instruction book

Cedar Rapids Division | Collins Radio Company, Cedar Rapids, Iowa

AM Broadeast Transmitter

$20 \mathrm{~V}-3$

Guarantee

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, worknanship or material, and which are returned to Collins at its factory, transportation prepaid, provided
(a) Notice of the claimed defect is given Collins within one (1) year from date of delivery and goods are returned in accordance with Collins instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive moisture in the atmosphere or otherwise after delivery, it shall fail to operate in a normal or proper manner.
Collins further guarantees that any radio transmitter described herein will deliver full radio frequency power output at the antenna lead when connected to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of the pe pagraphs is voidif equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the foregoing shall constitute the Buyer's sole rightand remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials, or from any other cause.

How to Return Material or Equipment

If, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in the handling of your returned merchandise.

ADDRESS:

Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Type number, name and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins number (and name) of unit subassemblies involved in trouble
(J) Remarks

How to Order Replacement Parts

When ordering replacement parts, you should direct your order as indicated below and furnish the following information insofar as applicable. To enable us to give you better replacement service, please be sure to give us complete information.

ADDRESS:
Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)

AM Broadcast Transmitter
 $20 \mathrm{~V}-3$

TABLE OF CONTENTS

Section Page
I GENERAL DESCRIPTION 1-1
1.1 Purpose of Instruction Book 1-1
1.2 Purpose of Equipment 1-1
1.3 Description of Equipment 1-1
1.3.1 Physical Description 1-1
1.3.2 Electrical Description 1-1
1.4 Equipment Supplied 1-2
1.5 Equipment Required but not Supplied 1-2
1.6 Accessory Equipment 1-2
1.7 Equipment Specifications 1-3
1.7.1 Mechanical 1-3
1.7.2 Electrical 1-3
1.8 Tube Complement 1-4
II INSTALLATION 2-1
2.1 Unpacking 2-1
2.2 Transmitter Location 2-1
2.3 Replacement of Units Removed for Shipping 2-1
2.4 External Connections 2-5
2.5 Final Installation Procedure 2-5
2.6 Interunit Cabling Diagram 2-5
2.7 Remote Control Connections 2-6
2.8 Frequency Change 2-7
III OPERATION 3-1
3.1 Control Functions 3-1
3.2 Starting the Transmitter in a New Installation 3-2
3.3 Starting the Transmitter in Normal Operation 3-4
IV PRINCIPLES OF OPERATION 4-1
4.1 General 4-1
4.2 Control Circuits 4-1
4.3 Arc-Suppression Circuit 4-3
4.4 Remote Circuits 4-3
V MAINTENANCE 5-1
5.1 General 5-1
5.2 Preventive Maintenance 5-1
5.2.1 Cleaning 5-1
5.2.2 Inspection 5-1
5.2.3 Lubrication 5-1
5.3 Tube Maintenance 5-1
5.4 Trouble Shooting 5-1
5.5 Ordering Replacement Parts 5-2
VI PARTS LIST 6-1
VII ILLUSTRATIONS 7-1

LIST OF ILLUSTRATIONS

Figure Page
1-1 AM Broadcast Transmitter 20V-3 (C751-03-P) 1-0
1-2 AM Broadcast Transmitter 20V-3, Rear View with Lower Panel Removed (C751-04-P) 1-2
2-1 AM Broadcast Transmitter 20V-3, Installation Diagram (C751-02-5) 2-2
2-2 Interunit Cabling Diagram (C751-22-6) 2-3
2-3 Transformer Details (C751-14-3) 2-6
2-4 Cabling Example (C751-20-2) 2-6
2-5 T101 and T102 Internal Connections (C751-21-4) 2-8
3-1 Operating Control Locations (C751-12-P) 3-0
3-2 Relay Compartment (C751-06-P) 3-2
4-1 AM Broadcast Transmitter 20V-3, Block Diagram (C751-13-3) 4-2
4-2 Control Circuits, Simplified Schematic Diagram (C751-19-4) 4-2
5-1 Chain Drive Threading (C751-24-3) 5-3
6-1 AM Broadcast Transmitter 20V-3, Front View (C751-18-P) 6-6
6-2 AM Broadcast Transmitter 20V-3, Rear View (C751-05-P) 6-7
6-3 Relay Compartment (C751-11-P) 6-8
6-4 R-F Output Network Compartment (C751-09-P) 6-9
6-5 R-F Chassis, Outside View (C751-10-P) 6-10
6-6 R-F Chassis, Inside View (C751-07-P) 6-11
6-7 Audio Chassis, Outside View (C751-17-P) 6-12
6-8 Audio Chassis, Inside View (C751-08-P) 6-13
6-9 Power Supply Chassis, Top Rear View (C751-15-P) 6-14
6-10 Power Supply Chassis, Bottom View (C751-16-P) 6-14
7-1 AM Broadcast Transmitter 20V-3, Schematic Diagram (C751-01-6) 7-1
LIST OF TABLES
Table Page
1-1 Equipment Supplied 1-2
1-2 Equipment Required but not Supplied 1-2
1-3 Accessory Equipment 1-2
1-4 Tube Complement 1-4
2-1 Remote Control Connections 2-6
2-2 Crystal Part Numbers 2-7
2-3 R-F Output Network Components 2-9
5-1 Typical Meter Indications 5-2

Figure 1-1. AM Broadcast Transmitter 20V-3

SECTION I
 GENERAL DESCRIPTION

1.1 PURPOSE OF INSTRUCTION BOOK.

This instruction book is a guide for installing, operating, and maintaining Collins AM Broadcast Transmitter 20V-3.

1.2 PURPOSE OF EQUIPMENT.

Collins AM Broadcast Transmitter 20V-3 is used for standard or high-frequency AM broadcast service on a single frequency in the range from 550 kilocycles to 12 megacycles with an output power of 250,500 , or 1000 watts.

1.3 DESCRIPTION OF EQUIPMENT.

1.3.1 PHYSICAL DESCRIPTION.

AM Broadcast Transmitter 20V-3, shown in figure $1-1$, weighs about 1160 pounds and is 38 inches wide, 76 inches high, and 27-1/2 inches deep. It uses 14 tubes, all of which are visible through a large window in the front of the cabinet. All transmitter operating controls are located under two access doors, one on each side of the front window. The on-off controls and five monitoring meters are located near the top of the transmitter front panel. The meters may be observed easily while operating the tuning controls. The bottom front of the transmitter cabinet is removable to allow access to the power input terminals, power input circuit breakers, and control relays.

Two large doors at the upper rear of the cabinet (see figure 1-2) allow access to the upper part of the transmitter for servicing and maintenance. The lower half of the transmitter is covered by a removable panel that contains a ventilating fan and a permanenttype air filter. There are both electrical and mechanical interlocks on each of the rear doors to protect personnel. Electrical interlocks of the split V-type open the primary circuits of the high-ard low-voltage transformers whenever the rear doors or lower rear panel are opened. The mechanical interlocks close, grounding the high-voltage circuits, after the electrical interlocks have opened the primary circuits.

Inside the transmitter cabinet, transformers and other heavy components are mounted at the bottom of the cabinet. Audio and r-f circuits are in separate chassis on opposite sides of the cabinet. These two chassis swing out toward the center of the cabinet so that all components in the chassis may be reached for easy maintenance. The power amplifier plate circuit and r-f output network are housed in a single, shielded compartment that is suspended from the top of the
cabinet. The entire back panel of this r-f compartment is removable, providing access to all components in the compartment.

The power supplies are mounted on a shelf that is about midway between the top and bottom of the cabinet. This entire shelf tilts forward to expose all components on the bottom of the power supply chassis.

Ventilating air for the transmitter is drawn through a cleanable air filter at the rear of the cabinet by a low-speed, high-volume fan. The cooling air is exhausted through a shielded opening in the top of the cabinet. Individual high-speed blowers supply cooling air directly to the power amplifier and modulator tubes.

1.3.2 ELECTRICAL DESCRIPTION.

The power amplifier tubes in the 20V-3 are two 4-400A tetrodes connected in parallel. The transmitter uses high-level plate modulation of the power amplifier. The modulator tubes also are two 4-400A tetrodes connected in a push-pull class AB_{1} modulator circuit.

The r-f carrier frequency is generated by a crystal oscillator that uses a low-temperature coefficient crystal. This type of crystal eliminates the need for a crystal oven and its associated thermostats and control relays. Two crystals may be mounted on the r-f chassis, so that one will always be available as a standby. Either of the two crystals may be selected by a switch on the front panel of the transmitter.

The r-f output network is a pi-section followed by an L-section. This network will feed into impedances between 50 and 72 ohms. (Other output impedance values are available on special order.) The tubes and r-f output circuit components are safeguarded against short circuits or flashover in the transmitter r-f output circuit by an arc-suppression circuit. This circuit interrupts all plate voltages in the event of arc-over in the output circuit, and returns the transmitter to the air when the arc is extinguished.

The transmitter output power may be switched from high to low level, or vice versa, while the transmitter is on the air by a power change switch under the front panel access doors.

Provisions are made in the transmitter for connection of remote; on-off controls, audio pad control, on-off indicators, plate current and plate voltage indicators, and monitors. Outputs are provided also for frequency, modulation, and audio monitoring.

SECTION I

General Description
There are three separate power supplies in AM Broadcast Transmitter 20V-3: high voltage, low voltage, and bias. Overload protection is provided by magnetically operated circuit breakers, by fuses in the primaries of the filament, low-voltage, and bias transformers, and by individual overload relays in the cathode circuits of the power amplifier and modulator. A thermal time delay circuit in the transmitter prevents application of plate voltage before the filaments reach operating temperature.

A more detailed description of the operation of the $20 \mathrm{~V}-3$ is contained in section IV of this instruction book.

1.4 EQUIPMENT SUPPLIED.

Table 1-1 lists equipment supplied as part of AM Broadcast Transmitter 20V-3. This basic transmitter is stocked with r-f output circuit components for operation in the frequency range from 1.05 to 1.5 megacycles. Transmitters that are to operate outside this range are specially reworked at the factory. Refer to section II for the Collins part numbers of circuit components for use at other frequencies in the standard broadcast band.

TABLE 1-1 EQUIPMENT SUPPLIED

EQUIPMENT	COLLINS PART NUMBER
AM Broadcast Transmitter 20V-3	$522-2480-00$

1.5 EQUIPMENT REQUIRED BUT NOT SUPPLIED.

Table 1-2 lists equipment required for the operation of AM Broadcast Transmitter 20V-3, but not supplied as part of the transmitter.

TABLE 1-2
EQUIPMENT REQUIRED BUT NOT SUPPLIED

EQUIPMENT	COLLINS PART NUMBER
Tube kit	$540-1215-001$
Crystals	See table 2-2, section II.

Figure 1-2. AM Broadcast Transmitter 20V-3, Rear View with Lower Panel Removed

1.6 ACCESSORY EQUIPMENT.

Table 1-3 lists accessory equipment that may be used with the 20V-3.

TABLE 1-3 ACCESSORY EQUIPMENT

EQUIPMENT	COLLINS PART NUMBER
Type 512B-2 Impedance Matching Unit (for con- verting 50- or 75-ohm unbalanced output to 300- or 2600-ohm balanced output, 2 to 12 megacycles)	$522-0113-005$
SEE CHANGE NOTICE \#1 FOR	
ADDITIONAL EQPT.	

1.7 EQUIPMENT SPECIFICATIONS.

1.7.1 MECHANICAL.

1.8 TUBE COMPLEMENT.

Table 1-4 lists type and function of all tubes used in AM Broadcast Transmitter 20V-3.

TABLE 1-4
TUBE COMPLEMENT

QUANTITY	TYPE	FUNCTION
1	6AU6	Crystal oscillator Buffer amplifier

TABLE 1-4
TUBE COMPLEMENT (Cont)

QUANTITY	TYPE	FUNCTION
1	807	R-f driver
2	$4-400 \mathrm{~A}$	Power amplifier
2	6SJ7	Audio driver
2	4-400A	Modulator
1	5U4G	Bias rectifier
2	866A	Low-voltage rectifier
2	575A	High-voltage rectifier

SECTION II INSTALLATION

2.1 UNPACKING

Be careful when uncrating the transmitter and components to avoid damaging the equipment. Inspect all units carefully. Check for loose screws and bolts. Inspect all controls, such as switches, for proper operation as far as can be determined without powe applied. Examine cables and wiring, making sure tha all connections are tight, and clear each other and the chassis. File any dama

2.2 TRANSMITTER LOCATION

Place the transmitter in its permanent location before replacing the units that were removed for shipping Figure 2-1 shows arrangements that can be made before transmitter installation to accommodate power and audio inputs, and outputs for frequency, modulation and audio monitoring. The external wiring requirements for these inputs and outputs may be met by a wiring trench of sufficient size. Another alternative is to build a false floor under which the necessary wires and cables can be placed. The wiring trench must accommodate a three-wire power cable, two shielded twisted pairs, one RG-58/U coaxial cable, and one RG-8/ coaxial cable. The trench should the transmitter cabinet to the ground system of the building.
Allow adequate clearance both in front and in back o the transmitter. There should be a minimum clearance of $3-1 / 2$ feet behind the transmitter to provide suffi-

An air duct may be run from the exhaust-air opening in the top of the transmitter, if desired, to carry hea away from the transmitter.

2.3 REPLACEMENT OF UNITS REMOVED FOR

 SHIPPING.Several of the transmitter components have been removed and packed separately for safety during shipping. These include heavy units such as the highvoltage transformer, modulation transformer, highvoltage filter choke, large filter capacitors, and the small, fragile units such as tubes and crystals. Refer to the photographs in section VI for assistance in replacing these components in the transmitter. Wires and cables that were disconnected before shipping have tags have been lost during shipment, refer to figure 2-2 for assistance in identifying and reconnecting these leads.

The following installation procedure should be erformed
a. Set the tubes and crystals aside where they will not be damaged. These components should not b paced in the transmitter until all other units have been installed and comnected.

CAUTION

Be very careful when handling the crystals This type of crystal is extremely fragile stop oscillating, but may cause it to lose its highly important frequency versus temperature characteristics. b. Note terminal numbers of the iron-core compo-
nents before they are installed. It is sometimes ifficult to ine try thesmitter. transmitter
heavy iron-core componer proper placement of the proper locations components. Install them in their d. Measure the station line voltage Refersmitter. -3 Measure the station line voltage. Refer to figure din make connections to the high-voltage trans correspond to this voltage

CAUTION

In some units of the 20V-3, transformer T107 has different primary winding taps Refer to figure 2-3, and check T107 before

If the normal station voltage is low, use the low-voltage taps on the bias supply transformer (T105), the 575A llamen (T108) and the low-yoltage plate supply transformer (T109)
e. Refer to figure 2-2, the photographs in section VI, and the tags on the cables, and make all possibl onnections.
f. Install the large filter capacitors, C 182 and C183 shown in figure 6-2, and secure them in place to these units.
compartment at the top of the cabinet sure that the taps on tuning coil L108 and loading coil L109 are in the correct positions for the statio

connection	WIRE SIZES (SEE note 2)	RECOMMENDED WIRE
TRANSMISSION LINE--------------		

Figure 2-1. AM Broadcast Transmitter 20V-3, Installation Diagram

operating frequency. Refer to the Collins Test Department data sheet for the correct tap positions. This data sheet, which is included with the transmitter, contains a record of the output network setup used for testing the transmitter at the factory. The setup may not be exactly correct for actual operating conditions at the station, but usually is near enough to permit preliminary tuning.

2.4 EXTERNAL CONNECTIONS.

Refer to figure 2-1 for assistance in making the following external connections.
a. Connect the power input cables to the transmitter. Use the proper wire size given in figure 2-1. Bring the two power wires and the neutral wire in through the rubber grommet in the power line hole in the bottom of the cabinet and run them forward to the front panel. Connect the two power wires to the two outer terminals on terminal board TB100, shown in figure 6-3. Connect the neutral wire to the center terminal on TB100.
b. To connect the audio to the transmitter, bring the audio signal into the cabinet on a shielded twisted pair. Discomnect the existing jumpers on terminal board TB103, terminals 1 and 3, which are connected to terminal board TB135, terminals 4 and 5 . Connect the incoming audio leads to TB103, terminals and 3, and the shield to terminal 2. Perform this step only if the transmitter is to be operated continually at 1000 watts.

If the transmitter is to be operated at both full and reduced power, connect the incoming audio leads to terminals 3 and 2 on terminal board TB135. This enables the transmitter audio input to be attenuated 6 db for 1000/250 watt operation or 3 db for 1000/500 watt operation. In all cases, connect the shield to terminal 2 of TB103. Audio input pad switching is accomplished by connecting 115 volts, 60 cps between terminal board TB130, terminal 13, and terminal board TB/28 terminal 3, through an external spst power change switch. This connection also controls the monitor output voltage for reduced power operation. Parts are available, on special order, which connect the audio pad and monitor output switching directly to the power change switch located on the transmitter. This modification simplifies the power change operation.
c. Bring the RG-58/U coaxial cable from the frequency monitor through the proper hole in the bottom of the cabinet and connect it to the mating plug that is connected to J104. Figure 6-5 shows location of J104.
d. Bring the RG-8/U coaxial cable from the modulation monitor through the proper hole in the bottom of the cabinet and connect it to the mating plug that is connected to J100. Figure $6-4$ shows the location of J100.
e. Bring the twisted shielded pair from the audio monitor through the proper hole in the bottom of the cabinet. Connect one wire of the pair to terminal 16 of terminal board TB105, shown in figure 6-2. Connect the other wire and the shield to terminal 15 of TB105.
f. Connect the coaxial cable leading to the antennatuning house to the $\mathrm{r}-\mathrm{f}$ output. This connection is
made to a feedthrough insulator located on the top of the transmitter. Connect the outer conductor of the coaxial cable to the ground stud next to the feedthrough insulator. Be sure that these connections are made well and are mechanically secure.

2.5 FINAL INSTALLATION PROCEDURE.

a. Again check all wiring and cable connections in the transmitter to be sure that each connection is electrically and mechanically firm. Refer to figure 2-1 for recommended wire sizes. Paragraph 2.6 gives instructions for interpreting the cabling diagram.
b. Replace the rear panel on the transmitter. Insert the ventilating fan plug into the socket on the rear of the power supply chassis.
c. Place all tubes and crystals in their proper sockets. Refer to figures 6-5,6-7, and 6-9 for correct tube placement.
d. If the transmitter is to be operated with an output power of 250 watts, remove the jumper strap that is across resistors R168 and R169. Refer to figure 6-2 for the location of this strap.
e. If the input power is 50 cycle instead of 60 cycle, replace C181 with a 0.11 -microfarad capacitor. Refer to figure 6-2 for the location of C181.
f. Inspect the arc gaps listed below for proper adjustment. Remove burrs, scratches, and sharp edges. Set gaps as follows:

2.6 INTERUNIT CABLING DIAGRAM.

Figure 2-2 shows the wires and cables that connect components in the transmitter. Each section of the diagram is enclosed by broken lines. These sections have been given section designation letters that appear in the upper right corner of each dotted enclosure. Although wiring between transmitter units is not shown on the diagram, the destination of this wiring is indicated by letters and numbers that appear directly below the arrowheads as shown in figure 2-4. The numbers next to the lines above the arrowheads represent the type of wires used to make the connection. The number directly adjacent to each arrowhead is the number of that point in the particular section of the diagram, and does not necessarily indicate that there is a terminal bearing that number at that point in the transmitter. Where there are terminal boards with numbered terminals in the transmitter, the terminals are enclosed by a rectangle on the diagram to indicate the terminal board.

A sample wire from the cabling diagram is shown in figure 2-4. Refer to the electrical wire code chart inside the back cover. The KE0 designation indicates

Figure 2-3. Transformer Details
that a KEO wire leaves this point. The K in KEO indicates that the type of wire used is high-voltage, insulated cable. E indicates that the wire size is no. 14 AWG, and the 0 indicates that the color of the wire used is black. If a tracer was used on this wire, an additional number would be added to indicate the color of the tracer. If, for example, this wire was black with a red tracer, the designation would have been KE02. If a shield was used, the wire would have been labeled KES02, the S indicating a shield. The color code used for wires and tracers is the same as that used for resistors and capacitors.

TABLE 2-1
REMOTE CONTROL CONNECTIONS

FUNCTION	TB105 TERMINALS
FILAMENT ON	2 and 6
FILAMENT OFF	6 and 13 (remove jumper) PLATE OFF (remove jumper)
PLATE ON Filament-at-operating- temperature indicator (green) Plate voltage indicator (red)	4 and 5

The number 13 beside the arrowhead in figure 2-4 indicates that this is point number 13 of a particular section on the diagram.
A1 indicates that the wire leaving this point on the diagrams goes to point 1 in section A of the diagram.

When coaxial cable, copper straps, and other types of connecting materials except wires are used, the Electrical Wire Code is not used. Instead of using the code, the connecting material is specified by name on the diagram.

2.7 REMOTE CONTROL CONNECTIONS.

Several terminal boards, TB105, TB128, TB129, TB130, TB131, and TB132, are provided for remote control circuit connections. These terminals may be used to interlock AM Broadcast Transmitter 20V-3 with other equipment. Table 2-1 lists the numbers of terminals on TB105 that are used for remote on-off control and indication. The remote on switches should be of the normally-open momentary type. The off

Figure 2-4. Cabling Example

TRANSFCRVER
SPECIFICATIONS

3334 notulation In circut -

Case: Inorderson Trib

- When used mith reactor Collins Ma.

6780200 in the circuit ghowa herels.

Lads Dam 5t ailliteary air cort chels (to and in liutnintict capacitor loadingl. By pase capacitor

 nita catput.
-nen 意 Judataln P.G. In Gray.

switches should be of the normally-closedmomentary type. For simplified operation, the FILAMENT ON and PLATE OFF switches may be eliminated. When the PLATE ON switch is operated, both filament and plate power will be automatically applied in proper sequence. Operating the FILAMENT OFF switch will shut down all filament and plate power that may be on. The indicator lamps should be the 230 -volt a-c type.

TB128 terminals 13 and 14 may be wired to a 200-ua meter with multiplier resistance for an external PA plate voltage indication. TB129 terminals 1 and 2 may be wired to a 200 -ua meter with multiplier resistance for an external PA plate current indication.
Equipment is available that will completely control and monitor transmitter operation from a remote location through standard telephone pairs. When such
remote control equipment is used, necessary installation and connection information will be supplied with the equipment.

2.8 FREQUENCY CHANGE.

If the transmitter operating frequency is changed, several transmitter components and component settings must be changed. These components are: (1) the crystal, (2) some components in the r-f output network, and (3) the buffer and r-f driver plate tank circuits, T101 and T102.

Table 2-2 lists the Collins part numbers for crystals of various frequencies. Table 2-3 lists the Collins part numbers of r-f output circuit components for various frequency ranges. Figure 2-5 shows connections of T101 and T102 for various frequency ranges.

TABLE 2-2. CRYSTAL PART NUMBERS

OPERATING FREQUENCY (ke)	COLLINS PART NUMBER	OPERATING FREQUENCY (kc)	COLLINS PART NUMBER	OPERATING FREQUENCY (kc)	COLLINS PART NUMBER
540	290-1088-00	900	291-9292-00	1260	290-0672-00
550	290-0627-00	910	290-0658-00	1270	290-0673-00
560	290-0635-00	920	291-9300-00	1280	291-9289-00
570	291-9296-00	930	291-9308-00	1290	291-9284-00
580	290-0636-00	940	290-0659-00	1300	291-9291-00
590	290-0637-00	950	291-9294-00	1310	291-9282-00
600	291-9311-00	960	291-9286-00	1320	291-9320-00
610	291-9306-00	970	291-9283-00	1330	291-9285-00
620	290-0638-00	980	291-9288-00	1340	291-9319-00
630	290-0639-00	990	291-9309-00	1350	291-9290-00
640	291-9314-00	1000	290-0660-00	1360	291-9303-00
650	290-0640-00	1010	290-0626-00	1370	290-0674-00
660	290-0641-00	1020	291-9316-00	1380	291-9321-00
670	290-0633-00	1030	291-9327-00	1390	291-9281-00
680	291-9298-00	1040	290-0661-00	1400	291-9297-00
690	290-0642-00	1050	291-9302-00	1410	291-9323-00
700	290-0643-00	1060	290-0662-00	1420	291-9310-00
710	291-9329-00	1070	290-0663-00	1430	291-9312-00
720	290-0644-00	1080	291-9322-00	1440	290-0631-00
730	290-0645-00	1090	290-0664-00	1450	291-9301-00
740	290-0646-00	1100	291-9293-00	1460	291-9280-00
750	291-9295-00	1110	290-0665-00	1470	290-0629-00
760	290-0647-00	1120	290-0666-00	1480	291-9304-00
770	290-0648-00	1130	290-0667-00	1490	291-9315-00
780	290-0649-00	1140	290-0668-00	1500	290-0675-00
790	290-0650-00	1150	291-9299-00	1510	290-1076-00
800	290-0651-00	1160	290-0669-00	1520	290-1077-00
810	290-0652-00	1170	290-0630-00	1530	290-1078-00
820	290-0653-00	1180	290-0634-00	1540	290-1079-00
830	290-0654-00	1190	290-0670-00	1550	290-1080-00
840	290-0655-00	1200	290-0671-00	1560	290-1081-00
850	291-9324-00	1210	291-9325-00	1570	291-9328-00
860	290-0628-00	1220	291-9318-00	1580	291-9307-00
870	291-9326-00	1230	291-9317-00	1590	290-1082-00
880	290-0656-00	1240	291-9313-00	1600	290-1083-00
890	290-0657-00	1250	291-9305-00		

Figure 2-5. T101 and T102 Internal Connections

Figure 3-1. Operating Control Locations

SECTION III OPERATION

3.1 CONTROL FUNCTIONS.

The following paragraphs describe the functions of all adjustable controls in AM Broadcast Transmitter $20 \mathrm{~V}-3$. Operating personnel should become thoroughly familiar with the location and function of each control before attempting to operate the transmitter. Refer to figures 3-1 and 3-2 for control location.

The following controls are located directly under the meters on the front panel. The FILAMENT ON switch, S111, energizes all transmitter tube filaments and the bias power supply. The FILAMENT OFF switch, S112, de-energizes all transmitter circuits. The PLATE OFF switch, S114, de-energizes the high- and low-voltage power supplles. The PLATE ON switch, S113, energizes the high- and low-voltage power supplies, supplying plate voltage to all transmitter tubes. The green indicator lamp at the left of the four on-off switches, DS101, lights whenever the tube filaments are at their proper operating temperature. This light also indicates that the platevoltage interlock has been closed and that plate voltage may be applied to the tubes. The red indicator lamp at the right of the four on-off switches, DS102, lights whenever plate voltages are applied.
The following controls are located under the left access door on the front panel. The POWER CHANGE switch, S103, switches the transmitter output power from 250 or 500 watts when the switch is set at LOW, to 1000 watts when it is set at HIGH. This switch may be operated while the transmitter is on the air. The MULTIMETER SWITCH, S102, inserts the MULTIMETER, M104, into any one of seven transmitter circuits. Table 5-1 lists the MULTIMETER SWITCH positions and typical indications for each of the seven circuits. The full-scale MULTIMETER indication is given at each switch position.

The following screwdriver adjustments are located behind the panel plate between the MULTIMETER SWITCH and the FILAMENT ADJUSTMENT control. The modulator audio hum control, R166, is a variable resistor used to shift the ground point of the modulator filament circuit to a point that will minimize audio hum caused by the a-c filament voltage. The modulator bias adjustments, R152 and R153, vary the amount of negative bias applied to the grids of the modulator tubes. Another modulator bias adjustment, R182, located on the right top of the power supply chassis as viewed from the rear, performs the same function as the other two bias adjustments and may be used as a coarse bias adjustment.
The following control is located at the bottom of the front panel. The FILAMENT ADJUSTMENT control,

R189, adjusts the current in the primary of filament transformers T106 and T108 and bias transformer T105, thus varying the filament voltage of the transmitter tubes. The FILAMENT VOLTAGE meter under the right front panel indicates the filament voltage of the power amplifier tubes.

The following controls are located under the right access door on the front panel. The P.A. LOADING control varies the transmitter output power by varying capacitor C143 in the r-f output network. The P.A. TUNING control tunes the power amplifier plate circuit by varying capacitor C142 in the r-f output network. Varying the P.A. LOADING control even slightly detunes the output network, causing excessive power amplifier plate current to flow. Therefore, the P.A. TUNING control must be readjusted at the same time the P.A. LOADING control setting is changed. This is done to retune the output network and keep the plate current at an allowable value.

The following screwdriver adjustments are located behind the panel plate between the P.A. TUNING control and the FILAMENT VOLTAGE meter. The r-f driver plate tank trimmers, C121 and C122, tune the plate circuit of the 807 r -f driver stage. These trimmers should be adjusted for maximum power amplifier grid current. The two trimmers are connected in parallel, so one should be adjusted to give a good tuning range for the other. The PA drive control, R117, adjusts the r-f driver screen voltage to vary the power amplifier grid current. The PA audio hum control, R121, performs the same function for the power amplifier that the modulator audio hum control does for the modulator. The buffer plate tank trimmers, C112 and C113, tune the plate circuit of the 6SJ7 buffer amplifier stage. These trimmers should be adjusted for maximum r-f driver grid current. Adjust in same manner as r-f driver plate tank trimmers. The crystal selector switch, S101, selects either of the two crystals that are mounted on the r-f chassis. When the switch is turned counterclockwise, the upper crystal is selected. The crystal trimmers, C101 and C102, are used to vary the crystal oscillator frequency slightly. The left trimmer is for the upper crystal.

The following adjustments are located under the lower front panel. The FILAMENT and PLATE circuit breakers, S106 and S107, are connected directly to the 230 -volt a-c power input to limit current in the filament and plate circuits respectively.

Refer to figure 3-2. The operating current values of the modulator and power amplifier overload relays, K105 and K106, may be adjusted by turning the knurled

Figure 3-2. Relay Compartment
vertical shafts inside the relay cases. Turning the shafts clockwise increases the value of current needed to operate the relays. Both relays should be set so that they operate when the modulator or power amplifier plate current is 600 milliamperes.
The time delay of time delay relay K 101 may be adjusted by varying R173, which is mounted ona small chassis under the relay. Turning this screwdriver adjustment clockwise increases the time delay. The delay should be set to 30 seconds from a cold start.
The screwdriver adjustment located directly to the left of the time delay adjustment R173 is the remote plate current balance adjustment R2/0. This adjustment is set to cancel out screen current from the remote plate current line.

3.2 STARTING THE TRANSMITTER IN A NEW INSTALLATION.

a. Before starting the transmitter for the first time, inspect it carefully for any mechanical damage.
b. Carefully inspect all door interlocks. Press the contact block until the spring is completely compressed. Release the block. If it does not spring back to its original position, adjust it until it operates properly.
c. Check to be sure that all tubes and crystals are in their proper sockets. Select the proper crystal, using the crystal selector switch S101.
d. Remove the plate caps from V111, V112, V113, and V114, the high- and low-voltage power supply tubes. Be sure that the caps hang free and are not near any metal parts.
e. Close both rear cabinet doors. Check to see that the FILAMENT and PLATE circuit breakers under the lower front panel are set to ON.
f. Press the FILAMENT ON switch on the front panel. The filaments of all tubes should light and the blowers and ventilating fan should come on.
g. Adjust the FILAMENT ADJUSTMENT control for a 5-voltindication on the FILAMENT VOLTAGE meter.
h. When the green indicator lamp at the top left of the front panel lights, press the PLATE ON switch. The red indicator lamp at the top right of the front panel should light when this switch is pressed.
i. Press the FILAMENT OFF switch. The transmitter should shut down completely.
j. Remove the modulator tubes, V108 and V109, from the transmitter.
k. Replace the plate caps on V113andV114, the 866A low-voltage rectifiers. Do not replace the caps on V111 and V112, the high-voltage rectifiers, until later.

WARNING

Voltages are present in this transmitter that are dangerous to life. Observe safety precautions when making any transmitter adjustments. Do not reach inside the transmitter cabinet whenever high voltage is applied. Do not depend on door interlocks. Always shut down the transmiter before doing any work inside the transmitter cabinet.

1. Press the FILAMENT ON switch. Allow the transmitter to run for 20 minutes with only the filaments lighted. This operation is necessary to properly age the mercury-vapor rectifier tubes. Aging is required for new tubes and for used tubes that have been inverted or agitated.
m . Press the PLATE ON switch.
n. Set the MULTIMETER SWITCH to its first four positions and check the MULTIMETER indications with those given in table 5-1 in the maintenance section. Slight deviations from the given limits are permissible.
o. Set the MULTIMETER SWITCH to 807 GRID 25MA. Adjust the buffer plate tank trimmers for a maximum indication on the MULTIMETER.
p. Refer to table 5-1, and recheck the MULTIMETER indication with the MULTIMETER SWITCH set to 807 CATH 250MA.
q. Set the MULTIMETER SWITCH to PA GRID 25MA. Adjust the r-f driver plate tank trimmers for a maximum indication on the MULTIMETER. Adjust these trimmers in the same way as those in step o.
r. Press the FILAMENT OFF switch.
s. Replace the modulator tubes, V108 and V109, and the plate caps on V111 and V112, the 575A high-voltage rectifiers.
t. Set the two front panel modulator bias adjustments, R152 and R153, fully counterclockwise. Set the modulator bias adjustment on the power supply chassis, R182, fully clockwise. These settings cause maximum bias and minimum modulator plate current.
u. Place both taps on the modulation monitoring coil, L110, located in the r-f output network compartment, at a position near the ground (left) end of the coil.
v. Set the POWER CHANGE switch to LOW.
w. Set the P.A. LOADING control to 100 . This setting is for minimum loading.
x. Close the rear cabinet doors. Press the FILAMENT ON switch.
y. When the green indicator lamp lights, press the PLATE ON switch. As soon as this switch is pressed, adjust the P.A. TUNING control for a minimum indication on the P.A. PLATE CURRENT meter.
z. Set the MULTIMETER SWITCH to PA GRID 25MA. Retune the r-f driver plate tank trimmers for a maximum MULTIMETER indication.
aa. Note the modulator plate current reading. With a long bladed screwdriver, adjust R152 clockwise to its approximate center. Note the new modulator plate current reading. Adjust R153 for an additional equal modulator plate current increase. R153 should now
be in its approximate midrange position. Adjust R182 until the MOD. PLATE CURRENT meter indicates 120 ma .

NOTE

Careful adjustments in the above step will result in low distortion. Further fine adjustments of R152 and R153 while observing a distortion meter connected to the modulation monitor output will result in a still greater reduction in distortion. See steps ag and ah.

Actual adjustment of R182 is made with the transmitter shut down. Adjust R152 and R153 with a long bladed screwdriver to prevent accidental contact with R189.
ab. Set the POWER CHANGE switch to HIGH. Readjust the P.A. TUNING control for a minimum indication on the P.A. PLATE CURRENT meter.
ac. Set the MULTIMETER SWITCH to PA GRID 25 MA and readjust the r-f driver plate tank trimmers for a maximum MULTIMETER indication.
ad. Adjust the transmitter for proper output power as follows. Turn the P.A. LOADING control slowly counterclockwise to increase the output power. At the same time, keep readjusting the P.A. TUNING control for a minimum indication on the P.A. PLATE CURRENT meter. Continue this procedure until the R.F. LINE CURRENT meter indication is slightly below the desired value. Then adjust the P.A. TUNING control slightly to the side of resonance that causes an increase in the R.F. LINE CURRENT meter indication. This will also cause an increase in PA plate current, but the power increase in the r-f line will be a large proportion of the power increase in the power amplifier circuit, giving a higher PA plate efficiency. Adjust for maximum efficiency.
ae. Adjust the rear tap on L110 to obtain the desired output for modulation monitoring equipment if the transmitter is used for continuous operation. If the transmitter power is to be reduced, adjust first the rear tap for high power. Energize relay K112 and adjust the front tap for reduced power operation. af. Connect a distortion analyzer and noise meter, such as Hewlett-Packard 330D, to the modulation monitor output (J 100).
ag. Apply a 1000 -cps audio input to the transmitter. Make the input amplitude sufficient to modulate the r-f carrier 95 percent.
ah. Adjust the two front panel modulator bias adjustments, R152 and R153, for minimum distortion as indicated by the distortion analyzer. The other modulator bias adjustment, R182 on the power supply chassis, may be adjusted, if necessary, to bring the front panel adjustments into the proper adjustment range. The MOD. PLATE CURRENT meter indication should remain at about 120 milliamperes when the transmitter is not modulated.
ai. Lucrease the level of the $1000-\mathrm{cps}$ modulating signal until the transmitter is modulated 100 percent. Calibrate the noise meter, then remove the modulation. Adjust the PA drive control, R117, and the

SECTION III

Operation

modulator and power amplifier audio hum controls, R166 and R121, for minimum noise as indicated by the noise meter.

The transmitter is now ready for on-the-air operation.
If the transmitter is to be operated remotely, the following additional steps are to be completed to calibrate the remote plate current meter. If the remotely controlled transmitter is used at high and low power, perform these procedures.
a. Adjust R2do to its approximate midrange position.
b. Place the transmitter on high power.
c. Adjust the remote plate current meter potentiometer, located on the remote control unit, to calibrate the remote meter with the transmitter P.A. PLATE CURRENT meter.
d. Switch the transmitter to low power.
e. Adjust R2 $\$ 0$ to calibrate the remote meter with the transmitter P.A. PLATE CURRENT meter.
f. Repeat steps b, c, d, and e until the remote meter is calibrated at both high- and low-power conditions.

If the remotely controlled transmitter is operated entirely at one power level, it is only necessary to calibrate the remote meter with the P.A. PLATE CURRENT meter by adjusting R2\$0.

3.3 STARTING THE TRANSMITTER IN NORMAL OPERATION.

a. Close the rear cabinet doors.
b. Press the FILAMENT ON switch.
c. Set the POWER CHANGE switch to the correct position for desired output power.
d. When the green indicator lamp lights, press the PLATE ON switch.
e. If the output power is to be adjusted, adjust the P.A. LOADING and P.A. TUNING controls as instructed in paragraph 3.2.ad.
f. Check the meter and monitor indications. Typical meter indications are given in table 5-1 in the maintenance section.
g. An alternative method of starting the transmitter is to press only the PLATE ON switch. The plate voltage will be automatically applied when the tube filaments reach proper operating temperature.

SECTION IV PRINCIPLES OF OPERATION

4.1 GENERAL.

Refer to figure 4-1, a block diagram of AM Broadcast Transmitter 20V-3. The r-f carrier frequency is generated by a 6AU6 crystal oscillator, V101. The crystal used in this oscillator circuit is an extremely stable, low-temperature coefficient crystal that does not require a crystal oven. When the transmitter is operating in the AM broadcast band, the oscillator load is resistive. If the operating frequency is in the high-frequency band, the oscillator load resistor is replaced with a tuned circuit that doubles the crystal frequency to the operating frequency. Two crystals may be mounted in the transmitter so that one will always be available as a standby. Either crystal may be selected by a switch on the front panel.

The oscillator output drives a 6SJ7 buffer amplifier, V102, which is coupled to an 807 r-f driver, V103. The buffer and driverplate circuits are contained in shielded, plug-in units located behind the right front access door. The driver output is coupled to the control grids of power amplifier tubes V104 and V105, two 4-400A tetrodes in parallel. An audio monitoring signal is fed from a resistor in the power amplifier cathode circuit. A frequency monitor connection is brought out from the power amplifier grid circuit.

The power amplifiers are plate modulated by two 4-400A tetrodes, V108 and V109, that are connected in a push-pull, class AB_{1} modulator circuit. The modulator is driven by a 6SJ7 push-pull audio amplifier, V106 and V107. The transmitter audio input is fed through an attenuation and audio input transformer, T103, to this amplifier. About 12 db of feedback is provided from the modulator plates to the audio amplifier input.

The r-f output network consists of a pi-section followed by an L-section. It is designed to feed into an unbalanced output with a resistive output impedance of from 50 to 72 ohms. This network greatly attenuates harmonics while passing the fundamental frequency with minimum loss. Coil L110, connected from the output end of the L-section to ground through the coil of K107, a bias supply bleeder, acts as a static drain and is a voltage source that feeds the modulation monitor.

Output power change is accomplished as follows: Power-change switch S103 shunts resistors R167 through R171 in the power amplifier plate circuit during high-power (1000 -watt) operation. During 500 -watt operation, resistors R168 and R169 are shunted by a jumper strap. For 250-watt operation, this jumper is
removed. Resistor $R 167$ is tapped to allow outputpower adjustment around 500 or 250 watts. Power adjustments are made with the P.A. LOADING and P.A. TUNING controls.

There are three separate power supplies in the 20V-3: high voltage, low voltage, and bias. The high-voltage supply uses two 575A half-wave, mercury-vapor rectifiers in a full-wave circuit. It supplies d-c voltage to the modulator and power amplifier plates and the power amplifier screens. The low-voltage supply uses two 866A half-wave, mercury-vapor rectifiers in a full-wave circuit. This supply furnishes d-c voltages for plates and screens of the low-power stages and screens of the modulator tubes. The bias supply uses a 5 U4G high-vacuum rectifier in a full-wave circuit. It supplies bias voltage to the r-f driver, modulator, and power amplifier.

Overload protection is provided by magnetically operated circuit breakers in the filament and plate circuits, fuses in the primaries of the filament, low-voltage and bias transformers, and by individual overload relays in the power amplifier and modulator cathode circuits.

4.2 CONTROL CIRCUITS.

Refer to figure 4-2. When the FILAMENT circuit breaker, S106, is closed, pressing the FILAMENT ON switch, S111, will energize the filament contactor, K103. Contacts 3 and 4 of K103 shunt S111 to keep K103 energized after S111 is released.

The filament contactor, K103, connects the 230 -volt a-c input to the two ventilating blowers B101 and B102, rear ventilating fan B103, the bias power supply, and filament transformers T106 and T108. K103 also connects the a-c input to the filament of time delay relay K101 through the normally closed FILAMENT OFF switch S112, contacts 4 and 3 of K103, and resistors R174 and R173. After about 30 seconds from a cold start, the filament in K101 has heated a bimetal strip in the relay sufficiently to close a pair of contacts which light the green lamp, DS101, on the front panel and close a plate-voltage interlock circuit. The green lamp indicates that the tube filaments have reached their proper operating temperature. The time delay is adjustable by varying R173, which is in series with the time delay relay filament.

This time delay relay filament cools at approximately the same rate as the tube filaments. Therefore, it will automatically select the minimum time delay needed to return the filaments to thelr proper operating temperature after a short power interruption. The transmitter will return to the air immediately after instantaneous interruptions.

Figure 4-1. AM Broadcast Transmitter 20V-3, Block Diagram

Figure 4-2. Control Circuits, Simplified Schematic Diagram

When the filaments have been energized and the time delay cycle has been completed, pressing the PLATE ON switch, S113, will energize the plate control relay, K104, through switches S112, S113, and S114; the modulator and r-f overload relays, K105 and K106; the three door interlocks, S108, S109, and S110; and the coil of K104. K104 remains energized after S113 is released by a circuit that shunts S 113 through contacts 4 and 3 of K103 and contacts 4 and 3 of K104.

K104, in turn, energizes the plate contactor, K102, through contacts 3 and 4 of arc-suppression relay K107, the coil of K102, contacts 5 and 6 of K104, and contacts 7 and 5 of K101. When K102 is energized, contacts 3 and 4 of K102 connect R172 across the filament of K101 and R173 to decrease the current in the filament to a value that is just enough to keep contacts 5 and 7 of K101 closed.
When the plate contactor, K102, is energized, the 230 -volt a-c input is connected through the closed PLATE circuit breaker, S107, to the plates of rectifier tubes in the high- and low-voltage power supplies. The red lamp, DS102, on the front panel lights whenever K102 is energized.
Pressing the FILAMENT OFF switch, S112, interrupts the coil circuits of K103 and K104, shutting the transmitter down completely. Pressing the PLATE OFF switch, S114, shuts down only the plate circuits, leaving the filament circuits energized.

Note that if the arc-suppression relay, K107, is energized by a fault in the r-f output network, only K102 will be de-energized. Since K104 remains closed, K 102 will be re-energized immediately after K107 is de-energized. If one of the rear cabinet doors is opened while plate voltage is applied or if an overload occurs in the modulator or power amplifier, K104 is de-energized, and the PLATE ON switch must be pressed to restart the transmitter.

If desired, the transmitter may be started from a cold start by pressing only the PLATE ON switch. Pressing this switch energizes K104, which, in turn, energizes the filament contactor and the time delay relay. At the end of the time delay interval, the closing of K101 will automatically energize K102, applying plate power to the transmitter. Pressing the FILAMENT OFF switch will again shunt down the entire transmitter.

4.3 ARC-SUPPRESSION CIRCUIT.

The arc-suppression circuit in AM Broadcast Transmitter 20V-3 will safeguard tubes and r-f output
network components by interrupting the plate voltages In the event of a short circuit or flashover in the r-f output network. Refer to figure 7-1. The arcsuppression relay, K107, has normally closed contacts in series with the plate contactor coil. The coil of K107 is connected in series with monitor coil L110. The end of the monitor coil that connects to the relay is bypassed to ground for r-f by capacitor C151. The bias power supply supplies current for the operation of K107. When an arc-over occurs in the r-f output network due to lightning or any other cause, the ionized path produced by the r-f voltage in the arc has a sufficiently low d-c resistance to complete the relay coil circuit and energize the relay. When the relay operates, its contacts open, disabling the high- and low-voltage plate supplies, removing the transmitter carrier from the air, and stopping the arc-over. When the arc is extinguished, there is no path to ground for the d-c relay-coil current, and the relay contacts close, returning the carrier to the air. Ordinarily, the program interruption will hardly be noticeable.

4.4 REMOTE CIRCUITS.

For remote control over short distances, terminals are available to parallel FILAMENT ON and PLATE ON switches with normally open momentary switches and to place normally closed momentary switches in series with the FILAMENT OFF and PLATE OFF switches. Each remote switch then performs the same function as the corresponding switch on the transmitter. The indicator lights may also be paralleled with remote indicators. TB128 terminals 13 and 14 may be wired to a 200 -ua meter, with multiplier resistance, to indicate PA plate voltage. TB129 terminals 1 and 2 may be wired to a 200 -ua meter, with multiplier resistance, to indicate PA plate current.

Equipment for remote control over telephone lines is available per customer order. With this added equipment, it is possible to perform on, off, and power level switching. This remote equipment is wired for connection to TB128, TB129, and TB130.

The circuit consisting of R20 to R212 forms a bridge which balances out the screen grid current of V104 and V105 from the remote plate current reading. Resistor R2l0 performs this balancing function. Diodes CR101 and CR102 limit the maximum voltage which can be placed on the remote telephone line to 120 volts. The remaining remote functions are connected directly to terminal boards which control or monitor the transmitter directly.

SECTION V
 MAINTENANCE

5.1 GENERAL.

The following paragraphs contain information concerning the maintenance of AM Broadcast Transmitter 20V-3.

WARNING

Voltages are present in this transmitter that are dangerous to life. Observe safety precautions when performing any maintenance. Do not reach inside the transmitter cabinet whenever high voltage is applied. Do not depend on door interlocks. Always shut down the transmitter before doing any work inside the transmitter cabinet.

5.2 PREVENTIVE MAINTENANCE.

5.2.1 CLEANING.

Most service interruptions in equipment of this type are caused by dirt and corrosion. Corrosion is accelerated by the presence of moisture and dust. In some localities it is impossible to keep moisture out of the transmitter, but dust should be removed periodically with a soft brushor adry, oil-free air jet.
There is always a slight accumulation of dust in the vicinity of high-voltage circuits. Removedust as often as a perceptible quantity accumulates at any point in the transmitter. It is very important to keep moving parts such as tap switches dust-free to prevent undue wear.

When the transmitter is operated near salt water or in other corrosive atmospheres, inspect and clean tap switch contacts, tube prongs, cable connectors, and other metal parts more frequently to keep the equipment in operating condition.

At least once each month, clean the air filter at the rear of the transmitter cabinet. Wash the filter in lukewarm water to which a detergent has been added. Dip the filter in a water soluble oil, such as Filterkote "M" available from Collins Radio Company, Service Parts Department, Cedar Rapids, Iowa (Collins part number 005-0609-00). Remove the filter from the oil; lay the filter face down until oil ceases to drip from the filter, and replace the filter in the transmitter. Replacement filters are Collins part number 009-1069-00.

5.2.2 INSPECTION.

Once each week check and clean the three interlock switches at the rear of the transmitter cabinet to be sure that they are in good working order.

Once each month check all connections in the transmitter. Tighten any nuts, bolts, or screws that may be loose. Check cable connections to see that they are clean and mechanically secure. Check moving parts such as tuning controls for excessive wear.

5.2.3 LUBRICATION.

No lubrication is required in AM Broadcast Transmitter 20V-3. The fan and blower motors have sealed bearings that are lubricated for the life of the equipment.

5.3 TUBE MAINTENANCE.

Do not operate tubes above their ratedcapacity. Keep a record of how long each tube is in use. Check emission of all tubes at least every 1000 hours of service. (Check 4-400A's by comparing with new tubes of known quality.) Refer to the tube manufacturer specifications for the rated filament life of each of the tubes. Replace tubes after they have been in service for about 75 percent of the rated filament life.
Spare, preaged mercury-vapor rectifier tubes should be available for immediate replacement. To ready these tubes for emergency use, place them in the transmitter during off-the-air hours and run them for 20 minutes with only the filaments lighted. This will remove the mercury coating from the tube elements. Then carefully remove the tubes from the transmitter and store them in an upright position where they will not be inverted or agitated. When these preaged tubes are placed in the transmitter, handle them carefully to avoid the 20 -minute warmup period that will be required if mercury comes in contact with the tube elements. Never apply plate voltage to mercury-vapor rectifier tubes that have not been aged long enough to remove all mercury from the tube elements.

5.4 TROUBLE 5HOOTING.

The most frequent cause of trouble will probably be tube failure. If there is ever any doubt concerning the performance of a tube, check it in a tube checker or by replacing it with a tube that is known to be in good condition and noting any change in performance. Lowemission tubes may cause erratic or poor transmitter performance. Tube emission may be checked with a tube checker. Tube failure may also cause distortion or hum. If such difficulty occurs, replace the defective tube with one known to be in good operating condition.

The five front panel meters on the transmitter will be helpful in locating any trouble. Table 5-1 contains typical meter indications. The indications given in
this table are averages obtained from several production transmitters operated in the frequency range from 550 to 1600 kilocycles. The indications on some operating units may vary slightly outside the given limits without affecting transmitter performance. Values for transmitters operating from 1.6 to 12 megacycles may vary appreciably from the given values. It is a good idea to prepare a list of panel meter indications for each individual transmitter when it is operating properly in its particular installation.

Any abnormal deviation from these values will then be apparent during a check of meter indications. Figure 5-1 shows PA loading and PA tuning chain drive threading.

5.5 ORDERING REPLACEMENT PARTS.

Refer to the guarantee inside the front cover for information about ordering replacement parts. Collins part numbers for transmitter components may be found in the parts list, section VI.

TABLE 5-1. TYPICAL METER INDICATIONS

SWITCH	SWITCH POSITION	METER	METER INDICATION
MULTIMETER SWITCH	AUDIO CATH 25MA	MULTIMETER	7 to 11 milliamperes
MULTIMETER SWITCH	OSC CATH 25 MA	MULTIMETER	4.8 to 5.8 milliamperes
MULTIMETER SWITCH	1ST BUFF GRID 25 MA	MULTIMETER	0.2 to 0.5 milliamperes
MULTIMETER SWITCH	1ST BUFF CATH 25MA	MULTIMETER	6.7 to 8.3 milliamperes
MULTIMETER SWITCH	807 GRID 25MA	MULTIMETER	1.5 to 2.3 milliamperes
MULTIMETER SWITCH	807 CATH 250MA	MULTIMETER	36 to 54 milliamperes
MULTIMETER SWITCH	PA GRID 25MA	MULTIMETER	15 to 24 milliamperes
POWER CHANGE	LOW	P.A. PLATE CURRENT	245 milliamperes
POWER CHANGE	LOW (275 watts)	P.A. PLATE VOLTAGE	1560 volts d-c
POWER CHANGE	LOW	R.F. LINE CURRENT	
		70-ohm load	1.9 amperes
		50-ohm load	2.2 amperes
POWER CHANGE	LOW	P.A. PLATE CURRENT	300 milliamperes
POWER CHANGE	LOW (550 watts)	P.A. PLATE VOLTAGE	2500 volts d-c
POWER CHANGE	LOW	R.F. LINE CURRENT	
		70-ohm load	2.8 amperes
		50-ohm load	3.3 amperes
POWER CHANGE	HIGH	P.A. PLATE CURRENT	500 milliamperes
POWER CHANGE	HIGH (1100 watts)	P.A. PLATE VOLTAGE	3150 volts d-c
POWER CHANGE	HIGH	R.F. LINE CURRENT	
		70-ohm load	4.0 amperes
		50-ohm load	4.7 amperes
POWER CHANGE	LOW and HIGH	MOD. PLATE CURRENT	
		No modulation	120 milliamperes
		100-percent modulation, 1000 cps	Not more than 450 milliamperes

Figure 5-1. Chain Drive Threading

CRADLE NOUNT SECTION VI

B101 554-5213-00 RF PARTS LIST
Bloz 554-5 214-0 O MOD. USED AFTER 147

ITEM	DESCRIPTION	COLLINS PART NUMBER
CR102	SEMICONDUCTOR DEVICE, DIODE: silicon; hermetically sealed; Motorola, Inc. part no. 1N721 OR	353-2740-00
CR102	SEMICONDUCTOR DEVICE. DIODE: silicon; hermetically sealed; Motorola. Inc. part no. 1N721A	353-2741-00
F101	FUSE, CARTRIDGE: 1.00 amp current rating; 250 v , glass body, ferrule terminals; Bussman part no. MDL 1	264-4280-00
F102	FUSE, CARTRIDGE: same as F101	264-4280-00
F103	FUSE, CARTRIDGE: $3 \mathrm{amp}, 125 \mathrm{v}, 0.066 \mathrm{ohms}$, ferrule terminals, glass body	264-0009-00
F104	FUSE, CARTRIDGE: same as F101	264-4280-00
1101	LAMP, INCANDESCENT: pilot light bulb w/ candelabra type base, $10 \mathrm{w}, 230-250$ v, C-7A filament, S-6 bulb; General Electric part no. 10S6/10-250	262-0169-00
1102	LAMP, INCANDESCENT: same as I101	262-0169-00
J100	CONNECTOR. RECEPTACLE, ELECTRICAL: 1 female contact; 50 ohms, straight	357-8005-00
J101	CONNECTOR, RECEPTACLE, ELECTRICAL: 6 female contacts, 10 amp max; phosphor bronze contacts; Howard B. Jones part no. S-306-AB	366-2060-00
J102	CONNECTOR. RECEPTACLE. ELECTRICAL: 8 contacts. 10 amp ; Howard B. Jones, Div. Cinch Mig. Co. part no. S-308-AB	366-2080-00
J103	CONNECTOR, RECEPTACLE, ELECTRICAL: same as J102	366-2080-00
J104	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 female contact; Industrial Products Co. part no. 87075	357-9183-00
J105	CONNECTOR, PLUG. ELECTRICAL: 3 female contacts; straight; $10 \mathrm{amp}, 250 \mathrm{v}$; $15 \mathrm{amp}, 125 \mathrm{v}$	368-0014-00
J106	CONNECTOR, RECEPTACLE, ELECTRICAL: same as J102	366-2080-00
K101	RELAY, THERMAL: time delay, normally open contacts; 117 v ac nom; $3 \mathrm{amp}, 150 \mathrm{v} \mathrm{dc} ; 3 \mathrm{amp}$. 250 v dc; Thomas A. Edison part no. B-2103	402-0211-00
K102	RELAY, ARMATURE: 3 normally open contacts. 220 coil voltage; $25 \mathrm{amp} ; 50 / 60 \mathrm{cps}$; RBM part no. 109078-102	401-1201-00
K103	RELAY, ARMATURE: 3 normally open contacts, 220 coil voltage; $15 \mathrm{amp}, 50 / 60 \mathrm{cps}$; RBM part no. 109092-102	401-1202-00
K104	RELAY, ARMATURE: 3 normally open contacts, 2 open contacts to carry 5 amp in 220 v ac circutt; 1 normally open contact for coil holding in 220 v ac circuit	405-0608-00
K105	RELAY, ARMATURE: current overload, selfreset ac or dc enclosed current; 0.225 amp continuous; 2 normally closed contacts; General Electric part no. 12PJC11A30TF-G-25	405-0186-00
K106	RELAY, ARMATURE: same as K105	405-0186-00
K107	RELAY. ARMATURE: 3 pole, normally closed contacts, 2.0 amp at 230 vac , inductive load; 125 ∇ dc; 4000 ohms $\pm 10 \%$	970-1727-00
$\begin{array}{\|l} \text { K108 } \\ \text { thru } \end{array}$	NOT USED	
K110		
K111	RELAY, ARMATURE: 4C contacts; max 500 ma at 115 v ac resistive; 115 v ac, 60 cps coil voltage; 125 v ac. 60 cps max voltage; 500 ohms $\pm 20 \%$ coll resistance; continuous duty cycle	972-1473-00
OR		
K111	RELAY, ARMATURE: 4C contacts; 3 amp at 30 v dc or 115 v ac, noninductive; nom coil voltage 115 v ac, $60 \mathrm{cps} ; 500$ ohms $\pm 20 \%$ coil resistance. continuous duty cycle; Aemco. Inc, part no. 45-2403	972-1348-00
K112	RELAY, ARMATURE: 2C. 2 amp at 300 v dc noninductive with arc suppresion; $115 \mathrm{v}, 50 / 60$ cps coil voltage; 400 ohms $\pm 10 \%$ at $25^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle; Aemco. Inc., part no. 22-3670	970-1931-00
L101	NOT USED	
L102	P/O T101	
L103	NOT USED	
L104	P/O T102	
L105	NOT USED	
L106	COIL. RADIO FREQUENCY: 3 or 4 section; duolateral wound; 1.0 mh inductance, 300 ma max current; 10 ohm dc resistance; National Co., Inc. part no. R-300-S	240-5800-00
L107	COIL, RADIO FREQUENCY: isolantite coil form, $1 / 8 \mathrm{in}$. wall, $5-1 / 2 \mathrm{in}$.; quadruple bank \#24 DSC wire; $7 \mathrm{in} . \mathrm{gg}$ overall	571-0460-10

ITEM	DESCRIPTION	COLLINS PART NUMBER
L108	COIL. RADIO FREQUENCY: 81 uh at 2.5 mc approx inductance; 42 turns $1 / 4 \mathrm{in}$. by 0.054 copper strip; E. F. Johnson Co. part no. 200-118-2	980-0040-00
L109	TRANSFORMER, RADIO FREQUENCY: isolantite coil form; 30 turns \#10 AWG wire right-hand wound; $2-1 / 2 \mathrm{in}$. dia by 6 in . Ig overall; 9 taps	504-9624-003
L110	COIL ASSEMBLY: 60 uh inductance; isolantite coll form; 56 turns right hand wound; both ends open; $1-1 / 2 \mathrm{in}$. dia by $3-1 / 4 \mathrm{in}$. 1 g overall \& brass 56 turn coil rider, $3-1 / 8 \mathrm{in}$. Ig overall	549-5098-004
L111	REACTOR: $50 \mathrm{hy}, 0.5 \mathrm{amp} \mathrm{dc}, 230 \mathrm{ohm}$ max dc resistance; 60 cps ; continuous duty cycle; Chicago Std. Trans. part no. 29955	678-0591-00
L112	REACTOR: 80 ma dc nom; 100 ma dc max; 375 ohm dc resistance; 2000 vrms ; continuous duty cycle; Thordarson Meissner part no. T-20C53	668-0004-00
L113	REACTOR: 10 hy at $10 \mathrm{vrms}, 60$ cycles; 1 amp dc; 50 ohm max dc resistance; continuous duty cycle; Chicago Std. Trans, part no. 19069	678-0625-00
L114	REACTOR: same as L113	678-0625-00
L115	REACTOR: 6.5 hy at $10 \mathrm{v} \mathrm{rms} ,60 \mathrm{cps} ; 0.200 \mathrm{amp}$. 85 ohms dc resistance; $100 / 120 \mathrm{cps}$; continuous duty cycle; Chicago Std. Trans. part no. 30753	668-0002-00
L116	REACTOR: same as L115	668-0002-00
$\stackrel{\text { M101 }}{\sim}$	AMMETER: thermocouple type; 0-6 scale, 60 scale divisions; 0.0074 ohm approx resistance; white dial background, black markings \& pointer	451-0133-00
M102	AMMETER: permanent magnet moving coil type dc milliammeter; 0-800 milliamp meter range; 0.5 ohm meter resistance; flush panel mtg	458-0611-00
M103	AMMETER: permanent magnet moving type dc milliammeter; 0-1 milliamp; 50 ohms approx meter resistance	458-0610-00
M104	AMMETER: permanent magnet moving coll type de milliammeter; 0-1 milliamp meter range; 50 ohms approx resistance; Assembly Products, Inc. part no. 80145	458-0612-00
M105	AMMETER: same as M102	458-0611-00
M106	VOLTMETER: moving iron vane type ac voltmeter; $0-10$ v ac, $150 \pm 20 \%$ ohm meter resistance; white dial background, black markings pointer	452-0058-00
MP101	COUPLING, FLEXIBLE: ceramic or steatite insulation; $13 / 16 \mathrm{in}$. by $7 / 8 \mathrm{in}$. by 1 in .	015-0027-00
MP102	BRACKET, MOUNTING. DOOR: coml cold rolled steel; 578 in . by 1.449 in . by 32.679 in .	548-3575-002
MP103	CHAIN, BEAD: brass; no. 10 specially qualified bead, $50-51$ beads per foot; 49-1/4 in. 1g	548-3698-002
MP104	CHAIN, BEAD: brass; no. 10 specially qualified bead, 50-51 beads per foot; 68-1/2 in. 1g	548-3699-002
MP105	LATCH, TOUCH, RELEASE: steel, $3 / 4 \mathrm{in}$. by $1-11 / 32 \mathrm{in}$. by $1-3 / 8 \mathrm{in}$. National Lock Co. part no. 61-380 CAD-1	015-1398-00
0101	KNOB: screw-on type; chromium plated bronze body; $8-32$ thd; $3 / 4 \mathrm{in}$. dia by $11 / 16 \mathrm{in}$. thk; N. B. Ives Co. part no. 54272-3/4 in.	015-0246-00
0102	KNOB: setscrew type; octagonal shape; black phenolic body w/ aluminum insert; 2.078 in. dia by 0.859 in. thk; excl skirt	544-0794-003
0103	KNOB: setscrew type; octagonal shape; black phenolic body w/ aluminum insert; incl skirt and disk; 2.078 in . dia by 0.859 in . thk knob	546-1291-003
0104	KNOB: same as Ol 103	546-1291-003
0105	KNOB: same as 0103	546-1291-003
0106	KNOB: same as 0103	546-1291-003
0107	KNOB: same as 0103	546-1291-003
P100	CONNECTOR. PLUG, ELECTRICAL: straight shape; $0.718 \mathrm{in} . w, 1.500 \mathrm{in} .1 \mathrm{~g}$; Ships, Bureau of	357-9014-00
P101	CONNECTOR, PLUG, ELECTRICAL: 6 male contacts; 10 amp max; 730 v rms max; Howard B. Jones part no. P-306-CCT	365-8060-00
P102	CONNECTOR, PLUG, ELECTRICAL: 8 male contacts; Howard B. Jones part no. P-308-CCT-W.I.	365-8080-00
P103	CONNECTOR, PLUG, ELECTRICAL: same as P102	365-8080-00
P104	CONNECTOR, PLUG, ELECTRICAL: 1 male BNC contact; Automatic Metal part no. 100B 1000A	357-9292-00
P105	CONNECTOR, PLUG, ELECTRICAL: 3 wire midget, twist lock; $10 \mathrm{amp}, 250 \mathrm{v}, 15 \mathrm{amp}, 125 \mathrm{v}$	368-0013-00
P106	CONNECTOR, PLUG. ELECTRICAL: same as P102	365-8080-00
R101	RESISTOR, FIXED, COMPOSITION: 0.10 megohms $\pm 10 \%$, $1 / 2$ w	745-1436-00
R102	RESISTOR, FIXED, COMPOSITION: 220 ohms $\pm 10 \% .1 / 2 \mathrm{w}$	745-1324-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
R103	RESISTOR, FIXED, COMPOSITION: 10,000 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$	745-3394-00
R104	RESTSTOR, FIXED, COMPOSITION: 82.000 ohms $\pm 10 \%$. 1/2 w	745-1433-00
R105	RESISTOR, FIXED, COMPOSITION: 0.12 megohms $\pm 10 \%$, 2 w	745-5740-00
R106	RESISTOR. FIXED, COMPOSITION: same as R105	745-5740-00
R107	RESISTOR, FIXED, COMPOSITION: same as R101	745-1436-00
R108	RESISTOR. FIXED, COMPOSITION: 3900 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$	745-1377-00
R109	RESISTOR, FIXED. COMPOSITION: same as R102	745-1324-00
R110	RESISTOR, FIXED, COMPOSITION: 39.000 ohms $\pm 10 \%$. 1 w	745-3418-00
R111	RESISTOR, FIXED, COMPOSITION: 33,000 ohms $\pm 10 \%, 1 \mathrm{w}$	745-3415-00
R112	RESISTOR, FIXED, WIREWOUND: $25,000 \mathrm{ohms}$ $\pm 5 \% .10 \mathrm{w}$; Ohmite part no. 1-3/4-D-57-F2500	710-2918-00
R113	RESISTOR. FIXED, COMPOSITION: 15,000 ohms $\pm 10 \%$. 1 w	745-3401-00
R114	RESISTOR, FIXED, COMPOSITION: 47 ohms $\pm 10 \%$, 1/2 w	745-1296-00
R115	RESISTOR, FIXED, COMPOSITION: 22 ohms $\pm 10 \%, 2 \mathrm{w}$	745-5582-00
R116	RESISTOR, FIXED, COMPOSITION: 22,000 ohms $\pm 10 \%$, 2 w	745-5708-00
R117	RESISTOR, VARIABLE: wirewound; 25.000 ohms $\pm 10 \%$, $0.013 \mathrm{amp} ;$ P. R. Mallory \& Co. part no. M25MPX	377-0011-00
R118	RESISTOR, FIXED. WIREWOUND: same as R112	710-2918-00
R119	RESISTOR, FIXED. COMPOSITION: 56 ohms $\pm 10 \%, 2 \mathrm{w}$	745-5600-00
R120	RESISTOR, FIXED, WIREWOUND: 15,000 ohms $\pm 10 \%$, 25 w	710-3154-20
R121	RESISTOR, VARIABLE: wirewound; 50 ohms $\pm 10 \%, 25$ w	735-0201-00
R122	RESISTOR, FIXED, WIREWOUND: 7500 ohms $\pm 5 \%, 50$ w	710-3378-00
R123	RESISTOR, FIXED, WIREWOUND: 12.6 ohms $\pm 5 \% .20$ w	710-0044-00
R124	RESISTOR ASSEMBLY: c/o 4 resistors, 2 terminals and glass cloth epoxy board $1 / 16 \mathrm{in}$. thk; $2-7 / 8 \mathrm{in}$. w by 6 in . lg overall	548-3621-003
$\begin{aligned} & \mathrm{R} 124 \mathrm{~A}, \\ & \mathrm{~B}, \mathrm{C}, \mathrm{D} \end{aligned}$	RESISTOR, FIXED, FILM: $1,000,000$ ohms $\pm 1 \%$, 2 w	705-4001-00
R125	RESISTOR, FIXED, COMPOSITION: 10,000 ohms $\pm 10 \%$, 2 w	745-5694-00
R126	RESISTOR. FIXED, COMPOSITION: 4700 ohms $\pm 10 \%, 1 \mathrm{w}$	745-3380-00
R127	RESISTOR, FIXED, COMPOSITION: same as R113	745-3401-00
R128	RESISTOR, FIXED, COMPOSITION: 220 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$	745-1058-00
R129	RESISTOR, FIXED, COMPOSITION: 5100 ohms $\pm 5 \%, 1 / 2 \mathrm{w}$	745-1116-00
R130	RESISTOR, FIXED, COMPOSITION: 100 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$	745-1310-00
R131	RESISTOR, FIXED, COMPOSITION: same as R130	745-1310-00
R132	RESISTOR, FIXED, COMPOSITION: same as R130	745-1310-00
R133	RESISTOR, FIXED, COMPOSITION: same as R130	745-1310-00
R134	RESISTOR, FIXED. COMPOSITION: 820 ohms $\pm 10 \%$. 1/2 w	745-1349-00
R135	RESISTOR, FIXED, COMPOSITION: 68,000 ohms $\pm 10 \%$. $1 / 2$ w	745-1429-00
R136	RESISTOR, FIXED, COMPOSITION: same as R135	745-1429-00
R137	RESISTOR. FIXED, COMPOSITION: 18,000 ohms $\pm 5 \%$, 2 w	745-5704-00
R138	RESISTOR, FIXED, COMPOSITION: sameas R137	745-5704-00
R139	RESISTOR, FIXED, COMPOSITION: same as R102	745-1324-00
R140	RESISTOR, FIXED, COMPOSITION: 2200 ohms $\pm 10 \%$, $1 / 2$.	745-1366-00
R141	RESISTOR, FIXED, COMPOSITION: 82,000 ohms $\pm 10 \%, 2$ w	745-5733-00
R142	RESISTOR, FIXED, COMPOSITION: 0.15 megohms $\pm 10 \%$, 2 w	745-5743-00
R143	RESISTOR. FIXED. COMPOSITION: same as R142	745-5743-00
R144	RESISTOR, FIXED, COMPOSITION: sameas R116	745-5708-00
R145	RESISTOR, FIXED. COMPOSITION: sameas R116	745-5708-00
R146	RESISTOR, FIXED, COMPOSITION: 8200 ohms $\pm 10 \%$, 2 w	745-5691-00
R147	RESISTOR, FIXED, COMPOSITION: same as R141.	745-5733-00
R148	RESISTOR. FIXED, COMPOSITION: same as R141	745-5733-00
R149	RESISTOR, FIXED, COMPOSITION: $47,000 \mathrm{ohms}$ $\pm 10 \%$, 2 w	745-5722-00
R150	RESISTOR, FIXED, COMPOSITION: $82,000 \mathrm{ohms}$ $\pm 10 \%$. 1 w	745-3433-00
R151	RESISTOR, FIXED. COMPOSITION: sameas R142	745-5743-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
R152	RESISTOR, VARIABLE: same as R117	377-0011-00
R153	RESISTOR, VARIABLE: same as R117	377-0011-00
R154	RESISTOR, FIXED. COMPOSITION: same as R142	745-5743-00
R155	RESTSTOR, FIXED. COMPOSITION: same as R150	745-3433-00
R156	RESISTOR, FIXED, COMPOSITION: 0.47 megohms $\pm 10 \%$. 1 w	745-3464-00
R156A	RESISTOR, FIXED. COMPOSITION: 0.56 megohm $\pm 10 \%, 1$ w	745-3468-00
R157	RESTSTOR, FIXED. COMPOSTTION: same as RI56	745-3464-00
R157A	RESISTOR, FIXED. COMPOSITION: same as R156A	745-3468-00
R158	RESISTOR, FIXED, COMPOSITION: same as R156	745-3464-00
R158A	RESISTOR, FIXED, COMPOSITION: same as R156A	745-3468-00
R159	RESISTOR, FIXED, COMPOSITION: same as RI56	745-3464-00
R159A	RESISTOR, FIXED, COMPOSITION: same as	745-3468-00
R160	RESISTOR. FIXED. COMPOSITION: same as R156	745-3464-00
R160A	RESISTOR, FIXED, COMPOSITION: same as R156A	745-3468-00
R161	RESISTOR, FIXED. COMPOSITION: same as R156	745-3464-00
R161A	$\begin{aligned} & \text { RESISTOR. FIXED, COMPOSITION: same as } \\ & \text { R156A } \end{aligned}$	745-3468-00
R162	RESISTOR, FIXED, COMPOSITION: same as R156	745-3464-00
R162A	RESISTOR. FIXED, COMPOSITION: same as R156A	745-3468-00
R163	RESISTOR, FIXED. COMPOSITION: same as R156	745-3464-00
R163A	RESISTOR, FIXED, COMPOSITION: same as R156A	745-3468-00
R164	RESTSTOR. FIXED, COMPOSTTION: same as R103	745-3394-00
R165	RESTSTOR. FIXED, COMPOSITION: same as R103	745-3394-00
R166	RESISTOR, VARIABLE: same as R121	735-0201-00
R167	RESISTOR, FIXED, WIREWOUND: 10 section; 1000 ohms total resistance $\pm 10 \%$. 150 w; Ohmite Mfg. Co. part no. 1603	717-0002-00
R168	RESISTOR, FIXED, COMPOSITION: 7500 ohms $\pm 10 \%, 160$ w; Ohmite Mfg. Co. part no. 0715	710-0150-00
R169	RESTSTOR, FIXED, COMPOSITION: same as R168	710-0150-00
R170	RESISTOR, FIXED, COMPOSITION: 5000 ohms $\pm 10 \%$. 160 w; Ohmite Mfg. Co. part no. 0714	710-6542-00
R171	RESISTOR. FIXED. COMPOSITION: same as R170	710-6542-00
R172	RESISTOR, FIXED, WIREWOUND: 16.000 ohms $\pm 5 \%, 10 \mathrm{w}$; Ohmite Mig. Co. part no. $1-3 / 4-D-57-\text { F1 } 6000$	710-2926-00
R173	RESISTOR, VARIABLE: wirewound; 2000 ohms $\pm 10 \%$. $0.045 \mathrm{amp} ;$ P. R. Mallory \& Co. part no. M2MPX	377-0008-00
R174	RESISTOR, FIXED, COMPOSITION: 2500 ohms $\pm 5 \%, 10 \mathrm{w}$; Ohmite Mig. Co. part no. 1-3/4-D-57-F2500	710-2910-00
R175	RESISTOR. FIXED, COMPOSITION: 25 ohms $\pm 10 \%, 25$ w; Ohmite Mig. Co. part no. 0200C	710-3252-00
R176	RESISTOR. FIXED. COMPOSITION: 25 ohms $\pm 10 \%, 10 \mathrm{w}$	710-1252-00
R177	RESISTOR, FIXED, COMPOSITION: same as R176	710-1252-00
R178	RESISTOR, FIXED, COMPOSITION: same as R176	710-1252-00
R179	RESISTOR, FIXED, COMPOSITION: same as R176	710-1252-00
R180	RESISTOR, FIXED, COMPOSITION: same as R175	710-3252-00
R181	RESISTOR, FIXED, COMPOSITION: 3900 ohms $\pm 10 \%$. 25 w	710-0349-00
R182	RESISTOR, VARIABLE: wirewound; 4000 ohms, 4 w; $0.032 \mathrm{amp} ;$ P. R. Mallory \& Co. part no. M4MPX	377-0040-00
R183	RESISTOR, FIXED. COMPOSITION: 1000 ohms $\pm 10 \%$, 2 w	745-5652-00
R184	RESISTOR, FIXED, WIREWOUND: 20,000 ohms $\pm 10 \%, 160 \mathrm{w}$	710-6204-10
R185	RESISTOR, FIXED. WIREWOUND: same as R164	710-6204-10
R186	RESISTOR, FIXED. WIREWOUND: 50,000 ohms $\pm 10 \%, 160 \mathrm{w}$	710-3133-00
R186A	RESISTOR, FIXED, WIREWOUND: same as R186	710-3133-00
R187	RESISTOR. FIXED, COMPOSITION: 15 ohms $\pm 10 \%, 25 \mathrm{w}$	710-3152-00
R188	RESISTOR, FIXED, COMPOSITION: 7500 ohms $\pm 10 \%$. 100 w	710-0132-00
R189	RESISTOR, VARIABLE: $15 \mathrm{ohm}, 150 \mathrm{w}$; power rheostat	739-0001-00
R180	RESISTOR, FIXED, COMPOSITION: same as RI28	745-1058-00
R191	RESISTOR, FIXED, COMPOSITION: 50 ohms $\pm 10 \%, 22 \mathrm{w}$	712-4200-00
R192	RESISTOR, FIXED, COMPOSITION: 47 ohms $\pm 10 \%$, 2 w	745-5596-00
R193	RESISTOR, FIXED, COMPOSITION: same as R192	745-5596-00
R194	RESISTOR, FIXED, COMPOSITIUN: 47 Uints, 2 watts, P/O Z101	745-5596-00
R195	RESISTOR, FIXED, WIREWOUND; 10 ohms $\pm 5 \%$. 11 w	746-6040-00

| COLLINS |
| :---: | :---: |
| PART NUMBER |$|$| $745-398 /-000$ |
| :--- |
| $449-1400-00$ |
| $710-0334-00$ |

504-9633-003

260-4040-00

260-4040-00 260-0239-00

260-0225-00

260-4050-00
260-4050-00 260-4050-00 260-2020-00

260-2020-00 260-2020-00 260-2020-00 504-9632-003

504-9632-003
677-0114-00

667-0497-00

662-0064-00

662-0209-00

672-0385-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
T108	TRANSFORMER, POWER, STEP-DOWN: pri 190,	662-0040-00
	$210,230 \mathrm{v}$, sec \#1 5.4 v CT; sec \#2, 5.4 v CT; sec \#3, 6.4 v CT; sec \#4, 2.7 v CT; $50 / 60 \mathrm{cps}$; continuous duty cycle	- col2-
T109	TRANSFORMER, POWER, STEP-UP: pri 200 v . $210 \mathrm{v}, 220 \mathrm{v}, 230 \mathrm{v}, 240 \mathrm{v}, 250 \mathrm{v}, \sec 1570 \pm 3 \%$,	662-0065-00
B100	$0.265 \mathrm{dc} \mathrm{CT;} 50 / 60 \mathrm{cps}$, continuous duty cycle TERMINAL BOARD; 3 solder-lug terminals; 50	306-0069-00
TB100	amp; $600 \mathrm{v} ; 2-1 / 8 \mathrm{in}$. w by 3-19/32 in. 1g; Square D Co. part no. 9080	306-0069-00
TB101	TERMINAL BOARD: mineral-filled phenolic barrier type w/ 10 screw terminals; 1-5/16 in. w by $6-13 / 64 \mathrm{in}$. 1g; Howard B. Jones part no. 142D-10	367-0645-00
TB102	TERMINAL BOARD: black bakelite, 2 terminals w/ 6-32 terminal screws; $1-1 / 8 \mathrm{in}$. w by $1-5 / 8 \mathrm{in}$. 1g; Howard B. Jones part no. 2-141	367-4020-00
TB103	TERMINAL BOARD: phenolic, barrier type w/ 6 terminals; $7 / 8 \mathrm{in}$. w by $2-5 / 8 \mathrm{in} .1 \mathrm{~g}$; Howard B. Jones part no. 353-11-06-001	367-0121-00
TB104	TERMINAL BOARD: same as TB103	367-0121-00
TB105	TERMINAL BOARD: black phenolic, 16 terminals; $1-5 / 16 \mathrm{in}$. w by $9-31 / 32 \mathrm{in}$. 1g; Howard B. Jones part no. 16-142	367-5160-00
TB106	TERMINAL BOARD: bakelite, 2 terminal connector strips w/ 5-40 terminal screws; 7/8 in. w by $1-3 / 8 \mathrm{in} .1 \mathrm{~g} ;$ Howard B. Jones part no. 3531102001	367-0001-00
TB107	TERMINAL BOARD: same as TB106	367-0001-00
TB108	TERMINAL BOARD: bakelite; 13 terminals w/ 8-32 terminal screws; 1-5/16 in. w by 8-1/4 in. 1g	367-5130-00
TB109	TERMINAL BOARD: same as TB108	367-5130-00
TB110	TERMINAL BOARD: phenolic w/ 3 solder - lug terminals; $11 / 16 \mathrm{in}$. w by $1-1 / 8 \mathrm{in} . \mathrm{lg}$; Cinch Mfg. Corp. part no. $1520-\mathrm{A}$	306-9033-00
TB111	TERMINAL BOARD: same as TB110	306-9033-00
TB112	TERMINAL BOARD: same as TB110	306-9033-00
TB113	TERMINAL BOARD: same as TB110	306-9033-00
TB114	TERMINAL BOARD: same as TB110	306-9033-00
TB115	TERMINAL BOARD: same as TB110	306-9033-00
TB116	TERMINAL BOARD: same as TB110	306-9033-00
TB117	TERMINAL BOARD: same as TB110	306-9033-00
TB118	TERMINAL BOARD: same as TB110	306-9033-00
TB119	TERMINAL BOARD: same as TB110	306-9033-00
TB120	TERMINAL BOARD: same as TB110	306-9033-00
TB121	TERMINAL BOARD: same as TB110	306-9033-00
TB122	TERMINAL BOARD: same as TB110	306-9033-00
TB123	TERMINAL BOARD: same as TB110	306-9033-00
TB124	TERMINAL BOARD: 2 solder-lug terminals, 19/32 in. w by $5 / 8 \mathrm{in} .1 \mathrm{~g}$ approx	306-0002-00
TB125	TERMINAL BOARD: same as TB110	306-9033-00
TB126	TERMINAL BOARD: same as TB110	306-9033-00
TB127	TERMINAL BOARD: same as TB110	306-9033-00
TB128	TERMINAL BOARD: same as TB105	367-5160-00
TB129	TERMINAL BOARD: same as TB105	367-5160-00
TB130	TERMINAL BOARD: same as TB105	367-5160-00
TB131	TERMINAL BOARD: same as TB103	367-0121-00
TB132	TERMINAL BOARD: plastic; $3 / 8 \mathrm{in}$. by $7 / 8 \mathrm{in}$. by 3-5/8 in.; incl 8 terminals; E. B. Jones part no. 8-140	367-3080-00
TB133	NOT USED	
TB134	TERMINAL BOARD: phenolic w/ 4 solder lug terminals; $15 / 32 \mathrm{in}$. by $11 / 16 \mathrm{in}$. by 1-1/2 in. o/a; Cinch Mig. Corp. part no. 1909	306-0838-00
TB135	TERMINAL BOARD: phenolic w/ 8 screw type terminals; $1 / 2 \mathrm{in} . \mathrm{h}, 1-1 / 8 \mathrm{in} . \mathrm{w}, 4-1 / 4 \mathrm{in} . \mathrm{lg} ;$ Kulka Electric Mig. Co., Inc. part no. 601-8	367-4080-00
TB136	TERMINAL BOARD: phenolic $w / 8$ solder lug terminals; 1-1/2 in. ig o/a; Vector Mfg. Co. part no. 6H-12	306-0909-00
TB137 thru	NOT USED	
TB139		
TB140	TERMINAL BOARD: phenolic w/ 3 solder lug terminals; $11 / 16 \mathrm{in} . \mathrm{w}, 1-1 / 8 \mathrm{in} .1 \mathrm{~g} ;$ Cinch Mfg. Corp. part no. 1520-A	306-9033-00
TB141	TERMINAL BOARD: bakelite, 2 terminal connector strip w/ 5-40 terminal screws; 7/8 in. w. 1-3/8 in. 1g; Howard B. Jones part no. 353-11-02001	367-0001-00
V101	ELECTRON TUBE: pentode; General Electric part no. 6AU6	255-0202-00
V102	ELECTRON TUBE: glass envelope; pentode; RCA part no. 6SJ7	255-0030-00
V103	ELECTRON TUBE: beam; RCA part no. 807	256-0033-00
V104	ELECTRON TUBE: tetrode; Eimac part no. 4-400A	256-0091-00
V105	ELECTRON TUBE: same as vi04	256-0091-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
V106	ELECTRON TUBE: same as V102	255-0030-00
V107	ELECTRON TUBE: same as V102	255-0030-00
v108	ELECTRON TUBE: same as V104	256-0091-00
v109	ELECTRON TUBE: same as V104	256-0091-00
V110	ELECTRON TUBE: glass envelope; rectifier;	255-0032-00
	General Electric part no. 5U4G-3 257-0/	$09-000$ $256-0080-00$
V111	ELECTRON TUBE: rectifier; RCA part no. 575A	256-0080-00
V112	ELECTRON TUBE: same as V111	256-0080-00
V113	ELECTRON TUBE: rectifier; RCA part no. 886A/868	256-0049-00
V114	ELECTRON TUBE: same as V113	256-0049-00
XF101	FUSE HOLDER: w/ transparent knob for use w/ 3 AG fuses; 0-20 amp. 100-250 v rating; Bussman Mig. Co. part no. HKL-JRZ	265-1040-00
XF102	FUSE HOLDER: same as XF101	265-1040-00
XF103	FUSE HOLDER: same as XFIO1	265-1040-00
XF104	FUSE HOLDER: same as XF101	265-1040-00
X1101	LAMPHOLDER: panel mounting lampholder w/ candelabra screw base lamp	262-0255-00
X1102	LAMPHOLDER: same as X1101	262-0255-00
XK101	SOCKET. RELAY: 8 prong octal tube socket w/ steel mounting plate; American Phenolic part no. 88-8TM	220-1005-00
XT101	SOCKET, ELECTRON TUBE: 7 prong chassis mtg w/ ring and spacer; Amphenol part no. 49-SS7L	220-1770-00
XT102	SOCKET. ELECTRON TUBE: same as XT101	220-1770-00
XV101	SOCKET. ELECTRON TUBE: 7 contact top mtg. 1 miniature tube socket w/ shield base; 1 amp ; phenolic insulation	220-1111-00

SECTION VI
Parts List

Figure 6-1. AM Broadcast Transmitter 20V-3, Front View

Figure 6-3. Relay Compartment

Figure 6-4. R-F Output Network Compartment

Figure 6-5. R-F Chassis, Outside View

Figure 6-6. R-F Chassis, Inside View

Figure 6-7. Audio Chassis, Outside View

Figure 6-8. Audio Chassis, Inside View

SECTION VI
Parts List

Figure 6-9. Power Supply Chassis, Top Rear View

Figure 6-10. Power Supply Chassis, Bottom View

dorlie mait not taik ull "LDen

zG1MA:

To adapt the 20V-3 transmitter to operate with the Gates RDC-10 Remote Control Unit requires some minor changes in the transmitter. The transmitter was designed to operate in the remote position using momentary relays for control of both filaments and plate. These relays are not required when the RDC-10 is used.

Operation of the $20 \mathrm{~V}-3$ filaments on remote using the continuously locked key circuit in the remote unit is accomplished by adding a local remote switch. In remote position this shorts out the normal FILAMEMT ON circuit. Ey connectim the filament ON, OFF control from the remote to terminals 6 and 13 on TB105, both the filament ON and OFF can be controlled. It should he noted that in remote position the transmitter local FILAMENT ON and OFF controls will roti function. For local operation the switch must be operated to "LOCAL" position.

The PLATE Off control can be comected to terminals 6 and 8 on TB105. This requires only a momentary on control.

The ROC-10 has no separate PLATE OFF control. This is accomplished by using the filament off to turn both the filaments and plate off at the same time. When there is no separate PLATE OFF control, terminals 7 and 12 on TB105 must be jumpered.

The ROC-10-C has a separate PLATE OFF control. This control is connected to terminals 7 and 12 on TBlor, in place of the jumper. Since the normal fail sufe circuit in the transmitter is not used with triese remote units, a jumper must be connected between terminals 4 and 5 on TEI28.

The transmitter plate current is not.metered against ground and no provision is miade in the ROC-10 to float the meters on dialing position 1 through 7. The plate current, however, can be metered on position 9,10 , or 11 which are not connected to ground. Should it be desired to meter plate current on dial position 2, as shown in the RDCiQ instruction book, then it is necessary to remove the ground jumper from teminal 2 on Kl-2 and connect the terminal to an unused temminal on TB2 and then to the negative side of the $20 \mathrm{~V}-3$ plate current metering circuit (TB129-2).

The transmitter power loading and power change controlirelays are 6 V DC for operation from the remote control selector circuit. The power change lat ining relay and the fower loading motor require 115 volts for operation. This voltage is obtained by connecting terminals 2 and 3 on TB128 to an external 115 V line. The raise remote control relay contact must be connected to TB140-2 and TE140-6. The lower remote control relay contacts miust be connected to TB140-4 and TB140-6.

Suggested Connections
Gates RDC-10 or 10 C to 20V-3

Dial

Gates RDC10
20V-3
Ext 115 V AC $\left\{\begin{array}{l}T B 128-2 \\ T B 128-3 \\ T B 105-6\end{array}\right.$
TB2-31
TB2-32
TB2-29, Jumper to 31
TB2-30
TB5-1 (RDC-10-C only)
TB5-2 (RDC-10-C only)
TB2-2C
TB?-27
TE2-28
TB2-25
TB2-1
Gnd. no connection)
TB2-75
--
--
TB2-5
TB2-25
--
--
--

$$
\begin{aligned}
& \text { TB2-10 } \\
& \text { TB2-9 } \\
& \text { TB2-22 }
\end{aligned}
$$

TE105-13 (TB105-6) TB105-8 T13105-7 TB105-1?
TB140-2
TB140-6
TB140-4
TB128-1
TE120-1.3
TB128-14
TB141-9

.--
--
-

TB128-9
TB128-10

TB129-1
TE129-2
TB140-9

Function

Fil on/off
Fil on/off
plate on
plate on
Plate off Plate off Raise Comunon Lower
Gind.

+ PA plate volts - PA plate vol!s Power change

1 Line voltage

- Line vollage
+ PA plate current
- PA plate current

Power loading change

COLLINS RADIO COMPANY

Field Service Department Cedar Rapids, Iowa

$\begin{array}{ll}\text { DATE: } & 12-3-63 \\ \text { Page } 1 & \text { of } 2\end{array}$

EQUIPMENT TYPE: 20V-3 TRANSMITTER

SYSTEM USE: AM BROADCAST

SUBJECT: IMPROVED BLOWERS

The improved blower assemblies (B101 and B102) used in currently manufactured 20V-3 transmitters will be available as replacements for the assemblies used in earlier manufactured transmitters.

The new motors and method of mounting greatly decrease the mechanical vibration and provides for much quieter operation.

The assembly and installation of the improved blowers is quite simple and can be accomplished in approximately one hour for each unit.

It is recommended the new blowers be installed only where wear or noise is a problem.

Complete parts, installation and assembly instructions are included in each modification kit.

NOTE: Although the parts in each kit are similar, the assemblies are for audio or $r-f$ chassis mounting. Please specify for which unit the parts are required.
PARTS REQUIRED: $\quad 5213-00$ Price: $\$ 70.14$

Modification kit 554-5213-011 for the r-f chassis which consists of the following items:

Qty Description Collins Part Number

1 Fan, centrifugal - right
009-1677-00
1
1
2
1
1
8
2
2
4
8
4
8
1
2
1
Mounting assembly - no. 1
554-5217-005
Duct, air - short
Mount, resilient - 2 lb
542-3233-002

Clamp half, lower
200-1957-00

Clamp half, upper
554-5215-002

Screw, machine, 6-32 x 5/16
554-5216-002

Screw, machine, $8-32 \times 3 / 8$
Screw, machine, 8-32 x 3/4
343-0168-00
343-0187-00
343-0191-00
Nut, hex, 8-32 UNC 313-0017-00
Washer, lock, ext. tooth, \#6 373-8020-00
Washer, lock, ext. tooth, 非8 373-8030-00
Nut, hex, 6-32 UNC 313-0002-00
Bushing, nonmetallic 756-3198-00
Screw, FH, $6 \times 32 \times 1 / 2$
342-0170-00
Envelope - drawings and instruction
520-8201-00

Modification ki.t 554-5214-011 for audio chassis, which consists of the following items:

	Descri	Collins Part Numb
1	Fan, centrifugal - left	009-1674-00
1	Mounting assembly - no. 2	554-5218-00
1	Duct, air - short	542-3233-002
2	Mount, resilient - 2 lb .	200-1957-00
1	Clamp half, lower	554-5215-002
1	Clamp half, upper	554-5216-002
8	Screw, machine, 6-32 $\times 5 / 16$	343-0168-00
2	Screw, machine, $8-32 \times 3 / 8$	343-0187-00
2	Screw, machine, $8-32 \times 3 / 4$	343-0191-00
4	Nut, hex, 8-32 UNC	313-0017-00
8	Washer, lock, ext. tooth, \#6	373-8020-00
4	Washer, lock, ext. tooth, 非	373-8030-00
8	Nut, hex, 6-32 UNC	313-0002-00
1	Bushing, nonmetallic	756-3198-00
2	Screw, FH, $6 \times 32 \times 1 / 2$	342-0170-00
1	Envelope - drawings and instruction	520-8201-00

The above parts may be obtained from Collins Radio Company, Service Parts Department, Dallas, Texas and will be available for delivery on or before April 1, 1964. All orders should specify the Collins part numbers for the kit required and make reference to Service Bulletin No. 6 for the 20V-3 Transmitter. The indicated prices are subject to change without notice.

DATE: 12-3-63
Page 1 of 2

EQUIPMENT TYPE: 20V-3 TRANEMITTER
SYSTEM USE: AM BROADCAST

SUBJECT: IMPROVED BLOWERS

The improved blower assembiies (B101 and B102) used in currently manufactured 20V-3 transmitters will be available as replacements for the ausemblies used in earlier manufactured transmitters.

The new motors and method of mounting greatly decrease the mechanical vibration and provides for much quieter operation.

The assembly and installation of the improved biowers is quite simple and can be accomplished in approximately one hour for each unit.

It is recommended the new blowers be installed only where wear or noise is a problem.

Complete parts, installation and assembly instructions are included in each modification kit.

NOTE: Although the parts in each kit are similar, the assemblies are for audio or r-f chassis mounting. Please specify for which undt the parts are required.

PARTS REQUIRED:

Price: $\$ 70.14$
Modification kit 554-5213-0il for the r-f chassis which consists of the following items:

Qty	Description	Collins Part Numb
1	Fan, centrifural - right	009-1677-00
1	Mounting asseribly - no. 1	554-5217-005
1	Duct, air - snort	542-3233-002
2	Mount, resilient - 2 lb	200-1957-00
1	Clamp half, lower	554-5215-002
1	Clamp half, upper	554-5216-002
8	Screw, machine, 6-32 $\times 5 / 16$	343-0168-00
2	Screw, machinc, $8-32 \times 3 / 8$	343-0187-00
2	Screw, machine, $8-32 \times 3 / 4$	343-0191-00
4	Nut, hex, 8-32 UNC	313-0017-00
8	Washer, lock, ext. tooth, 非6	373-8020-00
4	Washer, lock, ext. tooth, 非8	373-8030-00
8	Nut, hex, 6-32 UNC,	313-0002-00
1	Bushing, nonmutallic	756-3198-00
2	$\text { Scr:w, FH, } t \times 32 \times 1 / 2$ Envelope - drawin and instruction	$342-0170-00$ $520-8201-00$

Page 2 of 2
Servace Buileinno
20 V
12-3-63
PARTS REQUIRED: Price: $\$ 70.14$
Modification kit 554-5214-011 for audio chassis, which consists of the following items:

Qty	Description	Collins Part Number
1	Fan, centrifugà - left	009-1674-00
1	Mounting assembiy - no. 2	554-5218-00
1	Duct, air - short	542-3233-002
2	Mount, resilient - 21 lb .	200-1957-00
1	Clamp half, lower	554f5215-002
1	Clamp half, upper	554-5216-002
8	Screw, machine, 6-32 $\times 5 / 16$	343-0168-00
2	Screw, machine, $8-32 \times 3 / 8$	343-0187-00
2	Screw, machine, $8-32 \times 3 / 4$	343-0191-00
4	Nut, hex, 8-32 JNC	313-0017-00
8	Washer, lock, ext. tooth, 非6	373-8020-00
4	Washer, lock, ext. tooth, 非8	373-8030-00
8	Nut, hex, 6-32 JNC	313-0002-00
1	Bushing, nommerallic	756-3198-00
2	Screw, FH, $6 \times 32 \times 1 / 2$	342-0170-00
1	Envelope - drawings and instruction	520-8201-00

The above parts may be obtained from Collins Radio Company, Service Parts Department, Dallas, Texas and will be available for delivery on or before April 1, 1964. All orders should specify the Collins part numbers for the kit required and make reference to Service Bulletin No. 6 for the 20V-3 Transmitter. The indicated prices are subject to change without notice.

SERVICE BULLETIN NO. 7

EQUIPMENT SERIES: 20V
EQUIPMENT TYPE: 20V-3 Broadcast Transmitters
SUBJECT: Improved Cabinet Latches

The modification described in this bulletin provides a magnetic latch in lieu of the touch latches.

This modification is recommended for all units.

1. MODIFICATION PROCEDURE

a. Locate and drill a 0.108 -diameter hole (No. 36 drill) and tap for $6-32$ screws in the cabinet as shown in figure 1.
b. Remove the push latch hook from the door.
c. Locate and drill two 0.156 -diameter holes and countersink $82^{\circ} \pm 2^{\circ}$ to 0.284 diameter, in the door, as shown in figure 2.
d. Install magnetic striker plate on the cabinet as shown in figure 1. Use 6-32 X $1 / 4 \mathrm{PFH}$ screw, 330-2295-000. Be sure the screw head is below the surface of the mounting plate.
e. Install the magnetic latch bracket on the door. Use 6-32 X 1/4 PFH screws, 330-2295-000. Refer to figure 3.
f. Mount the magnetic latch on the bracket as shown in figure 3. Use 6-32 X 1/4 PPH screws 343-0167-000 and lockwasher, 310-0282-000. Adjust for 100 percent contact with striker plate.
g. Repeat steps a. through f. for the opposite side of the transmitter cabinet and door.
2. PARTS REQUIRED

Price: $\$ 5.32$
Modification kit 762-9044-001 consists of the following parts:

QUANTITY		COLCRIPTION

The above parts may be secured from Service Parts Department, Collins Radio Company, D Dallas, Texas 75207, at the indicated price. Orders should be for the modification kit (762-8044-001), and the model of the transmitter should be included.

Figure 1. Installation of Striker Plate on Cabinet.

Figure 2. Location of Holes in Door.

Figure 3. Installation of Magnet and Bracket on Door.

SERVICEBULLUTTIN

COLLINS RADIO COMPANY

1 November 1967

SERVICE BULLETIN NO. 8

EQUIPMENT SERIES: 20V
EQUIPMENT TYPE: 20V-3 Broadcast Transmitters
SUBJECT: Installation of Striker Plate

The modification described in this bulletin provides a striker plate for the cabinet. Replacement doors will have a magnetic latch installed.

This modification is recommended when a replacement door is installed.

1. MODIFICATION PROCEDURE
a. Locate and drill two 0.108 -diameter holes (No. 36 drill) and tap for 6-32 screws in the cabinet as shown in figure 1.
b. Install magnetic striker plate on the cabinet as shown in figure 1. Use 6-32 X 1/4 PFH screw, 330-2295-000. Be sure the screw head is below the surface of the mounting plate.
c. Repeat steps a. and b. for the opposite side of the transmitter cabinet.
2. PARTS REQUIRED

Price: \$2.04
Modification kit 962-9044-003 consists of the following parts:

QUANTITY	DESCRIPTION	COLLINS PART NUMBER
4	Screw, 6-32 X 1/4 PFH	330-2295-000
2	Plate, Striker	762-9041-002

The above parts may be secured from Service Parts Department, Collins Radio Company, Dallas, Texas 75207, at the indicated price. Orders should be for modification kit (762-9044-003), and the model of the transmitter should be included.

Figure 1. Installation of Striker Plate.

TECHNICAL $\mathbb{B U L L} L E^{\prime} T I N$

COLLINS RADIO COMPANY/ DALLAS. TEXAS
©Collins Radio Company 1968
523-0146000-00241A
Printed in United States of America
1 June 1968

CHANGE NOTICE NUMBER 1

PUBLICATION: 20V-3 AM Broadcast Transmitter Instruction Book 523-0146000-002411, dated 1 December 1962

EQUIPMENT: 20V-3 AM Broadcast Transmitter 522-2480-000
a. Page 1-2, table 1-3, add the following equipment.

Remote power change kit for 48 -volt d-c relays $762-8948-002$
Remote power change kit for 24 -volt d-c relays $762-8948-004$
Remote power change kit for 115 -volt a-c relays
762-8948-003
Remote power change rheostat
756-7608-000
Remote power change rheostat cable
757-2840-000
b. Page $2-5$, paragraph 2.4 , step b.

1. Change the third sentence in the first paragraph to read: Connect the incoming audio leads to TB103, terminals 1 and 3 and the shield to terminal 2 .
2. Change the first sentence in the second paragraph to read: If the transmitter is to be operated at both full and reduced power, connect the incoming audio leads to terminals 2 and 3 on terminal board TB135.
3. Change the fourth sentence in the second paragraph to read: Audio input pad switching is accomplished by connecting 115 volts, 60 cps between TB130, terminal 13, and TB128, terminal 3, through an external spst power change switch.
c. Page 2-6, figure 2-3

Alternate T107. Change secondary connections 8, 9, 10 to 7, 8, 9 respectively.
d. Page 2-8, figure 2-5

Both figures in center of page (620 kc to 980 kc)
Remove the lead from the circuit to the dash line. Leave ground attached to the dash line as in the other figures. Connect the lead from the circuit to pin 5 as in the other figures.
e. Page 3-2

1. At the top of figure 3-2, Relay Compartment, change R200 (REMOTE PLATE CURRENT BALANCE) to R210 (REMOTE PLATE CURRENT BALANCE).
2. In paragraph 3.1, last paragraph, first sentence, change R200 to R210.
f. Page 3-4

Change R200 to R210 in steps a., e., and f.
g. Page $4-3 / 4-4$, paragraph 4.4

In the last paragraph, first and second sentences, change R200 to R210.
h. Page 5-2, table 5-1, power change LOW (550 watts), P. A. PLATE VOLTAGE

Change 250 volts d-c to 2500 volts d-c.
i. . Page 6-1

B103 change 230-0164-00 to 230-0164-010.
C149 change $\pm 10 \%$ to $+5 \%$.
C151 and C152 change part number to 936-1147-000.
C162 change 51 uuf to 47 uuf.
j. Page 6-4

R196 change to 4700 ohms, 5%, 1 watt, part number 745-3981-000.
R212 change to $2200 \mathrm{ohms}, 10 \%$, 1 watt, part number 745-3366-000.
R213 change to same as R212.
k. Page 7-1/7-2, Figure 7-1, schematic

Note 6. Change to read: Resistors R122, R186, R186A, and R197 are added or changed in value on serial numbers 97 and above.

Change R196 from 1 K to 4700 .
Change R212 from 1K to 2200 .
Change R213 from 22 K to 2200 .

1. Page 7-3/7-4

Add figure 7-2.
20V-3 AM Broadcast Transmitter, Remote Control Circuits, Schematic Diagram.

REVISIONS

PROCEDURE

1. REMOVE SIO3. CAUTION: BE SURE TO KEEP THE PAIRED WIRES TOGETHER.
2. INSTALL HiGh VOLTAGE RELAY ON UPPER RIGHT SIDE (VIEWED from rear) behind power switch. use self tapping screws IN EXISTING HOLES.
3. TAP THE TWO HOLES ABOVE RELAY FOR 6-32 THREAD.
4. Install transient. suppressor abové relay.
5. RECONNECT TO THE CONTACTS OF The h!gh voltage relay THE WIRES TAKEN OFF S103.
6. CONNECT the coil of the high voltage relay to pluí piog, PINS 4 AND 5.
7. Instáll S115, P/N 260-3080-000 IN THE PLACE WHE?E S103 WAS REMOVED.
8. CONNECT THE COMMON CONWECTION OF the SWitch to plug plog PIN 2. CONNECT ONE SIDE OF THE SWITCH, TO PIN 1, PICI. CONNECT THE OTHER SIDE OF THE SWITCH TO PIN 3, P106. FIGURE 1.
9. Install power chang latching relay assembly on the lower LEFT WAl.L (AS YiEWED fROM REAR) NEAR the front in Existing HOLES USING NO. 6 HARDHARE.
10. T!'́c WIRES WHICH CONAECT TO THE TERMINAL STRIP, TBI39, OF THE híthing relay are tied back in the cable. locate the WRRES AND CONNECT AS FOLLOWS:
A. TB139-10 TO TB130-11
B. TВ139-9 ТО TВ:28-8
C. TB:39-7 TO TB130-12

NO. 762-8956-000
REVISION
D. STRAP TBY 39-6 T0 5
E. TB139-5 TO TB130-:3
F. STRAP TB139-1 TO 2
G. TB139-1 10 TB128-2
H. TB130-11 TO J106-3

1. TB130-12 TO J106-1
J. TB130-13 TO J106-4
2. CONNECT REMOTE EQUIPMENT TO TBI $30-11$ FOR LOW POWER AND COMMON TO TB128-8.
3. CONNECT REMOTE EQUIIPMENT TO TB130-12 FOR HIGH PCWER.
4. CONNECT LATCHING RELAY VOLTAGE FROM REMOTE TO TB128-7 \& 8. (NECESSARY FOR LOCAL SWITCH OPERATION.)
5. CONNECT $115 V A C$ TO TB128-2 \& 3 FOR HV RELAY OPERATION.

SIII

TO :106-2<
FIGURE

REVISION
NO. 762-8956-000

