

51X-3 Receiver

\perp

VHF COMMUNICATIONS AND NAVIGATION RECEIVER 51X-3

${ }^{\ominus}$ COLLINS RADIO COMPANY 1958, 1959

CEDAR RAPIDS, IOWA, U.S.A.

tABLE OF CONTENTS

-

Section Page
I GENERAL DESCRIPTION 1
1.1 Description and Application1 -
1.1.1 VHF Communications and Navigation Receiver 51X-3 1
1.1.2 Modulator-Power Supply 427B-() 1
1.2 Performance Data 3
II INSTALLATION 5
2.1 General 5
2.2 Unpacking 5
2.3 Preinstallation Check 5
2.4 Mounting. 5
2.5 Cabling 8
2.6 Fostinstallation Check 11
2.6 .1 Modulation Check 11
2.6.2 Sidetone Adjustment 11
2.6.3 Check for Excessive Hum 11
III OPERATION 11
3.1 General 11
3.2 Operating Controls 11
3.3 Normal Operating Procedure 11
3.4 Adjustments for Weak Signal Reception 11
3.5 Volume Control 12

Table of Contents

Section Page
IV PRINCIPLES OF OPERATION 13
4.1 General 13
$4.2 \quad \mathrm{R}-\mathrm{F}$ and Conversion Circuits 14
4.3 I-F Circuits 14
4.4 Signal, Localizer-VOR, and AGC Detectors 14
4.5 Noise Limiter and Squelch Circuits 14
4.6 Dual-Purpose Audio and Modulator Circuits 14
4.7 Power Supply 15
4.8 Control Circuits 16
v MAINTENANCE 18
5.1 General 18
5.2 Test Equipment 18
5.3 Test Harness 18
5.4 Disassembly Procedures 18
5.4.1 General 18
5.4.2 Replacing High-Frequency Oscillator Crystals in Receiver 51X-3 18
5.4.3 Replacement of 3.105-Mc Transformer (T402) in Receiver 51X-3 18
5.4.4 Replacing Low-Frequency Oscillator Crystals in Receiver 51X-3 18
5.5 Aligning, Adjusting, and Checking Receiver 51X-3 and 427B-() Unit 18
5.5.1 General 18
5.5.2 Presetting Tuned Circuits 19
5.5.3 Low-Frequency Oscillator Check 19
5.5.4 High-Frequency Oscillator Check 19
5.5.5 High-Frequency Oscillator Alignment 19
5.5.6 Alignment of $3.105-\mathrm{Mc}$ Mixer Coil (T402) 19
5.5.7 3.105-Mc I-F Alignment 20
5.5.8 Alignment of $18-\mathrm{Mc}$ Transformer (T401) 20
5.5.9 Front End Alignment 20
5.5.10 Squelch Adjust 20
5.5.11 Audio Output Check 20
5.5.12 Transient Protector Adjustment 20
5.6 Lubrication 21
5.7 Servicing Transistor Circuits 21
5.7.1 General 21
5.7.2 Test Equipment 21
5.7.2.1 Transformerless Power Supplies 21
5.7.2.2 Line Filter 21
5.7.2.3 Low-Sensitivity Multimeters 21
5.7.2.4 Power Supply 21
5.7.3 Electric Soldering Irons 21
5.7.3.1 Leakage Current 21
5.7.3.2 Iron Size 21
5.7.4 Servicing Practices. 21
5.7.4.1 Heat-Sink When Soldering 21
5.7.4.2 Removal of Transistors from Operating Circuits 22
5.7.4.3 Plug-In Transistors 22
5.7.4.4 Resistance Measurements in Transistor Circuits 22
5.7.4.5 Power Transistor Heat Sinks 22
5.7.4.6 Test Prods 22
5.7.5 Trouble Shooting 22
5.7.5.1 Ohmmeter Test of Transistors 22
VI PARTS LIST 23
VII ILLUSTRATIONS 35/36

LIST OF. ILLUSTRATIONS

Figure
Page
1-1 VHF Communications and Navigation Receiver 51X-3 and Modulator-Power Supply 427B-2 (C246-12-P). iv
2-1 Receiver 51X-3, Installation Diagram (C246-04-4) 6
2-2 427B-1 or 427B-2 Unit, Installation Diagram (C246-05-5) 7
2-3 $\quad 51 \mathrm{X}-3,427 \mathrm{~B}-1,17 \mathrm{~L}-8 / 8 \mathrm{~A}$ Interconnecting Cabling Diagram (C246-06-4) 9
2-4 $51 \mathrm{X}-3,427 \mathrm{~B}-2,17 \mathrm{~L}-8 \mathrm{~A}$ Interconnecting Cabling Diagram (C246-11-4) 10
3-1 Receiver 51X-3, Operating Controls (C246-13-P) 12
4-1 Receiver 51X-3 and 427B-() Unit, Block Diagram (C246-09-4) 13
4-2 Detectors, AGC, Squelch and Noise Limiter Circuits, Schematic Diagram (C246-10-3) 15
4-3 Power Supply, Schematic Diagram (C246-08-3) 16
6-1 Receiver 51 X-3, Top View, Dust Cover Removed (C246-22-P). 23
6-2 Receiver 51X-3, Front View, Front Panel Removed (C246-25-P). 24
6-3A Receiver 51X-3, Bottom View, Dust Cover and R-F Shield Removed (C246-23-P) 24
6-3B Receiver 51X-3, Bottom View, Dust Cover and R-F Shield Removed (C246-24-P) 25
6-4 427B-1 Unit, Top View (C246-15-P) 25
$6-5 \mathrm{~A} \quad 427 \mathrm{~B}-1$ Unit, Bottom View (C246-19-P) 26
6-5B 427B-1 Unit, Bottom View (C246-20-P) 26
6-6 427B-2 Unit, Top View (C246-16-P) 27
$6-7 \mathrm{~A} \quad 427 \mathrm{~B}-2$ Unit, Bottom View (C246-17-P) 27
6-7B $\quad 427 \mathrm{~B}-2$ Unit, Bottom View (C246-18-P) 28
7-1 Receiver 51X-3, Main Schematic Diagram (C246-01-6) 35/36
7-2 427B-1 Unit, Main Schematic Diagram (C246-02-6).
37/38
37/38
7-3 427B-2 Unit, Main Schematic Diagram (C246-03-6). $39 / 40$
LIST OF TABLES
Table Page
1-1 Equipment Supplied 1
1-2 Equipment Required But Not Supplied 2
1-3 Vacuum Tube, Transistor, Diode, and Lamp Complement 3
2-1 Suggested Wire Size Versus Length of Interconnecting Wires 8
2-2 27.5-V D-C Installation 8
2-3 13.75-V D-C Installation 8
3-1 Operating Controls. 12
4-1 ILS Channeling Data 17
5-1 51X-3 Channel Crystal Chart 23

Figure 1-1. VHF Communications and Navigation Receiver 51X-3 and Modulator-Power Supply $427 \mathrm{~B}-2$

SECTION I
 GENERAL DESCRIPTION

1.1 DESCRIPTION AND APPLICATION.

1.1.1 VHF COMMUNICATIONS AND NAVIGATION RECEIVER 51X-3.

Collins VHF Communications and Navigation Receiver $51 \mathrm{X}-3$, upper half of figure $1-1$, is the $r-f$ portion of a small, lightweight airborne vhf receiver. The unit operates on 190 crystal-controlled channels in the frequency range 108.00 to 126.9 mc . Therefore, vhf communication and navigation (VOR and localizer) signals are accepted. Receiver $51 \mathrm{X}-3$ is contained in a three-inch instrument case which is designed to mgunt in a standard cutout in the aircraft instrument panel. When used with an external instrumentation unit, such as the Collins 344D-1, the 51X-3 provides localizer and VOR signal reception. The 51X-3 also provides channel switching for a companion glide slope receiver such as the Collins 51V-3. Receiver $51 \mathrm{X}-3$ has carrier operated squelch and agc circuits. The i-f, audio, and power supply portions of the receiver are contained in Modulator-Power Supply 427B-(). Receiver 51X-3 is intended as a companion unit to Collins VHF Transmitter $17 \mathrm{~L}-8$ or $17 \mathrm{~L}-8 \mathrm{~A}$. All operating controls are located on the face of the receiver, and the connectors for interunit cabling are
located on a rear chassis shelf. The entire unit is housed in a perforated dust cover.

1.1.2 MODULATOR-POWER SUPPLY 427B-(.).

Modulator-Power Supply 427B-1 or $427 \mathrm{~B}-2$, lower half of figure 1-1, is a dual-purpose equipment on one chassis. It provides i-f, audio, and power supply circuits for Receiver 51X-3. The transistorized power supply and audio circuits also are designed to provide power and modulation for Transmitter $17 \mathrm{~L}-8$ or $17 \mathrm{~L}-8 \mathrm{~A}$ which is used as a companion to the receiver. Modulator-Power Supply 427B-1 operates on 27.5 volts d-c primary aircraft power, and Modulator-Power Supply 427B-2 operates on 13.75 volts d-c. The $427 \mathrm{~B}-1$ unit provides all requirements for Receiver 51X-3 and either Transmitter 17L-8 or 17L-8A, while the 427B-2 unit may be used only with Receiver 51X-3 and Transmitter 17L-8A. Three external audio inputs (without level controls) are provided on the 427B-() units for marker beacon receiver, interphone, or other uses. The $427 \mathrm{~B}-($) units are provided with shockmounts, and the components on the top of the horizontal chassis are encased in a dust cover. The cover is shaped to expose four connectors on top of the chassis for interunit cabling. The entire unit occupies a short 3/8 ATR space.

TABLE 1-1. EQUIPMENT SUPPLIED

TABLE 1-1. EQUIPMENT SUPPLIED (Cont)

EQUIPMENT	COLLINS PART NUMBER	OVER-ALL DIMENSIONS (in.)			WEIGHT (lb)
		H	W	LG	
			-		
2 - Winchester MRE-18S-G plug (mates	372104900				
J402 on 51X-3 AND J303 or J503 on					
427B-() unit) including Winchester					
2 - MRE-18-H cover and Winchester	372115700				
2 - MRE-VL spring assembly	372172700				
1 - Industrial Products type MB-44975 plug (mates J403 on 51X-3).	357923100				
2 - Industrial Products type 85000 plug (mates J401 on 51X-3 and J301 or J501 on 427B-() unit).	357929200				
1 - Viking VP9/2BG1 plug and	372172500				
VS7/23C1 hood (mates J304 or J504 on	372168800				
427B-() unit).	- 1688				
1-Viking VP7/2BB1	372168700				
plug and VS7/23C1 hood (mates	372168800				
J302 or J502 on $427 \mathrm{~B}-()$ unit).					

TABLE 1-2. EQUIPMENT REQUIRED BUT NOT SUPPLIED

ITEM	TYPE	FUNCTION	DESCRIPTION
Communications Antenna Coaxdal Cable	Collins type 37R or equivalent $R G-58 / \mathrm{U}$	Receive vhf communication signals. Connect receiver to 427B-() unit and connect receiver to 17L-8 or 17L-8A for vhf communications only. Used to connect receiver to external communicationsnavigation antenna transfer relay for vhf communications and navigation operation.	Vertically polarized, vhf, 52 ohms impedance.
FOR VOR-NAVIGATION AND LOCALIZER SERVICE			
Navigation Antenna (VOR and Localizer) Instrumentation Unit	Collins type 37J or equivalent Collins type 344D-1 or equivalent	Receive vhf omnirange and localizer signals. Visual representation of VOR-ILS signals (Localizer only on ILS)	Horizontally polarized, vhf. Instrument panel mounted.

1.2 PERFORMANCE DATA.

Duty cycle Continuous
Temperature range. $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity range Up to 100%
Altitude Up to 30,000 feet
Frequency range 108.0 to 126.9 mc in 0.1 -mc steps
Power requirements
$51 \mathrm{X}-3$ and $427 \mathrm{~B}-1$. . . . 27.5 volts d-c at 1.75 amperes
$51 \mathrm{X}-3$ and $427 \mathrm{~B}-2$. . . . 13.75 volts d-c at 3.5 amperes
Power output 4.5 watts audio (into 3.2 ohms)
Frequency stability 0.01% (over temperature range)
Intermediate frequency . . . First i-f: 18 mc (one mc wide) Second i-f: 3.105 mc

Selectivity. 40.0 kc at 6 db and 160 kc or less at 60 db . Cross modulation at least 10 db less than rated output (typically 25 to 40 db) under the following conditions:

DESIRED SIGNAL	UNDESIRED	KC OFF
20 uv	1000 uv	± 100
2000 uv	$20,000 \mathrm{uv}$	± 200

Sensitivity 3 uv at 6 db signal-plus-noise to noise or better
Spurious response. 60 db down at $\pm 80 \mathrm{kc}$ or more from carrier
Avc Between limits of 10 or 20,000 uv, output will not vary more than 4 db .
VOR output error Error chargeable to the $51 \mathrm{X}-3$ when used in VOR service will not exceed $\pm 2^{\circ}$.

TABLE 1-3. VACUUM TUBE, TRANSISTOR, DIODE, AND LAMP COMPLEMENT

ITEM	TYPE	FUNCTION
RECEIVER 51X-3		
V401	5654	R-f amplifier
V402	5654	First mixer
V403	5670	Second mixer (one section) Low-frequency injection oscillator (one section)
V404	5670	High-frequency injection oscillatordoubler
1401	13.75 volt	Dial light

TABLE 1-3. VACUUM TUBE, TRANSISTOR, DIODE, AND LAMP COMPLEMENT (Cont.)

TABLE 1-3. VACUUM TUBE, TRANSISTOR, DIODE, AND LAMP COMPLEMENT (Cont)

SECTION II

INSTALLATION

2.1 GENERAL.

This section contains information pertaining to unpacking, preinstallation testing, mounting, and cabling of Receiver 51X-3 and Modulator-Power Supply 427B-().

2.2 UNPACKING.

Unpack the equipment carefully. Remove the packing material, and lift the units out of their cartons. Remove the dust cover from the r-f unit (51X-3) and the shockmount from the 427 B -() unit, and inspect all components and parts for breakage or damage. Check control switches and channel indicator window for proper mechanical operation. Any claim for damage should be filed promptly with the transportation company. If a claim is filed, the original packing carton and packing material must be preserved.

2.3 PREINSTALLATION CHECK.

After cabling has been fabricated (see paragraph 2.5) and connectors installed, cables should be checked pin for pin with an ohmmeter. Damage to equipment can result from improper cabling.

2.4 MOUNTING.

Refer to installation illustrations, figures 2-1 and 2-2. Receiver 51X-3 is contained in a case designed specifically for mounting in either of two standard aircraft instrument mounting cutouts. This includes either common 3-9/64-inch circular cutout (Military Standard MS33550) or 3.22-inch square cutout with beveled corners (Military Standard MS33556). This permits either front or back panel mounting with the square cutout or back panel mounting with the circular cutout. The dust cover for the $51 \mathrm{X}-3$ is 3.187 inches

SECTION II

 Installation

Figure 2-1. Receiver 51X-3, Installation Diagram

Figure 2-2. 427B-1 or 427B-2 Unit, Installation Diagram

Square with beveled corners to fit MS33556 cutout from the front. Four Phillips or slotted $6-32 \times 1 / 2$ in. screws (typical length) are used to hold Receiver $51 \mathrm{X}-3$ for mounting in the circular cutout (maximum screw length, $3 / 8$ in.).

Modulator-Power Supply 427B-() can be mounted in a radio rack or any convenient location in the aircraft. However, wire size for 27.5 volts or 13.75 volts d-c lines should be sufficiently large to minimize voltage drop between this unit, the 51X-3, and power source. The shockmount supplied with the unit is
fastened to the aircraft with eight screws, and the entire assembly including dust cover occupies a short 3/8 ATR space.

2.5 CABLING.

Figures $2-3$ and 2-4 provide all data on connectors and wiring for interconnection and external aircraft connection of Receiver-51X-3 and the $427 \mathrm{~B}-1$ and $427 \mathrm{~B}-2$ units. The diagrams also indicate connections to the companion Transmitter $17 \mathrm{~L}-8$ or $17 \mathrm{~L}-8 \mathrm{~A}$.

TABLE 2-1. SUGGESTED WIRE SIZE YERSUS LENGTH OF INTERCONNECTING WIRES

	WIRE	LENGTH	SIZE (AWG)
	\widehat{A}	Less than 18 inches More than 18 inches but less than 3 feet More than 3 feet but less than 5 feet More than 5 feet	\#20 \#18 \#16 \#14
	Q	Less than 5 feet More than 5 feet but less than 8 feet More than 8 feet but less than 10 feet More than 10 feet	\#20 \#18 \#16 \#14
-	NOTE If combined length of $A+B$ is less than 5 feet, \#20 wire may be used even if A is longer than 18 inches. Connector pins are made to accept a maximum stranded wire size of \#20. Use of larger wire sizes will necessitate special wiring arrangements.		

In installations in which the aircraft supply voltage is 27.5 volts d-c, the voltages given in table $2-2$ or greater should be present at the indicated terminals for maximum performance.

In Installations in which the aircraft supply voltage is 13.75 volts $d-c$, the voltages given in table $2-3$ or greater should be present at the indicated terminals for maximum performance.

TAELE 2-2
27.5-V D-C INSTALLATION

PLUG	PIN	VOLTAGE	OPERATING CONDITION
J303	E	27.25	Receive
J 303	E	27.20	Transmit
J 402	S	27.5	Receive and transmit
J 103	B	27.5	Receive and transmit

TABLE 2-3
13.75-V D-C INSTALLATION

PLUG	PIN	VOLTAGE	OPERATING CONDITION
J402	S	13.75	Receive and transmit
J 103	B	13.75	Receive and transmit
J 503	E	13.1	Receive
J 503	E	13.0	Transmit

Figure 2-3. 51X-3, 427B-1, $17 \mathrm{~L}-8 / 8 \mathrm{~A}$ Interconnecting Cabling Diagram

Figure 2-4. $51 \mathrm{X}-3,427 \mathrm{~B}-2,17 \mathrm{~L}-8 \mathrm{~A}$ Interconnecting Cabling Diagram

2.6 POSTINSTALLATION CHECK.

After the units have been installed in the aircraft

- and all cabling connections made, the equipment should be checked for proper operation using the aircraft power source. Refer to section III for operating procedure.
2.6.1 MODULATION CHECK. Perform the following check after the transmitter, receiver, and 427B-() have been installed in the aircraft:
a. Load the $427 \mathrm{~B}-()$ modulator with a $17 \mathrm{~L}-8$ terminated into a suitable load.
b. A 0.2 volt a-c, 1000 -cps input or less at the mike terminals should produce clipping of the output signal. Clipping may be observed with an oscilloscope across the audio output or by listening for distortion in a monitor receiver.
c. If. the microphone to be used with the equipment does not produce correct modulation at the factory setting, connect the microphone to the modulator. Talk into the microphone, and adjust the MIC GAIN control on the $427 \mathrm{~B}-($) until the modulator just begins to clip. Back off from this setting slightly, and tighten the lock nut on the MIC GAIN potentiometer.

2:6:2 SIDETONE ADJUSTMENT.

a. After the equipment is installed in the aircraft, check for sidetone adjustment when the aircraft - motor(s) is running.
b. If the adjustment is not at the desired level, key the transmitter and talk into the microphone. Adjust the SIDETONE control on the $427 \mathrm{~B}-()$ until the sidetone is at the desired level. Tighten the sidetone adjustment lock nut.

2.6.3 CHECK FOR EXCESSIVE HUM.

After the equipment is installed in the aircraft, check that the hum level is normal. If the hum level is high, check the following:
a. Check that all shielded wire used in the installation is the type with insulation covering the metal shielding.
b. Check for excessive lengths of wire left unshielded when the wire is stripped for connection to the plug.
c. Check that the shielding is connected to ground only at those points indicated on the interconnecting cabling diagrams.
d. Check that the lengths of shielded wire are kept as short as possible.
e. Check that the shielded wire does not runclose to or is cabled with wire carrying a-c power.
f. If the audio output of the $427 \mathrm{~B}-()$ is fed into an external amplifier, hum may develop if the gain of the $427 \mathrm{~B}-($) is reduced to avoid overdriving the external amplifier. If the output of the $427 \mathrm{~B}-()$ overdrives the external amplifier, leave the volume of the $427 \mathrm{~B}-($) at its normal level (just below clipping), and adjust the input to the external amplifier with an attenuator between the units.

SECTION III OPERATION

3.1 GENERAL.

Receiver 51X-3 is operated by the pilot or other persons having access to the instrument panel .of the aircraft. Operation is simplified by the compactness of the control panel and the small number of operating controls. The receiver provides an audio power output of 4.5 watts, and the effective reception range will vary with operational altitude.

3.2 OPERATING CONTROLS.

Table 3-1 contains a listing of all operating controls, their location and function. Figure 3-1 illustrates the controls. Modulator-Power Supply $427 \mathrm{~B}-($) has no operating controls.

3.3 NORMAL OPERATING PROCEDURE.

a. Turn on-off switch to the on position.
b. Allow 30 seconds for warmup.
c. Set the megacycle switch to desired megacycle band.
d. Set the tenth-megacycle switch to desired tenthmegacycle frequency.
e. Turn SQUELCH control full clockwise.
f. Turn volume (VOL) control clockwise until strong noise signal is heard in headset or cabin speaker. g. Turn SQUELCH control counterclockwise until noise is barely audible or is just eliminated. (This setting provides audio muting under no-signal input conditions.)

NOTE
If pilot wishes to hear noise background, the SQUELCH control may be advanced clockwise as desired.

3.4 ADJUSTMENTS FOR WEAK SIGNAL RECEPTION.

With the equipment set as described in paragraph 3.3, weak signals may fail to open the squelch circuit and will not be heard. Reception of these signals will be ensured by advancing the SQUELCH control
clockwise until noise is at a comfortable level. Maximum sensitivity is obtained when the SQUELCH control is set full clockwise.

3.5 VOLUME CONTROL.

The volume control on Receiver 51X-3 has more than sufficient range to provide rated audio power
output from the $427 \mathrm{~B}-()$ unit. Beyond a certain point, distortion begins and advancing the .volume control into this range decreases the intelligibility of the received signal. The distortion point is easily recognized by listening to a signal and then advancing the volume control.

TABLE 3-1. OPERATING CONTROLS

CONTROL	LOCATION	FUNCTION
On-Off-Volume	Control Panel	Switch portion turns on dial light if instrument panel lights are on, applies 27.5 volts d-c or 13.75 volts d-c to all circuits in 51X-3 and $427 \mathrm{~B}-($) unit, and potentiometer portion controls audio gain.
Megacycle Switch	Control Panel	Changes channels in 1-mc steps between 108 and 126 mc.
Tenth-Megacycle Switch	Control Panel	Changes channels in 0.1-mc steps from 0.0 to 0.9 mc.
SQUELCH Control	Control Panel	Varies level at which the carrier signal or noise opens the squelch circuits.

Figure 3-1. Receiver 51X-3, Operating Controls

SECTION IV PRINCIPLES OF OPERATION

Figure 4-1. Receiver 51X-3 and 427B-() Unit, Block Diagram

4.1 GENERAL.

This section contains the principles of operation of Receiver 51X-3 and Modulator-Power Supply 427B-1 and 427B-2. Description of the circuitry is based on the block diagram, figure 4-1, with the exception
of complex arrangements requiring more explanation. These circuits are described in detail with illustrations to supplement text. Refer to main schematic diagrams for details on standard circuits in the equipments.

4.2 R-F AND CONVERSION CIRCUITS.

Refer to figure 4-1. The r-f energy received by the communications or navigation antenna, is fed to an r-f amplifier stage, V401, in which a type 5654 pentode tube is used. The plate circuit of the amplifier is capacitively tuned. The high-frequency injection oscillator consists of a Butler-type overtone circuit controlled by 19 crystals, Y401-Y419, which are switched into the circuit with the megacycle control knob. The output circuit is tuned to the second harmonic of the crystal frequencies. The crystal frequencies are thus doubled. The high-frequency injection signal is coupled to the cathode of the mixer, V402. At the frequencies involved, the cathode inductance of V402, a type 5654 pentode, acts as a'load to couple the injection signal into the tube. The r-f carrier from the r-f amplification stage on the grid of the mixer and the high-frequency injection signal on the mixer cathode mix together. The plate of the mixer is coupled to a double inductively tuned transformer with a pass band of 17.5 to 18.4 mc which represents the carrier and injection signal difference frequencies. The first i-f is coupled to the grid of the second mixer, one section of V403. The other section of V403, a type 5670 dual triode, forms a Colpitts-type circuit used as the low-injection oscillator. Ten crystals, Y420-Y429, are switched into the circuit with the tenth-megacycle control knob to control the oscillator. The output of the low-injection oscillator is taken at the cathode and fed to the cathode of the second mixer. A single inductively tuned circuit in the output plate of the second mixer is peaked to pass 3.105 mc the second and final i-f. In all cases, 3.105 mc represents the difference between the first $i-f$ and the low-injection frequency. The i-f is fed to coaxial connector jack J403 on the rear of Receiver 51X-3.

4.3 I-F CIRCUITS.

Refer to figure 4-1 and main schematic diagrams in section VII. The i-f signal from Receiver $51 \mathrm{X}-3$ is fed through coaxial cable to either coaxial connector J 301 on the $427 \mathrm{~B}-1$ unit or J 501 on the $427 \mathrm{~B}-2$ unit. Three stages of $i-f$ amplification are used in each 427B-() unit. The circuits are identical in both units. Type - 5749 pentode tubes with externally grounded suppressor grids are used in each of the three stages. All of the i-f amplifiers are coupled with transformers fixed tuned to 3.105 mc . The agc voltage is applied to the control grids of the first two amplifiers and 51X-3 r-f amplifier. The cathodes of the second and third amplifiers are grounded ($\mathrm{d}-\dot{\mathrm{c}}$) through the SQUELCH adjust control R327 (427B-1) or R527 (427B-2). This potentiometer is adjusted to set the threshold of carrier or noise which will. open the later-discussed squelch circuit.

4.4 SIGNAL, LOCALIZER-VOR, AND AGC DETECTORS.

Refer to figure 4-2. In communications service, the' main signal developed across the secondary of i-f
transformer T304 or T504 is rectified by diode CR301 or CR501 and filtered with the associated RC network. The detected audio signal is fed through the noise limiter circuit to the first audio amplifier, V304B or V504B.

The agc network including the agc gate diode, CR304 or CR504, is biased by the 13.75 volts d-c reference (or delay) potential; see figure 4-2. The bias is dropped to zero and driven negative at the junction of R313 and C315 or R513 and C515 by a sufficiently large r-f signal. When the $51 \mathrm{X}-3$ is switched to an omnirange navigation channel, a filter cápacitor C323 or C523 becomes part of the agc circuit. This action takes place by a ground being applied to capacitor C323 or C523 through the switching arrangement in Receiver 51X-3 thus changing the agc time constant. This is necessary to provide the proper agc phase shift in the case of the 30 -cps omnirange signal.
The i-f signal from terminal 2 in the secondary of T304 or T504 is fed through the omnirange and localizer navigation signal detector circuit which includes rectifying diode CR302 or CR502 and an RC filter network. The level of the audio out of this circuit is adjusted with VOR LEVEL potentiometer R316 or R516. Coil L301 or L501 provides a d-c return path for the diode.

4.5 NOISE LIMITER AND SQUELCH CIRCUITS.

Refer to figure 4-2. The resistance and capacitance network associated with noise limiter diode CR303 or CR503 forms the noise limiter circuit. Under normal signal and noise levels, the diode conducts, and the audio signal is fed to the grid of the first audio amplifier, V304B or V504B. However, when a large noise peak appears, the diode is biased off with the result that the first audio stage, V 304 B or V504B, receives no signal momentarily. When average noise levels are restored, diode CR302 or CR502 conducts and signal input is restored to V304B or V504B.

The setting of the SQUELCH adjust control in the cathode circuit of the third i-f amplifier stage determines the signal noise level which will open the squelch circuit. When no signal or signals below the squelch threshold are being received, squelch tube V304A or V504A (figure 4-2) is conducting. The negative bias developed across R322 or R522, between the grid and cathode of the first audio amplifier, V304B or V504B, as a result of the squelch tube conducting, cuts off the amplifier and no audio output is available. As signal or noise input increases, the grid of the squelch portion of V504 becomes more negative along with the diode load until the tube cuts off. At this time, V504B conducts, giving audio output.

4.6 bUAL-PURPOSE AUDIO AND MODULATOR CIRCUITS.

Refer to figure 7-2 or 7-3. The transistorized circuits including Q303, Q304, and Q305 in the $427 \mathrm{~B}-1$

Figure 4-2. Detectors, AGC, Squelch and Noise Limiter Circuits, Schematic Diagram
unit and Q503, Q504, and Q505 in the $427 \mathrm{~B}-2$ unit serve a dual purpose. The stages form an audio driver and push-pull audio output for Receiver 51X-3 and a modulator driver and push-pull modulator for the companion 17L-8 or 17L-8A Transmitter.

In the receive function the detected audio, amplified by a previous vacuum-tube stage, is coupled by transformer T306 or T506 to the base element of Q303 or Q503, a PNP type DT4-17 transistor used as the audio driver. The amplified output of this stage is coupled by audio transformer T307 or T507 to the base elements of push-pull audio output transistors Q304 and Q305 or Q504 and Q505. The emitter elements of these transistors are tied to each end of the primary of output transformer T308 or T508. The audio winding in the secondary of the transformer is connected to the speaker.

The same basic circuitry described above also serves as a modulator for Transmitter $17 \mathrm{~L}-8$ or $17 \mathrm{~L}-8 \mathrm{~A}$. The microphone input or other external audio modulating signal is fed across the gain control, R334 or R534, and the primary winding (terminals 0 and 2)
of coupling transformer T306 or T506. Transistor Q303 or Q503 now functions as the modulator driver and the push-pull arrangement as a modulator. Wire leads 6 and 2 of T308 or T508 are connected to the transmitter and $B+$ respectively. The $B+$ power is connected to the modulation transformer through the keying relay during transmit. A sidetone network connected from the emitter of Q304 or Q504 to ground contains the sidetone adjust control, R342 or R542, whose tap is connected to the sidetone output on transmit. (On receive, headphone output across entire R542 or R342.)

4.7 POWER SUPPLY.

Refer to figure 4-3. The power supplies in the 427B-1 and $427 \mathrm{~B}-2$ units are identical except for some component sizes. However, because primary d-c lines are susceptible to voltage transients caused by regulation of the aircraft supply, a means for protecting the power supply and audio transistors is required. Transients on the 13.75 -volt d-c line supplying the 427B-2 unit do not reach damaging amplitudes. Therefore, only the 27.5 -volt $427 \mathrm{~B}-1$ unit requires a transient

note: 4278-1 COmponent values shown in red.

Figure 4-3. Power Supply, Schematic Diagram
protector circuit which includes transistors Q306 and Q307 and their associated circuitry.

Under normal line voltage conditions, the 27.5 -volt d-c primary power applied to the $427 \mathrm{~B}-1$ unit is fed through L302 and Q307 which is conducting--acting as a closed switch. At the same time, diode CR311 is biased off as is Q306. The biasing of CR311 is determined by the setting of R344 which forms the transient protector trip-out level adjustment control. The line voltage, therefore, is fed through the circuit unaffected and applied to the power supply and to the other transistorized circuits in the 427B-1 unit.

When an instantaneous voltage rise appears on the line (often as high as 80 volts), the transient protector circuit reacts as follows. The increased drop across R344 and R345 causes diode CR311 to be biased into heavy conduction. This action causes transistor Q306 to be biased into conduction which in turn causes Q307 to be cut off. Resistor R347, under normal conditions shunted by Q307, is now in the circuit and drops the transient voltage so that the output of the protector circuit is lowered for the duration of the transient. This power to the transistorized circuits is typically interrupted for approximately 0.2 second to protect them. When the line voltage returns to the level determined by the setting of R344, CR311 is cut off, and voltage is supplied normally.
The power supply circuit in both the 427B-1 unit and the $427 \mathrm{~B}-2$ unit are d-c tof d-c converters, figure 4-3, involving two transistors in a push-pull oscillator arrangement with a saturable core transformer T305 or T505. Type DT4-17 PNP transistors are used in the 427B-1 unit, and type 2N274 PNP transistors are used in the $427 \mathrm{~B}-2$ unit. The two transistors are biased into conduction alternately and are cut off
alternately by current flowing through the feedback windings connected to terminals $5,4,0$, and 9 . The resulting push-pull effect sets up voltage alternations in the primary of the transformer that closely resemble a square wave and are readily stepped up to the required level in the secondary. A conventional fullwave bridge rectifier completes the power supply. One end of the bridge supplies $B+$ power to the receiver stages through contacts 1 and 2 of relay K301 or K501, and the other end provides power to the companion Transmitter 17L-8 or 17L-8A through contacts 8 and 9 of the same relay.

4.8 CONTROL CIRCUITS.

Refer to the main schematic diagrams, figures 7-1, 7-2, and 7-3. All control circuits in Receiver 51X-3 are related to switch sections coupled with shafts to the manually-operated megacycle and tenth-megacycle control knobs on the face of the receiver. With respect to the channel selector switches, the following is an explanation of what takes place in each control function.
a. AGC Time Constant: At 117.9 mc and below, the agc time constant is increased by switching a 0.22 -uf capacitor (C323 or C523) to ground into the agc filter network in the $427 \mathrm{~B}-()$ unit.
b. Squelch Disable: The SQUELCH control, R325 or R525, is shorted out at frequencies of 117.9 mc and below.
c. VOR On-Off/Antenna Change: At 118.0 mc and above, 27.5 volts d-c or 13.75 volts d-c is supplied to. pin C of connector J402 on Receiver 51X-3. Below 118.0 mc , pin C of J 402 is decoupled from ground or any voltage source.

NOTE

The above arrangement allows the use of an antenna change relay to switch between a communications and a navigation antenna. Other uses of this circuit may include disabling an instrumentation unit. The current drain on pin C of $J 402$ should not exceed 200 ma .
d. between 108.0 and 111.9 mc , pin D on connector J 402 ($51 \mathrm{X}-3$) has 27.5 volts d-c or 13.75 volts d-c
applied to it. This switching action provides for energizing and de-energizing a localizer relay in an instrumentation unit such as the Collins 344D-1. e. Glide Slope Channel Control: Connector J404 on Receiver $51 \mathrm{X}-3$ is provided to supply channeling information to a glide slope receiver, such as the Collins $51 \mathrm{~V}-3$, which utilizes a ground seeking channeling system. The data in table 4-1 indicates glide slope receiver frequencies corresponding to the standard localizer frequencies and the pins on connector J404 on Receiver 51X-3 that are grounded at those frequencies.

TABLE 4-1. ILS CHANNELING DATA

$\begin{gathered} 51 \mathrm{X}-3 \\ \text { (LOCALIZER FREQUENCY) } \end{gathered}$	GLIDE SLOPE FREQUENCY	ARINC CHANNEL	- SWITCHING (J404 ON 51X-3)
108.1 mc	334.7 mc	1B	Pins A and P grounded
108.3 mc	334.1 mc	2B	Pins B and P grounded
108.5 mc	329.9 mc	3B	Pins C and P grounded
108.7 mc	330.5 mc	4 B	Pins D and P grounded
108.9 mc	329.3 mc	5B	Pins E and P grounded
109.1 mc	331.4 mc	6 A	Pin F grounded
109.3 mc	, 332.0 mc	7A	Pin H grounded
109.5 mc	332.6 mc	8A	Pin J grounded
109.7 mc	333.2 mc	9A	Pin K grounded
109.9 mc	333.8 mc	10A	Pin L grounded
110.1 mc	334.4 mc	1A	Pin A grounded
110.3 mc	335.0 mc	2A	Pin B grounded
110.5 mc	329.6 mc	3A	Pin C grounded
110.7 mc	330.2 mc	4A	Pin D grounded
110.9 mc	330.8 mc	5A	Pin E grounded
111.1 mc	331.7 mc	6B	Pins F and P grounded
111.3 mc	332.3 mc	7B	Pins H and P grounded
111.5 mc	332.9 mc	8B	Pins J and P grounded
111.7 mc	333.5 mc	9B	Pins K and P grounded
111.9 mc	331.1 mc	10 B	Pins L and P grounded

SECTION V
 MAINTENANCE

5.1. GENERAL.

This section contains information pertaining to alignment, adjustment, and trouble-shooting methods for Receiver 51X-3 and Modulator-Power Supplies 427B-1 and $427 \mathrm{~B}-2$. Test equipment requirements and a recommended test harness for bench maintenance are also included in this section. Voltage and resistance measurements at vacuum-tube pins, transistor elements, and other critical points as well as gain per stage data are located, in color, on the main schematic diagrams, figures 7-1, 7-2, and 7-3.

5.2 TEST EQUIPMENT.

The following test equipments or their equivalents are used to perform the procedures in this section:
a. VOM, Triplett no. 630 or better.
b. VTVM, RCA Volt Ohmyst.
c. 13.75 -volt power supply for $427 \mathrm{~B}-2$ unit.
d. 27.5-volt power supply for $427 \mathrm{~B}-1$ unit.
e. Signal Generator, Measurements Corp. Model 65B.
f. Receiver, Collins 51J or frequency meter.
g. Oscilloscope, DuMont Type 304A.
h. Headphones.
i. Audio load (3.2 ohms) or 3.2 -ohm speaker.
j. VHF Receiver, Collins 51X-3.
k. VHF Signal Generator, Hewlett-Packard Model 608D (with 6 db pad).

1. Microphone.
m. Test cables.
n. Grid dip meter, Measurements Corp.

5.3 TEST HARNESS.

The same cabling arrangement as shown in figures 2-3 or $2-4$ is used for a test harness to bench-test Receiver 51X-3 and the 427B-() unit used. However, the 27.5 -volt d-c or 13.5 -volt d-c primary source should be connected directly at the $51 \mathrm{X}-3$ connector, J 402 , between pins S, J, and L to avoid excessive voltage drops in long cables.

5.4 DISASSEMBLY PROCEDURES.

5.4.1 GENERAL.

Removing the dust cover, bottom r-f shield, and front panel from receiver $51 \mathrm{X}-3$ exposes all components that may require replacement or adjustment. All parts in the $427 \mathrm{~B}-($) unit are readily accessible.

5.4.2 REPLACING HIGH-FREQUENCY OSCILLATOR CRYSTALS IN RECEIVER 51X-3.

a. Remove the dust cover (loosen captive locking screw on rear).
b. Remove the two screws on the crystal mounting board.
c. If the defective crystal is accessible, proceed to step f .
d. If the crystal is on the underside, remove V403.
e. Rotate the crystal board and switch assembly to
a position at which the two bottom leads connected to the crystal board are accessible.
f. Unsolder the two leads to the crystal board. g. Unsolder the defective crystal leads. Use the tip of a soldering iron to remove adhesive holding the crystal to the crystal board.
h. Replace.the defective crystal, and reassemble in reverse order.

5.4.3 REPLACEMENT OF 3.105-MC TRANSFORMER (T402) IN RECEIVER 51X-3.

a. Remove the dust cover.
b. Unsolder the five leads (bottom of chassis).
c. Unsolder and bend up two fastening tabs to clear the mounting bracket.
d. Drop the transformer through the hole in the chassis.
e. Turn the chassis right side up, and remove V403. f. With long-nose pliers, remove the defective transformer.
g. Replace the new transformer in reverse order.

5.4.4 REPLACING LOW-FREQUENCY OSCILLATOR CRYSTALS IN RECEIVER 51X-3.

a. Remove the dust cover.
b. Unsolder leads on the defective crystal (five crystals are located on top of the chassis and five are located on the bottom).
c. With the tip of a soldering iron, remove adhesive holding the crystal to the crystal mounting board.
d. Replace the defective crystal, and reassemble in reverse order.

5.5 ALIGNING, ADJUSTING, AND CHECKING RECEIVER 5IX-3 AND 427B-() UNIT.

5.5.1 GENERAL.

The following procedures are performed using the test equipment named in paragraph 5.2. In each
case, Receiver 51X-3 and the 427B-() unit used are connected together with test harness cabling described in paragraph 5.3. The procedures are intended to be performed by a technician thoroughly familiar with the equipment and should be performed in the sequence indicated.

5.5.2 PRESETTING TUNED CIRCUITS.

a. Connect Receiver 51X-3 to the 427B-() unit with test cables.
b. Remove the dust cover and bottom r-f shield plate on Receiver 51X-3.
c. Set trimmer capacitors C403, C406, C408, C416, and C421 so that they are about midway in their tuning range.
d. Set the slugs in coils L401, L402, L403, and L105 so that about one-fourth inch of the slug extends out of the shield.
e. Using a grid dip meter, adjust coils L401, L402, and L403 to approximately 110.5 mc and coll L405 to approximately 90 mc .

NOTE

Be sure to short coils adjacent to the one being tuned to ensure that the grid dip meter is responding only to the coil being checked (power off).

Before power is applied to set, be sure a 3.2 -ohm audio load or $3.2-\mathrm{ohm}$ speaker is connected to the audio output of the $427 \mathrm{~B}-()$ unit.

f. Replace bottom r-f shield.

5.5.3 LOW-FREQUENCY OSCILLATOR CHECK.

a. Make sure Receiver 51X-3 and the 427B-() unit are properly connected.
b. Apply line power (27.5 volts d-c or 13.75 volts d-c).
c. Connect a vtvm to grid of V403, pin 7 through a 100,000 -ohm isolating resistor.
d. Rotate the tenth-megacycle dial through all positions, and note that $\mathrm{d}-\mathrm{c}$ grid bias is present at each setting (normally not less than 0.5 volt).
e. Frequency of each crystal may be measured if desired by means of an accurately calibrated communications receiver or equivalent equipment.
f. If a vtvm with an r-f probe, such as HewlettPackard type 410B (cutoff frequency above the crystal frequency), is available, r-f injection voltage may be measured on pin 2 of V 403 (not less than 0.5 volt on each position of the tenth-megacycle switch).

5.5. 4 HIGH-FREQUENCY OSCILLATOR CHECK.

a. Connect a vtvm through a 100 K resistor to pin 8 of V404.
b. Measure the d-c voltage for each position of the megacycle dial. (Limits not less than 0.85 volt a-c, nominal 1.8 volts d-c. Measure a-c volts with r-f probe vtvm.)
c. Oscillator injection frequency or crystal fundamental frequency may be measured with a suitable equipment (e.g., communications receiver and converter).

5.5.5 HIGH-FREQUENCY OSCILLATOR ALIGNMENT.

a. Turn SQUELCH control full counterclockwise. b. Place a vtvm across the total diode load (R312 and R313 or R512 and R513). Make sure common lead of vtvm or case is not grounded elsewhere. c. Set $51 \mathrm{X}-3$ frequency knobs to 110.5 mc .
d. Connect the vhf signal generator with 110.5 mc output to antenna connector J401.
e. Set signal generator output to give 10 volts d-c on the vtvm.
f. Tune L404 and L405 for maximum d-c indication in the vtvm maintaining the diode load voltage at no less than 10 volts d-c.
g. Set receiver frequency to 124.5 mc .
h. Set the vhf signal generator to 124.5 mc .
i. Apply sufficient signal to give 10 volts d-c on the vtvm.
j. Tune C416 and C421 for maximum indication on the vtvm maintaining. 10 volts $\mathrm{d}-\mathrm{c}$ at the diode load.
k. Repeat steps c through j until no further improvement is obtained.

1. If a vtvm with an r-f probe and a cutoff frequency of 100 mc or more is available, such as a HewlettPackard type 410B, connect r-f probe to TP401, and tune L404 and L405 for maximum indication with $51 \mathrm{X}-3$ set at 110.5 mc , and tune C 416 and C 421 for maximum with $51 \mathrm{X}-3$ set at 124.5 mc (no signal generator input is necessary when using r-f probe). m. Repeat step 1 until no improvement is obtained. The r-f voltage at TP401 should be 0.8 volt or more. n. If during repeated tuning between 110.5 and 124.5 mc the slugs tend to go full in or full out, the coil in question will have to be respaced in order that the stage will tune within the range of the slugs. Squeezing the coil together increases the inductance and vice versa. Runaing the brass slug in reduces the inductance. This normally should not be necessary.

5.5.6 ALIGNMENT OF 3.105-MC MIXER COIL (T402).

a. Connect a vtvm across total diode load (R312 and R313 or R512 and R513).
b. Inject a $3.105-\mathrm{mc}$ signal at pin 3 of V403 (from a signal generator) of sufficient magnitude to give 10 volts d-c diode load indication on the vtvm. c. Turn slug in T402 for maximum vtvm indication keeping diode load voltage at approximately 10 volts. Make sure the common lead or case of the vtvm is not grounded elsewhere.

NOTE

Transformer T402 will tune at two positions of the slug. The correct position is with the slug nearest the terminal or chassis end of the transformer. A phenolic tool should be used for this with a small screwdriver- type tip.

5.5.7 3.105-MC I-F ALIGNMENT.

a. With the signal generator connected as in step b of preceding alignment and set at 3.105 mc , set output to give 10 volts total diode load on the vtvm connected across R312 and R313 or R512 and R513. b. Tune T304 or T504 for maximum diode load voltage keeping voltage at diode load at 10 volts. When tuning all i-f transformers, swamp the secondary with a 2.2 K -ohm resistor while tuning primary and vice versa. It may be necessary to increase the signal generator output to obtain 10 volts diode load with the swamping resistor on a given transformer winding (tuning tool is furnished with equipment). It may be convenient to cement the 2.2 K -ohm resistor to the slotted end of a one-fourth inch phenolic rod.
c. Tune transformers T303, T302, and T301 or T503, T502, and T501 in that order using swamping resistor as indicated previously. Maintain 10 volts or more at the diode load. Swamping is not necessary while tuning the secondary of T301(501) or primary of T303(503).
d. Remove the signal generator.

5.5.8 ALIGNMENT OF 18-MC TRANSFORMER (T401).

a. Connect a vtvm across total diode load.
b. Connect the signal generator capable of $18-\mathrm{mc}$ frequency coverage to pin 1 of V402.
c. Set output of the signal generator to give 10 volts diode load on the vtvm.
d. Tune T 401 by first swamping primary winding with a 1000 -ohm resistor while tuning the secondary for maximum indication on the vtvm.
e. Swamp secondary with 1000 -ohm resistor while tuning the primary for maximum on the vtvm. Keep the diode load at 10 volts.

NOTE

The order of tuning primary and secondaries: is specified so that with the chassis upside down, the slug next to the chassis is tuned last. In this way, a slug already tuned is not disturbed by removing the tuning tool. Care should be taken so that the transformer tunes with the slugs at positions farthest apart. Use the tuning tool supplied with the $427 \mathrm{~B}-()$: unit for this alignment.

5.5.9 FRONT END ALIGNMENT.

a. Connect a vtvm across diode load.
b. Connect a vhf signal generator to J401.
c. Set the receiver and signal generator to 110.5 mc .
d. Adjust the signal generator output to give 10 volts at diode load.
e. Tune L403, L402, and L401 in that order for maximum reading on the vtvm.
f. Switch the signal generator and receiver to 124.5 mc .
g. Adjust the signal generator output to give 10 volts at diode load.
h. Tune C408, C406, and C403 in that order for maximum reading on the vtvm.
i. Repeat steps c through h until no further improvement is obtained.

NOTE

Maintain 10 volts diode load throughout the procedure. As in the case of the highfrequency oscillator, if one of the slugs tends to tune beyond its limits, the appropriate coil will have to be respaced so that the slug will tune inside its limits. Remember that turning a brass slug into a coil REDUCES the inductance.

5.5.10 SQUELCH ADJUST.

a. Turn SQUELCH knob fully counterclockwise.
b. Connect an.r-f signal generator to the r-f input of the $51 \mathrm{X}-3$. Tune to the frequency at which the $51 \mathrm{X}-3$ is operating (118.0 mc or above).
c. Adjust R327 or R527 (SQUELCH control) so that 10 uv at $51 \mathrm{X}-3$ antenna terminal just opens the squelch as heard on the speaker or phones.
d. Tighten lock nut holding SQUELCH control (R527).

5.5.11 AUDIO OUTPUT CHECK.

a. Connect an oscilloscope across audio load.
b. Connect a vhf signal generator to J401.
c. Adjust the receiver and generator to convenient frequency.
d. Adjust the signal generator output at any level between 10 uv and 20,000 uv.
e. Apply $1000-\mathrm{cps}$ modulation at 30% to vhf signal.
f. Audio output waveform may be viewed on the oscilloscope.
g. An a-c vtvm or VOM capable of passing 1000 cps may be connected across audio load and volume (VOL) control turned clockwise until clipping begins as viewed on the oscilloscope. Audio power output equals $\frac{\mathrm{E}^{2}}{3 \mathrm{ohms}}$ (should be approximately 4.5 watts or greater).

5.5.12 TRANSIENT PROTECTOR ADJUSTMENT.

a. Connect both Receiver 51X-3 and Transmitter $17 \mathrm{~L}-8$ or $17 \mathrm{~L}-8 \mathrm{~A}$ to the $427 \mathrm{~B}-(\mathrm{)}$. Key the transmitter and modulate it to clipping with a 1000 -cpsaudio tone.
b. Connect a d-c voltmeter to the collector of Q307. Set R344 fully counterclockwise.
c. Apply 32 volts d-c to pin E of J303, and adjust TRANSIENT PROTECTOR adjustment R344 until an increase in voltage at pin E causes the voltage at the collector of Q307 to decrease.
d. With 32 volts at pin E of J303, there should be not less than 31 volts at the collector of Q307.

NOTE

The transient protector is factory adjusted as outlined above. If the transient protector: is readjusted at any time without the transmitter load, it must be adjusted again if a transmitter load is added.

5.6 LUBRICATION.

If Receiver 51X-3 is removed from the aircraft and disassembled to replace any parts, the gears and - shafts in the switching system should be lubricated with Beacon 325 grease or equivalent.

5.7 SERVICING TRANSISTOR CIRCUITS.

5.7.1 GENERAL.

Servicing procedures and test equipments that have been used in the past with other types of electronic equipment, for the most part, may be used with transistor circuits. Some special precautions which must be used are listed below. If the equipment under test contains transistors, even though they may not be in the circuits under test, the precautions should be observed because of the possibility of accidentally contacting a transistor circuit.

5.7.2 TEST EQUIPMENT.

Damage to transistors by test equipment is usually the result of accidentally applying too much current or voltage to the transistor elements. Common causes of damage from test equipment are as follows.
5.7.2.1 TRANSFORMERLESS POWER SUPPLIES. Test equipment with transformerless power supply is one source of such current. This type of test equipment can be used by employing an isolation transformer in the power line.
5.7.2.2 LINE FILTER. It is still possible to damage transistors from line current, even though the test equipment has a power transformer in the power supply, if the test equipment is equipped with a line filter. This filter may act like a voltage divider and apply 55 volts a-c to the transistor. To eliminate trouble from this situation, connect a ground wire from the chassis of the test equipment to the chassis of the equipment under test before making any other connections.
5.7.2.3 LOW-SENSITIVITY MULTIMETERS. Another cause of transistor damage is a multimeter that requires excessive current for adequate indications. Multimeters that have sensitivities of less than 5000 per volt should not be used. A multimeter with lower sensitivity will draw too much current through many types of transistors and damage them. Provided meter battery is not too high-voltage, use of 20,000 -ohm-per-volt meters or vacuum-tube voltmeters is recommended. Check the ohmmeter circuits (even those in vtvms) on all scales with an external, low resistance milliammeter in series with the ohmmeter leads. If the ohmmeter draws more than one milliampere on any range, this range cannot be used safely on small transistors.
5.7.2.4 POWER SUPPLY. Always use fresh batteries of the proper value for the equipment under test in test power supplies. Never use battery eliminators because the regulation of these devices is poor at the current values drawn by transistor circuits. Be certain about identification of polarity before attaching the battery to the equipment under test; polarity reversal may damage the transistor.

5.7.3 ELECTRIC SOLDERING IRONS.

The following are possible causes of transistor damage from soldering irons.
5.7.3.1 LEAKAGE CURRENT. Electric soldering irons may damage transistors through leakage current. To check a soldering iron for leakage current, connect an a-c voltmeter between the tip of the iron and a ground connection (water pipe or line ground), allow the iron to heat, then check for a-c voltage with the meter. Reverse the plug in the a-c receptacle and again check for voltage. If there is any indication on the meter, isolate the iron from the a-c line with a transformer. The iron may be used without the isolation transformer if the iron is plugged in and brought to temperature then unplugged for the soldering operation. It is also possible to use a ground wire between the tip of the iron and the chassis of the equipment being repaired to prevent damage from leakage current.
5.7.3.2 IRON SIZE. Light duty soldering irons of 20 to 25 watts capacity are adequate for transistor work and should be used. If it is necessary to use a heavier duty iron, wrap a piece of number 10 copper wire around the tip of the iron, and make it extend beyond the tip of the iron. Tin the end of the piece of copper wire, and use it as the soldering tip.

5.7.4 SERVICING PRACTICES.

5.7.4.1 HEAT-SINK WHEN SOLDERING. When installing or removing a soldered-in transistor, grasp the lead to which heat is being applied, between the solder joint and the transistor, with long-nosed pliers to bleed off some of the heat that conducts into the transistor from the soldering iron. Make sure that the wires that are being soldered to transistor
terminals are properly pretinned so that the connection can be made quickiy. Excessive heat will permenently damage a transistor.
5.7.4.2 REMOVAL OF TRANSISTORS FROM OPERATING CIRCUITS. Never remove or replace a plugin transistor when the supply voltage is turned on. Transients thus produced may damage the transistor or others remaining in the circuit. If a transistor is to be evaluated in an external test circuit, be sure that no more voltage is applied to the transistor than normally is used in the circuit from which it came.
5.7.4.3 PLUG-IN TRANSISTORS. When servicing equipment that uses plug-in transistors, it is good practice to remove the transistors from their sockets and reinsert them to break down any film of corrosion or dirt that may have formed.
5.7.4.4 RESISTANCE MEASUREMENTS IN TRANSISTOR CIRCUITS. When measuring resistances of circuits containing transistors or mineral diodes, remember that these components are polarity and voltage conscious; therefore, follow the directions of the notes that are given on the resistance tables or drawings to be sure that the correct polarity and range is applied to the circuit from the ohmmeter. Any capacitors used in transistor circuits are usually of large values (especially in audio, servo, or power circuits) and it takes time to charge these capacitors when an ohmmeter is connected to a circuit in which they appear. Thus, any reading obtained is subject to error if the capacitor is not allowed time to charge fully. In some cases, it may be best to isolate the ; components in question and measure them individually.
5.7.4.5 POWER TRANSISTOR HEAT SINKS. In some cases, power transistors are mounted on heat sinks that are designed to carry heat away from them. In some power circuits, the transistor must also be insulated from ground. This insulating is done by means of insulating washers made of fiber and mica. When replacing transistors mounted in this manner, be sure that the insulating washers are replaced in proper order. Before installing the mica washers, treat them with a film of silicone fluid, Collins part number 005027300 , or equivalent. This treatment helps in the transfer of heat. After the transistor is mounted and before making any connections to it, check from the case to ground with an ohmmeter to see that the insulation is effective.
5.7.4.6 TEST PRODS. Test prods should be clean and sharp. Because many of the resistors used in transistorized equipments have low values, any additional resistance produced by a dirty test prod will make a good resistor appear to be out of tolerance.

In miniaturized equipment, the clearance between socket terminals, wires, and other components is usually very small. It is a good practice to cover all of the exposed tip of the test prod, except about oneeighth inch, with plastic tape or other insulation.
5.7.5 TROUELE SHOOTING. The usual troubleshooting practices apply to transistors. Be sure the test equipment and tools meet the requirements outlined in the above paragraphs. It is recommended that transistor testers be used to evaluate the transistor.
5.7.5.1 OHMMETER TEST OF TRANSISTORS. If a transistor tester is not available, a good ohmmeter may be used for testing. Be sure the ohmmeter meets the requirements set forth in the paragraph on test equipment, above. To check a PNP transistor, connect the positive lead of the ohmmeter to the base and the negative lead to the emitter. (The red lead is not necessarily the positive lead on all ohmmeters.) Generally, a resistance reading of 5000 ohms or more should be obtained. Connect the negative lead to the collector; again a reading of 5000 ohms or more should be obtained. Reconnect the circuit with the negative lead of the ohmmeter to the base. With the positive lead connected to the emitter, a value of resistance in the order of 50 ohms or less should be obtained. Likewise, with the positive lead connected to the collector, a value of 50 ohms or less should be obtained.

Similar tests made on an NPN transistor produce results as follows: With the negative ohmmeter lead connected to the base, the value of resistance between the base and the emitter and between the base and the collector should be high. With the positive lead of the ohmmeter connected to the base, the value of resistance between the base and the emitter and between the base and collector should be low. If the readings do not check oft as indicated, the transistor probably is défective and should be replaced.

If a defective transistor is found, make sure that the circuit is in good operating order before inserting the replacement transistor. If a short circuit exists in the circuit, plugging in another transistor will most likely result in another burned out transistor. Do not depend upon fuses to protect transistors.

Make sure that the value of the bias resistors in series with the various transistor elements are as shown on the schematic diagram. The transistor is very sensitive to improper bias voltages; therefore, a short or open circuit in the bias resistors may damage the transistor. For this reason, do not trouble shoot by shorting various points in the circuit to ground and listening for clicks. Typically when a transistor goes out, it will short from collector to emitter. When this happens, either polarity of meter will indicate a short condition.

TABLE 5-1. 51X-3 CHANNEL CRYSTAL CHART

CHANNEL (mc)	1ST MIXER CRYSTAL
108-108.9	45.25×2
109-109.9	45.75×2
110-110.9	46.25×2
111-111.9	46.75×2
112-112.9	47.25×2
113-113.9	47.75×2
114-114.9	48.25×2
115-115.9	48.75×2
116-116.9	49.25×2
117-117.9	49.75×2
118-118.9	50.25×2
119-119.9	50.75×2
120-120.9	51.25×2
121-121.9	51.75×2
122-122.9	52.25×2
123-123.9	52.75×2
124-124.9	53.25×2

CHANNEL (mc)	1ST MIXER CRYSTAL
$125-125.9$	
$126-126.9$	53.75×2
CHANNEL	
(mc)	
0.0	
0.1	14.25×2
0.2	14.495
0.3	14.595
0.4	14.795
0.5	14.895
0.6	14.995
0.7	15.095
0.8	15.195
0.9	15.295

SECTION VI

PARTS LIST

Figure 6-1. Receiver 51X-3, Top View, Dust Cover Removed

Figure 6-2. Receiver 51X-3, Front View, Front Panel Removed

Figure 6-3A. Receiver 51X-3, Bottom View, Dust Cover and R-F Shield Removed

Figure 6-3B. Receiver 51X-3, Bottom View, Dust Cover and R-F Shield Removed

Figure 6-4. $427 \mathrm{~B}-1$ Unit, Top View

Figure 6-5A. 427B-1 Unit, Bottom View

Figure 6-5B. 427B-1 Unit, Bottom View

Figure 6-6. 427B-2 Unit, Top View

Figure 6-7A. 427B-2 Unit, Bottom View

Figure 6-7B. 427B-2 Unit, Bottom View

ITEM	DESCRIPTION	COLLINS PART NUMBER
RECETVER 51X-3		5221052006
C400	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1000 uuf $+100 \pm-20 \%$; 500 vdcw; Erie Reststor	913323300
C401	CAPACITOR, FIXED, CERAMIC, DIELECTRIC: 1000 uuf; 500 vdcw ; Centralab type BC	913014600
C402	CAPACITOR, VARIABLE, AIR DIELECTRIC: 5 gang; 4.4 uuf to 5.50 uff; Radio Condenser	921001200
C403	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: 0.5 uuf min to 4.5 uuf max; $500 \mathrm{vdcw} ;$ Cambridge Thermiontcs	917112500
C404	CAPACITOR, VAMLABLE, CERAMIC DIELECTRIC: same as C400	913323300
C405	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C400	913323300
C408	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C403	917112500
C407	CAPACITOR, FIXED, CERAMIC, DIELECTRIC: 0.47 uuf $\pm 5 \%$; 500 vdcw ; Stackpole Carbon type GA	913298300
C408	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C403	917112500
C409	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C400	9133233.00
C410	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C400	913323300
C411	CAPACITOR, FLXED, CERAMIC DIELECTRIC: 3.0 uuf $\pm 1 / 4$ uuf; 500 vdcw ; JANCC20CJ030C	916014400
C412	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C400	913323300
C413	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 4700 uuf $+100 \%-20 \%, 500 \mathrm{vdcw}$; Aerovox type B.P.D.	913118700
C414	CAPACITOR, FIXED, MICA DIELECTRIC: 100 uuf $\pm 2 \%, 500$ vdew; MILCM15E101G	912049300
C415	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C413	913118700

ITEM	DESCRIPTION	COLLINS PART NUMBER
C416	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: same as C403	917112500
C417	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C400	913323300
C418	CAPACITOR, FIXED, MICA DIELECTRIC: 51 uuf $+5 \%$; 500 vdcw; MILCM15E5IOJ	912047300
C419	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C4I1	916014400
C420	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C400	913323300
C421	CAPACITOR, VARLABLE, CERAMIC DIELECTIRIC: same as C403	917112500
C422	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C413	913118700
C423	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 22 uuf, $\pm 2 \%$; 500 vdcw; JANCC30CH2200	916432200
C424	CAPACITOR, FIXED, MICA DIELECTRIC: 100 uuf $\pm 2 \%$; 500 vdcw; MILCMI5E101J	912049400
C425	CAPACITOR, FIXED, CERAMIC DIELECTRIC:	913323300
$\begin{aligned} & \text { thru } \\ & \text { C428 } \end{aligned}$	same as C400	
C429	CAPACITOR, FIXED, CERAMIC, DIELECTRIC: 800 uuf $+100 \%-20 \%$; 500 vdcw ; Centralab type DA141	913353200
$\begin{aligned} & \text { C430 } \\ & \text { thru } \\ & \text { C441 } \end{aligned}$	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C400	913323300
C442 thru C461	CAPACITOR, FIXED, CERAMIC, DIELECTRIC: same as C429	913353200
C482 thru C465	CAPACITOR, FIXED, CERAMIC, DIELECTRIC:	913323300
DS401	REFLECTOR, LIGHT: clear acryltc plastic, 7/32 $\times 11 / 32 \times 7 / 8$; Colltns Radto Company	5434875002
H401	WASHER, FLAT: shtm brass, 0.005 tn . thk. $0.375 \mathrm{In} . \mathrm{ID}, 0.438 \mathrm{in} . \mathrm{OD}$; Collins Radto Company	5065949003

ITEM	DESCRIPTION	COLLINS PART NUMBER
H402	POST. SPACING: aluminum, $3 / 16 \mathrm{in}$. hex by 0.542 in . Ig. . tap $2-56 \mathrm{NC}-2 \mathrm{~B}$ by $5 / 32 \mathrm{in}$. deep both ends; Collins Radio Company	5434858002
H403	WASHER. FLAT: rd, shlm brass; 0.255 in . id. 0.437 in . od, 0.005 In . thk; Collins Radio Company	5001085003
H404	WASHER. FLAT: aluminum. chromate dip. 0.050 in . thk, 0.390 in . ID. $9 / 16 \mathrm{in}$. OD; Collins Radio Company	5427496003
H405	WASHER. FLAT: steel; 0.125 in . $\mathrm{id}, 0.244 \mathrm{in}$. od, 0.025 In . thk; Collins Radio Company	5065941003
H406	SCREW, SPECIAL: CRES. Phillips recessed pan head, $8-32 \mathrm{NC}-2 \mathrm{~A} 7 / 16 \mathrm{in}$. Ir; Collins Radio Company	5435213002
H407	POST, SPACING: aluminum 3/16 in. hex by 0.500 In . lg . tap $2-56 \mathrm{NC}-2 \mathrm{~B}$ by $5 / 32 \mathrm{in}$. deep one end, 4-40 NC-2B by 5/32 in. deep opposite end; Collins Radio Company	5434888002
H408	STUD. CONTINUOUS: brass; 8-32 NC-2 thd. 13/16 In. Ig.: Collins Radio Company	5034934001
H409	SPRING. LOCKING: CRES wire, 0.030 in . dia; "C'" shape; 0.030 in . by 0.224 in , by 0.310 in .; Collins Radio Company	5026005002
1401	LAMP. INCANDESCENT: 14 v , bulb T-1-3/4, red 0.08 amp : G.E. Type 330sR	262046400
J401	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 rd female contact; 50 ohms; straight shape; American Phenolic type "31-221	357918300
J402	CONNECTOR. RECEPTACLE. ELECTRICAL: 18 contacts; $3 \mathrm{amp} ; 300 \mathrm{vac}$; straight shape; Winchester Elec. MRE18P-G	372105000 -
J403	CONNECTOR. RECEPTACLE, ELECTRICAL: 1 rd male contact; 500 vdc ; straight shape; Industrial Products 45925	357921500
J404	CONNECTOR. RECEPTACLE, ELECTRICAL: 14 female contacts, 5 amp .300 vac ; straight shape; Winchester Elec. MRE14S-G	372104300
L401	COIL, RADIO FREQUENCY: single layer wound, 5 turns 18 AWG copper wire, rh wound; Collins Radio Company	5434880002
L402	COIL, RADIO FREQUENCY: same as L401	5434880002
L403	COIL. RADIO FREQUENCY: same as L402	5434880002
L404	COIL, RADIO FREQUENCY: single layer wound, close wound. 9 turns $\# 30$ AWG aingle copper wire; Collins Radio Company	5434878002
L405	COIL, RADIO FREQUENCY: single layer wound, 6 turns "18 AWG copper whre, rh wound; Collins Radio Company	5434879002
1408	COIL. RADIO FREQUENCY: 1000 ma cur; 1.00 $\mathrm{uh} \pm 20 \%$; 0.30 dc ohms; 7/16 $\mathrm{in} \mathrm{Ig} ;$.2 wre leads; Jeffers Elect. 10100-300	240006200
L407	COIL, RADIO FREQUENCY: 1600 ma cur; 6.80 uh $\pm 10 \% ; 0.20 \mathrm{dc}$ ohms; $19 / 32 \mathrm{in} .1 \mathrm{~g} ; 2$ wire leads; Jeffers Elect. 10203-22	240016200
1408	COIL, RADIO FREQUENCY: same as L406	240008200
L409	COIL. RADIO FREQUENCY: single layer wound; enamel or formvar insulation, 1.5 inductance: 800 max cur; mineral filled phenolic coll form; Collins Radio Company	240006300
1410	COIL, RADIO FREQUENCY: 1470 ma cur; 0.68 uh $\pm 20 \% 0.15 \mathrm{de}$ resistance ohms; $7 / 16 \mathrm{in}$. 1 g ; 2 wire leads; Jeffers Elect. 10100-28	240006100
1411	COIL, RADIO FREQUENCY: single layer wound; magnet wire w/enamel or formvar insulation; 2.20 ith inductance, 1.10 ohms, 550 ma cur; Jeffers Elect. 10100-34	240006400
1412	COIL, RADIO FREQUENCY: same as L411	240006400
L413	COIL, RADIO FREQUENCY: same as L410	240006100
L414	COIL, RADIO FREQUENCY: same as L406	240006200
L415	COIL. RADIO FREQUENCY: same as L406	240006200.
L416	COIL, RADIO FREQUENCY: same as L411	240006400
MP401	GEAR HELICAL: "1 aluminum 45° rh hellx angle 25 teeth; Collins Radio Company	5434840002
MP402	GEAR, HELICAL: 2 CRES 4° sh helix angle, 25 teeth; Collins Radio Company	5434841002
MP403	GEAR, HELICAL: 3 CRES 4° rt helix angle. 25 teeth; Collins Radio Company	5434842002
MP404	GEAR. SPUR: aluminum, 42 teeth 0.2505 D; Collins Radio Company	5434843002
MP405	GEAR. SPUR: CRES, 21 teeth, 0.2500 in . ID . 7/16 in. w; Collins Radio Company	5434844002
MP408	STOP. COUNTER: CRES, right angle shape, 11/16 in. by 23/32 in., 2-56 NC-2B thd 15/32 in. 1g. one end; Collins Radio Company	5434845002
MP407	GEAR. SPUR: aluminum, 38 teeth, 0.1875 in . ID, $1 / 4$ in. w; Collins Radio Company	5434847002
MP408	SHAFT: CRES, 0.2495 in . OD, 2-7/32 in. 1g, one 0.028 in . w by 0.220 in. dia groove; Collins Radio Company	5434852002
MP409	GEAR, SPUR: aluminum, 19 teeth $0.1875 \mathrm{in} . \mathrm{ID}$, 5/16 In. woverall; Collins Radio Company	5434848002

ITEM	DESCRIPTION	COLLINS PART NUMBER
0401	KNOB, UNFILLED: aluminum, $5 / 8 \mathrm{in}$. OD tapered to $9 / 32 \mathrm{in}$. OD. $11 / 16 \mathrm{in}$. lg . . two tapped holes; quy 2; Collins Radio Company	5423082002
0402	KNOB: setscrew type, aluminum. 0.267 in . ID. 13/16 in. OD. 35 pitch diamond knurl; Collins Radio Company	5434849002
0403	KNOB: setscrew type. aluminum, black lusterless enamel finish. $3 / 4 \mathrm{in}$. OD. $1 / 2 \mathrm{in}$. h ; Collins Radio Company	5434850002
R401	RESISTOR. FIXED. COMPOSITION: 0.47 megohm $\pm 10 \%, 1 / 2 \mathrm{w}$; MIL RC20GF474K	745146400
R402	RESISTOR, FIXED. COMPOSITION: 47.000 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$; MIL RC20GF473K	745142200
R403	RESISTOR. FDXED. COMPOSITION: 180 ohms $\pm 10 \%, 1 / 2$ w; MIL RC 20 GF 181 K	745132100
R404	RESISTOR, FIXED. COMPOSITION: 2200 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$; MIL RC20GF222K	745136600
R405	RESISTOR, FIXED. COMPOSITION: 5600 ohms $\pm 10 \%$; $1 / 2$ w; MIL RC20GF562K	745138400
R406	RESISTOR, FIXED. COMPOSITION: 560 ohms $\ddagger 10 \%$. $1 / 2$ w; MIL RC 20 GF 561 K	745134200
R407	RESISTOR, FIXED. COMPOSITION: 2200 ohms t10\%, $1 / 2$ w; MIL RC20GF 222 K	745136600
R408	RESISTOR, FIXED, COMPOSITION: 680 ohms $\pm 10 \%$. $1 / 2$ w; MIL RC20GF681K	745134500
R409	RESISTOR, FIXED, COMPOSITION: 4700 ohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF472K	745138000
R410	RESISTOR, FIXED. COMPOSTTION: 1000 ohms $\pm 10 \%$. $1 / 2$ w; MIL RC 20GF102K	745135200
R411	RESISTOR, FDXED, COMPOSITION: same as R409	745138000
R412	RESISTOR. FDXED, COMPOSITION: 390 ohms $\pm 10 \%$. $1 / 2$ w; MIL RC20GF391K	745133500
R413	RESISTOR, FIXED, COMPOSITION: same as R409	745138000
R414	RESISTOR. FIXED, COMPOSITION: same as R403	745132100
R415	RESISTOR. FIXED. COMPOSITION: same as R410	745135200
R416	RESISTOR. FIXED, COMPOSITION: 68,000 ohms 410\%. $1 / 2$ w; M1L RC20GF683K	745142900
R417	RESISTOR. FLXED. COMPOSITION: same as R410	745135200
R418	RESISTOR, FDXED, COMPOSITION: 270 ohms $\pm 10 \%$. $1 / 2$ w; MIL RC20GF271K	745132800
R419	RESISTOR. FDXED. WIREWOUND: 40 ohms t5\%; 3 w; MLL RW59V400	747510200
R420	RESISTOR. FIXED, WIREWOUND: same as R419	747510200
R421	RESISTOR, FDEED, COMPOSTTION: $\mathbf{3 . 3}$ ohms $\pm 10 \%$. 1 w; MIL RC32GF3R3K	745353700
$\begin{aligned} & \mathrm{R} 422 \\ & \mathrm{~A} \& \mathrm{~B} \end{aligned}$	RESISTOR, VARIABLE: composition; dual section; 1000 ohms $\pm 10 \%$ and .25 megohm $\pm 20 \%$; 1/2 wea section (incl 5401)	380247600°
K423	RESISTOR, FIXED, COMPOSITION: 160 ohnis t10\%. 2 w ; MIL RC42GF181K	745562100
R424	NOT USED	
R425	RESISTOR. FIXED. COMPOSITION: 39 ohms t5\%, 1/2 w; MIL RC20GF390J	745129200
S401	SWITCH: (p/o R422)	
S402	SWITCH. ROTARY: 3 sections, 9 circuit, 18 positions. 5 moving, 40 lixed contacts; Oak MIg. type RK	259089600
\$403	SWITCH, ROTARY: 3 section, 10 position; 36^{-} detent. 3 pole. 23 fixed. 3 moving contacts; Oak Mfg. type BA10	259089700
T401	TRANSFORMER, INTERMEDIATE FREQUENCY: $18.0 \mathrm{mc} w / 1.18 \mathrm{mc}$ bandwidth tuning. shielded tuning capacitor adjustable iron core; Comm. Coll	278026800
T402	TRANSFORMER. RADIO FREGUENCY: 2 windings 3.105 mc frequency. primary, 51 ohms output link; Comm. Coll	278027100
TB401	TERMINAL BOARD: plastic $1 / 16$ in. thk. .7/16 in. w; 1-25/32 in. Ig, 10 brass terminals and 2 brackets; Collins Radio Company	5434877002
TB402	TERMINAL BOARD: plastic $1 / 16 \mathrm{ln}$. thk, 11/16 in. w. 1-9/32 in. 1g. 10 brass terminals. 1 bracket; Collins Radio Company	5434876002
TB403	TERMINAL BOARD: round, plastic $1 / 16 \mathrm{in}$. thk. 1-3/16 in. dia. 39 brass terminals; Collins Radio Company	5434862002
V401	ELECTRON TUBE: double triode; type 5654	253000100
V402	ELECTRON TUBE: same as V401	253000100
V403	ELECTRON TUBE: double triode; type 5670	253000200
v404	ELECTRON TUBE: same as v403	253000200
XV401	SOCKET, ELECTRON TUBE: 7 contact miniature; two 0.125 in . dia. mtg holes spaced 0.875 in . c to c; Sylvania V24-6034	220127300
$\begin{aligned} & \text { XV402 } \\ & \text { XV403 } \end{aligned}$	SOCKET. ELECTRON TUBE: same as XV401 SOCKET. ELECTRON TUBE: 9 contact ininiature; copper; phenollc insulation; syivanta	$\begin{aligned} & 220127300 \\ & 220129800 \end{aligned}$

SECTION Vi
Parts List

ITEM	DESCRIPTION	COLLINS PART NUMBER	ITEM	DESCRIPTION	COLLINS PART NUMBER		
XV404	SOCKET, ELECTRON TUBE: 9 conlact minlature; copper nonmagnelic alloy contacts; phenolic insulation; Sylvania	220124400	C304		913214200		
			C305	0.02 uf +100 \% -20 \%. 500 vdcw ; Hi-Q-Div. Aerovox CAPACITOR. FDXED. CERAMIC DIELECTRIC: same as C303	913118700		
	19-Crystal Board	5434880003	$\begin{aligned} & \text { C306 } \\ & \text { C307 } \end{aligned}$	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1000 uff $+100 \%-20 \% .500 \mathrm{vdcw}$; Erie Resistor CAPACITOR. FIXED. CERAMC DIELECTRIC: same as C304	913323300		
					913214200		
Y 401 Y 402	CRYSTAL UNIT: quartz; 45.25 mc ; Midland Mfg,	290848300	C308	CAPACITOR. FIXED, CERAMIC DIELECTRIC: same as C303	013118700		
Y 402 Y 403		290848400 290848500					
Y404	CRYSTAL UNIT: quartz; 46.75 mc ; Midiand Mfg.	290848600	C309	CAPACITOR, FDXED. CERAMIC DIELECTRIC: same as C304	813214200		
Y 405 Y 406	CRYSTAL UNIT: quartz; 47.25 mc ; Midland Mfg.	290848700	C310	CAPACITOR, FDXED, CERAMIC DIELECTRIC: same as C303	813118700		
Y406 Y 407		280848800					
Y407		290848900	C311	CAPACITOR, FDXED, CERAMIC DIELECTRIC: 10,000 uuf $+100 \%-20 \%$. 500 vdcw ; MIL CK63Y103Z	913118800		
Y 409	CRYSTAL UNTT: quartz; 49.25 mc ; Midland Mfg.	290849100	C312				
Y 410	CRYSTAL UNTT: quartz; 49.75 mc ; Midland Mfg.	290849200		CAPACITOR, FIXED, MICA DIELECTRIC: 51 uuf $\pm 2 \%, 500$ vdew; MIL CM15C51G	912047200		
Y411	CRYSTAL UNIT: quartz; 50.25 mc ; Midland Mgg.	290848300	C313	CAPACITOR, FDXED, MICA DIELECTRIC: 300 vdcw, 800 uuf $\pm 2 \%$; Electro Motive Mig. no. CM20E801G	935501600		
Y412	CRYSTAL UNIT: quartz; 50.75 mc ; Midland Mfg.	290849400					
Y413	CRYSTAL UNIT: quartz; 51.25 mc ; Midla nd Mig.	290849500					
Y414	CRYSTAL UNTT: quartz; 51.75 mc ; Midland Mrg.	290849600	C314	CAPACITOR, FDXED, CERAMIC DIELECTRIC: same as C306	913323300		
Y415 $\mathbf{Y 4 1 6}$	CRYSTAL UNIT: quartz; 52.25 mc ; Midiand MIg.	290849700					
Y416	CRYSTAL UNIT: quartz; 52.75 mc ; Midland MIg.	290849800	C315	CAPACITOR, FIXED, MICA DIELECTRIC: 270 uuf $45 \% .500 \mathrm{vdcw}$; Electro Motive VCM15E271J	9120524		
Y417	CRYSTAL UNIT: quartz; 53.25 mc ; Midland Mig.	290849800					
Y418	CRYSTAL UNIT: quartz; 53.75 mc ; Midland Mig.	290850000	C316	CAPACITOR, FIXED. CERAMIC DIELECTRUC: same as C311	913118800		
Y419	RYSTAL UNTT: quartz; 54.25 mc ; Midland Mg.	290850100					
			C317	CAPACITOR, FDXED, CERAMIC DIELECTRUC: same as C311	913118800		
	5-Crystal Board	5434872002	C318	CAPACITOR, FIXED, MICA DIELECTRIC: 470 uuf $\pm 10 \%$, 300 vdcw ; Electro Motive CM15E.471K	912054300		
$\mathbf{Y 4 2 0}$	CRYSTAL UNIT: quartz; $\mathbf{1 4 . 3 9 5} \mathrm{mc}$; Midiand Mfg.	290847300	C319	CAPACITOR, FDXED, CERAMIC DIELECTRIC:	913118800		
Y421	CRYSTAL UNIT: quartz; 14.485 mc ; Midland Mrg.	290847400		same as C311			
Y 422	CRYSTAL UNIT: quartz; 14.595 mc ; Midland Mg.	280847500	C320	CAPACITOR, FDXED. MICA DIELECTRIC: 510 uuf $+10 \%, 300 \mathrm{vdcw}$ Electro Motive CM50E8010	912054600		
Y423	CRYSTAL UNIT: quartz; 14.695 mc ; Midland Mig.	280847700	C321	uuf $\pm 10 \%, 300 \mathrm{vdcw}$; Electro Motive CM50E801G CAPACITOR, FDXED, ELECTROLYTIC. 9 uf	183155500		
Y424	CRYSTAL UNTT: quartz; 14.785			CAPACITOR, FDXED, ELECTROLYTIC: 9 uf $-10 \% .+40 \%, 100 \mathrm{vdcw}$; Sprague Electrlc type DEE			
		5434873002	C322	CAPACITOR, FDXED. CERAMIC DIELECTRIC: same as C304	913214200		
			C323	CAPACITOR, FDKED, PAPER DIELECTRIC: 0.22 uf $\pm 20 \%$, 100 vdcw; Sprague no. 186 P22401s3	931565200		
$\mathbf{Y} 425$ $\mathbf{Y} 426$	CRYSTAL UNIT: quartz; 14.895 mc ; Midland Mig.	290847800	C324	CAPACITOR, FDXED, CERAMIC DIELECTRIC:			
Y426	CRYSTAL UNIT: quartz; 14.995 mc ; Midland Mig.	290847900	CJ24	same as C304	013214200		
$Y 427$ Y 428	CRYSTAL UNIT: quartz; 14.095 mc ; Midland MIg.	290848000	C325				
$Y 428$ $\mathbf{Y 4 2 9}$	CRYSTAL UNTT: quartz; 15.185 mc ; Midland Mig.	290848100		CAPACITOR, FIXED, PAPER DIELECTRUC: same as C323	931565200		
Y429	CRYSTAL UNIT: quartz; 15.295 mc ; Midland Mig.	290848200	C326	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.1 uf $\pm 20 \%$. 100 vdew; Sprague no. 186P10501S3 NOT USED	931565000		
			$\begin{aligned} & \text { C327 } \\ & \text { C328 } \end{aligned}$				
	$\frac{\text { Kit-Connector }}{}$	5431901002		NOT USED CAPACITOR, FIXED, PAPER DIELECTRIC: 100	931050000		
	Includes the following items whtch are to be packed wth the equipment.		C329	CAPACITOR, FDED, ELECTROLYTIC: 40 uf, $+50 \%-10 \%, 350 \mathrm{vdcw}$; Sprague type DFP	183023800		
P401	CONNECTOR, PLUG. ELECTRICAL: 1 rd male contact; straight shape, 1 ln . by 19/32 in. dia;	357928200	C330	CAPACITOR. FIXED, ELECTROLYTIC: 80 us. $+100 \%-10 \%$. 150 vdcw ; Sprague type 170	183033600		
	brass; Industrial Products 85000		C331	CAPACITOR, FIXED, DRY ELECTROLYTIC: same as C327	183112800		
P402	CONNECTOR, RECEPTACLE, ELECTRICAL:	372104900	C332	CAPACITOR, ELECTROLYTIC, TANTALUM: 47 uf $\pm 20 \%$, 3.75 vdcw . GE type 29 F 529	184704500		
	18 female contacts, 7.5 amp ; stralght shape; Winchester Electronics MRE-18S-G						
P40	CONNECTOR, PLUG, ELECTRICAL: miniature bayonet type for use w/RG-58/U coaxial cable.	357923100	C333	CAPACII OR, FDXED, ELECTROLYTIC: 280 uf $+100 \%-10 \%$, 40 vdcw; Sprague type DFP	183023400		
P404	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 male contacts, $5 \mathrm{amp}, 300 \mathrm{vac}$, stratght shape;	372104400	A\&B	CAPACITOR, FLXED. ELECTROLYTIC: dual section; 900 uf and $300 \mathrm{uf}+100-10 \%$; 50 vdcw			
			C335	CAPACITOR, FIXED, CERAMIC DIELECTRUC: same 28 C 304	913214200		
	LOCK ASSEMBLY: lever and ptrot type, lever	372172700	C336	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C303	913118700		
	bronze, pivot brass, $3 / 8 \mathrm{in}$, w by 1-1/4 in. lg ;		$\begin{aligned} & \text { thru } \\ & \text { C339 } \end{aligned}$				
	COVER ASSEMBLY: top; for 18 c connecto	372115700		CAPACITOR, FIXED. CERAMIC DIELECTRIC: same as C304	913214200		
	aluminum 0.040 in . thk., $7 / 16 \mathrm{in}$. dia. opening;						
	WInchester El sctrontcs MRE18H	372803300	C341	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C304	913214200		
	COVER, ELECTRICAL CONNECTOR: CRES; 1/2 in. by 1-1/4 in. by 1-1/2 in^{2}; two holes tapped; Winchester Electronics MRE 14H		C342	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C304	913214200		
					C343	CAPACITOR, FIXED, PAPER DIELECTRIC:	931050000
						part no. P66303	
					C344		
					C345	CAPACITOR. FDXED, CERAMIC: same as C303	913118700
					C346		
					C347	CAPACITOR, FIXED, CERAMIC DIELECTRIC:	913118800
						same as C311	
					CR301	SEMICONDUCTOR DEVICE. DIODE: sillcon; Hughes Alrcraft, no. 1 N482	353019700
					CR302	SEMICONDUCTOR DEVICE. DIODE: germanium; Hughes Aircraft type 1N67A	353014700
					CR303	SEMICONDUCTOR DEVICE, DIODE: allicon; Hughes Aircraft no. 1 N461	353020000

\begin{tabular}{|c|c|c|}
\hline ITEM \& DESCRIPTION \& \begin{tabular}{l}
COLLINS \\
PART NUMBER
\end{tabular} \\
\hline Cr304 \& SEMICONDUCTOR DEVICE, DIODE: same as CR303 \& 353020000 \\
\hline Cr305 \& NOT USED \& \\
\hline Cr306 \& NOT USED \& \\
\hline CR307 \& SEMICONDUCTOR DEVICE, DIODE: type IN1084; \& 353156700 \\
\hline thru \& Sarkes-Tarzian 40M (M500) \& \\
\hline CR310 \& \& \\
\hline Cr311 \& SEMICONDUCTOR DEVICE, DIODE: silicon; Hoff man Scmiconductor no. IN468 \& 353255900 \\
\hline Cr312 \& SEMICONDUCTOR DEVICE, DIODE: Rermanium; 0.385 in . dia, \(21 / 32 \mathrm{in}\). Ig; General Electric 1 N 91 \& 353101000 \\
\hline Cr313 \& SEMICONDUCTOR DEVICE, DIODE: same as CR312 \& 353101000 \\
\hline E301 \& NOT USED \& \\
\hline thru \& \& \\
\hline E344 \& TERMINAL, LUG: bronze, \(3 / \mathbf{I 6} \mathrm{in}\). w by 13/32 in. Ig. 0.125 in . dia hole for 44 screw; PattonMacGuyer no. 4040 (Mod) \& 304033200 \\
\hline E345 \& TERMINAL, LUG: same as E344 \& 304033200 \\
\hline E346 \& TERMINAL, LUG: bronze, rd tongue end for \& 304031800 \\
\hline thru \& \(\mathrm{u} / \mathrm{w}\) *6 size screw; Shakeproof \& \\
\hline E350 \& TERMINAL, LUG: same as E344 \& 304033200 \\
\hline \[
\begin{aligned}
\& \text { thru } \\
\& \text { E352 }
\end{aligned}
\] \& \& \\
\hline E353 \& TERMINAL, LUG: bronze, \(3 / 16 \mathrm{in}\). w by 13/32 \& 304033100 \\
\hline thru \& in. Ig. 0.093 in . dia hole for 2 screw ; Patton- \& \\
\hline E355 \& MacGuyer no. 4040 (Mod) \& \\
\hline E356 \& TERMINAL, FEEDTHRU, INSULATED: brass \(w /\) tellon insulation, 0.218 in . od, 0.489 in . ig ; Sealectro "RST-1 \& 306032200 \\
\hline E357 \& TERMINAL, STUD: melamine, insulated. tapped insert type, \(1 / 4 \mathrm{in} . \mathrm{w}^{2} 3 / 8 \mathrm{in} .1 \mathrm{Ig}\); Whitso part no. 103A-4 \& 308023400 \\
\hline E358 \& NOT USED \& \\
\hline E359 \& TERMINAL, LUG: same as E344 \& 304033200 \\
\hline E360 \& NOT USED \& \\
\hline H301 \& WASHER, FLAT: plastic, 0.312 in . OD, 0.258 in. ID. 0.042 in , thk; Collins Radio Company \& 5411241003 \\
\hline H302 \& SPACER, SLEEVE: aluminum tube, 0.187 in . OD, 0.035 in . thk, to clear \(\$ 4 \mathrm{screw}\); Collins Radio Company \& 5415979002 \\
\hline H303 \& SPACER, SLEEVE: aluminum, 0.250 in . OD, \(0.125 \mathrm{in} . \mathrm{ig}, 0.152 \mathrm{in}\). ID; Collins Radio Company \& 5416017002 \\
\hline H304 \& SCREW, MACHINE: \(1 / 2 \mathrm{in}\). dia copper, slot drive. 1/4-28 UNF-2A thd; Collins Radio Company \& 5421348002 \\
\hline H305 \& WASHER. FLAT: copper 0.032 in. thk, \(9 / 32 \mathrm{in}\). ID, \(5 / 8 \mathrm{in}\). OD; Collins Radio Company \& 5421581003 \\
\hline H306 \& washer, FLAT: muscovite mica, 0.002/0.004 in. thk, 0.265 in . ID. \(11 / 16 \mathrm{in}\). OD; Collins Radio Company \& 5421582003 \\
\hline H307 \& WASHER:SHOULDERED: plastic. \(3 / 32 \mathrm{in}\). thk, \(0.218 \mathrm{in} . \mathrm{ID}, 7 / 16 \mathrm{in}\). OD; Collins Radio Company \& 5425312002 \\
\hline H308 \& INSULATOR, WASHER: mica, 0.002 to 0.004 in . thk, 0.218 fn . ID, 1-1/8 in. OD; Collins Radio Company \& 5425313002 \\
\hline H309 \& POST: aluminum square \(3 / 16,1 \mathrm{in} .1 \mathrm{~g}, 2\) holes 4-40 NC-2B, 4-40 NC-2B by \(1 / 4 \mathrm{in}\). deep; Collins Radio Company \& 5434912002 \\
\hline H310 \& WASHER, FLAT: CRES, 0.033 in . thk, 0.125 in . ID, 0.25 in. OD; Collins Radio Company \& 5021515002 \\
\hline J301 \& CONNECTOR, RECEPTACLE, ELECTRICAL: 1 rd female contact, 50 ohm, straight shape; American Phenolic type *31-221 \& 357918300 \\
\hline J302 \& CONNECTOR, PLUG, ELECTRICAL: 7 female contacts female insert, 5 amp ; Viking Electric VR7-2AA1 \& 372168900 \\
\hline J303 \& \begin{tabular}{l}
CONNECTOR, RECEPTACLE, ELECTRICAL: \\
18 male contacts, \(3 \mathrm{amp}, 300 \mathrm{va}-\mathrm{c}\), straight \\
shape; Winchester Electronics no. MRE18P-G
\end{tabular} \& 372105000 \\
\hline J304 \& CONNECTOR. RECEPTACLE, ELECTRICAL: 9 male contacts, pin insert, 5 amp , straight shape; Viking Electric no. VR9-2AD1 \& 372172400 \\
\hline K301 \& RELAY. ARMATURE: 4C contact arrangement, \(32 \mathrm{vd-c}, 3 \mathrm{amp}\) at \(30 \mathrm{vd}-\mathrm{c}\) or \(115 \mathrm{v} \mathrm{a}-\mathrm{c}, 300 \mathrm{ohm}\) \(\pm 20\) 毒; R. B. M. Mfg. \& 972133500 \\
\hline K302 \& RELAY, ARMATURE: same as K301 \& 972133500 \\
\hline L301 \& COIL, RADIO FREQUEINCY: universal wound, 3 pi. 72 turns ea section. 36 AWG wire, 220 uh inductance, 100 ma cur; Delevan Elect. \& 240019800 \\
\hline L302 \& COIL, RADIO FREQUENCY: multiple layer wound, 71 turns \({ }^{28}\) AWG. 6.75 uh inductance, 2 amps; Otis Radio \& Electric \& 240009800 \\
\hline L303

$:=$ \& REACTOR: Iilter, 0.25 hy inductance min, $\mathbf{4 0 0}$ cps w/ rated d-c current flowing thru reactor. 100 ma d-c rated current. 30 ohms max; Chicago Standard no. 26791 OR \& 688029300

\hline
\end{tabular}

TTEM	DESCRIPTION	COLLINS PART NUMBER
	REACTOR: 0.25 hy inductance, 100 mad d rated cur. . 30 ohms max at plus $25^{\circ} \mathrm{C}, 500 \mathrm{v}$ rms, Audio Development no. Al0397	668024600
L304	COIL. RADIO FREQUENCY: 1470 ma cur. ratlis,	240006100
$\begin{aligned} & \text { thru } \\ & \text { L306 } \end{aligned}$	0.68 uh $+20 \%, 0.15 \mathrm{~d}-\mathrm{c}$ resistance ohms, $7 / 16 \mathrm{in}$. ig by $3 / 16 \mathrm{ln}$. OD, 2 wire leads; Jeffers	
	Electrantes no. 10100-28	
L307	COIL, RADIO FPFQUENCY: same as L301	240019800
L308	COIL, RADIO FREQUENCY: same as L301	240019800
MP301	MOUNT, RESILIENT: 0.9 to 1.5 lb load rating, 0.075 in . deflection at max load; Lord Mig. no. J-6677-1	200099000
MP302	LOCK: brass, cadmium pl, $3 / 8 \mathrm{In}$. w; Winchester Electronics no. MRE-V	372173200
MP303	RETAINER: c/o CRES shaft \& $1 / 4-28 \mathrm{NF}-2 \mathrm{~A}$ thd, $5 / 16 \mathrm{in}$. dia by 2.031 in . ig \& hardware; Collins Radio Company	5416510002
M P304	LOCK ASSEMBLY: lever and pivot type, bronze lever, brass pivot, $3 / 8 \mathrm{in}$. w by 1-1/4 in. Ig; Winchester Electronics MRE-VL	372172700
MP305	COVER ASSEMBLY: top, for 18 C connector. aluminum 0.040 in . thk, $7 / 16 \mathrm{in}$. dia cable opening; Winchester Electronics MRE18H	372115700
M P306	STRAP: phosphor bronze, $0.010 \mathrm{in} . \mathrm{thk}^{\mathrm{t}} \mathrm{1/2} \mathrm{in}$. w, 4 in. $\mathrm{l}_{\mathrm{g} ;}$ Barry 88 0749-02 704	200078200
P301	CONNECTOR, PLUG, ELECTRICAL: 1 male contaçt. 50 ohms, stralght shape; MIL type UG-88C/U	357929200
P302	CONNECTOR. PLUG. ELECTRICAL: 7 female contacts, $5 \mathrm{amp}, 3600 \mathrm{vd} \mathrm{c}$; Viking Electric VP7/2BB1	372168700
P303	CONNECTOR. RECEPTACLE, ELECTRICAL: 18 female contacts, 7.5 amp , straight shape; Winchester Electronics no. MRE-18S-G	372104900
P304	CONNECTOR, RECEPTACLE, ELECTRICAL: 9 female contacts. 7 amp , straight shape; Viking Electric no. VP9/2BG1	372172500
Q301	TRANSISTOR: germanium; CBS part no. LT-5035	352010800
Q302	TRANSISTOR: same as Q301	352010800
Q303	TRANSISTOR: germandum; CBS-Hytron DT4-17	352004100
Q304	TRANSISTOR: same as Q301 DNTS8\%	352 0108 00
Q305	TRANSISTOR: same as Q301	352016 : 00
Q306	TRANSISTOR: germanium; RCA type 2N398	352006300
Q307	TRANSISTOR: germanium; Delco Radio no. 2N174	352004300
R301	RESISTOR, FIXED, COMPOSITION: 47.000 ohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF472K	745142200
R302	RESISTOR, FIXED, COMPOSITION: 68 ohms $\pm 10 \%, 1 / 2$ w; MÍL RC20GF5680K	745130300
R303	RESISTOR, FIXED, COMPOSITION: 1800 ohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF182K	745136300
R304	RESISTOR, FIXED, COMPOSITION: 470.000 ohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF474K	745146400
R305	RESISTOR, FLXED, COMPOSITION: same as R302	745130300
R306	NOT USED	
R307	RESISTOR, FIDED, COMPOSITION: same as R303	745136300.
R308	RESISTOR, FIXED, COMPOSITION: 180 ohms $+10 \%, 1 / 2$ w; M1L RC20GF181K	745132100
R309	NOT USED	
R310	RESISTOR, FIXED, COMPOSITION: 56.000 ohms t5年, 1/2w; MIL RC20GF563J	745142500
R311	RESISTOR, FLXED, COMPOSITION: 6800 ohms $\pm 5 \%, 1 / 2$ w; MIL RC20GF682J	745138600
R312	RESISTOR, FIXED, COMPOSITION: $68,000 \mathrm{ohms}$ $\pm 10 \%, 1 / 2$ w; MIL RC20GF683K	745142900
R313	RESISTOR, FLXED, COMPOSITION: 0.18 megohm $\pm 10 \%, 1 / 2$ w; MIL RC20GF184K	745144700
R314	RESISTOR, FIXED, COMPOSITION: 2.2 megohms $\pm 10 \%, 1 / 2$ w; MIL RC2OGF225K	745149200
R315	RESISTOR, FIXED, COMPOSITION: 0.27 megohm $\pm 10 \%, 1 / 2$ w; MIL RC20GF274K	745145400
R316 R317	RESISTOR, VARIABLE, COMPOSITION: 2500 ohms $\pm 20 \%, 1 / 2 w$; Chicago Telephone type 65	380628600
R317 R318	RESISTOR, FIXED, COMPOSITION: same as R315	745145400
R318 R319	RESISTOR, FIXED, COMPOSITION: same as R315	745145400
R319 R320	RESISTOR, FIXED, COMPOSITION: same as R304	745146400
R320	RESISTOR, FLXED, COMPOSITION: 150 ohms t5\%, 1/2 w; MIL RC20GF151J	745131600
R321	RESISTOR, FIXED, COMPOSITION: 680,000 ohms $\pm 10 \%$. $1 / 2$ w; MIL, RC20GF684K	745147100
R322	RESISTOR, FIXED, COMPOSITION: same as R304	745146400
R323	RESISTOR, FIXED, COMPOSITION: 10,000 ohms 55%. 1 w; MIL RC32GF103J	745339300
R324	RESISTOR, FIXED, COMPOSITION: 3900 ohms $\pm 5 \% .1 / 2 w$; MIL RC20GF392J	745137600
R325	RESISTOR. FLXED, COMPOSITION: 1200 ohms t5\%. 1/2 w; MIL RC20GF122J	745135500
R328	RESISTOR, FIXED, COMPOSITION: same as R321	
R327.	RESISTOR. VARIABLE, COMPOSITION: 10,000 ohms $\pm 20 \% .1 / 2 \mathrm{w}$; Chicago Telephone type $6 S$	380629200

TTEM	DESCRIPTION	COLEINS PART NUMBER	ITEM	DESCRIPTION	COLLINS PART NUMBER
R328	RESISTOR, FDXED, COMPOSITION: 1.0 megohm $\pm 10 \%, 1 / 2 \mathrm{w}$; MIL RC20GF 105K	745147800	XV301 thru	SOCKET, TUBE: 7 contact miniature, two 0.125 in . dia mig holes spaced 0.875 in . c to c , rd	220127300
R329	RESISTOR, FEXED, COMPOSITION: 820 ohms $\pm 10 \%$, 2 w ; MIL RC42GF821K	745564900	$\begin{aligned} & \text { XV303 } \\ & \text { XV304 } \end{aligned}$	shape, phenolic insulation; Sylvania V24-6034 SOCKET. ELECTRON TUBE: 9 contact minia-	220124400
R330	NOT USED			ture, copper nonmagnetic alloy contacts. plat	
R331	RESISTOR, FDXED, COMPOSITION: 82 ohms $+10^{\circ} \mathrm{O}, 1 / 2 \mathrm{w}$; MIL RC20G F820K	745130700		phenolic insulation; Sylvania	
R332	RESISTOR, FIXED, COMPOSITION: 56 ohms $\pm 10 \%$. 1 w ; M1', RC32GF560K	745330000	MODULATOR-POWER SUPPLY 427B-2		5221059006
R333	RESISTOR, FIXED, COMPOSITION: same as R332	745330000			
R334	RESISTOR, VARIABLE, COMPOSITION: 1000 ohms $\pm 20 \%$. $1 / 2 \mathrm{w}$; Chicago Telephone type 65	380629100	C50	CAPACITOR, FLXED, MICA DIELECTRIC: 500 vdcw, 15 uuf $\pm 5 \%$; Electro Motive Mig, no. VCM15C150J	912043700
R335	RESISTOR, FIXED. COMPOSITION: 680 ohms $\pm 10 \%$. 1 w; MIL RC32GF681K	745334500	C502	CAPACITOR, FEXED, MICA DIELECTRIC: 300 vdcw, 2400 uuf $\pm 2 \%$; Electro Motive Mig. no. CM20E242G	935507000
R336	RESISTOR, FEXED, COMPOSITION: 3300 ohms +5\%. 1/2 w; MIL RC20GF332J	745137200			
R337	RESISTOR, FIXED, COMPOSITION: 680 ohms $\pm 5^{\circ} \mathrm{b}$, $1 / 2 \mathrm{w}$; MIL RC20GF681J	745134400	C503	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500 vdcw, 4700 uuf $+100 \%-20 \%$; MIL CK62Y472Z	013118700
R338	RESISTOR. FIXED, COMPOSITION: 68 ohms $\pm 5 \%$ \% $1 / 2 \mathrm{w}$; M1L RC20GF680J	745130200	C504	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 0.02 uf $+100 \%-20 \%$. 500 vdcw ; Hi-Q Div. Aerovox	913214200
R339	RESISTOR, FDXED, COMPOSITION: 2.7 ohms $\pm 5 \%, 1$ w; MIL RC32GF2R7J	745353300	C505	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C503	013118700
R340	RESISTOR, FDXED, COMPOSITION: 15,000 ohms ± 10 \%. 1/2 w; MIL RC20GF153K	745140100	C506	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1000 uuf $+100 \%$-20\%, 500 vdcw ; Erie Resistor	913323300
R341	RESISTOR, FDEED, COMPOSITION: 47 ohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF470K	745129600	C507	CAPACITOR, FDXED, CERAMIC DIELECTRIC: same as C504	913214200
R342	RESISTOR, VARIABLE, COMPOSITION: same as R316	380628600	C508	CAPACITOR, FDXED, CERAMIC DIELECTRIC: same as C503	913118700
R343	RESISTOR, FIXED, COMPOSITION: 6.8 ohms, t10\%. 1 w; MIL RC32GF6R8K	745354900	C509	CAPACITOR, FDKED, CERAMIC DIELECTRIC: same as C504	913214200
R344	RESISTOR, VARIABLE, COMPOSITION: same as R334	380629100	C510	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C503	913118700
R345	RESISTOR, FDXED, COMPOSITION: same as R303	745136300	C511	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 10,000 uuf $+100 \%-20 \%, 500$ vdcw; MIL CK63Y $103 Z$	913118800
R346	RESISTOR, FDXED, COMPOSITION: 5600 ohms $\pm 10 \%$. 2 w ; MIL RC42GF562K	745568400	C512	CAPACITOR, FIXED, MICA DIELECTRIC: 51 uuf $\pm 2 \%, 500$ vdcw; MIL CMI5C51G	912047200
R347	RESISTOR, FDXED, COMPOSITION: 120 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$; M1L RC20GF121K	745131400	C513	CAPACITOR, FIXED, MICA DIELECTRIC: 300 vdew, 800 uul $\pm 2 \%$; Electro Motive Mig. no.	935501600
R348	RESISTOR, FIXED, COMPOSITION: 680 ohms, $+5 \%, 2$ w; MIL RC42GF681J	745564400	C514	CM20E801G ${ }_{\text {CAPACITOR, }}$ FIXED, CERAMIC DIELECTRIC:	913323300
R349	RESISTOR, THERMAL: 1000 ohms $\pm 10 \%$; Carborundum type 416 H	714156200	C515	same as C506 CAPACITOR, FIXED, MICA DIELECTRIC: 270	912052400
R350	RESISTOR, FIXED, COMPOSITION: same as R347	745131400	C516	uuf $\pm 5 \%$, 500 vdcw; Electro Motive VCM15E271J CAPACITOR, FLXED, CERAMIC DIELECTRIC:	913118800
R351	RESISTOR, FDXED, COMPOSITION: 3300 ohms	745137300		same as C511	
thru R354	$\pm 10 \%$, $1 / 2 \mathrm{w}$; MLL RC20GF332K		C517	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C511	913118800
R355	RESISTOR, FEXED, COMPOSITION: same as R328	745147800	C518	CAPACITOR, FLXED, MICA DIELECTRIC: 470 uuf $\pm 10 \%, 300 \mathrm{vdcw}$; Electro Motive CM15E471K	912054300
T301	TRANSFORMER. INTERMEDIATE FREQUENCY:	278026909	C519	CAPACITOR, FEXED, CERAMIC DIELECTRIC:	913118800
thru T304	3.105 mc freq range, powdered iron core; Comm. Coil		C520	CAPACITOR, FIXED, MICA DIELECTRUC: 180	912051300
T305	TRANSFORMER, POWER, STEP-UP: $26.4 \mathrm{v} \mathrm{d-c}$ input voltage, 2 outputs, $172 \mathrm{v} \mathrm{d}-\mathrm{c}$ at 85 ma , and 255 v d-c at 95 ma; Ballastran no. BC2190	664100800	C521	uuf $\pm 10 \%$; 500 vdcw ; Electro Motive part no. 605 CAPACITOR, FDXED, ELECTROLYTIC: 9 uf $-10 \%,+40 \%, 100 \mathrm{vdcw}$; Sprague Electric type DEE	183155500
T306	TRANSFORMER, AUDIO FREQUENCY: input type, 20,000 ohms, 100 ohms pri, impedance;	667127700	C522	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C504	913214200
	200 ohms sec. impedance; Chicago Std Trans. part no. 27905		C523	CAPACITOR, FIXED, PAPER DIELECTRJC: 0.22 uf $\pm 20 \%$, 100 vücw; Sprague no. 186P22401S3	931565200
T307	TRANSFORMER, AUDIO FREQUENCY: pri. impedance 600 ohms, 60 ma d-c cur rating, sec. impedance 6500 ohms, $8 \mathrm{ma} \mathrm{d}-\mathrm{c}$ balanced cur rating; Audio Development A11068	667024700		CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C504	913214200
			C525	CAPACITOR, FLXED, PAPER DIELECTRIC: same as C523	931565200
T308	TRANSFORMER, AUDIO FREQUENCY: modulation output, pri.impedance as required. $200 \mathrm{ma} ; \mathrm{sec}$. 115000 ohms, 50 ma , sec. $\mathrm{W}^{2, ~} 3.2$ ohms, 0 ma, sec. \#3, 500 ohms; Chicago Std. Trans. part no. 28721 TERMINAL BOARD: plastic, $3 / 32 \mathrm{in}$. thk, $1-1 / 8 \mathrm{in}$. w by $3-1 / 4 \mathrm{in}$. $\mathrm{lg}, 20$ terminais, Collins Radio Company	687045000 5434916003	C526 C527	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.1 uf $\pm 20 \%, 100 \mathrm{vdcw}$; Sprague no. 186 P10501S3 CAPACITOR, FLXED, ELECTROLYTIC: 100 uf $-10 \%+75 \%, 15 \mathrm{vdcw}$; Sprague Electric type DEE	931565000 183155400
TB301			C528	CAPACITOR, FIXED, PAPER DIELECTRIC: 100 vdcw, 470.000 uuf $\pm 20 \%$; Sprague Electric no. P66303	931050000
TB302			C529	CAPACITOR, FIXED, ELECTROLYTIC: 40 uf , $350 \mathrm{vdcw},+50 \%-10 \%$ Sprague Electric	183023800
TB302	TERMINAL BOARD: plastic 3/32 in. thk, 1-7/16 in. Wy 2-7/32 in. 1g, 14 feedthru terminals, 1 terminal; Collins Radio Company	5434918003	C530	CAPACITOR, FDKED, ELECTROLYTKC: 80 u, 150 vdcw; $+100 \%-10 \%$; Sprague Electric type 170	183033600
TB303	TERMINAL BOARD: plastic, $3 / 32 \mathrm{in}$. thk, 1-1/4 in. w by 2-5/8 in. ig , 13 feedthru terminals; Collins Radio Company	5434920003	C531	CAPACITOR, FDXED, ELECTROLYTIC: same as C527	183155400
V301			C532	CAPACITOR, ELECTROLYTIC, TANTALUM: 45 uf $\pm 20 \%, 3.75 \mathrm{vdcw}$; GE type 29 F 529	184704500
thru V 303	ELECTRON TUBE: glass envelope, pentode, type 5749; RCA type no. 5749		C533	CAPACITOR, FDED, ELECTROLYTIC: 500 uf, 15 vdcw. $+100 \%,-10 \%$; Sprague Electric	183023600
V304	ELECTRON TUBE: twin triode, type 12ATTWA; G.E.	255021800	C534	CAPACITOR, FLXED, ELECTROLYTIC: 3000 ul . 15 vdcw, $+100 \%-10 \%$; Sprague Electric	183023700
XCR 307 thru	HOLDER, SEMICONDUCTOR DEVICE: solderlug terminals, 2 In. Ig over-all; Bussman Mfg. no. 3794 (Mod)	265105700	C 535 thru C538	CAPACITOR, FIXED, CERAMIC DIELECTRIC: same as C504	913214200
$\begin{aligned} & \text { XCR } \\ & 310 \end{aligned}$		\vdots	$\begin{aligned} & \text { C539 } \\ & \text { C540 } \end{aligned}$	NOT USED CAPACITOR, FLXED, CERAMIC DIELECTRIC: same as C504	913214200

TTEM	DESCRIPTION	COLLINS PART NUMBER	ITEM	DESCRIPTION	collins PART NUMBER
C541	CAPACITOR, FDKED, CERAMIC DIELECTRIC: same as C503	913118700		REACTOR: 0.11 hy inductance. 150 ma d-c rated current, 7.5 ohms max at plus $25^{\circ} \mathrm{C}, 500 \mathrm{v}$ rms;	668029100
C542	NOT USFD			Audio Development A10728	
C543 C544	NOT USED		L504	COIL. RADIO FREQUE,NCY: 1470 ma current	240006100
C545	CAPACITOR. FDXED, CERAMIC DIELECTRIC: same as C511	913118800		7/16 In . lg by $3 / 16 \mathrm{in}$, OD, 2 wire leads; Jeffers Electronics no. 10100-28	
CR501	SEMICONDUCTOR DEVICE, DIODE: sillicon; Hughes Aircraft Co. part no. HD6616	353257600	L505 L506	COIL, RADIO FREQUENCY: same as L504 COIL, RADIO FREQUENCY: same as L501	240006100 240019800
CR502	SEMICONDUCTOR DEVICE, DIODE: germanlum; Huphes Aircraft type 1N67A	353014700	L50	COIL. RADIO FREQUENCY: same as L501	240019800
CR503	SEMICONDUCTOR DEVICE, DIODE: sillicon; Hughes Alrcraft no, 1 N461	353020000	MP5	LOCK ASSEMBLY: lever and pivot type, bronze lever, brass pivot. $3 / 8 \mathrm{in}$. w by $1-1 / 4 \mathrm{in}$. l g;	372172700
CR504 CR505	SEMICONDUCTOR DEVICE, DIODE: same as CR503 NOT USED	353020000	M P502	MOUNT, RESILIENT: 0.9 to 1.5 lbs load rating. 0.075 in . deflection at max load; Lord Mfg. no.	200099000
CR505 CR506	NOT USED				
CR507	SEMICONDUCTOR DEVICE, DIODE: type 1N1084	353156700	MP5	STRAP: phosphor bronze, 0.010 in. thk, $1 / 2 \mathrm{in}$. w. 4 in. lg; Barry no. 88 0749-02 704	200078200
thru	Sarkes-Tarzian 40M(M500)		MP504	COVER, ASSEMBLY: top, for 18 C connector, aluminum, 0.040 in . thk, $7 / 16 \mathrm{in}$. dia cable	372115700
E543	TERMINAL, LUG: bronze, 3/16 in. w by 13/32	304033200		opening; Winchester Electronics MRE 18H	
thru E545	$\mathrm{in} . \mathrm{Ig} .0 .125 \mathrm{in}$. dia hole for ${ }^{4}$ screw; PattonMacGuyer no. 4040(Mod)		NP505	LOCK: brass, cadmium pl, $3 / 8 \mathrm{in}$. w; Winchester Electronic no. MRE-V	372173200
E546	TERMINAL, LUG: bronze, rd tongue end, for use w/ 46 size screw; Shakeproof	304031800	M P506	CONNECTOR, PLUG. ELECTRICAL: 7C female	372168800
E549			M P507	Insert, 5 amp; Viking Electric no. VP7/2BBI RETAINER: c/o CRES shaft \& $1 / 4-28 \mathrm{NF}-2 \mathrm{~A}$	5416510002
E550	TERMINAL, LUG: same as E543 TERMINAL. LUG: same as E543	$\begin{aligned} & 304033200 \\ & 304033200- \end{aligned}$		thd, $5 / 16 \mathrm{in}$. dia by 2.031 in . Ig \& hardware;	
E552	TERMINAL, LUG: same as E543	304033200	P501	Collins Radio Company CONNECTOR, PLUG, ELECTRICAL: 1 male	
E553	NOT USED			contact. 50 ohms, straight shape; MIL type	S5
E55	TERMINAL, LUG: same as E543	304033200		UG-88C/U	
E557	MacGuyer no. 4040(Mod)			contacts; 5 amp rating, 3600 v d-c; Vi VP7/2BB1	
E5	NOT USED		P503	CONNECTOR. RECEPTACLE, ELECTRICAL:	372104900
E5	NOT USED			18 female contacts. 7.5 amp . stralght shape;	
E56	TERMINAL, LUG: same 28 E543	304033200		Winchester Electronics no. MRE-18S-G	
E561	TERMINAL. STUD: melamine, Insulated, tapped insert. $1 / 4 \mathrm{In} . \mathrm{w} 3 / 8 \mathrm{in} . \mathrm{lg} ;$ Whiteo part no. 103A-4	306023400	P504	CONNECTOR, RECEPTACLE, ELECTRICAL: 9 female contacts. 5 amp , stralght shape; Viking Electric no. VP9/2BG1	372172500
E562	TERMINAL. FEEDTHRU, INSULATED: brase w/ teflon insulation, 0.218 in . od, $0.489 \mathrm{in} .1 \mathrm{lg} ;$	306032200		TRANSISTOR: germanlum; Delco Radio no. 2N174 TRANSISTOR: same as Q501	$\begin{aligned} & 352004300 \\ & 352004300 \end{aligned}$
	Sealectro "RST-1		Q503	TRANSISTOR: germaniym; C.b.s. - Hyrton no.	352004100
H501	WASHER, FLAT: plastic, 0.312 In . OD, 0.258 in . ID, 0.042 in . thk; Collins Radio Company	5411241003	Q504	DT4-17 - Nis ${ }_{\text {TRANSISTOR: }}^{\text {Same as Q503 }}$	352004100
H502	SPACER. SLEEVE: aluminum. 0.250 in , OD. $0.125 \mathrm{In} . \mathrm{Ig}, 0.152 \mathrm{In}$. 1D; Collins Radio Company	5416017002	Q505 R501	TRANSISTOR: same as Q503 RESISTOR, FIXED, COMPOSITION: 47.000 oh	352004100 745142200
H503 H504	SCREW, MACHINE: $1 / 2 \mathrm{in}$. dia copper, slot drive, 1/4-28 UNF-2A thd; Collins Radio Company	5421348002	R501	$\pm 10 \%$. $1 / 2$ w; MIL RC20GF473K RESISTOR. FDXED. COMPOSITION: 68 ohms	745142200 745130300
H504	WASHER, FLAT: copper 0.032 in . thk, $9 / 32 \mathrm{in}$. 1D, 5/8 in. OD; Collins Radio Company	5421581003		$\pm 10 \%$, $1 / 2$ w; MLL RC20GF680K	130300
H505	WASHER. FLAT: muscovite mica, 0.002/0.004	5421582003	R503	RESISTOR, FDXED, COMPOSITION: 1800 ohms $\pm 10 \%$. $1 / 2$ w; MIL RC20GF182K	745136300
	in. thk. 0.265 in . ID, $11 / 16 \mathrm{in}$. OD; Colline Radio Company		R504	RESISTOR. FDXED, COMPOSITION: 470,000 ohms $+10 \%, 1 / 2$ w; MIL RC20GF474K	745148400
H508	POST: aluminum square $3 / 16,1 \mathrm{fn} .1 \mathrm{~g}, 2$ holes 4-40 NC-2B, 4-40 NC-2B by 1/4 in. deep; Collins Radio Company	5434912002	R505 R506	RESISTOR, FDXED. COMPOSITION: same as R502 NOT USED	745130300
H507	WASHER. FLAT: CRES 0.033 in . thk, 0.125 in . ID. 0.25 in . OD; Collins Radio Company	5021515002	R507	RESISTOR, FDXED, COM POSITION: same as R503	745136300
J501.	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 rd female contact, 50 ohms, straight shape; American Phenolic type \#31-221	357918300	R508 R509	RESISTOR, FDED, COMPOSITION: 180 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$; MIL RC2OGF181K NOT USED	745132100
J502	CONNECTOR. PLUG. ELECTRICAL: 7 female contacts, female insert, 5 amp ; Viking Electric	372168900	R509	RESISTOR, FDXED, COMPOSITION: 56,000 ohms $\pm 5 \%$, 1/2 w; MIL RC20GF563J	745142500
J503		372105000	R511	RESISTOR, FDXED, COMPOSITION: 6800 ohms $\pm 5 \%$. $1 / 2$ w; MIL RC20GF682J	745138600
	18 male contacts. $3 \mathrm{amp} .300 \mathrm{va-c}$. stralght shape; Winchester Electronics Co.. no. MRE18P-G		R512	RESISTOR, FDXED, COMPOSITION: 0.12 megohm $\pm 10 \%, 1 / 2$ w; MIL RC20GF124K	745144000
J504	MREI8P-G	372172400	R513	RESISTOR, FDED, COMPOSITION: same as R512	745144000
	9 male contacts, pin insert. 5 amp , stralght shape; Viking Electric no. VR9-2AD1		R514	RESISTOR, FDXED, COMPOSITION: 2.2 megohms $\pm 10 \%, 1 / 2$ w; MIL RC20GF225K	745149200
K501	RELAY, ARMATURE: 4C contact arrangement. contact rating 3 amp at $30 \mathrm{v} \mathrm{d}-\mathrm{c}$ or 115 va a .	972146300	R515	RESISTOR, FIXED, COMPOSITION: 0.27 megohm $\pm 10 \%, 1 / 2 \mathrm{w}$; MIL RC20GF274K	745145400
	15 v d-c nom coll voltage, 75 ohms 0.20 amp rating on coll; RBM Mfg. Div. Essex Wire type SM		R516 R517	RESISTOR, VARIABLE, COMPOSITION: 2500 ohms $\pm 20 \%$. $1 / 2$ w; Chicago Telephone type 65 RESISTOR, FDXED. COMPOSITION. same	380628600
K502	RELAY, ARMATURE: same as K501	972146300	R517	RESISTOR. FDKED. COMPOSITION: same as R515	745145400
L501	COIL. RADIO FREQUENCY: unlversal wound. $3 \mathrm{pi}, 72$ turns ea section, \#36 AWG wire. 220 uh Inductance. 100 ma cur; Delevan Elect.	240019800	R518 R519	RESISTOR. FIXED. COMPOSITION: same as R515	745145400
L502	COIL. RADIO FREQUENCY: 65 turns no. 22 copper wire, multiple wound. 7 uh; Collins Radio	5436441002	R519 R520	RESISTOR. FIXED. COMPOSITION: same as R504 RESISTOR, FDXED, COMPOSITION: 150 ohms	745146400
	copper wire, mulliple wound. 7 uh; Collins Radio Company		R520	RESISTOR. FDXED. COMPOSITION: 150 ohms 45\%. 1/2 w; MIL RC20GF151J	745131600
L503	REACTOR: 0.11 hy inductance, $150 \mathrm{ma} \mathrm{d}-\mathrm{c}$ rated current, 7.5 ohme max at plus $25^{\circ} \mathrm{C} .500 \mathrm{~V}$ rme; Chicago Std. Trans. no. 27136 OR	688029400	R521 R522	RESISTOR, FDXED, COMPOSITION: 680,000 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$; MIL RC20GF684K RESISTOR, FEXED, COMPOSITION: name at R504	745147100 745148400

VHF COMMUNICATIONS AND NAVIGATION RECEIVER

51X-3

CEDAR RAPIDS, IOWA, U.S.A.

TABLE OF CONTENTS

\bullet

Section Page
I GENERAL DESCRIPTION 1
1.1 Description and Application 1
1.1.1 VHF Communications and Navigation Receiver 51X-3
1.1.2 Modulator-Power Supply 427B-() 1
1.2 Performance Data 1 3
II INSTALLATION 5
2.1 General 5
2.2 Unpacking 5
2.3 Preinstallation Check 5
2.4 Mounting 5
2.5 Cabling 8
2.6 Postinstallation Check 11
2.6.1 Modulation Check 11
2.6.2 Sidetone Adjustment 11
2.6.3 Check for Excessive Hum 11
III OPERATION 11
3.1 General 11
3.2 Operating Controls 11
3.3 Normal Operating Procedure 11
3.4 Adjustments for Weak Signal Reception 11
3.5 Volume Control 12
Section Page
IV PRINCIPLES OF OPERATION 13
4.1 General 13
4.2 $\quad R-F$ and Conversion Circuits 14
4.3 I-F Circuits 14
4.4 Signal, Localizer-VOR, and AGC Detectors 14
4.5 Noise Limiter and Squelch Circuits 14
4.6 Dual-Purpose Audio and Modulator Circuits 14
4.7 Power Supply 15
4.8 Control Circuits 16
V MAINTENANCE 18
5.1 General 18
5.2 Test Equipment 18
5.3 Test Harness 18
5.4 Disassembly Procedures 18
5.4 .1 General 18
5.4.2 Replacing High-Frequency Oscillator Crystals in Receiver 51X-3 18
5.4.3 Replacement of 3.105-Mc Transformer (T402) in Receiver 51X-3 18
5.4.4 Replacing Low-Frequency Oscillator Crystals in Receiver 51X-3 18
5.5 Aligning, Adjusting, and Checking Receiver 51X-3 and 427B-() Unit 18
5.5.1 General 18
Presetting Tuned Circuits 19
5.5.3 Low-Frequency Oscillator Check 19
5.5.4 High-Frequency Oscillator Check 19
High-Frequency Oscillator Alignment 19
5.5.6 Alignment of $3.105-\mathrm{Mc}$ Mixer Coil (T402) 19
5.5.7 3.105-Mc I-F Alignment 20
Alignment of $18-\mathrm{Mc}$ Transformer (T401) 20
5.5.9 Front End Alignment 20
5.5.10 Squelch Adjust 20
5.5.11 Audio Output Check 20
5.5.12 Transient Protector Adjustment 20
5.6 Lubrication 21
5.7 Servicing Transistor Circuits 21
5.7 .1 General 21
5.7.2 Test Equipment 21
5.7.2.1 Transformerless Power Supplies 21
5.7.2.2 Line Filter 21
5.7.2.3 Low-Sensitivity Multimeters 21
5.7.2.4 Power Supply 21
5.7.3 Electric Soldering Irons 21
5.7.3.1 Leakage Current 21
5.7.3.2 Iron Size 21
5.7.4 Servicing Practices 21
5.7.4.1 Heat-Sink When Soldering 21
5.7.4.2 Removal of Transistors from Operating Circuits 22
5.7.4.3 Plug-In Transistors 22
5.7.4.4 Resistance Measurements in Transistor Circuits 22
Power Transistor Heat Sinks 22
Test Prods 22
5.7.4.6
Trouble Shooting 22
Ohmmeter Test of Transistors 22
VI PARTS LIST 23
VII ILLUSTRATIONS 35/36

