

IMPORTANT: READ THIS FIRST

The information In this book is not to be used to exceed F.C.C. specifications, in any case, as applied to power, modulation, frequency spectrum, etc. It is illegal to do this to any CLASS D RADIO.

This book la a factual report of gathered information, and as such is intended for use on radios for EXPORT ONLY.

If you are not familiar with electronics, it is better to check for advice with your local electronics or CB center, as to restrictions, etc., concerning your radio.

More information, on other units will be forthcoming in future issues, to be published on a quarterly basis.

This book will not be found at a book store, but can be obtained through your local CB Dealer or Distributor, or by completing the order form in this book.

Secret CB
Volume Thirteen
Published March 1982

© Copyright 1982, Dane D. Selman
All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording. or otherwise, without written permission from the publisher. No patent llability is assumed with respect to the use of the information contained hereln. While every precaution has been taken in the preparation of this book, the publisher assumes no reponsibility for errors or omissions. Neither is any llablilty assumed for damages resulting from the use of the information contained herein.

PRINTED IN THE UNITED STATES OF AMERCIA
New issues quarterly
Address any and all Inquiries to:
Selman Enterprises, Inc.
P. O. Box 8189

Corpus Christi, Texas 78412
(512) 992-1303

SECRET CB wishes to gratefully acknowledge the following people

 for their help and contributions toward getting volume 13 in print. Their encouragement and contribution of material has been INVALUABLE.

VIC says "THANKS" and a free book to the above people

Here we are at our "LUCKY 13" edition and this time we are featuring a new import, the SOMMERKAMP TS-788DX. See the feature story for full details. I'm sure you will be impressed.

Our FM Kit is now available. It comes with instructions on how to add an $A M / F M$ selector switch for either mode of operation. It will work on any set that has a V.C.O. and a 455 KC intermediate frequency (I.F.). It is also relatively easy to install.

We have a new thumbwheel conversion for the 858 SSB chassis which reads the output frequency directly off the switches. No more charts. Also we are currently working on a compact 6 digit programmable frequency counter/display which is adaptable to any unit. Watch for this one - it will be hot!!!!!!!!!!!

Looks like there will be no more CB schematics published by SAMS. We maintain a file of schematics on anything we can get our hands on. If you have a schematic of a hard to find unit, send us. a good photocopy of it. We will function as a Clearinghouse and supply a schematic of anything we have on file (which is not copy righted, of course) for a nominal copying/shipping/handling fee.

For anyone with a "parts supply" problem, we have a modest inventory of popular values of resistors, capacitors, switches, etc. Call us at 512-992-1303 for prices and special requirements. Phone orders are accepted Mon. -Fri. 9AM-6PM CST.

Till Next Time,

Sic Richter

ACKNOWLEDGEMENTS 1
INTRODUCTION 2
TABLE OF CONTENTS 3
INTRODUCING THE SOMMERKAMP TS-788DX 4-9
CONVERSIONS:
CENTURIAN 4OD SSB MODULATION INCREASE 10
FANON FANFARE 350F - 858 CHIP 11-12
J.C. PENNEY 98l-6247 CLARIFIER 13
J.C. PENNEY 6248 - ADD VARIABLE TRANSMIT F 14-15
PANASONIC RJ-3700 - SM5l04G 16-17
PRESIDENT ADAMS - 858 18-20
PRESIDENT GRANT - 8719 21-22
ROYCE l-632 23
ROYCE 642 - CCI 3001 24
SOMMERKAMP TS-788DX 25-30
TRAM D64 - NDC40013 PLL 31
MB8719 PINOUT 32
ANOTHER MB8719 MODIFICATION 33
RECEIVER WIDEBANDING FOR 858 CHASSIS 34
NEW THUMBWHEEL CONVERSION FOR 858 CHASSIS 35-37
AGC SELECTOR SWITCH 38
CYBERNET 02A CHASSIS 39
HOW TO HOOK UP A lOT POT TO 2000GTL 40
2824C OPERATION ANALYSIS 41-43
VSB-1 HOOK UP FOR TRC448 43
VSB-l HOOK UP FOR MIDLAND 77-0004 4001 44
TROUBLESHOOTING CLARIFIER PROBLEMS ON THE 858 45-47
SUPER REGULATOR 48
BUILD A RECEIVER PREAMP 49
LINEAR NOTES 50-51
MODULATED GUNN OSCILLATOR 52-56
HOW TO ADD SLIDE TO YOUR COBRA 29GTL 57
BOWMAN 910 (O2A) CONVERSION 58
SPECIFIC RADIO TUNE-UPS \& AM CONVERSIONS:
COBRA 29LTD 59
Cybernet 02A AM RADIOS 59
GEMTRONICS GTX 5000 \& ROBYN T240D 60
ITT CB-4000M 61
J.C. PENNEY 6246 (PLL6055) 61
JOHNSON 4125/417.4 61
MIDLAND 13-882C (02A) 62
MIDLAND 13-867 62
PEARCE-SIMPSON PUMA 23B 62
ROBYN T240D 63
SHARK 23. 63
STANDARD 29A uPD857 63
REALISTIC DX300 (20-204) 64
BEARCAT 250 65
OOPS, WE GOOFED:
VOL. 4, PAGE 3966
VOL. 6, PAGE 3 \& 12 66
VOL. 7, PAGE 54 66
VOL. l0, PAGE $25 \& 48$ 66-67
VOL. ll, PAGE 4, 6, 10, 41, \& 75 67
INDEX VOLUMES 1 THRU 12 68-80
SECRET CB ORDER FORM 80

GENERAL:

1. Semiconductors
2. Frequency Range
3. Modes of Operation
4. Speaker
5. Microphone
6. Power Supply
7. Antenna Impedance
8. Size

RECEIVER:

1. Receiver System
2. Sensitivity at $S / N 10 d B$
3. Selectivity
4. AGC Figure of Range
5. Squelch Range
6. Audiu Output Power
7. Spurious Response
8. I.F.

FM TRANSMITTER:

1. RF Output Power (max)
2. Deviation
3. Harmonic Suppression

AM TRANSMITTER:

1. RF Output Power
2. Modulation Capability
3. Harmonic Suppression
: 31 IC's. 41 Transistors, 2 FET's \& 119 Diodes
: 28.000-29.999MHz
: AM. FM. LSB. USB \& CW
: Dynamic type, 8 ohm.
: Ceramic type
: 11V-16V DC, negative ground.
: 50 ohm.
$61 \times 156 \times 290 \mathrm{~mm}$
: Single Conversion PLL Superheterodyne.
: AM $\cdots \cdots \cdot \ldots \cdot 0.75 \mu \mathrm{~V}$
FM $\cdots \cdots \cdots \cdots \cdot 0.75 \mu \mathrm{~V}$
SSB.............0.25 $\mu \mathrm{V}$
AM $\cdots \cdots \cdot .6 .6 \mathrm{KHz}$ at Bandwidth $-6 d B$
FM $\cdots \cdots \cdot 6.6 \mathrm{KHz} \quad 60 \mathrm{~dB}$ down at 8 KHz
SSB...........2.4KHz at Bandwidth $-6 d B$
$: 80 \mathrm{~dB}$. 60 dB down at 4.8 KHz
$1 \mu V-100 \mu V$.
2.5 Watts
$:-60 d B$.
$: \quad 10.7 \mathrm{MHz}$.

SOMMERKAMP
MODEL: TS-788DX

10 METER

SSB TRANSMITTER

1. RF Output Power (max) : 50 Watts PEP
2. Carrier Suppression : More than 50dB
3. Unwanted Sideband Suppression : More than 60dB.
4. Harmonic Suppression : More than 60dB.

INTRODUCING THE

SOMMERKAMP 10 METER TS-788DX
The SOMMERKAMP TS-788DX transceiver has been designed for continuous heavy duty mobile and base station application on $A M, F M, L S B, U S B$ and $C W$. The best feature of this unit is the continuous coverage of the entire $28.000-29.999 \mathrm{MHz}$. band. This is accomplished by using the frequency selector knob in conjunction with the frequency figure switch. You can select $100 \mathrm{KC}, 10 \mathrm{KC}, 1 \mathrm{KC}$ or 100 Hz . steps. The 5 digit frequency counter displays the results.

Another special feature is the remote control microphone. Up and Down pushbutton switches on the top of the mike select the frequency and scanner functions. On the side are two pots, one is for the Volume and the other is the Clarifier. The PTT button is on the opposite side. On the rear of the mike is a recessed slide switch which selects internal or Mic Speaker. The mike plug is an 8 pin locking-ring type. This transceiver is designed to operate on 13.8 VDC and draws $8.5-10$ amps. Use a regulated heavy duty power supply for base station operation.

The receiver section will receive $A M / A 3, F M / F 3, S S B / A 3 J$ and CW/Al signals in the 28.000 to 29.999 MHz band. The unique combination of low noise FET's, ceramic and crystal filters, efficient noise limiter (ANL) and a HI-FI quality audio amplifier results in exceptional reception quality. The latest advances in solid state technology have been incorporated into this unit resulting in superb sensitivity and unwanted signal
rejection and noise suppression available previously only in space and military communications equipment. The power supply of the receiver $R F$, IF and Oscillator section is stabilized by an extreme sharp cut-off Zener diode to obtain the high sensitivity and unwanted signal rejection. The efficient series gate noise limiter, which virtually cuts off the audio output during ignition noise pulses, is defeatable to make even the weakest signal audible which otherwise would be cut off by the threshold level of the ANL switching diode. The high squelch sensitivity is achieved by using a separate squelch detector and switching circuit with a carefully balanced hysteresis. The audio amplifier is of transformerless design and will drive any load between 8 ohms and indefinite, such as, internal speaker or external speaker/ microphone or headset combinations. An automatic tuning circuit automatically tunes to the best reception on the entire band.

The transmitter section is designed for continuous heavy transmission on either $A M / A 3, F M / F 3, S S B / A 3 J$ and $C W / A 1$ signal in the 28.000 - 29.999 MHz . band. The transmitter consists of a PhasedLocked Loop circuit and one crystal controlled oscillator. The output is synthesized in a balanced mixer followed by a double tuned filter, class ABl buffers, auto-tune circuit and power output stage, coupled by series and pi-matching filters to the antenna jack. Output power can be varied. If both Volume and RIT knobs are pulled out, you will be pushing about low PEP. Any other combination of these two knobs will give full output
power of about 50W PEP. A VSWR protection circuit disables the transmitter so it cannot be damaged by bad antennas, shorted coax, etc. A lamp behind the Frequency Selector Knob alerts you when this situation arises. It is reset by momentarily switching the transceiver off.

The Modulator consists of an input audio filter, pre-amplifier, ALC amplifier, and audio buffer followed by a balanced modulator for $A M / S S B$, or directly to the VCO for $F M$. The input circuit has been designed for a 500 ohm dynamic microphone, a 1000 ohm ceramic microphone or a 32 ohm speaker/microphone combination with a 100 ohm resistor in series.

On all new models the SQUELCH Control pulls out to perform another function. This gives a lookC offset for repeater use, a very nice function.

A matching lo amp continuous/l5 amp surge power supply with a built-in base speaker is now available. It is $5^{\prime \prime}$ high and has a black face with matching blue side panels. Pushbutton terminals are provided for quick power hookup. A separate cable with a miniature plug on the end plugs into the transciever SP jack for base speaker operation. This mades a really sharp base station set up.

The manual accompanying the unit is also of high quality including schematics, parts layout, wiring layout, voltage charts, parts list, etc..

BLOCK DIAGRAM

The "guts" of the unit is built on two pc boards sandwich together with the component sides up on top and bottom. The high power $R F$ linear is attached to the rear of the unit in its own shielded compartment box with a generous amount of finned anodized aluminum heatsink. It uses an MRF454 to generate the high power output. A 2 SCl306 transistor is used as the driver and a 2SC2098 is used as the power amp to drive the MRF454 Linear amp.

THIS UNIT IS EASY TO OPERATE AND A JOY TO USE. ORDER YOURS TODAY FROM SEIMAN ENTERPRISES, INC. OR YOUR FAVORITE SECRET CB DEALER OR DISTRIBUTOR.

MODULATION INCREASE

1. Remove R606 (10K).
2. Remove R607 (100K).
3. Remove RT601 (l00K Trimmer).
4. Remove R608 (10K).
5. Remove D601 and install a solid wire jumper in its place.
6. Remove D602 and install a solid wire jumper in its place.
7. Remove R6l0 and install a 50K Trimmer Resistor in its place. Adjust for 3 VDC on base of TR602.

NOTE: R6l0 was 56 K . with pot adjusted, $\mathrm{R}=16 \mathrm{~K}$.

1. Clip D24.
2. Lift end of R6l opposite R60.
3. Solder a wire onto the lifted end of R61.
4. Solder the other end to cathode of D32 zener.

This supplies 9 volts to the clarifier.
5. Remove D26 zener and discard.
6. Replace D26 above with an 8.2 V zener.
7. Locate Orange wire on clarifier.
8. Cut Orange wire loose from pc board and ground it.
9. Remove R28 (4.7K) and replace with a lK.

FANON FANFARE 350 F 858 CHIP cont'd.:

WIDEBANDING:

Do the following mod. to $T l 0$ on the foil side of pc board.

RX ADJ:
Peak T4,T3,T5,T6,T7,T2,T1。
VR15 A.G.C.
VR3 Local Adjustment.
VR2 Squelch Range.
VRI S Meter.

TX ADJ:
Peak Tl3,Tl0,Ll0,L7.
VR6 AM Power Adj.
VR8 AMC Adj.
VR4 Carrier Null.
VR7 SSB ALC.
VR9 RF Power Meter.
l. Clip R24.
2. Clip D5.
3. Remove D4 and install a solid wire jumper in its place.
4. The value of cll can be altered slightly for more slide.
5. Solder one end of an Orange wire to the unused end of the Fine Tune control.
6. Solder the other end to the emitter of Q44 voltage Regulator.
7. Add a 47ufd/25V Electrolytic Capacitor on the Fine Tune control. Solder the + lead to the Orange wire (added above) and the - lead to the Black lead.

ADD VARIABLE TRANSMIT Fo TO J.C.PENNEY 6248

```
Follow these steps carefully.
    1. Clip D7l0.
    2. Remove R7ll and install a solid wire jumper in its place.
    3. With a voltmeter, measure the voltage on both ends of the
    Fine Tune control. One end should be OV and the other
    end 8V. Follow the wire which is connected to the 8V
    line and cut this wire into at the plug, HPl.
    4. Resolder the end of this wire to pin 2 of lC502.
        B31
    5. D702 may be replaced with Super Diode or use Super Slide
    in series with stock varactor.
```

TUNE UP TX:
RT301; AM Power
RT401; RF Power Meter Adj.
RT402; SSB Power Control.
Clip D302 for max. mod.
Adjust T402, T403, T404, T405, T406, T407.
RX:
Adjust Tl02, Tl03, Tl04, Tl05, Tl06
RTl04; S Meter, AM
RTl05; S Meter, SSB
RT102; AM SQ.
RTl03; SSB SQ.
T702; is VCO Coil.

* See Vol. 8 Page 24 for Frequency Expansion.

PANASONIC RJ-3700 SM5l04G cont'd.

CLARIFIER:

Quick \& Easy!
Refer to Drawing:

1. Jumper 1 to 3 .
2. Cut trace at 2 or remove wire going to D44-Rl43.

TUNE-UP:
Rl89 AM Power; Rl92 ALC; Rl29 AM Mod
R56 RF Meter; R44 Mod. light
R78-Squelch
R77-S Meter

FREQUENCY-CHANNEL NUMBER CHARTS

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel
26.965 MHz	1	27.085 MHz	11	27.215 MHz	21	27.315 MHz	31
26.975 MHz	2	27.105 MHz	12	27.225 MHz	22	27.325 MHz	32
26.985 MHz	3	27.115 MHz	13	27.255 MHz	23	27.335 MHz	33
27.005 MHz	4	27.125 MHz	14	27.235 MHz	24	27.345 MHz	34
27.015 MHz	5	27.135 MHz	15	27.245 MHz	25	27.355 MHz	35
27.025 MHz	6	27.155 MHz	16	27.265 MHz	26	27.365 MHz	36
27.035 MHz	7	27.165 MHz	17	27.275 MHz	27	27.375 MHz	37
27.055 MHz	8	27.175 MHz	18	27.285 MHz	28	27.385 MHz	38
27.065 MHz	9	27.185 MHz	19	27.295 MHz	29	27.395 MHz	39
27.075 MHz	10	27.205 MHz	20	27.305 MHz	30	27.405 MHz	40

PRESIDENT ADAMS (858)

The Adams frequency conversion is slightly different due to the SCAN feature incorporated into the chip program select lines. Unlike the others, this one switches the address lines to ground and the normal pin status is +5 V supplied through lo0k resistors. It does not have the 4700 ohm resistors from each pin to ground. D708 (14), D710 (15), D712 (16), D714 (17), D716 (18), D718 (20) make up the "Channel 9" monitor. When pin 2 of IC702 goes low, address lines 20, 18, 17, 16, 15, and 14 (19 is low also because it is groundedmore on this in a minute) go low leaving 13 and $2 l$ high which is the code for channel 9. Pin 14 controls another diode matrix which has jumper wires for field programming. It is factory encoded for channel 19, but is easily field programmable to whatever frequency you want (Home Channel-more on this later).

FOLLOW THESE STEPS:
l. Locate pin 19 of the 858 chip and isolate by cutting PC foil away from ground. An XACTO knife with \#ll blade works perfect.
2. Obtain two IN914 diodes and twist the anodes together. Wrap this around one end of a $100 \mathrm{~K} / \frac{1}{4} \mathrm{~W}$ resistor and $.01 / 50 \mathrm{~V}$ disc capacitor. It should look like this:

Solder the four leads together and then solder it to pin 19.
FIG. 1
3. Solder the other end of the capacitor to ground (pin 23).
4. Solder the free end of one diode to the cathodes of channel 9 encoder diodes or pin 2 of IC 702.
5. Solder the free end of the l00K resistor to pin 1 of RR70l resistor network (5.99V source) or cathode of zener D722.
6. Obtain a SPST switch and ground the center terminal. Run a wire from the end terminal to the free end of the remaining diode. It should look like this:

FIG. 2
7. Solder the anode of a lN9l4 diode to Pin 20 and the cathode to another SPST switch like this:

8. Cut the trace on pin 21 between the cathode of D410 and the channel selector switch. Add a SPST switch and wire like this:

The three SPST Switches must be in the "OFF" position for the SCAN Function to operate normally. This modification gives hi and low channels.

Now lets discuss the programmable "home channel" function. To program a "home channel" of 27.605 , we need a jumper at JP702, JP704, JP706 and JP707, since pins $14,16,18$ and 20 are low and pins 13, 15, 17, 19 and 21 are high. All you need to know to program your particular "home channel" is the truth table for that channel and then install jumpers wherever you need a low or O. Consult Volume 11 for truth table. This is a great radio. Have fun with it.

How to put extra channels on ANL/NB and Brite/Dim Switches.

1. Locate Switch PC Board.

ANL/NB Procedure

2. Clip Red wire at hole 8 .
3. Resolder Red wire at Blue wire, hole \#6.
4. Clip Red and White wires at holes 10 and 11.
5. Clip shield at hole \#9 and remove this complete cable. Brite/Dim Procedure
6. Clip Red wire @\#4 hole.
7. Connect end of Red wire to ground.
8. Clip White wire at hole \#3 and terminate.
9. Clip R418 Resistor next to Dim Switch.

Hook up new wires as shown in the following diagram.

Grant

MODEL 1005002 40•Channel AM/SSB Mobile

Here are the frequency combinations:
DIM-NB 26.815 to 27.005 (Lows).
DIM-ANL 27.455 to 27.725 (Intermediate).
BRITE-NB Normal.
BRITE-ANL 27.605 to 28.045 (Highs).
Now the meter light and channel LED's will always be on bright and NB is always on.
This makes a neat frequency conversion without using extra "tattle tale" switches and offers front panel convience and driving safety.

presifent "
Engineered to be lie very best

FREQUENCY EXPANSION:

1. Locate the PLL Unit and remove.
2. Remove the cover of the PLL unit.
3. Locate the 12.063 MHz crystal and remove it.
4. Replace the crystal with a 12.503 MHz .
5. Locate M58473P PLL IC and connect a switch as follows:

6. For a 15 KC Slide, replace the varactor with our Super Diode (located next to crystal.)
7. Reinstall the pll unit.

For other channels and clarifier information see Volume ll pace 21.

Write for a copy of our FREE CATALOG! We accept VISA/MC.

ROYCE 642 (CCI 3001)

FREQUENCY EXPANSION - UP TO 27.595

1. Cut the trace between collector of $Q 23$ and pin 4 of IC8.
2. Cut trace between channel selector and pin 11 of IC9.
3. Cut trace between channel selector and pin 12 of IC9.
4. Wire two SPST Switches as shown:

CLARIFIER:

l. Cut Green wire (from clarifier) at board (62) near D8 (located between $T 2$ and T9). Ground this wire.
2. Cut White wire (from clarifier) at board (68) near D9 (located between $T 1$ and Relay).
3. Solder one end of a lok variable resistor to the emitter of Q18 (87). Solder other end to ground.
4. Solder the White wire to the wiper. Adjust pot for most "up" slide without "dropout".
Ll0 is VCO; Dl9 is VCO Varactor.
Dl3 is Varactor. A super slider can be connected in series with Dl3 or Dl3 may be replaced with a Super Diode.

XMTR TUNE UP:

VRll is SSB ALC.
VR7 is AM AMC (or remove Ql6).
Peak T8, L4, L3, L2, T9, Ll2.

sOMMERKAMP TS-7S8DX MODIFICATION

Another exciting feature of the Sommerkamp TS-788DX is its easy conversion down to 26.000 MHz . The following steps will show you how:

1. Remove the covers.
2. Turn the unit up-side-down to locate the jumper points in the next steps.
3. There is a jumper near IC20 to IC2l. Unsolder to remove it. It will no longer be needed. This is labeled D \& E on the photo.

4. Locate the jumper near ICl4. Unsolder the end of the jumper nearest ICl4 at point B and resolder to point C (pins 12 \& 13 of ICl4). Normally the jumper is between A and B. Move it to A and C as shown below. Also reference to the photo. NOTE: When I soldered the jumper to C it was not making contact with pins 12 \& 13 , rather than lift the whole board I was able to heat pins 12 \& 13 to get contact. USE CAUTION! An Ohmmeter may be used to check for an open from C to pin 12 \& 13.

SOMMERKAMP TS-788DX MODIFICATION cont'd.
5. Connect the GREEN wire to the pad (labeled F) closest to ICl5. Refer to the photo for exact location.

TUNE-UP:
VR20 AM power
VR21 FM-CW-SSB power
L8, L9, Ll0, Ll2, Ll4, TC4 - peak for maximum power with good forward drive and frequency coverage.

Actual output power as measured on our test unit was:
AM: 30 W dead key, 45 W with tone
SSB: 45W PEP
FM: 58 W
NOTE: Counting down from 29.999 to 26.000 and back to 29.999 was fine. When the counter was advanced forward from 29.999 the display should read 26.000. It did not - it jumped to 24. To eliminate this glitch add a .l ufd bypass capacitor on pin 14 of ICl4 to pin 8 (ground) of ICl4.

When power is removed from unit to disable memory, unit will go to 26.000 when turned to on. When turned to "ch. 9", unit will go to 26.500. If you would like "ch. 9" to read 27.505, add a $1 N 60$ and a jumper to the points shown below:

COMPLETE PARTS LAYOUT

RIT Clarifier System:

The T / R frequency is variable between $26.000-29.999 \mathrm{MHz}$ in 100 hertz increments. For this reason we felt no need to "open" the RIT circuit for variable transmit F_{O}. This will prevent "walking around the dial" since transmit is rock steady where set. Receiver can then be fine tuned right on the money. If every unit had this capability there would be no need to open any clarifier, since the purpose is to allow one to slide down a KC or two for a clear channel space. This would cure 99% of clarifier problems.

There is no need for a great amount of slide because the frequency is variable in 100 Hz steps which is great, because this is derived from highly accurate dividers and PLL locked. Theoretically all you would need is $a_{-}^{+} 100$ hertz slide capability. However, in the event that the station you are talking with has a shift of 600 hertz between transmit and receive you would encounter a problem. But don't worry, SOMMERKAMP engineers have designed ${ }_{-}^{+} 2 \mathrm{KC}$ of frequency offset to take care of that problem.

With the RIT control in the OFF position receiver and transmitter are locked together. The frequency display is just that - a display, not a true frequency counter. The front panel VXO adjustment is used to adjust the RIT frequency to agree with the display. We found the actual and displayed frequency to vary a maximum of 970 cycles.

All things considered, this unit is a good buy for the money.

WE TAKE PHONE ORDERS OR SHIP C.O.D.

FREQUENCY CONVERSION-See Vol. ll,page l2-for Johnson 4740.

CLARIFIER:

1. Clip CRl07 located close to relay.
2. Clip RED Wire(Located on Clarifier) at PC board.
3. Resolder to 9 V Source @ emitter of Qlol.
4. Remove C929 capacitor which is across the varactor, CR902.
5. Replace CR902 with a SUPER DIODE for additional slide off center frequency.

TUNEUP:

```
SSB ALC : R721
SSB MIC GAIN: R207
AM MOD : R217
R5l7 : AGC Adj. for l.56 Volts @ TPl
R516 : Squelch Range
R507 : S Meter
```

TX Align: T701, T702, L702, L704, L706, L709
No SAMS on this one-however, CB286 on PC20l is fairly close.

тran

PLEASE
 NOTE!

On the MB8719 Chips, for some reason, Pin 1 is not where the dot is, that is Pin 18. So be careful when you locate Pin 10

Pin 18 is chip ground.
Pin 9 is chip 8 V source.
Pin 10 is either no connection or is grounded.

COBRA 140/142 GTL
PRESIDENT WASHINGTON
REALISTIC TRC450,ETC.
This gives you coverage from 26.815 to 28.085 with no skips.

1. Cut the trace at pins $10,11, \& 16$.
2. Wire 3 SPDT Switches and a CD4070 Exclusive OR gate as diagramed.
3. Remove D25 on Pin 6.
4. Install a 1000 ohm $\frac{1}{2} W$ Resistor from Pin 6 to Pin 9 of IC2.

RECEIVER WIDEBANDING FOR 858 CHASSIS

1. Locate TR5 RF AMP Transistor and remove (2SCl730L). Notice how the transistor is orientated.
2. Replace with a 2SC945AP type transistor.
3. Locate L4 receiver RF Coil. It is a double tuned coil.

LS

 SET 1

4. L4 looks like this on bottom.

Cut trace going to the center of the coil and jump to the end of coil.
5. Retune L3 and L4 for best overall performance. L4 will have the greatest affect in broadbanding.

OPTIONAL

6. Locate TR9 and TRIO (2SCl675L) and remove. Again, notice lead orientation.
7. Replace TR9 and TRIO with 2SC945 AP transistors.

NOTE: R46 may have to be changed from 330Ω to a l000^resistor IF AGC seems to degrade receiver.

NEW THUMBWHEEL CONVERSION WITH TRUE READOUT FOR 858 CHASSIS

l. Wire up five 10 position $B C D$ type thumbwheel switches* as shown in FIGURE 1.
2. The mixer crystals will have to be changed also. Order 11.269133; ll.268333; ll.267533. Replace the 11.2842 with the 11.267533. Replace the 11.2850 with the 11.268333. Replace the ll. 2858 with the 11.269133. If you prefer LED readout in addition to the above, you will need three TTL7447 7 segment decoder/drivers and five FND507 or equivalent Common Anode LED's. Wire as shown in FIGURE 2.

FIGURE 1

NOTE: TWSl and TWS5 can be replaced with BLANK BODY sections for lower cost. A "2" and a "5" can be stenciled on with white rub on letters.

For Thumbwheel Switch Complete ask for Secret CB Item \#l29.

NEW THUMBWHEEL CONVERSION WITH TRUE READOUT FOR 858 CHASSIS (Cont.)

Lets say our thumbwheels read 26.975 , first we will "hard wire" the "2" and the "5" as these will never change. (LED 1 and LED 5)

FIGURE 2

Next we will wire LEDs 2, 3, and 4.

FIGURE 3

Build a duplicate of the above circuit and wire to TWS 3 and LED 3. Build another duplicate and wire to TWS 2 and LED 2. If you want the display to read 26.975 , connect a 220Ω resistor from the decimal point to ground.

AGC SELECTOR SWITCH

This practical switch can easily be added to the Cybernet 02-A type chassis, ie, Midland, RCA, Boman to give the operator selective AGC control. This modification is built around a DPDT Center Off Switch to give AGC FAST, AGC OFF, or AGC SLOW action. PARTS REQUIRED

1 - DPDT CENTER OFF TOGGLE SWITCH
1 - $100 \mathrm{~K}, \frac{1}{4} W \mathrm{RESISTOR}$
1 - 1 MEG, $\frac{1}{4} W$ RESISTOR
l - 8" LENGTH OF GREEN WIRE
l - $8^{\prime \prime}$ LENGTH OF ORANGE WIRE

STEP l. Locate and remove Rl2l.
STEP 2. Solder one end of a piece of ORANGE wire into the hole where Rl2l connected to the base of Q3l.

STEP 3. Solder one end of a piece of GREEN wire into the hole on the other end of where Rl2l was (t side of Cl45).

STEP 4. Install the Switch in desired location.
STEP 5. Solder the two Resistors on the switch as illustrated.
STEP 6. Solder the GREEN and ORANGE wire on the switch.
STEP 7. Reassemble and Enjoy!

The VCO block in this Chassis is encapsulated in plastic and replacements are not readily available for some units. Don't fret, as now you can build your own on a piece of perf board. Here is the schematic.

HOW TO HOOK UP A 10T POT TO 2000GTL

1. Remove FVL/CVL and tape all loose wires. Replace with a 10 Turn Pot (Secret CB Item \#46).
2. Remove D5l.
3. Wire up pot as shown:

4. Clip D52.

Try SECRET CB's VSB-1 (Voice Signal Booster) and you'll be glad you did! Works great in the Cobra 2000.

TRANSMITTER/RECEIVER OPERATION OF COBRA 146GTL, PRESIDENT AR144, SEARS 663.38100050

REALISTIC TRC451, TYPE CHASSIS
Reference: Block Diagram, Volume 12 page 11

AM OPERATION, TX:

An AF signal from the MIC is fed to TR26 through TR27. This signal is amplified by TR26 and TR25, Mic Amp, and is fed to TR42 and TR43. The signal amplified by TR44 is applied to TR39 and TR38 for modulation. For the RF portion, two signals are mixed by IC5, mixer, with a 27 MHz signal being produced. (One of these signals is 10.7 MHz generated by TR23 and the other signal is the VCO output approximately 16 MHz .) The 27 MHz signal is amplified by TR4l and TR40. The signal is amplified and modulated by TR39 and TR38 and then delivered to the antenna. D52 and D53 make up the RF Power Meter detector.

AMC:

TR29 is a detector for AMC and the input attenuator consists of R157 and TR27. In an overmodulated condition, TR29 turns on and the detected current flows into Rl53. This current drives TR 28 and TR27. As the collector-emitter inpedance of TR27 lowers, the input signal is lowered.

SSB:

The audio signal Erom the MIC is amplified by TR26 and TR25. It is then applied to the Balanced Modulator, IC3. The carrier signal (10.6925 USB; 10.6975 LSB) is applied to the other input of IC3. IC3 produces a carrier-suppressed double sideband signal. The DSB signal is converted into SSB by the filter FLl. In the USB Mode, carrier plus audio signal is produced; in the LSB Mode, carrier minus audio signal results.

EXAMPLES: USB Mode:
Using a lKC tone, two signals are produced:
(USB) $10.6925 \mathrm{MHz}+1 \mathrm{KHz}=10.6935 \mathrm{MHz}$
(LSB) $10.6925 \mathrm{MHz}-1 \mathrm{KHZ}=10.6915 \mathrm{MHz}$
LSB Mode:
(USB) $10.6975 \mathrm{MHz}=1 \mathrm{KHz}=10.6985 \mathrm{MHz}$
(LSB) $10.6975 \mathrm{MHz}-1 \mathrm{KHz}=10.6965 \mathrm{MHz}$

The center frequency of the crystal lattice filter is 10.6950 and will pass $\pm 2.5 \mathrm{KC}$ or 10.6925 - 10.6975 . So, on USB, the 10.6935 signal is passed but the 10.6915 signal is attenuated. In LSB the 10.6965 signal is passed and the 10.6985 signal is attenuated.

The SSB signal is then mixed with the VCO frequency by IC5 and the resulting 27 MHz is amplified by TR4l, TR40, TR39, TR38 and fed to the antenna.

ALC:
TR37 is the ALC detector. If the power level exceeds a level set by VR6, TR28 drives TR27 to decrease the audio input to IC3, thereby lowering SSB Power.

UNLOCK DETECTOR:

TR33 shuts off the transmit output if the PLL is unlocked by turning off TR32. Pin 15 of IC2 goes low in an unlocked condition.

RECEIVER:

A signal from the antenna is fed to RF Amp TRl2. It is then mixed with the VCO frequency at TRI3 which produces the IF frequency of 10.7 MHz . This 10.7 MHz signal is amplified by TRI4, TRl5, TRl6, and TR17. In the AM Mode, the signal is detected by D22 and D23 and sent to TRl0, the AF amp.

In SSB Mode, the signal is fed to TRIO which operates as a demodulator. A signal from the carrier oscillator is necessary for this; the clarifier must be "user adjusted" for best audio intelligibility. The signal is then routed to the AF Power Amp, IC4 via TRll (Squelch Switch) and TR36 (AF Driver). It is then sent to the speaker.

AGC:
ICl is the AGC amp. The processed signal is switched by TR8 and TR9 and fed to TRl4 and Dl3/Dl4 which adjusts the IF and RF gain respectively. Part of the signal from ICl also goes to the squelch control circuit (TRIl).

TRC 448
VSB-1 HOOK-UP

COMPRESSOR:

1. Remove C95.
2. Solder Black wire to + side of hole.
3. Solder White wire to other hole.
4. Remove AMC control Ql4.
(C95 is a l ufd. close to Q15.)

EXPANDOR:

1. Remove C274 (.022).
2. Solder Black wire towards collector of Q210.
3. Solder White wire towards R253.

No Pre-Amp needed.

MIDLAND 77-0004 4001
VSB-1 HOOK-UP

COMPRESSOR:

1. Remove Q202.
2. Lift end of RFC308 that connects to Mic Gain.

Connect as shown:
Will probably need to use power Mike for best results.

EXPANDOR:

1. Remove Cl21.
2. Install Pre-Amp as follows:

TROUBLESHOOTING CLARIFIER PROBLEMS
 ON THE 858 CHASSIS

COMMOM PROBLEMS:
A. Distorted Output
B. Warble
C. Drift
D. Sounds Jike mike is under water
E. Weird FM effects

COMMON CAUSE:
Main power supply,Zener/IC Regulators, Voltage feed circuits, primarily those concerned with the VCO and PLL sections.

Power supply regulation problems are often caused by leaky or dried out electrolytic filter capacitors. I always change the original filter cap. (commonly a l000-3300uf/25V) to a 5600uf/ 50 V .

Another possible cause is in the design of the power supply. Common practice is to design the unit with the minimum adequate power supply (current) to hold costs down. Then you have problems after you tune it up. The only answer is to redesign the power supply.

Also, the more slide that you have installed, the more critical the voltage regulation becomes. A 4 to 1 ratio over the original range is about the maximum usable slide before modifications to the reference voltage becomes necessary.

An improved type of regulator would be to disconnect the existing voltage line connected to the clarifier pot and insert the circuit shown:

This circuit effectively isolates the reference voltage from all other circuits that could cause voltage fluctuation to the VCO. Difficulty with the clarifier control usually stems from the vco circuit itself. The following symptoms are related to each other and adversely affect the clarifier control.

1. Clarifier does not linearly track frequency.
2. Center clarifier position rarely matches center frequency.
3. When using an inductor to tune the crystals to match center clarifier position to center frequency, slide range is lessened.
4. Transmit and receive are not together.

To cure these problems, use the directions below. The purpose of this technique is to figure out the ratio between crystal frequency and output frequency and then calculate the new crystal frequencies you will need.
NOTE: Use tunable coils and be sure you are satisfied with the slide range before beginning. Changing amount of slide could cause the RATIO to change, nullifying your efforts. Let's Begin.

STEP 1. Remove covers. Connect a frequency counter and a dummy load. Set clarifier to center position on channel 40.
2. Key Radio and write down the output frequency. (Ours read 27,400,900.) \qquad .
3. Remove X3 (ll.2858)Xtal. Plug X6 (ll.2850) Xtal in its place. Read frequency and write down. (Ours read 27,398,700) \qquad .
4. Remove X6. Plug 84 (ll.2842) Xtal into $x 3$ position. Read frequency and write down. (Ours read 27,396,700)
\qquad .
5. Replace crystals to original positions.
6. Subtract reading obtained in STEP 2 from center frequency. (Here is how ours looked: 27,405,000-27,400,900 = 4,100.) Write your answer here: \qquad
7. Subtract X 6 from $\mathrm{X} 3: 11,285,800-11,285,000=800$. Subtract X4 from X3: 11,285,800-11,284,200 = 1,600. Subtract Step 3 from Step 2. $127,400,900-27,398,700=$ 2,200.) It can clearly be seen that an 800 hertz change in crystal frequency moves the transmit approximately 2.000 hertz in my example. Yours will vary; however the RATIO will be the same.
8. Subtract Step 4 from Step 2. $127,400,900-27,396,700=$ 4,200) So a 1,600 hertz change in crystal frequency moved the transmit frequency down 4,200 cycles. To shift the frequency up, simply add 1,600 hertz to the $x 3$ crystal frequency. $11,285,800+1,600=11,287,400$. This is how you figure your new $\mathrm{X} 3 \mathrm{frequency}$.
9. Calculate X 4 and X 6 Xtal frequencies you want to order: $x 4=11,284,200+1,600=11,285,800$ $x 5=11,285,000+1,600=11,286,600$
10. DJace new crystals in their appropriate sockets. To compensate for any remaining errors, set clarifier to center position and adjust the inductor for each particular crystal.

MODE	REC.	XMIT	FREQ. REC.	FREQ. XMIT
AM	$\mathrm{X6}$	$\mathrm{X3}$	11.2850	11.2858
USB	X 3	$\mathrm{X3}$	11.2858	11.2858
LSB	X 4	X 4	11.2842	11.2842

This technique works well and solves alot of headaches!

SUPER REGULATOR

Are you having trouble with poor regulation which is Very Critical in Clarifier Circuits? The National Semiconductor LHOO7O-lH 10 volt 3 terminal Precision voltage regulator is virtually independent of input voltage, load current, temperature and time.

SPECIFICATIONS:

Input voltage: 12.5 V to 40 V
Accurate Output Voltage: $10 \mathrm{~V} \pm .01 \%$
Low Output Impedance: $.1 \Omega$
Excellent line regulation: $.1 \mathrm{mV} / \mathrm{V}$
Low Zener noise: 100 uV p-p
3 lead T0-5 Case
Short Circuit proof
Low Standby current: 3mA
Power dissipation, max.: 600 mW
Output current, max, : 20 mA
Operating Temperature Range $-55^{\circ} \mathrm{c}$ to $+125^{\circ} \mathrm{C}$

BOTTOM VIEW
Use it-you'll appreciate it!

These are popular designs used in various linears.

Sometimes a new amplifier will break into oscillation and "hang up" the receiver. Symptoms of this are:
A. Very noisy receiver.
B. Inability to receive.
C. Signal fuzzy or noisy.
D. Excess idle current.
E. Splatter.

If you have determined that this is your problem, there is usually a simple solution. Remove the cover and do the following steps:

1. Locate the power transistors. They will be stud or flange mount type and will be attached to the heat sink and look like an aspirin with four gold legs. Usually you will find two that look like this (although this will vary greatly depending on wattage and design).

Anyway, the most important thing is to locate the base and collecttor. Usually the collector is cut at an angle. The emitters (two each) are grounded. There will probably be a 10-22 ohm resistor from the base to emitter.
2. Obtain a . $01 / 1 \mathrm{KV}$ disc capacitor and a 100Ω /lWatt carbon resistor.

3. Connect resistor and capacitor together and then solder the other capacitor lead to the Collector. Solder the other resistor lead to base.

Install the above circuit across each of the power transistors.

MODULATED GUNN OSCILLATOR

Alot of requests for this one, so here it is! The heart of this system is a Microwave Gunn Oscilator on 10.525 GHZ (X BAND)*。 A l00MW used one can be obtained for about $\$ 50.00$. A complete unit can be built for under $\$ 75.00$.

First we need to build a precision tone oscillator.
PARTS REQUIRED
1-HEP 170 diode
1-150 $\frac{1}{2} \mathrm{~W}$ Resistor
$1-9 \mathrm{~V} / 1 \mathrm{~W}$ Zener diode
2-50K-10 Turn Trim Resistors
l-5.6K Resistor $\frac{1}{4} W$
1-10ufd/l6VDC Elect. Capacitor
1-. 047 disc capacitor
l-. 047 Mylar capacitor
1-555 Timer I.C.
1-100 $\frac{1}{4} W$ Resistor
l-l0K $\frac{1}{4} \mathrm{~W}$ Resistor
l-2N2907A Transistor
1-560 $\frac{1}{2} W$ Resistor
1-Green L.E.D.
l-DPDi Center off Switch
l-P C Board or perf board

* This item is currently available from:

Lectronic Research Labs, Inc.
1423 Ferry Ave.
Camden, N.J. 08104
(609)541-4200

The schematic is on the following page. Build it with care.

Assemble parts as shown below:

Adjust RTl so output frequency is 879 hertz (28 MPH).
Adjust RT2 so output frequency is 1696 hertz (54 MPH).
Green LED tells us the tone oscillator is working properly.
(A) connects to (A) in next circuit.

Next we will have to build a voltage amplifier.

MODULATED GUNN OSCILLATOR (Cont'd.)

```
Voltage Amplifier Circuit
    Parts Required:
    l-.l disc capacitor
    1-100K \frac{1}{4}W Resistor
    l-220K \frac{1}{4}W Resistor
    1-2.2 MEG \frac{1}{4}W Wesistor
    l-12K \frac{1}{4}W Resistor
    l-1.5K \frac{1}{4}W Resistor
    l-2N2222A Transistor, NPN
    l-2N2907A Transistor, PNP
```

Hook up as follows:

Next we will build the Gunn oscillator voltage regulator.

```
Gunn Regulator Circuit
    Parts Required:
    1-2N3055 NPN Transistor + heatsink
    1-11V/1W Zener
    l-560\Omega \frac{1}{2}W Resistor
    1-Red LED
    1-150~ \frac{1}{2}W Resistor
```


Add a lufd/25VDC capacitor on Gunn Oscillator for harmonic suppression. (B) connects to voltage amp in previous circuit. LED 2 indicates the Gunn Regulator is operating O.K.

NEXT ASSEMBLE.

ASSEMBLE:

Radio Shack Metal Cabinet \#270-251 can be used.

Conclusion: Although alot of truckers are using "Jammers" we do not suggest you actually build the above circuit or you could find yourself in serious trouble with the FCC and Law Enforcement Agencies. We Assume No Responsibility for the use of the material or Consequences thereof.

1. Clip Dl8.
2. Remove Rill.
3. Install jumper wire in place of Plo.
4. Cut Orange wire from Delta tune to PC Board at PC Board.
5. Resolder end of Orange wire to emitter of TR23.
6. Remove Clii 6pf cap.
7. Remove Rll2.

* Di may be changed to a Super Diode or a Super Slider can be added for more slide.

\#l up; \#2 Center - Normal
\#l down; \#2 Center - Ch. 12 is 27.425, Ch. 38 is 27.705.
\#l up; \#2 up - Ch. 10 is 26.755, Ch. 38 is 27.065.
\#1 up; \#2 down - Ch. 10 is 26.435 , Ch. 38 is 26.745.

A PRODUCT OF SELMAN ENTERPRISES

COBRA 29 LTD

Unit has a fantastic receiver! Frequency is expanded by using our Zapper 9000.

VRI RF Gain.
VR2 "S" Meter Adj.
VR3 Squelch Range.
VR4 Modulation Level.
VR5 RF Meter Adj.
VR6 Ant. Warn. Ind. Adj.
Peak Ll4, Ll6, Ll7 to maximum.

CYBERNET O2A AM RADIOS

For increased RF Power, jump the diode that is located to the right of the AMC control.

Drawing above represents Hygain Chassis. Yours may vary slightly.

SPECIFIC RADIO TUNE-UPS cont'd.:

GEMTRONICS GTX 5000 ROBYN T240D

This unit has had problems with the $6 B Q 5$ tubes going out very quickly. I have replaced them with 7189 tubes and have had no further problems. It also helps increase modulation.

GENERAL ELECTRIC 3-5871A

Clip Blue wire coming form PLL and add Switch.
T802 VCO Coil.
VRI AGC Adj. for 1.45 V @ TPl.
VRl0 RF Gain.
VR3 Squelch threshold;
VR4 "S" Meter
VR6 AM Mod. Control.
VR7 RF Panel Meter. Peak L901, L903, L905.

ITT CB-4000M

Cut \#l wire as shown and add switch. This gives Channels 41-59.

$$
\text { J.C. PENNEY } 6246 \text { (PLL 6055) }
$$

Connect and wire a SPDT Center Off Switch as shown:

Top position gives 27.415-27.435.
Center Position is Normal.
Bottom Position gives 27.445-27.595.

JOHNSON 4125/4174

Locate the PLL Chip and the PC trace as shown below. Make and break trace with a SPST Switch.

MIDLAND 13-882C (O2A)

Isolate pin 9 from ground for lowers and add switch for Low frequencies.

Tlol - VCO Coil
RV101- SQ. Range
RVl03- S Meter
RV102- AMC
RV104- RF Power Meter
RV1 - Ant. warning threshold
RX Align: Tl04, Tl05, Lll2, Tl06, Tl07, Tl08, Tl09.
TX Align: Ll03, Ll04, Tl02, Tl03, Ll06, Ll09, Lll0.

MIDLAND 13-867

Clip Dl4 for max. mod.
Peak Ll2, Ll3.

PEARCE-SIMPSON PUMA 23B

RX: $455 \mathrm{KC} \quad \mathrm{T} 7, \mathrm{~T} 8$, T6
27.115 T4, T3, T2, T1

VRl IF Gain Connect VOM to base of TR7. Adj. to lV.
VR4 SQ. Range
VR3 "S" Meter Adj. S9=100UV.
TX: On Ch. 13, peak T5, Tll, Tl2, Tl3, L4, L5, L8 for max. T.V.I. Trap Adj. Llo on Ch. 2 .

Peak L8 for max. RF output.
VR2 RF Panel Meter
Modulation: Remove C50. Located near Audio Transformer. This will eliminate mod. Limiter.

TX Power: For more power, remove Dl0 and replace with a solid wire jumper.

ROBYN T240D

Here is how to get $26.645-27.595$ out of the radio. Obtain a SPDT toggle switch and wire like this:

UP POSITION: Up to 27.595.
CENTER : Normal
DOWN : Down to 26.645.
Adjust Ll81 as needed for full frequency range.
VR4 Modulation
Peak L801, VC901, VC902 and L702 for maximum. VR6 RF Power meter adjustment.

SHARK 23

Adjust VR201 for maximum acceptable modulation or clip D20l. Peak L308, L307, L305.

STANDARD 29A uPD857

L2 VCO Adjustment.
VR208 Squelch Range.
VR212 S Meter Adj.
VR210 RF Meter Adj.

VR213 Modulation Level.
Peak L213, L214, L217.
For expanded frequency coverage:

1. Isolate Pin 7 by cutting away from ground.
2. Solder a 4.7K $\frac{1}{4} W$ Resistor across cut.
3. Wire up a SPST Switch, as diagramed.

This will yield channels 27.455 to 27.805. Adjust L2 for full coverage.

This quality Synthesized Communication Receiver can usually be bought at a bargain price because of design problems.

PROBLEM: Beat tones, harmonics.
SOLUTION: The following parts are located inside the LED display compartment.

1. Change C501 (56pf) to a 22 pf .
2. Change C503 (56pf) to a lopf.
3. Add a 20pf Ceramic Trimmer across C503.
4. Connect your frequency counter probe to TP-501. Connect the probe ground to a ground on the $D X-300$ (as close to TP-50l as possible.) Adjust the trimmer above for 1 MHz $\pm 10 \mathrm{~Hz}$. (CRITICAL).

NOTE: If you don't have a counter, use WWV @ 10 MHz . and adjust for a zero beat.

Now you can enjoy that DX300 Receiver!
27 MHz
29.6 MHz
$30-50 \mathrm{MHz}$
52.525 MHz
$57.5 \mathrm{MHz}-66 \mathrm{MHz}$
$72 \mathrm{MHz}-73 \mathrm{MHz}$
$74 \mathrm{MHz}-75 \mathrm{MHz}$
79 MHz
$80 \mathrm{MHz}-88 \mathrm{MHz}$
$88 \mathrm{MHz}-108 \mathrm{MHz}$
$108 \mathrm{MHz}-118 \mathrm{MHz}$
$118 \mathrm{MHz}-136 \mathrm{MHz}$
$136 \mathrm{MHz}-138 \mathrm{MHz}$
$138 \mathrm{MHz}-138.5 \mathrm{MHz}$
$138.52 \mathrm{MHz}-139 \mathrm{MHz}$
$139 \mathrm{MHz}-139.475 \mathrm{MHz}$
$139.480 \mathrm{MHz}-144 \mathrm{MHz}$
$144 \mathrm{MHz}-148 \mathrm{MHz}$
$148 \mathrm{MHz}-174 \mathrm{MHz}$
$174 \mathrm{MHz}-180 \mathrm{MHz}$
380 MHz 381.6 MHz

27 MHz
MHz
52.525 MHz
$57.5 \mathrm{MHz}-66 \mathrm{MHz}$
$72 \mathrm{MHz}-73 \mathrm{MHz}$
$74 \mathrm{MHz}-75 \mathrm{MHz}$
79 MHz
$80 \mathrm{MHz}-88 \mathrm{MHz}$
$88 \mathrm{MHz}-108 \mathrm{MHz}$
M2
$136 \mathrm{MHz}-138 \mathrm{MHz}$
$138 \mathrm{MHz}-138.5 \mathrm{MHz}$
$138.52 \mathrm{MHz}-139 \mathrm{MHz}$
$139 \mathrm{MHz}-139.475 \mathrm{MHz}$
$139.480 \mathrm{MHz}-144 \mathrm{MHz}$
$144 \mathrm{MHz}-148 \mathrm{MHz}$
$148 \mathrm{MHz}-174 \mathrm{MHz}$
380 MHz 381.6 MHz

CB, AM
Amateur Radio Band, FM
(normal scanner tuning range)
Amateur Radio Band, FM
Department of Energy. Air Force, and Army - FM
Highway Patrol Link Frequencies
FAA and Landing Signals
Department of Interior - FM
Military Frequencies - FM
FM Music Band
Aircraft Omni, Aircraft Weather, and airports - FM
Aircraft Band - AM (most scanners receive this)
NASA Satellite Downlink Band - FM
United States Air Force - FM
U.S. Navy - FM
U.S. Army - FM

All Military Services - FM
Two Meter Band - FM (all scanners)
High Band, Govemment - FM (all scanners)
FAA - FM

OPPS, WE GOOFED! cont'd.

VOL. 10, PAGE 48 : Step 5 should read - Clip D205.
VOL. ll,PAGE 4: 3rd line from bottom should read 29.805 on channel 40 .

VOL. ll,PAGE 6 : For logic 26.645 , Pin 14 is 0.
VOL. Il, PAGE 10 : 11.5816 should read 11.5858.
VOL. 1l,PAGE 41 : Diagram Correction:

VOL. ll, PAGE 75 : Replace 03A with 02A (rewiring necessary) for extra channels.

SECRET CB INDEX

LISTING ALL MODELS/CHASSIS COVERED
"SECRET CB" SERIES VOLUMES 1 THRU 12

SECRET CB INDEX (CONT'D):

SECRET CB INDEK (CONT'd):

CONVERSIONS (Cont.)		
TEABERRY VOL/PG	YAESU VOL/PG	GEMTRONICS VOL/PG
52 Ch. Capability.....l/43	100 $5 / 58$	GTX-77 $4 / 49$
CAP Mod. $5 / 30$	FT-9016/3-12	
Model T4/3,4	FT-7B7/38-41	HYGAIN
Racer Tl/58	FT-70710/20-24	
Ranger T4/1,2		623l/33
6/24,25		674-A $4 / 60$

STALKER	SLIDE MODIFICATIONS	JOHNSON
I (4001/4003)4/7-9	BOMAN VOL/PG	352 $1 / 34$
T Bear4/14,15	BOMAN VOL/PG	
T Dispatch4/14,15	950 4/49	MIDLAND
Titan T4/14,15	950 ••••••••••••••4/49	
XV $10 / 39$	COBRA	13-89211/13
XX $10 / 40$	COBRA	13-893 $4 / 51$
	132-Al/28	13-8981/36
TRAM	135-A1/28	13-898B1/35
	135-B $1 / 29$	79-960 5/47
Dl2 $10 / 56$	1381/28	
D424/47,5/40	1391/30	N.D.I.
D62 10/45,46	140GTL4/50	PC-201 (NDC40013 PLI) $12 / 8$
D80 MB8734 w/ll.3258.10/30	142GTL4/50,8/35-37	PC-201 (NDC40013 PLL) .12/8
D201l/56,3/22,23	135XLR8/38	PACE
D201A Update10/54	2000GTL 12/20	
D300 8/11-13	COLT	10001/37,38
		DX1023B $1 / 39$
TRS CHALLENGER	485 $4 / 49$	8092 $6 / 37$
	4854/49	8193 (CCI3001).........12/9
460 $4 / 28$	COURIER	
600 $4 / 28$	COURIER	PALOMAR
730 $4 / 30$	Centurionl/61	
12004/31	Galaxy5/53	$500 \ldots . . .4 / 19,5 / 32,35$
850/1400 ...4/21-27,32-35	Gladiator PLLl/61	
TRUETONE	Spartanl/61	PEARCE
		Bengal
CYJ-4837A-8711/14	CPI	Cheetahl/40
	25005/37	Simbal/40
VICTOR	25005/37	
	CRAIG	PRESIDENT
770 4/56,57		
790 4/58,59	L-131,L-231......9/12,14	Adams $2 / 16$
	L-132,L-2329/12	Grantl/59
WARDS	$\text { L-231 } 12 / 3$	Grant (New) 8/34
		McKinley4/12
719A w/UPD2824 Chip..ll/10	DAK	Washington 1/59 Washington (New)8/33,34
	x $4 / 45$	

SECRET CB INDEX (CONT'D):

SLIDE MODIFICATIONS (Cont.)	SPECIFIC RADIO TUNEUPS			
RCA VOL/PG	AIR COMMAND VOL/PG	CLARION (Cont.)	VOL/PG	
14T3024/49	CB-640 $5 / 38$	RCJ003	. $3 / 45$	
		TC203E6/18	
REALISTIC	ALARON			
		COBRA		
TRC-47 $1 / 41$	B-4075 9/30			
TRC-48 $1 / 42$	B-4900 $9 / 30$	19.	.7/51	
TRC-458 8/39,40	B-5050A 9/30	19GTL .	.12/34	
	B-5200 $3 / 41$	21GTL	/41,58	
ROBYN		21XLR1/20	
	AMERICAN MOTORS	21XLR Update .	.10/58	
SB-505 5 /41		25GTL	/41,58	
SB-540D 5/19	3231847/48/49/50....12/34	29GTL $3 / 45$	
		29XLR1/20	
ROYCE	AUDIOVOX	32XLR $3 / 58$	
		45XLR12/34	
1-632 $5 / 14$	MCB750..................3/41	46XLR3/43	
1-6414/51	MCB5000ll/42	47XLR $3 / 45$	
	MDV60006/18	50XLR3/43	
SBE		55XLR3/43	
	AUTOMATIC	66GTL10/58	
Sidebander II..l/47,2/28-35		77x9/30	
Sidebander V........ 2/38-40	CBH22653/41	78X9/44	
Console IV2/28-35		78XLR	,6/19	
Console V2/28-35,38-40	BOMAN	86XLR $3 / 45$	
		87GTL6/19	
SEARS	CB555 3/44	89GTL6/18	
	CB750 $2 / 43$	132XLR $3 / 45$	
934-38270700...5/28,9/20-22	CBH900 $3 / 44$	135XLR $3 / 45$	
934-38310700 5/19	CB910l/21,3/44	139	. .1/20	
Roadtalker SM5l04l2/18	CB920l/21	140GTL	8,4/50	
	CB930l/21,3/44	142GTL 4/50	
SILTRONIX	CB9503/43	148GTL6/19	
	CBR96002/42,3/41	1000GTL6/13	
SSBl/45	CBR99403/44			
	CBR9950 $10 / 58$	COLT		
STONER				
	CHANNEL MASTER	2226/20	
Pro-40 4/52,53		290 $3 / 40$	
	CB68356/18	3903/4	
TEABERRY		480	3/8,58	
	CHRYSLER	485 .	/8,6/19	
Stalker IX/XV4/7,8		8003/4	
	4048076/8077.........6/18	800 Update10/58	
TRAM		1000............	3/8,58	
	CLARION	1200	9/30,31	
D60 $1 / 52$				
D201 $1 / 56$		DMA066 $3 / 45$JC202E3/45	COMMANDO	
D300 12/19	2340			
***************************	2340		1/21	

SECRET CB INDEX (Cont'd)

SPECIFIC RADIO TUNEUPS (Cont.)		
CONVOY VOL/PG	FORMAC VOL/PG	HYGAIN VOL/PG
CON-400 $3 / 58$	4010/60	2716 12/36
CPI	GE	ITT
CP400 10/59	3-5800A3/50	4400M4/17
	3-5804B6/21	
COURIER	$\begin{aligned} & 3-5804 \mathrm{~F} \\ & 3-5804 \mathrm{G} \end{aligned} \cdots \ldots . . .10 / 61$	J.C.PENNEYS
Blazer 40D3/58	3-5805A9/31	981-6204 (981-7461)....9/32
Classic PLL 403/43	3-5811B9/31,10/61	981-836010/61
Classic PLL 40 Update..10/59	3-5812A10/61	981-624711/14
Fanfare 125F3/43	3-5814B6/21	
Fanon Rogue 403/43	3-5817A $7 / 51$	JIL
Nightrider 40DR3/46	3-5818A2/42	
Rangler 40D3/58	3-5819A11/42	615CB11/42
Redballl/21	3-5821A 9/31	
Renegade 40 3/46	3-5821B3/54	JOHNSON
	3-5825A9/31,32	
CRAIG	3-5830 3/42	123A1/21
	3-5869A $2 / 42$	Viking 20012/36
L1016/20,11/42	3-5871B3/46	Viking 260/2703/49
L1026/20	3-5875A 9/32	Messenger 4012/36
L13110/59	3-5900A 12/35	Messenger 507/51
L231 (AM, SSB)10/60		Messenger 80 (242-0080)7/51
	GEMTRONICS	Messenger 41203/47
DAK		Messenger 41353/48
	GT44 $2 / 42$	Messenger 4140/4145....3/54
Mark II 10/60	GT55 $3 / 48$	Messenger 4170/4175....3/47
Mark V $12 / 34$	GTX666/21	Messenger 4170/4175 Update
	GTX776/21ll/43
DELCO	GTX4040 3/48	Messenger 4250 3/48
	GTX5000 3/42	Viking 4330/4360 ll/43
70BFMC3 $2 / 43$		
80ВСВ2 6/20	GM	KRACO
90BCB1 10/60		
90BFMCl12/26	CBD-20U 12/36	KCB-2340 $2 / 42$
90BFTCl (AM, FM, CB) 10/60	CBD-203 $3 / 48$	KCB-4000ll/43
90BFPCl12/26	4120 $3 / 46$	KСВ-4003 3/43
91YFMCl12/26	41459/32	KCB-40059/38,11/43
	4175 3/46	KCB-4020 3/49
FANON		KCB-4030 $8 / 44$
	HYGAIN	KСВ-4088 3/50
10-40 6/20		
Fanfare 182F3/41	VIII $3 / 59$	KRIS
Fanfare 184DF3/47	674A $4 / 60$	
Fanfare 185PLL3/46	V674B $1 / 21$	XL25 $2 / 43$
Fanfare 190DF......3/47,7/51	2701 $2 / 42$	
Fanfare 350F 3/47	2702 3/48	
	2703 3/48	

SECRET CB INDEX (CONT'd):

SPECIFIC RADIO	S (Cont.		
LAFAYETTE	VOL/PG	MOPAR VOL/PG	PIONEER VOL/PG
Comstate 525.	. .11/45	40941733/51	GT-100G(AM-FM-CB)10/62
Dynacom 4011/44	4094176 3/51	
HB6402/43	40941773/49	PRESIDENT
1.M-100 (PLLO2A)	. . 12/36	4094178	
LM-30012/37		AR-712/40
SSBl4011/44	MOTOROLA	AR-44 10/63
Telestat 1240	..5/14		AX-711 12/40
		T4000A/05Al0A/20A3/50	Adams2/16
LAKE		CF925AXll/46	Andrew J.9/34
		Mocat 40ll/46	Dwight D.10/62
410 .	. .12/37		James K.7/53,12/40
450 $12 / 37$	NDI	Old Hickory9/34
600.	.12/37		Washington1/22
		PC-102 $11 / 46$	
MEDALLION		PC-200 $7 / 52$	RAY JEFFERSON
63-240.	. $3 / 50$	PACE	CB-845 11/48
MIDLAND		8003 $11 / 47$	RCA
		8008 $2 / 43$	
150 M 7/52	801611/47	14T270 9/36
13-893.	..4/51	80469/33	14T300 $2 / 43$
63-44511/45	8113 12/39	14T302 3/53
76-858 3/49	811711/47	14T30311/48
77-101B8/44	81559/34,12/40	
77-101C12/38	8193 $7 / 52$	REALISTIC
77-8213/42		
77-824 8/44	PALOMAR	TRC-45A $4 / 37$
77-824B $12 / 38$		TRC-47 $1 / 21$
77-824C12/39	49 $3 / 60$	TRC-571/21
77-838 9/33	500 $4 / 19,5 / 32$$4100 ~ ~$ /54	TRC-99A $4 / 37$
77-8493/50		TRC-100 4/37
77-85611/45	4100 3/54	TRC-180 $4 / 37$
77-8613/50	PANASONIC	TRC-200 $4 / 37$
77-861B11/45		TRC-200 Update10/63
77-8659/33	CR-B4747EU (AM-FM-CB)9/34	TRC-204 10/63
77-899 9/33	RJ-325011/47	TRC-205 $12 / 40$
77-9633/42	RJ-360011/48	TRC-209 10/63
78-574	8,12/39		TRC-209 (GRE7189PLL-VC)
79-8923/49	PEARCE $12 / 49$
\|79-893	...2/20		TRC-410 $12 / 29$
79-900	9/33,34	Simpson Leopard B........3/49	TRC-42012/41
3001 $12 / 37$	Simpson Tiger 40A9/34	TRC-421 8/44,12/41
4001 (77-004)	...7/52	Supertiger 40A...........3/60	TRC-421A $9 / 35$
5001 $12 / 37$		TRC-422 $8 / 45$
7001 (79-007).	1/45,46		TRC-422A 10/6
78-999 (02A)	...12/7		$\begin{aligned} & \text { TRC-424 } \ldots3 / 57,9 / 35 \\ & \text { TRC-425 } \end{aligned}$
79-891 (02A)12/5		TRC-4257/53

SECRET CB INDEX (CONT'd):

SPECIFIC RADIO TUNEUPS (cont.)			
REALISTIC (Cont.)	VOL/PG	ROYCE (Cont.) VOL/PG	SONAR VOL/PG
TRC-426	.10/64	1-655ll/50	FS-23405/31
TRC-427 .	. .8/45	l-660 $2 / 42$	
TRC-428 .	.11/48	1-673 3/52	SPARKOMATIC
TRC-431 $4 / 37$	1-675 $3 / 53$	
TRC-432 $11 / 48$	l-680 3/52	SR42/CBM 3/54
TRC-440	45,9/35		
TRC-44111/49	SBE	SURVEYOR
TRC-448 3/51,10/64			
TRC-449 3	9/35,36	26CB1A $3 / 61$	2620 $3 / 55$
TRC-452	21,3/52	42CB Cortez 403/61	2610 $3 / 54$
TRC-4548/45	44CB $9 / 36$	
TRC-455 3/60	45CB Trinidad III3/61	TEABERRY
TRC-457	/35,36	49CB Tahoe 403/53	
TRC-458 .	.10/64	47CB $3 / 53$	Model T................ $3 / 55$
TRC-461 .	..3/51	43CB $3 / 53$	T Charliel0/65
TRC-462	. .9/36	LCB-8 (uPD2816C)12/43	T Command3/55
TRC-466	..3/51	LCM-5 Land Command.......9/36	T Dispatch $3 / 55$
TRC-468 .	..3/51	LCM-8 9/36	Racer T $3 / 55$
TRC-470	39,12/41	LCM-8 (PLLO3A) 12/42	Stalker IIl/21
TRC-471 $8 / 45$	LCMS-8 (uPD2816C)12/43	Stalker III $7 / 55$
TRC-480 .	..7/53		Stalker IVl2/44
TRC-490 .	.11/49	SEARS	Stalker V7/55
			Stalker VIIIl0/65
ROBYN		CM-6000LA $3 / 59$	Stalker IX $10 / 65$
		CM-6000LC $3 / 59$	Stalker XII $7 / 56$
WV110 $3 / 56$	Roadtalker 402/43	
WV1l0 Updatell/50		370-38050700 3/54	TENNA
LB120 $3 / 52$		562-38200700 3/55	
DG130D $3 / 56$		663-38020800 $7 / 53$	11302 (AM,FM, CB)9/37
007-140 $3 / 52$		663-380707003/61	10902 10/65
T240D $3 / 56$		934-38061700 11/50	
SX-401 $3 / 57$		934-38062700 10/65	TRS
SX-402D 3/57		934-380807009/37	
GT-410D 3/57		934-380817009/38	Challenger 6009/37
AM500D 3/57		934-381207003/61	Challenger 850 $7 / 55$
SB-505 5/42		934-38260700 $7 / 53$	Challenger 1200l2/44
SB-520D	. $2 / 22$	934-382707007/54	
		934-383107007/54,55	TRAM
ROYCE			
		SHAKESPEARE	D123/54
582 (PLL3001)12/42			
60412/42	GBS240 3/53	TRUETONE
607	..12/42		
1-617	.. 3/52	SHARP	CYJ4832-A-872/43
1-619	.. 3/56		CYJ4837-A-873/59
1-621	.. $3 / 57$	CB-800 $2 / 42$	CYJ4862-A-879/39
1-625	.. 3/56	CB-2170 $12 / 43$	
1-639	..12/41	CB-4370l2/43	UTAC
1-641	/60,4/51	CB-4470 $12 / 44$	
1-651	...7/55	CB-4670 $7 / 55$	TRX-500 3/56

SECRET CB INDEX (CONT'D):

SPECIFIC RADIO TUNEUPS (Cont.)			
VECTOR	VOL/PG	WARDS	VOL/PG
X	. . $2 / 43$	GEN-775A	. $3 / 61$
770 .	. . 9/37		
$790 .$.	. . $9 / 37$		

VOLUME 1

	PAGE \#
CRYSTAL CROSS REFERENCE GUIDE	$5-10$
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION	$11-18$
GENERAL INFORMATION	$63-67$
LINEARS	$68-70$
40 CHANNEL PLL SWITCH	$71-72$

VOLUME 2

	PAGE \#
NEW CRYSTAL CROSS REFERENCE GUIDE	5-9
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION	10-13
ANTENNA REPORTS	53-55
BETA-COM INFO (Upgrading 23 channel radios)	57-87

VOLUME 3

SUPER MOD. IV (Frequency Counter Kit) 16-18
MICROPHONE WIRING INSTRUCTIONS 26-32
PLL CHANNELIZER 33-40
ANTENNA SECRETS (K40 Stud Mount for Big Stick) 63-64
SPECIAL SECTION ON LINEAR AMPLIFIERS:
$50-70 \mathrm{~W}$ Mobile 66
$300-400 \mathrm{~W}$ Base 67-69
70W Base 70-71
Eagle 200 72
Eagle 500
73
CONVERSION FROM AMATEUR TRANSMITTER TO LINEAR AMP 74
LINEAR AMP PROBLEMS \& SOLUTIONS 75-76
VOLUME 4

HOW TO BUILD YOUR OWN RELAY MODULE

SECRET CB INDEX (CONT'D):

(Cont.)	
	PAGE \#
O2A CHIP INFORMATION	54-55
TURNER MIC EXPANDER (500AMC Disable)	
K40 BLINKIE	
SUNSPOT PREDICTION CHART	
LINEAR REPORT SECTION:	
D \& A Maverick 65	
D \& A 500 Triple Conversion 65	
Eagle 515 Modification	66-67
UNIDEN SSB 10 METER POWER CONVERSION 68-70	
SUPER CLARIFIER DIODE	
**	
VOLUME 5	
	PAGE \#
10 METER CONVERSION MICROCOMPUTER (Micromonitor PLL) 1-5	
ECHO BOX	
250 WATT DUMMY LOAD	
BUILT IN POWER MIKE	8-9
5-MILE SIMULATOR 10	
RECEIVER PRE-AMP 11	
GLEN DIGITAL CONTROLLER 12-13	
GETTING SWR DOWN ON BASE ANTENNAS 15	
APARTMENT ANTENNA 16	
GROUNDING MOBILE RADIOS 17	
OOPS! WE GOOFED! 17-18	
Vol. 1, Page 23 18	
Vol. 2, Page 20, 21 18	
Vol. 3, Page 4, 7, 11, 25, 25, 33 18	
Vol. 4, Page 5, 45, 50	
THE ART OF WIDEBANDING 858 CHIP 44	
CONVERSION KIT + MARS \& CAP FOR SSB 48-49	
CONVERSION OF AM/SSB TO 10 METER AMATEUR 52	
REDCO UFO INSTALLATIONS 61-70	
SLIDE INCREASE, ALL SSB RADIOS 71	
RADAR COMMUNICATOR 72	
VOLUME 6	
	PAGE \#
PLL CRYSTAL CROSS REFERENCE GUIDE 1-2	
SECRET CB TEST TONE 13	
ERRONEOUS SIGNAL LOCATOR 14	
LOW COST AMATEUR CONVERSION FOR 10 METERS 15	
BASE ANTENNA GROUNDING 16-17	
SUPER CLARIFIER 1O-TURN POT22	

SECRET CB INDEX (CONT'D):

YOLUME 6	
(Cont.) PAGE \#	
OOPS! WE GOFFED!	25
Vol. 5, Page 19, 20, 28	25
THUMBWHEEL 200 CHANNEL CONVERSION FOR 858 CHASSIS	31-34
REDCO UFO APPLICATIONS	40-52
SPECIAL SECTION ON LINEAR AMPLIFIERS:	
PDX 400	54
D \& A Maverick 250	55
Maco Duster 300, 750 \& 1000 Transmitter	56-57
Maco 75	58
500 CX \& 700 CX 10 to 11 Meter Conversions	58
RDX-75	59
HDX-50	59
MDX-200	60
PDX-400	61
10 METER EXPERIMENTER BOARD INFORMATION	62-63
SUPER CLARIFIER HINTS	66
REDCO DX-50	68-70

VOLUME 7	
	PAGE \#
HOW TO MAKE YOUR EAGLE SCREAM 14	
IMPROVED SLIDE MODIFICATION FOR 02A SSB RADIOS	42
UPDATED 200 CHANNEL AMATEUR CONVERSION FOR 858 CHIP	43-48
10 METER CONVERSION FOR SSB RADIOS USING MB8719 CHIP	49-50
HOW TO MAKE YOUR 858 CHASSIS SLIDE	56
LINEAR AMPLIFIER NOTES	57
ECHO BOX SPEECH PROCESSING FOR TRC-449	60
ADDING PING	61
CORRECTION TO THUMBWHEEL 200 CHANNEL CONVERSION	62-63
MICROMONITOR TECH NOTES	64-69
MICROMONITOR INSTALLATION INSTRUCTIONS FOR RADIOS USING 858 CHIP	70-71
AMP FOR RF PROBE	72
OSCILLOSCOPE MODIFICATION FOR RF \& MODULATION DISPLAY	73
THE "BANDIT" ANTENNA	74-76
EXPO 100 KIT	76
SECRET CB'S OWN "TROUBLESHOOTER"	77
VOLUME 8	
	PAGE \#
WHAT"S NEW ON THE ELECTRONICS HORIZON?	1-6
UHF FM CB (GMRS)	7-10
UNIDEN MB8719 PLL CHIP FREQUENCY CONVERSION	15
FREQUENCY MOD. FOR J.C. PENNEY, COLT, LAFAYETTE, HYGAIN, ETC.	18
BROWNING MKIVA MOD. \& UFO INSTALLATION	22-23
BROWNING MKIV TRANSMITTER TROUBLESHOOTING	25-32

SECRET CB INDEX (Cont'd):

VOLUME 8	
(Cont.)	PAGE \#
OOPS! WE GOOFED!	41-43
Vol. 5, Pages 3l-34	41
Vol. 7, Pages 31, 37	42-43
LINEAR AMPLIFIER NOTES:	
Installing \& troubleshooting Linear Amplifiers	47-49
10 Meter Amp board modification to upright driver	50
YOU CAN BUILD IT	
Two-Tone Generator	51
Yaesu $601(B)$ frequency counter modification to read CB Low, Middle, High	2-54
RF Test Meter	56-57
REDCO UFO MODIFICATION (form 20 to 29.995 MHz)	55
SECRET CB'S POWER VECTORING	58
HOW THE ECHO BOX CAN ACTUALLY SURPASS THE POWER OF A LINEAR IN SSB	59
MICROMONITOR QUESTIONS	60-62
MICROMONITOR INSTALLATION INSTRUCTIOSN:	
SM5104 PLL	63-64
ICOM 22S	65-67
NEW PRODUCT RELEASE:	
Zapper 9000	68-69
Redco Digi-Scan UFO Elite	70
Chopper Charlie Antenna, Model 64 \#5	71
Troubleshooter	73
VOLUME 9	
	PAGE \#
SSB'ers LOSE OUT AGAIN	1
FCC ANNOUNCES PLANS FOR SIDEBAND	2-3
FCC DELAYS NPRM; SSB FREQS. DOUBTFUL	3-4
PRODUCT REVIEW; SPEED-O-MATIC "SPEEDO-1" X-BAND RADAR GUN	5-6
RELAY CRYSTAL SWITCHING	25-26
LETTER FROM A FRIEND	27-28
HINTS \& KINKS-ELECTRONIC CRYSTAL SWITCHING	29
SOLVING T.V.I.	40-42
IMPORTANT FACTS ABOUT ECHO BOXES	43-44
VOICE SIGNAL BOOSTER (VSB-1) INSTALLATION	45-48
POWER SUPPLY MODIFICATION FOR REALISTIC PRE-AMP NOISE-CANCELLING MIKE \#2l-1175	49-50
HINTS \& KINKS- SWITCHABLE MODULATION INCREASE	51
RF ATTENUATOR	52-54
PRESIDENT SERVICE BULLETINS	55-61
OOPS! WE GOOFED!	
Vol. 8, Page 17	29
Vol. 4, Page 51	44

SECRET CB INDEX (CONT'D):

PAGE \#
LETTER FROM VIC 1
SECRET CB'S TROUBLESHOOTER 2-4
VOICE SIGNAL BOOSTER-
JNCONVERTIBLE CHIP LIST 5-19
MODULATION ADJUSTMENTS FOR NEW RADIOS 66
ZAPPER INSTALLATION HINTS 68-69
OOPS! WE GOOFED!
Vol. 71
Vol. 8, Page 16, 17 72-73
Vol. 9, Page 9,
Vol. 9, Page 29 72
VOLUME 11
PAGE \#
CPI ALC MODIFICATION FOR INCREASED SSB POWER 9
NSB-1 UPDATES 25-26
NEW FRONTIER: FM CB 27-29
NEW PRODUCT: DIGI-SCAN DS-400 30-31
COMING ATTRACTIONS-SERIAL DATA/PLL FREQ. SYNTHESIZERS 32
UNCONVERTIBLE AT THIS TIME-GE 3-5900A TC9109P 33
ZAPPER 9000 INSTALLATION UPDATES
RADIO MODULATION ADJUSTMENTS FOR VARIOUS BRANDS/MODELS 51-53
HINTS ON SERVICING
SERVICE NOTES-GOLDEN EAGLE MARK IV TRANSMITTER 55
Dl04 \& DlO4M6 ASTATIC MIKE MODIFICATION 55
HOW TO SOLVE NOISE PROBLEMS 56-58
MORE ON THE "TROUBLESHOOTER" 57
IN HOUSE VALUE LISTING
HOW TO BUILD 60-71
PLL PINOUT DIAGRAMS 72-77
THE "BANDIT" ANTENNA
OOPS! WE GOOFED!
Vol. 3, Page 25 78
Vol. 6, Page 32
Vol. 7, Page 43,53,63
Vol. 8, Page 52
Vol. 10, Page 3 78 78 78
858 AM CONVERSION 35

SECRET CB INDEX (CONT'D):

VOLUME 12	
	PAGE \#
SIMPLE CURE FOR RX-TX TRACKING PROBLEMS 21	
Teaberry Stalker XX	25
Realistic TRC-490	25
Wards GEN-719A	25
MODULATION ADJUSTMENTS FOR VARIOUS REALISTICS	33
ZAPPER 9000 REFERENCE CHART	46
ZAPPER TROUBLESHOOTING HINTS	47-48
TC9106 PLL OPERATION ANALYSIS	50-53
THE "SPREAD EAGLE" ANTENNA BREAK-THRU FOR TRUCKERS	54-55
BASIC PLL	56
ELECTRONIC TERMINOLOGY	57
SCANNER PROGRAMMING TIPS	58
INTO THE KNOW WITH JAPANESE SEMICONDUCTORS	59
TRANSISTOR SPECIFICATIONS	60
RESISTOR COLOR CODE	61-62
YOU CAN BUILD IT	
"Secret CB's" Super-Duper Power Supply Controller	63
Audio Test Station	64
Power Line Filter	65
OPPS! WE GOOFED!	
Vol. 4, Page 38	66
Vol. 10, Page 10, 16, 28	66
Vol. 11, Page 3, 10, 15, 16 \& 71	66
"SECRET CB" INDEX ON VOLUMES 1 THRU 11	67-68
"SECRET CB" BOOK ORDER FORM	79

SECRET CB
 ORDER
 FORM

SEE YOUR LOCAL CB DEALER OR ORDER DIRECT

Volume 1

Volume 5

Volume 9

[^0]

Volume 2

Volume 6

Volume 10

Volume 3

Volume 7

Volume 11

Volume 4

Volume 8

Volume 12

[^0]: Volume 13

