INSTRUCTIONBOOK

for

21B-1

AMBROADCAST TRANSMITTER

Manufactured By
COLiINS RADIO CONPAIY
Cedar Rapj.ds, Iowa

Section 1. GENERAL DESCRIFTION

1.1. General 1-1
1.2. Mechanical Description 1-1
1.2.1. General 1-1 1-1
1.2.2. Control System. 1-1
1.2.3. Ventilation 1-2
1.3. Electrical Description 1-2
1.3.1. General 1-2
1.3.2. Voltage Supply. 1-2
1.j.3. Audio System. 1-2
1.3.4. R-F Circuits. 1-3
1.4. Reference Data 1-3
1.4.1. Frequency Range 1-3
1.4.2. Character of Emission 1-3
1.4.3. Power Output. 1-3
1.4.4. Power Source and Input Requirement. 1-3
1.4.5. Audio Input 1-3
1.5. Vacuum Tube Complement 1-3
Section 2. INSTALTATION OF RRASSNITTER
2.1. Prime Installation 2-1
2.1.1. Preliminary 2-1
2.1.2. Installation Procedure 2-1
2.1.3. Jxternal Coniections 2-5
Section 3. ADJUSTTENT AHD OPERATION
3.1. Initial idjustments 3-3
3.1.1. General 3-3
3.1.2. Function of Controls 3-3
3.1.3. Energizing the Equipment for the First Time 3-6
3.1.4. Filament Circuit Adjustment 3-8
3.1.5. Tuning Adjustinent 3-8
3.1.6. Noise Adjustment. 3-13
3.1.7. Adjustment of Differential Relay K414 3-14
3.2. Routine Operation. 3-14
3.2.1. General 3-14
3.2.2. Starting Equipment. 3-14
3.2.3. Stopping Equipment 3-16
3.2.4. Ovorload Reset. 3-16
3.2.5. Power Change. 3-16
3.2.6. Oscillator Change 3-16
3.2.7. Blowers 3-16

Section \% CTRCUIT DESCEIPMION

4.1. Niechanical Description 4-1
4.1.1. Cabinets. 4-1
4.1.2. Ventilation 4-1
4.2. Electrical Description 4-1
4.2.1. Primary Power Circuits. 4-1 4-1
4.2.2. Control Circuits.
4.2.2. Control Circuits. 4-4 4-4
4.2.3. Remote Control Circuits 4-6 4-6
4.2.4. Radio Frequency Circuits. 4-? 4-?
4.2.5. Audio Circuit 4-9 4-9
4.2.6. Filament Supplies 4-10
4.2.7. Plate and Bias upplies 4-10
Section 5. PRiVNTTVE HATHT NANCE
5.1. Cleaning 5-1
5.1.1. Transmitter General 5-1
5.2. Routine Checks 5-1
5.2.1. General Inspection 5-1
5.2.2. Tube Check. 5-2
5.2.3. Voltage and Current Checks. 5-2
5.2.4. Performance Checks 5-2
5.3. Lubrication. 5-2
5.3.1. Fiodulator and Ps Blowers. 5-2
5.3.2. Rectifier Blower Fotor. 5-2
5.3.3. Exciter Cabinet Ventilating Blowers 5-2
5.3.4. Tuning ivotors and Assemblies. 5-3
5.4. Maintenance Tools. 5-3
5.5. Relay Naintenance 5-3
Soction 6. CORIECTIVE RATNTEFANCE
6.1. Trouble Shooting 6-1
6.1.1. Tube Failure. 6-1
6.1.2. Location of Trouble 6-1
6.1.3. Cable Trouble 6-1
6.1.4. Servicing the Equipment $6-2$
Section 7. PARTS LIST

Figure	Title
1-1	21B Transmitter and Simplified Schematic
1-2	Oscillator Unit Removal
2-1	Rectirier Bay, Inside Rear View
2-2	Modulator Bry, Inside Rear View
2-3	Exciter Bay, Inside Rear View
2-4	Inter-cabinet Connecting Panel
2-5	Power Amplifier Bay, Inside Rear View
2-6	Installation Drawing
2-7	Modulation Monitor Connections
2-8	Audio Nionitor and Kemote Antenna Current Connections
$2-9$	Frequency Monitor Connections
2-10	Remote Control Schematic
2-11	Average Filament Enission Characteristics For 892R Tube
3-1a,3-1b	Functions of Controls
3-2	Driver Amplifier Plate Tank Inductor
3-3	Neutralizing Coil Adjustment
3-4	Power Amplifier Plate Tank and Output Jetwork Inductors
3-5	845 Cathode Current Balancing Ldjustinent
3-6	Hum Adjustments
3-7	Capacitor C-810 Adjustment
4-1	Primary Power Circuits
4-2	Control Circuits
4-3	Overload System Block Diagram
4-4	Low Voltags and Fixed Bias System
4-5	Type 297 Crystal Oven
4-6	Type 280A Crystal idjusting Tool
6-1	40F Frecuency Control Unit Parts Arrangement
6-2	Rectifier Bay, Front Open
6-3	Modulator Bay, Front Open
6-4	Exciter bay, Front Open
$6-5$	Pover Auplifiar Bay, Front Open
6-6	Overload felay Adjustments
6-7	R-F Rectifier Parts Arrangement
$6-8 \mathrm{a}, 6-8{ }^{\text {b }}$	Inter-Cabinet Connecting Panels
8-1	21B Complete Schematic
8-2	Rectifier Bay Cabling Schematic
8-3	Rectifier Bay Cabling Diagram
8-4	Miodulator Bay Schematic
8-5	Exciter Bay Schematic
8-6	Power Amplirier Bay Schematic
8-7	Rectifier Tront Door Schematic
8-8	Modulator Pront Door Schematic
8-9	Exciter Front Door Schenatic
$8-10$	Power amplifier Front Door Schematic
8-11	External Components Schematic
8-12	4OF Oscillator Schematic
8-13	$2 \Xi \mathrm{~B}$ to 21L Conversion Schematic

gUARANTEE

The equipment described herein is sold unter the following guarantee:
coilins agrees to repair or replace, without charge, any equipment, parts or accessories which are defective as to design, workmanship or material, and which are returned to collins at its factor. in cecar rapids. lowa, transportation prepaid, providedtrat the foregoing shall not be applicable to.
(a) Equipment or accessories as to which notice of the claimed defect is not given Collins within one year from date of delivery:
(0) Equipment and accessories manufactured by others than collins, tubes and batteries, all of which are subject only to such adjustment as collins may obtain from sucrlier thereof:
(c) Equipment or accessories which shall fall to operate in a normal or proper manner due to expusure to excessive moisture in the atmosphere or otherwisr after delivery, any such failure not being deemed a defect within the meaning of the foregoing provisions.

Collins further guarantees that any rafio transmitter described herein will deliver full radic frequency power output at the anterina leau when connected to a suitable load, out such guarantee shal" not be construed as a guarantee of any definite coverage or rarage of said apparatus.

The guarantee of these paragraphs is voif if!equipment is altered or repaired by others thacollins. i
Notice of any claimed defect must be given to collins pricr to return of any item. Such hotic. must pive full information as to nature of defect and identification (includino part number if pcs.. sible) of part considered defective. Upon receipt of such notice, collins will promptly advise respecting return of equipment. Fallure to secure our advice prior to the forwarding of goods for rm . turn may cause unnecessary delay in the handiing of suct merchandise.

No other warranties, expressed or implled, shall be applicatle to said equipment, and the r., re going shall constitute the Buyer's snle right and remedy under the agreements in this paragraph co.l. tained. In no event shall collins have ary liablity fer consequentíal damages, or for loss. came e or expense directly or indirectly arising from the use of the products, or any inadility to use if m_{I}. either separately or in combination with other equipment or materials, or from any cause.

HOY! TO ORCER REPLACEMEIUT PARTS

When ordering replacement parts, you should direct your orfer as indicated below and furnish t.e following information in so far as applicable:

```
Address: Collins fadio Company
Sales Service uepartment
cedar Rapids. Icwa
```

Information Needed:

HOW TO RETURN MATERIAL OR EQU:PMEAT

If, for ary reason, you should wish to return maierial or equifment, whether under the guarantee or ntherwise, you should notify us, giving fill particulars inctuding the details listed below, in so far as applicable. Upon receidt of such notice, collins will promptly advise you respecting the return. failure to secure our a avice oricr to the forwarding of the goods or failure to provide full oarticulars may cause unnecessary delay in handiing of your returned mercnandise.
Address: Collins Radio Company
Sales Service Department
Cedar Rapids, lowa

Information Needed:

(A$)$	Gate of delivery of equipment
B	Cate placed in service.
c)	Number of hours in service
(0)	Part number of item
(E)	Item number (outain from parts list or
	Schematic diagram)
(F)	Type number of unit from which fart is removed
G)	Serial number of unit
Hi)	Serial liumber of the complete equipment
$1)$	wature cf failure
(1)	cause of failure
(k)	Reriarks

Figure 1-1 ModelwadBoBroodcest Transmitter

SECTION I

GENERAL DESCRIPTION

1.1. GENERAL.

The Collins Type 21B, 5/1 kw standard AM Broadcast Transmitter has been designed particularly for high fidelity

Figure l-2 Oscillator Unit Removal
broadcast service. Numerous outstanding features are incorporated throughout the equipment to meet the demands for better service that is required of Modern Broadcast Equipment.

1.2. MECHANICAL DESCRIPTION.

1.2.1. GENERAL. - The transmitter is constructed in four cabinets neatly styled for impressive appearance. The complete equipment occupies a space $37-1 / 2^{\prime \prime}$ deep by 15^{\prime} wide by $79-5 / 16^{\prime \prime}$ highand weighs approximately lbs. For accessibility and serviceability, many combonent parts are mounted on vertical chassis. With this arrangement it
is a simple matter to gain access tc components if necessary. Tube spars have been arranged with a cover that can be easily removed to make all parts thereunder readily accessible. For service and maintenance purposes, large hinged doors are provided. ,iith the transmitter closed, complete tube visability is pro.cured by means of large glass windows incorporated in the front doors. Each door of the transmitter is arranged with a positive wedge type door switch which removed low voltage as well as high voltage when opened. In addition, a mec̣hanical safety device consisting of a mettrl plate and three contacts has been incorporated on the front doors as well as on the rear doors. This safety device will short out the high voltages that appear within the particular cabinet when these doors are open. The previous mentioned door switch opers the control circuit prior to the mechanical high voltage shorting operation and upon closing the doors the high voltage shorting plate is removed from the shorting position before the door switch is closed.

All meters are placed in an easily read position on the front doors of the cabinets. Their location enables the operating personnel to operate the tuning controls while observing the meter indications, at or near eye level.
1.2.2. CONTROL SYSTEM. - All operatirg controls in the 21B transmitter are conveniently located on the front doors of the cabinets, All major tuning controls are motor driven and function through the Adjust Knobs. The three Filament Start-Stop stations as well as the four Flate Start-Stop stations each consist of a single control which is pulled f:r starting and pushed for stopping opera-
tiens. This arrangement enables the operators to promptly find the right switch in case of emergency.
1.2.3. VENTILATION. - The air necessary for ventilating this equipment is drawn in at the bottom rear of each cabinet. Ventilation blowers located in the final amplifier and modulator cabinets are arranged so that their output is directed to the radiator of the air cooled tubes. Theair is forced along the front surface of the exciter bay vertical chassis where the tubes are mounted.

This method provides quick elimination of air around the heated tubes. The output of the blower in the rectifier and control bay is directed to the bases of the high voltage rectifier tubes. Components mounted on the rear of these vertical chassis are cooled by convection aided by the draft created by the ventilating blowers. The exhaust air leaves the cabinets through large openings in the roof of each cabinet. Dust traps have been installed at the ventilating opening in the roof to prevent dust from settling on the equipment during the period when the transmitter is not in operation.

1.3. ELECTRICAL DESCRIPTION.

1.3.1. GENERAL. - The 21B Transmitter is provided with A-C overload protection by means of magnetic circuit breakers placed in the control circuit, the blower circuits, the filament circuits and low voltage circuit, the intermediate voltage primary circuit and by means of overlcad relays in the high voltage primary circuit. The modulator, r-f power amplifier and the r-f driverare equipped with $\mathrm{d}-\mathrm{c}$ overload protection. The high voltage primary circuit, the modulator and r-f driver overload relays are adjustable and provide visible means of observing which has been tripped due to
an overload. In addition, means is provided to operate the overload circuit should the ratio of r-f carrier current to the final amplifier plate current change appreciably. The overload circuit is equipped with a "3 shot" overload system which, upon an overload, will return the plate power at full power once and at reduced power once before turning the intermediate, and HV completely off.

Instantaneous power change is accomplishedwithout any interruption of program, by simply retating a switch on the front panel.
1.3.2. VOLTAGE SUPPLY.- The transmitter employs three power supplies. The high voltage supply employs six type 8008 half wave mercury vapor rectifiers in a 3 phase full wave circuit and furnishes $\mathrm{d} \rightarrow \mathrm{c}$ voltage for application to the plates of the power amplifier and modulator tubes. The intermediate voltage power supply employs four type 8008 tubes in a single phase bridge circuit to obtain two voltages of approximately 1450 and 3000 volts for application to the 845 audio driver plates and to the 4-125A R-F driver plates respectively. The low voltage supply employs two type 8008 mercury vapor rectifier tubes connected in a single phase full wave rectifier circuit. This supplyis arranged so that a low voltage of about 500 volts is obtained and a bias of 100 volts is available. This bias is supplied to the modulator tubes and to the r-f driver stage.
1.3.3. AUDIO SYSTEM. - The audio system in the $21 B$ is push-pull triodes throughout the four stages. The first stage employs two type 6N? tubes, the second, two 6A5G or 6B4G tubes, the driver stage four type 845 tubes and the modulator two type 892R tubes operating Class B. 2 feedback loops are incorporated, from the plates of the modulator tubes to the
the plates of the modulator tubes to the grids of the input stage for stabilization and reduction of noise from the plates of the 845's to the grids of input stage.
1.3.4. R-F CIRCUITS. - The r-f section of this transmitter is a straight forward design. Proper circuit Q's are maintained throughout the entire broadcast ban. Inductive tuning is used where it is an advantage, and circuit Q is important.

Two complete plug-in type oscillator units are provided in the equipment. Either one may be chosen for operation by an oscillator selector switchlocated on the front door. A type 807 beam pentode tube operating Class AB is employed in the isolation stage following the oscillator. The buffer amplifier utilizes two 807's connected in parallel and operating Class C. Following the buffer amplifier is the intermediate amplifier stage employing two 4-125A tubes. The r-f power amplifier utilizes one 892R employing simple coil neutralization. The output network is a comb bination pi-network followed by an "L" matching section. Provisions have been made in the $r-f$ section for connecting a frequency monitor, audio monitor and modulation monitor.

1.4. REFERENCE DATA

1.4.1. FREQUENCY RANGE.-This transmitter will operate on any one frequency in the range of 540 to 1600 kc . After the frequency of operation has ance been set, any substantial change in frequency will require modification of the tank circuit and neutralizing components.
1.4.2. CHARACTER OF EMISSION.-The modulation system of the 21 B transmitter is designed to provide full 100% moduIation of the carrier at modulating frequencles between 30 and $10,000 \mathrm{cps}$. The frequency response is constant within
plus or minus 1.5 db of the mean value between 30 and $10,000 \mathrm{cps}$ and $\pm .75 \mathrm{db}$ between 100 and 7500 cps . The audio frequency distortion is less than 3% up to 95% modulation. The residual noise leve? is 60 db below the 100% modulated fullpower level and 50 db below 100% mod. in ons fifth power. The carrier shift with mod. ulation factors up to l is less than three per cent.
1.4.3. POER OUTPUT. - The transmitter will deliver 5500 w . max. of radio frequency power, on any frequency within the range of 540 to 1600 kc , into an es.sentially resistive load, (75 ohms is standard; other impedances are available). Provision is made for instantaneous reduction to one-fifth power by reducing the plate voltage on the power amplifier and modulator tubes.
1.4.4. PCWER SOURCE AND INPUT REQUIRE-MENT.- This equipment has beendesigned to operate from a 208 or 230 volt, 3 phase, 60 cycle power system. The maximum power dimand at 100% modilation with a modulating frequency of 400 cps is approximately 24 kw at a power factor of 85%
1.4.5. AUDIO INPUT. - An audio input level of approximately 10 dbm is r quired for full 100% tone modulation. The audio input impedance is 600 ohis standard; and 150 ohms is available.

1.5. VACUUN TUBE COMPLEMENT.

The vacuum tubes employed in the 213 equipment are listed below:
Qty. Tube Type Function

2
1

6F6	R-F Oscillator
807	Isolation Amplifier
807	Buffer Amplifier
4-125A	Intermediate Amplifier
892R	R-F Power Amplifier
6N7	lst Audio Amplifier
6A 5G/6B4G	2nd Audio Amplifier

Vacuum Tube Complement (Cont.)

Qty.	Trube Type	Function	Qty.	Tubs Type	Function
4	33.5	Audio Driver			
2	892R	Modu? ${ }^{\text {a }}$ tor	2	8008	LV Rectifier
6	8008	HV Rectifier	2	OC/VRI05	Voltage Reg:İ.to
4	8008	Int. Volta; e Rectifier	1	5U4G	R-F Rectifier

SECTIUN 2

INSTALIATION OF TRANSMITTER

(a) !irastios: . (andin ihould be used when wavating to arr,is? Amage to the equipment. ill units showla be inspected carefully. Inspert aach unit for loose screws and bolti. Check all controls such as switches etc., for proper operation as far as can be determined without the application of power. Inspect cables and wiring end make sure that all cable connections are tight. All claims for campge should be filed promptly with the transportation compeny.

2.1.2. INSTALLATION FROCEDURE.

(a) 21 B Transmitter. - The transmitter is shipped with the heavier iron core units as well as some of the more fragile parts removed from the cabincts. It is recommended the.t no attempt be medo to place these components in position until the cabinets hrve beun permanently placed on the transmitting room floor. If the floor is not extremely level, it may be necessary to meke a base from 2×6 lumber to set the transmitter on; otherwise, it will be olmost impossible to bolt the cabinets together. This base should m:ke contfct with all four sides of each cabinet. Refer to figures 2-1 thru $2-6$ to simplify plecement of components that were rcmoved when the equinment wes prepared for shipment. Wires that are removed from the units to which they connect: cre tagged before shipment. Should any of these tags become lost, refer to the verious cabling diagrams for assistance in identifying such leads. The nomparatively simple arrangement to s.ccommodate the wiring at the base of the transmitter is outlined in figure 2-6. The rıquirements
of the illustretion may be mot by suit-
 in 3 concers floor or by the installe. tion o. 2 conciuit trench of sufficient size fintnor alternetive would be to irstoll a faise floor under which the nosessary wiring may be pleced. A grounding strep should be installed along onc edge of the conduit trench to which cach cabinet should be connectud as it is placed into position.

Adequate clearance should be allowed in front of the units to fully open the doors. There should be f clenrenco of at least 4 feetat the reer of the trensmitter for installing and removing the compononts i:n the tronsmittor. If possible, clearance should be arranged for at the ends of the 218 unit to assist in making the externel connections ?nd pormit plecement of the end covirs. Special end covurs cre furnished for in-the-wall mounting. It is very important that the wolls be exactly perpondiculer to the floor.

If en entenne phesing unit is necesscry, a blonk cobinet can be obtrined from the Collins Radio Company which will metch the trensmitter cabincts in size nd nppearance.
(b) Intcr-Unit Wiring. - For the purposc of identificretion on the crbling diagrams unch unit has been assigned an arbitrery letter designetion. Those unit letters are used as n suffix whon $r \in f e r r i n g$ to the terminels on nny unit. Inter-unit wiring on the co.bling schumatics is indic ted by showing at nny terminel the type of wire and the torminol and unit to which each wirc rcutos.

The following tabulation lists the unit letters and description of the various units in the transmitter:

Figure 2-2 Modulator Bey - Inside Renr View

UNIT LETTER
DESIGNATION
A

AC
AD

AG
B
BA
BB
BC
BD

C

CC
CD Driver
CF
CG

EC
ED
EE
EF

Final Amplifier Bay
AA Connector for Door Circuits
AB Connector for Door Circuits

AE Overload Rectifier
AF Filament Transformer

CA Connector for Door Circuits
CB Connector for Door Circuits

CE Exciter

CH Intercabinet Cable

Modulntor Bay
EA Connector for Door Circuits
EB Connector for Door Circuits

UNIT DESCRIPTION

Intercabinet Cable
Fincl Amplifier Door
Door Connector
Door Connector Instrument Panel
Control Prnel

Exciter Bry

Power Supply
Cobinet Brse

Exciter Door
Door Connector
Door Connector
Instrument Penel
Control Penel

Modulator
Blowor Spar
Cobinet Base
Intcrabinet Cable

UNIT LETTER
DESIGNATION

UNIT DESCRIPTION

E
FA Door Connector
FB Door Connector
FC
FD

HA Door Connector
HB Instrument Panel
HC Control Penel
J
The order of designation of interunit cobling is as follows: Then a wire terminates on ? singlenumbered terminal on a unit, the wire route is from the source to the terminel on the specified unit and is indicnted by the termins. 1 number followed by the unit letter designation. There is $=$ wire st-rting frum terminel number 61 on Unit AC which torminetus on terminal number 61 of Unit AG. Therefore, an arrow at terminal number 61 on Unit C indicrtes that ine wire routes to terminal 61G, and th:e arrow is designetud 61G. An arrow from terminel number 61 on unit AG indicntes that the perticular wire in question is terminated on terminsl number 61, Unit $A C$. The designation ot the end of the arrow is 61C.

Figure 2-3 Exciter Bry - Inside Renr View

Every wire within the transmitter, going between units or between cabinets, is given a number. Regr.rdless of where this number apreas, i^{+}; $i s$ the same wire that carries that numbern another unit. This provides ensy means, of twaing circuits nnd loceting tuodila. The eable butween crobinets is arranged on easily accessible groups of terminal strips, (refer to figure 2-4) each numbered in eccordence with the cabling numbering system. f special terminal strip provides connections for any romote control required or ndditional control circuits that might be desirable.

Figur: 2-4 Intcre binct Connceting Fencl
The filmments of the roctifiers in the high voltage supply are connocted in a quadrature s.rrangement and care should be takento sce thet the filement transformors are connected exactly as the schmatic and wiring dingroms indicote. This will rusult in longer rec-
tifier tubc life. The constrnt voltoge tronsformers to which the filonont tronsformers are connected have a 120° phase shift.

The powe amplificr and modulatorfilaments are comrected in specisl noise reducing circuits ond must be connected correctly if adventage is to be taken of this fonture. Follow the schematics end photographs implicitlyand check the results with vector analysis. Viewing the tube filement terminels from the front of the cabinets, hypotheticolly letter the terminels from left to right A, B, C, D, E and F. Measure the voltages from A to B, A to C snd so on. Then mensure B to C, B to D etc. Continue in like manner until : completcset of voltage measurements heve been teken. Plotting the rusults in vector form, the configurntions should look thus:

2.1.3. EXTMRNL CONNECTIONS. (Refer to figure 2-6.)
(a) Power Connections. - The primery power connections are located in the rectificr cabinet in the front lower left hend corner of the vertical chassis. They ore enclosed within s dust cover which can be removed by pulling straight up. The power input cable should be brought tinrough the grommet hole to terminels 1, 2 and 3, on the terminel strip. The power cable should have ? reting of 75 amperes max. capacity. It is necessary that a mein Station switch be instrlled in the power line and it is recommended thret its loce.tion be conveniont to the transmittor so that the

power line may be completely disconnected before attempting any major scrvicing of the equipment.

The crystal heat trensformer T204 cen be operatad from aither a 115 volt or 208/230 volt source. If the transformer is to be operated from a. 115 volt scurce use terminals 1 and 2 of transformor T204. A pair of untermineted wires have been run from terminsls 208 and 209 on terminal board GH to r. point just r.bove crystal heat fuses F401 and F402 to be used for 115 volt operation. To fird these wires, remove the cover from the wiring channel located just above the crystal heat fuese. Disconnoct the 208/ 230 volt source from the crystal heat fuses and solder the untermineted wires in their place, after which connect a 115 vol.t source to terminels 208 and 209 on terminal bos.rd GH.
(b) Speech Input Connuctions. . Tho audio input connections to the transmitter are mede to the two nudio terminals locnted on the front of the excitcr verticel chassis in the lower left hand corner. See figure 2-6. Remove the shield covering these by pulling straight up. These connections should be made by means of n twisted prir shielded cable. is ground connoction is also provided here for grounding the shield.
(c) Antenne Transmission Line Turmination. - The transmission line may be carried up the cebinct chennel or may enter through the enbinet roof and the outer cenductor or ground connection fastened securely to the Transmittor ground terminel. The inner conductor of the line should bo connocted to the T/L terminal stendoff loceted near the top of the trensmitter. Refur to figures 2-5 and 2-6 for locntions. If a phesing cabinet is used, the phasing circuit connection can be made directly through the side walls of the cabinets.
(d) Monitoring Connections. - The modulation monitoring connection should be mede to the isolintite feedthru located on the outside wnill of the R-F Bry. A twisted prir or smell coax line should be used connecting one wirc to the terminal snd the other to a chassis ground. See figure 2-7.

Figure 2-7 Modul tion Monitor Connctions

The sudio monitor connections cen be mede to the 600 ohm - 150 ohm pad termincls loonted on the luft will of the Power simplifier Bay (vicwed from the rosr) near the bottom of the cabinct. This connoction is on unbrinnced turminetion.

If the grin of the nudio monitor requires R814 to be run nenr the full out.put position, $a 6 \mathrm{db}$ prd plecod in the line willimprove the fruquency response curve to the monitor.

Figure 2-8 Audio Monitor and Remote Ant. Current Connections

The frequency monitoring connection is made to a binding post on $L 213$ in the exciter cabinet. (See figure 2-9.)
(e) RemoteAntenna Current Connectors. - Connections have been brought out tc a terminal board located near the audio monitor connections in the Power Amplifier Bay. Connect the line from the remote thermocouple to these terminals for measuring the remote antenna current. Remote meter $M 901$ requires 500 microamperes for operation. The total line resistance (including adjustment resistance) should not exceed 20 ohms. The Iine resistance adjustment is located rear the connecting terminals. See figure 2-8.

Figure 2-9 Frequency Monitor Connections

Figure 2-10 Remote Control Schematic

Figure 2-11 Average Filament Emission Characteristics For 892R Tube

Figure 3-1a Functions of Controls

Figure 3-1b Functions of Controls (Page 1 of 2 Pages)

Figure 3-1b Functions of Controls (Page 2 of 2 Pages)

SECTION 3

ADJUSTMENT AND OPERATICN

3.1. INITIAL ADJUSTMENTS.

3.1.1. GENERAL. - The 21B is operated from controls located conveniently on the front of the transmitter. Refer to figure 3-1. The control panels are mounted on the fronts of the doors and consist of suitable controls to turn the transmitter filament and plate power on and off, select circuits to be metered, select tuning elements to be adjusted, raise and lower the values of resistanc.s, capacity or inductance attached to the tuning or adjusting elements, select crystal oscillators, and reset the overload circuit.

Additional switches and circuit breakers are located on the vertical chassis in the rectifier and exciter bays.
3.1.2. FUNCTION OF CONTROLS.-Refer to figure 3-4.
(a) Circuit Breakers and Switches.
(1) Crystal Heat Switch.- This control, S202, located inside the exciter front door, turns the crystal heat power on or off independent of ail other power controls except the main station power switch.
(2) PA O/L NORMAL. - This control, S407, is located on the rectifier bay vertical chassis, and is used to short circuit the PA overload relay contacts to prevent the transmitter being turned off during initial tuning adjustments. Place in the NGRMAL position after tuning adjustments.
(3) HV OFF-NORMAL . - This switch, S408, is used to prevent the HV being applied to the PA tubes, and is used primarily for removing the HV during
neutralizing adjustments and tuning intermediate amplifier.
(4) RF PGWER AMF FIL AND MODULATOR FIL. - These two rotary type switches, S409 and S410 respectively, are used to vary the filament voltage in 7-1/2 percent steps to the above named.stages. Variable resistors controlled with the CIRCUIT NETER SELECTOR switches furnish finer adjustment over a 10 peroent range.
(5) CONTROL CKT. - The following circuit breakers are all located side by side in the rectifier bay. The power to all of the control circuits (includning tuning motors) flows through the control circuit breaker (S411).
(6) CABINET BLONERS. - This circuit breaker, S412, is placed in the power leads supplying power to the cabinet blower motors. Power is not applied to the blowers, however, until the coated filament relay $K 401$ is operated.
(7) TUBE BLOWERS. -The tube blowers circuit breaker, S413, is placed in the power leads to blowers for the modulator and PA air cooled tubes. These also will not operate until the coated filament relay K401 has operated.
(8) CCATED FILAMENT. - This circuit breaker, S414, is in the primary circuit of the constant voltage transformers which supply power to the various coated filament tube filament transformers. The constant voltage transformers are not excited, however, until relay K401 is energized through operation of the FILANENT ON start station.
(9) TUNGSTEN FILAMENT. - The PA and modulator filaments are energized through this circuit breaker, $S 415$, which is in the primary circuit of auto-trans formers

T411 and T412. These auto-transformers are energized only after relay K 418 is energized through operation of the FILAMENT START button.
(10) LOW VOLTAGE. - The LOM VOLTAGE circuit breaker is located in the primary circuit of the low voltage supply. The low voltage supply turns on automatically after the filament time delay relay $K 422$ operates.
(11) INTERMEDIATE VOLTAGE.- This circuit breaker, S417 is in the primary circuit of the intermediate voltage supply. This supply is turned on by operation of relay K 404 which is energized by operation of the HV start stations only after the various interlock circuits are closed.
(b) Rectifier Cabinet Controls. - See figure 3-1
(1) OVERLOAD RiSET. - This control, S501, is used to reset the "three shot" overload circuit in the event two overloads are experienced, (the system resets automatically in a predetermined time after just one overload) thus allowing the circuit to function in full "three shot" fashion upon the next overload. It also allows return to high power immediately if only two overloads are experienced.
(2) POIER (TUTE-LCW-HIGH). - This selector switch, $S 503$, is used as the power level switch.

In the TUNE position, this control grounds the screen grid of the $4-125 \mathrm{~A}$ driver tubes to reduce the plate ard screen currents to a safe value while tuning the grid and plate circuits of these tubes.

In the LOY! position, a reduced screen voltage is applied io the driver tubes
and the power amplifier and modulator tubes operate at reduced plate voltage. A nominal 1 kw output is obtainable opperating thus. In this position, relays changing the modulator bias, audio input pad and monitor output are energized.

In the HIGH position, the plate voltage to the PA and modulator tubes is increased to full value for a nominal transmitter output of 5 kw . All auxiliary relays are de-energized to give full power operation.
(3) PRI VGLTAGE. - This control, a rotary tap switch, selects any one of the three phases of the power line for metering. It also selects the output of any one of the three constant voltage transformers for metering. The voltages thus obtained are read on the LINE VCLTAGE meter.
(4) PLATE START-STOP. - Located at the right hand edge of the control panal, this button is of the pull - to - start push-to-stop type. Pulling this button energizes plate power relays $K 419$ or K420 to apply high voltage to the r-f driver stage, the power amplifier stage, the a-f driver stage and the modulator stage. Fressing the button releas es the relays in the control circuit which, in turn, releases piate power relays K419 or K420 to remove the high voltage from the above stages. This button is wired in conjunctionwith the PLATE START-STOP buttons on the other three bays so that the plate power can be turned on or off from any of the four cabinets. The control circuit is arranged so that the fil.aments can be turned on, also, by pulling this control. When operated thus, the plate circuit will automatically turn on as soon as the filament time delay relay hes operated. This can be nullified by pulling the plate control button then pressing it which will cause the filaments only to be energized.
(c) Modulator Cabinet Controls.
(1) FTLAMENT START-STOP. - This is a pull-to-stard, push-to-stop button similar to the plate power start-stop button. When the button is pulled, filament relay K401 (coated filaments) is onergized followed by relay K 418 (tungsten filaments) and the blower motors. As soon as the filament time delay relay $K 422$ has operated, the low voltage plate relay K403 operates to apply plate voltage to the oscillator, buffer and audio stages. This filament button is connected in tandem with the filament buttons in the Power Amplifier and exciter bays. Pushing these buttons will turn the platesupply off as well as the filament supply since they are interlocked.
(2) CIRCUIT-NETER SEL. - This control is a rotary tap switch,S702, which selects various circuits to be metered and, also, connects the ADJUST control to the proper motors toadjust the value of filament voltage to the modulator tubes. In positions 1 and 2, the FILAMENT VOLTAGE meter is connected to the separate filament source of each of the modulator tubes. Position 1 being Mod. l or the left hand tube viewed from the front of the cabinet. At the same time the proper adjusting motor is connected to the ADJUST Control and by proper manipulation of this control, the filament voltage to the modulator tubes can be adjusted.

When the CIRCUIT-METER SEL. Jontrol is rotated to DRIVER CATHGDE landDRIVER CATHODE 2, the cathode current of the audio driver tubes V212, V213 and V214, V215 is metered on M701.
(3) ADJUST Control. - This Control is a single pole, double throw, center position open switch which controls the rotation of the motors used to adjust
the rheostats in the filament transformer primary circuits.
(4) PLATE START-STOP.-Phis control performs the same function as the PLATE START-STOP button on the rectifier bay front panel. See paragraph 3.1.2. (b) (4).
(d) Exciter Cabinet Controls.
(1) FILAMENT ON-OFF. - This control performs the same function as the FILAMENT START-STOP button on the modulator bay front panel, see paragraph 3.1.2. (c) (I).
(2) CIRCUIT-METER SEL. -The CIRCUITMETER SELECTOR switch on the exciter control panel selects the proper circuit to be metered by M304 and at the same time connects the proper tuning motor for circuit adjustment. M304 reads the following currents as the switch is rotated clockwise from the countarclockwise stop; isolation amplifier cathode, buffer grid, buffer cathode, intermediate amplifier grid, first audio frequency amplifier cathode, and second audio fro. quency amplifier cathode. Simultaneously while the switch is in the BJJFFER CATHODE AND TUNE position, the buffer plate circuit can be tuned by manipulation of the ADJUST control, likewise the inter.. mediate amplifier plate circuit can be tuned while the switch is in the INT AMP GRID and TUNE position.
(3) OSCILLATOR. - This sontrol, a small knob on the exciter control panel, selects one of the two crystal oscillator units for operation by means of relay K203. Relay K203 switches the plate and screen voltage from one oscillator tube to the other and changes the isolation amplifier grid connection from one oscillator to the other. In the counterclockwise position, the left hand csoillator is in use while in the clochwise
position the right hand oscillator is in use. The filament and crystal heater power is connected to both units at all times.
(4) ADJUST.-This control functions similar to the ADJUST control in the modulator cabinet, see paragraph 3.1.2. (c) (3).
(5) PLATE START-STUP. - This control functions identical to the PLATE STARTSTOP control in the rectifier cabinet. . See paragraph 3.1.2. (b) (4).
(e) Fower Amplifier Cabinet.
(1) Filanent STart- STCP. -Thispull-to-start, push-to-stop button functions identical to the FIIANENT START-STOP button on the modulator and exciter cabinets, see paragraph, 3.1.2. (c) (1).
(2) CIRCUIT-METER SEL. -The CIRCUITMETER SEL control selects the proper circuit to be metered by M904 in the first two positions of the control and in the last two, selects the proper tuning motor for adjustment of the final tuning and the final loading respectively.
(3) PLATE START-STOP. -This control functions identical to the PLATE STARTSTOP control in the rectifier cabinet. See paragraph 3.1.2. (b) (4).
3.1.3. ENERGIZING THE EQUIPMENT FCR THE FIRST TIME.
(a) Precautions. - Before energizing the equipment, a thorough inspection of all connections and terminals should be made to assure freedom from faulty operation. Do Not insert the tubes in the transmitter. Tube plate leads and caps should be checked for clearance to any metal object and tied to some convenient support to prevent accidental shortcircuits when checking operation of the
plate voltage control circuit.
Inspect all door interlocks making certain that the male member is free by pressing on the contact block until the spring is completely compressed and then releasing the pressure. If the contact block does not spring out to its initial position, check the two wires comprising the arm for parallelism, adjusting the wire arms until they are free of the stop pin located between the two wires. Before applying power to the transmitter input, be certain that all circuitbreakers are in the off position. These precautions having been taken, the circuit to the transmitter can be energized.

(b) Power Circuit Check.

(1) Engergize the circuit to the transmitter.
(2) Close the circuit breaker marked CINNTRGL CIRCUIT.
(3) Close the circuit breaker marked COATED FILAMENTS.
(4) Close the circuit breakers marked CABINET BLOWERS AND TUBE BLOWERS.
(5) Close the cabinet doors.
(6) Close the circuit breaker marked TUNGSTEN FILAMENTS.
(7) Pull the FILAMENT start - stop button.

The filament relay, K401, should now be energized and held operated through, its own holding contacts. The closing of the filament relay should light the filament pilot lamps, start the ventilating blowers, energize the fields of the PA fil l, PA fil. 2, Mod. fil. 1, and mod. fil. 2 tuning motors, energize the time delay relay, K422, energize the
constant voltage transformers and apply power to the filament transformer primaries of all tiubes in the transmitters. When approximately 30 seconds have θ lapsed, the time delay relay should operate. If the time necessary for the operation of this relay is not within 10% of the 30 second limit, the time of operation should be adjusted. The field coil of the 807's tuning motor and the low voltage transformer will be ensrgized immediately following the closing of the low voltage relay. Operation of the time delay relay completes the circuit necessary for the operation of the low voltage relay.
(6) Rotate the PRI VCLTAGE control on the rectifier cabinet control to \varnothing $1-2$, $\varnothing 2-3$ and $\varnothing 3-1$ in succession and read the voltage on the LINE VOLTAGE meter.
(7) Continue rotation of the PRI VOLTAGE control. to the FIL. 1, FIL. 2, FIL. 3 positions and note the reading on the LINE VOLTAGE meter. These readings should be approximately 230 volts.

The output of the constent voltage transformer depends somewhat on the power factor of the load. Since the power factors of the various loads on the different constant voltage transformers are not the same, the actual voltage readings will differ somewhat from each cther but will be within the 5% tolerance and will always remain in this relation.
(8) Rotate the CIRCUIT - METER Sel switch on the PA cabinet control panel to the PA FIL. 1 position and manipulate the ADJUST control clockwise and counter clockwise while watchingthe FILANENT VOLTAGE meter to see if the voltage changes properly. Snap the RF POUER AMP. FIL. switch on the rectifier bay vertical. chassis to \#l position while observing the FILATENT VOLTAGE meter in the FA bay.
(9) Repeat $\mathrm{step}(8)$ with the CIRCUITMETER SEL switch in the PA FIL. 2 position.
(10) Repeat step (8) with the CIR-CUIT-MET FR SEL switch on the modulator bay set in MOD FIL. I and MOD FIL. 2 positions while operating the MODULATOR FIL. switch in the rectifier bay.

NOTE

When the tubes are not in the sockets, the voltage readings will be only approximatelycorrectbecause no power is being drawn from the transformer secondaries. If voltage readings are obtained in the correct pcsitions of the CIRCUIT-METER SEL switches and the readings are reasonably correct for the circuit being metered, the power circuit check may be continued.
(11) Open the rectifier bay front door and place the circult breakers marked LON VOLTAGE and INTERMEDIATE VOL... TAGE in the ON position.
(12) Place the PA $0 / L$ switch in the NORMAL position and the HVswiteh in the NORMAL position.
(13) Close the rectifier bay front door.
(14) Place the PGFER control in the LON position.
(15) Pull a FITAMENT START button. Allow time for the time delay relay ic operatc. The green pilot lamps shouid all light.
(16) Full a FIATE START button. The intermediate voltage relay K 404 and the low power relay $K 419$ should; operate, all red pilot lamps except the two over. load lamps; should light the fields of all remaining tuning meters; should
be excited; and the filament and plate hour meters should start to register.
(17) Rotate the POM:ER switch to the HIGH position. The high power relay K 412 should operate and the low power relay release.
(c) Overload CircuitCheck. - With all the control circuits described in operation, take a lead pencil and open the contacts of one of the overload relays. This should cause the overload reset system to operate. Go through the three types of operationand check the results. See paragraph 4.2.2. for explanation of the "3" shot system.

When the above preliminary tests have been completed, shut off the transmitter by pressing the FILAIENT START-STCF button. If conditions seem normal and no circuit breakers have blown during the above procedure, the tubes may be inserted in their sockets.
3.1.4. FILAMENT CIRCUIT ADJUSTMENT. - To permit the proper conditioning of the mercury vapor rectifier tubes, the filaments should be excited for a period of thirty minutes before the appliatiicr of any plate power. . This can be accomplished by allowing cne of the cabinet doors to remein open with the filaments of the tubes excited, thus preventing the operation of the low voltage relay during the conditioning process. This aging procedure is required only in the case of new tubes. In subsequent operating procedure, the time delay relay will automatically nrovide the proper time interval. The filament volt meters are used in conjunction with the CIRCUI? METER SEL switches for measuring the filament voltage arplied to the PA and MOD tubes.
3.1.5. TUNING ADJITSTMENT. - OPERATION OF THIS EQUIFMENT INYOLVES THE IJSE OF HTCH VOLTAGES GHJCH ARE DAiIGEROUGS TO LIFE.

CPERATING FERSONNEL SHOULD AT ALL TIVES OBSERVE ALL SAFETY PRECAUTIUNS. DO NOT CHANGE TUBES OR NiAKE ADJUSTMENTS INS IDE THE EZUIPMENTWITH THE HIGH VOLTAGE SUR PLY ON. DO NOT DEPEND UPON DCCR SWITGES OR INTERLCCKS FOR PROTECTICN. ALWAYS SHUY DOWN PCVER EQUIPMENT WHEN MAKING ADJUSTMENTS.
(a) Oscillator Adjustment. - The oscillator is of the untuned type and no adjustment is available except a trimmer capacitor in the gridcircuit. The frequency may be varied over a range of ± 10 to 20 cps by adjusting this trinmer capacitor. See figure 3-1B.

Should it be found necessary, the frequency may be adjusted over a range of two to three hundred cycles by means of the airgap in the crystal holder. Refer to figure $4-6$. This adjustment is made by removing the name plate from the top of the holder and using a special type 280A wrench. Loosen the locknut and rotate the airgap regulat orvery slightly. Clockwise rotation lowers the frequency, counterclockwise rotationincreases the frequency. 'hen the adjustment has been completed, tighten the locknut and replace the name plate.

Either Osciliator Unitmay be selected by tine Oscillator selector Switch, S303.
(1) Rotate tire CRYSTAL HEAT switch, S202, to the ON position.
(2) Close the circuit breakers to the CONTROL CTRGITT, the CABINET BLOTERS, the TUBE BLCNERS, the COATED and TUNG SIEN FILAMENTS and the LOW VOITAGE.
(3) Flnce the HV switch in the OFF position and the FA O/L in the OFF position.
(4) Rotate the PCrieR level control to the TUNE position.
(5) Pull the FILAMENT start..sto p control. As soon as the time delay relay operates, the plate and screen poltage will be applied to the oscillator,

The normal operating current of the 6F6 oscillator tube is between 10 and 27 ma . The value of this current depends on the frequency of cperation. Thehigher the frequency used, tine higher will be the operating current.
(6) Place the CIRCUIm-METR SFL Control in the ISO AMP CATHODE positica and check the cathodecurrent of this stage. It should be approximately ma.
(b) AMPLIFIER GRID ADJUSTMENT. - When proper operation of the oscillator has been secured:
(1) Rotate the CIRCUIT-METER SEL switch to the BUFFER GRID position.
(2) Adjust the isolation amplifier grid couplingcapacitor, C220, until the test meter indicates 5 to 6 ma, of grid current.
(c) Buffer Amplifier Plate Tuning.
(1) Rotate the CIRCUIT-METER SEL switch to the BUFTER CHHTODE and TUNE position.
(2) Opernte the ADJUST control. The cathode current will dip sharply when the point of resonance is reached. If the point of resonance cannot be found, it will be necessary to change the tap on inductor, L213. Refer to figure 2-9 for the location of the inductor.
(3) Change the tap in steps of not more than two turns at a time until resonance is established with the tuning capacitor at approximately onemhalf capacity.
(d) Intermediate Amplifier Grid Adjustment. - The tank inductor, L213, is provided with a sliding connector to very the degree of loading of the buffer amplifier plate circuit and the coupling to the grid of the intermediate amplifier tube. Refer to figure 2-9.
(1) Rotate the CIRCUIT-METER SEL switch to the INT. AMF GRID and TUNE position.
(2) Read the intermediate amplifier grid current as indicated on the TEST METER. If thegrid current is not within the range of 35 ma to 40 ma , adjust the rider on L213 until this value has been obtained. (When plate and screen voltage is applied to the int. amp tube, the grid current should be about $23 \mathrm{ma}$.)
(3) Adjust the rider in steps of not more than 2 turns at a time. To increase the drive, move the tap toward the plate end of the coil.
(4) Retune the buffer amplifier plate circuit to establish resonance after each tap change.
(e) Intermediate Amplifier Plate Tuning. - Before attempting to tune the intermediate amplifier plate circuit:
(1) Be sure switch S408,figure 3-1, located in the control circuit of the power amplifier is in the OFF position.
(2) Remove the power amplifier grid tap from i214. (By removing this tap a better indication of resonance may be obtained.)
(3) The intermediate amplifior plate circuit may now be tuned.
(4) Close the INTERMEDIATE VOLTAGE circuit breaker.
(5) Rotate the CIRCUIT-METER SEL switch to the INT. AMP GRID and TUNE position. The POllER switch should remain in the TUNE position.
(6) Pull tine PLATE start-stop control.
(7) Operate the ADJUST control. Tune for minimum cathode current of the intermediate amplifier as indicated by a slight dip on meter M303. If the point of resonance cennot be found, it will be necessary to adjust the tap on inductor L214. Refer to figure 3-2. Change the tap in steps of not more than 2 turns at a time until resonance has been established.

Figure 3-2 Driver Amplifier Plate Tank Inductor
(8) Rotate the POWER switch to the LOW position to complete the tuning.
(f) Final Amplifier Grid Adjustment.When resonance has been established in the plate circuit of the intermediate amplifier, the final amplifier grid tap can be replaced on inductor L214. This adjustable tap varies the degree of loading of the intermediate amplifier plate circuit and the coupling to the grids of the final amplifier tubes.
(1) The POWER switch remains in the LOW position.
(2) Adjust the setting of the tap on the L208 at the ground end of the inductor. Increase coupling in steps of not more than 2 turns at a time.
(3) Check the final amplifier grid current after each tap change.
(4) Retune the intermediate amp plate circuit to resonance after oach tap change.
(5) The tap should be adjusted so that at resonance the final amplifier grid current is approximately 225 ma with the power lever switch in the LCW position and the high voltage off the plates of the final amplifier tubes. The plate of the $4-125 \mathrm{~A}$ tubes ahould now show a slight red color.
(g) Neutralization. - The final amplifier has been neutrelized and locked at the factory and no further adjustment should be required. However, due to the slight difference in the interelectrode capacity of various type $892 R$ tubes, some adjustment of the neutralizing may be necessary. An oscilloscope may be used to indicate complete neutralization of the firal amplifier circuit. The high voltage lead to the plates of the final amplifier tubes shouldbe broken by opening switch S408. Inductively couple the oscilloscope to the final pi tank coil, L804, to obtain sufficient r-f pickup.

Pull the PLATE tart-stop control tu apply plate voltage to the r-f stages preceding the final amplifier. Tune the plate circuit of the final amplifier to as near resonance as can be determined without application c_{i}^{2} the plate voltage. Maximam indication nrof feedthru on the oscilloscope shovila appear under this condition. Adjus $\stackrel{\text { the coupling to }}{ }$ give the desired pick-lip. Neutralization adjustments may now be made. The neutralizing inductorshouid be adjusted to give a minimum r-f indication on the oscilloscope.

Figure 3-3 Noutrulizing Coil Adjustment
(h) Final Amplifier Plate Tuning.
(1) Make approximate settings of the output network by referring to the test sheets.
(2) Close the switch, S408, located in the control circuit of the final amplifiar tubes.
(3) Rotate the TUNE METER SMITCH to the FINAL TUNE position.
(4) Rotate the POWER switch to the LCW position.
(5) Pull the PLATE start-stop control.
(6) Operate the TUNING control.Tune for minimum plate current as indicated on plate meter M902. If the point of resonance cannot be reached, adjust the tap on the plate tank inductor, 1803 until resonance can be established. See figure 3-4.

Figure 3-4 Power Amplifier Plate Tank and Output Hetwork Inductors
(i) Loading Adjustments. - All inductor tap adjustments of the output network have be:n made for the frequency upon which the transmitter is to operate so that only slight adjustment of the inductor taps should be necessary.

The variable loading conderser should be set at mid range while the L section is adjusted to provide proper lcading for full power operation. When operated in the HIGH power position, the normal pperating power amplifier plate current is approximately 0.73 amp .
(1) Rotate the CIRCUIT-METER switch in the PA cabinet to the FINAL LCAD position.
(2) The POWER switch remains in the HIGH position.
(3) Apply voltage to the final amplifier tubes.
(4) Operate the TUNE control, and attempt to load the power amplifier to nbout 80% of the full load.

Figure 3-5 845 Cathode Current Balancing Adjustment
(5) To decrease the loading, raise the inductance of the output coil L 804 of the L section. To increase the loading, the procedure is the opposite of the above. See figure 3-4.
(6) To complete the adjustment of the L section, set the tap on the output branch to give a maximum antenna line current. When the above conditions have been obtained, a slight adjustment of power amplifier plate tank circuit is necessary. To make this adjustment, rotate the CIRCUIT-METER SEL switch to the FINAL TUNE position and operate the ADJUST control until the tank circuit is set at resonance.
(7) Now detune the plate circuit slightly to one side of this setting. The plate current and the line current will now increase as will the plate efficiency.:

The loading and tuning controls should be adjusted for maximum efficiency for the desired output. The apparent amount of detuning required to obtain the proper operating point will be greater for lower frequencies.

This procedure of detuning the plate circuit slightly off resonance is pecessary because the variable element in the final amplifier plate circuit is in the inductive branch, and merely tuning to minimum plate current does not tune the plate circuit to unity power factor. Strictly speaking, minimum plate current may be used as an accurate measure of unity power factor only when the capacity of the tank is the element varied. The tuning adjustment of the 21B varies the inductance of the tank coil by means of a copper disc within the tank coil, and acts as a single short circuited turn. In this case maximum impedance will not occur at unity power factor, and L803 should be adjusted to a value
slightly different than that which pro duces minimum plate current. This procedure will result in a higher plate efficiency in the final amplifier than would be obtained by tuning to minimum plate current.
(j) Audio Circuit Adjustments. - The only audio system adjustments necessary are the cathode current balancing adjustment on the 845's and the grid bias adjustment on the modulators. The modulator bias should be adjusted to give a static plate current of approximately 250 ma for each tube.
(1) Place the POWER switch in the HIGH position.
(2) Pull the PLATE start-stop control to apply plate voltage to the audio drivers and modulators.
(3) Rotate resistor R250 for cathode current balance of the 845 tubes. See figure 3-5.
(4) Rotate rheostat R404in the rectifier bay until the bias is adjusted to give the recommended value of static plate current for the No. I modulator tube. (Rotate clockwise to increase, counterclockwise to decrease the plate current.) See figure 3-6.
(5) Rotate Rheostat R405 until the bias is adjusted to give the recommended value of static plate current for the No. 2 modulator tube.
(6) Place the POWER switch in the LOW power position and repeat steps (2), (4) and (5) with resistors R 417 and K 406
3.1.6. NOISE ADJUSTMENT. - Noise on the carrier can be minimized by adjustment of hum adjusters R806 and R809 in the power amplifier cabinet and R606 and R607 in the modulator cabinet. These resistors should be adjusted for minimum
noise using a noise meter as an indicator. The adjusting can be done in steps since opening a rear door automatically turns off the high voltage.

\therefore 'igure jow Hun Adjustinents
3.1.7. ADJUSTMENT OR DIFFERENTIAL RELAY K414. - This relay should be adjusted after all tuning adjustments have been made and the transmitter is operating in normal fashion on HIGH POWER.
(a) With switch S407 in the PA 0/L-OFF position and capacitor C810 in the open position, turn the transmitter on and check for normal operation and tunings. See Figure 3-7.
(b) Turn capacitor C810 until relay K404 "falls out" i.e. closes the normally closed contacts.
(c) After the proper operation of relay K414 is obtained, switch 5407 can be placed in the NORMAL positon.
(d) Check for proper differential by de-tuning final amplifier. If the differential is too close, increase the capacity of C810 until desired resultsare obtained. Note that it will normally take more detuning on one side of $P A$ resonance than on the other to produce the same results.
(e) Repeat the above procedure in LOW POWER and find a position of C810 which is satisfactory for both HIGH and LOW power operation.

3.2. ROUTINE OPERATION.

3.2.1. GENERAL. - The steps outlined in this section may be used as a guide to routine operation of the equipment, subsequent to completion of theinitial adjustments. It issuggested that the operator refer to the adjustment section of this instruction book for a more de-
 ment of the transmitter circuits. Control knobs and meter locations are shown in figure 3-1. All tuning controls are motor driven and function through raise and lower knobs on the front panel of

Figure 3-7 Capacitor C-810 Adjustment
the transmitter. It is assumed that the main station power switch is in the ON position and the crystal heat switch S202 (or external source) is turned on.
3.2.2. STARTING EQUIPMENT.
(a) Open the lower front door of the rectifier cabinet and place the following circuit breakers in the $O N$ position:
(1) CONTROL CIRCUIT
(2) CABINET BLOWERS
(3) TUBE BLCWERS
(4) COATED FILAMENT
(5) TUNGSTEN FILAMENT
(6) LCW VOLTAGE
(7) INTERMEDIATE VOLTAGE
(b) With the lower front door of the rectifier cabinet still open, place the PA O/L switch in the NORMAL position and the HV switch in the NORiAL position.
(c) Close the front door and all other doors that might be open and pull a FILAMENT START switch.
(d) Read filament voltages and make adjustments if needed. Check oscillator plate current, ISO AMP CATHODE, BUFFER CiTHODE and BUFFER GRID current as well as list and 2nd AF cathode current.
(e) Place the HTGH-LOW power switch in the correct position for the power desired.

TYPICAL METER READINGS

* The int amp grid current may vary 4 or 5 ma during modulatien. This is normal and will not affect the operation or quality of transmission.
(f) Pull a PLATE START switch.
(g) Check tie intermediate amplifier grid and plate current, the power amplifier grid and plate current, and the driver cathode 1 and driver cathode 2 current.
(h) Check local and remote line current.
(1) Make all necessary monitoring observations.
3.2.3. STOPPING EQUIPMENT. - The transmitter may be completely shut off (with exception of the blowers) by pushing a FILAMENT start-stop control. The blowers will mun for an adjustable period (recommended 2 min.) and then autonatisally turn off.
3.2. 40 OVERLOAD RESET. - A "three shot" overload system is employed in the 21B trarsmitter. If one occurs, the transmitter will turn on immediately after the overload on full power and overload light \#l will turn on. If no other overIcad accurs immediately, the "three shot" jystem can be returned to full "three ?hot" operation by pulling the OVERLOAD aESET control, otherwise, within an adjustable period, (recormended 5 seconds) of the first overload, the system will qutomatically reset. If, however, a second overload occurs immediately after the first, the transmitter will turn on again at half power and the second overload light will turn on. If no other overloads are experienced, the CVERLOAD RESET control can be pulled to return the transmitter to full power operation ind at the same time return the "three shot" system to full "three shot" operation. The system will not automati-
cally reset after the second overlcad. If three overloads occur before the OVERLOAD RESET control has been pulled, the transwitter plate supply will turn Ofさ and remain off until a PLATE POWER START buttion has been pulled. If the transmitter should continue to show overload and repeatedly set up on low power, until at such time when the overload condition can be eliminated, the power change switch can be placed in the LOU POWER position and the OVERLOAD RESET button pulled, thus allowing "3 shot" operation in low power.
3.2.5. POTER CHANGE. - The power output can be changed from 5 KW to 1 KH , or conversely,by merely turning the power level switch to the desired position; it is not necessary to shut the plate power off during power change.
3.2.6. OSCIILATOR CHANGE. - In event a crystal becomes erratic in operation or needs adjustment for frequency, the spare oscillator can be switched in by turning the OSCILIATOR selector switch: This can be done with no break in the program since the spare oscillator is always warmed up and ready for immediate use. With the OSCILIATCR control in the counterclockwise position, the left hand oscillator is in use; with the control in the clockwise position the right hand oscillator is in use.
3.2.7. BLCHERS. - The air blowers in the 21B will remain operating for a predetermined time after the plate and filament supplies have been turned off. This automatic turn-cff feature insures the air cooled tubes reaching a safe temperature before the blowers are tumed off--do not pull the mein station power switch until the blowers have stopped.

SECTION 4

CIRCUIT DESCRIPTION

4.1. MECHANICAL DESCRIPTION.

4.1.1. CABINETS. - The 21B transmitter is contained within 4 cabinets, each 78" high by $37-1 / 2^{\prime \prime}$ deep by $43-1 / 2^{\prime \prime}$ wide (exclusive of dust covers). Total width is $15^{\prime} 1 / 4^{\prime \prime}$ with dust covers while the height is $79-5 / 16^{\prime \prime}$. The cabinets are arranged so that in-the-wall installation may be employed; in which case, special top and side dust covers are furnished. Full access front doors are used on all cabinets except the rectifier cabinet where a special "dutch" type construction is employed to allow maxinium safety to operating personnel and at the same time provide for accessibility to operating controls contained therein. The top part of the door is hinged on the top edge whereas the bottom part is hinged conventionally on the right edge. Two full length rear doors are employed on each cabinet. All doors, except the lower front on the rectifier cabinet, have primary interlocks and high voltage shorting safety switches. Front doors have glass windows where tube visibility is desirable.
4.1.2. VENTILATION. - Forced air ventilation is employed in the 21B Transmitter. Air is drawn through dust filters at the bottom of each rear door and forced by means of centrifugal blowers to the points requiring ventilation. The air is then exhausted through a large opening at the top of each cabinet which is provided with a dust trap. If an exhaust air duct is to be used, an exhaust fan capable of $3000 \mathrm{cu} . \mathrm{ft} . / \mathrm{min}$. should be installed at the building exhaust port. Provisions can be rade in the exhaust air duct for heating the transmitter room with part of the exhaust air in cold climates.

4.2. ELECTRICAL DESCRIPTION.

4.2.1. PRIMARY POUER CIRCUITS. - Befer to figure 4-1. Power for the 21B Transmitter is obtained from a 208 or 230 v 3 phase source. The entire transmitter will operate from the single set of line connections if desired. In some instances, however, it might be desirable to run the crystal heat transformer T 204 from a separate 115 v source. Connections have been provided for this type of operation. The crystal heat transformer, as furnished, is connected to line terminals 1 and 3 for single phase 230 volt power through fuses F 401 and F402 and switch S2O2.

Power for control circuit operation is obtained from line terminals 1 and 2 through circuit breaker S4ll.

The filament transformers for coated filament tubes are supplied from terminals 1,2 and 3, through circuit breaker S414, relay contacts $K 401$ and constant voltage transformers T407, T408 and T409. Line voltage for all 3 phases and regulated filament primary voltage for all three regulated primary circuits is metered in these circuits by meter M501, the different circuits being chosen by selector switch S502. Filament time delay relay $K 422$ is connected across the secondary of constant voltage transformer T408. This relay prevents plate voltage being applied to the low voltage rectifiers (and subsequently the high voltage rectifiers) before the tube filaments have had sufficient time for heating.

Cabinet air blower motors B202 and $B 401$ are supplied 230 v single phase power from line terminals 2 and 3 through circuit breaker S412 and the contacts of relay K 402 . The tube blower motors B603, B604, and B805 are supplied single or 3 phase 230 volt power from
terminals 1, 2 and 3 through circuit breaker S413 and the contacts of relay K402, the coil of which is actuated by blower time delay relay $K 421$ which allows the blowers to operate for an adjustable time after the transmitter filaments have been turned off to insure the tubes reaching a safe temperature. The blower motors B603, B604, B805 and $\$ 806$ are connected to the 3 phases as single phase loads when single phase inotors are supplied.

Power for the power amplifier and nodulator filament transformers is taken from line terminals 1, 2 and 3 since 3 phase 230 v operation is employed. The power goes through circuit breaker S405, relay contacts $K 408$ to autotransformers T410 and T411 where the different taps
represent a 7 $7 / 2 \%$ change in filament voltage. The taps on the autotransformers are connected to switches S 409 and S410, S409 controlling the power amplifier filament voltage and S410 controlling the modulator filament voltages.

From switches S409 and S410 the filament primary power goes to rheostats R610, R611, R81l and R812 where full rotation of the rheostat arm represents a 10% change in filament voltage. The PA and modulator filament transformers are Scott connected high reactance transformers designed to limit the starting current surge when the cold tube filaments present a very low value of resistance. Notice that the points on modulator filament switch S410 are connected to lower voltage taps on the autotransformers

Figure 4-1 Primary Power Circuits
than corresponding points on PA filament switch S409. This is connected in such a fashion because ordinarily the modulator tubes are run at a lower filament voltage than the PA tubes since the omis-- sion requirement is somewhat less.

Single phase 230 v power is required for the low voltage plate supply. The low voltage transformer T210 is powered from line terminals 1 and 2 through circuit breaker S416 and relay contacts K403. The intermediate power supply transformer T213, also requires single phase 230 v and is powered from line terminals land3 through circuit breaker S417 and relay contacts K 404 .
quires 3 phase 230 v power for operation. Current transformers T4l2 and T413 are inserted in the power lines connected to line terminals 1 and 3 for operation of overload relays $K 411$ and K412. 5 kw tc 1 kw power change is accomplished by autotransformers T414 and T415 through operation of high power re.. lay K 420 and low power relay K419.Auto.. transformers T415 and T414 are tappe to compensate for a 208 v line voltage. The high voltage plate transformers Tl001, Tl002 and Tl003 are delta connected for 3 phase 230 v operation and are tapped for line voltage adjustment. The power consumption of the entire transmitter on full power is approximately 24 kw at 85 power factor.
\therefore The high voltage plate supply re-

Figure 4-2 Control Circuits
4.2.2. CONTROL CIRCUITS.-Refer to figure 4-2. Power for operating the control circuits is drawn from line terminals 1 and 2 through circuit breaker S4ll. Pulling a filament start button (S301, S701 or S901) will energize coated filament relay K 401 which will turn on pilot lamps I501, I301, I901 and all filaments in the transmitter except the PA and modulator filaments. Coated filament relay auxiliary contacts K40l-1 close and hold the relay in the operated position. At the same time, the fields of tuning motors B801, B802, B601 and B602 are energized and filament time dolay relay K422 starts to function (see lower right hand corner of figure 4-2). Jpon operation of coated filament relay $\hat{k} 401$, the blower relay K 402 is energized through contac ts K401-2 and K42l-1. After the blowers have reached operating speed, air interlock switches S608, S607, and 3809 will close and the tungsten filament relay K 418 will operate and energize the PA and modulator filaments and light the filament pilot light I701.

After the filaments have been on for 30 seconds, the filament time delay relay K 422 will have operated closing contacts K422-1 resulting in the application of power to the coil of low voltage plate relay K403, which turns the low voltage plate power on providing the doors are closed to operate the door interlocks S404-5-6, S601-2-3, S2-5-6-7 and S804-5-6. In addition, operation of filament time delay relay $K 222$ energizes the field of 807 tuning motor B2O4 and lights the low voltage pilot light I302.

Pulling a plate start button (S305, 3504, S704 or S904) will energize intermediate voltage relay K 404 ; the circuit going from line terminal \#l through one section of circuit breaker S411, through the NC contacts of the filament start buttons, the NC contacts of the plate start button, the pulled plate
start button, overload relays contacts K411-1, K412-1, K413-1, K414-1, K415-1, contacts K403-1 of lowvoltage plate relay K403, through the coil of intermediate voltage relay K 404 and through the other section of circuit breaker SLll to line terminal \#2. Operating this relay (K404) will turn of the intermediate voltage supply :hich powers the $4-125 \mathrm{~A}$ and 845 tubes. In addition, the field of PA grid tuning motor B203 is energized and pilot lamp I3O3 is lighted and sequence start relay K 405 is operated. Operation of sequence start relay locks the plate power circuit through holding contacts K405-2.

The high voltage plate relays K419 (low power) or K 420 (high power) are operated by a circuit which is identical to the circuit required to operate the intermediate voltage relay except the circuit goes through high voltage switch S408, exciter interlock relay contacts $\mathrm{K} 416-1$, bleeder relay K 417 interlock contacts K417-1, Power level switch S503B, and either through the contacts of restart $\# 2$ relay $K 408$ and low power relay interlock contacts K419-1 to the coil of high power relay K420, or through high power relay interlock contacts K420-1 to the coil of the low power relay K419, depending upon the position of power level switch S503B. At the same time, the fields of $P A$ tune and PA load motors B803 and B804 respectively, are energized, plate hour meter M402 starts to run and high voltage pilot lamps I304, I504, I702 and I902 are lighted. Also the bleeder relay K 417 is energized to remove the bleeder from the circuit when the plate power is on. When low power is selected, bias relay K206, attenuator relayk 207, drive relay K205, and monitor relay $K 801$ are energized to condition the transmitter for low pover operation. Overload switch S407 is used to short out differential overload relay contacts $\mathrm{K} 414-1$ during tune-up procedure. Pressing any plate
or filamentstop button will release sequence start relay K 505 and turn off the plate power. In addition, opening any door (except the bottom front door in the rectifier cabinet) or causing an overload in the high voltage plate circuits will turn off the plate power. Failure of the bleeder relay K417 or the excitation from the $4-125 A$ tubes will remove the high voltage also. Likewise, should the low voltage plate supply or the blowers fail, the high voltage plate supply would be turned off through the interlock system.
overload al

OVERLOAD IT

Fingure 4-3 Overload System Block Diagram

K406 is energized through the circuit from terminal J through contacts K410-1, "ontaots K423-1, reset switch S501, contacts K405-4, and contacts K407-2. Enargizing this relay closes contactsK406-3 thru contacts K407-4 and operates sequence start relay K 405 again putting the transnitter back on the air. If no other overload occurs within an adjustable time, overload time delay relay K 423 , dhich is now running, opens contacts K423-1 and resets the "3 shot" system. The system can be reset manually by pulling S501. Assuming that a second overload is going to occur before the reset, otice that restart \#l relay K 406 holds in the operated position by virtue of its holding contacts K406-1 and release 41 relay $K 407$ is energized through K406-2, K408-4, K406-5, 5501, K423-1 and K410-1 contacts. Energising release \#1 relay K407 opens the circuit of K406-3 and K407-4 leaving K405-2, the hold contacts of sequence start relayK405 again colding the plate power on.

When the second overload occurs, sefuence start relay K405 again opens and jurns the transmitter off. The transnitter is then turned on again at fifth ower by restart relay K 408 . K 408 is sperated by the circuit through contacts 1407-3, K405-4, S501, K423-1 and K410-1. jperation of this relay, K408, closes zontacts K408-7 through K409-3 contacts hich are in series across the start butions. Therefore, the transmitter is utomatically started again at fifth rower since contacts K408-5 opens the iigh power relay K420 and contacts $K 408-6$:loses the low power relay K419. After ihe plate power is applied by contacts :408-7, sequence start relay K405 again ;loses and release relay K409 is ener;ized by the circuit through contacts 408-3, K405-5, S501, K423-1 and K410-1. peration of K409 opens contacts K409-3 leaving sequence start relay contacts 405-2again holding the plate power on.

If a third overload occurs and sequence start relay $K 405$ is again opened, the transmitter plate supply will turn off again and remain off. When release relay K409 operates, it opens contacts K409-2 which releases hold relay K410 and opens hold contacts K410-1 thus opening the reset circuit and automatically resetting the "3 shot" system so as to be ready when the overload is cleared and the transmitter is manually turned on again.

After the second overlcad, the transmitter can be turned on again at full power and the "3 shot" system returned to full "3 shot" operation by pulling the overload reset control, S501. After the third overload, it will be necessary to turn the transmitter back on by pulling a plate start button. Pilot lamp I502 lights after one overload, pilot lamp I 503 turns an after the second overload and 1502 goes out, and on three overloads, both lamps go out along with the plate pilot lamps.
4.2.3. REMOTE CONTROL CIRCUITS. - Refer to figure $2-8$ and figure $4-2$. The remote control circuits for the $21 B$ transmitter attach at the remotecontrol terminal board in the rectifier bay. The remote controls function identical to the controls on the transmitter panel.

The filament start and the platestart buttons on the remote unit are wired in parallel with those on the transmitter while the filament stop and plate stop buttons on the remote unit are wired in series with those on the transmitter unit. The remote filament pilot light is effectively in parallel with the coated filaments and the plate pilot light is effectively in parallel with the high voltage pilot lights (plate).

The Remote power change switch is connected so that the high power con-
tacts are in series with the high power contacts on the transiritter power change switch and the low power contacts are in parallel with the low power contacts on the transmitter power change switch.

In orier to change power from the remote position, it is necessary to place the transmitter power change switch in the HIGH FOTER position and leave it there. Conversely, if the power change is to be made from the transmitter power change switch, the remote switch will have to remain in the HIGH POEER position. In other words, for higi power operation, both switches must be in the HIGH POWER positions while for low power one or both must be in the LOW POWER position.

The overload switch for remote operation is connected in series with the transmitter overload switch while the overload pilot lamps are connected directly in parallel with the transmitter overload lamps.

Two terminals (F and G) are brought out to connect external auxiliary interlocks. These terminals are connected so that the auxiliary interlocks will be in series with the transmitter door interlocks.

4.2.4. RADIO FREQUE:CY CIRCUITS.

(a) Oscillator. - The crystal oscillator employed is a modification of the Colpitts type oscillator circuit. This circuit, utilizing a type 6F6 pentode tube, has high inherent frequency stability against variations in d-c surply voltage or variation in tube characteristics. Two oscillator units are furnished with the 213 transmitter. Either unit may be selected using the ascillator selector switch, S303. The removal of one oscillator does not affect the operation of the transmitter. The oscillators are supclied with selected low temperature coefficient "A" cut quartz plate crystals with a temperature coefficient of less than three parts per
million per degree centigrade. Each crystal is mounted in a Collins type 297 crystal oven. The crystals are maintained at 50 degrees centigrade (600 C . on special order) by means of a mercury thermostat raving a 0.2 degree sensitivity. A small variable capacitor, Cl01 is connected across the crystal so that the frequency of operation maybe varied in a range ± 10 to 20 cps . If itis found necessary, the frequency may be veried over a range of 200 to 300 cps by adjust,ing the air gap between the connecting plate and the quartz crystal. This operation is explained in paragraph 3.1.5. (a) of this instruction book. Plate and screen voltage supply for the oscillator is made stable by a voltage regulating circuit consisting of twc CC3/vR105 tubes and a voltage divider consisting of R207, R208 and R209. The cathode current of the oscillator is metered by M101 to indicate functioning of the oscillator.
(b) First Buffer. - The output coupling of the oscillator to the grid of the first buffer is controlled by the variable capacitor C220. The Buffer stage employs an 807 beam power amplifier operating class AB. This tube serves to isolate the oscillator from the reaction of changes in circuit tuning or operating conditions in the foll.owing stages. The cathode current of this stage is metered by the test meter M304 when the test meter switch is in the ISO Ary CATHODE position.
(c) Buffer Amplifier. - the buffer amplifier stage utilizes two 807 tubes in a parallel connected circuit operating class "C". The use of two tubes in this stage assures nore than ample drive to the following stage. In case either one of the tubes should become inoperative, the remaining tube would be sufficient for satisfactory operation. The screens of this buffer amplifier stage and of the preceding isolation amplifier are tied together to create a slight automatic excitation control; thereby maintaining fairly uni-
form excitation throughout line voltage variations. The plate tank circuit of this stage is also utilized as the grid sircuit of the following stage. The tank circuit capacitor is motor driven and controlled from the front panel. The tank inductor L? 13 is provided with a sliding connector to vary the degree of loading of the plate circuit and the coupling to the grid of the intermediate implifier stage. An adjustable tap is 1]so arranged on inductor 4213 for the jurpose of operating a frequency monitor. The cathode current of the 807 subes is indicated on the test meter then the CIRCIIT NETER SEL SWITCH is in the BUFFER CATHCDE ANT TUNE position. rre grid current is indicated on the :ame meter with the SEI SHICE in the SUFFER GRTL position.
(d) Intermediate Amplinier. - The inbermediate amplifier emrloys two type $\therefore-125$ power tetrode tubes. The amount of drive to this stage is deternined by the position of the tap on inductor L213 to which the gricis are capacitivelyooupled. A fixed bias of approximately 120 volts is applied to the grid by tne low voltage supply in addition to tie rectified grid voltage obtanned wisen the tube is being driven. when the POWER shange switci S 502 is in the TUNE position, the screens of the $4-125$!'s are groundedand act as s!ppressors to limit the amount of plate current fiow when the strge is being tu:ed. The plate tank circuit consints of a variab'e inluctor 1214 with adjustable taps end a :ixed capacitor C238. The indretor L214 is motor driven and is cortrolled from the front panel. The coil of an overLoad relay, K413, is connected between she center tap of tile $4-125 \mathrm{~A}$ filament sinding of transfurmer $T 205$, and the aegative side of the intermediate voltige supply. If the catrode current of
the $4-125 \mathrm{~A}$ tubes exceeds the safe value, relay K413, will be operated, which results in the removal of the plate voltagc. The grid current is metered by operating switch S302 to the INT. ARP GRID AND TUNE positicn. : ith the switch in this position, the test meter M3O4 is connected in series with the lead from the bias supply to the grids of the 4-125A tuives and shunts the meter across resistor R257. The cathode currant is metered at all times with meter M303 inserted in series wi.th the coil of the overload relay K413.
(e) Power Amplifier. - The power amplifier employs one type 392R triode tube. The grid of this tribe is connected to an adjustable tap on the plate tank inductor of the intermediate amplifier. Bias for this stage is obtained solely from the rectified grid voltage when excitation is applied. The plate is shunt fed thru an r-f choke (1802). The plate tank and output network is a combination of "pi" and "L" matchirs sections. This combination reduces harmonics to a negligible value and can be matched to quite s wide range of transmission line impeciances by varying the constants of the "L" section. The plate tank inductor J.803 and the loading network capacit,or C809, ere motor driven and controlled from the front penel. The inductance of the "L" section is varioble. A pickup coil to provide meens of coupling the modulation monitcr to the output of the transmitter is connected from the output end of the "L" section to ground. The RF LINE GURTEN meter is connected in series with the trensmission line and may be read from the front of the transmitter when the cabinet door is closed.

Coil neutralization is employed in
this stage. The inductance of L8O1 resonates with tine grid to plate capacity of the tube at the operating frequency. When the circuit is properly adjusted the impedance from grid to plate is very high and the amplifier is neutralized for the frequency of operation.

The grid current of the two Power Amplifier tube is metered at all times by M301 which is inserted in series with the grid and the center tap of the filament windings of this tube. The cathode current is metered at all times by ${ }^{\prime} 302$. The coil of a differential relay is connected between the center taps of the $t_{w o}$ filament windings of the tube and the negative side of the HV supply. This relay operates when the cathode current and r-f line currentexceed a safe ratio and prevents damage to the tube. The line current coil of the differential relay, K/14, is excited by rectified r-f from V803. The value of excitation is adjusted with capacitor C810. Should the ratio of PA cathode current to r-f line current get too large, the relay will operate and turn the transmitter off.

4.2.5. AUDIO CIRCUIT.

(a) Audio Amplifier Circuit. - The audio amplifier stage employs two type 6N'7 triode tubes connected in a push pull circuit. The input circuit to this stage consists of a terminating pad across the primary of the input transformer. This pad has sufficient attenuation so that regardless of input impedance, either open or short circuited, it presents approximately the same impedance to the transmitter. This arrangement may improve the overall frequency characteristics of the station's audio system. The a:dio input required is of the order of +14 dbm . However, if a lower input level is required, it is only necessary to remave tine input pad from the circuit. The input level required under this condition is about
+10 dbm . The secondary windings of the input transformer feed directly into the grids of the $6 N^{\prime} 7$ tubes. The cathode current of this stage is metered by rotating the TEST SWITCH to the FIRST' AF CATHODE position. This places the test reter across resjistor R22\% which is located in the cathode circui.t. The output of the audio amplifier is resistance coupled to the grids of the tubes in the second audio stage.
(b) Second Audio Amplifier Circuit. The second audio amplifier consists of a pair of 6A5G or 6B4G tubes connected in push-pull. The grids of these tubes are resistance coupled to the plates of the first audio amplifier tubes. The plate circuit is impedance coupled ts the grids of the driver tubes by choke L220 and coupling capacitors 0242 and C242. The cathode current of this stage is metered by the TWT NETER in the $2 N D$ AF CATHODE position.
(c) Audio Driver Circuit. - The audio driver stage utilizes four type 845 triodi tubes connected in a push pull parallel circuit operating Class is. The cathode current of the tubes is metered by rotating the CIRCUIT-METER SEL switch on the modulator cabinet panel to the DRIVER CATH 1 or DRIVER CATH 2 pcsitions. The total driver cathode current is indicated on the meter when the SEL. switch is in the MOD FIL 1 and MOD Fil. 2 positions. The tubes are self biased by cathode resistors R246 and R247. The output of this stage is transformer colm pled to the grids of the modulator tubes. Feedback is employed from the 845 plators to the grids of the input stage.
(d) Nodulator Circuit. - Two type 892R triodes connected in a push pull circuit operating Class B are used to modulate the $r-f$ final amplifier. These tubes operate with a fixed. bias and with 8500 volts on thair plates in high power operation. The bias voltage to the tubes is regulated by two rheostats, R404 anc R405, which are located on the vertical
chassis of the rectifier bay. During low power operation, bias is regulated by rheostats R406 and R417 and the plate voltage is reduced in proportion to the ${ }^{2}$ A tube plate voltage. A feedback circuit is connected from the plates of the modulator to the grids of the input stage. The amount of inverse feedback smployed is sufficient to minimize any troxble encountered due to varying loads on the modulator. The output of tine modulator is coupled to the plate cirpuit of the power amplifier tubes by T1004, and L1001. A low pass filter consisting of L1002 and C806, hes been incorporated between the modulator and the final amplifier to attenuate the High frequency response at a fairly rapid rate above 10,000 cycles. This low pass filter is very effective in eliminating any "sing", transients, etc., that may appear on the carrier due to some part failure or other trouble in the audio amplifier. The cathode currents of the modulator tubes are metered by separate meters. DC overload protection is furnished by overload relay K 415 inserted in the cathode circuit of the two tubes.

4.2.6. FIIAMENT SITPPIIES.

(a) Power Amplifier. - Two filament heating transformers are employed for the 892R power amp tube, one for each half of the filament. These transformers are Scott connected in the primary and series connected in the secondary with the midpoint of the 892 R filament connected to the midpoint of the transformer secondaries. The phasing of the secondaries are such that one-half of the filament for each 892 R is excited 7o degrees out of phase with the second half. Therefore, theoretically, the hum appearing in the plate circuit is cancelled outo The B- and grid roturns are brought to neutral points in the filament sircuits established by fixed resistors

R805,R807, and variable resistor R806. The variable resistor can ba adjusted from the rear of the power amplifier cabinet. Variable resistor R806 is adjusted to give minimum noise. The taps are usually near the filament center tap end of the adjustment. Filament voltage can be varied by variable resistor R811 from the front panel by operation of the ADJUST control where a 10% change in filament voltage is possible; in addition, a $7-1 / 2 \%$ change is possible by manipulation of switch $S 409$ which changes the taps on the filament autotransformers T420 and T411.
(b) Modulator. - As in the case of the power amplifiers, two filament transformers are used for eacil 892R modulator tube. The secondaries of each set of transformers are connected 90 degrees out of phase with each other and in phase with the corresponding secondaries of the other set of transformers. The Scott connected primaries are connected in phase with each other. The result is a cancellation of hum in the push pull connected modulator plate circuits. Hum is balanced by variable resistors R606 and R607 and fixed resistors R602, R603, R604 and R605. The modulator filament voltage is adjusted by primary rhecstats R 610 and R611 and by tap switch S410 in 10% and 7-1/2\% steps, respectively.
4.2.7. PLATE AND BIAS SUPPIIES.
(a) Low Voltage Supply. - The low voltage supply provides plate and screen voltage for the oscillator tubes, the isolation tube and the buffer tubes. In addition, it provides screenvoltage for the $4-125$ d driver tubes and fixed bias

Figure 404 Low Voltage and Fixed Bias System
for the $4-125 \mathrm{~A}$ grids and the 892 R modulator grids. The rectifier tubes are type 8008 mercury vapor tubes. Two VR105 tubes are used in series to prom vide regulated plate voltage to the oscillator tubes. The center tap of the plate transformer is above ground to provide the bias voltage for the $4-125 A^{\prime}$ s and the 892R's.
(b) Intermediate Power Supply. - The intermediate voltage power supply is a full wave bridge power supply employing four type 8008 mercury vapor tubes to provide approximately 2900 volts for the plates of the $4-125 \mathrm{~A}$ tubes and approximately 1450 volts for the plates of the 845 audio driver tubes. The voltage for the plates of the 845 tubes being taken from the center tap of the plate transformer, T213, which is half that appearing across the entire power supply output terminals.
(c) High Voltage Power Supply. - The power supply employed to furnish power to the power amplifier and modulator stages is a 3 phase full wave single Y producing a ripple frequency of $6 f$ which is comparatively easy to filter. Separate filter components are used for the power amplifier and modulator plate currents. The three plate transformers are mounted external of the transmitter cabinets. The rectifier tubes employed in the high voltage power supply are type 8008 mercury vapor rectifier. Air is blown on the base of the tubes through individual ports in the rectifier cabinet vertical chassis. Each tube has an individual filament transformer upon which the rectifier tabe socket is mounted. The primaries of the filament transformers are connected in quadrature to produce longer rectifier tube life. It is important that the plate transformer connections be made exactly as speci-
lied on the schematic.
'he high voltage bleeder, R406, is relay operated and is placed in the circuit when the plate voltage is turned off. Automatic shorting devices ground the Эositive side of the high voltage supply thenever any door (except those of the ectifier cabinet) is opened. When the sectifier cabinet doors are opened (except the lower front door) the 3 phase aigh voltage leads are shorted together and are grounded. Immediately prior to this shorting, however, the door interlocks function to turn off thehigh power ind throw the bleeder into the circuits.

The plate voltage is reduced for half Dower operation by the use of autotranscormers T414 and T415 which are tapped to give proper reduced power plate volttge.

Figure $4=5$ Type 297 Crystal Oven

Figure 4-6 Type 280A Crystal hdjusting Tool

SECTION 5

PREVENTIVE MA INTENANCE

This radio transmitting equipment has been constructed of materials considered to be the best obtainable for the purpose, and has been carefully inspected and adjusted at the factory to raduce maintenance to a minimum. However, to insure peak performance and prevent the failure or the impairment of the operation of the equipment, a definite schedule of routine periodic checks and maintenance procedures should be adhered to.

5.1. CIEANING.

5.1.1. TRANSIITTER GENERAL.-The greatest enemy to uninterrupted service in equipment of this type is corrosion and dirt. Corrosion is accelerated by the presence of dust and moisture on the component parts in the assembly. It is impossible to keep moisture out of the equipment in certain localities, but foreign particles and dust can be periodically removed by means of a soft brush and a clean dry jet of air. Another alternative would be to usea vacuum cleaner. Although the cabinets are equipped with dust filters which will remove most of the dust particles, there is always a slight accumulation of dust in the vicinity of circuits at a high potential. Remove the dust by the above nethods as often as a perceptible quantity accumulates at any place in the equipment. It is very important that rotating equipment such as variable capacitors, tap switches, etc., be kept free from dust to prevent undue wear. Corrosion resulting from a salt laden atmosphere may callse failure of the equipment for no apparentreason. In general,it will be found that contacts such as tap switches, tube prongs, and cable plug connectors are most affected by corrosion. hen the equipment is operated in localities subject to such cor-
rosive atmosphere, inspection of wiping contacts, cable plugs, relays, etc., should be made more frequentily in order to keep the equipment in good condition.

A cleaning schedule should be set up to include only a limited amount of cleaning and dusting to be done at one time. In this way it will require only a few minutes each night after shutdown and a more thorough job will be accomplished. Assign a different section of the transmitter to be covered each night.Arrange the schedule so that a complete coverage of the transmitter is obtained in a week's time.
5.1.2. AIR FILTER.-The spun glass filter elements at the rear of the trans.mitter will give more satisfactory life if the elements are cleaned about once every two weeks. A small vecuum cleaner is a satisfactory means of removing surface dirt. The elements should be replaced whenever the spun glass appears to be appreciably clogged by dust and grease.

5.2. ROUTINE CHECKS.

5.2.1. GENERAL INSPECTION.

(a) Check all connections at least once a month. Tighten all loose nuts, bolts and screws.
(b) Inspect interlook switches in the front and rear doors for proper operation.
(c) Examine all mechanical parts of motor driven assemblies for excessive wear.
(d) Check all contacts of :: cable receptacles and plugs to assure a clean,
firm mechanical connection between one another.
(e) Check all manually operated switches for excessive wear.
(f) Check all relays for proper operation and inspect relay contacts to make certain they are clean and free from pits.
(g) Examine electrical system for excessive heating of transformers, resistors, chokes, etc.

5.2.2. TUBE CHECK

(a) A check on the emission of all vacuum tubes should be made at least every 1000 hours of service.
(b) Keep a record of the length of time the tubes are in use.
(c) Replace tubes that have been in service an excessive length of time.
(d) Visually inspect the elements inside of the tubes. Elements may have become warped, increasing the possibility of short circuiting.
(e) Maintain the filament voltage of the coated filament tubes within $\pm 5 \%$ of the recomiended values for the type of tube used. Toc high or too low a filament voltafe affects the tube operation and reduces tube life. In the case of the 892 R tubes, whic' have tungsten filaments, maintain the filament voltage at the minimum value which gives satisfactory operation. The filament life of these tubes can be greatly extended in this manner.
(f) Examine the prongs on all tubes to make certain that they are free from corrosion. When replacing tubes, make sure that they are seated correctly and fully
in the socket and that they make a good electrical contact. If it has a plate or grid cap lead, be sure this is prom perly in place and in good electrical and mechanical condition.
5.2.3. VOLTAGE AND CURRENT CHECKS. -During actual operation, meter indications should be under frequent observation to verify the proper operating currents and voltages. A table showing the approximate meter indications under typical operating conditions is shown in Section 4. Some variations in the current and voltage may occur but most satisfactory results are obtained from operation at rated values.
5.2.4. FERFORNANCE CHECKS. - Electrical performance tests should be made periodically and should include measuring the distortion at a number of modulation levels and noise measurements.

5.3. LUBRICATION.

5.3.1. MODULATOR AND PA BLO ERS. - Blower motors eauipped with grease cups are lubricated by turning the grease cup 1/4 turn every 100 hours of operation. Refill when empty with bearing grease.

Motors not equipped with grease cups have wool packed bearings which required 30 to 70 drops of SAE 20 oil after the first 3000 hours of operation and every 1000 hours thereafter.
5.3.2. RECTIFIER BLGUER MOTOR. - Lubricate the bearings of this blower motor with spindle oil of a viscosity of 190220 Saybolt Universal Seconds at 100° F, such as Cities Service Pacemaker \#2 or equal. Lubricate every 1000 hours or when the need is apparent with only a small amount of lubricant since too much will shorten the brush life.
5.3.3. EXCITER CABINET VENTILATING BLOW-

ERS. - The bearings of the ventilating blower motors should be lubricated with Cities ServiceNorth Star 000 every 3000 hours of operation. It is necessary to remove the end bells from the motors to gain access to the bearings.
5.3.4. TUNING MOTORS AND ASSEMBLIES. -Lubricate with the same type of oil as prescribed in the EXCITER blower motors. Lubricate every 1000 hours using a snall amount at one time.

NOTE

The total life expectancy of the above motors is in excess of 4500 hours.

5.4. MA IJTENANCE TOOLS.

The proper use and care of maintenance tools and equipment is very important. Tools and maintenance equipment should behandled carefullywhile being used and kept in good condition at all times. Arrange the maintenance equipment in a well laid out manner on a work bench or cart so that the proper tools are available in case of emergencies. Always use the tool that was intended for the job being performed. When wrong tools are used while working on a unit, unnecessary damage to the equipment may result. Keep a good
supply of maintenance equipment on hand at all times. Check supplies of lubricants, cleaning agents, crocus cloth, etc., and replenish the supply when necessary.

5.5. RELAY MAINTENANCE.

Included in the schedule of preventive maintenance is relay maintenance. Dependable operation of this equipment requires proper operation of all relays. Although each relay in this equipment has been chosen because of satisfactory performance in similar service, some of these relays have rather critical adjustments and should not be tampered wist In case of failure of the telephone type relays,it is best to replace the entire relay. The only maintenance recommended is the periodic use of a burnishing tooi to clean the contact surfaces.

In general, the contact adjustment of the a-c type of power relay is not criti. ca.l. Contact assemblies and coils car be replaced in case of failure. Never use sandpaper oremery cloth on the colltact surfaces. Relays which have ex. cessive hum are not seating properly Dirt on the pole faces is most likely the cause of this, and can be remedied by washing with carbon tetrachloride.

SECTION 6

CURRECTIVE NAINT ENANCE

If routine Maintenance checks and inspectionschedules, as outlined inSection 5, are performed regularly, very little trouble is likely to occur with this equipment. However, it isrealized that at times, certain parts will fail, not because of improper selection of components but rather a defective part which may showup one or two out of every hundred. It is impossible to foresee every case of trouble that may develop, but very little should occ:r, without being evident by abnormfl readings of the méters in the transmitter. An experienced operator should have little difficulty in locating and correcting the faults. A systemetic procedure of testing should be followed to quickly isolate the circuit at fault.

6.1. TROTJBLE SHOOTING.

6.1.1. TJBE FAILURE. - The most frequent cause of trouble in equipment of this type is tube failure. If a fault occurs in the equipment, isolation of the circuit at fault is helpful in determining the location of the defective tube. De-fective tubes causing an overload in power circuits may usually be located by inspection. It will be found that excessive heating or sputtering within vacuum tubes is a good indication of fault in the tube circuit. Low emission tubes may be the cause of erratic or poor performance of the equiment. If there is any doubt concerning the emission of any tube, it should be checked immediately and repleced if defective.A burned out filament,obviously, would give no light with voltage applied. Tubes with electrical noises cause excessivedistortion or hum. This fa:ultmay be more diffjcult to isolate to a particular tube; however, a tube suspected of faulty operation may be checked by replacing with a like tube
known to be in good condition.
6.1.2. LCCATION OR TRCUBLE, - The trans mitter may fail to function either ai the time of attempting to start it, or it may fail durine operation. In either case, the procedure for making a test is to checkthe circuits in the order of succession they are made operative in tho process of starting the transmitter.Re.. fer to paragraph 4.2.2. for the sequence of operation that takes place during nor + mal starting sequence.

This procedure should aid in isolatine the trouble to one or two units. A check of all circuit breakers should be made to ascertain the nower circuit affected by the trouble.

The following tables of operating voltages and current measurements is supplo 9 . to assist the operator in trouble shont. ing. Open and short circuits willusuañ. be accompanied by a change in the vois... age applied to one or more of the tube: A check of the various tube voltages ani current measurements against the values shown in the tables will assist ia locating the source of trouble.
6.1.3. CABLE TROUBLE. - To provide lo-. calized control and metering on the front doors it is necessary to runapproximate ly 60 wires between the cabinet chassis and the control doors. This is done through two cables fitted with Cannon connector:s The circuits are so arrenged so that only one cable is necessary to provide the essential transmitter functions such as tuning, metering, etc.. The other cable. carries all the circuits which are convenient to have but are not absolutely essential to the transmitter operation. such as, filament metering, pilot lights, etc.. Therefore, should one cable give
trouble it is only necessary to put the good cable in the key position and repair the other cable while the equipment is in operation.
6.1.4. SERVICING THE EQUIPMENT. - The major portion of components are constructed on vertical. chassis or side walls within the cabinets. This adds considerableaccessibility to all components, as access to all components is readily attained from either front or the rear of the transmitter. Each tube SPAR has
beenarranged with a cover that is easily removed and all the parts thereunder are readily accessible. The air baffles in the rear cabinet can be removed promptly if deemed necessary to gain access to components that need servicing. The wiring an the rear of the vertical chassis is exposed by removing the channel covers. The meter and control door wiring is accessible upan removal of two covers. One-man replacement of all components has been designed into this equipmentwherever practical.

Figure 6-1 LOF Frequency Control Unit Parts Arrengement

Figure 6-2 Rectifier Bay, Front Open

Figure 6-3 Modulator Bay, Front Open

Figure 6-4 Exciter Bay, Front Open

Figure 6-5 Power Amplifier Bay, Front Open

Figure 6-6 Overload Relay Adjustments

Figure 6m R-F Rectifier Parts Arrangement

Figure 6-8a Inter-Cabinet Connecting Panels

Figure 6-8b Inter-Cabinet Connecting Panels

ITE: 1	CTRSUIT FGNGTITON	DEECETPTION	$\begin{aligned} & \text { COLI } \\ & \text { phT: NATMER } \end{aligned}$
B20'2	Exciter cabinet venti larion blower	Mron: Spitt phase induction; $230 \mathrm{v} A C$, 50, '60 cps, single phase	230001300
B203	Driver plate tuning	MOME: $A C: 230 \mathrm{v}, 60 \mathrm{cps}$, single phase, 4 rpm	2300012 co
B204	Euffer plate turing	$4 . \mathrm{pm}$	230001200
B401	Rectifier tube ventilation	BLOWER BNX MOTOR ASSEM: 230 v IC, 60 $\mathrm{cps}, 3400 \mathrm{rpm}$ notor	5036210003
R60?	Mod. filament adjust	HOTOR: $\mathrm{AC} ; 230 \mathrm{v}, 60 \mathrm{cps}$, single phase, 4 rpm	230001200
b602	Mod. filament adjust	MOTOR: AC; $230 \mathrm{v}, 60 \mathrm{cps}$, single phase, 4 rpm	230001200
Bó3	Modulator tube ventilation	BIDWER and MOTOR ASSEI: includes: BLOWER and MOTOR: $230 \mathrm{v} \mathrm{AC}$,60 cps , $1 / 7 \mathrm{hp}$ SWITCH ASSEM: Micro, SPDT 5 amp 250 v AC, see 5607	$\begin{aligned} & 5036103 \text { 00 } \\ & 503616200 \\ & 5035775 \\ & 26007 \end{aligned}$
B604	Modulator tube ventilation	BLONER and MOTOR ASSEM: includes: BLOWER and MOTOR: $230 \mathrm{v} \mathrm{AC}$,60 cps , $1 / 7 \mathrm{hp}$ SWITCH ASSEM: Micro, SPDT 5 amp 250 v AC, see S608	$503671 \because$ 503 610" 503505 260 OICう い
B802	Power amplifier filament adjust	MOTOR: AC; $230 \mathrm{v}, 60 \mathrm{cps}$, sirgle phase, 4 rpm	2300092
B803	PA plate tuning	MOTOF: $A C ; 230 \mathrm{v}, 60 \mathrm{cps}$, single phase, 4 rpm	2300012 CO
B804	PA plate loading	MOTOR: AC; $230 \mathrm{v}, 60 \mathrm{cps}$, single phase, 4 rpm	230001200
B805	PA tube ventilation	BIDVER and MOTOR ASSEM: includes: BLOWER and MOTOR: $230 \mathrm{v} \mathrm{AC}$,60 cps , $1 / 7 \mathrm{hp}$ SWITCH ASSEM: Micro, SPDT 5 emp 250 v AC, see 5809	$\left(\begin{array}{lll} 503 & 6103 & 004 \\ 503 & 6162 & 002 \\ 503 & 5975 & 002 \\ 260 & 0700 & 00) \end{array}\right.$

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
C101	Freq. adjust	CAPACITOR: Var, 12 mmf max, 1 mmf min, single sect	922310000
C102	Osc. feedback	CAPACITOR: Mica, $51 \mathrm{mmf} \pm 2 \%, 2500 \mathrm{WV}$	937001800
C103	Osc. cathode	CAPACITOR: Mica, $270 \mathrm{mmf} \pm 2 \%, 2500 \mathrm{WV}$	937006400
C104	Osc. screen bypass	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 1200$ WV	937017000
C105	Osc. plate bypase	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 1200 \mathrm{WV}$	937017000
C106	Iso. amp grid coupling	CAPACITOR: Mica, $1,000 \mathrm{mmif} \pm 10 \%, 2500 \mathrm{WV}$	937010403
C201	Intermediate voltage filter	CAPACITOR: $4 \mathrm{mf} \pm 10 \%, 2500$ WV	930003300
C202	Intermediate voltage filter	CAPACITOR: $4 \mathrm{mf} \pm 10 \%, 2500 \mathrm{WV}$	930003300
C203	Intermediate voltage filter	CAPLCITOR: $4 \mathrm{mf} \pm 10 \%, 2500 \mathrm{WV}$	930003300
C204	Intermediate voltage filter	CAPACITOR: $4 \mathrm{mf} \pm 10 \%$, 2500 WV	9300033 on
C205	Intermediate voltage filter	CAPACITOR: Paper, $4 \mathrm{mf} \pm 20 \%$, 5000 WV	930005300
C206	Intermediate voltage filter	CAPACITOR: Faper, $4 \mathrm{mf} \pm 20 \%, 5000 \mathrm{WV}$	930005300
C207	Intermediate voltage filter	CAPACITOR: Paper, $4 \mathrm{mf} \pm 20 \%, 5000 \mathrm{WV}$	930005300
C208	Intermediate voltage filter	CAPACITOR: Paper, $4 \mathrm{mf} \pm 20 \%, 5000 \mathrm{WV}$	930005300
C209	Low voltage filter	CAPACITOR: Paper, $15 \mathrm{mf} \pm 10 \%, 1000 \mathrm{WV}$	930005000
C210	Low voltage filter	CAPACITOR: Paper, $15 \mathrm{mf} \pm 10 \%, 1000 \mathrm{WV}$	930005000
C211	Low voltage filter	CAPACITOR: Paper, $10 \mathrm{mf} \pm 10 \%$, 1000 WV	930003800
		7-2 15	5728

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMEER
C212	Feedback	CAPACITOR: Mica, $8200 \mathrm{mmf} \pm 5 \%, 1200 \mathrm{WV}$	936112000
C213	Feedback	CAPACITOR: Mica, $8200 \mathrm{mmf} \pm 5 \%, 1200$ WV	936112000
C214	Audio amp plate decoupling	CAPACITOR: Paper, $10 \mathrm{mf} \pm 10 \%, 1000 \mathrm{WV}$	930003800
C215	Audio coupling	CAPACITOR: Paper, $2 \mathrm{mf} \pm 10 \%, 600 \mathrm{WV}$	930782000
C216	Audio coupling	CAPACITOR: Paper, $2 \mathrm{mf} \pm 10 \%, 600 \mathrm{WV}$	930780000
C217	Audio connection	CAPACITOR: Mica, $2000 \mathrm{mmf} \pm 5 \%, 1200$ WV	936026800
0.218	Audio connection	CAPACITOR: Mica $2000 \mathrm{mmf} \pm 5 \%$, 1200 WV	936026800
C219	2nd audio plate decoupling	CAPACITOR: Paper, $10 \mathrm{mf} \pm 10 \%, 1000 \mathrm{~W}$	930003800
C220	Excitation control	CAPACITOR: Var, $100 \mathrm{mmf} \max , 5.6 \mathrm{mmf}$ min, single sect.	922000500
C221	V201 cathode bypass	CAPMCITOR: $27,000 \mathrm{mmf} \pm 10 \%, 1200 \mathrm{WV}$	93720530
C222	V201 screen bypass	CAPACITOR: Mica $10,000 \mathrm{mmf} \pm 10 \%, 1200 \mathrm{WV}$	937017000
C223	V202 grid coupling	CAPACITOR: $100 \mathrm{mmf} \pm 10 \%, 2500 \mathrm{WV}$	937003800
C224	Grid meter shunt bypass	CAPACITOR: Mics, $10,000 \mathrm{mmf} \pm 10 \%, 1200$	937017000
C225	Buffer cathode bypass	CAPACITOR: $27,000 \mathrm{mmf} \pm 10 \%, 1200 \mathrm{WV}$	937205300
C226	Buffer screen bypass	$\text { CAPACITOR: } \underset{\mathrm{WV}}{\text { Mica }, 10,000 \mathrm{mmf} \pm 10 \%, 1200}$	937017000
C227	Buffer plate bypass	$\text { CAPACITOR: } \underset{\mathrm{WV}}{\mathrm{Mica},} 10,000 \mathrm{mmf} \pm 10 \%, 1200$	937017000
C228	Buffer plate blocking	CAPACITOR: Mica, $5600 \mathrm{mmf} \pm 10 \%, 1200 \mathrm{WV}$	937015400
*C229	540-700 kc	CAPACITOR: $2400 \mathrm{mmf} \pm 5 \%, 3000 \mathrm{WV}$	938008400
* 2229	700-900 kc	CAPACITOR: $2000 \mathrm{mmf} \pm 5 \%, 3000 \mathrm{WV}$	938008000
* 229	900-1200 kc	CAPACITOR: $1500 \mathrm{mmf} \pm 5 \%, 3000 \mathrm{WV}$	938007400
* 229	1200-1600 kc	CAPACITOR: $1000 \mathrm{mmf} \pm 5 \%, 3000 \mathrm{WV}$	938006600
C230	Buffer plate tuning	CAPACITOR: Var. $475 \mathrm{mmf} \max , 18 \mathrm{mmf} \mathrm{min}$, single sect.	921130000

ITEM	CIRCUIT FUNCTION	DESCRIP'ITON	$\begin{aligned} & \text { COLLINS } \\ & \text { PART NUMBER } \end{aligned}$
C252	Negative feedback	CAPACITOR: Mica, $220 \mathrm{mmf} \pm 5 \%, 2500$ WV	936020400
C253	Negative feedback	CAPACITOR: Mica, $220 \mathrm{ramf} \pm 5 \%, 2500 \mathrm{WV}$	936020400
C254	Negative feedback	CAPACITOR: Mica, $220 \mathrm{mmf} \pm 5 \%, 2500 \mathrm{WV}$	936020400
C255	Negative feedback	CAPACITOR: Mica, $220 \mathrm{mmf} \pm 5 \%, 2500 \mathrm{WV}$	936020400
C301	M301 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600$ wV	936031500
C302	M302 meter bypass	CAPACIIOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	936031500
0303	M303 meter bypass	CAPACITOR: Micr, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	936031500
C304	M304 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{mmi} \pm 10 \%, 600 \mathrm{WV}$	936031500
C501	M501 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	9360315 OC
C601	High voltage supply filter	CAPACITOK: Paper, $4 \mathrm{mf}-5+15 \%, 10,000$	930762000
C602	High voltage supply filter	$\text { CAPACITOR: Paper, } 4 \mathrm{mf}-5+15 \%, 10,000$	930762000
C603	Negative feedback	CAPACITOR: Vacuum, $6 \mathrm{mmf} \pm 0.5 \mathrm{mmf}$	919000100
C604	Negative feedback	CAPACITOR: Vacuum, $6 \mathrm{mrf} \pm 0.5 \mathrm{mmf}$	919000100
C701	M701 meter bypass	C AFACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%$, 500 WV	936031500
C702	M 702 meter bypass	CAPACITOF: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	936031500
C703	M703 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	9360315 0n
C704	M704 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{mmf} \pm 10 \%, 600 \mathrm{WV}$	936031500
C 803	PA filament bypass	CapACITOK: Mica, 51,000 mnf $\pm 5 \% 1500 \mathrm{WV}$	938214800
C804	PA filament bivpass	CAPACITOR: Mica, $51,000 \mathrm{mmf} \pm 5 \%, 1500 \mathrm{WV}$	938214800
C805	Neut. blocking	CAFACITOR: Mica, $620 \mathrm{mmf} \pm 5 \%, 30,000 \mathrm{WV}$	539302000
C806	PA tank tuning	CAPACITOR: Nica, $100 \mathrm{mmf} \pm 5 \%, 30,000 \mathrm{WV}$	939300100
C807	PA plate blocking	CAPACITOR: Mica, $510 \mathrm{mmf} \pm 5 \% 30,000 \mathrm{TV}$	939301800
*C808	$540-700 \mathrm{kc}$	CAPACITOR: $100 \mathrm{mmf} \pm 1.5 \mathrm{mmf} 20,000 \mathrm{v}$ \max (qty 3)	919000500

CAPACITOR: $100 \mathrm{mmf} \pm 1.5 \mathrm{mmf} 20,000 \mathrm{v} \quad 919000500$ max (qty 3)
*Components used in a particular transmitter will depend on the operating frequency. 15731

ITEsi	CIRCJIT FLNCTION	DESCKIPITION	$\begin{aligned} & \text { COLLINS } \\ & \text { PART NUMBEK } \end{aligned}$
*C808	900-1200 kc	CAPACITOR: $100 \mathrm{rmf} \pm 1.5$ miof $20,000 \mathrm{v}$ max (aty 2)	919000500
*C808	900-1200 kc	$\text { CAPACITOR: } 50 \operatorname{mmf}_{\max }(1) \pm 1 \mathrm{mmf}, 20,000 \mathrm{v}$	919000400
*C808	$1200-1600 \mathrm{kc}$	CAPACITOR: $100 \mathrm{mmf} \pm 1.5 \mathrm{mmf} 20,000 \mathrm{v}$ \max (qty 2)	90005
C809	PA plate loading	CAPACITOR: Vacuum, 500 mnif max, 25 mnf min	919000600
0810	RF rect. coupling	CAPACITOR: Var, $14 \mathrm{mmf} \max , 3.8 \mathrm{mmf} \mathrm{min}$, single section	923120000
C811	RF rect. load	CAPACITOR: $47 \mathrm{muf} \pm 10 \%, 2500 \mathrm{WV}$	936016100
C812	FF rect. fil. bypass	CAPACITOR: Mica, $10,000 \mathrm{mrf} \pm 20 \%, 1200$ WV	936112700
C813	RF rect. fil. bypass	CAPACITOR: Míca $10,000 \mathrm{mmf} \pm 20 \%, 1200$	6
C814	RF rect plate bypass	CAPACITOR: $\underset{W}{ } \quad \mathrm{WiCa}, 10,000 \mathrm{mmf} \pm 20 \%, 1200$	936112700
* C 816	540-700 kc	CAPACITOR: $1000 \mathrm{mmf} \pm 10 \% 15,000 \mathrm{v}$ max	919001300
*C816	700-900 kc	CAPACITOR: $1000 \mathrm{mmf} \pm 10 \%, 15,000 \mathrm{v} \max$	919001300
*C816	500-1200 kc	CAPACITOR: $750 \mathrm{mmf} \pm 10 \%, 15,000 \mathrm{v} \max$	919001200
*C816	1200-1600 kc	CAPACITOR: $500 \mathrm{mmf} \pm 10 \%, 15,000 \mathrm{v}$ max	919001100
C817	RF rect. audio block- ing	CAPGCITOR: Paper, $2 \mathrm{mf} \pm 10 \%, 600 \mathrm{WV}$	930782000 936031500
cs,01	M901 meter bypass	CAPACITOR: Mica, $10,000 \mathrm{ohm} \pm 10 \%, 600$	936
C902	M902 meter bypass	CAPACITOR: Rica, 10,000 ohm $\pm 10 \%, 600$ W	V936 031500
C903	N903 meter bypass	CAPACITOR: Mica, 10,000 orm $\pm 10 \%, 600$	19936031500
0904	V904 meter bypass	CAPACITOR: Mica, 10,000 ohn $\pm 10 \%, 600$ wV	936031500
$C 1001$		CAPACITOR: Paper, $2 \mathrm{mf}+15 \%-5 \%$, 15,000 WV	930014700
CR201	Relay Supply	RECTIFIEF: Dry disc, instrument	353300000
CR202	Relay supply	RECTIFIER: Dry disc, instrunent	353300000
E201	PF driver grid	SUPPRESSOR: Parasitic, 7 watt	503617900
E202	RF driver grid	StIPPRESSOR: Parasitic, 7 watt	503617900
2		SUPPRESSOR: Parasitic, 20 watt	5030545002
* Components used in a partiqular transmitter will depend on the operating frequenc			

ITEM	CIRCUIT FUNCTION	DESCRIP'ITON	$\begin{gathered} \text { COLLINS } \\ \text { PART NUMBER } \end{gathered}$
F201	Crystal heater	FUSE: Cartridge, 2 amp 250 v	264407000
F202	Crystal heater	FUSE: Cartridge, 2 amp 250 v	1264 407000
F401	Crystal heat primary	FUSE: Cartridge, 1/2 amp 250 v	264403000
F402	Crystal heat primary	FUSE: Cartridge, 1/2 amp 250 v	264403000
I101	Crystal heat pilot	LAMP: Bayonet base, $6.3 \mathrm{v}, 0.15 \mathrm{amp}$	262324000
I301	Filament (Exciter bay)	LAMP: Pilot, DC bayonet base, 120 v	262004100
I302,	Low voltage	6 W	
I303	Int. V (Exciter bay)		
I304,	High voltage (Exciter bay)		
I501,	Filament (Rect. bay)		
I502,	Overload 1		
I503,	Overload 2		
I504,	High voltage (Rect.bay)		
I701,	Tungsten filament		
1702,	High voltage (Nod, bay)		
1901,	Filament (Final bay)		
1902,	High voltage (Final bay)		
$\begin{gathered} \text { I305 } \\ \text { I306 } \end{gathered}$	For meters M301, N302, M303, M304, w501, M701,	LAMP: Meter, DC bayonet base, 120 v 6 w	262004100
1307	M1702, M703, M704, M901.		
I308	M902, M903, M904		
1505			
1703.			
1704			
1705.			
I706,			
1903.			
1904.			
1905			
1906			
J201	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J202	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J203	Crystal unit	CONNECTOR: 10 contact socket	364210000
J204	Crystal unit	CONNECTOR: 10 contact socket.	364210000
J301	Door power	CONTECTOR: 30 term right angle socket	370202300
J302	Door power	CONNECTOR: 30 term right angle socket	370202300
J401	Door power	CONNECTOR: 30 term wall mtg receptacle, occket insert	370202500
15737		7-7	

ITEM	ClRCUIT FUNCTION	DESCRIFTION	COLLINS PART NUBER
J501	Door power	CONNECTOR: 30 term right angle socket	370202300
$J 601$	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J602	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J701	Door power	CONNECTOR: 30 term right angle socket	370202300
J702	Door power	CONSECTOR: 30 term right angle socket	370202300
J301	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J802	Door power	CONNECTOR: 30 term wall mtg receptacle, socket insert	370202500
J901	Door power	CONNECTOR: 30 term right angle socket	370202300
J902	Door power	COINECTOR: 30 term right angle socket	370202300
K201	Crystal heat	RELAY: Telephone, 6-12 v DC, 2500 ohm	9701002 OC
K202	Crystal heat	RELAY: Telephone, 6-12 v DC, 2500 ohm	970100200
K203	$\begin{aligned} & \text { pscillator sele- } \\ & \text { tor } \end{aligned}$	RELAY: Impulse latching, 3 SPDT, 1 SPST, 1 SPST (aux) 10 amp cont	410005800
K204	IUNE relay	RELAY: Circ control, 230 v AC 50/60 cps coil	405011900
K205	High-Low power driver screen control	RELAY: Circ control, 230 v AC 50/60 cps coil	405011900
K207	Hi.gh-Low power audio input selector	RELAY: Circ control, 230 v AC $\pm 10 \% 3900$ ohm coil	407100700
K401	Coated filament	RELAR: Power contactor, 220 v AC 60 cps coil	405008500
K402	Blower	RELAY: Power contactor, $220 \mathrm{v} / \mathrm{C} 60 \mathrm{cps}$ coil	405005900
K403	IV plate	RELAY: Power contactor, $220 \mathrm{v} A C 60 \mathrm{cps}$ coil	405004100
		$7-8$ World Radio History	15734

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLIINS PART NUMBER
K404	Intermediate V plate	RELAY: Power contactor, 220 v AC 60 cps coil	405004100
K405	Sequence start	RELAY: Power contactor; 220 v AC 60 cps coil	405008500
K. 406	Restart \%	RELAY: Power Contactor, 220 v AC 60 cps coil	4.05004100
K407	Release	RELAY: Power contactor, 220 v AC 60 cps coil	405004500
K408	Restart $/ 4 / 2$	RELAY: Power contactor, 220 v AC 60 cps coil	405008500
K409	Release \#2	RELAY: Power contactor, 220 v AC 60 cps coil	405004700
K410	Hold	RELAY: Power contactor, 220 v AC 60 cps coil	405004100
K411	HV overload	RELAY: Time delay, 1 NO, 1 NC cont, 25 60 cps	405052300
K412	HV overload	RELAY: Time delay, 1 NO, INC̄ cont, $25-$ 60 cps	405052300
K413	Driver overload	RELAY: Current overload, AC or DC, enclosed 1 ivo, l NC cont.	405010200
K\&14	Differential over- load	RELAY: Telephone, $3 \mathrm{amp}, 150 \mathrm{w} \mathrm{AC}$	970980000
K415	Mod. overload	RELAY: Current overload, AC or DC, enclosed, $1 \mathrm{NO}, 1 \mathrm{NC}$ cont.	405010300
K416	PA grid overload	RELAY: Current overload, $A C$ or $D C$ self reset, 100 ohr coil	405018400
K417	Bleeder relay	SOLENOID: $220 \mathrm{v}, 60 \mathrm{cps}$	405051300
		CONTACT: Switch, shorting	5031673001
K418	Tune	RELAT: Power contactor, 200 v AC 60 cps coil	405028700
K419	Low power	RELAY: Power contactor, 220 v AC 60 cps coil	405028700
15735		Worldradich-90w	

ITEM	CIRCUIT FUNCTION	DESCRIPTION	$\begin{gathered} \text { COLIINS } \\ \text { PART NUMBER } \end{gathered}$
L215	Intermediate voltag input	REACTOF: Input filter, $10 \mathrm{hy}, .5 \mathrm{amp}$ $120 \mathrm{cps}, 7500 \mathrm{TV}$	698019600
L216	Intermediate voltag申 nutput	REACTOR: Input filter, 10 hy, 5 amp $120 \mathrm{cps}, 7500 \mathrm{TV}$	678019600
L217	Intermediate voltage input	REACTUR: Input filter, 10 hy , 5 amp $120 \mathrm{cps}, 7500 \mathrm{TV}$	678019600
L218	Intermediate voltage output	REACTOF: Input filter, 10 hy , 5 amp $120 \mathrm{cps}, 7500 \mathrm{TV}$	678019600
L219	Iso. amp. screen choke	COIL: RF choke, HF, I mh, 2 sect	240230000
L220	Audio amp. plate	RFACTOR: Audio, 80 hy CT, 50 ma 2500 v rms	678021600
L221	Buffer plate	C01L: Parasjtic	5030535001
L6CE	$\begin{gathered} \text { High voltage supply } \\ \text { filter } \end{gathered}$	REACTOR: HV filter, ir hy 1.75 amp 180 cps 15 KV	678017400
L602	$\begin{aligned} & \text { High voltage supply } \\ & \text { filter } \end{aligned}$	$\begin{aligned} & \text { REACTOR: HV filter, } 4 \text { hy } 1.75 \text { amp } 180 \mathrm{cps} \\ & 15 \mathrm{KV} \end{aligned}$	678 0174.00
*I801	PA neutralizing	COIL ASSEIf: Neutral	5036121004
*1801	PA neutralizing	COIL ASSEM: Neutral	5036122004
*L801	PA neutralizing	COIL ASSEM: Neutral	5036123004
*I801	PA neutralizing	COIL ASSEN: Neutral	5036124004
L802	PA plate choke	COIL ASSEM: RF plate choke	5036192003
*L803	PA tank	COIL ASSEM: Pi section	5036111004
*L803	PA tank	COIL ASSEM: Pi section	5036112004
*1803	PA tank	COIL ASSEM: Pi section	5036113004
*L803	PA tank	COIL ASSEM: Pi section	5036114004
*L804	Ant. loading	COIL ASSEM: L section	5036118004
*L804	Ant. loading	COIL ASSEM: L section	5036118004
*L804	Ant. loading	COIL ASSEM: L section	5036119004

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
M904	Pf filament	VOLTMETER: $A C, 20 \mathrm{v}$ range	452002100
P101	Crystal unit	CONLECTOR: 10 contact plug	363210000
$\begin{aligned} & \text { F201 } \\ & \text { P202 } \end{aligned}$	Door power	CONNECTOR: 30 term straight plug	370202400
P301	Door power	CONNCTOR: $j 0$ terw wall mtg receptacle, pin insert	370202600
P302	Door power	COINECTOR: 30 term wall mtg receptacle, pin insert	370202600
P401	Door power	CONNECTOR: 30 term right angle plug	370203600
P501	Dear power	CONNECTOR: 30 term wall mtg receptacle, pin insert	3702026 00
P601	Door power	CONNECTOR: 30 term right angle plug	370203600
P602	' Door power	CONNECTOR: 30 term right angle plug	370203600
P701	Dosr power	CONNECTOR: 30 term wall mtg. receptacle, pin insert	3702026 OC
P702	Door power	CONNECTOR: 30 term wall mtg receptacle, pin insert	370202600
P801	Door power	CONNECTOR: 30 term right angle plug	370203600
P802	Door power	CONNECTOR: 30 term right angle plug	370203600
P901	Door power	CONIECTOR: 30 term wall mtg receptacle, pin insert	370202600
P902	Door power	CONNECTOR: 30 term wall mtg receptacle, pin insert	3702026 C0
R101	Osc. grid	RESISTOR: $51.000 \mathrm{ohm} \pm 5 \%, 2 \mathrm{~W}$	745515800
R102	Osc. cathode	RESISTOR: 100 . ohm $\pm 10 \%$, 10 w	710110020
R103	Osc. plate dropping	RESISTOR: 1000 ohm $\pm 10 \%, 2 \mathrm{w}$	745508600
R201	M302 meter shunting	RESISTOR: 43,000 ohm $\pm 5 \%, 2 \mathrm{w}$	745515400
R202	$\begin{gathered} \text { M302 meter multi- } \\ \text { plier } \end{gathered}$	RESISTOR: 4 megohm $\pm 5 \%$, 4 kV	732000800
15739		World raciohsony	

ITEM	CIRCUIT FINCTION		DESCRIPTION	COLLINS PART NUMBER
R223	Screen dropping	FESISTOR:	22,000 ohm $\pm 10 \%$, 25 W	710037300
R224	T201 sec. load	RESISTOR:	$7500 \mathrm{ohm} \pm 5 \%, 2 \mathrm{~W}$	745512300
R225	T201 sec. load	RESISTOR:	$7500 \mathrm{ohm} \mathrm{上5} \mathrm{\%}$,	745512300
R226	Feedback divider	RISSTSTOE:	4300 ohm $+5 \%, 2 \mathrm{H}$	745511200
R227	Feedback divider	RESTSTOS:	4300 ohrn $\pm 5 \%, 2 \mathrm{~W}$	\$45 511200
R228	lst audio cathode	RESISTOR:	2000 ohm $\pm 5 \%, 2 \mathrm{~W}$	745509800
R229	lst audio cathode meter shunt	RESISTOR:	$128 ، 2$ ohm $\pm 1 \%$, 1 w	721005400
R230	$\begin{aligned} & \text { lst audio plate de } \\ & \text { coupling } \end{aligned}$	WSISTOR:	$4700 \mathrm{ohm} \pm 10 \%, 2 \mathrm{w}$	145511400
R231	lst audio plate load	RESISTOK:	24,000 ohm $\pm 5 \%, 2$ W	745514400
R232	lst audio plate load	RESISTOR:	24,000 ohm $\pm 5 \%$, 2 W	745514400
R233	lst audio plate load	RESISTOR:	24, 000 ohm $\pm 5 \%, 2 \mathrm{~W}$	845514400
R234	lst audio plate load	RESISTOR:	$2 \mathrm{r}, 000$ ohm $\pm 5 \%, 2 \mathrm{~W}$	745514400
R235	Audio correcting	RESISTOR:	20,000 ohm $\pm 5 \%, 2 \mathrm{H}$	745514000
R236	Audio correcting	RESISTOR:	20,000 ohm $\pm 5 \%, 2 \mathrm{~W}$	745 51:0 00
R237	Second audin grid	RESISTOR:	. 24 megohm $\pm 5 \%, 2 \mathrm{~W}$	745518600
R238	Second audio grid	RESISTOR:	. 24 megohm $\pm 5 \%, 2$ w	745518600
R239	Second audio cathode	RESISTOR:	$630 \mathrm{ohm} \pm 5 \%, 15 \mathrm{w}$	733194000
R240	Second audio cathode	RESISTOR:	$25.10 \mathrm{ohm} \pm 1 \%, 1 \mathrm{w}$	721003200
R241	Second audio plate decoupling	RESIS'IOR:	2240 ohm $\pm 5 \%, 50$ w	733098200
R244	Audio driver grid	RESISTOR:	. 12 megohm $\pm 5 \%, 2 \mathrm{w}$	745517300
15741			Idrader	

ITEM	CIRCUIT FUNCTION		DESCRIPTION	COLLINS PART NUVBER
R245	Audio driver grid	RESISTOR:	. 12 megohm $\pm 5 \%, 2 \mathrm{w}$	745517300
R246	Audio driver	RESISTOR:	1600 ohm $\pm 5 \%, 50 \mathrm{w}$	733097300
R2.47	Audio driver	RESISTOR:	600 ohm $\pm 5 \%, 50 \mathrm{~W}$	733097300
R2:8	cathode Audio driver	RESISTOR:	$4.08 \mathrm{ohm} \pm 1 \%, 1 \mathrm{~W}$	721002600
	cathode meter shunt			
R249	Audio driver cath-	RESISTOR:	4.08 ohm $\pm 1 \%, 1 \mathrm{w}$	721002600
	ode meter shunt			
R250	Audio driver bal-	RESISTOR:	350 ohm $\pm 10 \%, 25$ w	735002000
	ancing control			
R251	Audio driver cath-	RESISTOR:	$2.02 \mathrm{ohm} \pm 1 \%, 1 \mathrm{w}$	721002400
	ode meter shunt			
R252	PA grid leak	RESISTOR:	2500 ohm $\pm 5 \%, 140 \mathrm{~W}$	746003200
R254	PA grid leak	RESISTOR:	2500 ohm $\pm 5 \%, 140 \mathrm{~W}$	746003200
R256	RF driver grid	RESISTOR:	7500 ohm $\pm 10 \%, 10 \mathrm{w}$	710003300
R257	RF driver grid current meter shunt	RESISTOR:	128.2 ohm $\pm 1 \%$, 1 w	721005400
R258	RF driver screen dropping	RESISTOR:	$6300 \mathrm{ohm} \pm 5 \%, 50 \mathrm{w}$	733100900
R259	RF driver screen dropping	RESISTOR:	$6300 \mathrm{ohm} \pm 5 \%, 50 \mathrm{w}$	733100900
R260	Intermediate	RESISTOR:	16,000 ohm $\pm 10 \%, 86 \mathrm{w}$	733067400
R261	voltage bleeder Intermediate supply bleeder	RESISTOR:	16,000 ohm $\pm 10 \%, 86 \mathrm{w}$	733067400
R262	$\begin{aligned} & \text { Intermediate } \\ & \text { supply bleeder } \end{aligned}$	RESISTOR:	16,000 ohm $\pm 10 \%, 86 \mathrm{~W}$	733067400
R263	$\begin{aligned} & \text { Intermediate } \\ & \text { supply bleeder } \end{aligned}$	RESISTOR:	16,000 ohm $\pm 10 \%, 86 \mathrm{w}$	733067400
			.7-16	15742

PARTS LIST

ITEM	CIRCUIT FUNClIION	DESCRIP'PION	COLLINS PART NUMEER
R30\%	I. 304 series	RESISTOR: $3900 \mathrm{ohm} \pm 1 \mathrm{H}, 25 \mathrm{~W}$	710035000
R305	v302 meter shunt	RESISTOR: $43,000 \mathrm{ohm} \pm 5 \%, 2 \mathrm{w}$	745515400
R401	K415 coil shunt	RESISTOR: 0.5 ohm $\pm 10 \%, 10 \mathrm{w}$	710027500
R402	K414 coil shunt	RESISTOR: 13 ohm $\pm 5 \%, 25 \mathrm{~W}$	710027800
R403	Relay K416 coil shunt	RESISTOR: 110 ohm $\pm 5 \%$, 10 w	110019300
R.404	Mcd. bias adj.	FHEOSTAT: 1 ohn $\pm 10 \%, 50 \mathrm{w}$	736006700
2.405	Nod. bias adj.	RHEOSTAT: 1 ohrn $\pm 10 \%, 50 \mathrm{w}$	736006700
R406	Mod. bias adj.	RHEOSTAT: 1 ohm $\pm 10 \%, 50 \mathrm{w}$	736006700
R407	HV bleeder	RESISTOR: 10,000 ohm $\pm 5 \%, 140 \mathrm{~W}$	1746003800
R417	Mod. bias adj.	PHEOSTAT: 1 ohm $\pm 10 \%, 50 \mathrm{w}$	736006700
R501	I501 series	RESISTOR: $3900 \mathrm{chm} \pm 10 \%, 25 \mathrm{w}$	710035000
R502	I502 series	RESISTOR: 3900 ohm $\pm 10 \%, 25 \mathrm{w}$	710035000
R503	1503 series	RESISTOR: 3900 ohm $\pm 10 \%, 25 \mathrm{w}$	$1100350 x$
R504	1504 series	RESISTOR: 3900 ohm $\pm 10 \%, 25 \mathrm{w}$	1100350 cj
R505	M50 meter mult.	RESISTOR: $2700 \mathrm{ohm} \pm 10 \%, 25 \mathrm{w}$	710034500
R601	Mod. grid load	RESISTOR: 10,000 ohm $\pm 5 \%$, 140 W	7460038 OC
R602	Noise adj. fixed	PESISTOR: 25 ohm $\pm 5 \%, 20 \mathrm{w}$	746252400
R603	Noise adj. fixed	RESISTOR: $250 \mathrm{hm} \pm 5 \%, 20 \mathrm{w}$	746252400
R604	Noise adj. fixed	RESISTOR: 25 ohm $\pm 5 \%, 20 \mathrm{w}$	746252400
R605	Noise adj. fixed	RESISTOR: $25 \mathrm{ohm} \pm 5 \%, 20 \mathrm{w}$	746252400
R606	Mod. noise adj.	RHEOSTAT: $16 \mathrm{ohm}, 50 \mathrm{w}$	736162000
R607	Mod. noise adj.	RHEOSTAT: 16 ohm, 50 w	736162000
R608	M702 meter shunt	RESISTOR: 1.005 ohm $\pm 1 \%, 1 \mathrm{w}$	721002100
R609	M703 meter shunt	RESISTOR: $1.005 \mathrm{ohm} \pm 1 \%, 1 \mathrm{w}$	721002100

PARTS LIST

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
S206	Door interlock	CONTACT ASSER: male section of door interlnck switch CONTACT ASSEM: female section of door interlock switch	260404000 260405000
S207	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch	260404000
S301	Fil. start-stop	SWITCH: Start-stop, black button	260052100
S302	Test meter circuit selector	SWITCH: Band change, 4 circ, non-shorting, 6 pos	259024900
S303	Oscillator selecting	SWITCH: Tap, 2 pole, 2 pos, 1 sect, nonshorting	258103000
S304	Exciter bay raise/lower	SWITCH: Jack, DPDT with off normal	260308000
S305	Plate start-stop	SWITCH: Start-stop, black button	260052100
5401	High voltage shorting	SWITCH ASSEM: HV shorting	5036213003
S402	High voltage shorting	SWITCH ASSEM: shorting	5031938003
S403	High voltage shorting	SWITCH ASSEPT: shorting	5031938003
S404	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
S405	Door interlock	```CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch```	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
S406	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
S407	PA overload off	SWITCH: Toggle, DPST	260101000
5408	HV off sw	SWITCH: Toggle, DPST	260101000
S409	PA fil. adjust	SWITCH: Rotary, 2 pole, 4 elec pos	260063800

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLIIS PART NUMBER
S410	Mod. fil adjusting	SwITCH: Rotary, 2 pole, 4 elec pos.	260063800
S411	Control circuit breaker	CIRCUIT BREAKER: Magnetic, $230 \mathrm{v} A C / 250 \mathrm{v}$ DC	260021800
S:12	Blower motors breaker	CIRCUIT BREAKER: juagnetic, 230 v AC/ 250 v DC	260021600
Sc13	Blower motors breaker	\qquad	260038400
SA14	Coated filament breaker	CIRCUIT BREAKFR: Magnetic, 230 v AC/ 250 v DC	260042400
S415	Tungsten filament breaker	$\begin{aligned} & \text { CIRCUIT BREAKER: Magnetic, } 230 \mathrm{v} \mathrm{AC} / \\ & 250 \mathrm{v} \text { DC } \end{aligned}$	260039200
S416	LV plate primary breaker	CIRCUIT BREAKER: Magnetic, 230 v AC/ 250 v DC	260025400
3417	Intermediate plate primary breaker	CIRCUIT BREAKER: Magnetic, 230 v AC/ 250 v DC	$260 \quad 026400$
S501	Overload reset	SwITCH: Nomrally closed, 600 v AC 5.0 amp (ind), 600 v AC 15.0 amp (non-ind) 600 v DC 0.1 mp	260070700
S502	M502 circuit selector	SWITCH: Band change, DP, double deck, non-shorting	259015500
S503	Hi, Lo, Tune selector	SWITCH: Tap, 3 pos, 2 circ, 2 gang, nonshorting	259130000
S504	Plate start stop	SWITCH: Start-stop, black button	260052100
S601	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
S602	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEN: female section of door interlock switch	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
S603	Door interlock	CONTACT ASSEM: male section of door interlock switch CONTACT ASSEM: female section of door interlock switch	$\begin{array}{lll} 260 & 4040 & 00 \\ 260 & 4050 & 00 \end{array}$
		$7-22$	15748
		World Radio History	

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
S901	Fil. start-stop	SWITCH: Start-stop, black button	260052100
S902	PA bay circuit/meter selector	SWITCH: Band change, 6 circ, non-shorting, ing, 4 pos, 3 deck	259024400
5903	PA bay raise/lower switch	SWITCH: Jack, DPDT with off normal	260308000
S904	Plate start-stop	SWITCH: Start-stop, black button	260052100
T201	Audio input	TRANSFORMER: HF input audio, Pri: 500 ohm CT, Sec: 15,000 ohm CT	677009200
T202	Audio amp fil.	TRANSFORMER: Amp fil, Pri: 210, 220, 230, $240,250 \mathrm{v}, 31.5 \mathrm{VA}$, Sec: $6.3 \mathrm{v} \mathrm{CT}, 31.5 \mathrm{VA}$	672112100
T203	RF Osc. and amp fil.	TRANSFORMER: Amp fil, Pri: 210, 220, 230, 240 , $250 \mathrm{v}, 31.5 \mathrm{VA}$, Sec: $6.3 \mathrm{v} \mathrm{CT}, 31.5 \mathrm{VA}$	672112100
T204	Crystal heat and relay	TRANSFORMER: Fil or heater, Pri: 115, 210, $220,230,240 \mathrm{v}, 32 \mathrm{VA}, \mathrm{Sec}: 12.6 \mathrm{v}$ CT	672008600
T205	RF driver fil	TRANSFORMER: Fil, Pri: 230, 208, 210, 220, 240 v , Sec: 5 v CT, 32 amp	672016900
T206	Audio driver fil	TRANSFORMER: Amp fil, Pri: 210, 220, 230, $240,250 \mathrm{v}, 65 \mathrm{VA}, \mathrm{Sec}: 10 \mathrm{vCT}, 65 \mathrm{VA}$	672110100
T207	Audio driver fil	TRANSFORMER: Amp fil, Pri: 210, 220, 230, 240, $250 \mathrm{v}, 65 \mathrm{VA}$, Sec: 10 v CT, 65 VA	672110100
T208	Audio driver	TRANSFORMER: Driver, Pri: 9000 ohm CT, Sec \#1: 1000 ohm, Sec \#2: 1000 ohm	677021500
T209	LV rect. fil	TRANSFORMER: Fil, Pri: 230, 208, 210, 220, 240 v , Sec \#1: 5 v CT, Sec \#2: 5 v CT	672016700
T210	LV plate	$\begin{aligned} & \text { TRANSFORMER: Plate, Pri: 210, 220, 230, 240, } \\ & 250 \mathrm{v} \text {, Sec: } 1456 \mathrm{v} \mathrm{CT} \end{aligned}$	5030521002
T211	Intermediate voltage filament	TRANSFORMER: Fil, Pri: 230, 208, 210, 220, 240 v , Sec \#1: 5 v CT, Sec \#2: 5 v CT	672016700
		7-24	15750

	QM CIRCIIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
T212	Intermediate voltage filament	TRANSFORMER: Fil, Pri: 230, 208, 210, 220, 240 v , Sec \#1: 5 v CT, Sec \#2: 5 v CT	672016700
T213	Intermediate voltage plate	TRANSFORMER: Plate, Pri: 230, 208, 210, 220, 240 v Sec: 3310 v CT, . 86 amp	672017200
T/01	HV rect. filament	TRANSFCRMER: Filament, with socket, Pri: 220, 230 , 240 v, Sec: CT, Socket: $5 \mathrm{v}, 10 \mathrm{amp}$ for V407	672016600
T402	HV rect. filament	TRANSFORMER: Filament, with socket, Pri: 220, $230,240 \mathrm{v}$, Sec: CT, Socket: 5 v , 10 amp , for V408	672016600
T403	HV rect. filament	TRANSFORNER: Filament, with socket, Pri: $220,230,240 \mathrm{v}$, Sec: CT, Socket: 5 v , 10 amp, for $V 409$	672016600
T404	HV rect. filanient	TRANSFORMER: Filament, with socket, Pri: 220, $230,240 \mathrm{v}, \mathrm{Sec}: \mathrm{CT}$, Socket: 5 v , 10 amp, for V410	672016600
T405	HV rect. filament	TRANSFORNER: Filament, with socket, Pri: 220, $230,240 \mathrm{v}$, Sec: CT, Socket: 5 v , 10 amp , for V4.11	672016600
T406	HV rect. filament	TRANSFORMER: Filament, with socket, Pri: 220 , 230, $240 \mathrm{v}, \mathrm{Sec}: \mathrm{CT}$, Socket: 5 v , 10 amp , for V 412	672016600
T407	Voltage regulator	TRANSFORNER: Pri: 190 to 250 v 60 cyc, single phase, Output: 230 v @ 93% pf	664002600
T408	Voltage regulator transformer	TRANSFORMER: Pri: 190 to 250 v 60 cyc, single phase, Output: 230 v @ $93 \% \mathrm{pf}$	664002600
T409	Voltage regulator transformer	TRANSFORMER: Pri: 190 to 250 v 60 cyc, single phase, Output: 230 v © 93% pf	664002600
T410	Autotrans former	TRANSFORMER: Auto, 195, 213, 230, 247, 265 v , 25.2 amp	674018700

ITEM	CIRCUIT FUNCTION	DESCRIPTICN	COLLINS PART NUMBER
T411	Autotrans former	THANSFOMMER: Auto, 195, 213, 230, 247, 265 v , 25.2 amp	674018700
T412	Overload current	TRANSFORMER: Current, double pri, single sec, ratio: 10/20:1, 5000 v	664004600
T413	Overload current	TRANSFORNER: Current, double pri, single sec, ratio: 10/20:1, 5000 v	664004600
T414	HP - LP autotransformer	TRANSFORMER: Auto, $50 / 60 \mathrm{cps}, .90$ to 1.0 pf, 2500 TV rms	674018800
T415	HP - LP autotrans former	TRANSFORMER: Auto, $50 / 60 \mathrm{cps}, .90$ to 1.0 pf, 2500 TV rms	674018800
T601	Mod filament	TRANSFORMER: Power, Pri: 230, 199, 115 v , 2200 VA, 2 phase	$664+674000$
T602	Mod. filament	TRANSFORMER: Power, Pri: 230, 199, 115 v , 2200 VA, 3 phase, Sec: 11.0 v CT, 2200 VA, 2 phase	664674000
T603	Mod. filament	TRANSFORMER: Power, Pri: 230, 199, 115 v, 2200 VA, 3 phase, Sec: 11.0 v CT, 2200 VA , 2 phase	664674000
T604	Mod. filament	TRANSFORMER: Power, Pri: 230, 199, J. 15 v, 2200 VA, 3 phase, Sec: 11.0 v CT, 2200 VA , 2 phase	664674000
T803	PA filament	```TRANSFORMER: Power, Pri: 230, 199, 115 v, 2200 VA, 3 phase, Sec: ll.0 v CT, 2200 VA, 2 phase```	664674000
T804	PA filament	TRANSFORMER: Power, Pri: 230, 199, 115 v , 2200 VA, 3 phase, Sec: 11.0 v CT, 2200 VA , 2 phase	664674000
T805	RF rectifier filament	TRANSFORMER: RF rect fil, Pri: 210, 220, 230, $240,250 \mathrm{v}, 15 \mathrm{VA}, \mathrm{Sec}: 5 \mathrm{v}$ CT, 15 VA	672113100
T1001	HV plate	```TRANSFORMER: Plate, Pri: 240 v nom single phase 50/60 cps, Sec: 4160, 4056, 3952, 3888, 3744 v```	664004400
		7-26	15752

PARTS LIST

ITEM	CIRCUIT FUNCTICN	DESCRIPTICN	COLLINS PART NIMBER
T1002	HV plate	TRANSFORMER: Plate, Pri: 240 v nom single phase $50 / 60 \mathrm{cps}$, Sec: $4160,4056,3952$, 3888, 3744 v	664004400
T1003	HV plate	TRANSFCRMER: Plate, Pri: 240 v nom single phase $50 / 60 \mathrm{cps}$, Sec: 4160, 4056, 3952, 3888, 3744 v	664004400
T1004	Modulation	TRANSFORMER: Modulation, \#l: Pri: 20,000 ohm CT, Sec: 9800 ohm, \#2: Pri: 10,000 ohm CT, Sec: 4900 ohm	677021800
V101	Oscillator	TUBE: Type 6F6, power amplifier pentode	255008000
V201	Isolation amplifier	TUBE: Type 807, transmitting beam power amplifier	256003300
V202	Buffer amplifier	TUBE: Type 807, transmitting beam power amplifier	256003300
V203	Buffer amplifier	TUBE: Type 807, transmitting beam power amplifier	256003300
V204	Driver amplifier	TUBE: Type $4-125 \mathrm{~A}$	25600680
V205	Driver amplifier	TUBE: Type 4-125A	256006800
V206	Voltage regulator	TUBE: Type $003 / \mathrm{VR105}$, voltage regulator	257000200
V207	Voltage regulator	TUBE: Type $003 / \mathrm{VR105}$, voltage regulator	257000200
V208	Audio input	TUBE: Type 6N7, class B twin amplifier	$25501340 C$
V209	Audio input	TUBE: Type 6N7, class B twin amplifier	255013400
V210	Audio amplifier	TUBE: Type 12SJTGr , power amplifier triode	255012400
V211	Audio amplifier	TUBE: Type l2SJ7GT, power amplifier	255012400
V212	Audio driver	TUBE: Type 845, modulator, AF power amplifier	256003400
V213	Audio driver	TUBE: Type 845, modulator, AF power amplifier	256003400
V214	Audio driver	TUBE: Type 845, modulator, AF power amplifier	256003400
	5753-1	$7-27$ World Radio History	

ITFM	CIRCUIT FUNCTION	DESCRIPTION	COLITNS FARI NUMB:
V215	Audio driver	TUEE: AJto 845, modulator, AF power amplifier	256003400
V216	LV rectifier	TUBE: Type 8008, half-wwave inercury --vapor rectifier	256007300
V217	LV rectifier	TUEE: Type 3008; hali-wave meroury-vapor rectifier	256007300
V218	Intermediate voltage rectifier	TUBE: Type 8008, halfo-wave mercury-vapor rectifier	256007300
V219	Intermediate voltage rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	256007300
V220	Intermediate voltage rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	2560073 C0
V221	Intermediate voltage rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	256007300
V407	HV rectifier	TUBE: Type 8008, half-wave mercurymvapor rectifier	25600730
V408	HV rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	256 00'93
V409	HV rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	25600×3
V410	HV rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	$25600{ }^{\prime \prime} 300$,
V411	HV rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	256007300
V412	HV rectifier	TUBE: Type 8008, half-wave mercury-vapor rectifier	256007300
V601	Modulator	TUBE: Type 892R, RF power amp, class B modulator	256004100
V602	Modulator	TUBE: Type 892R, RF power amp, class B modulator	256004100
		$7-28$ World Radio History	15754

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
V802	Final amplifier	TUBE: Type 892R, RF power amp, class B modulator	256004100
V303	RF rectifier	TUBE: Type 5U4G, full-wave, high vacuum rectifier	2550032 co
XF201, XF'202 XF401 XF402	Holder for F201, F202, F401 and F402	HOLDER: Fuse	265203000
XIIO1	Mounting for 1101	MTG: Pilot light, miniature JEWEL CAP: Red	262216000
XI301	Mounting for 1301	MTG: Filot light JEWEL CAP: green	$\begin{array}{lll} 2620103 & 00 \\ 2620105 & 00 \end{array}$
$\begin{array}{r} \text { XI302, } \\ \text { XI303 } \end{array}$	```Mountings for I302, I3O3```	MTG: Pilot light JEWEL CAP: Amber	$\begin{array}{lll} 262010300 \\ 262010600 \end{array}$
XI304	Mounting for 1304	MTG: Pilot light JEWEL CAP: Red	$\begin{array}{lll} 262 & 0103 & 00 \\ 262 & 0104 & 00 \end{array}$
$\begin{array}{r} \text { XI305, } \\ \text { XI306 } \\ \text { XI307 } \\ \text { XI308 } \end{array}$	Mountings for 1305 , I306, I307, I308	SCCKET: Pilot light, dc candelabra bayonet base	262004200
XI501	Mounting for 1501	MTG: Filot light JEWEL CAP: Green	$\begin{array}{lll} 262010300 \\ 262010500 \end{array}$
$\begin{aligned} & \text { XI502, } \\ & \text { XI503 } \end{aligned}$	$\text { Mountings for } 1502,$ I503	MTG: Pilot light, JEWEL CAP: Amber	$\begin{array}{lll} 2620103 & 00 \\ 2620106 & 00 \end{array}$
XI504	Mounting for 1504	MTG: Pilot light, JEWEL CAP: Red	$\begin{array}{lll} 262 & 0103 & 00 \\ 262 & 0104 & 00 \end{array}$
XI505	Mounting for 1505	SOCKET: Pilot light, dc candelabra bayonet base	262004200
XI701	Mounting for 1701	MTG: Pilot light, JEVEL CAP: Green	$\begin{array}{lll} 2620103 & 00 \\ 262 & 0105 & 00 \end{array}$

PARTS LIST

ITEM	CIRCUIT FUNCTICN	LESCRTPTION	COLLINS
$\begin{gathered} \text { XV601 } \\ \text { XV602 } \end{gathered}$	Sockets for V601, V602	SCCKET: Tube, special, for air-cooled tube	220811000
$\begin{gathered} \text { XV801 } \\ \text { XV802 } \end{gathered}$	Sockets for V801, V802	SCCKET: Tube, special, for air-cooled tube	220811000
XV803	Socket for V803	SOCKET: Tube, 8 contact	220581000
XY101	Crystal socket	SCCKET: Crystal, 5 prong	220153000
YiCl	Crystal	CRYSTAL:	

 （ $\left.{ }^{2}\right)^{\cos }{ }^{203}$ 緛, cs		UNIT AE OVERLOAD RECTIFIER			

Figure 8-11 External Components Schematic

