

NEW PRODUCT RELEASE

STALKER 101
(May be difficult to find)

STALKER V

AND MORE AT YOUR LOCAL CB DEALER / DISTRIBUTOR

IMPORTANT: READ THIS FIRST

```
The information in this book is not to be used to exceed \(F\). \(C\). \(C\). specifications, in any case, as applied to power, modulation, frequency spectrum, etc. It is illegal to do this to any CLASS D RADIO.
```

This book is a factual report of gathered information, and as such is intended for use on radios for EXPORT ONLY.

If you are not familiar with electronics, it is better to check for advise with your local electronics or CB center, as to restrictions, etc., concerning your radio.

More information, on other units will be forthcoming in future issues, to be published on a quarterly basis.

This book will not be found at a book store, but can be obtained through your local CB Dealer or Distributor, or by sending $\$ 12.95$ to:

Secret CB
P. O. Box 8189

Corpus Christi, Texas 78412

1	27.605	27.285
2	27.615	27.295
3	27.625	27.305
4	27.645	27.325
5	27.655	27.335
6	27.665	27.345
7	27.675	27.355
8	27.695	27.375
9	27.705	27.385
10	27.715	27.395
11	27.725	27.405
12	27.745	27.425
13	27.755	27.435
14	27.765	27.445
15	27.775	27.455
16	27.795	27.475
17	27.805	27.485
18	27.815	27.495
19	27.825	27.505
20	27.845	27.525
21	27.855	27.535
22	27.865	27.545
23	27.895	27.575
24	27.875	27.555
25	27.885	27.565
26	27.905	27.585
27	27.915	27.595
28	27.925	
29	27.935	
30	27.945	
31	27.955	
32	27.965	
33	27.975	
34	27.985	
35	27.995	
36	28.005	
37	28.015	

STEP 1. Remove Top and Bottom Covers.
2. Locate IC (MB 8709).
3. Cut land to Pin \#15. Refer to Figure 1.
4. Select a location free from other components and drill a $\frac{3}{6}$ inch hole on the rear of chassis.
5. Mount a miniature SPDT center off switch using the $\frac{1}{6}$ inch hole.
6. Connect 2200 Ohm resistor from Pin 22 to center terminal of switch. You will have to connect a piece of hook up wire between the switch and resistor.

STEP 7. Connect a 5600 Ohm resistor from Pin 14 to ground as indicated in Fig. 1.
8. Also connect a wire from Pin 15 to one of the outer terminals of the switch.
9. Connect a wire from Pin 16 to the other outer terminal.
10. Now check your radio for proper operation. When the switch is in the center position your unit will operate normal. To use P-15 of your chart, position the lever of the switch away from the wire going to Pin 15. To use P-16, position the lever of the switch away from the wire going to Pin 16.

CAUTION: SOME OF THE HIGHER CHANNELS ON P-15 MAY NOT OPERATE DUE TO THE RANGE OF THE VCO ON SOME RADIOS.

THIS UNIT MAY BE USED TO EXTEND RECIEVE CAPABILITIES OF YOUR RADIO. CHECK WITH YOUR LOCAL HIC. TECH. FOR REGULATIONS CONCERNING THIS UNIT.

1. Remove Top and Bottom Covers.
2. Locate Channel Selctor and PLL PC Board on Top of Chassis.
3. Locate IC Q13 MSM 5907.
4. Solder A Wire to Pin 非3 About 8 Inches Long.
5. Locate D-192 On Power Supply PC Board on Underside of Chassis.
6. Solder A Lead To The Positive End of D-192 5 Volt Zener About 8 Inches Long.
7. Remove The Green \& White Wires From The S-RF Switch on The Front Panel.
8. Remove One End of The 100 K Resistor on The Lower Side of The S-RF Switch \& Move it up One Terminal as Indicated in Figure 1.
9. Connect the White \& Green Wires to the Same Point as the One End of the 100 K Resistor you Moved up one Terminal as in Figure 1.
10. Connect the Wire From the D-192 to Where you Removed the White Wire on the S-RF Switch.
11. Connect the Wire From Pin 非3 of the MSM5907 to Where the Green Wire was Connected on the S-RF Switch.
12. To Operate Normally, Switch to S For Standard.
13. To Operate Expanded, Switch to RF.

CAUTION: Some Power Loss May Be Observed At The Upper Channels When Expanded, DO NOT ATTEMPT TO READJUST As This May Cause Some Trouble On The Normal Channels.

Figl

MODEL-T 4011 CHANNEL EXPANSION - CONTINUED

CHANNEL	FREQUENCY	
1	27.285	
2	27.295	
3	27.305	
4	27.325	
5	27.335	
6	27.345	
7	27.355	
8	27.375	
9	27.385	
10	27.395	
11	27.405	
12	27.425	New Channel
13	27.435	"
14	27.445	"
15	27.455	"
16	27.475	"
17	27.485	"
18	27.495	"
19	27.505	"
20	27.525	"
21	27.535	"
22	27.545	"
23	27.575	"
24	27.555	"
25	27.565	"
26	27.585	"
27	27.595	"
28-40	Normal	

23 Channe 1

1. Remove all 8 screws holding case to chassis. Remove case top and bottom.
2. Remove 4 screws holding digital block to P. C. Board.
3. Unsolder orange and yellow wires on digital block. (Remember where they were connected). Carefully lift digital block up to expose bottom of P. C. Board.
4. Unsolder IC 11 (SN7490) remove IC 11. Replace the SN7490 with a SN7493. Resolder.
5. Solder a wire to pin 9 of IC 11.
6. Replace digital block, reconnect yellow and orange wires.
7. Jumper terminals 1 and 2 on digital block. (See Fig. 1)

8. Remove orange wire from rear wafer of channel selector switch. Connect two IN 60 diode to the switch teminal left empty, (anode end toward $S W$) connect orange wire to one diode.
9. Connect one IN 60 diode to channel selector switch where brown wire is connected to rear washer. (anode end toward SW)
10. Remove the two blue, one gray, one green wires from DX ! local switch. Connect the two blue wires and the one gray wire together. Solder and tape. Tape off the green wire.
11. Connect wire from pin 9 of IC 11 to the center terminal of DX / local switch. Connect two wires to the top terminal of DX / local switch. Connect the other end of the wires to the cathode of the IN 60 diodes on the selector switch.
12. Reassemble case.
hosims yinap
Ho
kalims 1500
sod if of i 1.50

$$
\tau \cdot{ }^{\prime} \nexists
$$

1 Noy $=1$

ह\#NId

CAUTION: ILLEGAL FOR USE IN CLASS D CITIZEN'S BAND. FOR AMATEUR OR EXPORT USE ONLY.

Installation instructions

Step 1. Remove covers from unit.

Step 2. Choose an area for mounting your switch which is free from obstructions. (A . $250^{\prime \prime}$ hole is required.)

Step 3. Locate $X-4$ crystal which is 11.1125 mhz and remove by desoldering.
Step 4. Install $X-4$ into the $S-15$ next to the existing crystals. (See figure 1.)

Step 5. Now position the S-15 IC towards the rear of the cabinet and plug the two bare leads in the two holes left by the removal of X 4 and solder. Caution should be exercised to keep these leads as short as possible to eliminate off frequency operation. (See figure 1.)

Step 6. Connect the red lead to pin 9 of IC2 MB8719. (See figure 1.)
Step 7. Solder the ground strap to top of L-18. (See figure 1.)
Step 8. Install covers, installation is complete.
Alignment: If alignment becomes necessary, adjust CT-3 in each switch position to insure proper on frequency operation.

MODIFICATION FOR SLIDING STALKER IX AND XV

1. Cut D36.
2. Cut R187.
3. Remove orange wire from 8 volt supply to clarifier control. (Stalker IX)
4. Connect a wire from pin 1 of IC5 to clarifier.
5. Jumper R415 (Stalker XV) or R188 (Stalker IX) to ground.
6. Set radio in USB.
7. Run probe from counter to TP1.
8. Center clarifier control.
9. Radio to be on channel 20.
10. Adjust CT3 for frequency counter to read 35.0075 Mhz .
11. Set radio on LSB.
12. Adjust $L 19$ for frequency counter to read 35.0025 Mhz .
13. Set radio on AM.
14. Adjust 120 to read 35.0050 Mhz .
15. Your radio should now slide approximately $2.5 k$ low +1.5 K high.

FREQUENCY COROLATION FOR EXPANDED STAIKER IX AND XV

CHANNEL	LOW	NORMAL	HIGH
1	26.515	26.965	27.415
2	26.525	26.975	27.425
3	26.535	26.985	27.435
4	26.555	27.005	27.455
5	26.565	27.015	27.465
6	26.575	27.025	27.475
7	26.585	27.035	27.485
8	26.605	27.055	27.505
9	26.915	27.065	27.515
10	26.625	27.075	27.525
11	26.635	27.085	27.535
12	26.655	27.105	27.555
13	26.665	27.115	27.565
14	26.675	27.125	27.575
15	26.685	27.135	27.585
16	26.705	27.155	27.605
17	26.715	27.165	27.615
18	26.725	27.175	27.625
19	26.735	27.185	27.635
20	26.755	27.205	27.655
21	26.765	27.215	27.665
22	26.775	27.225	27.675
23	26.805	27.255	27.705
24	26.785	27.735	27.685
25	26.795	27.245	27.695
26	26.815	27.265	27.715
27	26.825	27.275	27.725
28	26.835	27.285	27.735
29	26.845	27.295	27.745
30	26.855	27.305	27.755
31	26.865	27.315	27.765
32	26.875	27.325	27.775
33	26.885	27.335	27.785
34	26.895	27.345	27.795
35	26.905	27.355	27.805
36	26.915	27.365	27.815
37	26.925	27.375	27.825
38	26.935	27.385	27.835
39	26.945	27.395	27.845
40	26.955	27.405	27.855

STEP 1. Remove covers.

STEP 2. Locate PLL and remove cover in Fig. 1.
STEP 3. Locate D858 in Fig. 1 and cut pin 19 close to PC Baord as indicated in Fig. 2.

STEP 4. Solder a 1,000 Ohm $\frac{3}{4}$ watt resistor from pin 19 to supply line in Fig. 1.

CAUTION: DO NOT OVERHEAT PIN 19 as this can cause damage to PLL.
STEP 5. Disconnect Red, White, Green and plain wires from noise blanker switch.
STEP 6. Reconnect Red and White wires by soldering and then taping off.
STEP 7. Reconnect Green and plain wires by soldering and then taping off.
STEP 8. Connect a wire from Pin 19 to center contact of noise blanker switch.
STEP 9. Connect a wire from ground to TOP contact of noise blanker switch.
STEP 10. Reassemble unit.

STEP 11. Check unit by using a frequency counter and attached chart.
You may experience some loss of power and sensitivity at the upper end of the band, this is normal.

CAUTION: DO NOT ATTEMPT TO REALIGN TRANSMITTER OR RECEIVER.
To operate simply push NB switch up for normal channels and down for expanded channels.

Slider for Stalker 101 and 202

STEP 1. Remove D 30.
STEP 2. Replace D 32 with a 7.6 V zenor.
STEP 3. Jumper 116.
STEP 4. Remove R 119 from RX supply line.
STEP 5. Connect open end of $R 119$ to IC6 pin 非 (9v supply line)
STEP 6. Range +1.5 Khz to -3 Khz
STEP 7. R161 may have to be paralleled with a 56 ohm, if distortion occurs.

STALKER ONE (4001 : 4002)
FREQUENCY
26.565
26.575
26.585
26.605
26.615
26.625
26.635
27.455
27.465
27.475
27.485
27.505
27.515
27.525
27.535
27.555
27.565
27.575
27.585
27.605
27.615
27.625
27.655
27.635
27.645
$27.675 \quad$ FIG
27.695
27.705
27.715
27.725
27.735
27.745
27.755
27.765
27.775
27.785
27.795
27.805

* Do the same except lift pin 23 and frequency will go down instead of up.
* The mod may not work on same radios.

President McKinley

Specific Radio Modification

1. Clarifier Mod cut D36 - cut orange and red wire from clarifier pot. Connect one side to ground and one side to pin 3 of IC5. This allows +1.5 and -5 KHz . (Red wire to ground).
2. SSB ALC Adjust VR7 for Max. = AM ALC cut collector of TR32.
3. AM power VR6 for Max - $\mathrm{I}=26, \mathrm{~L}-27, L 29$, L 36 for Max peak power with 1000 Hz tone. Do not adjust L39 - Also VR8 - VR9.
4. SSB power VR7 ALC for Max Power.
5. Low Fq. - Replace X4 11.1125 with a 10.9582 MHz . Xtal. H1 Fq. - Replace X4 11.1125 with a 11.2580 MHz , Xtal.
6. Use relay page in this book to build switching module.

1	27.365
2	27.375
3	27.385
4	27.405
5	27.415
6	27.425
7	27.435
8	27.455
9	27.465
10	27.475
11	27.485
12	27.505
13	27.515
14	27.525
15	27.535
16	27.555
17	27.565
18	27.575
19	27.585
20	27.605
21	27.615
22	27.625
23	27.655
24	27.635
25	27.645
26	27.665
27	27.275
28	27.285
29	27.295
30	27.305
31	27.315
32	27.325
33	27.333
34	27.345
35	27.355
36	27.365
37	27.375
38	27.385
39	27.395
40	27.405

T BEAR, TITAN T AND T DISPATCH

CAUTION: Some of the upper channels may not function due to being too far out of band on some radios.

DO NOT align the VCO coil

STEP 1. Remove the chasis from the cabinet, both top and bottom.
2. Locate IC D-858 PLL.
3. Connect a 1,000 Ohm watt resistor to Pin 19 .
4. Locate ANL Switch and remove both wires and tape each separately. In the case of the TLtan T cut the two lands going to the switch. On the T Bear remove the blue and green wires and tape separately, remove the brown and orange wires and solder together and tape off. The NB switch is used on the T Bear.
5. Connect a wire from the 1,000 Ohm resistor to the center of the switch on the Titan T and T Dispatch. On the T Bear solder the resistor wire to the terminal you removed the orange wire from.
6. Connect a wire from Pin $\# 12$ to the outer terminal opposite the ANL land or wire. The T Bear should have the Pin \#l2 wire connected to the terminal you removed the Brown wire from.

CHANNEL EXPANSION
T BEAR, TITAN T AND T DISPATCH - CONTINUED

STEP 7. To operate in the expanded mode simply push the switch to on and off for normal.

CAUTION: Some units may not operate on some of the higher channels due to range of the VCO.

PERSONAL

NOTES!

Important: Keep heads AS SHORT AS POSSIBLE. USE ONLY SOLID WIRE AGW2O TINNED COPPER WIRE.

Internal COIL OF RELAY

- HEP 170 DIODE
-. O1 Mf loo v
- attach to points 1 ! 4
- Note attach TO PRINTED CIRCUIT GROUND
(Important, Note printed CIRCUIT GROUND IS NOT THE SAME AS CHASSIS GROUND!) - Drill hole for led attach with plastic cement IN A CONVENIENT LOCATION on face plate.
- Attach xtal module THAT yOU HAVE BUILT DIRECTLY ABOVE XTAL

THAN I"LONG CRYSTAL SOCKET/

- Transient spike FILTER MADE WITH DIODE AND CAPACITOR

RADIO SHAEF PiN 275-324

- Xtal that was

REMOVED FROM SOCKET IN UNIT

ATTNEH TO ON/ OFF SWITCH OF UNIT

OPTIONAL INDICATOR WITH LED CIRCUIT SOCKET. SECURE WITH SILICON SEAL.

1. For Max Mod cut D209.
2. For power increase short R280. This gives 1 Watt power increase.
3. Tune L207 - L208 - L209 - L210 - L211 for max with 1000 Hz.
4. Cut the PC - trace on pin 3 of PL L IC - connect a Single Pole Single Throw Switch Min toggle switch across the cut. This will give you upper channels.

5. Install a Single Pole Single Throw Min Toggle Switch across pin 9. Ground and pin 14 . This will give you the Lower Channels.

Parts hist
(1.) DPDT CENTER OFF TOGGLE SWITEH. RADIO SHACK P/N 275620
(2. SPST SWITEN RADIO SHACK P/N 275-612 QTY 2

HIGH CHA		LOW	
1	27.285	1	26.510
2	27.295	2	26.520
3	27.305	3	26.530
4	27.325	4	26.550
5	27.335	5	26.560
6	27.345	6	26.570
7	27.355	7	26.580
8	27.375	8	26.600
9	27.385	9	26.610
10	27.395	10	26.620
11	27.405	11	26.630
12	27.425	12	26.650
13	27.435	13	26.660
14	27.445	14	26.670
15	27.555	15	26.680
16	27.475	, 16	26.700
17	27.485	17	26.710
18	27.495	18	26.720
19	27.505	19	26.730
20	27.525	20	26.750
21	27.535	21	26.760
22	27.545	22	26.770
23	27.575	23	26.800
24	27.555	24	26.780
25	27.565	25	26.790
26	27.585	26	26.810
27	27.595	27	26.820
28	27.285	28	26.830
29	27.295	29	26.840
30	27.305	30	26.850
31-40	Normal	31	26.860
		32	26.870
		33	26.880
		34	26.890
		35	27.900
		36	26.910
		37	26.920
		38	26.930
		39	26.940
		40	26.950

6. Replace Q219 2SC 1964 with a 2SC 1306 for $7 \frac{1}{2} w+$ out put. PEP aprox. 20w with AM mod.

N.B. ANL. RF So Cont to RF Gain

1. Cut Leads from NB SW and solder the wires together.
2. Cut Leads from RF SW and tape back.
3. Cut Leads from ANL SW and tape back.
4. Run a wire from pin 1 IC7 to the common of the NB ANL and RF switch. Run 3 wires from the NO position of the NB -RF ANL switch to pin 14-13-12. This completes the channel expansion from 27.415 to 27.965.
5. Slide Mod - Remove D30 - R119-R162 and D32. Replace R-162 4.7K A with a $1 \mathrm{~K} \sim$. Install R119 $100 \sim$ 放 ristor from C-135 pos side to C110 pos side on the PC side of the board. Short R116. This completes the alide $+2.5-5 \mathrm{KHZ}$.
6. Cut leads from $S d$ cont. Solder red \& brown wires together and tape. Solder orange wire from RF Gain SW to middle S cont. Red wire from RF SW to term closest to vol control. tape the black wire. Adjust VR2 for RF Gain range. This completes the change from S to RF Gain
7. SSB ALC cut C155 Adjust VR408 for max 128 for Max with 2 tone source.
8. Power AM - Adjust VR8 Max L29 130-L32 for Max PEP with 1000 HZ tone.
9. For Max F spread - adjust L37-L38-139 for Max AM power and Mod over the range.

OFF	NB	ANL	NB+ANL	RF	NB+RF	ANL+RF	NB+ANL+RF
33	27.415	27.495	27.575	27.655	27.735	27.815	27.895
34	27.425	27.505	27.585	27.665	27.745	27.825	27.905
35	27.435	27.515	27.595	27.675	27.755	27.835	27.915
36	27.445	27.525	27.605	27.685	27.765	27.845	27.925
37	27.455	27.535	27.615	27.695	27.775	27.855	27.935
38	27.465	27.545	27.625	27.705	27.785	27.865	27.945
39	27.475	27.555	27.635	27.715	27.795	27.875	27.955
40	27.485	27.565	27.645	27.725	27.805	27.885	27.965

NB $\quad 41-48$
ANL 49-56

NB+ANL 57-64
RF 65-72

NB+RF 73-80
ANLTRF 81-88
NB+ANLHR 89-96

On expanding channels from 28.505 MHz to 28.945 MHz or from 28.960 MHz to 29.400 MHz .

1. Replace crystals of 16.27 MHz and 16.273 MHz with 17.81 MHz and 17.813 MHz .
2. Tune up the coils.

DETAILS

Replace crystals of 16.27 MHz and 16.273 MHz with 17.81 MHz and 17.813 MHz .
Replace crystals presently installed on the PLL Unit, $16.27 \mathrm{MHz}(X 1)$ and 16.273 MHz (X2) with 17.81 MHz and 17.813 MHz . If you use USB only, replacement is only the crystal 16.273 MHz with 17.81 MHz . (See figure 1 and 2).

Tue up
After changing above crystals, the colls should then be tuned.
PLL UNIT

1. Prepare the tester and connect it between test point 2 (TP2) and any minus
(-) ground (earth). Next, set to channel 1 position - the tester range should be 2 - 10 Volts (DC).
"L2" should be tuned up as the tester indicates 2 Volts. As you are tuning up the coil, the channels should be checked individually 1 thru 40 so that as the coil is being tuned, the tester will show a balanced change from 2 Volts to about 4.5 Volts (DC) on each of the channels. (see figure 3).
2. Put your Model 850 or 1400 in $A M$ and $T X$ mode. Then while watching the power meter tune up the coils Tl and 13 . This is to be done carefully 80 as to increase the Out Put Level on your power meter.

TRANSMITTER

Put your Model 850 or 1400 in AM mode and RX mode. Then follow the same procedures as discribed in above, matching the power meter and tuning up the following coils so as to increase the power; T1, L1, L14, T2, T3, L2, L5, Ll0. (See figure 5).

RECE IVER

Put your Model 850 or 1400 in $A M$ mode and RX mode. Then by listening to the set noise, tune up the following coils so as to increase the set noise; T4, T5, ${ }^{\circ}$ T6. (figure 6)

CHANNEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
28.505
28.515
28.525
28.545
28.555
28.565
28.575
28.595
28.605
28.615
28.625
28.645
28.655
28.665
28.675
28.695
28.705
28.715
28.725
28.745
28.755
28.765
28.795
28.775
28.785
28.805
28.815
28.825
28.835
28.845
28.855
28.865
28.875
28.885
28.895
28.905
28.915
28.925
28.935
28.945
28.960
28.970
28.980
29.005
29.010
29.020
29.030
29.050
29.060
29.070
29.080
29.100
29.110
29.120
29.130
29.150
29.160
29.170
29.180
29.200
29.210
29.220
29.250
29.230
29.240
29.260
29.270
29.280
29.290
29.300
29.310
29.320
29.330
29.340
29.350
29.360
29.370
29.380
29.390
29.400

Reprace

1. TUNE UP THE COIL (L2) AS bETWEEN TP2 AND CASE OFL2 TO BE 2 VOLT AT 1 CHANNEL.
2. AFTER THAT, CHECK AT $40 \mathrm{CH} \cdot$ READING WILL RE FROM 4 VOLT TO 4.5 volt.

Fig 3 (TUNE UP PAL UNIT) NOT

FIG 4

CQYstal CRYSTAL
FUTSGR.

TUNE $\frac{\text { FIG6 }}{\text { UP,T4,T5,TG }}$

CAUTION

*Each of the coils are locked tightly in place by a special glue. So before you tune up these coils, you should try to remove this glue. Take care in turning the core of the coil as it is very sesitive.
*Selecting for the Band desired, either from 28.505 to 28.945 MHz or from 28.960 MHz to 29.400 MHz is your choice and that choice is determined by connecting one lead of the IC to earth or not as shown in figure 7 .

TRS CHALLENGER RADIOS

CENERAL:
(All models) Set and prepare the unit as shown in the following fig. 1.

FIGI

1. For models $460,600,730$ and 1200 specifically, remove the glue locking the cores from the specific colls and then you are prepared for retuning.
2. Re-tune the coils per the following pages by monitoring the quality of the wave.

MODEL 460

1. How to increase out-put-power.
1.1 Re-tune the coils, L103, L107 and L106 to increase the indicated out-put power meter. Then you can get the high power to 6 to 7 W .
1.2 After fixed item of 1.1 , increase the power supply voltage to 16 V if posaible, then you can get the higher power 7 to 9 W .
2. How to increase MOD \%.

Turn VR3 shown as fig. 2.
Note: You can obtain higher output power but the power transistor may not be able to take more than 9 W .

1. How to increase output power.
l.1 Re-tune the coils, L208 and L209 and turn VR10 shown as fig. 3. Then you get 5 to 6 W .
1.2 After fixed item of 1.1 . increase the power supply voltage to 16 V if possible. Then you can get the higher power 6 to 7 W .

Note: You can increase the power output, but the power transistor may not be able to take more than 7 W .
2. Huw to increase MOD \%.

Turn VR1 shown as fig. 3.

1. How to increase output power.
1.1 Re-tune the coils, L204 and L205 and turn VR6 shown as fig. 4. Then you can get 5 to 6 W .
1.2 After fixed item of 1.1 , increase the power supply voltage to 16 V if possible. Then you can get the higher power 6 to 7 W .

Note: You can obtain a higher output but the power transistor may not be able to take more than 7 W .
2. How to increase MOD \%.

Turn VRI shown as fig 4.

VR6

DETAIL

1. How to increase output power.
1.1 Re-tune the coils, L204 and L205 and turn VR6 shown as fig. 5. Then you can get 5 to 6 W .
1.2 After fixed item 1.1, turn VR1 which controls DC power supply voltage so as to be $15-16 \mathrm{~V}$ between black and red wires. Then you can get higher power 6 to 7W.

Note: You can obtain a higher output but the power transistor may not be able to take more than 7W.
2. How to increase MOD \%.

Tum VRI shown as fig. 5.

Fig. 5

MODEL 850 \& 1400

1. How to increase output power.
1.1 AM mode.

Move the center-silde-tap of high wat age resistor shown as fig. 6 . Then you can get 5 to 6W.
1.2 SSB Mode.

Turn VR8 shown as fig. 6.
2. Increase in MOD \% 。

Turn VRI shown as fig. 6.
3. Increase in Mic-Gain.

Turn VR2 shown as fig. 6.

$$
F_{16} 6
$$

1. Channel Expansion

You can get more channels 27.420 to 27.860 by modifing. This modification needs one SW.

FIG 7
2. To make the claifier more effective both in mode TX and RX proceed as follows.
A. Remove two wires (Model 850 - two blue wires, Model 1400 - Red and White wires) from tap of clarifier volume. Two wires must be connected together after removed and then insulated where connected.
B. Connect a wire between +8 V and the vacant tap where two wires were removed.
C. Disconnect (Model 850 - the brown wire on TX-RX control, Model 1400 -two yellow wires on TX-RX control and connect them together), which are located in the front part of the PLL Unit.
D. Remove $15 p$ F disc capacitor ($\mathrm{C}-8$) located next to CV1 variable capacitor. ($\mathrm{C}-8$ is marked as C-9 on a circuit board on Model 850).
E. Set clarifier control to center range. Adjust CVI by using a frequency counter for center frequency on a selected channel.
3. 5 KHz down of expanded channel

If you want to bring expanded channel frequency $(27.420$ to 27,860) down to $5 \mathrm{KHz}(27.415$ to 27.855) you need the following:

Two contact double switches
Two resistors 3.9K Ohm
Two capacitors 0.02 u
Two crystals $16.265,16.268$
Two diodes (any kind of RF diode)

The instructions for installation is show on the following page.

Expanding channels from 27.415 to 27.855 MHz can be done by the attached instruction.

1. Three switches to be added.
2. Two resisters to be added.
3. Two capacitors to be added.
4. Two X-tals to be added.
5. Two diodes to be added.

CHANNEL		CHANNEL DIAL	EXP. CHANNEL	FREQUENCY
	FREQUENCY			
1	26.965	21		27.215
2	26.975	22		27.225
3	26.985	$22 A$	23	27.235
4	27.005			
5	27.015	23	25	27.255
6	27.025	9	26	27.265
7	27.035	10	27	27.275
8	27.055	11	28	27.285
9	27.065	13	30	27.305
10	27.075	14	31	27.315
11	27.085	15	32	27.325
12	27.105	16	33	27.335
13	27.115	17	35	27.355
14	27.125	18	36	27.365
15	27.135	19	37	27.375
16	27.155	20	38	27.385
17	27.165	21	40	27.405
18	27.175	27	41	27.415
19	27.185		42	27.425
20	27.205		23	45

CHANNEL MISSING

24	27.245
29	27.295
34	27.345
39	27.395
44	27.445

PARTS

3 - IN 60 Diodes
1 - S/N 7493 IC
Approx. Conversion Time . 55
40 min. not including unpacking, opening, testing, closing, and repacking.

1. Remove the unit from its cabinet and locate $I C-1$ foil side and cut foil paths to pins 9, 10 and 11.
2. Solder a 3300 ohm resistor to each pin next solder other end of each resistor to bottom of cut foll path where a pin is present to solder to.
3. Solder a IN34 doide (anode) aide to pins 10 \& 11 - next connect both banded ends (cathode) side together. Next solder a 6 in. piece of wire to both diodes. Next solder other end of wire to a SPST switch S-1 pin A, next solder a aecond wire to $S-1$ pin B and the other end to Neg. foil path. Unit will now operate from 27.445 thru 27.595 starting on channel 1.
4. Solder two 6 in. pieces of wire to a second SPST switch ($S-2$), solder wire from pin A to $I C-1$ pin 9 and other wire frum pin B to Neg. foil path. Unit will now operate from 27.605 thru 28.045 starting on channel 1.

Note: Unit will operate normal with $S-1 \& S-2$ in off position. Unit will not transmit with both $\mathrm{S}-1 \& \mathrm{~S}-2$ in on position.


```
Realistic TRC-45A
    T-7, T-6, T-5; Max Power adjustment.
    (L-1 using interval antenna extended, adjust for max field streught)
Following is Base or Mobiles:
Realistic TRC-431
    C-511 (3.3mfd / 50VDC Electrolytic Capac.) Remove from PC Board mod-
    ulation increases to 100% Plus; Don't use power mike or will over
    modulate.
    L-901, L902, L903, L904, T-803, L905, L907, L910, Adjust for max perr.
    (Some units are capable of 9 watts).
    VR-4; S Meter Adjustment.
    VR-5; RF Meter Adjustment.
    F-901; TVI Adjustment (Put Port. TV or Bench Next to CB - TV to Channel 2,
    Key - CB and adjust for minimum distribution.
Realistic TRC-200
    T-6, T-7, L-4, L-5; Adjust for max pwr in Hi Pwr mode.
    VR-5; Adjust for 100% in high power mode. (Modulation)
    VR-4; Adjust for 100% in low power mode. (Modulation)
    (Use some caution as some units will key }7.8\mathrm{ watts)
Realistic TRC-180
L-9, L-13, L-12, L-8; Adjust for max pwr. (Do not exceed 6 watts.)
R-48; Adjust for 100% Mod.
Realistic TRC-100 / 99A
    T-9, T-10, L-6, L-7; Max pwr adj. (Do not exceed 6 watt8.)
```



```
    medium between power and modulation.
```

1. Remove unit from cabinet. Remove speaker cover from unit. Cut the PC Board on each side of voice lock. Run a wire from one side to ground and the other side to the Gray wire on the PA/CB switch. Clip diode CD 304. This allows - 10 KHZ and +5 KHZ Slide.
2. For AM A.L.C. Adjust R134 for max modulation.
3. For SSB A.L.C. Adjust R130 for max power.
4. For AM power short R92A and R92B. Adjust +8 - +9 - +10-T11-T12-L5 LT - $\mathrm{L} 3+7$ with 1000 HZ for max peak out put.
5. For new C.H. 27.405 to 27.925 - remove $X 302$ and Install SPD+ Min Slide Electrocraft Cat \#34-202in the speaker grill on the $R+$ side with the unit up side down and the back facing you. Use super glue to install switch.

CHANNEL FREQUENCY

1	27.405
2	27.425
3	27.435
4	27.475
5	27.485
6	27.505
7	27.525
8	27.555
9	27.575
10	27.585
11	27.605
12	27.635
13	27.655
14	27.675
15	27.685
16	27.725
17	27.735
18	27.755
19	27.775
20	27.805
21	27.825
22	27.835
23	27.885
24	27.855
25	27.875
26	27.905
27	27.915
28	27.925

RIGHT SIDE
WHERE XTAL
WAS REMOVED

* THE COMMON SIDE OF

THE XTALS GOES TO
THE HOLE ON THE LEFT SIDE.

* THE CENTER TERM. OF THE SWITCH GOES TO THE HOLE ON THE RIGHT
SIDE K $K \sqrt{2} R$ KINDS SHORT USE SOLID WIRE.
Parts negoen
(1.) ELECTROCRAFT\#35-202
(2.) XTAL Y AUNILABLE FROM LOCAL DISTRIBUTOR.

1) Remove cabinet cover, botton plate, and rear panel.
2) Remove 6DG6 tube and then hold down clamp.
3) Remove 12BY7A tube and shield.
4) Unsolder pin 3 of octal socket RF power amp VT202.
5) Make a parasitic suppressor by winding 6 turns of \#20 Buss wire on a 47 ohm 2 w carbon resistor. Evenly spaced wrap the leads next to the body of the resistor and solder. Bend the leads of the parasitic suppressor so it will connect to the plate cap and lay parallel with the length of the tube. Solder to plate cap. Install 6DQ5 tube in VT202 socket, solder parasitic suppressor choke to plate cap connector and install on tube. Run a length of television HV wire from the other end of the parasitic suppressor and replace the wire that was unsoldered from pin 3. The free end of the new wire goes to the 4.71 wesistor and remove the old wires.
6) Remove the 3.9 k 2 w R211 on pin 4 and replace with a 39 k ohm 2 w resistor.
7) Remove all wires and connections and grounds from pins 1,6 and 8.
8) Install a . $01 / 100$ v ceramic from pin 2 to pin 7 and solder.
9) Route the blue wire removed from pin 8 under terminal strip TB-1 to pin 3 and solder.
10) Install a 4.7 ohm $\frac{1}{2}$ w resistor between pin 6 and 7 . Do not solder.
11) Install a . $01 / 100 v$ ceramic disc cap between pins 6 and 7. Solder pin 6.
12) Connect the ground buss wire to pin 7 .
13) Connect the yellow and purple wires removed in step 7. Fill leads tp pin 7.
14) Connect the free end of C 202 Now on pin 4 a .0012 kv cap to pin 7. The cap now run's between pin 4 and 7.
15) Connect the free end of the .001 mf 2 kv cap 谁C210 to the last lug on terminal strip TB-1.
16) Add a 450 v lmfd across R 20447 k 2 w resistor. Connect the positive side to terminal 2 and the negative to terminal 3.
17) Remove the wire from R309 2.2 k ohm 10 w to terminal 4 of $\mathrm{TB}-3$ and discard.
18) Install a piece of insulated wire from 1000 ohm 10 to terminal 4 of $\mathrm{TB}-3$
19) Locate 21056 k 解. This resistor is surrounded by a shield on the foil side of board.
20) Install a 33mf 6 volt cap from the collector of Q34. SQ amp to ground positive side of cap to collector.
21) Install a 33MF 6 volt cap from the collector of $Q 34$ SQamp to ground positive side of cap to collector.
22) Install a 4.7 k 3 k resistor between the mike lead and the mike plug.
23) Install a 12GN7 tube in VT201 and replace the tube shield.
24) Install a stancore part \# p $-860548 v$ transformer as shown in Jrawing.
25) Route leads from new transformer. Throw holes in chassis with the other Transformer leads.
26) Connect red wire from new transformer to the fuse holder connection with the red wire.
27) Connect the yellow wire from the new transformer to terminal strip TB5 terminal 3.
28) Tape the brown and green wires separately. They are not used.
29) Also tape the black wire separately. It is not used.
30) Remove the yellow wire from $T B-4$, terminal 5 and connect to the light green wire from the new traneformer and tape.
31) Connect the gray wire from the new transformer to TB-4, terminal 5.
32) Check all connections for shorts. Solder blob's, etc.
33) Set is ready to turn on. Turn standby switch to off and trun on set. Allow to warm up. CAUTION, the plate cap of the 6 DQ 5 has high voltage 480 V dc.
34) Connect a 1 khz tone source to the mike input, pin $2+\mathrm{pin} 2$.
35) Jumper pin 3 and 4 together on the mike plug. This is for transmitter key up.
36) Rotate mike gain control to full counter-clockwise position.
37) Mode switch to USB.
38) Meter switch to plate current.
39) Channel selector to channel 20.
40) Connect a 500 hm 100 w dumy load to the RF output.
41) Connect a low capaity scope probe across the dumny load.
42) Connect a voltmeter from pin 3 on the 6 DQ5 tube socket to ground positive lead to pin 3.3 volt range DC.
43) Turn transmit standby switch to transmit positive.
44) Adjust RV202 so voltmeter reads 0.47 volts DC at pin 3.
45) Adjust RV-802 so the plate meter reads 50 ma. This will alow the p.a. meter to read one half value. You must now multiply by two for correct reading.
46) Turn mike gain control full clockwise position, then adjust c902 and then c903 back and forth until maximum power is obtained.
47) Change to channel 1. Adjust the bottom slug of 2203 for maximum output on scope. Change to channel 40 and adjust the top 8148 of L 203 and alternate until even output is obtained.
48) Change to two-tone signal. Checkscope for flat topping. If you observe flat topping adjust RV2 to correct.
49) Switch to AM mode and adjust RV201 for 50 ma on plate meter. $50 \mathrm{ma} \times 2=100 \mathrm{ma}$
50) Adjust RV204 fat 100% mod on scope.
51) Using a power meter adjust output meter. Adjust RV602 for AM and RV603 for SSB. AM should be approximately 20 w , AM envelope power 35 w , output SSB PeP approximately 75 w output.

Warning: Beware OF ELECTRICAL SHOCK HAZARD WHEN WORKING AROUND RADIOS AND OTHER ELECTRICAL
EQUIPMENT. WHEN WORKING INSIDE LARGE RADIOS LIKE THE OAK REMOVE RINGS ETC.
If you are not familiar WITH ELECTRONICS SEEK ADVICE FROM A COMPETENT TECH.

HOLE FOR
$8 / 32 \times 3 / 8^{\prime \prime}$
SCREW

Location of MOUNTING BRACKET SUPPORTS

FIG 3 Ho tE For
$8 / 32 \times 3 / 2^{\prime \prime}$ SCREW

Countersink
FOR FLAT HEAD MACHINE SCREW $8 / 32 \times 1 / 4^{\prime \prime}$
(1.) MAKE 2 BRACKETS TO FIT TOP OF POWER TRANSFORMER AS SHOWN IN FIG.I (USE ALLUMINUM STRIP. 090 THICK)
(2.) MAKE PLATE AS SHOWN in Fig 2.
(3.) Remove Screws from POWER TRANSFORMER. TOP SCREWS ONLY. LEAVE pLastic washer
 IN PLACE WHEN REMOVING SCREWS.

CHANNEL EXPANSION, POWER AND SLIDE MODIFICATION

1. PLL IC 1 (PII 2)

Cut the PC Board on pins 9-10-11 with a xacto knife and isolate them as close to the IC as possible. Install a 3 K 列 across each cut. Install a IN914 on Pin 11 \& 10 anode towards the IC pin and tye the cathodes together. Install 2 Sincle Ple Single Throw Switches and run a wire from one side of the switch to ground. Connect the other side of one switch to the cathode of the diodes that run from pin IHIO. Run wre from pin 9 of the IC to the other switch. This completes the Channel Expansion.
2. Slide cut D5 - Cut R24. Install a 18 PF in place of C17 33PF. Run a wire from the unused terminal on VR4 to the wiper of the squelch control. This will allow -2 and +8 KHZ .
3. RV12 adjust for max AM Mod with 1000 H2 tone \& R204. RV2 \& RV11 adjust with two tone source for max power.
4. Install a $12 G N 7$ tube in place of VT201 12BY7/. Install a $6 y 6$ in place of VT202 6nG6 tube, short R 310 l 1.5 KHz resistor with a jumper wire. Adjust L201-C903 for max AM power with 1000 Hz tone on peak reading meter. This modilication will allow approximately 35W SSB.

1
2.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
27.445
27.455
27.465
27.485
27.495
27.505
27.515
27.535
27.545
27.555
27.565
27.585
27.595
27.605
27.615
27.625
27.645
27.655
27.665
27.675
27.695
27.705
27.715
27.725
27.745
27.755
27.765
27.775
27.795
27.805
27.815
27.825
27.845
27.855
27.865
27.895
27.875
27.885
27.905
27.925
27.935
27.945
27.955
27.965
27.975
27.985
27.995
28.005
28.015
28.025
28.035
28.045

1) Cut the p/c trace on pin 8 of IC1O and isolate pin 8.
2) Move the green fumper wire from pin 8 to the other side of the cut and solder.
3) Install a 100 k ohm $\frac{1}{6}$ resistor from pin 8 to ground.
4) Solder a wire to pin 8 and one to the other side of the p/c cut. Let this hang loose as it will be used later.
5) Solder a wire to pin 7 and one to pin 16 and let them hang loose. They also will be used later.
6) Install two minature SPST togsle switches in a convenient place and connect one to the wires from pin 8 and the other side of the p/c cut. This 1s SWl.
7) Connect the other buitch to the wires from pin 7 and 16. This is SW\#2. This completes the mod switch 2 which will give you the upper channels. Switch \$1 + \#2 will give you the lower channels.

Frequency Progran Chart

Down - SW $1 \& 2$	Down - SW $1 \& 2$	Down - SW $1 \& 2$	UP - SW 2	UP - SW 2
$26-26.945$	$18-26.855$	$10-26.755$	$11-27.405$	$19-27.505$
$25-26.925$	$17-26.845$	$9-26.745$	$12-27.425$	$20-27.525$
$24-26.915$	$16-26.835$	$8-26.735$	$13-27.435$	$21-27.535$
$23-26.935$	$15-26.815$	$7-26.715$	$14-27.445$	$22-27.545$
$22-26.905$	$14-26.805$	$6-26.705$	$15-27.455$	$23-27.575$
$21-26.895$	$13-26.795$	$5-26.695$	$16-27.475$	$24-27.555$
$20-26.885$	$12-26.785$	$4-26.685$	$17-27.485$	$25-27.565$
$19-26.865$	$11-26.765$	$3-26.665$	$18-27.495$	$26-27.585$

MODIFICATION

1. To use the VFO SW to manual channel selector to Channel 9 - 12 the VFO will now read normal.
a. To add 50 KC to dial channel selector 13 to 16
b. To add 100 KC to dial channel selector 17 to 20
c. To add 150 KC to dial channel selector 21-23
d. To subtract 50 RC from dial channel selector 5 - 8
e. To subtract 100 KC from dial channel selector 1 - 4
2. With knob in manual and dial on 27.305. If you put the channel selector on 13 - 16 your F will be 27.355 if you put the channel selector on 5 - 7 your flll be 27.255 .
3. Locate your Hi Low power SW is in side the cabinet between the two largae tubes at the back of set with the red cap on 1t. Low power is aprox. 6W and H 1 power is aprox 15 W . AM

MIDLAND 13-892

1. AM Power - Adjust VR 305
2. AM Mc Gain - RV7.
3. SSB Mic Gain - RV8.
4. Cut D206 For AGC (M1C).
5. TX Adjust Lz - L2 - L3 - LA - L5 - L6 - L7 - L9. For Max Mod with a peak reading meter in to a $50 \sim$ dumy load. Adjust on CH 13.
6. Do not adjust 1301 as this is your 54 MHZ TVI Trap and missalinement will cause TVI.
7. Clarifier Slide.
a. Cut Brown wire fram clarifier control and foldback and tape.
b. Cut Wh- VIO wire and connect to ground this will allow the unit to slide.
c. If more slide is needed replace RFC 201 vith a miller part \#4204 5 to 12 wh cholu
8. Remove R-22 100K~ristor.
9. Remove D3 and replace with 20 Pf.
10. Remove $\mathrm{Ct}=120 \mathrm{PE}$ trimer.
11. Remove clarifier control - replace with 2 - 30pf variable. Cap in its place.
12. Make a choke or by a JWiller part ${ }^{4} 4204$ 5-12 yh Rf choke.
13. Ground one side of cap - the choke is soldered on the cap and the other side of the choke gos to the place were the Ct-l. trimmer was removed. This will allow $20+\mathrm{KHz}$ slide.

COBRA 78X
10.240 Regular Channels
10.412 Up $27.415-27.865$
10.071 Down $26.955-26.625$

VR6 - Adjust for Max Mod.
L12 \& L15 - Peak for max mod.
Do not adjust Ll8 this is your TVI trap and miss tuning will cause blead over and cross mod on TV. If this slug has been tuned and you do not have a
Spectrum Analyzer you may use Channel 2 on a TV and tune for minimm interference.

TYPICAL RELAY MODULE

1. Clarifier Mod cut Rl87. Cut orange and red wire from chariflier pot. Connect one side to ground and one side to pin 3 of IC5. This allows +1.5 and -5 KHz . (red wire to ground.)
2. SSB ALC - adjust VR7 for max - AM ALC - cut collector of TR32.
3. AM power VR6 for max - L-26, L-27, L-29, 236 for max peak power with 1000 Hz tone. Do not adjust 139 - also VR8 - VR9.
4. SSB power VR7 AIC for max power.
5. Low FD replace $X 411.1125$ with a 10.9582 MHz xtal.

H1 FD replace X4 11.1125 with a 11.2580 MHz ital.

NOTE: AGAIN, SEE RELAY PAGE IN THIS BOOK WHIN SWITINING FREQS. TO AVOID DRIFT.

MIDLAND 13-893

1. AM power parallel R148 A $5 \Omega 5 w$ with another $5 \sim 5 \mathrm{w}$.
2. AMC VR12 - set for max $A M \bmod$ with tone.
3. ALC VR 15 - set for Max SSB ourput tone.
4. Adjust - T22 - T21-T20 - L10 - L8 for max on peak reading watt meter with tone in AM mode. Do Not adjust L5 401 trap.
5. Clarifier Slide
a. Short R68 with wire.
b. Adjust VR5 \& VR6 for best range - this will give aprox 15KC slide.
6. Clarifier Mod.
a. Cut R 98
b. Remove pink wire from T.P. 13 and connect to T.P. 8.

This completes clarifier Mod - Pink wire is on clarifier cont -
2. Locate the blue and gray that go between the PLI unit and Channel Switch. Install a SPST Switch in the blue \& gray leads. This will give your new channels.
3. To disable ALC cut R47 - Adjust VR7 - AMC to Max mod with 1000 Hz tone. AM Xmit - adjust +6 $-+11-+12-+13-+14-+15-+16$ for max with 1000 Hz tone. SSB - adjust VR8 for max SSB power.

Note: VR9 should be 13.80 volts at zomit.

It may be desireable to incorporate the following modifications to the Stoner Pro-40 when the equipment is exported to foreign countries. It is not legal to make these changes in domestic equipment since it will void the FCC Type Acceptance.

HF Channels - It is posaible to increase the frequency coverage of the Stoner Pro-40 up to 27.865 MHz by simply grounding pin 5 of connector P501. This connector is directly aft of the clarifier potentiometer and pin 5 is the 6 th pin from the front of the radio.

A popular conversion consists of using the headphone jack for frequency changing. This can be accomplished in the following manner:

1. Disconnect the wires from the headphone jack, connect them together and inaulate them.
2. Remove the 100 ohm resistor from the headphone jack.
3. Comect a wire from the "hot" connection of the headphone jack to pin 5 of connector P501. (This wire should be as short as possible to avoid picking up stray voltages that may cause the PLI to unlock in high frequency operation. A shielded cable is ideal. Connect the shield to the ground lug on the headphone jack and terminate the other end to float.)
4. Prepare a shorted headphone plug. When inserted in the headphone jack, the upper register of channels will be selected. This conversion will also place an " H " on the digital display where the hyphen is on low frequency usage.

Frequency Control System - The clarifier diode connects to the anm of the clarifier potentiometer and the arm of the transmit frequency adjust potentiometer via two gating diodes located on the front panel circuit board. On receive, plus 9 volts is applied to the "top end" of the clarifier pot. On transmit, this voltage goes to zero and plus 9 volts is applied to the "top end" of the transmit adjust pot. The "bottom end" of both potentiometers is grounded. Connected in this manner, the clarifier functions on receive only and the transmit frequency adjustment affects only the transmit frequency.

Clarifier Tune, Receive and Trmsmit - The clarifier control circuit can be modified to function on both receive and transmit modes in the following manner:

1. Clip the top end of the clarifier potentiometer at the point where it enters the circuit board. Note it requires a very this cutter to clip this lug without cracking the carbon element of the pot. (Some units may have a black wire at this pint or a piece of solid conductor wire instead of the potentiometer lug in the circuit board. The point to cut is the lug with plus 9 volts on it during receive.
2. Connect the top of the clarifier control to the plus 9 volt circuit. A convenient point is located on the center lug of the USB/LSB switch nearest the electrolytic capacitor.
3. Turn the transmit frequency adjustment potentiometer ($\mathrm{R}-403$) full clockwise 80 it does not affect the frequency of operation.

These two modifications will allow operation up to 27.865 MHz without missing any channels by tuning the clarifier.

Split Frequency Operation - Some users like separate control of the receiver and transmitter frequency. This is extremely useful when someone is causing intentional interference. By operating on two split frequencies, the interference can bother one station or the other, but not both. Usually, the interfering station gives up when his efforts are not immediately successful. The split frequency modification can be accomplished as follows:

1. Do not modify the clarifier as described in the previous section. This control will continue to adjust the receive frequency.
2. Clip the top end and center (or arm) connections of the RF Gain control potentiometer. Use caution not to crack the carbon element to the potentiometer.
3. The two "stumps" sticking up from the front panel board must be soldered together or the receiver will not function.
4. Set the transmit frequency adjust potentiometer to the exact center of its mechanical range.
5. Connect a wre from the center (or arm) of the transmit frequency adjustment potentiometer to the center (or arm) of the former RF Gain control.
6. Connect a wire fron the top end of the transmit frequency adjustment potentiometer to the top end of the former RF Gain control.

This completes the conversion. The former RF Gain control will now adjust the transmit frequency. The adjustment of the former RF Gain control will be critical since only 270° or rotation covers 10 KHz . However, the transmit frequency can be set very accurately with the aid of the frequency counter.

COMPLETE INFORMATION

ONO OLA CHIP

1. .SB $02 A=A S$ FOUND IN MANY SSR RADIOS

Modulation - Remove C-175
AM Watts - turn VR-4 conner clockwise
SSB watts - adjust RV2
Slider - cut D4, D5. Move center wire from clarifier pot from anode side of $D 4$ to cathode of D4. Run a wire from empty side of clarifier pot to $9 v$ source ($R 9$ is in the front of unit, and has a regulated 9 v). Frequency modifacation - Range 25.675 to 28.235

X DENOTES CUT FOIL 25.675 to 26.165 -

```
1 to pin 7
    0
    to Pin 
    0 to Pin }
l to Pin 7
0 to Pin }
O to Pin 10/11
0 to Pin 9
```

MUST CUT FOIL
ON BOTH SIDES
OF THIS PIN
26.325 to 26.765 - $\quad 1$ to Pin 7
$0=$ GROUND
26.805 to 26.955 -
$X=$ Cut Foil

* $=$ Must Cut Foil on Both Sides of This Pin
$0=$ Ground
1 - $5 v$

2. 27.445 to 27.595 - $\quad 0$ Pin 7
1 Pin 8
0 Pin 10/11
27.605 to 28.045 - 0 Pin 7
1 Pin 8
0 Pin 9
28.065 to 28.235 - 0 Pin 7
1 Pin 8
0 Pin 9
0 Pin 10/11

NOTE: With Pin 7 high and Pin 8 low, unit is in down frequency range (below one) when 7 is low and 8 is high, unit is in up frequency range (above 40).

Cut foil between pins $* 7,8,9,10$ and 11 . Add $3 k$ resistors across breaks in foil. Place one diode (in34/in60) anode side to pin 10 and one to pin 11. Join the cathode sides together.

The cybernet units that utilize the 02A chip will not spread over the entire frequency range without broad banding. These units will spread an average of

1500kc. I have tried many experiments in broadbanding, and have only found one way, which is very costly and requires extensive modifications and additions to the unit. I will enclose this modification on a separate paper.
*Pin 7 is connected to ground on both sides of the pin. The foil must be cut on both sides.
3. Broadbanding cybernet 02A units.

This modifacation should not be attempted unless you are willing to spend a lot of time and money ($\$ 25.00$).

1. Remove VCO Block from unit.
2. Mount original VCO Block and second VCO * Block on a small piece of perf-board.
3. Mount a 12 volt relay in a convinent location and wire so the relay will switch the VCO blocks back and forth.
4. At 27.595 tune one VCO for highest wattage. Check the unit at 28.235 and at 26.965 to assure, it is transmitting on frequency.
5. At 26.325 tune the and VCO block for watts. Check unit again at 26.955 and 25.675 .
6. Realign transmit section of unit at 26.955 .

* Availability of vco*block may be difficult to FIND.

A. Remove bottom cover on PLL circuit.
B. Locate ICl and cut ground foil connection to Pin 10.
C. Attach 10 K OHM resistor to ground and Pin 10 (attach red wire to Pin 10).
D. Attach white wire to Pin 11.
E. Attach black wire to Pin 9.
F. Cut slot in lip of cover to allow wires to exit. Replace cover.

STEP 2
A. Remove violet wire from PC Board at rear of response switch. Attach red wire to this point.
B. Attach white wire to one of the two empty pins on the response 8witch.
C. Cut the ground foll going to the next two switch contacts and attach the black wire here.

STEP 3
A. The transmitter will cover only about 800 KHz .
B. Set the switches to the highest channel to be used. Adjust LI4, for 3.8 volts at TP5.
C. Set the switches for the middle of the selected range. Adjust L18, L19, and L20 for maximum output. It is usually unnecessary to adjust any other coils in the transmitter.
D. Tune signal generator for center channel and adjust L1, L2, L3 for maximum receiver sensitivity.
E. Check highest and lowest channels for transmitter operation and receiver performance and adjust above coils as necessary to balance operation.

```
MODEL 770 - CONTINUED
```

SET CHANNEL DIAL	ANL (SOFT)	ANL (SHARP)
1	27.605	27.285
2	27.615	27.295
3	27.625	27.305
4	27.645	27.325
5	27.655	27.335
6	27.665	27.345
7	27.675	27.355
8	27.695	27.375
9	27.705	27.385
10	27.715	27.395
11	27.725	27.405
12	27.745	27.425
13	27.755	27.435
14	27.765	27.445
15	27.775	27.455
16	27.795	27.475
17	27.805	27.485
18	27.815	27.495
19	27.825	27.505
20	27.845	27.525
21	27.855	27.535
22	27.865	27.545
23	27.895	27.575
24	27.875	27.555
25	27.885	27.565
26	27.905	27.585
27	27.915	27.595
28	27.925	27.285
29	27.935	27.295
30	27.945	27.305
31	27.955	27.315
32	27.965	27.325
33	27.975	27.335
34	27.985	27.345
35	27.995	27.355
36	28.005	27.365
37	28.015	27.375
38	28.025	27.385
39	28.035	27.395
40	28.045	27.405

A. Remove bottom cover on PLI circuit.
B. Locate ICl and cut ground foll connection to Pin 10.
C. Attach 10 K OHM resistor to ground and Pin 10 (attach red wire to Pin 10).
D. Attach white wire to Pin 11.
E. Attach black wire to Pin 9.
F. Cut in lip of cover to allow wires to exit. Replace cover.

STEP 2

A. Attach red wire to front unused teminal of "Pull SWR" Switch.
B. Remove blue wire from ANL Switch, remove short green wire completely, attach blue wire to terminal with long green wire.
C. Attach black wire from PLL to center terminal of "Pull SWR" Switch and a jumper to teminal of ANL Switch where green jumper was attached.
D. Attach white wire to previously unused terminal of ANL Switch.

STEP 3
A. The transmiter will cover only about 800 KHz .
B. Set the switches to the highest channel to be used. Adjust $L 14$ for 3.8 volts at TP5.
C. Set the switches for the middle of the selected range. Adjust L18, L19, and $L 20$ for maximum output. It is usually unnecessary to adjust any other colls in the transmitter.
D. Tune signal generator for center channel and adjust L1, L2, L3 for maximum receiver sensitivity.
E. Check highest and lowest channels for transmitter operation and receiver performance, and adjust above coils as necessary to balance operation.

```
MODEL 790 _ CONTINUED
```

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
$\begin{array}{ll}27.605 & 27.285 \\ 27.615 & 27.295\end{array}$
$27.625 \quad 27.305$
$27.645 \quad 27.325$
$27.655 \quad 27.335$
$27.665 \quad 27.345$
$27.675 \quad 27.355$
$27.695 \quad 27.375$
$27.705 \quad 27.385$
$27.715 \quad 27.395$
$27.725 \quad 27.405$
$27.745 \quad 27.425$
$27.755 \quad 27.435$
$27.765 \quad 27.445$
$27.775 \quad 27.455$
$27.795 \quad 27.475$
$27.805 \quad 27.485$
27.815
27.825
27.845
27.855
27.865
27.895
27.875
27.885
27.905
27.915
27.925
27.935
27.945
27.955
27.965
27.975
27.985
27.995
28.005
28.015
28.025
28.035
28.045
27.495
27.505
27.525
27.535
27.545
27.575
27.555
27.565
27.585
27.595
27.285
27.295
27.305
27.315
27.325
27.335
27.345
27.355
27.365
27.375
27.385
27.395
27.405

1. Unsolder coax on back of fine tune control. Install variable choke in lead. Install choke so you can adjust it.

VARIABLE CHOKE FOR IS KC OR AMOUNT OF SLIDE REQUIRED.
Variable charifier
CAPACITOR
ALREADY IN SET
2. Locate R180. This is a long square ristor along the side of unit and Install a $2 . \infty 10 w$ in place of it.
3. Do not adjust L19 AM Adjust L11 - L12 - L13 - L14 - L15 - L16 - L17 L18. Adjust for max peak with 1000 HZ tone. SSB - Do not adjust L19. Connect two tone generator (400 HZ 1000 HZ). Adjust L10 to Max.
4. Adjust RF panel meter VR6 6 - so it will not peg the meter.

Instructions For Grounding A Mobile Unit

1) Your power cord is not sufficent for an RF ground. A separate cable must be used. Beldon 8663 may be used or you may strip the shielding from an old piece of coax. A length of hook up wire will not work for the RF ground. The thing you must remember about RF is that it travels on the surface of the conductor and you must have large surface to conduct RF.
2) Rust and oxidation will not pass RF because it 18 on the surface of the material. All connections must be Rust free and clean. Remember rust and oxides disrupt RF pathes and ground connections.
3) The antenna must have ground plain of 108 sq . in. to work properly.
4) You cannot measure RF ground with an ohm meter. A special RF bridge must be used.
5) The rule of thumb is that if it is clean and bright, it is a good RF ground.
6) All insulated joints such as hood, trunk and side mirrors must have a ground strip to the car body.
7) Silicon or zinc ointment will help oxidation from causing you trouble with your antenna by helping prevent it from getting started.

HINTS AND KINKS SECTION - B

SUBJECT:

SYMPTON:
SOLUTION:

ADJUS TMENTS:

COBRA 142GTL

SUBJECT:

SYMPTOM:

SOLUTION:

Squelch Transistors TR-8 and TR-9 Shorting on the 62XIR No Squelch

Cut the foil pattern between the base of the TR-8 and the Junction of $D-12, C-17$.

Add a lk, 交 watt resistor across the cut pattern, so the resistor is in series with the base circuit of TR-8.

None required

Reduction of AC hum on the 142GTL
AC hum in audio. Most noticeable when customer is using headphones or external speaker at low volume.

Unsolder black ground wire (from cable harness) at power supply board. Remove small tie wrap which wraps red \& Black wires together. Pass black ground lead through large chassis hold and resolder directly to negative terminal of filter capacitor C-304 on bottom of power supply board. Negative terminal faces front of unit.

1. Remove knobs from top of Mike.
2. Remove four screws from bottom of case and remove the P / C Board.
3. Cut the diode and fold back.
4. Reinstal in case make sure the battery clips are in place.

WRAP TWO NE-2'S ONE ON EACH SIDE OF THE TIPOF YOUR K 40 STINGER AND GLUE WITH SILICONE SEAL. ALLOW I HR OR SO BEFORE MOVING.

WHEN YOU KEY UP AND TALK THE LIGHT WILL GLOW GREEN AND WILL GET BRIGHTER AS YOU TALK. DO NOT USE RED NE - 2^{\prime} 's AS SMOKEY WILL BE ON YOUR CASE!

NOTE: THIS MAY BE APPHED TO OTHER ANTENNAS

Sun spot Prediction CHART

ThIS CHART is PUT INTO THE BOOK FOR CB DEALERS TO SHOW THEIR CUSTOMERS WHY THEIR "AM RIG" DOES NOT "GET OUT" AS WELL, DURING THE SUNSPOT ACTIVITY. CB DEALERS, SIDEBANDERS AND OTHERS ALREADY HAVE EXPERIENCED THIS PHENOMENON. IN THE THE COMING YEARS, AND EVEN NOW - SINGLE SIDE BAND WILL BE THE WAY TO GO!

$$
\begin{aligned}
& \text { - DENOTES PREDICTED SUNSPOT } \\
& \text { ACTIVITY. }
\end{aligned}
$$

SECRET CB - LINEAR REPORT SECTION - C

1. Turn the unit upside down with the front toward you.
2. Remove the $5 p \mathrm{f}$ disc capacitor that is connected between the VFO input (S0-239) and pin \#2 of the oscillator tube socket.
3. Remove the 470 K 2 watt resistor that is connected to pin \#1 of the oscillator tube socket and the first lug of the 5 terminal strip.
4. A. Disconnect the brown wire where it is connected to pin \#7 of the antenna relay and reconnect it to pin it $_{4}$ of the antenna relay.
B. Solder a piece of 18 or larger copper wire from the VFO input (S0-239) to pin \#7 pin of the antenna (wire should be as short as possible).
5. Starting at the top of the tank coil (lead control) on left hand end) brifge solder from the end of the coil across one air gap to the first full turn and then across the second air gap to the second full turn.
6. Unit is now ready to load.

D AND A 500 TRIPLE CONVERSION

Locate coll between load and tune knob and bridge with solder across two turns starting where the coil starts (at either end). Not in the middle of a turn.

Next locate coil between drivertune and load and do the same, then locate wire going from VFO output (80239 on back of unit) to a tube socket. This wire should contain a . 001 Capacitor. Completely remove this wire.

Next locate the relays between the 80239 connectors on the back side. There should be brown wire going from the relay and going to the 2nd lug on a 5 lug strip. Cut this wire at the strip. Shorten the wire and attach it to the VFO output so239.

DRIVER MODIFICATION:

Fig. 2

Factory Issue as depicted above. To motity, remge two capacitors in parallel across Drive Control. Cut as ipdigated by "X".
2. Turn the unit right-side up. Across the Dr lye control, there are two capacitors piggy-backed together (Fig. .). Cut them out.

EAGLE 515

OUTPUT MODIFICATION:

Factory Issue as depicted above. To modify, move strap on coil between "Load" and "Tune" from third turn (as per factory issue) to fifth turn (as indicated above).
3. In between the Tune and Load controls is the Output Coil. If you are facing the unit, from the left end of the coil, there is a piece of silver wire soldered to the end of the coil and to the third turn (counting from left to right). Unsolder it al the third turn and resolder it to the fifth turn (Fig. 3).

* Inoumay -CAREFULLY REMOVE FROM CIRCUIT - STRAIGHTEN COIL AT POINT OF JUMPER THUS REMOVING EXCESS COIL SHORTEN WIRE TO DESIRE LENGTH. REINSTALL AS BEFORE.
 WILL ABSORB POWER)

P18. 4

4. With the unit facing you, there is a small silver coil in the back right side, by the antenna relay. There is a small silver wire soldered to the middle of the coll, which goes to the board. Cut this wire, indicated by an "X:, (Fig. 4).
5. Remove the $10 B Q 5$ Oscillator Tube located on the right rear board of the chassis. This completes the modification.

10 METER OR AMATEUR SECTION - D

www.hardt|mez99.com

欮化e: Aluminum bracket (for heat sink purposes) replaces speaker bracket. Nominal output: AM 47 watts, SSB 60 watts

Conversion fits most $A M$ and $A M / S S B$ base units

$$
\begin{aligned}
\text { Nominal OUtput } 47 \text { watts - AM } \\
60 \text { watts-SSB }
\end{aligned}
$$

588. ATMATEURS MNY CONUERT OLO CB RADIOS TO IO METER
BAND. AUERAGE PWR OUTPUT $4 T$ WATTS AM - GOWATS SSE

Introducing Secret CB's Super Amateur Diode. Increase your Delta Tune or Clarifier range 200% to 300% with the Secret CB super diode. Just remove original Tuning diode and replace with the Secret CB diode and your range is increased 200\% to 300%.

* For use on 10 meter or amateur only. Not for use on CB service. Check FCC regulations or check with your local amateur product distributor.

TypICAL 10 METER CIRCUIT APPLICATION

- Amateur's, pick up an ord sideband CB OR NEW AND CONVERT INEXPENSIVELY TO 10 METER AMATEUR BAND. DIODE WILL ALLOW UP TO SOKE SLIDE.
- FITS ALL SIDEBANDS OR RADIOS WITH DELTA TUNE.
- Normal shine on uniden chassis 12KC-ISKC.

Deluxe Radar

Warning System

CUSTOMERS AND DEALERS -

You will probably find all kinds of claims about Radar Detectors across the country - some good and some ridiculous.

After lining the dash with several units and trying them out myself, I personally chose the Stalker XK, made in Canada for Teaberry. The Stalker out performed all units on the market in both short range and long range radar. As a store dealer, I usually keep one or two other brands in stock and then sell up to the Stalker XK.

Try this hot little unit, I think you will be surprised!

