

SECRET C.B.

VOL. II

This book is dedicated to all of the CB'ers both young and old, in the United States and Abroad, and to those of future generations.

Communications has made the world closer and aware of events that touch our lives. It is my belief that personal communications is here to stay and is being pioneered by Citizens Band radio operators like you. Good luck to all.

Your correspondence from Vol.I has helped me very much.

TABLE OF CONTENTS

INTRODUCTION Pages 1-4
NEW CRYSTAL CROSS REFERENCE GUIDE Pages 5-14
SPECIFIC RADIO MODIFICATIONS Pages 15-40
SPECIFIC RADIO TUNE-UPS Pages 41-43
IMPORTANT SERVICE BULLETINS Pages 44-52
ANTENNA REPORTS Pages 53-55
BETA-COM SWITCH INFORMATION COMPLETE WITH SERVICE BULLETINS Pages 56-86
Secret C.B.
Volume Two
Published April, 1978
New issues quarterly
Address any and all inquiries with return address to:
Selman Enterprises
P. O. Box 8189
Corpus Christi, Texas 78412

INTRODUCTION

The information in this book is not to be used to exceed F.C.C. specifications, in any case, as applied to power, modulation, frequency spectrum, etc. It is illegal to do this to any CLASS D RADIO。

This book is a factual report of gathered information, and as such is intended for use on radios FOR EXPORT ONLY.

If you are not familiar with electronics, it is better to check for advise with your local electronics or CB center, as to restrictions, etc., concerning your radio.

More information, on other units will be forthcoming in future issues, to be published on a quarterly basis.

This book will not be found at a book store, but can be obtained through your local CB store or distributor, or by sending $\$ 12.95$ to:

Secret CB
P.O. Box 8189

Corpus Christi, Texas 78412

IMPORTANT:
Secret CB does not endorse any particular product or advertise any product.

The author shows pictures for information and reserves the right to market Secret $C B^{\prime}$ s own inventions and products.

Secret CB

> Notes from editor on Superior Mobile and Base Single Side-Band installations and performance techniques.

We recommend the AUDIO KING oil filled load or the $K 40$ antenna on mobile installations, especially Single Side-Band. The K40 seems to be better on trunk mount installations and the AUDIO KING works better on "diesel rigs""mirror mounts", etc.,

The main problem mounting the AUDIO KING on the trunk is that the antenna is very heavy and there is no mount besides a ball mount available that will hold up.

The ROBYN, PRESIDENT, and COBRA Single Side-Band are in my opinion, superior and the best buy for the money today. Also any "UNIDEN CHASSIS" same as above, will outperform most Single Side-Band sets on both receive and transmit modes. The dual gate mosfet front ends on receive and the simplicity of modification to these units make them a fantastic unit and well worth the money.

In base station applications we recommend the same type of radios using the "BIG STICK" Shakespeare antenna. This antenna does not corrode as easily and has a high angle of radiation.

Mobile to mobile range using these radios in Single Side-Band is usually 30 to 45 miles in Side-Band in heavy skip conditions. Mobile to base is 45 to 90 miles depending on atmospheric conditions. These applications have worked with us. Hope they are helpful to you.
AIROMAR
CB7000 1
ASTRO LINE (BOWMAN)
AM P
SSB D
AUDIOVOX
MCB-1000 P
MCB-500 P
BONSONIC
HCB-15 P
BROWNING
Eaglette 0
LTD H
SST
Brownie. F
CLARICON
Intruder. P
Pirate. P
Privateer P
30850 P
COBRA
19 J
20
21 J
23 Special
24 1
25
28
28A.
29 J
85 F
Cam 89 J
130
131 F
132 old F
132A. H
135 old F
135A. H
138 B
139 B
880
27 Special
Cam 88 0

COURIER

Cadet. J
Caravelle J
Centurion C
Chief. P
Citation P
Classic II P
Comet P
Conqueror J
Classic III J
Cruiser. P
Gladiator.
Ranger 23 P
Rebel J
Redball P
Spartan G
Royalle P
TR-23 P
Traveller P
23T P
23S P
CRAIG
4201 P
DEMCO
Demco Satellite P
ECHO
99
FANON
Fan Fare 100. J
Fan Fare 880. J
SFT 400 P
500 P
800 P
900 P
GEMTRONICS
GTX23 P
GTX36 P
GTX2300 J
GTX2325 F
HY-GAIN
670 J
671 J
672 J
673 J
674
674A K
674B
122 L
123
123A
123B
123SJ
124 M
124M. M
130
132
223 L
250
320 M
323 M
323A M
351 D
352 D
KRACO
KCB2310 J
KCB2330 L
2320 J
2345 J
KRIS
Valiant J
23 K
HC-25 P
$23+$ J
Victor 0
Victor II 0
Vega J
Echo 99er J
XL-23 P
XL-70 SSB F
Ventura P
LAFAYETTE
CCB-50 A
Comstat 25A J
Comstat 25B J
Mark V 1
Mark VI 1
Comstat 35 J
Comphone 23 P
HB-525 J
HB-700 P
SSB-100
Telstat 925 P
Telstat 100 K
LCB-50 A
Micro 723 P
SSB-25 K
LAFAYETTE (continued)
SSB-50 A
Telstat 23 J
Telstat 25 A
Telstat 1023 P
Telstat 75 K
Micro 923
525 J
625 J
Telstat 25A
MARK
SSB-46 G
Lancer 23
MIDLAND
13-765 J
13-790 P
13-795
13-796 P
13-853. J
13-861 J
13-857 J
13-862. P
13-862B P
13-863. P
13-864. P
13-865. P
13-866. J
13-867. P
13-868. J
13-869. P
13-870. P
13-871.
13-863B J
13-872. P
13-873. F
13-875. J
13-876. J
13-877. P
13-878.
13-879B P
13-880. F
13-880B F
13-881B
13-882. J
13-883. J
13-885. F
13-887. P
13-890. J

13-892. .
13-893. .
13-894. A
13-895. B
13-896. .
13-897. .
13-898. .
13-898A .
13-898B A
13-899. .
13-976. .K
PACE
123 .P
123A. .P
130 . P
133 . P
143 . P
144. P

145 .
223 . N or O
1000B .
1000M. .
1023B .
2376 . 0
2300 . 0
2300DX 0
CB-76 . 0
Sidetalk 101D
SSB1023 . D
Sidetalk 23F
PAL
Roadrunner. 1
Coyote
. 1
PEARCE SIMPSON
Alleycat.
Bearcat . P
Bengal .
Bobcat. .
Bobcat 23D.
Cheeta. .
Cougar old. J
Cougar new
Cougar 23B
Lynx . P
Panther . G
Puma. P
Puma 23B P
Pussycat . P
Simba

PEARCE THOMPSON (continued)
Tiger 23C P
Tiger . J
Tomcat . J
Tomcat (late)
Guardian . N
2301.................. P

Super LynxP
PENNYS
Pinto 23BP
Golden Pinto
981-3445. A
981-6051. P
981-6075. P
981-6210A P
981-6213. .
981-6220.
981-6240. A
981-6060. P

RAY JEFFERSON
CB-405 . P
CB-705 .P

RAYTHEON
Ramcom III.

REALISTIC

American 23P
Mini 23 .P
Navaho ProP
Pro 9er . P
TRC 40. P
TRC 23A. P
TRC 23B. P
TRC 23C.P
TRC 24. P
TRC 24B. P
TRC 24C....................... . . J
TRC 25. P
TRC 30........................ . . . J
TRC 46 . A
TRC 47 .
TRC 48 . K
TRC 49. .
TRC 52. J
TRC 55 . N
TRC 50. P
REGENCY
Formula 23 J
Sprint 23 P
CR-123 G
CR-123B G
CR-185 P
CR-142 P
CR-186 P
CR-230 P
CR-202 J
ROBYN
747B F
BB123 P
GT-7 P
J-123 P
LB-23 P
SX-101 P
SX-102 P
T-123B J
XL-1 P
XL-2 P
GTX-440 Special
TR-123C P
DG-30 P
WV-23 P
SX-007 P
K-123 P
ROYCE
1-600. P
$1-601$ P
1 -602. P
1-603. P
$1-605$ P
1-606. P
1 -620 P
SSB 1-630 0
SSB 1.631
SSB $1-635$ 0
SSB $1-640$ 0
SSB $1-650$ K
SBE
Catalina I \& II P
Console F
Coronado
Coronado II.
Brute P

SBE (continued)

Catalina
Cortez
SBE-6
SBE-12
SBE-16 Console II D
SBE CB 8
SBE CB 14 F
Sidebander II D
Sidebander III D
Sierra J
Trinidad P
7 CB J
9 СВ
10 CB
11 CB P
21 CB
22 CB P
SEARS
Sears Sideband A
SHARPE
CBT 58 J
CBT 500 J
CB 550 J
CB 500 UB P
SILTRONIX
SSB-23 F
Albatross F
Condor P
Penguin P
SONAR
FS-23 R
FS-3023 R
SURVEYOR
2400 P
TEABERRY
5×5 P
Big T P
T Charlie One J
Mighty T J
Golden 5x5 J
T Scout J
Tele T J
Model T. J

LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION

CRYSTAL
FREQUENCY
7.9767
7.9600
7.9434
7.9267
7.9100
7.8933
7.8766
7.8666
7.7600
7.7433
7.7267
7.7100
7.7083
operating FREQUENCY
27.605*
27.555*
27.505*
27.455*
27.405*
27.355*
27.305*
27.275*
26.955*
26.905*
26.855*
26.805*
26.800*
crystal frequency
11.600
11.550
11.500
11.450
11.400
11.350
11.300
11.270
10.950
10.900
10.850
10.800
10.795
operating freauency
27.605*
27.555*
27.505*
27.455*
27.405*
27.355*
27.305*
27.275*
26.955*
26.905*
26.855*
26.805*
26.800*

B		D	
8.759	27.605*	12.300	27.605*
8.709	27.555*	12.250	27.555*
8.659	27.505*	12.200	27.505*
8.609	27.455*	12.150	27.455*
8.559	27.405*	12.100	27.405*
8.509	27.355*	12:050	27.355*
8.459	27.305*	12000	27.305*
8.429	27.275*	11970	27.275
8.109	26.955*	11650	26.955*
8.059	26.905*	11600	26.905*
8.009	26.855*	11.550	26.855*
7.959	26.805*	11.500	26.805*
7.954	26.800*	11.495	26.800*

[^0]LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION

CRYSTAL FREQUENCY	E	OPERATING FREQUENCY	CRYSTAL FREQUENCY	G

F
12.305
12.255
12.205
12.155
12.105
12.055
12.005
11.975
11.655
11.605
11.555
11.505
11.500

OPERATING FREQUENCY
27.605*
27.555*
27.505*
27.455*
27.405*
27.355*
27.305*
27.275*
26.955*
26.905*
26.855*
26.800*

F		H	
12.305	27.605*	16.565	27.605*
12.255	27.555*	16.515	27.555*
12.205	27.505*	16.465	27.505*
12.155	27.455*	16.415	27.455*
12.105	27.405*	16.365	27.405*
12.055	27.355*	16.315	27.355*
12.005	27.305*	16.265	27.305*
11.975	27.275*	16.235	27.275*
11.655	26.955*	15.915	26.955*
11.605	26.905*	15.865	26.905*
11.555	26.855*	15.815	26.855*
11.505	26.805*	15.765	26.805*
11.500	26.800*	15.760	26.800*

[^1]
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION

CRYSTAL FREQUENCY		operating frequency	crystal frequency		OPERATING FREQUENCY
	1			\underline{K}	
17.465		27.505*	23.930		27.605*
17.415		27.455*	23.880		27.555*
17.365		27.405*	23.830		27.505*
17.315		27.355*	23.780		27.455*
17.265		27.305*	23.730		27.405*
17.235		27.275*	23.680		27.355*
16.915		26.955*	23.630		27.305*
16.865		26.905*	23.600		27.275*
16.815		26.855*	23.280		26.955*
16.765		26.805*	23.230		26.905*
16.760		26.800*	23.180		26.855*
			23.130		26.805*
			23.125		26.800*

	\underline{J}		\underline{L}
23.790	27.505^{*}	33.200	
23.740	27.455^{*}	33.150	
23.690	27.405^{*}	33.100	
23.640	27.355^{*}	33.050	
23.590	27.305^{*}	33.000	27.455^{*}
23.560	$22 A$	32.970	27.355^{*}
23.240	26.955^{*}	32.650	27.305^{*}
23.190	26.905^{*}	32.600	27.275^{*}
23.140	26.855^{*}	32.550	26.955^{*}
23.90	26.805^{*}	32.500	26.905^{*}
23.085	26.800^{*}	32.495	26.855^{*}

[^2]
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION

CRYSTAL FREQUENCY	\mathbf{M}	OPERATING FREQUENCY	CRYSTAL FREQUENCY
33.345		27.505^{*}	\underline{O}

N
33.500
33.450
33.400
33.350
33.300
33.270
32.950
32.900
32.850
32.800
32.795
27.505*
27.455*
27.405*
27.355*
27.305*
27.275*
26.955*
26.905*
26.855*
26.805*
26.800*
38.100
38.050
38.000
37.950
37.900
37.870
37.550
37.500
37.450
37.400
37.395

P
27.505*
27.455*
27.405*
27.355*
27.305*

22A
26.955*
26.905*
26.855*
26.805*
26.800*

[^3]SPECIFIC RADIO MODIFICATIONS

1．）Remove top and bottom covers．
2．）Clip D30，R119，and D32 from CKT．
3．）Unsolder R－162 and remove from CKT．
4．）Replace R－162（ 4.7 K ohm）with a 1 K ohm．
5．）Turn set over with front facing you．
6．）Locate IC7 in FRH corner of PC board． Isolate Pin $⿰ ⿰ 三 丨 ⿰ 丨 三 一 19$ from ground by cutting around it as shown in diagram．

7．）Solder 1 lead of a 6 ＂piece of speaker wire to Pin 非19 of IC7 and the other lead to ground．Let other end of wires hang free for future use．

8．）Make a power jump from C－135 pos．side to C－110 pos．side on PC board．

9．）Trace the violet／white wire from the clarifier pot to the PC board．Unsolder the wire and move it to ground on the PC board．

10．）Locate small Pe board directly behind PA／CB switch． This switch will be used to obtain the additional channels．

11．）Solder end of speaker wire（from Step 7） 1 lead to each of the pins shown in the diagram．

12．）TUNE：VR7 for AM Mod．
L37，L32，and L30 for AM xmt pwr．
VR8 for AM max．pwr．
CT7 for SB pwr．

Locate
4.68 Volt Power Supply Source

1. 26.365 MHz
2. 26.375 MHz
3. 26.385 MHz
4. 26.405 MHz
5. 26.415 MHz
6. 26.425 MHz
7. 26.435 MHz
4.68 Volts to Pin $19+18$
8. 26.765 MHz
9. 26.775 MHz
10. 26.785 MHz
11. 26.805 MHz
12. 26.815 MHz
13. 26.825 MHz
14. 26.835 MHz

To Pin 18
on IC UPD858C

> *THIS IS NOT A PRODUCT OF PRESIDENT RADIO. ALSO ANY MODIFICATIONS OF YOUR RADIO MAY VOID WARRANTY.
> STEP A Remove top and bottom covers.
> STEP 1 Remove front panel be removing two screws on each and all knobs.
> STEP 2 Remove nut off dimmer control and unsolder orange, green and $\quad \begin{aligned} & \text { white wires. Discard control and install new volume pot 100K } \\ & \text { ohm (supplied) in its place. (THIS WILL BE THE NEW RF GAIN CONTROL.) }\end{aligned}$

STEP 3 Turn redio upside down and locate PC board (PC-220AA) on which the local distance $N B ; P A \& C B$ are mounted on. Cut the pink-white and orange-white wires away from the switch connector. See Fig. A.
STEP 4 Pull plug up off connector. Bend down lst three male contacts on left side. See Fig. A.
STEP 5 Then replace plug on connector.
STEP 6 Connect white wire to terminal where pink/white wire was. Connect green wire to second terminal where orange/white wire was. Connect orange wire to third terminal.
STEP 7 Solder 50K trimer registor (supplied) betweed 1st and 3rd wires. Adjust control to desired DIMNESS with the switch button "in". With switch out (DX POS.) you will have maximum brightness.
STEP 8 Solder ground wire from PC board ground to 3rd pin on 100K (NEW RF GAIN) control. Solder orange/white wire to center terminal (PIN.2) Solder pink/white wire to lst pin or top pin look down into CB with CB right side up. See Fig. B.
STEP 9 Replace front panel, screws and knobs. Replace top and bottom covers.

FIG. A

KIT for improving adjacent channel rejection in COBRA 138XLR, 139XLR and other similiar chassis design.
From Secret CB (The Idea People)

(Contact your local CB shop or Distributor).

Step 1.- Remove top and bottom covers. Remove screws holding speaker and bracket (Fig. A).
Step 2.- Cut wire from FT2 to L-6.
Step 3.- Install 7.8 crystal filter (supplied).
Step 4.- Install can (supplied)
Step 5.- Inject 27.205 (Ch.20) and adjust L-6 for maximum sensitivity. Inject at antenna.

NOTE: If no signal generator is available, tune L-6 for maximum noise. Use GC tuning tool 非9440.

Adjust VR7 (SSB ALC)- Maximum SSB power.
Adjust VR6 (AM power)- Maximum carrier level.
L8, L7, L10- Adjust for maximum power.

Transmit clarifier modification
 BRUWU/White Wire on the PA switch.
Move R61 to cathode of D32

32 CHANNEL EXPANSION
Remove PLL box by unsoldering 6 lands on foil
side of board.
Isolate Pin 19 of PLL D858C from ground by cutting around it

Disconnect both wires from tone switch and isolate.
Connect one wire to Pin 21 of PLL and one wire to
Pin 19 and another to PLL ground (any solder joint attached to PLL box wire as follows):

1.) Remove screws holding top cover.
2.) Remove top cover.
3.) Clip D-32, D30, R119 from CKT.
4.) Remove bottom cover.
5.) Unsolder. Remove R 162 (4.7K ohm), but retain later use.
6.) Solder a IK ohm $1 / 8$ watt resistor in $R-162$ spot.
7.) Remove Pin 非19 from ground by cutting away PC board as in lower diagram.

13.) Cut "Land" on PC board in places indicated by.
14.) Make two (2) jumps as indicated on diagram.
15.) Scrape green insulation from land where indicated and move green wire here.
16.) Locate wire from Step 9. Solder the wire to pins on PC board indicated by two STARS on diagram.
17.) Locate (1) violet and (1) white wire leading to PACB switch on top of board. Clip these wires and splice them together.
18.) TUNE: VR-6 for SSB Mod.

VR-7 for AM Mod.
PEAK: L37, L32, L30, for AM
VR-8 AM Power out
CT7 SSB Power

1．）Remove screws holding top cover on．
2．）Remove top cover．
3．）C1ip D－32，D－30，and R－119 from circuit．
4．）Remove bottom cover．
5．）Unsolder and remove $\mathrm{R}-162,(4.7 \mathrm{~K}$ ohm），but retain for later use．
6．）Solder a 1 K ohm $1 / 8$ watt resistor in $\mathrm{R}-162$ spot．
7．）Remove pin $⿰ ⿰ 三 丨 ⿰ 丨 三 一 19$ from ground，by cutting away P．C．board as in lower diagram．

$$
\begin{aligned}
& \text { SEE FIG.Z } \\
& \text { ON ROBYN SB-52OD } \\
& \text { CONVERSION }
\end{aligned}
$$

8．）Solder 4．7K ohm resistor from pin 非19 to ground．
9．）Solder 1 lead of an $8^{\prime \prime}$ piece of speaker wire to pin 非19，and the other lead to pin 非21．Let the other end of the wires hang free for future use．

10．）Trace the violet／white wire on the clarifier to the P．C．board． Unsolder the wire from the board and move it to ground，if not already connected to ground．

11．）Make power jump from C－135 positive side to $\mathrm{C}-110$ positive side on P．C．board．

12．）Locate P．C．board 非PC－220AA directly behind CB－PA switch．
13.) On J409 of PC-22AA, clip all 5 wires from connector, and perform the following:

Splice together the white and violet wires.
Splice together the black/white and brown wires.
Leave the violet/white wire open.
14.) On J 408 of the same board, clip brown/white and yellow/white wires and splice them together. Also clip the yellow wire and leave it open.
15.) Connect the loose ends of the speaker wire used in step 非9 to the CB/PA switch as indicated below.

REF: SB-510D and SB-520D Noise Blankers
SB-510D pull Local switch
Ignition systems and the noise they produce vary greatly in the amplitude and duration due to the various types of auto and truck ignition systems. The noise blanker can be tailored to the vehicle in which it is installed by an adjustment of the noise blanker.

If excessive noise is experienced after the radio has been installed with the noise blanker and engine on, follow the steps below:

1. Remove case screws and covers of radio.
2. Locate L1 and L2, see drawing supplied.
3. With engine, radio and noise blanker on, carefully adjust LI and the two slugs of L2 for minimum noise with non-metalic screwdriver.
4. Replace case and screws.

It has been noted by many users of the SB-510D that the local switch degrades the receiver performance too much, limiting the receive range to only a short distance. This can be easily corrected by the adjustment of VR2 which is located near relay 非1. The amount of attenuation in the local position can be adjusted by this control. (see reverse side)

PARTS LAYOUT (TOP VIEW)

1) 26.645
2) 26.655
3) 26.665
4) 26.685
5) 26.695
6) 26.705
7) 26.715
8) 26.735
9) 26.745
10) 26.435
11) 26.445
12) 26.465
13) 26.475
14) 26.485
15) 26.495
16) 26.515
17) 26.525
18) 26.535
19) 26.545
20) 26.565
21) 26.575
22) 26.585
23) 26.615
24) 26.595
25) 26.605

PAGES_A._THRU_M.

1- Make your TX. work for max.power (30 to 50 pep)
2- Make a slider + $12 \mathrm{KC}-10 \mathrm{KC}$
3- Make your clarifier work on TX.
4- Change modifications in excess of 60 channels.
Parts needed:
Amount Part
$3 \quad 1 \mathrm{~K} * \frac{3}{4} \mathrm{watt}$ resistors
$1 \quad 10 \mathrm{~K} * \frac{1}{4} \mathrm{watt}$ resistors
2 Diode 1N60P or 1N34A
1 Transistor 2SC710 or Equiv.
1 Miniature D.P.-D.T. center off switch
18.2 uh Choke
$1 \quad 470$ uh Choke
$1 \quad 152688$ Diode

Caution
Information contained herein is not to be used for illegal modification of transmitters in the United States within the 11 meter band. This information is for AMATEUR and/or EXPORT use only.

SWITCH SCHEMATIC

STE? 1
I NSTALL HERE

INSTALL HERE

STEP ?

STEP 3

INSTALL HERE

BUILD THIS
$\overbrace{0}$ JUMPER WIRE

STEP 4

INSTALL HERE
BUILi THIS

STEP 6

CONNECT 2SC710 BASE TO 10K RESISTOK

SWITCH COMPLETE

REMOVE WIRES FROM PINS $6 \& 7$. CONNECT
PER DRAWING AND TAPF, IDENTIFICATION:

1	28	1	26.645
2	29	2	26.655
3	30	3	26.665
4	32	4	26.685
5	33	5	26.695
6	34	6	26.705
7	35	7	26.715
8	37	8	26.735
9	38	9	26.745
10	39	10	26.755
11	40	11	26.765
12	27.425	12	26.785
13	27.435	13	26.795
14	27.445	14	26.805
15	27.455	15	26.815
16	27.475	16	26.835
17	27.48:	17	26.845
18	ל27.49	18	26.855
19	27.505	19	26.865
20	27.525	20	26.885
21	27.535	21	26.895
22	27.545	22	26.905
23	27.575	23	26.935
24	27.555	24	26.915
25	27.565	25	26.825
26	27.585	26	26.945
27	27.595	27	26.955
28	27.605	28	1
$? 9$	27.615	29	2
30	27.625	30	3
31	27.635	31	3A
32	27.645	32	4
33	27.655	33	5
34	27.665	34	6
35	27.675	35	7
36	27.685	36	7A
37	27.695	37	8
38	27.705	38	9
39	27.715	39	10
40	27.725	40	11

Note: Some units won't stretch below 26.705

1. How to make clarifier work on $T X$.

\therefore Ho io peak iX :or maximum output. Refer: Fig. \#3. PAGE J
Sefect mode LOB or LSiß. Do not use AM. Select charinel 19. Iurn Alf ajjustment to maximum cluckwise (viewed from radio front). Whistle: into microptione or inject 20 ml (42.4 KHz into microphone jack. ferak $\because 1,: 2$, and $\# 3$ for maximum output. Should be between 16 and 25 watts. (32 to 50 watts PEP input). Rotate all adjustments counter clockwise uniil a 3 to 4 watt decrease is reached.
Noit: If all is not adjusted for a 3 to 4 watt decrease, severe SS; distortion will result.
Do not attempt to peak on AM. Low SSH output will result.

Modification of the Sidebander $\mathrm{V} /$ Console V for additional channels is identical to that of the Sidebander IV with the exception of the circuit connection points of the additional switch which is required.

Modification of the Sidebander $\mathrm{V} /$ Console V is as follows:

1. Wire switch as shown on pages C - E.
2. Remove PLL shield cover in radio. Remove PLL PC board from shield box.
3. Locate and unsolder the blue and violet wires connected to the main PC board. With the radio facing you, the wires are located on the left end of the M58476 IC on the main PC board. There are seven wires there numbered 1 thru 7 .
4. Referring to the switch drawing on page E, the connection labeled SYN6 should be soldered to the blue wire removed in step 3. The wire labeled SYN7 should be soldered to the violet wire removed in step 3.
5. The wire labeled switch 6 should be soldered to the point on the main PC board where the blue wire in step 3 was removed from. The wire labeled switch 7 should be soldered to the point on the main PC board where the violet wire in step 3 was removed from.
6. Locate on main PC board, positive lead of capacitor C818, 47mfd @ 16VDC. This is the 5VDC bus for UP/DOWN unit. Lead from switch marked +5 VDC should be soldered to this point.

This completes modification of the Sidebander V/Console V. Any additional modifications listed for the Sidebander IV also apply to the Sidebander V/ Console V.

"SLIDER"

PARTS NEEDED

1
1
1

DESCRIPTION
8. 2 uh CHOKE

470 uh CHOK.E
152688 DIODE

INSTALLATION INSTRUCTIONS

1. REMOUE SPEAKER FOR SYNTHESIZER ACCESS
2. REmOVE SYnthesizer cover
3. LIFT SYNTHESIZER BOARD FOR PARTS SIDE ACCESS
4. REMOVE C9ZG 22PI AND DISCARD
5. REMOVE D903/52688 AND SAVE
6. CUT TRACE NEXT TO XTAL

7. SOLDER ANODE OF D903 TO NEW CHOKE 8. $2 \mu \mathrm{~h}$

39
8. INSTALL CHOKE-DIODE COMBINATION IN C 926 HOLES WITH CHOKE TOWARDS $\angle 905$
9. INSTALL NEW $470 \mu h$ CHOKE ON BOARD SIDE FROM XTAL TO GROUND.

10. INSTALL NEW DIODE 152688 FROM XTAL TO CATHODE OF DIODE IN STEPS $7 \xi 8$. NOTE: CATHODE TO. CATHODE ClARIFIER CENTER POSition
il. SET CHANNEL 20 AM, 1 AND TRANSMITT INTO LOAD AND MONITOR COUNTER.
12. TLNE L904 COUNTER CLOCKWISE "FOIL SIDE OF BOARD" UNTIL NO MORE INCREASE IN FREQ. STOP TURNING.
13. TUNE L9OS CLOCKWISE "FOIL SIDE OF BOARD" UNTIL FREQ $=27.2050 \mathrm{MHERTZ}$
'• MODIFİATION COMPLETE. RESULTS SHOULD BE:
A. CLARIFIER CENTER $=$ CENTER FREQ
B. CLARIFIER CLOCKWISE $\cong+12 K H E R T Z ~$

CCLARIFIER COUNTER CLOCKWISE ミ - IOK HERTZ

SPECIFIC RADIO TUNE-UPS

BOMAN CBR9600
In dash AM/FM/CB
Adjust RV105 for maximum modulation. Remove top cover, RV105 is located on right front, beneath tone/ switch control on PC board. Adjust L111 and Lll3 for maximum power with forward modulation.

GEMTRONICS GT44
Adjust RV2 for maximum modulation. It is located near the heat sink of the final transistor Q5 and transformer 非TA66.

HY-GAIN MODEL 2701
Adjust RV102 for maximum modulation. It is located near transformer and final transistor on right rear of PC board.

ROYCE 1-660
Cut diode D301 for maximum modulation.

GENERAL ELECTRIC MODEL 3-5869A
Adjust RV2 located at right rear near heat sink and transformer.

KRACO KCB-2340
Adjust RV7 for AM maximum modulation.
Adjust RV8 for maximum SSB modulation.
Adjust RV605 for AM power.
Adjust RV5 for maximum SSB power.

GENERAL ELECTRIC 3-5818A
Adjust RV2 for maximum modulation.

SHARP MODEL CB-800
Adjust R112 for maximum modulation. Adjust L303 and L302 for maximum power.

TRUETONE MODEL CYJ4832-A -87
Adjust RV2 for maximum modulation. Adjust L7, L11, and L12 for maximum power.

VECTOR MODEL X
Cut D260 and D261 for maximum modulation. Adjust L53, L55, L57, for maximum power.

DELCO MODEL 70BFMC3
Adjust RV2 for maximum modulation on CB chassis next to transistor heat sink and transformer at right rear of PC board.

PACE MODEL 8008
Cut CR18 and CR19 for maximum modulation. They are located near audio output. Transformer and l.C. audio amp. at right center of PC board.

BOMAN MODEL CB-750
Adjust FVR-3 for maximum modulation, located near center of PC board, $2 / 3$ way from front panel.

KRIS XL25
Adjust VR6 for maximum modulation, located on front side of T7 transformer at center rear of PC board.

LAFAYETTE MODEL HB640
Adjust RV2 for maximum modulation located near right rear of board by transformer.

RCA MODEL 14 T 300
Adjust RV102 for maximum modulation.

SEARS ROADTALK 40
Cut Diode D501 for modulation.

IMPORTANT SERVICE BULLETINS

SUBJECT：
COBRA 139XIR MODIFICATIONS

PROBLEM A．
TR－36／R153 Crystal drift due to overheating。 After radio has been on for a period of time，high temperature generated by TR－36 and $R-153$ overheats the SSB crystals thereby causing excessive trans－ mitter or receiver drift on SSB operation．

PROBLEM B．\quad PCB cracking or breaking due to rough handling． MODIFICATION PROCEDURE：

1．Remove top and bottom covers from radio．

2．Vicually check location of cracks and or breaks in PC board．Particularly check areas close to PC board mounting screws．

3．Place radio upside down on clean cloth or pad．
4．Examine solder side of board for breaks in copper． With a knife remove green protective coating from copper．Solder a short piece of 22 AWG across break， and allow solder to flood remainder of break．

5．Repair breaks and larger cracks with epoxy glue。 If cracks or breaks are in vicinity of PC board mounting screws，install 非 $4 \times \frac{1}{4}$ inch OD flat washers under heads of mounting screws．
6. Carefully examine, and remember where pins of TR-36 and R-153 are soldered on PC board. You will notice that $\mathrm{R}-153$ is in series with center pin (emitter) of TR-36.
7. Unsolder and remove TR-36 from present location.
8. Mount TR-36 on auxiliary heat sink (747-056-9-002 supplied with this mod. kit) using the existing hardware and insulators (Fit.3). Apply thermal compound (341-002-9-001) on both sides of mica insulator before installation. When installing insulated shoulder washer, make sure that the smaller end seats in transistor hole. When tightening transistor mounting screw be careful not to damage insulated shoulder washer.
9. Remove and discard two Phillips screws that mount present heat sink to chassis.
10. Install auxilliary heat sink over present heat sink using two Tapping Screws 710-040-9-001 supplied。
11. Strip (3/8 inch) and trim ends of three 8 inch wires supplied, and solder them to the transistor pins (gray-base, yellow-collector, green-emitter). Install sleeving over soldered connections at transistor pins.
12. Slip the other ends of leads through slot in PC board and solder emitter and base leads to the area of PC board vacated by corresponding pins of transistor.
13. Solder the collector (yellow) lead to the $B+$ end of $\mathrm{R}-153$.

By use of side butters cut top lead of R-153.

NOTE: Should CT2 or CT3 have been accidentally moved or maladjusted, they should be realigned as follows:

CT2 (USB) 7.8025 MHz
CT3 (ISB) 7.7975 MHz
Secure leads to cable assembly with black tape or equivalent.
14. Remove backing paper from four rubber cushions (502-104-9-001) and paste cushions on solder side of PC board (Fig 2).

CAUTION:
To avoid damaging lead wires or components, locate
rubber cushions in areas of board that are clear of
lead wires and components.
15. Reinstall bottom cover, and turn radio over to upright or normal position.
16. Paste two meter cushions (520-104-9-001 on top of Xtal filter (Fig.1).
17. Install a piece of masking tape on underside of PC board holder (251-230-9-001) so as to sheathe burrs and sharp edges.
18. Install PC board holder (Longer flange under auxiliary heat sink, shorter flange under chassis) Fig.I
19. Apply adhesive (3M Scotch-grip 4475 or equivalent)
to engaging surfaces at both ends of PC board holder, to prevent it from moving, due to any subsequent mishandling of the radio.
20. Reinstall top cover.
A. Parts required for correction of xtal drift mod. 139XLR.

PARTS DESCRIPTION
DYNASCAN NO.
QTY/KIT

Heat Sink	$747-056-9-002$	1
Bind screw	$634-088-9-003$	1

Spring Washer 731-049-9-002 1
Tapping screw 710-040-9-001 2
Lead Wire, green 421-122-3-555
" " , yellow 421-122-3-444 1
" " , gray 421-122-3-888 1
Vinyl tube sleeve 3
Thermal compound 341-002-9-001 AR
Adhesive - 3M Scotch-grip 4475 or equivalent
Tie wrap, nylon 763-031-9-001
B. Parts required for PC board protection mod. C-139XLR

PARTS DESCRIPTION DYNASCAN NO. QTY/KIT
Rubber cushion 502-104-9-001 4 for PC board

Holder for PC 251-230-9-002
1 Board

Meter cushion 502-104-9-002 2
Tape, masking AR
Epoxy-Glue AR

NOTE: 1. This modification should be done on all radios in for in-warranty repair.
2. Apply this modification up to Production number 70029001. Units beyond this number already contain this modification.

SERVICE BULLETIN

SUBJECT: IMPROVING CROSS MODULATION REJECTION IN THE SBE-12CB SIDEBANDER II AND THE SBE-16CB CONSOLE II

Engineering investigation of the Sidebander II/Console II has determined that the removal of diode D7 will improve cross modulation rejection approximately 10 db .

We recommend that any units returned for warranty or non-warranty service have diode D7 removed. No alignment or adjustment is necessary once diode D7 is removed.

This change has been incorporated in all Sidebander II's/Console II's shipped from the factory after April 26, 1976.

SUBJECT: Improved modulation
PROBLEM: To improve the modulation sensitivity and spectrum of the Cobra 29, the following changes should be made.

MODIFICATION REQUIRED:

1. Change R98 to 2.7 K
2. Change R99 to 3.3 K
3. Change R60 to 470 ohms
4. Delete C97
5. Change C135 to 0.0047 mfd
6. Change C 57 to 0.0022 mfd
7. Reverse L8
8. Install a heat sink on driver transistor TR19

NOTE: Above components were not used on all Cobra 29 production.

SUBJECT: Noise Blanker on Cobra 29

PROBLEM: Some complaints from the field indicate that there appears to be no change in the operation of the Noise Blanker whether it is on or off.

SOLUTION: Referring to diagram, soldering is done only on the NB and ANL switch. The following is the modification for the noise blanker switch operation.

1) Move green lead from p in 2 of ANL and solder to pin 8 of Noise Blanker.
2) Run jumper wire from pin 2 ANL to pin 9 of Noise Blanker.

REPAIR

LOCATION: With the controls facing you, and the Noise Blanker and the ANL switch top up.

ANTENNA REPORTS

There have been many modifications to CB antenna arrays and I'm sure many are very valid. However, I wish to state that it is difficult to beat the engineers when attempting to do this.

Taking the above into consideration the following little hints might be helpful.

SHAKESPEARE BIG STICK ANTENNA MODIFICATION:
Install 3/4 FRANCIS WHIP or AUDIO KING AKO-100 in top. (Replaces TOP WHIP)

A.) The AUDIO KING (Oil Filled Load) disapates static electricity and shows a significant gain or receive and transmit.
B.) The $3 / 4$ FRANCIS may be trimmed if necessary to lower SWR.

11 RUST PREVENTION - all metal components plated to meet or exceed MIL-SPEC
QQ-C-320B, MIL.STD 868 and 870 .

Secret $C B$ notes concerning $K-40$ antennas.
1.) The $\mathrm{K}-40$ is the most fantastic mobile antenna system that we have ever tested.
2.) The most significant test of the $K-40$ antenna was the SWR!s were the lowest of any antenna we've seen even from low frequency up to $28,000 \mathrm{mhz}$ 。
3.) We confirm the average 30% futher range increase on recieve and transmit.
4.) The antenna is durable and well constructed. Out of 150 I have installed, we have never adjusted SWR's. (We achieved this by "Bottoming" the "Stinger" all the way down in the load.) Normal SWR was 1.2 flat thre 27.805 mhz .

BETA-COM SWITCH INFORMATION COMPLETE WITH SERVICE BULLETINS

40 CHANNELS! From your 23 Channel Transceiver

The BETA.COM line of switching modules provides a package which replaces the existing channel selector assembly on most transceivers. These modules are complete with necessary hardware and a new 40 channel selector knob which gives factory appearance and onchannel performance. The BETA-COM switch modules provide the most economically time-effective method of upgrading 23 channel transceivers to on-frequency, 40 channel specifications, without giving up the superior performance of your 23 channel equipment.
The model SWM-40 provides all necessary switching circuitry for transceivers which employ two oscillators for frequency synthesis. The SWM-40 adapts to many AM radios.
The model SWM-41 provides switching circuitry for SSB/AM radios where two oscillators are used for synthesis. This model features series tuning capacitors in each of the high oscillator crystal positions. It is specifically designed for such radios as the Cobra 138, Cobra 139, Midland 13-893 and Midland 13-895.

The model SWM-42 utilizes three switching circuits which permits conversion of AM transceivers where a common high oscillator is employed along with seperate low frequency transmit and receive oscillator circuits.

The model SWM-53 is a unit specifically designed for SSB/AM transceivers where two oscillator circuits are employed and it is necessary to tune, through individual series tuning capacitors, both the high and low oscillator circuits.

The model SWM-54 delivers complete tuning capability in SSB/AM transceivers employing a single high frequency oscillator circuit, along with individual transmit and receive oscillator circuits requiring the ability to seperately tune all crystals.
The SWM-40 and SWM-42 are available as SWA-40 and SWA-42 for use in applications where "soldered in" crystals are employed in the original radio. Sockets are provided only in crystal positions X102, X103, X104, X105, and X106.

Complete conversion reference material is available from your local BETA-COM distributor. BETA-COM also offers a line of PLL modification kits. Consult your distributor for details.

- Replaces existing channel selector switch
- Maintains all the performance features of your 23 channel radio
- Exclusive internal mounting
- Supplied with 40 channel knob
- On-frequency correlated crystal groups
- Detailed installation instructions
- Conversion modules available for most 23 channel transceivers
- Secures your original investment
- Only your technician will know

SWITCHING TRUTH TABLE FOR
MODELS SWM-40, SWM-41, SWM-53

COMMON 10 KHZ SPACING COMMON SO KHZ SPACING 								
	\square				0			
2	(1)			O				\bigcirc
3	9			¢			0	-
4	Ω							7 \%
5	0				0			0
6	0			0		0		\bigcirc
7	0			-				-
8	0			-				0
9		\bigcirc		0	\bigcirc			0
10		0		-		0		0
11		\bigcirc		-			-	-
12		\cap		0				0
13		-		-	\bullet			\bigcirc
14		-		O		0		0
15		-		\bigcirc				\bigcirc
16		\bigcirc		\bigcirc				0
17		0		\%				-
18		\bigcirc		-		0		0
19		0		-				0
20		-		-				\bigcirc
21			-	-	-			?
			Q	0		\bigcirc		\bigcirc
23			-	-				10
24			-	0				\bigcirc
25			-	\bigcirc			-	0
26			0					
27			0	©		0		,
28			-	O				0
29			-	-				0
30			-	-				-
31			-	- 0	0			
2			-	- 0				-
33			-	- 0				-
34			-	- 0				0
35				10				0
36				- 0	-			-
37				0				0
8				0				0
39				0			0	0
40				0				0

SWITCHING TRUTH TABLE FOR MODELS SWM-42, SWM-54

8wis 40

SWM 41

SWM 53-Details Available August 1977

BETA-COM 40 CHANNEL SWITCH MODULE \& CRYSTAL REFERENCE

	SWITCH CRYSTAL
MANUFACTURER and MODEL	MODULE

Eico

Sentinel 23, Sentinel Pro	40	E
7723	42	2A
Electronic 2000		
Contact 23	42	2A
Fannon		
Fanfare 120	40	A
Fieldmaster		
MF-1001	54	3A
TR-19, TR-19M, TR-20	42	2
Fulcomm		
2303	54	3E

Gem Marine
GB-11935
40 A

GR-11930
Gemtronics
GTX-23, GTX-36
GTX-2300
GTX-3000
General Motors
CBD-012, $123 \mathrm{~A}, \mathrm{GM}-130$
GM-23B, GM-23C
CBD-10
Globe
9000, 9001
2H
Granada
CB-6, CB-7, FCB- 27
2A
Grand Prix
D1125, D1325RF
2A
$\frac{\text { General Electric }}{3-5810 B}$ \qquad
Great
GT-418
A
Hallicrafters
CB- 24
K
Handic
23, 27
20, 24, 25, 28
85
132, 135
132 (early version)
138, 139
880
131
Commando
2310, 2340
2320, 2325
Courier
TR-23B, TR-23S, Travelier I, II 42
Classic I, II, Clipper 23, Comet, Crusier 42
23, 23 Plus, Royale, Ranger 23,
Conqueror II, Caravelle II, Rebel 23
Caronell II, Fanfare 100, Cadet 23
Centurion, Gladiator
Spartan
256
2533
2561, 2564, 2568
Safari I
Kraco
2320B, 2330B
2340, 2355
1300, 2310, 2320, 2345
2310B, 2320A
'99er
A
42
40
40

SWM- Prefix to Switch Module Model No. indicates that crystal sockets are provided for all crystals.
SWA- Prefix to Switch Module Model No. indicates that crystal sockets are provided only for added crystals X 102 thru X106. - 25 Suffix indicates that shaft length is $3^{\prime \prime}$

No suffix to model number indicates that standard 1 " long, flatted shaft is provided.
Use SWA module where wired in crystals are supplied with the original radio.
BETA_COM HAS MADE EVERY EFFORT TO INSURE THAT THESE CHARTS ARE CORRECT. AN EXAMINATION OF THE RADIO
SHOULD BE MADE TO DETERMINE WHETHER WIRED IN OR SOLDERED IN CRYSTALS ARE EMPLOYED. BETA-COM CANNOT
GUARANTEE THE ACCURACY OF THESE CHARIS DUE TO THE FACT THAT MANY MANUFACTURERS CHANGE DESIGNS WHILE
USING THE SAME MODEL DESIGNATIONS. BETA-COM SOLICITES YOUR COMMENTS REGARDING ANY ERRORS IN THESE CHARTS.

CRYSTAL REFERENCE CHART

 for use with Berta-com Switch Modules| CRYSTAL GROUP | -----------SWITCHING MODULE CRYSTAL POSITION .-....-....-...- | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | X102 | X103 | X104 | X105 | X106 |
| A | 23.590 | 23.640 | 23.690 | 14.980 | |
| B | 12.005 | 12.055 | 12.105 | 7.490 | |
| C | 41.200 | 41.250 | 41.300 | 7.705 | |
| D | | | | | |
| E | 37.900 | 37.950 | 38.000 | 4.605 | |
| F | 33.465 | 33.515 | 33. 565 | 10.470 | |
| G | 33. 145 | 33.195 | 33. 245 | 10.150 | |
| H | 16.900 | 16.950 | 17.000 | 4. 395 | |
| I | 16.500 | 16.550 | 16.600 | 4.795 | |
| J | 16.610 | 16.660 | 16.710 | 4. 430 | |
| K | 11.150 | 11.200 | 11.250 | 8.645 | |
| 1 A | 7.8777 | 7. 8943 | 7.9110 | 14.934 | |
| 1 B | 12.000 | 12.050 | 12. 100 | 7. 4925 | |
| 1 C | 16.265 | 16.315 | 16.365 | 6.030 | |
| 1 D | 8.459 | 8. 509 | 8. 559 | 11.0335 | |
| 1 E | 23.630 | 23.680 | 23.730 | 14.937 | |
| 1 F | 15.382 | 15.3987 | 15.4154 | 10.605 | |
| $1 G$ | 12.040 | 12.090 | 12. 140 | 7.4525 | |
| 2 A | 37.900 | 37.950 | 38.000 | 10.605 | 10.150 |
| 2B | 37.900 | 37.950 | 38.000 | 10.605 | 10.060 |
| 2C | 35.271 | 35.321 | 35.371 | 7.976 | 8. 431 |
| 2D | 33.300 | 33.350 | 33.400 | 6. 005 | 6.460 |
| 2E | 33.000 | 33.050 | 33.100 | 5.705 | 6. 160 |
| 2F | 19.305 | 19.355 | 19.405 | 7.990 | 7. 535 |
| 2G | 18.813 | $1 \times .863$ | 18.913 | 8. 482 | 8.937 |
| 2 H | 17.265 | 17.315 | 17.365 | 10.030 | 9.575 |
| 3 A | 46. 1515 | 46.2015 | 46.2515 | 10.605 | 10.608 |
| 3 B | 11.300 | 11.350 | 11.400 | 8. 1955 | 8. 1935 |
| 3 C | 7.8766 | 7.8933 | 7.910 | 14.937 | 14.934 |
| 3D | 12. 105 | 12.155 | 12.205 | 7.3915 | 7. 3885 |
| 3E | 12.005 | 12. 055 | 12.105 | 7.4915 | 7. 4885 |
| 3F | 7.8792 | 7. 8958 - | 7.9125 | 14.937 | 14.934 |
| 3G | 37.900 | 37.950 | 38.000 | 11.0585 | 10.1515 |
| 3 H | | | | | |
| 3 I | 23.630 | 23.680 | 23.730 | 14.937 | 14.940 |

1. The Model SWM-42 and SWA-42 BETA-COM Switching Modules are designed to replace the 23 channel selector switch assembly in Citizens Band Transceivers employing three separate oscillator circuits. Typically, the se oscillator circuits are utilized in the Transmit and Receive functions to synthesize the necessary output frequencies. Typical circuits employ one highfrequency oscillator coupled with two separate low frequency oscillators, one for the receive function and the second for the transmit function.
2. Remove the transceiver housing so as to have full access to both the bottom of the printed circuit board and the top side. Always make certain that the transceiver to be modified is operating in both transmit and receive functions before starting the conversion.
3. Before commencing with the conversion examine the radio to make certain that the SWM Module will physically fit into the transceiver in place of the existing 23 channel selector switch assembly. The SWM Switch Module generally mounts '"up-side down' in the radio but may vary depending upon the model and space available. Always mount so the leads from the Module will be as short as possible when wired into the circuit.
4. After determining that the Switch Module can be accommodated within the enclosure of your transceiver, locate the switch output leads which feed the three oscillator circuits. One will be the high frequency oscillator and the second will be the low frequency transmit oscillator. The third will be the low frequency receive oscillator. These leads should be cut at the switch end and not at the PC board as this will facillitate their proper location in further steps.
5. Remove all remainıng switch leads at the PC board end by carefully unsoldering from the printed circuit board. Remove the old selector switch and set aside.
6. If your radio employs plug-in crystals carefully remove them from your transceiver and plug them into the proper sockets on the SWM-42 Switch Module. If your radio uses soldered in crystals it is recommended that you use the SWA-42 Switch Module since it has sockets for only the added crystals, Xl02, X103, Xl04 Xl05 and Xl06. It is then not necessary to remove the other sockets in order to install the soldered in crystals removed from your radio. If your radio does have soldered in crystals be very careful in removing the crystals. It is reccommended that you use 'solder-wik' or some type of solder removal tool.
7. Ream the channel selector mounting hole to $3 / 8^{\prime \prime}$ diameter to permit mounting the Switch Module. Install the Module with the hardware included. Locate the high frequency oscillator input. This will be one of the wires you left on the PC board. Connect the YELLOW lead from the switch Module to this point. Locate the lead which is the transmitter low frequency oscillator input and connect the WHITE lead to this point. Connect the GREEN lead to the low frequency receive oscillator input. Connect the BLACK lead from the Module to a convenient PC board common ground point.
8. Install the knob and align as instructed in knob assembly sheet.
9. Reassemble your transceiver. It is not ready to transmit and receive on all 40 CB Channels.
068-115, Sheet 1

COMMON 10 KHZ SPACING COMMON 50 KHZ SPACING 																			
1	\bigcirc								0	-				0	-				0
2	0								0		0			0		Q			0
3	0								0			\bigcirc		0			\bigcirc		0
4	Ω								0				\square	0					0
5		\bullet							0	-				\bigcirc	-				\bigcirc
6		\bullet							0		0			0		\bigcirc			0
7		\bullet							0			-		0			-		0
8		0							0				-	0					0
9			\bullet						0	\bullet				0	-				0
10			0						0		\bullet			0		-			0
11			\bigcirc						0			-		0			\bullet		0
12			\bigcirc						0				\bigcirc	0				-	\bigcirc
13				\bullet					0	\bigcirc				0	\bullet				0
14				\bigcirc					0		\bigcirc			0		-			0
15				-					0			\bigcirc		0			\bigcirc		0
16				-					0				\bigcirc	0					0
17					\bigcirc				0	\bigcirc				0	0				0
18					-1				0		\bigcirc			0		O			0
19.					\bigcirc				0			-		0			0		0
20					\bigcirc				0				0	0					\bigcirc
21						\bigcirc			0	\bigcirc				0	-				0
22						-			0		\bullet			0		\bigcirc			0
23						0			0				\bigcirc	0					0
24						0			0			\bullet		0			\bullet		0
25						0			0				\bigcirc	0					0
26							0		0	\square				\bigcirc	0				-
27							-		0		\bigcirc			0		\bigcirc			\bigcirc
28							-		0			\bigcirc		0			\bigcirc		0
29							-		\bigcirc				-1	0					\bigcirc
30							-		\bigcirc				1	0				10	\bigcirc
31								\bigcirc	\bigcirc	\bigcirc			10	0	\bigcirc			1	0
32								θ	0		\checkmark			\bigcirc		\square			0
33								\bigcirc	\bigcirc			\bigcirc		\bigcirc			0		0
34								\bigcirc	0				\square	0					\bigcirc
35								0	0				0	0					\bigcirc
36								0	0	\bigcirc				0	\bigcirc				0
37								0	0		\checkmark			0		\bigcirc			0
38									0			\bigcirc		0			0		0
39								0	0				\bigcirc	0					0
40									\bigcirc				-	0					\bigcirc

DETAILED INSTALLATION INSTRUCTIONS FOR MIDLAND MODEL 13-895, COBRA MODEL 138 AND COBRA MODEL 139
NOTE: BEFORE PROCEEDING WITH THE INSTALLATION OF THE BETA-COM MODEL SWM-4l SWITCHING MODULE MAKE CERTAIN THE TRANSCEIVER IS OPERATING CORRECTLY ON AM \& SSB FUNCTIONS ON EXISTING 23 CHANNELS.

1. Remove Knobs and front panel escutcheon. Remove the existing switch and carefully unsolder all leads from the PC board. The leads which run from the switch to the two oscillator inputs should be noted as the leads from the new switch module will be connected to these PC Board points. One lead, supplying the 11 Mhz oscillator, connects to the junction of D23 and R69 (and L301 in some models). The other lead, supplying the 8 Mhz oscillator, connects to the junction of L 2 , and R82.
2. After removing all existing crystals and unsoldering all leads from the old switch ream the switch mounting hole to $3 / 8^{\prime \prime}$ diameter.
3. Install all crystals into the appropriate sockets.

Xl- 8.1590 Mhz.	X6- 8. 4090 Mhz .	Xl02- 8.4590 Mhz.
X2-8.2090	X7-11.0035	X103-8.5090
X3-8.2590	X8-11.0135	X104-8.5590
X4-8.3090	X9-11.0235	X105-11.0335

4. Mount the SWM assembly into the front panel bracket and fasten with the hardware supplied. The module mounts into the transceiver upside down and it may be necessary to dress the wires in the shielded compartment to permit mounting the module parallel with the main PC board and perpendicular to the front panel.
5. Solder the leads from the new switch module to the main PC board as follows. The leads should be cut to the minimum length before soldering. All leads should be firmly anchored after the module has been installed. A small amount of wax or hot stick glue may be used.

Black- Connect to any convenient PC Board ground Point.
White- Connect to the junction of L3, D26, C74 and C75 thru C80. This is the common of the 8 Mhz crystal bank.
Green- Output of the 8 Mhz crystal bank. Connect as in step 1 Blue- Output of the 11 Mhz crystal bank. Connect as in step 1
6. Alignment- Connect the transceiver to a 12 VDC power supply and connect a counter to TP-4. This is the output measuring point for the 8 Mhz oscillator circuit. Set the AM/USB/LSB selector to the USB position. Locate Channel lon the selector switch. The counter should read approx. 8. 1590. Adjust trimmer capacitor adjacent to crystal Xl so that the counter reads 8.159000 plus or minus 30 cycles. proceed as follows-

Set Channel selector to channel	Adjust Trimmer Capacitor	Set frequency for
5	X2	8.209000
9	X3	8.259000
13	X4	8. 309000
17	X5	8. 359000
21	X6	8. 409000
26	X102	8. 459000
31	X103	8. 509000
36	X104	8. 559000

This completes the alignment of the 8 Mhz . oscillator circuit.
7. Alignment of the 11 Mhz circuit is accomplished as follows.

Connect the counter to TP3,
Adjust the Voice Lock or Clarifier front panel control to Mid Point of its range. Set the switch module to Channel 40. The counter should now read approx. 11.043 Mhz. Adjust the Voice Lock Range control, VR5 so that the counter reads exactly 11.043500 Mhz . Set the selector switch to channel 39, the counter should read 11.033500, set the selector to channel 38 and the counter should read 11.023500. Set the selector to channel 37 and the counter should read 11.013500 and set the selector to channel 36 and the counter should read 11.003500 . With the channel 40 crystal reading 11. 043500 Mhz all other 11 Mhz crystals should read within plus or minus 1000 Hz .
8. The transceiver may now be reassembled and is ready for 40 channel operation.

SWM-41 BETA-COM, WHEELING, ILL. USA COBRA 138
COBRA 139
MIDLAND 13-895

The BETA-COM CRYSTAL SWITCHING MODULE, Model SWM-4l is designed to extend the frequency capability of transceivers to a full 40 channels. A 40 channel switch, along with the necessary tuning capacitors are mounted to an epoxy-glass printed circuit board permitting rapid update of the transceiver.
The switch provides two separate circuits, one of which has included a series trimmer capacitor to permit precise tuning of the individual crystals.

INSTALLATION

1. Remove the top and bottom covers of the transceiver. Remove any knobs, panels or brackets necessary to permit easy removal of the existing 23 channel switch. It is recommended that you first locate the leads connecting the switch to the two synthesizer oscillators. Note these leads and cut them but do not remove them from the board until you are ready to connect the SWM-4l into the circuit.
2. Remove all leads from the existing switch at the PC board end. The old switch and leads will be discarded. Make certain that no solder is splashed on the PC board which may cause shorts. It is generally not necessary to remove the existing PC board crystal sockets or trimmer capacitors.
3. The SW M-4l switching circuit \#l is designed to add 150 Khz to the range capability of the synthesizer circuit in 50 Khz steps. The second section provides the necessary switching to accomplish 10 Khz steps to the appropriate oscillator circuit.

OSCILLATOR CIRCUIT \#l
COMMON-
SORIDES 50 KHZ STEPS
SWITCHED-

OSCILLATOR CIRCUIT \#2 PROVIDES 10 KHZ STEPS ** COMMON- BLACK SWITCHED- BLUE

* In switch positions $4,8,12,16, \& 20$ the steps are in 20 khz increments.

4. Separate the crystals removed from the transceiver into the groups spaced at 50 khz and the group spaced at $10,10,10 \& 20 \mathrm{khz}$. The lowest frequency in the 50 khz group is assigned the Xl designation with X 2 thru X6 being assigned the higher frequencies, in order. The lowest frequency in the second group is assigned the number $X 7$ with the remaining crystals in the group being assigned X8, X9 \& Xl0 in order. Integrate the additional crystals into the scheme as shown on the thruth table for Xl02, Xl03, Xl04 \& Xl05. INSTALL ALL CRYSTALS AS INDICATED ON SKETCH.
5. Mount the SWM assembly using the hardware supplied. The additional nut is provided to permit adjustment of the switch mounting, as necessary. In equipment utilizing a millimeter type shaft bushing on the original switch it may be necessary to ream the shaft opening to $3 / 8^{\prime \prime}$. The switch normally mounts upside down to provide bottom access to the crystal trimmer adjustments.
6. Connect the switch leads to the appropriate circuit board connection points. Adjust the individual trimmers in accord with manufacturers data.

7. The model SWM-40 and SWA-40 BETA-COM Switching Modules are designed ${ }^{-}$ to replace the 23 channel selector switch assembly in Citizens Band transceivers employing two separate oscillator circuits. Typically these circuits are utilized in the Transmit and Receive functions to synthesize the necessary output frequencies. These circuits employ one high frequency oscillator which is mixed with a low frequency oscillator to provide the desired operating output frequency.
8. remove the transceiver housing so as to have full access to both the bottom of the printed circuit board and the top side. Always make certain that the transceiver to be modified is operating in both the transmit and receive functions before starting with the conversion.
9. Before commencing with the conversion examine the radio to make certain that the SWM module will physically fit into the transceiver in place of the existing 23 channel selector switch assembly. The SWM Switch Module generally mounts '"up-side-down' in the radio but may vary depending upon the model and space available. Always mount so the leads from the Module will be as short as possible when wired into the circuit.
10. After determining that the Switch Module can be accommodated within the enclosure of your transceiver, locate the switch output leads which feed the 2 oscillator circuits. One will be the high frequency oscillator and the second will be the low frequency oscillator. These leads should be cut at the switch end and not at the PC board end as this will facilitate their proper location in further steps.
11. Remove all remaining switch leads at the PC board end by carefully unsoldering from the printed circuit board. Remove the old selector switch and set aside.
12. If your radio employs plug-in crystals carefully remove them from the transceiver and plug them into the proper sockets on the SWM-40 Switch Module. If your radio uses soldered-in crystals it is reccomended that you use the SWA-40 Switch Module since it has sockets for only the added crystals, Xl02, Xl03, Xl04 and X105. The SWM-40 Switch Module may be used with soldered-in crystals but it is then necessary to remove the sockets for Xl thru XlO so that the c'rystals removed from the radio can be soldered directly to the SWM-40 PC board. If your radio does employ soldered-in crystals be very careful in removing the crystals. It is recommended that you use "solder-wick" or some type of solder removal tool.
13. Ream the channel selector mounting hole to $3 / 8^{\prime \prime}$ diameter to permit mounting the Switch Modulw. Install the Module with the hardware included. Locate the high frequency oscillator input. This will be one of the wires you left on the PC board. Connect the YELLOW lead from the switch module to this point. Locate the lead which connects to the low frequency oscillator and connect the WHITE lead to this point. Connect the BLACK lead from the switch module to a convenient PC board common ground point. Keep all leads as short as possible.
14. Install the knob and align as instructed in knob assembly sheet. Reassemble radio. 068-118, sheet \#1

BETA-COM CORPORATION

1. The Model SWM-53 switch module is designed to replace the 23 channel selector switch assembly in Citizens Band Transceivers. This improved model provides individual tuning capacitor adjustments on all crystals added to the synthesizer system while providing small size and the advantage of utilizing the existing crystals and trimmer capacitors in their original place in the transceiver.
2. Remove the transceiver housing so as to have full access to both the top and bottom of the transceiver. Always make certain that the transceiver to be modified is operating in both the transmit and receive modes before starting the conversion.
3. Refer to the Schematic Diagram, Top and Bottom Views of the Printed Circuit Board and the Switching Truth Table before proceeding.
4. The Model SWM-53 is so designed to permit use with transceivers employing two separate oscillator circuits in the frequency synthesizer. The SWM-53 also provides for wiring into circuits where the low, or common side of the two oscillators are either common to each other or connected to different points. Before proceeding, examine the schematic diagram of the transceiver and determine which type of circuitry is employed.
A. In transceivers where the low side of each oscillator is common to each other proceed as follows -
5. Clean hole B adjacent to capacitor C105A and inftall lead D of capacitor Cl05A into hole B and solder.
6. Connect a short piece of wire from the tab D of trimmer capacitor Cl05 and into hole B where the tabs of trimmer capacitors $\mathrm{Cl02}, \mathrm{Cl} 03$ and Cl04 are connected. Solder.
7. Proceed with the installation of the SW M-53.
B. In transceivers where the low side of each oscillator is not common to each other proceed as follows-
8. Bend the lead D of discap Cl05A towards tab D of trimmer capacitor Cl05 and wrap around tab. Connect a short length of wire to tab D of the trimmer capacitor Clo5 and solder. This lead will be connected to the low side of the 10 kHz spaced oscillator circuit.
9. Proceed with the installation of the SWM-53.
10. Remove the existing selector switch from the transceiver. Unsolder or cut the leads running from the crystal circuitry to the selector switch, at the switch end. It is helpful if a sketch is made identifying each lead with reference to its appropriate crystal. This will made wiring of the SWM-53 switch module more convenient. In cases where the existing leads are not long enough to reach the solder pads on the SWM-53 it may be necessary to use the longer leads provided with the module. Use caution when replacing the leads so as to prevent solder splashes or delaminating of the main PC board.
11. Mount the SWM-53 and connect each of the leads from the crystals to the appropriate solder pads on the switch module. The lead from crystal XI should be soldered to the padidentified as 1 ; the lead from crystal X2 should be soldered to the padidentified as 2 , etc.
12. The lead connected to the high side of the 50 kHz spaced oscillator should ke soldered to pad A. The lead connected to the low side of the 50 kHz spaced oscillator should be soldered to pad B. The lead connected to the high side of the 10 kHz spaced oscillator should be soldered to pad C while the lead from the low side of the 10 kHz spaced oscillator should be connect to the lead D . In some cases, as noted above, B and D are the same points.
13. The transceiver should now be ready for final alignment. It will probably not be necessary to realign all channels but good practice dictates that the manufacturers recommendations be followed. Sams Photofacts generally provides detailed alignment instructions and care in the installtion and alignment will insure stable, on frequency operation across the band,

SWITCHING
TRUTH TABLE

1	0								0	\bigcirc					0
2	0								0		\bigcirc				0
3	\square								0			\bigcirc			0
4	\bigcirc								0					-	0
5		-							0	\bigcirc					0
6		\bigcirc							0		\bigcirc				0
7		0							0			\bigcirc			0
8		0							0					-	0
9		-							0	-					0
10		\bigcirc							0		\bigcirc				0
11		\bigcirc							0			\bigcirc			0
12		-							0					-	0
13			-						0	-					0
14			0						0		\bigcirc				0
15			\bigcirc						0			\bigcirc			0
16			\bigcirc						0					\bigcirc	0
17				\bigcirc					0	\bigcirc					0
18				\bigcirc					0		\bigcirc				0
19				-1					0			\bigcirc			0
20				\bigcirc					0						0
21					\bigcirc				0	\bigcirc					0
22					\bigcirc				0		\bigcirc				0
23					\bigcirc				0					-	0
24					\bigcirc				0			\bigcirc			0
25					\bigcirc				0				\bigcirc		0
26						\bigcirc			0	\bigcirc					0
27						\bigcirc			0		\bigcirc				0
28						\bigcirc			0			\bigcirc			0
29						0			0				\bigcirc		0
30						\bigcirc			0					-	0
31							\bigcirc		0	\bigcirc				1	0
32							\bigcirc		0		\bigcirc			1	0
33							\bigcirc		0			\bigcirc			0
34							\bigcirc		0				\bigcirc		0
35							\bigcirc		0					1	0
36								-	0	\bigcirc					0
37								-	0		\bigcirc				0
38								-	0			\bigcirc			0
39								- 0	0				\bigcirc		0
40									0					-	0

SWM-53
SCHEMATIC DIAGRAM

CONNECT A LEAD FROM EACH OF THE TERMINALS NUMBERED 1 THROUGH 10 TO THE CORRECT CRYSTAL CIRCUIT CONNECTION, AS INDICATED ON THE SCHEMATIC DIAGRAM AND SWITCHING TRUTH TABLE REFER TO DETAILED INSTALLATION INSTRUCTIONS FOR INF OR MATION ON CONNECTING TERMINALS A, B, CAND D.

BETA-COM Corporation

MODELS
SWM-42 \& SWA-42

IF YOUR RADIO HAS THE FOLLOWING CRYSTAL COMPLEMENT
READ ACROSS

	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	XII	X12	X13	X14
2A	37.600	37.650	37.700	37.750	37.800	37.850	10.635	10.625	10.615	10.595	10.180	10.170	10.160	10. 140
2B	37.600	37.650	37.700	37.750	37.800	37.850	10.635	10.625	10.615	10.595	11.090	11.080	11.070	11.050
2C	34.971	35.021	35.071	35.121	35.171	35.221	8.006	7.996	7.986	7.966	8.461	8. 451	8.441	8.421
2D	33.000	33.050	33.100	33.150	33.200	33.250	6.035	6.025	6.015	5. 995	6.490	6. 480	6.470	6.450
2E	32.700	32. 750	32.800	32.850	32.850	32.900	5. 735	5.725	5.715	5.695	6. 1904	6. 1804	6.1704	6, 1504
2F	19. 005	19.055	19.105	19.155	19.205	19.255	7. 960	7. 970	7. 980	8.000	7. 505	7. 515	7. 525	7. 545
2G	18. 513	18.563	18.613	18.653	18.713	18.763	8.452	8.462	8.472	8.492	8.902	8.917	8.927	8.947
2H	16.965	17.015	17.065	17.115	17.165	17.215	10.000	10.010	10.020	10.040	9. 545	9. 555	9. 565	9. 585

THEN USE THE CORRESPONDING GROUP TO ADD CHANNELS 24 THRU 40.

	X102	X103	X104	X105	X106
2A	37.900	37.950	38.000	10.605	10.150
2B	37.900	37.950	38.000	10.605	10.060
2C	35.271	35.321	35.371	7.976	8.431
2D	33.300	33.350	33.400	6.005	6.460
2E	33.000	33.050	33.100	5.705	6.1604
2F	19.305	19.355	19.405	7.990	7.535
2G	18.813	18.863	18.913	8.482	8.937
2H	17.265	17.315	17.365	10.030	9.575

[^4]ON THE CHART ENCLOSED WITH YOUR MODULE.................

IF YOUR TRANSCEIVER EMPLOYS CRYSTALS
Xl through Xl0 THEN ADD X102, X103, X104 and Xl05 SHOW N ON THE SAME LINE.

GROUP	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X102	X103	$\times 104$	X105
1 A	7.7777	7.7943	7.8110	7.8277	7.8443	7. 8610	14.9040	14.9140	14.9240	14.9440	7. 8777	7.8943	7.9110	14.9340
1 B	11.7000	11.7500	11.8000	11.8500	11.9000	11.9500	7. 4625	7.4725	7.4825	7.5025	12.0000	12.0500	12. 1000	7.4925
1 C	15.9650	16.0150	16.0650	16.1150	16.1650	16.2150	6. 0000	6.0100	6.0200	6.0400	16. 2650	16.3150	16. 3650	6.0300
1 D	8. 1590	8. 2090	8. 2590	8. 3090	8.3590	8.4090	11.0035	11.0135	11.0235	11.0435	8. 4590	8.5090	8.5590	11.0335
1 E	23.3300	23. 3800	23.4300	23.4800	23.5300	23.5800	14.9070	14.9170	14.9270	14.9470	23.6300	23.6800	23.7300	14.9370
$1 F$	15.2820	15.2980	15.3154	15.3320	15.3487	15.3654	10.6350	10.6250	10.6150	10.5950	15.3820	15.3987	15.4154	10.6050
1 G	11.7400	11.7900	11.8400	11.8900	11.9400	11.9900	7. 4225	7. 4325	7. 4425	7.4625	12.0400	12.0900	12.1400	7.4525

EXAMINE THE CHART ABOVE AND DETERMINE THE FREQUENCY GROUP WHICH YOUR TRANSCEIVER USES. CRYSTALS XI THROUGH XIO SHOULD BE IDENTIFIED SO THAT THE CORRECT LEAD CAN BE IDENTIFIED FOR EACH CRYSTAL. THESE WILL BE SOLDERED TO THE CORRECT PAD ON THE SWITCH MODULE PC BOARD.

BETA-COM Corporation

веЕа.com

Subject: Detailed Knob Questionaire Showing measurements of original 23 channel knob.
sfance
\qquad
DECEMBER 20, 1977

MANUFACTURER \qquad MODEL \qquad BASE MOBILE

1. WHAT IS OUTSIDE DIAMETER OF KNOB (TO NEAREST . 032')
2. WHAT IS DISTANCE BETWEEN NUMBERS, CENTER TO CENTER \qquad
3. WHAT IS HEIGHT OF NUMBERS
4. DO NUMBERS READ CORRECTLY AT 12 O'CLOCK OR 9 O'CLOCK $^{\prime}$ \qquad
5. WHAT IS OUTSIDE DIAMETER OF BUSHING
6. WHAT IS THICKNESS OF BUSHING (EXCLUDING DIAL PLATE) \qquad
7. WHAT IS THICKNESS OF DIAL PLATE
8. WHAT IS INSIDE DIAMETER OF BUSHING (OR DIAL IF NO BUSHING \qquad
9. IS DIAL FLAT)yes \}no
10. IS DIAL FLAT OYES ONO
11. IS Lettering 〇white 〇Black

$\overline{\text { BETA.COM }}$

Subject: PRODUCTION CHANGE

SEFVCE

All Model SW M-4l Switch Modules produced after May l, 1977 utilize lower values of series capacitors and trimmers. The original production on the SWM-4l used a 47 pf disc type capacitor in shunt with a 4-50 pf trimmer. This parallel combination, used in series with each of the 50 Khz spaced crystals, provided a total capacity variable from 50 to 95 pf.

All new production of the SWM-41 Switch Module will employ a 33 pf disc capacitor, in shunt with a $2-20$ pf trimmer capacitor. This permits the module to be used in many models where the lower value of series crystal capacity is necessary to properly tune the crystal. The new values provide a capacity range of from 35 to 55 pf .

Some models, such as the Cobra 138 and 139 and the Midland 13-895 require the addition of extra capacity to accurately tune the 8 Mhz crystals. The addition of a single 47 pf disc capacitor will provide the necessary added capacity to properly tune the crystals. This capacitor must be added from the arm of the 8 Mhz switching circuit to the 8 Mhz common point. A convenient placement for this discap is shown in the sketch below. Make certain, in soldering the disc to the PC board, that no solder splashes or bridges are caused which would interfere with circuit operation.

beta.com

Subject: MODEL LISTINGS FOR SWX SWITCH MODULES

SWX-21 PLL SWITCH MODULE FOR USE IN TRANSCEIVERS UTILIZING THE UPD-857/858 PHASE LOCK LOOP INTEGRATED CIRCUITS:

Standard Communications
Horizon 29A
Cobra
21X
Regency

CR240

SWX-22 PLL SWITCH MODULE FOR USE IN TRANSCEIVERS UTILIZING THE PLL/01A PHASE LOCK LOOP INTEGRATED CIRCUITS:

Kraco	KCB-2310A
HyGain	681,682

SWX-23 PLL SWITCH MODULE FOR USE IN TRANSCEIVERS UTILIZING THE PLL/O2A PHASE LOCK LOOP INTEGRATED CIRCUITS:

General Motors
Truetone
Pearce-Simpson
HyGain
Midland

CBD-10
MCC4434B-67
Tiger Mark 2
2681
13-881C

NOTE: Many models not shown in the above listings utilize the PLL chips which our series of SWX switches is designed to update. A physical examination of your transceiver will allow you to determine which SWX model to use.

Subject: PRINTED CIRCUIT BOARL CHANGES NECESSARY IN TRANSCEIVERS WHERE THE LOW SIDE OF CRYSTAL

Certain transceivers in which the low side of the oscillator circuits are not common will require certain PC board chages to permit use of the SWM-42 and SWA-42 Switch Modules.

1. Cut the foil of the $P C$ board as shown in the sketch below. Use a razor blade or sharp knife.
2. Add a jumper to connect the ground side of X11 to the ground side of X106, X14, X12 and X13. Connect a lead to this point. This lead will then be connected to the circuit where the low side of the receiver oscillator crystals had been connected.
3. Add a jumper to connect the ground side of crystals X1 \& X2 to the ground side of $\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 102, \mathrm{X} 103$ and X104. Connect a lead to this point. It will be wired to the same point as the low side of the 50 Khz spaced crystals were originally connected in the unmodified radio.
4. Add a jumper to connect the ground side of crystals X10 to $\mathrm{X} 7, \mathrm{X} 8, \mathrm{X} 9$ and Xl 05 . Connect a lead to this point. This lead will then connect to the circuit point which had been the low side of the transmit oscillator circuit.
5. Refer to the detailed installation instructions for the SWM-42/SWA-42 Switch Module

Subject: PRINTED WIRING BOARD CHANGES REQUIRED TO BRING Xl02 thru Xl06 CRYSTALS TO CORRECT FREQUENCY

SFAVCE Bullefil
Produlit switch module
Model sw wher Stock Mo. ${ }^{\text {too-251 }}$
Issue Date_ 1-15-78

Beta-Com makes every effort to insure that our crystal correlation provides "on-frequency" performance of the finished Switch Module installation. In many instances the original transceiver manufacturer has made production changes which may affect the frequency of crystals supplied by Beta-Com. In the event that the frequencies generated by crystals $\mathrm{Xl02}, \mathrm{Xl03}, \mathrm{X} 104, \mathrm{Xl05}$, and X106 are higher than they should be a small capacity placed across each cyrstal can generaly brine them into the correct frequency. A good counter of known accuracy should be used to monitor both the original crystal frequencies as well as those of the added crystals.

In some installations it may be necesaary to raise the frequency of crystals X102, X103, X104, X105, and X106. In this case it is necessary to place a small series capacity in the ground lead of each of the crystals. The sketch helow shows the most convenient method of opening the ground return for these crystals so that a series capacitor can be inserted.

1. Carefully cut the PC hoard copper foil with a razor blade or sharp knife where shown at points 1, ᄃ. and 3.
2. Connect a short jumper of insulated wire to land areas 4 so as to tie all ground areas for crystals Xl thru Xl4 together.
3. Connect a small capacitor, of appropriate value from isolated ground for X105 between points indicated at " 1 " and ground area " 4 ".'
4. Connect a small capacitor from isolated ground for Xl06 between points indicated at " 2 " and ground area " 4 ".
5. Connect a small capacitor from isolated ground for X102, X103 and X104 indicated at " 3 " and ground area " 4 ".
6. Remember the best method of determining the correct value of these series capacitors is to temporarily solder in a low value, measure the frequency and if it is too high add more capacity until the correct total value is determined. Then remove the capacitors and replace them with a single capacitor of approx. the same total value.

GENERAL INSTALLATION INSTRUCTIONS- SWITCH MODULE, MODEL SWX-23

The Model SWX-23 40 channel selector switch assembly is designed to replace the existing 23 channel selector switch assemblies in PLL transceivers manufactured by Cybernet Electronics of Japan. These radios are marketed by a number of US companies including Midland, Hy-Gain, Colt, GM, Pearce-Simpson, Truetone as well as a number of others. This radio can be identified either by examining the transceiver or the schematic diagram. The Integrated Circuit employed in the Phase Lock Loop system is identified as "PLL-02'"。

Two different printed circuit boards have been used in these transceivers. The basic difference is in the board layout in the area of the selector switch. The most popular layout is shown on the reverse side of this sheet. Examine the sketch carefully. In the event that your transceiver is not exactly the same as the sketch it will be necessary to rewire the board to conform to the sketch.

REFER TO FIGURE \#1

1. Carefully cut PC board conductors at (1), (2), \& (3).
2. Connect a jumper on the bottom of the PC board from (4) to (5).
3. Connect a jumper on the bottom of the PC board from (6) to 7 .

REFER TO FIGURE \#2

1. Remove jumper J-104 from PC board. The hole vacated by removing J-104, toward the front of the board will be used for switch wire GRAY. (9)
2. Solder the BROWN/BLACK lead from the switch to the vacant hole adjacent to Cl 35 and Dlo2. (8)
3. Solder BLUE/BLACK lead into hole (1)
4. Solder BLUE lead into hole (2)
5. Solder YELLOW lead into hole (3)
6. Solder ORANGE lead into hole (4)
7. Solder ORANGE/BLACK lead into hole (5)
8. Solder BROWN lead into hole (6)
9. Hole (7) is not used.

Mount the new switch using the hardware supplied. It will be necessary to remove the old 23 channel dial from the knob assembly and replace it with the new 40 channel dial plate supplied with the SWX-23. Generally two small screws attach the dial plate to the dial assembly.

Reassemble your radio and it is now ready for 'On-frequency' operation on all 40 channels.............

FIGURE 2
$\overline{\text { BETA.COM }}$
Subject: Detailed instructions for installing Beta-Com Switch Module Model SWM 53 in Pace 1000 B and 1000 M Transceivers.

Refer to Sams photofact \#94, Pg. 31 thru 68 and \#104, pg. 27 thru 62.
l. Remove cabinet from transceiver after checking to make certain that the unit is operating properly in both receive and transmit modes.
2. The Pace Sidetalk models 1000 B and M use the 24 th position of the 23 channel selector switch to disable certain functions of the transmitter and receiver. Remove the pink lead which connects the 23 channel switch to the Junction of R2l8, C2l8 and the Collector of Qll (Shown in Sams manual as point 5 j).

PROCEED AS FOLLOWS.
A. Carefully cut each lead connected to the 23 channel switch at the switch end.
B. Remore the 23 channel selector switch from the front panel.
C. Locate and solder a lead, supplied with kit, to the Junction of L20l \& R2l7 (Identified in Sams manual as point 70). This will be connected to SWM - 53 Pad C.
D. Locate and solder a lead to C222 and Junction of C241-245 (Shown in Sams as point 59). This will be connected to Pad B on the SWM 53.
3. Prepare SWM - 53 Switch Module so as to provide for isolated low side of the 10 KHZ spaced crystals. Connect the lead D of Cl05A to Tab D of Cl05 and connect lead to this junction. Solder. This is point D as shown in the Schematic diagram.
4. Mount the SWM 53 switch module.
5. Locate and identify each of the leads from crystals Xl thru X 6 and X 7 thru 10 .
6. Remove capacitor C 228 (56PF) from the circuit. It is not used with SWM 53 switch.
7. Solder the center lead of the shielded cable running from the junction of $L 202 \& R 225$ (Shown in Sams as point 52 to pad A on SWM 53.
8. Solder the lead from junction of L20l \& R2l7 (Step 2C above) to pad C on SWM 53.
9. Solder the lead from C222 and junction of C24l-245 (Step 2 D above) to Pad B on SWM - 53 .
10. Solder the lead from SWM 53 point D (Step 3 Above) to Junction of CR204, C225, L204 and C247-250 (Shown in Sams as point 68).

1l. Connect the leads from each of the crystals, Xl thru Xl0 to the appropriate pads on the SWM 53 module.
12. The transceiver is now ready for alignment. Sams instructions should be followd and used for reference.
llA) Dress \& Tie all leads to prevent movement.
13. Align per instructions in Sams manual.

After checking thru Channel 23 turn Selector switch to each of the following channels and adjust as indicated. All frequencies should be $\pm 50 \mathrm{HZ}$, mode switch LSB, clarifier to center detent. Measure from TPI with counter.

Set Selector to Channel	Adjust		Indicated Frequen
40	C204	*	19.6025
39	C205	*	19.5925
35	C203	*	19.5525
30	C202	*	19.5025

* On SWM 53 Module

14. Install knob. Check performance to insure on-frequency operation. Remove counter and install case. The unit should now be ready for operation on all 40 channels.

Subject: Detailed Instructions for Installing Beta-Com Switch Module, Model SWM-53 in SBE Sidebander \square

Refer to Sams Photofact \#50, Pages 97 to 126

1. Remove cabinet from transceiver after checking to make certain that the unit is operating properly in both receive and transmit modes.
2. The Sidebander II uses the 24 th position of the 23 channel selector switch to disable certain functions of the transmitter and receiver. This requires that certain wiring presently connected to the 23 channel switch be rewired before commencing with the 40 channel conversion.

PROCEED AS FOLLOWS:

A- Carefully cut each lead connected to the 23 channel switch, at the switch end.
B- Remove 23 channel switch from front panel.
C- Locate each of the following leads, skin and connect together, solder and insulate with tape. Violet lead from RF Gain Control; Violet lead from relay; Violet lead from PC Board adjacent to C507; Gray lead from PC Board adjacent to Cll5.
D- Remove yellow lead connected to PC Board adjacent to crystal filter. It is not required.
3. Prepare SW M-53 switch module so as to provide for isolated low side of the 10 kHz spaced crystals. Connect lead D of Cl05A to Tab D of Cl05 and connect lead to this junction. Solder. This is point D as shown on the Schematic Diagram.
4. Mount SWM-53 switch module. Run one nut onto bushing so as to mount the switch back from the panel far enough to provide space for the transmit indicator lamp.
5. Locate and identify each of the leads from crystals Xl thru X 6 and X 7 thru Xl 0 .
6. Remove capacitor C247. Install and solder a wire provided with switch kit into the vacated hole which is common with all trimmer caps associated with Xl thru X6 and C212 (shown in Sams manual as point 130). This lead is connected to Pad B on SWM-53.
7. Connect a lead from the junction of L17 and R202 (identified by Sams as point 117). This lead connects to Pad A on SWM-53.
8. Connect a lead from the junction of L16 and R701 (identified by Sams as point 142). This lead connects to Pad C of SWM-53.
9. Connect the lead from point D of SWM-53 (this is the lead connected in step 3 above) to the junction of D22, C701, \& R201 (Sams reference point 133).
10. Connect the leads from each of the crystals, Xl thru X10 to the appropriate pads on the SWM-53 module.

Dress and tie all leads so as to make certain that the crystal leads do not move.
11. The transceiver is now ready for alignment. Proceed as follows. Sams instructions for alignment should be used for reference.

Set function switch to LSB position.

1. Connect counter to Gl of Q14; connect lead from ground to pad C on SWM-53. This will disable 7 MHZ oscillator and permit accurate measurement of 11 MHZ oscillator. Adjust all frequency $\mathbf{~} 50 \mathrm{HZ}$. Set clarifier for center.

Set Selector to Channel		Adjust	
		FVor Indicated Frequency Of	
5	CV7	11.700	
9	CV8	11.750	
13	CV9	11.800	
17	CV10	11.850	
21	CV11	11.900	
26	C102*	11.950	
31	C103*	$12.000 \% *$	
36	C104*	$12.050 \% *$	
		$12.100 \% *$	

* On SWM-53 module.
** Necessary to add capacity across Cl02A, Cl03A, \& Cl04A

2. Remove counter from Q14 and grounding lead from pad C of SWM-53.
3. Connect counter to G2 of Q14.

Set Selector to Channel		Adjust	
			For Indicated Frequency Of
30	CV5		7.5025
38	C105 $\%$	$7.4925 * *$	
37	CV 4	7.4825	
36	CV 3	7.4725	
	CV2	7.4625	

The unit should now be ready for On-frequency operation on all 40 channels. Check and install case. Install knob as shown on knob instruction sheet.
$\overline{\text { ETta.com }}$
Subject: Detailed Instructions for Installing Beta-Com Switch Module Model SWM-53 in Cobra Model 132

SERVICE BULLETNW
Promet surcen mowe
Model swm-53 Stock No. _100-252
Issue Date 12-13-77

Refer to Sams Photofact \#73, pages 5 to 40

1. Remove cabinet from the transceiver after checking to make certain that it is operating properly in both transmit and receive modes. The Cobra 132 is slightly more difficult to modify to 40 channel operation due to the fact that the Clarifier control is mounted in the center of the 23 channel selector switch assembly. Madification, using the Beta-Com Model SWM-53 can easily be accomplished if the Mic Gain control is used as the Clarifier control.
2. Remove the existing 23 channel selector switch from the Cobra 132 oscillator board along with the clarifier control. It is reccommended that some type of solder removal tool or "solder wik" be used so as to prevent delamination of the copper from the PC board.
3. Remove the leads connected to the Mic Gain control. (rear section of the Mic Gain/RF gain control) The yellow and white wires should be carefully soldered together and insulated with tape. Remove R-115, a 1000 ohm resistor which is connected to terminal 3 of R47B, the Mic Gain control. This control is now ready to be used as the Clarifier control.
4. Connect a lead to each of the holes previously occupied by the 23 channel selector switch and Clarifier control. Wire as shown in the sketch below.
5. Enlarge to switch mounting hole to $3 / 8^{\prime \prime}$ dia. and mount the SWM-53 module. Carefully dress all leads and cement the Oscillator PC Board to the bottom of the SWM-53 module. Care should be taken since this is the only support which is provided for this end of the PC board. A silastic type cement has been found to be most effective in this application.
6. Align the radio following the steps outlined in the Sams manual or the manufacturers instruction book. It may be necessary to add capacity, in the form of additional discaps, across the SWM-53 trimmer capacitors. Alignment should provide the readings shown in the manuals 50 Hz .
7. Reassemble the radio. It is now ready for operation on all 40 channels.

MAKE CERTAIN THAT THE SWM-53 SWITCH MODULE HAS BEEN MODIFIED IN ACCORDANCE WITH THE INSTRUCTIONS DETAILED IN STEP 4A ON゙ SHEET 068-116

CONNECT A LEAD FROMPC BOARD
COMMON GROUN゙D POINT TO SW M-53
PAD B

FRONT, TOP VIEW

$\overline{\text { BETA.COM }}$

ALL

Issue Date January 3, 1978

The Beta-Com Switch Modules which employ series capacitors to allow adjustment for crystal frequency are supplied with a 20 pf discap in shunt with a 20 pf trimmer capacitor. This provides a total adjustment of from 20 pf to 40 pf series capacity.

Many transceivers employ higher series capacity circuits and it may be necessary to add more circuit capacity to insure that the crystals are "on-frequency". The exact capacity which must be added is best determined in the field by testing after the module is installed.

We are sending each of our dealers a small supply of some of the more common values of discaps which may be necessary. Additional capacitors may be purchased from the factory at a cost of .05 each. We regret that we will only be in a position to supply the values shown below.

In the event that the measured crystal frequency is higher than that shown on our reference sheet add the necessary additional capacity in shunt with the trimmer capacitors associated with the particular crystal found to be high in frequency.

 Subject: GENERAL INSTALLATION INS TRUCTIONS
 SWM-54-25
 Modelswm 5425 Stock No. 1 100-257
 Issue Date January 15, 1978

The Beta-Com Model SWM-54 Switch Module is designed for use in transceivers which employ three separate oscillators for frequency synthesis.

1. Remove the existing 23 channel selector switch. It is generally recommended that the leads from the old switch be cut at the switch end to facilitate locating the correct connection points for the new switch module.
2. Install the switch module after cutting the shaft to the same length as the original switch. Connect the leads from the SWM54-25 to the appropriate PC board points.
3. Install the necessary crystals as indicated on the attached sheet. Use the Beta-Com crystal reference numbers rather than those in the radio to insure that the leads are connected to the proper points.
4. Align the transceiver as directed in the manufacturers specifications. Refer to Sams manual for detailed alignment information.

X1	Brown	X7	White/Brown	X11 White/Green
X2	Red	X8	White/Red	X12 White/Blue
X3	Orange	X9	White/Orange	X13 White/Violet
X4	Yellow	X10 White/Yellow	X14 White/Black	

X5 Green

X6 Blue

Common, Low Side- Xl thru X6, X102, xl03, X104
Common, Low Side- X7 thru X10, Xl05
Common, Low Side- Xll thru X14, Xl06
Common, High Side- Xl thru X6, X102, X103, X104
Common, High Side- X7 thru X10, Xl05
Common, High Side- Xll thru Xl4, Xl 06

Black
Orange/Blk
Yellow/Blk
Violet
Grey
White

[^0]: *The frequencies marked by an asterisk are for reference purposes on/y. Any use of these frequencies to extend the 11 meter band is prohibited by law.

[^1]: *The frequencies marked by an asterisk are for reference purposes only. Any use of these frequencies to extend the 11 meter band is prohibited by law.

[^2]: "The frequencies marked by an asterisk are for reference purposes only. Any use of these frequencies to extend the 11 meter band is prohibited by law.

[^3]: *The frequencies marked by an asterisk are for reference purposes only. Any use of these frequencies to extend the 11 meter band is prohibited by law.

[^4]: INSTALL THE CRYSTALS INTO THE SWITCH MODULE AS SHOWN

