K210,000LQ has a beam microperveance of 2 which makes it possible to achieve adequate bandwidth for tropo-scatter applications without external loading of the intermediate cavities.

Eimac Klystron Amplifier Circuit Assembly H-132 has been designed for use with the 5K210,000LQ to cover the specified frequency range. This assembly includes a supporting structure, magnetic focusing coils, tuning cavities, adjustable load couplers for the input and output cavities, and a coaxial-to-waveguide transition.

CHARACTERISTICS


ELECTRICAL

Heater:	Voltage	-	-	-0	-	15	volts
	Current	_	-	-	-	18	amperes
	Maximum Star	ting	Current	-	-	36	amperes
Cathode:	EMA, Unipote	ntial					
	Heating Time	-	-		-	5	minutes
Getter:	Voltage	-	-	-	-	5.2	volts
	Current	-	-	,-	-	36	amperes
Power Gain	(Wide Band)	-	-	-	-	42	decibels
Output Powe	er	-	-	-	-	75	kilowatts
Frequency F	Range (H-132 C	ircu	it Assem	bly)7	55 to	985 m	legacycles
MECHANICAL							
Operating P	osition	<u> </u>	-	Ax	is vert	ical, d	cathode up
R-F Couplir	ng:						
Input		=	-	- Ty	pe "N	I" coas	xial fitting
Outpu	t	-	-	-	WF	R-975 T	Naveguide
Weight (5K2	210,000LQ Klys	tron) –	-	-	380	pounds
Weight (H-	132 Circuit Ass	semb	ly) -	-	- 1	530	pounds



							Flow Rate	Pressure Drop
Second, Third and Penulti	mate							
Cavities (each)	-	-	-	-	-	-	25 cfm	l inch H ₂ O
Body and Output Section	-	-	-	-	-	-	6 gpm	25 psi
Collector	—		-	-	-	~~	50 gpm	25 psi

Cooling: Water and Forced Air

(B)

5K210,000LQ KLYSTRON

—— 5K210,000LQ-

MECHANICAL co	ont.							
Maxim u m Dir	mensions of	Klvstro	n:					
Length	nengione er	-	-	-	_		66.6	inches
Diameter		_	_	-	_		14	inches
Maximum Dir	mongiong (K)	vetron	and C	ircuit	Assembly	·):		
Height	mensions (M		-	_	-	,.	75	inches
Width		_	_	_	_		32	inches
Depth		_	_	_	_		47	inches
_ 01 [,]	MACNI	FTIC-C		OWER-	-STIPPLY I	REQUIREMENTS		
	MAGIN	E110-C			DOLLDL			
Prefocus Coil:	Voltage	_	_	_	-	0	to 25	volts
11010040 0011	Current	_	_	_	-	0	to 2	amperes
Each of Four Boo	dy Coils:							
	Voltage	-	-	-	-		to 100	volts
	Current	_	-	-	-		to 12	amperes
Collector Coil:	Voltage	_	-	-	-		to 40	volts
	Current	-	-	-	_	0	to 5	amperes
			MAX	IMUM	RATINGS	5		
						2	0	KILOVOLTS
D-C BEAM VOLT		-	-	_	-		.0	AMPERES
D-C BEAM CUR		_	-	_	-	30		ILLIAMPERES
D-C BODY CUR		-	_	_	_		0	AMPERES
A-C GETTER CU		_	_	_	_	2 1	-	KILOWATTS
COLLECTOR DIS	SIFATION							
	TYPICA	AL OPEI	RATION	I, WII	DE-BAND	, CW AMPLIFIER		
DE Energy on out		_	_	_	_	86	0	megacycles
RF Frequency Output Power		_	_	_	_	8	31	kilowatts
Driving Power		_	_	_	_		3	watts
Power Gain		_	_	_	_	4	4.3	decibels
D-C Beam Volta	are	_	_	_	_	2	25	kil ovol ts
D-C Beam Curre	-	_	-	_	-		7.52	amperes
Efficiency		_	_	_	_	4	13	percent
D-C Body Curre	ent	_	-	-	-	12	20	milliamperes
Half-Power Ban		_	_	_	-]	10.9	megacycles
Magnetic-Coil								
Prefocus		_	_	_	-		0.97	ampere
Body Coil		-	-	-	-		8.7	amperes
Body Coil		_	-	-	-		8.2	amperes
Body Coil		-	-	-	-		8.5	amperes
Body Coil		-	_	-	-		7.6	amperes
Collector		_	-	-	-		3.6	amperes

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., San Carlos, California.

EITEL-MCCULLOUGH, INC.

The Eimac 6K50,000LQ is a six-resonant-cavity, magnetically focused, cascade amplifier klystron designed primarily for CW high-power, broad-band communication service in the frequency range of 720 to 980 megacycles.

When tuned for narrow-band operation, this tube type will provide 10 kilowatts of CW r-f output power with a power gain of more than 50 db. When tuned for broad-band operation, this tube type will provide more than 6 kilowatts of CW r-f output power with a power gain of more than 30 db and bandwidths of 15 to 20 megacycles between the 3-db power points

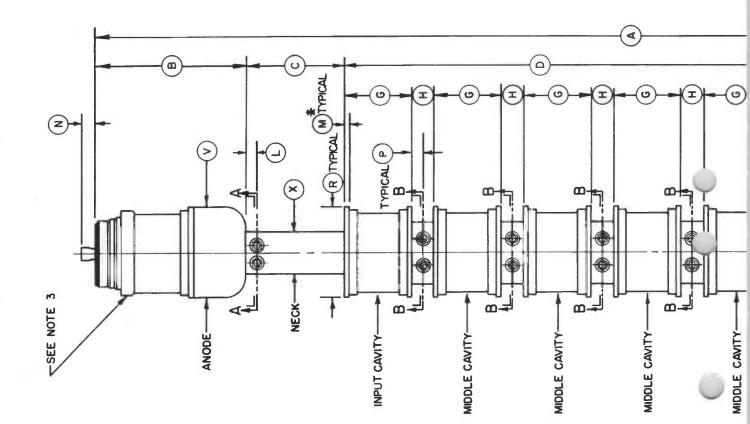
The resonant cavities of the Eimac 6K50,000LQ have cylindrical ceramic windows and are completed by tuning boxes external to the tube. Klystron amplifier circuit assemblies designed for use with this tube provide the required external tuning boxes, magnetic focusing frame, and magnetic focusing coils. Such circuit assemblies also provide both input and output coaxial-type radio-frequency fittings. In addition, these circuit assemblies include an air-system socket which provides for cooling and making connections to the electron-gun portion of the tube.

CHARACTERISTICS

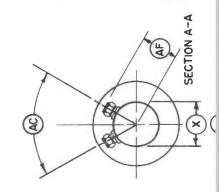
ELECTRICAL

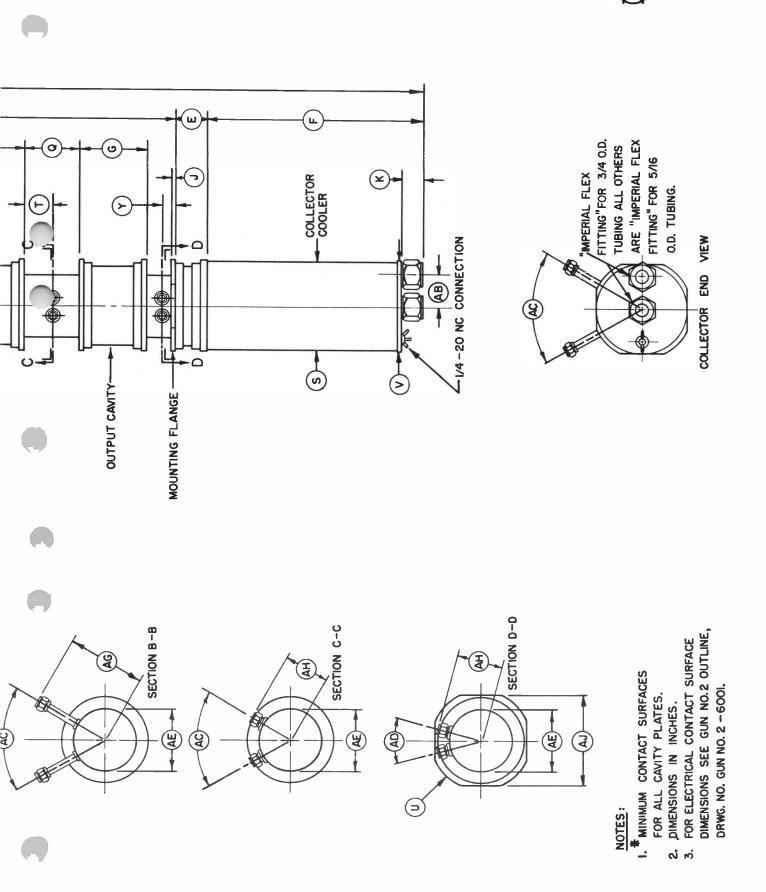
	Filament:	Tungst	en						
		Voltag	е	-	-	-	8.0	volts	
		Curren	t		-	-	40	amperes	
		Maximu	n Start	ing Curi	rent	-	80	amperes	
		Minimu	n Warm-l	Jp Time	-	-	30	seconds	
	Cathode:	Unipot	ential,	Bombar	dment	Heated			
		Voltag	е	-	-	-	2280	volts	
		Curren	t	-	-		0.7	ampere	
		Power		-	-	-	1596	watts	
	Frequency	Range	-	-	-	720	to 985	mc	
ME	ECHANICAL								
	Operating	Positi	on	-	Vert	tical,	cathode	e end up	
	Decommond	ad Sook	ot				Fimad	SK-110	

Operating Position - Vertical, cathode end up Recommended Socket - - Eimac SK-110 R-F Coupling: Input - - Type "N" coaxial fitting Output - 3 1/8-inch coaxial line Approximate Weights: Net - - 63 pounds Shipping - - 390 pounds



6K50,000LQ POWER-AMPLIFIER L-BAND KLYSTRON


TENTATIVE DATA


(Effective 5-2-58) Copyright 1958 by Eitel-McCullough, Inc.

	DIMEN	DIMENSION DATA	
REF.	NOM.	MIN.	MAX.
٩		54.750	55.500
60		7.437	7.687
υ		4.968	5.031
٥		29.875	30.125
ш	1.625		
Ŀ		10.812	11.062
U		3.468	3.531
I		1.156	1.218
7	.250		
¥	1.062		
Г	.562		
Σ		.187	
z	.500		
٩	.593		
0		2.718	2.781
æ		4.615 DIA.	4.635 DIA
S	4.500 DIA		
F	1.375		
D	5.125 DIA.		
>	4.625DIA		
×	2.125 DIA.		
۲	.687		
AB	1.625		
AC	60°		
AD	30°		
AE	3.500DIA		
AF	1.875		
BG	4.000		
Æ	2.565	~	
Δ.1	4.625		

6K50,000LQ

COOLING REQUIREMENTS

	JULING REQUIREMENTS					Volu	imo	Pressure Drop
	Cathode (With Eimac SK Fifth Cavity (Broad-Ba Output Cavity - Drift-Tube Jackets (Se Collector Assembly	nd Appli -	-		-		air air air ter	5 inches H ₂ 0 1.5 inches H ₂ 0 1.5 inches H ₂ 0 11 psi 28 psi
M	AXIMUM RATINGS							
•	D-C BEAM VOLTAGE D-C BEAM CURRENT D-C BODY CURRENT (CONT D-C BODY CURRENT (TUNI D-C FOCUS-ELECTRODE VO BOMBARDED CATHODE: VOLTAGE CURRENT	NG ONLY					2.5 0.1 0.15 -500 2400 0.75	MAX. KILOVOLTS MAX. AMPERES MAX. AMPERE MAX. AMPERE MAX. VOLTS MAX. VOLTS MAX. AMPERE
	POWER - COLLECTOR DISSIPATION	-	-	-	-	-		MAX. WATTS MAX. KILOWATTS
T	PICAL OPERATION							
	Frequency -	-	-	-	-	880	88	U 1
	Output Power -	-	-	-	-	6.4		9 kilowatts
	Bandwidth (3-db power	points)	-	-	-	20		5 megacycles
	Driving Power -	-	-	-		1.7	2.	
	Power Gain -	-		-	-	35.6	35.	9 db
	D-C Beam Voltage	-		-		17	19.	
	D-C Beam Current	-	-			1.88	2.3	•
	Be am Input Power	-	-	-	-	31.96		15 kilowatts
	Beam-Power Efficiency	-	-	-	-	20		20 percent
	D_C Body Current		-	-	-	50		0 milliamperes
	D-C Collector Current	-	-	-	-	I . 83	2.2	25 amperes
	D-C Focus-Electrode Vo	ltage		-		-175	-20	0 volts
	F ila ment Voltage	_	-	-	-	8		8 volts
	Filament Current Bombarded Cathode:	-		-	-	40	4	0 amperes
			_	_		2280	228	80 volts
	Voltage	_	-	-		0.7	0.	
	Current Power -		-	_	_	1596	159	•
	Collector Dissipation	_	-	-	_	24.71	34.8	

APPLICATION

For additional information or information regarding a specific application, write to the Application Engineering Department, Eitel-McCullough, Inc., San Bruno, California. All such requests will be handled confidentially and without charge.

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA

X626AC PULSE-AMPLIFIER L-BAND KLYSTRON

The Eimac X626AC is a three-cavity, pulse-amplifier klystron designed for high-average-power pulse service at frequencies from 400 to 450 megacycles. This klystron will deliver a peak output power of 1.25 megawatts, at 75 kilowatts average power, with a narrow-band power gain of 30 decibels.

All tuning is accomplished outside the vacuum envelope by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. This design permits external cavity loading for wide-band applications. For spares or replacements, only the basic klystron, without cavities, need be purchased.

This klystron employs the Eimac Modulating Anode which provides a convenient means for pulse modulating the output power without changing the beam voltage. The electron-gun geometry is such that the required beam current is obtained with a peak modulating-anode voltage of only 52 kilovolts, at the rated beam voltage of 100 kilovolts.

Waveguide output coupling for the X626AC is achieved by means of an adjustable iris in the output cavity.

Eimac Klystron Amplifier Circuit Assembly H-123B has been designed for use with the X626AC to cover the specified frequency range. This assembly includes a supporting structure, magnetic focusing coils, tuning cavities, input load coupler, output waveguide transition, and a klystron socket.

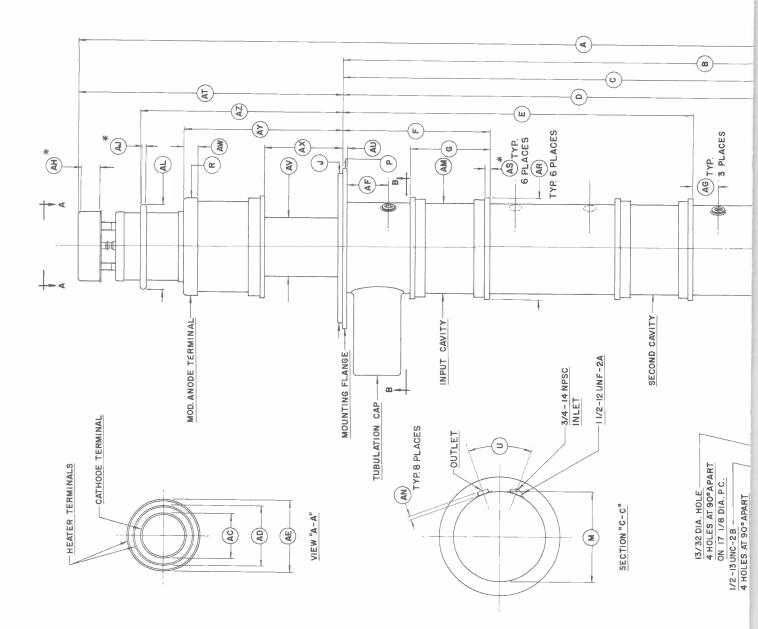
CHARACTERISTICS

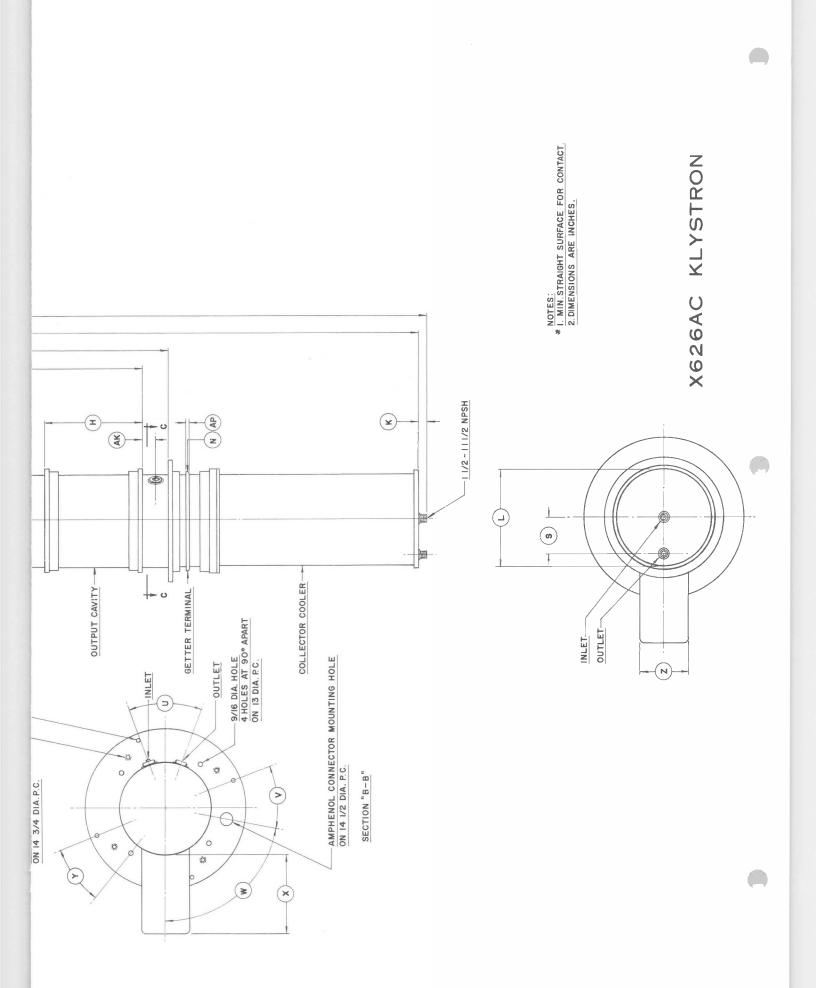
ELECTRICAL

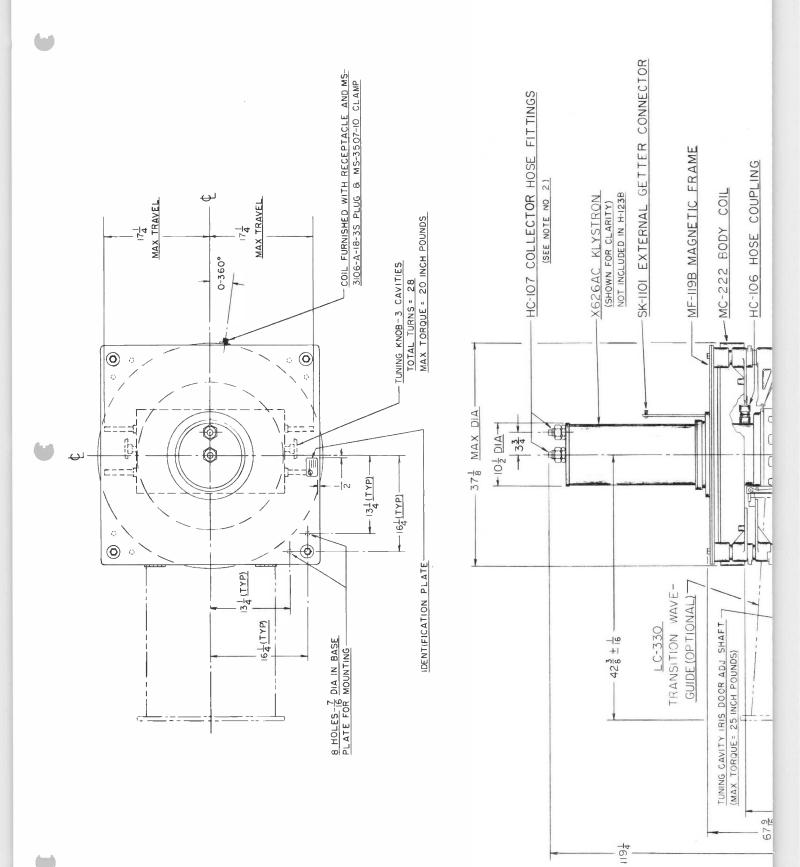
Cathode:	EMA, Unip	otentia	al					
	Minimum H	eating	Tim	e -	-	-	10	minutes
Heater:	Voltage (±5	%)	-	-	-	_	7.5	volts
	Current -	-	-	-	- 90	to	100	amperes
	Maximum S	tarting	g Cui	rrent		-	200	amperes
Getter:	Voltage -	-	-	-	-	- 1	15.6	volts
	Current -	-	-	-	—	-	36	amperes
Modulating	Anode Capac	citance	e (to	all of	her e	elec	todes	s):
	Dry –	-	-	-	-	-	45	ULL f
	In Typical	Circui	t					1
	(c	oil imn	nerse	ed)	125	to	150	μμf
Power Gain	(Narrow Band	d)					30	decibels
Peak Output	t Power –	_	-	_	-	- :	1.25	megawatts
Average Ou		-	-	-	-	-	75	kilowatts
Frequency F	Range (H-123	B Circ	uit A	Assem	bly)			
					400	to	450	megacycles

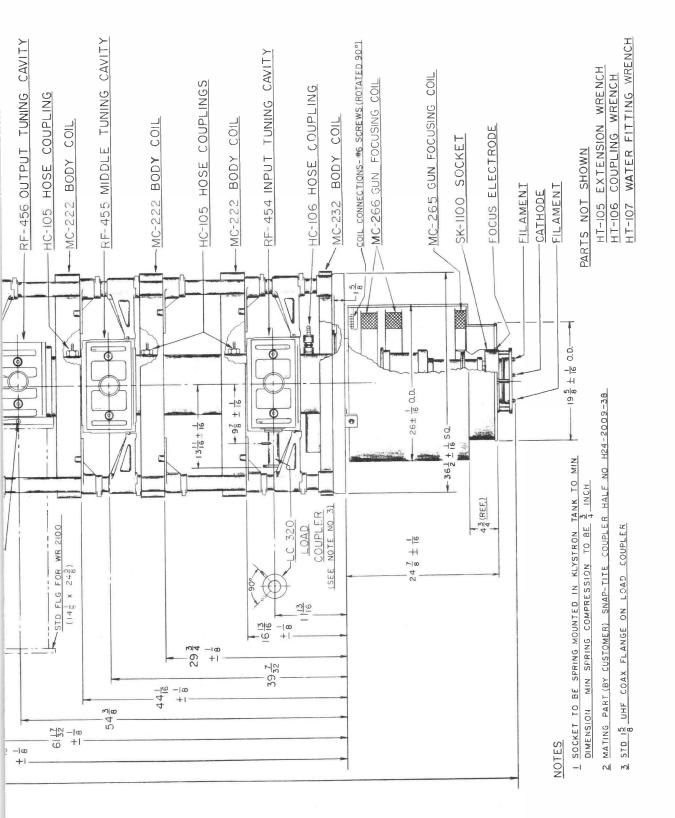
400 to 450 megacycles

MECHANICAL


Operating Position - - - -R-F Input Coupling - - -R-F Output Coupling - - -Weight (X626AC only) - - - Vertical, Cathode Down 1 5/8 inch, 50-ohm line WR-2100 Waveguide 590 pounds


(Effective 10-20-61) Copyright 1961 by Eitel-McCullough, Inc. Printed in U.S.A.


					NOZO	DAC —						
ECHANICAL con	nt.											
Wei g ht (H -12	3B Circuit	Asser	nbly)	_	_	_	_	-	_	_	178	0 pounds
Maximum Din		(626A)	C)								11	0 inchos
Length		-	-	-	_	_	-	_	_	_	11	.8 inches .8 inches
Diame Maximum Din	ter –	-	- and	– ।ਸ	- 123B	- Circi	ιit Δα	- seemb		_	T	.0 11101105
Height	r = -	- 1020A		_	-	-		-	- -	_	12	10 inches
Width		_	_	_	_	_	_		_	_		88 inches
Depth			_	_	_	-	-	-	-	_	3	38 inches
Cooling: Oil												
Ele	ctron Gun:	Imme	ersed	in (Dil				г	1	Data	Pressure Drop
Descale	impto and	Outou	+ (7-)	ritio	<u> </u>				<u>_</u>		<u>Rate</u> cfm	3 inches H ₂ O
	imate an d † Drift-Tube S										gpm	5.5 psi
Collec		Jectio	115 111	DCI	100						gpm	26 psi
001100	,										0.	-
	MAGN	ETIC	JII	, PO	WER	-SUPF	YLY R	EQUI	REMI	ENTS		
efocus Coil:	Voltage	_	_	_	_	_		_	_	_	0 to 6	
	Current	-	_	-	-	_	-	-	-	—	0 to 2	-
rst Body Coil:	Voltage	-	-	-	_	_	-	-	_	-	0 to 1	
	Current	-	- 	-		-	-	-	_	-	0 to 2	-
ich of Three Boo	dy Coils ar	id Col	llecto	or Co	511:	Curre		_	_		0 to 1 0 to 6	
						Curr	EIIL				0.000	, amperes
			M	IAXI	MUN	1 RATI	NGS					
-C BEAM VOLTA	-AGE -	_	_	_	_	-	_	_	-	_	110	KILOVOLTS
AK BEAM CURR	ENT -	_		-	-	_	-	-	-	_	36.5	AMPERES
AK MODULATII			AGE	_	-	-	-	_	_	-	66	KILOVOLTS
/ERAGE D-C BO		TΛ	-	-94	-	-	—	-	_	-	150	MILLIAMPERES
C GETTER CUR		_	_	_	_	_	_	_	_	_	50 240	KILOWATTS
OLLECTOR DISS EAL TEMPERATU		_	_	_	_	_	_	_	_	_	1 7 5	DEGREES C
AP IDMIDIATO		OLTAG			_	_	_	_	_		-500	VOLTS
-C FOCUS-ELE	CTRODE VC							PIIIS	יד אא		TFR	
C FOCUS-ELE		OPERA		I N	ARRO	M/ - RL	ND					
	TYPICAL	OPERA	ATION	I, N	ARRC)W – BA	ND,)L AN	VIFLI		
equency	TYPICAL -	_	ATION	I, N	ARRC –)W – BA	AND,	-	–	VI F L L I	425	
equency -C Beam Voltag	TYPICAL	-	ATION - -	I, N - -	ARR(_ _)W – BA – –	ND, - -	-	- - -	VIL LII	425 100	kilovolts
equency -C Beam Voltag ak Modulating	TYPICAL - re - -Anode Vol:	-	ATION - - -	I, N - - -	ARR(_ _ _ _)W – BF	AND, - - -		- - - -	VI L L I I	425 100 52	kilovolts kilovolts
equency -C Beam Voltag eak Modulating eak Beam Curres	TYPICAL – ne – – Anode Vol: nt –	-	ATION - - - -	I, N - - - -	ARR(_ _ _ _ _)W – BA – – –	ND, - - - -			VI [] [] [] []	425 100 52 32.5	kilovolts kilovolts amperes
equency -C Beam Voltag eak Modulating eak Beam Curren verage D-C Bod	TYPICAL - - -Anode Vol nt - y Current	-	ATION - - - - -	I, N - - - -	ARRC - - - - - -	- - - - - - - -	ND, - - - - -			VI [] L L I	425 100 52	kilovolts kilovolts amperes milliamperes
equency -C Beam Voltag eak Modulating eak Beam Curren verage D-C Bod eak Output Powo	TYPICAL - - - Anode Vol nt - Ly Current er -	-	ATION - - - - - - -	I, N - - - - - -	ARRC - - - - - - -) W – B Ł	- - - - - - -			VI (* 1.1.1	425 100 52 32.5 130 1.25 7 5	kilovolts kilovolts amperes milliamperes megawatts
equency -C Beam Voltag eak Modulating eak Beam Curren verage D-C Bod eak Output Powe verage Output P eak Drive Powen	TYPICAL - -Anode Vol nt - y Current er - 'ower -	-	ATION 	T, N	ARRC - - - - - - - - -)W – BY	ND, - - - - - - - -	-		VI <i>F</i> LII	425 100 52 32.5 130 1.25 75 1.25	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts
equency -C Beam Voltag eak Modulating- eak Beam Curren verage D-C Bod eak Output Powe verage Output P eak Drive Powen	TYPICAL - -Anode Volt nt – y Current er – 'ower – r –	- - - - - - -	ATION 	I, N - - - - - - - -	ARRC - - - - - - - - - - - - -)W – BF	ND, - - - - - - - - - -			VI F L.I I	425 100 52 32.5 130 1.25 7 5 1.25 30	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels
equency -C Beam Voltag eak Modulating- eak Beam Curren verage D-C Bod eak Output Power verage Output P eak Drive Power ower Gain eak Beam Power	TYPICAL - -Anode Volt nt – y Current er – Yower – r – Efficiency	- - - - - - -	ATION 	I, N - - - - - - - - - -	ARRC - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ND, - - - - - - - - - - - - -			VI F 1.11	425 100 52 32.5 130 1.25 7 5 1.25 30 38.4	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent
equency -C Beam Voltag eak Modulating eak Beam Curres verage D-C Bod eak Output Powe verage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode	TYPICAL - -Anode Vol- nt - y Current er - Cower - r - Efficiency Voltage	- - - - - - -	ATION 	I, N - - - - - - - - - - - - - - - - - - -	ARRC - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ND, - - - - - - - - - - - - - - - - - -			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts
equency -C Beam Voltag eak Modulating- eak Beam Curren verage D-C Bod eak Output Power verage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode ilse Width -	TYPICAL - -Anode Volint - y Current er - ower - - Efficiency Voltage - -	- - - - - - -	ATION	I, N - - - - - - - - - - - - - - - - - - -	ARRC - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ND, - - - - - - - - - - - - - - - - - - -			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds
requency -C Beam Voltag eak Modulating eak Beam Curres verage D-C Bod eak Output Power verage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode ilse Width - ilse Repetition	TYPICAL - -Anode Volint - y Current er - ower - - Efficiency Voltage - -	- - - - - - -	ATION	I, N 	ARRC 	- - - - - - - - - - - - - - - - - - -	ND,			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000 30	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds
requency -C Beam Voltag eak Modulating eak Beam Curres verage D-C Bod eak Output Power verage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode ilse Width - ilse Repetition uty -	TYPICAL 	- - - - - - - - - - - - - - - - - - -	ATION	I, N 	ARRC 	- - - - - - - - - - - - - - - - - - -	ND,			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds
ectron-Gun Mi	TYPICAL 	- - - - - - - - - - - - - - - - - - -	ATION	I , N	ARRC 	- - - - - - - - - - - - - - - - - - -	ND, 			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000 30 0.06	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds
requency -C Beam Voltag eak Modulating eak Beam Curres verage D-C Bod eak Output Power overage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode alse Width - alse Repetition uty - ectron-Gun Mic eam Microperve	TYPICAL - -Anode Volint - -Anode Volint - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ATION 	I , N	ARRC 	- - - - - - - - - - - - - - - - - - -	IND, 			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000 30 0.06 2.6	kilovolts kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds
requency -C Beam Voltag eak Modulating eak Beam Curres verage D-C Bod eak Output Power verage Output P eak Drive Power ower Gain eak Beam Power ocus-Electrode ilse Width - ilse Repetition uty -	TYPICAL - -Anode Volt nt - y Current er - Power - r - Efficiency Voltage Rate - croperveand ance - urrents 1	- - - - - - - - - - - - - - - - - - -	ATION	I , N	ARR (- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	ND, 			VI F 1.11	425 100 52 32.5 130 1.25 75 1.25 30 38.4 -50 2000 30 0.06 2.6	megacycles kilovolts amperes milliamperes megawatts kilowatts kilowatts decibels percent volts microseconds pulses/second


For additional information or information regarding a specific application write to Eitel-McCullough, Inc., San Carlos, California.

	MAX			61.20				8.842	10.481	16.500					18.030												4.090		8.030					1.560	9.343			.500	11.510		27.790		J			
DIMENSIONAL DATA	MIN			60.78				8.790	10.429	16.375	.600				17.875												33.970	6.165	7.910			2.375	ιΩ.	1.460	9.281	1	0.0	.250	11.490	.375	27.290	.437				
DIMEN	NOM	117.5	89.3		58.0	42.0	14.6					10.5	10.0	10.8		10.9	3.7		40°	32°	91.5°	6.750	30°	4.0							2.0					0.040							5.0		7.5	15.6
	REF	٨	0	υ	٥	ш	Ŀ	U	H	ſ	¥	ب	X	z	٩	œ	S	+	∍	>	8	×	7	ы	AA	AB	AC	AD	AE	AF	AG	AH	٩٦	AK	AL	MM		AP	AR	AS	AT	AU	٩٧	AW	AX	AΥ

KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY H-123B

H-123B KLYSIKON AMF

H-123E

SAN CARLOS, CALIFORNIA

X700

PULSE AMPLIFIER

S-BAND KLYSTRON

The Eimac X700 is a four cavity, magnetically focused, pulse amplifier klystron designed for use under severe environmental conditions. This klystron will deliver a peak output power of 20 kilowatts, at 1 kilowatt average power, at frequencies from 2400 to 2900 megacycles. Typical power gain is 40 decibels.

This klystron employs the Eimac Modulating Anode which provides an effective means of pulse modulating the output power without changing the beam voltage. The electron-gun geometry is such that the modulating anode voltage is only 50% as great as the beam voltage.

The resonant cavities of the X700 are an integral part of the klystron but are completed and tuned outside the vacuum envelope.

Waveguide output coupling for the X700 is achieved by means of an adjustable iris in the output cavity.

The associated magnetic circuitry for the X700 includes a supporting structure, focusing coils, extension tuning controls, and a waveguide transition.

CHARACTERISTICS

ELECTRICAL

Cathode: Oxide Coated, Unipotential

Minimum Heating Time -	-	_	5	minutes
Heater: Voltage ($\pm 5\%$)	-	-	7.5	volts
Current – – – – –	-	-	5.5	amperes
Maximum Starting Current	-	-	11	amperes
Typical Power Gain	-	-	40	decibels
Peak Output Power	-	-	20	kilowatts
Average Output Power	-	-	1.0	kilowatt
Frequency Range	-	- 2	2400 to 2900	megacycles

MECHANICAL

Operating Position	-	-	-	-	-	-	-	-	V		Cathode up	
RF Input Coupling	-	-	-	-	-	-	-	-		50)-ohm TNC	
RF Output Coupling	-	-	-	-	-	-	-	-		WR-284	Waveguide	N.
Weight (X700) -	-	-	_	-	_		-	-		39	pounds	
Weight (Circuit Asse	mbl	y)	_	-	-	-	-	-	_	160	pounds	
Maximum Dimension))								-	
Length – –	_	_	_	-	_	-	-	_	-	24	inches	
Diameter -	_	-		-	_	_	_	_	_	7	inches	
Maxmum Dimensions	5 (X'	700	and	i ci	rcu	it a	sse	mbl	ly)			
Length – –	_	-	-	-	_	_	_	-	_	24	inches	
Diameter -	-	-	-	_	-	-	_	_	_	17	inches	
Cooling: Forced Air											Flow J	Rate
Body	-	-	-	-	-	-	_	_	_	-	100	cfm
Collector -	-	-	-	-	-	-	-	-	-	-	100	

Pressure Drop 1.5 inches H₂O

1.5 inches H_2^2O

MAGNETIC-COIL	POWER-SUPPLY	REQUIREMENTS
MAGNE I C-COLL	FUMER-JUFFLI	REQUIREMENTS

Prefocus Coil: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	_	-	0 to 40	volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 to 2	amperes
Each of Two Body Coils:																-
Voltage	-	- '	-	-	-	-	-	-	-	-	-	-	-	-	0 to 40	volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 to 10	amperes
Collector Coil: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 to 50	volts
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 to 5	amperes

(Effective 4-25-61) © Copyright 1961-1964 by Eitel-McCullough, Inc.

MAXIMUM RATINGS

DC BEAM VOLTAGE											
PEAK BEAM CURRENT	-	-	-	-	-	-	-	-	-	-	36.5 AMPERES
PEAK MODULATING-ANODE VOLTAGE											
AVERAGE DC BODY CURRENT											
COLLECTOR DISSIPATION	-	-	-	-	-	-	-	-	-	-	2500 WATTS
DC FOCUS-ELECTRODE VOLTAGE	-	-	-	-	-	_	-	_	-	-	-500 VOLTS

TYPICAL OPERATION, NARROW-BAND, PULSE AMPLIFIER

Frequency	_	_	_	_	-	_	-	_	_	_	_	_	2500	megacycles
DC Beam Voltage				_	_	_	_	_		_	_		21	kilovolts
Peak Modulating-Anode Voltage				_			_			_	-	_	10.5	kilovolts
Peak Beam Current				_	-	_	_	-	_	_	_	_	2.77	amperes
Average DC Beam Current	_	_	_	_	_	_	_	_	_	_	_	_	0.138	ampere
Average DC Body Current		_	_	_	_	_	_	_	_	_	_	-	25	milliamperes
	_	_	-	_	_	_	-	_	_	_	_	_	21.5	kilowatts
Average Output Power	_	_	_	_	_	_	-	_	_	_	-	_	1.07	kilowatts
Peak Drive Power					_	_	_	-	_	_	_	_	2	watts
Power Gain		_	-	_	-	_	_	_	_	_	_	_	40.2	decibels
Peak Beam Power Efficiency -	-	_	-	-	_	_	-	_	-	-	_	-	37	percent
Focus-Electrode Voltage	-		-	-	~	-	-	-	-	-	-	-	-100	volts
Pulse Width	-	_	-	_	-	-	-	-	-	_	_	-	50	microseconds
Pulse Repetition Rate		-	-	-	-	-	-	-	-	_	-	-	1000	pulses/second
Duty	_	_	_	_	_	_	_	_	_	_	_	_	0.05	
Magnetic Coil Currents:														
Prefocus Coil	-	-	-	-	-	-	-	-	-	-	-	-	1.2	amperes
First Body Coil	-	-	-	-	_	-	-	_	_	-	_	-	7.0	amperes
Second Body Coil		-	-	-	-	-	-	-	-	-	_	-	7.0	amperes
Collector Coil	-	-	-	-	-	-	-	-	-	-	-	-	3.2	amperes
														1

For additional information or information regarding a specific application write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.

EITEL-MCCULLOUGH, INC.

PULSE AMPLIFIER

X78N

L-BAND KLYSTRON

The Eimac X780 is a pulse-amplifier klystron designed to operate at frequencies from 1235-1365 megacycles. This klystron will deliver a peak output power of 2.5 megawatts at 75 kilowatts average power, with a minimum saturated gain of 35 decibels. The small signal gain is in excess of 50 decibels.

Four integral cavities are used in the X780. The RF input and output coupling circuits are of the fixed broad-band type, optimized at maximum power. The output window is a thick beryllium oxide disc which will with-stand severe abuse. The electron gun utilizes a confined flow configuration which results in a stable beam and non-critical focusing adjustments.

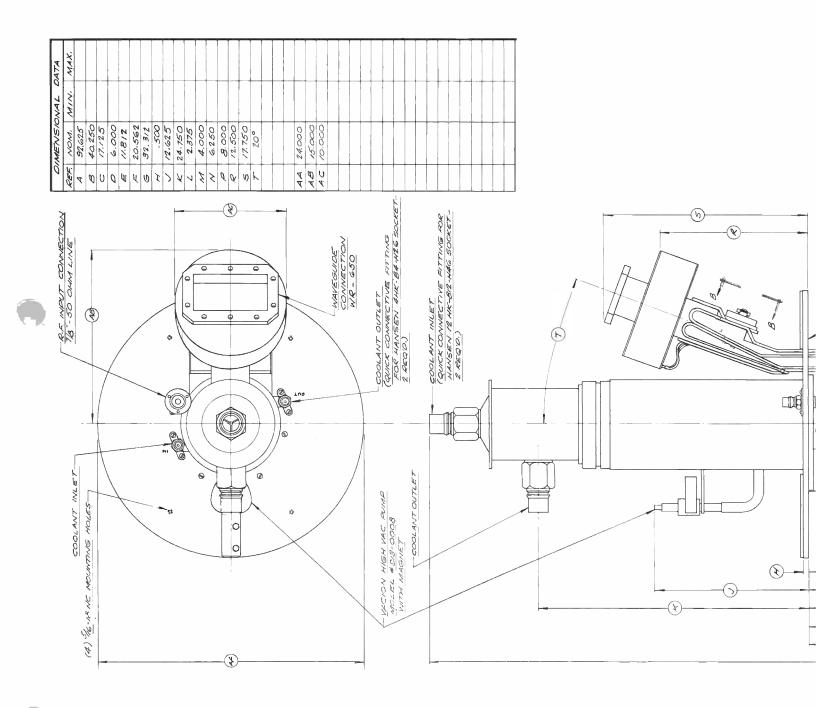
This klystron employs the Eimac Modulating Anode which provides a convenient means for pulse modulating the output power without changing the beam voltage. Also incorporated are two built-in vacuum pumps. One consists of an active titanium getter. The other is an ion pump which maintains a low vacuum pressure and provides for continuous monitoring of this pressure.

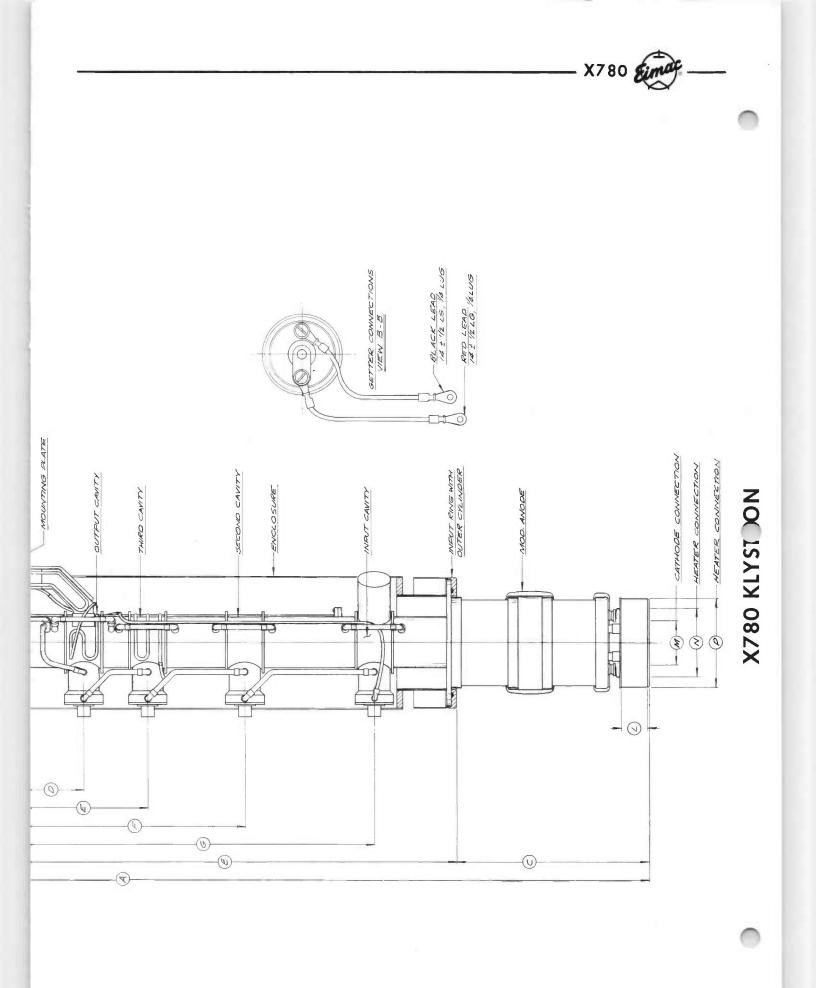
A focusing electromagnet and klystron supporting structure, Catalog Number H-145, has been designed for use with the X780.

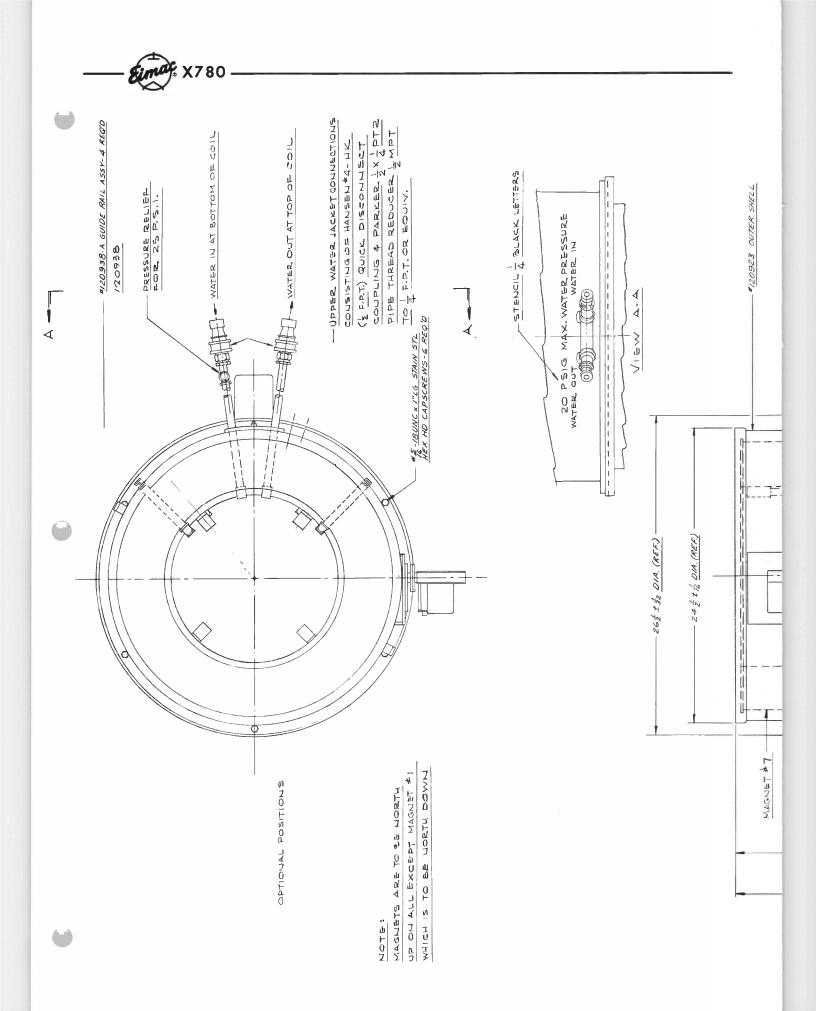
CHARACTERISTICS

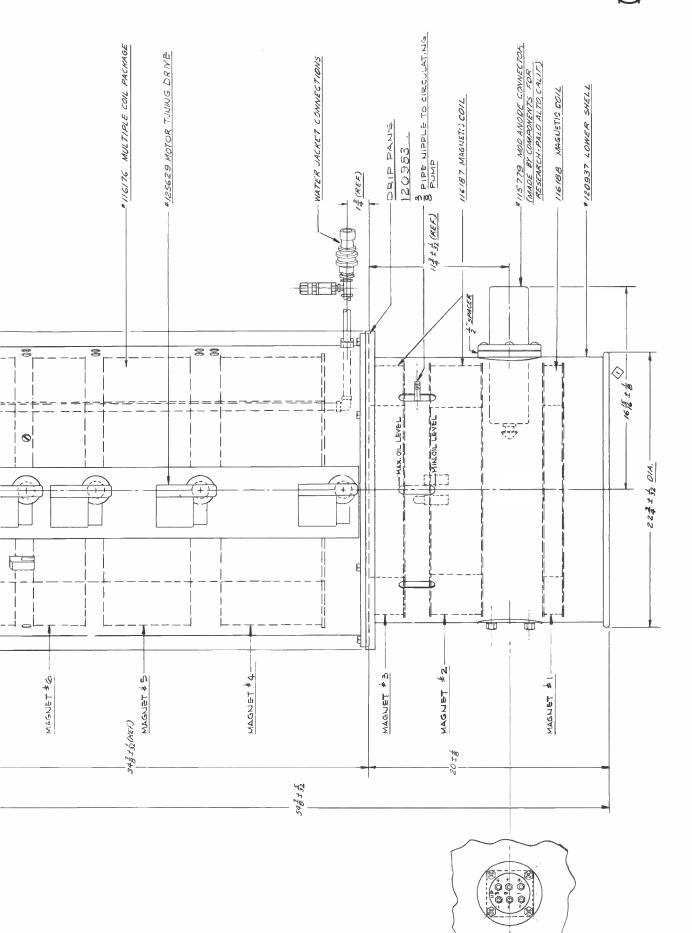
ELECTRICAL

Cathode: EMA, Unipotential										
Minimum Heating Time -	-	-	-	-	-	-	-	-	10	minutes
Heater: Voltage ($\pm 5\%$)	-	-	-	-	-	-	-	-	7	volts
Current	-	-	-	-	-	-	-	+	90	amperes
Maximum Starting Current -	-	-	-	-	-	-	-	-	180	amperes
Getter: Voltage (AC nominal)	-	-	-	-	-	-	-	-	4	volts
Current	-	-	-	-	-	-	-	-	20	amperes
Power Gain (minimum narrow band)	-	-	-	-	-	-	-	-	35	decibels
Peak Power Output	-	-	-	-	-	-	-	-	2.5	megawatts
Average Power Output	-	-	-	-	-	-	-	-	75	kilowatts
Frequency Range	-	-	-	-	-	-	-	12 3	5-1365	megacycles
Phase: Beam Voltage Sensitivity -	-	-	-	-	-	-	-	-	0.006	6 degree/volt
Ion Pump:										
Voltage DC	-	-	-	-	-	-	-	-	4000	volts
Current (0.1 megohm limiting res	sistor) -	-	-	-	-	-	-	10	milliamperes
Beam Microperveance	-	-	~	-	-	-	-	-	1.5	
Electron Gun Microperveance	-	-	-	-	-	-	-	-	2.5	
Input VSWR (maximum)	-	-	-	-	-	-	-	-	1.5:1	


Printed in U.S.A.




MECHANICAL


Operating Position	-	-	-	-	-	- V	ertic	al, Catl	node End Down
RF Input Coupling	-	-	EIA	sta	ndar	d RS 22	25, 7	⁄s" rigio	l coaxial fitting
RF Output Coupling	-	-	-	-	-		-	- F	RG69/U Flange
Approximate Weight (tube only)	-	-	-	-	-		-	400	pounds
Approximate Weight (H-145 Magnetic Circ	uit)	-	-	-	-		-	1500	pounds
Cooling: Oil and Water									
Cathode — Immersed in Oil								v Rate	Pressure Drop
Collector	-	-	-	-	-			gpm	40 psi
Klystron Body	-	-	-	-	-			gpm	25 psi
Electromagnet		-	-	-	-		2	gpm	30 psi
Fittings: Collector — Hansen B12 HK Body — Hansen B4-K26									
Electromagnet — Hansen B4-K26	1-H26	6							
Maximum Overall Dimensions (Klystron &			lagne	et):					
Length			-		-		-	71	inches
Diameter	-	-	-	-	-		-	24	inches
Electromagnet Power Supply Requirements	-	-	-	-	-		-	2.5	kilowatts
MAXIMUM RATINGS									
DC BEAM VOLTAGE	_	-	_	_	-		-	120	kilovolts
PEAK BEAM CURRENT	-	_	_	-	_		_	62.5	amperes
PEAK MODULATING ANODE VOLTAGE	-	_	_	_	_		-	88	kilovolts
AVERAGE DC BODY CURRENT	_	_	-	_	_		_	150	milliamperes
AC GETTER CURRENT	-	_	_	_	_		_	45	amperes
COLLECTOR DISSIPATION	_	_	_	_	_		_	250	kilowatts
SEAL TEMPERATURES	-	_	_	_	_		_	175	degrees C
LOAD VSWR		_				_		1.5:1	408-000 0
	-	-	-	-	-			1.0.1	
TYPICAL OPERATION, NARROW-BAND PU	LSE	AMP	LIFIER	र					
Frequency	-	_	_	_	_	1295		1295	megacycles
DC Beam Voltage	_	_	_	_	_	100		115	kilovolts
Peak Modulating-Anode Voltage	_	_	_	_	_	73.5		83.5	kilovolts
Peak Beam Current	_	_	_	_	_	41.8		58.6	amperes
Average DC Body Current	_	-	_			90		100	milliamperes
Peak Output Power	-	-	-	-	-	1.485	c	2.515	megawatts
Average Output Power	-	-	-	-	-	1.465	1	75.5	kilowatts
Peak Drive Power	-	-	-	-	-	0.475	().790	kilowatts
Power Gain	-	-	-	-	-	0.475	(35	decibels
	-	-	-	-	-			36.8	
Peak Beam Power Efficiency	-	-	-	-	-	35.6			percent
Pulse Width	-	-	-	-	-	2		1	millisecond
Pulse Repetition Rate	-	-	-	-	-	30		30	pulses/second
Duty	-	-	-	-	-	0.06		0.03	percent

For additional information regarding a specific application, write to Eitel-McCullough, Inc., San Carlos, California.

H-145 KLYSTRON AMPLIFIER CIRCUIT ASSEMBLY

- X780 Einar ----

ELECTRICAL

EITEL-MCCULLOUGH, INC.

Tentative Data X841D

PULSE AMPLIFIER UHF KLYSTRON

The EIMAC X841D is a pulse amplifier klystron designed for broadband high average power pulse service at frequencies from 400-450 megacycles. This klystron will have a 5%, fixed-tuned band-width anywhere within this frequency range and will deliver a minimum peak output power of 2.5 megawatts, at 150 kilowatts average power, with a minimum power gain of 33 decibels.

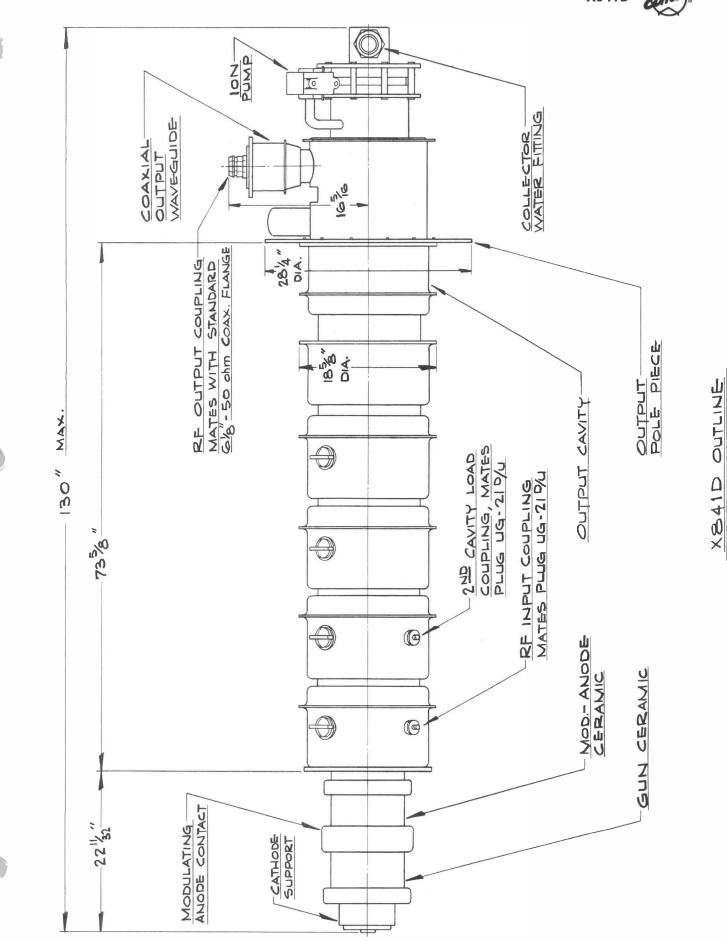
Six integral cavities are used in the klystron. The output circuit mates to a $6\frac{1}{8}$ inch transmission line.

This klystron employs the EIMAC Modulating Anode which provides a convenient means for pulse modulating the output power without changing the beam voltage. The electron-gun geometry is such that a typical switching voltage of 75 kilovolts is required for the modulating anode to provide the specified beam current, at the rated beam voltage of 115 kilovolts. The equivalent modulating anode impedance is approximately one megohm.

The tube incorporates a built-in ion pump and gauge which maintains a low gas pressure, and also provides a means for continuously monitoring this pressure.

Catalog Number H-150 has been assigned to the magnetic circuitry for this tube.

CHARACTERISTICS


Cathode: Unipotential, oxide												
Minimum Heating T	ıme	-	-	-	-	-	-	-		-		15 minutes
Heater: Voltage (maximum)	-	÷.,	-	-	-	-	-	-	-	-	-	30 volts
Current (maximum)	-		-	-	-	-	-	-		-	-	35 amperes
Power Gain (minimum) -		-	-	-	-	-	-	-			-	33 decibels
Peak Power Output		-	-	-	-	-	-	-	-		-	2.5 megawatts
Average Power Output	-	-1	-	-	-	-	-	-	-		-	150 kilowatts
Phase shift as a function of be	am y	volta	ge	-	-	-	-	-		-	-	0.006 degree/volt
Ion Pump: Voltage	-	-	-	-	-	-	-		-	_	3,00	0-4,000 volts dc
Current (0.1 megoh	m li	imiti	ng r	esiste	or)	-	-	-	-	-	-	10 milliamperes
Beam Microperveance	-	-	-	-	-	-	\mathbf{T}	-	-	-		1.6
Electron Gun Microperveance	-	-	-	-	-	-	-	-	-	-	-	3.0

MECHANICAL

ANICAL													
Operating Position	-	-	-	-		-	-	-	-	-	-	Ve	rtical, Cathode End Down
Input Coupling (rf)	-	-	-	-	-	-	-	-	-	-	-	-	UG 22/U, Type N
Output Coupling (rf)	-	-	-	-	-	-	-	-	-	-	-	-	rtical, Cathode End Down UG 22/U, Type N 6 ¹ ⁄8" Coax
Approximate Weight	(tube	e onl	ly)	-	-	-	-	-	-	-	-	-	1,000 Pounds
Approximate Weight	(H-1	50 I	Magi	netic	Circ	cuit)		-	_	-	-	-	1,200 Pounds
Cooling: Oil and Wat													
												F_{i}	low Rate Pressure Drop
Cathode — Imm Collector	-	-	-	-	-	-	-	-	-	-	-	- 1	20 gpm 65 psi
Klystron Body	-	-	-	-	-	-	-	-	-	-	-	-	10 gpm 65 psi
Electromagnet	-	-	-	-	-	-	-	-	-	-	-	-	5 gpm 65 psi
Maximum Overall Dir	mens	sions	6 (K)	lystr	on a	nd E	Elect	roma	igne	et):			
Length Diameter -	-	-	-	-	-	-	-	-	-	-	-	-	130 inches
Diameter -	-	-	-	-	-	-	-	-	-		-	-	26 inches
Greatest Extendi	ng R	adiu	IS	-	-	-	-	-	-	-	-	-	16-5/16 inches
ELECTROMAGNET POWER SUPPLY REQUIREMENTS													
Each of 3 supplies -													75 volts at 10 amperes
Each of 2 supplies -		_	-	-	_	-	-	_	_	_	-	_	150 volts at 10 amperes
* *													-
Each of 3 supplies -	-	-	-	-	-	-	-	-	-	-	-	-	300 volts at 10 amperes
					MAX	кімі	IM I	RATI	NGS				
BEAM VOLTAGE (do	~)	_	_	_	-	-	_	_		_	_	-	115 Kilovolts
PEAK BEAM CURRE	'NT	_	_	-	_	-	_	_	_	-	_	-	66 Amperes
PEAK MODULATING													78 Kilovolts
AVERAGE MODULAT													
AVERAGE MODULA.			NOD.		JRR.	CINI	-	-	-	-	-	-	20 Milliamperes
AVERAGE BODY CU	KKE	IN I	-	-	-	-	-	-	-	-	-	-	200 Milliamperes
PULSE WIDTH -													2000 Microseconds
COLLECTOR DISSIP													450 Kilowatts
DUTY CYCLE -													.06
SEAL TEMPERATUR	ES	-	-	-	-	-	-	-	-	-	-	-	150 Degrees C
LOAD VSWR -	-	-	-	-	-	-	-	-	-	-	-		1.5:1
INLET WATER PRES	SSUF	łЕ	-	-	-	-	-	-	-	-	-	-	100 PSIG
TYPICAL OPERATION, BROAD-BAND PULSE AMPLIFIER													
Center Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	425 Megacycles
Beam Voltage	-	-	-	-			-	-	-	-	-	-	112 Kilovolts dc
Peak Modulating-Anor				-	-	-	-	-	-	-	-	-	74 Kilovolts
Peak Beam Current	-	-	-	-	-	-	-	-	-	-	-	-	60 Amperes
Average Body Current	; -	-	_	-	-	-	-	_	_	-	_	_	60 Milliamperes dc
	-	-	-	-	_	-	_	_	_	_	-	_	2.5 Megawatts
Average Output Power		_	_	-	_	_	-	-	_	_	_	_	150 Kilowatts
Peak Drive Power -	_	_	-	_	-	_	_	_	_		_	-	500 Watts
Power Gain	_						_						37 Decibels
Peak Beam Power Effi		-	-	-	-	-	-	-	-	-	-	-	40 Percent
	CIEIN	Cy	-	-	-	-	-	-	-	-	-	-	
Pulse Width	-	-	-	-	-	-	-	-	-	-	-	-	2000 Microseconds
Pulse Repetition Rate	-	-	-	-	-	-	-	-	-	-	-	-	30 Pulses per second
Duty	-	-	-	-	-	-	-	-	-	-	-	-	.06
	-	-	-	-	-	-	-	-	-	-	-	-	25 Megacycles
Load VSWR	-	-	-	-	-	-	-	-	-	-	-	-	1.2:1

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.

Sima X841D

.Ca , I

The X850 is the most recent product of the Emac High Power Microwave Tube Laboratory. It is the first of a strices of Eimac X-band power klystrons which will ultimately include tubes at all commonly used power levels.

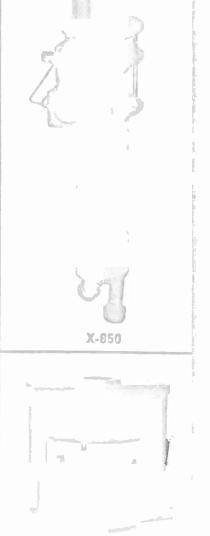
Four integral cavities are used in the X850. Each tube is pretuned at the laboratory to the frequency chosen by the user, within the 7.125 to 8.5 kMc band.

The $\times 850$ is intended especially for u e in space age applications including missile and satellite tracking systems, radar astronomy, and space communications.

The electron gun of the X850 utilizes a convergent confined flow field which results in non-critical focusing adjustments and produces a stable, quiet beam. This electron gun is rugged in structure and completely enclosed in a metal shield with integral, shielded, connecting leads, to reduce the high-voltage hazard to a minimum.

Fixed input and output couplings are used in the X850. The output window is a thick beryllium oxide disc. Unusual stability for this power and frequency, is achieved through the use of improved body cooling.

The superior bandwidth of this klystron, 35 Mc minimum, and low beam voltage are due to high perveance design. Exceptionally high convergence of the electron gun, 50:1, means very low cathode emission density resulting in long life expectancy.


A focusing electromagnet and klystron supporting structure, Catalog Number H-160, has been designed for use with the X850. Only one power supply is required for the electromagnet.

CHARACTERISTICS

"LECTRICAL

Heater:	Voltage	-	-	-	10
	Current	-	-	-	3.0
	Maximum	n Star	ling (Curren	t 60
Cathode:	Impregna	ited, l	Inipo	tential	
	Heating	Time	-	-	5
Power Ga	in -		-	-	43
Output Po	wer -		-	-	20
Frequency	Range	-0	-	- 7	.125 to 8.5

H-169

(Ef. tive 3.5.62) Copyright 1962 by Eitel McCullough, Inc.

- Simos X850 .

MECHANICAL (continued)

	erating Po		n	-	-	м	0×	-		10	-0		_	Any
F RF	Coupling:													
	Input -		-	-	0+	-	-	-	-	-	-	-	~	WR-112 Waveguide
	Output		-	-	-	-	-	-		-	-		-	WR-112 Waveguide
Dim	ensions:													
	Klystron			-	05	-	~	-	~	14	-	6:	x7x25	inches
	H-160 E			net:										
		gth -		-	hit	-	-	~	2 a		00		17	inches
		lth -			-	-		-	0.5	-	-		18	inches
		th -			-	-	-		0.1		-		12	inches
Wei	ght.													
	Klystron				-	-		-	-		-		20	lbs
	H-160 E					-	-	-	-	-	-		200	lbs
Coo	ling: Wat	fer ar	nd Fo	rced .	Air									10.2
												Flow	Rate	Pressure Drop
	Cathodo					-			-	_	-		cfm	free
	Klystron	Body	y and	Elec	troma	ignet		~	-	-	~		gpm	100 psi
	Klystron	Coll	ector		-	-	-		-	-	-	8.5		45 psi
													91	-10 hai
			EL.	ECTR	OMA	GNE	T PO	WER	-SUPI	PLY I	REOI	UPEN	IENTS	
S.J. 11											en de c	2015 by 5V	ISCHI D	
Voltage		-	~	**	-	-	-				-	-	50	volts
Current		-12	-	-	-	~	-		-	-	-	-	25	amperes
														diffores
						M	AXIN	IUM	RATI	NGS				
DC BEAM		GE	~	_	-	_							0.0	
DC DEAN		NT		_			_				-		22	KILOVOLTS
DC BODY			vith R	E dei	vol		-	-		-	-		3.5	AMPERES
COLLECT	OR DISS	PAT	ION		101	-	-			-	-	-	80	MILLIAMPERES
INLET W				_			-	-		-	-	-12	70	KILOWATTS
				-		-	-	40		-	-	-	120	PSI
						TY		L OF	ED A1	101				
							11974		ERMI	IUN				
Toquency		-		-	-	-	~				-	-	7.6	kilomegacycles
Output Po		-	-		-	-	_				_		22	kilowatts
Di ing Po	ower			-74	-		-	~					1	
Power Ga	lin -	-	-	~	-						_			watt
DC Beam	Voltage			_	_	_	_	_			-	-	43	decibels
DC Beam			-	_	-	_	_				**	4	20	kilovolts
Beam Pow				-		_		ha	-		-	-	3.1	ampores
	Current				_	-	80				10		35.5	percent
3 db ban						-					~	a.	40	milliamperes
							_	-	-		in .		35	megacycles

The Emac EM778 Traveling Wave Tube in recommended as a driver for this klystron.

For additional information or information regarding a specific application, write to Eitel-McCullough, Inc. Sun Carlos, Culifornia.

EIMAC

A Division of Varian Associates

PULSE AMPLIFIER

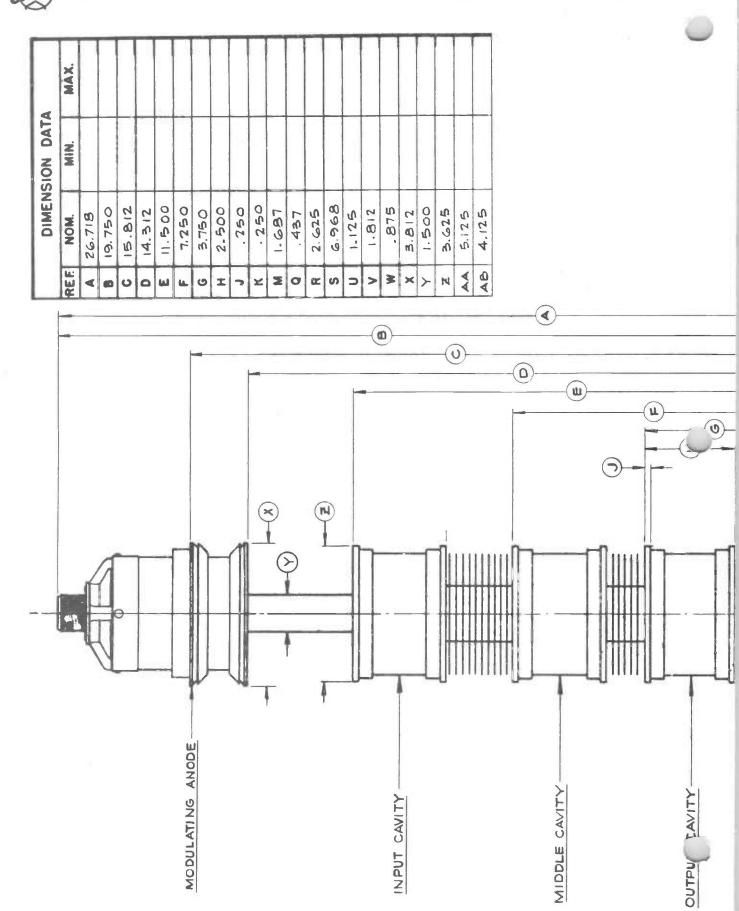
X3002

The Eimac X3002 is a three-cavity, magnetically focused, pulse amplifier klystron. Designed for use at frequencies between 1235 and 1365 megacycles, this klystron will deliver a minimum peak output power of 4 kilowatts with a power gain of at least 23 decibels during long-pulse service.

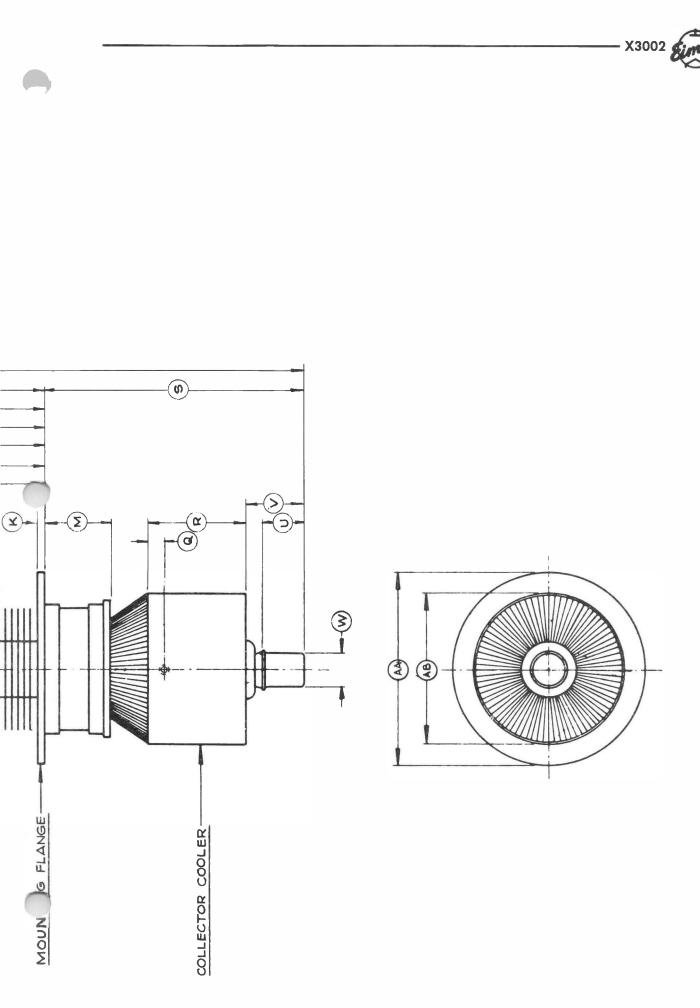
Tuning for the X3002 is accomplished by means of external resonant cavities which enclose the cylindrical ceramic windows of the klystron. This design permits an unlimited number of tuning cycles without risk of damage to the vacuum seals.

Eimac Klystron Amplifier Circuit Assembly H-147 is provided for use with the X3002 to cover the frequency range of 1235 to 1365 megacycles. This assembly includes a klystron supporting structure, focusing coils, external cavities, and adjustable load couplers for the input and output cavities.

CHARACTERISTICS


ELECTRICAL

Cathode	: Unipotential Minimum Hea	ating T	'ime	-	-	-	-	-	5	minutes
Heater:	Voltage $(\pm 5\%)$	6)	-	-	-	-	-	-	7.5	volts
	Current	· -	-	-	-	-	-	-		amperes
Minimur	n Power Gain -	· -	-	-	-	-	-	-	23	decibels
Minimur	n Output Power	r -	-	-	-	-	-	-	4	kilowatts
Frequence	y Range	-	-	-	-	12	35 t	o 1	365	megacycles
Phase Sh	ift as a Functio	on of B	eam	Volt	age	-	-	0.0	005	degrees/volt


MECHANICAL

Operating Position	ı	-	-	-	-	-	-	-	-	-	-	-	-	Ver	tical	l, ca	athode end up
Coupling (rf): Inj	put	-	-	-	-	-	-	-	-	-	-	-	-	Type	"N'	", C	oaxial Fitting
Ou	tput		-	-	-	-	-	-	-	-	-	-	-				0-ohm coaxial
Cooling: (20 degr	ees C	' inle	et air	at s	ea le	vel)							Flou	Rat	е	1	Pressure Drop
Body	-	-	-	-	-	- `	-	-	-	-	-	-	100	cfm			1.5" H ₂ O Î
Collector	-	-	-	-	-	-	-	-	-	-	-	-	150	cfm			1.6" H ₂ O
X3002 Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	27 inches
X3002 Diameter	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	5.3 inches
X3002 Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	23 pounds
H-147 Height	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15 inches
H-147 Diameter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18 inches
H-147 Weight	-	_	-	-	-	-	-	-	-	_	-	_	-	-	_	-	155 pounds

- Simar X3002

X3002 OUTLINE DRAWING

FOCUS COIL POWER SUPPLY REQUIREMENTS

Body Coil	-	-	-	-	-	-	-	-	-	Variable to 200 volts, 3 amperes maximum
Prefocus Coil -	-	-	-	-	-	-	-	-	-	Variable to 25 volts, 1.5 amperes maximum

TYPICAL OPERATION Pulse Amplifier

Frequency		-	-	-	-	-	-	-	-	1300	1300	megacycles
Peak Output Power		-	-	-	-	-	-	-	-	5	3.2	kilowatts
Power Gain	÷ -	-	-	-	-	-	-	-	-	23	2 3	decibels
Beam Voltage		-	-	-	-	-	-	-	-	13	10	kilovolts dc
Peak Beam Current		-	-	-	-	-	-	-	-	1.12	0.91	amperes
Peak Modulating Anod	le Volta	age	-	-	-	-	-	-	-	5.0	4.0	kilovolts
Focus Electrode Voltag	ge -	-	-	-	-	-	-	-	-	50	—50	volts
Pulse Length		-	-	-	-	-	-	-	-	2 000	2000	microseconds
Duty		-	-	-	-	-	-	-	-	3	3	percent
Efficiency		-	-	-	-	-	-	-	-	35	40	percent

For additional information or information regarding a specific application, write to Eimac Division, Varian Associates, 301 Industrial Way, San Carlos, California Eimac.

Tentative Data

X3034 POWER AMPLIFIER S-BAND (1.1 KW CW) TWT

The Eimac X3034 is a power-amplifier TWT intended for use in broadband communications systems. It is designed to operate at frequencies from 1.7 to 2.1 gigacycles with a minimum output power of 1.1 kilowatts. The electron gun of this TWT has a confined flow configuration which makes focusing adjustments unnecessary and produces a stable beam. Excellent isolation between input and output is assured through the use of terminated severed circuits. This TWT incorporates the Eimac Modulating Anode which provides a versatile means for controlling the beam.

Eimac electromagnet assembly Type Number H-199 has been designed for use with the X3034.

CHARACTERISTICS

EIMAC A Division of Varian Associates

JAN DARLOS CALIFORNIA

ELECTRICAL

Cathode: Impregnated, Ur	nipot	enti	al											
Heating Time	-	-	-											5 Min
Heater: Voltage $(\pm 5\%)$	-	-	-		-	-	-	-	-	-	-	-	-	5.6 Vac or Vdc
Current (Nominal											-	-	-	3.8 Aac or Adc
Power Gain (Saturated)	-	U.			2	-	-	-	-	-	1.	12	-	20 db
Power Gain (Small Signal) - (-	-	-		-	-	-	-	-	-	-	- 1	25 db
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	-	1.1 kW
Frequency Range	-	-	-	-	-	-	-	-	-	-	-	-	۰.	1.7-2.1 Gc
Maximum Power Variation	n in a	any	50 N	Ic ba	and	(Not	e 1)	-	$(-1)^{-1}$	-	-	-	-	1 db

MECHANICAL

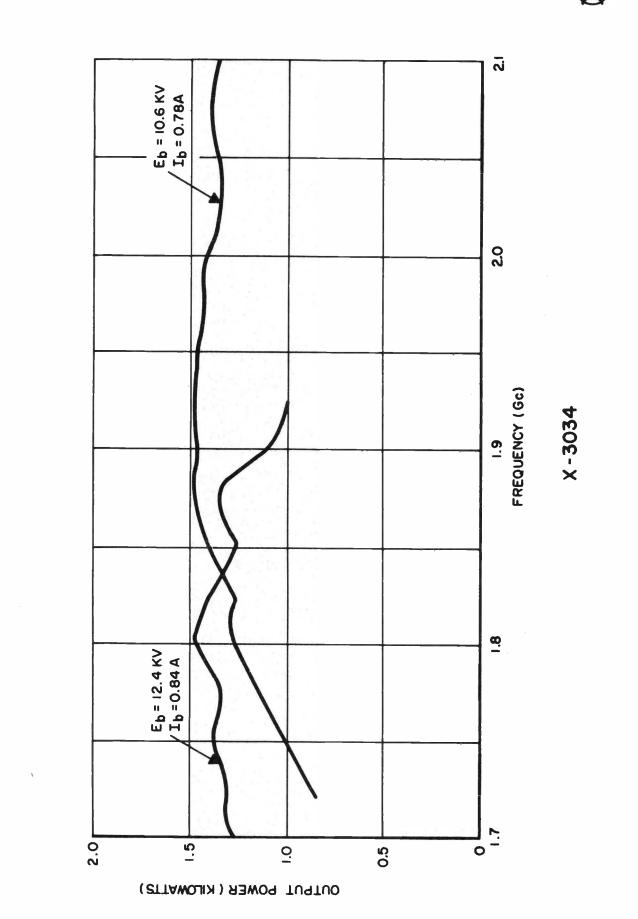
Maximum Dimensions	s:														
Length	-	-	-	ц.,	-	-	-	Ξ.	-	-	-		-	345/8	inches
Width	-	-	-	-	-	_	- 1	÷.,	-	-	-		-	$7\frac{1}{8}$	inches
Depth	-	-	Ш.	-	-		-	-	-	-	-		-	$7\frac{1}{2}$	inches
Weight (Including Ele	ectro	omag	gnet)	-	-	-	-	-	-	-			-	160	pounds
Input Coupling (rf)	-	-	-	-	-	-	-	-	-	-	-	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Т	ype N	Coaxial
Output Coupling (rf)	-		5	-	-	-	-	-	-	-	-	∛s" coaxi	al, El	IA STD	RS-225
Mounting Position -	-	-	-	-	-	-	-	-	-	-	-		-	-	- Any
Cooling: Forced Air an	nd V	Wate:	r									Flow Ro	te	Pressu	re Drop
Cathode -	-	-	-	-	-	-	-	-	-	-	-	20 cfr	1	fr	ee
Body -	-	-	-	-	-	-	-	-		-	-	1 gp	n		psi
Collector -	-	-	-	-	-	-	-	-	-	-	-	5 gp	n		psi
Electromagn	et	-	-	-	-	-	-	-	-	-	-	$1.5~\mathrm{gp}$	n	40	psi

ELECTROMAGNET POWER SUPPLY REQUIREMENTS

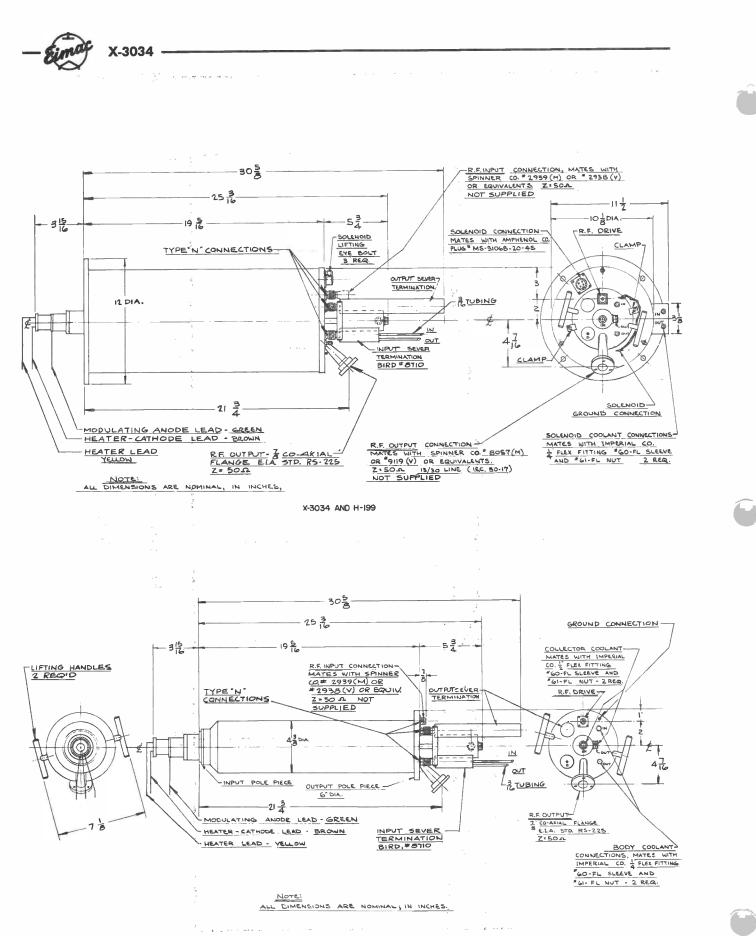
Upper Coil	-	-	-	-	-	-	-	-	-	-	-	-	-	Adjustable to 50 Vdc at 10 Adc
Lower Coil	-	-	-	-	-	-	-	-	-	-	-	-	-	Adjustable to 35 Vdc at 7 Adc

MAXIMUM RATINGS

BEAM VOLTAGE	-	-	-	-	-	-	-	-	-	-	-	-	13 kVdc
BEAM CURRENT	-	-	-	-	-	-	-	-	-	-	-	-	1 Adc
BEAM INPUT POWER	-	-	-	-	-	-	-	-	-	-	-	-	11 kW
BODY CURRENT	-	-	-	-	-	-	-	-	-	-	-	-	25 mAdc
COLLECTOR DISSIPATION -	-	-	-	-	-	-	-	-	-	-	-	-	11 kW
LOAD VSWR	-	-	-	-	-	-	-	-	-	-	-	-	1.2:1
WATER INLET TEMPERATURE	-	-	-	-	-	-	-	-	-	-	-	-	50 °C


TYPICAL OPERATION

Frequency -	-	-	-	-	-	-	-	-	1.7	1.8	1.9	2.0	2.1	Gc
Beam Voltage -	-	-	-	-	-	-	-	-	12.4	12.4	10. 6	10.6	10.6	kVdc
Beam Current -	-	-	-	-	-	-	-	-	0.84	0.84	0.78	0.78	0.78	Adc
Mod Anode Volta	ıge (with	res	pect	to ca	athoo	le)	-	10.0	10.0	9.7	9.7	9.7	kVdc
Body Current -	-	-	-	-	-	-	-	-	13	13	17	17	17	mAdc
Drive Power -	-	-	-	-	-	-	-	-	10	10	10	10	10	W
Output Power -	-	-	-	-	-	-	-	-	1.25	1.47	1.47	1.43	1.36	kW
Gain	-	-	-	-	-	-	-	-	2 0.9	21.6	21.6	21.5	21.3	db
Electromagnet C	urre	nts												
Upper Coil	-	-	-	-	-	-	-	-	9.5	9.5	9.5	9.5	9.5	Adc
Lower Coil	-	-	-	-	-	-	-	-	6	6	6	6	6	Adc


NOTE:

(1) Beam Voltage may be optimized for each 50 Mc segment.

- (2) In the event of rapid change in VSWR such as caused by a transmission line arc, the rf drive must be removed in 20 milliseconds. It is recommended that an isolator be inserted in the output line between a re-active filter and the TWT.
- (3) The nominal input and output impedances are designed to work into 50 ohm transmission lines.

X-3034 Simo

X-3034 TWT

ELECTRICAL

EIMAC

A Division of Varian Associates

Tentative Data

X3054

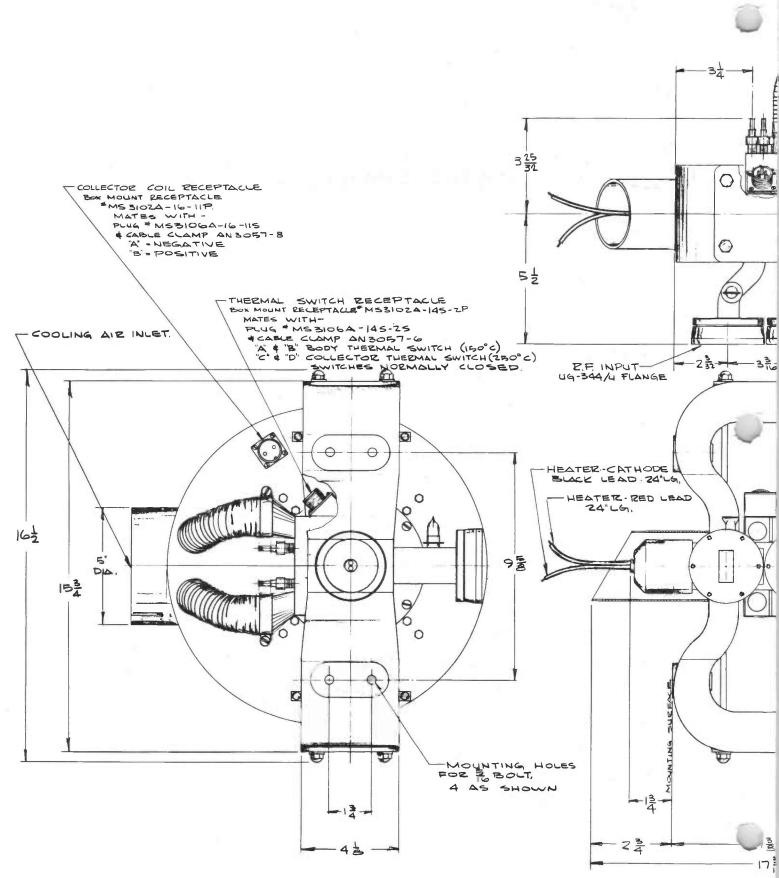
2.5 KW POWER AMPLIFIER C-BAND KLYSTRON

The Eimac X3054 is a five-cavity, air-cooled power amplifier klystron tunable over the frequency range of 5.925 to 6.425 gigacycles. It will deliver a minimum CW output power of 2.5 kilowatts with a minimum power gain of 50 decibels and a minimum 1 db bandwidth of 20 megacycles.

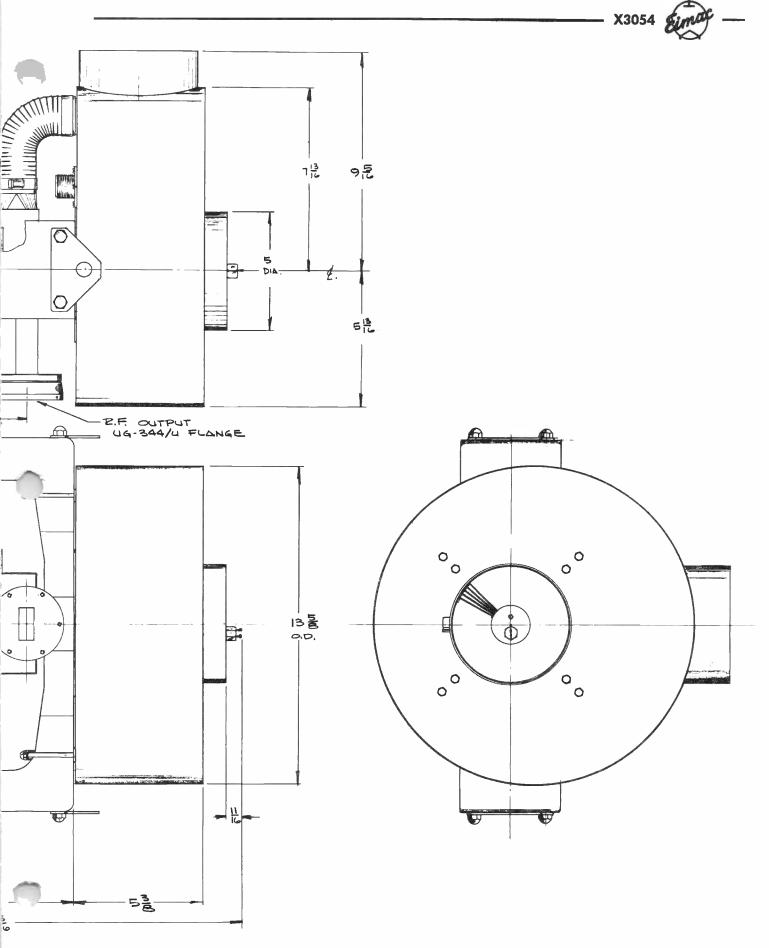
The very high gain and efficiency of this klystron make it particularly attractive for transportable equipment.

A common air inlet is used for collector and body cooling. Improved collector cooling is achieved through use of an integral plenum chamber which encloses the collector.

This klystron is focused with a permanent magnet and an auxiliary low voltage collector coil.


Both input and output rf couplings of the X3054 are fixed. The only adjustments required are the tuning of the cavities.

CHARACTERISTICS


Cathode: Impregnated, U	nipo	tenti	al												
Heating Time	-	-	-	-	-	-	-	-	-	-	-	-	-	5	minutes
Heater:															
Voltage ($\pm 5\%$) -	-	-	-	-	-	-	-	-	-	-	-	-	-	5.75	volts
Current (nominal)	-	-	-	-	-	-	-	-	-	-	-	-	-	3.7	amperes
Power Gain	-	-	-	-	-	-	-	-	-	-	-	-	-	50	decibels
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	kilowatts
Frequency Range	-	-	-	-	-	-	-	-	-	-	-	5.9	925-	6.4 25	gigacycles

X3054 K

LYSTRON

MECHANICAL

Maxi	mum Dir	nens	sions																
]	Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	171⁄2	inches
1	Width	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	161⁄2	inches
1	Depth	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$15\frac{1}{2}$	inches
Weigl	ht -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	120	pounds
Input	Couplin	g (r	f)	-	-	-	-	-	-	-	-	-	-	-	-	-	UG	-344/U	flange
Outpu	ut Coupli	ng ((rf)	-	-	-	-	-	-	-	-	-	-	-	-	-	UG	-344/U	flange
Maxii	mum Tu	ner s	Start	Tor	que	-	-	-	-	-	-qua	-	-	-	-	-	-	30	in-oz
Maxii	mum Tui	ner S	Stop	Tore	que	-	-	-	-	-	-	-	-	-	-	-	-	100	in-oz
Moun	ting Posi	tion	-	-	-	-	-	-	-	-	-	-	-	-	-	**	-		any
Coolin	ng: Force	ed A	ir (2	5°C	at s	ea le	evel))											
I	Body and	Co	llecto	or	-	-	-	-	-	-	-	-	-	-		<i>low I</i> 175 c		Pressure 1.2 in.	
Collec	ctor Coil	Pow	er Su	pply	y Red	quire	men	its	-	-	-	-	-	-	-	-	40 v	olts at 9	amperes

MAXIMUM RATINGS

BEAM VOLTAGE (dc)	-		-	-	-	-	-	-	-	-	-	8.5	kilovolts
BEAM CURRENT (dc)	-	-		-	-	*	-	-	-	-	-	0.85	ampere
BEAM INPUT POWER	-	-	-	-	-	-	-	-	-	-	-	6.5	kilowatts
BODY CURRENT WITH	RF	DRIV	νE (α	lc)	-	-	-	-	-	-	-	70	milliamperes
COLLECTOR DISSIPAT	ION	-	-		-	-	-	-	-	-	-	6.5	kilowatts
LOAD VSWR	-	-	-	-	-	-	-	-	-	-	-	1.5:1	
TEMPERATURE OF BOI	DY A	ND 7	TUN:	ER F	INS	-	-	-	-	-	-	150°C	
TEMPERATURE OF CO	LLE	СТОН	R -	-	-	-	-	-	-	-	-	250°C	

TYPICAL OPERATION - TUNED FOR BROADBAND OPERATION

Frequency -	-		-	-	-	-	-	-	-	-	-	-	-	6175	megacycles
Output Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	2.7	kilowatts
Driving Power	-	-	-	-	-	-	-	-	-	-	-	-	-	8	milliwatts
Gain	-	-	-	-	-	-		-	-	-	-	-	-	56	decibels
Beam Voltage -	-	-	-	-	-	-	-	-	-	-	-	-	-	8.2	kilovolts dc
Beam Current	-	-	-	-	-	-	-	-	-	-	-	-	-	0.74	ampere dc
Beam Power Effic	ienc	у -	-	-	-	-	-	-	-	-	-	-	-	44	percent
1 db Bandwidth	-	-	-	-	-	-	-	-	-	-	-	-	-	24	megacycles
Body Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	40	milliamperes dc
Collector Coil Cu	rren	t -	-	-	-	-	-	-	-	-	-	-	-	7	amperes dc

For additional information or information regarding a specific application, write to Eimac, a Division of Varian Associates, 301 Industrial Way, San Carlos, California

E I M A C Division of Varian S A N C A P L O S C A L I F O R N I A Tentative Data

X3065 POWER AMPLIFIER S-BAND KLYSTRON

The EIMAC X3065 is a conduction cooled, electrostatically focused, power-amplifier klystron designed to operate at frequencies from 2100 to 2110 megahertz. It will deliver a minimum output power of 200 watts with a minimum power gain of 40 decibels. The X3065 is intended for use in applications where light weight and compactness are essential.

FEATURES

ELECTRICAL

- ELECTROSTATIC FOCUSING
- FIVE INTEGRAL CAVITIES
- LOW NOISE LEVEL
- FIXED INPUT AND OUTPUT COUPLING
- INSTANT FAULT RECYCLING

CHARACTERISTICS

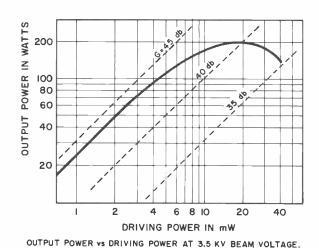
Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	210	00-2110	MHz
Minimum Output F	owe	er	-	-	-	-	-	-	-	-	-	-	-	-	-	200	w
Minimum Power G	ain	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40	db
Cathode: Oxide, U	nipo	tent	ial														
Starting Time		-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	minute
Heater: Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	Vac
Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.0	Aac
Maximum Sta	rtin	g Cu	ırreı	nt	-	-	-	-	-	-	-	-	-	-	-	2	Aac
MECHANICAL																	
Operating Position		-	-	-	-	-	-	-	-	-	-	-	-	-	-		- Any
Cavity Tuning Tore	que	(ma	ixim	um)) -	-	-	-	-	-	-	-	-	-	-	1 inch	n pounds
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	By Co	nduction
Maximum Dimensi	ions	:															
Length -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 6	.5 inches
Width -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 6.5	50 inches
Depth -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 5	.5 inches
Input rf coupling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Connec	tor TNC
Output rf coupling		-	-	-	-	-	-	-	-	-	-	-	-	-	-		Type N
Weight	-	-	-	-	-	-	-	••	-	-	-	-	-	-	-	5	5 pounds

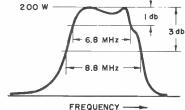
MAXIMUM RATINGS

BEAM	VOLTAG	E -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0 k	Vdc
BEAM	CURREN	IT -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	180 n	nAdc
BEAM	INPUT P	OW	ER		-	-	-	-	-	-	-	-	-	-	-	-	-	-	720 V	V
COLLE	CTOR D	ISSI	PAT	TIO	N	-	-	-	-	-	-	-	-	-	-	-	-	-	720 V	V
CATHC	DE SEA	L TI	EMI	PER	AT	URE	E -	-	-	-	-	-	-	-	-	-	-	-	150 °	C
LOAD	VSWR -	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	2:1	

TYPICAL OPERATION A – Tuned For Maximum Efficiency

Frequency	-	-	-	-	-	-	-	-	-	-	-	-	-	2105	2105	MHz
DC Beam Voltage -	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	3.5	kVdc
DC Beam Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	73	145	mAdc
Driving Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	5	20	mW
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	-	50	200	W
Gain	-	-	-	-	-	-	-	-	-	-	-	-	-	40	40	db
Beam Power Efficienc (without collecto		pres	sion) -	-	-	-	-	-	-	-	-	-	31	39.5	%
Beam Power Efficienc (with collector d		ssior	1)	-	-	-	-	-	-	-	-	-	-	39	42	%
3 db Bandwidth -	-	-	-	-	-	-	-	-	-	-	-	-	-	2.0	2.2	MHz

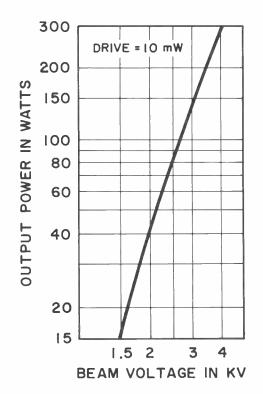

TYPICAL OPERATION

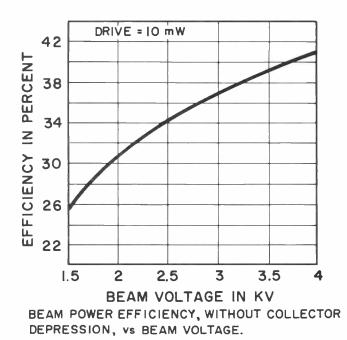

B – Tuned For Bandwidth

Frequency		-	-	**	-	-	-	-	-	-	-	-	-	-	-	-	2105	MHz
DC Beam Voltage -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.6	kVdc
DC Beam Current -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	151	mAdc
Driving Power -		••	-	-	-	-	-	-	-	-	-	-	-	-	-	-	400	mW
Output Power		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	196	W
Gain		-	-	*	-	-	-	-	-	-	-	-	-	-	-	-	27	db
Beam Power Efficie	ncy	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	36	%
1 db Bandwidth -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.8	MHz
3 db Bandwidth -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.8	MHz

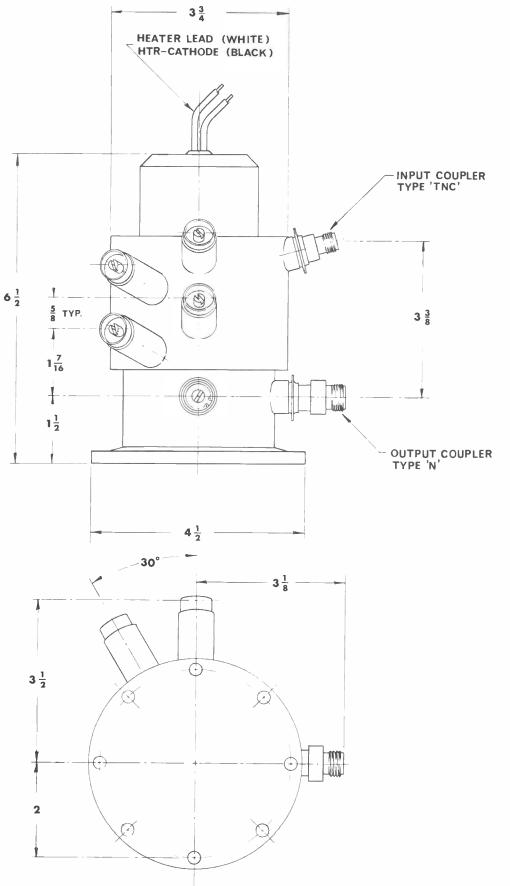
X3065

 DRIVING POWER
 — 400 mW


 OUTPUT POWER
 — 200 W


 GAIN
 — 27 db

 EFFICIENCY
 — 36 %


 I db
 BANDWIDTH
 6.8 MHz

 3 db
 BANDWIDTH
 8.8 MHz

E I M A C Division of Varian S A N C A R L O S C A L F O R N I A Tentative Data

X3065A POWER AMPLIFIER S-BAND KLYSTRON

The EIMAC X3065A is an air cooled, electrostatically focused, poweramplifier klystron designed to operate at frequencies from 2100 to 2110 megahertz. It will deliver a minimum output power of 500 watts with a minimum power gain of 40 decibels. The X3065A is intended for use in applications where light weight and compactness are essential.

FEATURES

- ELECTROSTATIC FOCUSING
- FIVE INTEGRAL CAVITIES
- LOW NOISE LEVEL
- FIXED INPUT AND OUTPUT COUPLING
- INSTANT FAULT RECYCLING

CHARACTERISTICS

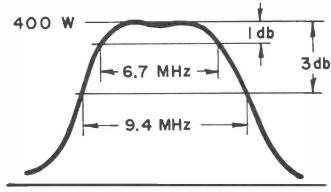
ELECTRICAL

Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	210	0-2110	MHz
Minimum Output	Pow	er	-	-	-	-	-	-	-	-	-	-	-	-	-	5	00 W
Minimum Power	Gain	-	-	-	-	-	-	-	-	-	-	*	-	_	-		30 db
Cathode: Oxide, Starting Tim	-	oteni	tial -	_	_	-	_	_	_	_	_	_	_	_	_	1 r	ninute
Heater: Voltage Current Maximum S	- - tartin	- ig Ci	- - urrer	- nt	-	-	- -	- -	-	- -	- -	- -	- -	-	-		7 Vac 1 Aac 2 Aac
MECHANICAL																	
Operating Positio	n	-	-	-	-	-	-	-	-	-	-	-	-	-			Any
Cavity Tuning To	orque	(ma	axim	um)	-	-	-	-	-	-	-	-	-	-	- 1	inch p	ounds
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	Force	d Ai	r (20°C	at sea	level)
Collector Flow	-	-	-	-	-	-	-	-	-	-	_	-	-	-			0 cfm
Collector Pressure	e Dro	р	-	-	-	-	-	-	-	-	-	-	-	-		1 inche	s H ₂ O
Maximum Dimen Length - Width -	isions - -	: - -	-	-	-	-	-	-	-	-	-	-	-	-			inches inches
Depth -	-	-	-	-	-	-	-	-	-	-	-	-	-	-			inches
Rf Input Coupling	g -	-	-	-	-		-	-	-	-	-	-	-	-	- Co	nnector	r TNC
Rf Output Coupli	ng	-	-	-	-	-	-	-	-	-	-	-	-	- 1	∛≋ inch	, 50-ohi	m line
Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- 5 p	ounds

MAXIMUM RATINGS

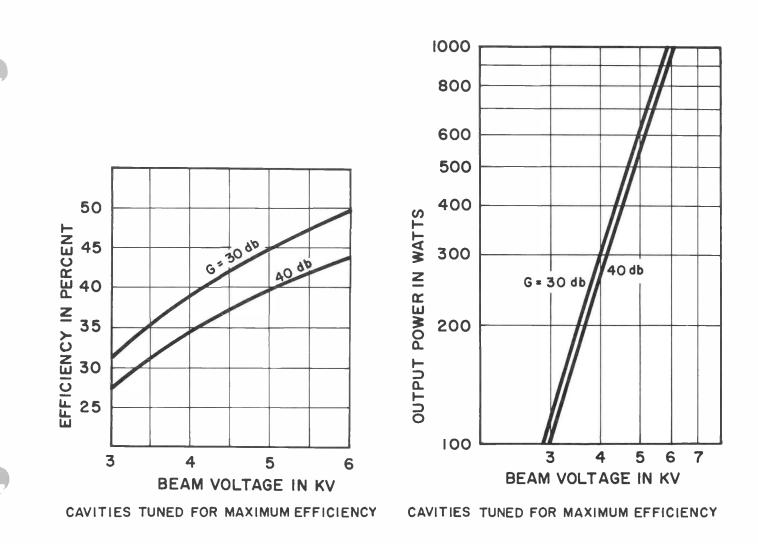
DC	BEAM VOLTA	GE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.0	kVdc
DC	BEAM CURRI	ENT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.325	mAdc
DC	BEAM INPUT	POV	VER	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.95	kW
CC	LLECTOR DIS	SIPA	TIO	N	-	-	-	-	-	-	-	-	-	-	-	-	-	1.95	kW
CA	THODE SEAL	TEM	IPEF	AT	URE	E -	-	-	-	-	-	-	-	-	-	-	-	150	°C
LC	AD VSWR -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2:1	

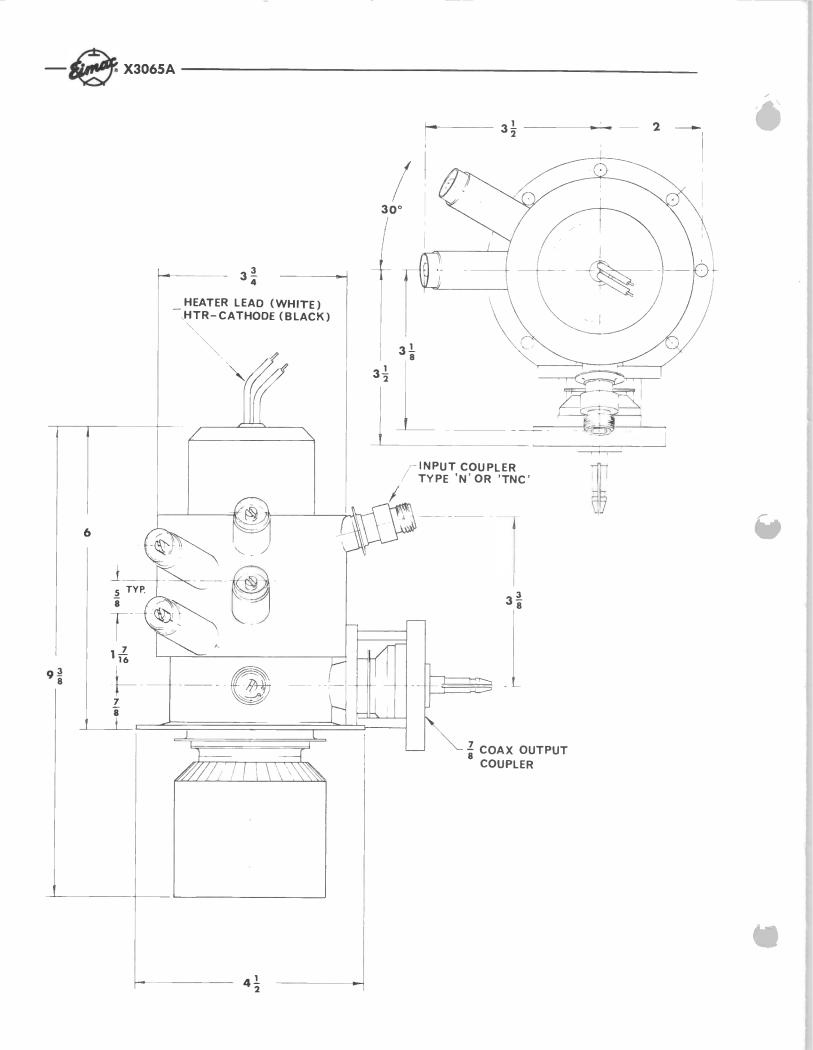
TYPICAL OPERATION A – Tuned For Maximum Output Power


Frequency	-	-	-	-	-	-	-	-	-	-	-	-	2105	2105 MHz
DC Beam Voltage	-	-	-	-	-	-	-	-	-	-	-	-	4.75	4.9 kVdc
DC Beam Current	-	-	-	-	-	-	-	-	-	-	-	-	230	250 Madc
Driving Power	-	-	-	-	-	-	-	-	-	-	-	-	500	50 mW
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	500	500 W
Gain	-	-	-	-	-	-	-	-	-	-	-	-	30	40 db
Beam Power Efficiency	-	-	-	-	-	-	-	-	-	-	-	-	46	41 %
3 db Bandwidth	-	-	-	-	-	-	-	-	-	-	-	-	7.5	3.7 MHz

TYPICAL OPERATION B — Tuned For Bandwidth

Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2105 MHz
DC Beam Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.3 kVdc
DC Beam Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	270 mAdc
Driving Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500 mW
Output Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500 W
Gain	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30 db
Beam Power Effici	ienc	y	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35 %
1 db Bandwidth	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.7 MHz
3 db Bandwidth	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.4 MHz


L.



DRIVING POWER - 500 mW OUTPUT POWER - 400 W GAIN - 29 db EFFICIENCY - 35 % I db BANDWIDTH - 6.7 MHz 3 db BANDWIDTH - 9.4 MHz

RF-OUTPUT POWER vs FREQUENCY. THE CAVITIES ARE TUNED FOR BANDWIDTH.

FLECTRICAL

SAN CARLOS, CALIFORNIA

EM15LS INDUSTRIAL MAGNETRON

> 25 kW 915 Mc.

The Eimac EM15LS is a rugged power magnetron designed specifically for industrial processing. It is designed to operate in the industrial and scientific frequency allocation of 915 ± 15 Mc. A power output of 25 kW can be obtained into a matched load at an efficiency of approximately 80%. Long operating life in severe industrial environment is assured through use of a directly heated pure tungsten spiral cathode. Further, ruggedness is assured through exclusive use of metal-ceramic construction. Every effort has been made in the design of this tube to keep water cooling pressure and purity requirements down to minimize cooling cost. The magnetic field is provided by an electromagnet which is an integral part of waveguide coupler Type H-195. This coupler mates with 934" x 47%" waveguide.

The magnetron may be operated with a fixed magnetic field or with the electromagnet connected in series with the anode. The latter mode of operation greatly reduces the variation in output power due to supply voltage changes.

Anode voltage for the EM15LS is normally supplied from a full wave three-phase rectifier with or without filter choke. The degree of filtering in any particular application is dictated by the permissible amplitude and frequency modulation of the rf output power. These are mainly determined by the anode current ripple.

CHARACTERISTICS

ELE	IRICAL															
	Filament:															
	Heating Time	-		-	-	-	-	-	-	-	-	-	-	-		seconds
	Starting Voltage	(± 5)	5%)	-	-	-	12	-	-	-	-	-	-	-	13	volts ac
	Starting Current		-	-	-	-	-		-	-	-	-	-			amperes ac
	Maximum Inrus		irren	t -	-	1.4	-	-	-	-	-	-	-			amperes
	Cold Resistance	-	-	-	-	-	-	-	-	-	-	-	-	- (0.03	ohms
	Output Power -	-	-	-	-	-	-	-	-	-	-	-	-	-	25	kilowatts
	Frequency	-		-	-	-	1	-	-	2	-	-	-		915	±15 Mc
MEG	CHANICAL															
	Maximum Dimension	IS:														
	Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17 inches
	Diameter -	-	-	-	-	-	-	-	-		-	-	-	n s	-	7 inches
	Weight	-	-	-	-	-	-	-	-	-	-	-	2	-	-	25 pounds
	Output Coupling (rf)) -	-	-	-	-	-	-	-	-	-	-	- (See c	utli	ne drawing)
	Mounting Position P	refe	rred	-	-	-		-	-	-	-		-	-	-	- Vertical
	Cooling: Water and	Forc	ed A	ir									Flow	Rate	Pı	essure Drop
	Anode	-	-	-	-	1	-	-	1.0	-	-	-		gpm		30 psi
	Electromagnet		- 1	-	-	-	-	-	-	-	-	-		gpm		30 psi
	Output Window	1.2	-	-	-	-	-	-	-	-	-	-		cfm		2" H ₂ O
	Stem	7	1	-		-	-	-	Ξ.		1	-	5	cfm		2" H ₂ O
PO	VER SUPPLY REQUIRE	MEN	TS													
	Electromagnet Voltag	ge, d	C -	17	-	-	-	-		-	-	-		-	-	50 volts
	Electromagnet Curren			-		-	-	-	-	-	-	-	-	-	-	4 amperes
	Filament Voltage, ac	-			2	1.2	-	-	-	-	Ξ.	-		-	- 1	14 volts
	Filament Current, ac		-	-	-	-	-	-	-	-	-	-	-	-	- 1	20 amperes

(Effective 5-1-65) Copyright 1965 by Eitel-McCullough, Inc.

MAXIMUM RATINGS

	Anode Voltage (d	c)	-	-	-	-	-	-	-	-	-	-	-	-		14 kilovolt	s
	Anode Current (d	lc)	-	-	-	-	-	-	-	-	-	-	-	-		3 Ampere	es
	Anode Dissipation	l	-	-	-	-	-	-	-	-	-	-	-	-		15 Kilowat	ts
	Load VSWR -	-	-	-	-	-	-	-	-	-	-	-	-			- 2.5	:1
	Seal Temperature	-	-	-	-	-	-	-	-	-	-	-	-			- 175	°C
	Water Outlet Tem	pera	ture	9 -	-	-	-	-	-	-	-	-	-	-		- 70	°C
TYPI	CAL OPERATION																
	Frequency -	-	-	-	-	-	-	-	-	-	-	-	-	915	915	megacycle	es
	Output Power	-	-	-	-	-	-	-	-	-	-	-	-	2 0	2 5	kilowatts	
	Anode Voltage	-	-	-	-	-	-	-	-	-	-	-	-	11.5	12 .5	5 kilovolts d	lc
	Anode Current	-	-	-	-	-	-	-	-	-	-	-	_	2.1	2.4	amperes d	lc
	Efficiency -	-	-	-	-	-	-	-	-	-	~	-	-	83	83	percent	
	Filament Voltage	-	-	-	-	-	-	-	-	-	-	-	-	11	10.8	- B volts ac	
	Filament Current	-	-	-	-	-	-	-	-	-	-	-	-	106	103	amperes a	ıc
	VSWR	-	-	-	-	-	-	-	-	-	-	-	-	3:1*	2.5:1*	-	
	Electromagnet Cu	rrent	t	-	-	-	-	-	-	-	-	-	-	3.3	3.6	6 amperes d	lc
	*Efficiency with mism matched load or at se	atche lected	d loa pha	id de se ar	epend ngles.	s upo	on ph	ase a	ingle	of the	e load	d. Eff	ìcien	cies liste	d can b	e obtained w	ith

1. COOLING

NOTES

Both air and water cooling must be applied before anode voltage is applied.

2. FILAMENT ADJUSTMENTS

Before the anode voltage is applied, the filament current must be set for 115 amperes and held there for 10 seconds. When the magnetron begins operating, the heater current should be reduced immediately to compensate for back bombardment. The filament current given above is for a matched rf load. Maximum life of this magnetron will be obtained if the filament voltage is decreased during operation until the filament resistance V_t/I_t is the same as that when the magnetron is not oscillating; i.e., V_{to}/I_{to} . When the rf load is reasonably constant in magnitude and phase, filament voltage and current can be reduced a fixed amount using manual switch control. However, when the variation of the load mis-match and phase is considerable, more accurate compensation should be provided by automatic control.

3. POWER SUPPLY

The short circuit characteristics of the anode supply must be such that the peak anode current is limited to 25 amperes in case of an arc in the magnetron. If the leakage reactance of the transformer, plus the resistance of the rectifiers, transformer and filter choke do not provide this degree of current limiting, a series resistor is recommended in the anode supply to achieve the additional current limiting required.

4. OPERATION WITH SERIES FIELD

With the coil of the electromagnet connected in series with the anode as shown in Fig. 4, the magnetron threshold voltage V_T (approx. equal to the anode voltage at zero anode current, see Fig. 3) becomes proportional to the anode current and curve of V_a against I_a for steady currents, and is obtained as given in Fig. 5. The slope of this characteristic, which depends upon the number of turns in the coil, is much greater than that with fixed field (compare with Fig. 3), and

hence the power changes with supply voltage variations are correspondingly reduced. This is one advantage of the series field mode of operation.

Operating points to the left of the line can be reached by supplying a biasing current through the coil. Assuming an initial biasing current, the behavior is then as follows: as the anode voltage, and hence current, rises from zero, the increasing voltage drop across the magnet coil causes a decrease in the biasing current, and a V_aI_a characteristic of reduced slope* is obtained. Beyond the branch point shown in Fig. 5, the biasing current is zero and full series field behavior is obtained. The characteristic is raised or lowered in accordance with the biasing current and threshold voltage V_T , and with a fixed supply voltage this enables the power output to be controlled in an economical way by varying the magnet current. Since the slope of the characteristic depends upon the magnet coil resistance, there is a slight drift of the operating point as the coil warms up. This can be minimized by making R_b large compared with R_m or by using a bias supply which behaves as a constant current source.

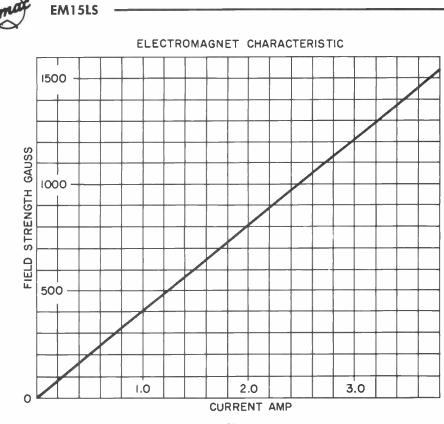
With series field, anode voltage cannot be applied instantaneously without biasing field current, because a transient voltage approximately equal to the anode supply voltage is developed across the magnet coil. A recommended method of starting is therefore to increase the biasing current to raise V_T above the no load voltage of the anode supply, switch on the anode voltage, and then reduce the biasing current until the required operating point is reached.

With series field, the stability against load mismatch remains the same as that with fixed field, but the variation in anode impedance V_a/I_a , with phase of load VSWR is reduced by a self-regulating action. This leads to a power variation (see Fig. 2 for example) which is mainly determined by efficiency changes.

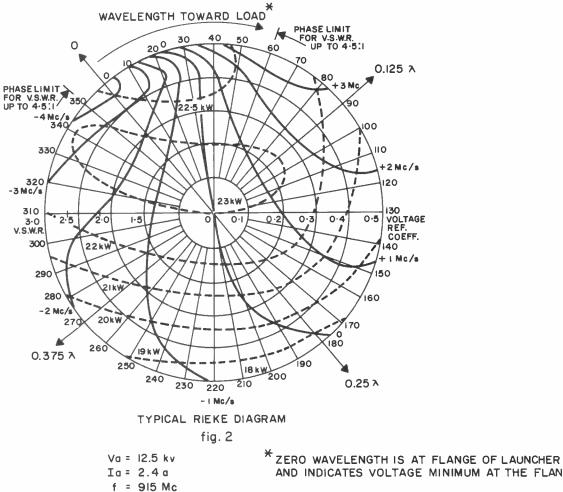
Precautions should be taken to prevent excessive load reflection as stipulated in the maximum ratings, since operation in unwanted modes is always possible with series field, following a cessation of oscillation in the proper mode.

5. INSTALLATION

The EM15LS is constructed from metal and ceramic. Reasonable care should be taken to protect the tube from excessive shocks when handling and after installation. The mounting position is with axis vertical, either up or down.

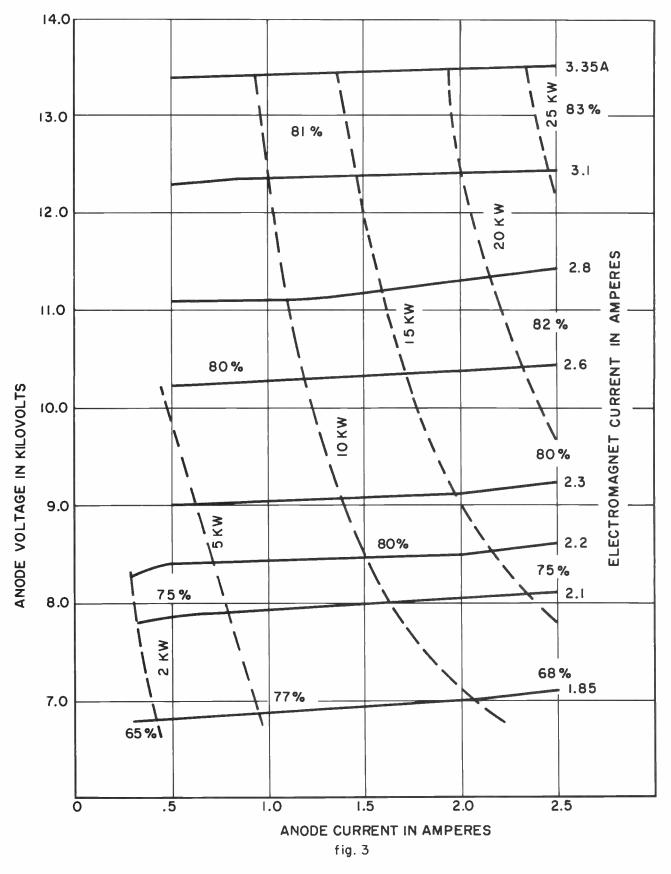

Connection between the magnetron and the H-195 is made by a copper washer retained on a flange on the tube at the base of the dome window. The tube must be seated squarely in the electromagnet, and the retaining screws tightened up uniformly to ensure proper contact at the washer. A new washer should be used each time the magnetron is inserted. A new washer is supplied with each new tube purchased.

The magnetron dome window is forced-cooled by air ducted over the dome by a flanged insulating cylinder. To obtain proper cooling it is necessary to ensure a uniform gap between the cylinder and dome.

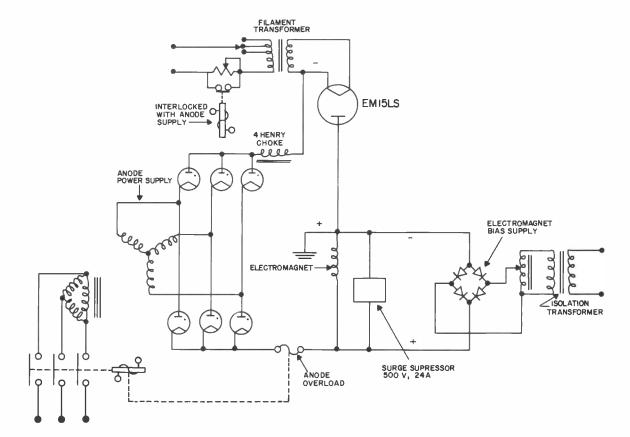

The cathode terminals must be securely clamped to make proper contact and avoid overheating. Cooling is by forced air through a duct attached to the small cathode terminal. The terminal temperature should not exceed 175°C.

*In proportion to $\frac{R_b}{R_b+R_m}$, where R_b is the effective internal impedance of the biasing supply, and R_m the magnet resistance.

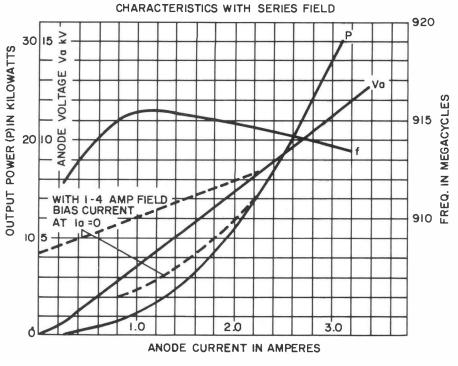
For additional information or information regarding a specific application, write to Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California.

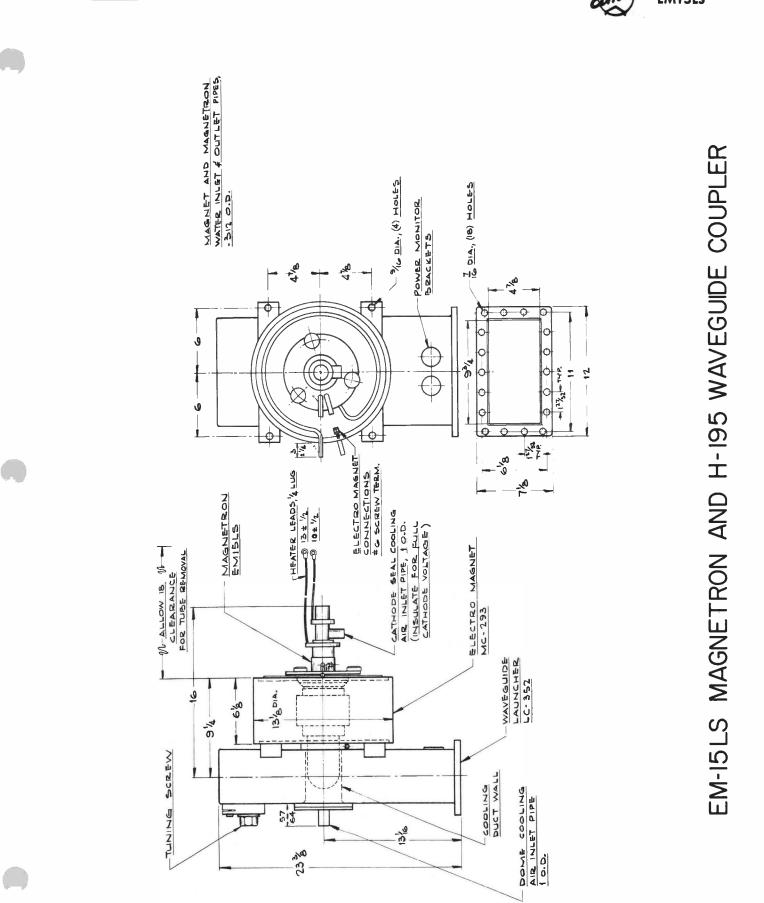

f	i	g		l	
---	---	---	--	---	--

AND INDICATES VOLTAGE MINIMUM AT THE FLANGE.


EM15LS

PERFORMANCE CHART


imae


EM15LS

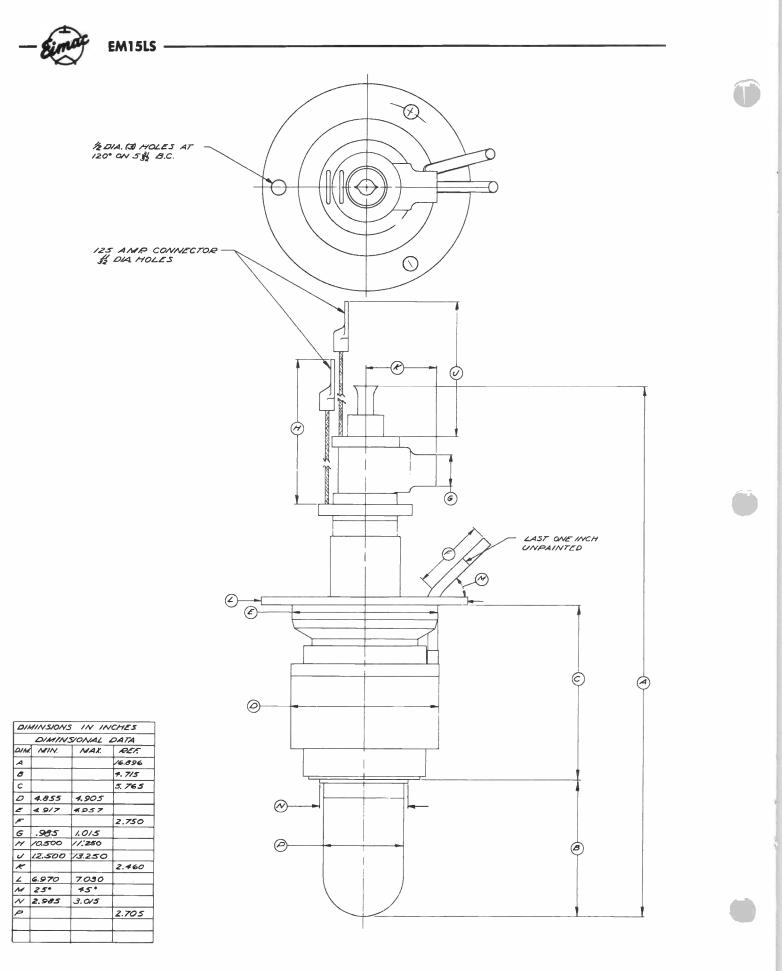

ELEMENTARY CIRCUIT FOR OPERATION WITH SERIES FIELD

fig. 4

EM15LS

EM15LS MAGNETRON

EITEL-MCCULLOUGH, INC.

WL-140 WATER LOADS

WL-120

WL-130

Eimac WL-120, WL-130 and WL-140 are 3-1/8" coaxial water loads covering the frequency range of 200 to 1200 megacycles. These loads will dissipate up to 50 kilowatts average power and three megawatts peak power.

Each of these loads is equipped with a sampling loop which provides a convenient rf monitoring source. Measurement of rf power by calorimetric methods* can be accomplished through the use of auxiliary temperature and flow measuring devices. Thermometer wells are available as accessories.

Because the rf power is dissipated directly into the fluid in these loads the resistivity of the fluid affects the VSWR which the loads present. Fluids having specific resistances of 5000 ohm centimeters or less produce excellent results. Tap water and 50% to 60% solutions of ethylene glycol and distilled water are ordinarily acceptable. Because the resistivity of the fluid changes with temperature the outlet temperature should be kept as low as possible.

These loads can be furnished equipped to withstand pressurization if required. The peak power ratings listed in this data sheet are with pressurization. If pressurization is employed provision must be made to prevent application of gas pressure without adequate fluid pressure. The gas pressure must not exceed the fluid pressure by more than 5 psi.

*When the fluid is water the power formula is:

Power (kw) = 0.264 x Flow-rate (gpm) x Temperature Rise (°C) Typical values of the constant in this formula for the 60% ethylene glycol solution are: 0.208 at 15° C, 0.215 at 40° C, and 0.226 at 70° C.

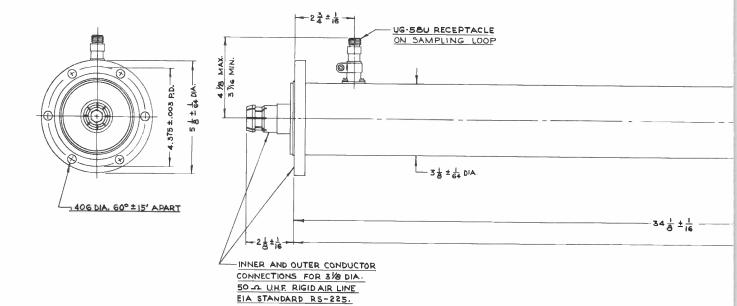
(Effective 6-1-64) © Copyright 1964 by Eitel-McCullough, Inc.

WL-120, WL-130, WL-140-

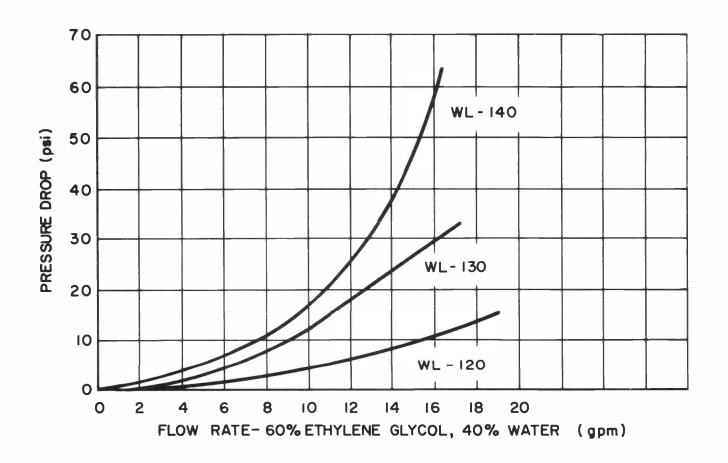
CHARACTERISTICS

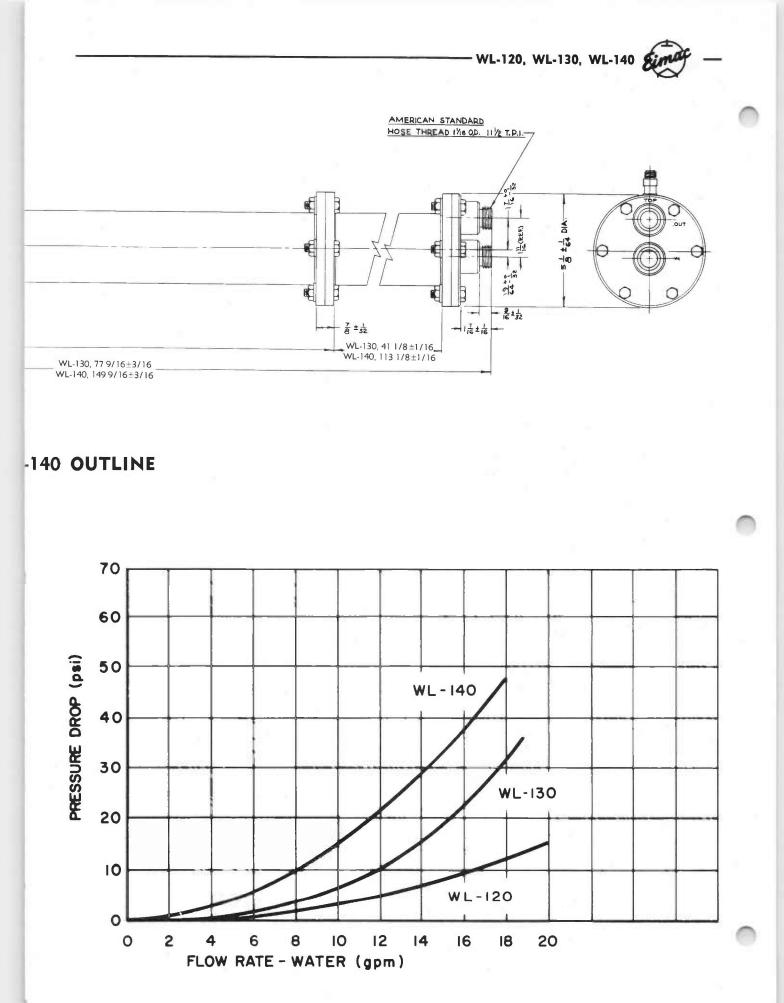
ELECTRICAL	WL-120	WL-130	WL-140							
Frequency Range (Inlet Water Temperature 25° C,										
VSWR<1.2:1)	500-1200	320-1200	200-1200	megacycles						
Frequency Range (Inlet Water Temperature 60°C,										
VSWR<1.2:1)	800-1200	600-1200	400-1200	megacycles						
Average Power	50	50	50	kilowatts						
Peak Power	3	3	3	megawatts						
Impedance	50	50	50	ohms						
Coupling (rf): EIA Standard RS-225										

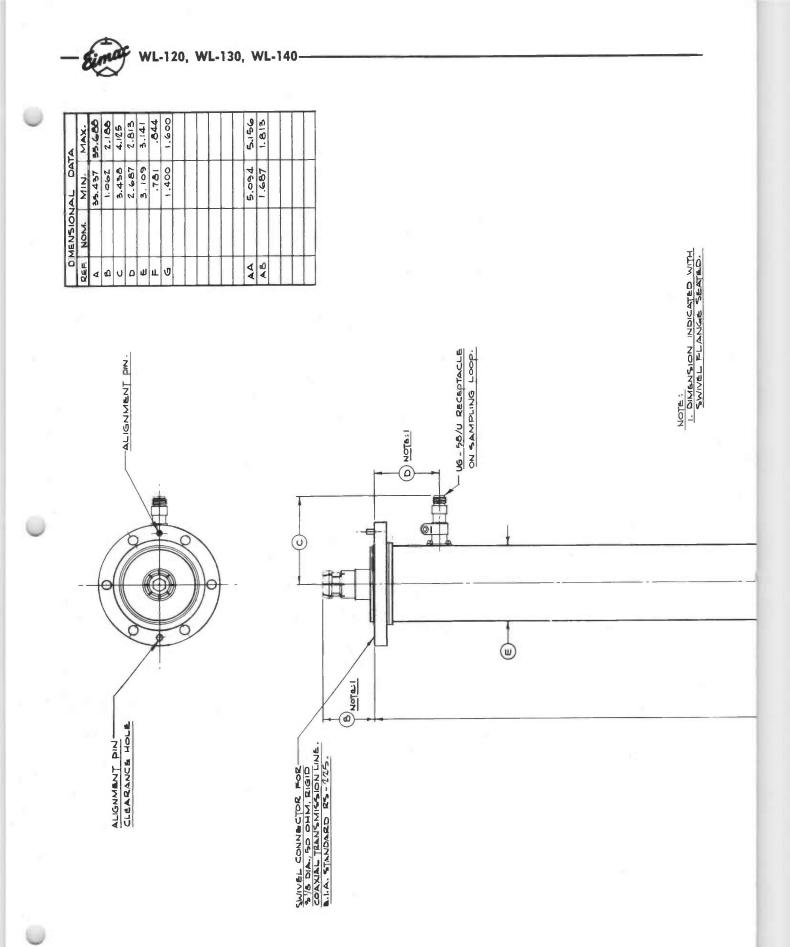
MECHANICAL

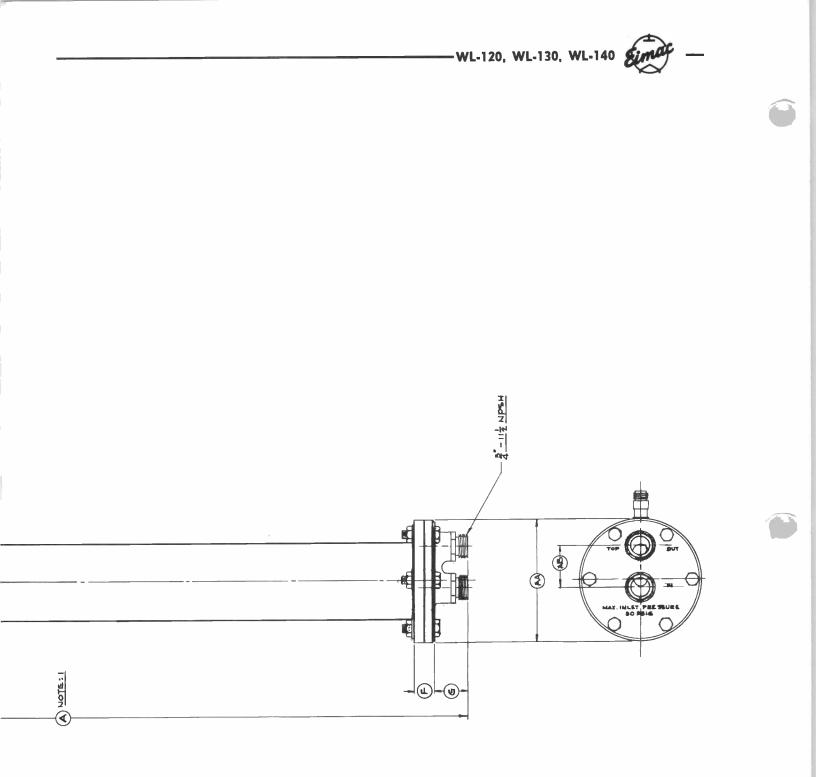

Operating Position: Horizontal or rf connection down

Length	38 80	152	inches						
Weight (Empty) 13-2	1/2 25	38-1/2	pounds						
Water Capacity 0	.43 1.72	3.96	gallons						
Maximum Static Water Pressure	90 90	90	psig						
Maximum Outlet Water Temperature	70 70	70	degrees C						
Maximum Gas Pressure relative to water pressure	5 5	5	psi						
Water Connections: American Standard Hose thread,									


1-1/6" O.D., 11-1/2 T.P.I.


For additional information or information regarding a specific application, write to Eitel-McCullough, San Carlos, California.




WL-130 & WL

WL-120

OUTLINE

EITEL-McCULLOUGH, INC.

WL-150 WL-151 WL-160 WL-161 WATER LOADS 300 kW 200-750 Mc

Eimac WL-150, WL-151, WL-160, and WL-161 are $6V_{6}$ " coaxial water loads covering the frequency range of 200 to 750 megacycles. These loads will each dissipate up to 300 kilowatts average power. The WL-151 and WL-161 will also dissipate up to 5 megawatts peak power.

Water Loads WL-150 and WL-160 are equipped with sampling loops which provide convenient rf monitoring sources. Measurement of rf power by calorimetric methods* can be accomplished through the use of auxiliary temperature and flow measuring devices. Thermometer wells are available as accessories.

Because the rf power is dissipated directly into the fluid in these loads, the resistivity of the fluid affects the VSWR which the loads present. Fluids having specific resistances of 5000 ohm centimeters or less produce excellent results. Tap water and 50% to 60% solutions of ethylene glycol and distilled water are ordinarily acceptable. Because the resistivity of the fluid changes with temperature the outlet temperature should be kept as low as possible.

Water Loads WL-151 and WL-161 are equipped to withstand pressurization. The peak power ratings listed in this data sheet are with pressurization. If pressurization is employed provision must be made to prevent application of gas pressure without adequate fluid pressure. The gas pressure must not exceed the fluid pressure by more than 5 psi.

*Power dissipated in the load is determined calorimetrically as follows:

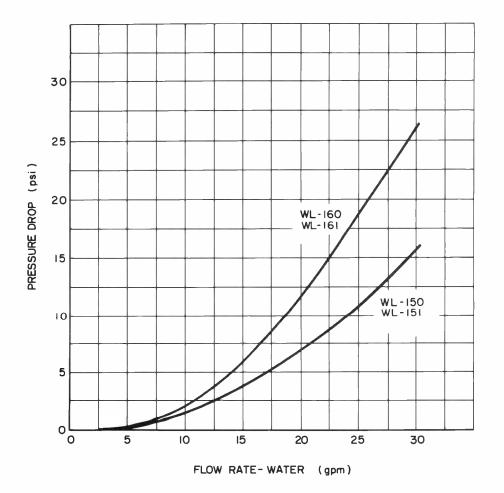
Power $(kW) = K \times Flow-rate (gpm) \times Temperature Rise (°C).$

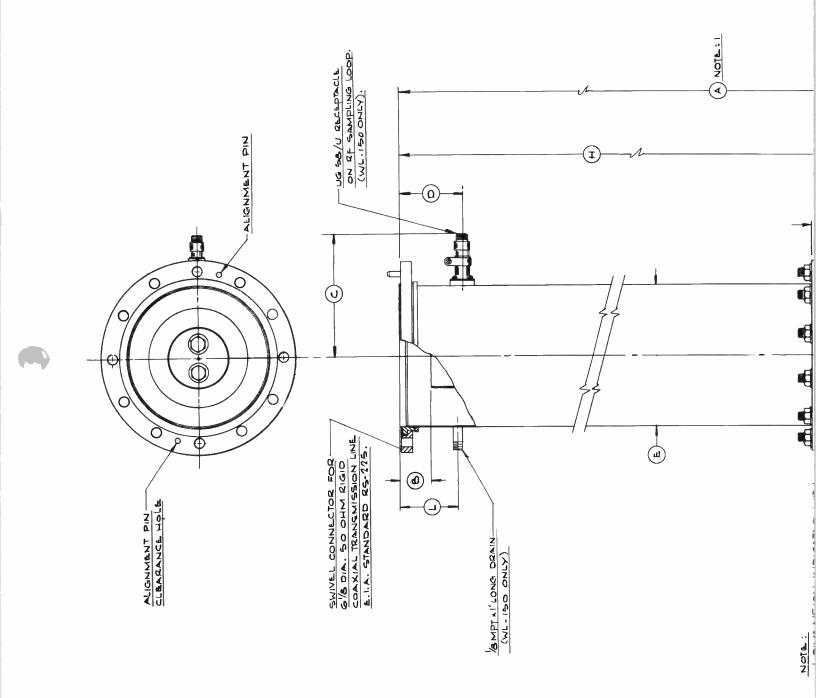
For water, the constant (K) is 0.264.

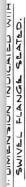
Typical values of the constant (K) for a 60% ethylene glycol solution are: 0.208 at 15°C, 0.215 at 40°C, and 0.226 at 70°C.

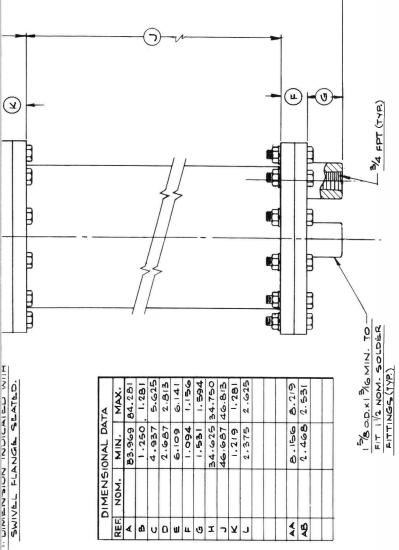
(Effective 12-1-64) Copyright 1964 by Eitel-McCullough, Inc.

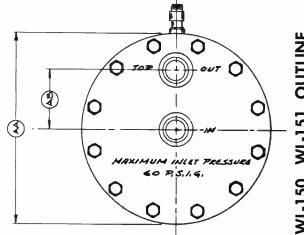
CHARACTERISTICS

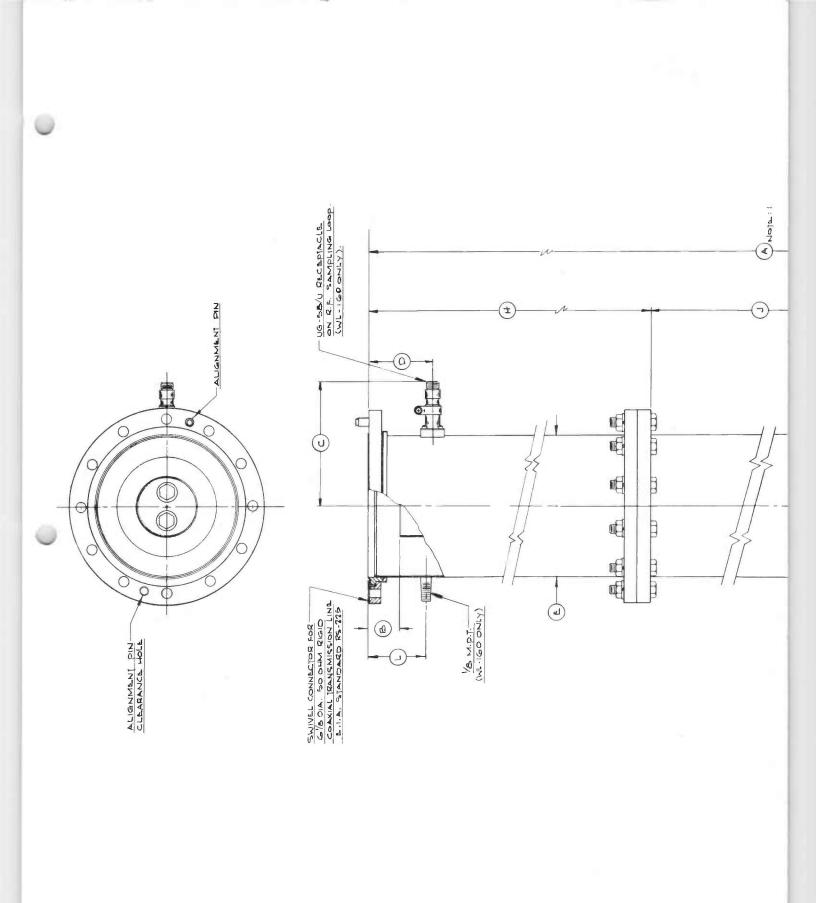

.....

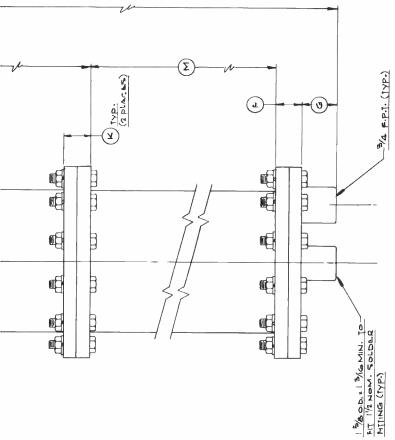

ELECTRICAL						WL-150 WL-151	WL-160 WL-161
Frequency Range (Inlet Water Temperature 25° VSWR < 1.2:1)	C, -	-	-	-	-	250-750	200-750 megacycles
Frequency Range (Inlet Water Temperature 60° VSWR < 1.2:1)	С,	-	-	-	-	390-750	340-750 megacycles
Average Power	-	-	-	-	-	300	300 kilowatts
Peak Power (WL-151 or WL-161, Pressurized)	-	-	-	-	-	5	5 megawatts
Impedance	-	-	-	-	-	50	50 ohms
Coupling (rf): EIA Standard RS-235							

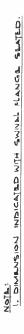

MECHANICAL

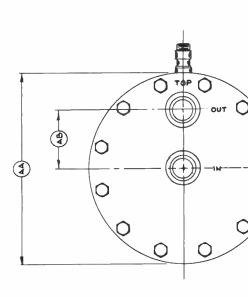

Operat	Operating Position: Horizontal or rf connection down														
Ĺ	ength			-	-	-	-	-	-	-	-	-	86.75	152.75 inches	
V	Veight (Emp	ty) ·		-	-	-	-	-	-	-	-	-	78	112 pounds	
v	Vater Capacit	tv -		-	-	-	-	-	-	-	-	-	7.5	17 gallons	
N	laximum Sta	tic V	Vater	Press	ure	-	-	-		-		-	60	60 psig	
	laximum Out								-	-	-	-	70	70 degrees C	
Ν	laximum Gas	s Pre	ssure	relati	ve to				ure	-	-	-	5	5 psi	
v	Vater Connec	tions	5: 3⁄4"	F.P.T											


For additional information or information regarding a specific application, write to Eitel-McCullough, San Carlos, California

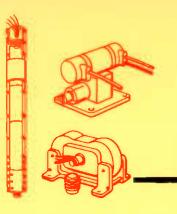








WL-150, WL-151 OUTLINE



WL-160, WL-161 OUTLINE

Ð

0

reflex klystrons · twt · vtm)

Look in the general section for---

- Your nearest distributor of modern, fully guaranteed Eimac electron tubes and electron tube accessories.
- Your nearest Eimac Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or provide other information not found in the catalog.
- Eimac tube type numbering system.
- Tube Replacement Chart.
- Prices on Eimac products.

IMPORTANT EIMAC "EXTRAS"

Application Engineering. The Eimac Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proved by Eimac engineers, whose combined knowledge and experience are at your service. Additional contributions by this Eimac department are its Application Bulletins, a service which you receive without obligation.

Field Engineering. Serving as an extension of the Application Engineering Department outside the Eimac plant, Eimac Field Engineers cover the United States, operating out of offices in major cities. They will help you personally with experimental work, problems of technique, etc. Engineers from Eitel-McCullough, Inc. are available, too, for field consultation throughout the country. As Eimac tubes are world renowned, the same services extend to various countries overseas through the Eimac Export Department.

EITEL-MCCULLOUGH, INC.

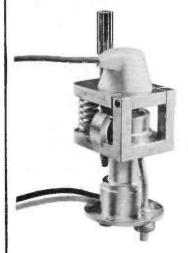
PRELIMINARY DATA 1K015CA 1K015CG C-BAND REFLEX KLYSTRONS

The Eimac 1K015CA and 1K015CG are ceramic and metal, ruggedized, internal-cavity reflex klystrons designed for local oscillator service in the frequency range of 5350 to 5950 megacycles. These tubes are capable of delivering a minimum output power of 70 milliwatts into a load VSWR of 1.5 to 1 under conditions of shock, vibration or sustained acceleration.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipoten	tial, oxi	lde coa	ated.		
	Warm-up	time	-	-	60	seconds
Heater:	Voltage	-	-	-	6.3	volts
	Current	-	-	T	1.0	ampere
Minimum	Output Pow	er (Load	VSWR=	1.5:1)	70	milliwatts
Frequenc	y Range	-	- 53	350 to	5950	megacycles


MECHANICAL

Operating Position	-	-	-	-	Any
Mounting:					
1K015CA	-	-	– Th	ree hole	flange
1K015CG	-	-	UG-344/U w	aveguide	flange
R-F Output Couplin	g:				
1K015CA	-	-	Miniature	coaxial	fitting
1K015CG	-	-	RO	-50/U wa	veguide
Electrical Connect	ions	-	-	Flexibl	e leads
Cooling	-		Convection	and cor	duction
Maximum Overall Di	mensions:		1K015CA	1K015C0	
Length	_	-	3.4	5.3	inches
Width	-	-	1.3	3.1	inches
Depth	-	-	1.2	1.5	inches
Net Weight -	-	-	4.2	17.5	ounces
Shipping Weight (A	pproximat	ce)	2	6	pounds

ENVIRONMENTAL

Maximum Ambient T	emperature		-	-	-	-	100° C
Maximum Altitude	-		-	-	-	-	No limit
Maximum Operating	Shock (11	ms du	uration)*	-	-	40 g
Maximum Operating	Vibration	(20-	2000 cp	s)**	-	-	10 g

*Based on a maximum permanent frequency shift after drop of 1.5 megacycles. **Based on a maximum peak-to-peak frequency deviation of 1.0 megacycle.

1K015CA

1K015CG

1K015CA--1K015CG

MAXIMUM RATINGS

D-C RESONATOR VOLTAGE* D-C CATHODE CURRENT - RESONATOR DISSIPATION PEAK REPELLER VOLTAGE* POSITIVE WITH R	- - - ESPECT T(- - - 0 CATHODE		- - -	- 350 - 55 - 20 - 0	MAX. VOLTS MAX. MA. MAX. WATTS MAX. VOLTS
NEGATIVE WITH R	ESPECT T	O CATHODE	-	-	- 500	MAX. VOLTS
TYPICAL OPERATION (Load VSWR	less tha	n 1.15 to	1)			
D-C Resonator Voltage*	-	-	-	300	350	volts
Mode	-	-	-	4-3/4	3-3/4	
Frequency	-	-	-	5650	5650	megacycles
D-C Cathode Current -	-	-	-	35	49	milliamperes
D-C Repeller Voltage*	-	-	-	-135	-240	volts
D-C Repeller Current	-	-	-	1	1	microampere
Power Output -	-	-	-	35	130	milliwatts
Electronic Tuning Range	(3 db-ba	andwidth)		45	45	megacycles
Modulation Sensitivity	-	-	-	1600	900	Kc/volt
Peak-to-peak FM Deviati	on (10g,	20-2000	cps)	75	75	kilocycles

*All voltages referred to cathode.

APPLICATION

<u>Cooling</u>: At sea level, these tubes will not require forced air cooling when operated at their maximum rated dissipation with an ambient temperature less than 100° Centigrade. The mounting flange or waveguide flange will normally provide the required heat sink connection for conduction cooling.

If an insulator is used between the tube and waveguide or chassis, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 200° Centigrade.

<u>Resonator</u>: The resonator of the 1K015CA and 1K015CG is integral with the body of the tube. For this reason, it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

<u>Cathode</u>: The heater voltage should be maintained within \pm 5% of the rated value of 6.3 volts if variation in performance is to be minimized and best tube life obtained.

The heater and cathode of the 1K015CA and 1K015CG are internally connected. When the resonator of these tubes is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

1K015CA--1K015CG

<u>Mechanical Tuning</u>: Mechanical tuning is accomplished by a single screw tuner with a differential thread. A tuning rate of approximately 100 megacycles per turn and a maximum tuner torque of four inch-pounds is provided by this design. Mechanical stops, capable of withstanding a maximum torque of 10 inch-pounds, are provided at the extremes of the tuning range. Tuner cycling in excess of 100 cycles will not damage the vacuum seals.

A clockwise rotation of the tuner will produce an increase in frequency.


<u>Mounting</u>: The 1K015CA should be mounted by the three-hole tube flange provided. The 1K015CG is mounted by the UG-344/U waveguide flange to the appropriate waveguide connector.

Electrical connections are made to both tubes by means of the flexible leads provided.

<u>Output Coupling</u>: The R-F terminal of the 1K015CA is a miniature coaxial connector described in detail in the outline drawing. For waveguide coupling, the 1K015CG utilizes the Eimac transition section and mates with standard RG-50/U waveguide. An adapter is available on special order to adapt the 1K015CA to standard BNC type coaxial output.

<u>Special Applications</u>: For additional information regarding any specific application, write to Eitel-McCullough, Inc., San Carlos, California. All such requests will be handled confidentially.

> Eitel-McCullough, Inc. February 16, 1960 AE245

SAN CARLOS, CALIFORNIA

TENTATIVE DATA

1K20XD-A

X-BAND REFLEX KLYSTRON

The Eimac 1K20XD-A is a ceramic and metal, conduction-cooled reflex klystron designed for local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 75 milliwatts over the frequency range of 10,000 to 10,700 megacycles.

The stacked-ceramic construction results in an extremely rugged design and low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

GENERAL CHARACTERISTICS

ELECTRICAL

	Cathode:	Unipotent Warm-up			e co	ate	d										0.0			
	Heater:	Voltage		-	_	_	_	_		_	~	-	-	-	-		30		seconds	
	meater.	0		_	-		-	-	-	-			_	-	-	- 6			volts	
		Current		-	-	-	-	-	-	-	-	-	-	-	-	- 0	.8		ampere	
	Typical Ou	itput Powe	er (L	oad	VSV	٧R	= 1.	15:	1)	-	-	-	-	-	-	~	75	mi	lliwatts	
	Frequency	Range		-	-	-	-	-	-	-	-	-	10,0	000	to :	10,7	00	meg	acycles	
																		0	U	
ME	CHANICAI	-																		
	Operating	Position		-	-	-	-	-	-	-	-	-	-	-	-	-			– Any	
	Mounting -			-	-	-	-	-	-	-	-	-	-	UG	-39	/U ·	way	veguide	e flange	
	Cooling -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	- Cor	nduction	
	Electrical	Connectio	ons –	-	-	-	-	-	-	-	-	-	-	-	-	-	-		leleads	
	RF Output	Coupling		_	-	-		-	-		-	-	_	-	-	RG			veguide	
	Net Weight	- 0		-	-	_	_	_	-	_	-	_	_	-	_	_	_	*	ounces	
	Shipping W		nrovi	mat		_	_	_	_	-	-	_		_	_	_		- 2		
	Maximum					_	_	_	_	_	_	_	-	_	_	-	-	- 2	pounds	
	Maximum		imer	ISTO	18:															
		Height	. –	-		-	-	-	-	-	-	-	-	-	-	-	-	1.50	inches	
		Width-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.63	inches	
		Length		-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.50	inches	

ENVIRONMENTAL

Maximum Ambient Temperature	-	-	~	-	-	-	-	- 150° C
Maximum Altitude	_	-		-	-	_	-	No limit
Maximum Non-Operating Shock* (11 ms Duration) -	-	-	-	-	-	-	-	40 g
Maximum Operating Vibration** (20 to 2,000 cps) -	-	-	-	-	-	-	-	10 g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 200 kilocycles.

MAXIMUM RATINGS

DC RESONATOR VOLTA	GE* -			-	-	-	-		- 350	MAX.	VOLTS
DC CATHODE CURRENT		-			-	-	-		- 55	MAX.	MA
RESONATOR DISSIPATIO	DN -				-	-	-		- 20	MAX.	WATTS
PEAK REPELLER VOLT	AGE*										
POSITIVE	WITH	RES	PECT	т ТО	CAT	ГНО	DE		- 0	MAX.	VOLTS
NEGATIVE									- 500	MAX.	VOLTS
•···· •···										•	
TYPICAL OPERATION (Load	VSW	R le	ss tha	an 1.1	5 to	o 1)					
DC Resonator Voltage*-					_	_	-	300	350		volts
Mode					_	_	_	5-3/4	5-3/	4	
_											
Frequency		-		-	-	-	10,		10,350		gacycles
DC Cathode Current				-	-	-	-	26	35	millia	amperes
DC Repeller Voltage* -		-		· -	-	-	-	165	-150		volts
DC Repeller Current -		-		-	-	~	-	1	1	micro	oampere
Power Output						-	-	50	75	m	illiwatts
Electronic Tuning (3db ba	undwid	lth)			-	-	-	30	30	meg	gacycles
Modulation Sensitivity (ΔΗ			ts) -	-	-	-	-	2.0	2.0		Mc/volt
Peak-to-Peak FM Deviati				0 cps	5) -	-	- ;	200	200	ki	locycles
Residual FM	- ` -			· -	-	-	-	50	50		locycles

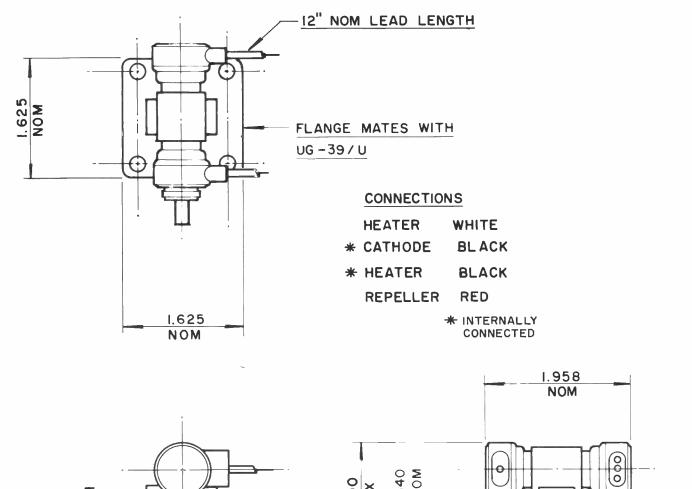
*All voltages referred to cathode.

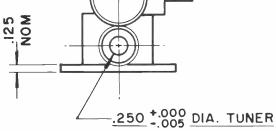
APPLICATION

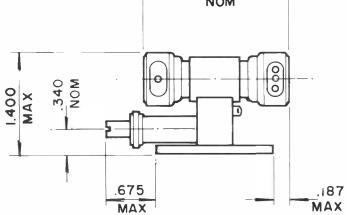
Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 150° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the body temperature below the maximum rating of 175° Centigrade.

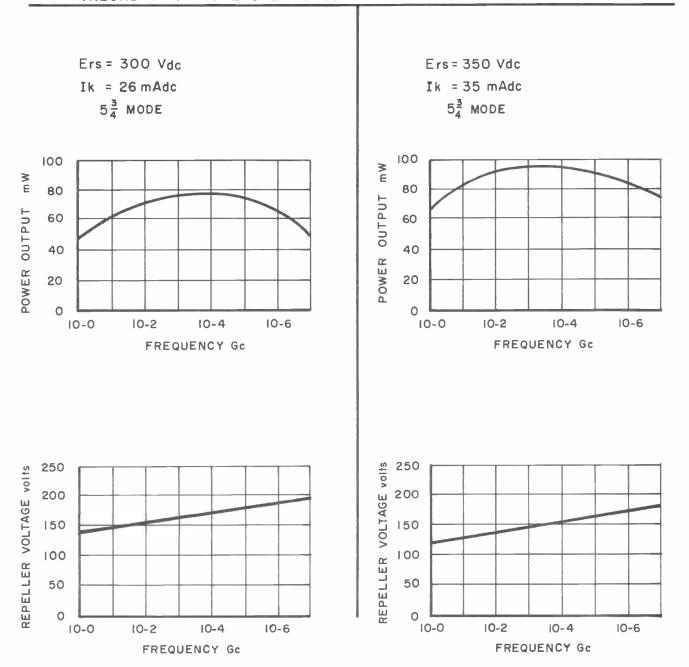
Resonator: The resonator of the 1K20XD-A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.


The heater and cathode of the 1K20XD-A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.


Mechanical Tuning: In the 1K20XD-A a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.


A clockwise rotation of the tuner will produce a decrease in frequency.


IK20XD-A

IK20XD-A TYPICAL OPERATING CHARACTERISTICS

EITEL-McCULLOUGH, INC. AN CARLOS, CALIFORNIA

The Eimac 1K20XD-S is a ceramic and metal, conduction-cooled reflex klystron designed for transmitter or local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 120 milliwatts over the frequency range of 10,500 to 11,000 megacycles.

The stacked-ceramic construction results in an extremely rugged design and a low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Unipotential, oxide coated

÷ ••••••		,				~												
	Warm-up t	ime	-	-	-	-	-	-	-	-	-	-	-	-	-	30	se	conds
Heater:	Voltage -	-	-	-	_	_	-	_	_	-	-	-	-	-	-	6.3		volts
	Current -	-	_	-	-	-	-	-	-	-	-	-	-	-	-	1.0	an	npere
Minimum	Output Powe	er (]	Loa	d V	SW.	R	1.1	5:1)	-	-	-	-	-	-	-	100		watts
Frequenc	y Range -	-	-	-	-	-	-	-	-	-	-	10	,500	to	11,	000	megac	ycles
MECHANICA	L																	
Operating	Position -	-	-	-	-	-	-	-	-		-	-	-	-	_	-		any
Mounting		-	-	-	-	-	-	-	-	-	-	-	UG	-39	9/U	wav	eguide f	lange
Cooling		-	-	-	-	-	-	-	-	-	-	-	6	-	-	-	- condu	iction
Electrica	l Connection	s -	-	-	-	-	-	-	-	-	-	-		-	-	- :	flexible	leads
RF Outpu	t Coupling -	-	-	-	-	-	-	-	-	-	-	-	-	-	RC	G-52,	/U wave	guide
Net Weigl	nt – – –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 4 01	inces
Shipping Y	Weight (Appi	roxir	mat	e)	-	-	-	-	-	-	-	-	-	-	-	-	- 2 pc	ounds
Maximum	Overall Dir	mens	sior	ns:													_	

um	Overall	Dim	nens	sion	IS:														
	Height	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.50	inches
	Width-	-	~	-	-	-	-	-	-	-	-	-	-	-	~	-	-	1.63	inches
	Length	-	_	-	-	-		-	-	-	-	-	-		-	-	-	2.50	inches

ENVIRONMENTAL

Maximum Ambient Temperature	-	-	-	~	-	-	-	-	150° C
Maximum Altitude – – – – – – – – – –	-	-	-	-	-	-	-	No	limit
Maximum Non-Operating Shock* (11 ms Duration) -	-	-	-	-	~	-	-	-	$40 \mathrm{g}$
Maximum Operating Vibration** (20 to 2000 cps) -	-	-	-	-	-	-	-	-	10 g
Maximum Operating Shock* (11 ms Duration)	-	-	-	-	-	-	-	-	40 g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 200 kilocycles.

TENTATIVE DATA

1K20XD-S

X-BAND **REFLEX KLYSTRON**

MAXIMUM RATINGS

DC RESONATOR VOLTAGE*	-	-	-	450 MAX.	VOLTS
DC CATHODE CURRENT	-	-	-	45 MAX.	MA
RESONATOR DISSIPATION	-	-	-	25 MAX.	WATTS
PEAK REPELLER VOLTAGE*					
POSITIVE WITH RESPECT TO CATHODE -	-	-	-	0 MAX.	VOLTS
NEGATIVE WITH RESPECT TO CATHODE	~	-	-	500 MAX.	VOLTS

TYPICAL OPERATION (Load VSWR less than 1.15:1)

DC Resonator Voltage*	-	-	-	-	-	-	-	-	-	-	-	400	volts
Mode	-	-	-	-	-	-	-	-	-	-	-		5-3/4
Frequency	-	-		-	-	-	-	-	-	-		10,750	megacycles
DC Cathode Current	-	-	-	-	-	-	-	-	-	-	-	40	milliamperes
DC Repeller Voltage* -	-	_	_	_	-	_	-	-	~	-	-	-175	volts
DC Repeller Current -	-	-	-	-	-	-	-	-	-	-	-	1	microampere
Power Output	-	_	-	~	-	-	-	-	-	-	-	120	milliwatts
Electronic Tuning (3 db ba	and	widt	:h)	-	-	-	-	-	-	-	-	30	megacycles
Modulation Sensitivity (ΔE	m =	± 3	vol	ts)	-	-	-	-	-	-	-	1.7	Mc/volt
Peak-to-Peak FM Deviati					000	cps	s) –	-	-	_	-	200	kilocycles
Residual FM	-	-	-	-	-		-	-	÷		-	50	kilocycles

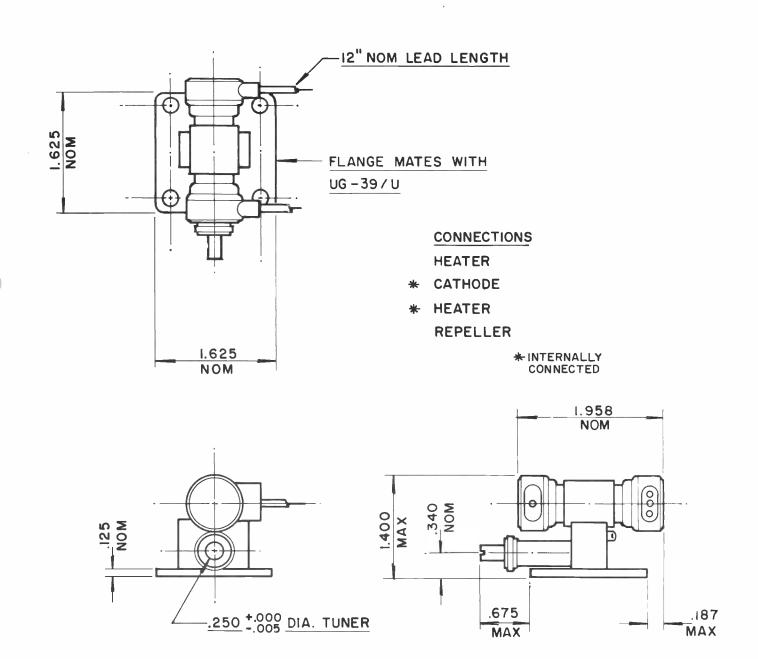
*All voltages referred to cathode.

APPLICATION

Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 150° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-ceramic seal temperatures below the maximum rating of 250° Centigrade.

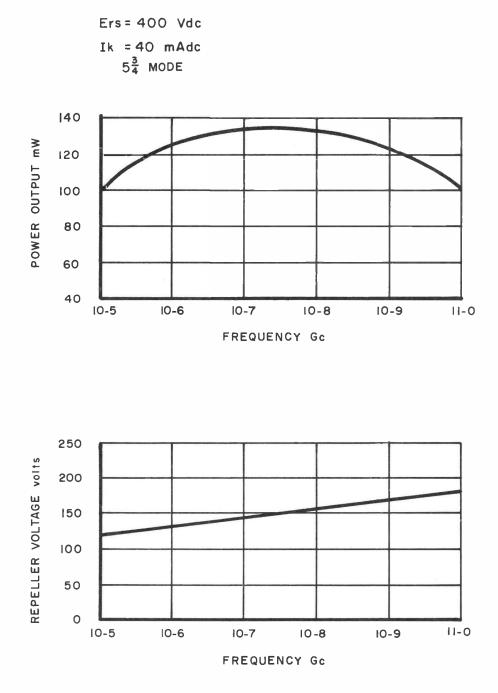
Resonator: The resonator of the 1K20XD-S is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.


The heater and cathode of the 1K20XD-S are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the 1K20XD-S a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

A clockwise rotation of the tuner will produce a decrease in frequency.



IK20XD-S

IK20XD-S TYPICAL OPERATING CHARACTERISTICS

EITEL-MCCULLOUGH, INC.

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range
Mechanically tunable
Power output
Electronic tuning range (3 db bandwidth) 40 Mc min.
Resonator voltage
Cathode current 25 mA
Repeller voltage
Modulation sensitivity
Heater voltage $$
Heater current 0.7 A max.
Mode
VSWR of load 1.1:1
Temperature coefficient200 +100 Kc/°C
Warm-up time

TENTATIVE DATA

1K20XF-B

X BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage .								400 Vdc
Cathode current								50 mA
Repeller voltage:								
Negative with res	pec	t to	ca	the	ode		. •	-25 to -500 Vdc
NOTE: Damage to the tub	e ma	ay o	ccu	r if	max	imu	ım I	ratings are exceeded.

MECHANICAL

Operating position					any
Electrical connections					flexible leads
RF output coupling			RG	·52l	J wave-guide flange
Cooling required					conduction
Net weight					. 5 oz. max.
Shipping weight (approxi	mate	e)		•	. 4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperature	: ra	nge	Э				−50 to +100° C
							. 100,000 ft.
							10G, 20 to 2000 cps
Shock*							. 40G, 11 ms
*As required							

OUTLINE DIMENSIONS

Height .						1.400 in.
Width						1.625 in.
Length						2.570 in.

(EFFECTIVE 4-1-64)

COPYRIG	HT 1964	BY	EITEL-MC	CULLOUGH.	INC.

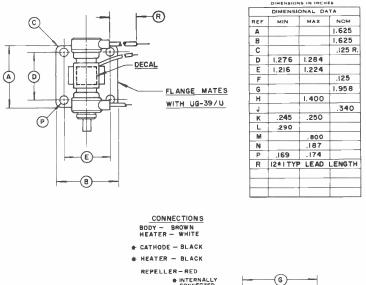
PRINTED IN U.S.A.

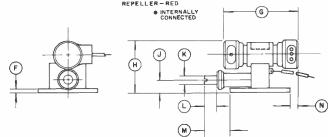
APPLICATION

NOTE: All voltages are referred to the cathode.

Cooling: At sea level this tube will not require forced air cooling when operated at less than 20 watts resonator dissipation and an ambient temperature of less than 150° C. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If the tube is operated at a resonator dissipation of greater than 20 watts or if an insulator is used between the tube and waveguide for DC isolation, forced air cooling will be required to maintain the body temperature below the maximum rating of 175° Centigrade.

Resonator: The resonator of the 1K20XF-B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.


Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


The heater and cathode of the 1K20XF-B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2,000 cps) or shock of up to 40g (11 milliseconds duration).

With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 200 kilocycles.

Special Applications: For additional information regarding any specific application, write to Microwave Division, Eitel-McCullough, Inc., San Carlos, California, telephone Lytell 1-1451, Cable EIMAC.

EITEL-MCCULLOUGH, INC.

1 K 2 O X K X-BAND REFLEX KLYSTRON

TENTATIVE DATA

The Eimac 1K20XK is a ceramic and metal, conduction-cooled reflex klystron designed for local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 75 milliwatts over the frequency range of 9200 to 10,000 megacycles.

The stacked-ceramic construction results in an extremely rugged design and a low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Unipotential, oxide coated.

	Warm-up	tim	е									30 seconds
Heater:	Voltage											6.3 volts
	Current											0.8 ampere
Typical C	Dutput Pow	er (L	.oad	VSW	/R =	1.15	5:1)					75 miliwatts
Frequenc	y Range	•					•		920	0 tc	10,0	00 megacycles

MECHANICAL

Mou Cool Elect R-F Net Ship	rating P nting . ing . rical Co Output Weight ping We imum O	nnection Couplin ight (A	· ns ig ppro								Any UG-39/U waveguide flange Conduction Flexible leads RG-52/U waveguide 4 ounces 2 pounds
Max		verali L	Jime	nsior	15:	•	•	•	•	•	
	Height						•	•			1.40 inches
	Width										1.63 inches
	Length			•							2.28 inches
ENVIRON	IMENTAI	-									
Max	imum A	mbient	Ter	nper	ature	9		_			150°C
	imum A								•	•	No limit
	imum N								(n)	•	40 g
	imum C									•	40 g
Max		perun	iy s	IUCK	- (I	I IIIS		uno	U) _	•	40 9

*Based on a permanent frequency shift after drop of 2 megacycles.

Maximum Operating Vibration** (20 to 2000 cps) .

**Based on a maximum peak-to-peak frequency deviation of 100 kilocycles.

10 g

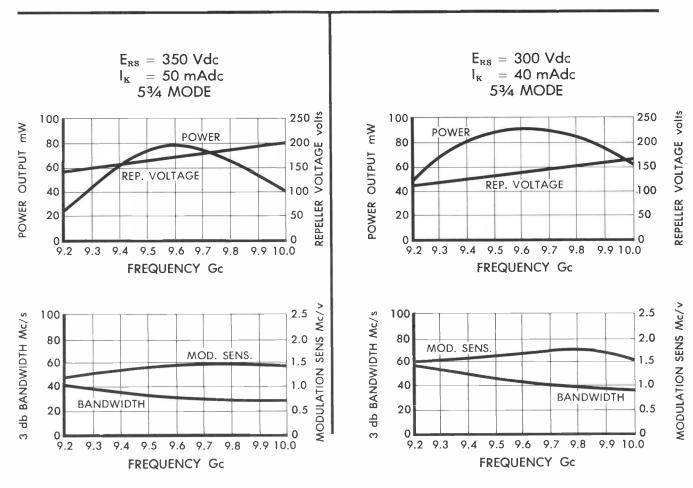
MAXIMUM RATINGS

DC RESONATOR VOLTAGE* . D-C CATHODE CURRENT . RESONATOR DISSIPATION . PEAK REPELLER VOLTAGE* . POSITIVE WITH RESPECT T NEGATIVE WITH RESPECT		· · ·	•		• • •	350 MAX. VOLTS 55 MAX. MA. 20 MAX. WATTS 0 MAX. VOLTS 500 MAX. VOLTS
TYPICAL OPERATION (Load VSWR le	ess than	1.15	to 1)			
D-C Resonator Voltage* . Mode				•	300 5¾	350 volts 5¾
Frequency D-C Cathode Current . D-C Repeller Voltage* . D-C Repeller Current Power Output	 	•	•	•	2600 40 170 1 70	9600 megacycles 50 milliamperes –155 volts 1 microampere 90 milliwatts
Electronic Tuning (3 db bandv Modulation Sensitivity (ΔE _r = Peak-to-Peak FM Deviation (10g Residual FM	±3 vo g, 20-20	lts) 00 cp	s)		35 1.7 50 50	35 megacycles 1.7 Mc/volt 50 kilocycles 50 kilocycles

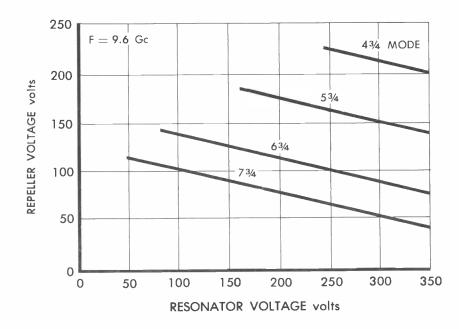
*All voltages referred to cathode.

APPLICATION

Cooling: At sea level this tube will not require forced-air cooling when operated at its maximum rated dissipation with an ambient temperature less than 150° Centigrade. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for D-C isolation, forced-air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 250° Centigrade.


Resonator: The resonator of the 1K20XK is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

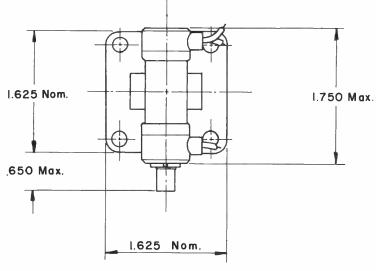
Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


The heater and cathode of the 1K20XK are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the 1K20XK a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

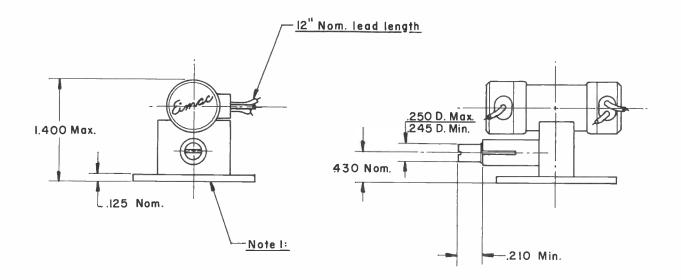
A clockwise rotation of the tuner will produce a decrease in frequency.

MODE CHARACTERISTICS



IK20XK TYPICAL OPERATING CHARACTERISTICS

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA


<u>IK20 XK</u>

<u>NOTE</u>:

1. Mates with UG-39/U flange for RG-52/U waveguide

CONNECTIONS I. REPELLER - RED 2. CATHODE - BLACK 3. HEATER - WHITE

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA

1K20XN-A

X-BAND REFLEX KLYSTRON

The Eimac 1K20XN-A is a ceramic and metal reflex klystron which is especially well-suited for parametric amplifier pump applications. This tube is available at any factory pre-set frequency between 8.5 and 11.0 Gc, and the lock-tuner can be trimmed \pm 50 Mc. for fine tuning adjustments.

The 1K20XN-A provides a minimum output power of 150 milliwatts and is conservatively warranteed for 1,000 hours.

GENERAL CHARACTERISTICS

ELECTRICAL

С	Cathode:	Unipotent	ial,	Ox	ide	Coa	ated	ł														
		Warm-up) Tir	ne	-	-	-	-	-	-		-	-	-	-	-	-	30		se	cond	ls
H	leater:	Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3			volt	s
		Current	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	0.8		ar	nper	'e
С	Connection	ns	-	-	0 100	-	-	-	-	-	~	-	-	-	-	-	-		exibl		-	
MEC	HANICAL																					
С	Dperating	Position	_	~	-	-	-	~	-	_	_	~	_	-	_	_		_	_	_	- ar	v
	Jounting		-	-	_	-	-	-	_	-	_	-	-	UG	-39	/11	W	ave	ruide	۰ <u>د</u>		~
	RF Output		-	-	_	-	_		-	-	-	-	_	-	_				U Wa			
	let Weight	- 0	_	-	-	-	-	_	-	_	_		-	-	_	_		_			unce	
	hipping W		orox	ima	ate)	-	-	_	_	_	-	-	-	-	-	-	_	-	- 2		ound	
	<i>Aaximum</i>																			Р	oune	
* 1		Height-		_	_	_	_	-	_	_	_	~	~	~	-	-	_	_	1.50	i	nche	
		Width -		_		_	_			-	_	_	-	-	-	-	-		1.63	_		
			_	_	-		-	-	-	-		-	-	-	-	~	-			-	nche	
		Length	-	~	-	-	-	-	_	-	-	-	-	-	-	-	-	-	2.50	1	nche	s
ENV	IRONME	NTAL																				
\mathbb{N}	/Iaximum	Ambient 7	Гет	per	atu	re	-	_	-	-	-	-	-	-	-	-	-	_	-	1	50°	С
	Iaximum			-	_			-	-	-	-	-	-	-	-	-	-	_	_	no	lim	it
	Iaximum			s du	irat	ion	-	_	-	-	_	_	_	_	-	-	_	_		_		g
	laximum	,						-2,0	000	cps) -	-	-	-	-	-	-	-		-	10	g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 200 kilocycles.

TYPICAL OPERATION

Mode	-	-	-	-		-	-	-	-	-	-	-	-	~	-	-		4 - 3/4
Frequency	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	10.6	Gc
Resonator Voltage	-			-	-	-	-	-	-	-	-	-	-	-	-	~	400	Vdc
Output Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	200	MW
Cathode Current -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	40	mAdc

TYPICAL OPERATION (continued)

Repeller Voltage*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-290	Vdc
3 db Bandwidth	-		-	-	-	-	-	-	-	~	~	-	-	-	25	Mc
Modulation Sensitivity -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.8	Mc/V

*All voltages referred to cathode.

MAXIMUM RATINGS

Resonator Voltage	-	-	-	-	-	-	-	450 Vdc)
Cathode Current	-	-	~	-	~	-	-	50 mAde	;
Repeller Voltage	-	-	~	~	-	-	-	500 Vdc	
Ambient Temperature	-	-	-	-	-	-	-	150° C	
Resonator Dissipation with conduction cooling-								20 watts	,
Resonator Dissipation with forced air cooling -	-	-	-	-	-	-	-	30 watts	1

APPLICATION

Cooling: At sea level this tube will not require forced air cooling when operated at less than 20 watts resonator dissipation and an ambient temperature of less than 150° C. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If the tube is operated at a resonator dissipation of greater than 20 watts or if an insulator is used between the tube and waveguide for DC isolation, forced air cooling will be required to maintain the body temperature below the maximum rating of 175° Centigrade.

Resonator: The resonator of the 1K20XN-A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

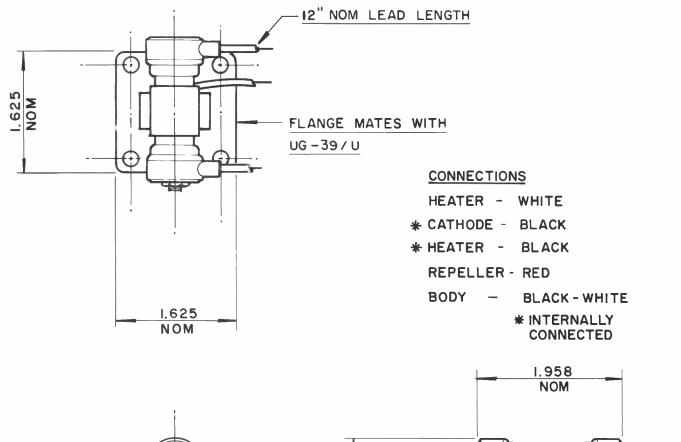
The heater and cathode of the 1K20XN-A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Trimming: The 1K20XN-A is fitted with a locking tuner that allows \pm 50 mc trimming. The center frequency is factory pre-set to your specification.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2,000 cps) or shock of up to 40g (11 milliseconds duration).

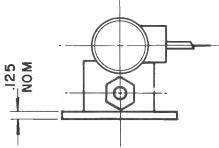
With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 200 kilocycles.

Special Applications: For additional information regarding any specific application, write to Microwave Division, Eitel-McCullough, Inc., San Carlos, California, telephone Lytell 1-1451, Cable EIMAC.



000

.187 MAX


2

IK20XN-A

.340 NOM

1.400 MAX

AN CARLOS, CALIFORNIA

TENTATIVE DATA **1 K 2 O X S** x-band REFLEX KLYSTRON

The Eimac 1K20XS is a ceramic and metal, conduction-cooled reflex klystron designed for local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 75 milliwatts over the frequency range of 8500 to 9200 megacycles.

The stacked-ceramic construction results in an extremely rugged design and a low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Unipotential, oxide coated.

	Warm-up											30 seconds
Heater:	Voltage											6.3 volts
	Current											0.8 ampere
Typical O	utput Pow	er (Lo	bac	VSW	/R =	1.15	i:1)					75 milliwatts
Frequency	/ Range						•		8	500	to	9200 megacycles

MECHANICAL

	Operating P	osition							Any
	Mounting .								
									Conduction
	Electrical Co	nnectio	ns						Flexible leads
	R-F Output	Couplin	ng						RG-52/U waveguide
	Net Weight				•				4 ounces
	Shipping We	eight (A	ppro	oxim	ate)			•	2 pounds
	Maximum C	verall	Dime	ensic	ns:				·
	Height								1.40 inches
	Width								1.63 inches
	Length								2.28 inches
ENV	/IRONMENTA	L							

Maximum	Ambient lemperature		150°C
Maximum	Altitude .		No limit
Maximum	Non-Operating Shock (11 ms Duration)		40 g
Maximum	Operating Shock* (11 ms Duration)		40 g
	Operating Vibration** (20 to 2000 cps)		10 g
	(2010/2000/003)	•	i o g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 100 kilocycles.

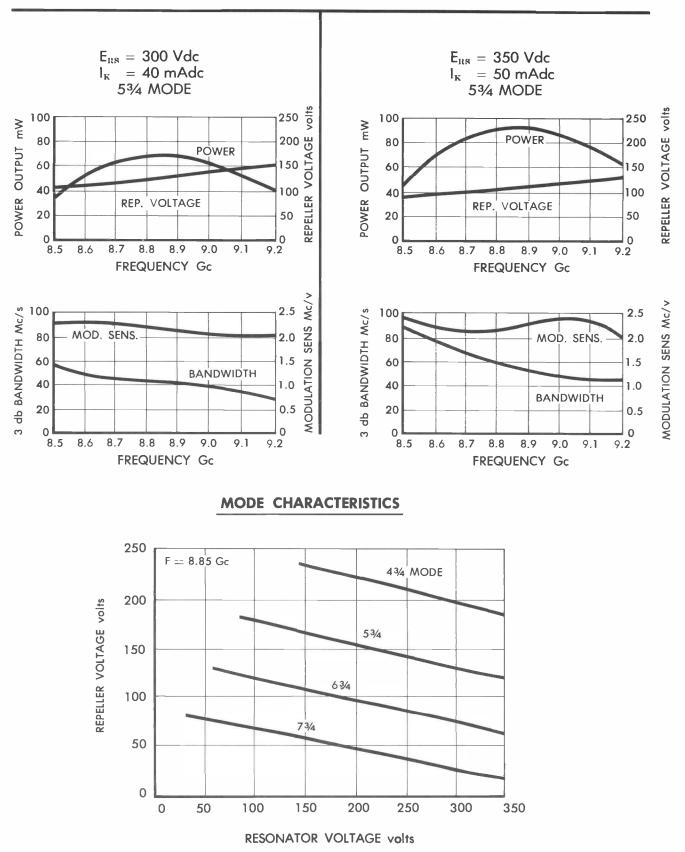
MAXIMUM RATINGS

DC RESONATOR VOLTAGE* . D-C CATHODE CURRENT . RESONATOR DISSIPATION . PEAK REPELLER VOLTAGE* . POSITIVE WITH RESPECT TO NEGATIVE WITH RESPECT T		HOD	E	•	· · · · · · · · · · · · · · · · · · ·	•	 350 MAX. VOLTS 55 MAX. MA. 20 MAX. WATTS 0 MAX. VOLTS 500 MAX. VOLTS
TYPICAL OPERATION (Load VSWR less	s than	1.15	to 1)			
D-C Resonator Voltage Mode				•	350 5¾		300 volts 5¾
Frequency D-C Cathode Current D-C Repeller Voltage* D-C Repeller Current Power Output		•	•	•	8850 50 135 1 90		 8850 megacycles 40 milliamperes 150 volts 1 microampere 70 milliwatts
Electronic Tuning (3 db bandwine Modulation Sensitivity ($\Delta E_r = \pm$ Peak-to-Peak FM Deviation (10g, Residual FM	3 vol 20-20	00 cp	os)	• • •	40 1.5 50 50		40 megacycles 1.5 Mc/volt 50 kilocycles 50 kilocycles

*All voltages referred to cathode.

APPLICATION

Cooling: At sea level this tube will not require forced-air cooling when operated at its maximum rated dissipation with an ambient temperature less than 150° Centigrade. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for D-C isolation, forcedair cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 250° Centigrade.

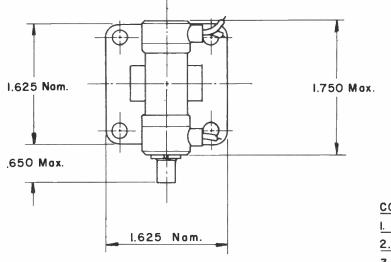

Resonator: The resonator of the 1K20XS is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the 1K20XS are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

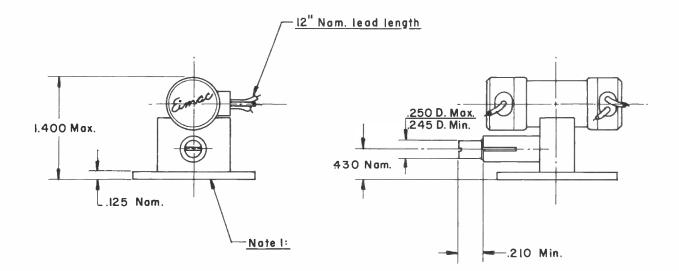
Mechanical Tuning: In the 1K20XS a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

A clockwise rotation of the tuner will produce a decrease in frequency.



IK20XS TYPICAL OPERATING CHARACTERISTICS

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA


IK20XS

NOTE:

I. Motes with UG-39/U flange for RG-52/U waveguide

CONNECTIONS I. REPELLER - RED 2. CATHODE - BLACK 3. HEATER - WHITE

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

REFLEX

1K75CLA

KLYSTRON

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency Setting -	- 4.3	00 to 4.375	Ge
Power Output	-		mW
Electronic Tuning Range	e	210	
(3 db bandwidth)	_	50	Мс
Resonator Voltage -	_		Vdc
Cathode Current -	-	38	mA
Repeller Voltage -	_	-93	Vdc
Modulation Sensitivity	-	1.0 to 2.0	Mc/V
Heater Voltage	_		V(ac or dc) + 5%
Heater Current	_		A max
Mode – – – – –	_	4-3/4	
VSWR of Load	-	1.05:1	
Temperature Coefficien	t		Kc/°C max
Warm-up Time	-		seconds max
	-	Contraction of the later	
MAXIMUM RATINGS			

*MAX JM RATINGS

Resonator Voltage	-	-	-	-	-	900	Vdc
Cathode Current	-	-	-	-	-	85	mΑ
Repeller Voltage (n	egat	ive					

with respect to the cathode) - -50 to -500 Vdc *Note: Damage to the tube may occur if the maximum ratings are exceeded.

MECHANICAL

Operating Position -	-	-	_	Any
Electrical Connection	_	-	_	Flexible Leads
RF Output Coupling -	-	-	-	1/2 height, RG 49 A/U
				waveguide flange
Cooling Required -	-	-	-	Conduction
Net Weight	_	-	-	10 ounces
Shipping Weight (appro	xin	iate)	4 Pounds

ENVIRONMENTAL PERFORMANCE

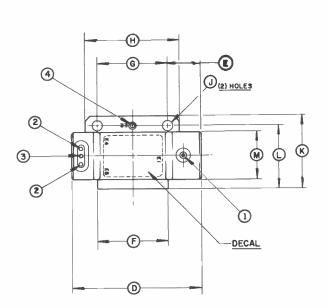
Temperature	Э	Rai	nge		-	-	-	-	$-55 \text{ to } + 90^{\circ} \text{ C}$
/illiudo	-	-	-	-	-	-	-	-	50,000 ft. max
Vibration		-	-	-	-	-	-	-	10 G, 20-2000 cps
Shock -	-	-	-	-		-	-	-	30 G, 11 ms

OUTLINE DIMENSIONS

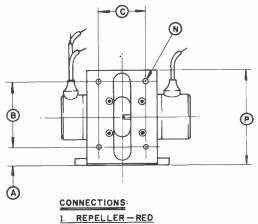
Height		-	-	-	_	-	-	-	 _	2-1/32 inches
Width	-	-	-		-	_	-	-	 _	2-49/64 inches
Length		-					-			

APPLICATION NOTES

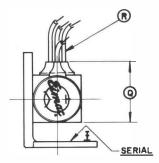
NOTE: All voltages referred to the cathode.


COOLING: At sea level, these tubes will not require forced-air cooling when operated at their maximum rated dissipation with heat-sink and ambient temperatures less than 125° Centigrade. The mounting flange or waveguide flange will normally provide the heat sink connection required for conduction cooling.

If an insulator is used between the tube and waveguide or chassis, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 175° Centigrade.


RESONATOR: The resonator of the 1K75C series tube is integral with the body of the tube. For this reason, it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

CATHODE: The heater voltage should be maintained with \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


The heater and cathode of these tubes are not internally connected and the heater-to-cathode voltage should not exceed ±45 volts. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

	DIMENSIC	NS IN INCH	ES					
DIMENSIONAL DATA								
REF.	MIN.	MAX.	NOM.					
A	.365	.385						
8	1.396	1.416						
С	.990	1.010						
D		2.730						
ε		.684						
F		1.520						
G	1.495	1.505						
н		1.968						
J	.215 DIA.	.225 DIA.						
к		1.593						
L	1.339	1.349						
м		1.010						
N	#6-32 UNC-28 (4) HOLES							
Р		2.030						
Q		1.345						
R	18" MIN.	INSULATIO	N					

FINISH: TUBE BODY - PAINTED TUBE FLANGE - GOLD PLATED

EITEL-MCCULLOUGH, INC.

1K75CH 1K75CK c-band reflex klystrons

1K75CH

1K75CK

TENTATIVE DATA

The Eimac 1K75CH and 1K75CK are low noise, ceramic and metal, ruggedized, internal cavity, reflex klystrons designed for use in altimeter applications at a fixed frequency of 4300 \pm 50 megacycles. These conduction-cooled tubes are capable of delivering a minimum output power of one watt into a load VSWR of 1.15 to 1 under conditions of severe shock, vibration or acceleration extremes.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipotentia	al, ox:	ide coat	ed		
	Warm-up Tim	ne	-	-	60	seconds
Heater:	Voltage	-	-	-	6.3	volts
	Current	-	-	1.0 to	o 1.5	amperes
Minimum	Output Power	(Load	VSWR=1.	15:1)	1.0	watts
Operatin	g Frequency	-	-	4300	± 50	megacycles

MECHANICAL

Operating Position	. –	-			Any
Mounting:					
1K75CH	-	-	-	Heat sin	k flange
1K75CK	-	-	Special	waveguid	e flange
R-F Output Couplin	ig:				
1K7 5CH	-	-	-]	[nsulated !	FNC jack
1K75CK	-	Spe	ecial half	E-height w	aveguide
Electrical Connect	ions	-	-	Flexib	le leads
Cooling -	-	-	Convecti	ion and co	nduction
Maximum Overall Di	mensions:		<u>1K7 5CH</u>	<u>1K7 5CK</u>	
Depth	-	-	1.13	1.19	inches
Width	-	-	2.50	2.76	inches
Length	-	-	2.51	2.73	inches
Net Weight	-	-	8.5	8.0	ounces
Shipping Weight (A	Approximat	e)	2	2	pounds

ENVIRONMENTAL

Maximum Heat-Sink or Ambient Temperature-125° CentigradeMaximum Altitude (1K75CK, and 1K75CH with TNC jack
at body potential)--No LimitMaximum Altitude (1K75CH with TNC jack at cathode potential)40,000 Feet40,000 FeetMaximum Non-Operating Shock (11 ms duration) (1K75CH)-15 gMaximum Non-Operating Shock (11 ms duration) (1K75CK)-30 gMaximum Operating Vibration (20-2000 cps)*--10 g

*Based on a maximum peak-to-peak frequency deviation of 100 kilocycles.

MAXIMUM RATINGS

	D-C RESONATOR	VOLTAGE	*	-	-	-	-	850	MAX.	VOLTS	
	D-C CATHODE CI	URRENT	-	-	-	-	-	100	MAX.	MA.	
	RESONATOR DIS	SIPATION		-	-	-	-	75	MAX.	WATTS	
	PEAK REPELLER	VOLTAGE	*								
				ст то	CATHODE	-	-	0	MAX.	VOLTS	
	NEGA	TIVE WIT	H RESPEC	CT TO	CATHODE	-	-	500	MAX.	VOLTS	
	PEAK HEATER TO	O CATHOD	E VOLTA	GE	-	-	-	±45	MAX.	VOLTS	
түрт	CAL OPERATION	(Load VS	WR less	than	1.15 to 1)					
	ordi ordinari con	(1000 10	1000			·					
	D-C Resonator	Voltage	*	-	-	550		750	volt	5	
	Mode -	-	-	-	-	4-3/4	2	2-3/4			
								- / .			
	Frequency	-	-	-	-	4300		4300	megao	cycles	
	D-C Cathode C	urrent	-	-	-	35		60	milli	Lamperes	
	D-C Repeller		t	-	_	-150		-350	volt	5	
	D-C Repeller (-	-	1		1	micro	oampere	
	Power Output	-	-	-	-	0.25		1.0	watt	-	
	<u>-</u>										
	Electronic Tu	ning (3	db bandy	width) –	60		30	mega	cycles	
	Modulation Ser					1600		160	Kc/vo	olt	
	Residual FM	-	-	-	-	40		40		cycles	
										2	

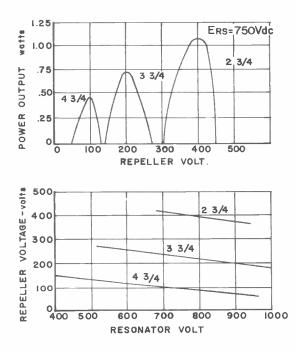
*All voltages referred to cathode.

APPLICATION

<u>Cooling</u>: At sea level, these tubes will not require forced-air cooling when operated at their maximum rated dissipation with heat-sink and ambient temperatures less than 125° Centigrade. The mounting flange or waveguide flange will normally provide the heat sink connection required for conduction cooling.

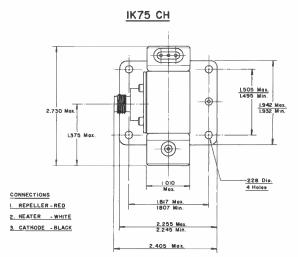
If an insulator is used between the tube and waveguide or chassis, forcedair cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 175° Centigrade.

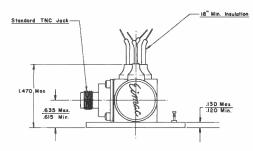
<u>Resonator</u>: The resonator of the 1K75C series tubes is integral with the body of the tube. For this reason, it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

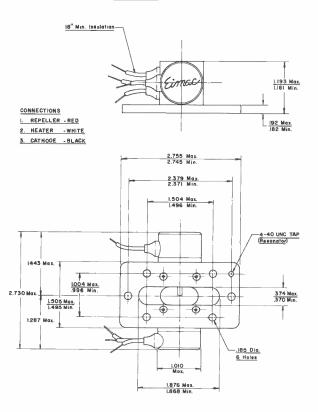

<u>Cathode</u>: The heater voltage should be maintained within \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of these tubes are not internally connected and the heater-to-cathode voltage should not exceed \pm 45 volts. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

IK75CH/CK TYPICAL OPERATING CHARACTERISTICS




MODE CHARACTERISTICS



EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

<u>IK75 CK</u>

SAN CARLOS CALIFORNIA

1K75CS

TENTATIVE DATA

C-BAND REFLEX KLYSTRON

The Eimac 1K75CS is intended to ease the system designers' logistics and performance problems by providing a ruggedized, load-insensitive reflex klystron/isolator package for the 4200-4400 Mc. radio-altimeter band. Combining these two components into one integral package allows them to be matched for optimum performance. Operating in the 4-3/4 mode, the 1K75CS provides more than 300 mW and 100 Mc. electronic tuning range into a load VSWR of 2:1 with only 8 Mc. maximum frequency pulling. Alternately, this tube can be factory pre-set to provide approximately 1 watt and 30 Mc. electronic tuning range.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipotential. oxi	de d	coat	ed									
	Warm-up Time	-	-	-	-	-	-	-	-	-	-	60	seconds
Heater:	Voltage				-	-	-	-	-	-	-	6.3	volts
	Current	-	-	-	_	-	-	-	-	-	-	1.0 to 1.5	amperes
Minimum C	utput Power (4-3	/4	mod	le)	_	-	_	-	-	-	-	0.3	watts
	Frequency (Fixed)					-	-	-	-	-	-	4300 ± 50	megacycles

MECHANICAL

Operating	Position	l	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-		– Any
Mounting		_	-	_	_	-	_	-	-	-	_	-	-	-	-				Flange
RF Output		g-	-	-	-	-	-	-	-	-	-								aveguide
Electrical	Connec	tion	s-	-	-	_	-	-	-	-	-	-	-	-	-	-	- F	lexib	le Leads
Maximum				sio	ns:														_ 1
	Depth	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.16	Inches
	Width		_	_	-	_	-	-	-	-	-		_	-	-	-	-	2.81	Inches
	Length		_	_	_	_	_	_	-	-	-	-	-	-	-	-	-	2.76	Inches
Net Weigh	0	_	-	_	_	_	-	_	-	-	-	_	-	-	-	-	1.5	Pour	nds Max.
Shipping V		ppr	oxi	mat	te)	-	-	-	-	-	-	-	-	-	-	-	-	3	Pounds

ENVIRONMENTAL

Maximum Heat-Sink Temperature	-	-	-	-	-	-	-	-	-	$125^{\circ}C$
Maximum Non-Operating Shock (11 ms Duration)	- (-	-	_	-	-	-	-	-	$15 ext{ g}$
Maximum Operating Vibration (20 - 1500 cps)*	_	_	_	-	-	-	-	_	-	$10 ext{g}$
Maximum Operating Vistation (20 2000 PP)										0

*Based on a maximum peak-to-peak frequency deviation of 100 kilocycles.

MAXIMUM RATINGS

DC RESONATOR VOLTAGE	-	-	-	-	900 MAX. VOLTS
DC CATHODE CURRENT	-	-	-	-	85 MAX. MA
RESONATOR DISSIPATION	-	-	-	-	75 MAX. WATTS
PEAK REPELLER VOLTAGE*					
POSITIVE WITH RESPECT TO CATHOD					
NEGATIVE WITH RESPECT TO CATHOI	DE	-	-	-	500 MAX. VOLTS

TYPICAL OPERATION

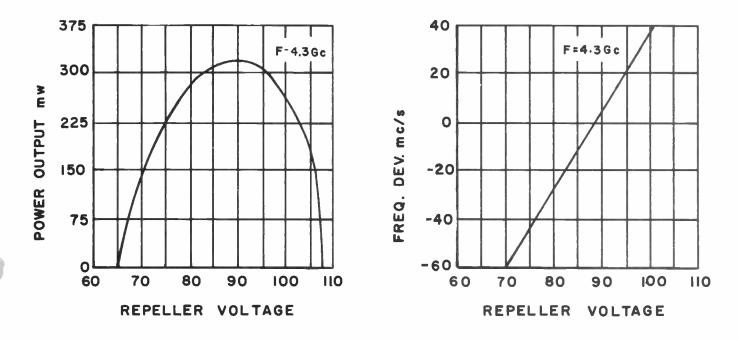
Mode		-	-	-	-	-	-	-	_	_	-	4-3/4	
Frequency		-	-	-	-	-	-		-	-	-	4300	megacycles
DC Resonator Voltage* -		-	-	-	-	-	-	-	-	-	-	700	volts
DC Cathode Current		-	-	-	-	-	-	-	-		-	55	milliamperes
DC Repeller Voltage -		-	-	-	-	-	-	-	-	-	-	-85	-
DC Repeller Current -		-	-	-	-	-	-	-	-	-	-	1	microampere
Output Power		-	-	-	-	-	-	-	-	-	-	325	milliwatts
Electronic Tuning (3 db ba	ndwid	th)		-	-	-	-	-	-	-	-	110	megacycles
Modulation Sensitivity -		-	-	-	-	-	-	-	-	-	-	3	Mc/volt
Residual FM – – – –		-	-	~	~	-	-		-	-	-	40	kilocycles
Temperature Coefficient (·	-55 to	+12	5 C)	-	-	-	-	-	-	-	<u>+</u> 75	Kc/°C

*Based on a maximum peak-to-peak frequency deviation of 100 kilocycles.

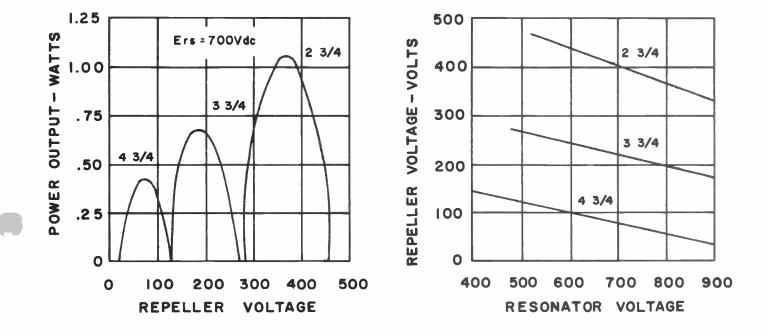
APPLICATION

Cooling: At sea level, these tubes will not require forced-air cooling when operated at their maximum rated dissipation with heat-sink and ambient temperatures less than 125° Centigrade. The mounting flange or waveguide flange will normally provide the heat sink connection required for conduction cooling.

Resonator: The resonator of the 1K75CS is integral with the body of the tube. For this reason, it is convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

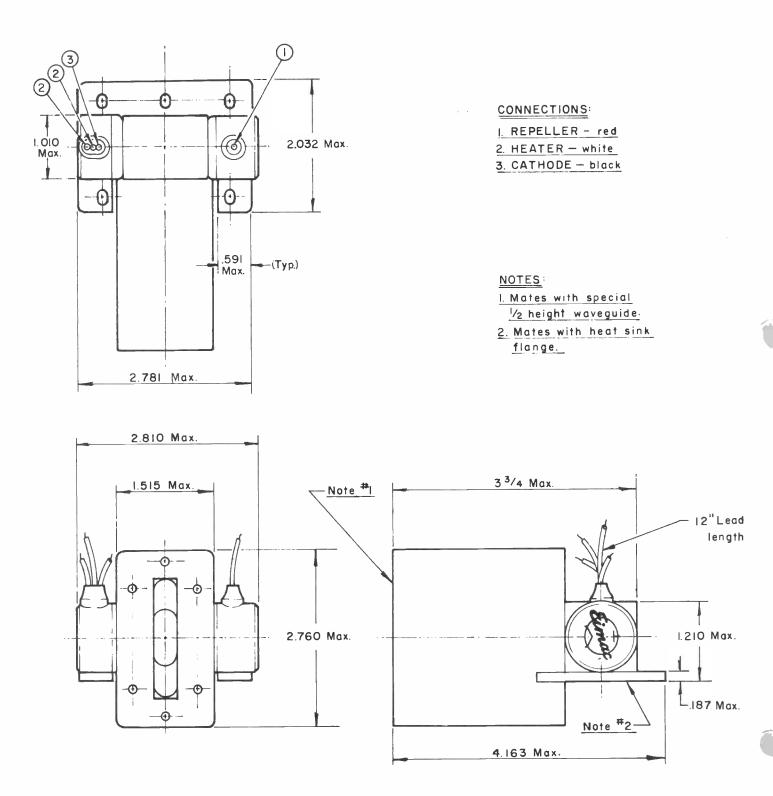

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of these tubes are not internally connected and the heater-tocathode voltage should not exceed ± 45 volts. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.



IK75CS TYPICAL OPERATING CHARACTERISTICS

Ers = 700 Vdc |k = 55 m Adc 4 3/4 MODE



MODE CHARACTERISTICS

<u>IK75 CS</u>

EITEL-McCULLOUGH, INC. SAN CARLOS, CALIFORNIA

PRELIMINARY DATA

1K125CA C-BAND **REFLEX KLYSTRON**

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency Range - -Mechanically Tunable Power Output - - -Electronic Tuning Range (3 db bandwidth) -Resonator Voltage -Cathode Current - -Repeller Voltage - -ModulationSensitivity250 to 550 Kc/vHeaterVoltage-6.3 V(ac) Heater Current _ Mode - - - - - - - - VSWR of Load - - -Temperature Coefficient Warm-up Time - -_ - -

700 Mc 1.25 W min 25 Mc min 1000 Vdc 80 mAdc -400 Vdc 6.3 V(ac or dc) $\pm 5\%$ 1.5 A max 2 - 3/41.15:1 ±75 Kc/°C 120 seconds

3.7 to 4.4 Gc

MAXIMUM RATINGS

Resonator Voltage – – – –	- 1200 Vdc
Cathode Current	– 110 mA
Repeller Voltage (negative with	
respect to the cathode)	100 to 750 Vdc

Note: Damage to the tube may occur if the maximum ratings are exceeded.

MECHANICAL

Operating	Position	-	-	-	-	-	any
Electrical	Connecti	on	-		-	-	Octal Socket
RF Output	Coupling	5 -	-C	MR	187	7 wave	guide flange
Cooling Re	quired		-	-	-	10 cfn	n @ sea level
Net Weight			-	~	-	-	19 ounces
Shipping W	eight (ap	proxi	mate	e)	-	-	5 pounds

ENVIRONMENTAL PERFORMANCE

Temperature	R	ang	je	(An	ıbie	ent)	-	-25 to $+65$ C
Altitude	-	-	-	-	-	-	-	10,000 ft. max
Vibration	-	-	-	-	-	-	-	10 G, 40 cps
Shock –	-		-	-	-	-	-	10 G, 1 ms

OUTLINE DIMENSIONS

Height	-	-	-	-	-	-	-	-	-	-	4.7 00 max
Width	-	-		-	-	-	-	-	-	-	2.797 max
Length	-	-	-	-	-	-	-	-	-	-	3.450 max

(Effective 3-15-64) © Copyright 1964 by Eitel-McCullough, Inc.

APPLICATION NOTES

NOTE: All voltages are referred to the cathode.

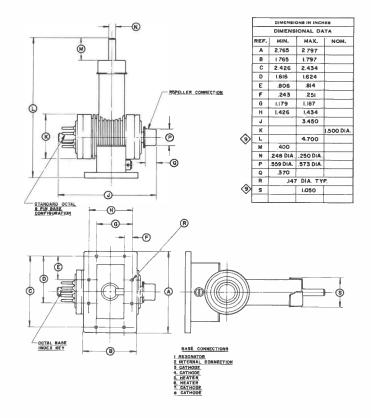
COOLING: At sea level, with an ambient temperature of 50° Centigrade, a minimum air-flow rate of 10 CFM, directed over the klystron body, is required to adequately cool the tube when operated at maximum ratings.

For conditions other than the above, the criterion for proper cooling is to maintain the klystron ceramic-to-metal seal temperatures below 175°Centigrade. Cooling in excess of the minimum recommended flow rate will result in longer tube life and more stable operation. If extended tube life is of primary concern, the body temperature should not exceed 100° Centigrade.

RESONATOR: The resonator of the 1K125CA is integral with the body of the tube. For this reason, it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

CATHODE: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the 1K125CA are not internally connected and the heater-tocathode voltage should not exceed ± 45 volts. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.


Electrical connection to the cathode of this tube should be completed by utilizing all four of the cathode base pins.

MECHANICAL TUNING: A screw-driven bellows, coupled to a ceramic-slug tuner, allows tuning cycling in excess of 1000 cycles without damage to the vacuum seals. The tuning rate of approximately 100 megacycles per turn and the low tuner starting-torque permits the use of miniature motors for remote tuning. Mechanical stops, capable of withstanding a maximum torque of 10 inchounces, are provided at the extremes of the tuning range to prevent damage to the tube.

Clockwise rotation of the tuner-shaft produces an increase in frequency.

MOUNTING: The 1K125CA should be mounted by the output-waveguide flange. An octal socket is required to complete the electrical connections to the heater and cathode. The repeller connection is completed with a standard medium cap connector.

SPECIAL APPLICATIONS: For additional information regarding any specific application, write to Eitel-McCullough, Inc., San Carlos, California. All such requests will be handled confidentially.

EITEL-McCULLOUGH, INC. SAN CARLOS, CALIFORNIA

X-1075A

TENTATIVE DATA

X-BAND **REFLEX KLYSTRON**

The Eimac X-1075A is a ceramic and metal, conduction cooled reflex klystron designed for local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 100 milliwatts over the frequency range of 8500 to 9600 megacycles.

The stacked-ceramic construction results in an extremely rugged design and a low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

FEATURES: This tube features Eimac's new long-life tuner which renders excellent torque control under extreme environmental conditions over as many as 10,000 cycles.

GENERAL CHARACTERISTICS

10 g

ELECTRICAL

	Cathode:	Unipotent	tial,	oX	ide	coa	ited															
		Warm-up) Tir	me	-	-	-	-	-		-	-	-	-	-	-	-	30		se	econds	5
	Heater:	Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3			volts	5
		Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.0		a	mpere	Э
	Typical Ou	atput Pow	er (]	Loa	d V	SW	R =	1.1	15:1) -	-	-	-	-	-	-	-	100	r	nill	iwatts	5
	Frequency	Range-	-	-	-	-	-	-	-	-	-	-	-	-	850	00 t	:o 9	600	m	ega	cycles	3
ME	CHANICAL																					
	Operating	Position	-	_	-	-	_	_	-	_	-	_	-	-	-	_	-	_	_	-	Any	y
	Mounting		-	-	_	-	-	-	-	-	_	_	_	UC	3- 39	9/U	W	aveg	ruid	le]	Flange	е
	Cooling		_	_		_	_	_	_	_	_	_	_	_	-	_	_	-			luction	
	Electrical			-	-	_	_	-	-	_	_	-	_	-	_	-	_	Fle			Leads	
	RF Output	Coupling	-	_	-	-	-	-	_	-	~	_	_	_	_	R	G-				eguide	
	Net Weigh		-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	4		Dunces	
	Shipping W	Veight (Ap	proz	kim	ate) –	-	_	-	-	_	-	-	-	-	_	-	-	2	F	Pounda	s
	Maximum																					
		Height-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	f0		Inches	5
		Width -	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	53	-	Inches	s
		Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	28		Inches	3
EN	VIRONMEI	NTAL																				
	Maximum	Ambient '	Tem	per	atu	ıre	_	_	_	_	_	-	_	-	_	_	-	_	-	- 1	150° C	2
	Maximum			~	-		-	-	-	-	-	-	-	-	-	-	-	_	-	No	Limi	t
	Maximum	Non-Oper	atin	lg S	hoc	ek (1	11 r	ns	Dur	atic	on)	-	-		-	-	-	-	-	-	40 g	g
	Maximum		g Sho	ock	(11	m	s D	ura	tion) –	-	-	-	-	-	-	-	-	-	-		g

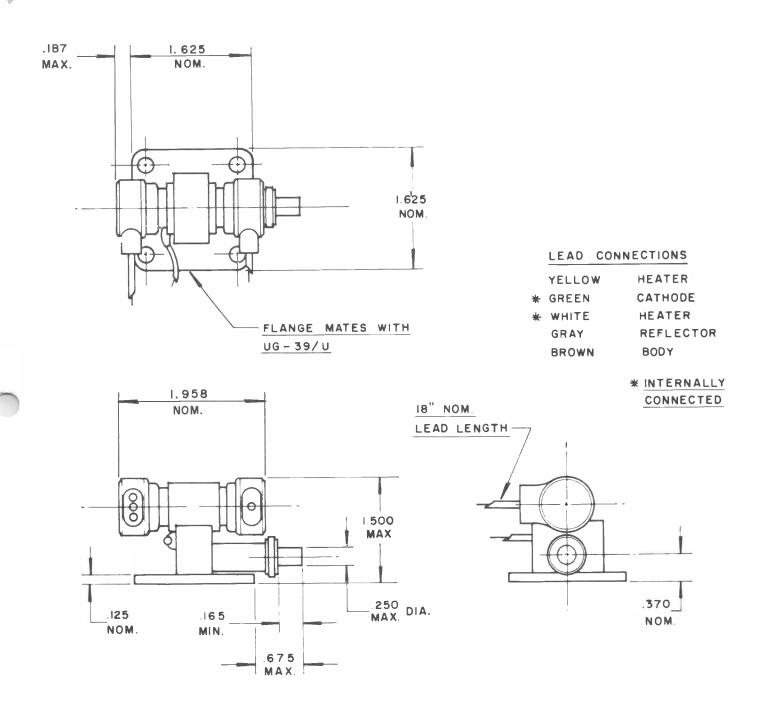
Maximum Operating Vibration (20 to 2000 cps) -

MAXIMUM RATINGS

DC RESONATOR VOLTAGE*	- 500 MAX. - 50 MAX. - 25 MAX. - 0 MAX. - 500 MAX.	MA
OPERATION MIN. AVE.	MAX.	UNIT
Mode 5-3/4		
Frequency 8.5	9.6	Gc.
DC Resonator Voltage 400		Volts
DC Cathode Current 40		ma
DC Repeller Current – – – – – – – – – – – – – – – – – – –	1	μamp
Power Output 100 130	200	mW
Electronic Tuning (3 db bandwidth) 30		me
Modulation Sensitivity	2	Mc/Volt
Peak-to-Peak FM Deviation (10g, 20 - 2000 cps)	250	kc
Residual FM	50	kc

*All voltages referred to cathode.

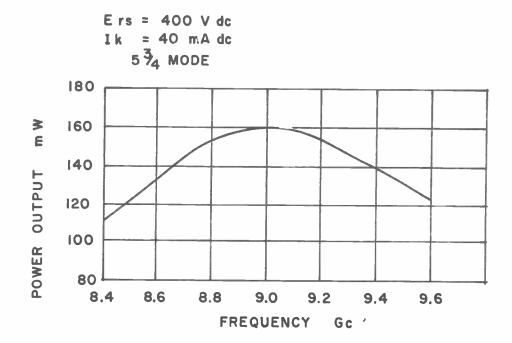
APPLICATION

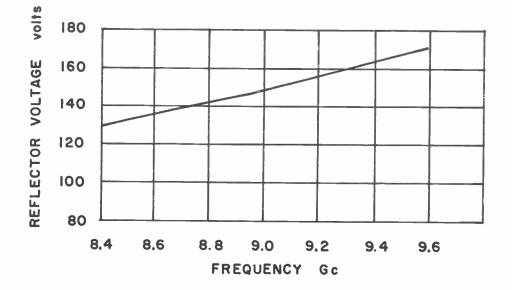

Cooling: At sea level this tube will not require forced-air cooling when operated at its maximum rated dissipation with an ambient temperature less than 150° Centigrade. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced-air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 175° Centigrade. Maximum life will be obtained if the tube is maintained at 150° C or less.

Resonator: The resonator of the X-1075A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X-1075A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.




11

X 1075 A

X 1075A OPERATING CHARACTERISTICS

TechPul

EITEL-MCCULLOUGH, INC.

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

	Frequency Setting	-	-	13.90 Gc
	Mechanically Trimmable		-	± 20 Mc
	Power Output	-	-	200 m W
	Electronic Tuning Range			
	(3 db bandwidth) -	-	-	25 Mc min
	Resonator Voltage -	-	-	400 Vdc
	Cathode Current	-	-	40 m A
	Repeller Voltage	-	-	-280 Vdc
	Modulation Sensitivity	-	-	0.8 Mc/v max
	Heater Voltage	-	-	6.3 V(ac or dc) $\pm 5\%$
	Heater Current	-	-	1.3 A max
	Mode	-		3-3/4
	VSWR of Load	-	-	1.10:1
	Temperature Coefficient		-	$-150 \text{ Kc/}^{\circ} \text{C}$
	Warm-up Time	-	-	30 seconds
1		~	-	Section 1994 and 1

MAXIMUM RATINGS

Resonator Voltage		-	500 Vdc									
Cathode Current -		-	55 m A									
Repeller Voltage (negat:	ivewi	th										
respect to the catho	ode)	-	(-50 to -500) Vdc									
Note: Damage to the tube may occur if the maximum ratings are exceeded.												

MECHANICAL

Operating Position	-	-	-	Any
Electrical Connections		-	-	Flexible Lead
RF Output Coupling	-	-	-	RG-91/U waveguide
Cooling Required -	-	-	-	Conduction
Net Weight	-	-	-	6 ounces
Shipping Weight (approx	xin	nate	:)	4 pounds

ENVIRONMENTAL PERFORMANCE

Temperatu	ire	R	ang	е	(Max	A	mbier	nt)	150° C
Altitude			_		-				100,000 ft. max
Vibration		-	-	-	-	-	-	10	G, (20-2000 cps)
Shock	-	-	-	-		-	-		40 G, (11 ms)

OUTLINE DIMENSIONS

Height	+		-	-	-	-	-	1.40 inches
Width	-	-	-	-	-	-	-	1.50 inches
Length		_	-	-	_	-	-	2.10 inches

(Effective 3-15-64) © Copyright 1964 by Eitel-McCullough, Inc.

TENTATIVE DATA

EM-1114

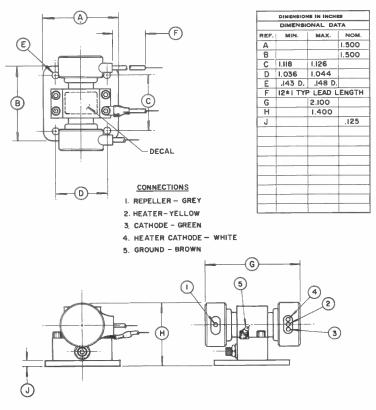
X-BAND REFLEX KLYSTRON

APPLICATION NOTES

COOLING: At sea level this tube will not require forced air cooling when operated at less than 20 watts resonator dissipation and an ambient temperature of less than 150°C. The waveguide flange connection will normally provide the required heat - sink for conduction cooling. If the tube is operated at a resonator dissipation of greater than 20 watts or if an insulator is used between the tube and waveguide for DC isolation, forced air cooling will be required to maintain the body temperature below the maximum rating of 175° Centigrade.

RESONATOR: The resonator of the EM-1114 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

CATHODE: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


The heater and cathode of the EM-1114 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

MECHANICAL TRIMMING: The EM-1114 is fitted with a locking tuner that allows ± 20 mc trimming. The center frequency is factory pre-set to your specification.

SHOCK AND VIBRATION: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2,000 cps) or shock of up to 40g (11 milliseconds duration).

With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 200 kilocycles.

SPECIAL APPLICATIONS: For additional information regarding any specific application, write to Microwave Division, Eitel-McCullough, Inc., San Carlos, California, telephone Lytell 1-1451, Cable EIMAC.

SAN CARLOS, CALIFORNIA

The Eimac X-1075 is a ceramic and metal, conduction cooled reflex klystron designed for local oscillator service in applications encountering severe vibration, shock or temperature extremes. This tube will deliver a typical output power of 30 milliwatts over the frequency range of 8500 to 9600 megacycles.

The stacked-ceramic construction results in an extremely rugged design and a low sensitivity to vibration.

Leads to the tube are permanently attached and protected by molded silastic rubber caps which permit operation at any altitude without flashover.

FEATURES: This tube features Eimac's new long-life tuner which renders excellent torque control under extreme environmental conditions over as many as 10,000 cycles.

GENERAL CHARACTERISTICS

10 g

TENTATIVE DATA

X-1075

X-BAND REFLEX KLYSTRON

ELECTRICAL

	Cathode:	Unipoten	tial.	OX	ide	coa	lted															
	Camoue.	Warm-up				_	_	-	_		-	_	-	-	-	-	-	30		sec	cond	S
	TT 1	-		inc					_	-	_	_	_	_	_	-	_	6.3			volt	;s
	Heater:	Voltage		-	-	-	-	-	-	-						_		1.0			nper	
		Current		-	-	-	-	-		. –	-				-	-	_			nilli		
	Typical Ou	ıtput Pow	er (1	Loa	ıd V	SW	R =	1	15:1	.) –		-	-	-	-		-	30				
	Frequency		-	-	-	-	-	-	-	-	-	-	-	-	85	00 1	to 9	600	m	egac	yere	S
ME	CHANICAL																					
	Operating	Desition	_	_	-	_	-	-	-	-	_	_	-	-	-	-	_	-	-	-	Ar	ıy
	Operating		_	_	_	_	_	_	-	_		-		U	G-3	9/T	υN	/ave	guid	le F	lang	re
	Mounting		_	_	_	-		_	_	_	_	_	_	_	_		_	_		ondu		
	Cooling		-	-	-	_	-		_	_	_				_	_		۲ı	-	ole 1		
	Electrical			-	-	-	-	-	-	-	-	-	-		_	- -				Vave		
	RF Output	; Coupling	-	-	-	-	-	-	-	-	-	-	-	-	-	Г	iG-	02/				
	Net Weigh	it	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	4		unce	
	Shipping V	Veight (Aj	opro	xin	nate	e) -	-		-	-	-	-	-	-	-	-	-	-	2	Р	ound	15
	Maximum	Overall]	Jim	ens	ion	S:															_	
	111000000000	Height-	_	-	-	-	_	-	-		-	-		-	-	-	-		40		nch	
		Width -	_	_	_	_	-	_	-	_	-	-	-	-	-	-	-	1.	63	I	nch	es
		Length	-	-	-	-	-	-	-	-		-	-	-	-	-	-	2.	28	I	nch	es
EN	VIRONME	NTAL																				
															_	_	_	_	_		150°	С
	Maximum		Ter	npe	erat	ure	-	-	-	-	-	-	-	-	-	-	_	_			Lin	
	Maximum	Altitude	-	-	-	-	-	-	-	_	_	-	-	-	-		-		_	INU		
	Maximum	Non-Ope	rati	ng	Sho	ck	(11)	ms	Du	rati	on)	-	-	-	-	_	-	-	-	-	40	
	Maximum	Operatin	ig Sh	noc	k (1	1 n	ns E	Jura	atio	n) –	-	-	-	-	-	-	-	-	-	-	40	g

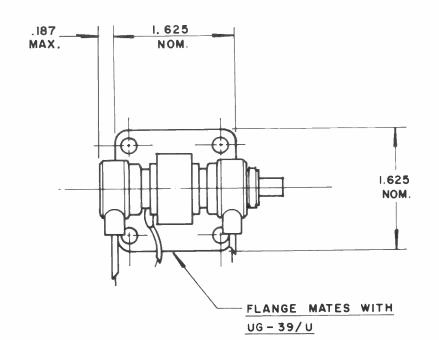
Maximum Operating Vibration (20 to 2000 cps) -

MAXIMUM RATINGS

DC RESONATOR VOLTAGE* DC CATHODE CURRENT RESONATOR DISSIPATION PEAK REPELLER VOLTAGE*			-			400 MAX. 40 MAX. 20 MAX.	VOLTS MA WATTS
POSITIVE WITH RESPE	CT	то	CAT	HODE -		0 MAX.	VOLTS
NEGATIVE WITH RESPI	ECT	' TC	CA	ΓHODE		500 MAX.	VOLTS
OPERATION				MIN.	AVE.	MAX.	UNIT
Mode	-	-	_		6-3/4		
Frequency	-	-	-	8.5		9.6	Gc.
DC Resonator Voltage	-	-	-		250		Volts
DC Cathode Current	-	-	-	20		30	ma
DC Repeller Voltage	-	-	-		65		Volts
DC Repeller Current	-	-	-			1	$\mu \operatorname{amp}$
Power Output	-	-	-	20	30	50	mŴ
Electronic Tuning (3 db bandwidth)	-	-	-		35		me
Modulation Sensitivity	-	-	-			2	mc
Peak-to-Peak FM Deviation (10g, 2)	0 -	200	0 cps	5)		250	kc
Residual FM	-	-	-			50	ke

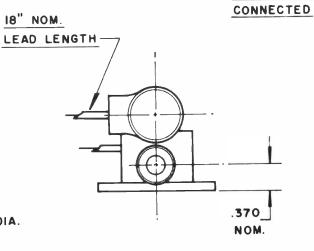
*All voltages referred to cathode.

APPLICATION


Cooling: At sea level this tube will not require forced-air cooling when operated at its maximum rated dissipation with am ambient temperature less than 150° Centigrade. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced-air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 175° Centigrade. Maximum life will be obtained if the tube is maintained at 150° C or less.

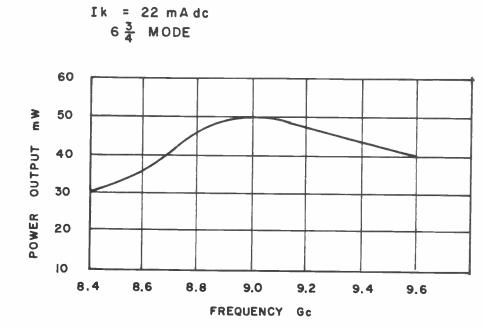
Resonator: The resonator of the X-1075 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

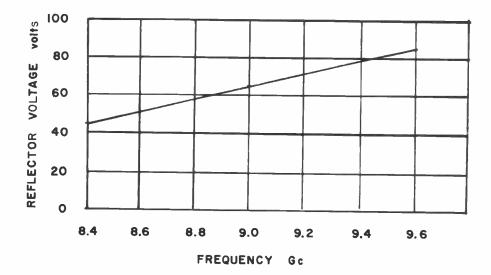
Cathode: The heater voltage should be maintained within \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


The heater and cathode of the X-1075 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

	LEAD	CONNECTIONS
	YELLO	W HEATER
*	GREEN	CATHODE
*	WHITE	HEATER
	GRAY	REFLECTOR
	BROWN	BODY

* INTERNALLY




X 1075

X1075 OPERATING CHARACTERISTICS

Ers = 250 Vdc

EIMAC

A Division of Varian Associates

X-1095 REFLEX KLYSTRON

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency Setting -	-	-	-factory preset at frequency between 5.9 & 6.7 Gc	
Power Output	-	-	- 400 mW	1
Electronic Tuning Ran	ige			1.455
(3 db bandwidth)	-	-	- 100 Mc	1000
Resonator Voltage -	-	-	- 600 Vdc	
Cathode Current -	-	-	- 45 mA	1.00
Repeller Voltage -	-	-	- —100 to —200 Vdc	100
Modulation Sensitivity	-	-	- 2.0 to 3.0 Mc/V	THE REAL
Heater Voltage -	-	-	- 6.3 V (ac or dc)	
Heater Current -	-	-	- 0.7 A	3
Mode			- 43⁄4	
VSWR of Load -	-	-	- 1.2:1 max	
Temperature Coefficies	nt	-	- $\pm 50 \text{ kc/}^{\circ}\text{C}$	
Warm-up Time -	-	-	- 30 seconds	

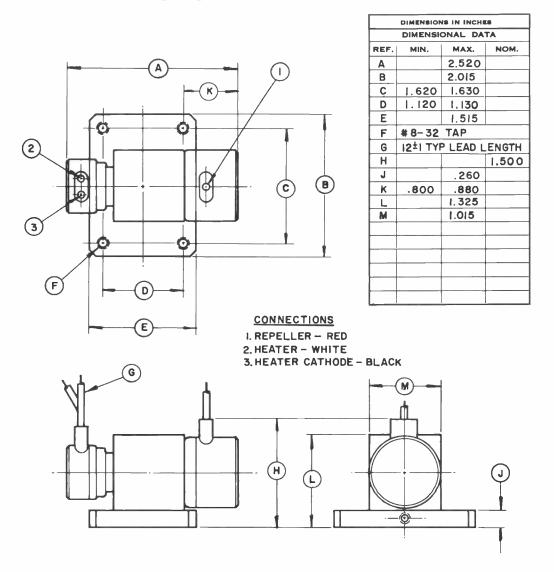
Resonator Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	700 Vdc
Cathode Current -	нт —	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60 mA
Repeller Voltage (neg	gativ	e wi	th re	espec	ct to	the	cath	ode)	-	-	-	-		-50	to –	-500 Vdc
Note: Damage to the	tub	e ma	ay o	ccur	if th	ne m	axin	num	rati	ngs	are e	xcee	ded.			

MECHANICAL

	Operating Position	-	-	-	-	-	-	-	-	-	-		-	-		-	-	Any
	Electrical Connection	-11	-	-	-	-	-	-	-	-	-	-	14	-	- J	Flex	ible	Leads
	RF Output Coupling	-	-	-1	-	-	-	-	-1	-	-	-1	-	See	Ou	tlin	e Dr	awing
	Cooling Required -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	ond	uction
	Net Weight	-	-	-	-	Π.	-	-	-	-	-	-	-			-	6 0	ounces
	Shipping Weight (app	oroxi	mat	e)	-	-	-	E.	-	-	-	- 1	- 1	-	-	÷	4 P	ounds
ENV	IRONMENTAL PERFOR	MAN	ICE															
	Temperature	-	-	-	-	-	-	-	-	-	-	-	-		-55	°C t	:0 +	125°C
	Altitude	-	-	-	-	-	-		-		-	7	-	-		/		et max
	Vibration	-	-	-	-	-	-	-	-	-	-	-	-	10) G,	5 to	o 200	00 cps
	Shock	-	-	-	-	-	-	-	-	14	-	-	-	-	-	100	G,	11 ms
OUT	LINE DIMENSIONS																	
	Height	-	-	-	-	21	-	-	н ()	-	-	-	-	-	-	1	.42	inches
	Width	-	-	-	-	-	-	9	-	-	.	5	-	-	-	2	.00	inches
	Length	-	-	-	-	-	-	-	-	-	-			-	-	2	.45	inches

APPLICATION NOTES

NOTE: All voltages referred to the cathode.


COOLING: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat-sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

RESONATOR: The resonator of the X1095 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

CATHODE: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1095 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

VSWR OF LOAD: To obtain the typical performance listed, the load VSWR should be less than 1.2:1.

Eimac

SAN CARLOS, CALIFORNIA

TWO-CAVITY KLYSTRON

X-1111

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

-	-	$13.3 \pm .005$ Gc
-	-	2.0 W min
Ra	nge	
th)	-	10 Mc
	-	2150 ± 75 Vdc
_	-	15-25 mA
vity	y .	100 kc/V
-	-	6.3 V(ac or dc)+5%
-	-	0-70 A
_	-	1.2:1
icie	nt	$\pm 100 \text{ kc/}^{\circ}\text{C}$
-	-	35 seconds
-	-	
	Ra th)	

MAXIMUM RATINGS

Resonator Voltage - - - - - - - 2500 Vdc Cathode Current - - - - - - - - - 30 mA Note: Damage to the tube may occur if the maximum ratings are exceeded.

MECHANICAL

Operating Position	_	Any
Electrical Connection		Flexible Leads
RF Output Coupling	-	RG-91/V waveguide flange
Cooling Required -	-	Conduction
Net Weight	-	8 ounces
Shipping Weight (appro	xin	nate) 4 Pounds

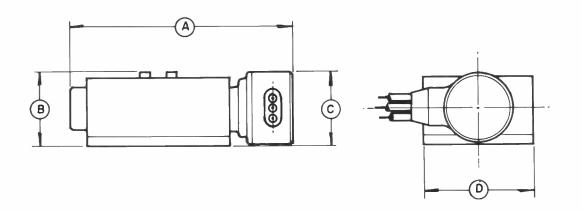
ENVIRONMENTAL PERFORMANCE

Temperature	R	ang	е	-	-	-	$-20 \text{ to} + 75^{\circ} \text{ C}$
Altitude	-	-	-	-	-	-	100,000 feet max
Vibration	-	-	-	-	-	-	10 G, 20 to 2000 cps
Shock -	-	-	-	-	-	~	60 G.11 ms

OUTLINE DIMENSIONS

Height	-	-	-	-	-	-	_	-	_	_	.90 inches
Width	-	-	-	-	-	-	-	-	-	-	1.35 inches
Length	-	-	-	-	-	-	-	-	-	-	2.80 inches

.


APPLICATION NOTES

- 1. NOTE: All voltages are referred to the cathode.
- 2. RESONATOR: The resonator of the X-1111 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.
- 3. CATHODE: The heater voltage should be maintained with \pm 5% of the rated value of 6.3 volts if variations in performance are to be mimimized and best tube life obtained.

The heater and cathode of the X-1111 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

DIMENSIONS IN INCHES														
DIMENSIONAL DATA														
REF. MIN. MAX. NOM.														
Α		2.660												
В			.920											
С			.905											
D		1.325												
Ε	.946	.966_												
F			.250											
G	.984	1.004												
H			. 159											
J	.1440	.150 D												

EITEL-MCCULLOUGH, INC.

TWO-CAVITY KLYSTRON

X-1113

TENTATIVE DATA

ELECTRICAL PERFORMANCE

Frequency Setting Power Output Electronic Tuning Range (3 db bandwidth) -Resonator Voltage -Cathode Current -Modulation Sensitivity Heater Voltage - -Heater Current VSWR of Load _ Warm-up Time -_

2.0 W min 40 Mc 2500±150 Vdc 25-40 mAdc 100 Kc/V. 6.3 V(ac or dc)±5% 2.0 A 1.2:1 35 seconds

35 Gc

MAXIMUM RATINGS

Resonator Voltage - - - - - - - - 3100 Vdc

Note: Damage to the tube may occur if the maximum rating is exceeded.

MECHANICAL

Operating
Electrical
Connection-Any
Flexible
LeadsRF
Cooling
Net Weight--RG-96/V
Waveguide
Blower or Conduction
17 ounces
5 Pounds

ENVIRONMENTAL PERFORMANCE

Temperatu	re		-	-	-	-	-	-20 to $+75^{\circ}$ C
Altitude		_	-	-	-	-	-	100, 000 feet max
Vibration		-	-	-	-	-	-	2 G, 20 to 2000 cps
Shock -		-	-	-	-	-	-	15 G, 11 ms

OUTLINE DIMENSIONS

Height	-	-	-	-		-	-	-	-	-	2.0 inches
Width	-	-	-	-		-	-	-	-	-	1.9 inches
Length	-	-	-	-	-	-	-	-	—	-	3.5 inches

APPLICATION NOTES

NOTE: All voltages are referred to the cathode.

- 1. RESONATOR: The resonator of the X-1113 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.
- 2. CATHODE: The heater voltage should be maintained with \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X-1113 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range	12.2 to 12.7 Gc
Mechanically tunable	500 Mc
Power output	1 W min.
Electronic tuning range (3 db bandwidth)	40 Mc min.
Resonator voltage	750 Vdc
Cathode current	90 mA max.
Repeller voltage	—300 Vdc
Modulation sensitivity	1.5 Mc/V max.
Heater voltage 6.3 V	(ac or dc) $\pm 5\%$
Heater current	1.3 A max.
Mode	3 ³ ⁄ ₄
VSWR of load	1.2:1 max.
Temperature coefficient	± 100 Kc/°C
Warm-up time	30 sec.
	1000 hours

TENTATIVE DATA

X1115

KU BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage .								900 Vdc
Cathode current								110 mA
Repeller voltage:								
Negative with resp	bect	t to) ca	the	ode		. —	-50 to -1000 Vdc
NOTE: Damage to the tube	e ma	iy o	ccu	r if	max	dim	um	ratings are exceeded.

MECHANICAL

Operating position	any any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction & convection
Net weight	6 oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	ge			−50 to +100 °C
							100,000 ft. max.
Vibration							10G, 20 to 2000 cps.
Shock .							40G, 11 ms

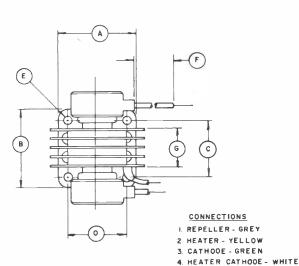
OUTLINE DIMENSIONS

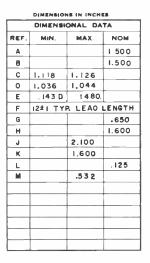
Height							1.6 in
Width							1.6 in
Length	•						2.1 in

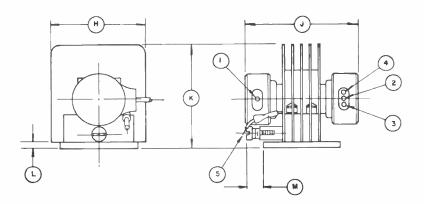
(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

APPLICATION

NOTE: All voltages referred to cathode.


Cooling: The X1115 may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.


Resonator: The resonator of the X1115 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.


Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1115 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.

5. GROUNO - BROWN

SAN CARLOS, CALIFORNIA

TENTATIVE DATA X1115A REFLEX KLYSTRON

The Eimac X1115A is a ceramic and metal, conduction-cooled reflex klystron designed for transmitter/local oscillator service in 12.2 - 12.7 Gc. microwave relay equipments. This tube provides a minimum output power of 100 mW and is tunable across the entire 500 Mc. band. High power output and good power/frequency stability also make the X1115A a good choice for parametric amplifier pump applications.

The X1115A features low-noise gridless gun optics and is warranteed for 1000 hours life.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipotentia	l. o	xide	e co	ateo	t											
	Warm-up ti	me	-	-	_	-	-	-	-	-	-	-	-	-	-	30	seconds
Heater:	Voltage -	-	-	-	-	-	-	-	-		-	-	-	-	-	6.3	volts
	Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.8	ampere
Typical (Output Power	(L	oad	VS	WR	- 1	15:	1)	-	-	-	-	-	-	-	100	milliwatts
Frequenc	ey Range 🔶	-	-	-	-	-	-	-	-	-	-	12	.200	to	12	.700	megacycles

MECHANICAL

Operating	g Posi	tior	1 -	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- Any
Mounting		-		-	-	_	-	-	-	-	-	-	-	-		WR	-75	Wa	veg	guide	Flange
Cooling ·		-	-	-		~		-	-	-	***	~	-	-	-						duction
Electrica	l Coni	nect	tion	IS	-	-	~~	-	_	-	-	-	-	-	-	-	-	F	lex	ible	Leads
RF Outpu	t Coup	plin	g	-	-		-	-	-			-	-	-	-	-	-	WR	-7	5 Wa	veguide
Net Weigl	ht –		-		-	-	-	-	-		-	-	-	-	-	-	-	-			
Shipping '	Weigh	t (A	ppi	roxi	ima	te)	~	~	~	~		-	-100	-	-	-		-	-	2	pounds
Maximum	n Over	all	Dii	mer	isio	ns:															
	Heigl	ht	-	-			~	-	-	-	-	-		-	~	-	-	-	-	1.8	inches
	Widtl	h-	-	-		-	-	-	-			-	-	-	-	-	-	-	-	1.5	inches
	Leng	th	-		-	-	-	-	+	-	-	-	~	-	-		-	-	-	2.5	inches

ENVIRONMENTAL

Maximum Ambient Temperature	-	-	 -	-	-	- 150° C
Maximum Altitude	-	-	 -	-	-	No limit
Maximum Non-operating Shock (11 ms duration) -	-	-	 -	-	-	40 g
Maximum Operating Shock* (11 ms duration)	-	-	 -	-	-	40 g
Maximum Operating Vibration** (20 to 2000 cps) -	-	-	 -	-	~	10 g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 250 kilocycles.

(Effective 3-5-63) © Copyright 1963 by Eitel-McCullough, Inc. Printed in U.S.A.

MAXIMUM RATINGS

DC RESONATOR VOLTAGE* -	-	-		-	-	-	-	-	-	-	500	MAX. VOLTS
DC CATHODE CURRENT	-		-	-	-	-	-	-	-	-	60	MAX. MA
RESONATOR DISSIPATION -	-	-	-	-	-	-	-	-	-	-	30	MAX. WATTS
PEAK REPELLER VOLTAGE*												
POSITIVE WITH RESP	EC	ΤТ	<u>'</u> O (CAT	HO	DE	-	-		-	(25	MAX. VOLTS)
NEGATIVE WITH RES	PE	СТ	то	CA	TH	ODI	Ξ-	-	-	-	(500	MAX, VOLTS)

TYPICAL OPERATION (Load VSWR less than 1.15 to 1)

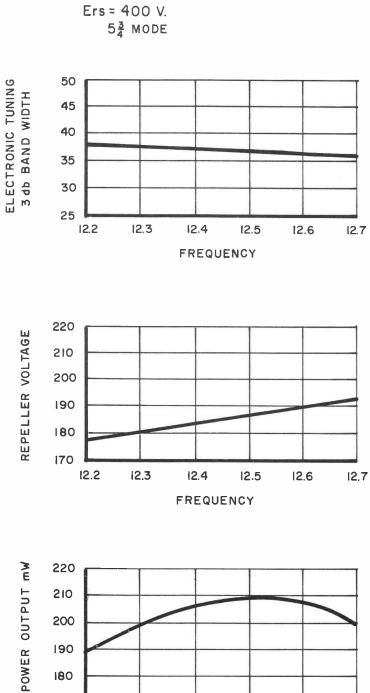
DC Resonator Voltage*		-	-	-	- 400	volts
Mode		~	-	-		4-3/4
Frequency		-	-	-	12,450	megacycles
DC Cathode Current	· -	-	-	-	40	milliamperes
DC Repeller Voltage*	-	-	-	-	-200	volts
DC Repeller Current	· -	-	-	-	1	microampere
Power Output	-	-	-	-	- 150	milliwatts
Electronic Tuning (3 db bandwidth)		-	-	-	- 30	megacycles
Modulation Sensitivity ($E_r = \pm 3$ volts)	· -	-	-	-	- 2.0	Mc/volt
Peak-to-peak FM Deviation (10 g, 20 - 2000 cps	5) -	-	_	~	- 250	kilocycles
Residual FM		-	-	-	- 50	kilocycles

*All voltages referred to cathode.

APPLICATION

Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

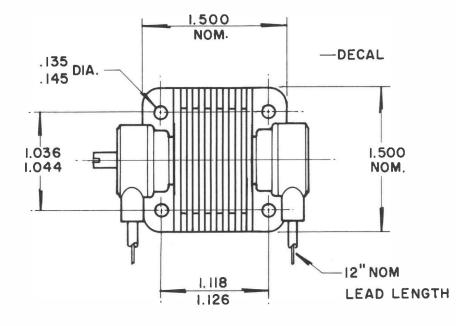
Resonator: The resonator of the X1115A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.


Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1115A are internally connected. When the resonator of this tube is operated at chassis potential. the heater transformer must be insulated for the cathode-to-resonator voltage.

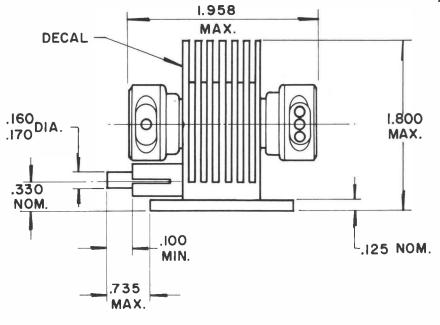
Mechanical Tuning: In the X1115A a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

A clockwise rotation of the tuner will produce a decrease in frequency.



FREQUENCY

12.7



XIII5A

CONNECTIONS

REPELLER-RED HEATER - WHITE * CATHODE - BLACK * HEATER - BLACK * INTERNALLY CONNECTED

SAN CARLOS, CALIFORNIA

X1115B

TENTATIVE DATA

The Eimac X1115B is a ceramic and metal, conduction-cooled reflex klystron designed for local oscillator service in 12.2 - 12.7 Gc. microwave relay equipments. The tube provides a minimum power output of 30 mW and is tunable across the entire 500 Mc. band.

The X1115B features low-noise gridless gun construction, good power and frequency stability and is conservatively warranteed for 1000 hours life.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipotential	l, ox	tide	e co	ated	1											
	Warm-up ti	me	-	-	-	-	-	-	-	-	-	-	-	-	-	30	seconds
Heater:	Voltage –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3	volts
	Current -	-	~	-	-	en.	-	-	-	-	-	-	-	-	-	0.8	ampere
Typical (Output Power	(Lo	ad	VS	WR	1	.15:	1)	-	-	-	-	-	-	-	30	milliwatts
Frequence	ey Range 🛛 –	-	-	-	-	***	-	-	-	-	-	12,	200	to	12	,700	megacycles

MECHANICAL

Operating	Posi	tion	-	-	~		-	_	-	-	-	_	-	-	-	_	_	-	_	-	- Any
Mounting-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- V	VR-	75	Way	reg	uide	Flange
Cooling -	-	-	-	-	-	_	-	-	-	-	_	_	-	_	-	_	-	-	<u> </u>		duction
Electrical	Conr	nect	ion	s	_	-	-	_	-	-	-	-	_	-	-	_	-	F	lex	ible	Leads
RF Output	Coup	oling	r	-	-	_	_	-	_	-	-	_	-	-	-	_	_	WR	-75	5 Wa	veguide
Net Weigh	it –	-	-	-	-	-	-	-		-	-	_	-	-	-	-	-	-	-		ounces
Shipping V	Veight	t (A	ppr	oxi	ma	te)	~	-	-	-	-	-	-	-	-	_	-	-	-	2	pounds
Maximum	Over	all	Dir	nen	sio	ns:															-
	Heigh	nt	-	-	-	-	-	-	-	_	-	_	-	-	-	_	_	-	-	1.4	inches
	Width	1-	-	-	-	_	_	-	-	-	-	_	-	_	-	_	-	_	-	1.5	inches
	Lengt	th	<u> </u>	-	_	-	-	-	-	-		-	-	-	_	-	-	-	_	2.5	inches

ENVIRONMENTAL

Maximum Ambient Temperature	-	-	-	-	-	_	-	- 150° C
Maximum Altitude	-	-	-	-	-	-	-	No limit
Maximum Non-operating Shock (11 ms duration) -	-	-	-	-	_	-	-	40 g
Maximum Operating Shock* (11 ms duration)	_	-	-	-	-	-	-	40 g
Maximum Operating Vibration** (20 to 2000 cps) -	-	-	-	~	-	-	-	10 g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 250 kilocycles.

(Effective 3-5-63) © Copyright 1963 by Eitel-McCullough, Inc. Printed in U.S.A.

MAXIMUM RATINGS

DC RESONATOR VOLTAGE*	-	-		425	MAX. VOLTS
DC CATHODE CURRENT	-	-	-	45	MAX. MA
RESONATOR DISSIPATION	-	-	-	20	MAX. WATTS
PEAK REPELLER VOLTAGE*					
POSITIVE WITH RESPECT TO CATHODE -	-	-	-	0	MAX. VOLTS
NEGATIVE WITH RESPECT TO CATHODE -	-	-	-	400	MAX. VOLTS

TYPICAL OPERATION (Load VSWR less than 1.15 to 1)

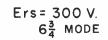
DC Resonator Voltage*	-	-		-	-	- 300	volts
Mode	-	-	_		-		6-3/4
Frequency	-	-	-	-	-	12,450	megacycles
DC Cathode Current	-	-	-	-	-	26	milliamperes
DC Repeller Voltage*	-	-	-	-	-	-130	volts
DC Repeller Current	-	-	-	-	-	1	microampere
Power Output	-	-	-	-	-	- 40	milliwatts
Electronic Tuning (3 db bandwidth)	-	-	-	-	-	- 35	megacycles
Modulation Sensitivity ($E_r = \pm 3$ volts) -	-	-	_	-	-	- 2.5	Mc/volt
Peak-to-peak FM Deviation (10 g, 20 - 2000 c	cps)	-	_		_	- 250	kilocycles
Residual FM	-	~	-	-	-	- 50	kilocycles

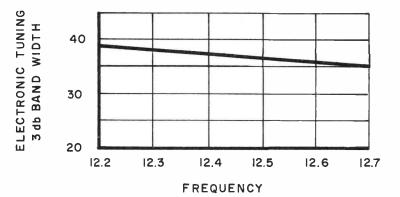
*All voltages referred to cathode.

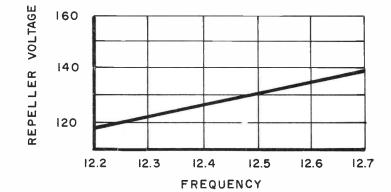
APPLICATION

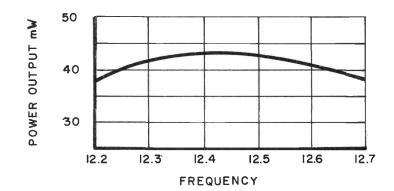
Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

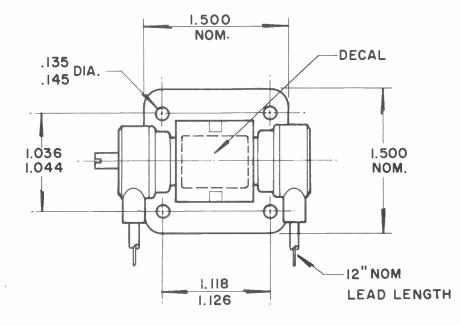
Resonator: The resonator of the X1115B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

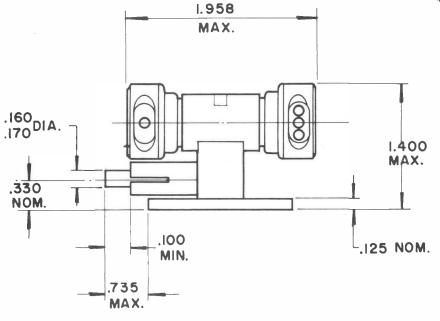

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.


The heater and cathode of the X1115B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.


Mechanical Tuning: In the X1115B a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.


A clockwise rotation of the tuner will produce a decrease in frequency.

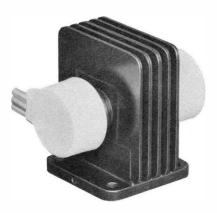



--- Sima: X1115B -

XIII5B

CONNECTIONS

REPELLER-RED HEATER - WHITE * CATHODE - BLACK * HEATER - BLACK * INTERNALLY CONNECTED



SAN CARLOS, CALIFORNIA

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range	11.7 to 12.2 Gc
Mechanically tunable	500 Mc
Power output	1 W min.
Electronic tuning range (3 db bandwidth)	40 Mc min.
Resonator voltage	750 Vdc
Cathode current	90 mA max.
Repeller voltage	—300 Vdc
Modulation sensitivity	1.5 Mc/V max.
Heater voltage 6.3 V	V (ac or dc) $\pm 5\%$
Heater current	1.3 A max.
Mode	3 ¾
VSWR of load	1.2:1 max.
Temperature coefficient	± 100 Kc/°C
Warm-up time	30 sec.
	1000 hours

MAXIMUM RATINGS

Resonator voltage							. 9	900 Vdc
Cathode current								110 mA
Repeller voltage:								
Negative with re	esp	ect	to	са	tho	de	50 to -10	DOV Vdc

NOTE: Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	
RF output coupling	WR-75 wave-guide flange
Cooling required	
Net weight	6 oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	ge			−50 to +100 °C
							. 100,000 ft. max.
							. 10G, 20 to 2000 cps.
Shock .							40G, 11 ms

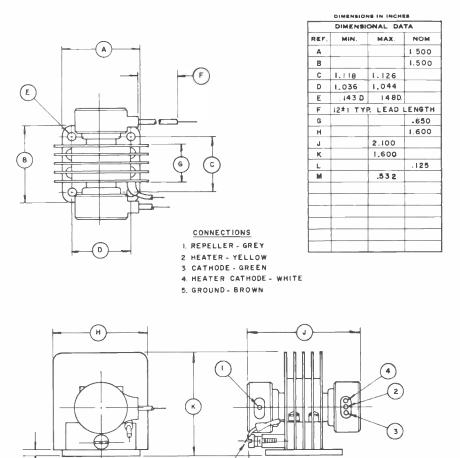
OUTLINE DIMENSIONS

Height								1.6 in.
Width								1.6 in.
Length	•			•	•		•	2.1 in.

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

TENTATIVE DATA X1116 **X BAND REFLEX KLYSTRON**

NOTE: All voltages referred to cathode.


Cooling: The X1116 may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.

Resonator: The resonator of the X1116 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1116 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.

5

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA X1116A REFLEX KLYSTRON

The Eimac X1116A is a ceramic and metal. conduction-cooled reflex klystron designed for transmitter/local oscillator service in 11.7 - 12.2 Gc. microwave relay equipments. This tube provides a minimum output power of 100 mW and is tunable across the entire 500 Mc. band. High power output and good power/frequency stability also make the X1116A a good choice for parametric amplifier pump applications.

The X1116A features low-noise gridless gun optics and is warranteed for 1000 hours life.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Unipotential. oxide coated																
	Warm-up tin	ne -	-	-	-	-	-	-	-	-	-	_	-	-	30	seconds
Heater:	Voltage -															volts
	Current -	-	_	-105	-	-	-	-	-	-	-	-	1	-	0.8	ampere
Typical C	output Power ((Load	VS	WR		1.15	:1)	-	-	-	daren.	-	-	-	100	milliwatts
Frequenc	y Range – ·		-	-	-		-	-	-	-	11	700	to	12	,200	megacycles

MECHANICAL

Operating Position	n -	-	-	-	-	-	-	-			-	-	-	~	-	-	**	-	- Any
Mounting	-	-	-	-	-	-10	-	-	-	-	-	-		WR	-75	Wa	veg	uide	Flange
Cooling	-	-	-	-	-	-	-	-	-	-	~	-	-				-		nduction
Electrical Connec	tion	$\mathbf{1S}$	~	-	-	-	-	-	-	-		-	-	-	-	F	lex	ible	Leads
RF Output Couplin	ng	-	-	-	-	-	~	-		-	-	-	-	~	-	WR	-7	5 Wa	veguide
Net Weight	-	-	-	Gent	-	-	-	-	-	-	-	-	-	**	-	-	-	4	ounces
Shipping Weight (A	App	roxi	ima	te)	-	-	-	~	-	-	-	-	~	-	-	-	-1	2	pounds
Maximum Overall	Di	men	isio	ns:															
Height	-	-	-	-	-	-	1	-	ŧ	-	-		-	-	-		-	1.8	inches
Width-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	inches
Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	inches

ENVIRONMENTAL

Maximum	Ambient	Temp	bera	ture)	-	8 %	-	-	-	-	-	-	-	-	-	-	-	150° C
Maximum	Altitude		-	-	-	-		-	-	-	-	-	-	-	-	-	-	No) limit
Maximum	Non-ope	rating	Sho	ck (11	\mathbf{ms}	du	rati	ion)	-	-	-	-	-	-	-	-	-	- 40 g
Maximum	Operatin	g Sho	ck*	(11	\mathbf{ms}	dui	cati	on)	-	-	-	-	-	-	-	-	-	-	- 40 g
Maximum	Operatin	g Vib	ratio	n^{**}	(2)	0 to	20	00	cps)) -	-	$\overline{2}$	-		-	-	-	-	- 10 g

*Based on a permanent frequency shift after drop of 2 megacycles.

**Based on a maximum peak-to-peak frequency deviation of 250 kilocycles.

(Effective 3-5-63) © Copyright 1963 by Eitel-McCullough, Inc. Printed in U.S.A.

MAXIMUM RATINGS

DC RESONATOR VOLTAGE*	-	-	~	-	~	~	-	-	-	-	~	500	MAX. VOLTS
DC CATHODE CURRENT ~	***	-	-	-	-	-			-	-	-	60	MAX. MA
RESONATOR DISSIPATION	-	-	6mm	8m	-	-	-	-	-	-	-	30	MAX. WATTS
PEAK REPELLER VOLTAGE)*												
NEGATIVE WITH F	RESI	PEC	\mathbf{T}	TO	CAT	ГΗ)DE	-	~	-	-	(25	MAX. VOLTS)
								-	-		-	(500	MAX. VOLTS)

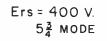
TYPICAL OPERATION (Load VSWR less than 1.15 to 1)

DC Resonator Voltage* -		~	-		-	-	***	-	-	-	-	- 40	0 volts
Mode	~	~*	-		-		-	-		-	-		4-3/4
Frequency	-	-	-	1010	~	***	-	-	-	-	-	11.95	0 megacycles
DC Cathode Current	-		~		**	-	-	*	-	-	~	4	0 milliamperes
DC Repeller Voltage* -	-	-	-	-	•••	-	-	-	-	**	~	-20	0 volts
DC Repeller Current -	-	-	-	~	-	-	-	-	-	-	-		1 microampere
Power Output		-	-	an a	-	-	-	-	-	-		- 15	0 milliwatts
Electronic Tuning (3 db ba	andv	vidt	h)	•••	cline	-	-	~	-	-	-	- 3	0 megacycles
Modulation Sensitivity						-	***	-	-		-	- 2.	0 Mc/volt
Peak-to-peak FM Deviation	on (I	10 g	;. 20) - (200	0 cp	os)		-	-		- 25	0 kilocycles
Residual FM	-		**	-	-	-	**	-	-	-	~	- 5	0 kilocycles

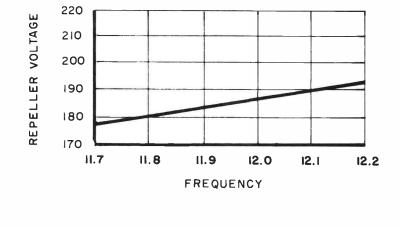
*All voltages referred to cathode.

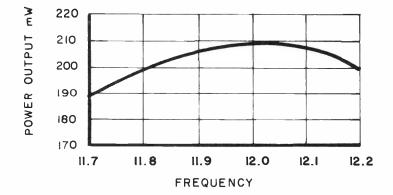
APPLICATION

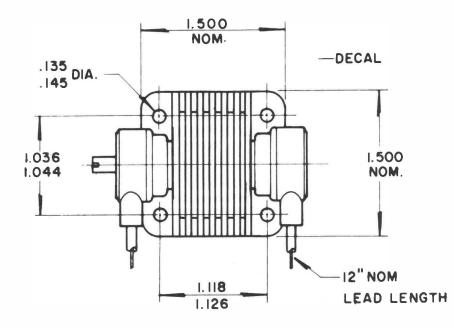
Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation. forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

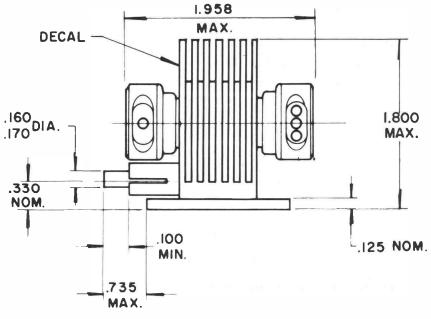

Resonator: The resonator of the X1116A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.


Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.


The heater and cathode of the X1116A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.


Mechanical Tuning: In the X1116A a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.





<u>XIII6A</u>

CONNECTIONS

REPELLER- RED HEATER - WHITE CATHODE - BLACK HEATER - BLACK HEATER - BLACK NTERNALLY CONNECTED

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range						11.7 to 12.2 Gc
Mechanically tunable						500 Mc
Power output						30 mW
Electronic tuning range (40 Mc
Resonator voltage						300 Vdc
Cathode current						
Repeller voltage						-100 Vdc
Modulation sensitivity						2.5 Mc/V
Heater voltage				6.	3 V	(ac or dc) $\pm 5\%$
Heater current		. '				1.0 A max.
Mode						6 ³ ⁄4
VSWR of load						1.2:1 max.
Temperature coefficient	t .					±150 Kc/°C
Warm-up time						30 sec.

TENTATIVE DATA

X1116B

X BAND **REFLEX KLYSTRON**

MAXIMUM RATINGS

Resonator voltage								425 Vdc
Cathode current								45 mA
Repeller voltage:								
Negative with re	sp	ect	t to	ca	ithe	ode	. —	25 to -400 Vdc

NOTE: Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction or convection
Net weight	4 ¹ / ₂ oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

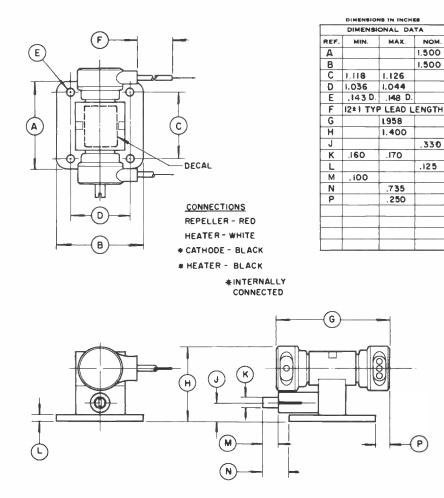
Temperat	ure	e ra	ang	e				. −50 to +100 °C
								. 100,000 ft. max.
								10G, 20 to 2000 cps
Shock .			·		•			. 40G, 11 ms

OUTLINE DIMENSIONS

Height .						1.4 in.
Width .						1.5 in.
Length .						2.5 in.

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.

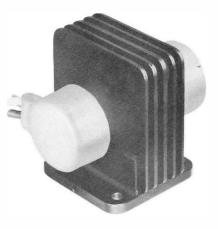

Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1116B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1116B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the X1116B a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.



TENTATIVE DATA X1117 **X BAND REFLEX KLYSTRON**

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range	11.2 to 11.7 Gc
Mechanically tunable	500 Mc
Power output	1 W min.
Electronic tuning range (3 db bandwidth)	40 Mc min.
Resonator voltage	750 Vdc
Cathode current	90 mA max.
Repeller voltage	—300 Vdc
Modulation sensitivity	1.5 Mc/V max.
Heater voltage 6.3 V	
Heater current	1.3 A max.
Mode	3 ¾
VSWR of load	1.2:1 max.
Temperature coefficient	± 100 Kc/°C
Warm-up time	30 sec.
	1000 hours

MAXIMUM RATINGS

Resonator voltage								900 Vdc
Cathode current								110 mA
Repeller voltage:								
Negative with re	sp	ect	t to	ca	ithe	ode	. – 50	to -1000 Vdc

NOTE: Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction & convection
Net weight	6 oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ing	е				50 to +100 °C
Altitude								100,000 ft. max.
								10G, 20 to 2000 cps.
Shock .							•	40G, 11 ms

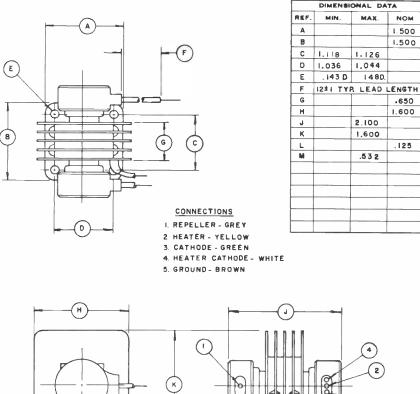
OUTLINE DIMENSIONS

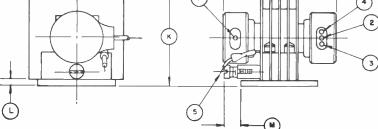
Height .	1.6 in.							Height .
	1.6 in.							Width .
Length .	2.1 in.				•		•	Length .
Width .	1.6 i	•						

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.

Cooling: The X1117 may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.


Resonator: The resonator of the X1117 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.


Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1117 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.

DIMENSIONS IN INCHES

TENTATIVE DATA X1117A **X BAND REFLEX KLYSTRON**

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range								11.2 to 11.7 Gc
Mechanically tunabl	е							500 Mc
Power output								100 mW
Electronic tuning rar	nge	(3)	dbb	an	dwi	idth	i)	40 Mc
Resonator voltage .	÷.,							400 Vdc
Cathode current								40 mAdc
Repeller voltage .								-150 Vdc
Modulation sensitiv	ity							2.0 Mc/V
Heater voltage								
Heater current								1.0 A max.
Mode								4 3⁄4
VSWR of load								1.2:1 max.
Temperature coeffic	cier	nt .						±150 Kc/℃
Warm-up time								30 sec.
								ALLEN DO DO DO

MAXIMUM RATINGS

Resonator voltage									500 Vdc
Cathode current									60 mA
Repeller voltage:									
Negative with re	esp	ect	t to	ca	the	ode			-25 to -500 Vdc
NOTE: Damage to the t	ube	ma	уо	ccui	r if i	max	imu	ım	ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction or convection
Net weight	6 oz.
Shipping weight (approximate)	

ENVIRONMENTAL PERFORMANCE

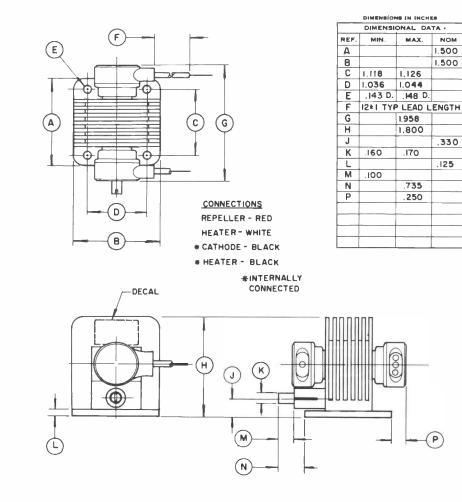
Temperat	ure	e ra	ng	е			−50 to +100 °C
							100,000 ft. max.
							10G, 20 to 2000 cps.
Shock .							40G, 11 ms

OUTLINE DIMENSIONS

Height .							1.8 in.
Width .							1.5 in.
Length .				,			2.5 in.

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.

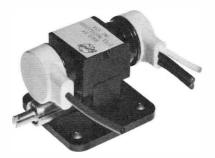

Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1117A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1117A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the X1117A a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.



TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range	11.2 to 11.7 Gc
Mechanically tunable	500 Mc
Power output	30 mW
Electronic tuning range (3 db bandwidth)	60 Mc
Resonator voltage	300 Vdc
Cathode current	25 mAdc
Repeller voltage	-100 Vdc
Modulation sensitivity	2.5 Mc/V
Heater voltage 6.3	V (ac or dc) $\pm 5\%$
Heater current	1.0 A max.
Mode	6 ³ ⁄ ₄
VSWR of load	1.2:1 max.
Temperature coefficient	\pm 150 Kc/°C
Warm-up time	30 sec.
	1000 hpurs

TENTATIVE DATA

X1117B

X BAND **REFLEX KLYSTRON**

MAXIMUM RATINGS

Resonator voltage								425 Vdc
Cathode current								45 mA
Repeller voltage:								
Negative with re	esp	ect	t to	ca	th	ode	. —	25 to -400 Vdc

NOTE: Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction or convection
Net weight	4 ¹ / ₂ oz.
Shipping weight (approximate)	

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	ge				. −50 to +100 °C
								. 100,000 ft. max.
								10G, 20 to 2000 cps
Shock .								. 40G, 11 ms

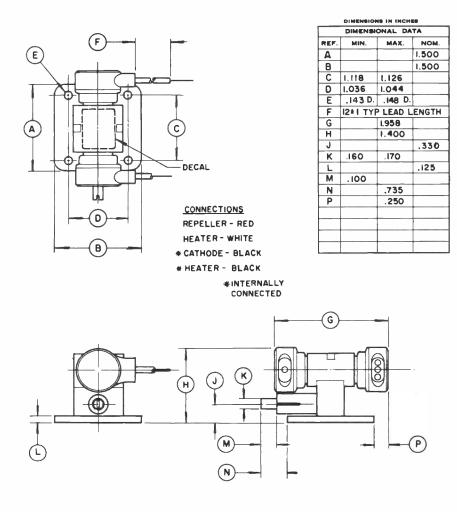
OUTLINE DIMENSIONS

Height								1.4	in.
Width								1.5	in.
Length		,	,		,			2.5	in.

```
(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC.
```

PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.


Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1117B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1117B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the X1117B a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range Mechanically tunable	•	•	•	•	•	•	10.7 to 11.2 Gc 500 Mc
Power output							
Electronic tuning range (
Resonator voltage							
Cathode current							90 mA max.
Repeller voltage							300 Vdc
Modulation sensitivity							1.5 Mc/V max.
Heater voltage							
Heater current							1.3 A max.
Mode							3 ³ ⁄4
VSWR of load							1.2:1 max.
Temperature coefficient							±100 Kc/℃
Warm-up time							30 sec.
							LCCC hours

TENTATIVE DATA

X1118

X BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage								900 Vdc
Cathode current								110 mA
Repeller voltage:								
Negative with res	spec	t to	ca	the	bde		. —	50 to -1000 Vdc
NOTE: Damage to the tu	be m	ay o	ccu	r if i	max	imu	ım ra	tings are exceeded.

MECHANICAL

Operating position	any any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction & convection
Net weight	6 oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	ra	ing	е			−50 to +100 °C
Altitude							100,000 ft. max.
Vibration							10G, 20 to 2000 cps.
Shock .							40G, 11 ms

OUTLINE DIMENSIONS

Height								1.6 in.
Width								1.6 in.
Length		•	,					2.1 in.

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.

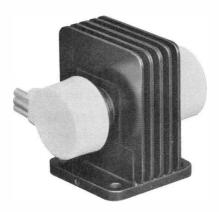

Cooling: The X1118 may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.

Resonator: The resonator of the X1118 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1118 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20–2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.


M

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range Mechanically tunable Power output				500 Mc
Electronic tuning range (
Resonator voltage .				
Cathode current				40 mAdc
Repeller voltage				-150 Vdc
Modulation sensitivity				2.0 Mc/V
Heater voltage			6.3	
Heater current				1.0 A max.
Mode				
VSWR of load				1.2:1 max.
Temperature coefficient	Ł.			±150 Kc/℃
Warm-up time				30 sec.
				过度的 hours

TENTATIVE DATA

X1118A

X BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage									500 Vdc
Cathode current									60 mA
Repeller voltage:									
Negative with re	esp	ect	t to	ca	ith	ode	٠	. –25	5 to -500 Vdc

NOTE: Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	WR-75 wave-guide flange
Cooling required	conduction or convection
Net weight	6 oz.
Shipping weight (approximate)	4 lbs.

ENVIRONMENTAL PERFORMANCE

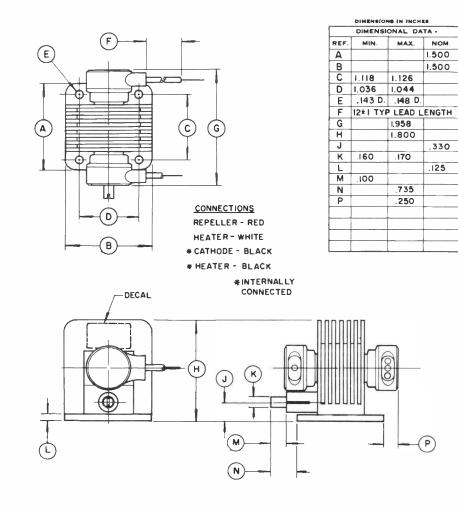
Temperat	ure	e ra	ing	e				−50 to +100 °C
Altitude								100,000 ft. max.
Vibration								
Shock .					•			40G, 11 ms

OUTLINE DIMENSIONS

Height							1.8 in.
Width							1.5 in.
Length		•					2.5 in.

```
(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.
```


NOTE: All voltages referred to cathode.

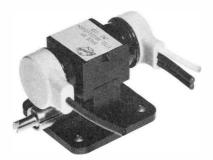

Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1118A is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1118A are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the X1118A a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.



TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range	10.7 to 11.2 Gc
Mechanically tunable	500 Mc
Power output	30 mW
Electronic tuning range (3 db bandwidth)	40 Mc min.
Resonator voltage	30 Vdc
Cathode current	25 mAdc
Repeller voltage	-100 Vdc
Modulation sensitivity	2.5 Mc/V
Heater voltage 6.3	
Heater current	1.0 A max.
Mode	63⁄4
VSWR of load	1.2:1 max.
Temperature coefficient	±150 Kc/°C
<u>Warm</u> -up time	30 sec.
	a side and s

TENTATIVE DATA

X1118B

X BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage									425 Vdc
Cathode current									45 mA
Repeller voltage:									
Negative with re	esp	ect	t to	ca	the	ode		. –	-50 to -1000 Vdc
NOTE: Damage to the t	ube	ma	iy o	ccu	r if	max	im	ım	ratings are exceeded.

MECHANICAL

Operating position		any
Electrical connections		flexible leads
RF output coupling		WR-75 wave-guide flange
Cooling required		conduction & convection
Net weight		$4^{1/2}$ oz.
Shipping weight (approxim		

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	e				. −50 to +100 °C
								. 100,000 ft. max.
Vibration								10G, 20 to 2000 cps
Shock .								. 40G, 11 mc

OUTLINE DIMENSIONS

Height .						1.4 in.
Width .						1.5 in.
Length .						2.5 in.

(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.


Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1118B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1118B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Mechanical Tuning: In the X1118B a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

SAN CARLOS, CALIFORNIA

X-1120

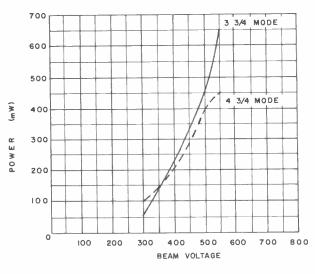
REFLEX KLYSTRON OPERATING-FREQUENCY 12.5 to 15Gc TRIMMABLE ± 50 Mc MINIMUM OUTPUT POWER 200 mW

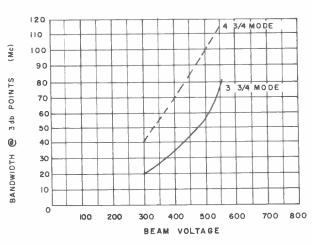
TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	 	12.5	5 to	15Gc (preset)
Resonator Voltage ²				
Output Power		• •		. 225 mW
Cathode Current				., 38 mAdc
Repeller Voltage	 			<u>300 v</u>
3db Bandwidth				
Modulation Sensitivity.				
Temperature Coefficient				
Heater Voltage (AC) ³ .				. 6.3 v
Heater Current (AC)		• •		. 1.25 A
VSWR				
Mode				

KU-BAND

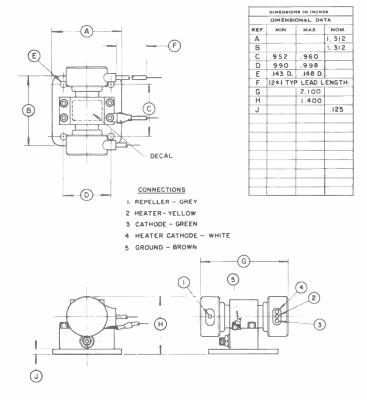

Operating Position.				Any
Mounting				. Waveguide Flange
RF Output Coupling				RG/91U Waveguide
Net Weight				6 ounces
$Cooling^1$				(See note 1)


ENVIRONMENTAL

Maximum	Ambient Ten	nperature		•		•			•	15	0°C	
Maximum	Altitude							N	Ο	LI	MIT	
Maximum	Shock (11ms	duration)* .	•	•			•		•	•	40g	, ,
Maximum	Operating											
	Vibration*	(20-2000cps	;)	•	•	•		•	•	• •	. 10g	\$

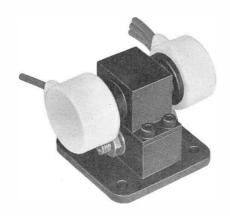
OUTLINE DIMENSIONS

Height										1.400 inches
										1.312 inches
Length										2.100 inches



APPLICATION NOTES

- 1. <u>COOLING</u>: At sea level this tube will not require forced air cooling when operated at less than 20 watts resonator dissipation and an ambient temperature of less than 150°C. The waveguide-flange connection will normally provide the required heat sink for conduction cooling. If the tube is operated at a resonator dissipation of greater than 20 watts or if an insulator is used between the tube and waveguide for DC isolation, forced air cooling will be required to maintain the body temperature below the maximum rating of 175°C. For maximum tube life, the operating temperature should be less than 100°C.
- 2. <u>RESONATOR</u>: The resonator of the X 1120 is integral with the body of the kylstron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at app-propriate negative potentials.
- 3. <u>CATHODE</u>: The heater voltage should be maintained with \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained. The heater and catholde of the X 1120 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.
- 4. <u>SHOCK AND VIBRATION</u>: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20 2000 cps) or shock of up to 40g (11 milliseconds duration). With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.



TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency setting							13.395 Gc
Mechanically trimmabl							
Power output							
Electronic tuning range	(3	dt	b ba	and	iwt	dth) 30 Mc
Resonator voltage							300 Vdc
Cathode current							
Repeller voltage							
Modulation sensitivity							
Heater voltage							
Heater current							
Mode		•					. 53/4
VSWR of load		•					. 1.2:1 max.
Temperature coefficier							
Warm-up time		•					. 20 sec

TENTATIVE DATA

X1123

KU BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage									500 Vdc
Cathode current									55 mA
Repeller voltage:									
Negative with re	esp	ect	: to	ca	the	ode			-25 to -500 Vdc
NOTE: Damage to the t	ube	e ma	iy o	ccu	r if	max	im	um	ratings are exceeded.

MECHANICAL

Operating position					any
Electrical connections					flexible leads
RF output coupling	 F	۲G-	91,	/U	waveguide flange
Cooling required					conduction
Net weight					5 oz.
Shipping weight (approxi					4 lbs.

ENVIRONMENTAL PERFORMANCE

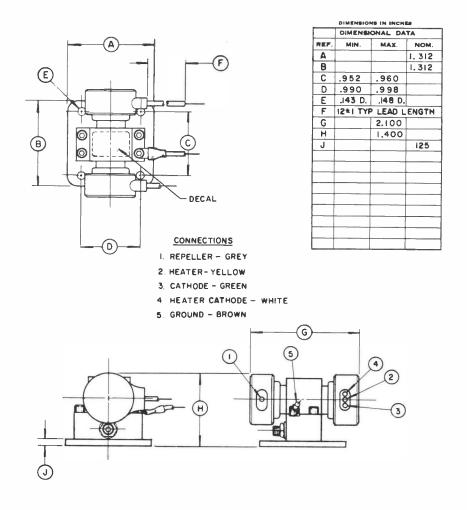
Temperat	ure	e ra	ang	e				. −55 to +125 °C
Altitude								. 100,000 ft. max.
								10G, 20 to 2000 cps
Shock .	,						•	40G, 11 ms

OUTLINE DIMENSIONS

Height .						1.4 in.
Width .						1.3 in.
Length .						2.1 in.
0						

```
(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC. PRINTED IN U.S.A.
```


NOTE: All voltages referred to cathode.


Cooling: At sea level this tube will not require forced air cooling when operated at its maximum rated dissipation with an ambient temperature less than 125° Centigrade. The waveguide flange connection will normally provide the required heat sink for conduction cooling. If an insulator is used between the tube and waveguide for DC isolation, forced air cooling may be required to maintain the ceramic-to-metal seal temperatures below the maximum rating of 150° Centigrade.

Resonator: The resonator of the X1123 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained.

The heater and cathode of the X1123 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: In the X1123 a fixed-tuned inner cavity is closely coupled through a ceramic window to a secondary cavity outside the vacuum. Mechanical tuning is accomplished by a capacitive slug in the secondary cavity with a tuning rate of approximately 150 megacycles per turn. This design allows repeated tuner cycling without damaging the vacuum seals. The maximum tuner torque is 40 inch-ounces.

TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range									16.0 to 17.0 Gc
Mechanically tuna	ble								1000 Mc
Power output									20 mW
Electronic tuning r	ang	ge (3 dl	b b	and	iwt	dth)	50 Mc
Resonator voltage									300 Vdc
Cathode current									30 mAdc max.
Repeller voltage									
Modulation sensit									
Heater voltage									
Heater current									
Mode									
VSWR of load .									1.2:1 max.
Temperature coef	fici	ent							±150 Kc/℃
Warm-up time									20 sec.
									ALL INCOME

TENTATIVE DATA

X1126

KU BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage .								500 Vdc
Cathode current								55 mA
Repeller voltage:								
Negative with resp	ect	to	cat	tho	de			-25 to -500 Vdc
NOTE: Damage to the tube	may	y oc	cur	if r	nax	imu	m	ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	RG-91/U wave-guide flange
Cooling required	conduction
Net weight	
Shipping weight (approximate	e) 4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	e				. −50 to +100 °C
Altitude								. 100,000 ft. max.
Vibration								10G, 20 to 2000 cps
Shock .								. 40 G, 11 ms

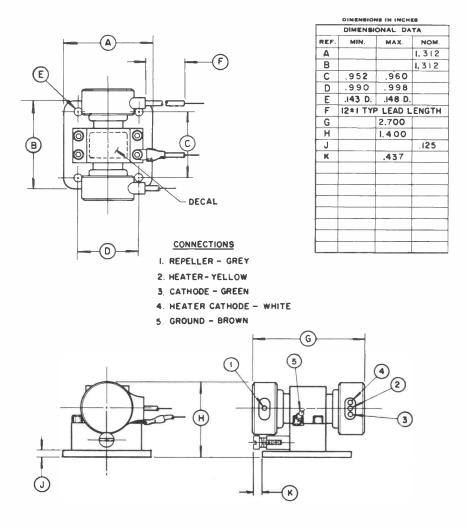
OUTLINE DIMENSIONS

Height .						1.4 in.
Width .						1.3 in.
Length .						2.1 in.

```
(EFFECTIVE 4-1-64) COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC.
```

PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.


Cooling: The X1126 may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.

Resonator: The resonator of the X1126 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1126 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20–2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.



TYPICAL PERFORMANCE

ELECTRICAL PERFORMANCE

Frequency range
Mechanically tunable 700 Mc
Power output 20 mW
Electronic tuning range (3 db bandwidth) 40 Mc
Resonator voltage
Cathode current 30 mAdc max.
Repeller voltage \dots \dots \dots \dots \dots \dots -40 to -150 Vdc
Modulation sensitivity 1.3 to 3.5 Mc/V
Heater voltage 6.3 V (ac or dc) $\pm 5\%$
Heater current
Mode
VSWR of load
Temperature coefficient
Warm-up time

TENTATIVE DATA

X1126B

KU BAND REFLEX KLYSTRON

MAXIMUM RATINGS

Resonator voltage .								
Cathode current								55 m A
Repeller voltage:								
Negative with resp	pect	t to	Ca	th	ode			-25 to -500 Vdc
NOTE: Damage to the tube	e ma	iy o	ccu	r if	ma>	kim	um	ratings are exceeded.

MECHANICAL

Operating position	any
Electrical connections	flexible leads
RF output coupling	RG-91/U wave-guide flange
Cooling required	conduction
Net weight	5 oz.
Shipping weight (approximate	e) 4 lbs.

ENVIRONMENTAL PERFORMANCE

Temperat	ure	e ra	ang	ge				. −55 to +120 °C
								100,000 ft. max.
								10G, 20 to 2000 cps
Shock .								40 G, 11 ms

OUTLINE DIMENSIONS

Height							1.4 in.
Width							1.3 in.
Length							2.1 in.

(EFFECTIVE 4-1-64)

```
COPYRIGHT 1964 BY EITEL-MC CULLOUGH, INC.
```

PRINTED IN U.S.A.

NOTE: All voltages referred to cathode.

Cooling: The X1126B may be cooled by conduction if the connecting waveguide flange provides an adequate heat-sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade. Normal operating conditions will require convection cooling to maintain desired body temperatures.

Resonator: The resonator of the X1126B is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.

Cathode: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X1126B are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

Shock and Vibration: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2000 cps) or shock of up to 40g (11 milliseconds duration.) With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.

SAN CARLOS, CALIFORNIA

X-1130 REFLEX KLYSTRON

OPERATING FREQUENCY 15-18 Gc TRIMMABLE ±50 Mc

MINIMUM OUTPUT POWER 200 mW

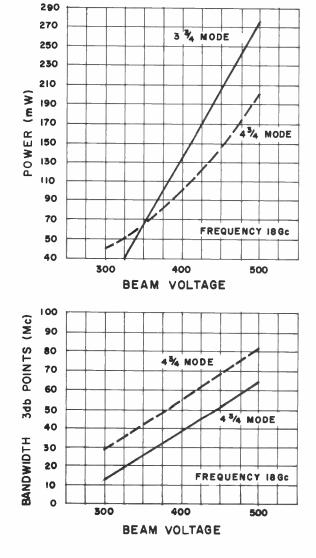
TYPICAL PERFORMANCE

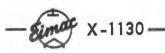
ELECTRICAL

Frequei	ncy	ł	Ra	ng	çe	1	5.	0	to	1	8	Go	: ()	pr	es	se	t)				
Resonat	tor		Vo	lť	a	ge	2							•						.500	V
Output	Po)w	er																	· 250	mW
Cathode	e C	'u	rr	er	It			•										•		. 52	mAdc
Repelle	r١	10	lta	ag	е								•							- 300	V
3db Bai																					
Modulat	tio	n	Se	n	si	ti	٧i	tу												.0.7	Mc/V
Temper	ati	ur	е	C	be	ff	ic	ie	nt											±150	Kc/OC
Heater	Vo)lt	ag	çe	(A	C)	3												. 6.3	V
Heater	Сι	ir	re	nt	(/	١C)													1.25	Α
VSWR																				1.2:1	max
Mode		•		•								•					•		З	3-3/4	

Operating Position.				
Mounting				. Waveguide Flange
RF Output Coupling				
Net Weight				
Cooling ¹				

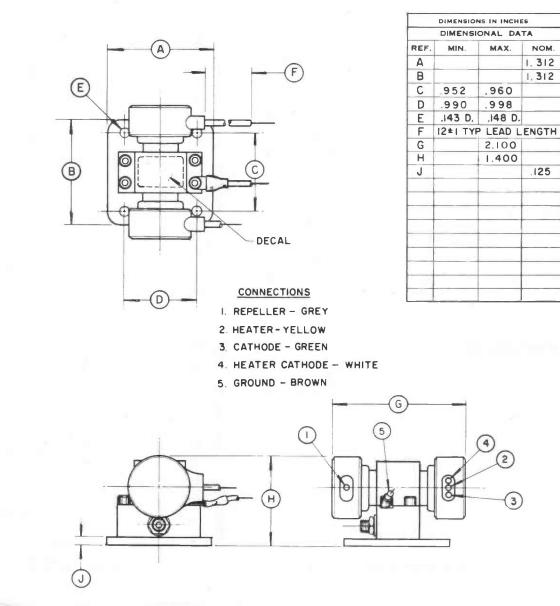
ENVIRONMENTAL


Maximum	Ambient Temperature 150° C	
Maximum	Altitude NO LIMIT	
Maximum	Shock (Hms duration) ⁴ \dots 40 g	
Maximu O	perating Vibration (20-2000cps) ⁴ 10 g	


OUTLINE DIMENSION

Height													
Width													
Length	•	•				•		•	•	•		2. 100	inches

KU-BAND


APPLICATION NOTES

- 1. <u>COOLING</u>: The X 1130 may be cooled by conduction if the connecting waveguide flange provides an adequate heat sink to maintain the tube body temperature below the maximum rating of 150° Centigrade. At high ambient temperatures, forced air cooling may be required to operate within this rating. For maximum tube life, the tube body temperature should be less than 100° Centigrade.
- 2. <u>RESONATOR</u>: The resonator of the X 1130 is integral with the body of the klystron. For this reason it is often convenient to operate the resonator at chassis potential, with the repeller and cathode at appropriate negative potentials.
- 3. <u>CATHODE</u>: The heater voltage should be maintained with $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

The heater and cathode of the X 1130 are internally connected. When the resonator of this tube is operated at chassis potential, the heater transformer must be insulated for the cathode-to-resonator voltage.

4. <u>SHOCK AND VIBRATION</u>: This klystron is specifically designed for use in applications encountering vibration and shock extremes. This tube is capable of delivering its rated power output when subjected to vibration levels of 10g (20-2000 cps) or shock of up to 40g (11 milliseconds duration).

With a vibration level of 10g in any reference plane, the peak-to-peak FM deviation will be less than 100 kilocycles.

SAN CARLOS, CALIFORNIA

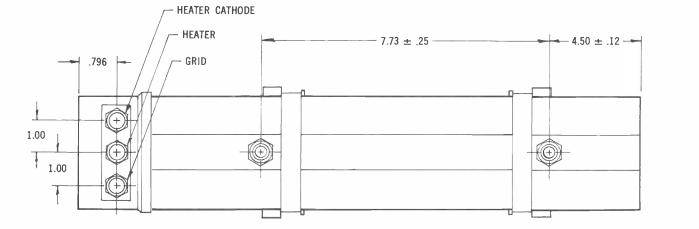
EM 108 TRAVELING WAVE TUBE

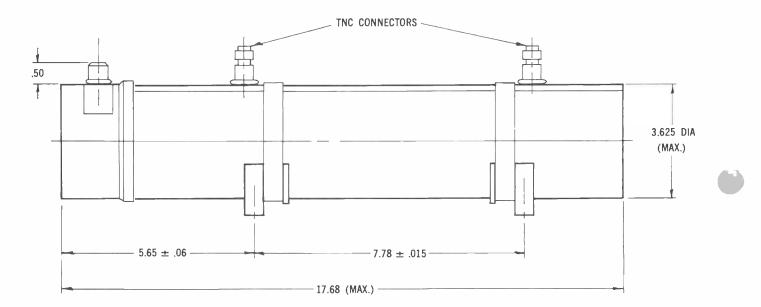
The EM108 is an octave bandwidth pulse PPM focused TWT capable of delivering 1.0 kw of power from 2.0-4.0 Gc. This tube is of metal-ceramic construction designed for operation in severe environments. This tube contains a grid for modulating purposes.

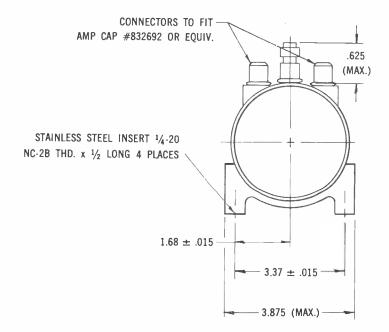
ELECTRICAL SPECIFICATIONS	
Absolute Ratings	Maximum
Filament Voltage	7.0 Volts
Cathode Voltage	-8000 vdc
Peak Cathode Current	2.0 adc
Pulse Grid Voltage	
Duty Cycle	2%
Operating and Performance Data	
Filament Voltage	6.3 Volts
Filament Current	3.0 Amperes
Cathode Voltage	-7500 Vdc
Peak Cathode Current	1.3 Adc
Grid Voltage (Beam off)	-90 Vdc
Grid Voltage (Beam on)	+200 Vdc
Duty Cycle	2%
Frequency Range	2.0-4.0 Gc
Small Signal Gain—Minimum	36 db
Peak Saturated Power Out—Minimum Saturated Gain—Minimum	1.0 kw 30 db
Grid Capacitance	30 00
(to all other elements)	15 picofds.

ENVIRONMENTAL SPECIFICATIONS

Complies with	MII	5	400) C	lass	s II	Ed	qui	oment
Temperature									-65° C to $+125^{\circ}$ C


MECHANICAL SPECIFICATIONS


Operating Position				Any
Input Coupling, rf				TNC
Output Coupling, rf				TNC
Focusing				PPM
				75 CFM forced air
Dimensions				See outline drawing
Weight				
Supply Connections				
				Filament-brown
				Grid-green


NOTE: Electrode Voltages are with respect to cathode; tube shell at ground potential.

EITEL-MCCULLOUGH, INC.

EM 113 TRAVELING WAVE TUBE

The EM113 delivers 1 kw of pulse power from 2.0–4.0 Gc. It is of metal-ceramic construction and is suitable for airborne and missile applications. The focusing is accomplished by periodic permanent magnet and compensated for operation over the temperature range -65° C to $+125^{\circ}$ C.

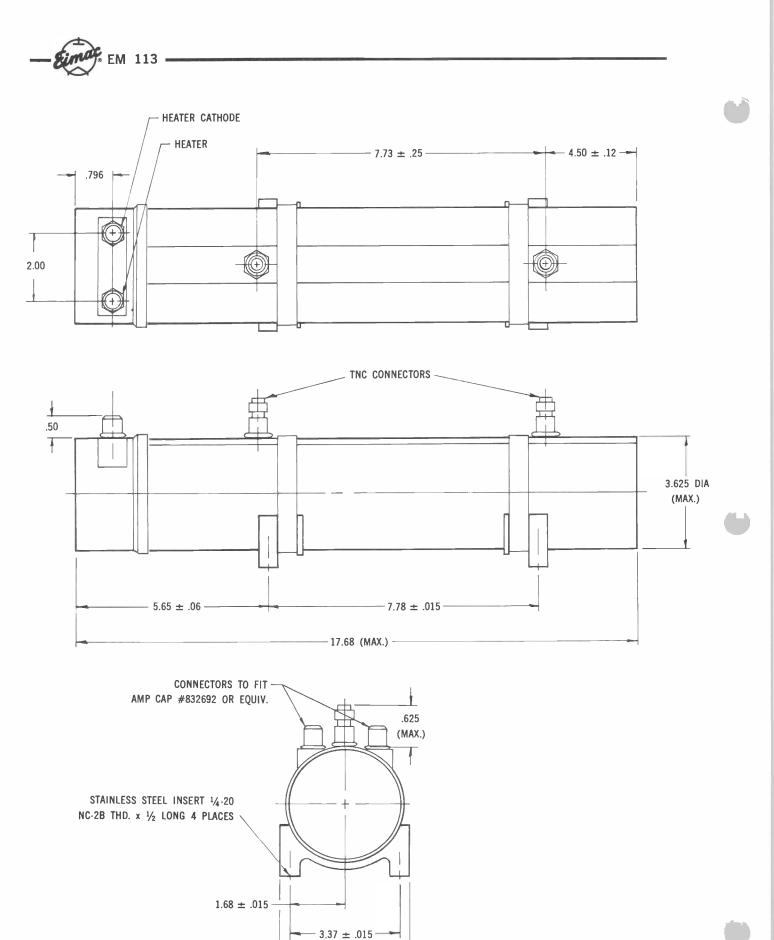
ELECTRICAL SPECIFICATIONS

Absolute Ratings			Maximum
Filament Voltage			7.0 Volts
Pulse Cathode Voltage			-8000 vdc
Peak Cathode Current			2.0 adc
Duty Cycle			2%

Operating and Performance Data

Filament Voltage	6.3 Volts
Filament Current	3.0 Amperes
Cathode Voltage	-7500 Vdc
Peak Cathode Current	1.3 adc
Duty Cycle	2%
Frequency Range	2.0-4.0 Gc
Small Signal Gain—Minimum	36 db
Peak Saturated Power Out—Minimum	1.0 kw
Saturated Gain-Minimum	30 db

ENVIRONMENTAL SPECIFICATIONS


Complies with	MIL	54	400	C	lass	11	Equi	pment
Temperature								-65°C to +125°C

MECHANICAL SPECIFICATIONS

Operating Position				Any
Input Coupling, rf				TNC
Output Coupling, rf				TNC
Focusing				
Cooling				75 CFM forced air
Dimensions				See outline drawing
Weight				9 lbs.
Supply Connections				Cathode—yellow
				Filament-brown
				Grid-green

NOTE: Electrode Voltages are with respect to cathode; tube shell at ground potential.

3.875 (MAX.)

EITEL-MCCULLOUGH, INC.

EM 114 TRAVELING WAVE TUBE

The EM114 is a grid modulated pulse TWT covering the frequency range of 2.8–3.5 Gc with a peak power output of 2.0 kw. This tube is designed for use in airborne and missile environments.

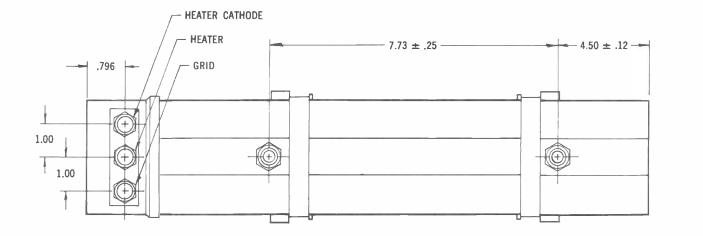
ELECTRICAL SPECIFICATIONS

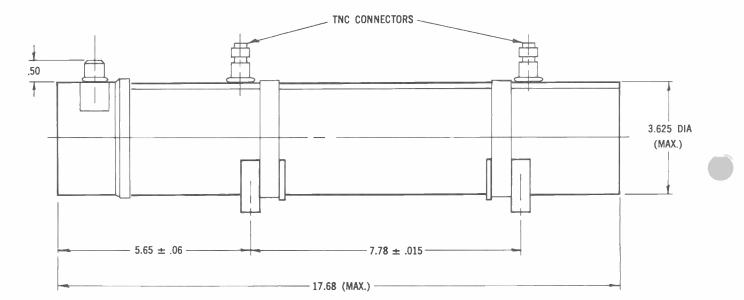
Absolute Ratings			Maximum
Filament Voltage			7.0 Volts
Cathode Voltage			-8000 vdc
Peak Cathode Current			2.0 adc
Grid Voltage			
Duty Cycle			2%

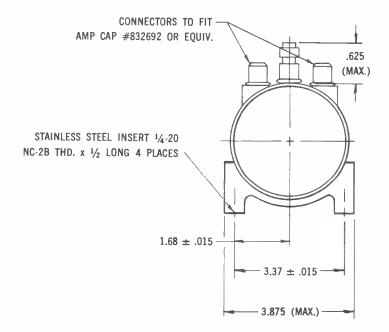
Operating and Performance Data

Filament Voltage	÷	6.3 Volts
Filament Current		3.0 Amperes
Cathode Voltage		-7800 Vdc
Peak Cathode Current		1.5 adc
Grid Voltage (Beam on)		200 Vdc
Grid Voltage (Beam off)		—90 Vdc
Duty Cycle		2%
Frequency Range		2.8-3.5 Gc
Small Signal Gain—Minimum		36 db
Saturated Power Out-Minimum		2.0 kw
Saturated Gain—Minimum		30 db
Grid Capacitance		
(to all other elements)		15 picofds.

Complies with	MIL	-5400) C	lass	5	Ec	luit	oment
Temperature								−65°C to +125°C


MECHANICAL SPECIFICATIONS


NC
NC
PM
air
ing
bs.
low
wn
een


NOTE: Electrode Voltages are with respect to cathode; tube shell at ground potential.

EITEL-MCCULLOUGH, INC.

The EM116 is a 2% duty cycle TWT providing 1.6 kw of power over the frequency range of 2.9–3.1 Gc. This tube is PPM focused and of metal-ceramic construction for use in stringent environments.

ELECTRICAL SPECIFICATIONS

Absolute Ratings			Maximum
Filament Voltage			7.0 Volts
Pulse Cathode Voltage			
Peak Cathode Current			2.0 adc
Duty Cycle			2%

Operating and Performance Data

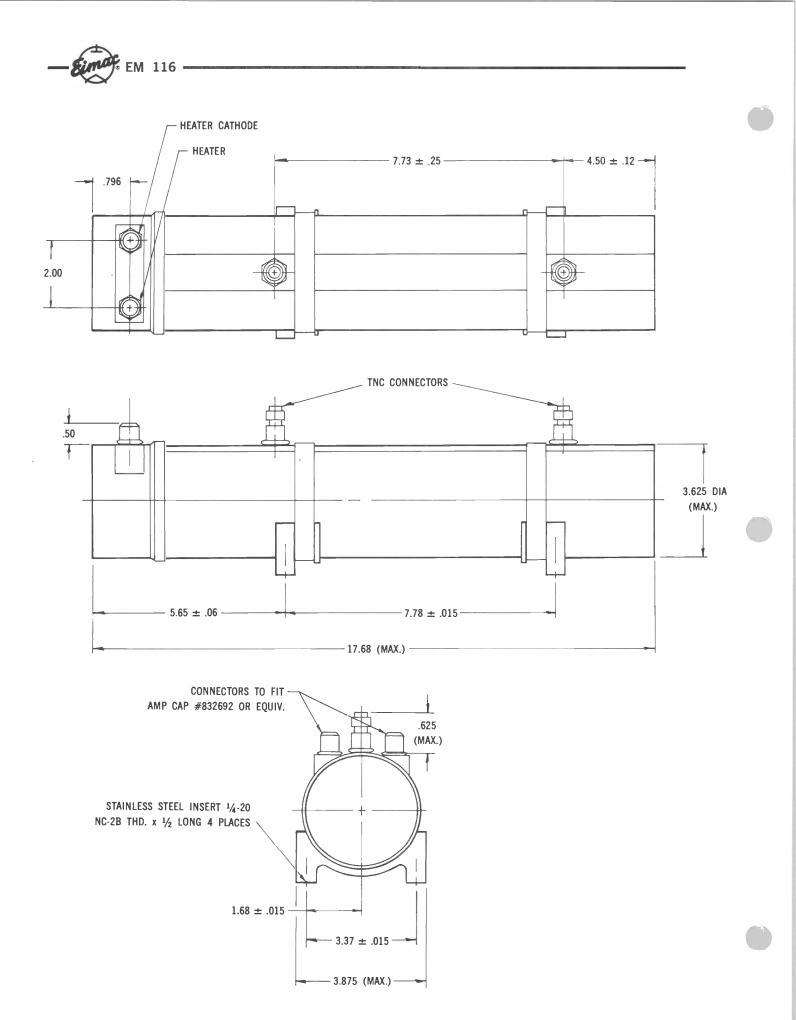
Filament Voltage	6.3 Volts
Filament Current	3.0 Amperes
Cathode Voltage	
Peak Cathode Current	1.3 adc
Duty Cycle	2%
Frequency Range	2.9–3.1 Gc
Small Signal Gain—Minimum	
Saturated Power Out-Minimum	1.6 kw
Saturated Gain—Minimum	30 db

ENVIRONMENTAL SPECIFICATIONS

Complies with	MIL	-5400	Clas	s II	Equipn	nent
Temperature						-65°C to +125°C

MECHANICAL SPECIFICATIONS

Operating Position				Any
Input Coupling, rf				TNC
Output Coupling, rf				TNC
Focusing				
				75 CFM forced air
				See outline drawing
Weight				
Supply Connections				
				Filament-brown
				Grid-green


NOTE: Electrode Voltages are with respect to cathode; tube shell at ground potential.

EM 116

TRAVELING WAVE

TUBE

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

EM 118 TRAVELING WAVE TUBE

The EM118 is a medium-power grid pulse TWT suitable for operation in extreme environments. Rated power output of 500 watts is obtained over the frequency range of 2.7–2.9 Gc.

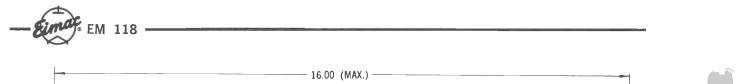
ELECTRICAL SPECIFICATIONS

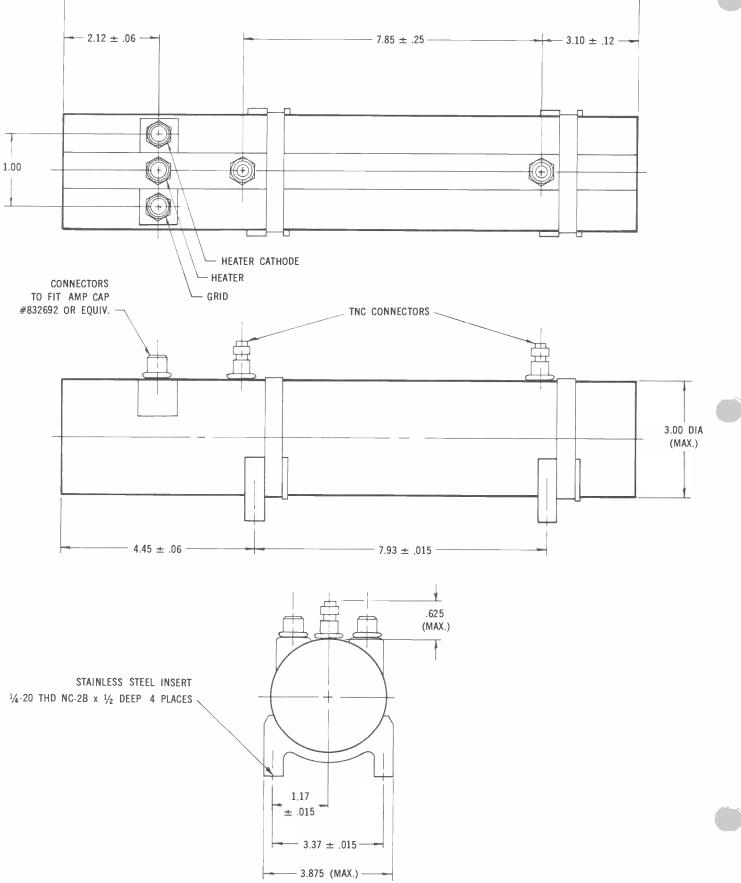
Absolute Ratings			Maximum
Filament Voltage			7.0 Volts
Cathode Voltage			-5000 Vdc
Peak Cathode Current			1.0 adc
Pulse Grid Voltage			+400, to −150 vdc
Duty Cycle			2%

Operating and Performance Data

Filament Voltage	6.3 Volts
Filament Current	3.0 Amperes
Cathode Voltage	-4700 Vdc
Peak Cathode Current	0.8 adc
Pulse Grid Voltage (Beam on)	+200 Vdc
Pulse Grid Voltage (Beam off)	-90 Vdc
Duty Cycle	2%
Frequency Range	2.7–2.9 Gc
Small Signal Gain—Minimum	46 db
Peak Saturated Power Out—Minimum	500 w
Saturated Gain-Minimum	40 db
Grid Capacitance	
(to all other elements)	15 picofds.

ENVIRONMENTAL SPECIFICATIONS


Complies with	MIL	-5	400	С	lass	; []	Equ	lip	oment
Temperature		-							-65°C to +125°C


MECHANICAL SPECIFICATIONS

Operating Position				Any
Input Coupling, rf				TNC
Output Coupling, rf				TNC
Focusing				PPM
Cooling				75 CFM forced air
Dimensions				See outline drawing
Weight				9 lbs.
Supply Connections				Cathode—yellow
				Filament-brown
				Grid-green

NOTE: Electrode Voltages are with respect to cathode; tube shell at ground potential.

ELECTRICAL

EITEL-MCCULLOUGH, INC.

TENTATIVE DATA FOR EIMAC EM-778 TRAVELING WAVE TUBE

The Eimac 8198/EM-778 is a ruggedized, ceramic and metal, periodic permanent magnet focused, power-amplifier traveling wave tube. It is capable of delivering a minimum CW output power of one watt throughout the frequency range of 5.0 to 11.0 gigacycles with a nominal small signal gain of 60 decibels. The 8198/EM-778 is designed to operate under severe environmental extremes of shock, vibration, temperature and altitude such as encountered in airborne applications.

TENTATIVE DATA

TRAVELING WAVE TUBE 5.0 to 11.0 Gc. 1 Watt Min. 60 db Gain

The use of temperature compensated permanent magnets allows the 8198/EM-778 to be operated over a wide temperature range without degradation of performance. Flexible leads provide electrical connections to the tube.

GENERAL CHARACTERISTICS

Cathode: Unipotential, oxide coated											
Minimum Heating Time	60 seconds										
Heater: Voltage	6.3 volts										
Current	0.6 amperes										
Noise Figure	25 to 34 decibels										
Minimum Tangential Sensitivity (Broadband)	-50 dbm										
Minimum Saturated Output Power	1 watt										
•											
Frequency Range											
Input and Output Impedance	50 ohms nominal										
MECHANICAL											
Operating Position	Any										
	Type N Female Coaxial Fitting										
	Type N Female Coaxial Fitting										
Focusing	Periodic Permanent Magnet										
Cooling	Passive Heat Sink										
Maximum Overall Dimensions	See Outline Drawing										
Net Weight (Including Magnets) ·	4.5 Pounds										
MAXIMUM RATINGS											
D-C BEAM VOLTAGE*	3000 VOLTS										
D-C FOCUS ELECTRODE VOLTAGE*:											
NEGATIVE WITH RESPECT TO CATHODE	40 VOLTS										
D-C CATHODE CURRENT	25 MILLIAMPERES										
	ZU MILLIMMI LIKLU										

Frequency Minimum Output Power Small Signal Gain				5.0 to 11.0 gigacycles 1.0 watt 60 decibels	
D-C Beam Voltage* . D-C Cathode Current .	•			2900 volts 23 milliampere	es
D-C Focus Electrode Voltag D-C Focus Electrode Curre				–30 volts 0 milliampere	es

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-778 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

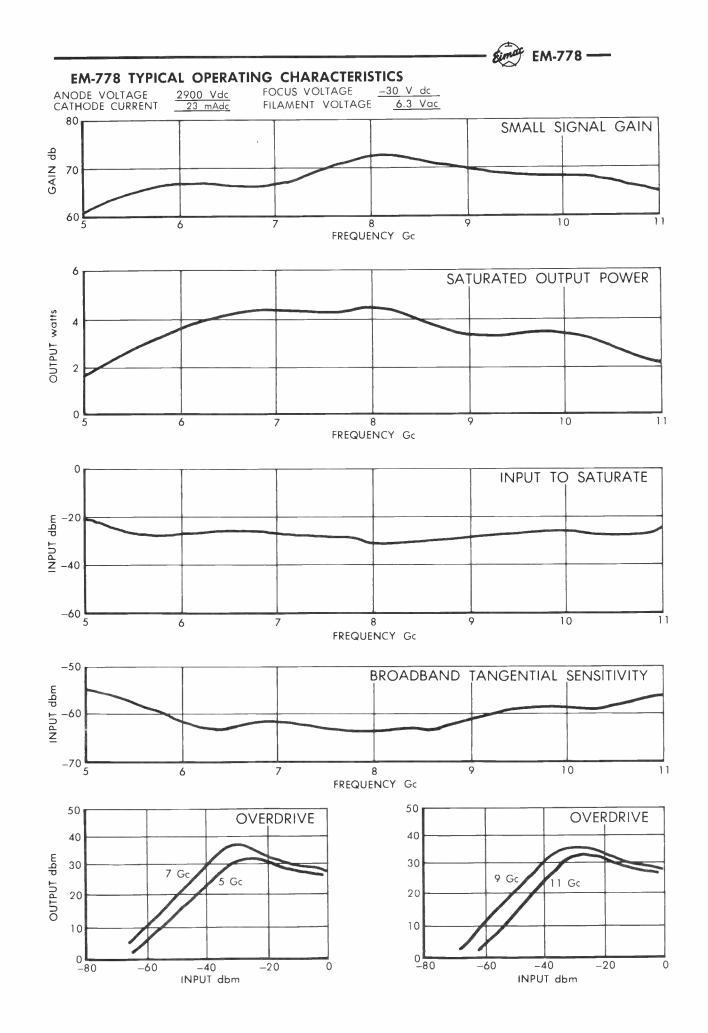
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within \pm 2 per cent to minimize variations in performance.

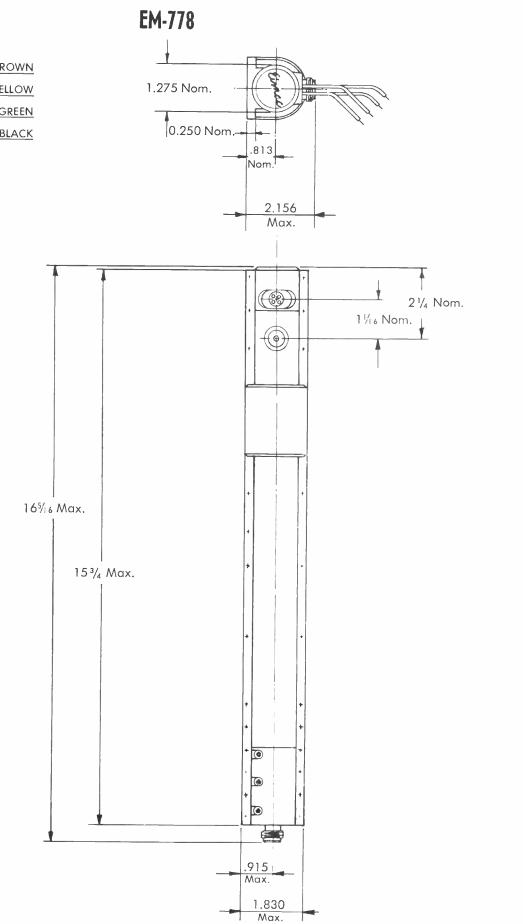
Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-778 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)

Shock: 25 g, 11 ± 1 ms


Acceleration: Sustained, 25 g's

Temperature: -54° C to $+85^{\circ}$ C

Altitude: 70,000 ft.

CONNECTIONS

- 1. HEATER ___BROWN
- 2. CATHODE HEATER-YELLOW
- 3. FOCUS ELECTRODE ----GREEN
- 4. BODY GROUND -BLACK

لية

EITEL-MCCULLOUGH, INC.

EM-779 TRAVELING WAVE TUBE 5.0 to 11.0 Gc. 1 Watt Minimum 30 db Gain

TENTATIVE DATA

TENTATIVE DATA FOR EIMAC EM-779 TRAVELING WAVE TUBE

The Eimac EM-779 is a ruggedized, ceramic and metal, periodic permanent magnet focused, power-amplifier traveling wave tube. It is capable of delivering a minimum CW output power of one watt throughout the frequency range of 5.0 to 11.0 Gigacycles with a nominal small signal gain of 30 decibels. The EM-779 is designed to operate under severe environmental extremes of shock, vibration, temperature and altitude such as encountered in airborne applications.

The use of temperature compensated permanent magnets allows the EM-779 to be operated over a wide temperature range without degradation of performance. Flexible leads provide electrical connections to the tube.

GENERAL CHARACTERISTICS

ELECTRICAL

	Cathode:	Unipotential,	oxide c	oate	d							
		Minimum He	eating T	ime						60 seconds		
	Heater:	Voltage .										
		Current .								0.6 amperes		
	Noise Fig	ure								25 to 34 decibels		
	Minimum	Saturated O	utput Po	wer						1 watt		
	Frequency	/Range .					•			5.0 to 11.0 gigacycles		
	Input and	Output Impe	edance					•		50 ohms nominal		
MEC	MECHANICAL											
	Operating	p Position								Any		
		Coupling								Type N Female Coaxial Fitting		
	RF Outpu	t Coupling								Type N Female Coaxial Fitting		
	Focusing									Periodic Permanent Magnet		
	Cooling									Passive Heat Sink		
	Maximun	n Overall Dim	ensions					•	•	See Outline Drawing		
	Net Weig	ht (Including	Magnet	's)	•					2.5 Pounds		
		TINOC										
MA.	XIMUM RA	ATINGS										
		N VOLTAGE*								3000 VOLTS		
		JS ELECTROD										
		ATIVE WITH		TO	CA	THO	DDE	-	•	40 VOLTS		
	D-C CATI	HODE CURREI	NT.	•	•	•			•	25 MILLIAMPERES		

Frequency Minimum Output Power . Small Signal Gain			1.0	watts
D-C Beam Voltage* D-C Cathode Current				volts milliamperes
D-C Focus Electrode Voltage* D-C Focus Electrode Current .				volts milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-779 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

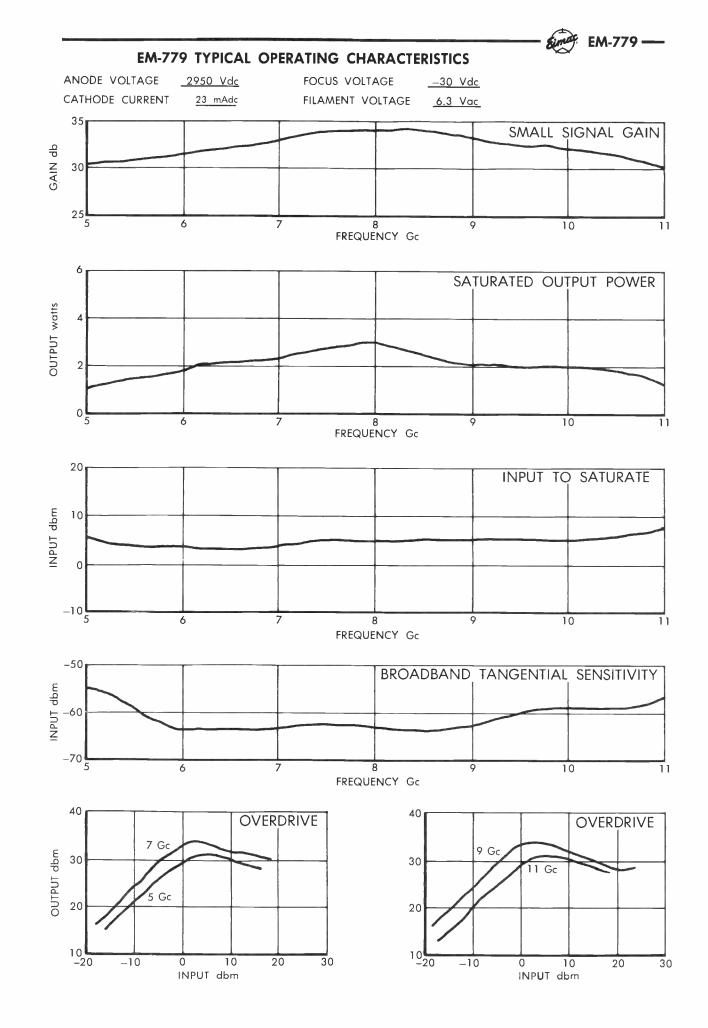
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

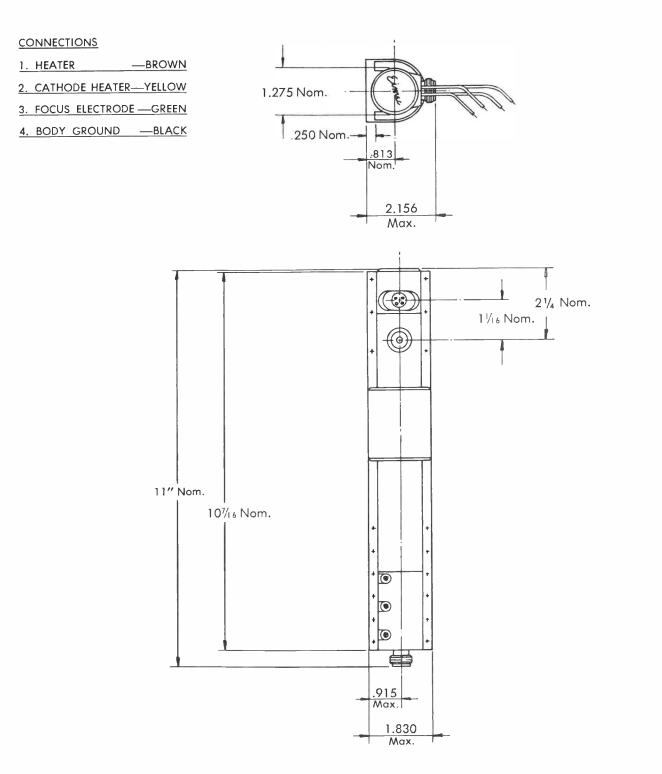
Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-779 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)


Shock: 25 g, 11 ± 1 ms

Acceleration: Sustained, 25 g's

Temperature: -54° C to $+85^{\circ}$ C

Altitude: 70,000 ft.

EITEL-McCULLOUGH, INC.

SAN CARLOS, CALIFORNIA

EM-1011 TRAVELING WAVE TUBE 4.0 to 8.0 Gc. 1 Watt Min. 30 db Gain

TENTATIVE DATA

00

TENTATIVE DATA FOR EIMAC EM-1011 TRAVELING WAVE TUBE

The Eimac EM-1011 is an intermediate-power traveling wave tube amplifier designed to operate in the 4.0 to 8.0 Gc frequency range. The EM-1011 will provide a minimum saturated power output of 1 watt over this frequency range with a nominal small signal gain of 30 db.

The EM-1011 features rugged ceramic and metal construction and focusing is provided by built-in periodic permanent magnets. These magnets are fully temperature compensated to allow operation from -55° C to $+85^{\circ}$ C. No additional cooling is required at these temperatures due to the integral heat sink/mounting flange supplied with the tube.

GENERAL CHARACTERISTICS

ELECTRICAL							
Cathode:	Unipotential, oxide Minimum Heating						60 seconds
Heater:	Voltage Current	•	•	•			6.3 volts
Minimum Frequency	ure Saturated Output P v Range	ower	•	•		•	25 to 34 decibels 1 watt 4.0 to 8.0 gigacycles
MECHANICAL	Output Impedance	·	•		•	٠	50 ohms nominal
Operating	Position						Any
RF Input RF Outpu	Coupling It Coupling	• •	•	•	•	•	Type N Female Coaxial Fitting Type N Female Coaxial Fitting
Cooling	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	Periodic Permanent Magnet Passive Heat Sink See Outline Drawing
Net Weig	ht (Including Magne	ets)	•	•	•	•	2.5 Pounds
MAXIMUM RA	TINGS						
	A VOLTAGE* . JS ELECTRODE VOLT			•	•	•	2600 VOLTS
	ATIVE WITH RESPEC HODE CURRENT .						40 VOLTS 30 MILLIAMPERES

Frequency Minimum Output Pow Small Signal Gain	er.		•	•	•	4.0 to 8.0 1.0 30	
D-C Beam Voltage* D-C Cathode Current							volts milliamperes
D-C Focus Electrode V D-C Focus Electrode C	Current	•	•				volts milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-1011 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

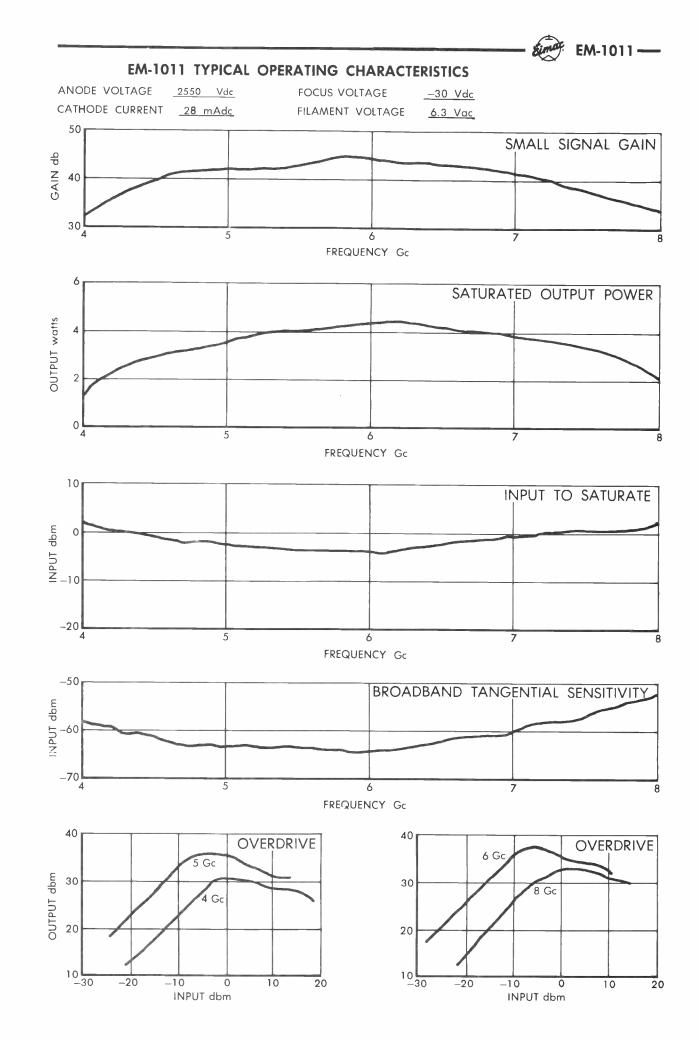
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within \pm 1% to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within \pm 2 per cent to minimize variations in performance.

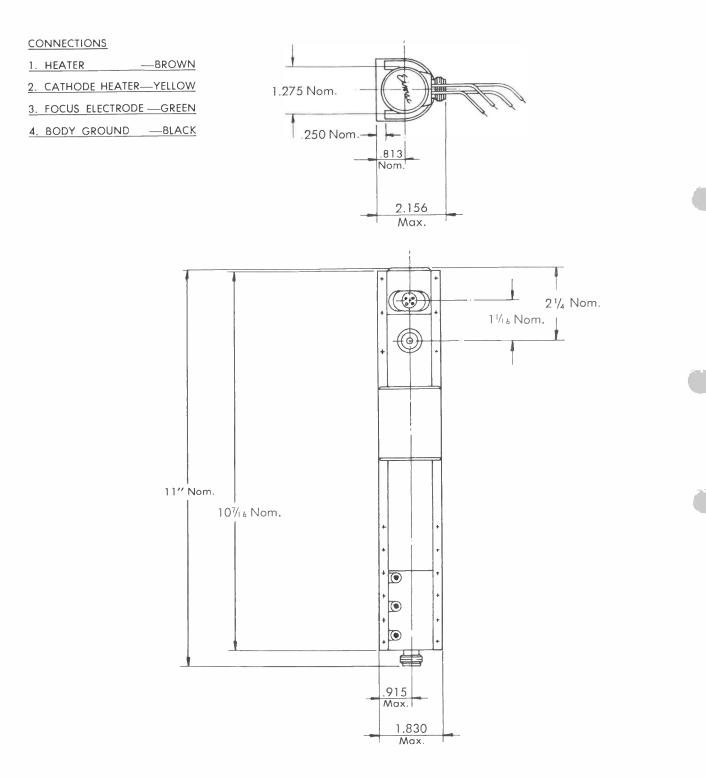
Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-1011 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)

Shock: 25 g, 11 ± 1 ms


Acceleration: Sustained, 25 g's

Temperature: -54° C to $+85^{\circ}$ C

Altitude: 70,000 ft.

🦻 EM-1011-

TENTATIVE DATA EM-1016 TRAVELING WAVE TUBE 4.0 to 8.0 Gc. 3 Watts Min. 30 db Gain

TENTATIVE DATA FOR EIMAC EM-1016 TRAVELING WAVE TUBE

The Eimac EM-1016 is an intermediate-power traveling wave tube amplifier designed to operate in the 4.0 to 8.0 Gc frequency range. The EM-1016 will provide a minimum saturated power output of 3 watts over this frequency range with a nominal small signal gain of 30 db.

The EM-1016 features rugged ceramic and metal construction and focusing is provided by built-in periodic permanent magnets. These magnets are fully temperature compensated to allow operation from -55° C to $+85^{\circ}$ C. No additional cooling is required at these temperatures due to the integral heat sink/mounting flange supplied with the tube.

GENERAL CHARACTERISTICS

	Noise Fig Minimum Minimum Frequency	Minimum Voltage Current ure Tangentic Saturated	Heati al Sens d Outp	ng T sitivit ut Pc	ime y (B wer		dba		• • • •		•	60 seconds 6.3 volts 0.6 amperes 25 to 34 decibels -50 dbm 3 watts 4.0 to 8.0 gigacycles 50 ohms nominal
MEC	HANICAL											
	Operating RF Input RF Outpu Focusing Cooling Maximum Net Weig	Coupling t Coupling Overall [g . Dimens	ions	• • •		• • •	• • •				Any Type N Female Coaxial Fitting Type N Female Coaxial Fitting Periodic Permanent Magnet Passive Heat Sink See Outline Drawing 2.5 Pounds
MAX	KIMUM RA	TINGS										
	D-C BEAN D-C FOCU	JS ELECTR	ode v	OLTA	\GE: ³	*						
		ATIVE WI HODE CUI								• •		50 VOLTS 40 MILLIAMPERES

ELECTRICAL

Eimac.

Frequency Minimum Output Pow Small Signal Gain	ver.				3.0	watts
D-C Beam Voltage* D-C Cathode Current						volts milliamperes
D-C Focus Electrode D-C Focus Electrode						volts milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-1016 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

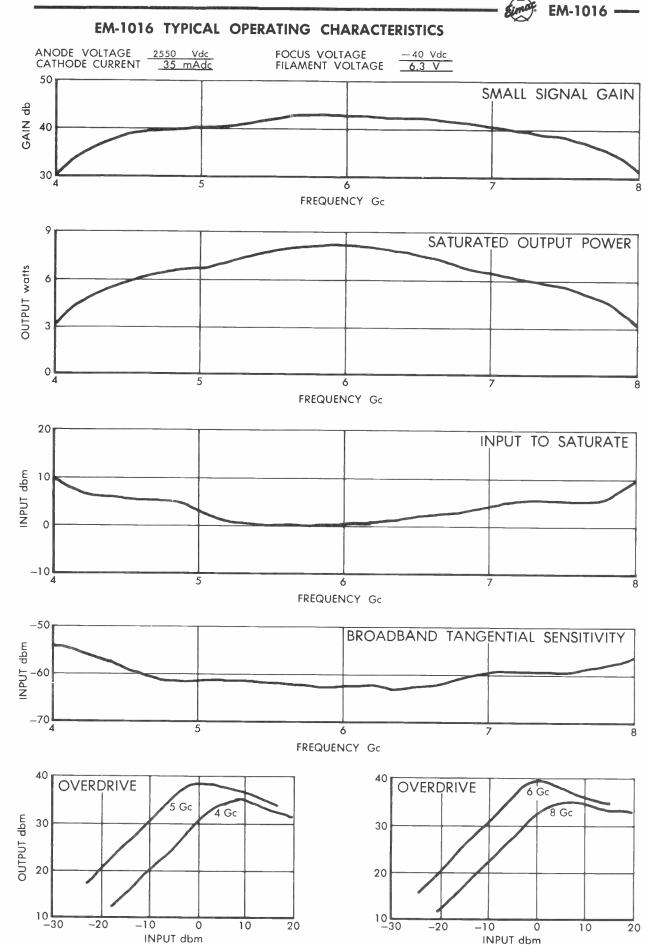
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

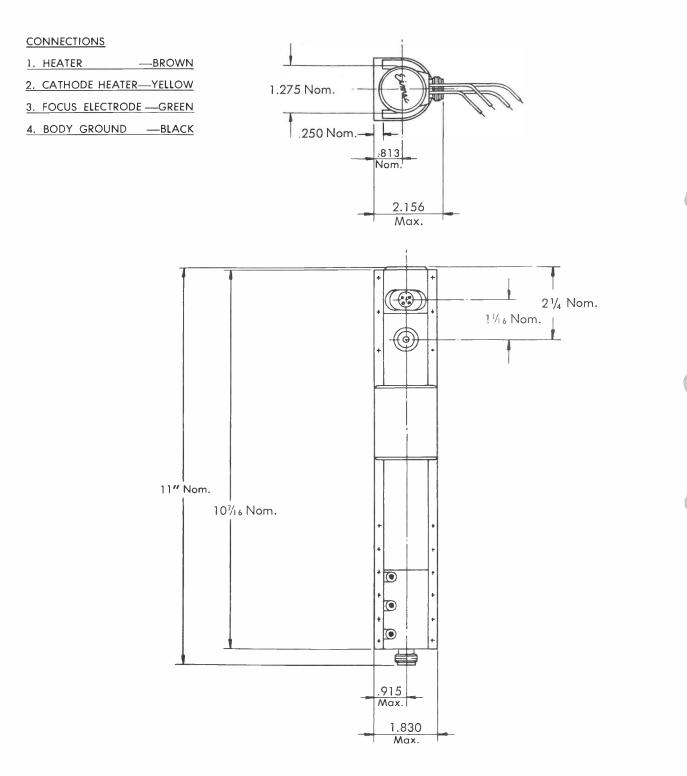
Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-1016 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)

Shock: 25 g, 11 ± 1 ms


Acceleration: Sustained, 25 g's

Temperature: -54° C to $+85^{\circ}$ C

Altitude: 70,000 ft.

TENTATIVE DATA EM-1025 TRAVELING WAVE TUBE 4.0 to 12.0 Gc. 1 Watt Min. 40 db Gain

TENTATIVE DATA FOR EIMAC EM-1025 TRAVELING WAVE TUBE

The Eimac EM-1025 now offers performance over a frequency range that previously required **two or more** tubes to duplicate, providing 1 watt saturated power output from 4.0 to 12.0 gigacycles with 40 db gain! This tube is focused by light weight, periodic permanent magnets and utilizes proven ceramic and metal construction to insure reliable operation over a wide range of environments. The integral heat sink/mounting flange allows operation to + 85°C without additional cooling.

APPLICATIONS:

Wide bandwidth, high power output and high gain make the EM-1025 ideally suited for signal generators, power amplifier units or any application where these characteristics are required. In addition, the tube can be adapted to frequency-multiplier applications.

EITEL-MCCULLOUGH, INC.

SAN CARLOS, CALIFORNIA

GENERAL CHARACTERISTICS

ELECTRICAL

Cathod	e: Unipoten	tial, o	xide c	oated				
	Minimum	h Heat	ing Ti	ime		•		60 seconds
Heater	Voltage							6.3 volts
	Current							0.6 amperes
Noise	Figure .							25 to 34 decibels
Minim	um Tangent	ial Ser	nsitivit	y (Bro	badb	and)		–50 dbm
Minim	um Saturate	d Outp	out Po	wer			•	1 watt
	ncy Range							4.0 to 12.0 gigacycles
Input of	and Output	Impec	lance	•		•	•	50 ohms nominal
MECHANIC	AL.							

Operating Position							Any
RF Input Coupling							Type N Female Coaxial Fitting
RF Output Coupling							Type N Female Coaxial Fitting
Focusing .							Periodic Permanent Magnet
Cooling							Passive Heat Sink
Maximum Overall Dir							See Outline Drawing
Net Weight (Including	gМ	agne	ts)	•	•	•	4.5 Pounds

- Simor	EM-1025
---------	---------

MAXIMUM RATINGS

D-C BEAM VOLTAGE* D-C FOCUS ELECTRODE				•	•	•			3000 VOLTS
NEGATIVE WITH R D-C CATHODE CURREN	ESPEC	т тс	CA						40 VOLTS 25 MILLIAMPERES
TYPICAL OPERATING CHAR	ACTERI	ISTIC	S						
Frequency								4.0	to 12.0 gigacycles
Minimum Output Power									1.0 watt
Small Signal Gain .		•	•	•	•	•	•		40 decibels
D-C Beam Voltage* .									2900 volts
D-C Cathode Current .	•	•	•		•	•			23 milliamperes
D-C Focus Electrode Vo	ltage*	•					•		-30 volts
D-C Focus Electrode Cu	rrent	•	•	•	•	•	•		0 milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-1025 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

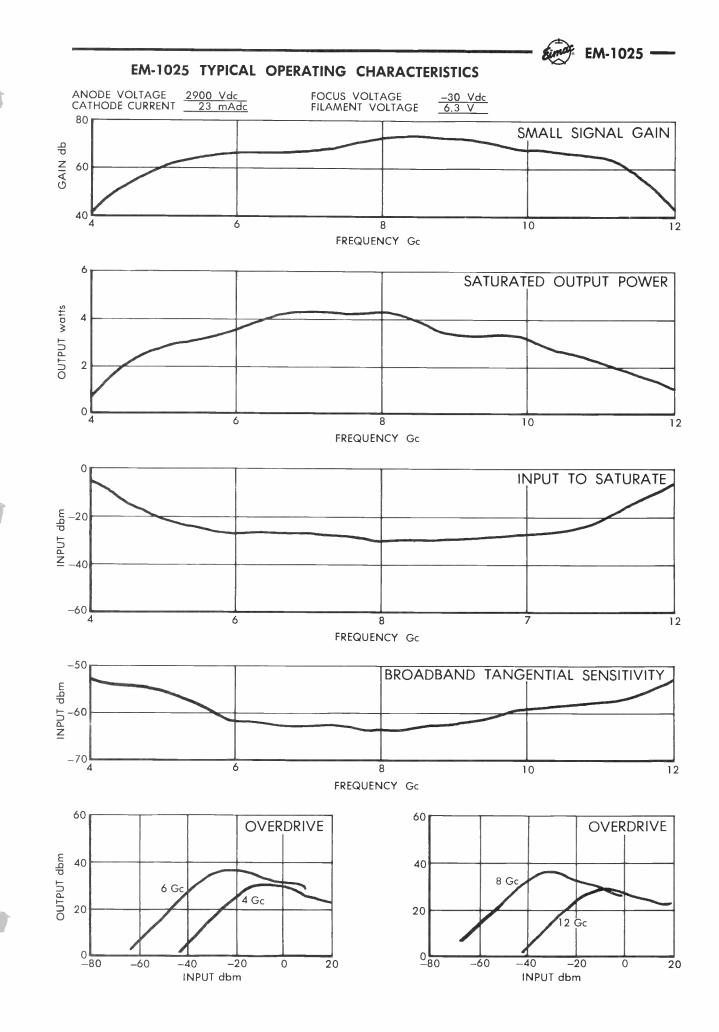
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

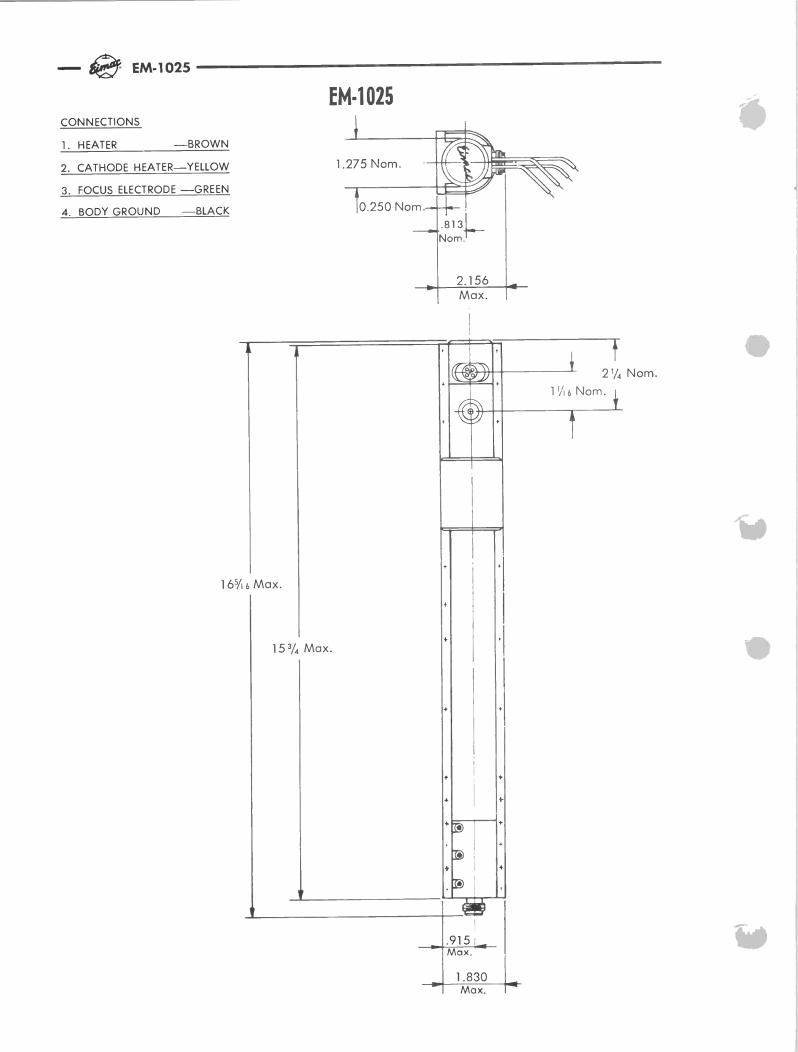
Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-1025 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)


Shock: 25 g, 11 ± 1 ms

Acceleration: Sustained, 25 g's

Temperature: -54 °C to +85 °C

Altitude: 70,000 ft.

EITEL-MCCULLOUGH, INC.

EM-1031 TRAVELING WAVE TUBE 7.0 to 11.0 Gc. 5 Watts Min. 30 db Gain

TENTATIVE DATA

TENTATIVE DATA FOR EIMAC EM-1031 TRAVELING WAVE TUBE

The Eimac EM-1031 is a very rugged, light weight power-amplifier traveling wave tube designed to operate under severe environmental extremes of shock, vibration, altitude and temperature. The EM-1031 utilizes ceramic and metal construction and is focused by a fully temperature-compensated periodic permanent magnet array. This tube will provide a minimum output power of 5 watts CW over the frequency range of 7.0 to 11.0 Gc with a nominal small signal gain of 30 db.

The integral heat sink mounting flange allows operation to ambient temperatures of + 85°C without additional cooling. Flexible leads provide electrical connections to the tube. The integral heat sink/mounting flange permits this high temperature operation without additional cooling required for most applications.

APPLICATIONS:

Wide bandwidth, high power output and high gain make the EM-1031 ideally suited for radar augmentation or ECM applications in high performance aircraft or missile systems.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipoter	ntial	, oxic	le co	atec	1				
	Minimun	n He	eating	g Tir	me			0.1	60	seconds
Heater:	Voltage								6.3	volts
	Current								0.6	amperes
Noise Fig	gure .								25 to 34	decibels
Minimum	n Tangent	ial S	Sensit	ivity	(Bro	badb	and)		-50	dbm
Minimum	Saturate	ed O	utput	Pov	ver	•				watts
Frequenc	y Range								7.0 to 11.0	
Input an	d Output	Imp	pedar	nce			•		50	ohms nominal

MECHANICAL

Operating Position						Any
RF Input Coupling						Type N Female Coaxial Fitting
RF Output Coupling						Type N Female Coaxial Fitting
Focusing						Periodic Permanent Magnet
Cooling				•		Passive Heat Sink
Maximum Overall Dir				•		See Outline Drawing
Net Weight (Including	gМ	agne	ts)			4.5 Pounds

MAXIMUM RATINGS

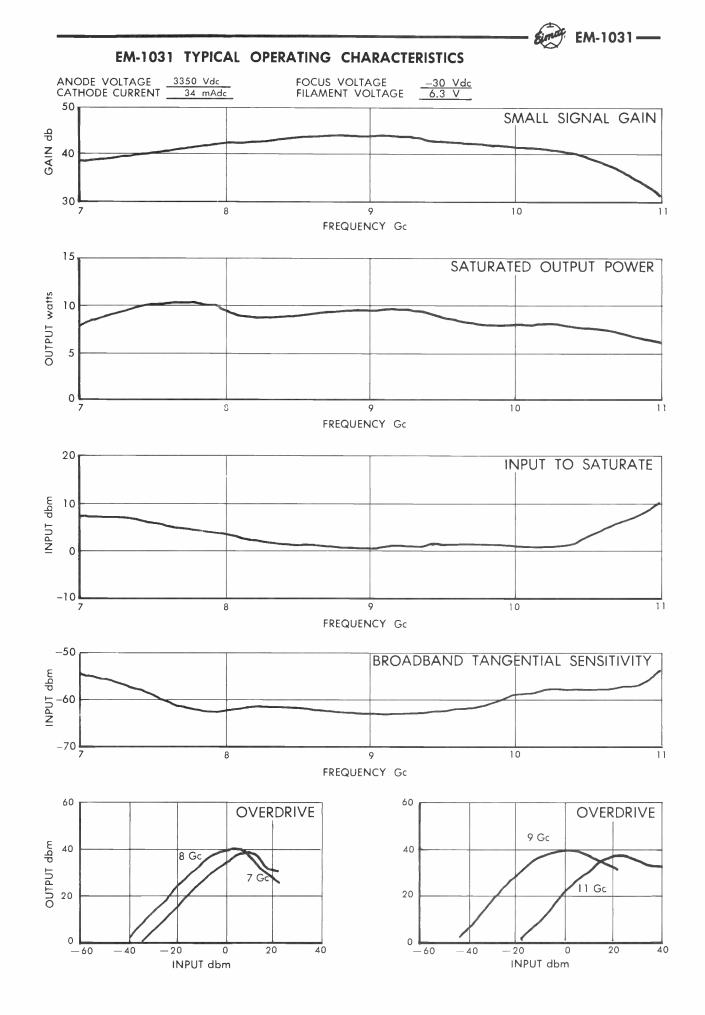
	D-C F	OCUS	VOLTAGE ELECTRO	DE VC)LTA	GE:*							3400		
	-		IVE WITH DE CURR											VOLTS MILLIAMPERE	ES
TYPI	CAL O	PERAT	ING CHA	ARACI	FERIS	STICS	5								
	Freque	ency		•								7.0) gigacycles	
	Minim	um O	utput Pov	ver	•		•	•	•					0 watts	
	Small	Signo	I Gain	•	•	•	•	•	•	•	•		3	0 decibels	
			/oltage*											0 volts	
	D-C C	athod	e Current	•	•	•		•	•	•	•		3.	4 milliamper	res
			lectrode											0 volts	
	D-C Fo	ocus E	lectrode	Curre	nt	•	•		•	•	•		() milliamper	es
	J. 6 11	1.	c .	1		1									

*All voltages referred to cathode.

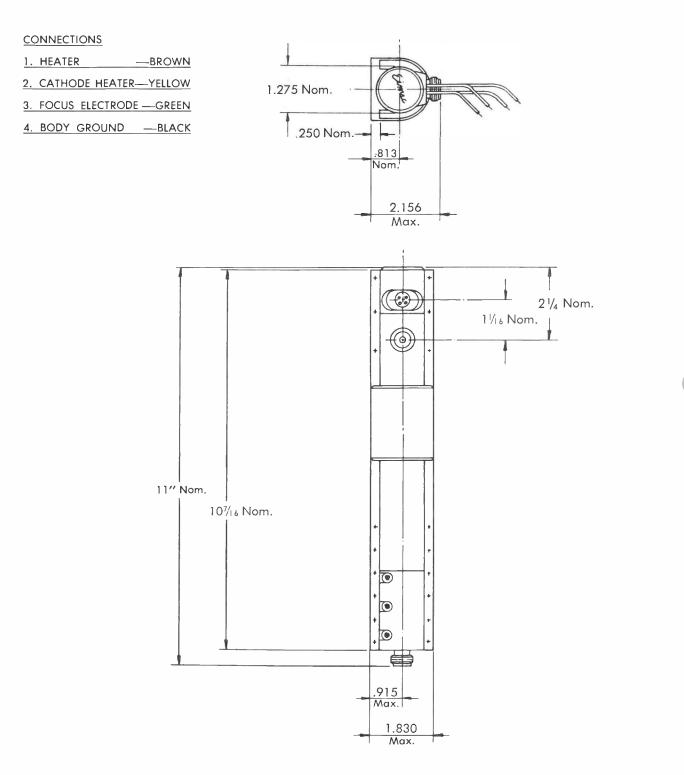
APPLICATION

Cooling: The EM-1031 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.


Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.


Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

The EM-1031 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.

Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C) Shock: 25 g, 11 ± 1 ms Acceleration: Sustained, 25 g's Temperature: -54° C to $+ 85^{\circ}$ C Altitude: 70,000 ft. NOTE: This data should not be used for final equipment design.

- Sime EM-1031 -

ELECTRICAL

Tentative Data

EM1046 TRAVELING WAVE TUBE 8.0 to 12.0 GHz 1 Watt Min. 30 db Gain

TENTATIVE DATA FOR EIMAC EM1046 TRAVELING WAVE TUBE

The EIMAC EM1046 is a ruggedized, ceramic and metal, periodic permanent magnet focused, power-amplifier traveling wave tube. It is capable of delivering a minimum CW output power of 1 watt throughout the frequency range of 8.0 to 12.0 gigahertz with a nominal small signal gain of 30 decibels. The EM1046 is designed to operate under severe environmental extremes of shock, vibration, temperature and altitude such as encountered in airborne applications.

The use of temperature compensated permanent magnets allows the EM1046 to be operated over a wide temperature range without degradation of performance. Flexible leads provide electrical connections to the tube.

GENERAL CHARACTERISTICS

EIMAC A Division of Varian Associates

Cathode:	Unipotential	l. oxi	de c	oate	d								
outilouv	Minimum H					-	-	-	-	-	-	-	- 60 seconds
Heater:	Voltage	-	-	-	-	-	-	-	-	-	-	-	- 6.3 volts
	Current	-	-	-	-	-	-	-	-	-	-	-	- 0.6 amperes
Noise Fi	gure	-	-	-	-	-	-	-	-	-	-	-	- 25 to 34 decibels
Minimur	n Tangential	Sens	itivi	ty (I	Broa	dbar	nd)	-	-	-	-	-	- —50 dbm
Minimur	n Saturated C)utpu	it Po	wer	-	-	-	-	-	-	-	-	- 1 watt
Frequence	cy Range -	-	-	-	-	-	-	-	-	-	-	-	- 8.0 to 12.0 gigahertz
Input an	d Output Imp	eden	ice	-	-	-	-	-	-	-	-	-	- 50 ohms nominal
MECHAN	NICAL												
Operatin	g Position	-	-	-	-	-	-	-	-	-	-	-	Any
RF Inpu	t Coupling	-	-	-	-	-	-	-	-	-	-	-	Type N Female Coaxial Fitting
-	ut Coupling	_	-	-	-	-	-	-	-	-	-	-	Type N Female Coaxial Fitting
Focusing	- 0	-	-	-	-	_	-	-	-	-	-	-	Periodic Permanent Magnet
Cooling	-	-	-	-	-	-	-	~	-	-	-	-	Passive Heat Sink
Maximu	m Overall Di	mens	sions	; -	-	-	-		-	-	-	-	See Outline Drawing
Net Wei	ght (Includin	g Ma	igne	ts)	-	-	-	-	-	-	-	-	2.5 Pounds
ΜΑΧΙΜ	UM RATINGS												
DC Bear	m Voltage*	-	-	-	-	-	-	-	-	-	-	-	3000 volts
DC Foci	us Electrode	Volta	age*	:									
	gative with re				ode	-	-	-	-	-	-	-	40 volts
DC Cath	node Current	-	-	_	-	-	-	-	-	-	-	-	25 milliamperes

Frequency	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.0 to 12.0 gigahertz
Minimum	Output	Pov	ver	-	-	-	-	-	-	-	-	-	-	-	1.0 watt
Small Signa	al Gain		-	-	-	-	-	-	-	-	-	-	-	-	30 decibels
DC Beam	Voltage	*	-	-	-	-	-	-	-	-	-	-	-	-	2950 volts
DC Cathod	le Curr	ent	-	-	-	-	-	-	-	-	-	-	-	-	23 milliamperes
DC Focus	Electro	de	Volta	.ge*	-	-	-	-	-	-	-	-	-	-	30 volts
DC Focus	Electro	de	Curre	ent	-	-	-	-	-	-	-	-	-	-	0 milliamperes

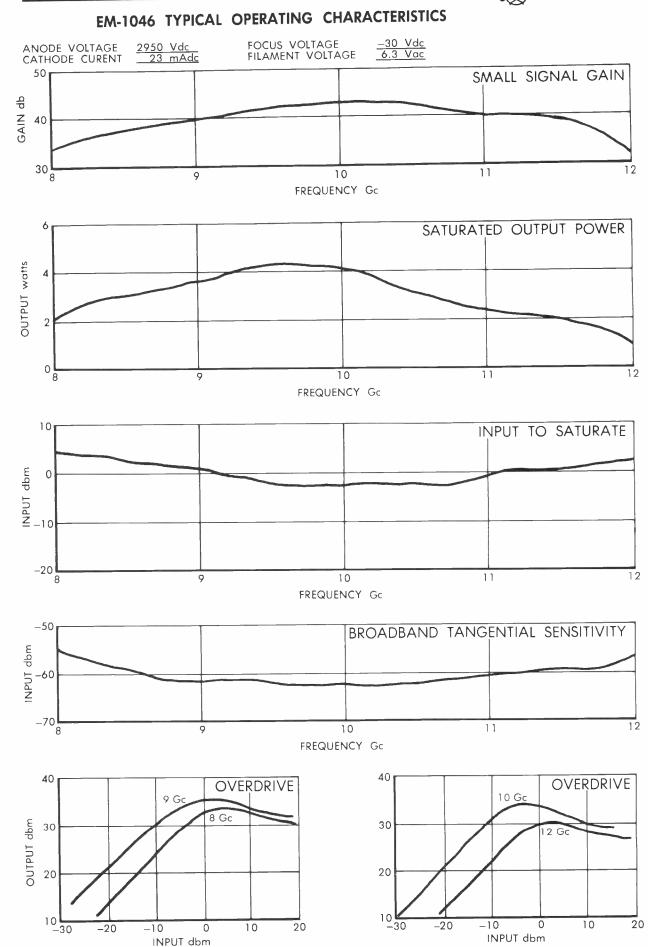
*All voltages referred to cathode.

APPLICATION

Cooling: The EM1046 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within ± 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

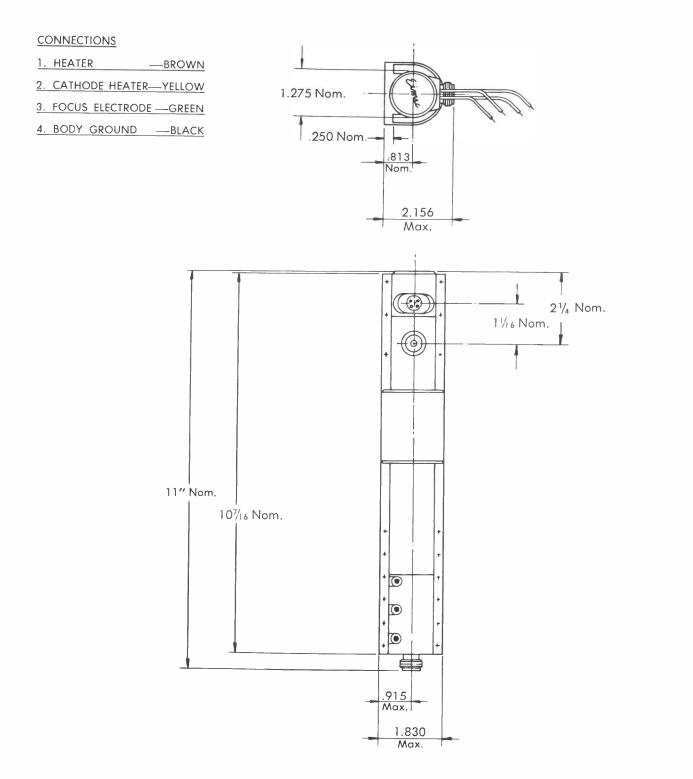
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within ± 1 per cent to insure proper operation.


Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif.

ENVIRONMENTAL

The EM1046 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Air-craft, General Specification for," Class II.


Vibration	-	-	-	-	-	-	-	-]	10 g	to 20	000	Hz (O	Curv	e A d	of Pr	oc. 2	XII, MIL-E-5272C)
Shock -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25 g, 11 ±1 ms
Acceleration	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	Sustained, 25 g's
Temperature		-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	_54°C to +85°C
Altitude -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 70,000 ft.

Simar

EM-1046 -----

Simar EM-1046 -

ELECTRICAL

SAN CARLOS, CALIFORNIA

EM-1050 TRAVELING WAVE TUBE 8.0 to 12.0 Gc. 3 Watts Min. 60 db Gain

TENTATIVE DATA

TENTATIVE DATA FOR EIMAC EM-1050 TRAVELING WAVE TUBE

The Eimac EM-1050 is an intermediate-power traveling wave tube amplifier designed to operate in the 8.0 to 12.0 Gc frequency range. The EM-1050 will provide a minimum saturated power output of 3 watts over this frequency range with a nominal small signal gain of 60 db.

The EM-1050 features rugged ceramic and metal construction and focusing is provided by built-in periodic permanent magnets. These magnets are fully temperature compensated to allow operation from -55 to $+85^{\circ}$ C. No additional cooling is required at these temperatures due to the integral heat sink/mounting flange supplied with the tube.

GENERAL CHARACTERISTICS

	Cathode:	Unipotenti	al, oxid	e coat	ed				
		Minimum							60 seconds
	Heater	Voltage							
		Current							0.6 amperes
	Noise Fig	ure .							· · · · · · ·
		Tangentia							
		Saturated							
		Range	•						
		l Output Ir							
MEC	HANICAL								
	Operating	Position			. •				Any
		Coupling							Type N Female Coaxial Fitting
		t Coupling							Type N Female Coaxial Fitting
	Focusina	• •						•	Periodic Permanent Magnet
	Cooling								Passive Heat Sink
	Maximum	ı Overall D	imensio	ns .					See Outline Drawing
	Net Weig	ht (Includir	ng Mag	nets)	•			•	4.5 Pounds
MAX	IMUM RA								
	D-C BEAN	N VOLTAG	E* .	•	•	•	•	•	3500 VOLTS
	D-C FOCL	JS ELECTRO	DDE VC	ITAGE	*	•	•	•	
		ATIVE WIT		ECT TC	CA.	THO	DE	•	50 VOLTS
	D-C CATH	IODE CURI	RENT					•	30 MILLIAMPERES

Frequency Minimum Output Pow Small Signal Gain	er.						3.0	watts
D-C Beam Voltage* D-C Cathode Current	• •				•			volts milliamperes
D-C Focus Electrode) D-C Focus Electrode (Current	•	•	•				volts milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-1050 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within \pm 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

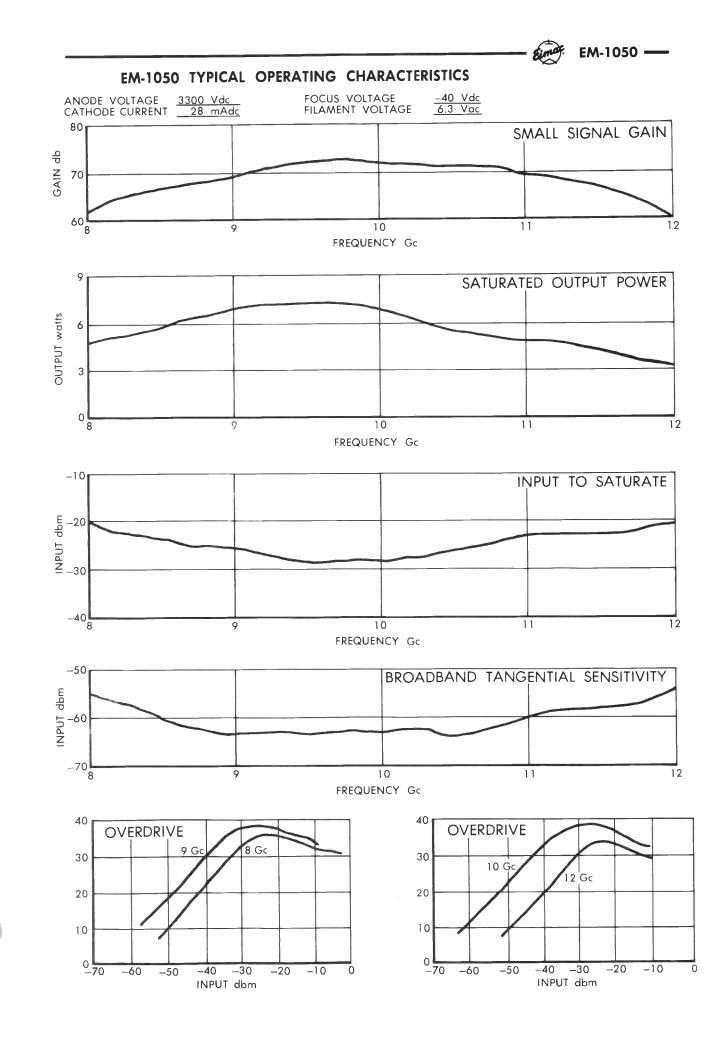
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within $\pm 1\%$ to insure proper operation.

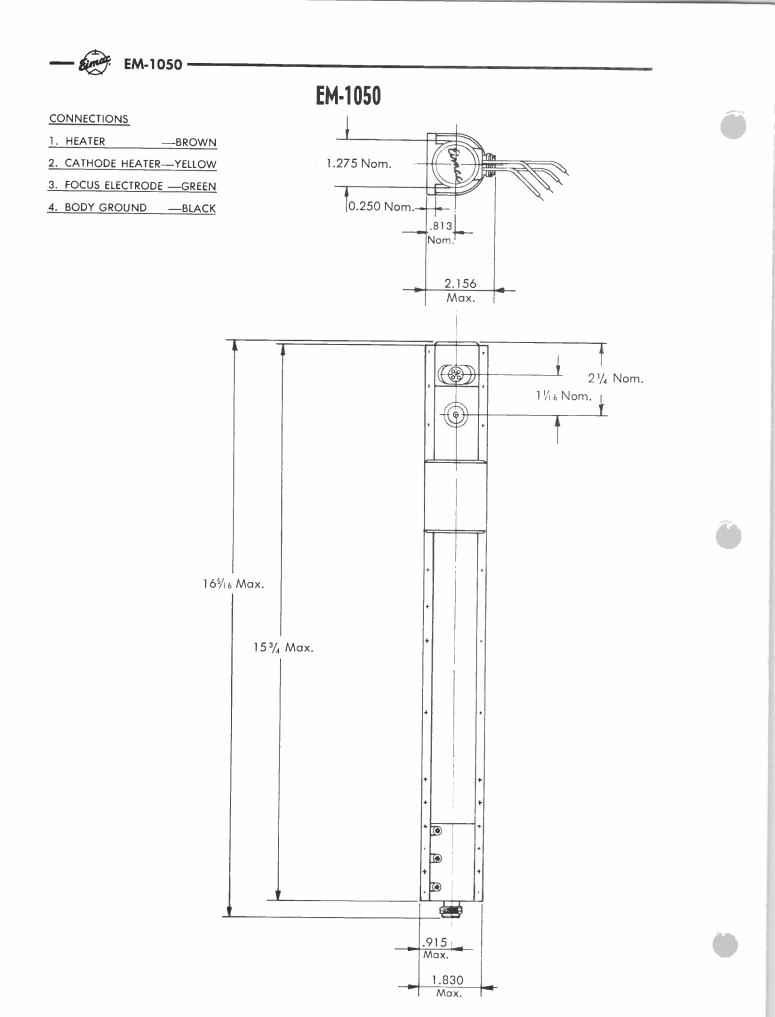
Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

The EM-1050 conforms generally with MIL-E-5272C, "Environmental Testing, Areonautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Aircraft, General Specification for," Class II.


Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)


Shock: 25 g, 11 ± 1 ms

Acceleration: Sustained, 25 g's

Temperature: -54° C to $+85^{\circ}$ C

Altitude: 70,000 ft.

ELECTRICAL

EIMAC

A Division of Varian Associates SAN CARLOS, CALIFORNIA

Tentative Data

EM1051 TRAVELING WAVE TUBE 8.0 to 12.0 GHz 3 Watts Min.

30 db Gain

TENTATIVE DATA FOR EIMAC EM1051 TRAVELING WAVE TUBE

The EIMAC EM1051 is a very rugged, light weight power-amplifier traveling wave tube designed to operate under severe environmental extremes of shock, vibration, altitude and temperature. The EM1051 utilizes ceramic and metal construction and is focused by a fully temperaturecompensated periodic permanent magnet array. This tube will provide a minimum output power of 3 watts CW over the frequency range of 8.0 to 12.0 GHz with a nominal small signal gain of 30 db.

The integral heat sink/mounting flange allows operation to ambient temperatures of +85°C without additional cooling. Flexible leads provide electrical connections to the tube.

GENERAL CHARACTERISTICS

Cathode:	Unipotential, Minimum He				_	_	_	_	_	_	_	- 60 seconds
Heater:	Voltage			,	_	_	_	_	_	_	_	- 6.3 volts
meater.	Current		-	-	-	-	-	-	-	-	-	- 0.6 amperes
Noise Fig	gure			-	-	-	-	-	-	-	-	- 25 to 34 decibels
Minimun	n Tangential S	Sensit	ivity (Broa	dbar	nd)	-	-	-	-	-	- — 50 dbm
Minimun	n Saturated O	utput	Power	c –	-	-	-	-	-	-	-	- 3 watts
					-	-	-	-	-	-	-	- 8.0 to 12.0 gigahertz
Input and	d Output Imp	edence	e -	-	-	-	-	-	-	-	-	- 50 ohms nominal
MECHAN	lical											
Operating	g Position			-	-	-	-	-	-	-	-	An
RF Input	t Coupling			-	-	-	-	-	-	-	-	Type N Female Coaxial Fittin
RF Outp	ut Coupling			-	-	-	-	-	-	-	-	Type N Female Coaxial Fittin
Focusing				-	-	-	-	-	-	-	-	Periodic Permanent Magne
Cooling				-	-	-	-	-	-	-	-	Passive Heat Sin
Maximu	m Overall Dir	nensio	ons -	-	-	-	-	-	-	-	-	See Outline Drawin
Net Weig	ght (Including	g Mag	nets)	-	-	-	***	-	-	-	-	2.5 Pound
ΜΑΧΙΜΙ	JM RATINGS											
DC Bear	n Voltage*	- ·		-	-	-	-	-	-	-	-	3500 volt
	as Electrode stative with res			node	_	-	_	-	-	-	_	50 volt
-	ode Current	-		-	-	-	-	-	-	-	-	30 milliampere

TYPICAL OPERATING CHARACTERISTICS

luency	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.0 to 12.0 gigahertz
imum (Output	Pov	ver	-	-	-	-	-	-	-	-	-	-	-	3.0 watts
ll Sign	al Gain	L	-	-	-	-	-	-	-	-	-	-	-	-	30 decibels
Beam	Voltage) *	-	-	-	-	-	-	-	-	-	-	-	-	3300 volts
Cathod	e Curr	ent	-	-	-	-	-	-	-	-	-	-	-	-	28 milliamperes
Focus	Electro	ode	Volta	ıge*	-	-	-	-	-	-	-	-	-	-	—40 volts
Focus	Electro	de	Curre	ent	-	-	-	-	-	-	-	-	-	-	0 milliamperes
	imum (Ill Sign: Beam Cathod Focus	imum Output Ill Signal Gain Beam Voltage Cathode Curr Focus Electro	imum Output Pov Ill Signal Gain Beam Voltage* Cathode Current Focus Electrode	imum Output Power Ill Signal Gain - Beam Voltage* - Cathode Current - Focus Electrode Volta	imum Output Power - Ill Signal Gain Beam Voltage* Cathode Current Focus Electrode Voltage*	imum Output Power Ill Signal Gain Beam Voltage* Cathode Current Focus Electrode Voltage* -	imum Output Power Ill Signal Gain Beam Voltage* Cathode Current Focus Electrode Voltage*	imum Output Power	quency						

*All voltages referred to cathode.

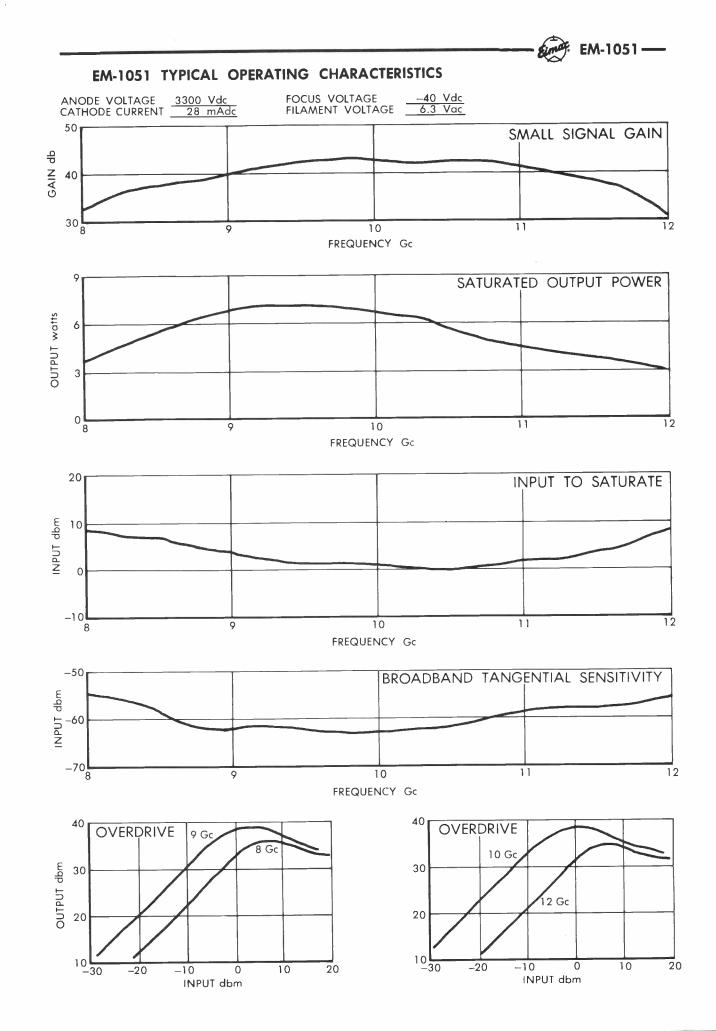
APPLICATION

Cooling: The EM1051 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within ± 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

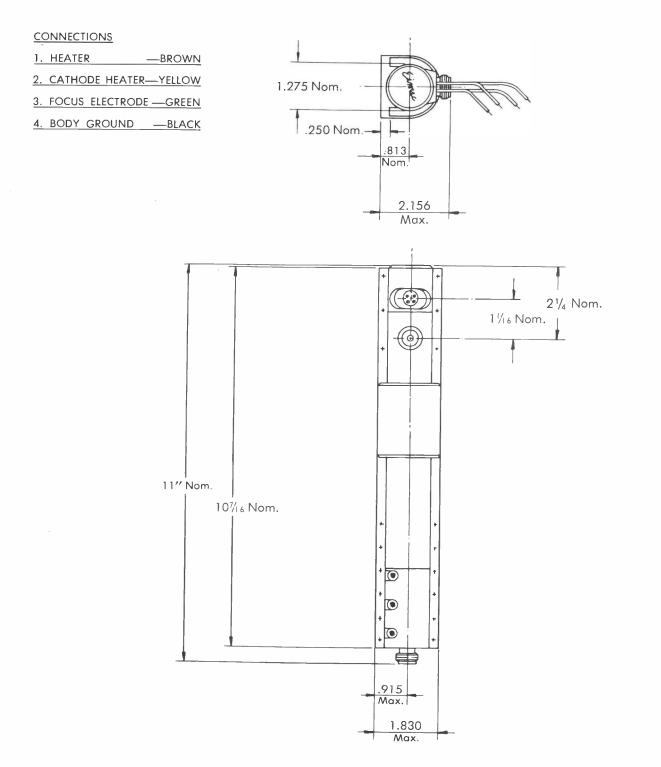
Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within ± 1 per cent to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.


Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif.

ENVIRONMENTAL

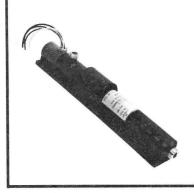
The EM1051 conforms generally with MIL-E-5272C, "Environmental Testing, Aeronautical and Associated Equipment, General Specification for," and MIL-E-5400, "Electronic Equipment, Air-craft, General Specification for," Class II.


Vibration	-	-	-	-	-	-	-	- 2	10 g	to 20	000	Hz ((Curv	e A d	of Pr	oc. 2	XII, MIL-E-5272C)
Shock -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2 5 g, 11 ±1 ms
Acceleration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Sustained, 25 g's
Temperature		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-54°C to +85°C
Altitude -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 70,000 ft.

Note: This data should not be used for final equipment design.

- Emar: EM-1051-

EM-1051


SAN CARLOS, CALIFORNIA

X-1021 TW 4.0-8.0 GC 40 db Gain

TENTATIVE DATA

TENTATIVE DATA FOR EIMAC X-1021 TRAVELING WAVE TUBE

The Eimac X-1021 is a C-Band, ruggedized, light weight power amplifier traveling wave tube designed to operate under severe environmental extremes of shock, vibration, altitude and temperatures. The X-1021 utilizes ceramic and metal construction and is focused by a fully temperature-compensated periodic permanent magnet array. This tube will provide a minimum output power of 10 watts and 40 db gain over the frequency range of 4.0 to 8.0 Gc.

APPLICATIONS

The all ceramic-metal design coupled with a temperature compensated periodic permanent magnet array enables the X-1021 to perform under adverse environmental conditions while heat sink cooling provides an improved form factor for equipment design, making it an excellent choice for power amplification in augmentation or ECM systems in high performance aircraft, rocket or missile applications.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode.	Unipoter	itial,	disp	ens	er	typ	е				
	Minimun	n Hec	ating	Tir	ne			•			120 seconds
Heater:	Voltage										6.3 volts
	Current										1.2 amperes
Noise Fig											
											10 watts
Minimum											1.00
											4.0 to 8.0 gigacycles
Input and											

MECHANICAL

Operating Position .						•	•	Any
RF Input Coupling .					•			Type N Female Coaxial Fitting
RF Output Coupling								Type N Female Coaxial Fitting
Focusing								Periodic Permanent Magnet
Cooling								Heat Sink and/or Forced Air
Maximum Overall Dim	ner	nsio	ns					See Outline Drawing
Net Weight (Including								

MAXIMUM RATINGS

D-C Beam Voltage*							2900 volts
D-C Focus Electrode Voltage*:			•	•	•	•	2700 40113
Negative with respect to cathode							
(a) For CW Operation							40 volts
(b) For maximum current control							400 volts
D-C Cathode Current							90 milliamperes

TYPICAL OPERATING CHARACTERISTICS

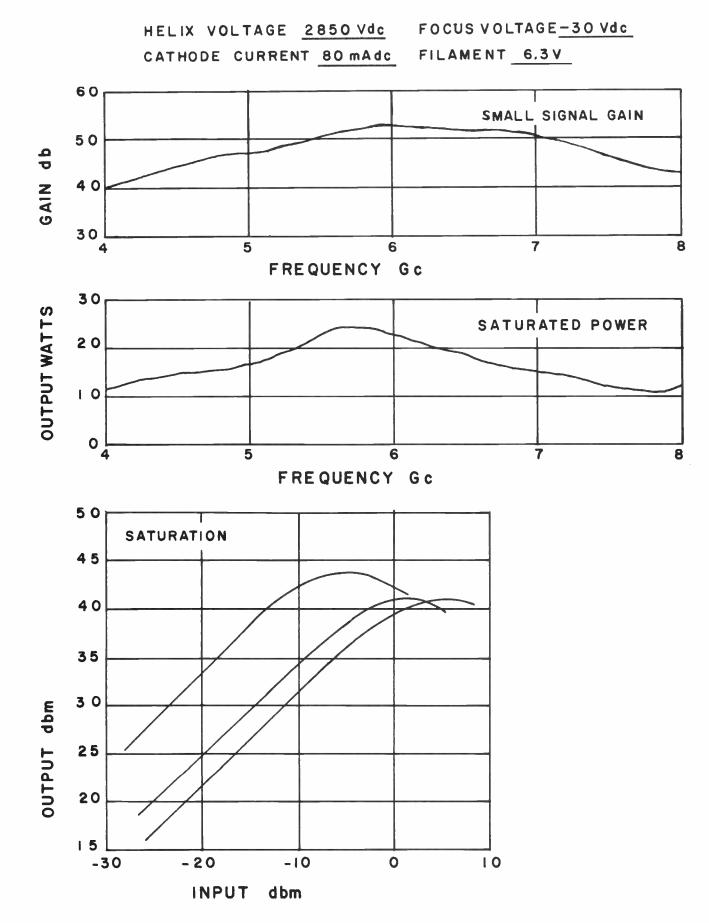
Frequency Minimum Output Pow Minimum Saturated G	er												10 watts
D-C Beam Voltage* D-C Cathode Current	•			•		•	•	•	•	•	•	•	2850 volts 80 milliamperes
D-C Focus Electrode V D-C Focus Electrode Cu	'oltc irrei	ige ht	*	•	•	•	•	•	•	•	•	•	—30 volts 1.0 milliamperes

*All voltages referred to cathode

APPLICATION

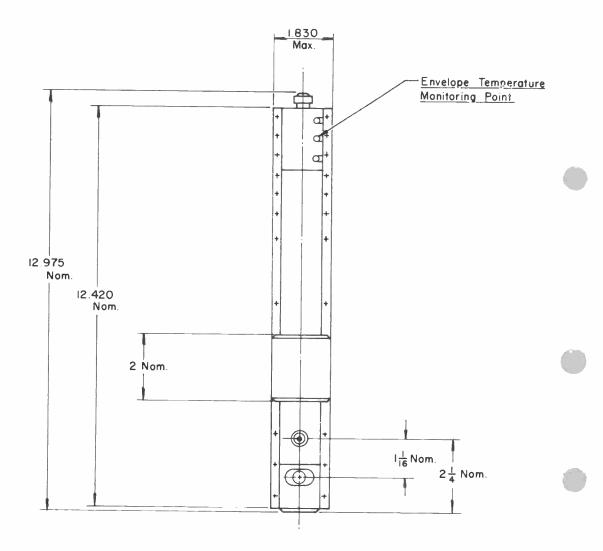
Cooling: The X-1021 is designed to be cooled by means of conduction to the mounting flange integral with the tube and PPM structure, or by forced air directed across the collector. Adequate cooling is determined when the envelope temperature is maintained below 250°F by thermocouple measurements at monitoring point indicated.

Cathode: The heater voltage should be maintained within ± 5 percent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

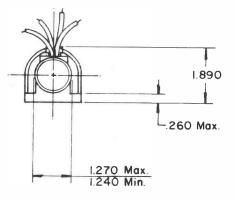

HELIX: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials.

Focus Electrode: The focus electrode power supply must be regulated within ± 2 percent to minimize variations in performance. This electrode may be used as a cathode current control electrode, within the limits of the maximum ratings listed above.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, Telephone LYtell 1-1451, Cable: EIMAC.



EM 1021 TYPICAL OPERATING CHARACTERISTICS



<u>X1021</u>

CONNECTIONS

<u>].</u>	HEATER	-BROWN
<u>2</u> .	CATHODE HEATER	-YELLOW
3.	FOCUS ELECTRODE	-GREEN
4.	BODY GROUND	-BLACK

EITEL-MCCULLOUGH, INC.

X1059

TRAVELING WAVE TUBE 4.0-8.0 Gc 2 WATT MIN. 38 db SMALL SIGNAL GAIN

TENTATIVE DATA SHEET TRAVELING WAVE TUBE X1059

DESCRIPTION

The X1059 is a ruggedized, C-Band, octave bandwidth Travleing Wave Tube with metal-ceramic construction capable of operation under severe environments. Focusing is accomplished by a fully temperature compensated magnet array. This tube may be used in serrodyning applications.

ELECTRICAL SPECIFICATIONS:

Absolute Ratings	Maximum	Minimum
Filament Voltage	6.7	5.9 V
Filament Current	1.5	- A
Helix Current	7.0	- mAdc
Helix Voltage	+2600	- Vdc
Cathode Current	30.0	- mAdc
Control Grid Voltage	-150	0 Vdc
Anode Voltage	+200	0 Vdc
Anode Current	0.250	– mAdc
Duty Cycle	CW	
Beam Power Output	78	- W
Input Power, rf	20	– dbm
Down Rofloated From Load	5	- W
Temperature, Body	+175	°C
Temperature, Collector	+175	
Ambient Temperature – – – – – – –	+120	54° C
Cathode Warm-Up	-	60 Seconds
Altitude	70,000	- ft
Operating and Performance Data		
Filament Voltage – – – – – – – Filament Current – – – – – – –		6.3 V
Filament Current		0.9 A
Helix Voltage	+	-2500 Vdc
Cathode Current		30 mAdc
Control Grid Voltage		0 Vdc
- LONFROM UTIO UTICEON $ -$		0 mAdc
Anodo Voltaro	0t	o 200 Vdc
Anode Current		0.250 mAdc
Serrodyne Voltage – – – – – – – –	10.	5-115 Vdc
Duty Cycle		CW
Frequency Range	4.	0-8.0 Gc
Small Signal GainMinimum		33 db
Typical $$		38 db
Caturated Demore Out Minimum		2 W
- - Typical		3 W
Output VSWR (Cold)		2.5:1
Input VSWR (Cold) $ -$		2.0:1
Input and Output Impedance		50 ohms

ENVIRONMENTAL SPECIFICATIONS:

The X1059 conforms to MIL-E-5400

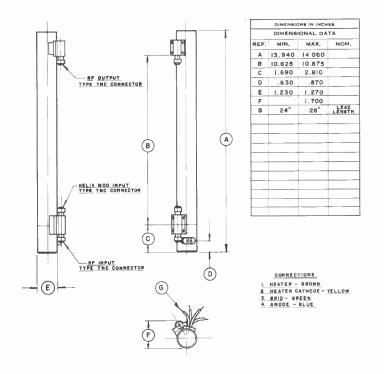
																		10 g's to 2000 cps
Shock – –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$15 g's (11 \pm 1 msec)$
																		-54° C to $+120^{\circ}$ C
Altitude –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	70,000 Ft.

MECHANICAL SPECIFICATIONS:

Operating Position	_	-	-	_	-	-	-	_	-	_	-	Any
Input Coupling, rf	-	-	-	-	-	-	-	-	-	-	-	Type TNC Coaxial Fitting
Output Coupling, rf	-	-	-	-	-	-	-	-	-	_	-	Type TNC Coaxial Fitting
Focusing – – –		-	-		-	-	-	-	-	-	-	РРЙ
Cooling – – –	-	-	-	-	-	-	-	-	-	-		Passive Heat Sink
Dimensions	-	_	-	-	-	_	_	-	-	-	-	See Outline Drawing
Weight	_	-	-	_	-	-	-	-	-	-	-	4 Pounds
H. V. Leads – –	-	-	_	-	-	-	-	-	-	-	-	#22 AWG Teflon Ins. Flying Leads

APPLICATION NOTES:

ALL VOLTAGES ARE WITH RESPECT TO CATHODE.


COOLING: The X1059 is designed to be heat sink cooled. Under environmental conditions normally encountered in military equipments, additional cooling is not required.

FILAMENT: The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations of performance are to be minimized and best tube life obtained.

CONTROL GRID: The control grid is a high mu control electrode. Normal operation is obtained at zero volts, eliminating the need for an additional control power supply. However, in pulse applications the grid may be used to gate the tube on and off.

SERRODYNE: The helix is isolated from the tube body allowing serrodyne operation for frequency translation applications. The cathode voltage should be maintained within $\pm 1\%$ to insure rated performance.

THIS DATA SHOULD NOT BE USED FOR FINAL EQUIPMENT DESIGN.

SAN CARLOS CALIFORNIA

X1131

TRAVELING WAVE TUBE

7.0 - 8.0 Gc 3.0 WATTS 36 db GAIN

TENTATIVE DATA SHEET TRAVELING WAVE TUBE X1131

The X1131 is a highly reliable light weight miniaturized Traveling Wave Tube Amplifier designed for long life in space applications. The tube is of metal-ceramic construction utilizing periodic permanent magnets as the focusing array. From 7.0 to 8.0 Gc, 2.5 Watts of rf power at 36 db gain is provided. Electronic efficiency with collector depression is typically 33%.

ELECTRICAL SPECIFICATIONS:

Absolute Rotings Filament Voltage Filament Current Helix Voltage Body and Helix Current - Collector Voltage Collector Current Focus Electrode Voltage - Focus Electrode Current - Anode Voltage Duty Cycle Beam Power Input Input Power, rf Power Reflected From Load Temperature, Body - Temperature, Collector - Ambient Temperature - Cathode Warm-Up	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Minimum - volts - Ampere 1 200 Vdc - mAdc 550 Vdc - mAdc - Vdc - mAdc 1650 Vdc - mAdc 1650 Vdc - mAdc - % - W - mW - W -60° C -60° C -50° C 120 Seconds	
Operating and Performance DataFilament Voltage-Filament Current-Helix Voltage-Body and Helix Current-Collector Voltage-Collector Current-Focus Electrode Voltage-Focus Electrode Current-Anode Current-Duty Cycle-Frequency Range-Saturated Power Out-Minimu-TypicalSaturated Gain-Minimum-Output VSWR (Cold)-Input and Output Impedance-Noise Figure, Typical-		6.3 Volts 0.20 A 1450 Vdc 0.50 mAdc 575 Vdc 14.5 mAdc 0 Vdc 0 mAdc 1550 Vdc 0.2 mAdc 100 % 7.0-8.0 Gc 40 db 43 db 2.5 W 3.0 W 36 db 38 db 1.5:1 1.5:1 50 ohms 28 db	

Effective 3-17-64 © Copyright 1964 by Eitel-McCullough, Inc., Printed in U.S.A.

ENVIRONMENTAL SPECIFICATIONS:

Applicable military	spe	ecif	ficat	tions	: MIL-E- 5400			
					MIL-E- 5272			
Vibration -	-	-	-	-	20 g's at 5000 cps			
Shock – –	-	-	-	-	100 g s			
Acceleration	-	-	-	-	20 g's			
Temperature	-	-	-	-	-50° C to $+100^{\circ}$ C			
					conjunction with her-			
metically sealed capsule								

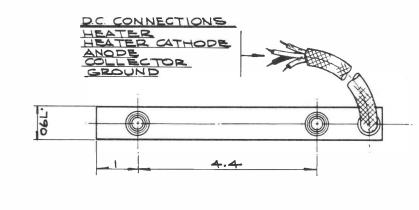
MECHANICAL SPECIFICATIONS:

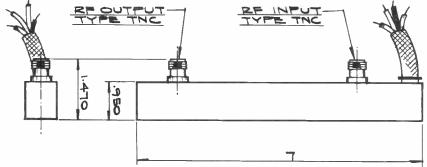
Operating Position	-	Any
Input Coupling, rf –	-	TNC
Output Coupling, rf	-	TNC
Focusing	-	PPM, magnetically shielded
Cooling – – – –	-	Heat Sink conduction
Dimensions – –	-	See outline drawing
Weight	-	9 ounces, encapsulated
H.V. Leads	-	Flying

APPLICATION NOTES

VOLTAGES REFERENCE: ALL VOLTAGES ARE WITH RESPECT TO CATHODE.

COOLING: Tube is cooled by conduction through base. With depressed collector and rf output at saturation, 6.0 watts are dissipated.


COLLECTOR: Depressed up to 65% for full rf output. Collector is completely encapsulated and insulated.


HELIX: Grounded. Can be supplied floating for modulation capability.

FOCUS ELECTRODE: Used to gate off the tube in certain applications.

MISSION: This is a high reliability tube with a design "wearout" of 100,000 hours. Reliability coupled with high efficiency and light weight makes this tube ideal for long mission space applications.

DATA SHOULD NOT BE USED FOR FINAL EQUIPMENT DESIGN

EITEL-McGULLOUGH, INC.

X1132

TRAVELING WAVE TUBE -POWER SUPPLY PACKAGE

> 7.0 - 8.0 Gc 3.0 WATTS 36 db GAIN

TENTATIVE DATA SHEET TRAVELING WAVE TUBE AMPLIFIER POWER SUPPLY PACKAGE X1132

The X1132 is a long life, highly reliable amplifier package consisting of a PPM focused ceramic-metal TWT amplifier (X1131) and integral solid state power supply designed for space applications. Over the frequency range of 7.0 to 8.0 Gc, 2.5 Watts of rf power are produced at a saturated gain of 36 db.

ELECTRICAL SPECIFICATIONS:

Duty Cycle 100 -	- W - %
) mw
	- W
	- 40°C
	- 40° C
Altitude – – – – – Any	
Operating and Performance Data	
Power Supply Voltage 28	V
Power Supply Current 0.48	Å
Duty Cycle – – – – – – 100	%
Frequency Range 7.0-8.0	Gc
Small Signal Gain-Minimum - 40	db
-Typical 43	db
Saturated Power-Minimum 2.5	W
-Typical 3.0	W
Saturated Gain-Minimum 36	db
-Typical 38	db
Output VSWR (Cold) 1.5.1	db
Input VSWR (Cold) $ 1.5.1$	
Input and Output Impedance 50	o h m a
Noise Figure-Maximum 30	ohms db
-Typical 28	db

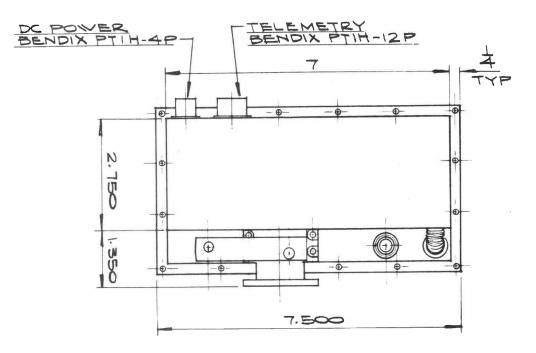
ENVIRONMENTAL SPECIFICATIONS:

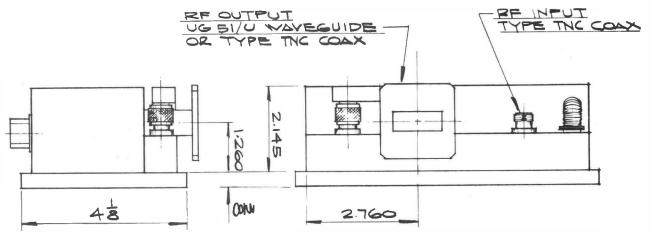
Vibration	-	-	-	-	-	-	-	20 g's to 2000 cps
Shock -	-	-	-		-	-	-	100 g's
Acceleration		-	-	-	-	-	-	20 g's, sustained
Temperature		-	-	-	-	-	-	-20° C to $+50^{\circ}$ C
Altitude	-			-	~	-	_	Any

MECHANICAL SPECIFICATIONS:

Operating Position	n	Any
Input Coupling,	rf TNC Coa	x Fitting
Output Coupling,	rf TNC Coax or UG 51/U W	aveguide
Focusing – –	PPM,	shielded
Cooling – –	- Conduction through	heat sink
Dimensions -	See outline	e drawing
Weight – – –	-	4.0 lbs
Power Supply Co	nnections Bendix P	TIH - 3P

Effective 3-6-64 © Copyright 1964 by Eitel-McCullough, Inc., Printed in U.S.A.





APPLICATION NOTES:

- 1. Full rf performance will be obtained for input voltages between 24 and 30 volts dc.
- 2. Six telemetry outputs are available for monitoring of TWTA performance.
- 3. DC operation may be programmed by use of 20 V control signal (draws 10 mW).
- 4. Especially useful in long unattended mission applications, MTTFF 50,000 hours, rated.
- 5. Magnetic shield minimizes interference with sensitive components, permits dense packing. Two units may be mounted and operated as close as mechanical outline permits.

DATA SHOULD NOT BE USED FOR FINAL EQUIPMENT DESIGN

EITEL-MCCULLOUGH, INC.

EM-747

Voltage Tunable Magnetron

Frequency 400-1200 Mc

Minimum Output Power 50 mW Min.

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range -	-	-	-	-		0.4-1.2 kMc
Anode Voltage	-	-	-	-	-	660-1980 V
Cathode Current -	-	-	-	-	-	2-8 mA
Typical Output Power		-	-	-		75-250 mW
Anode FM Sensitivity	-	-	-	_	-	.65 Mc/V
Injection Anode Voltag		-	-	—	_	200 V
Injection Anode Curren		-	-	-	-	0 m A
Heater Voltage (AC or	DC	2)	-	-	-	6.3 V
Heater Current (AC or	· DO	2)	-	-	_	0.8 A
Load Impedance -	-	-	-	-	_	50 ohms
Service	-	-	-	-	-	CW

*MAXIMUM RATINGS

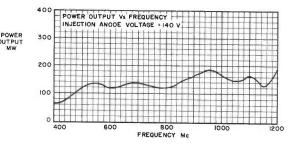
Anode Voltage	-	-	-	-	-	-	2000 V
Cathode Current	~	-	-	-	-	-	20 m A
Injection Anode Voltage	-	-	-		-	-	500 V
Injection Anode Current		-	-	-	-	-	1 mA

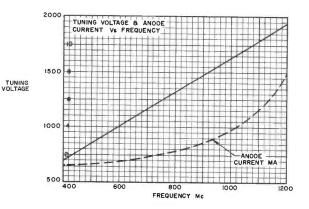
*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating Position	-		_	-	-	Anv
Cooling – – – –	***	-	-	-	-	Conduction
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling	-	-	_	-	-	Type N Jack
Weight	-	-	-	-	-	3.0 Pounds

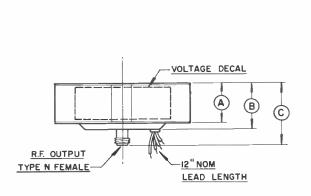
ENVIRONMENTAL


Vibration		-	-	-	-	-	_		_	- 10G-(to 2kc)
Shock	-	-	-	-	-	-	-	-	-	-100G-(11ms)
Altitude		-	-	-	-	-	-	-	-	- 70,000 ft.

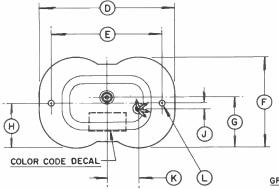

OUTLINE DIMENSIONS

Height	-	-	-	-	-	-	_	-	-	-	3 inches
Width	-	-	-	-	-		-	-	-	-	1.6 inches
Length	-	-	-	-	-	-	-	-	-	-	4.5 inches

L-BAND OSCILLATOR



(Effective 3-15-64) © Copyright 1964 by Eitel-McCullough, Inc.



APPLICATION NOTES

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70° C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the EM-747 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the EM-747 package is typically .02% of the operating frequency per degree Centrigrade. Thus, for an operating frequency of 1000 megacycles, the temperature/frequency coefficient is typically 200 kilocycles per degree Centrigrade. A positive change in temperature will always produce a positive change in frequency. On special order, temperature compensation of .008% of the operating frequency per degree Centigrade can be provided.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

	DIMENSIO	S IN INCH	£8								
DIMENSIONAL DATA											
REF, MIN. MAX. NOM.											
Α			1.375								
в			1.562								
С			2.312								
Ď		4.515									
Е	3.640	3.671									
F		3.031									
G			1.656								
н			1.500								
J			.375								
ĸ			1.062								
L			.187 D.								
]										

CONNECTIONS GROUND - GREEN HEATER - WHITE HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

EITEL-McCULLOUGH, INC.

AN CARLOS, CALIFORNIA

EM-1080 VOLTAGE TUNABLE

MAGNETRON

FREQUENCY 1.2-2.2 kMc

MINIMUM OUTPUT POWER 100 mW

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	1.2-2.2 kMc
Anode Voltage 8	00-1400 V
Cathode Current	2-15 mA
Typical Output Power	140-300 mW
Anode FM Sensitivity	1.68 Mc/V
Injection Anode Voltage	200 V
Injection Anode Current	0.1 mA
Heater Voltage (AC)	6.3 V
Heater Current (AC)	0.8 A
Load Impedance	50 ohms
Service	CW

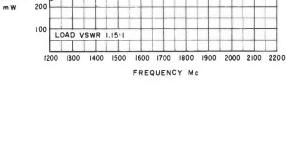
S-BAND OSCILLATOR

*MAXIMUM RATINGS

Anode Voltage	1500
Cathode Current	25
Injection Anode Voltage	+700
Injection Anode Current	1

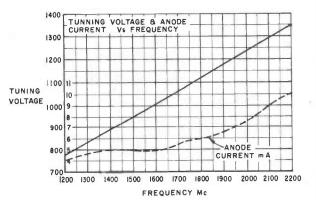
* Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL


Operating Position	Any
Cooling	Conduction
Electrical Connection	Flexible Leads
RF Output Coupling	Type N. Jack
Weight	3.5 Pounds

ENVIRONMENTAL

Vibration										10G-(to 2kc)
Shock										100G-(11ms)
Altitude ,										70,000 ft.
1120200.000										


OUTLINE DIMENSIONS

Height		,										3 incl	nes
Width .												2.1 incl	hes
Length												4.5 inc.	hes

POWER OUTPUT VS FREQUENCY

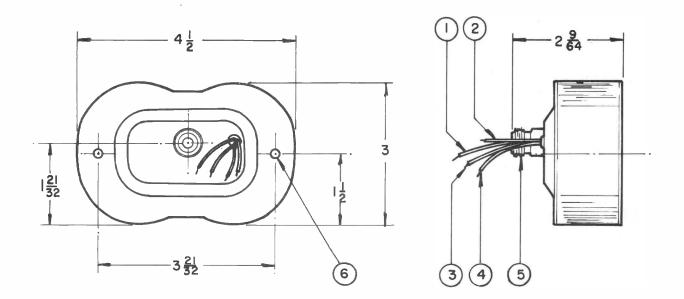
INJECTION ANODE VOLTS=140V

(Effective 6-14-63 Edition 1) @Copyright 1963 by Eitel-McCullough, Inc.

um ratings

1500 V 25 mA +700 V 1 mA output

500


400

300

APPLICATION NOTES

- 1. <u>COOLING</u>: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. <u>PROXIMITY OF FERROUS MATERIALS</u>: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. <u>TEMPERATURE STABILITY</u>: The permanent magnet for the X-1080 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/ frequency coefficient for the X-1080 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1500 megacycles, the temperature/frequency coefficient is typically 300 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. <u>ANODE VOLTAGE</u>: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

	3/16 DIA. MOUNTING HOLES (2) REQ'D
5	FEMALE TYPE "N" CONNECTOR
4	GROUND LEAD (GREEN)
3	HEATER LEAD (WHITE)
2	HEATER CATHODE LEAD (BLACK)
1	INJECTION ANODE LEAD (YELLOW)

EITEL-MCCULLOUGH, INC.

X-1081 L-BAND PACKAGED VOLTAGE TUNABLE MAGNETRON

TENTATIVE DATA

The Eimac X-1081 is a ruggedized, ceramic and metal, packaged voltage-tunable magnetron capable of delivering a minimum output power of 10 watts into a 50-ohm termination over the frequency range of 900-1200 megacycles.

Eimac's three terminal VTM circuit has been used in this tube to give a more uniform output circuit with the added advantage of one third more heat dissipating area extending out of the VTM envelope.

The electron injection design incorporated in this magnetron minimizes back-bombardment of the indirectly heated EMA cathode with resultant long life. This design also reduces output power variation across the tuning range by limiting the cathode current variation resulting from anode voltage changes.

The extremely linear tuning characteristing of this magnetron simplifies programming the frequency sweep, by eliminating the complicated compensating networks required by other voltage tunable oscillators.

The X-1081 Circuit Assembly has been designed for use with this tube to cover the specified frequency range and includes the permanent magnet and rf circuitry. Electrical connections to the tube are completed by means of flexible leads.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode:	Unipoten	itial, I	EMA																
	Warm-u	p time	e –	-	-	-	-	-	-	-	-	-	-	-	-	30	1	second	ds
Heater:	Voltage	(AC o	r DO	C)	-	-	-	-	-	-	-	-	-	-	-	6.3		vol	ts
	Current		-	-	-	-	-	-	-	-	-	-	-	-	-	1.0		ampe	re
Minimum	Output Po	ower	_	-	-	-	-	-	-	-	-	-	-	-	-	10		wat	ts
Frequency	y Range		-	-	-	-	-	-	-	-	-	-	9	00	to 1	200	meg	acycle	es
MECHANICA	L																		
Operating	Position		_	_	-	_	-	_	-	-	_	_	-	-	_	-		- ai	ny
Cooling			-	-	-	-	-	-	-	-	-	-	-	~	-	-	- foi	ced a	ir
Electrica	l Connecti	ions –	-	-	-	-	-	-	-	-	-	-	-	-	-	-	flexib	le lead	ds
RF Outpu	t Coupling	r	-	-	-	-	-	-	-	-	-	-	-	Ту	pe l	Ν, Ο	r TNC	fema	le
Net Weigh	nt, includi	ng ma	gne	t an	d ci	ircu	it:	-	-	-	~	-	-	-	-	-	- 3.2	pound	ds
Shipping V	Weight -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 10	pound	ds
Maximum	Overall I	Dimer	sior	ns (]	Mag	gnet	an	d C	ircu	iit):									
	Height		-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 3	inch	es
	Width-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	3-3/8	inch	es
	Length		~	-	-	-	-	-	-	~	-	-	-	-	-	-	4 - 1/2	inch	\mathbf{es}

MAXIMUM RATINGS

Anode Voltage*	-	-	~	-	-	-	-	-	-	-	-	-	2400	volts
Cathode Current	-	-	-	-	-	-	-	-	-	-	-	~	30	milliamperes
Injection Anode Voltage*	-	-	-	-	-	-	-	-	-	-	-	-	800	volts
Injection Anode Current		-	-	-	-	-	-	-	-	-	-	-	1	milliampere

TYPICAL OPERATION (X-1081 Circuit Asssembly, Load VSWR = 1.15:1)

Frequency Range	-	-	-	-	-	-	-	-	-	900		1200	megacycles
Anode Voltage* (Note 1)	-	-	-	-	-	-	-	-	-	1800		2380	volts
Cathode Current	-	-	-	-	-	-	-	-	-	15		18	milliamperes
Typical Power Output -	-	-	-	-	-	-	-	-	-	10		12	watts
Anode FM Sensitivity -	-	-	-	-	-	-	-	-	-		-	.55	Mc/volt
Injection Anode Voltage	~	-	-	-	-	~	-	-	-		-	400	volts
Injection Anode Current	-	-	-	-	-	-	-	-	-		-	0.5	milliampere
Heater Voltage (AC) -	-	-	-	-	-	-	-	-	-		-	6.3	volts
Heater Current (AC) -	~	~	-	-	-	-	-	-	-		-	0.8	ampere

*All voltages referred to the cathode.

Note 1. The operating frequency is determined by the Anode Voltage.

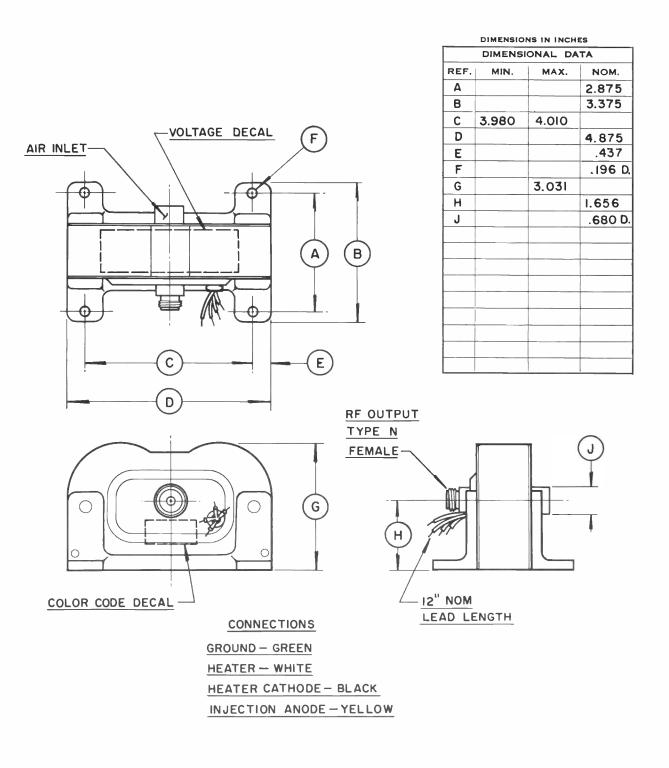
APPLICATION

Cooling: To insure long life and best operation, sufficient cooling air is required to maintain the magnet temperature below 70° C.

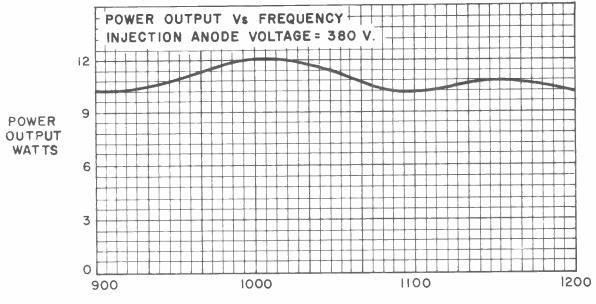
Anode: The operating frequency is determined by the anode voltage. The anode is mounted in direct electrical contact with the external circuit. Therefore, it is often convenient to operate the anode at chassis potential, with the cathode and injection anode at appropriate negative potentials.

Cathode: The cathode and one leg of the heater are internally connected. Therefore, the heater supply must be insulated for the maximum tuning voltage.

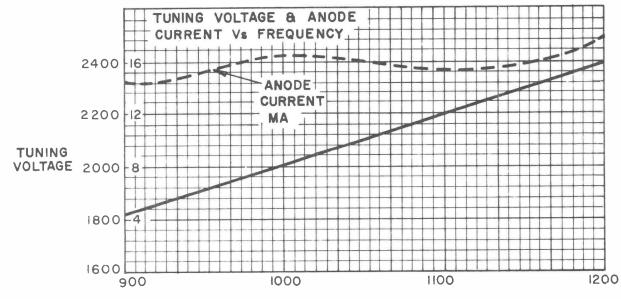
The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained. Either alternating or direct current may be used to energize the X-1081 heater in most applications as a result of the advanced counter-wound helical heater package. In applications where residual FM at the power supply frequency must be held to an absolute minimum, it is recommended that direct current be used for the heater.


Proximity of Ferrous Materials: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.

Temperature Stability: The permanent magnet for the X-1081 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1081 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1000 megacycles, the temperature/frequency coefficient is typically 200 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.


Linearity: The voltage/magnetic-field/frequency relationship of a magnetron is theoretically linear and this linearity is observed in practical tube. The frequency versus tuning voltage curve for the X-1081 is a straight line with a positive slope and may be easily programmed for the desired frequency sweep. Tests of the fine grain linearity curve show a deviation from a straight line of approximately 3-5 parts per thousand over a 20 megacycle bandwidth.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, telephone LYtell 1-1451, Cable: EIMAC.



XIO8I VTM

FREQUENCY Mc

FREQUENCY Mc

EITEL-MCCULLOUGH, INC.

X-1083B Low Noise Voltage Tunable Magnetron Frequency

320 - 525 Mc Minimum Power Output 32 mW

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Rang	ge –	-	-	-	-	- 320-525 Mc
Anode Voltage		-	-	-	-	-1230-2000 V
Cathode Curren	it –	-	-		-	- 0.5-1.5 mA
Typical Output P	ower	-	-	-	-	- 30-50 mW
Anode FM Sensi	tivity	-	-	-	-	26 Mc/V
Injection Anode	Volta	ige	-	-	-	- 100 V
Injection Anode	Curre	ent	-	-	-	- 0.02 mA
Heater Voltage	(AC)	_	-	-	-	- 6.3 V
Heater Current		-	-	-	-	- 0.8 A
Load Impedance	e –	-	_	-	-	- 50 ohms
Service		-	-		-	- CW
Noise – –		-	-	-	-	85 db
						(See Note 5)
VSWR (max)		-	-	-	-	- 2:1

MAXIMUM RATINGS*

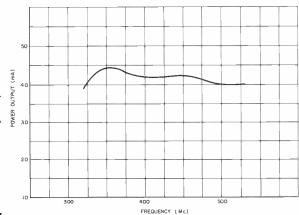
Anode Voltage – – –	-	-	-	_	2300 V
Cathode Current	-	-	-	-	10 mA
Injection Anode Voltage	_		-	-	+300 V
Injection Anode Current	-	-	-	-	1 m A

*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating Position	-	-	-	-	-	Any
Cooling		-	-	_	-	Conduction
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling	-	-	-	-	-	Type TNC Jack
				(See	e O	utline Drawing)
Weight	-	-	-	-	-	3.5 Pounds

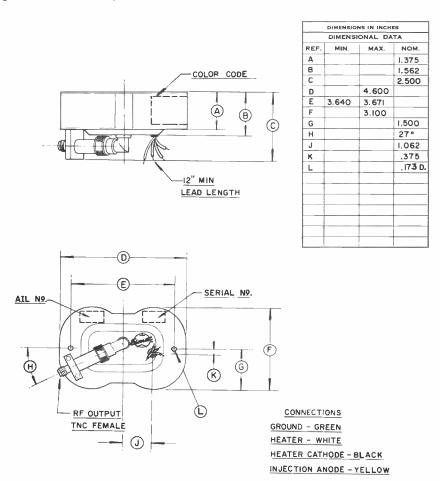
ENVIRONMENTAL


Vibration		-	-	-	-	-	-	-	-	10G-(to 2kc)
Shock	-	-	-	-	-	-	-	-	-	100G-(11ms)
Altitude		-	-	-	-	-	-	-	-	70,000 ft.

OUTLINE DIMENSIONS

Height	-	-	-	-	-	-	-	-	-	3.1 inches
Width	-	-	-	-	-	-	-	-	-	2.5 inches
Length	-	-	-	-	-	-	-	-	-	4.6 inches

P-BAND OSCILLATOR



(Effective 3-15-64) © Copyright 1964 by Eitel-McCullough, Inc.

APPLICATION NOTES

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1083-B has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1083-B package is typically .008% of the operating frequency per degree Centrigrade. Thus, for an operating frequency of 400 megacycles, the temperature/frequency coefficient is typically 32 kilocycles per degree Centrigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.
- 5. NOISE: 5 points as measured using a 60 Mc If, both sidebands and a 2 Mc bandpass (this measuring technique is one of many methods available. Other methods will be entertained.)

SAN CARLOS, CALIFORNIA

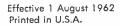
TENTATIVE DATA

X-1084 UHF PACKAGED

VOLTAGE TUNABLE MAGNETRON

The Eimac X-1084 is a ruggedized, ceramic and metal packaged voltage-tunable magnetron capable of delivering a minimum output power of 30 milliwatts into a 50-ohm termination over the frequency range of 300 to 600 megacycles.

The electron injection design incorporated in this magnetron minimizes back-bombardment of the indirectly heated EMA cathode with resultant long life. This design also reduces output power variation across the tuning range by limiting the cathode current variation resulting from anode voltage changes.



The extremely linear tuning characteristic of this magnetron simplifies programming and frequency sweep, by eliminating the complicated compensating networks required by other voltage tunable oscillators. In addition, the injection anode may be programmed to provide some leveling action on the output power during the frequency sweep.

The X-1084 circuit assembly has been designed for use with this tube to cover the specified frequency range and includes the permanent magnet and rf circuitry. Electrical connections to the tube are completed by means of flexible leads.

GENERAL CHARACTERISTICS

ELEC	TRICAL																
	Cathode:	Unipotent	ial,	E٨	٨A												
		Warm-up	tim	e													60 seconds
	Heater:	Voltage (AC	or	D	C)											6.3 volts
		Current															.8 ampere
	Minimum	Output Po	we	r													30 milliwatts
	Frequency	[,] Range								•	•			•	30	0 to	600 megacycles
MEC	HANICAL																
	Operating	Position															any
																	conduction
	-	Connectio															flexible leads
	RF Outpu ⁻	t Coupling															TNC Female
	Net Weig	ht, includir	ng r	na	gne	et a	nd	circ	:uit								3.2
		Weight															10 lbs.
	Maximum	o Overall I	Dim	ens	sior	ns (Ma	gne	et a	ind	Cir	cui	t):				
		Height															3 inches
		Width															2 inches
		Longth															4½ inches

MAXIMUM RATINGS

Anode Voltage*						1800 volts
Cathode Current						10 milliamperes
Dissipation						18 watts
Injection Anode Voltage*						+ 500 volts
Injection Anode Current .						.5 milliamperes

TYPICAL OPERATION (Load VSWR = 1.15:1)

Frequency Range										300	600 megacycles
ricquericy kunge	•	•	•	•	•	•	•	•	•	300	• ,
Anode Voltage* (Note 1)											1550 volts
Cathode Current										1	3 milliamperes
Typical Power Output .										50	200 milliwatts
Anode FM Sensitivity .											.40 Mc/volt
Injection Anode Voltage										•	200 volts
Injection Anode Current .		•	•			•					0.05 milliamperes
Heater Voltage (AC) .											6.3 volts
Heater Current (AC) .			•						•		0.8 amperes
بالقنار											

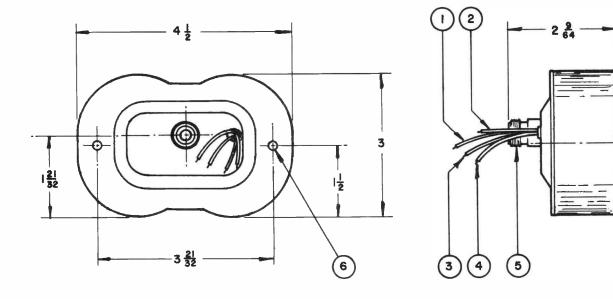
*All voltages referred to the cathode.

Note 1. The operating frequency is determined by the Anode Voltage.

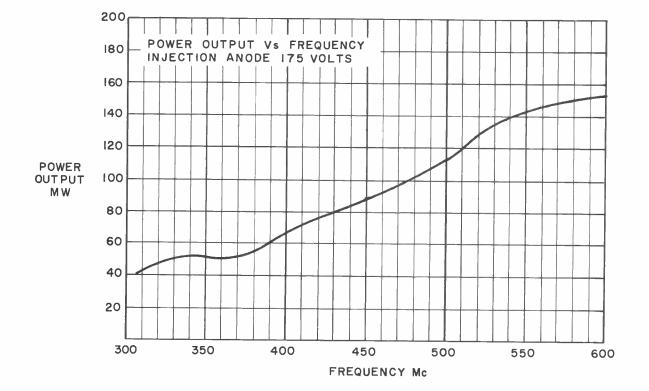
Anode: The operating frequency is determined by the anode voltage. The anode is mounted in direct electrical contact with the external circuit. Therefore, it is often convenient to operate the anode at chassis potential, with the cathode and the injection anode at appropriate negative potentials.

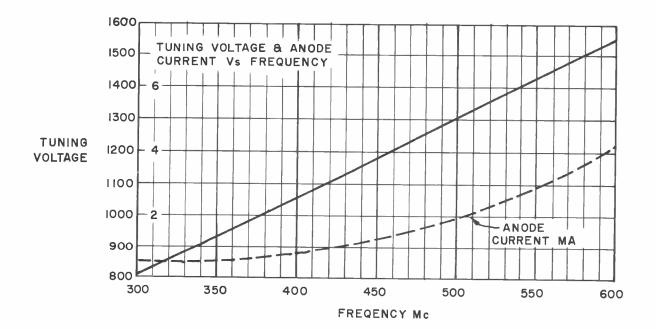
Cathode: The cathode and one leg of the heater are internally connected. Therefore, the heater supply must be insulated for the maximum tuning voltage.

The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained. Either alternating or direct current may be used to energize the X-1084 heater in most applications as a result of the advanced counter-wound helical heater package. In applications where residual FM at the power supply frequency must be held to an absolute minimum, it is recommended that direct current be used for the heater.


Proximity of Ferrous Materials: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.

Temperature Stability: The permanent magnet for the X-1084 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1084 package is typically .008 of the operating frequency per degree Centigrade. Thus, for an operating frequency of 500 megacycles, the temperature/frequency coefficient is typically 40 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.


Linearity: The voltage/magnetic-field/frequency relationship of a magnetron is theoretically linear and this linearity is observed in practical tubes. The frequency versus tuning voltage curve for the X-1084 is a straight line with a positive slope and maye be easily programmed for the desired frequency sweep. Tests of the fine grain linearity curve show a deviation from a straight line of approximately 3-5 parts per thousand over a 20 megacycle bandwidth.


Special Applications: For any aditional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, telephone LYtell 1-1451, Cable: EIMAC.

6	3/16 DIA. MOUNTING HOLES (2) REQ'D
5	FEMALE TNC CONNECTOR
4	GROUND LEAD (GREEN)
	HEATER LEAD (WHITE)
2	HEATER CATHODE LEAD (BLACK)
Τ	INJECTION ANODE LEAD (YELLOW)

SAN CARLOS, CALIFORNIA

L-BAND PACKAGED VOLTAGE TUNABLE MAGNETRON

The Eimac EM-1086 is a ruggedized, ceramic and metal packaged voltagetunable magnetron capable of delivering a minimum output power of 15 watts into a 50 ohm termination over the frequency range of 940-1060 megacycles.

Eimac's three terminal VTM circuit has been used in this tube to give a more uniform output circuit with the added advantage of one-third more heat dissipating area extending out of the VTM envelope.

The electron injection design incorporated in this magnetron minimizes back-bombardment of the indirectly heated EMA cathode with resultant long life. This design also reduced output power variation across the tuning range by limiting the cathode current variation resulting from anode voltage changes.

The linear tuning characteristics of this magnetron simplifies programming the frequency sweep, by eliminating the complicated compensating networks required by other voltage tunable oscillators.

The EM-1086 Circuit Assembly has been designed for use with this tube to cover the specified frequency range and includes the permanent magnet and rf circuitry. Electrical connections to the tube are completed by means of flexible leads.

GENERAL CHARACTERISTICS

ELECTRICAL

	Cathode:	Unipote	ntial, I	EMA															
		Warm-u	p Time	e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30 seconds
	Heater:	Voltage	(AC o	r DC	2i	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3 volts
		Current			-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.0 ampere
	Minimum	Output	Power	r	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15 watts
	Frequenc			-	-	-	-	-	-	-	-	-	-	-	-	940	to	1060) megacycles
ME	CHANICA	L																	
	Operatin	g Positio	n _	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*	any
	Cooling	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	see note
	Electrical			-	-	-	-	-	-	-	-	-	-	-		-			flexible leads
	RF Outpu			-	-	-	-	-	-	-	-	-	-	-	-		_ flex	- ible F	TNC male (f connector)
	Net Weig	aht. inclu	dina m	aane	et ar	nd cir	cuit	-	-	-	-	-	-	-	-	-	-	-	3.5 pounds
	Shipping		-	-							-	-	-	-	-	-	-	-	10 pounds
	Maximum	n Overall	Dimer	nsion	s (N	lagne	et ar	nd C	ircu	it):									
	Heig	ght		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3 inches
	Wid	- th		-	-	-		-	-	-	-	-	-	-	-	-	-	-	1.575 inches
	Leng	gth		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.556 inches

MAXIMUM RATINGS

2500 volts	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Anode Voltage*	
milliamperes	- 35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Cathode Current	
750 volts	-	-	•	-	-	-	-	-	-	-	-	-	-	*	Voltage	Injection Anode	
l milliampere	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	Current	Injection Anode	
				:1)	1.15:	/R==	vsw	.oad	ly, L	emb	Ass	rcuit	Ci	086	(EM-1		TYF
megacycles	940-1060	-	-				-						-	-		Frequency Range	
volts	1840-2075	-	-	-	-	-	-	-	-	-	-	-	-	I) ((Note i	Anode Voltage*	
milliamperes	21 - 25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Cathode Current	
	16 - 16			-	-	-	-	-	-	-	-	-	-	-	itput	Typical Power O	
Mc/volt	.50	-	-	-	**	-	-	-	-	-	-	-	-	-	ivity	Anode FM Sensi	
	500	_	-	-	-	-	-	-	-	-	-	-	-	-	'oltage	Injection Anode	
milliamperes	.02	-	-	-	-	-	-	-	-	-	-	-	_	-	Current	Injection Anode	
volts	6.3	-	-	-	-	-	_	-	-	-	-	-	-	-	AC)	Heater Voltage (
	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-		Heater Current (

*All voltages referred to the cathode.

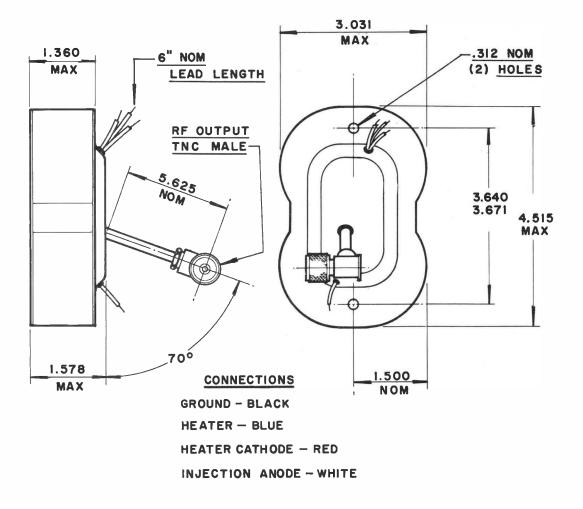
Note 1. The operating frequency is determined by the Anode Voltage.

APPLICATION

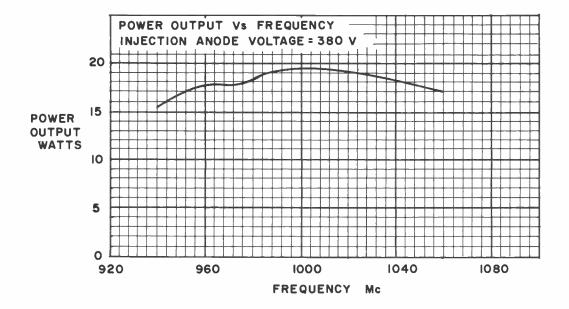
Cooling: To insure normal operation over prolonged periods, sufficient cooling is required so that the EM-1086 magnet temperature does not exceed 70°C.

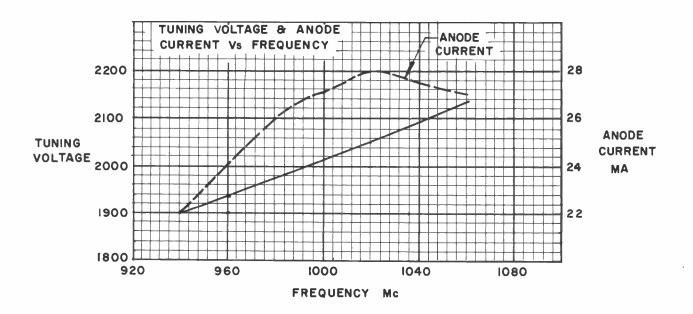
Anode: The operating frequency is determined by the anode voltage. The anode is mounted in direct electrical contact with the external circuit. Therefore, it is often convenient to operate the anode at chassis potential with the cathode and injection anode at appropriate negative potentials.

Cathode: The cathode and one leg of the heater are internally connected. Therefore, the heater supply must be insulated for the maximum tuning voltage.


The heater voltage should be maintained within \pm 5% of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained. Either alternating or direct current may be used to energize the EM-1086 heater in most applications as a result of the advanced counterwound helical heater package. In applications where residual FM at the power supply frequency must be held to an absolute minimum, it is recommended that direct current be used for the heater.

Proximity of Ferrous Materials: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.




Temperature Stability: The permanent magnet for the EM-1086 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the EM-1086 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1,000 megacycles, the temperature/frequency coefficient is typically 200 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, telephone LYtell 1-1451. Cable: EIMAC.

EITEL-MCCULLOUGH, INC.

X-1088-B

Low Noise Voltage Tunable Magnetron Frequency 520 - 925 Mc

Minimum Output Power 32 mW

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	_	_	_	_	_	- 520-925 Mc
Anode Voltage -	-	_	-	_	-	-1000-2000 V
Cathode Current	-	-	-	-	-	– 2-4 mA
Typical Output Pow	er	-	-	-	-	– 30–50 mW
Anode FM Sensitivi	ity	-	-	-	-	55 Mc/V
Injection Anode Vo	oltag	e	-	-	-	– 100 V
Injection Anode Cu		nt	-	-	-	– 0.02 mA
Heater Voltage (A	C)	-	-	-	-	- 6.3 V
Heater Current (A		-	-	-	-	- 0.8 A
Load Impedance	-	-	-	-	-	- 50 ohms
Service – – –	_	-	_	-	_	- cw
Noise – – –	_	_	_	_	_	- — 85 db
						(See Note 5)
VSWR (max) -	-	-	-	-	-	- 2:1

*MAXIMUM RATINGS

Anode Voltage	-	-	-	-	2300 V
Cathode Current	-	-	-	-	10 mA
Injection Anode Voltage	-	-	-	-	+300 V
Injection Anode Current	-	-		-	1 mA

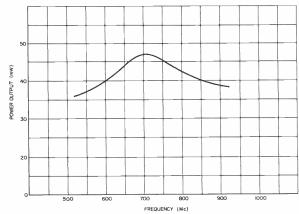
*Damage to the tube may occur if maximum ratings are exceeded.

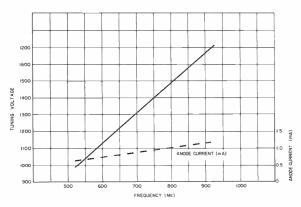
MECHANICAL

Operating Position		-	-	_	-	Any
Cooling – – – –	-	-	-	-	-	Conduction
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling	-	-	-	-	-	Type TNC Jack
				(See	e 0	utline Drawing)
Weight – – – –	-	-	-	-	-	3.5 Pounds

ENVIRONMENTAL

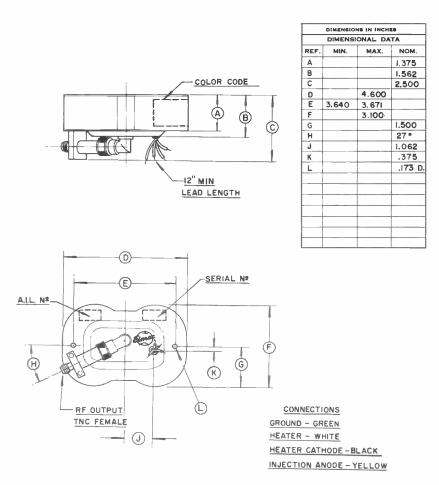
Vibration	-	-	-	-			-	-	10G-(to 2 kc)
Shock -	-	-	-	-	-	-	-	-	100G-(11 ms)
Altitude	-	-	-	-	-	-	-	-	70,000 ft.


OUTLINE DIMENSIONS


Height	-	-	-	-	-	-	-	-	-	3.1 inches
Width	-	-	-	-	-	-	-	-	-	2.5 inches
Length	-	-	-	-	-	-	-	-	_	4.6 inches

(Effective 3-15-64) © Copyright 1964 by Eitel-McCullough, Inc.

P-BAND OSCILLATOR



APPLICATION NOTES

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70° C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1088-B has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1088-B package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 700 megacycles, the temperature/frequency coefficient is typically 56 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.
- 5. NOISE: 5 points as measured using a 60 Mc If, both sidebands and a 2 Mc bandpass (This measuring technique is one of many methods available. Other methods will be entertained.)

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

X-1091 S-BAND PACKAGED VOLTAGE TUNABLE MAGNETRON

OBJECTIVE DATA

The Eimac X-1091 is a ruggedized, ceramic and metal packaged voltagetunable magnetron capable of delivering a minimum output power of 35 watts into a 50 ohm termination over the frequency range of 2.2 to 2.3 Kmc.

The electron injection design incorporated in this magentron minimizes back-bombardment of the indirectly heated EMA cathode with resultant long life. This design also reduces output power variation across the tuning range by limiting the cathode current variation resulting from anode voltage changes.

The extremely linear tuning characteristic of this magnetron simplifies programming the frequency sweep, by eliminating the complicated compensating networks required by other voltage tunable oscillators.

The X-1091 Circuit Assembly has been designed for use with this tube to cover the specified frequency range and includes the permanent magnet and rf circuitry. Electrical connections to the tube are completed by means of flexible leads.

GENERAL CHARACTERISTICS

ELECTRICAL

	Cathode:	Unipot	enti	al, M	latr	ix															
		Warm-	up '	Time		-	-	-	-	-	-	-	-	-	-	-	-	-	-	60	seconds
	Heater:	Voltage	e(A		DC	2)	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3	volts
		-																			ampere
	Minimum	Output	Pov	ver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35	watts
	Frequency	y Range	;	-	-	-	-	-	-	-	-	-	-	-	-	-	22	:00 to	2 3(00 meg	acycles
ME	CHANICA	L																			
	Operating	g Positi	on		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		Any
	Cooling						-	-	-	-	-	-	-	-	-	-	-	-	-	For	ced Air
	Electrical																				
	RF Outpu																				
	Net weig																				
	Shipping																				
	Maximum	-																			
	Heid		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	inches
	Wid		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 2	2 5/16	inches
	1													_	_	_	_	_	- 4	1/2	inches

Length

MAXIMUM RATINGS

	Anode Voltage* -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2500 volts
	Cathode Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	- 60	milliamperes
	Injection Anode Voltage	•*	-	-	-	-		-	-	-	-	-	-	-	-	600 volts
	Injection Anode Current	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	milliampere
TYI	PICAL OPERATION (In X-	1091	Cir	cuit	Asse	mbly	r, Lo	ad '	vswi	R=1	.15:	1)				
	Frequency Range -	-	-	-	-	-	-	-	-	-	-	-	-	-	2200-2300	megacycles
	Anode Voltage* (Note	1)	-	-	-	-	-	-	-	-	-	-	-	-	1800-1940	volts
	Cathode Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	35 - 40	milliamperes
	Typical Power Output	-	-	-	-	-	-	-	-	-	-	-	-	-	35 - 35	watts
	Anode FM Sensitivity	•	-	-	-	-	-	-	-	-	-	-	-	-	1.4	Mc/volt
	Injection Anode Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	300	volts
	Injection Anode Current	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	milliampere
	Heater Voltage (AC)	-	-	-	-	-	-	-	-	-	-	-	-	_	6.3	volts
	Heater Current	-	-	-	-	-	-	-	-	-	-	-	-		0.8	amperes
	*All voltages referred to	the	cath	ode												

Note 1. The operating frequency is determined by the anode voltage.

APPLICATION

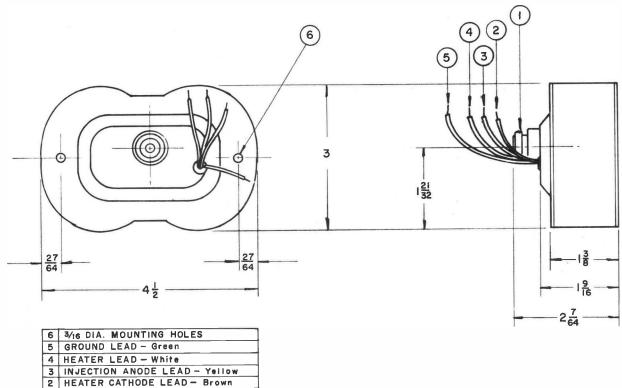
Cooling: The X-1091 is designed to be cooled by forced air. To insure normal operation over long periods, sufficient cooling is required to maintain the magnet temperature below 70°C.

Anode: The operating frequency is determined by the anode voltage. The anode is mounted in direct electrical contact with the external circuit. Therefore, it is often convenient to operate the anode at chassis potential, with the cathode and injection anode at appropriate negative potentials.

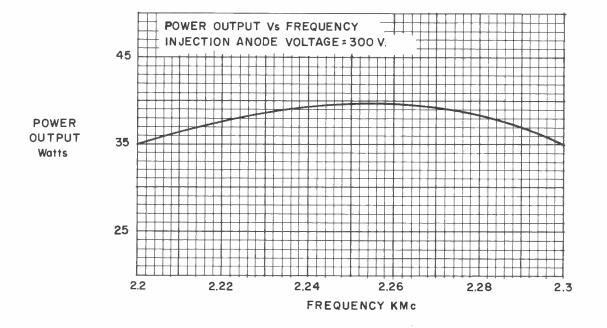
Cathode: The cathode and one leg of the heater are internally connected. Therefore, the heater supply must be insulated for the maximum tuning voltage.

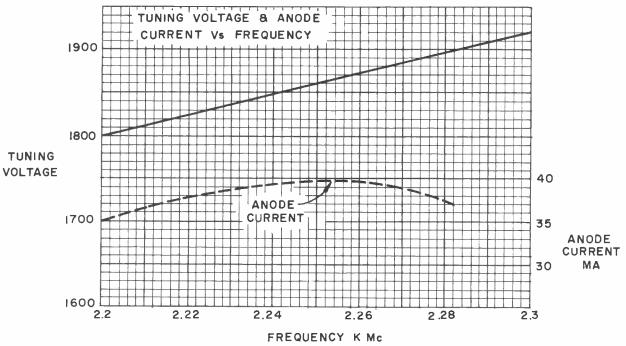
The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained. Either alternating or direct current may be used to energize the X-1091 heater in most applications as a result of the advanced counter-wound helical heater package. In applications where residual FM at the power supply frequency must be held to an absolute minimum, it is recommended that direct current be used for the heater.

Proximity of Ferrous Materials: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.


Temperature Stability: The permanent magnet for the X-1091 has been temperature stabilized to minimize

frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1091 package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 2250 megacycles, the temperature/frequency coefficient is typically 180 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.


Linearity: The voltage/magnetic-field/frequency relationship of a magnetron is theoretically linear and this linearity is observed in practical tubes. The frequency versus tuning voltage curve for the X-1091 is a straight line with a positive slope and may be easily programmed for the desired frequency sweep. Tests of the fine grain linearity curve show a deviation from a straight line of approximately 3-5 parts per thousand over a 20 megacycle bandwidth.


Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, telephone LYtell 1-1451. Cable: EIMAC.

I FEMALE TNC CONNECTOR

EITEL-MCCULLOUGH, INC.

X-1092 L-BAND PACKAGED VOLTAGE TUNABLE MAGNETRON

OBJECTIVE DATA

The Eimac X-1092 is a ruggedized, ceramic and metal packaged voltage-tunable magnetron capable of delivering a minimum output power of 750 milliwatts into a 50-ohm termination over the frequency range of 800 to 1450 megacycles.

The electron injection design incorporated in this magnetron minimizes back-bombardment of the indirectly heated EMA cathode with resultant long life. This design also reduces output power variation across the tuning range by limiting the cathode current variation resulting from anode voltage changes.

The extremely linear tuning characteristic of this magnetron simplifies programming the frequency sweep, by eliminating the complicated compensating networks required by other voltage tunable oscillators.

The X-1092 Circuit Assembly has been designed for use with this tube to cover the specified frequency range and includes the permanent magnet and rf circuitry. Electrical connections to the tube are completed by means of flexible leads.

GENERAL CHARACTERISTICS

ELECTRICAL

	Cathode:	Unipote	ntial,	, E	$\mathbf{M}\mathbf{A}$																
		Warm-u	ıp tir	ne	_	-	_	_	_	-	-	~	_	-	_	_	60			\$	seconds
	Heater:	Voltage	-			5	-	-	-	_	_	_	-	_	_	_	6.3				volts
		Current			_	<i>_</i>	_	-	_	_	_	_	_	-	_		0.8				ampere
	Minimum				_		_	_	_	_	-	_		-	_	-	750				lliwatts
	Frequency	-	-	_	-	-	-	-	-	-	-	-	-	8	00		1450		n		acycles
M	ECHANICA	L																			
	Operating	Position	-	-	_	_	-	-	-	-	-	-	_	-	-	-	-	_	-	-	– any
	Cooling		-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	for	ced air
	Electrical	Connect	ions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	flex	ibl	e leads
	RF Output	Coupling	g -	_	_	_	_	-	-	-	_	_	-	_	_		-	_	T	NC	female
	Net Weigh		0	nag	rnet	an	d c	ircu	lit	_	-	-	_	_	_	_	-	-	-	3.5	pounds
	Shipping V		-	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	-		pounds
	Maximum	0	Dim	ens	sion	s ()	Mag	rnet	and	1 C	ircu	it):									I. c.
		Height	_	_	_	_ (-	_	_	-	_	_	_	_	_	_	_	_	_	_	3	inches
		Width-	-	_	_	_	_	_	-	_	_	-	_	_	-	_	_	_	_	2	inches
		Length	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	4-1		inches
M	AXIMUM F	ATINGS																			
	Anode Vol	ltage* -	_	_	_	_	-	_	_	_	_	_	_	_	_	_	250	0			volts
	Cathode C	0	-	_	_	-	_	_	_	_	_	-	_	_	_	_	2	5	mi	llia	mperes
	Injection		ltage	_ *	_	_	_	_	_	_	_	_	-	-	_		$+50^{-}$				volts

(Effective 3-5-63) © Copyright 1963 by Eitel-McCullough, Inc. Printed in U.S.A.

TYPICAL OPERATION (In X-1092 Circuit Assembly, Load VSWR = 1.15:1)

Frequency Range		-	-	-	-	-	-	-	-	800		1450	megacycles
Anode Voltage* (Note 1)	-	-	-	-	-	-	-	-	-	1175		2070	volts
Cathode Current	-	~	-	-	-	-	-	-	-	7		15	milliamperes
Typical Power Output-	-	-	-	-	~	-	~	-	~	0.9		3	watts
Anode FM Sensitivity -	-	-	-	-	-	-	-	-	-		~	.75	Mc/volt
Injection Anode Voltage*	-	-	-	-	-	-	-	-	-		-	200	volts
Injection Anode Current	-	-	-	-	-	<i>du</i> -	-	-	-		-	.05	milliampere
Heater Voltage (AC) -	-	-	-	-	-	-	-	-	-		-	6.3	volts
Heater Current (AC) -	-	-	-	-	-	-	-	-	-		-	0.8	ampere
													-

*All voltages referred to the cathode.

Note 1. The operating frequency is determined by the Anode Voltage.

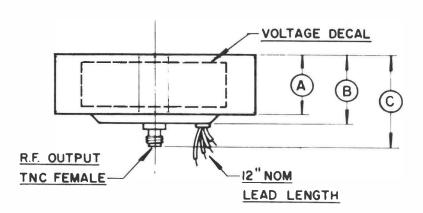
APPLICATION

Anode: The operating frequency is determined by the anode voltage. The anode is mounted in direct electrical contact with the external circuit. Therefore, it is often convenient to operate the anode at chassis potential, with the cathode and injection anode at appropriate negative potentials.

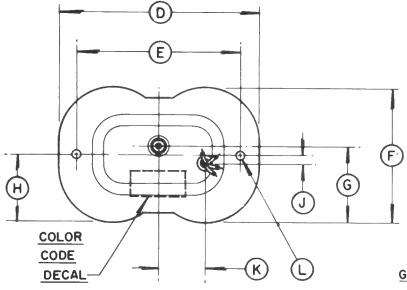
Cathode: The cathode and one leg of the heater are internally connected. Therefore, the heater supply must be insulated for the maximum tuning voltage.

The heater voltage should be maintained within $\pm 5\%$ of the rated value of 6.3 volts if variations in performance are to be minimized and the best tube life obtained. Either alternating or direct current may be used to energize the X-1092 heater in most applications as a result of the advanced counter-wound helical heater package. In applications where residual FM at the power supply frequency must be held to an absolute minimum, it is recommended that direct current be used for the heater.

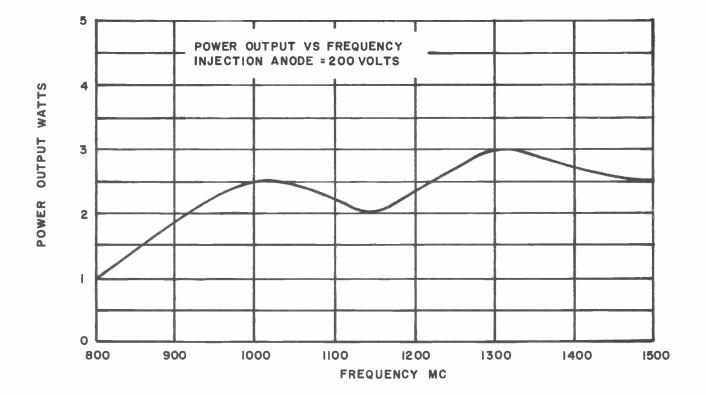
Proximity of Ferrous Materials: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.

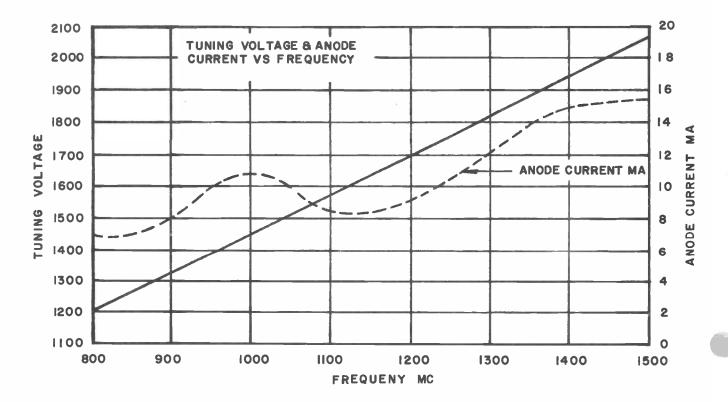

Cooling: To insure long life and best operation, the magnet temperature should not exceed 70° C.

Temperature Stability: The permanent magnet for the X-1092 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1092 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1000 megacycles, the temperature/frequency coefficient is typically 200 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.


Linearity: The voltage/magnetic-field/frequency relationship of a magnetron is theoretically linear and this linearity is observed in practical tubes. The frequency versus tuning voltage curve for the X-1092 is a straight line with a positive slope and may be easily programmed for the desired frequency sweep.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California, telephone LYtell 1-1451, Cable: EIMAC.




DIMENSIONS IN INCHES													
DIMENSIONAL DATA													
REF.	MIN.	MAX.	NOM.										
Α			1.375										
В			1.562										
С			2.312										
D		4.515											
Ε	3.640	3.671											
F		3.031											
G			1.656										
н			1.500										
J			.375										
K			1.062										
L			.187 D.										

CONNECTIONS GROUND - GREEN HEATER - WHITE HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

EITEL-MCCULLOUGH, INC.

EM-1093 VOLTAGE TUNABLE MAGNETRON

FREQUENCY 2.475 - 2.725

MINIMUM OUTPUT POWER 1.75 W

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	-	-	-	2475-2725 Mc
Anode Voltage	-	-	-	1100-1200 V
Cathode Current	-	-	-	12-20 mA
Typical Output Power -	-	-	-	2-3 W
Anode FM Sensitivity -	-	-	-	2.5 Mc/volt
Injection Anode Voltage	-	-	-	300 V
Injection Anode Current	-	-	-	0.0 mA
Heater Voltage (AC) (DC)	-	-	-	6.3 V
Heater Current (AC) (DC)	-	-	-	.65 A
Load Impedance – – –	-	-	-	50 ohms
Service	-	-	-	CW

*MAXIMUM RATINGS

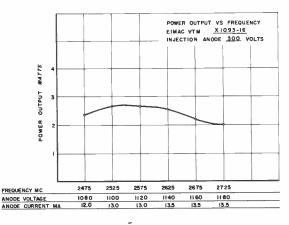
Anode V	'oltage	-	-	-	-	-	-		-	-	1500	V
Cathode (Current	-	-	-	-	-	-	-	-	-	25	mΑ
Injection												*
Injection	Anode	Сι	urre	ent	-	-	-	-	-	-	0.5	тA

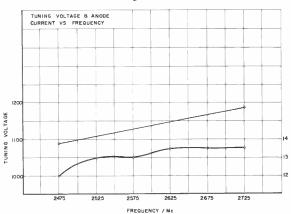
*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

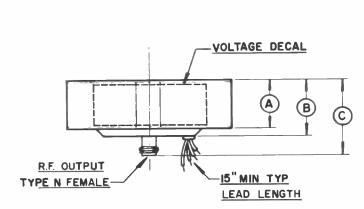
Operating Position -	_	-	-	-	-	Any
Cooling – – – –	-	-	-	-	-	Conduction
Electrical Connection						Flexible Leads
RF Output Coupling -	-	-	-	_	-	Type N Jack
Weight	-	-	-	-	-	3.5 Pounds

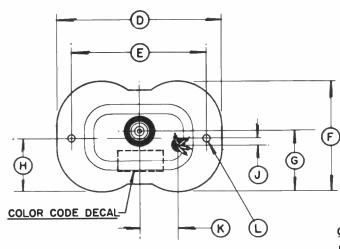
ENVIRONMENTAL


Vibration	_	~	_	_	-	-	_	_	-	10 G-(to 2kc)
Shock -	_	-	-	-	-	_	-	-	-	
Altitude	-	-	-	-	-	-	-	-	-	70,000 ft.


OUTLINE DIMENSIONS

Height	_	-	-	-	-		-	-	-	-	-	3	inches
Width	_	-	-	_	-	-	-	_	-	_	-	2.1	inches
Length		-	-	-	-	-	-	-	-	-	-	4.5	inches


S-BAND OSCILLATOR



- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the EM-1093 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the EM-1093 package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 2600 megacycles, the temperature/frequency coefficient is typically 520 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

DIMENSIONS IN INCHES												
	DIMENSI	UNAL DA										
REF.	MIN.	MAX.	NOM.									
Α			1.375									
В			1.562									
С			2.172									
D		4.600										
Ε	3.640	3.671										
F		3.100	3.000									
G			1.656									
н			1.500									
J			.375									
К			1.000									
L			.187 D.									

CONNECTIONS GROUND - GREEN HEATER - WHITE HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

SAN CARLOS, CALIFORNIA

FREQUENCY 515-605 Mc

MINIMUM POWER OUTPUT 10 WATTS

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	-	-	-	515	605	Mc
Anode Voltage	-	-	_	1480	1790	V
Cathode Current	-	-	-	13	15	mA
Typical Output Power	_	_	_		10	W
Anode FM Sensitivity -	-	-	_		0.3	Mc/V
Injection Anode Voltage -	-	-	-		500	Ý V
Injection Anode Current	-	-	-		0.1	mA
Heater Voltage (AC) -	_		-		6.3	V
Heater Current (AC) -	-	-	-		0.8	Α
Load Impedance	_	-	-		50	ohms
Service – – – – –	-	-	_			cw

*MAXIMUM RATINGS

Anode Voltage	-	-	-	-	2500	V
Cathode Current	_	-	-	-	25	mA
Injection Anode Voltage	-	-	-	-	+700	V
Injection Anode Current	-	-	-	-	1	mA

*Damage to the tube may occur if maximum ratings are exceeded.

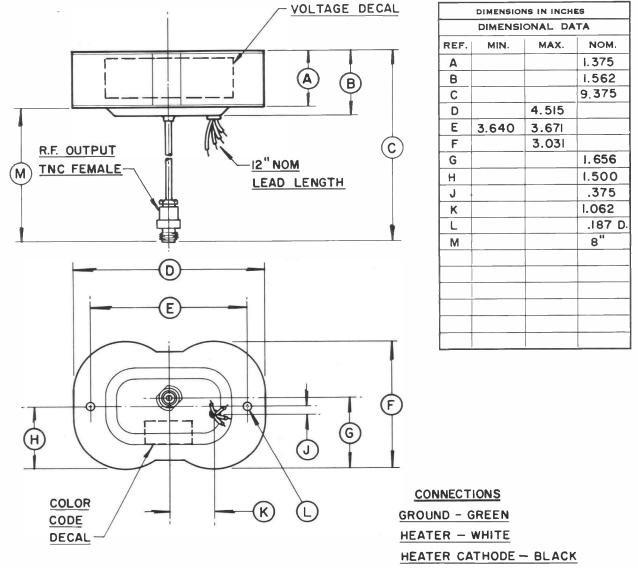
MECHANICAL

Operating Position		-	-		Any
Cooling – – – –	-	-	-	-	Conduction
Electrical – – –	-	-	-	-	Flexible Leads
RF Output Coupling	-	-	-	-	Type TNC Female
Weight	-	-	-		3.5 Pounds

ENVIRONMENTAL

Vibration	-		-	-	-	-	-	_	_	10G-(to 2 kc)
Shock	-	-	-	-	-	-	-	-	-	100G-(11 ms)
Altitude		-	-	-	-	-	-	-	-	70,000 ft.

OUTLINE DIMENSIONS


Height	-	-	-	-	-	-	-	-	-	-	3	inches
Width	-	-	-	-	-	-	-	-	-	-	2.1	inches
Length	-	-	-	-	-	-	-	-	-	-	4.5	inches

P-BAND OSCILLATOR

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1087 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1087 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 600 megacycles, the temperature/frequency coefficient is typically 120 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

INJECTION ANODE - YELLOW

EITEL-MCCULLOUGH, INC.

v

V

mΑ

mΑ

X-1094

Voltage Tunable Magnetron Frequency

375 - 481 Mc

Minimum Output Power 50 mW

TYPICAL PERFORMANCE

ELECTRICAL

Frequenc		;e –	-	-	-	-	-	-	375-480	
Anode Vo			-	-	-	-	-	-	1355-1700	V
Cathode	Curren	it –	-	-	-	-	-	-	.45 to .55	mA
Typical			r	-	-	-	-		75	mW
Anode FM			-	-	-	-	-	-	.3	Mc/V
Injection	Anode	Voltag	ge	-	-	-	-	-	100	V
Injection				_	-	-	-	-	0.0	mA
Heater V	oltage	(AC of	C DC	C)	-	-	-	-	6.3	V
Heater C	urrent	(AC or	DC	2)	-	-	-	-	0.8	А
Load Imp	bedance) –	~	-	-	-	-	-	50	ohms
Service			-	-	-	-	-	-		cw

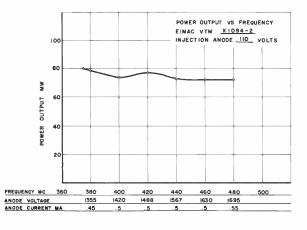
*MAXIMUM RATINGS

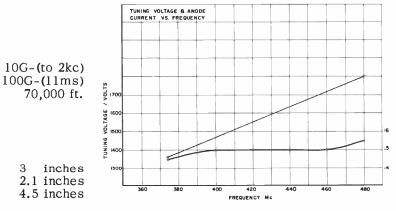
Anode Voltage	-	_	-	_	_	2 000
Cathode Current	-	-	-	_	-	10
Injection Anode Voltage	-	-	-	-	-	250
Injection Anode Current	-	-	-	-	-	1

*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating Position	-		_	_	-	_	Any
Cooling – – – –		~	-	-	~	-	Conduction
Electrical Connection			_	-	-	-	Flexible Leads
RF Output Coupling	-	-	_	-	-	-	Type N Jack
Weight	-	-	-	-	-	-	3.5 Pounds

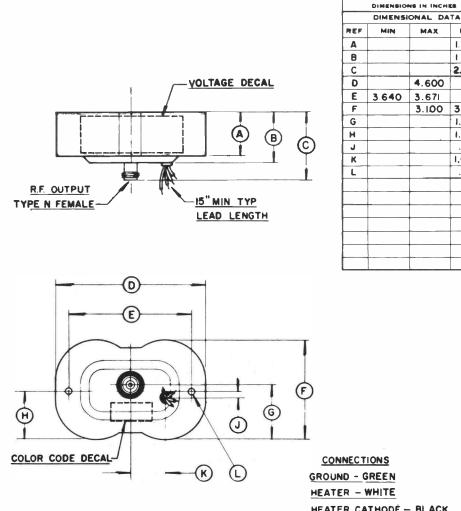

ENVIRONMENTAL


Vibration		_	-	-		_	_	_	-	-
Shock	-	-	-	-		_	-	-	-	-
Altitude		-	-	-	-	-	-	-	-	-

OUTLINE DIMENSIONS

Height	_	-	-	-	-	-	-	-	-	-	3 inc	зh
Width	-	-	_	-	-	-	-	-	-	-	2.1 inc	ch
Length	-	-	-	-	-	~	-	-	-	-	4.5 inc	ch

P-BAND OSCILLATOR



(Effective 3-15-94) © Copyright 1964 by Eitel McCullough, Inc.

- 1. COOLING; To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray megnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1094 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1094 package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 400 megacycles, the temperature/frequency coefficient is typically 32 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

MAX

4.600

3.67

3.100

NOM 1.375

1 562

2.172

3.000

1.656

1.500

.375

1.000 .187 D

SAN CARLOS, CALIFORNIA

TENTATIVE DATA X1097 VOLTAGE TUNABLE MAGNETRON

FREQUENCY 600-1200 Mc

MINIMUM OUTPUT POWER 5 WATTS

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range		-	-	-	600-1200 Mc
Anode Voltage	-	-	-	- 1	L250-2450 V
Cathode Current	-	-	-	-	9-25 mA
Typical Output Power -	-	-	-	-	5.5 watts
Anode FM Sensitivity -	-	-	-	-	0.48 Mc/V
Injection Anode Voltage		_	-	_	100 V
Injection Anode Current	-	-	-	-	0 m A
Heater Voltage (AC) -	-	-	-	-	6.3 V
Heater Current (AC) -	_	-	-	-	0.8 A
Load Impedance	-	-	-	_	50 ohms
Service	-	-	-	-	CW

*MAXIMUM RATINGS

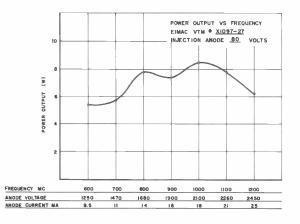
Anode Voltage – – –	_	-	_	-	-	- 3000 V
Cathode Current	-	-	_	-	-	- 35 mA
Injection Anode Voltage	-		_	-	-	-+500 V
Injection Anode Current	-	-	-		-	- 1 mA

*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

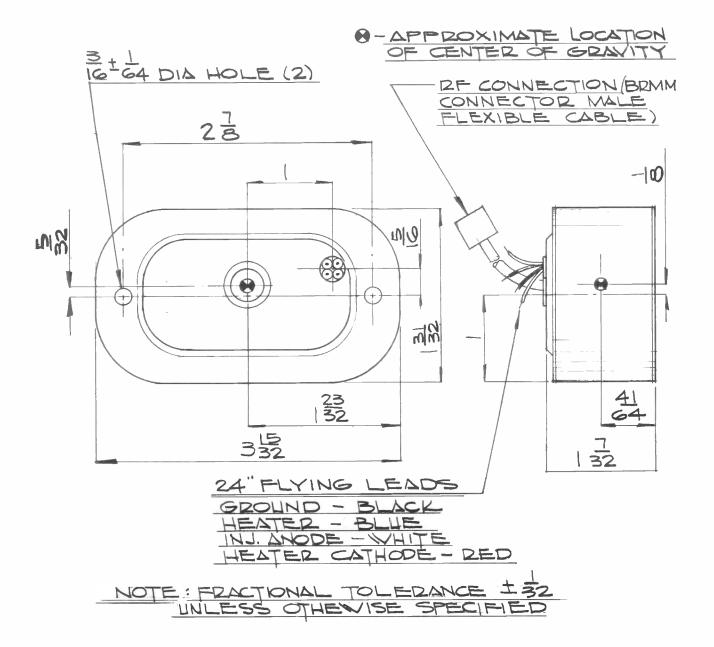
Operating Position	-	_		-	-	Any
Cooling – – – –	-	-	-	-	-	Forced Air
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling	-	_	_	-	-	TNC Jack
Weight – – – –	-	-	-	-	-	1.5 Pounds

ENVIRONMENTAL


Vibration		_	_	-	_	_	-	_	_	10 G-(to 2kc)
Shock	_	_	-	_	_	_	_	_	_	100 G-(11 ms)
Altitude		-	-	-	-	-	_	-	-	70,000 ft.

OUTLINE DIMENSIONS

Height	-	_	_	_	_	-	-	_	-	-	2 inches
Width	-	-	-	-	_	-	-	-	-	- 1	-1/4 inches
Length	-	-	-	-	-	-	-	_	-	-	3.5 inches



L-BAND OSCILLATOR

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70° C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. This tube was designed for operation in missile environments and can be operated for short periods of time without any cooling.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

SAN GARLOS, CALIFORNIA

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range	-	-		-	885-1460 kMc
Anode Voltage	-	-		~~	900-1420 V
Cathode Current	-	-	-	-	2- 6 mA
Typical Output Power -	-		-	-	45-80 mW
Anode FM Sensitivity	-		-	-	1.1 Mc/V
Injection Anode Voltage	-		-	-	100 V
Injection Anode Current	-	-	-	-	0.0 mA
Heater Voltage (AC) -	-	-	-	-	6.3 V
Heater Current (AC) -	-	_	_	_	0.8 A
Load Impedance	_	-	-	-	50 ohms
Service	-	-	-	~	CW

*MAXIMUM RATINGS

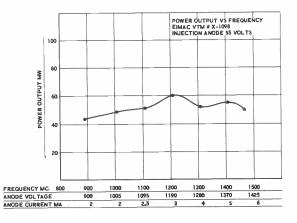
Anode Voltage – – –	-	-	-	-	-	-	1800 V
Cathode Current	-	-	~	-	-	~~	2 0 m A
Injection Anode Voltage	-	-	-	-	-	-	300 V
Injection Anode Current	-	-	-	-	-	-	1 mA

*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

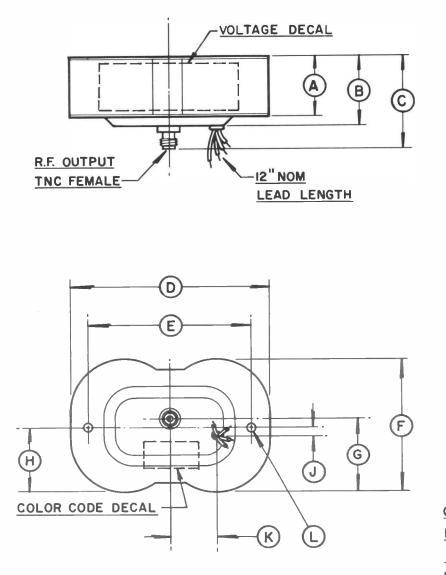
Operating Position	-	-	-	-	-	Any
Cooling – – – –	-	-	-	-	-	Conduction
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling -	-	-	-	_		Type N Jack
Weight	~	-	-	-	-	3.5 Pounds

ENVIRONMENTAL


Vibration		-	_	-	_	-	-	-	_	10 G-(to 2 kc)
Shock	-	-	-	-	_	-	~	-	-	100 G-(11 ms)
Altitude		-	-		-	-	_	-	-	70,000 ft.

OUTLINE DIMENSIONS

Height	-	-	-	-		-	~~	_	-	-	3 inches
Width	-	-	-	_	-	-	_	-	-	-	2.1 inches
Length	-	-		-	-	-	~	-	-		4.5 inches



LOW NOISE L-BAND OSCILLATOR

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1098 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1098 package is typically .006% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1450 megacycles, the temperature/frequency coefficient is typically 300 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

DIMENSIONS IN INCHES												
DIMENSIONAL DATA												
REF.	EF. MIN. MAX. NOM.											
Α			1.375									
В			1.562									
С			2.312									
D		4.515										
Ε	3.640	3.671										
F		3.031										
G			1.656									
Н			1.500									
J			.375									
K			1.062									
L			.187 D.									
	_											

CONNECTIONS GROUND - GREEN HEATER - WHITE HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

EITEL-MCCULLOUGH, INC.

X-1099

VOLTAGE TUNABLE MAGNETRON FREQUENCY 530 - 655 Mc

MINIMUM OUTPUT POWER 8 mW

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range -		_	-	-	-	530-655 Mc
Anode Voltage		-	-	-	-	925-1150 V
Cathode Current -	_ ·	-	-		-	0.5 mA
Typical Output Power			-	-	-	20-25 mW
Anode FM Sensitivity		-	-	_	-	.55 Mc/V
Injection Anode Voltage		_	-	_	-	100 V
Injection Anode Current		_	-	-	-	0.0 mA
Heater Voltage (AC)	_ ·	-	-	-	-	6.3 V
Heater Current (AC)		_	-	-	-	0.8 A
Load Impedance -		-	-	-	-	50 ohms
Service – – – –		-	-	-	-	CW
AM Noise	-	-	(See	Nc	te	#5) —75 db

*MAXIMUM RATINGS

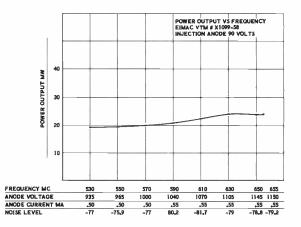
Anode Voltage	-	_	~	_	-	-	1500 V
Cathode Current	-	_	_	_	~	_	10 mA
Injection Anode Voltage	_		-	_	_	_	500 V
Injection Anode Current	~	-	-	-	-	-	1 mA

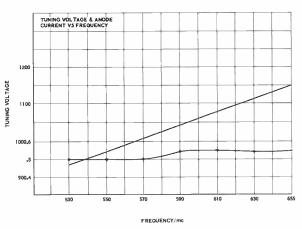
*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

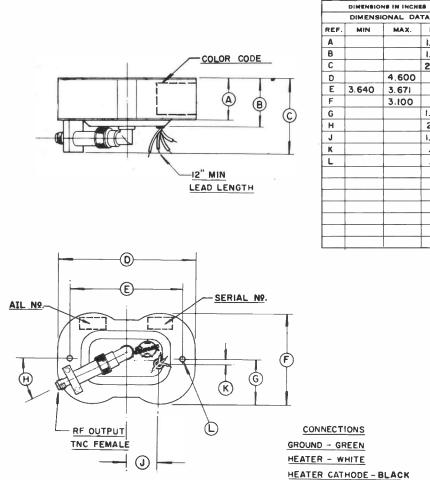
Operating Position	-	-	_	-	-	Any
Cooling	-	-	-	_	-	Conduction
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling	-	-	-	-	-	
Weight	-	-	-	-	-	3.5 Pounds

ENVIRONMENTAL


Vibration		-	_	_	_	_	_	_	-	- 10G-(to 2kc)
Shock	-	-		-	-	-	-	_	-	-100G-(11ms)
Altitude		-	-	-	-	-	-	-	-	- 70,000 ft.


OUTLINE DIMENSIONS

Height	-	-	-	-	-	-	-	-	-	-	3 inches
Width	-	-	-	-	-	-	_	-	-	-	2.1 inches
Length	-	-	-	-	-	-	-	-	-	-	4.5 inches


P-BAND OSCILLATOR

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70° C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1099 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1099 package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 600 megacycles, the temperature/frequency coefficient is typically 48 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.
- 5. AM NOISE: AM noise is defined as noise in db below the carrier using a 6 omc IF Strip with 2 Mc band pass and includes power in both side bands. Other measurement techniques can be utilized as the application requires.

MAX.

4.600

NOM

1.375

1.562

2.500

1.500

1.062 .375

173 D.

27 *

Eimac

EITEL-MCCULLOUGH, INC.

X-1150

VOLTAGE TUNABLE MAGNETRON

> FREQUENCY 980 - Mc 1020

MINIMUM OUTPUT POWER 40 W

TYPICAL PERFORMANCE

ELECTRICAL

Frequency Range 980 M	
Anode Voltage 2040 V	2120
Cathode Current 45-50 m.	A
Typical Output Power 45 W	
Anode FM Sensitivity45 Mo	c/V
Injection Anode Voltage 200 V	
Injection Anode Current 0.0 m.	A
Heater Voltage (AC) 6.3 V	
Heater Current (AC) 0.8 A	
Load Impedance – – – – – 50 oh	ms
Service	W

*MAXIMUM RATINGS

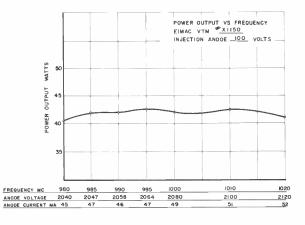
Anode Vo	oltage	_	_	-	-	-	-	-	-	-	2500	V
Cathode	Currer	t	-		-	-		-	-	-	60	mA
Injection	Anode	Vo	ltag	е	-	-	_	-	-	-	500	V
Injection	Anode	Cu	rrer	ıt	-	-	-		_	-	1	mА

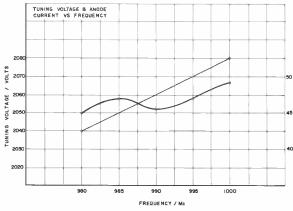
*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

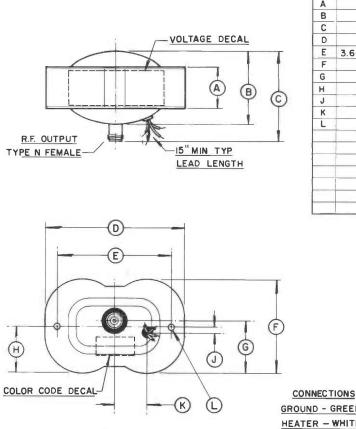
Operating Position	-	-	-	_	-	Any
Cooling	-	-	-	-	-	Forced Air
Electrical Connection		-	-	-	-	Flexible Leads
RF Output Coupling		-	-	-	-	Type N Jack
Weight	-	-		-	-	3.5 Pounds

ENVIRONMENTAL


Vibration		_	_	_	_	_	-	-	_	- 10G (to 2kc)
Shock	_	-	-	-	-	-	-	-	-	- 100G (llms)
Altitude		-	-	-	-		-	-	-	- 70,000 ft.


OUTLINE DIMENSIONS

Height	_	-	-	-	-	-	-	-	-	-	35 inches
Width	-	-	-	-	-	-	-	-	-	-	2.5 inches
Length	-	-	-	-		-	-	-	-	-	4.5 inches


L-BAND OSCILLATOR

- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70 C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1150 has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. The temperature/frequency coefficient for the X-1150 package is typically .02% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 1000 megacycles, the temperature/frequency coefficient is typically 200 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.

	DIMENSIO	NS IN INCH	ES
	DIMENS	ONAL DA	TA
REF.	MIN.	MAX.	NOM.
Α			1.375
В			2.300
С			2.910
D		4.600	
Ε	3.640	3.671	
F		3.100	3.000
G			1.656
н			1.500
J			.375
ĸ			1.000
L			.187 D
_			

CONNECTIONS GROUND - GREEN HEATER - WHITE HEATER CATHODE - BLACK INJECTION ANODE - YELLOW

EITEL-McCULLOUGH, INC.

SAN CARLOS, CALIFORNIA

X-1153-C LOW NOISE VOLTAGE TUNABLE MAGNETRON Frequency 0.6 - 1.2 Gc

Minimum Output Power 20 mW

TYPICAL PERFORMANCE

ELECTRICAL

1	LOIRICAL			
	Frequency Range -	-		0.6-1.2 Gc
	Anode Voltage	-	-	1000-2000 V
	Cathode Current	L.	-	2-4 mA
	Typical Output Power		-	30-50 mW
	Anode FM Sensitivity -	-	-	.66 Mc/V
	Injection Anode Voltage	-	-	100 V
	Injection Anode Current	-	-	0.02 mA
	Heater Voltage (AC) -		-	6.3 V
	Heater Current (AC) -	-	-	0.8 A
	Load Impedance		-	50 ohms
	Service	-	-	cw
	Noise	-	-	—85 db
				(See Note 5)
	VSWR (max)		-	2:1

*MAXIMUM RATINGS

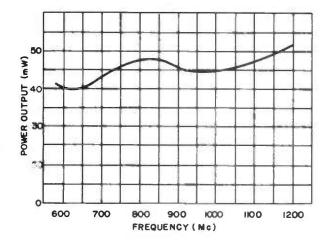
Anode Voltage		-	-	-	2300 V
Cathode	-	-	-	-	10 mA
Injection Anode	Volta	ge	-	-	+300 V
Injection Anode	Curre	ent	-		1 mA

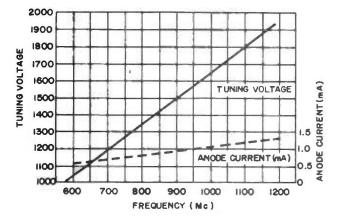
*Damage to the tube may occur if maximum ratings are exceeded.

MECHANICAL

Operating Position	-	Ξ.	-	Any
Cooling	-	-	-	Conduction
Electrical Connection	-	-	-	Flexible Leads
RF Output Coupling	-	÷		Type TNC Jack
		(Se	e Ou	tline Drawing)
Weight	-	-	L.	3.5 Pounds

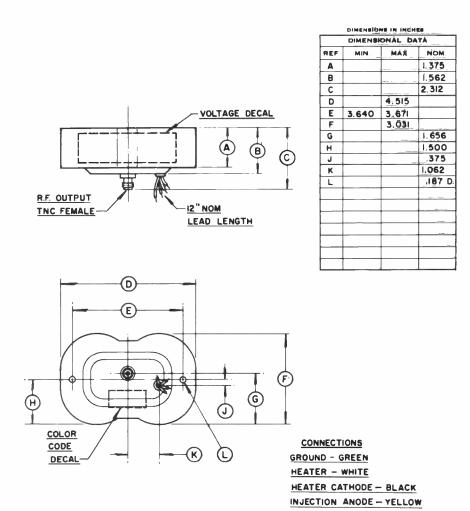
ENVIRONMENTAL


Vibration	ı	-	-	~	-	-1	10G-(to 2 kc)
Shock	-	-	-	-	-	-	100G-(11 ms)
Altitude	-	-	0	-	-	-	70,000 ft.


OUTLINE DIMENSIONS

Height	-	-	-	-	-	0.41	3.1 inches
Width		-	-	-	-	-	2.5 inches
Length	I.	-	7		-	÷	4.6 inches

(Effective 10-16-64) © Copyright 1964 by Eitel-McCullough, Inc.



- 1. COOLING: To insure optimum tube performance the magnet temperature should be maintained below 70°C.
- 2. PROXIMITY OF FERROUS MATERIALS: To minimize variations in performance, ferrous materials should be kept at least 6 inches from the magnetron package. Modulation of the tube may be produced by rotating ferrous materials and such parts as fans, shafts and couplings should be placed as far from the magnetron package as possible. Transformers and chokes should not be placed in such close proximity to the tube that their stray magnetic fields will interfere with the magnetron operation.
- 3. TEMPERATURE STABILITY: The permanent magnet for the X-1153-C has been temperature stabilized to minimize frequency changes caused by variations in the ambient temperature. This temperature/frequency coefficient for the X-1153-C package is typically .008% of the operating frequency per degree Centigrade. Thus, for an operating frequency of 700 megacycles, the temperature/frequency coefficient is typically 56 kilocycles per degree Centigrade. A positive change in temperature will always produce a positive change in frequency.
- 4. ANODE VOLTAGE: The operating frequency is a function of the anode voltage; therefore, any voltage ripple on the anode supply will appear as frequency modulation on the RF output signal.
- 5. NOISE: Noise power, in db below carrier, is measured using a 60 Mc I_f which has a bandpass of 2 Mc. Both sidebands are included in the measurement. (This measuring technique is one of many methods available. Other methods will be entertained.)

EIMAC

A Division of Varian Associates

LMIJUU MAGNETICALLY SHIELDED VOLTAGE TUNABLE MAGNETRON

250 - 500 Mc

100 mw

DESCRIPTION

The EM1300 Voltage Tunable Magnetron Oscillator delivers at least 100 mw over the frequency range of 250-500 mc. This miniature magnetically shielded oscillator is ideally suited for applications requiring compact lightweight packaging. Its unique magnetic circuit results in negligible external magnetic field and permits the tube to contact other ferromagnetic materials with no degradation in performance.

FEATURES

ELECTRICAL

- Magnetically Shielded
- Light Weight
- Linear Voltage Tuning
- Small Size
- Rugged
- Flat Power Output

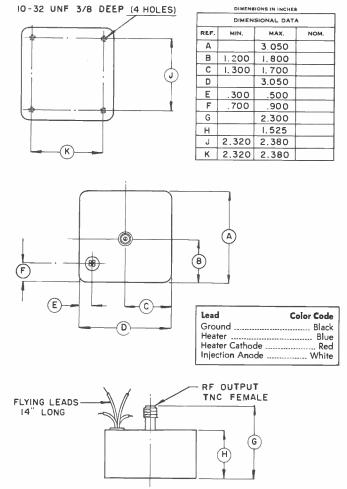
TYPICAL PERFORMANCE

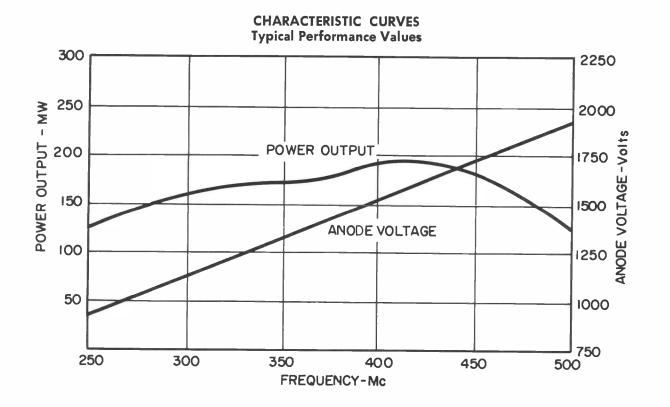
ELEV	TRICAL															
	Frequency Range -	-	-	-	-	-	-	-	-	-	-	-			250	-500 Mc
	Anode Voltage -	-	-	-	-	-	4	-	-	-	-	-	-	9	20-	1840 V
	Cathode Current -	-	-	-	-	-	-	-	-	-	-	-	-		(0.5 -2 mA
	Typical Power Output	-	-	-	-	-	-	-	÷.	-	-	-	-			140 mw
	Anode FM Sensitivity	-	-	-	-	-	-	-	-	-	-	-	-			0.3 Mc/V
	Injection Anode Voltag	ge	-	-	-	-	-	-	-	-	-	-	1			200 Volts
	Injection Anode Curre	-		-	-	-	-	-	-	-	-	-	-			0.0 mA
	Heater Voltage (AC or	DC)	-	-	-	14	-	-		-	-	121			6.3 Volts
	Heater Current (AC or	DC)	-	-	-	-	-	-	-	-	-	-			0.9 Amp
	Load Impedance -	-	-	-	-	-	-	-	-	1	-	-				50 Ohm
	Load VSWR	-	-		-	-	-1	-	-	-	-	-	-		1	1:1
	Power Variation -	-	2	-	-	-	-	-	-	-	-	-	-			±1 db
MEG	CHANICAL															
	Operating Position -	-	-	-			-					-	-	-	-	Any
	Cooling	-	L	-	1.	-	-	μ.,	-	-	-	-	-	-	-	Conduction
	Electrical Connection	-	-	-	-	-	-	75	-	71	-	-	-	-		, 0
	RF Output Coupling	-		(-1)	-	-	-	-	-	-	-	-	-		-	TNC Female
	Weight	-	-	-	-	-	20	-	-	-	-	×	-	H.	-	- 1.8 lbs.
MA	XIMUM RATINGS*															
	Anode Voltage -	-	-	-1	-	-	-	-	-	-	-	-	(\mathbf{T}_{i})	-		2200 Volts
	Cathode Current -	-	-	-	**	-	-	- 1	-	-	-	-	-	-	-	10 mA
	Injection Anode Voltag	ge	-	-	-	-	-	-	-	-	-	-	-	-	-	500 Volts
	Injection Anode Curre	ent	-	-	-	-	-	-			-	-	-	-	-	0.5 mA
	Load VSWR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3:1

*Damage to the tube may occur if maximum ratings are exceeded.

HALL THE REPORT OF THE PROPERTY OF THE PROPERT

(Effective 12-15-65) Copyright 1965 by Varian Associates





NOTES:

- 1. The operating frequency is a function of the anode voltage; therefore any voltage ripple on the anode supply appears as frequency modulation on the RF output.
- 2. The heater supply may be either alternating or direct current. If direct current is used, the heater connections *must* be connected to the negative terminal of the heater supply.
- 3. Cooling—To insure optimum tube performance, the magnet shell should be maintained below 70° C.
- 4. Temperature Stability The permanent magnet of the shielded VTM has been temperature stabilized to minimize frequency changes caused by variations in the magnet temperature. The temperature/frequency coefficient for the shielded VTM is 0.008% of the operating frequency per degree centigrade. A positive change in temperature will always produce a positive change in frequency.

EIMAC

A Division of Varian Associates

EM1310 MAGNETICALLY SHIELDED VOLTAGE TUNABLE MAGNETRON 500 -1000 Mc 100 mw

DESCRIPTION

The EM1310 Voltage Tunable Magnetron Oscillator delivers at least 100 mw over the frequency range of 500-1000 Mc. This miniature magnetically shielded oscillator is ideally suited for applications requiring compact lightweight packaging. Its unique magnetic circuit results in negligible external magnetic field and permits the tube to contact other ferromagnetic materials with no degradation in performance.

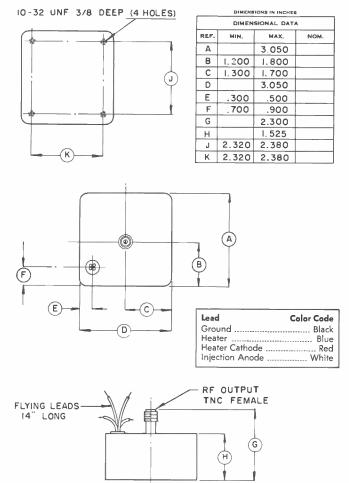
FEATURES

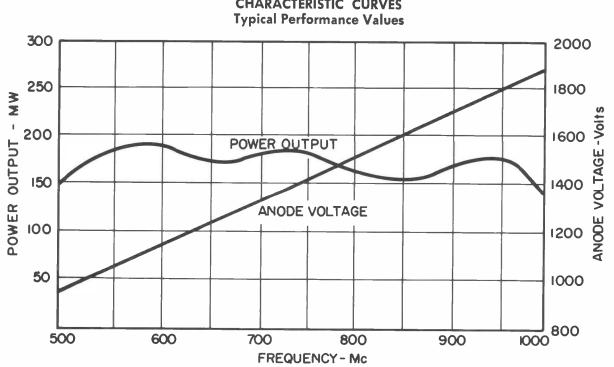
- Magnetically Shielded
- Light Weight
- Linear Voltage Tuning
- Small Size
- Flat Power Output
- Rugged

TYPICAL PERFORMANCE

ELECTRICAL													
Frequency Range	-	-		-	-	-	-	-	-		-	500-1000 Mc	
Anode Voltage	-	-	-	-	-	-	-	-	-	-	-	920-1840 V	
Cathode Current	-	1.0	-	-	-	-	-	-	(\mathbf{x})	-	-	0.5 -2 mA	
Typical Power Output -	-	-	-	-	17	-	-	-	-	-	-	150 mw	
Anode FM Sensitivity -	-	-	-	-	-	-	-	-	-	-		0.55 Mc/V	
Injection Anode Voltage	-	-	-	-	-	-	-	-		-	-	150 Volts	
Injection Anode Current	-	-	-	-	-	-	-	-	2	-	-	0.0 mA	
Heater Voltage (AC or D	C)	-	-	-	-	-	-	-	-	-		6.3 Volts	
Heater Current (AC or De	C)		-	-	-	-	-	-		-	-	0.86 Amp	
Load Impedance	-	1.5	-	-	-	-	-	-	-	-	-	50 Ohm	
Load VSWR	-	-	-	-	-		-	-	-	-	-	1.1:1	
Power Variation	\sim	-	-	-	-	-	-	-	-	-	-	$\pm 1 \text{ db}$	
MECHANICAL													
Operating Position					-					-	-		ny
Cooling													
Electrical Connection -	-	-	-	-	-	-	-	-	-	-	-		
RF Output Coupling -							-	-	-	-	-	TNC Fem	
Weight	Ξ.	-	-	.7	-	-	-	-	17		-	1.5 lbs. m	ax.
MAXIMUM RATINGS*													
Anode Voltage	-	-	-	-	-	-	-	-	-	-	-	2200 Vol	
Cathode Current	-	-	-	-	-	-	-	-		-	(-1)	10 mA	
Injection Anode Voltage	-	-	-			-	-	-	-	-	-	500 Vol	
Injection Anode Current	-	-	-	-	-	-	-	1.1-1	-	-	-	1 mA	k.
Load VSWR	-	-	-	-	-	-	-	-	-	-		3:1	

*Damage to the tube may occur if maximum ratings are exceeded.


(Effective 12-15-51) Copyright 1965 by Verian Associates


(Effective 12-15-65) Copyright 1965 by Varian Associates

NOTES:

- 1. The operating frequency is a function of the anode voltage; therefore any voltage ripple on the anode supply appears as frequency modulation on the RF output.
- 2. The heater supply may be either alternating or direct current. If direct current is used. the heater connections must be connected to the negative terminal of the heater supply.
- 3. Cooling-To insure optimum tube performance, the magnet shell should be maintained below 70° C.
- 4. Temperature Stability --- The permanent magnet of the shielded VTM has been temperature stabilized to minimize frequency changes caused by variations in the magnet temperature. The temperature/frequency coefficient for the shielded VTM is 0.008% of the operating frequency per degree centigrade. A positive change in temperature will always produce a positive change in frequency.

CHARACTERISTIC CURVES

EIMAC

A Division of Varian Associates

EM1320 MAGNETICALLY SHIELDED VOLTAGE TUNABLE MAGNETRON 1000 - 2000 Mc

100 mw

DESCRIPTION

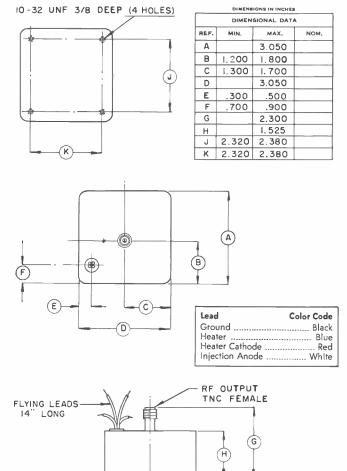
The EM1320 Voltage Tunable Magnetron Oscillator delivers at least 100 mw over the frequency range of 1000-2000 mc. This miniature magnetically shielded oscillator is ideally suited for applications requiring compact lightweight packaging. Its unique magnetic circuit results in negligible external magnetic field and permits the tube to contact other ferromagnetic materials with no degradation in performance.

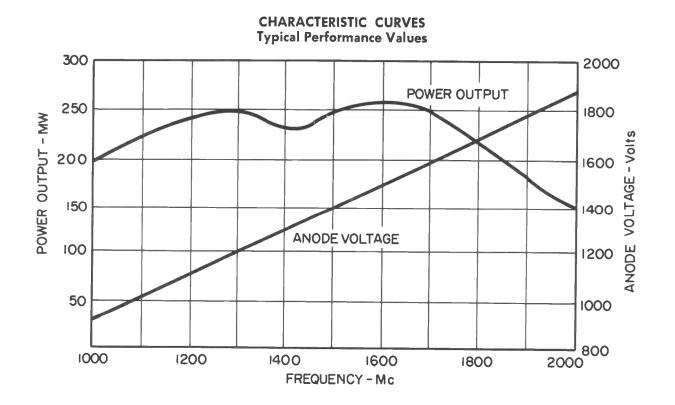
FEATURES

- Magnetically Shielded
- Light Weight
- Linear Voltage Tuning
- Small Size
- Flat Power Output
- Rugged

TYPICAL PERFORMANCE

			1 6		AL.	r	EKI		Z 141	AI						
ELEC	TRICAL															
	Frequency Range -	-	-	-	-	-	-	-	-	-	-	-	-	100	0- 2 000 Mc	
	Anode Voltage -	-	-	-	-	-	-	-	-	-	-	-	-	92	20-1840 V	
	Cathode Current -	-	-	-	-	-	-	-	-	-	-	-	-		1-6 mA	
	Typical Power Output	t -	-	-	-	-	-	-	-	-	-	-	-		200 mw	
	Anode FM Sensitivity	-	-	-	-	-	-	-	-	-	-	-	-		1 Mc/Vol	lt
	Injection Anode Volta	lge	-	-	-	-	-	-	-	-	-	-	-		200 Volts	
	Injection Anode Curr	ent	-	-	-	-	-	-	-	-	-	-	-		0.0 mA	
	Heater Voltage (AC o	r DO))	-	-	-	-	-	-	-	-	-	-		6.3 Volts	
	Heater Current (AC o	or DO	2)	-	-	-	-	-	-	-	-	-	-		0.9 Amp	
	Load Impedance -	-	-	-	-	-	-	•	-	-	-	-	-		50 Ohm	
	Load VSWR	-	-	-	-	-	-	-	-	-	-	-	-		1.1:1	
	Power Variation -	-	-	-	-	-	-	-	-	-	-	-	-		$\pm 1 \text{ db}$	
MEC	HANICAL															
	Operating Position -														An	ıy
	Cooling															n
	Electrical Connection	-	-	-	-	-	-	-	-	-	-	-	-	-	- Flying Lead	ls
	RF Output Coupling				-			-		-					- TNC Femal	le
	Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5 lb	s.
мах	IMUM RATINGS*															
	Anode Voltage -	-	-	-	-	-	-	-	-	-	-	-	-	-	- 2200 Volts	s
	Cathode Current -	-	-	-	-	-	-	-	-	-	-	-	-	-	- 12 mA	
	Injection Anode Volta	ige	-	-	-	-	-	-	-	-	-	-	-	-	- 500 Volts	s
	Injection Anode Curr	ent	-	-	-	-	-	-	-	-	-	-	-	-	- 1 mA	
	Load VSWR	-	-	-	-	-	-	-	-	-	-	-	-	-	- 3:1	


*Damage to the tube may occur if maximum ratings are exceeded.


(Effective 12-15-65) Copyright 1965 by Varian Associates

NOTES:

- 1. The operating frequency is a function of the anode voltage; therefore any voltage ripple on the anode supply appears as frequency modulation on the RF output.
- 2. The heater supply may be either alternating or direct current. If direct current is used, the heater connections *must* be connected to the negative terminal of the heater supply.
- 3. Cooling—To insure optimum tube performance, the magnet shell should be maintained below 70° C.
- 4. Temperature Stability The permanent magnet of the shielded VTM has been temperature stabilized to minimize frequency changes caused by variations in the magnet temperature. The temperature/frequency coefficient for the shielded VTM is 0.008% of the operating frequency per degree centigrade. A positive change in temperature will always produce a positive change in frequency.

EIMAC

A Division of Varian Associates

EM1331 MAGNETICALLY SHIELDED VOLTAGE TUNABLE MAGNETRON 2200 - 2300 Mc 35 Watts

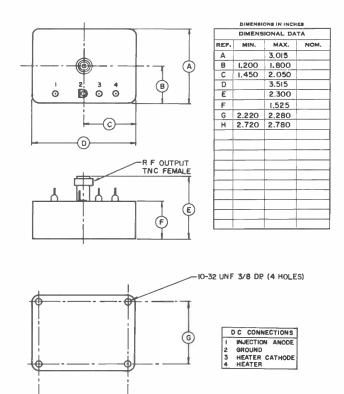
DESCRIPTION

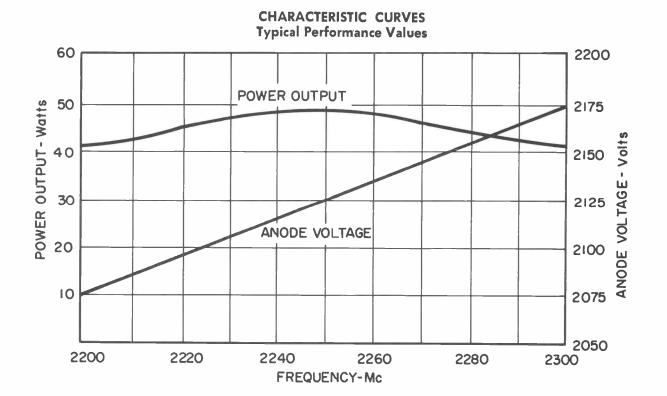
The EM1331 Voltage Tunable Magnetron Oscillator delivers at least 35 watts over the frequency range of 2200-2300 Mc. This miniature magnetically shielded oscillator is ideally suited for applications requiring compact lightweight packaging. Its unique magnetic circuit results in negligible external magnetic field and permits the tube to contact other ferromagnetic materials with no degradation in performance.

FEATURES

- Magnetically Shielded
- Light Weight
- Linear Voltage Tuning
- Small Size
- Flat Power Output

ELECTRICAL												
Frequency Range	-	-	-	-	-	1	-	-	-	-	-	2200-2300 Mc
Anode Voltage						-	-	-	-	-	-	2060-2160 V
Cathode Current		-	-		-	-		-	-	-	-	41-44 mA
Typical Power Output -	-	-	-	-	-	-	-	-	-	-	-	40-42 W
Anode FM Sensitivity -	-	-	-	-	1	-	-	-	-	-	-	1 Mc/Volt
Injection Anode Voltage	-		-		-	-	-	-	-	-	17	500 Volts
Injection Anode Current	-	(-)	-	-	-	-	-	-	-	-	-	0.0 mA
Heater Voltage (AC or De	C)	-	-	-	-	-	-	-	-	-		6.3 Volts
Heater Current (AC or De	C)	-	-	-	-	-	-	-	-	-	-	1.0 Am p
Load Impedance											-	50 Ohm
Load VSWR	-	-	-	-	-	-	-	-	-	-	-	1.1:1
Power Variation	-	-	-	-	-	\mathbf{r}	-	-	-	-	-	1 db
MECHANICAL												
Operating Position											-	
Cooling												
Electrical Connection -	-	-	-	-	-	-	-	-	-	-	-	• •
RF Output Coupling -	-	_	-	-	-		-	-	-	-	-	TNC Female
Weight		71	25		17		-	-	-	-	-	3.5 lbs. max.
MAXIMUM RATINGS*												
Anode Voltage	-	_	-	-	-	L.	-	-	-	-	-	2500 Volts
Cathode Current	-	-	-	-	-	-	-	-	-	-	-	60 mA
Injection Anode Voltage		${\mathcal T}_{i,i}^{(i)}$		$ \mathbf{r} $	-	-	=	-		~	-	750 Volts
Injection Anode Current		-	-		-					-	-	1 mA
Load VSWR	н	-	-	-	14	-	-	-	-	-	-	1.2:1


*Damage to the tube may occur if maximum ratings are exceeded.



NOTES:

- 1. The operating frequency is a function of the anode voltage; therefore any voltage ripple on the anode supply appears as frequency modulation on the RF output.
- 2. The heater supply may be either alternating or direct current. If direct current is used, the heater connections *must* be connected to the negative terminal of the heater supply.
- 3. Cooling—To insure optimum tube performance, the magnet shell should be maintained below 70° C.
- 4. Temperature Stability The permanent magnet of the shielded VTM has been temperature stabilized to minimize frequency changes caused by variations in the magnet temperature. The temperature/frequency coefficient for the shielded VTM is 0.008% of the operating frequency per degree centigrade. A positive change in temperature will always produce a positive change in frequency.

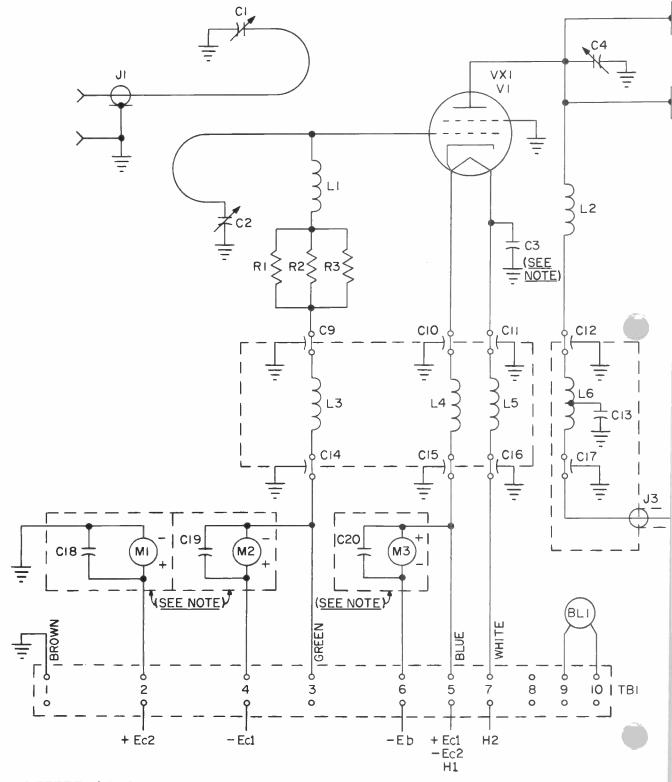
H

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

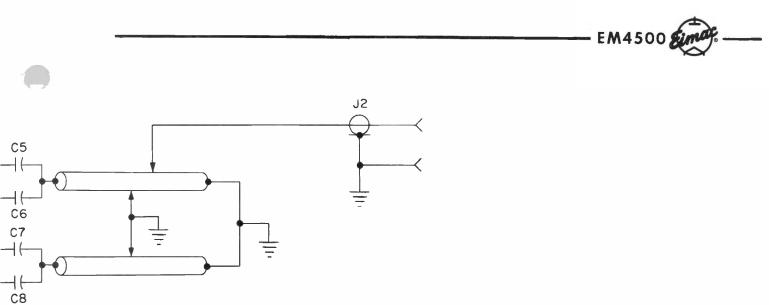
EM4500

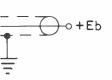
CAVITY AMPLIFIER 145-150 Mc

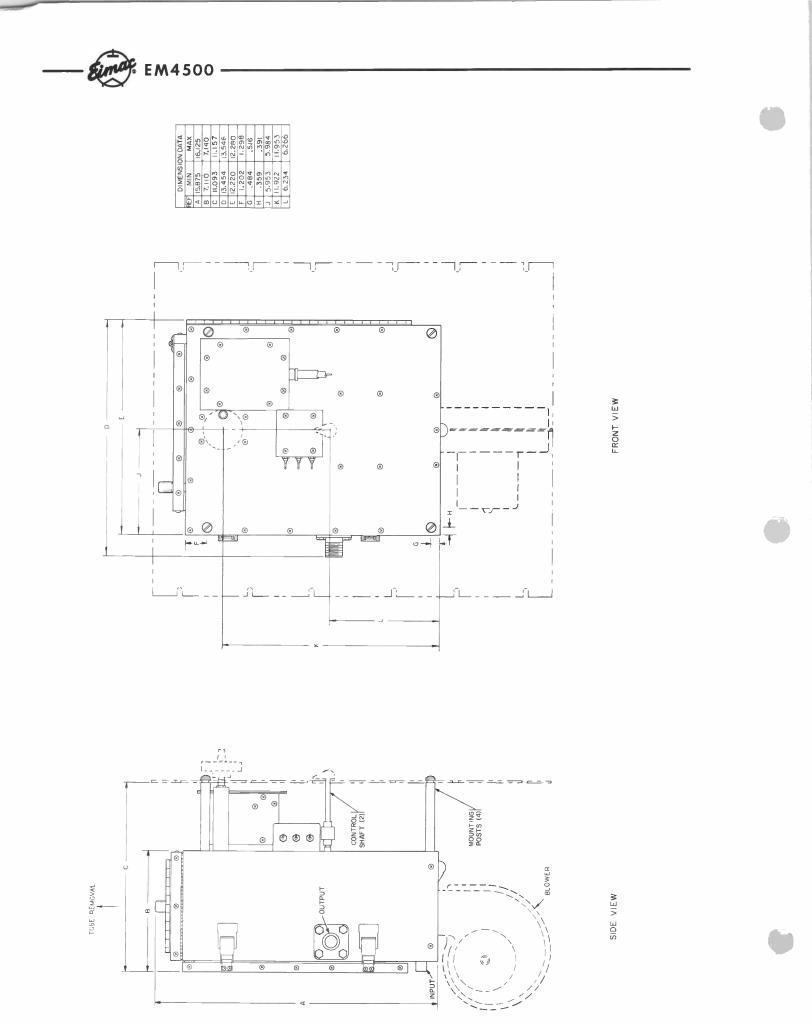
The Eimac EM4500 is a cavity amplifier incorporating the Eimac 4CX1000K tetrode. It is designed for use as a linear amplifier in a transmitter output stage. Front panel tuning controls are provided.


CHARACTERISTICS

ELECTRICAL


Frequency, continuous RF Power Output RF Drive Power Requ Power Supply Require Anode, maximum	_ uired	-	al):	-			 - 145-150 Mc - 300 watts *CW 3W* - Voltage Current - 3000 V 500 mA*
Grid -	-	-	-	-	-	-	10 to -0.25 to
Heater – Tube Type – Load Impedance– Bandwidth – Modulation –		-	- - -				 -100 V 0.75 mA 6.0 V 20 A - Eimac 4CX1000K - 50 ohms 20 KC minimum at 3 db 0-100% AM, 0-10,000 CPS
Mounting – Size – Operating controls Cooling required Connectors			-				 Standard 19" relay rack Panel height 16 inches width 14 inches depth 12 inches Tuning knobs provided 50 CFM at 0.5" water Input - Type N Female Output - Type LC Female
ENVIRONMENTAL							
Temperature Altitude -	-	-	-	-	-	-	-10 to +50°C (+14 to +122°F) to 12,000 feet


*Up to 1 KW output can be provided with 15 watts drive and 600 mA anode current.


REFERENCE SCHEMATIC ONLY

NOTES:

- I. CI8, CI9, C20, MI, M2, M3, NOT SUPPLIED WITH UNIT
- 2. ALL RESISTOR VALUES ARE IN OHMS UNLESS OTHERWISE SPECIFIED
- 3. ALL CAPACITOR VALUES ARE IN MICRO-MICRO FARADS UNLESS OTHERWISE SPECIFIED.

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA EM4501

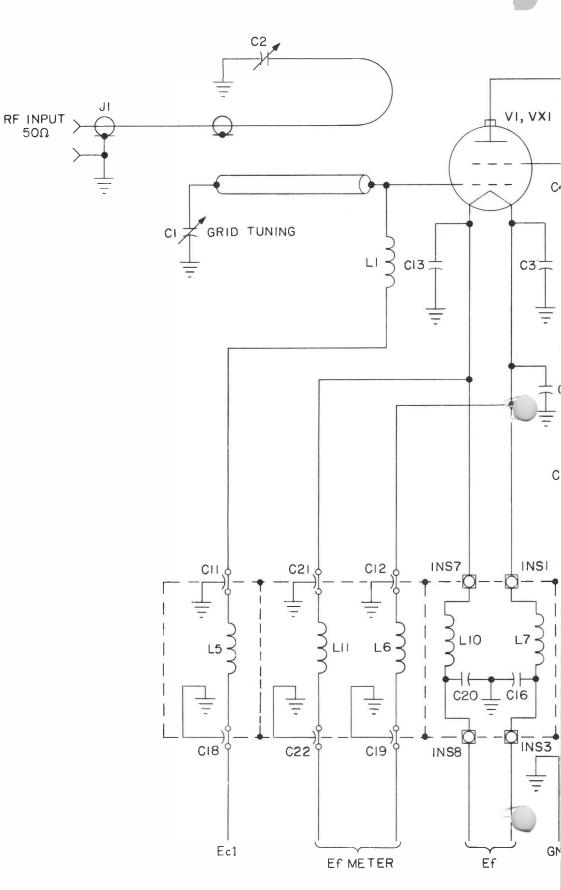
CAVITY AMPLIFIER 145-150 Mc

The Eimac EM4501 is a cavity amplifier incorporating the Eimac 4CX3000A tetrode. It is designed for use as a power amplifier in a transmitter output stage.

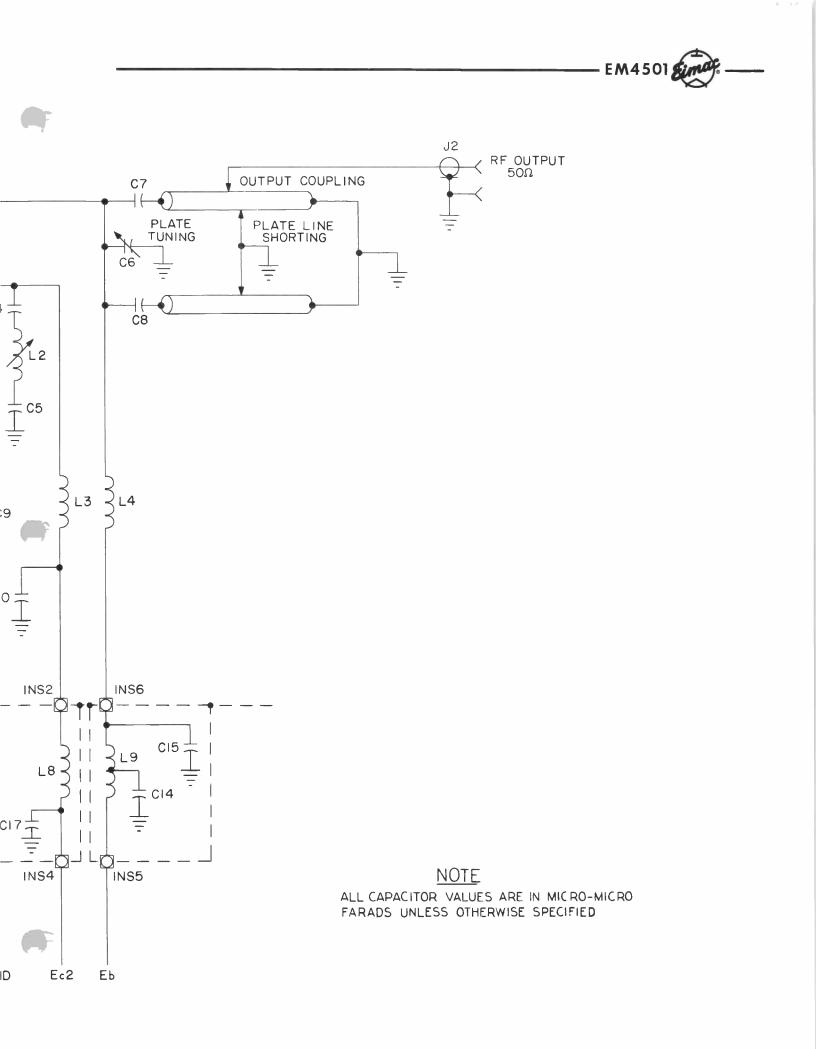
CHARACTERISTICS

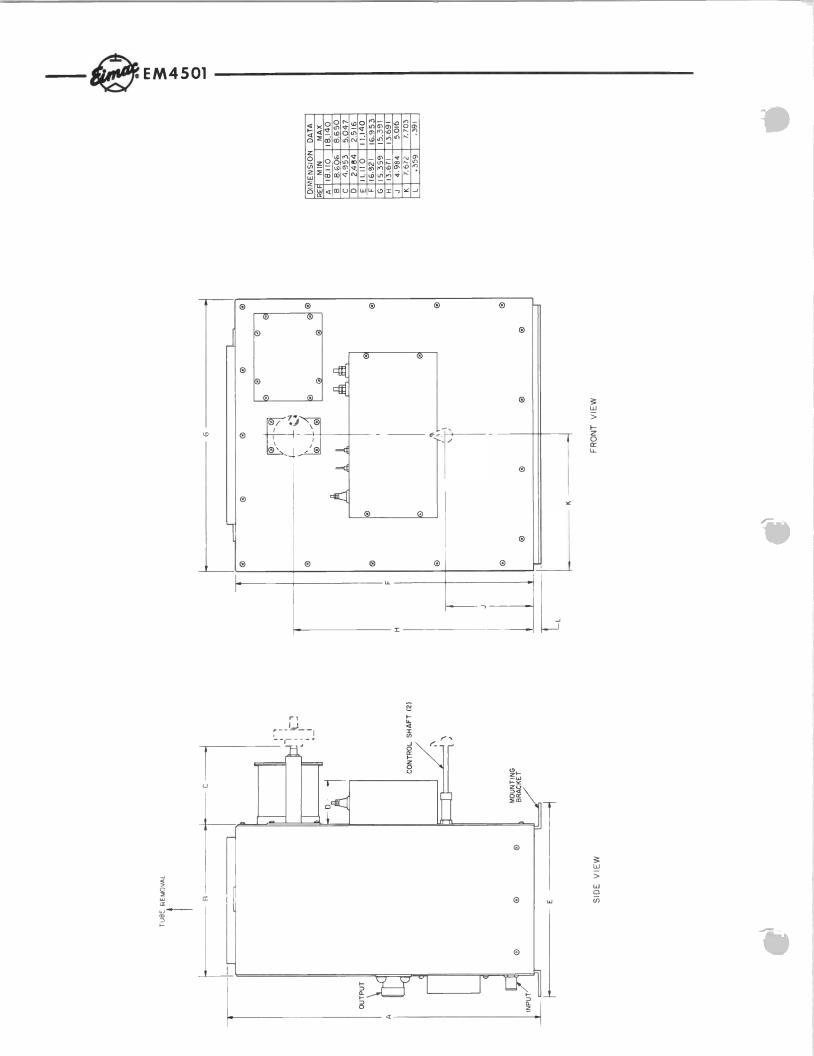
ELECTRICAL

Frequency	-	-	-	-	-	-		145-	-150 Mc
RF Power Ou	ıtput	-	-	-	-	-	-		3 kW CW
RF Drive Po	wer Red	quired	-	-	-	-	-		175 W
Power Supply	7 Requi	rement	s (Typi	ical):				Voltage	Current
Anode, Ma	aximum	1 -	-	-	-	-	-	- 4500 V	1.1A
Screen Gi	rid, Maz	kimum	-	-			-	- 300 V	125 mA
Control G	rid, Ma	ximum	1 -		-	-	-	- 150 V	55 mA
Heater	-	-	-	-	-	~~		- 9.0 V	45 A
Tube Type	-	-	-	-		-	-	– Eimac	e 4CX3000A
Load Impeda	nce	-	-	-	-	-	-		– 50 ohms
Load VSWR,	Maxim	um	-	-	-	-	-	1.5:	1, any phase
Bandwidth	-	-	-	-	-	-		- 20 KC Mini:	mum at 3 db
Modulation	-	-		-	-	-	-	0-100%AM,0-	-10,000 CPS
MECHANICAL									
Mounting	-	-	-	-	-	-		Standard 19" relay	y rack panel
Size -	-	-	-	-	-	-	-	Height - 18 Width - 15-	inches -3/4 inches

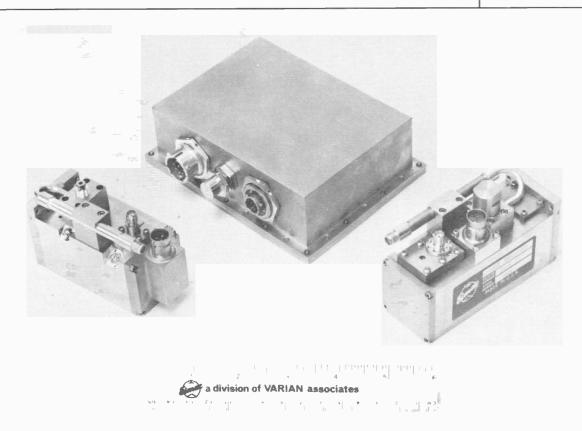

								Depth $-14-7/8$ inches
Cooling Requi	red	-	-	-	-	-		170 CFM at 1.6" water
Connectors	-	-	-	-	-	-	-	Input Type N Female
								Output Type LC Female

ENVIRONMENTAL


Temperature	-		-	-	-	-	-10	to $+50^{\circ}$	°C	(+14	to+12	2° F)
Altitude –	-	-		-	-	-	-	-	-	to 1	12,000	feet



REFERENCE SCHEMATIC ONLY



A Division of Varian Associates

These modular amplifier systems are recommended for medium power aerospace telemetry transmission. They provide at least 10 db gain in the 2200-2300 MHz or 1435-1535 MHz telemetry bands, when driven by a 1-2 watt exciter. The system includes an EM4590 power supply, plus an L-band (EM4539) or S-band (EM4596) cavity amplifier. Full power output is provided, even in the severe environment of missile launch. These modular units provide maximum flexibility in system packaging. A single package containing both the amplifier and the power supply is also available, on special order. All modules are conduction cooled, and can be operated continuously at heat sink temperatures from -54° C to $+95^{\circ}$ C. They are hermetically sealed, for operation at any altitude.

AMPLIFER MODULE

Model EM4596 is used for 2200-2300 MHz; EM4539 is used for 1435-1600 MHz. These cavity amplifiers provide at least 10 db gain, using a rugged, frequency-stable ceramic planar triode. All connectors and tuners are accessible on one surface. A low pass filter, for harmonic suppression, is included. EM4596 is $3\frac{3}{4}$ " x $2\frac{1}{2}$ " x $1\frac{1}{2}$ " and weighs 0.95 lbs.; EM 4593 is 4" x $2\frac{1}{2}$ " x $1\frac{1}{2}$ " and weighs 1.1 lbs. (dimensions include all protusions). For further details, refer to the data sheets for these units.

POWER SUPPLY

The dc-dc converter, included in the amplifier system, is Model EM4590. This is a solid state unit which provides regulated plate and heater voltages, operating from a 28 Vdc primary source. All components are used well below their maximum ratings. Size is $1.7'' \ge 4.2'' \ge 5.5''$; weight is 2.5 lbs. For further details, refer to the EM4590 data sheet.

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

CHARACTERISTICS

ELECTRICAL

Frequency, ¹ continuously tunable, EM4504 EM4537				2200-2300 MHz
				1435-1600 MHz
RF power ² output (with 2 watts drive), minin	num	-	-	20 Watts
RF power ² output (with 1 watt drive), minim	um	-	-	12 Watts
Input Signals	-	-	-	All standard FM telemetry signal formats, per IRIG 106-65
Bandwidth, Minimum, 3 db points	-	-	-	10 MHz
Gain, Minimum	-	-	-	10 db
Load Impedance, Nominal	-	-	-	50 Ohms
VSWR, Maximum, for full rated output -	-	-	-	1.5:1
without damage	-	-	-	3:1
Harmonic Suppression, Minimum (2nd, 3rd	& 4th	1)	-	60 db
Warm-up Time	-	-	-	3 Minutes
Input Voltage ³	-	-	-	$28 + \frac{8}{-4}$ Vdc
Overvoltage, Maximum	-	-	-	43 Vdc
Input Transients, Maximum	-	-	-	80 Volts for 20 Microseconds
Input Ripple, Maximum	-	-	-	3 V rms, DC-20 KHz, superimposed on 24-32 Vdc input
Interference	-	-	-	Meets MIL-I-6181D
Efficiency, DC-RF Conversion, Minimum -	-	-	-	17.5%

MECHANICAL

MECHANICAL						Size	Weight
Power Supply Module	-	-	-	-	-	1.7'' x 4.2'' x 5.5''	2.5 lbs.
S-band Cavity Amplifier Module -	-	-	-	-	-	3.75'' x 2.5'' x 1.5''	0.95 lbs.
L-band Cavity Amplifier Module -	-	-	-	-	-	4'' x 2.5'' x 1.5''	1.1 lbs.
Mounting	-	-	-	-	-	To Heat Sink (not included)
Cooling	-	-	-	-	-	Conduction	
Connectors: RF input and output -	-	-	-	-	-	OSM Female	
Primary power input	-	-	-	-	-	Bendix JT07H-8-3P	
Power supply module output -	-	-	-	-	-	Deutsch DTK07H-12-8P	
Cavity Amplifier module input	-	-	-	-	-	Deutsch DM5300-3P-643	

ENVIRONMENTAL

Temperature, Heat Sink (for continuous operation)	-	$-54^{\circ}C$ to $+95^{\circ}C$
Altitude (3 hour duration)	-	Any
Vibration 20 g peak to 2 KHz, Curve E, Fig. 514-3 -	-	MIL-STD-810
0.3 G ² /Hz Random, Curve F, Fig. 514-4 -	-	MIL-STD-810
20 g peak to 2 KHz, Category II	-	MIL-E-5400
Other	-	Per MIL-E-5400

FOOTNOTES

Also available with similar performance characteristics for other frequencies in the 500-2500 MHz range.

 $^2 Under$ worst combination of specified environmental conditions. Output and efficiency are higher under

optimum conditions. See EM4539 and EM4596 data sheets for typical performance curves.

³Power supplies for operation from other primary sources are also available.

EIMAC A Division of Varian Associates EM4522-5 EM4522-6 EM4538-2 EM4538-5 EM4591 CAVITY OSCILLATORS 1435 - 1540 MHz 1700 - 1850 MHz 2200 - 2300 MHz

These oscillators are recommended for use in UHF/microwave telemetry transmitters and aerospace television transmitters. They are precisely tuned over the specified ranges by three easy adjustments. Power output and frequency are highly stable under severe environmental conditions, including shock and vibration of missile launch. Modulation is achieved by varying the voltage applied to a varactor diode in the anode cavity. Modulation is linear over a wide range of frequency deviation. High rf efficiency is another important advantage of these oscillators. These are very compact units, shaped for maximum packaging efficiency. Cooling is by conduction to the transmitter case. All models use rugged ceramic-metal planar triodes.

Dc-dc converters are available from EIMAC to operate these oscillators from 28Vdc.

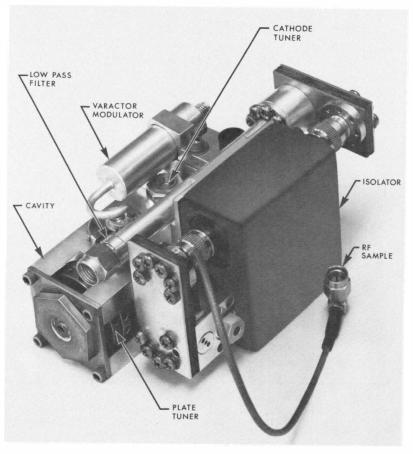
EM4522-5 OSCILLATOR

	C	HARACT	ERISTIC	S		
ELECTRICAL		EM4522-5	EM4522-6	EM4538-2	EM4538-5	EM4591
Tuning Range, MHz^1	-	2200-2300	2200-2300	1435-1540	1435-1540	1700-1850
rf Power Output, ³ Watts, CW -	-	2	10	13	3	2.5
Frequency Stability, MHz	_	± 2.5	± 2.5	± 2.5	± 2	± 2
Power Supply Requirements:						
Anode Voltage, Volts, Max.	-	165	240	240	165	165
Anode Current, mA, Max	_	70	130	130	70	70
Control Grid	_			– Self Bias –		
Heater Voltage, Volts				5.6	6.0	6.0
ILector Commont mod Mor		400	540	540	400	400
Suggested EIMAC Power Supply Mo	hdel	EM4589	PS4700	PS4700	EM4589	EM4589
Load Impedance Ohms Nominal	-					
Modulation	_		Any II	RIG 106-65 F	ormat	~
Modulation Linearity.						
500 KHz peak-to-peak deviati	ion	%		1		
0 MILTER and to moole dowingtion	01			- 25		
6 MHz peak-to-peak deviation	0/0			5		
Modulation Frequency Response						
0.9 MHz db =	-			0.5		
UCIUD Maximum for roted output	it			1.2:1		
Maximum without damag	е <u>-</u>	4-		3:1		
Warm-up time	- S	· · · · · · · · · · · · · · · · · · ·		90 Seconds		
warm-up time						
MECHANICAL						
Mounting	-	<u>←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−</u>	Bo	lts to Heat S	ink	
Dimensions	-	←		See Drawing	g	
Weight, poundo	-			0.4	. 0: 1	
Cooling	-		Cond	uction to Hea	at Sink ———	
Connector, rf output	-			USM		_
Modulation Input	-	+		OSSM		

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

(Effective 5-1-66) Copyright 1966 by Varian Associates

Printed in U.S.A.

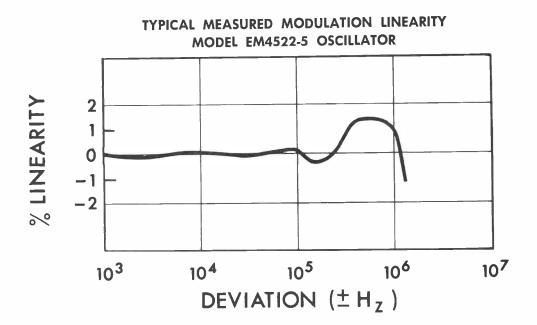

ENVIRONMENTAL

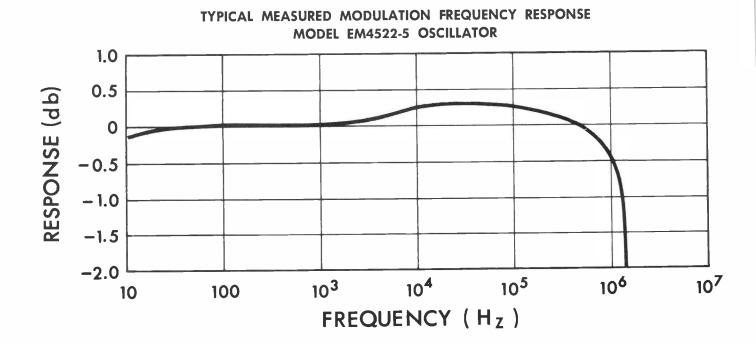
Temperature (Heat Sink) -	_	_	549 to 19500
Vibration ² (MIL STD 810 Fig. 514.2.C. D)	-	-	$-54^{\circ}10 \pm 85^{\circ}C$
Vibration ² (MIL-STD-810, Fig. 514-3 Curve D)	-	-	15 g Peak to 2 KHz
Shock ² (MIL-STD-810 Method 516, Procedures I and V, half sine)			
Sustained Appalenties	-	-	15 g for 11 milliseconds
Sustained Acceleration	-	-	30 g for 5 minutes

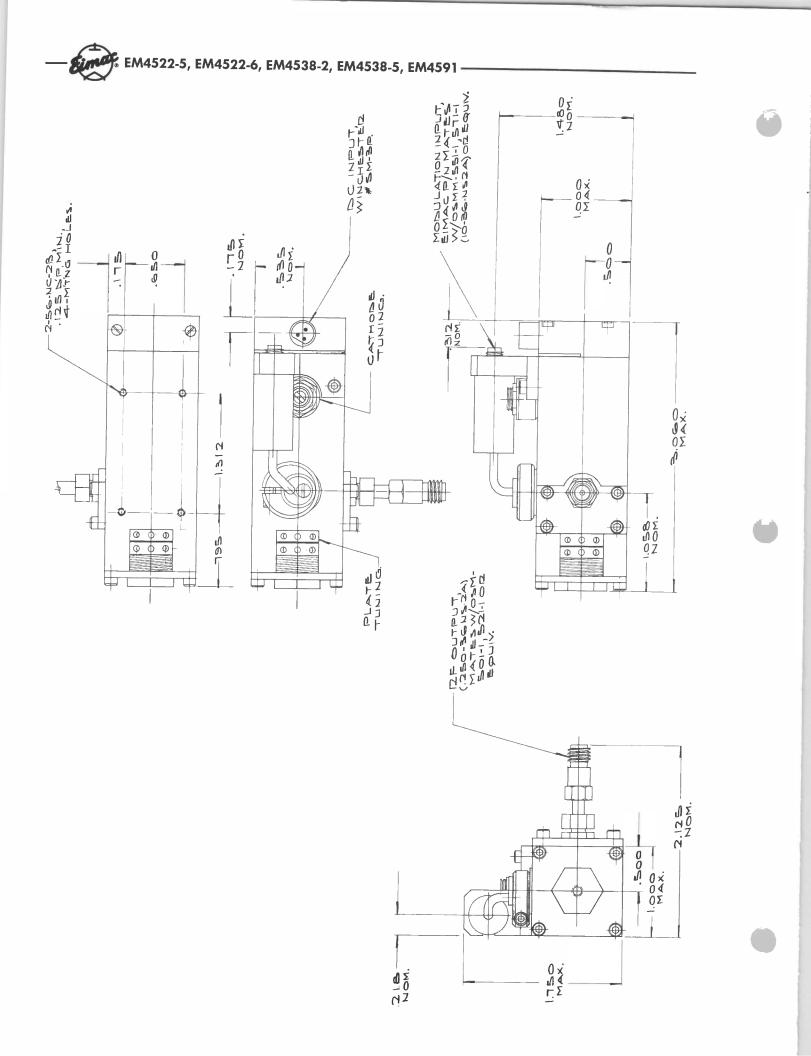
¹Other ranges available on special order.

²Electrical performance is as specified, under these environmental conditions. More severe conditions can be withstood without damage.

³Higher power oscillators available on special order.




MODEL EM4522-5 OSCILLATOR WITH ACCESSORIES

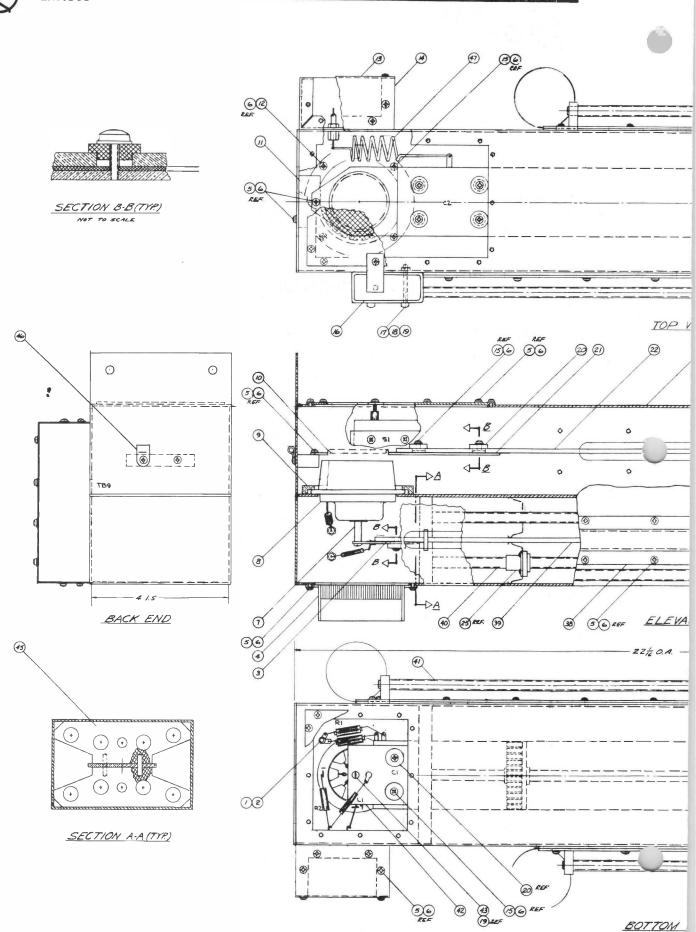

Complete rf power source packages are also available from EIMAC. The package shown here includes a three-port terminated circulator, low pass filter, modulation input choke and cabling.

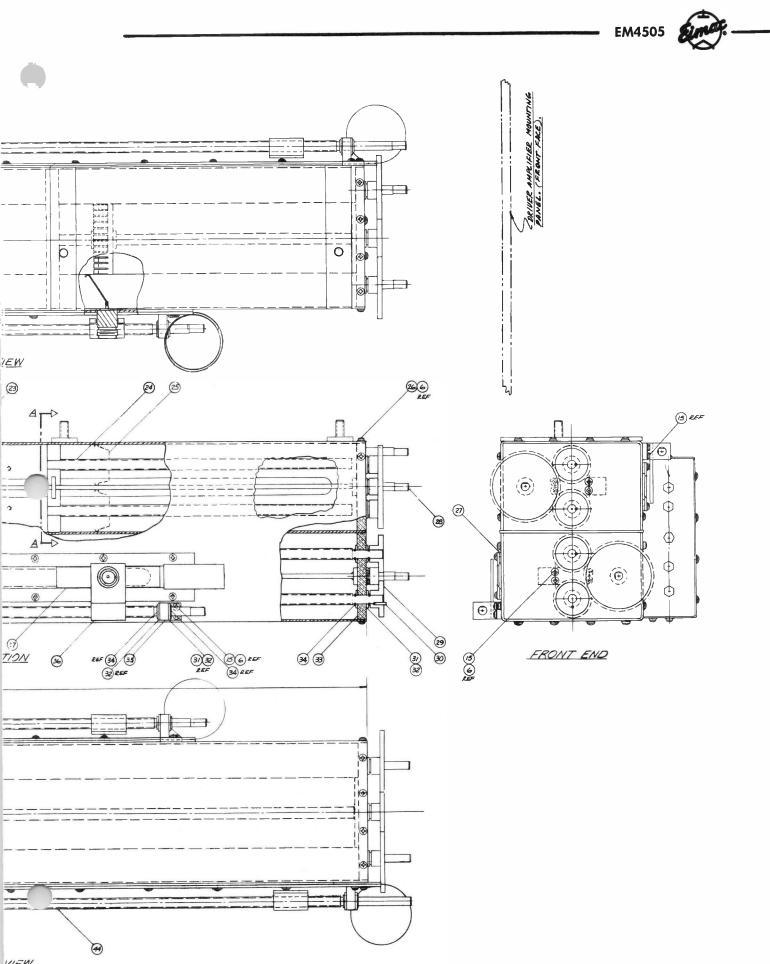
Dc-dc converters are available from EIMAC to operate any EIMAC oscillator or amplifier from 28 Vdc. These power supplies feature compact, light weight design, particularly suited for use in aerospace systems. All components are solid state. The package is conduction cooled. Operation during the shock and vibration of missile launch is satisfactory. RF interference is within limits of the applicable MIL specifications.

Power supplies for operation from 400 CPS primary supply are available on special order.

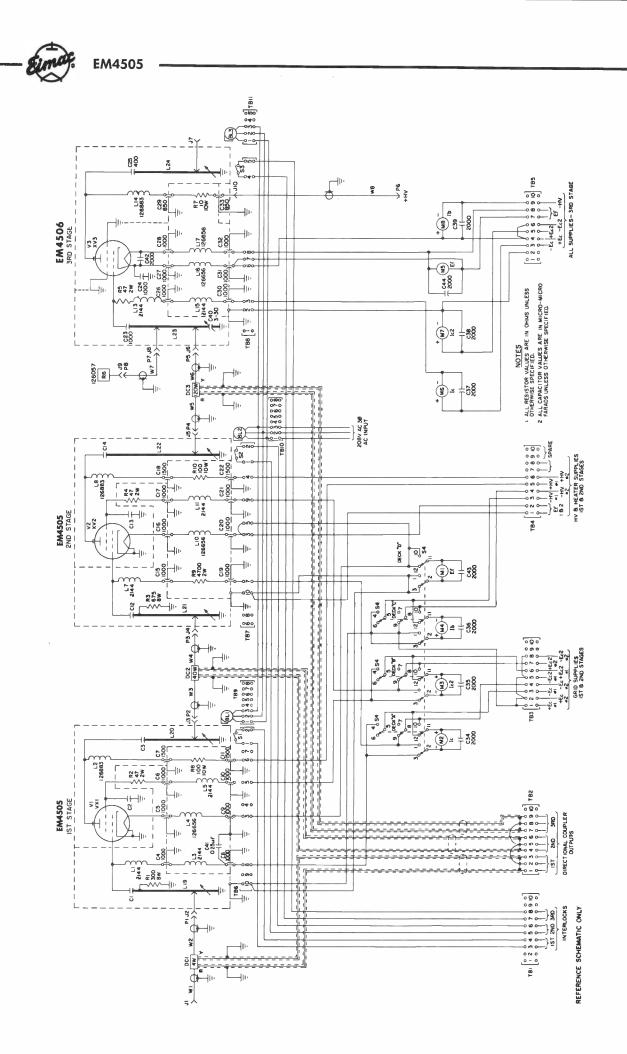
SAN CARLOS, CALIFORNIA

The Eimac EM4505 is a cavity amplifier incorporating the Eimac 4CX250R ruggedized ceramic tetrode. It is designed for use as an intermediate stage in an FM transmitter. Tuning controls are provided.


CHARACTERISTICS


E	LECTRICAL																	1		
F	Frequency, conti	inud	ously	tur	nable	e -	-	-	-	-	-	-	122	2-150	Mc	1		r		
F	RF Power Output	ut	-	-	-	-	-	-	-	-	-	30) wa	tts*	CW		N. W.			•
F	RF Drive Power	Re	quir	ed	-	-	-	-	-	-	-	-	-	-	1W*					• •
	Power Supply R Anode, max Screen Grid Control Gri Heater	xim I, m	um axir	- num	- 1 -	-	al): - - - -	-	400 80	to	800 175 60 6.0	V V V	150	$\pm 25 \\ \pm 25 \\ 2.6$	mA* mA mA A				in the second se	1
]	Fube Type -	-	-	-	-	-	-	-	-	-	-	Eim		4CX2			1	R	PT:	K
Ι	Load Impedance	e	-	-	-	-	-	-	-	-	-	-	-	50 o	hms					, il
F	3andwidth -	-	-	-	-	-	-	-	-	2 M	lc mi	nim	um	at 1.	5 db					
ľ	Modulation	-	-	-	-	-	-	-	-	-	-	-	-	-	FM					
1	MECHANICAL																			
I	Mounting -	-	-	-	-	-	-	-	-	-	-	-	-	-	Star	idaro	1 19'	relay rac	k Pan	el
5	Size	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	wi	ight — 13 dth — 8½ epth — 24	∕₂ inche	es
(Operating contr	ols	-	-	-	-	-	-	-	-	-	-	-	-	-	Тι	ınin	g knobs p	orovide	ed
(Cooling required	ł	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Blower i	nclude	ed
(Connectors	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Type N	Fema	le
	ENVIRONMENT	AL																	100.07	
	Temperature	-	-	-	-	-	-	-	-	-	-	-	-	—	l0 to	+50	°C ((+14 to +12)		
4	Altitude -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	to 12,	000 fe	et

*Up to 200 watts output can be provided with higher anode voltage and drive.


FLECTRICAL

EM4505

VIEW

BAN GARLOS, CALIFORNIA

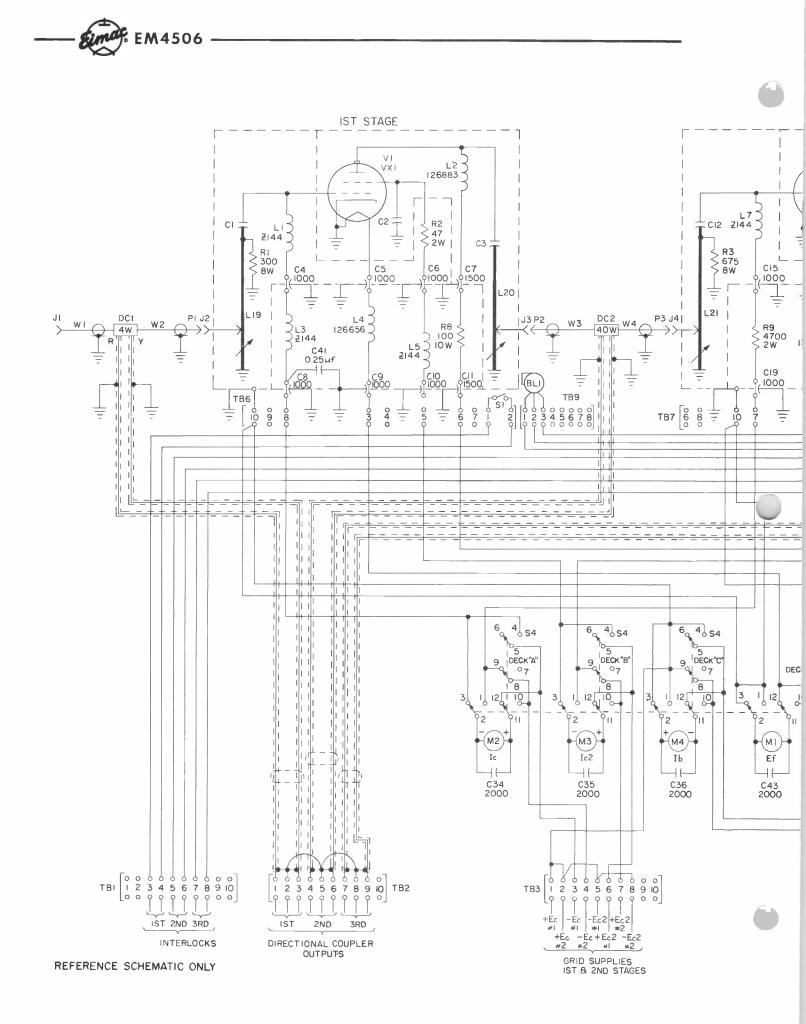
EM4506

CAVITY AMPLIFIER 122-150 Mc

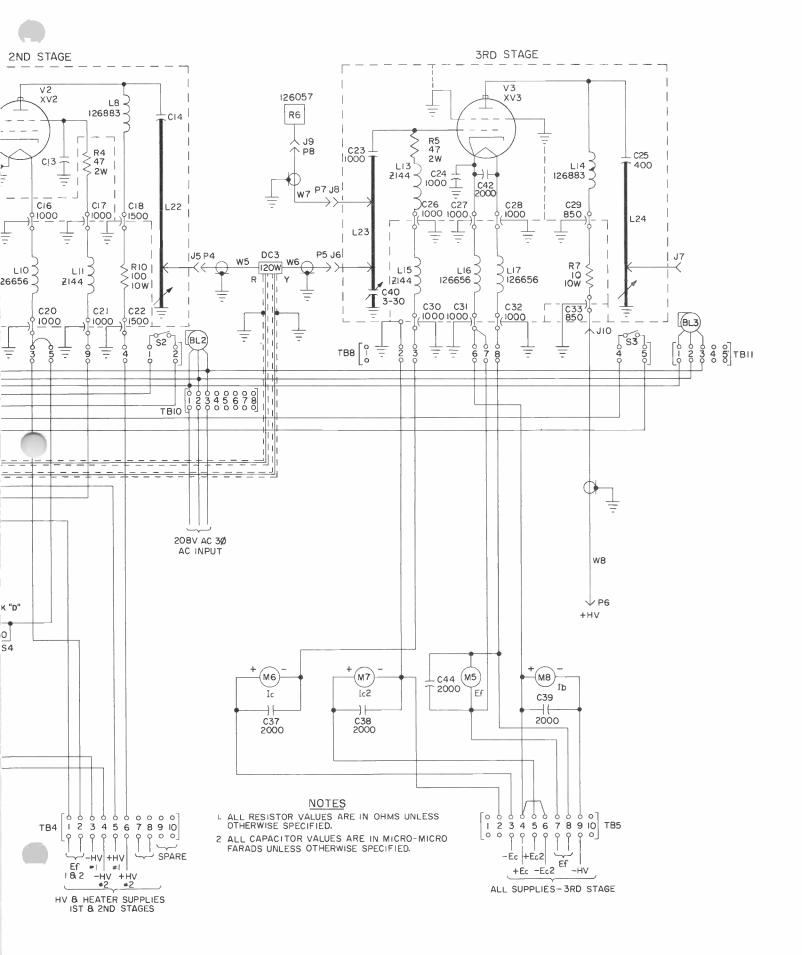
The Eimac EM4506 is a cavity amplifier incorporating the Eimac 4CX1000K tetrode. It is designed for use as an intermediate stage or the output stage of an FM transmitter.

CHARACTERISTICS

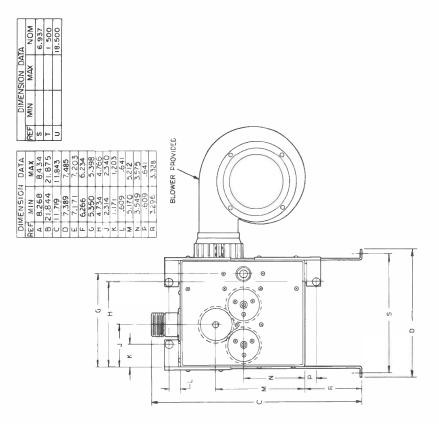
ELECTRICAL

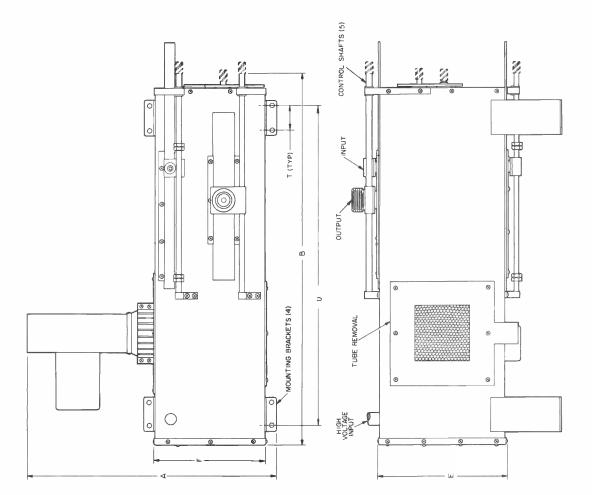

Frequency -	-	-	-	-	-	122	-150 Mc	
RF Power Output	. –	-	-	-	~~	- 3	l kW CW	
RF Drive Power	Requir	ed	-	-	-	-	30 Watts	
Power Supply Re	q <mark>uire</mark> m	ents (T	ypical	: Vol	tage		Current	
Anode, Maxim	num	-	-	- 3	KV		1 A	
Screen Grid,	Maxim	ım	- 25	0-350	V	-100 to	+125 mA	
Control Grid,	Maxim	um	-90 to	-120	V	-50 to+	0.75 mA	
Tube Type -	-	-		-	Ei	mac 40	CX1000K	
Load Impedance	-	-	-	-	-	~	50 ohms	
Bandwidth -	-	~	-	-	-	2 Mc	at 1.5 db	
Modulation -	-	-	-	-	-	~	- FM	

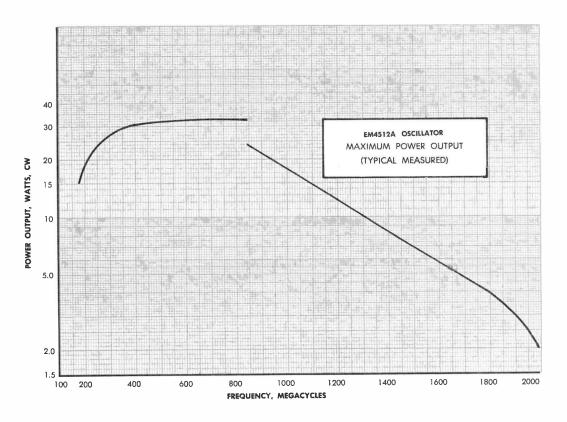
MECHANICAL


Mounting	-	-	-	-	_	-	-	Standard 19" relay rack panel
Size -	-	-	-	-	-	-	-	- Height - 24 inches
								Width - 15 inches
								Depth – $12 \ 1/2$ inches
Cooling	-	-	-		-	-	_	- Blower included
Connector	s -	-	-	-	-	-	-	– Input –– Type N Female
								Output Type LC Female

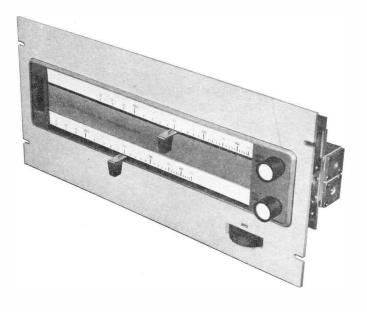
ENVIRONMENTAL


Temperature		-		-	-	-	-	-10 to	+50°C	50°C (+14 to +122°F)			
Altitude	-	-	-	-	-	-	-	-	-	to	12,000	feet	





SAN CARLOS, CALIFORNIA

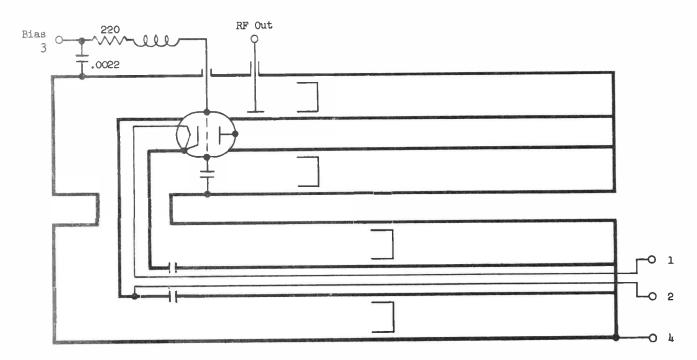

EM4512A BROAD TUNING OSCILLATOR

170-2000 Mc

The Eimac EM4512A is a broad-tuning cavity power oscillator incorporating the Eimac Y-319 ceramic-metal planar triode. It is intended for use in test equipment consoles and special transmitters. This oscillator has front-panel tuning knobs and frequency scales for tuning across the 170-2000 Mc band with power output from 25 to 2 watts.

(Effective 9-1-64) Copyright by Eitel-McCullough, Inc.

CHARACTERISTICS


ELECTRICAL											
Frequency, continuously	tunable	-	-	-	-	-		-	170-2000 Mc		
RF Power Output, minimum - - - - Frequency, Mc Power output, 15 170-300 15 300-800 25 800-1200 10 1200-1600 5 1600-2000 2											
Frequency Drift, ¹ percent	t of opera	ating f	frequ	iency	7 -	-		-	±0.05%		
Power Supply Requireme	ents:								Voltage Current		
Anode, maximum -		-	-	-	-	-		-	1 KV 100 mA		
Grid		-	-	-	-	-		_	Bias through variable cathode resistor, 200-1000 ohms		
Heater		-	-		-	-		-	6.0 V 1 A		
Ground		-	-	-	-	-		-	 Positive terminal of anode supply 		
Cathode Current		-	-	-	-	-		-	125 mA		
Tube Type		-	-	-	-	-		-	Eimac Y-319		
Load Impedance -		-	-	-	-	-		-	50 ohms nominal		
Load VSWR, maxim	ium -	-	-	-	-	-		2.0	0:1 any phase, without damage		
MECHANICAL											
Mounting		-	-	-	-	-		-	- Standard 19" relay rack		
Size		-	-	-	-	-		-	height — 8 ³ / ₄ inches depth — 4 ¹ / ₂ inches		
Weight		-	-	-	-	-		-	10 pounds		
Operating Controls		-	-	-	-	-		-	Tuning knobs and frequency scales provided ²		
Cooling		-	-	-	-	-		_	Conduction — Convection ³		
Connector		-	-	-	-	-		-	Type TNC Female		
ENVIRONMENTAL											
Temperature		-	-	-	-	-			10 to $+50^{\circ}$ C (+14 to $+122^{\circ}$ F) ³		
Altitude		-	-	-	-	-		-	to 12,000 feet		

NOTES:

- (1) Frequency drift is specified over a period of 2 hours, following a warm-up period of $\frac{1}{2}$ hour minimum.
- (2) Knobs are provided on the front panel for fine tuning the plate and cathode cavities and for adjusting output coupling. Frequency scales are provided for each cavity. Tuning is accomplished by sliding the pointers to the desired frequency, then adjusting the fine tuning and output coupling. Access to the interior of the amplifier is not required for tuning. Four sets of scales are provided, covering four sections of the tuning range. The desired set of scales is selectable by a knob on the front panel.
- (3) If ambient temperature exceeds 90°F, the cavity body will become quite hot (up to 250°F), and forced air cooling is recommended.

For personnel protection, high voltage circuits above 500 volts are enclosed and identified. Interlocks are not provided.

EM4512A CAVITY OSCILLATOR Figure 2

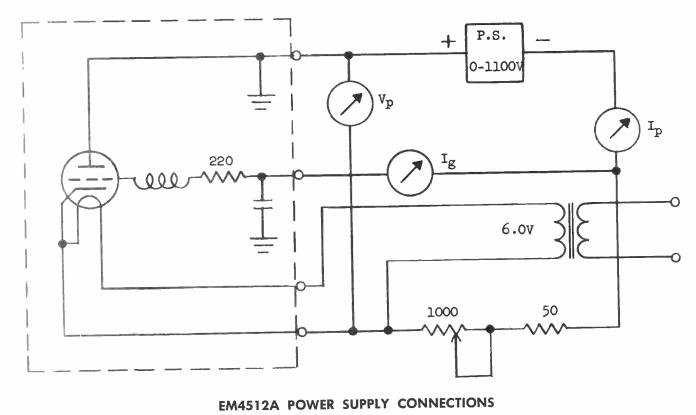
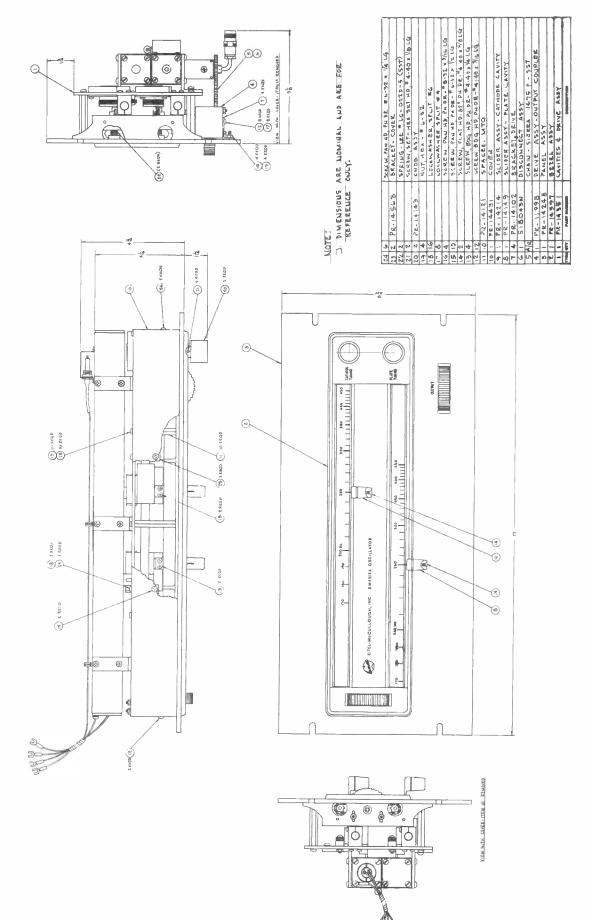



Figure 3

S AAA

Ü

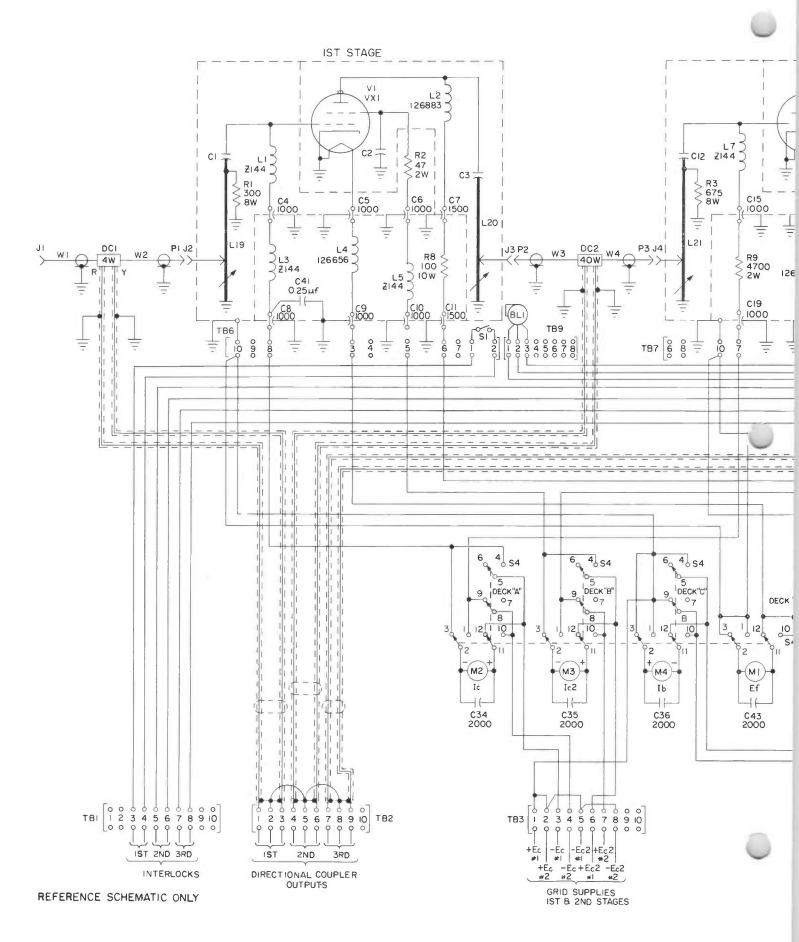
EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

EM4516

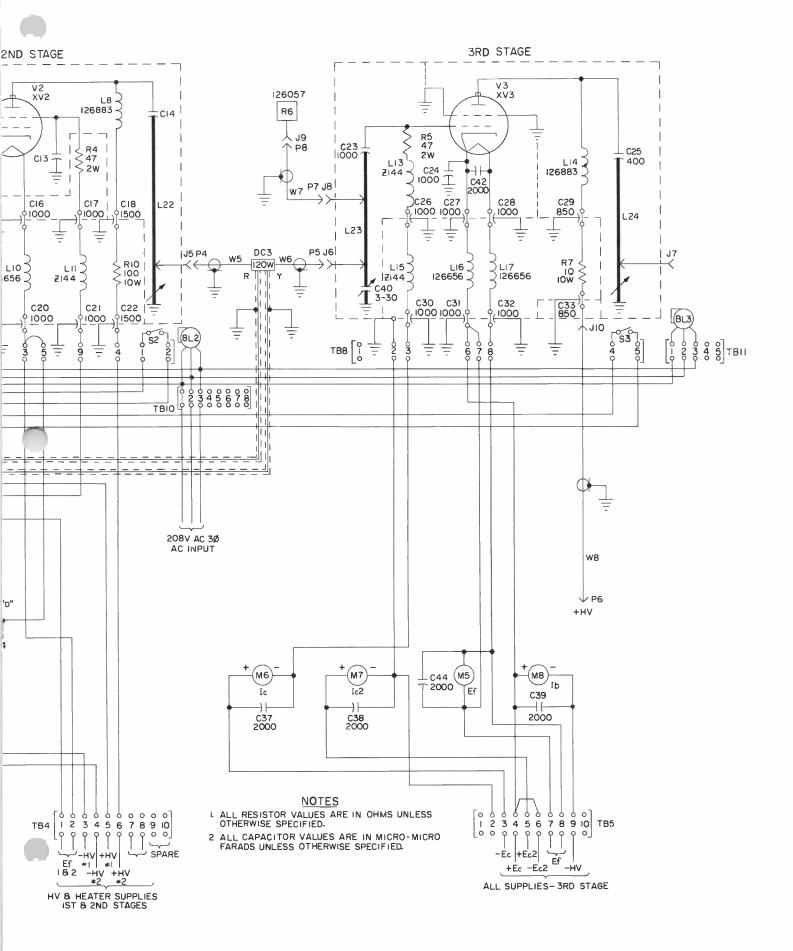
CAVITY AMPLIFIER CHAIN

122-150 Mc

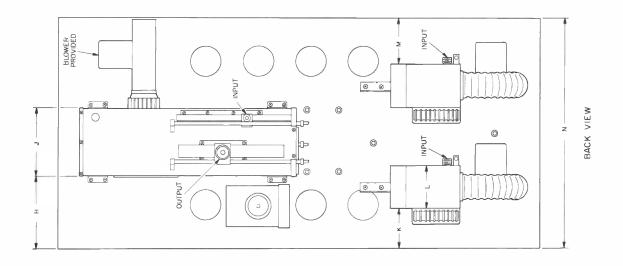
The Eimac EM4516 is a three stage amplifier chain designed for use as the driver amplifier section in FM transmitters. The first two stages are Eimac EM4505 cavity amplifiers incorporating the 4CX250R ruggedized tetrode. The final stage is Eimac cavity amplifier EM4506 which uses the 4CX1000K tetrode. The three stages are mounted on a panel which fits a standard 19" rack.

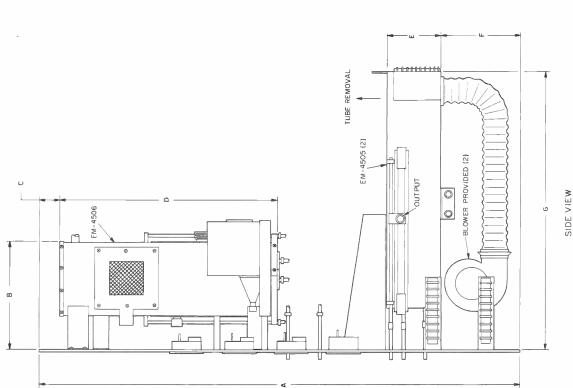

CHARACTERISTICS

ELECTRICAL


Frequency	-	-	-	-	-	-		122 - 15	50 Mc
RF Power Output	-	-	-	-	-	-	-	1 kW	CW
RF Drive Power Required	-	-	-	-	-	-	-	1	Watt
Power Supply Requirement	ts (Typic	al):							

	r						<u></u>				
	ľ		Staj Voltage	ge I Current	Voltage	ge 2 Current	Stag Voitage	e 3 Current			
		Anode	400 V	150 mA	750 V	250 mA	3000 V	800 mA			
	-	Screen	100 to 200 V	-25 to +25 mA	150 to 250 V	−10 to +40 mA	250 to 350 V	—75 to +75 mA			
		Grid	20 to 70 V	—10 mA	—50 to —100 V	—15 mA	−50 to −125 V	—10 mA			
	[Heater/Filament	6.0 V	2.6 A	6.0 V	2.6 A	6.0 V	12.0 A			
	Tube Type - Load Impedance		-	-	-	-] -	Eimac 40	X250R	and 4	4CX100 50 ohi	
	Bandwidth -		_	_		_	-	- 5		at 1.5	
			-	-	_	-	-		2 1410		
	Modulation -		-	-	-	-	-	-	-	FM-C) W
M	ECHANICAL						G4.	andomi	107	olou ma	ola
	Mounting –		-	-	-	-				elay ra	
	Size –		-	-	-	-		Height Depth	- 28	inch	nes
	Cooling –		-	-	-	-	-	- B1	owers	s provi c	led
	Connectors -		-	-	-	-	– I	nput –	Type	N Fema	ale
								-		C Fema	
ΕN	IVIRONMENTAL										
	Temperature		-	-	-	-	-10 to	+50° C	(+14	to +122°	'F)
	Altitude -		-	-	-	-	-	-	to 1	2,000 f	eet





€ EM4516

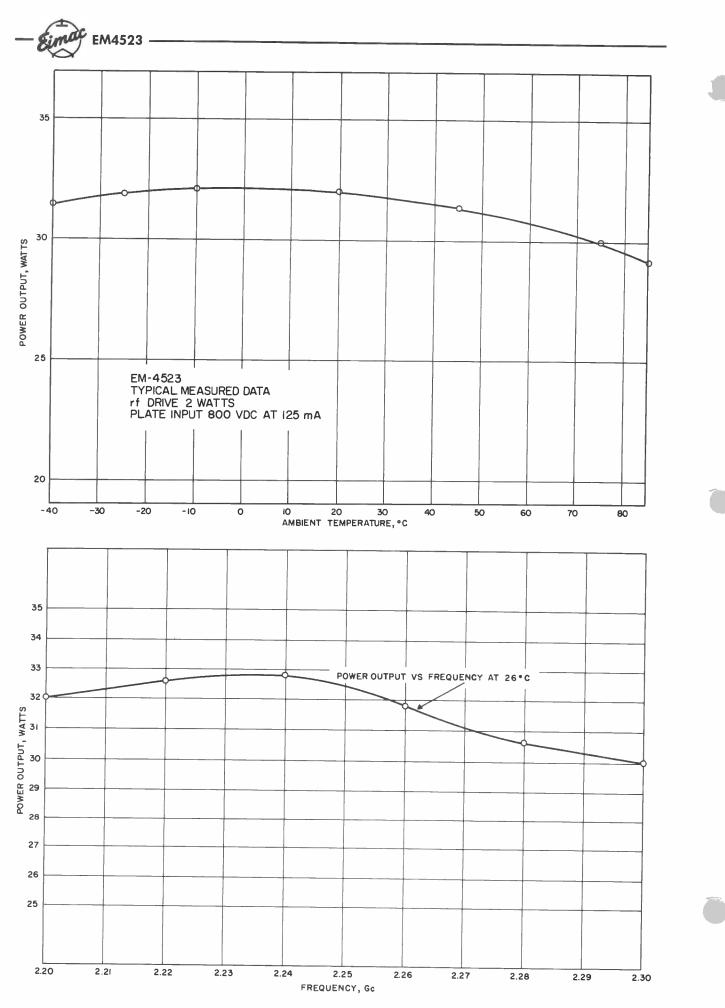
NOTE: FOR CONTROL SHAFT LOCATING DIMENSIONS SEE INDIVIDUAL CAVITY AMPLIFIER SPEC SHEET.

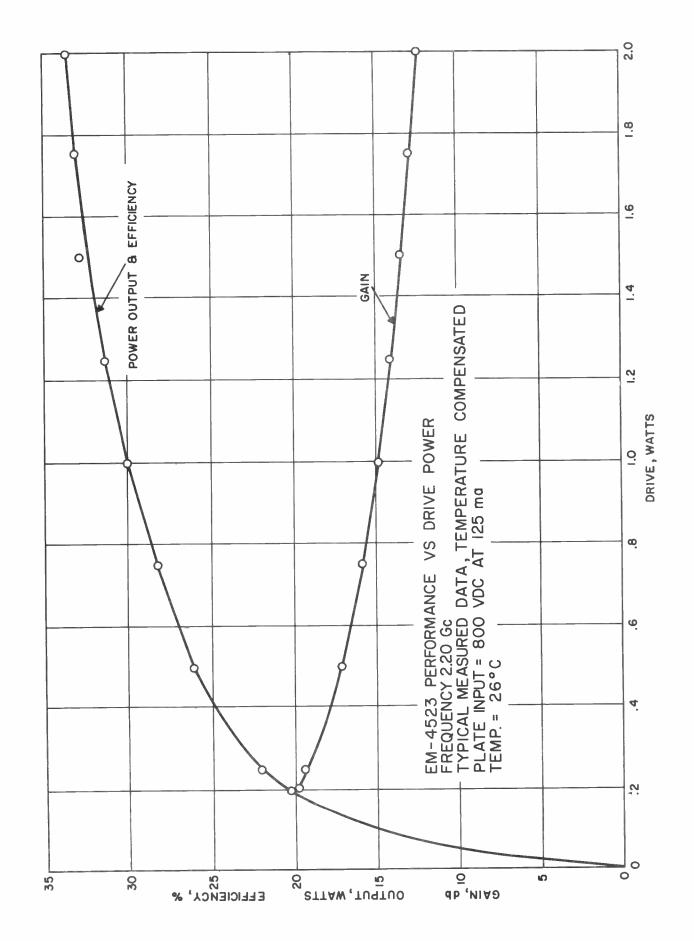
EITEL-MCCULLOUGH, INC.

EM4523

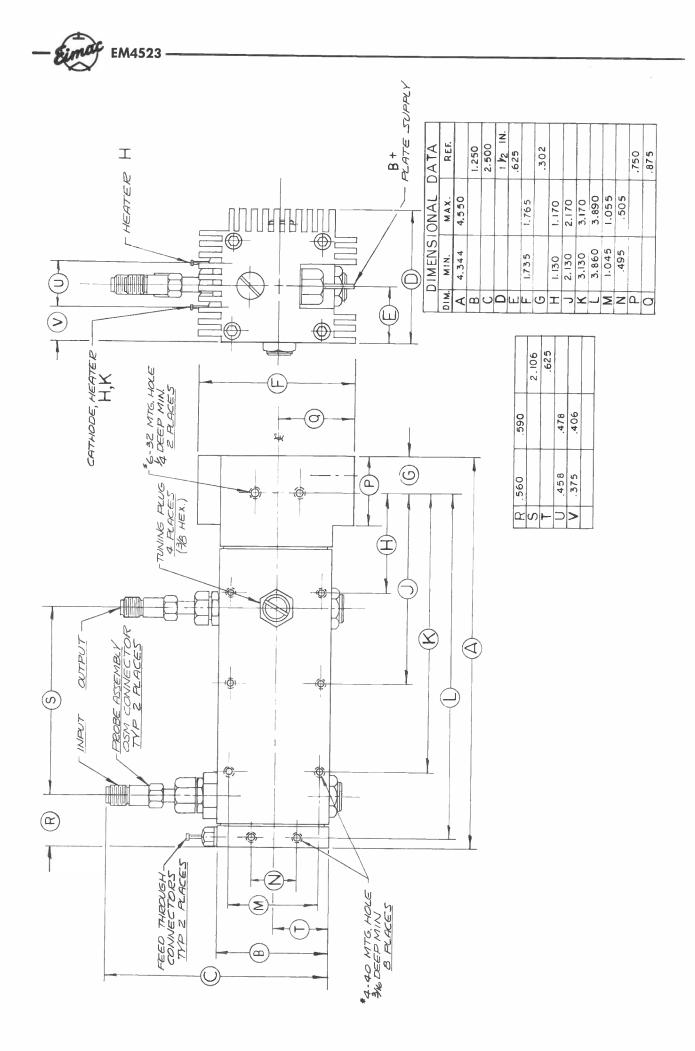
CAVITY AMPLIFIER

2200-2300 Mc 20 Watts CW


The Model EM4523 cavity amplifier is a compact modular amplifier readily adaptable to airborne or ground support telemetry and communications systems. It is an optimum combination of the tube configuration with the associated rf circuit. Maximum efficiency and rf output from a very small package are outstanding features offered by this amplifier. Tuning can be accomplished with a minimum of test equipment.



CHARACTERISTICS


ELECTRICAL

Tuning Range		-	-	-	-	-	_	-	-	-	-	-		2200-2300 Mc
0 0											_	_		Eimac A126066
Tube Type -		-	-	-	-	-	-	-	•	-	-	_		
Power Supply Requ		ents:											800	v
Anode Voltag		-	-	-	-	-	-	-	-	-	-	-		
Current		-	-	-	-	-	-	-	-	-	-	-	125	mA
Heater Voltage		-	-	-	-	-	-	-	-	-	-	-	6.0	V
Current		-	-	-	-	-	-	-	-	-	-	-	1.0	Α
Operating Characteristics:														
Power Input		-	-	-	-	-	-	-	-	-	-	-	2.0	W
Power Output	, Min	imum	-	-	-	-	-	-	-	-	-	-	20	W
Modulation		-	-	-	-	-	-	-	-	-	-	-		CW/FM
Bandwidth, 3	db p	oints	-	-	-	-	-	-	-	-	-	-	5	Мс
Frequency St	ability	y -	-	-	-	-	-	-	-	-	-	-	2 0	PPM/°C
Load Impeda	.nce -	-	-	-	-	-	-	-	-	-	-	-	50	ohms nominal
Load VSWR		-	-	-	-	-	-	-	-	-	-	-	1.5:1 Ar	y Constant Phase
MECHANICAL														
Connectors -		-	-	-	-	-	-	-	-	-	-	-		- Type OSM
Cooling		_	-	-	-	-	_	-	-	-	-	-	Condu	ction to heat sink
Maximum Overall	Dime	ensions	s -	_	_	-	-	-	-	-	-	_	- 1.2	25" x 1.25" x 4%"
	DIII	CIIOIOII	<i>,</i>				_		_	_	_	_		- 1.2 pounds
Net Weight -		-	-	-	-	-	-	-	-	-	_	-		I.E Pouldo
ENVIRONMENTAL														
Mounting Surface	Temp	peratur	e -	-	-	-	-	-	-	-	-	-		_40° to +85°C
Vibration			-	-	-	-	-	-	-	-	10	<u> </u>		es, 15 minutes in 3
												mu	tually per	pendicular planes
Shock			-	-	-	-	-	-	-	-	-			l milliseconds in 3
												mu	tually per	rpendicular planes

- EM4523 Eimac -

EM4524A CAVITY AMPLIFIER 2200-2300 Mc 100 WATTS CW

Tentative Data

The Model EM4524A cavity amplifier is a compact modular amplifier readily adaptable to airborne or ground support telemetry and communications systems. The Model EM4524A is an optimum combination of the tube configuration with the associated RF circuit. Maximum efficiency and rf output from a very small package are outstanding features offered by this amplifier. Tuning can be accomplished with a minimum of test equipment.

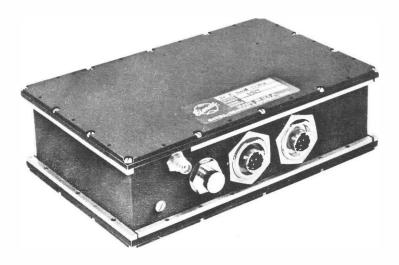
EIMAC

A Division of Varian Associates

CHARACTERISTICS

ELECTRICAL

									2200-2300 Mc
Tuning Range		-	-	-	-	-	-	-	
Tube Type		-	-	-	-	-	-	-	Eimac X843G
Power Supply Requirement	nts:								
Anode Voltage -	A 14	. n.	-	-	-	ir -	-	-	1000 V
Current	a 15		-	-	-	-	-	-	350 mA
Heater Voltage -		-	-	-	-	-	-	-	6.0 V
Current -	5 15		-	-	-	-	-	-	2.7 A
Operating Characteristics:									
Power Input			-1	-	-	-	-	-	10 W
Dowor Output		-	-	-	-	-	-	7	100 W
Modulation			1	-	-	-		-	CW/FM
Bandwidth, 3db poir	its -			-	-	-		-	7 Mc
Frequency Stability			-	-	-	-	-	-	20 PPM/°C
Load Impedance -			-	-	-	-	-	-	50 ohms nominal
Modulation Bandwidth, 3db poir Frequency Stability Load Impedance - Load VSWR			-	-	-	-	-	-	1.5:1 Any Constant Phase
Gain		-	-	-		-	-	2	10 DB
MECHANICAL									
Connectors			-	-	-	-	-	-	OSM Input, Type N Output
Cooling			-	-		-	-11	-	Conduction
Maximum Overall Dimen	sions -		-	-	-	-	-	-	2" x 2" x 6"
Net Weight			-	-	-	-	-	-	3 pounds
iter trought									
ENVIRONMENTAL									
	roturo			-		-	-		40 to +100°C
Mounting Surface Tempe									- Shall meet the requirements of
Vibration			-	-	-	-	-		Method 514, MIL-Standard-810, Class 1 through 4 and mounting Type A.
Shock	-		-	-	-	-	-	-	- Shall meet the requirements of Procedure 1, Method 516 of MIL-Standard-810.


EIMAC A Division of Varian Associates

A CATERN

2200 - 2300 MHz 2 Watts

This EIMAC S-Band transmitter provides over 2 watts rf output with over 10% overall efficiency, under all combinations of worst specified environmental extremes and primary power variation. Frequency change, if desired, is easily accomplished in the field. It is designed to operate during the severe shock and vibration of missile launch.

Model EM 4527 is a complete transmitter, including a pre-regulated DC-DC converter. All circuits are solid state, except the rf power oscillator, which is a single stage rugged ceramic planar triode. RF is generated at the output frequency. The complete transmitter package displaces less than 50 cubic inches, and weighs 4 pounds. Major features of this transmitter include:

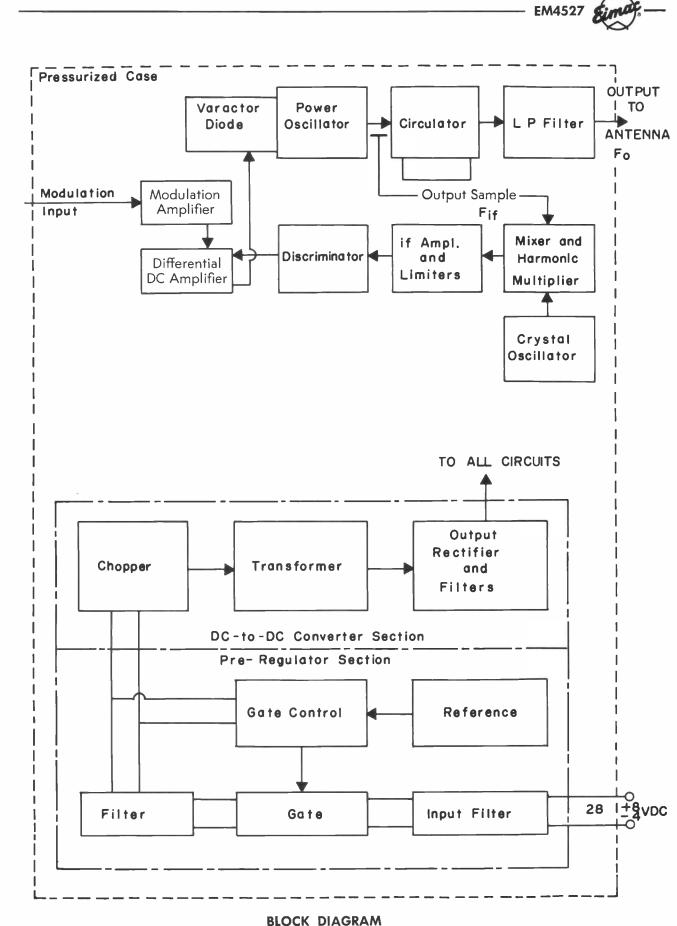
Easy Tuning: A simple crystal change will allow the output to be tuned to any frequency in the 2.2-2.3 GHz band. Test points are provided. A minimum of test equipment is required. Adjustment of temperature compensation is not required.

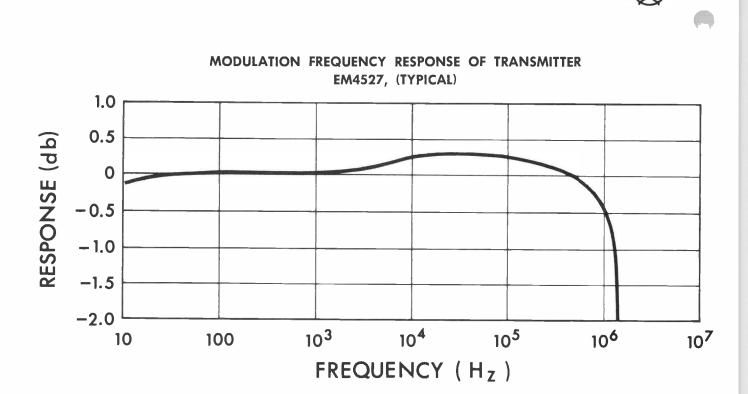
High Reliability: Since the rf power output is produced by a single stage, this transmitter has a minimum number of components, tuning adjustments and connections. All components are used well below maximum ratings, and circuits are epoxy encapsulated for environmental protection.

Wide Temperature Range: This transmitter will meet full performance specifications over the range -40 °C to +85 °C.

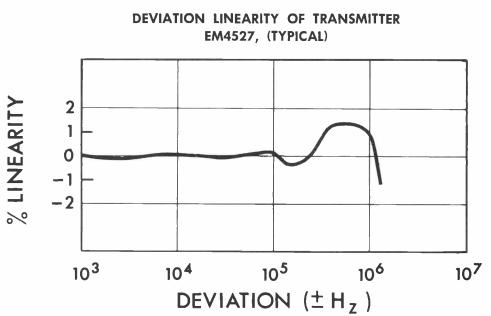
Modulation Bandwidth and Linearity: Deviation of ± 1.5 MHz is accomplished at $\pm 2.5\%$ linearity, and ± 300 KHz at $\pm 0.5\%$ linearity.

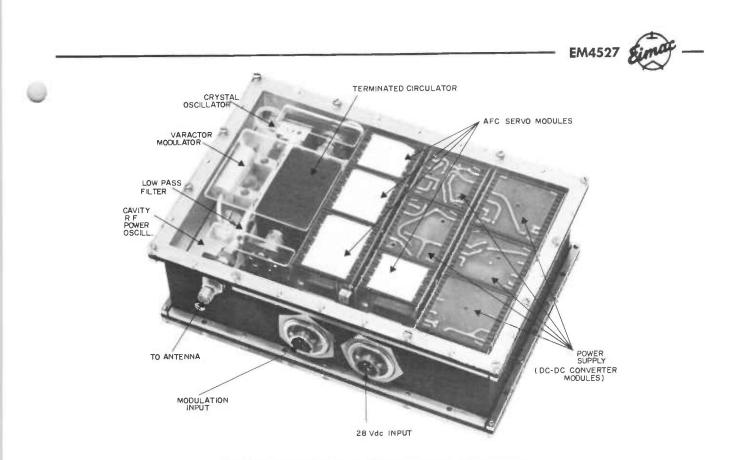
THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.


(Effective 2-15-66) © Copyright 1964, 1965, 1966 by Varian Associates

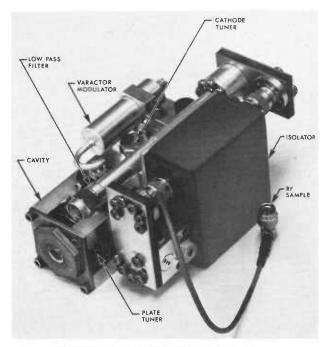

CHARACTERISTICS

ELECTRICAL2200-2300 MHzPrequency, Tunable2 WattsPrequency, Stability'2 WattsPrequency Stability' $\pm 0.0025\%$ Carrier Deviation, Adjustable, peak-to-peak $2 M CVlot to 30Kc/VoltModulation Bandwidth,' Flat within \pm 0.5\pm 0.0025\%Modulation Linearity, Deviation from B.S.L.,For \pm 300 KHz peak Deviation - \pm \pm 2.5\%Incidental Frequency Modulation, Maximum - \pm 5 KHz tos 800 KHzAM, Maximum, due to environmental conditions - 1\%due to \pm 300 KHz carrier deviation - 5\%Modulation Input Impedance, Minimum, 51 to 800 KHzPrimary Vilage required' 28 \pm 1 VacPrimary Ningele, maximum, peak-to-peak from Dc to 20 KHzPrimary Ningele, maximum, neak-to-peak from Dc to 20 KHzVSWR Maximum, ang pase, for 2 watts output - 1.5:1Load Impedance required 50 ohmsWarm-up time to meet all specifications - 120 secondsInterference$			
Frequency Accuracy	ELECTRICAL		
Frequency Accuracy	Frequency, Tunable		2200-2300 MHz
Frequency Accuracy	Power Output, CW Minimum		2 Watts
Modulation Bandwidth, ¹ Flat within ±1 db - - 5 Hz to 500 KHz For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ±300 KHz carrier deviation - 5% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA SWRM Maximum, ny phase, for 2 watts output - 15:1 Load Impedance required - - 500 ohms Warm-up time to meet all specifications - 120 seconds Interference - - - 500 hours PACKAGING - - - - - Volume displaced - - - - </td <td>Frequency Accuracy</td> <td></td> <td>$\pm 0.001\%$</td>	Frequency Accuracy		$\pm 0.001\%$
Modulation Bandwidth, ¹ Flat within ±1 db - - 5 Hz to 500 KHz For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ±300 KHz carrier deviation - 5% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA SWRM Maximum, ny phase, for 2 watts output - 15:1 Load Impedance required - - 500 ohms Warm-up time to meet all specifications - 120 seconds Interference - - - 500 hours PACKAGING - - - - - Volume displaced - - - - </td <td>Frequency Stability⁷</td> <td></td> <td>$\pm 0.0025\%$</td>	Frequency Stability ⁷		$\pm 0.0025\%$
Modulation Bandwidth, ¹ Flat within ±1 db - - 5 Hz to 500 KHz For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 0.5% For ±300 KHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ±300 KHz carrier deviation - 5% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA SWRM Maximum, ny phase, for 2 watts output - 15:1 Load Impedance required - - 500 ohms Warm-up time to meet all specifications - 120 seconds Interference - - - 500 hours PACKAGING - - - - - Volume displaced - - - - </td <td>Carrier Deviation, Adjustable, peak-to-peak</td> <td></td> <td>2Mc/Volt to 30Kc/Volt</td>	Carrier Deviation, Adjustable, peak-to-peak		2Mc/Volt to 30Kc/Volt
For ± 1.5 MHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ± 300 KHz carrier deviation - 1% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ± Vdc Primary Voltage required* - - 80 volts for 20 microseconds Input current required, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault,³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - 120 seconds Interference - - - 48 cubic inches Dimensions, including mounting flanges - 6.5'x 4.4'x 1.9' Weight Volume displaced - - - 4 pounds Pressurization - - - -	Modulation Bandwidth ¹ Flat within ± 0.5 db $-$		100 Hz to $500 KHz$
For ± 1.5 MHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ± 300 KHz carrier deviation - 1% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ± Vdc Primary Voltage required* - - 80 volts for 20 microseconds Input current required, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault,³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - 120 seconds Interference - - - 48 cubic inches Dimensions, including mounting flanges - 6.5'x 4.4'x 1.9' Weight Volume displaced - - - 4 pounds Pressurization - - - -	Flat within ± 1 db $-$		5 Hz to 800 KHz
For ± 1.5 MHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ± 300 KHz carrier deviation - 1% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ± Vdc Primary Voltage required* - - 80 volts for 20 microseconds Input current required, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault,³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - 120 seconds Interference - - - 48 cubic inches Dimensions, including mounting flanges - 6.5'x 4.4'x 1.9' Weight Volume displaced - - - 4 pounds Pressurization - - - -	Modulation Linearity Deviation from BSI		0 112 to 000 M12
For ± 1.5 MHz peak Deviation - - ± 2.5% Incidental Frequency Modulation, Maximum - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ± 300 KHz carrier deviation - 1% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ± Vdc Primary Voltage required* - - 80 volts for 20 microseconds Input current required, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault,³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - 120 seconds Interference - - - 48 cubic inches Dimensions, including mounting flanges - 6.5'x 4.4'x 1.9' Weight Volume displaced - - - 4 pounds Pressurization - - - -	For ± 200 KHz mask Deviation		-050/
Incidental Frequency Modulation, Maximum - 5 KHz rms deviation AM, Maximum, due to environmental conditions - 1% due to ±300 KHz carrier deviation - 1% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ± ⁴ ₁ Vdc Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts 8 volts Transients, Maximum, positive - - 700 mA Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts 8 volts Transients, Maximum, positive - - 700 mA SWR Maximum, any phase, for 2 watts output - 1.5:1 - Coal Impedance required - - - 500 hms Warm-up time to meet all specifications - - 120 seconds Interference - - - 500 hours PACKAGING Volume displaced - - - 4 pounds Pressurization - - - 30 psia - - - Cooling - - -	For ± 15 MHz real Deviation		
AM, Maximum, due to environmental conditions - 1% due to ±300 KHz carrier deviation - 5% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz Primary Voltage required* 28 ±% Vdc Primary current required, maximum, at 28 Vdc - 700 mA Primary current required, maximum, at 28 Vdc - 700 mA Primary current rise above nominal, due to fault,* maximum Input current rise above nominal, due to fault,* maximum VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required 50 ohms Warm-up time to meet all specifications 120 seconds Interference 50 ohms Warm-up time to meet all specifications 120 seconds Interference 30 psia Cooling 30 psia Cooling 30 psia Cooling 30 psia Cooling	For ± 1.5 MHz peak Deviation	-	$\pm 2.5\%$
due to ±1.5 MHz carrier deviation - 1% due to ±1.5 MHz carrier deviation - 5% Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required* - - 28 ±% Vdc Primary Current required, maximum, at 28 Vdc - 700 mA Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - - 120 seconds Interference - - - 50 ohms Valume displaced - - - 48 cubic inches Dimensions, including mounting flanges - 6.5"x 4.4"x 1.9" Weight Pressurization - - - 40 pounds Pressurization - - - - Kooling - - - - - Vibration (ML-STD-810, Figure 514-3, Curve D) - 150 db above 2x10 ⁻⁴ dynes/CM	Incidental Frequency Modulation, Maximum		5 KHZ rms deviation
due to ±1.5 MHz carrier deviation			
Modulation Input Impedance, Minimum, 5 Hz to 800 KHz 10,000 Ohms Primary Voltage required ² - - 28 ± ⁸ Vdc Primary Current required, maximum, at 28 Vdc - 700 mA Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts 8 volts Transients, Maximum positive - - 80 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - 120 seconds Interference - - 60 homs Warm-up time to meet all specifications - 120 seconds Interference - - - 500 hours PACKAGING - - - 48 cubic inches Dimensions, including mounting flanges - - - 40 curton through bottom plate to heat sink ENVIRONMENTAL SPECIFICATIONS' - - - - - Temperature ² at heat sink (Continuous Operation) - - - -			
Primary Voltage required* - - - 28 ± 4 Vdc Primary Current required, maximum, at 28 Vdc - 700 mA Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 15:1 for 1 watt output - 5.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - 120 seconds Interference - - - 500 hms Warm-up time to meet all specifications - - 500 hours PACKAGING - - - 6.5"x 4.4"x 1.9" Weight - - - 30 psia Cooling - - - - 4 pounds Pressurization - - - - - - - Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz - - - - - - - - - <td< td=""><td></td><td></td><td></td></td<>			
Primary current required, maximum, at 28 Vdc - 700 mA Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts Transients, Maximum positive - - Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - - - Interference - - - - Value 0.9% probability, 60% confidence factor) - 500 hours PACKAGING - - - - - 48 cubic inches Dimensions, including mounting flanges - - - 49 conds Pressurization - - - - - - 40 ords Cooling -<			
Primarý Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts Transients, Maximum positive - - 80 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 5.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - - 50 ohms Warm-up time to meet all specifications - - 120 seconds Interference - - - 50 ohms Varm-up time to meet all specifications - - 120 seconds Interference - - - 120 seconds Interference - - - 600 hours PACKAGING Volume displaced - - 4 cubic inches Dimensions, including mounting flanges - - 4 pounds Pressurization - - - 4 opands Pressurization - - - - - - Yibration (MIL-STD-810, Figure 514-3, Curve D) - 150 db above 2x10-dyne	Primary Voltage required ²	-	$28 \pm_4^8 \text{Vdc}$
Primarý Ripple, maximum, peak-to-peak from Dc to 20 KHz 8 volts Transients, Maximum positive - - 80 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 5.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - - 50 ohms Warm-up time to meet all specifications - - 120 seconds Interference - - - 50 ohms Varm-up time to meet all specifications - - 120 seconds Interference - - - 120 seconds Interference - - - 600 hours PACKAGING Volume displaced - - 4 cubic inches Dimensions, including mounting flanges - - 4 pounds Pressurization - - - 4 opands Pressurization - - - - - - Yibration (MIL-STD-810, Figure 514-3, Curve D) - 150 db above 2x10-dyne	Primary current required, maximum, at 28 Vdc	-	700 mA
Transients, Maximum positive - - 80 volts for 20 microseconds Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - - Warm-up time to meet all specifications - 120 seconds Interference - - - Life (95% probability, 60% confidence factor) - 500 hours PACKAGING - - - Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - 4 pounds Pressurization - - - 4 pounds Pressurization - - - - - Cooling - - - - - - - - Itiude - - - - - - - - - - - - - - - - - -<			8 volts
Input current rise above nominal, due to fault, ³ maximum 130% VSWR Maximum, any phase, for 2 watts output 1.5:1 for 1 watt output 5.5:1 Load Impedance required - - for 1 watt output - 50 ohms Warm-up time to meet all specifications - - Interference - - - Life (95% probability, 60% confidence factor) - 500 hours PACKAGING - - - Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - - 4pounds Pressurization - - - - 4pounds Pressurization - - - - - - Vibration (MIL-STD-810, Figure 514-3, Curve D) - <			
VŠWR Maximum, any phase, for 2 watts output for 1 watt output - 1.5:1 for 1 watt output - 5.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - - 50 ohms Warm-up time to meet all specifications - - 120 seconds Interference - - - - All applicable requirements of MIL-I-26600 and MIL-I-6181D are met Life (95% probability, 60% confidence factor) - 500 hours - - - - All applicable requirements of MIL-I-26600 and MIL-I-6181D are met Dimensions, including mounting flanges - - - 48 cubic inches - - - 4 pounds Pressurization - - - - - 30 psia -			
for 1 watt output - 5.5:1 Load Impedance required - - 50 ohms Warm-up time to meet all specifications - 120 seconds Interference - - All applicable requirements of MIL-1-26600 and MIL-1-6181D are met Life (95% probability, 60% confidence factor) - 500 hours PACKAGING - - - Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - - 4 pounds Pressurization - - - 4 pounds Pressurization - - - 30 psia Cooling - - - - - - - 4 pounds Pressurization - - - - 30 psia -<			
Load Impedance required - - 50 ohms Warm-up time to meet all specifications - 120 seconds Interference - - - Life (95% probability, 60% confidence factor) - - - PACKAGING Volume displaced - - - - 500 hours PACKAGING Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - 6.5"x 4.4"x 1.9" Weight - - - 4 pounds Pressurization - - - 30 psia Cooling - - - - - Colling - - - - - Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz - 150 db above 2x10 ⁴ dynes/CM ² Mir Induced Vibration - - - - - - 20°C the 25°C Altitude - - - - 0.2 G ² /Hz - 150 db above 2x10 ⁴ dynes/CM ² <td>for 1 watt output</td> <td></td> <td>5.5.1</td>	for 1 watt output		5.5.1
Interference - - - All applicable requirements of MIL-I-26600 and MIL-I-6181D are met Jife (95% probability, 60% confidence factor) PACKAGING Volume displaced - - - - - 500 hours PACKAGING Volume displaced - - - - - - - - - - - - 500 hours PACKAGING -	I and Impedance required		5.0.1 50 ohme
Interference - - - All applicable requirements of MIL-I-26600 and MIL-I-6181D are met Jife (95% probability, 60% confidence factor) PACKAGING Volume displaced - - - - - 500 hours PACKAGING Volume displaced - - - - - - - - - - - - 500 hours PACKAGING -	Warm up time to most all enceif estions	-	190 seconds
MIL-I-26600 and MIL-I-6181D are metLife (95% probability, 60% confidence factor)-PACKAGINGVolume displaced-PACKAGINGVolume displaced-Orgen-WeightWeightWeightWeightWeight<	Trates ferror co	-	All emplicable requirements of
Life (95% probability, 60% confidence factor) - 500 hours PACKAGING Volume displaced 48 cubic inches Dimensions, including mounting flanges 6.5"x 4.4"x 1.9" Weight 4 pounds Pressurization 30 psia Cooling 30 psia Cooling 30 psia Cooling			MIL-I-26600 and MIL-I-6181D are met
Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - 6.5"x 4.4"x 1.9" Weight - - - 4 pounds Pressurization - - - 30 psia Cooling - - - - 30 psia Cooling - - - - - 0 point ENVIRONMENTAL SPECIFICATIONS ⁴ - -	Life (95% probability, 60% confidence factor) -		
Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - 6.5"x 4.4"x 1.9" Weight - - - 4 pounds Pressurization - - - 30 psia Cooling - - - - 30 psia Cooling - - - - - 0 point ENVIRONMENTAL SPECIFICATIONS ⁴ - -			
Volume displaced - - - 48 cubic inches Dimensions, including mounting flanges - - 6.5"x 4.4"x 1.9" Weight - - - 4 pounds Pressurization - - - 30 psia Cooling - - - - 30 psia Cooling - - - - - 0 point ENVIRONMENTAL SPECIFICATIONS ⁴ - -	DACKACINIC		
Dimensions, including mounting flanges 6.5"x 4.4"x 1.9" Weight 4 pounds Pressurization 30 psia Cooling 30 psia Conduction through bottom plate to heat sink ENVIRONMENTAL SPECIFICATIONS ⁴ Temperature ⁵ at heat sink (Continuous Operation)40°C to +85°C Altitude Any Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G ² /Hz Air Induced Vibration 150 db above 2x10 ⁻⁴ dynes/CM ² from 150 to 2000 Hz, 30 minutes Explosive Atmosphere Capable of operation without igniting an explosion Sustained Acceleration			40 aulti in al a
Cooling - - - Conduction through bottom plate to heat sink ENVIRONMENTAL SPECIFICATIONS ⁴ - -	Volume displaced	-	48 CUDIC Inches
Cooling - - - Conduction through bottom plate to heat sink ENVIRONMENTAL SPECIFICATIONS ⁴ - -	Dimensions, including mounting flanges	-	6.5°x 4.4°x 1.9°
Cooling - - - Conduction through bottom plate to heat sink ENVIRONMENTAL SPECIFICATIONS ⁴ - -	weight	-	4 pounds
heat sink ENVIRONMENTAL SPECIFICATIONS ⁴ Temperature ⁵ at heat sink (Continuous Operation)	Pressurization	-	
ENVIRONMENTAL SPECIFICATIONS ⁴ Temperature ⁵ at heat sink (Continuous Operation)	Cooling	-	
 Temperature⁵ at heat sink (Continuous Operation)40°C to +85°C Altitude Any Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G²/Hz Air Induced Vibration			heat sink
Altitude - - Any Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G²/Hz Air Induced Vibration - - - Explosive Atmosphere - - - - Explosive Atmosphere - - - - Capable of operation without igniting an explosion Sustained Acceleration - - - - - 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks - - 15G for 11 milliseconds sawtooth shocks ⁶ - - - 100G ⁷ ±0.001% available on special order. ³ Any failure of transmitter (except at input terminals.) ² Under emergency conditions, full rf output is provided with primary power as low as 22 Vdc, but in-	ENVIRONMENTAL SPECIFICATIONS ⁴		
Altitude - - Any Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G²/Hz Air Induced Vibration - - - Explosive Atmosphere - - - - Explosive Atmosphere - - - - Capable of operation without igniting an explosion Sustained Acceleration - - - - - 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks - - 15G for 11 milliseconds sawtooth shocks ⁶ - - - 100G ⁷ ±0.001% available on special order. ³ Any failure of transmitter (except at input terminals.) ² Under emergency conditions, full rf output is provided with primary power as low as 22 Vdc, but in-	Temperature ⁵ at heat sink (Continuous Operation) -	-	-40° C to $+85^{\circ}$ C
 Vibration (MIL-STD-810, Figure 514-3, Curve D) - 15G peak to 2KHz (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G²/Hz Air Induced Vibration 150 db above 2x10⁻⁴dynes/CM² from 150 to 2000 Hz, 30 minutes Explosive Atmosphere Capable of operation without igniting an explosion Sustained Acceleration 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks 15G for 11 milliseconds sawtooth shocks⁶ 100G ⁷±0.001% available on special order. ⁶Out-of-tolerance operation may occur during 100G shock. 			
 (MIL-STD-810, Figure 514-4, Curve E) - 0.2 G²/Hz Air Induced Vibration 150 db above 2x10-4dynes/CM² from 150 to 2000 Hz, 30 minutes Explosive Atmosphere Capable of operation without igniting an explosion Sustained Acceleration 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks 15G for 11 milliseconds sawtooth shocks⁶ 100G ⁷±0.001% available on special order. ⁶Out-of-tolerance operation may occur during 100G shock. 			
Air Induced Vibration - - - 150 db above $2x10^{-4}$ dynes/CM ² from 150 to 2000 Hz, 30 minutes Explosive Atmosphere - - - Capable of operation without igniting an explosion Sustained Acceleration - - - - Capable of operation without igniting an explosion Sustained Acceleration - - - - 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks - - - 15G for 11 milliseconds sawtooth shocks ⁶ - - - - 100G ⁷ ±0.001% available on special order. ³ Any failure of transmitter (except at input terminals.) ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-			
 Explosive Atmosphere		_	
Explosive Atmosphere Capable of operation without igniting an explosion Sustained Acceleration		-	
 igniting an explosion Sustained Acceleration	Even la give A tra o gen la gue		
Sustained Acceleration 30G for 5 minutes, three axes Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks	Explosive Atmosphere	-	
 Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks 15G for 11 milliseconds sawtooth shocks⁶ 100G ⁷±0.001% available on special order. ⁶Out-of-tolerance operation may occur during 100G shock. ³Any failure of transmitter (except at input terminals.) ²Under emergency conditions, full rf output is provided with primary power as low as 22 Vdc, but in- 			
half-sine shocks 15G for 11 milliseconds sawtooth shocks ⁶ 100G ⁷ ±0.001% available on special order. ⁶ Out-of-tolerance operation may occur during 100G shock. ³ Any failure of transmitter (except at input terminals.) ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-		-	30G for 5 minutes, three axes
sawtooth shocks ⁶ 100G ⁷ ±0.001% available on special order. ⁶ Out-of-tolerance operation may occur during 100G shock. ³ Any failure of transmitter (except at input terminals.) ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-		and V,	
 ⁷±0.001% available on special order. ⁶Out-of-tolerance operation may occur during 100G shock. ³Any failure of transmitter (except at input terminals.) ²Under emergency conditions, full rf output is provided with primary power as low as 22 Vdc, but in- 		-	
⁶ Out-of-tolerance operation may occur during 100G shock. ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-	sawtooth shocks ⁶	-	100G
⁶ Out-of-tolerance operation may occur during 100G shock. ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-			
⁶ Out-of-tolerance operation may occur during 100G shock. ² Under emergency conditions, full rf output is pro- vided with primary power as low as 22 Vdc, but in-	$^{7}\pm0.001\%$ available on special order.	³ Any fai	lure of transmitter (except at input terminals.)
shock. vided with primary power as low as 22 Vdc, but in-	⁶ Out-of-tolerance operation may occur during 100G	-	
⁵ Other ranges available on special order. creased IFM and AM will occur.	shock.	vided w	with primary power as low as 22 Vdc, but in-
	⁵ Other ranges available on special order.	creased	IFM and AM will occur.

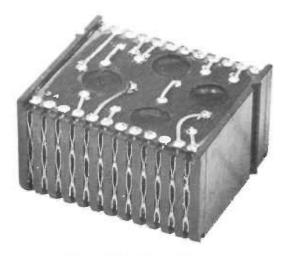

⁴Transmitter performs as specified, under any combination of environmental conditions. $^1\mbox{Also}$ available modified for modulation down to DC; and up to 2MHz.


MODEL EM4527 2W S-BAND TELEMETRY TRANSMITTER

EM4527

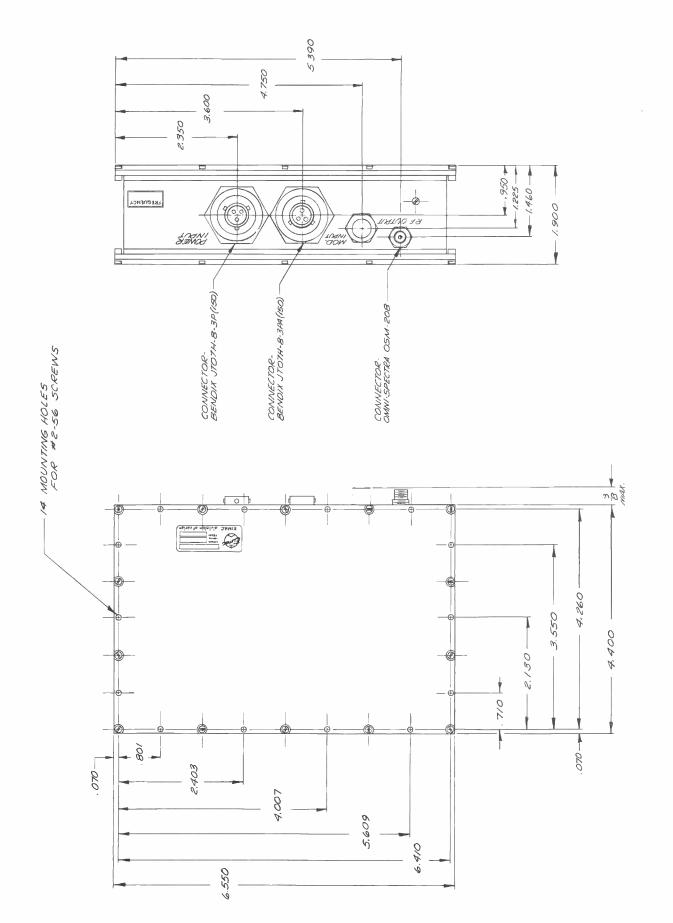


4


EM4527 TELEMETRY TRANSMITTER ASSEMBLY

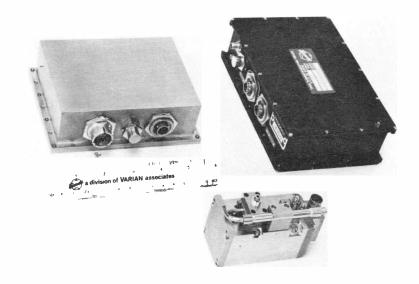
Packaging of this transmitter is compact, yet all modules are easily accessible by removing top and bottom covers. The covers incorporate pressure seals and rfi gaskets.

RF SECTION, EM4527 TRANSMITTER


The rf power oscillator provides over 2 watts, tunable 2.2-2.3 GHz. There is no output below 2.2 GHz. Harmonics are removed by a low pass filter. The ceramic planar triode in the oscillator is conduction cooled to the transmitter case.

TYPICAL PLUG-IN MODULE

Circuits use only high reliability components such as silicon planar transistors and are packaged in modular form. The modules are easily removable, and offer flexibility for future modification. The connector system provides four redundant contacts at each connection. Modules are encapsulated with a rigid high thermal conductivity compound for heat conduction and vibration protection.


EIMAC

A Division of Varian Associates SAN CARLOS, CALLEORNIA

2200 - 2300 MHz 20 Watts

The EIMAC X4528 S-band transmitter is packaged in three modules, for maximum flexibility in system packaging. Output is over 20 watts, with over 13% overall efficiency, under all combinations of worst specified extremes of environment and primary power. X4528 operates satisfactorily in the severe environment of missile launch. Frequency change, if desired, is easily accomplished in the field.

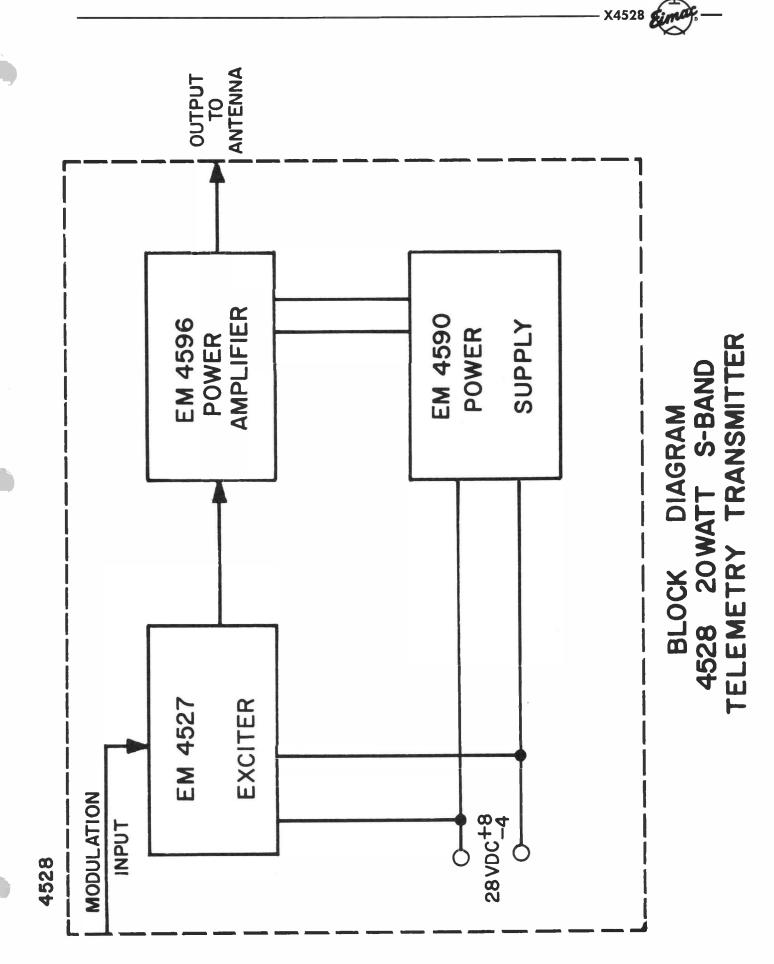
Model X4528 is a complete transmitter. It includes an exciter, a power amplifier and a preregulated dc-dc converter. All circuits are solid state, except the rf power oscillator and the power amplifier; these use rugged ceramic planar triodes. RF is generated at the output frequency, and stabilized by a crystal-referenced AFC servo circuit. Major features of this transmitter include:

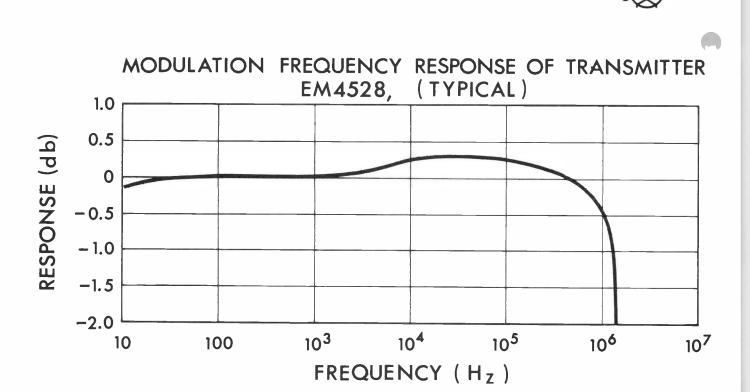
Easy Tuning: A simple crystal change will allow the output to be tuned to any frequency in the the 2.2-2.3 GHz band. Test points are provided. A minimum of test equipment is required. Adjustment of temperature compensation is not required.

High Reliability: Since the rf power output is produced by only two rf stages, this transmitter has a minimum number of components, tuning adjustments and connections. All components are used well below maximum ratings, and circuits are epoxy encapsulated for environmental protection.

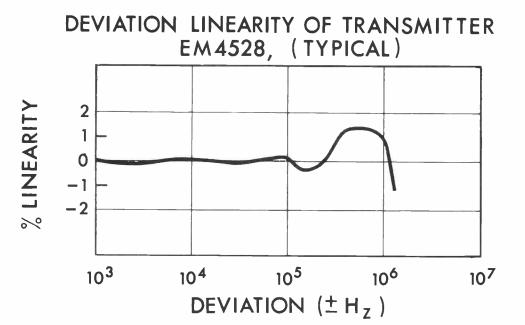
Wide Temperature Range: This transmitter will meet full performance specifications over the range -40° C to $+85^{\circ}$ C.

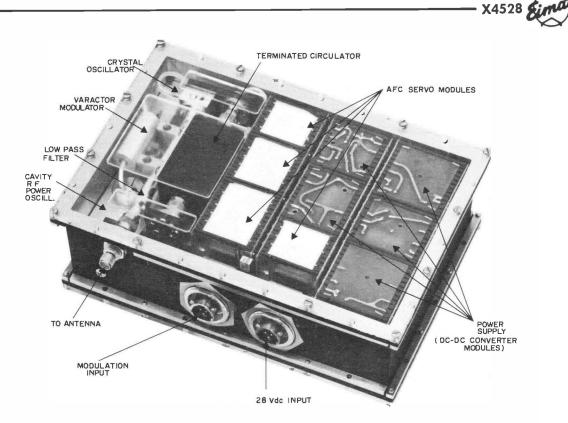
Modulation Bandwidth and Linearity: Deviation of ± 1.5 Mc is accomplished at $\pm 2.5\%$ linearity, and ± 300 Kc at $\pm 0.5\%$ linearity.


THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

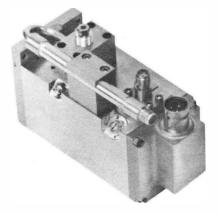


CHARACTERISTICS

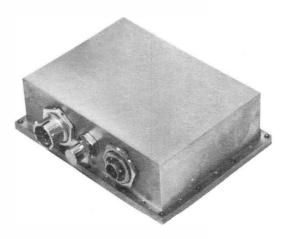

ELECTRICAL	
Frequency, Tunable	2200-2300 MHz
Power Output, CW Minimum	20 Watts
Frequency Accuracy	$\pm 0.001\%$
Frequency Stability ⁶	
Carrier Deviation, Adjustable, peak-to-peak	2 MHz Volt to 30 KHz Volt
Modulation Bandwidth, Flat within $\pm 0.5 \text{ db}$	100 Hz to 500 KHz
Flat within $\pm 1 \text{ db}$	5 Hz to 800 KHz
Flat within $\pm 2 \text{ db}$	5 Hz to 2 MHz
Modulation Linearity, Deviation from B.S.L.,	
	$\pm 0.5\%$
1	$\pm 2.5\%$
	5 KHz rms
AM, Maximum, due to environmental conditions	1%
due to ± 300 KHz carrier deviation due to ± 1.5 MHz carrier deviation	
	5%
Modulation Input Impedance, Minimum, 5 Hz to 800 KHz	10,000 Ohms
Primary Voltage required ²	
Primary current required, maximum, at 28 Vdc	5.5 Amperes
Primary Ripple, maximum, peak-to-peak from DC to 20 KHz	
Transients, Maximum positive	80 volts for 20 microseconds
VSWR Maximum, any constant phase, for full output -	1.5:1
Load Impedance required	50 ohms
Warm-up time to meet all specifications	120 seconds
Interference	All applicable requirements of MIL-I-26600 and MIL-I-6181D are met
Life (95% probability, 60% confidence factor)	500 hours
PACKAGING	
Volume displaced	110 cubic inches
Dimensions	See Drawings, page 6
Weight	7.8 pounds
Pressurization	30 psia
Cooling	Conduction to heat sink
ENVIRONMENTAL SPECIFICATIONS ³	—40°C to +85°C
Temperature ⁴ at heat sink (Continuous Operation) - Altitude	
	Any 15C peak to 9 KHz
Vibration (MIL-STD-810, Figure 514-3, Curve D) (MIL-STD-810, Figure 514-4, Curve E)	15G peak to 2 KHz 0.2 G²/Hz
Air Induced Vibration	150 db above $2x10^{-4}$ dynes/CM ²
	from 150 to 2000 Hz, 30 minutes
Explosive Atmosphere	Capable of operation without igniting an explosion
Sustained Acceleration	30G for 5 minutes, three axes
	30G IOI 5 minutes, three axes
Shock, per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks	15G for 11 milliseconds
sawtooth shocks ⁵	100G
	-
$^{6}\pm0.001\%$ available on special order.	of environmental conditions.
⁵ Out-of-tolerance operation may occur during 100G ² Under	emergency conditions, full rf output is provided
shock. with	primary power as low as 20 Vdc, but increased and AM will occur.
	available modified for modulation down to DC.



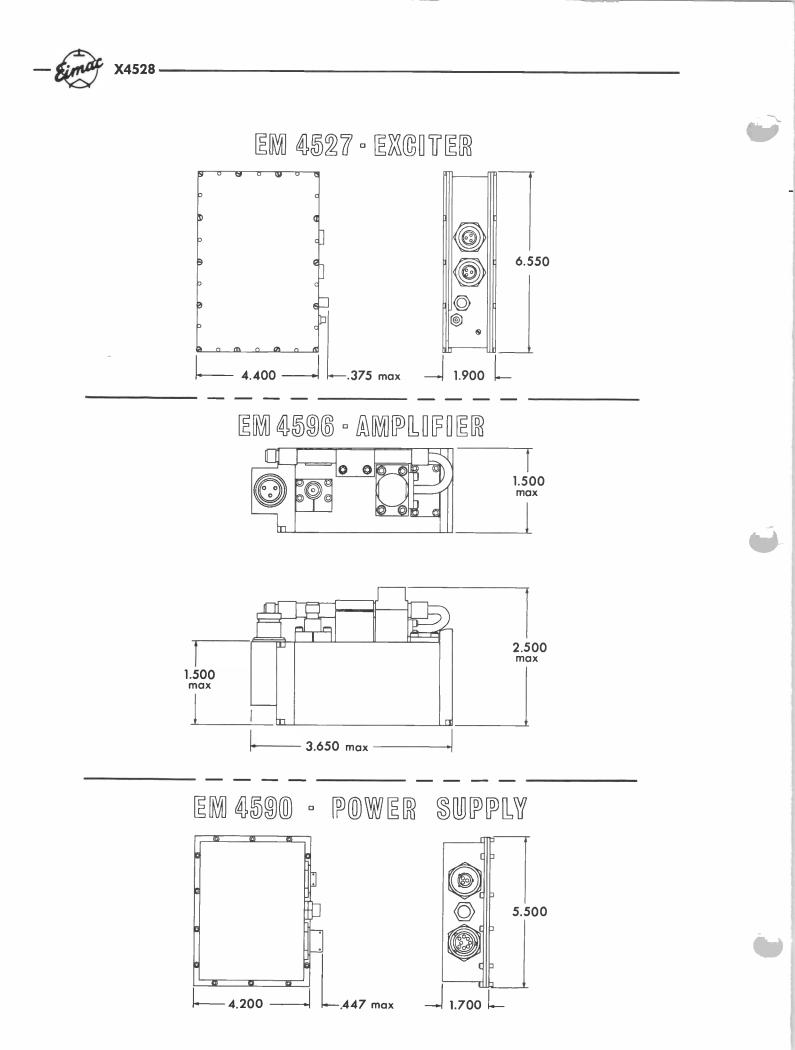
X4528



4


EM4527 EXCITER ASSEMBLY

EM4527 is a complete 2 watt transmitter, including a dc-dc converter. RF power is generated in a stable triode cavity oscillator. Frequency is stabilized by a crystal-referenced AFC servo loop. Power output and frequency remain stable under worst combinations of extremes of environment and primary power. Displaced volume is 50 cubic inches; weight is 4.3 lbs.


EM4596 RF POWER AMPLIFIER

The EM4596 is a miniaturized 20 W cavity amplifier using a frequency-stable ceramic planar triode. It is hermetically sealed, for operation at any altitude. All connectors and tuners are accessible on one surface. A low pass filter, for harmonic suppression, is included. By mounting this amplifier close to the transmitting antenna, rf transmission line loss can be significantly reduced. This amplifier can operate continuously at heat sink temperatures of -54°C to +95°C, and for short periods without damage at higher temperatures. Weight is 0.95 lbs; volume is less than 14 cubic inches.

EM4590 POWER SUPPLY

EM4590 is a solid state dc-dc converter, miniaturized, conduction cooled, hermetically sealed. It meets operating specifications over a primary voltage range of 24-36 volts and heat sink temperature range of -54°C to +95°C. Volume is less than 39 cubic inches, weight 2.5 lbs.

EIMAC

A Division of Varian Associates

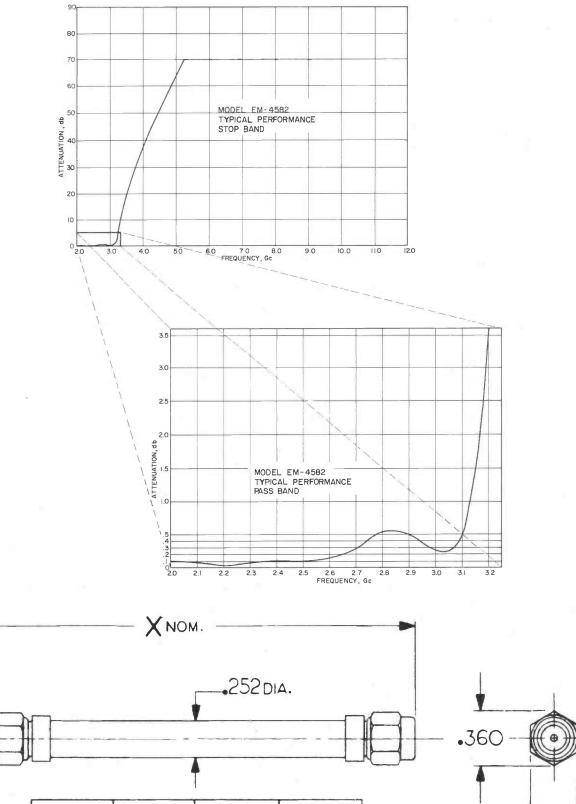
These low pass filters are recommended for use with UHF/Microwave telemetry transmitters, aerospace television transmitters and command/ control transmitter exciters. Because of their small size and light weight, however, they are excellent for use in many other low-to-medium power transmitters. Their rugged construction results in reliable performance under the shock and vibration of missile launch. All models are coaxial, multiple-section reactive type filters. Silver plating is used to minimize insertion loss.

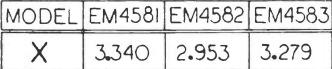
CHARACTERISTICS

MODEL	EM4581	EM4529	EM4582	EM4583
Pass Band, MHz	1435-1735	1435-1735	2200-2500	4400-5000
Power Rating, Watts, Avg.	100	50	100	50
Insertion Loss, DB, Max.	0.2	0.3	0.2	0.2
Attenuation, Second Harmonic, DB Min	45	45	45	45
Attenuation, Third and Fourth Harmonic, DB, Min	60	60	60	60
VSWR, Maximum	1.2	1.2	1.2	1.2
Impedance, Ohms,	1.2	1.2	1.10	1.2
Nominal	50	50	50	50
Connectors (male) ¹ -	OSM	(2)	OSM	OSM

¹Strip-line connectors also available.

²OSM female panel-mount connector one end, OSM male connector with flexible cable other end.

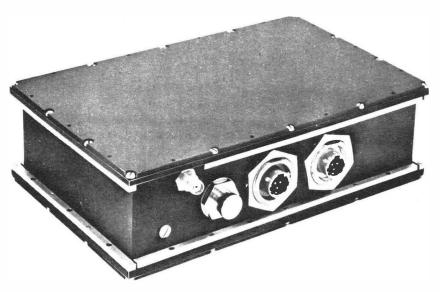

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.



EM4582

EM4529, EM4581, EM4582, EM4583 -

.312


EIMAC

A Division of Varian Associates

1435 - 1540 MHz 3 Watts

This EIMAC L-Band transmitter provides over 3 watts rf output with over 13% overall efficiency, under all combinations of worst specified environmental extremes and primary power variation. Frequency change, if desired, is easily accomplished in the field. It is designed to operate during the severe shock and vibration of missile launch.

Model EM4534 is a complete transmitter, including a pre-regulated DC-DC converter. All circuits are solid state, except the rf power oscillator, which is a single stage rugged ceramic planar triode. RF is generated at the output frequency. The complete transmitter package displaces less than 50 cubic inches, and weighs 4.5 pounds. Major features of this transmitter include:

Easy Tuning: A simple crystal change will allow the output to be tuned to any frequency in the 1435-1540 MHz band. Test points are provided. A minimum of test equipment is required. Adjustment of temperature compensation is not required.

High Reliability: Since the rf power output is produced by a single stage, this transmitter has a minimum number of components, tuning adjustments and connections. All components are used well below maximum ratings, and circuits are epoxy encapsulated for environmental protection.

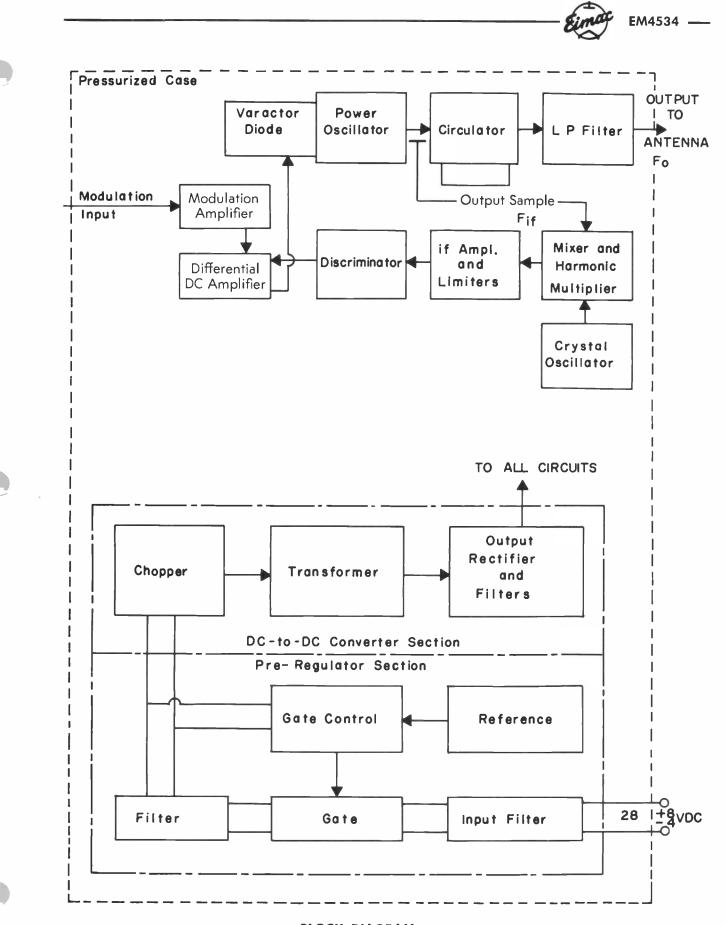
Wide Temperature Range: This transmitter will meet full performance specifications over the range -40 °C to +85 °C.

Modulation Bandwidth and Linearity: Deviation of ± 1.5 MHz is accomplished at $\pm 2.5\%$ linearity, and ± 300 KHz at $\pm 0.5\%$ linearity.

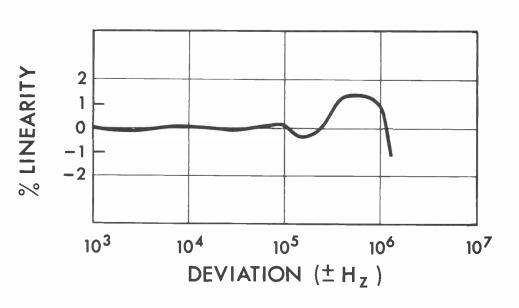
THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

CHARACTERISTICS

ELECTRICAL	
Frequency, Tunable	1435-1540 MHz
Power Output, CW Minimum	3 Watts
Frequency, Tunable	$\pm 0.001\%$
Frequency Stability ⁷	$\pm 0.0025\%$
Carrier Deviation, Adjustable, peak-to-peak	2MHz/Volt to 30KHz/Volt
Modulation Bandwidth, ¹ Flat within ± 0.5 db	100 Hz to 500 KHz
Flat within $\pm 1 \text{ db}$	5 Hz to 800 KHz
Modulation Linearity, Deviation from B.S.L.,	
For ± 300 KHz peak Deviation	$\pm 0.5\%$
For ±1.5 MHz peak Deviation	$\pm 2.5\%$
Incidental Frequency Modulation, Maximum	
AM, Maximum, due to environmental conditions	
due to ± 300 KHz carrier deviation -	
$d_{\rm MR}$ to ± 1.5 MUz common deviation	EM
Modulation Input Impedance, Minimum, 5 Hz to 800 KHz Primary Voltage required ²	10.000 Ohms
Primary Voltage required ²	$28 \pm ^{\circ} Vdc$
Primary current required, maximum, at 28 Vdc	825 mA
Primary Ripple, maximum, peak-to-peak from DC to 20 KHz	8 volts
Transients, Maximum positive	80 volts for 20 microseconds
Input current rise above nominal, due to fault, ³ maximum	
VSWR Maximum, any phase, for 3 watts output	
for 1.5 watts output -	5.5.1
Load Impedance required	50 ohms
for 1.5 watts output - Load Impedance required - - - Warm-up time to meet all specifications - - - Interference - - - -	120 seconds
Interference	All applicable requirements of
menereiee	MIL-I-26600 and MIL-I-6181D are met
Life (95% probability, 60% confidence factor)	500 hours
PACKAGING	
Volume displaced	48 cubic inches
Dimensions, including mounting flanges	6.5" x 4.4" x 1.9"
Weight	4.5 pounds
Pressurization	30 psia
Dimensions, including mounting flanges Weight	Conduction through bottom plate to
0	heat sink
ENVIRONMENTAL SPECIFICATIONS ⁴	
Temperature ⁵ at heat sink (Continuous Operation)	-40 °C to $+85$ °C
Altitude	Any
Vibration (MIL-STD-810, Figure 514-3, Curve D)	15G peak to 2 KHz
(MIL-STD-810, Figure 514-4, Curve E)	$0.2 \text{ G}^2/\text{Hz}$
Air Induced Vibration	150 db above 2x10 ⁻⁴ /dynes/CM ²
	from 150 to 2000 Hz, 30 minutes
Explosive Atmosphere	Capable of operation without
	igniting an explosion
Sustained Acceleration	30G for 5 minutes, three axes
Shock, per MIL-STD-810 Method 516, Procedures I and V	
half-sine shocks	15G for 11 milliseconds
sawtooth shocks ⁶	100 G
$^{7}\pm0.001\%$ available on special order. ³ Any fa	ailure of transmitter (except at input terminals.

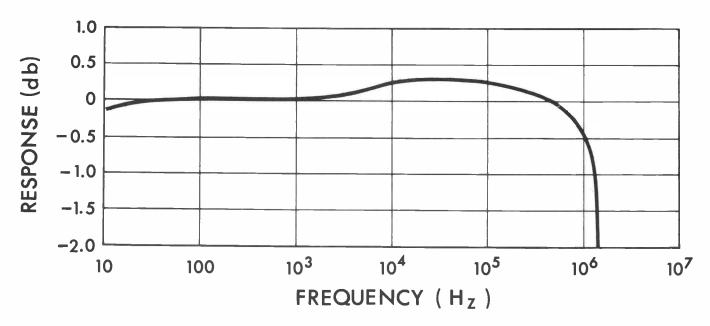

 $^{7}\pm0.001\%$ available on special order.

 $^{6}\mbox{Out-of-tolerance}$ operation may occur during 100G shock.

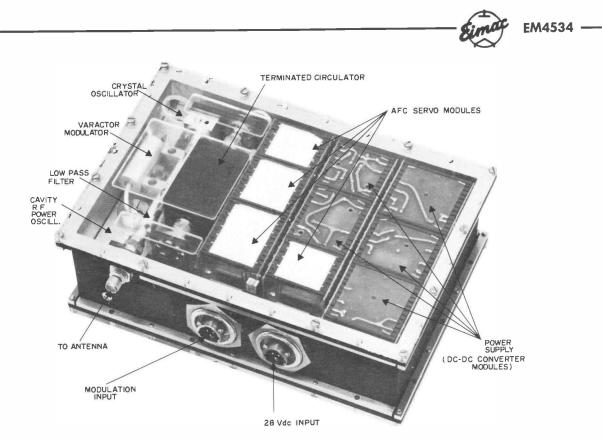

⁵Other ranges available on special order.

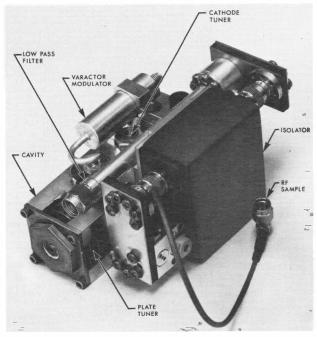
⁴Transmitter performs as specified, under any combination of environmental conditions. ³Any failure of transmitter (except at input terminals.) ²Under emergency conditions, full rf output is provided with primary power as low as 22 Vdc, but increased IFM and AM will occur.

 $^1\mathrm{Also}$ available modified for modulation down to DC; and up to 2 MHz

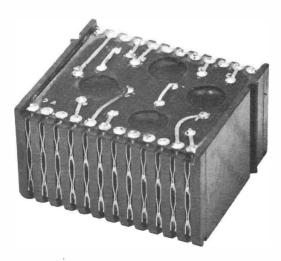


BLOCK DIAGRAM MODEL EM4534 3W S-BAND TELEMETRY TRANSMITTER

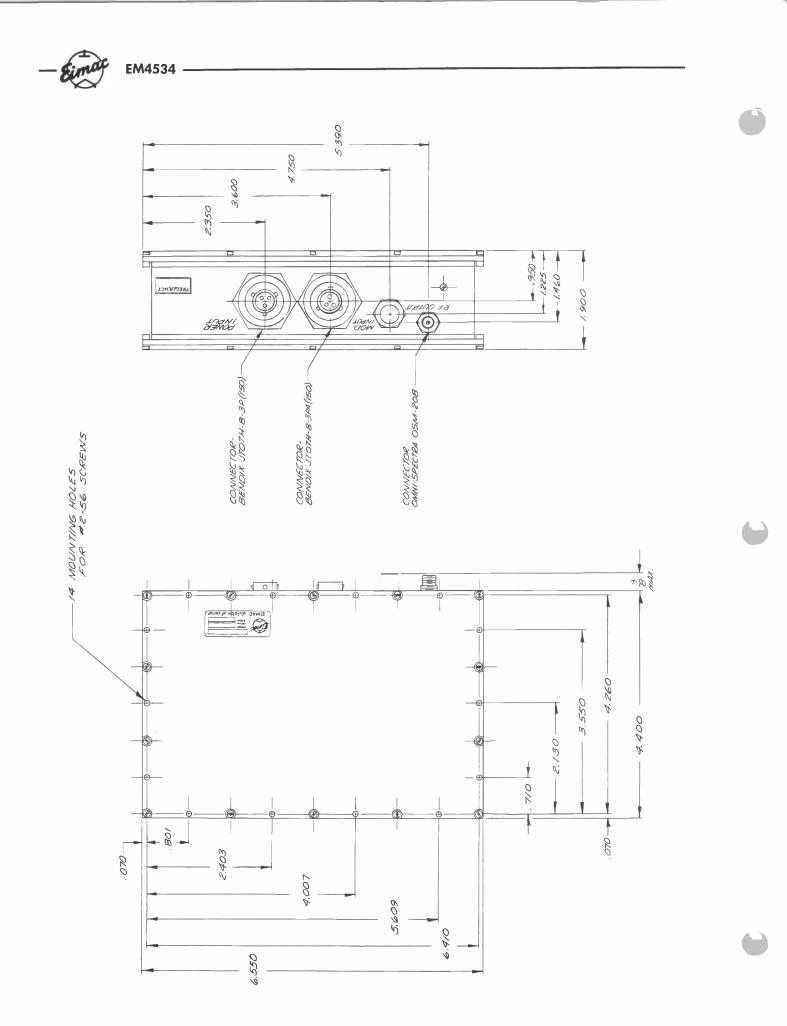

EM4534


TYPICAL MODULATION FREQUENCY RESPONSE OF TRANSMITTER

4


EM4534 TELEMETRY TRANSMITTER ASSEMBLY

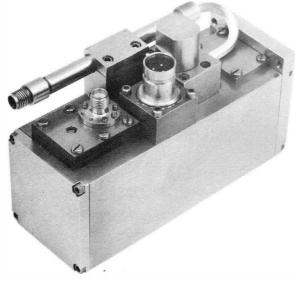
Packaging of this transmitter is compact, yet all modules are easily accessible by removing top and bottom covers. The covers incorporate pressure seals and rfi gaskets.

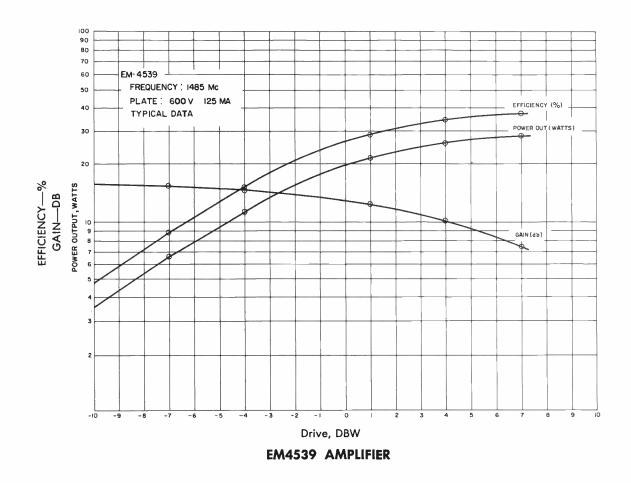

RF SECTION, EM4534 TRANSMITTER

The rf power oscillator provides over 3 watts, tunable 1435-1540 MHz. There is no output below 1435 MHz. Harmonics are removed by a low pass filter. The ceramic planar triode in the oscillator is conduction cooled to the transmitter case.

TYPICAL PLUG-IN MODULE

Circuits use only high reliability components such as silicon planar transistors and are packaged in modular form. The modules are easily removable, and offer flexibility for future modification. The connector system provides four redundant contacts at each connection. Modules are encapsulated with a rigid high thermal conductivity compound for heat conduction and vibration protection.

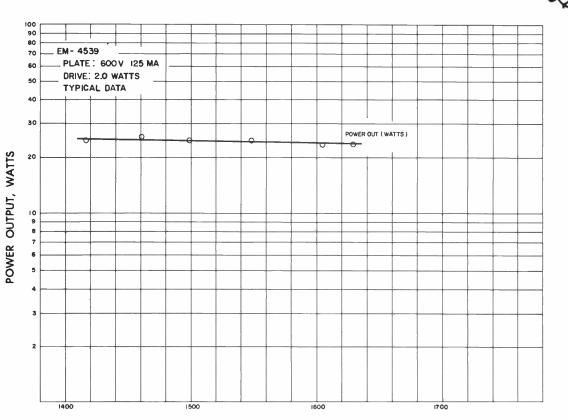



CAVITY AMPLIFIER

The Eimac EM4539 is a miniaturized 20 watt cavity amplifier incorporating a ceramic-metal planar triode. It is intended for use in aerospace telemetry transmitters and special aerospace transmitters.

A recommended DC-DC converter for use with this amplifier is Eimac Model EM4590.

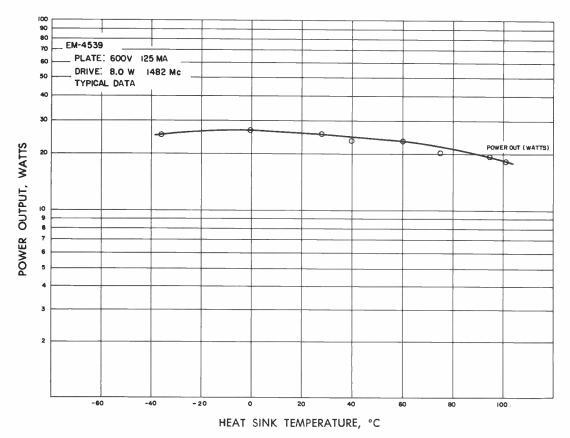
EM4539 CAVITY AMPLIFIER

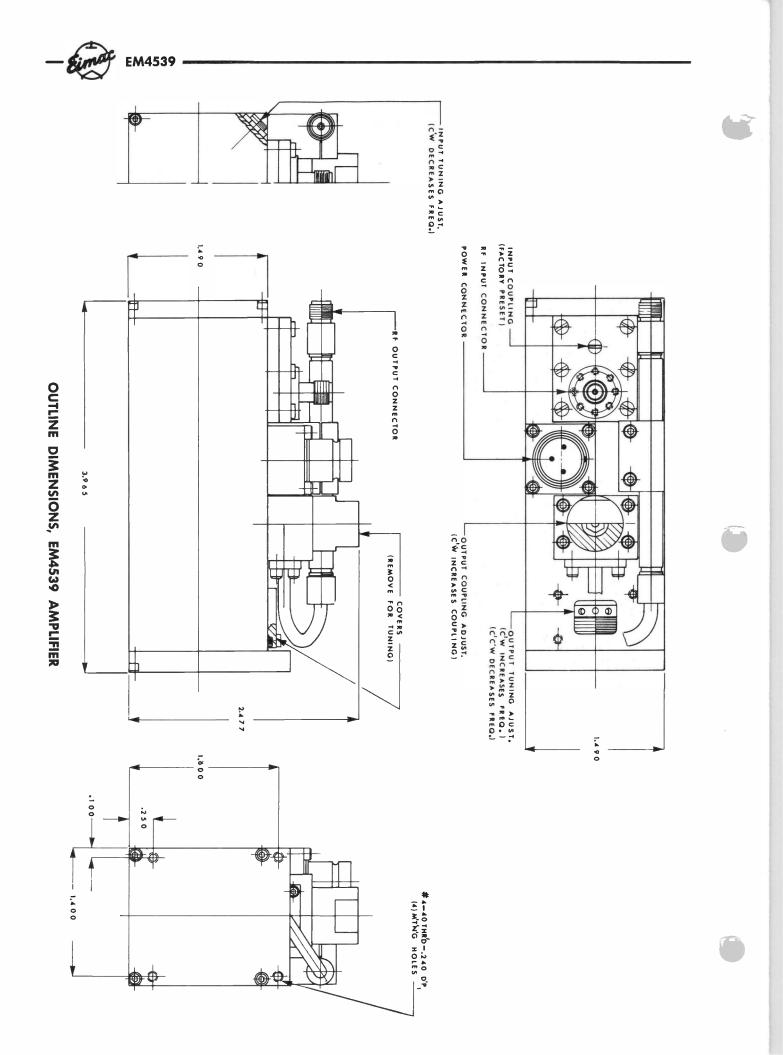

FIECTRICAL

CHARACTERISTICS

ELECTRICAL			
Frequency, ¹ continuously tunable			1420-1600 Mc
Rf power ² output (with 2 watts drive) -		 Frequency, Mc 1420-1435 1435-1535 1535-1600 	Power output, Watts, CW 15 20 15
Input Signals A			
Bandwidth, Minimum, 3 db points			10 Mc
Gain, Minimum, 1435-1535 Mc			10 db
Load Impedance, nominal			50 ohms
VSWR, Maximum, for full rated output - without damage -			1.5:1 3:1
Efficiency, ² Overall, Minimum			25%
Phase jitter, Maximum, between input an			
Power Supply Requirements ³			- Frint
Anode voltage			600 Volts
Current			125 mA
Heater voltage			
Current			1.0 Amperes
Harmonic Suppression (2nd, 3rd and 4th			60 db
Warm-up Time			3 Minutes
MECHANICAL			
Size, Overall (including protrusions) -			4" x 2½" x 1½"
			1.1 pounds
Mounting		To	Heat Sink (not included)
Tuning Controls		Th	ree (all on same surface)
Cooling		- Conduction to Hea	t Sink at _54°C to +95°C
			OSM
rf output			OSM
Power		D	eutsch #DM 5300-3P-643
ENVIRONMENTAL			
Temperature, heat sink, for continuous of	peration		54°C to +95°C
			Any
Vibration		20g.2	20-2000 cps, 3 major axes
Other			- •
	_		ICI WILL-D-0400

FOOTNOTES:


- (1) Also available with similar performance characteristics for other frequencies in the 900-2500 $\,\rm Mc$ range.
- (2) Under worst combination of specified environmental conditions. Output and efficiency are higher under optimum conditions. See curves for typical output and efficiency with other drive levels.
- (3) A separate DC-DC converter package, Model EM4590, operating from 28 +8/-4 Vdc, is available from Eimac. Power supplies for operation from other primary sources are available on special order.


- EM4539

TEMPERATURE EFFECT, EM4539 AMPLIFIER

The Eitel-McCullough Model X4539 cavity amplifier is a compact modular amplifier readily adaptable to airborne or ground support telemetry systems. The Model X4539 is a result of combined tube and circuit technology that serves to optimize the tube configuration with the associated RF circuit. Maximum efficiency and RF output from a very small package are salient features offered by this amplifier. Tuning can be accomplished with a minimum of test equipment.

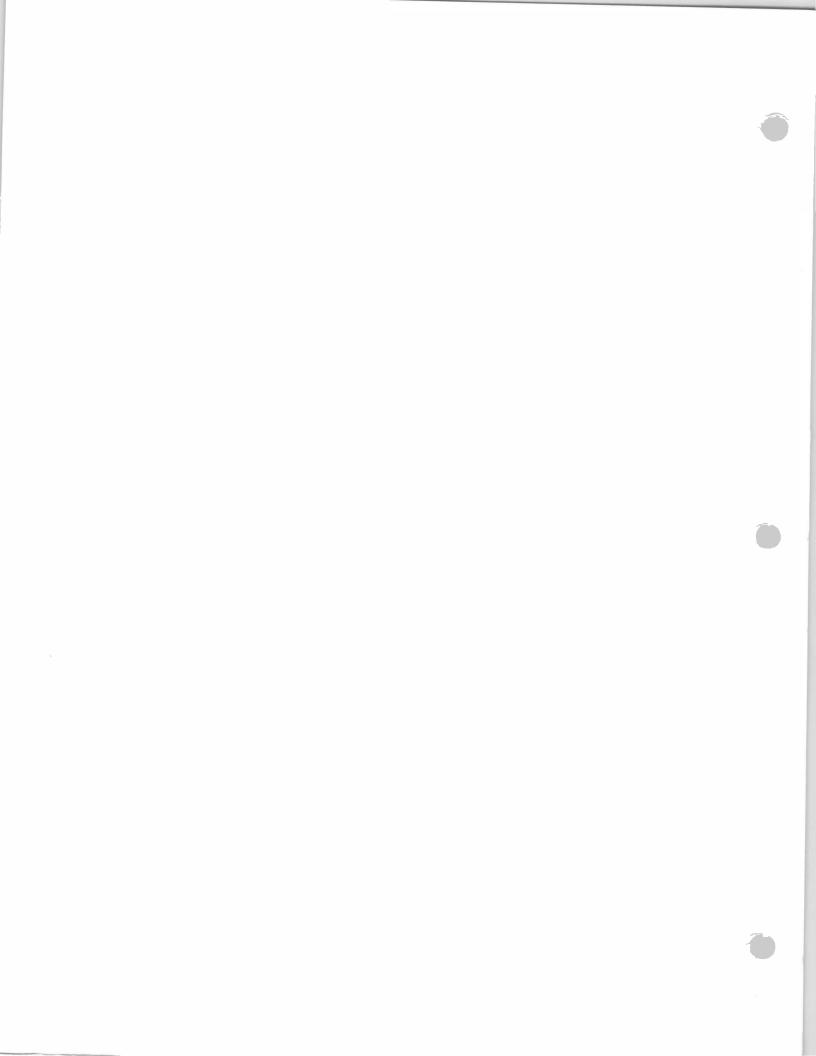
TENTATIVE DATA

X4539

CAVITY AMPLIFIER

FREQUENCY

1.435-1.535 kMc


Power Output 20 Watts CW

CHARACTERISTICS

FREQUENCY 1.435-1.535 kMc

ELECTRICAL

	\$7.910
	e Y-319
Power Supply Requirements:	V
Anode	mA
Current = = = = = = = = 6 0	V
Heater 10	À
Current $ -$	
Operating Characteristics:	W
Power Input 2.0	W
$P_{0} = 0$	
Service	CW/FM
$\mathbf{D}_{\mathbf{r}}$	Mc
$\mathbf{Frequency Stability} = \mathbf{F} = F$	PPM∕°C
Load Impedance $ 50$	ohms
Load VSWR 1.5:1	Any Ø
Load VS Witt	
MECHANICAL	
Connectors Type BRM	[Bendix
	nduction
Maximum Overall Dimensions 1.25" x1.2	25" x4.5 "
Maximum Overan Dimensions	pounds
Net Weight	•
ENVIRONMENTAL	
	+100°C
Vibration Shall meet the require	ements of
Method 514, MIL-S	tandard-
810, Class 1 throug	sh 4 and
mounting Type A.	
-	montecf
Shock Shall meet the require	
Procedure 1, Metho	IO 016 DI
MIL-Standard-810.	

CAVITY

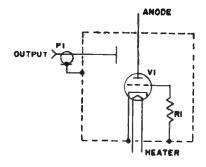
EM4543

1700-1850 Mc

The Eimac EM4543 is an ultra-stable low noise cavity oscillator designed for use in microwave transmitters where compactness and ruggedness is required. Excellent frequency stability over a wide temperature range is a major advantage of this oscillator. It incorporates the Eimac 128613 ceramic-metal planar triode. Operating life, without tube change, is over 5000 hours average.

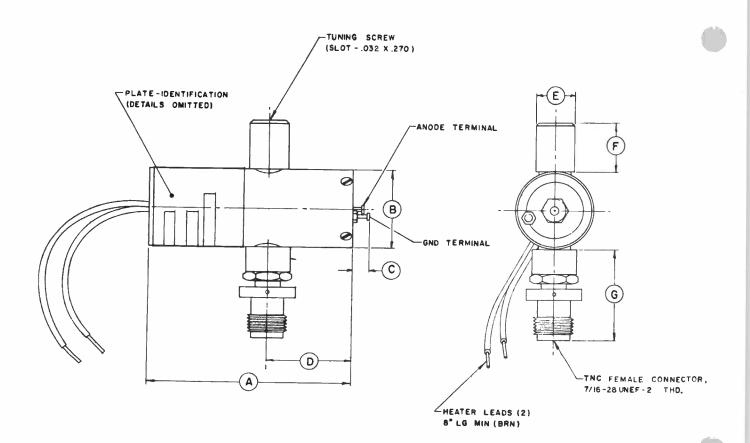
. .

CHARACTERISTICS


ELECTE	RICAL
--------	-------

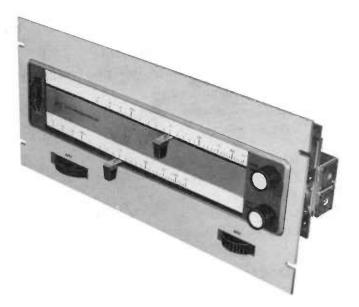
Tuning Range	;	-	-	-	-	-	-	-	-	-	-	-	-	-			850* MC
rf Power Out		-	-	-	-	-	-	-	-	-	-	-	-	-			Vatts CW
Frequency Sta		ty	-	-	-	-	-	-	-	-	-	-	±0	.159	6 fron	n —40°C	
Power Supply			men	ts:												Voltage	Current
Anode, M				-	-	-	-	-	-	-	-	-	-	-		- 140 V	50 mA
Control (um	-	-	-	-	-	-	-	-	-	-	- ·	-	Self Bias
Heater	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- 6.0 V	400 mA
Tube Type	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		ac 128613
Load Impeda	nce	-	-	-	-	-	-	-	-	-	-	-	-	-		- 50 ohm	s nominal
Modulation	-	-	-	-	-	-	-	-	-	-	-	-	-	-			- CW
VSWR, maxir	num	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1.3:1, a	any phase
rf Noise, max			-	-	-	-	-	-	-	-	-	-	-	-	-	0	.2 percent
MECHANICAL																	
Mounting -	-	-	_	-	-	-	_	-	-	-	-	-	-	-	Clamp	os to heat s	ink cradle
Size	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Length: 2 iameter: 0	.25 inches
															D		25 pounds
Weight -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		Conduction
Cooling -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Connector	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- Type In	NC Female
	IATA	L															
Temperature	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		to +75°C
Altitude -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0 to 1	2,000 feet

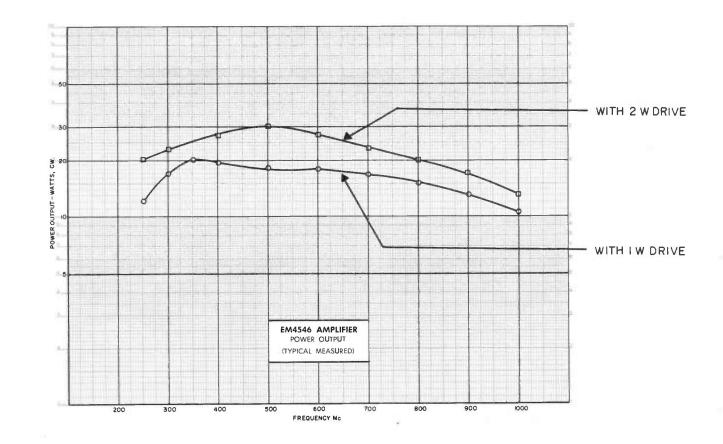
*Factory adjusted for any 48 Mc Segment of the 1700-1850 Mc band.


**Can provide up to 3 watts output with higher anode voltage and current and special cooling.

DIMENSIONAL DATA											
REF	MAX	MIN	NOM								
Α	2.300	2,255									
B	.860 DIA	.850 DIA									
С		—	.181								
D	.973	.930									
Ε	,437 DIA	.429 DIA									
F	.535	.525									
G	1.000	.935									

SCHEMATIC



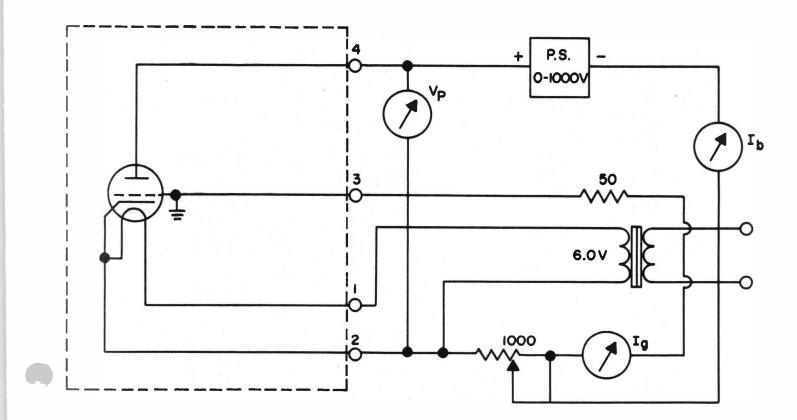


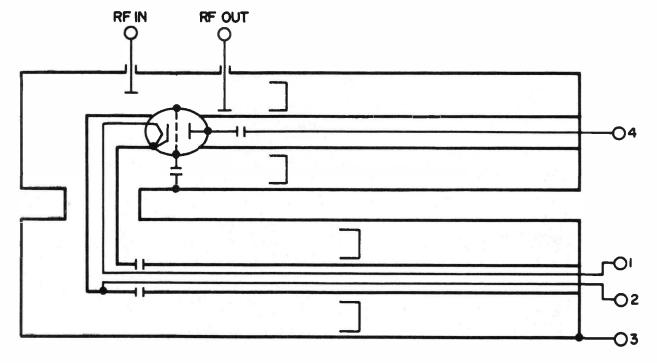
SAN CARLOS, CALIFORNIA

EM4546 BROAD TUNING AMPLIFIER 250-1000 Mc

The Eimac EM4546 is a broad-tuning cavity power amplifier incorporating the Eimac Y-319 ceramic-metal planar triode. It is intended for use in test equipment consoles and special transmitters. This Amplifier has front-panel tuning knobs and frequency scales for tuning across the 250-1000 Mc band. Power output is 20 to 10 watts with 1 watt rf drive and 30 to 10 watts with 2 watts rf drive.

(Effective 2-15-65) Copyright by Eitel-McCullough, Inc.

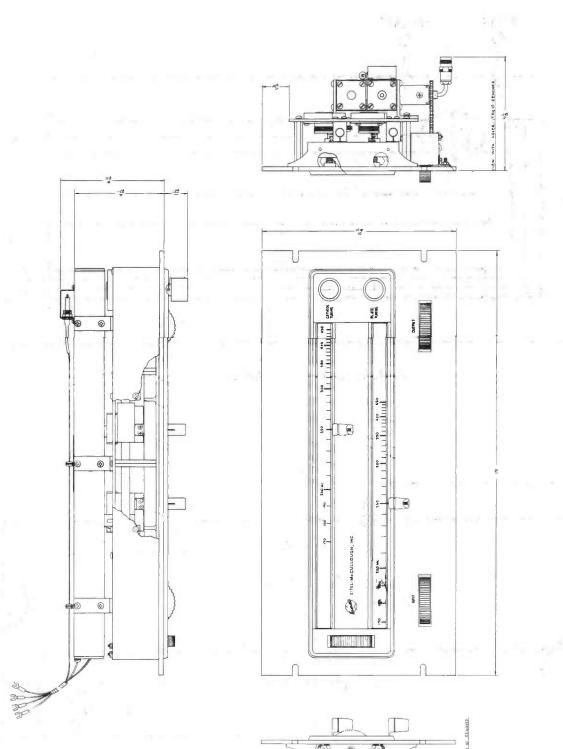

CHARACTERISTICS

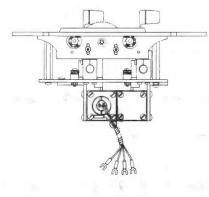

ELECTRICAL					• • • • •		
Frequency, continuously	tunable			-	-		250-1000 Mc
RF Power Output, minim	ium (1 w	att drive	e)	-	250 300	ency, Mc)- 300)- 800)-1000	
Gain (with 1 watt drive),	, minimu	m		-			10 db
Frequency Drift, ¹ percent	of opera	ting free	uency -	-	-		±0.05%
Power Supply Requireme	nts:		- •				Voltage Current
Anode, maximum				-			1 KV 100 mA
Grid				-			s through variable cathode istor, 200-1000 ohms
Heater				-			6.0 v 1A
Cathode Current -				-			125 mA
Tube Type				-			Eimac Y-319
Load Impedance -				-			50 ohms nominal
Load VSWR, maxim	um -			-		2.0:1	any phase, without damage
MECHANICAL							
Mounting				-			Standard 19" relay rack
Size				-			- height — 8¾ inches depth — 4½ inches
Weight				-			10 pounds
Operating Controls		- ~		-		- Tu sca	ning knobs and frequency lles provided ²
Cooling				-			Conduction — Convection ³
Connectors				-			Type TNC Female
ENVIRONMENTAL Temperature				-			+50°C (+14 to +122°F) ³
Altitude				-			to 12,000 feet

NOTES:

- (1) Frequency drift is specified over a period of 2 hours, following a warm-up period of $\frac{1}{2}$ hour minimum.
- (2) Knobs are provided on the front panel for fine tuning the plate and cathode cavities and for adjusting input and output coupling. Frequency scales are provided for each cavity. Tuning is accomplished by sliding the pointers to the desired frequency, then adjusting the fine tuning and coupling. Access to the interior of the amplifier is not required for tuning. Four sets of scales are provided, covering four sections of the tuning range. The desired set of scales is selectable by a knob on the front panel.
- (3) If ambient temperature exceeds 90°F, the cavity body will become quite hot (up to 250°F), and forced air cooling is recommended.

For personnel protection, high voltage circuits above 500 volts are enclosed and identified. Interlocks are not provided.




.

EM4546 -

VIEW WILD

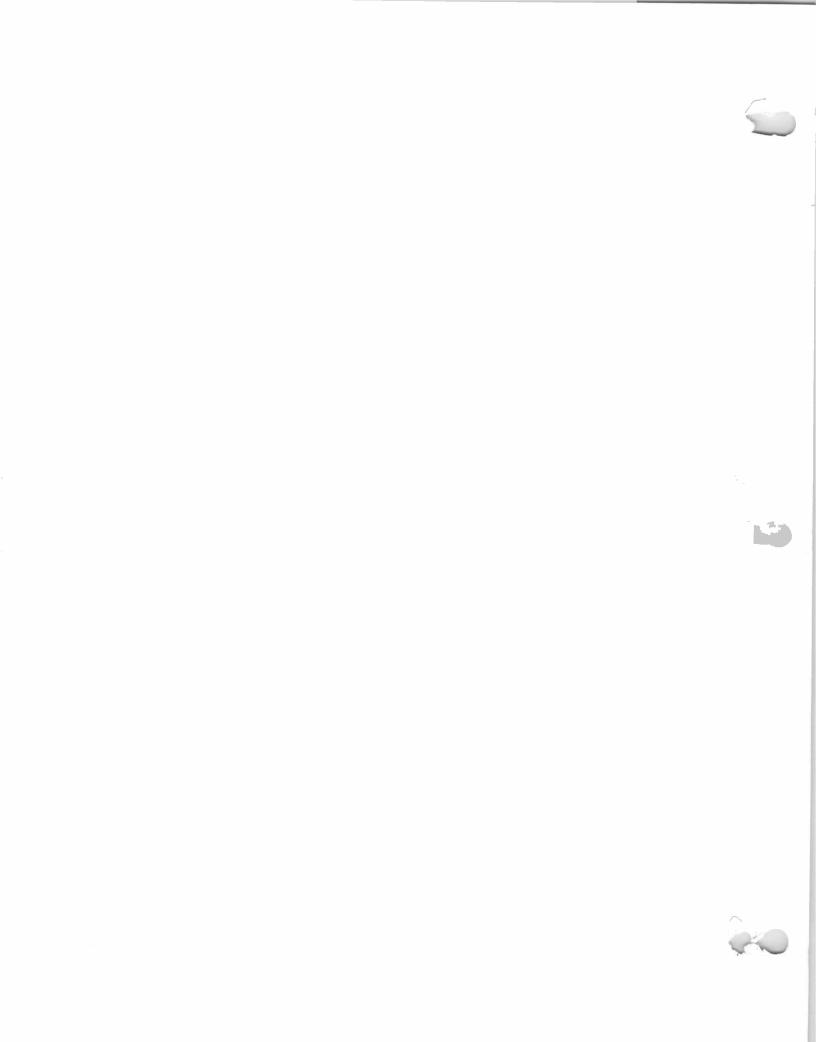
The Eimac X4546 is a broad-tuning cavity amplifier incorporating the Eimac Y-319 ceramic metal planar triode. It is intended for use in test equipment consoles and special transmitters. This amplifier has front-panel tuning knobs and frequency scales for tuning across the 150-2000 Mc band with power output from 25 to 5 watts.

CHARACTERISTICS

ELECTRICAL

Frequency, continuously tunable	Frequency, Mc Power output, watts, CW 150-900 40 900-1400 30 1400-1800 20
RF Drive Power Required	
Frequency Stability	$=$ within $\pm 200 \text{ PPM}/^{\circ}C$
Power Supply Requirements:	Voltage Current
Anode maximum = = = = = = = = = = = = = = = = = =	1 KV 100 mA
	Voltage Current Voltage Current Voltage Current Voltage Current I KV 100 mA Voltage Current I KV 100 mA
011d = = = = = = = = = = = = = = = = = =	resistor, 200-1000 ohms
Heater	6.0 V 1 A
	Negative terminal of anode
	Eimac Y-319
Load Impedance $ -$	
Tube Type	

MECHANICAL


Mounting	Standard 19'' relay rack
Size	height8-3/4 inches
	depth6 inches
Weight	55 pounds
Operating controls	Tuning knobs and frequency
	scales provided
Cooling	Conduction to heat sink (included)
Connector	

ENVIRONMENTAL

Temperature -	 	 	 _	 -	 -	 	 -	 	-1	0 to) –	+ 50	° C	(+	- 14	to -	-122°1	F)
Altitude	 	 	 	 	 	 _	 _	 							- to	12,0	000 fe	et

NOTES:

- (1) Knobs are provided on the front panel for fine tuning and for adjusting output coupling. Frequency scales are provided for each cavity. Tuning is accomplished by moving the scale pointers until scales indicate the desired frequency, then adjusting the output coupling. Access to the interior of the amplifier is not required for tuning.
- (2) For personnel protection, high voltage circuits above 500 volts are enclosed and identified. Interlocks are not provided.



EM4547 CAVITY AMPLIFIER 150-1000 Mc

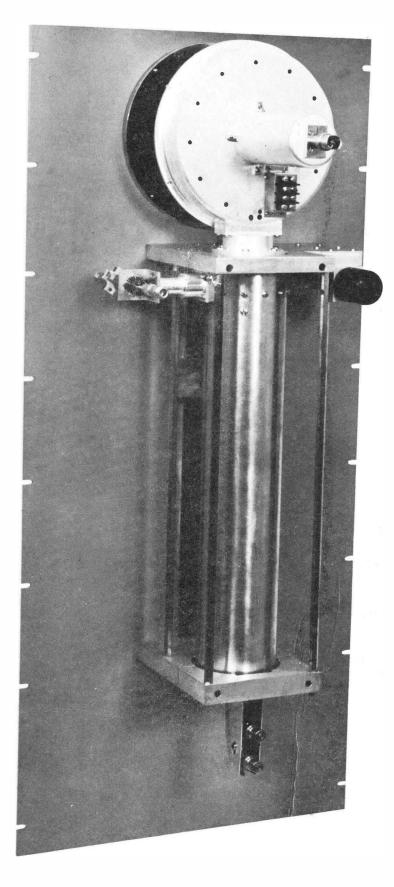
150-1000 Mc 100 WATTS CW

This is a broad-tuning cavity amplifier, incorporating the Eimac X843D ceramic-metal planar triode. It is intended for use in test equipment consoles and special transmitters. High power output and wide tuning range are outstanding features of this amplifier.

A recommended driver for use with this amplifier is Eimac EM4555 oscillator.

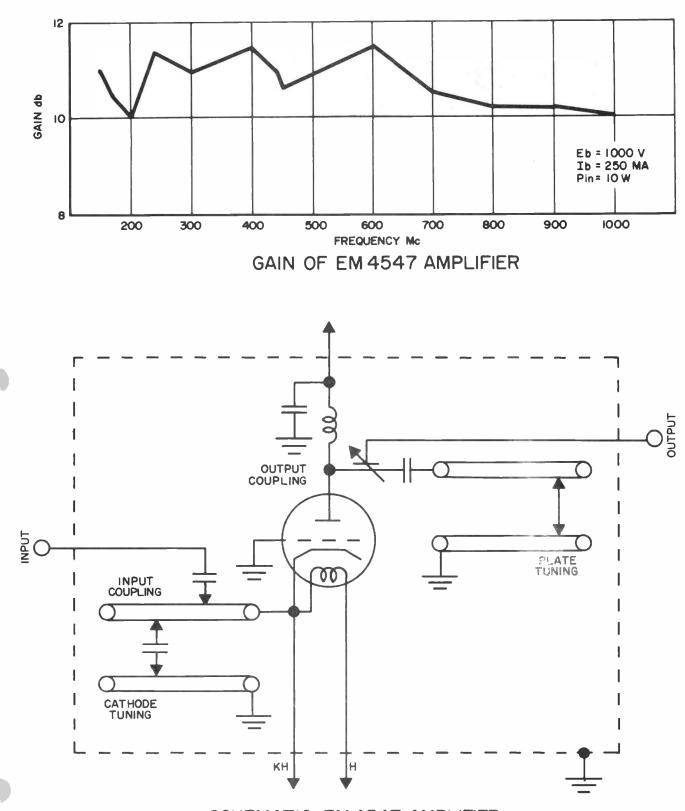
0 to 12,000 feet

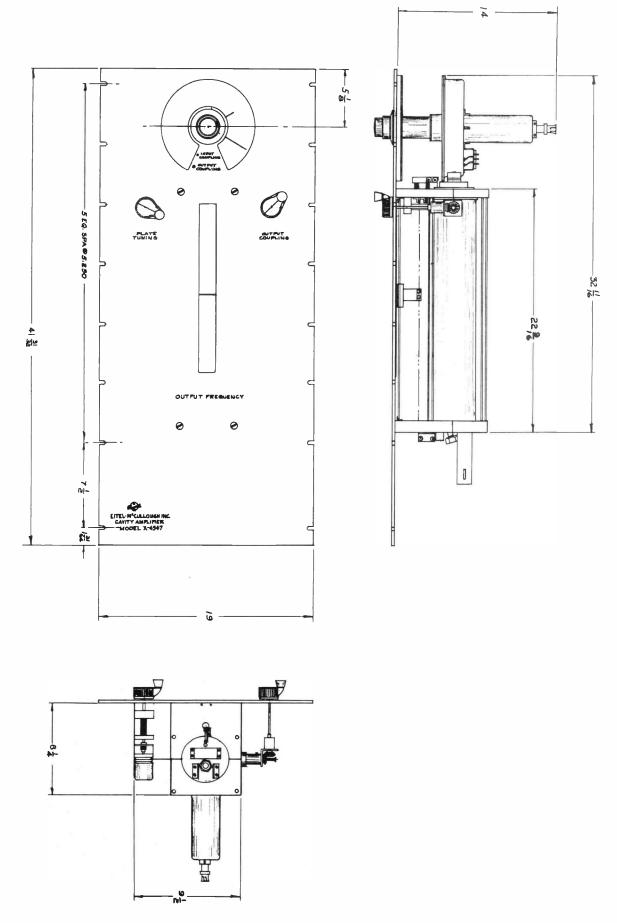
CHARACTERISTICS


ELECT	RICAL
-------	-------

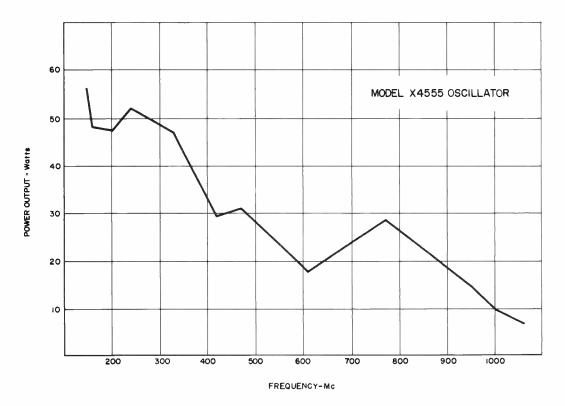
Altitude

Tuning Range	-	-	-	-	-	-	-	-	-	-	-		150-1000 Mc
Tube Type		-	-	-	-	-	-	-	-	-	-		Eimac X843D
Power Supply Requirements:													
Anode Voltage		-	-	-	-	-	-	-	-	-	-	1000	V
Current		-	-	-	-	-	-	-	-	-	-	250	mA
Heater Voltage -	-	-	-	-	-	-	-	-	-	-	-	5.5	
Current	· -	-	-	-	-	-	-	-	-	-	-	2.7	
Grid Current, Maximum	1 -	-	-	-	-	-	-	-	-	-	-	100	
Cathode Current, Maxin	num	-	-	-	-	-	-	-	-	-	-	300	mA
Operating Characteristics:													
rf Drive Power Required	l (non	ninal) -	-	-	-	-	-	-	-	-	10	
Power Output, minimu		-	-	-	-	-	-	-	-	-	-	100	
Bandwidth, 3 db points	s -	-	-	-	-	-	-	-	-	-	-	5	
Load Impedance		-	-	-	-	-	-	-	-	-	-		ohms nominal
Load VSWR, Maximum	ı –	-	-	-	-	-	-	-	-	-	-	1.5:1	
Gain, Minimum - ·		-	-	-	-	-	-	-	-	-	-	10	db
MECHANICAL													
Connectors		-	-	-	-	-	-	-	-	-	-	- '	Гуре N Female
Cooling		-	-	-	-	-	-	-	-	-	L	iquid (self-contained)
Maximum Overall Dimension	ns -	-	-	-	-	-	-	-	-	-	-	-	11"x 19"x 55"
Net Weight		-	-	-	-	-	-	-	-	-	-	-	- 50 pounds
Mounting		-	-	-	-	-	-	-	-	-	-	-	19" Relay Rack
ENVIRONMENTAL													
Operating Temperature		-	-	-	-	-	-	-	-	-	-	-	-10 to $+50^{\circ}$ C


(Effective 9-1-64) Copyright 1964 by Eitel-McCullough, Inc. Printed in U.S.A.


REAR VIEW, EM4547 AMPLIFIER

SCHEMATIC, EM 4547 AMPLIFIER



EM4555

BROAD TUNING OSCILLATOR 150-1050 Mc

The Eimac EM4555 is a broad-tuning cavity power oscillator incorporating the Eimac Y-319 ceramic-metal planar triode. It is intended for use in test equipment consoles and special transmitters. This oscillator has front-panel tuning knobs and frequency scales for tuning across the 150-1050 Mc band with power output from 40 to 5 watts.

⁽Effective 9-1-64) Copyright by Eitel-McCullough, Inc.

CHARACTERISTICS

ELECTRICAL

Frequency, continuously tunable	e -	-	-	-	-	-		150-1050 Mc
RF Power Output		-	-	-	-	150 300 500	ency, 1 D- 300 D- 500 D- 900 D-1050	40 20 15
Frequency Drift, ¹ percent of ope	rating	g frequ	iency	-	-	-		$\pm 0.05\%$
Power Supply Requirements:								Voltage Current
Anode, maximum		-	-	-	-	-		1 KV 100 mA
Grid Current, maximum		-	-	-	-	-		50 mA
Heater		-	-	-	-	-		6.0 V 1 A
Ground		-	-	-	-	-		 Positive terminal of anode supply
Cathode Current, maximun	n -	-	-	-	-	-		125 mA
Tube Type		-	-	-	-	-		Eimac Y-319
Load Impedance		-	-	-	-	-		50 ohms nominal
Load VSWR, maximum		-	-	-	-	-	- 2.0):1 any phase, without damage
MECHANICAL								
Mounting		-	-	-	-	-		- Standard 19" relay rack
Size		-	-	-	-	-		height — 8¾ inches depth — 4½ inches
Weight		-	-	-	-	-		10 pounds
Operating Controls -		-	-	-	-	-		Tuning knobs and frequency scales provided ²

ENVIRONMENTAL

Cooling

Connector

Temperature	-	-	-	-	-	-	-	-	-	+	-	10) to -	+50°	$^{\rm P}C$ ($(+14 \text{ to } +122^{\circ}\text{F})^3$
																0 to 12,000 feet

Conduction --- Convection³

Rear Mounted Type TNC Female

NOTES:

- (1) Frequency drift is specified over a period of 2 hours, following a warm-up period of V_2 hour minimum.
- (2) Knobs are provided on the front panel for fine tuning the plate and cathode cavities and for adjusting output coupling. Direct-reading frequency scales are provided for each cavity. Tuning is accomplished by sliding the hairline windows to the desired frequency, then adjusting the fine tuning and output coupling. Access to the interior of the amplifier is not required for tuning.
- (3) If ambient temperature exceeds 90°F, the cavity body will become quite hot (up to 250°F), and forced air cooling is recommended.

For personnel protection, high voltage circuits above 500 volts are enclosed and identified. Interlocks are not provided.

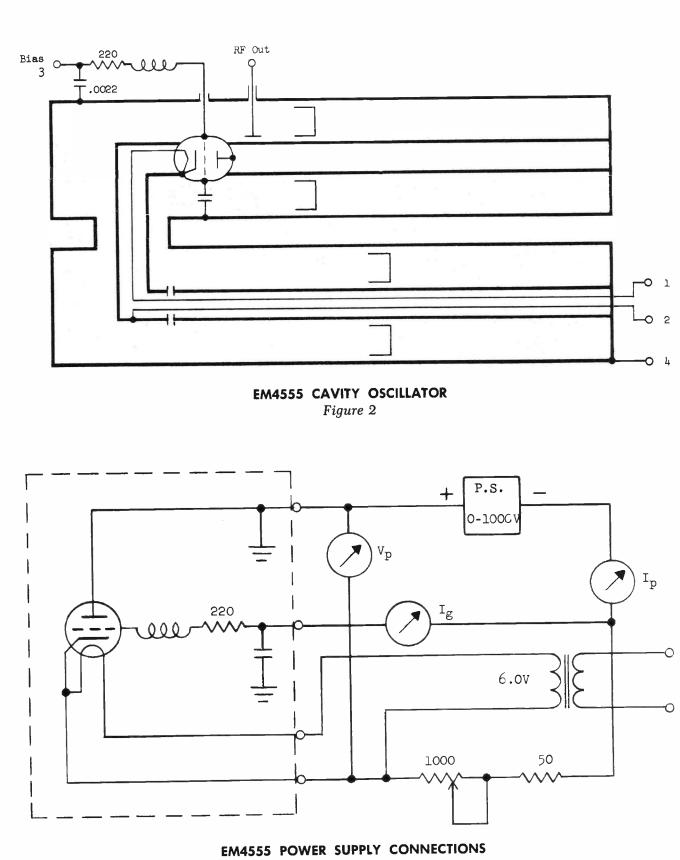
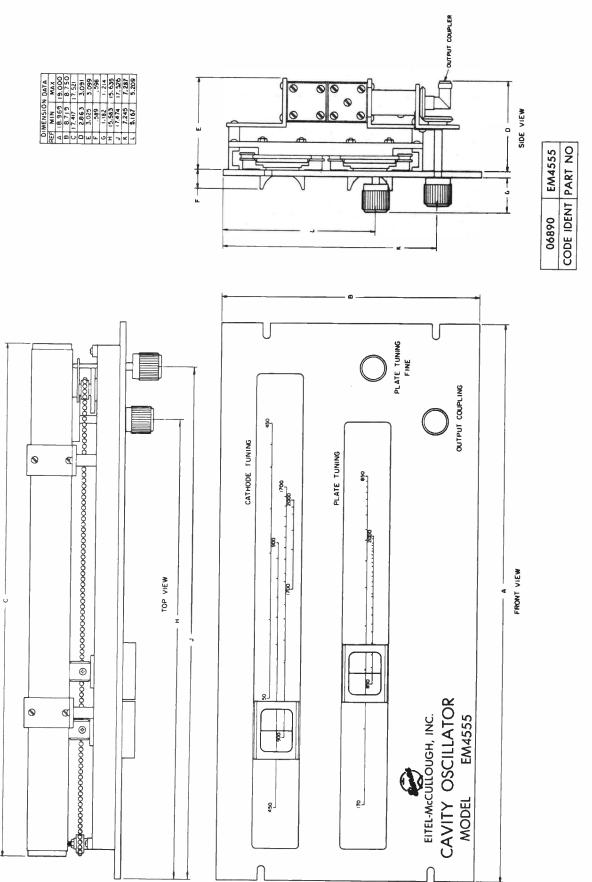



Figure 3

- EM4555

b

EITEL-MCCULLOUGH, INC.

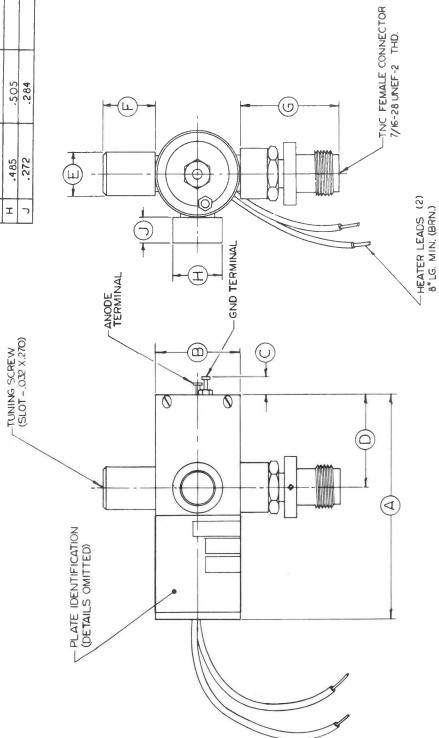
EM4564 CAVITY OSCILLATOR 1700-1850* Mc

The Eimac EM4564 is an ultra-stable low noise cavity oscillator designed for use in microwave transmitters where compactness and ruggedness is required. Excellent frequency stability over a wide temperature range is a major advantage of this oscillator. It incorporates the Eimac 128631 ceramic-metal planar triode. Operating life, without tube change, is over 5000 hours average.

A connector inlet port is provided in the plate cavity for insertion of a modulator.

CHARACTERISTICS

ELECTRICAL

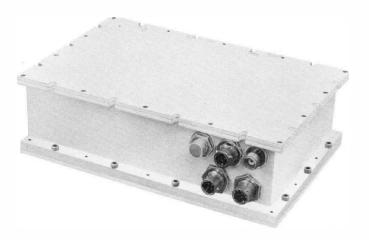

Tuning Range	e	-	-	-	-	-	-	-	10	-		1-	-	17	-	-	1700-1	850* Mc
rf Power Out	put	-	1.	-	-	-	-	-	- 1	-	- 1	8	-	-	÷.,	-	1.6** V	Vatts CW
Frequency Sta	abilit	ty	-	-	-	-	-	-	-	-	-	-	± 0	.15%	5 fr	om	-40°C	to +75°C
Power Supply	Req	uire	men	ts:													Voltage	Current
Anode, M	laxin	num	-	-		17	Π.	÷.	-	-	-	-	-	-	-	-	140 V	50 mA
Control (Grid,	Ma	xim	um	-	-	-	-	-	-	-	-	-	-		-		Self Bias
Heater	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.0 V	400 mA
Tube Type	-	-	-	-	-	-	-		-	-	-	-	-	-	-		- Eima	ic 128631
Load Impedan	nce	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	50 ohm	s nominal
Modulation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- CW
VSWR, maxir	num	-		-	\Box	-	12	-	-	2		2		1	-	-	1.3:1, a	ny phase
rf Noise, max				-	-	-	2	-	-	-	-	-	-	-	-	-	- 0.	2 percent
MECHANICAL																		
	_	_		5	-	_		_	-	-		-	_		Cla	mps	to heat s	ink cradle
Mounting -	-	-		÷	-	-	-	-	-	-	-	5	-	- (Clai	-		ink cradle 25 inches
	-	-	-	-	-	-	-	-	-	-		5	-	- (Clai -	Ĺ	ength: 2.	25 inches
Mounting - Size	-	-	-	-	-	-	-		-	-	-	-		- (Clai -	Ĺ	ength: 2. meter: 0.	.25 inches .85 inches
Mounting - Size Weight -	-				-	-	-		-	-				-	Clai - -	Ĺ	meter: 0	25 inches 85 inches .3 pounds
Mounting - Size Weight - Cooling -		-	-				-								Clai - -	L Dia -	ength: 2. meter: 0. - 0 - C	25 inches 85 inches .3 pounds onduction
Mounting - Size Weight -															Clai - - -	L Dia -	ength: 2. meter: 0. - 0 - C	25 inches 85 inches .3 pounds
Mounting - Size Weight - Cooling -					-		-								Clai - - -	L Dia -	ength: 2. meter: 0. - 0 - C	25 inches 85 inches .3 pounds onduction
Mounting - Size Weight - Cooling - Connectors ENVIRONMEN					-										Clai - - -	L Dia -	ength: 2. meter: 0. - 0 - C Type TN	25 inches 85 inches .3 pounds onduction IC Female
Mounting - Size Weight - Cooling - Connectors															Clai - - - -	L Dia -	ength: 2. meter: 0. - 0 - C Type TN -40°C	25 inches 85 inches .3 pounds onduction

*Factory adjusted for any 48 Mc Segment of the 1700-1850 Mc band.

**Can provide up to 3 watts output with higher anode voltage and current and special cooling.

(Effective 9-1-64) © Copyright 1964 by Eitel-McCullough, Inc. Printed in U.S.A.

	REF			181.						
DIMENSIONAL DATA	MAX	2.300	BGO DIA.		.973	.437 DIA.	.535	.935	.505	.284
DIMENSIC	NIN	2.2 55	-850 DIA.	1	.930	.429 DIA.	.525	1.000	-485	.272
	MID	٩	۵	υ	۵	ш	ш	υ	I	7


EIMAC

A Division of Varian Associates

EM4567 TELEMETRY TRANSMITTER

2200 - 2300 MHz 10 Watts

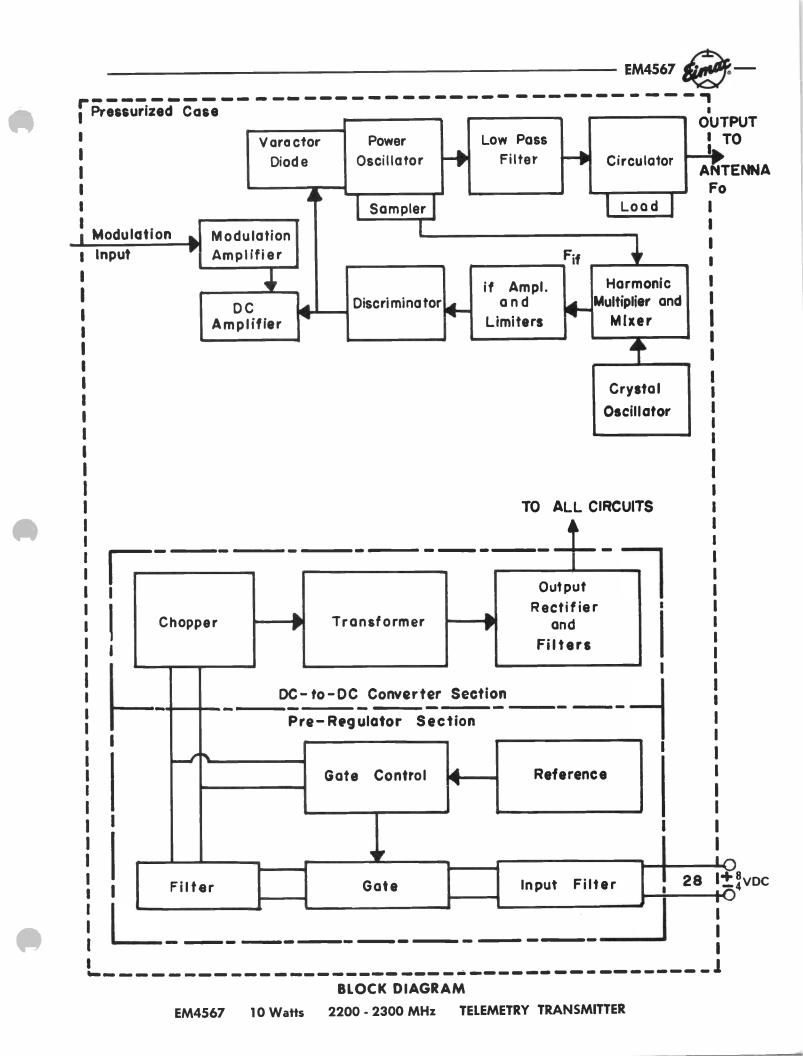
This Eimac S-Band transmitter provides over 10 watts rf output with over 15% overall efficiency, under all combinations of worst specified environmental extremes and primary power variation. Frequency change, if desired, is easily accomplished in the field. It is designed to operate during the severe shock and vibration of missile launch.

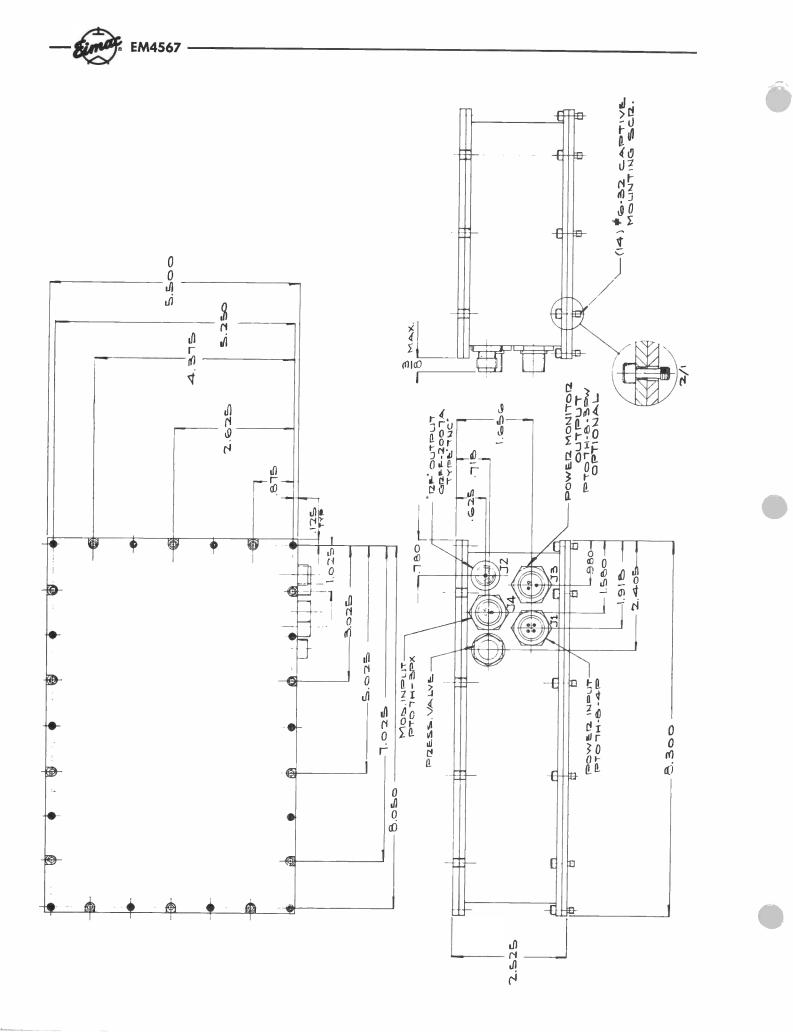
Model EM4567 is a complete transmitter, including a pre-regulated DC-DC converter.All circuits are solid state, except the rf power oscillator, which is a single stage rugged ceramic planar triode. RF is generated at the output frequency. The complete transmitter is packaged in less than 110 cubic inches, and weighs less than 8 pounds. Modulation is true FM. Major features of this transmitter include:

Easy Tuning: A simple crystal change will allow the output to be tuned to any frequency in the 2.2-2.3 GHz band. Test points are provided. A minimum of test equipment is required. Adjustment of temperature compensation is not required.

High Reliability: Since the rf power output is produced by a single stage, this transmitter has a minimum number of components, tuning adjustments and connections. All components are used well below maximum ratings, and circuits are epoxy encapsulated for environmental protection.

Wide Temperature Range: This transmitter will meet full performance specifications over the range -40 °C to +85 °C.

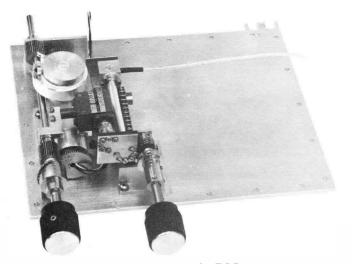

Modulation Bandwidth and Linearity: Deviation of ± 1.5 MHz is accomplished at $\pm 2.5\%$ linearity, and ± 300 KHz at $\pm 0.5\%$ linearity.



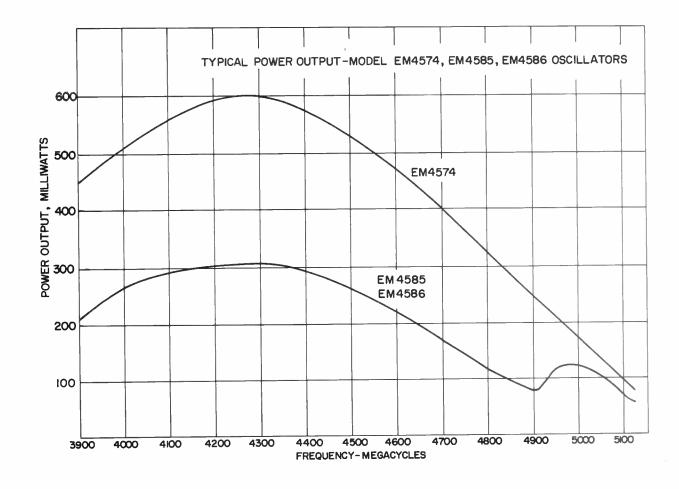
CHARACTERISTICS

ELECTRICAL	
ELECTRICAL Frequency Tunchlo	0000 0000 1/11
Power Output OW Minimum ⁷	2200-2300 MHz
Frequency, Tunable	10 watts
Frequency Accuracy	$\pm 0.001\%$
Convict Deviction Adjustable web ($\pm 0.0025\%$
Carrier Deviation, Adjustable, peak-to-peak	2MHz/Volt to 30KHz/Volt
Modulation bandwidth, Flat within ± 0.5 db	100 Hz to 500 KHz
Flat within ±1 db Flat within ±2 db	5 Hz to 800 KHz
Flat within $\pm 2 \text{ db}$	5 Hz to 2 MHz
Modulation Linearity, Deviation from B.S.L., For ±300 KHz peak Deviation	
For ± 300 KHz peak Deviation	$\pm 0.5\%$
For ±1.5 MHz peak Deviation	$\pm 2.5\%$
Incidental Frequency Modulation, Maximum	5 KHz rms
AM, Maximum, due to environmental conditions	
due to ± 300 KHz carrier deviation -	
due to ± 1.5 MHz carrier deviation -	
Modulation Input Impedance, Minimum, 5 Hz to 800 KHz	10,000 Ohms
Primary Voltage required ²	$28 \pm \frac{8}{4} \text{Vdc}$
Primary current required, maximum, at 28 Vdc	2.4A
Primary Ripple, maximum, peak-to-peak from Dc to 20 KHz	
Transients, Maximum positive	
Input current rise above nominal, due to fault, ³ maximum	30%
VSWR Maximum, any phase, for 10 watts output ⁷	1.5:1
for 5 watt output	5.5:1
Load Impedance required	50 ohms
Load Impedance required	120 seconds
Interference	All applicable requirements of
	MIL-I-26600 and MIL-I-6181D are met
Life (95% probability, 60% confidence factor)	500 hours
Lite (00% probability; 00% confidence factor)	
PACKAGING	
Volume displaced	98 cubic inches
Dimensions, including mounting flanges	8 2" x 5 5" x 9 595"
Weight	8 pounds
Pressurization	30 psia
Weight <td>Conduction to heat sink</td>	Conduction to heat sink
Connectors rf	TNC Female
Power and Modulation	
	Bendix PTO7 Male
ENVIRONMENTAL SPECIFICATIONS ⁴	4000 to 10500
Temperature ⁵ at heat sink (Continuous Operation) Altitude	-40° C to $+85^{\circ}$ C
	Any
Vibration ⁹ (MIL-STD-810, Figure 514-3, Curve D)	15G peak to 2 KHz
(MIL-STD-810, Figure 514-4, Curve E) Air Induced Vibration	0.2 G ² /Hz
Air Induced Vibration	$150 \text{ db above } 2x10^{-4}/\text{CM}^2$
Englacian America 1	from 150 to 2000 Hz, 30 minutes
Explosive Atmosphere	Capable of operation without
Sustained Acceleration	igniting an explosion
Sustained Acceleration	30G for 5 minutes, three axes
Shock ⁹ , per MIL-STD-810 Method 516, Procedures I and V, half-sine shocks	150 for 11 or 11
sawtooth shocks ⁶	15G for 11 milliseconds
5aw 100111 51100K5'	100G
9Available for use in more severe environment of the	
cial order. 4Transr	ranges available on special order.
1141151	nitter performs as specified under any combi-
"Stability of $\pm 0.001\%$ from -40 °C to $+85$ °C is avail-	nitter performs as specified, under any combi- of environmental conditions.
"Stability of $\pm 0.001\%$ from -40 °C to $+85$ °C is avail-	nitter performs as specified, under any combi- of environmental conditions. illure of transmitter (except at input terminals). emergency conditions, full rf output is pro-

¹Over temperature range —20°C to +70°C. Minimum power output for —40°C to +85°C is 8 watts. ⁶Out-of-tolerance operation may occur during 100G shock. ²Under emergency conditions, full rf output is provided with primary power as low as 20 Vdc, but increased IFM and AM will occur. ¹Also available modified for modulation down to DC.



EITEL-MCCULLOUGH, INC.



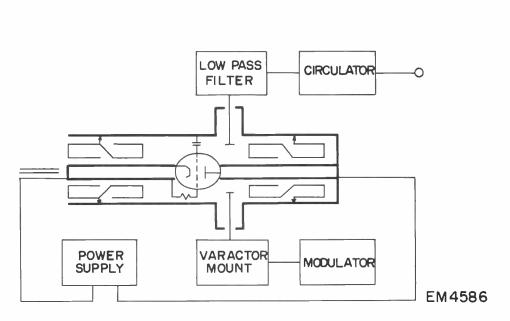
The Eimac EM4574 is a CW oscillator providing up to 600 milliwatts output, tunable 3.9-5.1 Gc. It is also available as an electronically tunable oscillator, EM 4585, including a varactor diode modulator. A complete package of the EM4585 electronically tunable oscillator with low pass filter, terminated circulator and tuning mechanism for single knob front panel tuning is available, Model EM4586. This oscillator is recommended for use in aerospace and ground system transmitters.

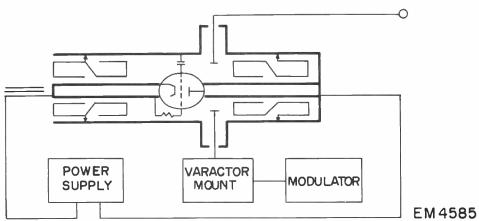
A DC-DC converter, EM4589, is available to operate this oscillator from a 28 V DC primary power supply.

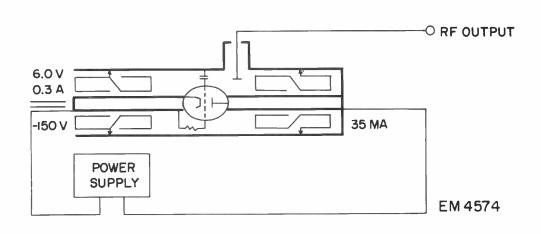
EM4586 OSCILLATOR

EM4574, EM4585, EM4586

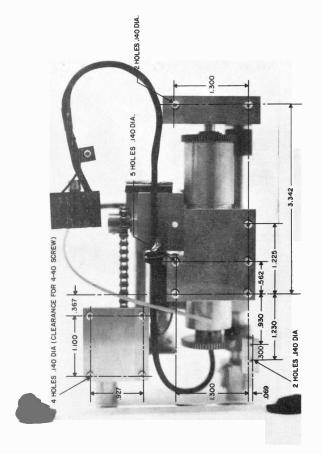
CHARACTERISTICS

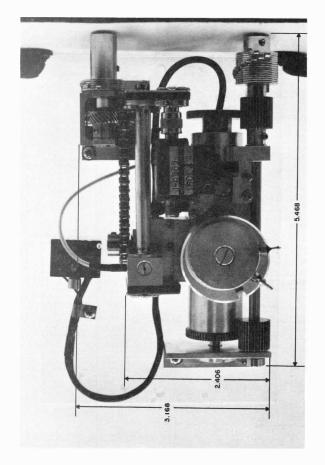

ELECTRICAL															
Frequency, Manual Tuning Range	-	-	-	-	-	-	-	-	-	-	-	- 3	3900-	5100	Mc
Electronic Tuning Range	-	-	-	-	-	-	-	-	-	-	_	-	_	±15	Mc
									Po	wer	outr	unt N	(i)]i	atts,	
RF Power Output	-	-		Fre	auer	ncy, I	Мc			1457	_			'EM4	
-					39					400	-		20		000
					43	00				550			30	0	
					470					350			15		
-					51	00				75			5	0	
Frequency Stability, Parts/million	/°C	-	-	-	-	-	-	-	-	-	-	-	-	- 3	±10
Power Supply Requirements :												Vo	ltage	Curr	ent
Anode, maximum	-	-	-	-	-	-	-	-	-	-	-	- 1	150	35 1	
Grid Current, maximum -	-	-	-	-	-	-	-	-	-	-	-	-	-	- 5	
Heater	-	-	-	-	-	-	-	- Da	-	-	-	-	.0 V		BA
Tube Type	-	-	_	-	-	-	-	Pos	-	e ter:	min -			le sur 128	± -
Load Impedance	_	-	-	_	-	_	-	-	_	-				nomi	
Load VSWR, maximum -	-	-	-	_	-	- 1	1.5:1	, an	y ph	ase (lama	
Modulation	-	-	-	-	-		-		-		-	-		CW/	<i>°</i> ,
MECHANICAL															
Mounting	-	-	-	-	-	-	-	-]	o H	leat S	Sink	(See	phot	ogra	ph)
Size, EM4574	-	-	-	-	-	Len	gth 4	.5 iı	1.; \	Vidtł	n 1.0) in.;	Dept	h 1.0	in.
Weight, EM4574	-	-	-	-	-	-	-	-	-	-	-	-	0.5	pou	nds
EM4586	-	-	-	-	-	-	-	-	-	-	-	-	1.9	pou	nds
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	Co	nduct	ion
Connector	-	-	-	-	-	-	-	_	-	_	_ '	Туре	TNC	Fem	ale
												71 -			
ENVIRONMENTAL (Operational)															
Temperature	-	-	-	-	-	-	-	-	-	-	-	4	10 to	+100)°C
Altitude	-	-	-	-	-	-	-	-	-	-	-	- 0	to 5,	000 f	eet
Vibration	-	-	-	-	-	-	- 5	to 3	3 C	PS at	t 0.3	inch	les ar	nplitı	ıde
Shock Withstood	-	-	-	-	-	-	-							liseco	
									0						

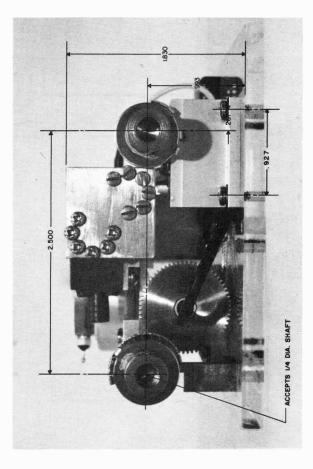

NOTES:

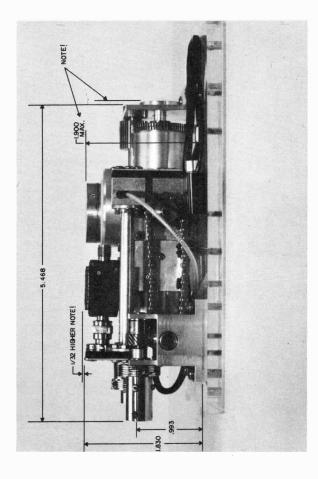

- (1) Carrier Deviation of EM4585 and EM4586 is adjustable from ± 3 Kc to ± 300 Kc with 0.2 to 1.0 volts peak-to-peak modulating input voltage.
- (2) Modulation Bandwidth of EM4585 and EM4586 is flat within 1 db, 500 CPS to 150 Kc.
- (3) Modulation Linearity of EM4585 and EM4586: deviation from BSL less than $\pm 0.5\%$, ± 6 Kc to 300 Kc.

POWER SUPPLY MUST BE PURCHASED SEPERATELY.


EIMAC C-BAND CW POWER OSCILLATORS







Simac EM4574, EM4585, EM4586 ·


EITEL-McCULLOUGH, INC.

Tentative Data

EM4575 TELEMETRY TRANSMITTER

2200 - 2300 Mc 4 Watts

This Eitel-McCullough S-Band transmitter provides over 4 watts rf output with over 10% overall efficiency, under all combinations of worst specified environmental extremes and primary power variation. Frequency change, if desired, is easily accomplished in the field. It is designed to operate during the severe shock and vibration of aircraft operations. Operation is from nominal 400 CPS 115V single phase primary power. No heat sink or supplementary cooling required.

Model EM4575 is a complete transmitter, including a 400 CPS 115V power supply. All circuits are solid state, except the rf power oscillator, which is a single stage cavity using a rugged ceramic planar triode. RF is generated at the output frequency. The complete transmitter is packaged in less than 300 cubic inches, and weighs less than 11 pounds. Major features of this transmitter include:

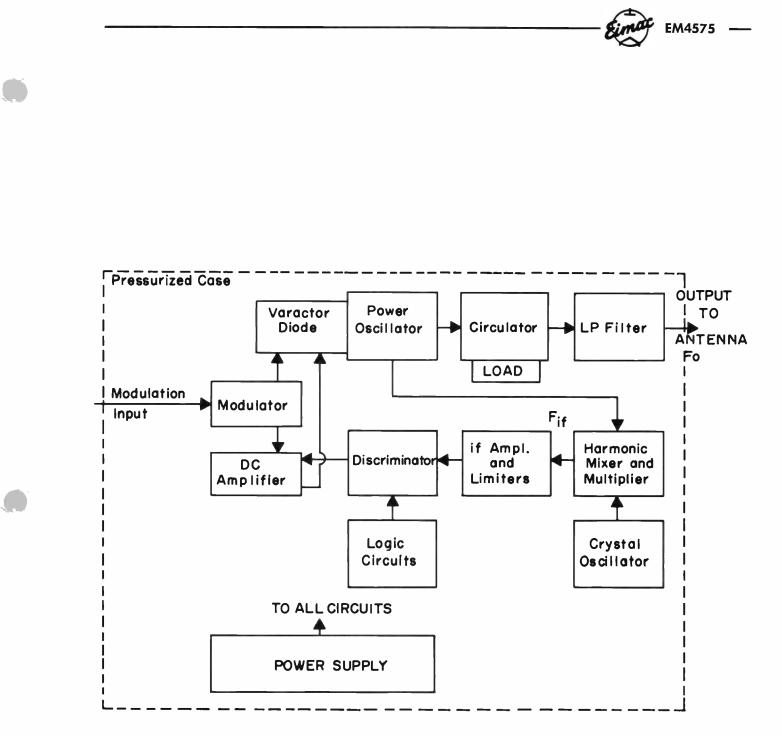
Easy Tuning: A simple crystal change will allow the output to be tuned to any frequency in the 2.2-2.3 Gc band. Test points are provided. A minimum of test equipment is required. Adjustment of temperature compensation is not required.

High Reliability: Since the rf power output is produced by a single stage, this transmitter has a minimum number of components, tuning adjustments and connections. All components are used well below maximum ratings, and circuits are epoxy encapsulated for environmental protection.

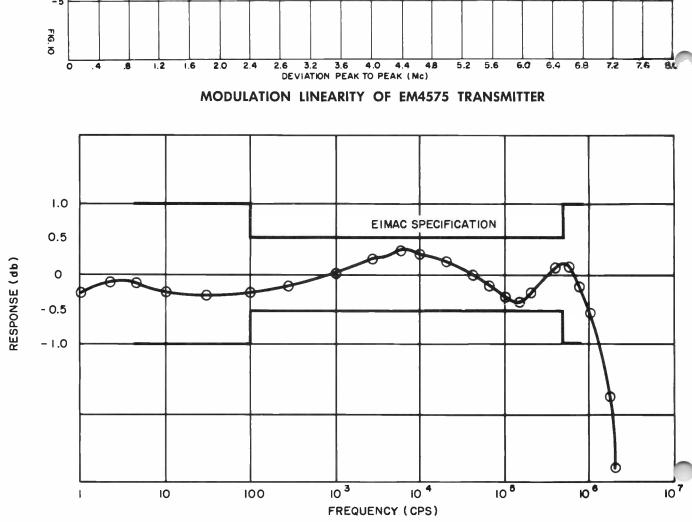
Wide Temperature Range: This transmitter will meet full performance specifications over the range -54° C to $+55^{\circ}$ C, without a heat sink or supplementary cooling.

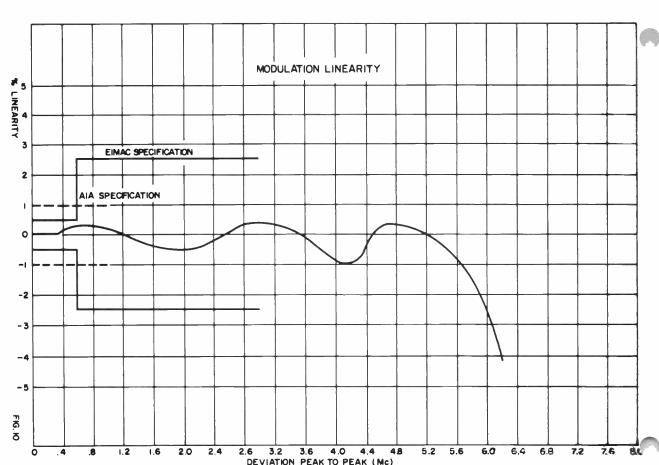
Modulation Bandwidth and Linearity: Deviation of ± 1.5 Mc is accomplished at $\pm 2.5\%$ linearity, ± 500 Kc at $\pm 1\%$ linearity, and ± 300 KC at $\pm 0.5\%$ linearity.

High Frequency Stability: Frequency drift does not exceed $\pm 0.0025\%$ of the operating carrier frequency, under all combinations of specified operating conditions.

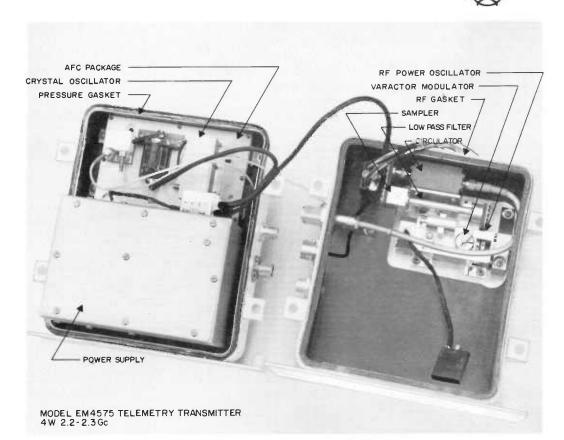


CHARACTERISTICS

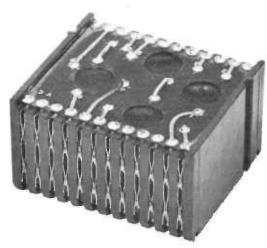

ELECTRICAL	
Frequency, Tunable	2200-2300 Mc
Power Output, CW Minimum	4 Watts
Frequency Accuracy ⁴	$\pm 0.0025\%$
Frequency Stability ⁴	$\pm 0.0025\%$
Carrier Deviation, Adjustable, peak-to-peak	2Mc/Volt to 30Kc/Volt
Modulation Bandwidth, ¹ Flat within ± 0.5 db	100 cps to 500 Kc
Flat within ± 1 db	5 cps to 800 Kc
Modulation Linearity, Deviation from B.S.L.,	*
For ± 300 Kc peak Deviation	$\pm 0.5\%$
For ± 1.5 Mc peak Deviation	$\pm 2.5\%$
Incidental Frequency Modulation, Maximum	±5 Kc
AM, Maximum, due to environmental conditions	1%
due to ± 300 Kc carrier deviation	
due to ± 1.5 Mc carrier deviation	5%
Modulation Input Impedance, Minimum. 5 cps to 800 Kc	50,000 Ohms shunted by 50 picofarads
Primary Voltage required ²	100-150V, 350-450 cps, single phase
Primary power required, maximum	40 VA
Transients, Maximum positive withstood	300 volts for 1 microsecond —10 milliseconds
VSWR Maximum, any phase, for 4 watts output	2:1
for 2 watts output	5:1
Load Impedance required	50 ohms
Warm-up time to meet all specifications	120 seconds
Interference	All applicable requirements of MIL-I-6181D are met
Life (without adjustment of controls), minimum (with servicing and maintenance) minimum	172 hours 5000 hours
(with servicing and maintenance), minimum	5000 110013
PACKAGING	
Volume displaced	280 cubic inches
Dimensions, including mounting flanges	7.5" x 6.063" x 8.0"
Weight	11 pounds
Pressurization	30 psia
Cooling	Convection
Connector, rf Output	Automatic Metals 100-N3001-85
Modulation Input	General RF 2007A
Power Input	
Test Points	Bendix PT06H-10-6S
Temperature, ³ ambient (Continuous Operation)	—54°C to +55°C (MIL-T-21200,
	Class 1)
Altitude	30,000' with 30 psia internal pressure, any altitude with 20 psia pressure
Vibration	Per MIL-T-5422 Curve IV
Shock	Per MIL-T-5422
Salt spray, humidity	Per MIL-T-5422


 $^4\text{Available}$ with frequency accuracy and stability of $\pm 0.001\%$ on special order. $^3\text{Other}$ ranges available on special order.

¹Also available modified for modulation down to DC. ²Transmitter performs as specified, under any combination of environmental conditions.

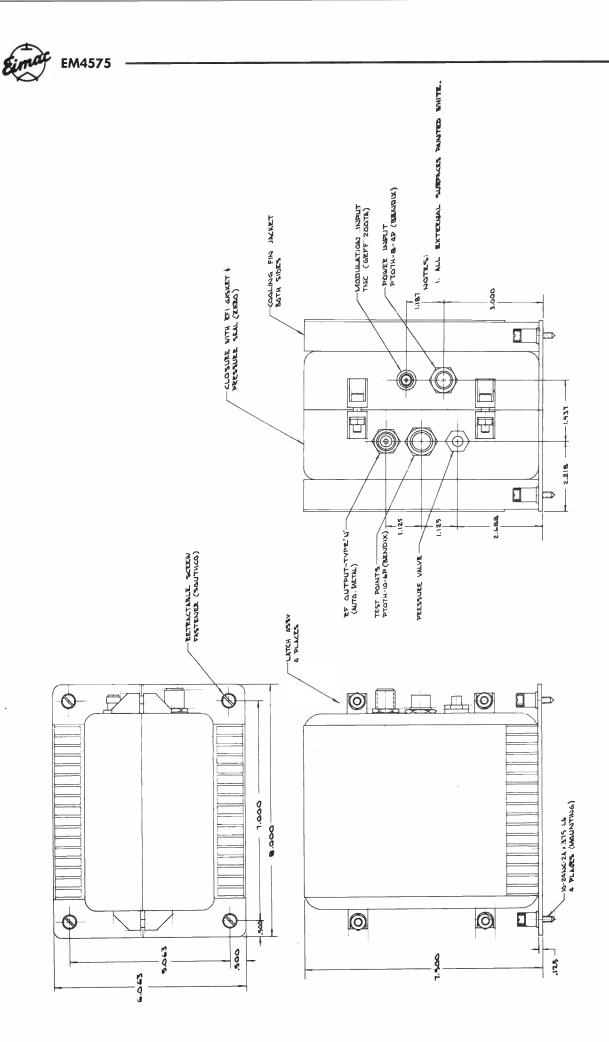


BLOCK DIAGRAM MODEL EM4575 4W S-BAND TELEMETRY TRANSMITTER


EM4575 -

EM4575 TELEMETRY TRANSMITTER ASSEMBLY

Packaging of this transmitter is compact, yet all modules are easily accessible. The covers incorporate pressure seals and rfi gaskets.


EM4575

TYPICAL PLUG-IN MODULE

AFC servo circuits use only high reliability components such as silicon planar transistors and are packaged in modular form. The modules are easily removable, and offer flexibility for future modification. The connector system provides four redundant contacts at each connection. All modules are encapsulated with a rigid high thermal conductivity compound for heat conduction and vibration protection.

RF SECTION, EM4575 TRANSMITTER

The rf power oscillator provides over 4 watts, tunable 2.2-2.3 Gc. There is no output below 2.2 Gc. Harmonics are removed by a low pass filter. The ceramic planar triode in the oscillator is conduction cooled to the transmitter case.

EIMAC

A Division of Varian Associates

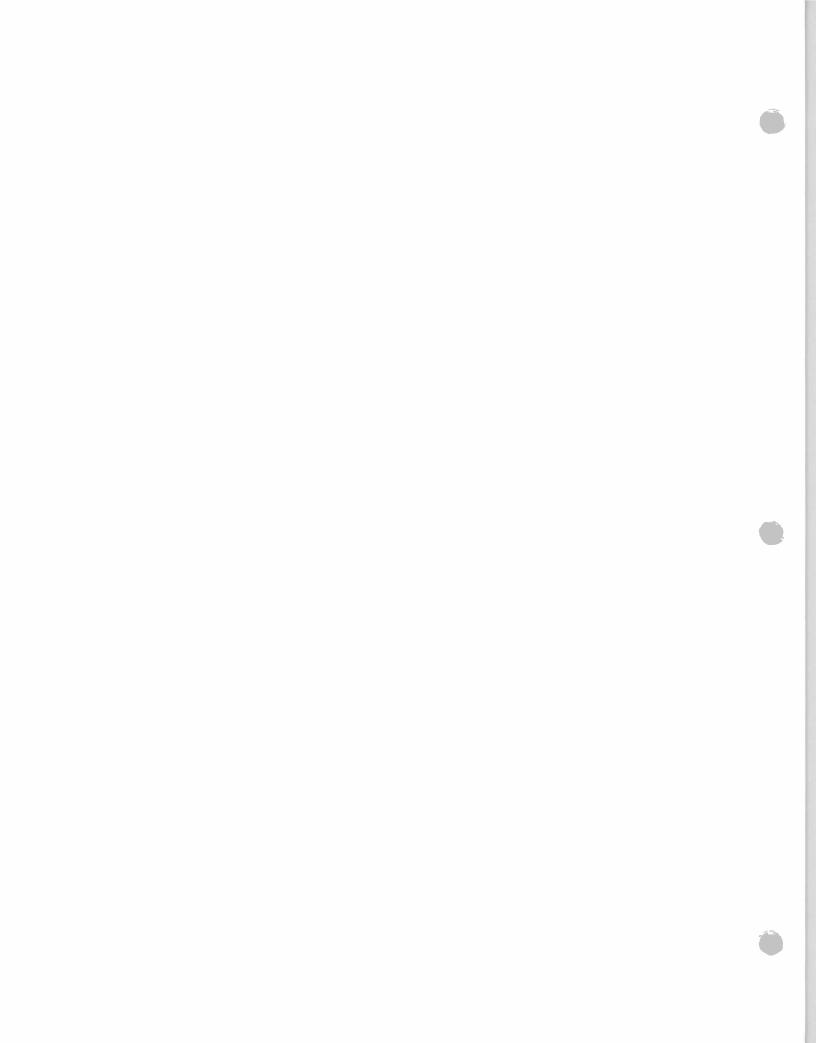
Tentative Data

X4576 CAVITY AMPLIFIER

2300-2600* MHz 20 Watts CW

The X4576 cavity amplifier is recommended for use in airborne and ground transmitters. It is a compact, lightweight, high efficiency amplifier using a ceramic-metal planar triode. It will withstand the severe environmental conditions of missile and aircraft operation. Field tuning is simple.

A recommended dc-dc converter for use with this unit



is EIMAC Model EM4590.

CHARACTERISTICS

Frequency,* continuously tunable 2300-2450 MHz 2450-2600 MHz rf Power Output (2 watts drive), at 2300 MHz 20 watts 2450 MHz 18 watts 2600 MHz 15 watts Bandwidth, Minimum, 3 db points 5 MHz Gain, Minimum, 2300 MHz 10 db 2600 MHz 8 db Load Impedance, Nominal -50 Ohms VSWR, Maximum, for full rated output (fixed phase) -1.5:1without damage -3:1**Power Supply Requirements** Anode Voltage, Maximum -800 Volts Current, Maximum -125 mA Heater Voltage 6.0 Volts Current 1.0 Amperes Warm-up Time 3 minutes MECHANICAL Size (excluding protrusions), maximum -1¹/₄" x 1¹/₄" x 4³/₈" Weight 1.2 Pounds Mounting To heat sink (not included) **Tuning Controls** Four (two for coupling, two for frequency) Cooling Conduction to heat sink at -40°C to +85°C Connectors Type OSM, Female **ENVIRONMENTAL** Temperature, heat sink, for continuous operation -40° C to $+85^{\circ}$ C Altitude 0 to 20,000 feet Vibration -- 10 g, 5-500 cps, 15 minutes in 3 mutually perpendicular planes Shock 15g for 11 milliseconds in 3 mutually perpendicular planes *Factory-adjusted for tuning range of 2.3-2.45 GHz or 2.45-2.6 GHz.

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

SAN CARLOS, CALIFORNIA

EM4577 CAVITY OSCILLATOR 1700-1850* Mc

The Eimac EM4577 is an ultra-stable low noise cavity oscillator designed for use in microwave transmitters. It is unusually compact and rugged. Its high frequency stability over a wide temperature range is a major advantage. This unit uses a ceramic-metal planar triode. Operating life, without tube change, averages over 5000 hours.

Electronic tuning range of ± 7.5 Mc is achieved by the varactor diode in the plate circuit. A choke is provided to keep rf off the modulation input lead.

The EM4577 is also offered as part of a complete modulated system, EM4584. The modulator is solid state. It pulses the oscillator at 100 pps to achieve a frequency time output of symmetrical triangular form,

CHARACTERISTICS

Tuning I	Range,	Man	ual	-	-	-	-	-	-	-	-	-	-	-	-	17	00-1	850* Mc
Tuning l	Range,	Elect	roni	с -	-	-	-	-	-	-	-	-	-	-	-	-	-	$\pm 7.5 \ Mc$
rf Power	Outpu	ıt -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2 v	vatts CW
Frequence	cy Stał	oility	-	-	-	-	-	-	-	-	-	- :	±0.1	5%	from	4()°C	850* Mc ±7.5 Mc vatts CW to +75°C
Power Su	pply H ו	Requi	reme	nts*	*											Volt	age	Current
And	de, Ma	aximu	ım	-	-	-	-	-	-	-	-	-	-	-	-	170	V	
Hea	.ter -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6:0	V	400 mA
Con	trol G	rid -	-	-	-	-	-	-	-	-	-	-	-	-	-		Self	Bias
Linearity	$, for \pm$	1 Mc	Dev	iatio	n	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{c} \pm 1\% \\ \pm 1\% \\ \pm 5\% \\ \pm 10\% \\ \pm 15\% \end{array}$
	for ±	2.5 N	1c D	eviat	ion	-	-	-	-	-	-	-	-	-	-	-	-	$\pm 5\%$
	for \pm	5 Mc	Dev	iatio	n -	-	-	-	-	-	-	-	-	-	-	-	-	$\pm 10\%$
	for ±	7.5 N	Ic De	eviat	ion	-	-	-	-	-	-	-	-	-	-	-	-	$\pm 15\%$
Deviation	n Sensi	itivity	, No	mina	al -	-	-	-	-	-	-	-	-	-	-	-	- 1	Mc/Volt CW/FM 50 Ohms
Modulati	on -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	CW/FM
Load Im	pedanc	e, No	mina	al	-	-	-	-	-	-	-	-	-	-	-	-	-	50 Ohms
Load VS	WR, M	laxim	um	-	-	-	-	-	-	-	-	-	-	-	-	1.3:	1, A	ny Phase
Tube Ty	pe -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- E	ima	c 128631
MECHANICAL																		
Mountin	g -	-	· _	-	-	-	-	-	-	-	-	-	-	Cla	mps	to he	at si	nk cradle
Size -		-	-	-	-	-	-	-	-	Len	gth:	2.2	5 inc	hes	Diar	neter	: 0.8	85 inches
Weight		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.	5 pounds
Cooling		-	-	-	-		-	-	-	-	-	-	-	C	ondu	ction	to F	leat Sink
Connecto	ors -	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	Гуре '	TNC	nk cradle 85 inches 5 pounds Ieat Sink C, Female
ENVIRONMEN	ITAL																	
Tempera	ture (Moun	ting	Sur	face)	-	-	-	-	-	-	-	-	-	-	-40)°C	to +75°C
Altitude		-			- ´	-	-	-	-	-	-	-	-	-	-			12,000 ft.

*Factory adjusted for any 50 Mc segment of the 1700-1850 Mc band. Other frequencies available on special order. **A compact solid state dc-dc converter, Model EM4589, is available for use with this oscillator.

(Effective 6-1-65) Copyright 1965 by Eitel-McCullough, Inc., Printed in U.S.A.

SAN CARLOS, CALIFORNIA

EM4578 CAVITY OSCILLATOR

The EM4578 is a CW oscillator providing 2 watts rf output at any frequency in the 1-2 Gc band. Specify the required frequency when ordering; we will adjust the EM4578 to this frequency, with field tuning capability of ± 10 Mc. This unit is small, lightweight and rugged, using a ceramicmetal planar triode. It is recommended for use in both airborne and ground transmitters.

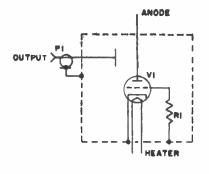
CHARACTERISTICS

Frequency Range	-	_	-	-	-		-	-	-	-	-	-	2		5	1000-	2000* Mc
rf Power Output	-	-	-		-	-	-	-	-	-	-	-	-	-	-	- 2**	Watts CW
Frequency Stabilit	y	-	i.	-	-	-	-	-	-	-	-	-	± 0.26	76 f	from	a _40°C	to +75°C
Power Supply Requ																Voltage	Current
Anode, Maxin	num	1 -	-	-	2	-	-	-	-	-	-	-	-	-	-	140 V	50 mA
Control Grid,	Мах	kimu	ım	-	-	17		-	-	-		-	7	-	-		Self Bias
Heater -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.0 V	400 mA
Tube Type -	1.	-	Jr.	Π.	\overline{a}	-	-	-		-	-	-		~	-	- Eim	ac 128613
Load Impedance	-	-	-	-	-	-	-	-	-	-	G.	_	2	_	-	50 ohm	s nominal
Modulation -	-	-	-	÷.	-	-	-	•	-	-		-	-	-	-		- CW
VSWR, Maximum	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	1.3:1.	any phase

MECHANICAL

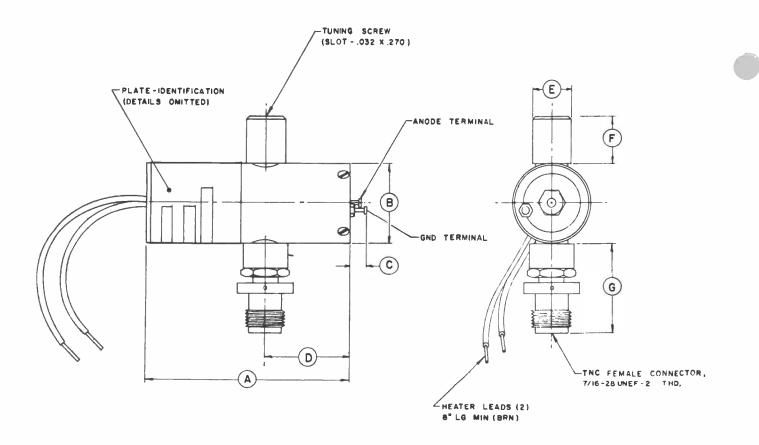
ELECTRICAL

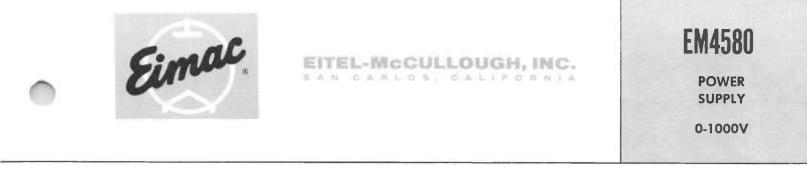
Mounting	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Clan	nps	to he	eat sink cradle
Size -	-	-	-	-	1-	-	-	-11	-	-	Lei	ngth	: 2 t	o 4 i	nche	es, de	per	nding	on frequency
																Γ	Diar	neter	: 0.85 inches
Weight	-	-	-	-	E.	-	-	-1	-	-	-	0.2	to 0	.5 p	ound	s, de	per	nding	on frequency
Cooling	-	-	-	-	-	σ.	7	-	-	-	-	-	1	-	-	-	-	-	Conduction
Connector	r	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	Туре	TNC Female


ENVIRONMENTAL

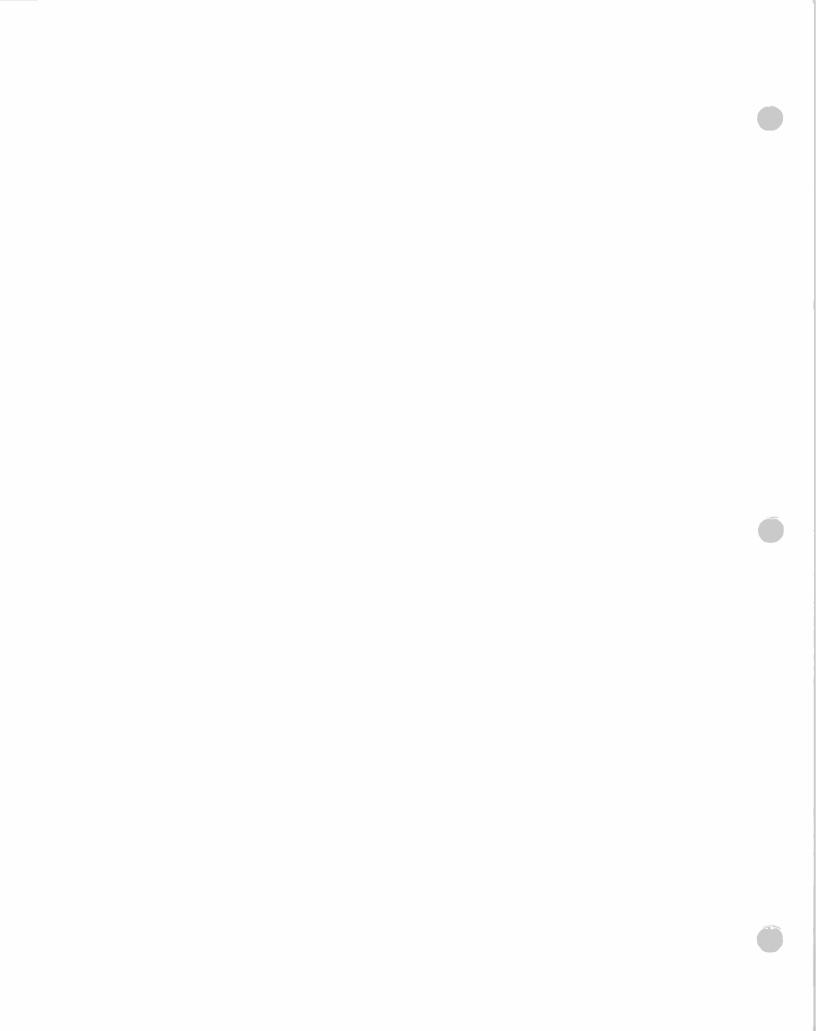
Temperature	-	-	-	-		$\frac{1}{2}$	-	-	-	-	-	-	-	-	-	-	-40 °C to $+75$ °C
Altitude -	-	1	-	-	-	-	-	-	-		-	-	-	-	-	-	0 to 12,000 feet

*Factory adjusted for any 20 Mc Segment of the 1000-2000 Mc band.


**Can provide up to 3 watts output with higher anode voltage and current and special cooling.

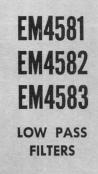


FREQUENCY	1000 Mc	1500 Mc	2000 Mc
A (nom.)	4	3	2
D (nom.)	1.75	1.2	.9


The Eimac Model EM4580 is a rack-mounted, regulated power supply for laboratory use. Output voltage is continuously variable 0-1000 V at 0.5 Amps; a vernier control permits precise selection of output with less than one volt deviation from the desired value. A 300 Vdc reference output and 6.3 Vac output are also provided. A voltmeter and ammeter are included, accuracy $\pm 2\%$ at full scale. Forced air cooling is provided by the included fan.

CHARACTERISTICS

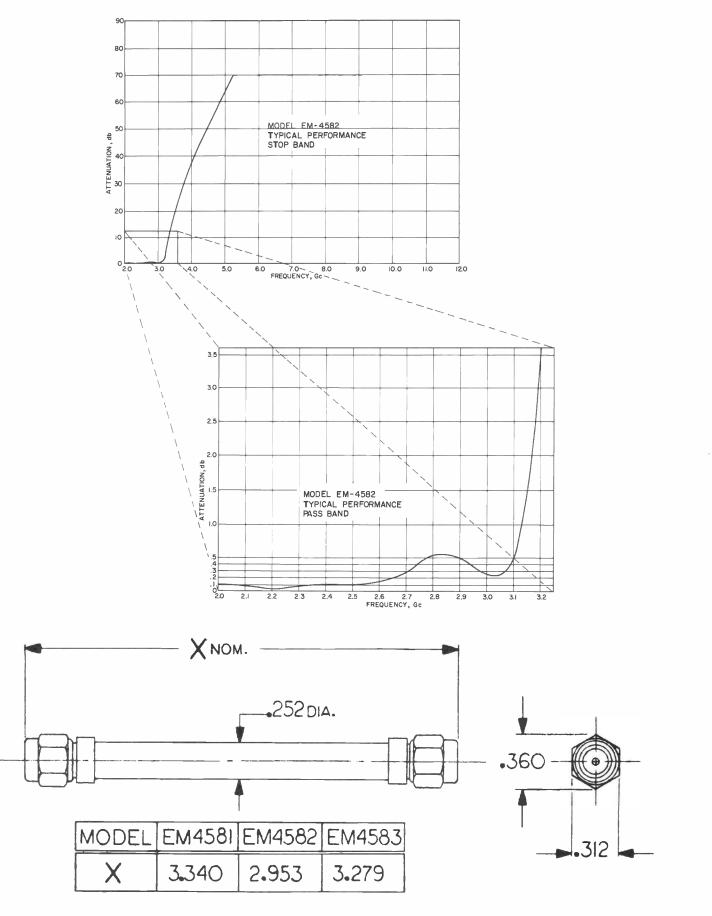
Output Impedance, Maximum,	, 0-1000 cps		0.01 Ohm
	1-10 Kc -	2 L L	0.1 Ohm
	10-100 Kc		1 Ohm
Transient Response		н: н	For Full Load/No Load or No Load/Full Load step change, output recovers to within dc regulation limits within 2 milliseconds
Vernier Range			3 Volts
AC Input		18 A	105 to 125 Vac rms, 50 to 60 cps, Single Phase
Output Polarity			- Swinging link for positive or negative output with respect to ground, or floating output
Overload Protection		- Line	and HV circuits fused; time delay relay included
Mounting	- Fits st	tandard 1	9" rack. Also has rubber feet for table mounting
Weight	z = z	14 A.	80 pounds
Dimensions		 (a) 	10½" high x 19" x 15"


OUTPUTS:

			REGULA	ATION		MAXIMUM
		Li	ne	No Load/	Full Load	RIPPLE
VOLTS	CURRENT	%	V	%	V	mV rms
0-1000 Vdc	0-500 mA	0.02	0.05	0.01	0.02	1
6.3 Vac (CT)	10 A	_	—	—		
300 Vdc	5 mA	0.02	0.05	0.01	0.02	1

EITEL-MCCULLOUGH, INC.

These low pass filters are recommended for use with UHF/Microwave telemetry transmitters, aerospace television transmitters and command/ control transmitter exciters. Because of their small size and light weight, however, they are excellent for use in many other low-to-medium power transmitters. Their rugged construction results in reliable performance under the shock and vibration of missile launch. All models are coaxial, multiple-section reactive type filters. Silver plating is used to minimize insertion loss.


CHARACTERISTICS

MODEL		EM4581	EM4582	EM4583
Pass Band, Mc	-	1435-1735	2 200-2500	4400-5000
Power Rating, Watts, Avg	-	100	100	50
Insertion Loss, DB, Max	-	0.2	0.2	0.2
Attentuation, First Harmonic, DB, Min	-	45	45	45
Attenuation, Second and Third Harmonic, DB, Min.	-	60	60	60
VSWR, Maximum	-	1.2	1.2	1.2
Impedance, Ohms, Nominal	-	50	50	50
Connectors (male) ¹	-	OSM	OSM	OSM

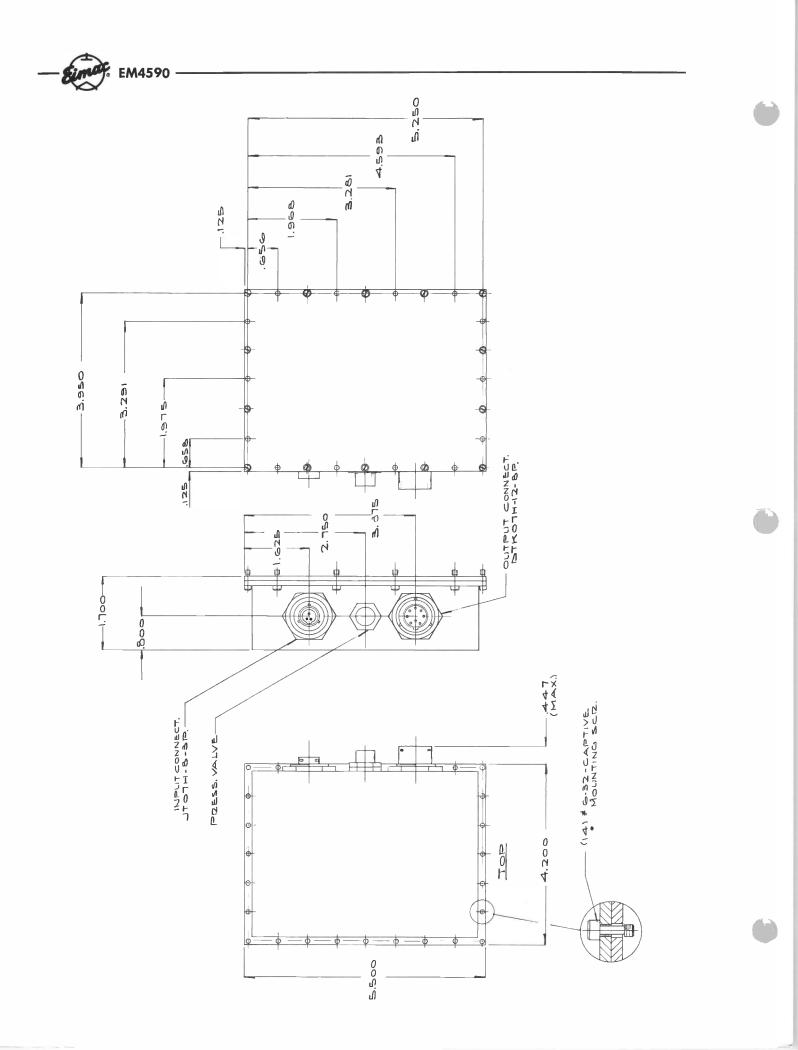
¹Strip-line connectors also available.

EM4581, EM4582, EM4583

EIMAC

A Division of Varian Associates

The EIMAC Model EM4590 is a solid state dc-dc converter, recommended for use with 10-30 watt output rf cavity amplifiers and oscillators. It provides regulated plate and heater voltages, operating from 28 Vdc primary source. This is a compact, light weight, high efficiency, conduction-cooled unit. It operates satisfactorily during the shock and vibration of missile launch. It is hermetically sealed, for operation at any altitude.



CHARACTERISTICS

ELECTRICAL	
------------	--

Plate Voltage 600, 650 or 700 Vdc, selectable by internal wird	ing, at 90 to 150 mA
Accuracy, (at nominal input, 125 mA)	· ±5%
Accuracy, (at nominal input, 125 mA)	· ±5%
Load Regulation	<u>+</u> 5%
Line Regulation	3%
Heater Voltage	Volts, 1.0 Amperes
Line Regulation '	±3%
Ripple (including spikes), maximum	10%
Bias Voltage A constant-current, adjust	able bias voltage is
provided for operation	
EM4596 an Input Voltage	- $28 + 100$ Volts dc
Overvoltage, maximum	43 Vdc
Input Transients, maximum 80 volts	for 20 microseconds
Input Ripple, Maximum 3V rms, DC 2	20 Kc. superimposed
	on 24-32 Vdc input
Input reversal is withstood without damage. Interference	
Interference	Meets MIL-I-6181D
Efficiency, Minimum	70%
Life, Continuous or intermittent operation, 95% probability, 60% confider	nce - 1000 hours
MECHANICAL	
MECHANICAL Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5"
MECHANICAL Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds
Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included)
Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included) - Conduction
Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included) - Conduction - 30 Psia
Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included) - Conduction - 30 Psia Bendix JT07H-8-3P
MECHANICAL Size, Overall (excluding connectors) Weight - Mounting - Ooling - - Pressurization - Output -	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included) - Conduction - 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P
Size, Overall (excluding connectors)	1.7" x 4.2" x 5.5" - 2.5 pounds sink (not included) - Conduction - 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P
Size, Overall (excluding connectors)	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810 514-4, MIL-STD-810
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810 514-4, MIL-STD-810 egory II, MIL-E-5400
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810 514-4, MIL-STD-810 egory II, MIL-E-5400 y perpendicular axes
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810 514-4, MIL-STD-810 egory II, MIL-E-5400 y perpendicular axes roc. I, MIL-STD-810
Size, Overall (excluding connectors) -	Conduction 30 Psia Bendix JT07H-8-3P h DTK07H-12—8-P 54°C to +95°C Any 514-3, MIL-STD-810 514-4, MIL-STD-810 egory II, MIL-E-5400 y perpendicular axes roc. I, MIL-STD-810 roc. V, MIL-STD-810

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

EIMAC

A Division of Varian Associates


Tentative Data

X4592 CAVITY AMPLIFIER

1700-1850 MHz 25 Watts CW

The X4592 cavity amplifier is recommended for use in aerospace telemetry, television and general-purpose transmitters. It may be used with transmitters having wide modulation bandwidth. Its small size and light weight are major advantages for aerospace use. This unit is hermetically sealed; it may be used at any altitude. It uses a ceramic-metal planar triode. Operation is satisfactory during the severe environmental conditions of missile launch.

A recommended dc-dc converter for use with this amplifier is EIMAC Model EM4590.

CHARACTERISTICS

Frequency,¹ continuously tunable 1700-1850 MHz Rf power² output (with 2 watts drive) -Frequency (MHz) Power Output (Watts) CW 1700-1750 20 1750-1800 25 1800-1850 20 Input Signals -All standard FM telemetry signal formats, per IRIG 106-65 --Bandwidth, Minimum, 3 db points -10 MHz Gain, Minimum, 1700-1850 MHz 10 db Load Impedance, nominal -50 ohms VSWR, Maximum, for full rated output -1.5:1without damage -3:1Efficiency,² Overall, Minimum -25%Phase jitter, Maximum, between input and output 5° peak Power Supply Requirements³: Anode voltage 600 Volts Current 125 mA Heater voltage 5.5 Volts Current 1.2 Amperes Warm-up Time **3** Minutes

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

MECHANICAL

Size, Overall (including protrusions)	 -			4" x 2½" x 1½"
Weight	 -			1.1 pounds
Mounting	 -			To Heat Sink (not included)
Tuning Controls	 -			Three (all on same surface)
Cooling	 -	- Cond	uction to	o Heat Sink at -54 °C to $+95$ °C
Connectors: rf input	 -			OSM Female
rf output	 -			OSM Female - Deutsch #DM 5300-3P-643
Power	 -			- Deutsch "Die 0500 St 010

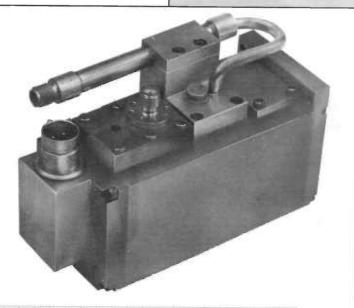
ENVIRONMENTAL

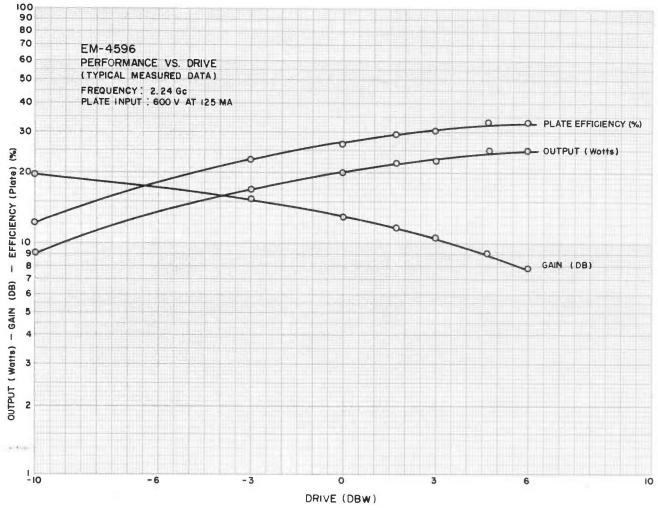
Temperatu	ıre,	hea	t sin	k, fo	or co	ntin	uous	s ope	eratio	on	-	-	-	-	-	-	-	—54	l°C t	0 +9	95°C	
Altitude	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Any	
Vibration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20g,	20-2	000	cps,	3 m	ajor	axes	
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Pe	r MI	L-E-	5400	

FOOTNOTES:

- (1) Also available with similar performance characteristics for other frequencies in the 900-2500 MHz range.
- (2) Under worst combination of specified environmental conditions. Output and efficiency are higher under optimum conditions.
- (3) A separate DC-DC converter package, Model EM4590, operating from 28 +8/-4 Vdc, is available from EIMAC. Power supplies for operation from other primary sources are available on special order.

SAN CARLOS, CALIFORNIA


EM4596


CAVITY AMPLIFIER

2200-2300 Mc

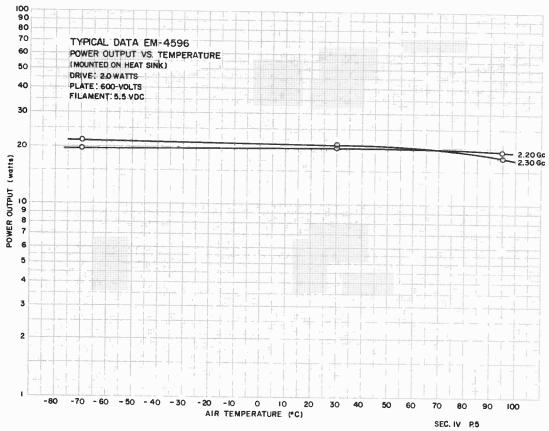
The Eimac EM4596 is a miniaturized 20 watt cavity amplifier incorporating a ceramic-metal planar triode. It is intended for use in aerospace telemetry transmitters and special aerospace transmitters. It is hermetically sealed, for operation at any altitude. All connectors and tuners are accessible on one surface. A low pass filter, for harmonic suppression is included.

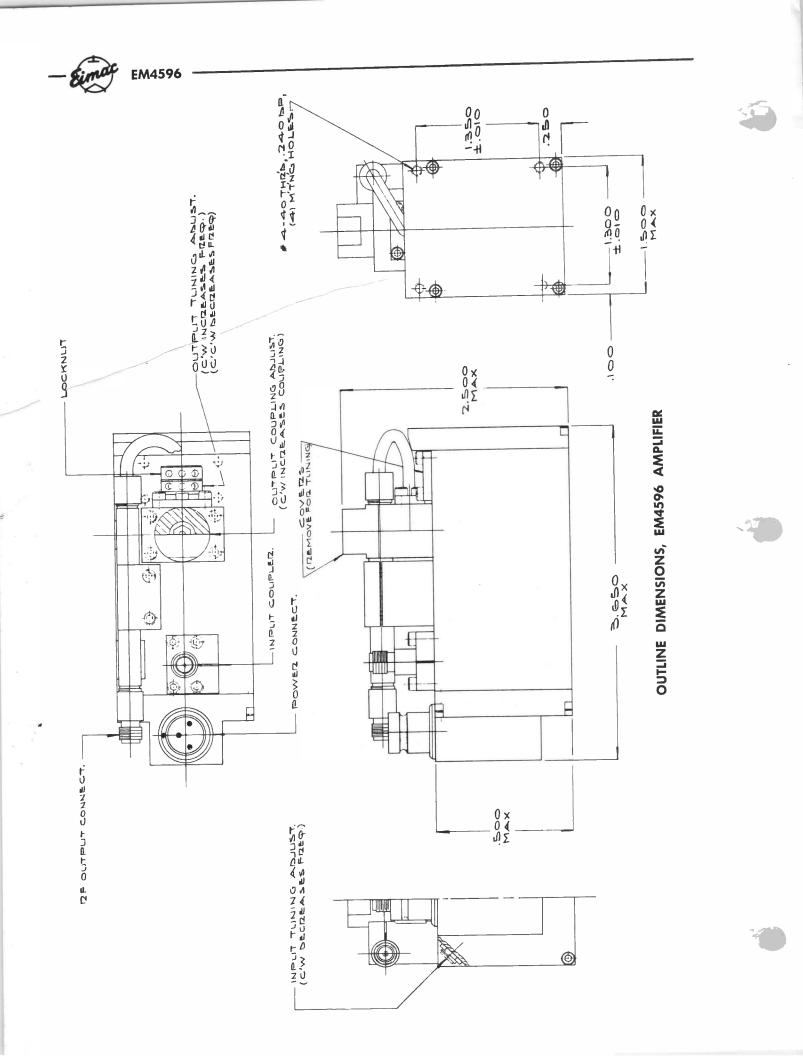
A recommended DC-DC converter for use with this amplifier is Eimac Model EM4590.

CHARACTERISTICS


LECINICAL														~ ~ ~		~~~	0.75
Frequency, ¹ continuou	sly tun	able	-	-	-	-	-	-	-	-	-	-	-	- 22			0 Mc
Rf power ² output (with	h 2 wai	tts dri		-	-	-	-	-	-	-	-	-	-	-			Watts
Input Signals		-	-	Al	l sta	nd ard	FM	tele	emetr	y sig	mal	forn	iats,	per	IRI	G 10	06-60
Bandwidth, Minimum	, 3 db p	points	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0 Mc
Gain, Minimum -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	10 db
Load Impedance, non	ninal -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	50	ohms
VSWR, Maximum, for	full ra witho	ated o out da	utput mage	-	-	- -	-	-	-	-	-	-	-	-	-	-	1.5:1 3:1
Efficiency, ² Overall, M	/linimu	m -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25%
Power Supply Require	ements ^a	3															_
Anode voltage		-	-	-	-	-	-	-	-	-	-	-	-	-	- (Volts
Current		-	-	-	-	-	-	-	-	-	-	-	-	-	-		5 mA Volts
Heater voltage Current		-	-	_	-	-	_	-	-	-	-	-	-	-			peres
Harmonic Suppression	n (2nd	, 3rd a	and 4	th d	of 22	200-23	00 N	Ac)	-	-	-	-	-	-	-	- (60 db
Warm-up Time -		-	-	-	-	-	-	-	-	-	-	-	-	-	- 3	3 Mi	inutes
MECHANICAL																	
Size, Overall (includi	ng prot	rusio	ıs)	-	-	-	-	-	-	-	-	-	3¾	" x	21/2	2″ X	11⁄2″
Weight		-	-	-	-	-	-	-	-	-	-	-	-	-	0.9	5 p	ounds
Mounting		-	-	-	-	-	-	-	-	-	То	Hear	t Sin	k (1	not i	incl	uded)
Tuning Controls -		-	-	-	-	-	-	-	-	-	T	hree	(all	on s	ame	e sur	rface)
Cooling		-	-	-	-	-	- C	ond	uctio	n to	Hea	at Sir	ık at	-5^{2}	4°C	to +	⊦95°C
Connectors: rf input		-	-	-	-	-	-	-	-	-	-	-	-				emale
rf outpu	t	-	-	-	-	-	-	-	-	-	-	-	-				emale
Power		-	-	-	-	-	-	-	-	-	-]	Deuts	sch #	[±] DM	530	00-3	P-643
ENVIRONMENTAL																	
Temperature, heat sin	nk, for	conti	nuous	s op	perat	ion	-	-	-	-	-	-	-	_54	4°C	to -	+95°C
Altitude		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Any
Vibration		-	-	-	-	-	-	-	-	- 2	0g,	20-2	000	cps,	3 n	najo	r axes
Other		-	-	-	-	-	-	-	-	-	-	-	-	Pe	r M	IL-E	E-5400

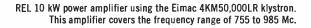
FOOTNOTES:

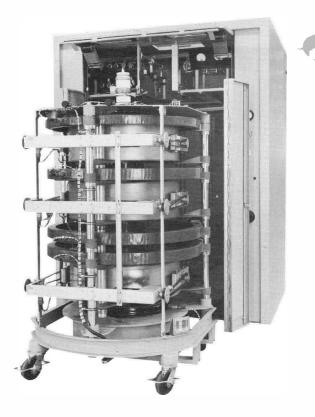

- (1) Also available with similar performance characteristics for other frequencies in the 900-2500 Mc range. Model EM4539 covers 1420-1600 Mc, Model EM4592 covers 1700-1850 Mc.
- (2) Under worst combination of specified environmental conditions. Output and efficiency are higher under optimum conditions. See curves for typical output and efficiency with other drive levels. Power output is 20 watts minimum, -54°C to +75°C.
- (3) A separate DC-DC converter package, Model EM4590, operating from 28 +8/-4 Vdc, is available from Eimac. Power supplies for operation from other primary sources are available on special order.



TEMPERATURE EFFECT, EM4596 AMPLIFIER

The Care and Feeding of EIMAC EXTERNAL CAVITY POWER KLYSTRONS


APPLICATION BULLETIN 10



EITEL-MCCULLOUGH, INC.

20 kW power amplifier built by ITT Federal Laboratories. This amplifier, using the Eimac 3KM50,000PA klystron, operates from 225 to 400 Mc. The klystron carriage is shown removed from the amplifier cabinet.

Collins Radio Company's 240D-2 amplifier, which uses an Eimac 10 kW power klystron. These power amplifiers are part of the ground command control network used for control of Project Mercury manned space capsules. Additional 240D-2 amplifiers will be used to control Project Gemini two-man space flights.

SECTION PAGE

	FOREWORD		2
CONTENTS	INTRODUCTION TO THE KLYSTRON	1.0	3
CONTENTO	The Electron Gun		
	The rf Section	$\begin{array}{c} 1.1 \\ 1.2 \end{array}$	4
	The Collector		4 E
		1.3	4 5 5 7
	The Axial Magnetic Field	1.4	Э г
	The Electron Beam	1.5	Э 7
	Modulating Anode Klystrons	1.6	(
	Titanium Getter	1.7	8
	MECHANICAL CONSIDERATIONS	2.0	8 8 8 9 9
	Shipping Klystrons	2.1	8
	Storing Klystrons	2.2	8
	Handling Klystrons	2.3	8
	Acceleration Forces	2.4	9
	At the Bench	2.5	
	Cleaning the Ceramic	2.6	10
	Care of the External Tuning Cavities	2.7	10
	Air and Liquid Coolant Supplies	2.8	10
	Coolant Connections	2.9	10
	ELECTRICAL CONSIDERATIONS	3.0	10
	High Voltage Protection	3.1	10
	Equipment Protection	3.2	11
	Focus Coils	3.3	11
	Instrumentation	3.4	11
	OPERATING AND TUNING	4.0	12
	Test Data Cards	4.1	12
	Preliminary Focus Coil Adjustment	4.2	12
	Starting the Electron Gun	4.3	13
	Starting the Electron Gun,	4.0.1	10
	Radiation-Heated Cathode Type	4.3.1	13
	Starting the Electron Gun,	4.0.0	10
	Bombarded Cathode Type	4.3.2	13
	Applying Beam Voltage	4.4	13
	Magnetic Field Coils Prefocus Coil	$\begin{array}{c} 4.5\\ 4.5.1\end{array}$	13
Śn	Body Coils	4.5.1 4.5.2	$\frac{14}{15}$
T	Collector Coil	4.5.2 4.5.3	15 15
a dama da	Results of Improper Adjustment of Focus Coils		
the second second	Beam Transmission and Beam Loss	$\begin{array}{c} 4.5.4 \\ 4.6 \end{array}$	15 15
A A A A A A A A A A A A A A A A A A A	Tuning the Klystron	4.0	15 15
	Input Cavity Tuning	4.7 4.7.1	15 16
	Second Cavity Tuning	4.7.1 4.7.2	16
	Penultimate Cavity Tuning	4.7.2	16
	Output Cavity Tuning	4.7.3 4.7.4	16 17
	Load VSWR Check	4.7.4 4.7.5	17 17
	Trimming	4.7.6	17 17
A Charles The All	Increasing Power	4.8	$17 \\ 17$
	APPLICATION OF THE POWER KLYSTRON	5.0	18
ALL AND A	Modulating Anode—CW Applications	5.1	19
On the Cover—120-foot antennas used at one of	Modulating Anode—Pulse Applications	5.2	19
the tropospheric scatter sites in the Aleutian Is-	Broad-Band Applications	5.3	20
lands. This is one of the many tropospheric scatter	MISCELLANEOUS	6.0	20
installations using Eimac power amplifier klystrons. The transmitters at this site were manufactured by	Eimac Power Klystron Catalog Numbering System	6.1	20
Radio Engineering Laboratories, and the installation	Klystron Gas Check	6.2	20
was engineered and directed by Western Electric	Klystron Reconditioning or "Aging"	6.3	21
Company.	Technical Assistance	6.4	21

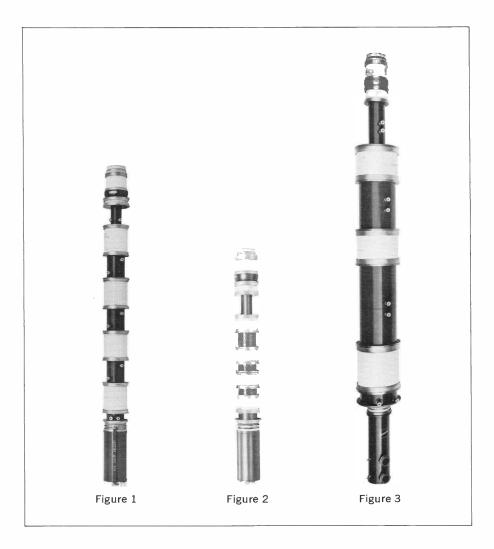
PUBLISHED BY EITEL-MCCULLOUGH, INC. COPYRIGHT 1963, EITEL-MCCULLOUGH, INC. PRINTED IN U.S.A.

FOREWORD

Eimac 3K210,000LQ. This 75 kW klystron is used in many tropo-scatter systems spanning distances up to 440 miles. This klystron is unique in that its input and penultimate cavities are external but its output cavity is integral.

Eimac external cavity power klystrons, operating at frequencies from 225 to 985 megacycles, have earned a unique position in high power radio communications. They were used in the very first tropospheric scatter communications systems and proved to be so successful that they are now found in approximately 90% of all such systems in the free world. They are also used extensively in fixed radar installations and in UHF television.

Because external cavity klystrons are so generally used, almost everyone associated with high power radio communications will at some time be concerned with equipment using these tubes. For this reason Eitel-McCullough, Inc. believes that an application bulletin dealing exclusively with external cavity power klystrons will serve a useful purpose.


Eitel-McCullough, Inc. also manufactures a complete line of integral cavity power klystrons operating throughout the UHF and microwave spectrum. Information on these Eimac integral cavity klystrons will be found in other publications.

The information in this bulletin is arranged in six sections:

- 1. Introduction to the Klystron.
- 2. Mechanical Considerations.
- 3. Electrical Considerations.
- 4. Operating and Tuning.
- 5. Application of the Power Klystron.
- 6. Miscellaneous.

This application bulletin is intended to be a practical handbook for persons designing and operating equipment using external cavity power klystrons. For a more theoretical approach the reader should consult one of the many excellent textbooks available on the subject.

The information in this bulletin is based on data believed to be accurate, but no responsibility is accepted for the successful application of the systems or principles discussed. Likewise, no responsibility is accepted for patent infringement, if any, resulting from the application of this information.

The Care and Feeding of EIMAC External Cavity POWER KLYSTRONS

Section 1.0

INTRODUCTION TO THE KLYSTRON

The klystron is not as mysterious as it may seem to persons accustomed to using conventional tubes, even though it has no grid and no plate, and no lumped tuned circuits are connected to it by means of wires leading out of the tube. Actually the klystron is a simple device which exists for the same reason that conventional negative-grid tubes exist it controls the behavior of electron streams flowing in a vacuum. The great difference between the klystron and the conventional tube lies not in *what* it does, but in *how* it does it.

Conventional triode or multigrid tubes, in which the electron flow is controlled by potential fields surrounding the grids, have upper usable frequency limits beyond which the electrons can not respond efficiently to the alternating control voltages applied to the grids. This occurs when the time required by the electrons for the transit of their paths becomes a substantial part of the period of one cycle at the operating frequency.

As a result of transit time effects, efforts to obtain satisfactory operation of conventional tubes at the higher frequencies have resulted in the development of extremely small tubes in which the lengths of the electron paths are reduced to the practical minimum. Such tubes are extensively used in low-power applications, but they are simply too small to control great amounts of power.

On the other hand, klystrons must be made relatively large in order to take advantage of transit time effects, which are essential to their operation. As a result, a klystron for operation near 500 megacycles, such as the 4KM50,000LA3 (Fig. 1), can be nearly $5\frac{1}{2}$ feet long and produce more than ten kilowatts of useful CW output power. The 4KM50,000LR (Fig. 2), is a smaller klystron for operation at higher frequencies, and can deliver ten kilowatts output power at frequencies from 755-985 megacycles. The Eimac 3KM50,000PA (Fig. 3), for operation from

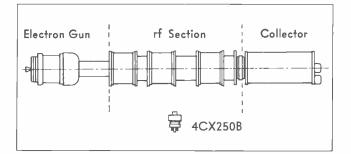


Figure 4—Typical Eimac Externally Tuned Klystron, Compared to a 250-Watt UHF Tetrode Tube.

225-400 megacycles, is nearly seven feet long and can develop over 20 kilowatts of CW power output.

A typical Eimac externally-tuned klystron is illustrated in Figure 4. It is apparent from the form of a klystron that it can be divided into three functional sections: the electron gun, the rf section, and the collector. In the following paragraphs, these parts of the klystron will be described in detail and their operation explained in simple terms.

1.1 The Electron Gun

The electron gun is the source of the electron beam upon which the operation of the klystron depends. The electron beam is simply a fast-moving stream of electrons expelled from the electron gun into the drift space of a klystron in somewhat the same manner that a jet of water is expelled in a solid stream from a nozzle.

A sectional schematic drawing of an electron gun of the kind used in Eimac klystrons is presented in Figure 5. The electrons destined to form the beam are emitted from a heated cathode and they flow

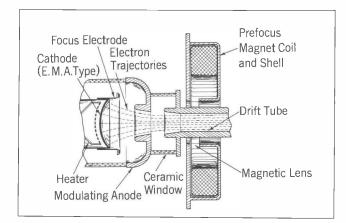


Figure 5—Simplified View of Electron Gun, Prefocus Magnet Coil and Entrance to Drift Tube.

away from the cathode along converging paths because of the specially shaped electric field set up by the electrodes.

The cathode is a concave section of an ellipsoid located inside one end of a cylindrical metal piece called the "focus electrode." Just beyond the opposite end of the focus electrode the modulating anode and first drift tube section are located. The focus electrode is maintained at cathode potential or at some negative potential with respect to the cathode. The modulating anode potential is positive with respect to the cathode. The positive charge applied to the modulating anode causes the electrons to flow away from the cathode toward the anode, and the negative or zero charge applied to the focus electrode tends to force them toward the axis. As a result of the two forces acting on the electrons, they form a converging beam, which focuses inside the first drift tube section. In klystrons which have no modulating anode, the end of the drift tube is formed into a cup which partially surrounds the cathode and serves as an anode.

Modern Eimac klystrons use oxide-coated cathodes at power levels up to and including 2 kilowatts. At higher power levels the Eimac Matrix Cathode Type A (EMA) is used. This cathode is made by pressing a mixture of powdered nickel and various earth carbonates under great pressure onto a nickel backing. Oxide-coated and EMA cathodes are easily heated by radiation from a filament or heater since they operate at relatively low temperatures.

Some of the older Eimac power klystrons use solid metal cathodes operating at relatively high temperatures. Radiation heating cannot be used in this case and the metallic cathodes must be heated by electron bombardment. This is accomplished by placing a filament behind the cathode and applying approximately 2000 volts dc between the filament and the cathode structure. Electrons emitted from the filament will travel at high velocities to the rear of the cathode, where they will release all their kinetic energy in the form of heat when they strike the cathode. By this means, the cathode can be heated to the operating temperature.

1.2 The rf Section

The rf section of a klystron is made up of the drift tube and the several resonant cavities which surround it at intervals along its length. The drift tube is an axial, interrupted tube with a length about twenty times its diameter. There may be from two to six interruptions, called "gaps," along the length of the drift tube.

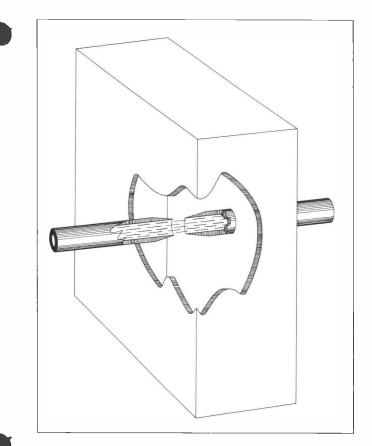


Figure 6—Simplified View of Resonant Cavity. Note Drift Tube Tips. Electron Trajectories Represented by Broken Lines.

A resonant cavity is constructed around each drift tube gap, as shown in Figure 6, and arranged so that the ends of the drift tube sections protrude into the cavity at opposing high-voltage points on the cavity wall. Thus, the drift tube tips become the capacitive loading elements in the cavity, and large rf voltages will be induced across them when the cavity is excited at resonance.

In Eimac external cavity klystrons, the drift tube gaps are surrounded by cylindrical ceramic envelope sections, and external demountable tuning cavities are assembled around the ceramic sections to form the complete cavities. The construction of the ceramic envelope and gap assembly, and the method of assembling a typical tuned cavity on the klystron body can be seen in Figure 7. In this type of resonator, only the drift tube gap is in the evacuated space, and the tuning mechanism remains entirely outside the vacuum. This permits a few klystron types of simple design to cover a relatively large frequency range.

1.3 The Collector

The electron beam transfers some of its energy to the rf circuits as it flows through the rf section of the klystron, and it carries the balance of its energy out of the rf section into an electrode called the "collector." The collector gathers the electrons and passes them out of the klystron into the external circuits leading to the positive terminal of the beam power supply.

The large energy content of the partially spent beam must be dissipated by the collector. When the electrons collide with the collector surface all their kinetic energy is transformed into thermal energy which heats the collector. The thermal energy is then transferred to the surroundings by cooling the collector with air or a liquid coolant such as water, or water in combination with antifreeze fluids like ethylene glycol.

1.4 The Axial Magnetic Field

The klystron requires a strong axial magnetic field to maintain and direct the electron beam throughout the length of the drift tube. The electron beam is a concentration of negative charges which tend to disperse because of the mutual repulsion existing between like charges. The axial magnetic field overcomes this tendency of the beam to disperse by exerting restoring forces on any electrons which try to move in directions not parallel to the axis. Thus, electrons attempting to move away from the axis of the beam are constrained to remain within the confines of the beam by the magnetic field.

The magnetic field is usually established by several individual electromagnet coils forming part of the magnetic assembly in which the klystron is mounted. The direct currents used to energize the electromagnet coils are sometimes made individually adjustable, to permit variation of the field strength along the length of the klystron if necessary. In many cases, however, the focus coils are so designed that they can be operated in series from a single power supply.

The proper use of the magnetic field is imperative to the long life and satisfactory performance of a klystron, and this matter will be discussed in detail in Section 4.

1.5 The Electron Beam

At the beginning of its passage through the drift tube the electron beam is a continuous stream of electrons moving at constant velocity. Although it is not confined to a wire, it is nevertheless a direct

Figure 7—Typical Eimac Klystron and One of Its External Cavities Before and After Assembly.

current of electricity, flowing through the free space enclosed by the drift tube. Ideally the beam would never touch the drift tube, but in practice there are always some electrons which stray far enough from the center of the beam to be caught by the drift tube walls.

Just as a direct current produces no sound as it flows through a headphone, so a direct current electron beam can produce no rf power as it flows through a klystron. It must be *modulated* in some manner before it can be useful and in the klystron this is accomplished at the drift tube gaps, which modulate the velocity of the electrons in the moving beam.

In Section 1.2 it was explained how a drift tube gap is formed by the ends of drift tube sections, which enter the cavity axially, from opposite ends. The cavity is designed so that the drift tube tips then become its highest voltage points, in order to build up strong radio frequency fields in the gap. This construction is clearly illustrated in Figure 6.

Velocity modulation occurs when the dc beam passes through the radio frequency alternating field established in the first drift tube gap by the rf driver. Following is how velocity modulation is accomplished, and how it transforms itself into density modulation as the beam passes down the drift tube.

Those electrons in the parts of the beam passing the first gap when it is "positively polarized" experience an increase of velocity because they will flow from a region of negative charge toward a region of positive charge. The negative region repels the electrons and the positive region attracts them, with the result that the velocity and the energy content of that part of the beam are increased. The energy gained by the faster parts of the beam is provided by the driving power furnished to the input cavity.

Conversely, the electrons in that part of the beam passing through the first drift tube gap during the half cycles of "negative polarity" will be forced to travel from a positive to a negative region. As a result they will lose velocity and surrender some of their energy to the input cavity.

The beam leaving the first gap is continuous and of uniform density, but alternate parts along its length will contain electrons having higher or lower velocities than they had before entering the gap. The faster electrons begin to overtake the slower electrons as the beam travels freely down the axis of the drift tube, until at some point a few inches from the gap, the fastest electrons will be traveling in company with the slowest electrons for a brief period. At that point, optimum "bunching" has occurred, and the density of the beam will vary periodically at signal frequency, when seen from a fixed point. In other words, the beam will have become a density-modulated beam. If a gap is located at the point of optimum bunching or "density modulation" the beam can be made to surrender many times as much energy as was originally required for velocity modulation. In other words, the klystron will have acted as a radio frequency amplifier.

Energy is extracted from the bunched beam by the same mechanism used to velocity-modulate it in the first gap. As the beam travels through the output gap, the gap polarity will vary in such a way that the denser portions of the beam will be decelerated while the less dense parts of the beam will be accelerated. As a result, there are many more electrons being made to give up energy to the circuit than there are electrons which take energy, and the net effect is to transfer power from the electron beam into the external circuits of the klystron.

The preceding paragraphs have described the action of a two-cavity klystron, in which rf power is used to velocity-modulate an electron beam, so that it can be made to surrender energy to another cavity after traveling a short distance down the drift tube. Experience has shown that klystrons having more than two cavities offer advantages in higher gain and higher efficiency; as a result, three-cavity and four-cavity klystrons are in common use and klystrons with as many as six cavities have been used for special applications.

There is little or no reverse flow of electrons in the drift tube. The fields in the drift tube which are not due to the presence of the beam are so small that great isolation between the output cavity and the input cavity can be obtained. As a result it is possible to obtain stable operation with power gains of up to 50 db, in the case of four-cavity klystrons.

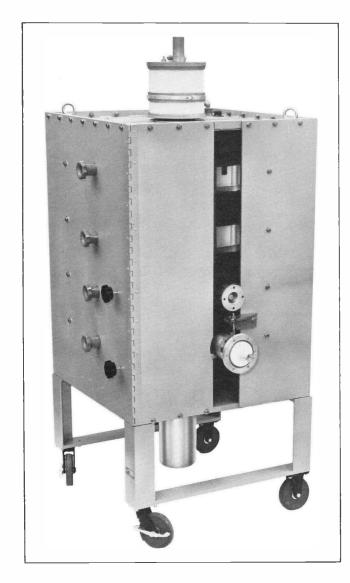


Figure 8—4KM100LA Klystron and H-163 Circuit Assembly. Designed for UHF Television, This Tube Develops 25 Kilowatts of Peak Synchronizing Power at Frequencies from 470 to 610 Megacycles.

1.6 Modulating Anode Klystrons

The klystron is a velocity-modulated device, and the velocity of the electron beam entering the drift tube must be maintained within certain limits if the klystron is to function well. Therefore, attempts to amplitude-modulate the klystron beam voltage with modulation factors larger than 0.3 have been unsatisfactory because the velocity depends entirely upon the beam voltage. Some means must be provided to modulate the beam intensity without varying the beam velocity if satisfactory amplitude modulation is to be obtained.

Certain Eimac klystrons, as shown in Figure 9, are designated by the letters "KM" in their type numbers, and are equipped with "modulating anodes." The electrode configuration of these klystrons is identical to that of standard klystrons, except that the anode of the electron gun is insulated from the rest of the klystron. As a result, the total accelerating potential difference between the klystron body and the cathode can remain constant, while the anode of the electron gun can assume any voltage between zero and the body voltage, with the result that the intensity of the electron beam can be varied at will while the total acceleration and the velocity remain constant.

The modulating anode makes possible amplitude modulation of the klystron with low distortion and high modulation factors. It also provides an excellent means for pulse modulating the klystron with minimum modulating power. In CW applications the modulating anode may be connected to the beam supply through a resistor to provide protection against internal arcs.

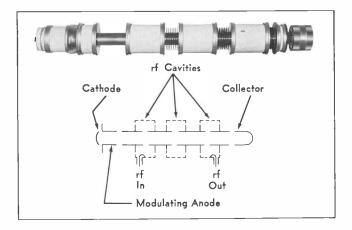


Figure 9—Eimac's Modulating Anode Klystrons Employ an Insulated Anode Placed Between the Cathode and Drift Tube Section.

1.7 Titanium Getter

Most Eimac external cavity power klystrons, rated at or above 10 kilowatts, employ a titanium getter which is designed to be energized simultaneously with the heater. The getter, which consists of a tungsten or molybdenum heater around which is wound a smaller titanium wire, is generally located near the upper end of the collector. One end of the getter is connected to the collector, the other to an insulated terminal.

Getter power supply requirements for Eimac external cavity klystrons range from 2 to 9 volts ac, at 20 to 33 amperes. Provision must be made to limit starting current to twice operating value. The purpose of the getter is to adsorb the small amounts of gas which may be released during operation from the normally hot or accidentally overheated surfaces of the klystron. The getter functions in two ways. The hot titanium adsorbs the common gases directly, and in addition a slow evaporation of titanium takes place which condenses on the walls of the collector to form a cooler layer of titanium to adsorb hydrogen and the inert molecules. In addition to its use during normal operation, the getter can be valuable in conditioning tubes which are unused for long periods of time. For example, site or warehouse spares can be maintained in good condition through periodic energizing of the getter.

Section 2.0

MECHANICAL CONSIDERATIONS

2.1 Shipping Klystrons

Eimac power amplifier klystrons are shipped in strong wooden boxes designed to protect the tube against damage during shipment. Special rubberized hair packs molded to completely fill the space between the tube and the shipping crate, or shockmounted aluminum cradles, are used to protect and support the klystrons during shipment. These packs support the entire length of the klystron, and prevent accidental bending of the long body section.

Klystrons should be unpacked immediately upon receipt and inspected carefully. If possible they should be installed and operated in a klystron amplifier for a sufficient time to insure that they have arrived in usable condition.

2.2 Storing Klystrons

Klystrons may be stored vertically or horizontally until they are to be used. If vertical storage is preferred, they should be kept in racks, with the weight of the tubes supported by the mounting flanges. Horizontal storage requires the use of the shipping crates and their rubberized hair packing or cradle which provide support for the entire length of the tube body (Fig. 10).

Figure 10—Storage of Klystron in Shipping Crate.

2.3 Handling Klystrons

Eimac power amplifier klystrons of the externally tuned cavity type are among the sturdiest electron tubes being built today. However, they must be handled with the same care accorded to other types of tubes of the same weight and size if maximum tube life and satisfactory performance are to be obtained. The handling precautions which follow are simple and easily remembered.

The shape of the klystron makes it especially susceptible to bending near the center; therefore, the klystron should always be supported at two or more points when picked up in a horizontal position. (Fig. 11).

Water-cooled klystrons are equipped with heavy water-jacketed collectors in order to dissipate large amounts of power when necessary. The collectors of Eimac klystrons are insulated from the rf sections

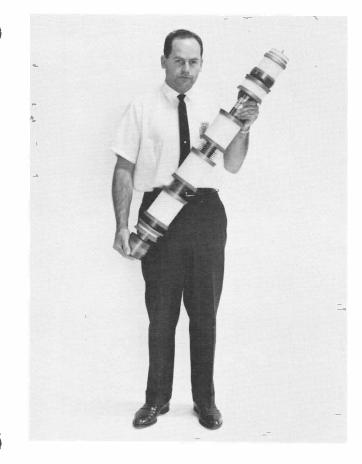


Figure 11—Recommended Method of Hand Carrying Eimac Klystrons.

by ceramic envelope rings, and the ceramic-to-metal seals can be broken by rough handling, or lack of proper support. Therefore, when a klystron is picked up in a horizontal position the collector should be supported about one-third of its length from the inner end of the water jacket to balance the forces acting on the collector.

The larger Eimac klystrons are shipped in aluminum cradles which facilitate handling. These cradles are so designed that the klystron may be lifted to a vertical position while still strapped in its cradle, the collector end of the cradle may be removed, and the tube mounted in operating position prior to removal of the main cradle.

2.4 Acceleration Forces

Forces exerted on the tube structure as the result of sudden accelerations, such as occur when the klystron is dropped or set down roughly, can be destructively great. In the larger tubes, the structure is such that acceleration, such as could occur when the tube is picked up roughly by the center section, can bend the klystron body. Some of the larger klystrons can be handled safely only when two persons move them, or when a hoisting device is used.

2.5 At the Bench

Occasionally it becomes necessary to place a klystron in a horizontal position for inspection and cleaning. Experience has shown that the safest and most convenient way is to use wooden V-blocks as supports. For short tubes, two blocks are usually sufficient, but long klystrons require three. When three blocks are used, they should offer uniform support to the tube, and one block should always support the full weight of the collector directly. (Fig. 12).

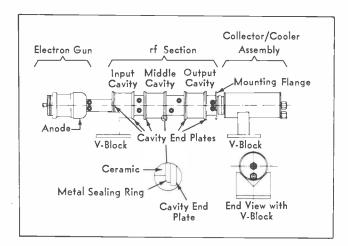


Figure 12—View of Klystron Mounted Correctly on V-Blocks.

V-blocks should be placed so that they touch the rims of the metal ends of the ceramic envelope sections. These metal surfaces are the contact surfaces which connect to the tuning cavities through spring finger contacts. Great care should be exercised to avoid marring or scratching these contacts, because the rf losses which can result are capable of destroying the contact fingers in the tuning cavities.

The massive metal end plates connected to the ceramic envelope sections of the klystron are not sufficiently flexible to be attached directly to the ceramic envelope cylinders. The vacuum-tight attachment between these parts is made by soft metal sealing rings, shown circled in Figure 12, which are intentionally made thin and flexible. In any handling or cleaning operation, care should be taken to protect these thin metal sealing rings against accidental damage.

2.6 Cleaning the Ceramic

Klystron ceramics are best cleaned with an abrasive household cleanser. A cleanser which does not contain bleaches or dyes is preferred. Scrubbing with a small stiff brush will help to remove baked-on deposits. The cleanser must be completely removed by rinsing with clean water before the klystron is restored to service or placed in storage.

2.7 Care of the External Tuning Cavities

The adjustable tuning cavities, which are assembled around the body of the klystron to form resonant circuits in conjunction with the drift tube gaps and their metallic end plates, must be maintained with care. The contact fingers should be protected against accidental deformation, because every individual finger must make effective contact with its opposing metal surface. The walls or metal parts against which the fingers bear must be kept clean and free of oxidation for the same reason. The tuning cavities may be cleaned by wiping them with a dust rag, but should not be left oily. A few drops of mineral lubricating oil or light application of grease should be applied to the adjusting screws if neces. sary, and all the excess lubricant wiped off.

2.8 Air and Liquid Coolant Supplies

All Eimac klystrons require air cooling, and some of them require water cooling of the collectors and drift tubes. Air circulated for cooling should be thoroughly filtered to avoid undue collection of dirt on the klystron. Accumulation of air-borne dirt on the ceramic envelope sections can cause local heating or voltage flash-over on the surface of the ceramic, and must be avoided.

The air filters should be inspected at suitable intervals to insure the free passage of air through them.

Water or other liquid used for cooling collectors and drift tubes of the larger klystrons must be free of minerals capable of encrusting the water passages and the metal surfaces being cooled. The use of a closed water-cooling system employing heat exchangers is the most satisfactory way to cool the large klystron. Aeration of coolant liquids containing water should be avoided in closed systems to keep oxidation effects to a minimum and derive the greatest benefit from closed-system operation.

In cold climates, where the coolant will be subjected to temperatures below 32°F, mixtures of water and ethylene glycol can be used in closed systems. The heat capacity of such mixtures is lower than the heat capacity of water, and the use of such mixtures will require some readjustment of the flow rates if equivalent cooling is to be obtained with them.

Aqueous solutions of ethylene glycol will freeze at temperatures which depend on the concentration of the ethylene glycol as follows: 25% ethylene glycol, 75% water, freezing point = 10° F (-12.2° C); 52.5% ethylene glycol, 47.5% water, freezing point = -40° F (-40° C).

Water mixed with ethylene glycol has greatly increased viscosities depending upon the temperature of the solution. This may change the indicated pressure drops in various parts of the cooling system as compared to the pressure drops observed when pure water is circulated.

2.9 Coolant Connections

The insulated envelope section interposed between the klystron body and the collector should be protected against unnecessary lateral forces tending to break the ceramic or its seals. The collector should be supported while the nuts on the water hose fittings are tightened, and the hoses should be sufficiently flexible to avoid exerting lateral forces against the end of the collector during operation. For the same reason, air ducts leading to air-cooled collectors should be flexible enough to avoid stresses resulting from poorly fitting duct work. The air connections to the air system socket and to the air-cooled cavities must also be made through flexible hose to avoid deforming the contact fingers in these devices.

Section 3.0

ELECTRICAL CONSIDERATIONS

3.1 High Voltage Protection

It is convenient to operate klystrons with their rf sections and collectors at or near ground potential. When this is done, the electron gun end of the tube, the focus electrode voltage supply, the cathode-heating supply, and the instruments associated with these must all be operated at high potentials with respect to ground.

Adequate interlocking devices must be provided to protect operating personnel against accidental contact with these high-voltage circuits, and any effort to defeat the purpose of these safety devices should not be tolerated.

Measuring instruments connected to the cathode end of the tube must be adequately insulated from ground and located behind glass or plastic windows to protect operating personnel. The filament transformers and cathode-heating power supply transformers must be adequately insulated to withstand the total beam voltage (plus the bombarding voltage in certain klystron types).

3.2 Equipment Protection

Protective devices should be installed to avoid damage to the klystron as a result of malfunctioning of the associated equipment. A minimum complement of such devices would include:

(1) Air-flow and water-flow interlocks arranged to remove all electrical power supplied to the klystron in the event of failure in either or both of the cooling systems.

(2) Current overload relays to remove the beam power and the cathode heating power in the event that excessive current should flow in either of those circuits.

(3) Body current overload relay, arranged to remove the beam power upon the rise of body current beyond the maximum permissible value.

(4) Water-temperature or air-temperature interlock switches to remove the beam power in the event of collector overheating.

(5) Low power output interlock, or VSWR interlock to remove the beam power in case the output cavity becomes unloaded due to output line or antenna defects.

(6) Focus coil current failure interlocks to remove the beam power in the event of focus coil power supply failure.

3.3 Focus Coils

Klystron equipment must incorporate means for producing a controllable magnetic field, arranged so the flux is parallel to the axis of the klystron. The field is usually produced by two or more large electromagnet coils carrying direct current.

Each individual klystron may require slightly different magnetic field strengths to control and direct the electron beam, and these may change slightly each time the tuning is changed. Unless designed for series operation each individual coil should be furnished with an independent control for the current supplied to it, and each control must be capable of smooth, continuous adjustment. In addition, it is recommended that each coil be provided with an individual ammeter, permanently connected to its supply circuit. With series-connected coils, of course, only one ammeter is used.

All the electromagnet coils must establish their fields in the same direction. In equipment where all

the terminals and the tops of the coils are marked, careful observance of polarity should assure correct field polarities. The polarity can be tested by means of a fluxmeter or by use of the galvanometer-andloop method, in case doubt exists that the coils are correctly connected.

The direct current provided by the electromagnet power supplies should be filtered to 5% ripple, or less if minimum noise output is desirable. The design values should be stated so the operator can see that the filter circuits continue to function effectively.

The magnetic field will not remain parallel to the axis of the klystron if there are large steel or iron objects in or near the klystron amplifier frame. The magnetic frame of the amplifier should be located away from unsymmetrical cabinet work and in a place free of strong ac fields. Before operation is started, care should be taken that no tools or other magnetic materials are permitted to remain in the magnetic frame.

3.4 Instrumentation

The equipment associated with a power klystron should be provided with instruments to indicate the filament voltage, filament current, bombarder power (if used), beam power input, focus coil currents, body current and relative power output. The relative power indicator should be a sensitive instrument, arranged so that its coupling to the load can be varied to provide on-scale indications at any power level. The relative power indicator and the body current meter are the fundamental tuning tools available to the operator, and they must be located conveniently close to the tuning position. If this provision is not made by the equipment manufacturer, it should be done in the field before any attempt is made to tune the klystron.

It is convenient to operate a klystron with the rf section and the collector at or near ground potential. As a result, the instruments connected to the electron gun end of the klystron are necessarily at high potential with respect to ground. These instruments must be isolated from accidental contact with personnel, as outlined in Section 3.1.

It sometimes happens that instruments connected to circuits at high potentials with respect to ground may experience electrostatic forces exerted by fields set up between them and their surroundings. Errors resulting from this effect can be eliminated by the use of electrostatic shielding or guard circuits in the vicinity of the instruments.

Section 4.0

OPERATING AND TUNING

4.1 Test Data Cards

Every Eimac klystron is operated and tested individually in a standard Eimac Klystron Amplifier

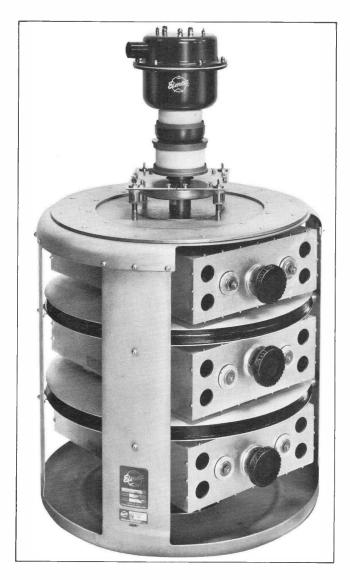


Figure 13—Typical Eimac UHF Klystron Amplifier Assembly.

Circuit Assembly (Fig. 13) before it is shipped to the customer. The complete tuning data and the conditions under which the klystron was operated are recorded in duplicate on test cards. One of these test cards is kept on permanent file at the factory, and the other is shipped in the same package with the klystron to which it belongs. This copy of the test card is one of the most important tools required by the transmitter operator, especially when the klystron is being operated for the first time in the field. A sample is shown in Figure 14.

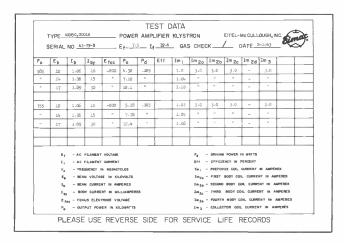


Figure 14—Test Data Card. (front)

			SERVIC	e life	E RECORD) SE	RIAL NO .		
SITE_				•NIT	IAL GAS CHE	ECK. ION_	, E	LECTRON _	
GAS	CHECKS -	RECOMMEN	IDED EACH	MONTH	WHEN KLYST	RON IS NOT	IN SER	/ICE	
DATE									
ION CUR	RENT								
ELECTRO	N CURRENT								
DATE IN SERVICE	TRANS- MITTER	CARRIAGE	FILAMENT HOUR METER	BEAM HOUR METER	DATE OUT OF SERVICE	FILAMENT HOUR METER	BEAM HOUR METER	REASON FOR REMOVAL	TOTAL FILAMENT HOURS
_									
_									

Test Data Card. (back)

When a klystron is operated in several individual transmitters of the same type, its performance can be expected to vary slightly from one installation to another. Variations up to five percent are not usually cause for concern, but variations greater than ten percent often indicate maladjustment or trouble with the equipment.

4.2 Preliminary Focus Coil Adjustment

In new equipment, or in equipment in which the focus coils or their wiring may have been disturbed for any reason, the procedure outlined here and in Section 3.3 should be followed before the electron beam is started. The prefocus coil should be centered physically around the neck of the drift tube and lightly held by the four locknuts at its corners. This preliminary adjustment is made visually, and it will be of aid in final centering later when the klystron is energized.

Before the beam is energized, the currents specified for operation at the lowest recorded beam voltage on the test data card must be established in the focus coils. These preliminary current values will change slightly during tuning, according to the requirements of the individual circuit, after the klystron is placed in dynamic operation.

4.3 Starting the Electron Gun

The cooling system must be placed in operation and its functioning checked before power is applied to the klystron. Large klystrons have electron guns which must dissipate considerable amounts of power, and they can be seriously damaged by operation without adequate cooling.

The magnetic field must be established in the klystron before any attempt is made to energize the beam. Although very low beam voltages will not usually damage a klystron operating without its magnetic field, damage can occur and it is not good practice to start the beam without first establishing the magnetic field. The electromagnet currents should be adjusted to the values corresponding to the lowest beam voltage shown on the test data card, and initial operation should not exceed that beam voltage.

Attention should be paid to the recommended focus electrode bias voltage. The correct value for normal operation of the klystron is recorded on the test card and should be used during all preliminary tuning operations. Small adjustments in the beam current obtained at any fixed beam voltage can be obtained by variation of the focus electrode voltage around the recommended value, which is not critical.

Two distinct methods of heating cathodes in Eimac klystrons are in general use: direct radiation heating, and electron bombardment heating. The starting instructions for electron guns using each of these methods are given in the following sections:

4.3.1 Starting the Electron Gun, Radiation-heated Cathode Type:

- 1. Start cooling system, check its operation.
- 2. Establish recommended currents in focus coils.
- 3. Increase heater voltage gradually to the rated
- value, holding the heater current to the specified value.

- 4. Apply the focus electrode voltage if this is obtained from a power supply. If the focus electrode voltage is obtained from a cathode series resistor, this should be set to approximately its operating resistance.
- 5. Permit the cathode to heat as specified.
- 6. Beam voltage may now be applied to the klystron in accordance with Section 4.4.

4.3.2 Starting the Electron Gun, Bombarded Cathode Type:

- 1. Start cooling system, check its operation.
- 2. Establish recommended currents in focus coils.
- 3. Increase filament voltage gradually to the rated value, keeping filament current to the specified value.
- 4. Apply bombarder voltage, increasing it gradually until rated bombarding power is obtained.
- 5. Apply focus electrode voltage specified for the type klystron in use if this is obtained from a power supply. If the focus electrode voltage is obtained from a voltage divider across the bombarder supply, it should be pre-set to approximately the correct value.
- 6. Beam voltage may now be applied to the klystron in accordance with Section 4.4.

4.4 Applying Beam Voltage

Initial adjustment and operation of the klystron must be done at the lowest voltage specified on the test card provided with each tube. Failure to observe this rule can result in the destruction of the klystron.

The beam voltage may be applied only after the recommended magnetic field has been established in the equipment, the prefocus coil centered visually, and the electron gun started.

4.5 Magnetic Field Coils

The magnetic field which guides the electron beam in an Eimac klystron is created by controlled amounts of direct current flowing in electromagnet coils surrounding the klystron (Fig. 15).

The number of coils required is not the same for all types of klystrons, but operators will find four or five coils in most transmitters. These are the prefocus coil, several body coils and the collector coil.

The purpose of the magnetic field is to control the diameter and direction of the electron beam as it flows through the klystron, so that as little beam current as possible will strike the drift tube walls and be wasted. It follows that the best adjustment of the focus coil currents is the setting for minimum

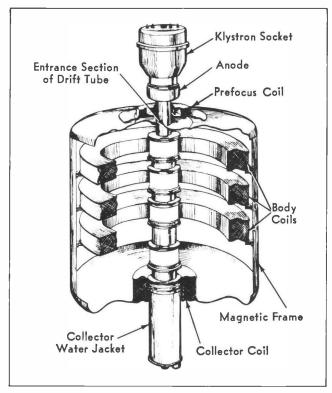


Figure 15—Simplified View of a Klystron and Its Magnetic Circuit with the Tuning Cavities Removed.

body current, consistent with good output. Sometimes slight changes in the coil current settings will produce large changes in power output without correspondingly great body current changes. In such cases, if the body current is not too near the permissible maximum, it is wise to adjust for a compromise body current setting which permits the larger power output to be obtained.

Each time the rf circuits are tuned, some changes will take place in the velocity and bunch density of the beam, which may increase the body current. As a result, each readjustment of the rf tuning will usually make it necessary to trim the focus coil currents slightly to obtain minimum body current again. This behavior is normal, and the adjustment is not critical despite its importance.

Focus coil resistances undergo considerable variation as the coils heat up after being turned on. The effects of this resistance variation on the coil current must be corrected by some means, and in transmitters where the currents are controlled manually, the operator should make frequent checks on the coil currents and over-all klystron operation during the warm-up period.

4.5.1 Prefocus Coil (Not Required for Some Klystrons)

The prefocus coil is much smaller than the body

coils used with the klystron, and it is enclosed in a special magnetic shell containing an annular air gap. The flux outside of the air gap forms a magnetic lens located on the axis of the klystron at the approximate point where the convergent paths of the electrons would focus. This magnetic lens overcomes the tendency of the electron paths in the beam to diverge and strike the drift tube wall before the beam enters the main magnetic field, and it directs the beam down the center line of the drift tube. To accomplish these two ends, the prefocus coil requires two separate adjustments: the current must be correctly set, and the correct position of the coil around the axis of the drift tube must be found.

The initial current settings should be those shown on the test data card, for the lowest operating beam voltage specified. After the magnetic field has been established and the beam energized, the locknuts on the prefocus coil mounting pillars can be loosened and the coil carefully positioned to obtain the lowest possible body current (Fig. 16). When the optimum

Figure 16—Adjustment of Prefocus Coil.

position has been located, the coil may be locked in place again.

The prefocus coil mount should *never* be unlocked at beam voltages higher than the low beam voltage used during the position adjustment just described. To move the prefocus coil at higher beam voltages is to invite destruction of the klystron and, although it can be done in some instances by experienced personnel, moving the prefocus coil during high-voltage operation is NOT recommended.

Some of the newer Eimac external cavity klystrons do not require prefocus coils. This is because they use confined flow electron gun designs which make prefocus coils unnecessary. In the confined flow principle the main magnetic field is permitted to extend through the cathode and is so shaped that the electrons are confined by the field from the instant they leave the cathode. This minimizes focusing adjustments and provides a more stable beam.

4.5.2 Body Coils

Many body coils are supported in the klystron amplifier frame by small mounting pillars, which are secured to the side bars by single machine bolts running in tapped eccentric holes in the support pillar base. By this means, the support pillars can be rotated to provide four-point suspension of the coil, and the body coils can be levelled within small limits. The coils are positioned on the axis by small shoulders turned on the bodies of the mounting pillars.

Once the coils have been correctly set on the mounting pillars, it only remains to adjust the currents during the process of tuning the klystron amplifier. The original current values required are given by the test data card for each beam voltage. The test values should be used as starting points, and the final currents should not deviate greatly from them. In most cases, deviation from the test values of more than ten percent will result only when an error has been made in setting up the adjustments, or in assembly of the equipment.

4.5.3 Collector Coil

The collector coil is located around the soft steel sleeve in the bottom of the magnetic frame which supports the mounting flange of the klystron. The mounting flange is also made of magnetic material, and it serves to establish the magnetic field needed near the collector end of the drift tube whenever the collector coil is energized. The collector coil current adjustments are made in the same manner as the body coil current adjustments, and with the object of reducing the body current as much as is consistent with good power output.

4.5.4 Results of Improper Adjustment of Focus Coils

If the focus coils are improperly adjusted so that the electron beam is not centered in the drift tubes or if the beam is too large in diameter, it will graze the drift tube tips and evaporate copper which will raise the gas pressure in the tube and possibly poison the cathode. In extreme cases the drift tube tips may be partially melted by the beam. On the other hand, if the beam is over-focused by using an excessively strong magnetic field, the beam size is too small as it leaves the field and therefore it will not spread properly before it strikes the collector, with resulting damage. It is quite possible to burn a hole in the collector if the beam is overfocused.

Correct focusing of the electron beam is accomplished by keeping the body current well below the maximum limit at all times using focus coil currents that do not deviate more than 10% from those

shown on the Eimac test data card. Adjustment of the focus coil currents should be made carefully so that the body current overload relay is seldom, if ever, called upon to operate. If the beam is thrown considerably out of focus it is quite possible for the tube to be damaged before the body current overload relay can operate.

4.6 Beam Transmission and Beam Loss

Some of the electrons in the klystron beam will inevitably strike the drift tube walls, instead of passing on through the klystron to the collector. Captured by the wall of the drift tube and returned to the external electrical circuits (through the body current milliammeter), these electrons are totally wasted as far as the production of rf power is concerned. The electrons lost in this manner are called the "body current," and the rest of the electron beam, which reaches the collector, is called the "collector current." The sum of the collector current and the body current is equal to the total beam current emitted from the cathode.

The collector current, expressed as a percentage of the total cathode current, is called "beam transmission."

The body current, expressed as a percentage of the total cathode current, is called "beam loss."

4.7 **Tuning the Klystron**

It has been noted that klystrons may have any number of cavities, but those most common in the field have either three or four. The nomenclature for klystron cavities has arisen from the functions they perform, and it is natural that the first cavity be called the "input cavity," no matter how many cavities may follow it.

Similarly, the last cavity transfers power from the electron beam to the output transmission line, and it is logically referred to as the "output cavity."

The cavity preceding the output cavity is tuned by the same rules regardless of whether the klystron has three, four, or more cavities. Therefore, it is convenient to refer to this next-to-the-last cavity by some descriptive word independent of the number of cavities which precede it, so it will be referred to as the "penultimate cavity."

The remaining cavities, not given descriptive names according to the scheme outlined above, are referred to by their position on the drift tube as the "second cavity," "third cavity," and so on. Most Eimac external cavity klystrons use either three or four cavities and the following tuning instructions will therefore be chiefly concerned with these tubes.

Before driving power is applied to the input cavity

of a klystron, the tuning cavities should all be adjusted to the highest possible frequency. This is done by moving the tuning doors as far as possible toward the centers of the cavities. The output load coupler should also be adjusted for maximum coupling (loop vertical). After this is done, beam power and rf drive can be applied to the klystron and tuning may begin.

The tuning procedures which follow will apply particularly to narrow-band, maximum-gain amplifier operation. The procedures for broad-band klystron operation are ordinarily evolved for each individual application, and therefore cannot be treated as generally as can the narrow-band case. (See Section 5.3 for broad-band application information.)

The operator should not permit his familiarity with conventional electron tube behavior to confuse him when he tunes a klystron amplifier. In some respects a klystron behaves like a linear amplifier using conventional electron tubes, because the "plate current" does not change during tuning and the best indicator of correct tuning is the power output. Furthermore, when the driving power level is increased to a point above "saturation" the power output will start to fall with increasing driving power, which is similar in some respects to "overloading" a conventional amplifier circuit (Fig. 17).

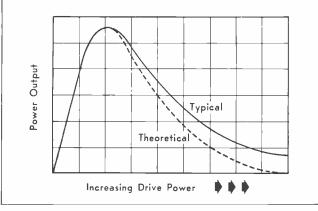


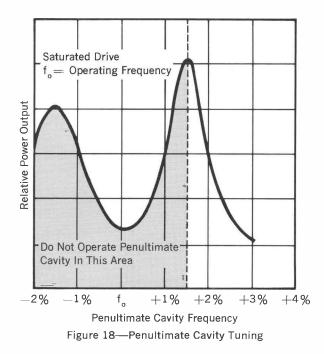
Figure 17—Overdriving a Klystron Reduces Output.

The klystron offers the operator the advantage that he can be guided in his actions by the variations in body current resulting from changes in the rf tuning adjustments. As each cavity is tuned, the body current may vary, and it is often necessary to trim the focus currents after each readjustment of the rf tuning, especially when the klystron is operating near its highest efficiency at any given power level.

Many Eimac klystrons carry dual body current ratings. One of these is intended for use during long periods of continuous operation and is usually half the absolute maximum rating. The absolute maximum rated body current is established for observance during tuning operations, to free the operator from the necessity of stopping frequently to trim the focus currents and to avoid tripping overload current relays frequently during tuning.

4.7.1 Input Cavity Tuning

The input cavity is tuned to resonance at the driving frequency. A beam voltage equal to 50% of that required for full rated power is applied to the klystron during this adjustment. Resonance is usually indicated by tuning for minimum VSWR at the input cavity. A directional coupler is ordinarily inserted in the driving line for this purpose. The two tuning doors of the cavity should always be equally spaced from the ceramic cylinder. The input cavity coupling loop should be adjusted to the position giving lowest reflected power as indicated by the directional coupler in the drive line. This is the condition of best match for the drive line. The input cavity must be resonated after each coupling adjustment. After the coupling is adjusted for best match, the driving power should be set at the value specified for the particular klystron. This power can be measured with a bolometer at the incident power terminals of the input directional coupler. After the input cavity is tuned, the second cavity (if applicable) and output cavity tuning doors should be adjusted to approximately the same positions as those of the input cavity. Since the cavities are similar, this will approximate resonance. The penultimate cavity tuning doors should next be set at positions midway between those of the input cavity and the maximum high frequency setting (tuning doors nearest to klystron).


4.7.2 Second Cavity Tuning

(Ignore for 3 cavity klystrons)

The second cavity is also tuned to resonance at the driving frequency (unless stagger tuning is employed for broad-band operation). This is accomplished by tuning for maximum output power. It will probably be necessary to adjust the output cavity to resonance at this time in order to obtain adequate output power for tuning purposes. The relative power output indicator must be sufficiently sensitive to detect the low power output during this tuning procedure.

4.7.3 Penultimate Cavity Tuning

After the input and second cavities are resonated, the beam voltage can be increased to the lowest value shown on the Eimac test data card. (Adjust focus coil currents for minimum body current). The input and second cavities should then be rechecked for resonance because their tuning may change as the beam current changes. The penultimate cavity can then be slowly tuned toward a lower frequency as the output power is carefully observed. As the cavity is tuned, the output power will increase to a maximum and then start to decrease. Return the tuning to the point which gave maximum power output and then detune on the high frequency side until the output power drops 10%. This is the correct tuning point for the penultimate cavity. See Fig. 18.

4.7.4 Output Cavity Tuning

After the penultimate cavity is tuned, the output cavity is retuned for maximum output power. Next the output coupling is adjusted. Starting in a vertical position the coupling loop is moved in 5° steps toward a horizontal position. The output cavity must be retuned at each step because its resonant frequency will change as the coupling is adjusted. As the output coupling is reduced the output power will increase. Eventually optimum coupling (maximum power) will be reached and if the coupling is further reduced the output power will start to decrease. Do not reduce the coupling past the point of optimum coupling. Instead, increase the coupling until the output power drops to 95% of its value at optimum coupling (see Fig. 19). The klystron is now correctly tuned at the lowest beam voltage shown on the Eimac test data card and the output power should be near the value shown on the test

data card. If it is not, the tuning procedure should be repeated until the reason for the discrepancy is discovered.

At the lowest beam voltage shown on the Eimac test data card mistakes in tuning will not ordinarily injure the klystron and it is suggested that the operator take this opportunity to practice tuning the klystron and familiarize himself with its behavior before increasing power.

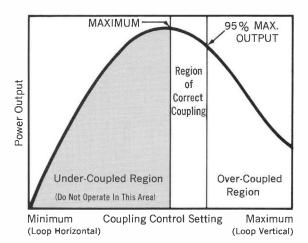


Figure 19-Adjustment of Output Coupling Control.

4.7.5 Load VSWR Check

After the klystron has been tuned at the lowest beam voltage shown on the Eimac test data card, the load VSWR should be determined by comparing the incident and reflected power measured at the directional coupler in the output transmission line. Most Eimac external cavity power klystrons will deliver rated output power with any load VSWR up to 1.5:1. This is equivalent to 4.2% reflected power with respect to forward power. If the reflected power exceeds this value the load must be adjusted to reduce the VSWR to 1.5:1 or less before the beam voltage is increased.

4.7.6 Trimming

When the tuning procedure has been completed and the operation appears reasonably satisfactory, each adjustment in turn should be trimmed to assure the operator that optimum performance has been obtained. When satisfactory operation at any given power level has been obtained, operation at the next higher power level may be started.

4.8 Increasing Power

Before increasing power the following precautions must always be taken.

1. Increase the frequency of the penultimate cavity until the output power decreases by 50%. (Move tuning doors toward the center of the cavity.)

2. Increase the output coupling to maximum. (Coupling loop vertical.)

The beam voltage may then be increased in steps to the desired value. Observe the body current during each voltage increase and adjust the focus coil currents as required to keep the body current at minimum. After the desired beam voltage is reached, the input cavity and second cavity (where applicable) are again checked for resonance. Next the penultimate cavity is tuned exactly as described in Section 4.7.3 and finally the output coupling and output cavity tuning are adjusted exactly as described in Section 4.7.4. If the output power obtained in this way is greater than required, the output coupling should be increased until the desired output is obtained.

Section 5.0

APPLICATION OF THE POWER KLYSTRON

Figure 20 shows the filament and beam supplies, protective circuitry and instrumentation for a klystron amplifier. Focus coils and their power supplies have been omitted for simplicity. Commonly used abbreviations for klystron electrical characteristics are shown in Figure 21. Heater voltage and current (E_t, I_t) are typically supplied from a transformer, insulated for high voltage, and a variable autotransformer. The heater transformer is often designed to be short circuit limited to twice the normal heater current rating. The heater voltmeter should be connected directly to the klystron socket to minimize measurement errors due to voltage drop in the connecting cable.

Resistor R_{surg} is the current limiting resistor for the beam supply. Its value should be chosen to limit short circuit current to 25 to 100 times nominal beam current. A value of 100 ohms is typical for 10 kW power amplifiers.

Focus electrode voltage is most conveniently and reliably obtained from a cathode resistor (R_c) . Focus electrode voltage is developed across this resistor by the beam current. R_c should have ample power dissipating capability. A voltmeter should be provided to monitor the focus electrode voltage (E_{foc}) and this meter should be protected by a thyrite element.

At least two overload circuits are required, one for the beam current and one for body current. These overloads are set to trip at the values of maximum beam current and body current specified for

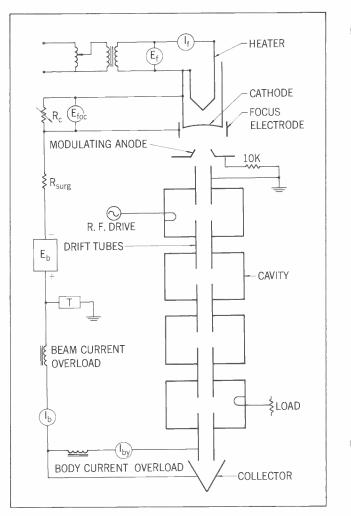


Figure 20—Klystron Power Supply Connections

the klystron. Meter relays are often used in these circuits and have been found to be satisfactory. The thyrite at T is desirable to protect the metering circuits and the klystron collector insulator in the event of power supply shorts. Every effort should be made to keep the total impedance between the klystron body (ground) and the positive terminal of the high voltage supply at a minimum. This resistance should be less than 5 ohms and one ohm is desirable.

Beam current and heater current should never be carried in the same conductor. Amplitude modulated random noise can be reduced several decibels if this rule is observed.

Beam supply ripple should be less than 1% for systems requiring incidental FM and AM noise down 40 db or more from the carrier. For noise down 60 db, 0.1% or less ripple is required. The supply should be variable or adjustable to at least four equally spaced voltage levels between 50% and 100% E_b.

Focus coil power supplies (not shown in Fig. 20) should be filtered to 5% ripple. In most cases three phase full wave supplies may be used unfiltered. The focus coils have enough inductance to reduce the ripple adequately. Means must be provided to adjust the focus coil power supply voltages over wide limits. In many cases a variable autotransformer is used with each supply to provide continuous voltage variation from zero to the maximum specified on the klystron data sheet. An ammeter must be supplied to measure the current in each focus coil. An undercurrent relay is often provided in each power supply, interlocked so that the beam power supply cannot be energized unless the focus coils are energized. The body and collector coils of many modern klystrons are operated in series from a single power supply but the prefocus coil always has a separate supply.

5.1 Modulating Anode—CW Applications

Most modern klystrons are equipped with modulating anodes. For CW applications the modulating anode is connected as shown in Fig. 20. The 10,000 ohm resistor is usually wire-wound and rated for 200 W. If the power supply and its filter capacitors stored with energy were connected directly from cathode to anode and should the slightest surface arc, gas burst or interelectrode arc take place, the full energy of the power supply would be dissipated in the tube. This energy would pass through the cathode with disastrous results. The tube would have to withstand the energy supplied and stored by the power supply until the mechanical inertia of the primary breaker and the filter capacitor shorting

COMMONLY USED ABBREVIATIONS FOR
POWER KLYSTRON CHARACTERISTICS:
E _f —Heater Voltage
I _f —Heater Current
f _o —Carrier Frequency
E _b —Beam Voltage
IBeam Current
I _{by} —Body Current
E _{foc} —Focus Electrode Voltage
P。—Output Power
P _{in} —Beam Input Power (dc)
P _d —Driving Power
Im ₁ — Prefocus Coil Current
Im _{2a} —First Body Coil Current
Im _{2b} —Second Body Coil Current
Im _{2c} —Third Body Coil Current
Im ² _{2d} —Fourth Body Coil Current
Im ₃ —Collector Coil Current

switch could be overcome. This situation can be somewhat improved by the use of current limiting resistors but the power loss is prohibitive if the resistance is high enough to be fully effective.

The problem is solved by connecting the modulating anode as shown in Figure 20. It is clear that the normal condition of negligible current to the anode does not exist at the time of the arc. When the arc occurs, a large current tends to flow to the anode. With the modulating anode connected as shown, this current is limited to a small value and has the further advantage of removing the off-cathode gradient. This extinguishes the arc and cuts off the beam current automatically in an extremely short period of time. Application of this technique at power output levels of 10 kW and above may well make the difference between a successful system and an unreliable system plagued by occasional arcs costing valuable down time.

5.2 Modulating Anode—Pulse Applications

The use of the modulating anode is very advantageous in many pulse applications. By use of this additional element it is possible to switch the tube directly across the beam power supply without the use of conventional storage networks which impose severe restrictions on the switching tubes. However, in order to take full advantage of this desirable modulation property, it is necessary to build a modulator which can efficiently drive this high impedance electrode with high voltage pulses. A new type of circuit has been developed to meet this need.

The pulse voltage can be applied to the modulating anode with a pulse transformer. However, for high voltage long pulse applications, variations of the circuit shown in Figure 22 are used. These circuits use two hard switching tubes. One tube is used to switch the anode up to operating potential, and the other to pull the anode back to cathode potential thus cutting off the beam. Rise and fall times of less than 1 microsecond through 60 kv have been achieved with jitter down in excess of 40 db.

The circuit shown in Figure 22 consists essentially of two switch tubes in series. The lower switch tube drives the modulating anode positive with respect to the klystron cathode, causing beam current to flow. The current supplied by the switch tube is only the charging current to the anode and associated circuit capacitance. This tube usually conducts during the full length of the pulse, but the dissipation is negligible because the voltage drop across the switch tube is small and the conduction current consists of only the leakage current and the intercepted beam current both of which are small. The upper

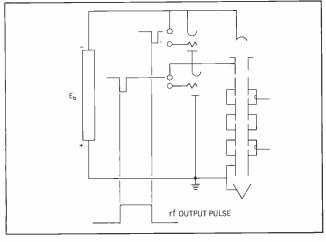


Figure 22

tube is triggered at the end of the pulse, shorting the modulating anode back to the cathode and cutting off the beam. This arrangement is known as the floating deck circuit because the circuitry which drives the lower tube must float with the modulating anode.

This circuit arrangement is particularly useful in long pulse applications because the switching tubes must work only during the rise and fall time of the pulse.

In addition, this circuit is desirable where adjustable pulse length is required. Pulsers have been made which generate a continuously variable pulse length from a few microseconds to several milliseconds.

5.3 Broad-Band Applications

External cavity klystrons are well suited to broadband applications because the cavities can be loaded with external resistive loads to increase the bandwidth of the klystron. The circuit assemblies for many Eimac external cavity klystrons include provisions for coupling external loads to the cavities and, in other cases, coupling loops or load couplers for this purpose can be supplied on special order. The input cavity, second cavity and penultimate cavity are ordinarily loaded for broad-band operation. For extreme bandwidth, stagger tuning in addition to cavity loading is sometimes employed. The klystron is best adjusted for broad-band operation by using a sweep frequency source for the drive signal and adjusting the tuning and loading of the cavities while observing the output response curve on an oscilloscope. Such adjustments can also be made by the point-by-point method but this becomes very time consuming.

Driving power requirements for the klystron under broad-band conditions are greatly increased with respect to narrow-band operation. The gain of a three-cavity klystron under maximum broad-band conditions will be in the order of 20 decibels. The gain of a four-cavity klystron under these conditions will be from 30 to 35 decibels. The beam power efficiency of the klystron is also reduced in broadband operation. Efficiencies of 30% to 40% can be expected.

The 3 db bandwidth of a properly loaded and adjusted three-cavity klystron is approximately 0.4%of the operating frequency. A four-cavity klystron under these conditions can provide bandwidths up to 1% of the operating frequency.

Section 6.0 MISCELLANEOUS

6.1 Eimac Power Klystron Catalog Numbering System

The catalog numbers for Eimac power klystrons have been designed to convey maximum information regarding the klystron. Here is an example:

4KMP10,000LF

The first number indicates number of cavities (4). The first letter is always K, indicating klystron.

The second letter, M, indicates that the tube has a modulating anode. If no modulating anode is used, the M is omitted.

The third letter, P, indicates that this is a pulse klystron. In the case of CW klystrons the P is omitted.

The second number, 10,000, indicates the maximum collector dissipation of the klystron. In catalog numbers assigned prior to May 1, 1961, this was expressed in watts, but in those assigned after that date it is expressed in kilowatts in the interest of brevity.

The next to last letter, L, indicates the general frequency band in which the klystron operates.

The last letter, F, indicates the frequency subband in which the klystron operates. Since no standard system of sub-band assignments exists, Eimac uses its own.

Eimac klystrons described by the letter X followed by three or four numerals are usually newly developed tubes which have not yet been assigned catalog numbers. In a few cases klystrons become so well known by their developmental designations that these are used permanently.

6.2 Klystron Gas Check

The power amplifier klystron can be used as an

ion gauge to check relative gas pressure and thus indicate the condition of its own vacuum. This technique is used in the Eimac factory and can be used to advantage in the field. The gas check is performed by applying +150 volts dc to the electrode nearest the cathode (usually the focus electrode) and -45 volts dc to the electrode next closest to the cathode (usually the modulating anode or anode). These voltages are with respect to the cathode. The heater voltage is then applied. As the cathode heats, electrons are attracted from it to the positively charged electrode and some of the electrons collide with gas molecules, dislodging electrons from these molecules and forming positive ions. These ions are attracted to the negatively charged electrode causing a current to flow in this circuit which is proportional to the density of the gas molecules in the klystron and hence to its gas pressure. With most external cavity klystrons the ion current in the -45 volt circuit is read when the electron current in the +150 volt circuit increases through 20 milliamperes. The heater voltage is usually maintained at approximately 75% of rated value so that the electron current rises slowly enough to permit accurate readings. The heater voltage should be removed immediately after measurement. If a klystron is found to have an ion current reading greater than five microamperes it should be aged in the transmitter at the lowest available beam voltage or with other aging equipment as described in Section 6.3.

The gas check circuit is shown in Figure 23. Because ion currents in the order of one microampere or less are involved, it is convenient to measure them by inserting resistors in the ion current circuit and measuring the voltage across these resistors with a sensitive vacuum tube voltmeter. With the voltmeter and resistor combination shown in Figure 23, equivalent full scale readings of 0.1, 1, 10 and 100 microamperes are available.

Because of the small currents involved, the leakage resistance across the tube elements involved in the gas check must be very high. This can be checked by watching for current indication in the ion circuit before heater power is applied.

Specific information on gas checking any particular Eimac klystron is available by writing to Eitel-McCullough, Inc., San Carlos, California.

6.3 Klystron Reconditioning or "Aging"

It is often inconvenient to recondition a klystron which exhibits excessive gas current by operating it in a transmitter. Equally satisfactory results can be obtained with the following procedure.

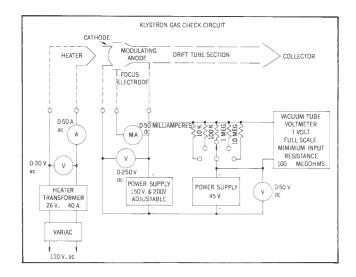


Figure 23

- 1. Support the klystron in a position permitting free circulation of air around the gun structure. Klystrons which are shipped in a metal frame may be aged in this frame, but those shipped in hair pack must be removed from the shipping container.
- 2. Apply forced air cooling to the gun structure in the amount specified in the data sheet.
- 3. Apply rated heater voltage to the klystron, limiting starting current to the specified value. Allow five minutes to warm up.
- 4. Short the focus electrode to the cathode.
- 5. Short the anode, drift tubes and collector together and ground.
- 6. Apply 500 volts ac or dc from the anode to the cathode. If dc is used the positive terminal must be connected to the anode. Cathode current will be approximately 15 to 30 milliamperes.
- 7. Energize the klystron in this manner for 12 hours or until the ion current, as indicated by the gas check, decreases to one microampere or less.

If the klystron has a titanium getter, it will be advantageous to energize the getter during the aging process.

6.4 Technical Assistance

Eitel-McCullough, Inc. will gladly assist users in the choice of klystrons best suited to their particular applications. This cooperation is especially important when a prototype design, which will later be manufactured in quantity, is being contemplated. Such assistance makes use of accumulated, detailed experience with the Eimac klystron types involved, and is handled confidentially and without charge.

EITEL-MCCULLOUGH, INC. SAN CARLOS, CALIFORNIA

.

1-64-KO-5