

30L-1 R-F LINEAR AMPLIFIER

table Of CONTENTS

Section Page
I INSTALLATION 1-1
1.1 Unpacking 1-1
1.2 Power Transformer Connections 1-1
1.3 Cabling 1-1
1.3.1 Traveling Station 1-1
1.3.2 Home Station 1-1
1.3.3 KWM-1 Serial Numbers Above 861 1-1
1.3.4 KWM-1 Serial Numbers Below 861 1-5
1.4 Installation with Other Makes of Exciters 1-5
II OPERATION 2-1
2.1 Operation in Amateur Bands 2-1
2.2 Operation with Other Makes of Exciters 2-1
2.3 Operation Outside Amateur Bands 2-1
III PRINCIPLES OF OPERATION 3-1
3.1 General 3-1
3.2 Input Circuits 3-1
3.3 Output Circuits 3-1
$3.4 \quad$ Power Supply Circuits 3-1
3.5 Safety Interlock Circuits 3-1
3.6 Power Control Circuits 3-1
3.7 ALC Circuits 3-1
3.8 Metering Circuits. 3-2
IV MAINTENANCE 4-1
4.1 General 4-1
4.2 Removal of Cabinet and Covers 4-1
4.3 Blower Lubrication 4-1
4.4 Alignment of R-F Input Circuits 4-1
4.5 Meter Lamp Replacement 4-2
4.6 Tube Replacement 4-2
V SPECIFICATIONS 5-1
PARTS LIST 6-1
VII ILLUSTRATIONS 7-1

LIST OF ILLUSTRATIONS

Figure Page
1-1 Interconnections with KWM-2/2A Traveling Station (C724-06-5) 1-0
1-2 Interconnections with KWM-2/2A Home Station (C724-04-5). 1-2
1-3 Interconnections with KWM-1 (C724-05-5). 1-3
Interconnections with S-Line (C724-07-5) 1-4
2-1 30L-1 Operating Controls (C724-08~P) 2-0
3-1 30L-1 Block Diagram (C724-02-4) 3-0
3-2 Control and Interlock Circuits (C724-03-4) 3-2
4-1 Location of Input Circuit Adjustments (C724-10-P) 4-1
6-1 $\mathrm{R}-\mathrm{F}$ and Power Supply Compartments, Parts Location (C724-12-P) 6-2
6-2 Input Circuitry, Parts Location (C724-11-P). 6-3
7-1 30L-1 Schematic Diagram (C724-01-6) 7-1
LIST OF TABLES
Table Page
1-1 Equipment Furnished with 30L-1 1-1
2-1 Multimeter Scale Values 2-1 2-1
4-1 Frequency Coverage Allowable by Realignment 4-2

Figure 1-1. Interconnections with KWM-2/2A Traveling Station

SECTION I
 INSTALLATION

1.1 UNPACKING.

Carefully lift the amplifier out of the packing material. Examine for visible damage. If the amplifier has been damaged in shipment, save box and packing material and notify the transportation company. Fill out and mail the equipment registration card. Check tuning controls and switches for freedom of action. Check
the equipment included with the amplifier against table 1-1.

Release the two fasteners at the top-front of the amplifier cabinet and lift the lid. Loosen the ten screws in the r-f compartment cover, slide it forward, and lift off. Remove the packing material around the tubes. Replace the cover and tighten screws. Lower the lid and refasten.

TABLE 1-1. EQUIPMENT FURNISHED WITH 30L-1

QUANTITY	DESCRIPTION	FUNCTION	PART NUMBER
2	Shielded cables, 4 feet long, with phono plug on each end	Alc and antenna relay cables	426-2027-00
1	RG-58C/U cable, 20.5 feet long, with phono plug on each end	R-f input cable	426-5079-00
6	Fuses	Spares	264-4100-00
1	A-c power plug adapter	A-c power	368-0138-00
1	UG-21D/U coaxial plug	R-f output connector	357-9261-00
1	Number 6 Bristo wrench	Knob removal	024-9730-00
1	Number 8 Bristo wrench	Knob removal	024-0019-00

1.2 POWER TRANSFORMER CONNECTIONS.

The 30L-1 is shipped with the transformer primary connected for 115 volts a-c. If 230 -volt a-c operation is planned, the primary connections must be changed on terminal board TB1. Refer to figure 7-1. This board is located at the bottom of the power supply compartment. The a-c power cord is connected to this board. To obtain access, refer to paragraph 4.2.

WARNING

DO NOT BLOCK INTERLOCK SWITCHES. Dangerous voltages are present in this equipment. The high voltage is interlocked with the amplifier covers. Make no attempt to put the amplifier into service until all compartment covers are in place.

1.3 CABLING.

1.3.1 TRAVELING STATION.

The 30L-1 is particularly applicable to traveling station use in conjunction with portable transceivers such as the KWM-2/2A. Refer to figure 1-1. IN THIS SERVICE, MAKE SURE THE TRANSFORMER PRIMARY IS CONNECTED FOR PROPER LINE VOLTAGE.

1.3.2 HOME STATION.

Connect to KWM-2/2A, KWM-1, or S-Line as shown in figures 1-2, 1-3, and 1-4.

1.3.3 KWM-1 SERIAL NUMBERS ABOVE 861.

If KWM-1 models above serial number 861 are used with the $30 \mathrm{~L}-1$, it will be necessary to bring out alc

Figure 1-2. Interconnections with KWM-2/2A Home Station

Figure 1-3. Interconnections with KWM-1

and "ground-on-transmit" connections from the $516 \mathrm{~F}-1$ power cable plug, $\mathrm{P}-1$, as shown in figure $1-3$. Make the alc connection to terminal 19, and the "ground-on-transmit" connection to terminal 20. Use a shielded wire, and connect to $30 \mathrm{~L}-1$ ALC and ANT. RELAY jacks with phono plugs.

1.3.4 KWM-1 SERIAL NUMBERS BELOW 861.

If models below serial number 861 are used with the $30 \mathrm{~L}-1$, it is necessary to make connections inside the KWM-1 for alc and antenna relay control.
a. Use an ohmmeter to locate the feedthrough capacitor, C169, which is connected to pin 19 of J5.
b. Connect a wire from this feedthrough capacitor to pin 7 of tube socket XV10.
c. Using an ohmmeter, locate the feedthrough capacitor, C206, which is connected to terminal 20 of J5 in KWM-1.
d. Connect a wire from terminal 8 of TB1 in KWM-1 to C206.
e. Make corresponding breakout connection to P1 terminal 19 with shielded wire, and connect to the 30L-1 ALC jack with a phono plug.
f. Refer to figure 1-3, Detail A. External to the KWM-1, connect a $10,000-\mathrm{ohm}, 5$-watt resistor and a relay coil in series from 55 terminal 20 to a ground on the rear of the KWM-1 chassis. Use a relay, such as Collins part number 972-1346-00, with a 10,000 ohm, $10-\mathrm{ma}$ coil, and a set of normally open contacts.
g. Connect the normally open contacts through a piece of shielded wire and a phono plug to the $30 \mathrm{~L}-1$ ANT. RELAY jack.

WARNING

BE CAREFUL to protect the operator from the 260 -volt B_{+}present on the relay coil and resistor connections. It is recommended that this circuitry be enclosed in a suitable shield box.

NOTE

The r-f cable supplied for connecting the $32 \mathrm{~S}-1$, KWM-2/2A, or KWM-1 to the $30 \mathrm{~L}-1$ is 20.5 feet long. DO NOT cut this cable. This length is optimum to maintain the low-distortion figure for which the equipment was designed.

1.4 INSTALLATION WITH OTHER MAKES OF EXCITERS.

Connect the r-f output of the exciter to the RF INPUT jack on the 30L-1. Existing antenna switching equipment between receiver and exciter may be left intact. To transmit, a ground must be supplied to the ANT. RELAY jack on the 30L-1. This removes blocking bias from the 811A tubes and energizes the internal antenna relay. Due to the variety of circuits involved, specific instructions for use of alc can not be given. A detailed study of paragraph 3.7 will be helpful if it is desired to utilize the alc provisions in the 30L-1.

Figure 2-1. 30L-1 Operating Controls

SECTION II
 OPERATION

2.1 OPERATION IN AMATEUR BANDS.

Table 2-1 shows normal and full-scale meter readings. If the exciter is a KWM-2/2A or S-line, set exciter + BIAS ADJUST to produce an idling plate current of + 50 ma . Tune and load according to exciter instruction book, except load to only 200 ma plate current.
a. Connect the antenna for the band in use to the RF OUTPUT jack on the 30L-1. (When the ON-OFF switch is in the OFF position, the transfer relay in the $30 \mathrm{~L}-1$ connects the antenna to the exciter.)
b. Make sure the ON-OFF switch in the $30 \mathrm{~L}-1$ is in the OFF position as shown in figure 2-1.
c. Tune and load the exciter into the antenna. Set MIC GAIN to off position.
d. Set the 30L-1 METER switch to the TUNE position.
e. Set BAND switch to same band as that of the

f. Press the 30L-1 ON-OFF switch to the ON position.
g. Turn up MIC GAIN to provide excitation. Tune
h. IMMEDIATE LY adjust TUNING control for multimeter dip.
i. Alternately adjust TUNING and LOADING controls for zero multimeter reading. The meter will indicate zero at the dip when the amplifier is properly tuned and loaded. Always make the TUNING adjustment for meter dip as the last adjustment.
j. Switch the exciter to the desired sideband or to CW. The station is now ready to operate.
k. If the antenna does not present a nearly 50 -ohm resistive load, the exciter can be tuned and loaded into a 50 -ohm dummy load, such as the DL-1. When switched to the input of the 30L-1, the exciter will then remain in tune.

DO NOT operate the $30 \mathrm{~L}-1$ into a load presenting a vswr greater than 2 to 1 . The equipment may not function properly and damage may result. DO NOT operate the amplifier in continuous key-down condition for more than 30 seconds. The power supply may be damaged. DO NOT use the 30L-1 in FSK, AM, or FM service. DO NOT use slow-blow fuses, or fuses larger than the 6 -ampere type supplied.

1. Once the equipment has been tuned up on a given frequency, the $30 \mathrm{~L}-1$ may be switched in or out of the circuit at will by operating the ON-OFF switch. Output power from the amplifier is available instantly with no warm-up period required.

2.2 OPERATION WITH OTHER MAKES OF EXCITERS.

Tune according to the procedure outlined in paragraph 2.1. If alc is not used, be careful not to overdrive either the exciter or the final amplifier. Normal plate current meter readings for the $30 \mathrm{~L}-1$ are from 300 to 350 ma on voice peaks. Actual plate current under these conditions will peak at approximately 600 to 700 ma . Be sure the exciter is capable of producing the required drive without excessive distortion. If not, the amplifier may be operated at reduced level.

2.3 OPERATION OUTSIDE AMATEUR BANDS.

Operation outside amateur band limits requires retuning of the $30 \mathrm{~L}-1$ input circuits. This is necessary to present the proper load impedance to the exciter. For procedure, refer to paragraph 4.4.

TABLE 2-1. MULTIMETER SCALE VALUES

METER SWITCH SETTING	FULL-SCALE INDICATION	NORMAL INDICATION
TUNE	Not applicable	Zero when 30L-1 is properly loaded
D. C. VOLTS	2000 volts	1800 volts (No modulation) D. C. AMPS
	$1.0 \mathrm{amp}(1000 \mathrm{ma})$	600 ma (Key down CW) (At rated load) $300-350$ ma (SSB voice peaks) 130 ma (Keyed, no excitation)

SECTION III

Principles of Operation

Figure 3-1. 30L-1 Block Diagram

SECTION III PRINCIPLES OF OPERATION

3.1 GENERAL.

The $30 \mathrm{~L}-1$ is a portable r -f linear power amplifier, including plate power and bias supplies. It is capable of 1000 watts PEP input power in SSB or 1000 watts d-c input in CW service with any exciter (such as the KWM-1, KWM-2/2A, or 32S-1) capable of 70 watts PEP output. It covers the amateur bands between 3.5 and 29.7 mc . In addition, the amplifier may be operated outside the amateur bands over certain ranges of frequency. These ranges are specified in table 4-1. The power amplifier stage uses four 811A triodes connected in parallel with cathode drive.

3.2 INPUT CIRCUITS.

Refer to figures 3-1 and 7-1. Broadband pi-network circuits couple the exciting signal into the cathode circuits of the power amplifier tubes. In conjunction with the interconnecting r-f feed cable supplied, this presents a nearly constant 50 -ohm load to the exciter This aids in maintaining the low level of distortion products under modulation. For this reason, it is important not to alter the length of interconnecting cable supplied with the amplifier.

3.3 OUTPUT CIRCUITS.

The plate circuit of the power amplifier is tuned by a pi network consisting of C32, L9, L10, and C33. Capacitor C32 resonates the tank circuit at the frequency in use. It is adjusted by the TUNING control on the front panel. The four-gang capacitor, C33, is adjusted by the LOADING control to match the pinetwork circuit to the impedance presented by the antenna and feed system in use. Output from the plate tank circuit is connected through the contacts of antenna changeover relay, K 1 , to the antenna when the control circuits are energized.

3.4 POWER SUPPLY CIRCUITS.

Two d-c power supplies and one a-c filament supply are included in the $30 \mathrm{~L}-1$. The amplifier may be connected to a 115 -volt single-phase or to a 230 -volt, three-wire, single-phase source. Where practical, the 230 -volt, three-wire connection is recommended. Power transformer T1 has two primary windings. These windings are connected in parallel for 115 -volt operation, and in series for 230 -volt operation. The 6.3 -volt secondary winding provides filament power for the 811 A tubes through r-f choke L8. It also powers the pilot lamp in the meter. Another secondary winding applies voltage through surge resistor R 9 to semiconductor rectifier CR20. This is a half-wave circuit connected to furnish blocking bias to the amplifier tubes under receive conditions. It also furnishes power for changeover relay K1. Voltage from the third
secondary winding is applied to two semiconductor rectifier strings connected in a full-wave voltage doubler configuration. These strings consist of CR1CR8, C44-C51 in one string, and CR9-CR16, C52-C59 in the other. The parallel capacitors equalize the reverse voltages impressed across the diode junctions and protect against damage by transients. The output of this supply provides approximately 1600 volts $\mathrm{d}-\mathrm{c}$ under load for the amplifier tube plates.

3.5 SAFETY INTERLOCK CIRCUITS.

The r-f and power supply compartment covers operate safety interlock switches for operator protection. Switch S 5 is located in the power supply compartment. Switches S6 and S7 are located in the r-f compartment. Cover removal closes these switches and shorts the high voltage to ground. This arrangement protects the operator from accidentally coming in contact with high-voltage $\mathrm{d}-\mathrm{c}$ which is present in either compartment.

DO NOT BLOCK INTERLOCK SWITCHES. Contact with voltages in this equipment can be fatal. Be sure to disconnect the a-c power plug before removing any of the covers.

- 3.6 POWER CONTROL CIRCUITS.

Refer to figure 3-2. The front-panel ON-OFF switch breaks one side of the a-c line in the OFF position. When operated to the ON position, a-c power is applied to the power transformer primaries and the tubecooling fan B1. Overload protection is provided by six-ampere fuses F1 and F2. These are usedfor both 115 -volt a-c and 230 -volt a-c operation.

3.7 ALC CIRCUITS.

Automatic load control (alc) is a compressor circuit operating at radio frequencies. In the $30 \mathrm{~L}-1$, the grid-to-plate capacities of the amplifier tubes in conjunction with capacitors C22, C23, C24, and C25 form capacitive voltage dividers. Under modulation, an r-f voltage is developed across these dividers and L3. It is coupled to the alc rectifier CR19 through capacitors C12 whac 13 . Here it is rectified and filtered to produce a negative d-c control voltage which is proportional to the modulation level. The load resistor for CR19 must be provided by the exciter alc circuits. This voltage is applied to the control grid of a low-level r-f amplifier tube or tubes in the exciter. The time constants of these circuits have a fast

SECTION III

Figure 3-2. Control and Interlock Circuits
attack, slow-release characteristic. The alc threshold is controlled by the amount of reverse bias on CR19. This voltage is developed across R7 in the plate supply bleeder network, and varied by potentiometer R16. It is adjusted at the factory for optimum operation in conjunction with the internal alc circuits of exciters such as the KWM-1, KWM-2/2A, or 32S-1. Normally it will not need readjustment.
This system allows a high average level of modulation and optimum power output from the amplifier, within the rated limits of distortion.

3.8 METERING CIRCUITS.

One section of the METER switch, S3, selects the output voltage from a tuning and loading bridge circuit.

This circuit consists of the power amplifier tubes, CR17, CR18, and the associated load resistors and filter networks. The bridge is balanced when the plate circuit TUNING and LOADING controls are adjusted to present the proper load impedance to the power amplifier plates. The meter then will read zero.

The second section of the meter switch connects the meter to the plate supply through a four-megohm multiplier resistor to indicate the d-c voltage output. It is read on the D.C. KILOVOLT scale.

The third section of the meter switch connects the meter, through R10, across shunt, R8. This indicates power amplifier plate current. It is read on the D.C. AMPS scale.

SECTION IV
 MAINTENANCE

4.1 GENERAL.

Adjustment of the r-f input circuits requires the following equipment:
a. R-f wattmeter and directional coupler, such as are included in the 312B-4 Control Station, 312B-5 PTO Console, or the 302C-3.
b. $50-\mathrm{ohm}, 500$-watt, nonreactive dummy load.

NOTE

For short-duration tests (key-down conditions not to exceed 30 seconds), it is permissible to use the DL-1 Dummy Load where applicable to the following procedures.

4.2 REMOVAL OF CABINET AND COVERS.

a. Lift the cabinet lid, and remove the two Phillipshead screws located between the lid fasteners. Remove the four feet and the Phillips-head screwlocated midway between the rear feet. Push the amplifier forward from the rear until the front panel projects from the cabinet about a half inch. Grasping the front panel at the edges, carefully slide the amplifier out of the cabinet, making sure thea-c power cord clears.
b. To remove the r-f compartment upper cover, loosen the ten screws about three turns, slide the cover toward the front panel, and lift off.
c. To remove the power supply compartment upper cover, remove screws located about the edges of the cover.
d. To remove the bottom cover, remove two round Phillips-head screws from each end of the cover and three flat-head screws near the middle of the cover, and lift off.

4.3 BLOWER LUBRICATION.

Every 1000 hours of operation (or 6 months, whichever comes first), lubricate the blower motor bearings with three or four drops of sewing machine oil. Do not overlubricate.

4.4 ALIGNMENT OF R-F INPUT CIRCUITS.

Remove the amplifier from its cabinet as outlined in paragraph 4.2. Do not remove any of the covers. To align for amateur band coverage, observe the following procedure:
a. Connect the directional wattmeter between the exciter output and the $30 \mathrm{~L}-1 \mathrm{R}-\mathrm{F}$ INPUT jack. Connect the dummy load to the R-F OUTPUT jack on the $30 \mathrm{~L}-1$. Set up the equipment on 28.5 megacycles. Set the exciter EMISSION switch to LOCK KEY, and the 30L-1 METER switch to TUNE.
b. With $30 \mathrm{~L}-1$ power off, tune and load the exciter to approximately 30 watts output as indicated on the wattmeter (forward power).
c. Press the $30 \mathrm{~L}-1$ power switch to ON. Tune and load the $30 \mathrm{~L}-1$ into the dummy load. The exciter is

Figure 4-1. Location of Input Circuit Adjustments
now loaded into the $30 \mathrm{~L}-1$ input circuits. Retune and reload the exciter, if necessary, to 30 watts forward power output.
d. Watch the wattmeter in the exciter r-f output line, and with a nonmetallic tuning tool, tune L14 for minimum reflected power. Readjust the exciter as necessary to maintain 30 watts forward. Continue adjustment of L14 for minimum vswr (not to exceed 2.0 to 1 , or 11 percent reflected power).
e. Repeat the above procedures at 21.3, 14.3, 7.2, and 3.9 mc , adjusting L15, L16, L17, and L18 respectively. These adjustments are accessible through the holes in the rear cover of the r-f compartment. Do not remove the cover. Refer to figure 4-1.

For general coverage, use the same procedure as above, except set exciter to a frequency which is in the middle of the desired band. Useful bandwidth at the new alignment frequencies is approximately the same as that for the amateur bands. Do not attempt alignment to place the new operating bands outside the ranges listed in table 4-1 for the BAND switch positions indicated. Also do not attempt a mateur-band operation on a BAND switch position for which the tuned circuits have been realigned for out-of-band operation.

4.5 METER LAMP REPLACEMENT.

To replace the meter lamp, remove the bracket to which the socket is fastened. It is held by a small machine screw located at the rear of the meter. Replace the lamp with a type 51 or equivalent.

4.6 TUBE REPLACEMENT.

The tubes may be replaced without removing the amplifier cabinet by removing the r-f compartment top cover and installing new tubes from the top. Described below is an alternate method which provides better access to the tube sockets.

TABLE 4-1
FREQUENCY COVERAGE ALLOWABLE BY REALIGNMENT

BAND SWITCH SETTINGS	LOWER LIMIT (mc)	UPPER LIMIT (mc)
3.5	3.4	5.0
7.0	6.5	9.5
14	9.5	16.0
21	16.0	22.0
28	22.0	30.0

Remove the cabinet, r-f compartment top cover, and bottom cover as outlined in paragraph 4.2. Disconnect plate connectors and remove old tubes. Install the upper pair of replacements from the top of the amplifier. Install the lower pair from the bottom. The locating pin on the base of each of the tubes should point away from the power supply compartment. Attach plate leads, making sure they clear other components. Replace covers and cabinet.

DO NOT BLOCK INTERLOCK SWITCHES. Dangerous voltages are present in this equipment. The high voltage is interlocked with the amplifier covers. Make no attempt to put the amplifier into service until the procedure outlined above has been completed.

SECTION V SPECIFICATIONS

SECTION VI

PARTS LIST

ITEM	DESCRIPTION	$\begin{gathered} \text { COLLINS } \\ \text { PART NUMBER } \end{gathered}$
	LINEAR AMPLIFIER	522-2375-00
B1	FAN: 115 v ac, 60 cps , single phase	547-3702-00
C1	CAPACITOR. FIXED, CERAMIC: 10,000 uf $+100 \%-20 \%, 500 \mathrm{vdc}$	913-3013-00
C2	CAPACITOR, FIXED. CERAMIC: same as C1	913-3013-00
C3	CAPACITOR, FIXED, ELECTROLYTIC: 100 uf $-10 \%+100 \%, 450 \mathrm{v}$ dc	183-1567-00
C4	CAPACITOR, FIXED, CERAMIC: 10,000 uuf $\pm 20 \%, 1000 \mathrm{v}$ dc	913-3922-00
C5	CAPACITOR, FIXED. ELECTROLYTIC: same as C3	183-1567-00
C6	CAPACITOR, FIXED, CERAMIC: same as C4	913-3922-00
C7	CAPACITOR, FIXED, ELECTROLYTIC: same as C3	183-1567-00
C8	NOT USED	
C9	CAPACITOR, FIXED, ELECTROLYTIC: same as C3	183-1567-00
C10	CAPACITOR, FIXED, ELECTROLYTIC: 10 uf $-10 \%,+100 \%, 150 \mathrm{v}$ dc	183-1568-00
$\frac{611}{\mathrm{C} 12}$	CAPAEYPOR. FERED. CERAMIC, Bame as Ci NOT USED	$\begin{aligned} & 913-301 \cdot 3-00 \\ & 912-2864-00 \end{aligned}$
C13	CAPACITOR, FIXED, MICA: 47 uuf $5 \% \%, 500 \mathrm{v}$ dc	912-2792-00
C14	CAPACITOR, FIXED, MICA: 100 uuf $\pm 5 \%, 500 \mathrm{v}$ de	912-2816-00
C15	CAPACITOR, FIXED, CERA MIC: same as C1	913-3013-00
C16	CAPACITOR, FIXED. CERAMIC: $0.005 \mathrm{uf} \pm 20 \%$, 3000 v dc	913-4329-00
C17	CAPACITOR, FIXED, CERAMIC: same as C1	913-3013-00
C18	CAPACITOR, VARIABLE. CERAMIC: 8.0 uuf $\min 75.0$ uf $\max , 350 \mathrm{v}$ dc	917-1075-00
C19	CAPACITOR, FIXED, MICA: 270 uuf $\pm 5 \%, 500 \mathrm{v}$ dc	912-2846-00
C20	CAPACITOR, FIXED, CERAMIC: same as C1	913-3013-00
C21	CAPACITOR, FDXED, CERAMIC: same as C1	913-3013-00
C22	CAPACITOR, FIXED, MICA: 220 uuf $\pm 5 \%, 500 \mathrm{v}$ dc	912-2840-00
C23	CAPACITOR, FIXED, MICA: same as C22	912-2840-00
C24	CAPACITOR, FIXED, MICA: same as C22	912-2840-00
C25	CAPACITOR, FIXED, MICA: same as C22	912-2840-00
C26 thru	CAPACITOR, FIXED, CERAMIC: same as C1	913-3013-00
C31	CA PACITOR, FIXED, CERAMIC: 1000 uuf $\pm 20 \%$, 5000 v dc	913-0101-00
C32	CAPACITOR, VARLABLE AR: 15 uf $\min 353.0$ uuf max	920-0066-00
C33	CAPACITOR, VARIABLE AR: 14 uff min 432 uuf max	921-0018-00
C34	CAPACITOR, FIXED, CERAMIC: same as C16	913-4329-00
C35	CAPACITOR, FLXED, CERAMIC: feedthrough type, 1000 uuf $+80 \%-20 \%, 500 \mathrm{v}$ dc	913-1292-00
$\begin{aligned} & \text { C36 thru } \\ & \text { C43 } \end{aligned}$	CAPACITOR, FDXED, CERAMIC: same as C35	913-1292-00
C44	CAPACITOR, FEXED, CERAMIC: 1000 uff $+100 \%$ -20\%. 500 v dc	913-3009-00
$\begin{aligned} & \text { C45 thru } \\ & \text { C59 } \end{aligned}$	CAPACITOR, FDXED, CERAMIC: same as C44	913-3009-00
C60	CAPACITOR, FDXED, MICA: 82 uuf 5 \% , 500 v dc	912-2810-00
C61	CAPACITOR, FLXED, MICA: 200 uuf $\pm 5 \%, 500 \mathrm{v}$ dc	912-2837-00
C62	CAPACITOR, FDED, MICA: 510 uuf $\pm 5 \%, 300 \mathrm{vdc}$	912-2867-00
C63	CAPACITOR, FDED, MICA: same as C22	912-2840-00
C64	CAPACITOR, FDXED, MICA: same as C22	912-2840-00
C65	CAPACITOR, FLXED, MICA: 180 uuf $55 \%, 500 \mathrm{v}$ dc	912-2834-00
C66	CAPACITOR, FDXED, MICA: 330 uuf $55 \%, 500 \mathrm{v}$ dc	912-2852-00
C67	CAPACITOR, FDXED, MICA: same as C22	912-2840-00
C68	CAPACITOR, FDED, MICA: 150 uuf 55%, 500 v dc	912-2828-00
C69	CAPACITOR, FDXED, MICA: same as C14	912-2816-00
C70	CAPACITOR, FDED, MICA: same as C65	912-2834-00
C71	CAPACITOR, FDXED, CERAMIC: same as C35	913-1292-00
C72	Same as C13	912-2792-00
C73	Same as C14	912-2816-00
CR1	DIODE: silicon; type 1N1492	353-1661-00
CR2	DIODE: same as CRI	353-1661-00
CR16		
CR17	DIODE: germanium; type 1N67A	353-0147-00
CR18	DIODE: same as CR17	353-0147-00
CR19	DIODE: silicon; type 1N252	353-2940-00
CR20	DIODE: silicon: type 1N540	353-1546-00
F1	FUSE, CARTRIDGE: $6 \mathrm{amp}, 250 \mathrm{v}$ dc; ferrule type terminal	264-4100-00
F2	FUSE, CARTRIDGE: same as F1	264-4100-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
J1	JACK, PHONO-TYPE: accommodates $1 / 8$ in. plug; ceramic insulation	360-0088-00
J2	JACK, PHONO-TYPE: same as JI	360-0088-00
J3	JACK, PHONO-TYPE: same as JI	360-0088-00
J4	CONNECTOR, RF TYPE N: UG-58A/U	357-9003-00
K1	RELAY: dpdt; 2 amps , coil resistance, $10,000 \mathrm{ohms}$	970-2140-00
L_{1}	NOT USED	
L2	NOT USED	
L3	COIL, RADIO FREQUENCY: single layer wound, solenoid, "21 or "22 AWG copper wire 39.0 uh, 0.80 ohms dc	240-0189-00
14	Part of Z1	547-3654-002
L5	Part of Z2	547-3654-002
L6	NOT USED	
${ }^{2} 7$	NOT USED	
L8	COIL, RADIO FREQUENCY: single layer wound, no. 14 AWG, formvar insulation; 7.5 uh	240-1244-00
L9	COIL, RADIO FREQUENCY: single layer wound; 6.5 turns no. 8 AWG	547-3718-002
L10	COIL, RADIO FREQUENCY: single layer wound; 17 turns no. 14 AWG	547-3708-003
L11	COIL, RADIO FREQUENCY: 4 sections; 2.5 mh , 35 to 50 ohms, 0.125 amp	240-0059-00
L12	COIL, RADIO FREQUENCY; single layer wound, 44 uh at 2.5 mc inductance, 3.54 ohm dc resistance, 1.6 amps current capacity	240-0807-00
L13	COIL, RADIO FREQUENCY: single layer wound, $2.2 \mathrm{uh}, 1980 \mathrm{ma}$ current; 0.20 ohms	240-0174-00
L14	COIL, RADIO FREQUENCY: single layer wound, 2 turns	547-3659-003
L15	COIL, RADIO FREQUENCY: single layer wound, 7 turns no. 22 awg	547-3660-003
L16	COIL, RADIO FREQUENCY: single layer wound, 8 turns no. 22 AWG	547-3661-003
L17	COIL, RADIO FREQUENCY: single layer wound, 14 turns no. 22 AWG	547-3662-003
L18	COIL, RADIO FREQUENCY: single layer wound, 8 turns no. 22 AWG	547-3663-003
L19	COIL, RADIO FREQUENCY: 15. uh	240-0173-00
M1	METER, ELECTRICAL: 200-0-500 ua meter range, 190 ohms, $\pm 2 \%, 2-1 / 2 \mathrm{in}$. sq	458-0592-00
O_{1}	KNOB-METER	544-0779-004
02	KNOB-BAND	544-0779-004
03	KNOB, TUNING	547-3656-002
04	KNOB, LOADING	547-3656-002
R1	RESISTOR, FIXED, COMPOSITION: 470Cohms $\pm 10 \%, 1 / 2 \mathrm{w}$	745-1338-00
R2	RESISTOR, FLXED, WIRE WOUND: 25,000 ohms $\pm 5 \%, 26 \mathrm{w}$	746-9155-00
R3	RESISTOR, FIXED, WIRE WOUND: same as R2	746-9155-00
R4	RESISTOR, FIXED, WIRE WOUND: same as R2	746-9155-00
R5	RESISTOR, FIXED, WIRE WOUND: same as R2	746-9155-00
R6	NOT USED	
R7	RESISTOR, FLXED, COMPOSITION: 1000 ohms $\pm 10 \%, 2 \mathrm{w}$	745-5652-00
R8	RESISTOR, FDXED. WIRE WOUND: $1.0 \mathrm{ohms} \pm 1 \%$. 5 w t	747-9716-00
R9	RESISTOR, FIXED, COMPOSITION: 82 ohms $\pm 10 \%$ 1 w	745-3307-00
R10	RESISTOR, FIXED, FILM: 1,960 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$	705-7100-00
R11	RESISTOR, FIXED, FILM: 4, $000,000 \mathrm{ohms} \pm 1 \%, 2 \mathrm{w}$	705-4260-00
R12	RESISTOR, FIXED, WIRE WOUND: 3,000 ohms, $\pm 10 \%, 7 \mathrm{w}$	710-9011-00
R13	NOT USED	
R14	NOT USED	
R15	RESISTOR, FDXED, COMPOSITION: 10,000 ohms $\pm 10 \%, 2 \mathrm{w}$	745-5694-00
R16	RESISTOR, VARLABLE: composition; 5,000 ohms $\pm 20 \%, 0.3$ w	376-0205-00
R17	RESISTOR, FDXED, COMPOSITION: $10 \mathrm{ohms} \pm 10 \%$, 2 w	745-5568-00
R18	RESISTOR, FDXED, COMPOSITION: same as R17	745-5568-00
R19	RESISTOR, FDXED, COMPOSITION: $39,000 \mathrm{ohms}$ $\pm 10 \%, 1 / 2 \mathrm{w}$	745-1419-00
R20	RESISTOR, FIXED, COMPOSITION: same as R19	745-1419-00
R21 -	RESISTOR, FDXED, COMPOSITION: 47 ohms $\pm 10 \%$. 1 w	745-3296-00
R22	RESISTOR, FDXED, COMPOSITION: same as R21	745-3296-00

SECTION VI

Parts List

ITEM	DESCRIPTION	COLLINS PART NUMBER
R23	RESISTOR, FIXED, COMPOSITION: same as R21	745-3296-00
R24	RESISTOR, FIXED, COMPOSITION: same as R21	745-3296-00
R25	Part of Z1	745-5610-00
R26	Part of Z2	745-5610-00
R27	NOT USED	
R28	RESISTOR, FLXED, COMPOSITION: 47 ohms, $\pm 10 \%, 1 / 2$ w	745-1296-00
S1	SWITCH, ROTARY: 2 circuit (2 pole), 18 position, 1 section	259-1385-00
S2	SWITC H, ROCKER: dpst; $20 \mathrm{amps}, 125 \mathrm{v}$ ac, 10 amps, 250 vac	266-6020-00
S3	SWITCH, ROTARY: 2 circuit (2 pole), 3 position, 1 section	259-1368-00
S4	SWITCH, ROTARY: 3 circuit (3 pole), 5 position, 1 section	259-1386-00
S5	INTERLOCK ASSEMBLY: copper, silver plated; $11 / 16 \mathrm{in}$. by $3 / 4 \mathrm{in}$. by 1.312 in .	547-3632-002

ITEM	DESCRIPTION	COLLINS PART NUMBER
S6	Same as S5	547-3632-002
S7	Same as S5	547-3632-002
T1	POWER TRANSFORMER:	662-0010-00
V1	ELECTRON TUBE: triode; type 811A	256-0053-00
V2 thru	ELECTRON TUBE: same as V1	256-0053-00
V4		
XF1	FUSE HOLDER: $15 \mathrm{amps}-250 \mathrm{v}$	265-1019-00
XF2	FUSE HOLDER: same as XFI	265-1019-00
XV1	SOCKET. ELECTRON TUBE: 5 amps 2000 v rms	220-1451-00
XV2	SOCKET, ELECTRON TUBE: same as XV1	220-1451-00
thru		
XV4		
21	SUPPRESSOR, PARASITIC: 4 turns no. 16 AWG wire, 100 ohms, 2 w resistor	547-3654-002
Z2	SUPPRESSOR. PARASITIC: same as Z1	547-3654-002

Figure 6-1. R-F and Power Supply Compartments, Parts Location

Figure 6-2. Input Circuitry, Parts Location

Replaces $<10-2-5-82$

ADDENDUM FOR 30L-1 R-F LINEAR AMPLIFIER
 (Collins Part Number 523-0122-00)

\checkmark Refer to Paragraphs 1.1 and 4.2. Disregard references to cabinet lid L fasteners.

- Refer to Paragraph 2.1, step e. Set LOADING control to 1 on the dial, and TUNING control to white area for the band in use.
i. Refer to Paragraph 2.1, step g. When using Collins exciters, set EMISSION switch to TUNE position for this procedure. The tuning meter circuit provides the proper indications at low power input for subsequent high-power operation of the 30L-1 .

Refer to Parts List and Figure 7-1. Change R1 to 4700 ohms. Delete C11.

6-28-61
(Collins Part Number. 523-0122-00)
\checkmark Refer to Paragraphs 1.1 and 4.2. Disregard references to cabinet lid fasteners.
Refer to Paragraph 2.1, step e. Set LOADING control to 1 on the dial, and TUNING control to white area for the band in use.

Refer to Paragraph 2.1, step g. When using Collins exciters, set EMISSION switch to TUNE position for this procedure. The tuning meter circuit provides the proper indications at low power input for subsequent high-power operation of the $30 \mathrm{~L}-1$.
\checkmark Refer to Paragraph 3.7. Where reference is made to C 12 and C13, substitute C72.
Refer to Figure 7-1. Change schematic to show F1 connected to terminal 4 of S2 and F2 connected to terminal 3 of S2. This is the reverse of the way these connections are presently drawn. To connect the primary for 230 -vac operation, ignore the connections to TB1 which are shown in Figure 7-1. Remove the jumpers from terminals 1 to 2 and 4 to 5 , and wire as indicated in detail A below. Note that C 4 is moved from terminal 1 to terminal 2.

Refer to Parts List and Figure 7-1. Add C8 and C12 (same as C3), and R6 and R13 (same as R2). Change schematic as indicated in detail B below. Resistor R4 is now R5, and R5 is now R6.
\checkmark Refer to Parts List and Figure 7-1. Change R1 to 4700 ohms. Delete C11.

SECTION VII
illustrations

