MODELS 21E AND 21M

BROADCAST TRANSMITTERS

INSTRUCTION BOOK

GUARANTEE

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, workmanship or material, and which are returned to Collins at its factory, transportation prepaid, provided
(a) Notice of the claimed defect is giver, Collins within one (1) jear from date of delivery and goods are returned in accordance with Collins' instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins' designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive moisture in the atmosphere or otherwise after delivery, it shall fail to operate in a normal or proper manner.

Collins further guarantees that any radio transmitter described herein will deliver full radio frequency power output at the antenna lead when connected to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the foregoing shall constitute the Buyer's sole right and remedy under the agreements in this paragraph contained. In no event shall Collins have any liabillty for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials, or from any other cause.

HOW TO RETURN MATERIAL OR EQUIPMENT. If, for any reason, you should wish to return guarantee or otherwise, you should notify us, giving full particulars material or equipment, whether under the applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Fallure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in handing of your returned merchandise.

ADDRESS:

Collins Radio Company Sales Service Department Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Type number, name, and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins' number (and name) of unit sub-assemblies involved in trouble
(J) Remarks

HOW TO ORDER REPLACEMENT PARTS.
When ordering replacement parts, you should direct information insofar as applicable. To enable us to give your order as indicated below and furnish the following us complete information.

ADDRESS:

Collins Radio Company
Sales Service Department Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Quantity required
(B) Collins' part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins' type number, name, and serial number of principal equipment
(E) Unit sub-assembly number (where applicable)

TABLE OF CONTENTS
Section
Paragraph
Page
1 GENERAL DESCRIPTION
1.1. General Description. 1-1
l.1.1. Instruction Book-1
l.1.2. General Description.
1.1.3. Physical Description l-I
1.1.4. Electrical Description l-2
1.2. Specifications l-2

INSTALLATION
2.1. General 2-0
2.2. Unpacking 2-0
2.3. Pre-Installation 2-0 2-0
2.3.1. Mounting Position. 2-0
2.3.2. Mounting Frame 2-0
2.3.3. Electrical Ducts 2-1
2.3.4. Ground Strap 2-1
2.3.5. Power Source 2-1
2.3.6. Duct Wiring 2-1
2.3.7. Output Connection. 2-2
2.4. Re-Assembly 2-2
2.4.1. General. 2-2
2.4.2. Order of Reassembly 2-2
2.4.3. Reassembly Details of Power Cabinet. 2-4
2.4.4. Reassembly Details of Power Amplifier qabinet. 2-4
2.4.5. Reassembly Details of Driver Cabinet 2-5
2.5. Power Connections. 2-6
2.5.1. Primary. 2-6
2.5.2. High Voltage 2-7
2.6. Ground Connection. 2-7
2.6.1. Transmitter Cabinets 2-7
2.6.2. Power Transformer Ground 2-7
2.7. Special Cabling. 2-7
2.7.1. PA Grid Drive 2-7
2.7.2. Modulator Grid And Feed-Back 2-8
2.7.3. Miscellaneous. 2-8
2.8. Inter-Cnit Cabling Diagram 2-8
2.9. Audio Input Connections. 2-10
2.10. RF Output Connections 2-11
2.11. Frequency Monitor Connections 2-11
2.12. Modulation Monitor Connections 2-11
2.13. Audio Monitor Connections. 2-11
2.14. Overall Inspection 2-11
2.15. Initial Adjustment 2-11
2.15.1. PreaAdjustment Inspection. 2-11
D Control Circuit And Filament Check 2-12

Page
3 OPERATION
3.1. Starting the Equipment 3-0
3.1.1. Routine 3-0
3.1.2. Test Periods. 3-0
3.2. Stopping the Equipment 3-1
3.2.1. Emergency 3-1
3.2.2. Routine 3-1
3.3. Description of Operating Controls 3-3
3.3.1. Blower Breaker, S-303 (Far Right) 3-3
3.3.2. Filament Breaker, S-305 (PA Cabinet Left) 3-3
3.3.3. Control Circuit Breaker (Far Left). 3-3
3.3.4. Blower Pilot Light, I-303 (Adjacent to Blower Breaker). 3-4
3.3.5. Filament Pilot Light, I-304 (Adjacent to Filament Breake 3-4
3.3.6. Filament V.oltage Control, T-201 (Power Cabinet Left) 3-43.3.7. Thermal Tiné Delay Relay Adjustment, R-171. (DriverRelay Access)3-4
3.3.8. Control Circuit Pilot Light, I-lOl (Driver Cabinet Left) 3-4
3.3.9. Driver Plate Breaker, S-107 (Driver Cabinet Right) 3-4
3.3.10. Driver Piate Pilot Light, I-104 (Driver Cabinet Right). 3-5
3.3.11. Multimeter Switch, S-102 (Driver) 3-5
3.3.12. Multimeter Selector Switch, S-306 3-5
3.3.13. High Power-Low Power, S-207 (Power Cabinet, Right). 3-5
3.3.14. High Voltage Breaker, S-208 (Power Cabinet, Center) 3-5
3.3.15. High Voltage Breaker Pilot Light, I-204 (Power Cabinet) 3-5
3.3.16. Modulator Bias Adjust, R-335 And R-336. 3-6
3.3.17. Bias Adjust, R-208 3-6
3.3.18. Power Change Switch, S-103 3-6
3.3.19. First RF Buffer Tank Circuit Trimmers, C-114,C-115. 3-6
3.3.20. 807 Tank Trimmers, C-125, C-126 3-6
3.3.21. RF Drive Control, R-182 3-6
3.3.22. Driver Cabinet Power Amplifier Tuning and Loading C-146 And C-147 3-7
3.3.23. Grid Tuning, C-301 3-7
3.3.24. Power Amplifier Plate Tuning and Loading Controls C-3l3 And C-320 3-7
3.3.25. Crystal Selector Switch, S-101 3-8
3.3.26. Crystal Frequency Trimmer Controls C-101, C-102 3-8
3.3.27. Audio Driver Bias Adjustments, R-162 and R-163. 3-8
3.3.28. Audio Hum Controls, R-120 and R-189 3-8
3.3.29. Overload Adjust, R-205. 3-8
3.3.30. Overload Selector, S-209. 3-9
3.3.31. Overload Reset, S-210 3-9
3.3.32. Overload Indicator Pilot Light, I-203 (Power Cabinet) 。 3-9
Section Paragraph Page
4 THEORY OF OPERATION
4.1. RF Section 4-1
4.2. Audio Section 4-1
4.3. Power Supplies 4-2
4.3.1. Primary Circuits 4-3
4.4. Control Circuits 4-4
4.4.1. Plate Power Control 4-4
4.5. Overload Circuit 4-5
4.5.1. Lock Out Cycle 4-5
4.5.2. Recycling 4-5
5 MAINTENANCE
5.1. Routine Maintenance 5-1
5.1.1. Cleaning 5-1
5.1.2. Lubrication 5-2
5.1.3. Routine Tube Maintenance 5-2
5.2. Trouble Shooting 5-2
5.3. Adjustments 5-3
5.3.1. Air Interlock Switch, S-304 5-3
5.3.2. Blower Hold Relay K-305 5-3
5.3.3. Overload Recycling Relay K-202 5-3
5.4. Replacement of Parts 5-3
5.4.1. Meters 5-3
5.4.2. Circuit Breakers 5-4
5.5. Ordering Replacement Parts 5-4
6 PARTS LIST
List of Illustrations
Figure
1-1 Front View and Simplified Schematic
2-1 Installation Drawing
2-2 Power Cabinet Installation Connections
2-3 Power Amplifier Cabinet Installation Connections
2-4 Driver Cabinet Installation Connections
2-5 Inter-Unit Cabling Example
3-1 2lE/M Operating Controls and Parts Arrangement, Front View
4-1 Primary Power Circuits
4-2 Filament Control Circuits
4-3 Complete Control Circuits
4-4 PA Plate Control Circuits - Normal
4-5 PA Plate Control Circuit, Relay Positions Shortly AfterOverload

7-1 PA Cabinet, Rear View
7-2 Power Cabinet, Rear View
7-3 Driver Cabinet, Rear View
7-4 Power Amplifier RF Chassis, Top View
7-5 Power Amplifier RF Chassis, Bottom View
7-6 Power Cabinet Rectifier Chassis, Top View
7-7 Power Cabinet Rectifier Chassis, Bottom View
7-8 Driver Cabinet RF Chassis, Top View
7-9 Driver Cabinet RF Chassis, Buttom View
7-10 Driver Cabinet Audio Chassis, Top View
7-11 Driver Cabinet Audio Chassis, Side View
7-12 Driver Audio Chassis, Bottom View
7-13 Driver Cabinet Output Network, Bottom View
7-14 Driver Cabinet, Low Voltage Power Shelf
8-1 T-102 and T-103 Internal Connections
8-2 Driver Cabinet Complete Schematic
8-3 PA and Power Cabinets Complete Schematic
8-4 Driver Cabinet Inter-Unit Cabling Diagram
8-5 Power Cabinet Inter-Unit Cabling Diagram
8-6 Power Amplifier Cabinet Inter-Unit Cabling Diagram

List of Tables

2-1 List of Wire Types
2-2 List of Wire Sizes and Color Codes
3-1 Typical Meter Readings, Broadcast Band Operation
5-1 Tube Voltage and Current Measurements
6-1 Parts List

World Radio History

Figure 1-1. Front View and Simplified Schematic.

SECTION I

GENERAL DESCRIPTION

1.1. GENERAL DESCRIPTION.

1.1.1. INSTRUCTION BOOK. This instruction book covers both the 5KW, 2le, and the lokW, 2lM, broadcast transmitters. The detailed description covers the 21 E . Significant differences in circuitry and components between the 21 E and 21 M are pointed out as they appear.
l.1.2. GENERAL DESCRIPTION. These transmitters are the medium power versions of a line of high fidelity broadcast transmitters which feature advanced engineering techniques, new high quality components, flexibility, and economical operation.

The 5KW, 2lE, transmitter includes all the facilities, except actual components, to change to a lokw, 21 M , transmitter in the shortest possible time (about 12 man-hours, estimated).

These transmitters consist of a modified $300 \mathrm{~J}-250$ watt transmitter used as an audio and radio frequency driver unit followed by a high level modulated power amplifier with suitable plate and bias supplies.

The normal frequency range is 540 to 1600 K but can be extended to 18 megacycles on special order.
1.1.3. PHYSICAL DESCRIPTION. With the exception of the plate transformer, all components are housed within an assembly of three main bays. The two end bays are complete cabinets and the middle bay is a complete frame assembly with front and rear inclosures which when bolted between the two end cabinets completes the sturdy, neatly styled, assembly that has the appearance of one large cabinet.

The exterior of the equipments is finished in high gloss, two-toned grey enamel. Streamlined polished chrome styling strips separate the two color areas.
a MECHANICAL FEATURES.

1. TUBES. All tubes are visible through the front windows.
2. CONTROLS. Tuning and metering controls are located behind four access doors on the front of the transmitter. Filament and plate power switches are located below these doors on the front panel.
3. RELAYS Control relays are accessible through identical removable insert panels located on the lower front panel of each of the three cabinets.
l.1.4. ELECTRICAL DESCRIPTION. See figure l-1. The radio frequency portion consists of a 6AU6 crystal oscillator, a $6 \mathrm{SJ7}$ isolation buffer, an 807 R-F Amplifier, followed by a pair of 4-125A tetrode driver amplifiers. These excite a 3 X2500A-3 triode power amplifier in the 21 E or two parallel 3X2500A-3 triodes in the 2lM.

The Audio line-up is push-pull all the way with 6SJ7 tubes in the first audio stage followed by a pair of $4-125 \mathrm{~A}$ tetrode audio drivers and a pair of $3 \times 3000 \mathrm{~A}-1$ triode class $\mathrm{AB}-1$ modulators.

For personnel protection each rear door is equipped with a control circuit interlock and a $H V$ and bias supply shorting device to discharge large filter capacitors. In addition, the power cabinet rear doors employ spring operated shorting switches to ground the plate transformer secondary terminals when the rear doors are opened.

Overload protection is afforded by magnetic circuit breakers and fuses in transformer primaries and manual automatic re-setting overload relay in the power amplifier-modulator plate circuit.
1.2. SPECIFICATIONS.

Frequency Range:

Power Output:

Frequency Stability:
Audio Frequency Distortion

Residual Noise Level:

Carrier Shift:
RF Output Impedance:

Audio Input Impedance:
Peak Limiting:

540-1600 kc standard. Frequencies to 18 mc available

21E - 5,500 Watts
21M - 10,600 Watts
$\pm 10 \mathrm{cps}$
Less than 3% from $50-7500 \mathrm{cps}$ for 95% modulation, including all harmonics up to 16 kc

58 db below 100% modulation from 0 to 30 kc

65 db below 100% modulation from 150 cycles to 15 kc

Less than 3%
75/50 ohms standard. Other impedances available

600/150 ohms
Audio peaks clipped at approximately 1 db above 100% mod.
$+10 \mathrm{dbm} \pm 2 \mathrm{db} .$, Pad input
$+15^{\circ}$ to $+45^{\circ} \mathrm{C}$ Ambient
Sea Level to 6000 feet
208/230 V three phase 50/60 cps. 50 cps on special order

Approximately 2700 lbs. for 21 E
Approximately 3000 lbs. for 2lM
105-1/4" wide, 76" high, 28" deep (Plate transformer extra)

Power Demand:

Power (KW)

Power Factor (\%)

* 5000 Watts Output

Filaments and Blower Only
5000 Watts Output - No Modulation
2.64
75.7
12.8

- 30\% Modulation
13.8
90.0
- 100\% Modulation
18.5
90.0
90.0
*10,000 Watts Output

Filaments and Blower Only	3.28	76.5
lo,000 Watts		
Output - No Modulation	21.2	90.5
- 30\% Modulation	23.6	91.0
- loo\% Modulation	32.8	91.5

Filaments and Blower Only
10,000 Watts
Output - No Modulation

- 30\% Modulation
- loo\% Modulation
23.6
32.8
91.0
91.5
* 21E Capable of 5500 Watts Output, 21M Capable of 10,600 Watts Output.

SECTION II

INSTAITATION

2.1. GENERAI.

2.1.1. Inspect the shipping crates for evidence of possible damage to the equipment within. If, upon removal of the equipment, damage is found, save the shipping crates, read the back of the bill of lading, and report the damage to the transportation company.
2.2. UNPACKING.
2.2.1. The cabinets and power transformer are shipped in skid-type crates with the unpacking instructions stenciled on the sides. In general, cut and remove the steel straps from around the crates. Then remove the row of nails from the sides near the bottom of the crate using a nail puller to pull the nails. Lift the whole crate assembly (top and four sides) from the base. Remove any protective material and unbolt the equipment from the case of the crate.

Smaller assemblies are packed in regular boxes from which the top has to be removed. Use a nail puller here.

Small, loose parts are placed in sacks or small boxes and shipped In the larger boxes to prevent being lost, however, search all the packing material to be sure no parts are discarded with the packing material.

2.3. PRE-INSTALLATION

2.3.1. MOUNTING POSITION. The important consideration in selecting a mounting position is providing adequate room for operating and servicing the equipment. Figure $2-1$ shows overall dimensions and clearance dimensions as well as all other pertinent data concerning the mounting of the transmitter.

Increased overall trouble free operation will be realized if the transmitter room is air-conditioned and pressurized to control dust, insects and excessive changes in humidity and air temperature. The heat generated by the equipment can be used to heat the building in cold dilmates providing the exhaust ducts are arranged so that under all circumstances the heat is removed from the transmitter and no back pressure is allowed within any cabinet. Maximum tube and component life will be obtained if duct-work is equipped with an additional exhausting fan.
2.3.2. MOUNTING FRAME. A mounting frame under the transmitter will greatly facilitate the installation of power leads.

The mounting frame shown in figure $2-1$ is adequate and recommended.
2.3.3. ELECTRICAL DUCTS. Provide a duct in the floor as shown in figure 2-1 in which to run the power leads. This duct should be clean and dry with provisions to maintain these conditions.
2.3.4. GROUND SITRAP. See figure 2-1. Install a heavy copper strap along the front edge of the duct that is under the transmitter. Attach this ground strap to the building and antenna ground system. Attach adequate length (for instance, 5 feet) of number 6 copper wire to the ground strap at points underneath each cabinet and neatly coil preparatory to setting the cabinets on the frame. Run a number 4 ground wire from the ground strap back to the plate transformer position for transformer grounding.
2.3.5. POWER SOURCE. For the 2lE, provide a 230 volt 3 phase power source capable of $20 \mathrm{KW}(35 \mathrm{KW}$ for 21 M) for the transmitter alone, all other sources of load extra. Install a three-phase, metal, cut-out box, independent of other loads, with 100 ampere fuses for the 21 E and 125 ampere for the 21 M and connect it to the transmitter/plate transformer duct with a metal conduit of $2^{\prime \prime}$ minimum diameter. Observe standard electrical conduit grounding practices but be sure that the conduit is grounded with number 4 wire to the transmitter ground strap, too. See figure 2-1 for primary wire sizes.
2.3.6. DUCT WIRING. The following wires should be placed in the duct and arranged so that they can be pulled through the proper holes in the cabinet bases: (See figure $2-1$ for suggested minimum wire sizes).

Wires From To

Line cut-out box mounted on transmitter room wall

Power cabinet E-202 and E-203

Plate transformer secondary terminals

Duct ground sitrap

Line amplifier (not furnished)

Power cabinet E-201

Plate transformer primary terminals

Power cabinet E-204, E-205, E-206 (standoffs of spring operated safety switches)

Each cabinet ground connection (See paragraph 2.6)

E-103 of driver cabinet $4-125 \mathrm{~A}$ tube chassis (See paragraph 2.9)
Wires
Frequency Monitor Con-
nections

Modulation Monitor

Audio Monitor (Not for audio measurements)

From
Frequency Monitor (not furnished)

Modulation Monitor (not furnished)

Audio Monitor Input
(Speaker or amplifier not furnished)

To
J-104 on the bottom of the driver cabinet RF chassis. (See paragraph 2.11.)

J-302 at the top, rear of the PA RF network box in the PA cabinet. (See paragraph 2.12.)

E-301 on the right hand sidewall (viewed from rear) of the PA cabinet. Watch voltage clearance
2.3.7. OUTPUT CONNECTION Normally the transmitter output connection is to a feed-thru on the roof of the power amplifier cabinet. See figure 2-1. If it is desired to route the transmitter output out the base of the cabinet and into the duct, a hole that will pass the transmission line will have to be drilled into the base of the power amplifier cabinet. This must be done before mounting any heavy components in the cabinet. A ground lug is provided adjacent to the output feed-thru in the roof of the power amplifier cabinet to ground the outer conductor of the rigid transmission line. Use a 7/8" or l-5/8" line for the $21 E$ and a $1-5 / 8^{\prime \prime}$ Iine for the 21 M of the impedance value established in the sales contract. (Either 50 or 72 ohms).
2.4 RE-ASSEMBLY.
2.4.1. GENERAL. All parts that have been removed are keyed to their mounting positions by sticker tags. Match the tag number or letter on the part with the tag number or letter on the chassis or cabinet. The parts should be replaced after the cabinets are set up on the mounting frame but leave the large transformers and reactors and the PA blower until after the interconnecting cables have been pulled through the side walls. Remove the bottom rear panels from the three cabinets.
2.4.2. ORDER OF REASSEMBLY. After the pre-installation procedures have been completed, re-assemble the transmitter in the following order:

WARNING

Be sure cut-out box switch is open and fuses removed.
a. Place the power cabinet frame in the center position on the mounting frame; shove the associated power wires and ground wire through the base holes progressively as the power cabinet frame is shoved into position. See figure 2-1.

Figure 2-2. Puwer Supply Cabinet
Installation Connections.
b. Slide the power amplifier cabinet into position and at the same time feed the associated ground wire, modulation monitor and audio monitor wires through their base holes.
c. Slide the driver cabinet into position and at the same time feed the RF monitor, audio input leads, and ground wire up through the base.
d. Align the cabinets and bolt together with the 16 self tapping screws provided. Insert the screws from the power cabinet.
e. Feed the two main interconnecting cables from the power cabinet through the sidewalls of the amplifier and driver cabinets.
f. Remove all the window retainer screws, except two on each side This is to facilitate servicing and cleaning procedures.
g. Mount and connect the RF tank compartment into the driver cabinet; details in paragraph 2.4.5.
h. Mount the vacuum variable capacitor $C-313$ into the PA tank compartment with the four screws provided. Slide the circular clamp over the rear of the capacitor and tighten the clamp screw.
i. Mount and connect the PA tank compartment into the amplifier cabinet; details in paragraph 2.4.4.
j. Make all connections possible at this time. See paragraphs 2.5, 2.6, $2.7,2.8$ and their subparagraphs.
k. Install the heavy components in the base of the driver cabinet and make connections. See figure 7-3.
m. Install the heavy components into the base of the power cabinet and make connections. See figure 7-2 and paragraph 2.4.3.
n. Install the heavy components (except blower) into the base of the amplifier cabinet and make connections. See figure 7-1 and paragraph 2.4.4.
O. Install the blower into the base of the amplifier cabinet.
p. Attach the RF output line.
q. Mount the front panels on the power bay if these were removed for shipping.
r. Install the tubes.

CAUTION

Install the PA and modulator tubes by gently pressing the tubes down while rotating the tubes with a reciprocating motion not to exceed $1 / 2^{\prime \prime}$ excursion. Be sure the tubes seat properly to prevent air leaks. Pull the snap spring in place to insure good electrical contact. Check the filament air hoses to see that they are not plugged up and that they are not up against the panel or disconnected.
s. Install the crystals; see figure 7-8 for crystal location.

CAUTION
Extreme care should be exercised when handing the crystals. This new type of crystal is extremely fragile. Following rough handling the crystals may still oscillate but their temperature coefficient may be altered.

2.4.3. REASSEMBLY DETAILS OF POWER CABINET.

a. Perform step a. of paragraph 2.4.2.
b. Set the modulation transformer in place. See figure 7-2.
c. Set the filter choke (or chokes) in place as shown in figure 7-2. The 2lE takes one choke and the 21M two chokes (L-202 and L-203).
d. Install and connect the audio compensating board as shown in figure 2-2.
e. Connect all the base components and side mounted filter capacitors.
f. After all other cabinets have been assembled and interconnecting wires installed, connect the rear fan to the powerstat, T-20l. One lead goes to the powerstat terminal that has a white wire and the other to the powerstat terminal that has a red wire.

2.4.4. REASSEMBLY DETAILS OF POWER AMPLIFIER CABINET.

a. Perform step b. of paragraph 2.4.2.
b. The RF Tank box (see figure $7-1$) was removed for shipment. This box is suspended from the roof of the cabinet by two metal stand-offs and three ceramic stand-offs. Carefully hold the box in position and replace the mounting screws. Use caution in tightening up the screws in the ceramic stand-offs to prevent breakage.
c. Assemble the air duct (two L shaped pieces of aluminum) between the PA chassis and the RF tank box with the self tapping screws provided (14 screws) see figure 7-1.
d. Turn the vacuum variable capacitor shaft $C-313$ toward the high capacity direction until the capacitor bottoms (plates stop moving). Turn the PA PLATE TUNING dial toward increasing numbers until a stop is reached. Set the dial at 500. Loosen the dial sprocket set screws and remove the sprocket. Hang the drive chain on the capacitor sprocket, then hang the dial sprocket in the loop of the chain and slip the sprocket back on the dial shaft. Tighten the sprocket set screws.
e. Set $C-320$, the power amplifier variable loading capacitor, to minimum capacity. Turn the PA LOADING control to O. Slide the flexible coupler head on the dial shaft. Insert the two mounting screws and tighten the head to the panel. Tighten the shaft set screw.
f. Reach around the tank box (left front corner) and attach the output strap to RF line meter M-301.
g. If the PA grid coil was removed, replace it on the four metal standoff's protruding from the bottom of the PA chassis. See figure 7-5.
h. Connect the input wires to filament breaker S-305. To do this, remove the breakers mounting screws from the front panel, lower the breaker, attach the wires, shove the breaker back in place and replace the mounting screws. Phasing is important, so be sure tags agree.
i. Mount the filament transformers on the left hand sidewall (viewed from rear) with $T-304$ next to the front panel followed by T-303, then T-302. Notice the arrangement of the lugs and the form of the connecting wires and mount the transformers to match.
j. The 21 M transmitter requires an additional transformer $T-301$ which should be installed in the front-center position of the cabinet base.
k. Install L-309 in the front right-hand corner of the base.
m. For the 2lE, install C-350 in the rear right-hand corner of the base. For the 2lM install L-301 in this position.
n. For the 2lM put C350, C351, C354, C355 and C356 in the shelf over L-309 and $\mathrm{L}-310$.
o. Make all other base connections at this time. See figure 2-3.
p. Install the blower. See figure 7-l. Slide the canvas air duct down over the blower outputfopening, under the split clamp, then tighten the two screws of the split clamp. Be absolutely sure this canvas is well clamped. The air force will exert some pressure against it and tube damage will result if it comes loose at any point.
q. Set the lilips on the PA grid, PA plate and PA loading coils as indicated in the test sheet.
2.4.5. RE-ASSEMBLY DETAILS OF DRIVER CABINET.
a. Perform step c. of paragraph 2.4.2.
b. Replace the tank box in the top of the driver cabinet similar to step b. of paragraph 2.4.
c. Set the PA TUNING and PA LOADING variable eapacitors at minimum capacity. Turn the associated dials to "O". Slide the flexible coupler heads on their respective dial shafts, bolt the heads to the front panel and tighten the sset screws.
d. Mount the heavy components in the base of the cabinet as shown in figure 7-3.
e. Refer to figures 7-3, and 2-4 as well as the tags on the cables in or der to make all possible connections at this time.
f. Install and secure the large filter capacitors in their proper positions as shown in figure 7-3 and make all connections to these units.
g. Remove the rear cover from the rf output network and set the taps on tuning coil L-108 and loading coil L-l09 to the position shown in the test data. The Collins test department data sheet. included with the transmitter contains a record of the driver network setup used for testing the driver at the factory. These conditions may not hold exactly under actual operating conditions.
h. Three rf tank cans are associated with the oscillatbr, buffer, and rf driver plate circuits. Refer to figure 3-1 and install the calis in their proper sockets.

1. Complete all internal connections including inter-chassis cables and connections to terminal boards E-lOl and E-lO2 on the rear of the low voltage power shelf. Refer to the Installation Connections Diagram, figure 2-4, to the Inter-Unit Cabiing Diagram, figure 8-4, and to tags on the wires for assistance in making the proper connections.
j. In order to further extend the life of tubes and other components in the driver cabinet, an 8-inch ventilating fan is included with each unit. 7 The fan mounts at the top of the ventilation screen on the finside of the rear panel. The two-motor wires connect to terminals 10 and 11 on terminal board E-102. As seen from the rear, these terminals are the two righthand connections on the terminal board that is located near the left end, of the low voltage power supply chassis. The fan is now connected across; the 230 volt line to the filament transformers and will be energized whenever the control switch is turned on.
得 \quad.
2.5. POWER CONNECTIONS.
2.5.1: PRIMARY. The 230V 3-phase power connections connect to terminal block E-201 in the base of the power cabinet. These wires were pulled through the left hand grommet hole in step a. of paragraph 2.4.2. Cut the wires to length and attach to the terminals of E-2Ol with the soldering lugs provided. The primary wires going to the exciter cabinet are cabled and enter the exciter cabinet from the

Figure $2-3 \mathrm{~A} .21 \mathrm{E}$ Power Amplifier Cabinet
Installation Connections.

Figure 2-3B. 21M Power Amplifier Cabinet Installation Connections.
power cabinet through the sidewall. These are already lugged and tagged. Connect these two wires to terminals 1 and 3 of $\mathrm{E}-\mathrm{IOO}$. Observe polarity. Terminal 2 of E-100 is at ground potential.

Six wires connect the high voltage power transformer T-204 to connector blocks E-202 and E-203. See figure 2-1. These wires enter the power cabinet through the right-hand $1 \mathrm{l} / \mathrm{Z}^{\prime \prime}$ grommet. Cut these to length and connect them to their terminations with solder lugs. Be very careful to observe correct phasing here. See cabling schematic figure 8-5. Incorrect phasing will result in shortened rectifier tube life.
2.5.2. HIGH VOLTAGE. The high voltage wires are the three long wires protruding through the right-hand grommet of the power cabinet. Cable these together and run them up the rear of the cabinet next to the door to E-204, E-205 and E-206, the stationary contacts of the high voltage door shorting switches, S-204 and S-205. Connect these wires with soldering lugs.

CAUTION

Phasing of primary and secondary leads of high voltage transformer T-204 is very important. Connect as shown by tags and schematics.
2.6. GROUND CONNECTION.
2.6.1 TRANSMITTER CABINETS. Each cabinet has a ground terminal to which the ground wire from the duct ground strap must be attached. In the exciter cabinet, use the center terminal (2) of E-IOO.

In the power cabinet, the ground wire connects to E-208, a stud in the bottom of the cabinet near the rear. In the amplifier cabinet, the ground wire attaches to any convenient choke or blower mounting screw.
2.6.2. POWER TRANSFORMER GROUND. Connect the ground wire provided in paragraph 2.3.4. to the frame of the power transformer.

2.7. SPECIAL CABLING.

2.7.1 PA GRID DRIVE. A long piece of RG-8/U carries the RF. from the output terminal of the driver cabinet thnough the sidewalls of the power cabinet, up through the rear edge of the blower pan, to standoff's E-304 and E-305 at the rear of the PA grid coil. The cable must be grounded at the tank box and at the ground clamp on the upper supporting member on the inside of the driver cabinet.
2.7.2. MODULATOR GRID AND FEED-BACK. These wires, consisting of a shielded pair of high tension wires and a shielded pair of audio type wires pulled into a large insulating tubing, are coiled in the amplifier cabinet. They should be pulled through the sidewalls into the driver cabinet, and routed to their terminations. Connect the audio type shielded pair to terminals 3, 4 and 5 of E-103 (the shield to terminal number 3). (See figure 7-12). Observe polarity as indicated by the attached tags. If the tags are missing, use a continuity meter to identify the wires. Connect one high tension wire to C-190 and the other to C-191 located on the rear of the front panel (orange colored tublar condensers.) Observe polarity. Connect the shield of this pair to the ground stud on the side stiffener on the right-hand side (viewed from rear).
2.7.3. MISCELLANEOUS. The control cable that enters the driver cabinet near the left hand edge of the low-voltage power shelf contains two wires which do not terminate at any terminal. These two wires are to be individually spliced to the two wires in the cable that comes from the front panel that also do not tie to terminals. These wires may be bolted together with small bolts. Splice the AC95 wire from the power cabinet to the AC95 wire from the front panel cable and the AC6 wire from the power ncabinet to the AC90 wire. Tape these splices thoroughly to prevent them from touching each other or any other conductor.

2.8. INIER-UNIT CABLING DIAGRAM

The Inter-Unit Cabling Diagrams, figures $8-4,8-5$, and $8-6$, show the parts of the transmitter in their general locations as viewed from che r rear. Each section of these diagrams is enclosed by broken lines. These sections have been given section designation letters that appear in the upper right-hand corner of each dotted enclosure. Although wiring between transmitter units is not shown on the diagram, the destination of this wiring is indicated by numbers and letters that appear directly below the arrow heads as shown in figure $2-5$. The numbers to the right of the lines above the arrow heads represent the types of wires used. The number directly to the right of each arrow head is the number of that point on the diagram and does not necessarily indicate that there is a terminal bearing that number at that point in the equipment. Where there are terminal boards with numbered terminals in the equipment, the terminals are represented on the diagram by small sircles enclosing the number of the terminal. The terminal board is represented by a dotted line around all terminals on that board. Some sections of the diagram, such as section F, require that the terminal board in the diagram be broken to allow lines that do not terminate on that board to pass through the area on the diagram where the board is drawn.

Figure 2-4. Driver Cabinet Installation Connections.

A small portion of unit F from the Inter-Unit Cabling Diagram figure 8-4, is shown in figure 2-5. The two KEO designations indicate that two type KEO wires leave this point. The K in $K E O$ indicates thettype of wire (high voltage insulated cable). E indicates size of wire (\#14). O indicates color of wire (black). If a tracer were used on this wire an additional number would be added to indicate the color of the tracer. For example, if this wire was black with a red tracer, the designation would have been KEO2. If a shield were used, the wire would be called KESO2, the S indicating a shield. The color code used for wires and tracers is the same as that used for resistors and condensers.

The number 18 shown beside the arrow head indicates that this is point number 18 on the schematic.

A7 indicates that one of the wires leaving this point on the diagram goes to point 7 on unit A of the diagram. $J 7$ indicates that one of the wires leaving this point on the diagram goes to point 7 on unit J of the diagram.

When coaxial cable, copper straps, and other types of connecting materials except wires are used, the "type of wire" code is not used. Instead of using a code, the connecting material is specified by name on the diagram as in the case of the quarter inch copper tubing shown at point 1 , unit C, of the Inter-Unit Cabling Diagram, figure 8-4.

TABLE 2-1. LIST OF WIRE TYPES

Letter	Type of Wire
A	AN-J-C-48
B	Busbar, Round Tinned Copper
C	JAN Type WL (600 volts)
D	Miniature
F	Extra-Flexible Varnished Cambric
G	General Electric Deltabeston
K	Neon Sign Cable (15,000 volts)
N	Single Conductor Stranded (Not Rubber)
P	Single Conductor Stranded (Rubber Covered)
R	JAN Type SRIR (l000 volts)
V	JAN Type SRRV (2500 volts)

TABLE 2-2. LIST OF WIRE SIZES AND COLOR CODES

Letter	Size of Wire (AWG)	Number	Color of C. Wirevor \perp Tracer
A	22	0	Black
B	20	1	Brown
C	18	2	Red
D	16	3	Orange
E	14	4	Yellow
F	12	5	Green
G	10	6	Blue
H	8	7	Violet
J	6	8	Grey
K	44	9	White
L	2		
M	12.		
N	0		
P	00		
Q	,000		
R	0000		

Cable Identification Example:
A JAN Type WL, \#22AWG, Shielded, White wire with Red Tracer would be labeled CAS92. A black \#14AWG neon sign cable would be labeled KEO. A breakdown of these two descriptions is shown below.

C	A	S	9	2
Type of Wire Jan Type WL	Size of Wire \#22AWG	Shielded	Color of Body White	Color of Tracer Red

K	E	O
Type of Wire	Size of Wire	Color of Body
Neon Sign Cable	\#l4AWG	Black

2.9. AUDIO INPUT CONNECTIONS.

The aüdio signal should be brought into the transmitter cabinet on a shielded twisted pair. Use the audio ingit hole illustrated in figure 2-1 for these wires. The wires may be run up the rear corner channel, avoiding the hinges to prevent damage to the wires. The audio input connections are made to terminal board E-103 located inside the lower shelf of the driver cabinet audio chassis. The location of this terminal board can be seen in figure 7-12. Connect the two leads of the twisted pair to terminals 1 and 2 of E-103. Connect the shield to terminal 3 of E-103.
2.10 RF OUTPUT CONNECTIONS.

See paragraph 2.3.6.
2.11. FREQUENCY MONITOR CONNECTIONS.

Coaxial frequency monitor connector J-104 is located on the bottom of the rf chassis as shown in figure 2-4. The transmitter is shipped with a mating plug connected to J-104. Bring a piece of RG-8/U coaxial cable through the proper hole in the floor of the cabinet as shown in figure 2-1. Connect the coax to the plug associated with connector J-302.
2.12. MODULATION MONITOR CONNECTIONS.

Coaxial modulation monitor connector J-302 is supplied with the proper mating plug. Figure $2-4$ shows this connector located on the top of the rf output network box. Thread a piece of $R G-8 / \mathrm{U}$ coaxial cable through the proper hole in the floor of the cabinet as shown in figure 7-5. Connect the coax to the plug associated with connector J-302.
2.13. AUDIO MONITOR CONNECTIONS.

A shielded, twisted pair should be used for the audio monitor connections. Bring this wire through one of the monitoring lead holes in the bottom of the cabinet. These holes are indicated in figure 2-1. The audio monitor terminal board, E-301 is located on the right hand (viewed from rear) side wall of the amplifier cabinet about half way up from the base. Connect one wire of the shielded twisted pair to the high terminal on E-30l. Connect the remaining wire and the grounded shield to the grounded terminal. Use extreme care in the routing of this wire to clear high voltage points associated with the modulator and feed-back divider.
2.14. OVERALL INSPECTION。

Before applying power to the transmitter go over all connections and see that they are tight. Check to see that cables clear high voltage conductors or points that may produce feedback. See that the tubes are firmly in their sockets and that all air seals are adequate. Be sure that phasing of power leads, filament transformers and plate transformer are respected. Check fans and blowers to see that they rotate freely. Remove and inspect all fusies.

2.15. INITIAL ADJUSTMENT.

2.15.1. PRE-ADJUSTMENT INSPECTION (Read paragraph 3.3 for control functions)

a. Before starting the equipment for the first time, inspect it carefully to see that all filament and plate switches are in the OFF positions and the power change switches are in the LOW position. Turn the FILAMENT powerstat to the extreme counterclockwise position.
b. Remove the plate caps from the two 866 A and two 872 A mercury-vapor rectifier tubes, V-113 through V-116 in the driver cabinet and from the two 866As and the six 872 As (or 575As) in the power cabinet. Make sure that the plate caps hang free and are not near any metal parts.
c. Inspect all door interlocks. Press on the contact block until the spring is completely compressed. Release the pressure. If the contact block does not spring out to its original position, check the interlock carefully and adjust it until it operates properly.

2.15.2 CONTROL CIRCUIT AND FILAMENT CHECK。

a. Prior to application of any plate voltage to the driver or power amplifier stages, a thorough check should be made on the control circuit and on the filament voltages.
b. Close the blower and filament breakers located in the P.A. bay. No power showid be applied as yet to the blower or the filaments. Now, closing the control circuit breaker should immediately turn on the meter panel lights. Blower B-301 should start up and the red indicator light next to the blower breaker should light up. As the blower comes up to speed the filament contactor K-303 should close, applying voltage to the filament transformer primary and illuminating the green panel light located next to the blower switch. Check to see if the filaments of all the tubes are lit. In the event some are not lit, check the fuses first in looking for the trouble. Closing of the filament contactor should also start up circulating fans B-lO1 and B-2Ol.
c. Assuming that the filaments are all lit, the next step is to set the primary voltage as read on M-201 in the center bay to 230 volts. This is accomplished by adjusting the three-phase variac, T-201, located in the rectifier bay. This is the left hand knob on the front panel. Clockwise rotation of the knob increases the voltage. Having adjusted the filament primary voltage to 230 volts, the filament voltages of all the tubes should be checked at the tube socket. In the event that any of the tube voltages vary by more than five percent of the rated value, check the voltage between phases at the input of the transmitter. These voltages should be balanced as nearly as possible. Phase voltage unbalance will be the major cause of abnormal filament voltage.
d. Upon completion of the filament voltage adjustment, the blower hold relay K-305 should be adjusted to give a delay of three to five minutes from the time the control circuit breaker is opened until the blower shuts off. The blower hold relay is the type in which air entering a bellows through a small adjustable orifice produces the time delay. The adjustment screw is on top of the relay which is located to the right of filament relay $K-303$ in the $P A$ cabinet relay enclosure.

In adjusting the time of the delay, turn the adjustment screw in a clockwise direction to increase the time. At this point, a check should also be made in the operation of the air interlock switch $\mathrm{S}-304$. This switch is located in the rear of the Power amplifier bay. The best check is to open the blower breaker. When the air pressure in the tube chamber drops to the danger point, the switch should open and the filament contactor should drop out, removing power to the filaments. As soon as the action has been checked, power should immediately be restored to the blower. When the blower is back up to speed, the air interlock switch will again be closed restoring voltage to the filaments. In the event that the air interlock switch does not operate properly, make a check on the action of the switch. The switch mounting is slotted to provide adjustment, and may require adjustment. In operation, as the air pressure builds up, the canvas duct should expand, coming into contact with the actuating arm of the air interlock switch and closing the micro switch, thus closing the circuit to the filament contactor coil. With a removal of air pressure, the canvas duct will collapse, allowing the micro switch to return to its normally open position.
e. The plate voltage time delay relay, K-10l, should be adjusted to give a delay of approximately 30 seconds. The delay time is controlled by potentiometer R-17l located just below K-10l. Turning this control in a clockwise direction increases the length of time delay.
f. With all filament controls working properly and all doors closed, driver plate contactor $\mathrm{K}-102$ should close when the time delay operates, and time delay light I-l0l should light. Now, closing the driver breaker switch S-107 should result in closing of the high voltage plate contactor K-204.
g. At this point a check should be made on the interlock system. Each door should be opened individually and a check should be made to see the high voltage final and driver plate contactors drop out. A similar check should be made on the filament interlock relay K-304 by operating this relay manually.
h. At this stage, a check can also be made on the overload circuit, by operating the d.c. overload relay K-201 manually. (Refer to paragraph 4.5 for a description of the overload circuit.)
i. This completes the check of the power circuit. Throw the control and plate switches to the off positions.

NOTE
Leave the PA filament and blower breakers ON. See note after step x .
j. Replace the plate caps on the 866A voltage rectifier tubes V-ll5 and V-ll6 (driver cabinet).

NOTE
OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICH ARE DANGEROUS TO LIFE. OPERATING PERSONNEL SHOULD AT ALL TIMES OBSERVE PROPER SAFETY PRECAUTIONS. DO NOT MAKE ADJUSTMENTS INSIDE OF THE EQUIPMENT WITH THE HIGH VOLTAGE APPLIED. DO NOT DEPEND UPON THE DOOR INTERLOCKS FOR PROTECTION. ALWAYS SHUT DOWN THE EQUIPMENT WHEN MAKING ADJUSTMENTS.
k. Rotate the crystal selector switch, S-101, to the desired position. The location of this switch is shown in figure 3-l.
m. Throw the control switch to the on position (the filament and blower breakers must be ON first) and allow the transmitter to run for 20 minutes with only the filaments lighted. This operation is necessary in order to properly age the mercury vapor rectifier tubes. Aging is required for all new mercury vapor tubes and for old tubes that have been agitated or inverted.
n. Throw the driver cabinet plate switch (only) to the on position.
o. Rotate the driver multimeter switch through the first three positions and check the readings with those given in table 3-1. The full-scale reading of the multimeter is indicated for each position of the multimeter switch.
p. Rotate the multimeter switch to the position designated 807 grid, 25 ma . It will be necessary to adjust C-114 and C-1l5, the first buffer tank circuit trimmers. The location of screwdriver adjustments, for these two trimmers is shown in figure 3-1. They should be adjusted for maximum 807 grid current. These two trimmers are connected in parallel as shown in figure 8-2 for standard broadcast band. One of the trimmers should be adjusted to give a good tuning range with the second trimmer. The first trimmer adjustment opening should then be sealed with scotch tape and all adjustments made with the second trimmer.
q. Rotate the multimeter switch to the first buffer cathode position and check the reading against table 3-1.
r. Rotate the multimeter switch to the PA grid position to check the adjustment of the 807 rf driver plate trimmer capacitors, C-125 and C-126. The screwdriver adjustments for these trimmers are shown in figure 3-1. They should be adjusted for maximum power amplifier grid current. These two trimmers are connected in parallel as shown in figure 8-2 for the standard broadcast band. One of the trimmers should be adjusted to give a good tuning range with the second trimmer. The first trimmer opening should then be sealed with scotch tape and all adjustments made with the second trimmer.
s. Turn off the plate and filament switches and replace the plate caps on the 872 A high voltage rectifier tubes, $V-113$ and $V-114$ in the driver cabinet and on the 866A and 872 A (or 575A) tubes in the power cabinet.
t. Turn the two driver cabinet bias adjustment controls, R-162 and R-163, to the maximum clockwise position. This adjustment results in maximum bias and minimum audio driver tube plate current.
u. Turn the driver cabinet power change switch, $\mathrm{S}-103$, to the low position.
v. Set the driver amplifier loading to minimum by turning the driver cabinet PA loading control, $\mathrm{C}-147$, to 100 on the dial.
W. Close the transmitter rear doors.
x. Turn the blower and the filament breakers to ON.

NOTE
Leave the blower and filament breakers on hereafter. Use them as breakers and not as switches. Use the control breaker to turn the blower and filaments on and off. This is necessary to get proper time delay and blower hold-on.
y. Turn on the Control breaker (left end of transmitter). After warm-up cycle (control circuit lamp lights) turn the driver plate breaker on.
z. Adjust the driver amplifier tuning control, $C-146$, for minimum driver amplifier plate current. Observe $R F$ ammeter on driver cabinet. If it is reading off scale, check resonance of the PA grid tuned circuit and observe clip settings in the primary and seconday of $L-301$. The RF meter is shunted by a piece of buss wire for further protection.
aa. Tune the PA grid circuit to resonance as indicated by a rise in PA GRID CURRENT. Adjust the clips of L-301 if necessary. With the driver LOADING control at 100 the final amplifier grid current should read between 50 and 150 ma . providing the link circuit between the driver and PA grid circuit is properly terminated.

NOTE

Look through the power cabinet window and see if there is a blue glow in the bias supply 866 A rectifier tubes indicating the PA bias supply is working.
ab. Turn the driver cabinet power change switch, S-l02, to the high position.
ac. Increase the LOADING of the driver cabinet until the PA grid cur. rent reads approximately 200 ma for the 21 E or 230 ma for the 21 M on the standard broadcast band or 130 ma (21E) and 150 ma (21M) for the short wave broadcast. Try to duplicate the test date furnished with the transmitter. Retune the driver plate circuit each time a LOADING or GRID TUNING adjuistment is made.
ad. Adjust the audio driver bias controls, $R-162$ and $R-1033$ until 100 ma of audio driver plate current is drawn and the plates of the two 4-125A audio driver tubes, V-llo and V-lll, appear to be dissipating equal amounts of power.
ae. Turn the driver plate switch to OFF。
af. Turn the MODULATOR BIAS ADJUSTMENT controls to full clockwise position (Highest bias)。
ag. Turn the PA LOADING dial to full capacity (100 on the dial).
ah. Connect a sensitive oscilloscope to the transmitter output terminal or couple the oscilloscope to the PA tank coil with a loop.
ai. Turn the neutralizing capacitor two turns to allow rf feedthru. Remember in which direction the capacitor was turned.

CAUTION

Be sure the PA plate breaker is OFF.
a.j. Turn the driver plate switch to ON.
ak. Tune the PA PLATE tuning condenser and adjust taps on the power amplifier tank coil until a rf pattern appears on the scope. Adjust until the pattern indicates resonance of the PA tank.
am. By small steps return the neutralizing capacitor towards the position from which it was turned in step ai. Watch the height of the pattern in the scope and adjust the neutralizing capacitor for minimum amplitude. The power amplifier is now tuned to resonance and neutralized.
an. Remove the oscilloscope connection from the transmitter. This is important!
ao. See that the transmission line with properly terminated antenna is connected to the output terminal.
ap. With the power level switch in the low position, turn the power amplifier PLATE breaker to ON and immediately re-establish plate circuit resonance as indicated by a dip on the PA PLATE meter.
aq. Check the resonance of the grid circuit and make a quick reading of all meters and if reasonably close to those in table 3-1, start loading the power amplifier by manipulation of the LOADING control with the taps of coil $4-306$ set as indicated in the test data sheet. Changes in these two components will usually necessitate a readjustment of the PA TUNING contról.
ar. Load the PA tubes to the values indicated in the test data sheets for low power. Adjust the PA grid current to the values shown in the test data sheets. This value is different for standard broadcast and short wave bands.
as. Turn the PA POWER LEVEL switch to the HIGH POWER position and load the power amplifier to the values indicated on the test data sheet for high power.
at. Adjust the two MODULATOR BIAS ADJUSTMENT controls R-335 and R-336 until 200 ma cathode current is obtained on each tube as indicated by the PA cabinet multimeter.

WARNING

For proper operation and long life of the modulator tubes do not run the static modulator plate current of each tube over 250 ma maximum.
aw. Connect an oscilloscope to the modulation monitoring jack J-302 and obtain a workable pattern by adjusting the taps and condenser associated with L-307, starting in a minimum position.
ay. Gradually introduce (see warning below) a 1000 cps audio signal to the transmitter audio input terminals and watch the modulator plate current indication. 100% modulation should occur at about 1.5 amp plate current per tube for the 21 E and 2.6 amp for the 21 M .

WARNING

When modulating the transmitter with test tones do not run modulation levels over 50% modulation for periods of over one minute at a time or serious damage to the modulator tubes will result. This is particularly true when modulating with tones of 5000 cps and higher or with tones of 100 cps or lower. Damage to the modulator tubes will be first noted by solder depositing in the cavity between the anode radiator and the anode seal.
aw. Remove the audio signal and turn the POWER LEVEL switch to LOW.
ax. Adjust R-208 until 200 ma average static cathode current per tube is obtained on the modulator tubes.

OPERATION

3.1. STARTING THE EQUIPMENT

3.1.1. ROUTINE. (See paragraph 3.3 for description of Controls.)
a. Check to see that Station exhaust fans (if used) are turned on.
b. Check to see that transmitter rear doors are closed.
c. Check to see that the PA BLOWER and FILAMENT breakers are $O N$.

CAUTION
Leave the BLOWER and PA FILAMENT breakers in the ON position, this insures full warm-up cycle and cooling cycle. Use the CONTROL breaker to turn the blower and filaments off.
d. Throw the CONTROL breaker to ON. This will be used as the transmitter start switch.
e. Adjust FULAMENT PRIMARY for 230 V .
f. Turn the POWER LEVEL control on the middle cabinet (right hand control) to desired power level (dial pointer up or down for high power, to either side for low power).
g. Check to see that the desired crystal is in use. The right hand crystal is selected when the switch is thrown to the right.
h. Move the driver PLATE breaker to ON. Observe meter readings.
i. Move the power amplifier PLATE breaker to ON .
j. Check all meter readings including all of the circuits that are read on the multimeter switches. Typical meter readings are listed in table.
k. Make all possible monitoring operations.
m. If adjustments are required, read paragraph 3.3.16. through 3.3.31.
3.1.2. TEST PERIODS.

During test periods the equipment can be turned on (and off) by first following paragraph 3.1.1. to get the equipment operating then by merely turning the driver cabinet CONTROL switch $O N$ and $O F F$, a sequence start will result.

The time delay circuit will automatically allow proper filament heating and then automatically turn on the plate supplies without manipulation of any other control. 3.2. STOPPING THE EQUIPMENT.

3.2.1. EMERGENCY.

a. Throw the driver cabinet CONTROL switch to OFF.
b. Throw the PLATE circuit breakers to OFF.
c. Let the PA cabinet blower run for 2 to 5 minutes as controlled by the delay relay, except in most serious emergencies.
d. Open the power feed cut-out, external to the transmitter, before entering to repair the circuit.
3.2.2 ROUTINE:
a. Throw the CONTROL breaker to OFF. (The blower will continue to run from 2 to 5 minutes).

Table 3-1. Typical Meter Readings, Broadcast Band

Switch	Switch Position	Meter	Meter Reading
Multimeter Switch	lst Audio Cath. 25 ma .	Multimeter	4 ma.
Multimeter Switch	Osc. Cath. 25 ma .	Multimeter	4 ma .
Multimeter Switch	1st Buff. Grid. 2.5 ma .	Multimeter	1.0 ma.
Multimeter Switch	lst Buff. Cath. 25 ma .	Multimeter	6.5 ma .
Multimeter Switch	807 Grid 25 ma.	Multimeter	1 ma .
Multimeter Switch	807 Cath. 250 ma.	Multimeter	75 ma .
Multimeter Switch	P.A. Grid 25 ma .	Multimeter	22 ma .
Driver Power Change	High	Mod. Plate Current (Driver)	125 ma .
Driver Power Change	High	P.A. Plate Voltage	2700 volts
Driver Power Change	High	P.A. Plate Current (Driver)	100 ma .

Switch	Switch Position	Meter	Meter Reading
Multimeter Switch	P．A．Grid Current 250 ma ． （Low Power） （High Power）	Multimeter	$\begin{aligned} & 200 \mathrm{ma} \text { 。 } \\ & 220 \mathrm{ma} \text { 。 } \end{aligned}$
Multimeter Switch	Rear Modulator Cathode 2.5 amp. （Low Power，no signal） （Low Power，100\％Mod． at 1000 cps ） （High Power，no signal） （High Power，100\％Mod． at 1000 cps ）	Multimeter	0.15 amp ． 0.325 amp ． 0.2 amp．
Multimeter Switch	Front Modulator Cathode 2.5 amp. （All values identical to the Rear Mod．Cathode Values）	Multimeter	0.725 amp ．
Multimeter Switch	Front P．A．Cathode 2.5 amp ． （Low Power） （High Power）	Multimeter	0.48 amp. 1.3 amp ．
Power Change	Low（no signal） High（no signal） Low（ 100% Mod． 1000 cps ） High（ 100% Mod． 1000 cps ）	Mod．Plate Current	1.3 amp． 0.3 amp 。 0.4 amp ． 0.65 amp ． 1.45
Power Change	Low High	P．A．Plate Vol tage	$\begin{aligned} & 1.45 \text { amp. } \\ & 2900 \mathrm{~V} \end{aligned}$
Power Change	Low High	P．A．Plate Current	5100 V 0.48 amp ． 1.3 amp．

21M

Switch	Switch Position	Meter	Meter Reading
Multimeter Switch	P．A．Grid Current， 250 ma ． （Low Power） （High Power）	Multimeter	$\begin{aligned} & 200 \mathrm{ma} . \\ & 230 \mathrm{ma} . \end{aligned}$
Multimeter Switch	Rear Mod．Cathode， 2.5 amp. （Low power，no signal） （Low power， 100% Mod． 1000 cpa ） （High power，no mod．） （High power，loo\％Mod． 1000 cps ）	Multimeter	0.2 amp. 0.75 amp ． 0.2 amp．
Multimeter Switch	Front Mod．Cathode 2.5 amp （All values identical to the Rear Mod．Cathode values）	Multimeter	1.25 amp．

21M

Switch	Switch Position	Meter	Meter Reading
Multimeter Switch	Front P.A. Cathode 2.5 amp . (Low Power) (High Power)	Multimeter	$\begin{aligned} & 0.8 \text { amp. } \\ & 1.3 \text { amp. } \end{aligned}$
Multimeter Switch	Rear P.A. Cathode 2.5 amp . (Same as Front P.A. Cathode)		
Power Change	Low (no signal)	Mod. Plate Current	0.4 amp .
	High (no signal)		0.4 amp.
	Low (100% Mod. 1000 cps) High (100% Mod. 1000 cps)		1. 5 amp . 2.5 amp 。
Power Change	Low	P.A. Plate Voltage	2900 Volts
Power Change	High		5100 Volts
	Low	P.A. Plate Current	1.6 mmp .
	High		2.6 mmp 。

3.3 DESCRIPTION OF OPERATING CONTROLS. (See figure 3-1.)
3.3.1. BLOWER BREAKER, S-303 (FAR RIGHT.)

This breaker turns on the tube cooling blower and lights the blower pilot lamp. This breaker is normally left ON from day to day but is capable of automatically breaking the blower motor circuit if a heavy load is placed on this line. Never turn it off, especially if the blower is still running.

3.3.2. FILANENT BREAKER, S-305 (PA CABINET LEFT)

This breaker protects the filament circuits of the transmitter plus the low voltage bias supply. When the blower is up to speed air interlock switch S-304 turns on the filaments of the power amplifier' and modulator tubes. An overload in the filament circuits will automatically open this breaker or blow one of the filament protection fuses. Turning this breaker off will also turn off the plate supply of the PA, modulators and bias supply as well as the plate supply of the driver. This circuit breaker should normally be left in the $O N$ position to insure proper warm-up.
3.3.3. CONTROL CIRCUIT BREAKER. (FAR LEET $)$

The CONTROL circuit breaker, S-106, is a toggle-type magnetically operated circuit breaker. As shown in the Control Circuit diagram, figure 4-3, operation of the CONTROL circuit breaker energizes the meter lights and control
circuit for the transmitter. When the BLOWER and FILAMENT circuit breakers are ON, the CONTROL circuit breaker will also energize all filaments, low voltage bias, fans, blower, and start the filament delay cycle.

3.3.4. BLOWER PILOT LIGHT, I-303 (ADJACENT TO BLOWER BREAKER)

This lamp indicates when power is being applied to the blower motor.

3.3.5. FILAMENT PILOT LIGHT, I-304. (ADJACENT TO FILAMENT BREAKER)

This lamp indicates when power is being applied to the primaries of the filament transformers.
3.3.6. FILAMENT VOLTAGE CONTROL, T-201. (POWER CABINET LEFT)

Controls the pirmary voltage of all filament transformers. This primary voltage, indicated on FILAMENT PRIMARY METER should be 230 volts.
3.3.7. THERMAL TIME DELAY RELAY ADJUSTMENT, R-171. (DRIVER RELAY ACCESS)

The thermal time delay relay contains a heating element, a bimetallic strip, and a set of contacts. As showin in figure 4-3, the time delay relay contacts are in series with the door interlocks. The temperature within the relay affects the bi-metallic element and causes the contacts to open or close. Thermal inertia of the heating element and bi-metallic strip causes the time delay relay" to automaticalizy sellect the proper itime delay interval after power interruptions. If the power is removed for an instant and then returned, there will be no delay period as the bi-metallic element will not have cooled sufficiently to open the contacts. Also, the filaments will not have cooled to the point where a warm-up period is necessary. This is a distinct advantage over the more common time delay systems which provide a set delay period negardiess of the temperature of the tube filaments and therefore prevent operation, of the transmitter until the standard time delay has passed, even though the power interruption was momentary and the filaments remain at operating temperature. The thermal time delay relay provides the quickest possible return to the air after a power interruption. When the relay contacts close, they place resistor $\mathrm{R}-172$ in shunt with the relay heater element and relay adjustment $R-171$ to reduce the current through the heater while the transmitter is on the air.
3.3.8. CONTROL CIRCUIT PILOT LIGHT, I-101. (DRIVER CABINET LEFT.)

This pilot light is energized when the filament time delay cycle is finished. It indicates that the tubes are ready for application of plate voltage。

3.3.9. DRIVER PLATE BREAKER, S-107. (DRIVER CABINET RIGHT.)

One set of contacts on the plate relay are hold-in contacts which short the thermal time delay relay contacts as shown in figure 4-3. The

Figure 3-1. 21E/M Operating Cuntrols and Parts Arrangement, Front View.
remaining. two sets of contacts on the plate relay are in series with the DRIVER plate switch. These contacts cause the DRIVER plate switch to be inoperative when the plate relay is open. Closure of the plate relay and DRIVER plate switch energizes the driver low voltage and high voltage power suppiies and the driver plate pilot light. Energized also are the PA and Modulator bias supply and the PA plate contactor K-204.

3.3.10. DRIVER PLAIE PILOT LIGHT, I-104. (DRIVER CABINET RIGHT)

The driver plate pilot light is energized upon application of primary voltage to the driver plate transformer, HV bias transformer and PA plate contactor K-204.

3.3.11. MULTIMETER SWITCE, S-102 (DRIVER)

Multimeter switch S-102 is a two-pole seven-position switch located behind the left door on the front of the driver cabinet as shown in figure 3-1. This switch inserts multimeter M-104 into any one of seven driver circuits. Table 3-1 lists the multimeter switch positions and typical readings for these circuits. The full scale reading of the multimeter is indicated for each switch position.

3.3.12. MULTIMETER SELECTOR SWITCH, S-306,

This switch is located inside the left-hand enclosure of the power amplifier front panel. It selects the circuit to be metered by the MULTIMETER M-304. Circuits metered are 1. PA GRID CURRENT, 2. REAR MODULATOR CATHODE, 3. FRONT MODULAOR CATHODE, 4. FRONT PA CATHODE, and 5. REAR PA CATHODE (position 5 is used in the 21M, only).
3.3.13. HIGH POWER-LOW POWER, S-207. (POWER CABINET, RIGHT)

This switch selects high power or low power operation by connecting the plate transformer in either a " Y " or a "delta" configuration" High power is selected when the knob points straight up or down, low power is selected when the knob points to either side.
3.3.14. HIGH VOLTAGE BREAKER, S-208. (POWER CABINET CENTER)

When manually operated this breaker applies primary voltage to the HV plate transformer (providing the blower, filaments, and driver plate supply are on the the door interlocks are closed.) Upon a heavy overload in the transformer primary circuit, it removes the primary voltage automatically. This is a magnetic circuit breaker and can be reset immediately after the overload is cleared.
3.3.15. HIGH VOLTAGE BREAKER PILOT LIGHT, I-204. (POWER CABINET)

This pilot light lights when primary voltage is being applied to the plate transformer.
3.3.16. MODULATOR BIAS ADJUST, R-335 AND R-336.

These adjustments are located inside the left-hand enclosure of the power amplifier front panel. They consist of two identical variable potentiometers which individually adjust the bias of each modulator tube. Adjust for static cathode current balance of the modulator tubes as indicated on the MULTIMETER M-304. Static cathode current of each tube for 5 kw should be 200 ma (adjust for high power operation) and for lokw should be 200 ma (adjust for high power operation).
3.3.17. BIAS ADJUST, R-208.

This resistor, a wire-wound semi-adjustible resistor is located at the top of the power cabinet relay enclosure. $R-208$ is in the primary of the PA and Modulator bias supply transformer. Adjust this resistor when on low power for approximately 200 ma per tube modulator static plate current.
3.3.18. POWER CHANGE SWITCH, S-103.

Power change switch S-103 is located behind the left door on the front of the cabinet as shown in figure 3-1。A resistor is connected in series with the high voltage to the r-f driver amplifier plate circuit. The power change switch, $\mathrm{S}-103$, is connected to short this resistor for high power operation and remove the short for tuning operation. This switch is for initial tuning and may be used when large corrections of tuning are necessary, otherwise it is always used in the HIGH poweriposition.

3.3.19. FIRST RF BUFFER TANK CIRCUIT TRIMMERS, C-114, C-115.

The first buffer tank circuit trimers, C-114 and C-115, are screwdriver adjustments located bohind the lower right inspection plate。 The location of these two trimmers is shown in figure 3-1. They should be adjusted for maximum grid drive to the 807 rf driver stage. The trimmers are connected in parallel as shown in figure 8-2. One of the trimmers should be adjusted to give a good tuning range with the second trimer.
3.3.20. 807 TANK TRIMMERS, C-125, C-126.

C-125 and C-126, the 807 plate circuit trimers, are screwdriver adjustments located behind the upper right inspection plate. The location of these two trimmers is shown in figure 3-1. They should be adjusted for maximum grid drive to the driver amplifier. The trimmers are connected in parallel as shown in figure 8-2. One of the trimmers should be adjusted to give a good tuning range with the second trimmer. The first trimmer adjustment opening should then be sealed with scotch tape and all adjustments made with the second trimmer.
3.3.21. RF DRIVE CONTROL, R-182.

RF drive control, $R-182$, is a screwdriver adjustment located behind the upper right-hand inspection plate as shown in figure 3-1. It is used to
vary the 807 screen voltage in order to regulate the grid drive applied to the $R F$ driver amplifier. Drive control R-182 should be adjusted to hold the $4-125 \mathrm{~A}$ grid current to below 20 ma .

3.3.22. DRIVER CABINET POWER AMPLIFIER TUNING AND LOADING, C-146 and C-147.

The driver amplifier plate circuit tuning and loading controls C-146 and C-147 are located behind the right-hand door on the front of the driver cabinet as shown in figure 3-1. The PA TUNING Control is used to resonate the power amplifier plate circuit. An increase in PA grid current, ance the $\because P A \quad$ grid"circuitiairesonated; 'isnobtained byireducing the capacityr of the "r PA LOADING capacitor, C-147, while simultaneously returning the power amplifier plate circuit to resonance by means of the PA TUNING control. Initial tuning should be done with the driver cabinet POWER CHANGE switch in the LOW position. Recheck these controls for possible reaction after the PA GRID has been tuned.
3.3.23. GRID TUNING, C-3D1.

This control is the bottom knob inside the right-hand enclosure of the power amplifier cabinet front panel. This control tunes the grid circuit of the power amplifier. Tune for maximum indication on the MULTIMETER in the PA GRID CURRENT position. PA grid current should be at least 175 ma and not over 200 ma . for 21 E and 225 to 240 ma for the 21 M in the broadcast band. See test data sheets for short wave band.
3.3.24. POWER AMPLIFIER PLATE TUNING AND LOADING CONIROLS, C-313 and C-320.

The power amplifier plate circuit tuning and loading controls, C-313 and C-320, are located behind the right-hand door on the front of the transmitter cabinet as shown in figure 3-1. The PA tuning controls is useod to resonate the power amplifier plate circuit. An increase in loading is obtained by reducing the capacity of the power amplifier loading capacitor, c-330, while simultaneousi:y returning the power amplifier plate circult to resonance by

- means of the PA tuning control. With a pi-L output network of the type used in the $21 E / \mathrm{M}$ transmitter, any adjustment of the PA loading control will detune the output network and cause the plate current to soar. Care must be exercised to keep the power amplifier tuning at resonance whenever the PA loading control is adjusted. The loading should be increased until the rf line current is slightly less than the desired value. The PA tuning control should then be adjusted slightly to the side of resonance that gives an increase in rfine current. The power amplifier plate current will also increase; however, the increase in power to the rf line constitutes'a large proportion of the increase in power to the power amplifier circuit, thus yidelding a higher plate efficiency. Adjust the PA tuning and PA loading controls to the point where the desired amount of rf line current is obtained with the highest operating efficiency. The highest efficiency will always be obtained with the power amplifier plate circuit slightly detuned. Neutralizing capacitor, C-310,... located between the two power amplifier tubes, does not require readjustment.
3.3.25. CRYSTAL SELECTOR SWITCH, S-101.

Crystal selector switch S-101 is located in the center of the area behind the lower right inspection plate as indicated in figure 3-1. The switch shaft is slotted for screwdriver operation. When the switch is turned clockwise the crystal toward the right side of the chassis (as viewed from the front of the transmitter as in figure 7-8) is selected.
3.3.26. CRYSTAL FREQUENCY TRIMMER CONTROLS, C-101, C-102.

Crystal frequency trimmer controls $\mathrm{C}-101$ and $\mathrm{C}-102$ are located behind the lower right inspection plate as indicated in figure 3-1. These two controls provide for small adjustments in the crystal frequency. $\mathrm{C}-10 \mathrm{l}$, the upper control, adjusts the frequency of $Y-101$, the left-hand crystal as seen from the front of the transmitter.
3.3.27. AUDIO DRIVER BIAS ADJUSTMENTS, R-162.AND R-163.

Audio driver bias adjustments $R-162$ and $R-163$ are located behind the upper left inspection plate as indicated in figure 3-1. These two screwdriver adjustments control the amount of negative bias applied to the grids of the individual driver tubes. Turning the controls clockwise increases the amount of bias applied to the tubes. To adjust these two controls, first turn them completely clockwise, then turn the driver plate supply on and alternately adjust one control and then the other 30 ma at a time until 130 ma MODULATOR PLATE CURRENT (driver cabinet) is obtained. Then adjust these controls for minimum distortion when adjusting the transmitter for minimum distortion. The audio driver plate current will normally be 125 to 150 ma .
3.3.28. AUDIO HUM CONTROLS, R-120 AND R-189.

Audio hum controls R-120 and R-189 are screwdriver adjustments. R-120 is located behind the upper right inspection plate of the driver cabinet as shown in figure 3-1. R-189 is located behind the lower left inspection plate. They are variable resistors used to shift the ground point of the driven amplifier filament circuit and the audio driver filament circuit to points which will minimize the hum caused by the ac filament voltages.

In order to adjust audio hum controls R-120 and R-189 inject a 1000 cycle audio signal of sufficient amplitude to modulate the carrier 100 percent. Calibrate a noise meter, remove the modulation, and read the noise level. Adjust audio hum control R-189 f'irst then R-120 to reduce the noise level.

3.3.29 OVERLOAD ADJUST, R-205.

This control is a shaft projecting from the panel of the power cabinet relay enclosure below the large wire-wound resistor $R-208$. Turning this shaft clockwise increases the plate current value at which the plate current overload system will work.

3.3.30. OVERLOAD SELECTOR, S-209.

The overload selector switch, S-209, is a small toggle switch located along the left side of the power cabinet relay enclosure. It selects "two cycle" overload protection in the up position and recycling protection in the dowri position. In the two cycle system, the transmitter power amplifier plate supply will turn off and immediately try to turn on again. If the overload persists, the plate supply will again turn off and lock off.

In the recycling system, the power amplifier plate supply will turn off with the first overload and attempt to turn on at regular short intervals until either the overload is cleared or the power amplifier plate supply is turned off.
3.3.31. OVERLOAD RESET, S-210.

This control is a momentary push-button which is pushed to reset the "two cycle" overload system after the second overload has occured and the transmitter is locked off. Turning the transmitter filaments off will also reset the system but is slower. This push button is located adjacent to the overload pilot lamp.
3.3.32. OVERLOAD INDICATOR PILOT LIGHT, I-2O3 (POWER CABINET)

This pilot light lights after permanent overload turns plate supply off.

SECTION IV

THEORY OF OPERATION

4.1. RF SECTION

As a result of major advances in crystal stability and oscillator design, the $21 E / M$ transmitter has eliminated the use of a crystal oven and its associated thermostats, relays and other controls. A highly perfected oscillator design in conjunction with extremely stable, low temperature coefficient crystals has resulted in exceptionally good frequency stability. There are provisions for mounting two crystals on the rf chassis, with one of the two always available in a stand-by condition. Crystals are easily selected by means of the crystal selector switch located behind the right-hand control panel.

All rf circuits of the $21 E / \mathrm{M}$ transmitter are extremely straightforward and trouble free. A 6AU6 oscillator and 6SJ7 buffer are followed by an 807 which drives parallel 4-125A tubes in the driver amplifier. The driver amplifiers excite a pair of parallel $3 \times 2500 \mathrm{~A} 3$ power amplifier tubes in the 2lM. The oscillator, buffer and rf driver plate circuits are contained within shielded plug-in units located behind the right front access door of the driver cabinet. For frequencies in the $A M$ broadcast band, the oscillator employs a resistive load. As the $21 E / M$ transmitter is also available for high frequency applications, provisions are included for replacing the resistor with a tuned tank circuit for frequency doubling. A frequency monitor connection is brought out from the grid circuit of the driver amplifier.

The rf output network consists of a pi section followed by an Lection and is designed to feed into impedances between 50 and 72^{*} ohms. Harmonics are greatly attenuated in this network. There is a minimum of fundamental frequency loss between the power amplifier and transmission line. Coil L-307 acts as a static drain and as a voltage source for feeding the modulation monitor. This coil is connected from the output end of the L section to ground.

4.2. AUDIO SECTION

The first audio stage employs pentode-connected 6SJ7 tubes in push-pull class A amplifiers. The input to the audio system consists of a terminating pad that feeds the primary of the audio input transformer. Type 4-125A tubes are used in the push-pull Class A audio driver. The 4-125A audio drivers are resistance coupled to the grids of a pair of $3 \times 3000 \mathrm{~A}-1$, push-puli, Class AB_{1} modulator tubes. Approximately 12 db of feedback is provided from plates of the modulator tubes to grids of the first audio stage.
*Other impedances are available on special order.

4.3. POWER SUPPLIES

The modified $300 J$ driver unit has separate power supplies for high voltage, low voltage and bias. The high voltage supply employs two type 872A half wwave mercury vapor rectifiers in a single-phase, full-wave circuit. It supplies de voltage for the plates of the audio drivers and the plates and screens of the rf driver tubes. The low voltage supply uses two type 866A half-wave mercury vapor rectifiers in a single phase full-wave circuit to provide de voltage for plates and screens of the low power stages and for screens of the audio driver tubes. The bias supply employs a 5U4G high vacuum rectifier in a single-phase, full-wave circuit. It supplies bias to the 807 amplifier audio driver, and rf driver amplifier tubes.

Overload protection is provided by magnetically operated circuit breakers associated with the filament and plate switches, and by fuses in the primaries of the filament, low voltage, and bias transformers. Opening of any of the above mentioned magnetic circuit breakers will result in the plate power being removed from the power amplifier and modulation stage.

A thermal time delay is included in the control circuit to prevent application of plate voltage before the filaments reach operating temperature. A unique feature of this circuit is its ability to automatically select the proper time delay interval after short power interruptions. Instantaneous interruptions cause no delay in returning to the air.

Dual interlocks, both electrical and mechanical in nature, are incorporated on each of the rear doors to provide double protection to personnel. The electrical interlocks, which are of the split V type, open primary circuits of the high and low voltage transformers whenever the rear doors are opened. The mechanical interlocks close after the electrical interlocks have opened the primary circuits. The power supplies essential for operation of the RF power amplifier and modulator stages consist of a bias supply and a high voltage plate supply.

The bias supply consists of a rectifier filament transformer, T-202, which is excited simultaneously with application of transmitter filament power, a full-wave plate transformer, T-203 which is excited upon application of plate power to the driver cabinet, a pair of 866 A rectifiers and a suitable choke input filter. A variable resistor, $R-208$, in the primary lead of T-2.03 is shorted out by contacts of bias change relay K.-205, when the transmitter is operating high power. R-335 and R-336 select the bias needs for the modulators in highopower operation and R-208 in low-power operation. (See figure 4-1). The value of bias for the RF power amplifier tubes is pre-determined by voltage divider $R-338$ and $R-339$. The maximum output voltage of this supply is minus 1200 volits.

The high voltage supply employs a three phase bridge rectifier arrangement with the secondary of the high voltage transformer connected in a delta configuration and the primary connected in a delta connection for high power and a Y connection for low power. The change being accomplished by $S-207$.

Six 872 A (21E) or six 575A (21M) mercury vapor rectifier tabes are used in the bridge circuit. A choke input filter consisting of L-202, C-201, C-202, C-203 and C-204 is used in the 21E. In the 21M, a choke L-203 is paralleled with L-202 and capacitors C-354, C-355 and C-356 are added.

Whenever the rear doors of the power cabinet are opened, the high voltage and the bias supplies are disabled by interlock switch S-201 and the high voltage leads from plate transformer T-204 are shorted to ground by S-204 and S-205, also the filter capacitors are shorted by S-203 and the bias supply filter is shorted by S-202. Whenever the PA cabinet rear doors are opened, the high voltage supply is disabled by S-301 and S-302, the high voltage filter capacitors are shorted by S-308 and S-309, and the bias supply filter is shorted by S-307 and $\mathrm{S}-310$. These interlocks and shorting switches are similar in construction to those on the driver cabinet.

Overload protection is provided by magnetically operated circuit breakers in the filament, blower and plate input lines. These breakers also function as switches. In addition, each filament transformer and the bias plate transformer is protected by a suitable fuse. The power amplifier and modulator tubes and circuits are also protected by means of a plate current overload relay which is equipped with manual or automatic reset. See paragraph 4.5.

4.3.1. PRIMARY CIRCUITS.

a. FIIAMENT. (See figure 4-1) T-201, FILAMENT ADJUST is a 3 phase, 230 v , adjustable autotransformer used to adjust the primary voltage to all the filament transformers in the $21 E / M$ transmitter.

The filament transformers of the driver cabinet are excited from phase 1 and 2 of $T-201$. The filament transformers of the remainder of the $21 E / M$ are excited from all three phases of T -201, the load being equally divided between each phase as nearly as possible. The secondary of T-201 connects to the primaries of the filament transformers through suitable protective fuses. The primary of T-201 connects to the 230 volt 3 phase input line through filament relay K. 303 and FILAMENT breaker switch S-305. Filament relay K-303 closes after CONTROL switch S-106 of the driver cabinet and BLOWER switch S-303 have been thrown ON to start the tube cooling blower B-301. Blower B-301 actuates air interlock switch S-304 which closes the relay coil circuit to energize filament relay $\mathrm{K}-303$. (See figure 4-2). The contacts of $\mathrm{K}-305$ keep the blower turned on during the time the filament contactor is energized and because of the time delay feature of this relay these contacts keep the blower turned on for 3 to 5 minutes after the filament contactor is de-energized. This insures that the tubes will not be damaged because of a delayed rise in temperature when the transmitter is shut down.
b. PLATE. (See figure 4-1) The 3 phase 230 volt current to excite plate transformer $T-204$ flows first through HV BREAKER switch S-208 then through high voltage contactor $\mathrm{K}-204$ and through HV-LV switch S-207. S-207 connects the primary of plate transformer T-204 in a delta configuration for high power and in a " y " configuration for low power. Paragraph 4.4.1. explains the circuit to get high voltage contactor K-204 energized.

Plate transformers $T-108$ and $T-110$ of the driver cabinet are excited by 230 v single phase current from the power source (terminals 1 and 2 of $\mathrm{E}-201$) through PLATE ON-OFF switch S-107 (driver cabinet) and plate relay K-102. Paragraph 4:4.1. explains how K-102 is energized.

4.4. CONTROL CIRCUITS.

4.4.1. PLATE POWER CONTROL. (See figure 4-3) The plate power supplies are interlocked with the filament supplies so that it is impossible to turn any plate supply on unless the filaments have been first turned on. The PA plate supply is interlocked with the driver plate supply so that the driver plate supply must be turned on before the PA plate can be turned on. Other interlocks include: door interlocks, overload interlock and cooling blower interlock.

Assume that all the filament, plate and blower switches are turned ON , the door interlocks are all closed and power is applied to E-2Ol.

The current path from terminal 3 of Blower switch S-303 through the coil of K-301, the air interlock S-304 to terminal 4 of S-106 turns on the blower Contactor K-301 which starts the tube blower motor B-301. The air stream from B-301 causes the foreward contacts of S-304 to close and energize filament contactor K-303 to light up all tube filaments and energize filament interlock relay K-304. Simultaneously with the above action, the heater of time delay relay $K-101$ is energized by the current from terminal 3 of filament switch S-106 through the heater of K-101, relay time adjust R-171, and R-173 to terminal 4 of S-106. After a pre-determined period, contacts 5 and 7 of $\mathrm{K}-101$ close, and by means of the circuit from terminal 7 of $\mathrm{K}-101$ through door interlocks S-108, S-109, $S-201, S-301, S-302$, and filament interlock relay $\mathrm{K}-304$ to the coil of plate relay $\mathrm{K}-102$, energizes plate contactor $\mathrm{K}-102$. Contacts 5 and 6 of $\mathrm{K}-102$ are in parallel with contacts 5 and 7 of time delay relay K-101 to insure a positive contact through K-101. The power to excite plate transformers $T-108$ and $T-110$ in the driver cabinet is drawn from contacts 8 and 4 of plate contactor K-102 after this relay is closed by the above described circuit. These same contacts now furnish power to set the PA and modulator plate supply relay system in motion. Plate contactor K-204 is operated through closing of contacts 1 and 2 of the motor driven overload recycling relay K-202. The current path for starting the motor of $\mathrm{K}-202$ is from terminal 4 of K-102 to terminal 3 of K-202 and from terminal 8 of K-102 through contacts 4 and 5 of plate contactor $\mathrm{K}-204$ to terminal 4 of $\mathrm{K}-202$. Contacts 5 and 6 of $\mathrm{K}-202$ are hold contacts to keep $\mathrm{K}-202$ running after $\mathrm{K}-204$ has operated. Once the motor of $\mathrm{K}-202$ is started, contacts 1 and 2 close and energize plate contactor K-204. The circuit from terminal l of plate contactor K-204 goes through contacts 7 and 6 of lockout relay $\mathrm{K}-203$, contacts 3 and 4 of plate overload relay $\mathrm{K}-201$ to terminal 4 of plate contactor $\mathrm{K}-102$. The circuit from terminal 2 of K-204 goes through contacts 1 and 2 of overload recycling relay $\mathrm{K}-202$ to contact 8 of $\mathrm{K}-102$. Contacts 3 and 4 of plate contactor $\mathrm{K}-204$ are in parallel
with contacts 1 and 2 of K-202 and hold K-204 operated after K-202 has cycled and turned off when contacts 5 and 6 of $\mathrm{K}-202$ have opened. Opening any door or turning off any filament, blower or plate switch (except S-208) will de-energize plate contactor K-204.

4.5. OVERLOAD CIRCUIT

4.5.1. LOCK OUT CYCLE. Assume that the transmitter is turned on and operating normally. Set OVERLOAD SELECTOR switch S-209 to the position shown in figure 4-4 for LOCK OUT operation. An overload in the HV plate circuit sufficient to operate plate overload relay K-201 will open the plate contactor K-204 coil circuit at contacts 3 and 4 of K-201. The plate contactor K-204 will turn off the HV plate supply but contacts 4 and 5 of $\mathrm{K}-204$ will close and start the motor of overload recycling relay K-202. (See figure 4-5) K-202 will repeat the turning on cycle described above in paragraph 4.4.1. to again close plate power contactor K-204. If the overload still persists, plate overload relay K-201 will again pulse and open the coil circuit of $\mathrm{K}-204$ at contacts 3 and 4 of $\mathrm{K}-201$. Also, contacts 5 and 6 of $\mathrm{K}-201$ energize lock out relay $\mathrm{K}-203$ through contacts 1 and 2 of $\mathrm{K}-202$ which then breaks the coil circuit of plate contactor K-204 at contacts 6 and 7 of K-203. K-203 locks by virtue of contacts 3 and 4 of $\mathrm{K}-203$ which connect the coil of $\mathrm{K}-203$ through S-210, S-209 and contacts 4 and 5 of $\mathrm{K}-204$ to terminal 8 of plate contactor K-102. The overload system can be reset by pressing S-210 which releases the lock-out relay $\mathrm{K}-203$.
4.5.2. RECYCLING. Assume that the transmitter is turned on and operating normally and overload selector switch S-209 is in the position opposite to that shown in figure 4-4. An overload in the PA plate circuit sufficient to operate plate overload relay K-201 will open the coil circuit of plate contactor K-204 at contacts 3 and 4 of K-201 turning the plate supply to the PA and modulator off. The turn-on cycle will attempt to turn the plate supply on again but if the overload persists, K-201 will again open the coil of $\mathrm{K}-204$ and contacts 4 and 5 of plate contactor $\mathrm{K}-204$ will complete the motor circuit of $\mathrm{K}-202$ which will lock in and run to close contacts 1 and 2 of $\mathrm{K}-202$. Lock out relay $\mathrm{K}-203$ will be energized by the circuit from $\mathrm{K}-203$ terminal 2 through 5 and 6 of $\mathrm{K}-201$, 1 and 2 of $\mathrm{K}-202$ to terminal 8 of $\mathrm{K}-102$. Lock out relay K-203 will then lock because of the circuit from terminal 2 of $\mathrm{K}-203$ through $\mathrm{K}-203$ contacts 3 and 4 , $\mathrm{S}-210, \mathrm{~S}-209$, contacts 1 and 2 of $\mathrm{K}-202$ to terminal 8 of $\mathrm{K}-102$. The lock out relay will prevent operation of plate contactor $\mathrm{K}-204$ until the overload cycling relay K -202 makes a complete cycle and opens the lock out relay coil at contacts 1 and 2 of $\mathrm{K}-202$. The motor of $\mathrm{K}-202$ continues to turn because of contacts 4 and 5 of $\mathrm{K}-204$ and the turnon cycle (paragraph 4.4.1.) tries to turn the PA plate voltage on again. If the overload persists the above cycle will repeat and keep repeating until the overload is cleared or the transmitter is manually turned off.

Figure 4-1. Primary Power Circuıts.

Figure 4-2. Filament Control Circuits.

Figure 4-4. PA. Plate Control Circuits -Normal.

Figure 4-5. PA Plate Control Circuit, Relay Positions Shortly after Overload.

SECTION 5

MAINTENANCE

This transmitter has been constructed of materials considered to be the best obtainable for the purpose and has been carefully inspected and adjusted at the factory in order to reduce maintenance to a minimum. To insure peak performance and prevent failure or impairment of operation, adhere to a definite schedule of periodic checks and maintenance procedures.
5.1. ROUTINE:MAINTENANCE

5.1.1. CLEANING.

a. GENERAL. The greatest enemies to uninterrupted service in equipment of this type are dirt and corrosion. Corrosion is accelerated by the presence of moisture and dust. In certain localities it is impossible to keep moisture out of the equipment, but dust can be periodically removed by means of a soft brush or a dry oilfree jet of air. There is always a slight accumulation of dust in the vicinity of high voltage circuits. Remove dust as of ten as a perceptible quantity accumulates at any point in the equipment. It is very important to keep the moving parts such as tap switches free of dust in order to prevent undue wear. In general, it will be found that tap switch contacts, tube prongs, and cable connectors are most affected by corrosion. When the equipment is operated near salt water or in other corrosive atmospheres, switches, cables, plugs, and other parts should be inspected and cleaned more frequently in order to keep the equipment in operating condition.

Check all connections at least once each month. Tighten any nuts, bolts, or screws that may have become loose. The contacts of cable connectors should be checked to insure clean, firm mechanical and electrical connections. Interlock switches should be inspected and cleaned weekly. Moving parts such as tuning controls should be checked regularly for excessive wear.
b. PA CABINET AIR FILTER. Two types of filters are available for use with the transmitter. Both may be cleaned and re-used.

To remove the filter, remove the filter top retainer strip from the rear of the cabinet, slide the filter to one side and lift it out the rear of the cabinet.

To clean the filter with the aluminum filler (009122700) use a vacuum cleaner to remove the larger quantity of dust or tap the filter gently on the floor to dislodge the dust. Then run tap water from the dirty side through the filter under slight pressure or swidh the filter in a container of mildly soapy water. After the filter is completely dried, recharge it by spraying the filler with R-P Hand Koter fluid from the hand spray container obtained from the manufacturer of the filter.

To clean the filter wifth the steel or the bronze filler, remove the heavy dust deposit with a vacuum cheaner then swish the filter around in a container of carbon tetrachloride. After the filter is reasonably dry, lower it into a container of \#l0 motor oil, remove it and let it drain. This completes the cleaning and recharging.
c. PA AND MODULATOR TUBES. Once every week, remove the PA and modulator tubes and clean the accumulated dust from the cooling fins. To do this direct a blast of clean, dry air through the fins from the top of the tube At this time check to see that the filament cooling hoses are clean and clear of the sidewall.

CAUTION

When replacing the tubes see that they seat properly to prevent air leaks. Be sure the hold-down clip is on to insure good electrical connection. See paragraph 2.4.2.r.
5.1.2. LUBRICATION. The bearings and pulleys on each flexible condenser drive cable should be lubricated at two points with SAE 30 oil at least once each month.

The bearings of the two ventilating fans are sealed in oil and do not require lubrication.

The PA cabinet blower motor employs wool-packed bearings. Fill the oil cups with SAE \#lO motor oil upon installing the blower, then check the bearings for heat at one week intervals and establish a schedule. Maintain this schedule thereafter.
5.1.3. ROUTINE TUBE MAINTENANCE. Do not abuse tubes by operating them above their ratings. Keep a record of the length of time the tubes are in use. A check on the emission of all tubes should be made at least every 1000 hours of service. Replace tubes that have been in service for a long time. Spare, pre-agel, mercury vapor rectifier tubes should be available for immediate re. placement purposes. In order to have these tubes ready for emergency use they should be placed in the equipment during off-the-air hours and run for twenty minutes with only the filaments lighted. This will remove the mercury coating from the tube elements. The tubes should then be carefully removed from the equipment and stored in an upright position in a place where there is no possibility that they will be inverted or agitated. When pre-aged tubes are placed in the equipment they should be handled carefully in order to avoid the additional twenty minute waiting period that will be required if mercury is allowed to come in contact with the tube elements.

5.2. TROUBLE SHOOTING.

The most frequent cause of trouble in equipment of this type is tube failure. Check the tubes by replacing them with tubes that are known to be good and noting any change of performance. Low emission tubes may be the cause of erratic or poor performance of the equipment. If there is any doubt concerning the emission of a tube, it should be checked. Thbe failure may
cause distortion or hum. A tube suspected of causing this difficulty may be checked'by replacing it with a tube that is known to be in good condition.

If the transmitter fails to start, circuits should be checked in the order in which they are made operative. The Primary Control Circuit Diagram, figure $4-1$, should be of assistance in locating trouble in the primary circuits. Table 3-1, Typical Meter Readings, and Table 5-1, Typical Voltages and Currents, are supplied as a reference of typical voltages and currents in an average $21 \mathrm{E} / \mathrm{M}$ transmitter. A list of typical readings of all panel meters of the individual transmitter should be made as an aid to rapid trouble shooting.

5.3. ADJUSTMENTS.

5.3.1. AIR INTERLOCK SWITCH, S-304. This switch is located in the PA cabinet below and to the rear of the grid tuning box. Remove the lower rear panel from the PA cabinet. Loosen the two bolts that mount the switch to the mounting bracket. Turn the blower breaker only on and adjust the switch forward or backward in the mounting slots until the air pressure in the canvas duct will throw the switch. Operation of the switch can be checked by manipulating the switch arm with the fingers. Tighten the mounting bolts and turn the blower breaker off. Check to see that $\mathrm{S}-304$ snapped back.

CAUTION

Do not turn the filament breaker or any other breaker on during the adjustment procedure.
5.3.2. BLOWER HOID RELAY, K-305. The time delay action of K-305 is produced by air entering a bellows through a small adjustable orifice. Excessive dust in the air may have a detrimental effect on the operation of this relay. Should the time delay period repeatedly get shorter, the relay should be removed from the transmitter and an inspection be performed to locate air leaks.
5.3.3. OVERLOAD RECYCLING RELAY K-202. This unit consists of a pair of snap switches operated by a motor driven cam. See figure 3-1. The right hand switch contains contacts 5 and 6 which must close before contacts 1 and 2 (in the left hand switch) and must break after contacts 1 and 2 . In addition, the roller arm of contacts 5 and 6 must ride up off of the cam valley for enough to prevent motor momentum from reclosing the switch immediately after completion of the cycle. The holes in which the two switches are mounted are slotted at a slight angle so that by loosening the mounting screws the switches may be moved slightly in any direction.

5.4. REPLACEMENT OF PARTS.

5.4.1. METERS. To replace a meter the entire meter panel must be removed. Access to the four meter panel retainer screws may be had through the front tube viewing windows.

First, remove the window glass then reach through the window opening and remove the heavy strap connections from the rear of the $R F$ and plate current meters. Disengage the meter panel connector and then remove the four panel mounting screws. Carefully lower and remove the meter panel.
5.4.2. CIRCUIT BREAKERS. The circuit breakers of the driver and PA cabinets are inaccessible from the rear but they are not difficult to replace. This operation requires the services of two men. While one man is supporting the breaker by its connecting wires from the rear the other man should remove the breaker front panel mounting screws. When the screws are removed, lower the breaker and remove the wires. Connect the new breaker and shove it back up in place then have the other man insert and tighten the panel screws.

5.5. ORDERING REPIACEMENT PARTS.

When ordering replacement parts for any Collins equipment, address the Sales Service Department, Collins Radio Company, Cedar Rapids, Iowa Be sure to state the type and serial number of the equipment, the item number and part number of the part required (obtain item numbers and part numbers from the parts list), and the quantity desired. Additional information on ordering replacement parts is included in the guarantee inside the front cover of this book.

Table 5-1. TUBE VOLTAGE \& CURRENT MEASUREMENTS
21M

21M

Symbol Designation	Tube Type	Function :	Normal Operating Characteristics
		Power Supply Section	
			Output from Filter
V-112	$5 \mathrm{~S}^{4} \mathrm{G}$	Bias Rectifier, single phase, full wave, choke input	100 volts
			100 ma
			Output fram Filter
$\mathrm{V}-115, \mathrm{~V}=116$	866A	Low voltage, rectifier, single phase, full wave, choke input	530 volts
			, 250 ma
			Output from Filter
$V-113, V-114$	872A	Intermediate voltage rectifier, single phase, full wave, choke input	2700 volts
			, 360 ma
			Output from Filter
V-201, V-202	866A	Modulator \& R.F. Amplifier, bias voltage, single phase, full wave, choke input	- 1100 volts
			, 200 ma
			Output from Filter
$\begin{aligned} & \text { V-204 thru } \\ & \text { V-208 } \end{aligned}$	575A	High voltage rectifier, three phase, full wave, choke input	, 5000 volts
			5.5 Amps
		Audio Section	
V-106, v-107	$6 \mathrm{SJ7}$	Audio amplifier, Pentode connected, Push-pull, Class A	Plate Voltage 300 volts Plate Current 2 ma per tube
v-110, v-111	4-125A	Audio driver amplifier Push-pull, Class A	Plate Voltage 2700 vol Cathode Current 125 ma
			11000 watts 5500 watts
$v-303, v-304$	$3 \times 3000 \mathrm{Al}$	```Modulator, Push-pull, Class ABl```	```Cathode current, 0.4 Amp 0.4 Amp 2 tubes, O signal. Cathode current, 2.5 Amp 1.5 Amp 2 tubes, 100% modulation at 1000 cps.```

21E

$\begin{aligned} & \text { Symbol } \\ & \text { Designation } \end{aligned}$	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Normal Operating Characteristics		
		R.F. Section			
V-101	6AU6	Crystal Oscillator Pierce Circuit	Plate Crystal Current Cathode Current	$\begin{aligned} & 270 \mathrm{volts} \\ & 1.8 \mathrm{ma} \\ & 4 \mathrm{ma} \end{aligned}$	
V-102	$6 \mathrm{SJ7}$	Buffer Amplifier Class C	Plate Voltage Screen Voltage Grid Current Cathode Current	$\begin{aligned} & 280 \text { volts } \\ & 130 \text { volts } \\ & 0.1 \mathrm{ma} \\ & 6.5 \mathrm{ma} \end{aligned}$	
V-103	807	Intermediate Amplifier Class C	Plate Voltage Screen Voltage Grid Current Cathode Current	$\begin{aligned} & 530 \text { volts } \\ & 130 \text { volts } \\ & 1 \mathrm{ma} \\ & 75 \mathrm{ma} \end{aligned}$	
V-104, V-105	4-125A	R.F.Driver Amplifier Class C (Parallel Operation)	Plate Voltage Screen Voltage Plate Current Grid Current	$\begin{aligned} & 2700 \text { volts } \\ & 220 \text { volts } \\ & 100 \mathrm{ma} \\ & 22 \mathrm{ma} \end{aligned}$	
			5500 watts 1100 watts		
V-301	3X2500A3	Final Amplifier Class C	Plate Voltage Plate Current Grid Current tion	$\begin{array}{ll} 5100 \mathrm{~V} & 2900 \mathrm{~V} \\ 1.3 \mathrm{~A} & 0.48 \mathrm{~A} \\ 220 \mathrm{ma} & 200 \mathrm{ma} \end{array}$	
		Power Supply Section			
					Output from Filter
V-112	5U4 ${ }^{\text {a }}$	Bias Rectifier, singl phase, full wave, chok input		$\begin{aligned} & 100 \text { volts } \\ & 100 \mathrm{ma} \end{aligned}$	
				Output from Filter	
V-115, v-116	866A	Low voltage, redtifier, single phase, full wave, choke input		$\begin{aligned} & 530 \text { volts } \\ & 250 \mathrm{ma} \end{aligned}$	
				Output from Filter	
V-113, V-114	872A	Intermediate voltage rectifier, single phase, full wave, choke input		$\begin{aligned} & 2700 \text { volts } \\ & 360 \mathrm{ma} \end{aligned}$	

$21 E$

Symbol Designation	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Normal Operating Characteristics
			Output from Filter
V-201, V-202	866A	Modulator \& R.F. Amplifier, bias voltage, single phase, full wave choke input	```1100 volts 220 ma Output from Filter```
$\begin{aligned} & \mathrm{V}-204 \text { thru } \\ & \mathrm{V}-208 \end{aligned}$	872A	High voltage rectifier, three phase, full wave, choke input Audio Section	$5000 \text { volts }$ 3.0 Amps
v-106, v-107	6SJ7	Audio amplifier, Pentode connected, Push-pull, Class A	Plate Voltage $\quad 300$ volts Plate Current $\quad 2$ ma per tube
V-110, V-111	4-125A	Audio driver ampli- fier, Push-pull, Class A	Plate Voltage 2700 volts Cathode Current 125 ma $5500 \text { watts } \quad 1100 \text { watts }$
V-303, V-304	$3 \times 3000 \mathrm{Al}$	Modulator, Push-pull, Class ABl	```Plate Voltage 5l00 V 2900 V Cathode current, 0.4 Amp 0.3 Amp 2 tubes, O signal. Cathode current, 1.45 Amp 0.65 Amp 2 tubes, 100% modulation at 1000 cps```

21-E OUTPUT TANK COMPONENIS CHART

50-70 Ω RESISTIVE LOAD

KC	L305	L306	C314	c315	C316	C321	C322	C323
$\begin{aligned} & 550- \\ & 600 \end{aligned}$	$\begin{gathered} 980-0062-00 \\ 120 \text { uh } \end{gathered}$	$\begin{gathered} 980-0053-00 \\ 26 \mathrm{uh} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmi} \end{gathered}$	$\begin{gathered} y 19-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{array}{\|l} 939-1040-00 \\ 2000 \mathrm{mff} \end{array}$	$\begin{aligned} & 939-1040-00 \\ & 2000 \mathrm{mf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$
$\begin{aligned} & 600- \\ & 650 \end{aligned}$	$\begin{gathered} 980-0062-00 \\ 120 \text { uh } \end{gathered}$	$\begin{gathered} 980-0053-00 \\ 26 \text { uh } \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{aligned} & 919-0033-00 \\ & 250 \quad \mathrm{mmf} \end{aligned}$	Out	$\begin{aligned} & 939-1040-00 \\ & 2000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1040-00 \\ & 2000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$
$\begin{aligned} & 650- \\ & 800- \end{aligned}$	$\begin{gathered} 980-0062-00 \\ 120 \text { uh } \end{gathered}$	$\begin{gathered} 980-0053-00 \\ 26 \mathrm{uh} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{aligned} & 919-0033-00 \\ & 250 \mathrm{mmf} \end{aligned}$	Out	$\begin{aligned} & 939-1040-00 \\ & 2000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$
$\begin{aligned} & 800- \\ & 900- \end{aligned}$	$\begin{aligned} & 980-0063-00 \\ & 60 \mathrm{uh} \end{aligned}$	$\begin{gathered} 980-0053-00 \\ 26 \mathrm{uh} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	Out	$\begin{aligned} & 939-1040-00 \\ & 2000 \mathrm{mf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$
$\begin{array}{r} 900- \\ 1100- \end{array}$	$\begin{gathered} 980-0063-00 \\ 60 \text { uh } \end{gathered}$	$\begin{aligned} & 980-0053-00 \\ & 26 \mathrm{uh} \end{aligned}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	Out	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$
$\begin{aligned} & 1100- \\ & 1600- \end{aligned}$	$\begin{aligned} & 980-0063-00 \\ & 60 \mathrm{uh} \end{aligned}$	$\begin{gathered} 980-0053-00 \\ 26 \text { uh } \end{gathered}$	$\begin{gathered} 919-0033-00 \\ 250 \mathrm{mmf} \end{gathered}$	Out	Out	$\begin{gathered} 939-1033-00 \\ 1000 \mathrm{mmf} \end{gathered}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$	$\begin{aligned} & 939-1033-00 \\ & 1000 \mathrm{mmf} \end{aligned}$

NOTE: C323 in or out as required to obtain desired loading

TABLE 5-3
2.1-E GRID TANK COMPONENTS CHART

KC	L301	C302, C303	C304	C305
$550-640$	$980-0076-00$ 60 uh	$906-3801-10$ 800 mmf	$906-3401-10$ 400 mmf	$906-3401-10$ 400 mmf
$640-840$	$980-0076-00$ 60 uh	$906-3801-10$ 800 mmf	$906-3401-10$ 400 mmf	Out
$840-970$	$980-0076-00$ 60 uh	$906-3801-10$ 800 mmf	Out	Out
$970-1320$	$980-0076-00$ 60 uh	$906-3401-10$ 400 mmf	Out	Out
$1320-1600$	$980-0076-00$ 60 uh	Out	Out	Out

TABLE 5-4
21-M OUTPUT TANK COMPONENTS CHART
50-70 Ω RESISTIVE LOAD

TABLE 5-5
2l-M GRID TANK COMPONENTS CHART

Frequency KC	L301	C302, C303	C304	C305
$550-650$	$980-0076-00$ 60 uuh	$906-3801-10$ 800 uuf	$906-3401-10$ 400 uuf	$906-3401-10$ 400 uuf
$650-850$	$980-0076-00$ 60 uuh	$906-3801-10$ 800 uuf	$906-3401-10$ 400 uuf	Out
$850-950$	$980-0076-00$ 60 uuh	$906-3801-10$ 800 uuf	Out	Out
$950-1350$	$980-0076-00$ 60 uuh	$906-3401-10$ 400 uuf	Out	Out
$1350-1600$	$980-0076-00$ 60 uuh	Out	Out	Out

SECTION VI
TABLE 6-1
PARTS LIST

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
B-101	Ventilating Fan	VENTILATING FAN: 8 inch ventilating fan and guard assembly 230 v	230016400
C-101	Crystal frequency trimmer for Y-lOl	CAPACITOR: Variable, 7.5 mmf to 102.7 mmf	922002800
C-102	Crystal frequency trimmer for Y-102	CAPACITOR: Variable, 7.5 mmf to 102.7 mmf	922002800
C-103	Feedback capacitor for V-l01	CAPACITOR: Mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 3500 WVDC	914001900
C-104	$\begin{aligned} & \text { Cathode by-pass } \\ & \text { capacitor for V-101 } \end{aligned}$	```CAPACITOR: Mica,.Ol mf p/m 5%, 500 WV```	910110310
C-105	Screen by-pass for V-101	CAPACITOR: Mica, $150 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 500 WVDC	935011400
C-106	Coupling capacitor V-101 to V-102	```CAPACITOR: Mica, 5100 mmf p/m 5%, 500 WVDC```	935210500
C-107		Not Used	
C-108		Not Used	
C-109	Multimeter by-pass Buffer grid, 2.5 ma position	$\begin{aligned} & \text { CAPACITOR: Mica, . } 01 \mathrm{mf} \mathrm{p} / \mathrm{m} 5 \% \text {, } \\ & 500 \mathrm{WV} \end{aligned}$	910110310
C-110	Plate decoupling capacitor for V-101	```CAPACITOR: Mica,. . }01\textrm{mf p/m 5%, 500 WV```	910110310
C-111	Cathode by-pass capacitor for V-102	$\begin{aligned} & \text { CAPACITOR: Mica, . } 01 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \% \text {, } \\ & 500 \mathrm{WV} \end{aligned}$	910110310
C-112	Screen by-pass capacitor for V-102	$\begin{aligned} & \text { CAPACITOR: Mica, . } 01 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \% \text {, } \\ & 500 \mathrm{WV} \end{aligned}$	910110310
C-113	Plate tank padding capacitor for V-102	CAPACITOR: Mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \%$, 500 WVDC ($p / 0 \mathrm{~T}-102$)	912049500
$\begin{gathered} C-114 \\ \text { and } \\ C-115 \end{gathered}$	```Plate tank trimmer capacitor for V-102```	```CAPACITOR: Double, Variable, 5-10 mmf min to 100-105 mmf max (p/o T-102)```	922480000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-116	Compensating capacitor grid to cathode of V-103	CAPACITOR: Ceramic, $20 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	916442000
C-117		Not Used	
C-118		Not Used	
C-119	Coupling capacitor V-102 to V-103	CAPACITOR: Mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{5} \mathrm{\%}$, 500 WVDC	1935210500
C-120	Plate decoupling capacitor for V-102	CAPACITOR: Mica, . $01 \mathrm{mf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
C-121	Multimeter by-pass capacitor for 807 Grid, 25 ma position	CAPACITOR: Mica, . $01 \mathrm{mf} \mathrm{p/m} \mathrm{5} \mathrm{\%}$, 500 WV	910110310
C-122	Screen by-pass capacitor for V-103	CAPACITOR: Mica, . Ol mf $\mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
C-123	Screen by-pass capacitor for V-103	CAPACITOR: Mica, . $01 \mathrm{mf} \mathrm{p/m} \mathrm{5} \mathrm{\%}$, 500 WV	910110310
C-124	Plate tank padding capacitor for V-103	CAPACITOR: Mica, $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \%$, 500 WVDC ($\mathrm{p} / 0 \mathrm{~T}-103$)	912049500
$\begin{gathered} C-125 \\ \text { and } \\ C-126 \end{gathered}$	Plate tank trimmer capacitor for V-103	CAPACITOR: Double, Variable, 5-10 $\mathrm{mmf} \min$ to $100-105 \mathrm{mmf} \max (\mathrm{p} / \mathrm{o}$ T-103)	922480000
C-127		Not Used	
C-128		Not Used	
C-129	Plate decoupling capacitor for V-103	CAPACITOR: Mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 3500 WVDC	914001900
C-130	Decoupling capacitor for low voltage stage	$\begin{aligned} & \text { CAPACITOR: Mica, . } 01 \mathrm{mf} \mathrm{p/m} 5 \% \text {, } \\ & 500 \mathrm{WV} \end{aligned}$	910110310
C-131	Neutralizing condenser	CAPACITOR: 7 mmf	
C-132	Coupling capacitor, V-103 to V-104 and V-105	CAPACITOR: Mica, $1000 \mathrm{mmf} \mathrm{p/m} 20 \%$, 3500 WVDC	914001900
C-133	Meter by-pass capacitor, PA Grid, 25 ma position	CAPACITOR: Mica, . $01 \mathrm{mf} \mathrm{p} / \mathrm{m} 500 \mathrm{WV}$	910110310

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-134	Filament by-pass capacitor for V-104	$\begin{aligned} & \text { CAPACITOR: Mica, . } 01 \mathrm{mf} \mathrm{p/m,5} \mathrm{\%,} \\ & 500 \mathrm{WV} \end{aligned}$	910110310
C-135	Filament by-pass capacitor for V-105	```CAPACITOR: Mica,.O1 mf p/m 5%, 500 WV```	910110310
C-136	Filament by-pass capacitor for V-104	```CAPACITOR: Mica, . Ol mf p/m 5%, 500 WV```	910110310
C-137	Filament by-pass capacitor for V-105	```CAPACITOR: Mica, . Ol mf p/m 5%, 500 WV```	910110310
C-138	Screen by-pass capacitor for V-104	```CAPACITOR: Ceramic, 67 mmf p/m 5%, 5000 WV```	913009000
C-139	Screen by-pass capacitor for V-105	```CAPACITOR: Ceramic, 67 mmf p/m 5%, 5000 WV```	913009000
C-140	By-pass capacitor for PA plate current meter M-102	CAPACITOR: Mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WVDC	935210500
C-141	```Plate decoupling capacitor for V-104 and V-105```	CAPACITOR: Ceramic, 500 mmf plus 50% minus 20\%, 20,000 WVDC	913110100
C-142		Not Used	
C-143	Screen by-pass capacitor for V-104	```CAPACITOR: Ceramic, 67 mmf p/m 5%, 5000 WV```	913009000
C-144	Screen by-pass capacitor for V-105	CAPACITOR: Ceramic, $67 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 5000 WV	913009000
C-145	Padder capacitor for PA plate tank Not used above 590 kc	CAPACITOR: fixed, $400 \mathrm{mmf}, 37$ plates	924102100
C-146	PA plate tuning capacitor	CAPACITOR: Variable, air-dielectric; 63 mmf to 337 mmf	920007400
C-147	PA plate loading capacitor	CAPACITOR: Variable, air-dielectric; $840 \mathrm{mmf} \max , 65 \mathrm{mmf} \min$	920011400
*C-148	Padder capacitor PA output network	CAPACITOR: Mica, 800 mmf 5000 WV OR CAPACITOR: Mica, 400 mmf 5000 WV	$\begin{aligned} & 9063801 \quad 10 \\ & 9063401 \quad 10 \end{aligned}$
* Valu	depend upon frequen	of operation.	

ITEM	CIRCUIT FUNCTION		DESCRIPTION	PART NUMBER
*-149	Padder capacitor PA output network	$\begin{aligned} & \text { CAPACITOR: } \\ & 6000 \mathrm{WV} \\ & \text { OR } \end{aligned}$	Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$,	906220810
		CAPACITOR: $5000 \mathrm{WV}$	Mica, $800 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{5} \mathrm{\%}$,	906380110
* C-150	Padder capacitor, PA output network	$\begin{aligned} & \text { CAPACITOR: } \\ & 6000 \mathrm{WV} \\ & \text { OR } \end{aligned}$	Mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{5} \mathrm{\%}$,	906220810
		$\begin{aligned} & \text { CAPACITOR: } \\ & 5000 \mathrm{WV} \\ & \text { OR } \end{aligned}$	Mica, $800 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$,	906380110
		CAPACITOR: $5000 \text { WV }$	Mica, $400 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$,	906340110
* C-151	Padder capacitor, PA output network	CAPACITOR: 5000 WV	Mica, $800 \mathrm{mmf} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	906380110
		OR CAPACITOR: 5000 WV	Mica, $400 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$,	906340110
C-152	Plate decoupling capacitor for V-104 and V-105	CAPACITOR: minus 20\%,	Ceramic, 500 mmf plus 50% 20,000 WVDC	913110100
C-153	By-pass capacitor for multimeter M-10	CAPACITOR: 500 WVDC	Mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{5} \mathrm{\%}$,	935210500
C-154	Not Used	CAPACITOR: 1200 WVDC	Mica, $3300 \mathrm{mmf} \mathrm{p/m} \mathrm{20} \mathrm{\%}$,	1936028300
C-155	Not Used	CAPACITOR: 1200 WVDC	Mica, $3300 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$,	936028300
C-156	$\begin{aligned} & \text { V-106, V-107 screen } \\ & \text { by-pass } \end{aligned}$	CAPACITOR: 600 WVDC	Paper . $1 \mathrm{mf} \mathrm{p/m} \mathrm{10} \mathrm{\%}$,	961511400
C-157		Not Used		
C-158	Coupling capacitor V-108 to V-110	CAPACITOR: 600 WVDC	Paper . $1 \mathrm{mf} \mathrm{p/m} 10 \%$,	961511400
C-159	Coupling capacitor V-109 to V-lll	CAPACITOR: 600 WVDC	Paper . $1 \mathrm{mf} \mathrm{p/m} 10 \%$,	961511400
* Value	depend upon frequend	y of operatio		

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-191	Mod. grid coupling	$\begin{aligned} & \text { CAPACITOR: Plasticon, } 11 \mathrm{mf} \mathrm{p} / \mathrm{m} \\ & 10 \%, 5000 \mathrm{WV} \end{aligned}$	933003300
E-100	Primary power input terminal board	BOARD: 3 terminals	306006900
E-101	```Terminal board connecting modu- lator chassis to power supplies```	BOARD: 11 terminals	367511000
E-102	```Terminal board connecting r-f chassis to power supplies```	BOARD: 11 terminals	367511000
E-103	Audio input terminal board	BOARD: 3 terminals	367403000
E-104	Audio monitoring output terminal board	BOARD: 2 terminals	367402000
F-101	Fuse in primary of bias supply transformer T-106	FUSE: Cartridge, 1 amp 250 v	264428000
F-102	Fuse in primary of high voltage rectifier filament transformer, T-10	FUSE: Cartridge, 1 amp 250 v	264428000
F-103	Fuse in primary of filament transformer, T-109	FUSE: Cartridge, 3 amp 250 v	264000900
F-104	Fuse in primary of low voltage supply transformer	FUSE: Cartridge, 1 amp 250 v	264428000
I-101	Filaments at operating temperature indicator	BULB: Candelabra base, $230-250 \mathrm{v} 10 \mathrm{w}$	262016900
I-102	Lumiline meter panel lamp,illuminates meter panel	```BULB: Lumiline, disc base, 125 VAC RMS, 40 w```	262017000
I-103	Lumiline meter panel lamp,illuminates meter panel	```BULB: Lumiline, disc base, 125 VAC RMS, 40 w```	262017000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
I-104	Plate ON lamp, indicates when high and low voltage is on	BULB: Candelabra base, 230-250 v, 10 w	262016900
J-100	Jack for modulation monitor	CONNECTOR: Receptacle, single female contact	357900500
J-101	Modulator unit connector	CONNECTOR: Receptacle, 4 female contacts	364204000
J-102	Modulator unit connector	CONNECTOR: Receptacle, 8 female contacts	366208000
J-103	RF Chassis connector	CONNECTOR: Receptacle, 8 female contacts	366208000
J-104	Frequency monitor jack	CONNECTOR: Receptacle, single female contact	357900500
J-105	Socket for F-101	HOLDER: Fuse, extractor post for 3AG cartridge fuse	$\mid 265100200$
J-106	Socket for F-102	HOLDER: Fuse, extractor post for 3AG cartridge fuse	265100200
J-107	Socket for F-103	HOLDER: Fuse, extractor post for 3AG cartridge fuse	265100200
J-108	Socket for F-104	HOLDER: Fuse, extractor post for 3AG cartridge fuse	265100200
K-101	Thermal time delay relay provides adequate filament warm-up period	RELAY: 3 amp 150 v DC, 3 amp 250 v AC contacts	402021100
K-102	Plate relay, shunts thermal element in K-101 with resistor, shorts K-101 relay contacts, and completes circuit from S-107 to T-108 and T-110	$\begin{aligned} & \text { RELAY: } 25 \text { amp } 600 \mathrm{v} \text { contacts } 220 \mathrm{v} \\ & \text { coil } \end{aligned}$	401120100
L-101		Not used in Standard Broadcast Band	
L-102		COIL: ($\mathrm{P} / \mathrm{O} \mathrm{T}-102$)	
L-102A	Part of plate tank coil for V-l02	Section of L-102	

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
L-102B	Part of plate tank coil for V-102	Section of L-102	
L-103		Not used in Standard Broadcast Band	
L-104		COIL: (p / O T-103)	
L-104A	Part of plate tank coil for V-103	Section of L-104	
L-104B	Part of plate tank coil for V-103	Section of L-104	
L-105		Not used in Standard Broadcast Band	
L-106	RF choke in B plus lead to V-103	$\begin{aligned} & \text { COIL: RF Choke, } 3 \text { section, } 1 \mathrm{mh} \text {, } \\ & 300 \mathrm{ma} \end{aligned}$	240580000
*L-107	RF choke in B plus lead to V-104 and V-105	COIL: RF Choke, 200 torns \#24 AWG DS wire OR COIL: RF choke, 800 turns \#c.2 AWG wire	571046010 5051460002
*L-108	PA plate tuning coil	INDUCTOR: RF fixed tank, 150 mh	980004100
L-109	L Section inductance	COIL: RF, 30 turns \#10 copper wire	5049624003
L-110	Static drain choke, feeds modulation monitor	COIL: 56 turns, \#22 copper wire	572070030
L-111		Not Used	
L-112	Filter choke, bias voltage supply filter	REACTOR: Filter, 12 hy, 375 ohm DC resistance, 2000 TV	668000400
L-113	Filter choke, bias voltage supply filter	REACTOR: Filter, 12 hy, 375 ohm DC resistance, 2000 TV	668000400
L-114	Filter choke, high voltage supply filter	REACTOR: Filter, 20 hy at 170 ma , 15 hy at $360 \mathrm{ma}, 100$ ohm DC resistance, 7500 TV	668007200
L-115		Not Used	
L-116	Filter choke, low voltage supply fillter	REACTOR: Filter, $8.0 \mathrm{hy}, 85$ ohm DC resistance, 2500 VRMS	678038400
L-117	Filter choke, low voltage supply filter	REACTOR: Filter, 8.0 hy, 85 ohm DC resistance, 2500 VRMS	678038400
* Values	Depend on Frequency	of Operation.	

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
M-101	Meters r-f line current	METER: RF ammeter, 0-3 amp	451008000
M-102	Meters PA plate current	METER: $0-300 \mathrm{ma}$	450009400
M-103	Meters PA plate voltage	METER: $0-1 \mathrm{ma}, 0-4000 \mathrm{~V}$ DC (includes R-169)	458019600
M-104	Multimeter	METER: O-1 ma DC 250 division scale	458017000
M-105	Meters modulator plate current	METER: $0-300 \mathrm{ma} \mathrm{DC}$	450009400
P-100	Plug for modulation monitor	CONNECTOR: RF concentric cable	357901400
P-101	Connects from J-102 to M-104 and M-105	CONNECTOR: Cable	363804200
P-102	```Connects from J-103 to J-104```	CONNECTOR: Cable	1365808000
P-103	```Connects from J-104 to J-103```	CONNECTOR: Cable	365808000
P-104	Plug for frequency monitor	CONNECTOR: RF concentric cable	357901400
R-101	Grid resistor for V-101	RESISTOR: . 1 megohm $\mathrm{p} / \mathrm{m} 10 \%, 1 / 2 \mathrm{w}$	745117000
R-102	Cathode resistor for V-101	RESISTOR: 220 ohm p/m 10\%, 1/2 w	745105800
R-103	Plate load, resistor for V-101	RESISTOR: 10,000 ohm $\mathrm{p} / \mathrm{m} 10 \%, 1 \mathrm{w}$ (p/o T-101)	745312800
R-104	Screen voltage dropping resistor for V-101	RESISTOR: $82,000 \mathrm{ohm} \mathrm{p/m} \mathrm{lo} \mathrm{\%} ,1 / 2 \mathrm{w}$	745116700
R-105	Voltage dropping resistor, V-10l	RESISTOR: . 12 megohm p/m 10\%, 2 w	745517400
R-106	Voltage dropping resistor, V-101	RESISTOR: . 12 megohm p/m 10\%, 2 w	745517400
R-107	Grid resistor, V-102	RESISTOR: . 1 megohm p/m $10 \%, 1 / 2 \mathrm{w}$	745117000
R-108	Multimeter shunt resistor, lst Buffer Grid, 2.5 ma position	RESISTOR: 3900 ohm p/m 10\%, 1/2 w	745111100

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R-109	Voltage divided feeds frequency monitor	RESISTOR: 56,000 ohm p/m 10\%, 2 w	745503400
R-110	Cathode resistor for V-102	RESISTOR: 220 ohm p/m 10\%, 1/2 w	745105800
R-111	Voltage dividing resistor for V-102	RESISTOR: 39,000 ohm p/m 10\%, 1 w	745315300
R-112	Screen voltage dropping resistor, V-102	RESISTOR: 33,000 ohm p/m 10\%, 1 w	745314900
R-113	Voltage dropping resistor, V-102	RESISTOR: 25 ohm p/m lo\%, 10 w	710125420
R-114	Grid resistor, V-103	RESISTOR: 15,000 ohm p/m 10\%, 1 w	745313500
R-115	Cathode resistor, V-103	RESISTOR: 22 ohm p/m lo\%, 2 w	745501600
R-116	Stabilizing resistor V-103	RESISTOR: 47 ohm $\mathrm{p} / \mathrm{m} 10 \%, 1 / 2 \mathrm{w}$	745103000
R-117	Screen voltage dividing resistor, V-103	RESISTOR: $22,000 \mathrm{ohm} \mathrm{p/m} 10 \%, 2 \mathrm{w}$	745514200
R-118		Not Used.	
R-119	Grid resistor, V-104 and V-105	RESISTOR: 15 ohm p/m 20\%, 25 w	710315420
R-120	Audio hum control B	RESISTOR: 50 ohm p/m 10\%, 25 w	735502000
R-121	Audio voltage source for audio monitor	RESISTOR: 12.6 ohm p/m 20\%, 20 w	710004400
R-122	Screen dropping resistor, V-104and V-105	RESISTOR: $2000 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710324100
R-123	Voltage dividing resistor for bias supply	RESISTOR: 15,000 ohm p/m 10\%, 1 w	745313500
R-124	Part of 807 Grid resistance	RESISTOR: $4700 \mathrm{ohm} \mathrm{p/m} \mathrm{lo} \mathrm{\%}$,	745311400
R-125	Shunt resistor for multimeter, 807 Grid, 25 ma position	RESISTOR: 220 ohm p/m lo\%, 1/2 w	745105800

MAJOR ASSEMBLY: 500/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R-126	Shunt resistor for multimeter, PA Grid, 25 ma position	RESISTOR: 220 ohm p/m 10\%, 1/2 w	745105800
R-127	Multimeter series resistor	RESISTOR: 5100 ohm p/m 5\%, 1/2 w	745111600
R-128	Audio input pad	RESISTOR: $200 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}, \mathrm{1/2} \mathrm{w}$	745105600
R-129	Audio input pad	RESISTOR: 200 ohm p/m 5\%, 1/2 w	745105600
R-130	Audio input pad	RESISTOR: 200 ohm p/m 5\%, 1/2 w	745105600
R-331	Audio input pad	RESISTOR: 200 ohm p/m 5\%, 1/2 w	745105600
R-132	Audio input pad	RESISTOR: 220 ohm p/m 5\%, 1/2 w	745105700
R-133	T-104 sec. load	RESISTOR: 68,000 ohm, p/m 10\%, $1 / 2 \mathrm{w}$	745116300
R-134	T-104 sec. load	RESISTOR: 68,000 ohm, p/m 10\%, 1/2 w	745116300
R-135	Not Used	RESISTOR: $10,000 \mathrm{ohm} \mathrm{p} / \mathrm{m} 10 \%, 2 \mathrm{w}$	745913900
R-136	Not Used	RESISTOR: $10,000 \mathrm{ohm} \mathrm{p/m} 10 \%$, 2 w	745913900
R-137	V-106, v-107 Cathode	RESISTOR: $2,700 \mathrm{ohm} \mathrm{p} / \mathrm{m} 10 \%, 1 / 2 \mathrm{w}$	745110400
R-138	$\mathrm{V}-106, \mathrm{~V}-107$ meter shunt	RESISTOR: 220 ohm p/m 5\%, 1/2 w	745105700
R-139	V-106, V-1 07 screen	RESISTOR: .47 megohm p/m lo\%, 2 w	745920900
R-140	V-106 grid return	RESISTOR: $22,000 \mathrm{ohm} \mathrm{p} / \mathrm{m} \mathrm{10} \mathrm{\%}$,	745915300
R-141	V-107 grid return	RESISTOR: $22,000 \mathrm{ohm} \mathrm{p} / \mathrm{m} 10 \%, 2 \mathrm{w}$	745915300
R-142		Not Used	
R-143		Not Used	
R-144		Not Used	
R-145		Not Used	
R-146		Not Used	
R-147		Not Used	
R-148	V-106, V-107 plate decoupling	RESISTOR: 39,000 ohm p/m lo\%, 2 w	745916400
R-149	V-106 plate	RESISTOR: 82,000 ohm p/m lo\%, 2 w	745917800
R-150	V-107 plate	RESISTOR: 82,000 ohm p/m lo\%, 2 w	745917800
R-151	Not Used	RESISTOR: 1 megohm p/m 10%, 2 w	745922300
R-152	Not Used	RESISTOR: 1 megohm $\mathrm{p} / \mathrm{m} 10 \%$, 2 w	745922300
R-153	Not Used	RESISTOR: 1 megohm $\mathrm{p} / \mathrm{m} 10 \%, 2 \mathrm{w}$	745922300
R-154	Not Used	RESISTOR: 1 megohm p/m lo\%, 2 w	745922300

6-12

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DISCRIPTION	PART NUMBER
R-155	Not Used	RESISTOR: 1 megohm p/m 10\%, 2 w	745922300
R-156	Not Used	RESISTOR: 1 megohm p/m 10\%, 2 w	745922300
R-157	Not Used	RESISTOR: 1 megohm p/m 10\%, 2 w	745922300
R-158	Not Used	RESISTOR: 1 megohm p/m 10%, 2 w	745922300
R-159	$\begin{aligned} & \text { V-llo, V-lll grid } \\ & \text { return } \end{aligned}$	RESISTOR: 47,000 ohm p/m 10\%, 2 w	745916700
R-160	Part of grid resistance of $\mathrm{V}-110$ and V-lll	RESISTOR: 82,000 ohm p/m 10\%, 1 w	745316700
R-161	Part of grid resistance of V-110 and V-1ll	RESISTOR: $82,000 \mathrm{ohm} \mathrm{p/m} \mathrm{10} \mathrm{\%}$,	745316700
R-162	Modulator bias adjutment	$\begin{aligned} & \text { RESISTOR: Variable, 25,000 ohm p/m } \\ & 10 \%, 4 \mathrm{w} \end{aligned}$	377001100
R-163	Modulator bias adjustment	RESISTOR: Variable, 25,000 ohm p / m 10\%, 4 w	377001100
R-164	Stabilizing resistor V-110	RESISTOR: $10,000 \mathrm{hm} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%} ,1 / 2 \mathrm{w}$	745112800
R-165	```Stabilizing resistor V-1ll```	FESISTOR: $10,000 \mathrm{hm} \mathrm{p/m} 10 \%, 1 / 2 \mathrm{w}$	745112800
R-166	Voltage dropping resistor for Power Change Switch	RESISTOR: 5000 ohm p/m 10\%, 160 w	710654200
R-167		Not Used	
R-168	DC Plate Voltmeter, M-103, shunt resistor	RESISTOR: $10,000 \mathrm{hm} / \mathrm{m} 10 \%, 2 \mathrm{w}$	745512800
R-169	Series resistor for DC Plate Voltmeter	RESISTOR: 4 megohm (p/o M-103)	
R-170		Not Used	
R-171	Varies length of filament time delay	```RESISTOR: Variable, 2000 ohm p/m 10%,4 w```	377000800
R-172	Shunt resistor for K-101	RESISTOR: 5000 ohm p/m lo\%, 10 w	710154200

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DISCRIPTION	PART NUMBER
R-173	Voltage dropping re sistor for K-101	RESİSTOR: 2500 ohm p/m 10\%, 10 w	710003000
R-174	Bleeder resistor for bias supply	RESISTOR: 2000 ohm p/m 10\%, 25 w	710324200
R-175	Part of bleeder resistance for high voltage supply	RESISTOR: $20,000 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710213400
R-176	Part of bleeder resistance for high voltage supply	RESISTOR: 20,000 ohm p/m 5\%, 100 w	710213400
R-177	Part of bleeder resistance for high voltage supply	RESISTOR: 40,000 ohm p/m lo\%, 100 w	710540420
R-178	Bleeder resistor for low voltage supply	RESISTOR: 7500 ohm p/m lo\%, 50 W	710009900
R-179		Not Used	
R-180	Screen voltage dropping resistor, V-103	RESISTOR: 56,000 ohm p/m lo\%, 2 w	745516000
R-181	Screen voltage dropping resistor, V-103	RESISTOR: 56,000 ohm p/m lo\%, 2 w	745516000
R-182	Audio hum control A	$\begin{aligned} & \text { RESISTOR: Variable, 25,000 ohm p/m } \\ & \text { lo\%, } 4 \text { w } \end{aligned}$	377001100
R-183	Primary voltage dropping resistor	RESISTOR: WW, $150 \mathrm{hm} \mathrm{p} / \mathrm{m}$ lo\%, 25 w	710315200
R-184		Not Used	
R-185	Parasitic Suppressor	RESISTOR: fixed globar; 50 ohm, carborundum bar	712140000
R-186	V-110 grid equalizer	RESISTOR: . 15 megohm p/m lo\%, 2 w	745918800
R-187	V-1ll grid equalizer	RESISTOR: . 15 megorm p/m 10\%, 2 w	745918800
R-188		Not Used	
R-189	Hum Adjust	RESISTOR: 50 ohm p/m 10\%, 25 w	735020100
R-190	V-lll plate	RESISTOR: $20,000 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710213400

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R-191	V-llo plate	RESISTOR: $20,000 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710213400
S-101	Selects desired crystal, crystal selector switch	SWITCH: Rotary, 2 pole, 2 position	259036200
S-102	Multimeter switch selects circuit to be metered	SWITCH: Rotary, 2 pole, 8 position	259044100
S-103	Power change switch shorts out dropping resistor R-166 and R-167	SWITCH: High voltage rotary, SPST, special	5049633003
S-104	Mechanical door interlock, discharges high voltage filter capacitors	SHORTING BAR: Gravity operated	
S-105	Mechanical door interlock, discharges high voltage filter capacitors	SHORTING BAR: Gravity operaced	
S-106	Filament ON-OFF switch and breaker applies voltage to filaments, blower and bias supply	CIRCUIT BREAKER: Magnetic	260023800
S-107	Plate ON-OFF switch and breaker, applies voltage T-108 and T-110	CIRCUIT BREAKER: Magnetic	260022100
S-108	Electrical door interlock, removes the high and low voltage	CONTACT ASSEM: Male section of door interlock switch CONTACT ASSEM: Female section of door interlock switch	260404000 260405000
S-109	Electrical door interlock, removes the high and low voltage	CONTACT ASSEM: Male section door interlock switch CONTACT ASSEM: Female section of door interlock switch	260404000 260405000
T-101	Plate tank rf can, $\mathrm{V}-101$	OSCILLATOR PLATE TUNING ASSEM: (incl R-103)	5049594002
T-102	Plate tank rf can, V-102	INTERMEDIATE PLATE TUNING ASSEM: (incl C-113, C-114, C-115, L-102A,L-102B)	5049632003

PARTS LIST
MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
T-103	Plate tank rf can, V-103	INIERMEDIATE PLATE TUNING ASSEM: (incl C-124, C-125, C-126, L-104A, L-104B)	5049632003
T-104	Audio input transformer feeds V-106 and V-107	TRANSFORMER: HF input audio Pri: 600 ohm CT, Sec: 50,000 ohm CT	677011400
T-105		Not Used 7500 RMS TV	
T-106	Bias Supply transformer	TRANSFORMER: Power, Pri: 230 v Sec \#1: 360, 320, 280, 240, v CT Sec \#2: 5 v	672039200
T-107	Filament transformer for high voltage rectifier tubes	TRANSFORMER: Filament, Pri: 203 v, Sec: 5 v CT	672038200
T-108	High voltage transformer	TRANSFORMER: Plate $208 / 230 \mathrm{v}$ nom, $50 / 60 \mathrm{cps}$ single phase, sec 2700 v DC	662007000
T-109	Filament transformer 866A rectifier tubes and all RF and audio tubes	TRANSFORMER: Filament, Pri: $230,208 \mathrm{v}$, Sec \#1: 5.3 v CT , Sec \#2: 5.3 v CT , Sec \#3: 6.3 v CT , Sec \#4: 2.5 CT	672038100
T-110	Low voltage supply transformer	TRANSFORMER: Plate, Pri: 230, 208 v , Sec: 550 v DC	672038300
V-101	Oscillator	TUBE: Pentode 6AU6	255020200
V-102	Buffer Amplifier	TUBE: Pentode 6SJ7	255003000
V-103	RF Driver	TUBE: Beam 807	256003300
V-104	Power Amplifier	TUBE: Tetrode 4-125A	256006800
V-105	Power Amplifier	TUBE: Tetrode 4-125A	256006800
V-106	lst Audio Amplifier	TUBE: Pentode 6SJ7	255003000
V-107	1st Audio Amplifier	TUBE: Pentode 6SJ7	255003000
V-108		Not Used	
V-109		Not Used	
V-110	Modulator	TUBE: Tetrode 4-125A	256006800

MAJOR ASSEMBLY: 300/J

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
V-1.1	Modulator	TUBE: Tetrode 4-125A	256006800
V-112	Bias supply rectffier	TUBE: Rectifier 504G	255003200
V-113	High voltage supply rectifier	TUBE: Rectifier 872A	256003700
V-114	High voltage supply rectifier	TUBE: Rectifier 872A	256003700
V-115	Low voltage supply rectifier	TUBE: Rectifier 866A	256004900
V-116	Low voltage supply rectifier	TUBE: Rectifier 866A	256004900
$\mathrm{x}-100$	Socket for I-101	MTG: Pilot light, for candelabra base bulbs DISC: Green	262025500
X-101	Socket for I-104	MTG: Pilot light, for cande $\lrcorner a b r a$ bulbs DISC: Red	$8 \begin{array}{lll} 262 & 0255 & 00 \\ 262 & 0259 & 00 \end{array}$
X-102	Socket for I-102	MTG: Socket for lumiline lamp bulb	262017700
X-103	Socket for I-102	MTG: Socket for lumiline lamp bulb	262017700
X-104	Socket for I-103	MTG: Socket for lumiline lamp bulb	262017700
X-105	Socket for I-103	MTG: Socket for lumiline lamp bulb	262017700
X-106	Adapter	Adapter, for lumiline bulb	262017500
X-107	Adapter	Adapter, for lumiline bulb	262017500
X-108	Adapter	Adapter, for lumiline bulb	262017500
X-109	Adapter	Adapter, for lumiline bulb	262017500
X-110	Socket for V-104	SOCKET: Tube, 5 prong	220101600
X-lıl	Socket for V-105	SOCKET: Tube, 5 prong	220101600
X-112	Socket for T-101	SOCKET: Tube, chassis mtg 7 prong	220179000
$\mathrm{X}-113$	Socket for V-103	SOCKET: Tube, 5 contacts	220552000
X-114	Socket for T-102	SOCKET: Tube, chassis mtg, 7 prong	220179000
X-115	Socket for V-102	SOCKET: Tube, octal, 8 prong	220100500

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
X-116	Socket for T-103	SOCKET: Tube, chassis mtg, 7 prong	220179000
X-117	Socket for V-101	SOCKET: Tube, miniature, 7 pins	220103400
X-118	Socket for Y-101	SOCKET: Tube, octal, 8 prong	2201005500
X-119	Socket for Y-102	SOCKET: Tube, octal, 8 prong	2201005500
X-120	Socket for V-110	SOCKET: Tube, 5 prong	220101600
X-121	Socket for V-lll	SOCKET: Tube, 5 prong	220101600
X-122	Socket for V-106	SOCKET: Tube, octal, 8 prong	220100500
$\mathrm{X}-123$	Socket for V-107	SOCKET: Tube, octal, 8 prong	,220 100500
X-124		Not Used	
X-125		Not Used	
X-126	Socket for K-101	SOCKET: Tube, octal, 8 prong	220100500
X-127	Socket for V-1l2	SOCKET: Tube, octal, 8 prong	220100500
X-128	Socket for V-115	SOCKET: Tube, 4 prong	'220 541000
X-129	Socket for V-116	SOCKET: Tube, 4 prong	220541000
X-130	Socket for V-113	SOCKET: Tube, 4 prong	220542000
X-131	Socket for V-114	SOCKET: Tube, 4 prong	220542000
Y-101	Quartz crystal	CRYSTAL	
Y-102	Quartz crystal	CRYSTAL	

MAJOR ASSEMBLY: 21E/M

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
B-201	Ventilating fan	FAN MOTOR: unit bearing with shaded pole, 230 volt	230016400
B-301	Tube cooling blower	DIRECT BLOWER: direct connected blower and motor assembly, l hp	009122500
C-201	HV filter	$\begin{aligned} & \text { CAPACITOR: paper, } 2 \mathrm{mf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%,} \\ & 6000 \mathrm{WV} \end{aligned}$	930032700
C-202	HV filter	$\begin{aligned} & \text { CAPACITOR: paper, } 2 \mathrm{mf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%,} \\ & 6000 \mathrm{WV} \end{aligned}$	930032700
C-203	HV filter	CAPACITOR: paper, 2 mf phm $10 \%, 6000 \mathrm{WV}$	930032700
C-204	HV filter	CAPACITOR: paper, $2 \mathrm{mf} \mathrm{p} / \mathrm{m} 10 \%$, 6000 WV	930032700
C-205		Not Used	
C-206		Not Used	
C-207		Not Used	
C-208		Not Used	
C-209		Not Used	
C-210	Bias filter	CAPACITOR: paper, 4 mf p/m $20 \%, 3000 \mathrm{WV}$	$\begin{aligned} & 930431400 \\ & \text { alt. } \\ & 930009800 \end{aligned}$
C-211	Bias filter	$\begin{aligned} & \text { CAPACITOR: paper, } 4 \mathrm{mf} \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 3000 \mathrm{WV} \end{aligned}$	$\begin{aligned} & 930431400 \\ & \text { alt. } \\ & 930009800 \end{aligned}$
C-212	Audio Compensating	```CAPACITOR: paper, 1000 mmf p/m 20%,}600\textrm{WV```	931010100
C-213	Audio Compensating	```CAPACITOR: paper, 1000 mmf p/m 20%,}600\textrm{WV```	931010100
C-214	Audio Compensating	```CAPACITOR: paper, 1000 mmf p/m 20%, }600\mathrm{ WV```	931010100
C-215	Audio Compensating	$\begin{aligned} & \text { CAPACITOR: paper, } 1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \\ & 20 \%, 600 \mathrm{WV} \end{aligned}$	931010100
C-301	PA grid tuning	CAPACITOR: variable, 38 min to 496 max mmf (wiring diagram reads 500 mmf	920009500
C-302	PA grid pad	CAPACITOR: mica, 400 mmf ph 5\%, 5000 WV OR CAPACITCR mica, 800mmf p血 5\%, 5000 WV	$\begin{array}{lll} 906 & 3401 & 10 \\ 906 & 3801 & 10 \end{array}$

MAJOR ASSEMBLY: 21E/M

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-303	PA grid pad	CAPACITOR: mica, 400 mmf pfm $5 \%, 5000 \mathrm{WV}$ OR CAPACITOR: mica, $800 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 5000 \mathrm{WV}$	$\begin{array}{lll} 906 & 3401 & 10 \\ 906 & 3801 & 10 \end{array}$
C-304	PA grid pad	CAPACITOR:mica, $400 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, 5000 \mathrm{WV}$	906340110
c-305	PA grid pad	CAPACITOR: mica, $400 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 5000 WV	906340110
c-306	Filament by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
c-307	Filament by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
c-308	Filament by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
c-309	Filament by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110310
C-310	PA Neutralizing	CAPACITOR: variable, $10-60 \mathrm{mmf}, 20 \mathrm{KV}$	919008100
C-311	PA plate blocking	CAPACITOR: mica, $500 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%}$, 20,000 TV OR CAPACITOR: mica, $1500 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 15,000 WV OR CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 20,000 WV	$\begin{array}{lll} 901 & 3502 & 00 \\ 939 & 2037 & 00 \\ 939 & 2033 & 00 \end{array}$
C-312	Plate by-pass	CAPACITOR: ceramic, 500 mmf plus 50%, minus 20\%, 20,000 WVDC	00110100
C-313	PA tuning	CAPACITOR: variable, 60 min to 300 max mmf, 10,000 TV	919012200
C-314	PA tuning pad	$\begin{aligned} & \text { CAPACITOR: fixed, } 250 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%,} \\ & \text { 10,000 WV } \end{aligned}$	919003300
c-315	PA tuning pad	$\begin{aligned} & \text { CAPACITOR: fixed, } 250 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \% \text {, } \\ & \text { 10,000 WV } \end{aligned}$	919003300
\#C-316	PA tuning pad	$\begin{aligned} & \text { CAPACITOR: fixed, } 250 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \% \text {, } \\ & \text { 10,000 WV } \end{aligned}$	919003300
C-317	PA tuning pad	CAPACITOR: fixed, $250 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ lo\%, 10,000 WV	919003300
$\begin{aligned} & C-318 \\ & \#-F \end{aligned}$	PA tuning pad 2l/M use only.	CAPACITOR: fixed, $250 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 10\%, 10,000 WV	919003300

MAJOR ASSEMBLY: $21 E / M$

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PARTS NUMBER
C-319	PA tuning pad	$\begin{aligned} & \text { CAPACITOR: fixed, } 250 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{lo} \text {, } \\ & \text { 10,000 WV } \end{aligned}$	919003300
C-320	PA loading	CAPACITOR: variable, 496 max to 56 min mmf	920960000
C-321	PA loading pad	CAPACITOR: 10,000 TV ica, $1,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \%$, CAPACITOR: OR 10,000 WV	900.2102 00 alt. 900 2104 00 alt. 939 1033 00 939 1040 00
C-322	PA loading pad	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \%$, 10,000 TV OR CAPACITOR: mica, $2000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$,	$\begin{array}{lll} 900 & 2102 & 00 \\ \text { alt. } & & \\ 900 & 2104 & 00 \\ \text { alt. } & & \\ 939 & 1033 & 00 \\ 939 & 1040 & 00 \end{array}$
C-323	PA loading pad	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{I} / \mathrm{m} 10 \%$, 10,000 TV OR CAPACITOR: mica, $510 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$ 10,000 WV	
C-324	PA loading pad	$\begin{aligned} & \text { CAPACITOR: mica, } 510 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%, \\ & \text { 10,000 WV } \\ & \text { CAPACITOR: } \\ & \text { 10,000 WV } \end{aligned}$	$\begin{array}{lll} 939 & 1026 & 00 \\ 939 & 1033 & 00 \end{array}$
$C-325$ $C-326$	Mod. Monitor adjust	```CAPACITOR: variable, }320\mathrm{ max to 13.5 min mmf, 500 volts Not used```	922140000
C-327	Meter by-pass	CAPACITOR: mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WVDC	935210500
C-328	Meter by-pass	CAPACITOR: mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WVDC	935210500
C-329	PA grid by-pass	CAPACITOR: ceramic, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 20\%, 5000 WVDC	913010100
C-330	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936016200
C-331	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 2500 \text { WVDC } \end{aligned}$	936016200

		MAJOR ASSEM	BLY:	21E/M
ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART	NUMBER
C-332	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	016200
C-333	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	016200
C-334	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 2500 \text { WVDC } \end{aligned}$	936	016200
c-335	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	016200
c-336	Feedback network	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	025000
C-337	Feedback network	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	025000
C-338	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \% \text {, } \\ & 2500 \text { WVDC } \end{aligned}$	936	016200
C-339	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	016200
C-340	Feedback network	CAPACITOR: mica, $47 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936	016200
C-341	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{20} \mathrm{\%,} \\ & 2500 \text { WVDC } \end{aligned}$	936	016200
C-342	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{20} \mathrm{\%} \text {, } \\ & 2500 \text { WVDC } \end{aligned}$	936	016200
C-343	Feedback network	$\begin{aligned} & \text { CAPACITOR: mica, } 47 \mathrm{mmf} \mathrm{p} / \mathrm{m} \mathrm{20} \mathrm{\%,} \\ & 2500 \text { WVDC } \end{aligned}$	936	016200
C-344	Mod. grid by-pass	CAPACITOR: ceramic, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 20%, 5000 WVDC	913	010100
c-345	Mod. grid by-pass	CAPACITOR: ceramic, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 20\%, 5000 WVDC	913	010100
C-346	Mod. fil. by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 5\%, 500 WV	910	110300
C-347	Mod. fil. by-pass	$\begin{aligned} & \text { CAPACITOR: mica, } 10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \\ & 5 \%, 500 \mathrm{WV} \end{aligned}$	910	110300
C-348	Mod. fil. by-pass	$\begin{aligned} & \text { CAPACITOR: mica, } 10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} \\ & 5 \%, 500 \mathrm{WV} \end{aligned}$	910	110300

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-349	Mod. fil. by-pass	CAPACITOR: mica, $10,000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WV	910110300
c-350	Mod. Coupling	CAPACITOR: paper, $2 \mathrm{mf} \mathrm{p} / \mathrm{m} 10 \%$, 6000 WV	930032700
C-351	Mod. Coupling	CAPACITOR: paper, $2 \mathrm{mf} \mathrm{p} / \mathrm{m} 10 \%$, 6000 WV	930032700
\#C-351	Mod. Coupling	CAPACITOR: paper, $1 \mathrm{mf} \mathrm{p} / \mathrm{ml} 10 \%$, l0,000 WV	930032800
C-352	Meter by-pass	CAPACITOR: mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WVDC	935210500
C-353	Meter by-pass	CAPACITOR: mica, $5100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 500 WVDC	935210500
\#c-354	HV filter	$\begin{aligned} & \text { CAPACITOR: paper, } 2 \mathrm{mf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%,} \\ & 6000 \mathrm{WV} \end{aligned}$	930032700
\#c-355	HV filter	CAPACITOR: paper, $2 \mathrm{mf} \mathrm{p} / \mathrm{m} 10 \%$, 6000 WV	930032700
\#c-356	HV filter	CAPACITOR: paper, $2 \mathrm{mf} \mathrm{p} / \mathrm{m} \mathrm{lo} \mathrm{\%}$, 6000 WV	930032700
C-357		Not Used	
c-358		Not Used	
C-359		Not Used	
c-360		Not Used	
c-361	Audio monitor bypass	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \%$, 500 WVDC	935405300
C-362	C-301 isolating	CAPACITOR: mica, $4700 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936110500
c-363	C-301 isolating	CAPACITOR: mica, $4700 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$, 2500 WVDC	936110500
c-364	Grid circuit balanc ing	$\begin{aligned} & \text { CAPACITOR: ceramic, } 40 \mathrm{mmf} \mathrm{p} / \mathrm{m} 10 \% \text {, } \\ & 5000 \text { WVDC } \end{aligned}$	913008900
C-365 \#-For	Grid circuit balancing //M use only.	$\begin{aligned} & \text { CAPACITOR: ceramic, } 40 \mathrm{mmf} \mathrm{p} / \mathrm{m} \text { lo\%, } \\ & 5000 \text { WVDC } \end{aligned}$	913008900

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C-366	PA loading pad.	CAPACITOR: mica, $1000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$, 10,000 WVDC	939103300
E-201	AC input connector	TERMINAL BLOCK: 3 terminals	306006800
E-202	HV transf pri conn.	TERMINAL BLOCK: 3 terminals	306006900
E-203	HV transf pri conn.	TERMINAL BLOCK: 3 terminals	306006900
E-204	Part of S-204 and S-205	INSULATOR: feedthru	190692000
E-205	Part of S-205	INSULATOR: feedthru	${ }^{\prime} 190692000$
E-206	Part of S-204	INSULATOR: feedthru	190692000
E-207	Relay Panel Connector	CONNECTOR STRIP: 11 terminals	367511000
E-301	Audio monitor connector	CONNECTOR STRIP: 2 terminals	367402000
E-302	Relay panel connector	CONNECTOR STRIP: 11 terminals	367511000
E-303	RF output connector	INSULATOR: feedthru	190692000
E-304	PA r-f input conn.	STANDOFF: conical	190251000
E-305	PA r-f input conn.	STANDOFF: conical	190251000
F-201	Bias Rect. fil fuse	FUSE: cartridge, 1/4 amp 125 v	264424000
F-202	Bias Rect. Plate fuse	FUSE: cartridge, 1.5 amp 250 v	264000700
F-203	HV Rect fil fuse	FUSE: cartridge, 3/4 amp 125 v	264427000
F-204	HV Rect fil fuse	FUSE: cartridge, 3/4 amp 125 v	264427000
F-205	HV Rect fil fuse	FUSE: cartridge, 3/4 amp 125 v	264427000
F-301	T-302 pri fuse	FUSE: cartridge, 3 amp 250 v	264000900
F-302	T-303 pri fuse	FUSE: cartridge, 3 amp 250 v	264000900
F-303	T-304 pri fuse	FUSE: cartridge, 3 amp 250 v	264000900
F-304	T-305 pri fuse	FUSE: cartridge, 3 amp 250 v	264000900
I-201	Meter panel bulb	BULB: Lumiline, disc base, 125 v 40 w	262017000
I-202	Meter Panel bulb	BULB: Lumiline, disc base, 125 v 40	262017000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
I-203	Overload Indicator	BULB: candelabra base, $230-250 \mathrm{v} 10 \mathrm{w}$	262016900
I-204	HV PLATE pilot light	BULB: candelabra base, $230-250 \mathrm{v} 10 \mathrm{w}$	262016900
I-301	Meter panel light	BULB: Lumiline, Disc base, 125 v 40 w	262017000
I-302	Meter panel light	BULB: Lumiline, Disc base, 125 v 40 w	262017000
I-303	Blower pilot light	BULB: candelabra base, 230-250v 10 w	262016900
I-304	Filament pilot light	BULB: candelabra base, $230-250 \mathrm{v} 10 \mathrm{w}$	262016900
J-302	Mod. monitor output conn.	CONNECTOR: receptacle single female contact	357900500
J-303	Meter cable conn.	CONNECTOR: receptacle, 4 female contacts	364204000
K-201	Plate Overload relay	RELAY: $115 \mathrm{v}, 60 \mathrm{cps}$, AC	410004800
K-202A	Micro Switch contact	SWITCH: snap action, 1OA-l25 vac, 5A-250 vac	260056100
K-202B	Micro Switch contact	SWITCH: snap action, lOA-l25 vac, 5A-250 vac	260056100
K-202C	Switch actuator	MOTOR: $230 \mathrm{v} 60 \mathrm{cps}, 5 \mathrm{w}$	230004500
K-203	Lockout relay	RELAY: contact arrangement, 1 c left, l c right(l2 pole double throw)	405061500
K-204	Plate contactor	RELAY: contact arrangement, 1 NO 1 NC, 3 poles	401131800 alt. 405021100
K-205	Bias change relay	RELAY: contact arrangement, 1 c left, l c right (2 pole double throw)	405061500
K-301	Blower contactor	RELAY: contact arrangement, 3 NO1OA contact rating	401120200
K-302		Not Used	
K-303	Filament contactor	RELAY: power contactor, 3 NO-1OA contact rating includes switch	5060581003
K-304		Not Used	
K-305	Blower Hold.	RELAY: contact arrangement l c, double break	402023500

MAJOR ASSEMBLY: 2IE/M

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
L-201	Bias filter choke	REACTOR: filter, 6.6 hy min at 0.20 amp DC, 85 ohm max	278038400
L-202	HV filter choke	REACTOR: filter, 1.5 hy min at 3.0 amp DC, 6 ohm max	668008900
\#L-203	HV filter choke	REACTOR: filter, 1.5 hy min at 3.0 amp DC, 6 ohm max	668008900
L-204	Audio compensating inductor	COIL: Audio filter, 350 turns No. 22 wire	5063597002
L-205	Audio compensating inductor	COIL: Audio filter, 350 turns No. 22 wire	5063597 00a
L-301	PA grid tuning	INDUCTOR: RF fixed tank, 60 mh	980007600
L-302	Parasitic suppressor coil	Not Used	
L-303		Not Used	
L-304	PA plate choke	INDUCTOR: RF choke, 1.1 mh	5060617003
\#L-305	PA plate tank	INDUCTOR: RF fixed tank, 30 mh OR INDUCTOR: RF fixed tank, 60 mh	$\begin{array}{lll} y 80 & 0064 & 00 \\ \text { alt. } & & \\ 980 & 0070 & 00 \\ 980 & 0063 & 00 \end{array}$
L-305	PA plate tank	INDUCTOR: RF fixed tank, 60 mh OR INDUCTOR: RF fixed tank, 120 mh	980 980 98063 0062
L-306	PA output loading coil	INDUCTOR: RF fixed tank, 26 mh	1980005300
L-307	Modulation monitor coil	COIL ASSY: modulation, 11-1/2 turns per inch	5060537003
L-308		Not Used	
L-309	Modulation choke	REACTOR: modulation, 30 hy 50 ohm DC resistance, 18,000 TV	668007800
\#L-310	Modulation choke	REACTOR: modulation, $30 \mathrm{hy}, 50$ ohm DC resistance, 18,000 TV	668007800
L-311		Not Used	
\#-For	/M use only.		

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
L-312		Not Used	
L-313		Not Used	
L-314	Mod. Monitor conn. filter	COIL: RF choke, 3 sections, \#29 copper wire	240001300
M-201	Filament primary meter	METER: AC voltmeter, 0-300 range 60 scale divisions	452004600
M-301	RF output meter	METER: RF ammeter 0-15 range, 75 scale divisions	451008500
M-302	PA plate current	iMETER: DC ammeter, 0-3 range, 60 scale divisions	450010000
M-303	HV DC voltmeter	METER: DC voltmeter, $0-750$ volts DC, 75 scale divisions	458031200
M-304	Multimeter	METER: DC milliameter, 0-25 range	458017000
M-305	Mod Plate current	METER: DC ammeter, 0-3 range, 60 scale divisions	450010000
P-301		CONNECTOR: Cable	363804200
P-302	Meter plug	CONNECTTOR: Cable	363804200
R-201	\| HV bleeder	RESISTOR: 20,000 ohm p/m 5\%, 100 w	710213400
R-202	'HV bleeder	RESISTOR: 20,000 ohm p/m 5\%, 100 w	1710213400
R-203	HV bleeder	RESISTOR: 20,000 ohm p/m 5\%, 100 w	710213400
R-204	HV bleeder	RESISTOR: $20,000 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710213400
R-205	Overload relay adjust	RESISTOR: Variable wire wound, 25 ohm	377000300
R-206	Meter shunt	RESISTOR: $30 \mathrm{hm} \mathrm{p/m} \mathrm{5} \mathrm{\%}$,	710200900
\#R-207	Meter shunt	RESISTOR: 3 ohm p/m 5\%, 100 w	710200900
R-208	Low Fower Mod. bias adj.	RESISTOR: 250 ohm p/m 10\%, 200 w	716000500
R-209	K-201 Coil shunt	RESISTOR: 27 ohm p/m $10 \%, 2 \mathrm{w}$	745903100
R-210	Audio Compensating network	RESISTOR: 1000 ohm p/m 10\%, 160 w	710273000
\#- For	21/M only.		

MAJOR ASSEMBLY: 21E/M

ITEM	CIRCUIT FUNCTION		DESCRIPTION	PART NUMBER
R-322	V-303 grid series resistor	RESISTOR:	$4,700 \mathrm{ohm} \mathrm{p} / \mathrm{m} 10 \%, 2 \mathrm{w}$	745912500
R-323	V-304 grid series resistor	RESISTOR:	4,700 ohm p/m loon, 2 w	745912500
R-324	$\begin{aligned} & \text { V-304 grid } \\ & \text { resistor } \end{aligned}$	RESISTOR:	47,000 ohm p/m 10\%, 2 w	745916700
R-325	V-304 grid resistor	RESISTOR:	47,000 ohm p/m lo\%, 2 w	745916700
R-326	V-304 grid resistor	RESISTOR:	47,000 ohm p/m 10\%, 2 w	745916700
R-327		Not Used		
R-328	M-304 shunt (mod)	RESISTOR:	. 4 ohm p/m 2\%, 20 w	710251100
R-329	M-304 shunt (mod)	RESISTOR:	. $40 \mathrm{hm} \mathrm{p/m} \mathrm{2} \mathrm{\%}$,	710251100
\#R-330	M-304 shunt (PA)	,RESISTOR:	1000 ohm p/m 10\%, 1 w	745308600
R-331	M-304 shunt (PA)	RESISTOR:	.4 ohm p/m 2\%, 20 w	710251100
R-332	Audio Monitor voltage generator	RESISTOR:	$3 \mathrm{ohm} \mathrm{p/m} \mathrm{5} \mathrm{\%,} 100 \mathrm{w}$	710200900
R-333	M-304 multiplier	RESISTOR:	1000 ohm p/m lo\%, l w	745308600
R-334	PA grid meter shunt	RESISTOR:	4 ohm p/m 1\%, 1 w	722004600
R-335	Mod Bias Adj	RESISTOR:	variable, 25,000 ohm	377001100
R-336	Mod Bias Adj	RESISTOR:	variable, 25,000 ohm	377001100
R-337	Bias voltage divider	RESISTOR:	7500 ohm p/m 10\%, 200 w	710015600
R-338	Bias voltage divider	RESISTOR:	1500 ohm p/m 10\%, 200 w	710260500
R-339	Bias voltage divider	RESISTOR:	3 ohm	710354200
R-340	Bias voltage divider	RESISTOR:	12,000 ohm p/m 10\%, 100 w	710212900
S-201	HV Interlock	CONTACT AS door inte	SEM: Female section of rlock switch	260405000
S-202 \#-For	Bias supply shorting interlock /M use only.	Includes: HINGE: sa CONTACT: $\text { x } 0.064^{\prime \prime}$	```fety device brass, cad pl, 0.218" diam thk```	$\begin{array}{ll} 5049587 & 002 \\ 5049553 & 001 \end{array}$

MAJOR ASSEMBLY: 21E/M

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
S-203	HV supply shorting interlock	```Includes: HINGE: safety device CONTACT: brass, cad pl, 0.218" diam x 0.064" thk```	5049587002 5049553001
S-204	HV Sec. grounding interlock	Includes: SPRING: 10 turns right hand wound wire CONTACT: brass, cad pl, 2-3/8" diam x 0.064" thk SHAFT: 4-9/16" lg x 5/16" diam	5060515002 5060514002 5060513002
S-205	HV Sec. grounding interlock	```Includes: SPRING: lO turns right hand wound wire CONTACT: brass, cad pl, 2-3/8" diam x 0.064" thk SHAFT: 4-9/16" lg x 5/16" diam```	$\left[\begin{array}{lll} 506 & 0515 & 002 \\ 506 & 0514 & 002 \\ 506 & 0513 & 002 \end{array}\right.$
S-206	HV Sec.grounding interlock	Not Used	
S-207	"Y" "Delta" HV-LV switch	SWITCH: Rotary, 3 pole, 2 position	266004400
S-208	HV Plate control and breaker	SWITCH: magnetic, 3 pole, 3 overload coils	260093500
\#S-208	HV Plate control and breaker	SWITCH: magnetic, 3 pole, 3 overload coils	260041500
S-209	Overload Selector	SWITCH: Toggle, 30 amp	266306000
S-210	Overload Reset	SWITCH: push, momentary action, four mtg holes	260202000
S-301	HV interlock	SWITCH: 2 female contacts, momentary action	$\begin{array}{lll} 260 & 4050 & 00 \\ \text { alt. } \\ 260 & 4040 & 00 \end{array}$
S-302	HV interlock	SWITCH: 2 female contacts, momentary action	$\begin{aligned} & 260405000 \\ & \text { alt. } \\ & 260404000 \end{aligned}$
S-303	Blower Breaker and switch	SWITCH: magnetic, 2 pole, 2 overload coils	260022000
S-304	Blower interlock	$\begin{aligned} & \text { SWITCH: snap action, } 10 \mathrm{~A}-125 \mathrm{v} \mathrm{AC} \text {, } \\ & 5 \mathrm{~A}-250 \mathrm{v} \text { AC } \end{aligned}$	260056100
\#-For	/M use only.		

MAJOR ASSEMBLY: 21E/M

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
S-305	Filament breaker and switch	SWITCH: Magnetic, 3 pole, 3 overload coils	260040700
S-306	Meter Circuit selector	SWITCH: Rotary, 2 pole, 8 position, 2 section	259044100
S-307	Bias shorting inter- lock	```Includes: HINGE: safety device CONTACT: brass, cad pl; 0.218" diam x 0.064" thk```	$\begin{aligned} & 5049587002 \\ & 5049553001 \end{aligned}$
S-308	HV shorting inter- lock	```Includes: HINGE: safety device CONTACT: brass, cad pl; 0.218" diam x 0.064" thk```	5049587002 5049533001
S-309	HV shorting interlock	```Includes: HINGE: safety device CONTACT: brass, cad pl; 0.218" diam x 0.064" thk```	5049587002 5049533001
S-310	Bias shorting inter- lock	```Includes: HINGE: safety device CONTACT: brass, cad pl; 0.218" diam x 0.064" thk```	$\begin{aligned} & 5049587002 \\ & 5049533001 \end{aligned}$
T-201	Filament voltage control	TRANSFORMER: variable autotransformer, 230 v , 60 cps 3 phase	1664007900
T-202	Bias Rect. filament	TRANSFORMER: Filament, Pri: 203 v Sec: 115 v CT	672039900
T-203	Bias Rect. plate	TRANSFORMER: Power, Pri: 208v tapped Sec: as required for 1100 v DC at $200 \mathrm{ma}, \mathrm{CT}$	1667008700
T-204	HV plate	TRANSFORMER: Plate, $230 / 208$ VRMS 3 phase, 50/60 cps	662009600
\#T-204	HV plate	TRANSFORMER: Plate, $230 / 208$ VRMS, 3 phase, 50/60 cps	662009100
T-205	HV rectifier filament	TRANSFORMER: Filament, Pri No 1: 115 v, Pri No 2: 115 v, 2500 RMS TV, Sec: 5 v TV, 10,000 RMS TV	672045600
$\begin{aligned} & \text { T-206 } \\ & \text { \#-For } \end{aligned}$	HV rectifier filament $\frac{1}{1} / \mathrm{M}$ use only	TRANSFORMER: Filament, Pri No l: 115 v, Pri No 2: 115 v, 2500 RMS TV, Sec: 5 v TV, 10,000 RMS TV	1672045600

\begin{tabular}{|c|c|c|c|}
\hline ITEM \& `CIRCUIT FUNCTION \& DESCRIPTION \& PART NUMBER

\hline T-207 \& HV rectifier filament \& | TRANSFORMER: Filament, Pri No l: |
| :--- |
| 115 v, Pri No 2: $115 \mathrm{v}, 2500$ RMS TV, Sec: 5 v TV, 10,000 RMS TV | \& 672045600

\hline T-208 \& HV rectifier filament \& TRANSFORMER: Filament, Pri No 1: 115 v, Pri No 2: 115 v, 2500 RMS TV, Sec: 5 v TV, 10,000 RMS TV \& 672045600

\hline T-209 \& HV rectifier filament \& TRANSFORMER: Filament, Pri No l: 115 v, Pri No 2: 115 v, 2500 RMS TV, Sec: 5 v TV, 10,000 RMS TV \& 672045600

\hline T-210 \& HV rectifier filament \& TRANSFORMER: Filament, Pri No 1: 115 v, Pri No 2: 115 v, 2500 RMS TV, Sec: 5 v TV, 10,000 RMS TV \& 672045600

\hline T-211 \& Modulation \& ```
TRANSFORMER: Modulation, Pri:
5000 ohm CT, Sec: 3400 ohm, 18,000
RMS TV

``` & 667008000 \\
\hline \#T-211 & Modulation & ```
TRANSFORMER: Modulation, Pri:
    2750 ohm CT, Sec: 1700 ohm, 18,000
    Pri, 14,000 Sec RMS TV
``` & 1667008100 \\
\hline T-302 & ```
V-303 filament
 transf.
``` & TRANSFORMER: Filament, Pri: 230 v, Sec: 7.75 v CT & 662008500 \\
\hline T-303 & ```
V-304 filament
    transf.
``` & TRANSFORMER: Filament, Pri: 230 v, Sec: 7.75 v CT & 662008500 \\
\hline T-304 & V-301 filament transformer & TRANSFORMER: Filament, Pri: 230 v, Sec: 7.75 v CT & 662008500 \\
\hline \#T-305 & V-305 filament transformer & TRANSFORMER: Filament, Pri: 230 v, Sec: 7.75 v CT & ,6620085 00 \\
\hline V-201 & Bias rectifier & TUBE: Rectifier 866A & 256004900 \\
\hline V-202 & Bias rectifier & TUBE: Rectifier 866A & 256004900 \\
\hline V-203 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-203 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline V-204 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-204 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ITEM & CIRCUIT FUNCTION & DESCRIPTION & PART NUMBER \\
\hline V-205 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-205 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline V-206 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-206 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline V-207 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-207 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline V-208 & HV rectifier & TUBE: Rectifier 872A & 256003700 \\
\hline \#V-208 & HV rectifier & TUBE: Rectifier 575A & 256008000 \\
\hline V-301 & Power Amplifier & TUBE: Triode 3X3000A-1 & 256010000 \\
\hline \#v-302 & Power Amplifier & TUBE: Triode 3X2500-A & 256008700 \\
\hline V-303 & Modulator & TUBE: Triode 3X3000A-1 & 256010000 \\
\hline V-304 & Modulator & TUBE: Triode 3x2500-A & 256008700 \\
\hline W-301 & PA grid feed & CABIE: Coaxial, nom impedance 52 orm & 425000600 \\
\hline XC-310 & Socket for C-310 & SOCKET: for capacitor, brass bright alloy plate & 5060593002 \\
\hline XF-301 & Socket for F-301 & FUSE HOLDER: extractor post type for \(3 A G\) fuses & 265100200 \\
\hline XF-302 & Socket for F-302 & FUSE HOLDER: extractor post type for 3AG fuses & 265100200 \\
\hline XF-303 & Socket for F-303 & FUSE HOLDER: extractor post type for \(3 A G\) fuses & 265100200 \\
\hline \#XF-304 & Socket for F-304 & MTG: Socket for lumiline lamp bulb & 265100200 \\
\hline XI-201A & Socket for I-201 & MTG: Socket for lumiline lamp bulb & 262017700 \\
\hline XI-201B & Socket for I-201 & MTG: Socket for lumiline lamp bulb & 262017700 \\
\hline XI-202A & Socket for I-202 & MTG: Socket for lumiline lamp bulb & 262017700 \\
\hline XI-202B & Socket for I-202 & MTG: Socket for lumiline lamp bulb & 262017700 \\
\hline \[
\begin{aligned}
& \text { XI-203 } \\
& \text { \#-For } 2]
\end{aligned}
\] & Mounting for I-203 /M use only. & MTG: Pilot light, for candelabra bulbs & 262025500 \\
\hline
\end{tabular}

MAJOR ASSEMBLY: 21E/M

Figure 7-lA. PA Cabinet, Rear View.

Figure 7-1B. PA Cabinet, Rear View.

Fisure 7-lC. PA Cabinet, Rear View.

Figure 7-2A. Power Supply Cabinet, Rear View.

Figure 7-2B. Power Supply Cabinet, Rear View.

Figure 7-3. Driver Cabinet, Rear View.

Figure 7-4. Power Amplifier RF chassis, Gop View.

2IE HIGH FREQUENCY

Figure 7-5A. Power Amplifier RF Chassis, Bottom View.

Figure 7-5B. Power Amplifier RF Chassis, Bottom View

Figure 7-6. Puwer Supply Cabinet Rectifier Chassis, Top View.

Figure 7-7. Puwer Supply Cabinet Rectifier Cnassis, Bottom View.

Figure 7-8. Driver Cabinet RF Chassis, Top View.

Figure 7-9. Driver Cabinet RF Chassis, Bottom View.

Figure 7-10. Driver Cabinet Audio Chassis, Top View.

Figure 7-ll. Driver Cabinet Audio Chassis, Side View.

Figure 7-12. Driver Cabinet Audio Chassis, Bottom View.

Figure 7-13. Driver Cabinet Output Network, Bottom View.

BUFFER PLATE TANK CIRCUIT

DRIVER PLATE TANK CIRCUIT

Figure 8-2. Driver Cabinet Complete Schematic.

** USE THIS CONNECTION FOR IOKW OPERATION.
COMPONENTS SHOWN WITH BROKEN LINES ARE ADOED FOR IOKW OPERATION.```

