ECOLLINS目

479U-I
 SIGNAL GENERATOR

INSTRUCTION BOOK

INSTRUCTION BOOK

for
479U-1 SIGNAL GENERATOR \#27

MANUFACTURED BY

COLLINS RADIO COMPANY
CEDAR RAPIDS, IOWA

APR 28 1950

SECTION 1 - GENERAL DESCRIPTION
1-1. General. 1-1
l-2. Purpose of Equipment 1-1
l-3. Mechanical Description 1-1
1-3-1. General. 1-1
1-3-2. Operating Controls 1-1
1-3-3. Calibrating Controls 1-1
1-3-4. Power Supply 1-1
1-3-5. Color, Dimensions and Weight l-2
1-4. Electrical Description l-2
1-4-1. General. l-2
1-4-2. Analysis of Outputs. l-2
1-5. Reference Data 1-3
1-5-1. Cables and Adapters l-3
1-5-2. Power Input Requirements 1-4
$1-5-3$. Frequency Combinations 1-4
SECTION 2 - INSTALLATION
2-1. Uncrating 2-1
2-2. Internal Connections 2-1
2-3. External Connections 2-1
SECTION 3 - OPERATION
3-1. General. 3-1
3-2. Typical Connections 3-1
3-3. RF Circuits. 3-1
3-4. VOR Channels 3-1
3-5。Localizer. 3-2
3-6. Tone Localizer 3-2
3-7. Glide Slope. 3-2
SECTION 4 - CIRCUIT DESCRIPTION
4-1. Preliminary. 4-1
4-2. General. 4-1
4-3. Low Frequency Oscillator 4-2
4-40-9960 Cycle Circuits. 4-2
4-4-1. Oscillator 4-2
$4-4-2$. Automatic Frequency Control Circuit. 4-3
4-4-3. Frequency Modulation of the 9960 Cycle Signal 4-4
4-4-4. 9960 Amplifier 4-4
4-5. Mixing Network 4-4
4-6. Driver and Modulator Stages. 4-4

TABLE OF CONTENTS (Cont.)

SECTION 4-CIRCUIT DESCRIPTION (Cont.)

4-7. RF Section
4-8. Power Supply

4-8-2. AC Supply. $4-6$
SECTION 5 - MAINTENANCE AND SUPPLEMENTARY DATA
5-1. Calibration Procedure. 5-1
5-1-1. Test Equipment Required. 5-1
5-1-2. R。F. Section . 5-1
5-1-3. Low Frequency Oscillator
-2
5-1-4. 9960 CPS Circuits.
\qquad
5-1-4. 5-2
5-1-5. Modulation 5-3

SECTION 6 - PARTS LIST

SECTION 7 - ILLUSTRATIONS

SECTION 8 - AUXILIARY EQUIPMENT

479U-1 LIST OF ILLUSTRATIONS.

SECTION 1 - GENERAL DESCRIPTION.
Figure 1-1. 479U-1 Signal Generator

SECTION 4 - CIRCUIT DESCRIPTION.
Figure 4-1. 479U-1 Functional Block Diagram. Figure 4-2. Low Frequency Oscillator - Schematic. Figure 4-3. 9960 Cycle Circuits - Schematic. Figure 4-4. Driver and Modulator - Schematic. Figure 4-5. RF Oscillator - Schematic. Figure 4-6. RF Doubler and Tripler - Schematic.

SECTION 5 - MAINTENANCE AND SUPPLEMENTARY DATA.
Figure 5-1. RF Oscillator - Top View Cover Removed. Figure 5-2. RF Oscillator - Bottom View. Figure 5-3. 479U-1 Parts Arrangement - Right Side. Figure 5-4. 479U-1 Parts Arrangement - Left Side. Figure 5-5. 479U-1 Parts Arrangement - Bottom View. Figure 5-6. DC Power Supply - Parts Arrangement - Bottom View. Figure 5-7. DC Power Supply - Parts Arrangement - Top View.

SECTION 7 - ILLUSTRATIONS.
Figure 7-1. 479U-1 Signal Generator - Complete Schematic. Figure 7-2. Dynamotor $D M-53 A Z$, Internal Wiring. Figure 7-3. Dynamotor DM-53A, Internal Wiring.

SECTION 8 - AUXILIARY EQUIPMENT.
Figure 8-1. AC Power Supply - Parts Arrangement - Bottom View.
Figure 8-2. AC Power Supply - Parts Arrangement - Top View. Figure 8-3. AC Power Supply - Schematic

LIST OF TABLES

SECTION 5 - MAINTENANCE AND SUPPLEMENTARY DATA
Table 5-1. Typical DC Voltage Measurements. Table 5-2. Typical AC Voltage Measurements. Table 5-3. Typical Resistances to Ground.

guarantee

The equipment described herein is sold under the following guarantee:
collins agrees to repair or replace, without charge, any equipment, parts or accessories which are defective as to design, workmanship or material, and which are returned to collins at its factory in Cedar Rapids, lowa, transportation prepald, provided that the foregoing shall not be applicable to.
(a) Equipment or accessories as to which notice of the claimed defect is not given collins within one year from date of delivery;
(b) Equipment and accessories manufactured by others than collins, tubes and batteries, all of which are subject only to such adjustment as Coll ns may obtain from supplier thereof;
(c) Equipment or accessories which shall fail to operate in a normal or proper manner due to exposure to excessive moisture in the atmosphere or otherwise after delivery, any such fallure not being deemed a defect within the meaning of the foregoing provisions.

Collins further guarantees that any radio transmitter described hereln will deliver full radio frequency power output at the antenna lead when connected to a sultable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins.

Notice of any claimed defect must be given to collins prior to return of any item. Such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. Upon receipt of such notice, collins will promptly advise respecting return of equipment. Fallure to secure our advice prior to the forwarding of goods for return may cause unnecessary deiay in the handing of such merchandise.

No other warranties, expressed or implied, shall be applicable to said equipment, and the foregoing shall constitute the Buyer s sole right, and remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectiy arising from the use of the products, or any inability to use them either separately or in comb nation with other equipment or materials, or from any cause.

MOU: TO ORDER REPLACEMENT PARTS

When ordering replacement parts. you should direct your order as indicated below and furnish the following information in so far as applicable:

Address:	Collins Radio Company
	Sales Service Department
	Cedar Rapids, lowa

Information Needed
(A) Quantity required

HOW TO RETURN MATERIAL OR EQUIPMENT

If, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, in so far as applicable. upon rece:pt of such notice, collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particularls may cause unnecessary delay in handling of your returned merchandise.

Address: Collins Radio Company
Sales Service Department
Cedar Rapids, Iowa

Information Needed

(A)	Date of delivery of equipment
(B)	Date placed in service
(C)	Number of hours in service
(D)	Part number of tem from parts list or schematic Diagram)
(E)	Item number (obtain from Parts List or Schematic Diagram)
F)	Type number of unit from which part is removed
(G)	Serial number of unit
(H)	Serial number of the complete equipment
(1)	Nature of failure
(J)	Cause of failure
(k)	Remarks

SECTION 1

GENERAL DESCRIPTION

1-1. GENERAL

This instruction book has been prepared to aid in the operation and maintenance of the Collins Model 479U-1 Signal Generator.

1-2. PURPOSE OF EQUIPMENT.

The Collins Type 479J-1 Signal Generator is designed to afford a means for quickly field checking Omni-Range Navigation Receivers and Glide Slope Receivers for aircraft use. It provides a synthesis of signals encountered in reception of (1) omni-range, (2) tone localizer, (3) phase localizer, and (4) glide slope facilities. It is not intended that this equipment should be used in calibrating navigation réceivers, but rather that it should be used as a "go no-go" gauge for quickly checking their operation.

1-3. MECHANICAL DESCRIPTION.

1-3-1. GENERAL。 - The Collins Type 479U-1 is a portable instrument, self contained except for the power source. The removable, hinged cover is equipped with a handle which permits the unit to be moved easily from place to place.

1-3-2. OPERATING CONTROLS。
(a) All controls for the operation of the 479U-l are panel mounted under the hinged cover.
(b) Centrally located on this panel is the function selector control. All of the selector switches embodied in the equipment are of the ten position rotary type, ganged together and controlled by this function selector control knob.
(c) Also located on this panel are (1) the power input receptacle, (2) the power on-off switch, (3) a push button marked FLAGS, which increases the percent of modulation to afford a flag sensitivity check on glide slope and 90/150 localizer channels, and (4) the calibration control to adjust RF output level as indicated on (5) the output meter.
(d) Two output jacks, located in the upper right hand corner of the panel, permit coupling of the output signal into either an antenna or directly into a receiver.

1-3-3. CALIBRATING CONTROLS. - To gain access to the controls necessary for calibration, the 479U-1 unit must be removed from the case. These controls are then readily accessible through holes in both the left and right hand sides of the chassis.

1-3-4. POWER SUPPLY.
(a) The power supply furnished with the equipment mounts inside the case and connects to the $479 \mathrm{~J}-1$ through a Jones connector and cable. It is supplied less dyna-

Figure 1-1. 479U-1 Signal Generator.
motor unit and will accommodate either a 12 volt or 24 volt unit.
(b) An auxiliary, electronic power supply is available for 115 volt $60-400$ cycle operation. This unit also will mount inside of the case and utilizes the same interconnecting cable used with the dynamotor supply.
l-3-5. COLOR, DIMENSIONS AND WEIGHT. - The case is finished in Collins Gray Wrinkle and is about $13-1 / 2 \times 13-1 / 2 \times 8$ inches in size. The weight of the equipment, including cables and power supply is approximately 17 pounds.

1-4. ELECTRICAL DESCRIPTION.

1-4-1. GENERAL。
(a) Electronic oscillators are the primary sources for all signals except the signals for checking voice channels, which are produced by a mechanical buzzer.
(b) Audio frequency signals of $30,90,150$, and 9960 cycles per second are produced by RC phase shift type oscillators. Precision parts and careful design make these oscillators relatively stable. The 9960 cycle per second oscillator has in conjunction with it, an automatic frequency control circuit resulting in satisfactory degree of frequency stability. The 9960 cycle per second subcarrier is frequency modulated at a 30 cps rate with a deviation ratio of 16 ($\pm 480 \mathrm{cps}$) Hereafter this frequency modulated subcarrier will be referred to as the "9960 cps signal". The 30 cps signal recovered from a slope detector, excited by the 9960 cps signal, will hereafter be called the "reference 30 cps signal".
(c) RF signals are generated by a crystal oscillator which utilizes mode type crystals.

1-4-2. ANALYSIS OF OUTPUTS.
(a) BUZZER. - In the buzzer position of the function selector switch, a mechanical vibrator is energized. The electrical arcing of this "buzzer" includes all radio frequencies modulated with an audio signal between 500 and 1000 cycles for checking the RF circuits of the navigation receiver.
(b) VOR 0°. - When the function selector switch is in the VOR 0° position, the $\mathrm{V} \cap \mathrm{R}$ frequency at the output jacks is modulated with both a 30 cps (called the "variable ? ${ }^{\circ} \mathrm{cps}$ signal") signal and the 9960 cps signal. The phase relationship between referencr 30 cps and the variable 30 cps signals is similar to a signal at a point magnetic north of an omni-range transmitter.
(c) VOR 315°. When the function selector switch is in the VOR $315^{\circ} \mathrm{pgsition}$ the same signal is present at the output jacks as when it is in the VOR 0 position except that the phase relationship between the reference 30 cps and the variable 30 cps is similar to the signal at a point 315° from the transmitter.
(d) VOR 150°. - In the VOR 150° position of the function selector switch, there is again present at the output jacks a standard VOR frequency, but in this instanen
the phase relationship between the reference 30 cps and the variable 30 cps signals is similar to that which would be found at a point 150° from the transmitting antenna.
(e) \varnothing LOCALIZER YELLOW. - In this position of the function selector switch, the signal appearing at the output jacks is of a frequency determined by the localizer crystal in the RF oscillator, and the modulation thereon includes the 30 cps and 9960 cps FM present in phase localizer signals. The phase relationship of the reference 30 cps and the variable 30 cps signals is the same as would be encountered when the phase localizer needle is in the yellow sector.
(f) \varnothing LOCALIZER BLUE. - With the function selector switch in this position, a standard phase localizer signal will again appear at the output jacks, but the phase relationship of the reference 30 cps and the variable 30 cps signals is the same as would be encountered when the phase localizer needle is in the blue sector.
(g) 90/150 LOCALIZER YELLOW. - Here again the same localizer frequency appears at the output jacks, but it is modulated only with a 90 cps signal. This will cause the localizer needle to move into the yellow sector but will not cause the flag to drop completely. Actuation of the push button marked FLAGS on the front panel will increase the percentage of modulation and should cause the flag to fall.
(h) $90 / 150$ LOCALIZER BLUE. - In this position of the function selector switch the modulation on the localizer frequency signal appearing at the output jacks is 150 cps , and the needle will move into the blue sector. The FLAGS button on the front panel must again be activated before the flag will fall completely.
(i) GLIDDE SLOPE. - In either of the glide slope positions of the function selector switch, the RF signal appearing at the output jacks is controlled by a third crystal in the RF oscillator. The modulation present on this signal is either 90 or 150 cycles, the 90 cycle signal causing the needle to move upward, and the 150 cycle signal causing it to move downard. Here again the FLAGS button must be depressed before the flag will fall.

1-5. REFERENCE DATA.
1-5-1. CABLES AND ADAPTERS. - The cables and adapters provided allow the 479U-1 to be connected to any of the present VOR and ILS navigation equipments. These cables and adapters include:

1. 10 foot power cable.
2. 10 foot $R F$ cable with a male $B N C$ on each end.
3. $1 / 2$ foot $R F$ cable with a female BNC on each end.
4. $1 / 2$ foot $R F$ adapter with a male twinex on one end and a female BNC on the other.
5. Female BNC to a male AN adapter.
6. RF pad assembly contained in one female BNC and one male BNC.
7. The antenna is provided with a male BNC.

1-5-2. POWER INPUT REQUIRENENTS. - The power required for the 479U-1 is 13.3 V DC (3) 4 amps or 26.5 DC D 2 amps or 175 j 60-400 cycles (1) $1 / 2 \mathrm{amp}$.

1-5-3. FREQUENCY COMBINATIONS. - The 479U-1 can be tuned to any of the following frequency combinations:

VOR	112.1	112.1	112.5	112.5
LOCALIZER	109.9	110.3	109.9	110.3
GLIDE SLOPE	333.8	335.0	333.8	335.0

Two engraved plates on the front panel indicate the frequencies to which the equipment has been calibrated. To change frequencies, replace the existing crystals with the crystals of desired frequency, and retune the RF section. After recalibrating, the engraved plates should be removed and turned over in order that the information contained thereon will be correct.

SECTION 2

INSTALLATION

2-1. UNCRATING.
Caution should be exercised when uncrating to avoid damaging the equipment. A nail puller should be used to remove the nails instead of a hammer or bar. All units should be inspected carefully. Inspect equipment for loose screws and bolts. Check all panel controls for proper operation as far as can be determined without application of power. All claims for damage should be filed promptly with the transportation company.

2-2. INTERNAL CONNECTIONS.
After removing the eight screws securing the 479U-l panel, lift the unit from its case and check all tubes to be sure they are tight in their sockets. Install the proper dynamotor unit upon the power supply chassis, or remove this supply and substitute the electronic supply if desired. Make sure the Jones plug is firmly seated in its socket, then replace the unit in its case.

2-3. EXTERNAL CONNECTIONS.
The only external connection necessary, except for the included output cables and adapters, is to the power source. The recessed power receptacle has three terminals, the two outer ones being used for 115 volt AC operation. Since there is no ground on this AC input circuit there is no danger of shorting due to reversed ground leads from the 115 volt source. The largest of the three terminals and the center terminal are employed when connecting to either a 12 volt or 24 volt DC source.

SECTION 3

3－1．GENERAL。
The Collins Type 479U－l Signal Generator is intended to be used as a quick check of VOR and ILS Navigation Receivers and systems．It has been designed to give the operator an indication of the orerall sensitivity and accuracy of the receiver and instrumentation，but should not be used as a standard for the cali－ bration or adjustment of the equipment．

3－2．TYPICAL CONNECTIONS。
To connect the $479 \mathrm{U}=1$ to the various navigation receivers or to the antenna， the following cables and adapters are required：

EQUIPMENT
1．5IR（VOR Revr）
2． 51 V （GoS．Reyr）
3． 7330 localizer receiver

4．R89 glide slope receiver

5．To patch cord to the antenna

CABLES AND ADAPTERS

Ten foot RF cable，BNC to AN adapter． Ten foot RF cable，BNC to AN adapter．

Ten foot RF cable，BNC to twinex adapter，RF pad assembly。

Ten fost RF cable，BNC to twinex adapter，RF pad assembly。

Ten foot RF cable， $1 / 2$ foot $R F$ cable．

3－3．RF CIRCUITS。
To check the RF circuits in the receiver，connect the $479 \mathrm{U}-1$ to either the antenna or the receiver through the cables and adapters shown above．With the power on in both the receiver and the $479 \mathrm{U}-1$ ，set the function selector to the BUZZER position．As the channel selector on the receiver is operated，a 500－1000 cycle note should be heard in the head phones on all channels，

3－4．VOR CHANNELS．
With the function selector switch in the VOR 0° position，the OBS should read $0^{\circ} \pm 5^{\circ}$ FROM，and the OBI should read $180^{\circ} \pm 7^{\circ}$ ．Similarly，with the function se－ lector swit，：in either of the other VOR positions，the OBS should read the indi－ cated track FROM the station and the OBI should read the reciprocal bearing，with the same tolerances as noted for the VOR 0° position of the switch．To complete the rotation of the OBI dial，quickly change the function selector switch from VOR 150° to VOR 0° ．An RoM．I．pointer should give same reading as the OBI．

3-5. LOCALITER.
With the receiver properly set for phase localizer operation and the function selector of the $479 \mathrm{U}=1$ in either of the phase localizer positions, the FPDI pointer should deflect between two and five dots into the sector indicated by the function selector switch, and the flag should disappear.

3-6. TONE LOCALIZER。
With the receiver properly set for tone localizer operation and the function selector of the $479 \mathrm{U}=1$ in either of the tone localizer positions, the FPDI pointer should deflect between two and five dots into the sector indicated by the function selector switch. The flag should disappear when the FLAGS button is depressed.

3-7. GLIDE SLOPE.

With both the 479UwI and the Glide Slope Receiver operating, and the function selector in either of the glide slope positions, the FPDI pointer should move up or down two to five dots. The direction of this deflection should be as indicated by the function selector switch. The flag should disappear when the FLAGS button is depressed.

SECTION 4

CIRCUIT DESCRIPTION

4-1. PRELIMINARY.

The 479U-l has been designed to provide a quick and simple means of checking VOR, Localizer, and Glide Slope facilities in navigation receivers. It is possible to feed the output of this test equipment directly into the receiver, but the usual procedure is to feed the 479U-1 into the antenna, and pick up the transmitted signal in the receiver antenna. It is not intended that the $479 \mathrm{U}=1$ should be used as a standard or that it be used in any way to calibrate or make adjustments in the navigation receivers. Its accuracy in the VOR positions is $\notin 3^{\circ}$. It will, however, serve to indicate whether or not the equipment is working within practical limits.

4-2. GENERAL。
The output signals from the $479 \mathrm{U}-1$ include all the information encountered in the transmission and interpretation of VOR, Localizer, and Glide Slope signals. The information included at any particular time is dependent upon the position of the function selector switch on the front panel of the equipment. Ten signals are available, including:

1- Buzzer	$6-\emptyset$ Localizer Blue
2- VOR 0°	$7-90 / 150$ Localizer Yellow
3- VOR 315°	$8-90 / 150$ Localizer Blue
4- VOR 150°	9-G.S. Needle Up
5- \varnothing Localizer Yellow	10-G.S. Needle Down

The overall block diagram follows.

Figure 4-1. 479U-1 Functional Block Diagram.

Figure 4-2. Low Frequency Oscillator - Schematic.
4-3. LOW FRRQUENGY OSCILLATOR.
The low frequency oscillator is a resistance-capacitance phase shift oscillator utilizing three low gain audio amplifier stages, V101A, V101B, and V102B, along with their associated capacitors and resistors. The oscillator frequency of 30,90 , or 150 cps is established by the size of the coupling capacitors selected by the function selector switch. The use of heavy negative feedback in each stage makes the tube characteristics unimportant, and consequently tube changes will make negligible difference in frequency, waveshape, or stability. Since, in addition to this, the capacitors used. are very stable and the resistors R101, R105, and R108 are of a low temperature coefficient variety, the oscillator is very stable over a wide range of operating conditions. Loading of the oscillator is held to a minimum by taking the outputs from very low impedance points and using large series resistors in the mixing circuits. The frequency of the low frequency oscillator is adjusted by varying Rl03. This varies the impedance in the grid circuit of VIOIA, correcting the phase shift to the amount required for the desired frequency. The gain of VIOIA and therefore the oscillator output level, is controlled by Rl06.

4-4. 9960 CYCLE CIRCUITS.
4-4-1. OSCILLATOR. - The 9960 cps oscillator is a resistance-capacitance phase shift oscillator consisting of V103A, VlO3B and VlOLB and their associated components.

Figure 4-3. 9960 Cycle Circuits - Schematic.
V103B is a high gain audio amplifier feeding the cathode follower V104B, and impedance changing stage. The signal is then fed through Cll3 to V103A, another cathode follower. A small phase shift in the 9960 cycle signal is provided by Cll3 and Rl27. The signal at the cathode of V103A is fed through an RC network where the remaining phase shift necessary for oscillation occurs before the output is fed back to the grid of V103B.

4-4-2. AUTOMATIC FREQUENCY CONTROL CIRCUIT. - The 9960 cps signal at the cathode of $V 104 B$, a low impedance point, is fed to the grid of V1OLA where it is amplified and impressed upon the primary of TlOl. TlOl is a discriminator transformer tuned
by Cl24 and Cl25 to 9960 cps. The output of this discriminator circuit is fed back to the grid of V103A through a filter consisting of Rl33, Rl34, Cll9 and Cl20. Since the output impedance of a cathode follower depends upon the instantaneous voltage on the grid of the tube, the effective resistance of Rl27, and therefore, the frequency of the 9960 cps oscillator can be made to vary by varying the DC voltage on the grid of V103A. If the oscillator should not be tuned to exactly the same frequency as is the discriminator, the DC output from the discriminator will then change the tuning of the oscillator, holding its frequency constant.

4-4-3. FREQUENCY MODULATION OF THE 9960 CYCLE SIGNAL. - In order to frequency modulate the 9960 cps signal at a 30 cycle rate, a 30 cps signal is fed from the low frequency oscillator into the grid of V103A. By this means the effective resistance of Rl27 is varied at a 30 cycle rate, and hence the output frequency of the oscillator is varied at this rate. The discriminator filter is large enough to prevent the 30 cps component of the discriminator output from being fed back to the grid of V103A. The frequency deviation from the 9960 cycle mid-frequency is a function of the amplitude of the 30 cps signal fed to the grid of V103A. Since Rl2l varies the amplitude of this signal, it acts as the deviation control. The phase shift network consisting of Cl30 and Rl22 act to give the proper phase relationship between the 30 cps signal (variable 30 cps) delivered to the mixing network and the 30 cycle signal present on the 9960 cycle signal (reference 30 cps).

4-4-4. 9960 AMPLIFIER. - A portion of the 9960 cps signal is picked off Rl35, the 9960 cycle level control, and fed through a series resistor R151 to the grid of V102A, a triode acting as an amplifier for the 9960 cps signal. From the plate of this stage, the signal is impressed upon the grid of V105, Cl29 and R142 acting as a common mixing impedance for the output of the mixing circuits.

4-5. MIXING NETWORK.
In order to maintain the proper percentage of modulation for the various outputs, switched attenuators have been incorporated in the mixing section. If the voltage developed at the upper end of Cl29 due to the low frequency oscillator when the control switch is in the VOR 315° position is used as a base, the voltage at that point would be found to vary when the control switch is moved to either VOR 0° or to VOR 150°. This is due to the voltage split taken through $\mathrm{CllO}, \mathrm{Clll}, \mathrm{Cll}, \mathrm{Cl} 33$ and Cl 34 。 In order to equalize these voltages, Rll7, RIL33, R1l5 and Rl4 4 were used. This allows the percentage of modulation to remain constant in each of the VOR positions. The phase localizer audio levels are set by Rll2, R157, Rll3 and R158. The tone localizer signals are set by Rl2O, Rl29 and Rl59. When SlO2 is closed, Rl20 is shorted and the percentage of modulation is increased. In the tone localizer and glide slope positions, the 9960 cps oscillator feedback is shorted out.

4-6. DRIVER AND MODULATOR STAGES.

The driver stage, V105, is fed from the modulation gain control, R142. It will be noticed that the screen grid has been left unbypassed to prevent 30 cycle phase shift. The grid of the modulator, $\mathrm{VIO6}$, is set at a positive voltage so that a positive voltage is available on the cathode of V106 to be used as RF supply voltage. The audio signal

Yigure 4-4. Driver and Modulator - Schematic.
coupled from V105 to V106 is reproduced on the cathode of V106 which is triode-connected to get a linear cathode-grid voltage curve, thus preventing serious distortion in the modulator. R150 is the calibration control on the front panel. By placing this pure resistance in the plate circuit of the RF stage, the output may be varied and at the same time the percentage of modulation remains constant as determined by the modulation gain control setting.

4-7. RF SECTION。

The RF oscillator uses mode type crystals connected between the cathodes of V201A and V201B. The plate tank of V201A is tuned to the fundamental of the crystal while the plate tank of V2O1B is tuned to twice the oscillator frequency. The mode crystal is series resonant and at the crystal frequency provides a low impedance feedback path, while off resonance it offers an extremely high impedance path to the signal. The grid of V2O2A is capacitively coupled to the plate of V201B. V202A acts as a class C stage and doubles the frequency up to the VOR and localizer frequencies. V202B is coupled to the plate of V2O2A and triples the frequency up to the glide slope band. The grid current of V202B is measured by the output meter on the front panel. The frequency of the RF signal at the antenna output jack is

Figure 4-5. RF Oscillator - Schematic.

Figure 4-6. RF Doubler and Tripler - Schematic.
determined by the switches that select the modulation and the regulated DC. In the VOR and localizer positions the modulated voltage from Vl06 is switched to V2O2A and in the glide slope positions the modulated voltage is on V2O2B while V202A is supplied regulated DC. The output meter reads at all times the rectified grid current whether V202B has plate voltage applied or not.

4-8. POWER SUPPLY.
4-8-1. DC SUPPLY. - The DC power supply is a conventional dynamotor supply utilizing a resistance capacitance filter in the high voltage line. The regulator tube handles all the voltage to the $479 \mathrm{U}-1$ except the modulator supply. The modulator plate voltage comes from a higher level in the resistance and capacitance filter. In order to make the supply adaptable to 13.3 or 26.5 volts, the DC power unit has been wired so that all the necessary filament switching is done by the wiring contained in the dynamotors. When changing from 26.5 volt operation to 13.3 volt operation the pilot light must be changed to agree. The dynamotor used for 26.5 volt operation is the $\mathrm{DM}-53 \mathrm{~A}$ and for 13.3 volt operation, the $\mathrm{DM}-53 \mathrm{AZ}$ 。

4-8-2. AC SUPPLY. - The alternate 115 volt AC supply is a normal electronic supply utilizing an LC filter in conjunction with a voltage regulator tube. This supply was designed for operation from conventional 60-400 cycle, 115 volt lines. (See section 8)。

SECTION 5

MAINTENANCE AND SUPPLEMENTARY DATA

5-1. CALIBRATION PROCEDURE.

5-l-1. TEST EQUIPMENT REQUIRED. - To adjust and align the Collins Type 479U-1 Signal Generator, the following test equipment is necessary:
(a) Oscilloscope.
(b) A.C. VTVM (Ballantine or equivalent).
(c) D.C. VTVM.
(d) Collins Type 479 Audio Signal Generator (or equivalent).
(e) Boonton 211-A RF Signal Generator (or equivalent).
(f) Grid Dip Meter.
(g) Collins Type 5lR Navigation Receiver (or equivalent).

5-1-2. R.F. SECTION。
(a) TUNING.
(1) Set the function selector switch to one of the glide slope positions.
(2) Tune the oscillator coil (L201) for maximum output at the crystal frequency as indicated on a grid dip meter.
(3) Referring to the output meter on the front panel, adjust the doubler coil (L2O2), the 100 mc output coil (L2O3), and the 300 mc tuning capacitor (C212) for maximum meter reading.
(4) The tuning of the other crystals now falls within the bandwidth of the tuning assemblies.
(b) LEVEL ADJUSTNENT.
(1) At the same VOR frequency of the $479 \mathrm{U}-1$, feed a 25 microvolt signal through a 6db pad from a Boonton 211-A RF Signal Generator into a Collins Type $5 I R$ Navigation Receiver, and measure the AVC voltage developed. (The 51R receiver may now be used as a transfer device to set the RF level at the RCVR jack on the front panel of the 479U-1)。
(2) Set the function selector switch of the 479U-1 to one of the VOR positions and connect the 51 R receiver to the $R C V R$ jack. Do not use the 6 db pad.
(3) Set the CAL control on the front panel of the 479U-1 to its center position.
(4) Adjust the pickup loop on the 100 mc output coil (L203) until the AVC voltage developed in the receiver is equal to that developed when using the Boonton $211-A$ with 25 microvolt output.

5-1-3. LOW FREQUENCY OSCILLATOR.
(a) LEVEL. - Connect the A。C. VTVM to the cathode of VIO2B and adjust RIO6 until equal voltages ($\neq 1 \mathrm{db}$) appear at this point when the function selector is switched between 90/150 localizer positions.
(b) FREQUENCY.
(1) Insert the correct circuit constants into the low frequency oscillator to give approximately a 30 cps output by setting the function selector switch to one of the VOR positions.
(2) Connect the vertical or "Y axis" input of the oscilloscope to the cathode of V102B, and the horizontal of "X axis" input to the 60 cps test signal terminal (power line frequency).
(3) Adjust the 30 cps frequency control (Rl05) until a vertical figure eight Lissajous pattern remains stationary on the oscilloscope.
(4) The 90 and 150 cps signals should now fall within $\notin 5 \%$ of the nominal frequency. They may be checked against a calibrated audio signal generator using an oscilloscope as a comparison device.

5-1-4. 9960 CPS CIRCUITS.
(a) DISCRIMINATOR.
(1) Connect a standard 9960 cps FM signal from a Collins Type 479 S Audio Signal Generator to the grid of V1OLA.
(2) Ground the grid of V103B, killing the 9960 cps oscillator in the

479U-I.
(3) Connect the D.C.VTVM to the discriminator output (junction of R134 and Rl38)。
(4) Adjust the 9960 cycle frequency control (Cl25) until the DC voltage developed at this point is zero.
(b) AFC CIRCUITS. - The AFC circuit and the 9960 cps oscillator are so arranged that a positive correction voltage causes the center frequency to lower. This may be checked in the following manner:
(1) Remove the connections from the 4795 Audio Signal Generator and the ground from the grid of V103B.
(2) Ground the grid of V103A and adjust Rl23 until a small DC voltage, either positive or negative, is developed at the discriminator output.
(3) When the ground on the grid of V103A is removed, the DC voltage at the discriminator output should drop sharply.
(c) OSCILLATOR.
(1) Ground the grid of V103A and adjust RI23 until the DC output voltage from the discriminator is again zero.
(2) Remove the ground from V103A and again note discriminator output voltage. This voltage should still be zero.
(d) DEVIATION。
(1) At the VOR frequency of the $4790-1$, feed a 25 microvolt signal modulated by only a 9960 cps signal using a properly calibrated 479 S Audio Signal Generator, from the Boonton 2ll-A through a 6 db pad into a 51 R receiver.
(2) Measure the recovered 30 cps voltage on the reference tank of the 51R with an A.C. VTVM.
(3) Set the 9960 cps level control (R135) on the 479U-l to about its midpoint.
(4) Feed the 479U-1 into the $51 R$ receiver (without the 6 db pad), and adjust the deviation control (R121) until the voltage measured in step (2) is duplicated.
(e) IEVEL.
(1) With an input to the 51 R as in (1) preceding, measure the voltage on the detector load of the 51R with an A.C. VTVM.
(2) With the function selector switch on the VOR 315° position, and one end of R116 open to remove the 30 cps signal, feed the $479 \mathrm{U}-1$ into the 51 R receiver. Do not use the 6 db pad.
(3) Adjust the 9960 cps level control (RI35) until the A.C. voltage on the detector load is the same as noted in step (1).

5-1-5. MODULATION.
(a) GAIN.
(1) At the VOR frequency of the $479 \mathrm{U}-1$, feed a 25 microvolt signal which is modulated by a standard VOR signal, from the Boonton 211-A through a 6 db pad into the 51 R receiver.
(2) Measure the A.C. voltage across the load of the detector.
(3) With R 116 again connected into the circuit, feed the 479U-1 into the 51 R receiver. Do not use the 6 db pad.
(4) Adjust the modulation gain control (R142) until the A.C. voltage on the detector load is the same as noted in step (1).
(b) VOR ZERO.
at 0°.
(1) Feed the 479U-l into the 51R receiver with the track selector set
(2) With the function selector switch set at VOR 0°, adjust the VOR zero control (Rl22) on the 479U-1 until the cross pointer needle is centered.
(3) Check the VOR 315° and VOR 150° positions of the function selector switch against the track selector with the cross pointer needle centered.
(4) If necessary, readjust Rl22 until all three of these readings are within $\notin 3$ degrees of nominal.

TABLE 5-1
Typical DC voltage measurements for 479U-1. 26.5 V DC input-Measured with a DC VTVM。

	V101						V102						V103					
	1	2	3	6	7	8	1	2	3	6	7	8	1	2	3	6	7	8
1	130	0	6.3	130	0	5.9	74	. 1	3.4	130	$?$	6.0	150	-. 1	9.7	74	0	.7
2	130	0	6.6	230	0	6.1	74	. 1	3.4	130	0	6.6	150	-. 1	8.7	74	0	. 7
3	130	0	6.6	130	0	6.1	74	- 1	3.4	130	0	6.6	150	-. 1	8.7	74	0	. 7
4	130	0	6.6	130	0	6.1	74	-. 1	3.4	130	0	6.6	150	-. 1	8.7	74	0	. 7
5	130	0	6.6	130	0	6.1	74	. 1	3.4	130	0	6.6	150	-. 1	8.7	74	0	. 7
6	130	0	6.6	130	0	6.1	74	-. 1	3.4	130	0	6.6	150	$-.1$	8.7	'74	0	. 7
7	130	0	6.6	130	0	6.1	74	0	3.4	130	0	6.6	150	0	2.6	74	0	. 7
8	130	0	6.6	130	0	6.1	74	0	3.4	130	0	6.4	150	0	2.6	74	0	. 7
9	130	0	6.6	130	0	6.1	74	0	3.4	130	0	6.6	150	0	2.6	74	0	.7
10	130	0	6.6	130	0	6.1	74	0	3.4	130	0	6.4	150	0	2.6	74	0	. 7

	V104						V105					V106				
	1	2	3	6	7	8	1	2	5	6	7	1.	2	5	6	7
1	110	\bigcirc	4	150	0	9.7	0	1.8	75	65	1.8	35	58	135	185	35
2	110	0	4	150	0	9.7	0	1.8	75	65	1.8	35	58	185	185	35
3	110	0	4	150	0	9.7	0	1.8	75	65	1.8	35	58	185	185	35
4	110	0	4	150	0	9.7	0	1.8	75	65	1.8	35	58	185	185	35
5	110	0	4	150	0	9.7	0	1.8	75	65	1.8	35	58	185	185	35
6	110	0	4	150	0	9.7	0	1.8	75	65	1.8	35	58	185	185	35
7	110	0	4	150	0	8.7	0	1.8	75	65	1.8	35	58	185	185	35
8	110	0	4	150	0	8.7	0	1.8	75	65	1.8	35	58	185	185	35
9	110	0	4	150	0	8.7	0	1.8	75	65	1.8	35	58	185	185	35
10	110	0	4	150	0	8.7	0	1.8	75	65	1.8	35	58	185	185	35

TABLE 5-2
Typical AC voltage measurements for
479U-1. 26.5 V DC input Measured with a Ballantine AC VTVM.

	V101		V102		V103		V10L		V106	
	3	8	1	8	3	1	8	5	7	2
1	0	0	3.7	0	0	38	4.2	0	0	0
2	5.2	4.4	4.7	5.4	1.9	38	4.2	25	.8	2.3
3	5.2	4.4	4.7	5.4	1.9	38	4.2	25	.8	2.3
4	5.2	4.4	4.7	5.4	1.9	38	4.2	25	.8	2.3
5	5.2	4.4	4.2	5.4	1.9	38	4.2	16	.5215 .5	
6	5.2	4.4	4.2	5.4	1.9	38	4.2	16	.5215 .5	
7	5.2	4.4	0	5.4	1.9	0	0	9	.29	8.2
8	1.9	4.2	0	5.1	1.9	0	0	8.9	.28	8.1
9	5.2	4.4	0	5.4	1.9	0	0	18	.55	16
10	4.9	4.2	0	5.1	1.9	0	0	17	.53	15

TABLE 5-3.

Typical resistances to ground for 479U-1. Power unit disconnected Switch in VOR 0° position.

V101	1	62k	V105	1	350k
	2	296k		2	1000
	3	4k		5	90k
	6	62k		6	4 k
	7	282k		7	1000
	8	3600			
V102	1	110k	V106	1	1 meg
	2	1.2 meg		2	130k
	3	2700		5	
	6	47k		6	∞
	7	296k		7	1 meg
	8	3500			
V103	1	47 k	V201	1	52k
	2	6 meg		2	0
	3	llok		3	110
	6	270k		6	52k
	7	25k		7	56k
	8	2200		8	110
V104	1	60k	V202	1	125k
	2	52k		2	56k
	3	1000		3	0
	6	47k		6	∞
	7	440k		7	35k
	8	10k		8	0

Figure 5-1. RF Oscillator - Top View Cover Removed.

Figure 5-2. RF Oscillator - Bottom View.

Figure 5-3. 479U-1 Parts Arrangement - Right Side.

Figure 5-4. 479U-1 Parts Arrangement - Left Side.

Figure 5-6. D. C. Power Supply - Parts Arrangement - Bottom View.

Figure 5-7. D. C. Power Supply - Parts Arrangement - Top View.

SECTION 6
PARTS LIST

479U-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
Bl01	Provides signal for checking R.F. circuits	BUZZER: 26 v DC, 400-1000 cps	271017300
ClOL	Coupling VlolB to VlOlA providing necessary phase shift for 30 cyc	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
ClO2	Coupling VlOlB to VlOlA providing necessary phase shift for 90 cyc	CAPACITOR: Mica, $3300 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{WV}$	935235800
ClO 3	Coupling VlolB to V101A providing necessary phase shift for 150 cyc	CAPACITOR: Mica, $2000 \mathrm{mmf} \mathrm{p/m} \mathrm{2} \mathrm{\%}$,	935234500
ClO 4	Coupling V101A to V102B providing necessary phase shift for 150 cyc	CAPACITOR: Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{~W}$	935234500
$\mathrm{ClO5}$	Coupling VlolA to V102B providing necessary phase shift for 90 cyc	CAPACITOR: Mica, $3300 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{WV}$	935235800
Cl06	Coupling V101A to V102B providing necessary phase shift for 30 cyc	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
ClO	Coupling Vlo2B back to VlolB providing necessary phase shift for 150 cycles	CAPACITOR: Mica, $2000 \operatorname{mnf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{WV}$	935234500
Cl08	Coupling V102B back to VlolB providing necessary phase shift for 90 cycles	CAPACITOR: Mica, $3300 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{WV}$	935235800
$\mathrm{ClO9}$	Coupling V102B back to VlolB providing necessary phase shift for 30 cycles	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
117			

479U-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
Cllo	Part of phase shift constants in mixing。 network for YOR 150° and VOR 315°	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
$\mathrm{Cl11}$	Part of phase shift constants in mixing network for VOR 150° and VOR 315°	CAPACITOR\& Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
Cl12	Coupling V103B to V104B	CAPACITOR: Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 20\%, 300 WV	909000500
C113	Coupling cathode V10LB to cathode V103A	CAPACITOR: Mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300 \mathrm{WV}$	935501200
Cll 4	Coupling 30 sycles from RI21 to grid of V103A	CAPACITOR: Paper, $0.1 \mathrm{mf} \mathrm{p/m} 20 \%, 600 \mathrm{WV}$	930005800
C115	o/o phase shift circuit in cathode of V103A	CAPACITOR: Mica, $470 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	935021800
Cll6	Part of phase shift cir cuit in cathode of V103A	CAPACITCR: Mica, $470 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{5} \mathrm{\%,500} \mathbf{W V}$	935021800
Cl17	$\begin{aligned} & \text { Part of phase shift cir- } \\ & \text { cuit in cathode of } \\ & \text { V103A } \end{aligned}$	CAPACITOR: Mica, $470 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	935021800
Cl18	p/o phase shift constants in mixing network for VOR 315° and VOR 150°	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 300$ WVp	1935239100
C119	Discriminator output filter capacitor	$\begin{aligned} & \text { CAPACITOR: Paper, } 0.1 \infty 0.1-0.1 \mathrm{mf} \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 600 \mathrm{WV} \end{aligned}$	961618300
Cl20	Discriminator output filter capacitor	CAPACITOR: Section of Cll9	
Cl21	Coupling cathode of $\mathrm{V}-$ 104 B to grid V104A	CAPACITOR: Paper, . $01 \mathrm{mf} \mathrm{p/m} \mathrm{10} \mathrm{\%}$,	931032100
Cl22	VIOLA cathode bypass	CAPACITOR: Paper, ol mf p/m 10\%, 400 TV	931033300
Cl23	V104A plate decoupling	CAPACITOR: Section of Cll9	
6-2			118

4790-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPṪION	PART NUMBER
Cl24	Tune Tlol	CAPACITOR: Mica, $1500 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%, 500 \mathrm{WV}$	935233600
Cl25	Trimmer across Cl24 9960 FREQ ADJ。	CAPACITOR: Variable ceramic, minus 10 to plus $100 \mathrm{mmf}, 500 \mathrm{WV}$	917100300
Cl26	Part of discriminator circuit	CAPACITOR: Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%, 300 \mathrm{WV}$	909000500
Cl27	Part of discriminator circuit	CAPACITOR: Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%, 300 \mathrm{WV}$	909000500
0128	Coupling V102A plate to mixing network	CAPACITOR: Mica, $470 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	935021800
C129	p / o common mixing impedance in grid of V105	CAPACITOR: Paper, $0.1 \mathrm{mf} \mathrm{p} / \mathrm{m} 20 \%, 600 \mathrm{WV}$	961207900
Cl30	p/o phase shift network associated with VOR-0 control	CAPACITOR: Paper, 0.05 mf plus 20% minus 10\%, 600 WV	930001000
Cl31	Coupling V105 to V106	CAPACITOR: Paper, $0.1 \mathrm{mf} \mathrm{p/m} \mathrm{20} \mathrm{\%}$,	961207900
Cl 32	Cathode bypass V103B	CAPACITOR: Paper, . $1 \mathrm{mf} \mathrm{p} / \mathrm{m} 10 \%, 400 \mathrm{TV}$	931033300
Cl33	Part of phase shift constants in mixing network for VOR 315° and VOR 150°	CAPACITOR: Mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{2} \mathrm{\%}, 300$ WV	935239100
C134	Part of phase shift constants in mixing network for VOR 315° and VOR 150°	CAPACITOR: Nica, 10,000 mmf $\mathrm{p} / \mathrm{m} 2 \%, 300$ WV	935239100
C201	Coupling V201 A to V201B	CAPACITOR: Ceramic, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	916446300
C202	Coupling V201 B to V202A	CAPACITOR: Ceramic, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	916446300
C2O3	Coupling V202 A to V202B	CAPACITOR: Ceramic, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	916446300
C2O4	V201A plate decoupling	CAPACITOR: Silver mica, $500 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%$, 500 WV	912027900
119			6-3

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
0205	V201B plate decoupling	$\begin{aligned} & \text { CAPACITOR: Silver mica, } 500 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \% \text {, } \\ & 500 \text { WV } \end{aligned}$	912027900
C206	Tunes L20ı.	CAPACITOR: Ceramic, $18 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	916441600
C207	Tunes L202	CAPACITOR: Ceramic, $24 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{WV}$	916442800
C208	Tunes L203 primary	CAPACITOR: Ceramic, $15 \mathrm{mnf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	9.16441200
C209	V202A plate decoupling	CAPACITOR\& Silver mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%$, 500 WV	912027100
C210	V202B plate decoupling	CAPACITOR\& Silver mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%$, 500 WV	912027100
C211	RF Bypass around meter multiplier R210	CAPACITOR: Ceramic, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 500 \mathrm{~m}$	9916405900
C212	300 MC tuning capacitor	CAPACITOR: Variable midget single section, l. 73 to 8.69 mmf , 150 v rms at 2.0 mc	5044944001
0213	Feed thru capacitor on reguiated $B+$ supply to V201A and V201B	CAPACITOR: Mica, 500 mmf plus 40% minus 15\%, 500 WV	912027000
C214	Feed thru capacitor on metering lead	CAPACITOR: Silver mica, 500 mmf plus 40% minus $15 \%, 500$ WV	912027000
C215	Feed thru capacitor on filament lead	CAPACITOR: Silver mica, 500 mmf plus 40% minus 15\%, 500 WV	912027000
C 216	Feed thru on B+ lead to V202A	CAPACITOR: Button mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 500 WV	912064700
C217	Feed thru on B+ lead to V202B	CAPACITOR: Button mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{20} \mathrm{\%}$, 500 WV	912064700
C301	Bypass on input lead to power supply	CAPACITOR: Paper, $1.3 \mathrm{mf} \mathrm{p} / \mathrm{m} 20 \%$, 50 WV	930000400
$C 302$	Power supply filter	$\begin{aligned} & \text { CAPACITOR: Paper, } 100,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{20} \mathrm{\%,} \\ & 600 \mathrm{~W} \end{aligned}$	930002900
C303	Power supply filter	CAPACITORs Paper, $3.9 \mathrm{mf} \mathrm{p/m} \mathrm{6} \mathrm{\%}$,	930009500
$6-4$			120

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
CRIO1	Discriminator rectifier	RECTIFIER\& High voltage, half-wave selenium for low current control	353008200
CRIO2	Discriminator rectifier	RECTIFIER: High voltage, half-wave selenium for low current control	353008200
El01	Function selector switch knob	KNOB: Bar, bakelite with brass insert for $1 / 4^{\prime \prime}$ shaft	281115000
E201	Couples SLOI and S2O1	COUPLING: Flexible	015002700
E301	Makes connections for dynamotor	PLUG ASSEM: 8 banana spring terminals	5043527002
F101	Line fuse	FUSE: Glass enclosed cartridge, 5 amp , 250 v	264409000
I101	Panel pilot light	BULB: Pilot light bulb with miniature bayonet base, 28 v , 0.17 amp	262327000
J301	Power connector on D.C. supply	CONNECTOR: 12 prong socket	366212000
L201	Oscillator coil	COIL ASSEM: Oscillator, 12 turns, \#18 AWG	5044923002
L202	Doubler coil	COIL ASSEM: Doubler, 5 turns, \#18 AWG	5044924002
L203	100 MC output coil	COIL ASSEM: Output, 3 turns, \#18 ATVG	5044925002
L204	300 NC output coil	COIL RF: 3-1/2 turns, \#18 AWG	5044940001
L205	V202B plate choke	COIL: RF Choke, 45 plus 0 minus 3 turns, \#30 AWG wire, 300 ma max	240001200
L301	R.F. Choke in DC power supply input	COIL: RF Choke, $1 \mathrm{mh}, 300 \mathrm{ma}, 10$ ohms, 1.5 mf max 3 sections, multiple duolateral wound	240580000
L302	R.F. Choke in DC power supply output	COIL: RF Choke, single layer, close wound, \#20 AWG	240004800
M101	Output meter	METER: DC Microammeter, $0-100$ microamperes, 1110 ohm $\mathrm{p} / \mathrm{m} 10 \%, 1500 \mathrm{v} \mathrm{AC}$	458019400
Plol	Connections to power supply	CONNECTOR: 12 prong plug	365812000
121			6

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
P102	Input power receptacle	CONNECTOR: 3 male contacts	368001600
R101	Grid Resistor V101B	RESISTOR: 275,000 ohm p/m 1\%, 1/2 w	748900100
Rl02	Cathode Resistor V101B	RESISTOR: 2700 ohm p/m 10\%, l w	745310400
Rl03	Frequency control for low frequency oscillator	$\begin{aligned} & \text { RESISTOR: Variable, } 1,000 \text { ohm } \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 1 \mathrm{w} \end{aligned}$	376005100
R104	Plate load V101B	RESISTOR: $15,000 \mathrm{ohm} \mathrm{p/m} 10 \%, 1 \mathrm{w}$	745313500
R105	Grid Resistor V101A	RESISTOR: 296,000 ohm p/m 1\%, 1/2 w	748900200
R106	Cathode Resistor VIO1A low frequency oscillator level control	RESISTOR: Variable, 5000 ohm p/m 20\%, 1 w	376005300
R107	VIOLA plate load	RESISTOR: 15,000 ohm p / m 10\%, 1 w	745313500
R108	V102B Grid Resistor	RESISTOR: 296,000 ohm p/m 10\%, 1/2 w	748900200
R109	V102B cathode Resistor	RESISTOR: 3,900 ohm p/m 5\%, 1 w	745311000
Rllo	V102B plate load	RESISTOR: 6,800 ohm p/m 10\%, 1 w	745312100
R111	V102B plate load	RESISTOR: 3,900 ohm p/m 5\%, 1 w	745311000
R172	Part of voltage divider for \emptyset localizer yellow in mixing network	RESISTOR: 0.47 megohm p/m 10\%, $1 / 2 \mathrm{w}$	745119800
R113	Part of voltage divider for \emptyset localizer blue in mixing network	RESISTOR: . 47 megohm p/m 10\%, 1/2 w	745119800
RHI_{4}	RIOLB Grid Resistor	RESISTOR: . 47 megohm p/m 10\%, 1/2 w	745119800
R115	Part of voltage divider in VOR positions in mixing network	RESISTOR: 0.47 megohm p/m 10\%, 1/2 w	745119800
R 216	Series dropping Resistor for VOR 315° in mixing network	RESISTOR: 0.47 megohm p/m 10\%, 1/2 w	745119800
6-6			122

479U-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R 117	Part of voltage divider for VOR 0° position in mixing network	RESISTOR: $0.47 \mathrm{megohm} \mathrm{p/m} \mathrm{10} \mathrm{\%} ,1 / 2 \mathrm{w}$	745119800
R118	Phase shift Resistor for VOR 150° in mixing network	RESISTOR: 196,000 ohm p/m 1\%, 1/3 w	748075900
RI19	Phase shift Resistor for VOR 315° in mixing network	FESISTOR: 113,000 ohm $\mathrm{p} / \mathrm{m} 1 \%, 1 / 3 \mathrm{w}$	748075600
R120	Series dropping Resistor for tone localizer and glide slope signals in mixing network	RESISTOR: . 56 megohm p/m 10\%, $1 / 2 \mathrm{w}$	745120200
R121	9960 cycle FM deviation control	RESISTOR: Variable, .50 megohm p/m 20\%, 1 w	376005800
Rl22	VOR 0° control	RESISTOR: Variable, . 10 megohm p/m 20\%, 1 w	376005700
R123	9960 cycle mid-frequency control	FESISTOR: Variable, 10,000 ohm p/m 20\%, 1 w	376005400
$\mathrm{Rl24}$	Part of phase shift network in cathode V103A	RESISTOR: 15,000 ohm p/m 10\%, 1/2 w	745113500
R125	Part of phase shift network in cathode V103A	RESISTOR: 18,000 ohm p/m 10\%, 1/2 w	745113900
R126	Part of phase shift network in cathode V103A	RESISTOR: 18,000 ohm p/m 10\%, 1/2 w	745113900
R127	Part of phase shift network in cathode V103A	RESISTOR: . 10 megohm p/m 10\%, 1/2 w	745117000
R128	Cathode Resistor V104B	RESISTOR: 10,000 ohm p/m 10\%, $1 / 2 \mathrm{w}$	745112800
R129	Part of voltage divider for tone localizer and glide slope in mixing network	RESISTOR: 0.56 megohm $\mathrm{p} / \mathrm{m} 10 \%, 1 / 2 \mathrm{w}$	745120200
123			6-7

479U-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R130	Cathode Resistor V103B	RESISTOR: 2200 ohm p/m 10\%, 1/2 w	745110000
R131	Plate load Vl03B	RESISTOR: . 22 megohm p/m 10\%, 1/2 w	745118400
Rl32	Series dropping Resistor grid V103A	RESISTOR: 1.0 megohm $\mathrm{p} / \mathrm{m} 10 \%, 1 / 2 \mathrm{w}$	745121200
R133	Discriminator output filter Resistor	RESISTOR: 2.2 megohm p/m 10\%, 1/2 w	745122600
R134	Discriminator output filter Resistor	RESISTOR: 2.2 megohm p/m 10\%, 1/2 w	745122600
Rl35	VIOLA Grid Resistor 9960 level control	$\begin{aligned} & \text { RESISTOR: Variable, } 50,000 \text { ohm p/m } 20 \% \text {, } \\ & \text { l w } \end{aligned}$	376005600
R136	V1OLA cathode resistor	RESISTOR: 1,000 ohm p/m 10\%, $1 / 2 \mathrm{w}$	745108600
Rl37	Part of discriminator load	RESISTOR: . 27 megohm, p/m 5\%, $1 / 2 \mathrm{w}$	745118700
R138	Part of discriminator load	FESISTOR: . 27 megohm p/m 5\%, 1/2 w	745118700
R139	V102A plate load	RESISTOR: 56,000 ohm p / m 10\%, $1 / 2 \mathrm{w}$	745116000
R140	V1.02A cathode resistor	RESISTOR: 2700 ohm p/m 10\%, 1/2 w	745110400
874	Part of voltage divider for VOR positions in mixing network	RESISTOR: 2.2 megohm p/m 10\%, 1/2 w	745122600
R142	Grid V106 modulation gain control	RESISTOR: Variable, 1.0 megohm p/m 20\%, 1 w	376005900
R143	Part of voltage divider for VOR 0° position in mixing network	RESISTOR: 1.2 megohm p/m l0\%, $1 / 2 \mathrm{w}$	745121600
R144	V105 cathode Resistor	RESISTOR: 1,000 ohm $\mathrm{p} / \mathrm{m} 10 \%$, $1 / 2 \mathrm{w}$	745108600
R145	Part of 7105 screen supply voltage divider	RESISTOR: $68,000 \mathrm{ohm} \mathrm{p} / \mathrm{m} \mathrm{10} \mathrm{\%}, \mathrm{1/2} \mathrm{w}$	745116300
R146	Part of V106 grid voltage divider	RESISTOR: $33,000 \mathrm{ohm} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%} ,1 / 2 \mathrm{w}$	745114900
6-8			

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R247	V106 Grid Resistor	RESISTOR: 1.0 megohm p/m 10\%, $1 / 2 \mathrm{w}$	745121200
R248	Part of V106 Grid voltage divider	FESISTOR: 82,000 ohm p/m 5\%, 1/2 w	745116600
R149	V106 cathode Resistor	RESISTOR: . $12 \mathrm{megohm} \mathrm{p/m} \mathrm{10} \mathrm{\%} ,1 / 2 \mathrm{w}$	745117400
R150	Calibrate control on front panel	$\underset{\substack{\text { RESISTOR: Variable, } \\ \text { I w }}}{ } 10,000 \mathrm{ohm} \mathrm{p/m} 20 \%$,	376005400
R151	V102A Grid Resistor	RESISTOR: 1.0 megohm p / m 10\%, $1 / 2 \mathrm{w}$	745121200
Rl52	Plate load Vl05	RESISTOR: 56,000 ohm p/m 10\%, $1 / 2 \mathrm{w}$	745116000
R153	Part of 7103 screen supply voltage divider	RESISTOR: 47,000 ohm p/m 10\%, $1 / 2 \mathrm{w}$	745115600
R154	V104A Plate decoupling	RESISTOR: $10,000 \mathrm{ohm} \mathrm{p} / \mathrm{m}$ 10\%, $1 / 2 \mathrm{w}$	745112800
R155	Shunts meter in glide slope positions	RESISTOR: $330 \mathrm{ohm} \mathrm{p} / \mathrm{m} \mathrm{10} \mathrm{\%} ,1 / 4 \mathrm{w}$	745006500
R156	Meter shunt	RESISTOR: 3300 ohm p / m 10\%, $1 / 4 \mathrm{w}$	745010700
R157	Part of voltage divider for \varnothing localizer yellow in mixing network	RESISTOR: $82,000 \mathrm{ohm} \mathrm{p} / \mathrm{m}$ 10\%, 1/4 w	745016700
R1758	Part of voltage divider for \varnothing localizer blue in mixing network	RESISTOR: $82,000 \mathrm{ohm} \mathrm{p/m} \mathrm{10} \mathrm{\%} ,1 / 4 \mathrm{w}$	745016700
R159	Part of voltage divider for tone localizer and glide slope in mixing network	RESISTOR॰ . 56 megohm p/m 10\%, 1/2 w	745120200
R160	Shunts fil Vlo	RESISTOR: $43 \mathrm{ohm} \mathrm{p} / \mathrm{m} 5 \%, 2 \mathrm{w}$	745502800
R161	Part of fil shunt for V101 and V102	RESISTOR: $43 \mathrm{ohm} \mathrm{p} / \mathrm{m} 5 \%, 2 \mathrm{w}$	745502800
R162	Part of fil shunt for V101 and V102	RESISTOR: $43 \mathrm{ohm} \mathrm{p} / \mathrm{m} 5 \%, 2 \mathrm{w}$	745502800
R163	Filament series Res.	RESISTOR\& $0.75 \mathrm{ohm} \mathrm{p} / \mathrm{mm} 10 \%$, 5 w	747902100
125			6-9
		Worldradiohisom	

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R509	p/o RF Pad	RESISTOR: $56 \mathrm{ohm} \mathrm{p/m} 10 \%, 1 / 2 \mathrm{w}$	745103400
S101	Function selector	SWITCH: 10 circuit, 10 pole, 10 pos, 8 deck rotary wafer with 30° detent and stops limiting rotation to 10 pos	259038200
S.101A	Sẇ̊tch coupling capacitors between VlOlB and V101A	SWITCH: Section of S101	
S101B	Swi.tch coupling capacitors between VIOIA and V:102B	SWITCH: Section of SlOl	
S1.01C	Switch coupling capacitors in feed-back loop between V102B and V^{∞} 101B	SWITCH: Section of Slol	
S1010	Switch outputs from mixing network	SWITCH: Section of SlOI	
SIO1E	Switches modulator output	SWITCH: Section of SIOI	
S101F	Switches phase shift constants and levels in VOR positions in mixing network	SWITCH: Section of SlOl	
SIO1G	Switches modulator output	SWITCH: Section of SIOl	
S101H	Grounding and disabling switch in mixing network	SWITCH: Section of SlOl	
Sl02	Increase modulation for checking flag sensitivity in tone localizer and glide slope positions	SWITCH: Push button, 2 circuit, 2 pole, single throw, l circuit normally ON , 1 circuit normally OFF, $1 \mathrm{amp}, 125 \mathrm{v}$ AC	260086100
5103	Power "ONmOFF" switch	SWITCH: Toggle, SPST	260052900
S201	RoF。frequency selector (Ganged with S?.01)	SWITCH SECTION: Rotary wafer, 1 circuit, 1 pole, 10 pos, non-shorting	269127600
127			6-11

479U-1 SIGNAL GENERATOR

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
T101	Discriminator transformer	TRANSFORNER: Special audio transformer, Pri: 600 ohm, Sec \#l: 450, 500 ohm Sec \#2: $150 \mathrm{ohm}, 500 \mathrm{TV}$ rms	677019700
$\begin{aligned} & \text { V101A } \\ & \text { V101B } \end{aligned}$	2nd stage low freq.osc. lst stage low freq.osc.	TUBE: Type 12AUT, twin triode	255019900
$\begin{aligned} & \text { V102A } \\ & \text { V102B } \end{aligned}$	9960 cycle amplifier 3rd stage low freq.osc.	TUBE: Type l2AU7, twin triode	255019900
V103A V103B	p/o 9960 cycle osc.	TUBE: Type l2AX7, twin triode	255020100
V104A	9960 AFC stage	TUBE: Type 12AU7, twin triode	255019900
	p/o 9960 cycle osc.		
V105	Modulator Driver	TUBE: Type 6AU6, Pentode	255020200
V106	Modulator	TUBE: Type 6AQ5, pentode	255019500
V201A	p/o RF oscillator	TUBE: Type 12AT7, double triode	255020500
V201B	p/o RF oscillator		
V202A	RF doubler	TUBE: Type l2AT7, double triode	255020500
V202B	RF tripler		
V301	Regulate B plus voltage	TUBE: Type OA2, voltage regulator	257005200
XFIO1	Holds F-IO1	HOLDER: Extractor post type, for 3AG fuse	265100200
XII01	Holds I-101	MOUNTING: Mounting bracket for miniature bayonet base pilot light bulb JEWEL: smooth-clear	$\begin{array}{lll} 262 & 1260 & 00 \\ 262 & 2190 & 00 \end{array}$
XV101	Mounts Vlol	SOCKET: 9 cont miniature	220106300
XV102	Mounts Vl02	SOCKET: 9 cont miniature	220106300
XV103	Rounts Vl03	SOCKET: 9 cont miniature	220106300
XV104	Mounts V104	SOCKET: 9 cont miniature	220106300
XV105	Mounts V105	SOCKET: 7 contact miniature	220103400
XV106	Mounts V106	SOCKET: 7 contact miniature	220103400
6-12			128

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NIMBER
XV201	Mounts V201	SOCKET: 9 cont miniature	220106300
KV202	Mounts V202	SOCKET: 9 cont miniature	220106300
XV301	Mounts V301	SOCKET: 7 cont miniature	220103400
XY201	Mounts Y201	SOCKET: Type CR-7 low loss steatite	292002300
XY202	Mounts Y202	SOCKET: Type CR-7 low loss steatite	292002300
XY203	Mounts Y203	SOCKET: Type CR-7 low loss steatite	292002300
Y201	VOR osc. Xtal	CRYSTAL UNIT: CRe23/U modified, temp range 40° to $70^{\circ} \mathrm{C}$	291700100
Y202	Lcc. Osc. Xtal	CRYSTAL UNIT: CR-23/U modified, temp range 40° to 700 C	291700400
Y203	Glide slope Xtal	CRYSTAL UNIT: CR-23/U modified, temp	291700500

AC 479U-1 POWER SUPPLY

LOW FREQUENCY OSCILLATOR

Figure 7-1. 479U-1 Signal Generator - Complete Schematic.

Figure 7-2. Dynamotor DM-53AZ - Internal Wiring.

Figure 7-3. Dynamotor DM-53A - Internal Wiring.

Figure 8-1. AC Power Supply - Parts Arrangement - Bottom View.

Figure 8-2. AC Power Supply - Parts Arrangement - Top View.

Figure 8-3. AC Power Supply - Schematic.

SECTION 8

AUXILIARY AC POWER SUPPLY

The Auxiliary Power Supply has been designed to provide greater flexibility in the operation of the Collins Type 479U-1 Test Equipment. It is interchangeable with the provided DC supply both mechanically and electrically. The Auxiliary Power Supply operates from 115 volt AC source at either 60 or 400 cycles per second,drawing approximately $1 / 2$ amp. from the primary source. Figure 8-3 shows the schematic diagram of this power supply.

