Facility Automation:
- Automation comes to cable
- Multicasting for TV broadcasters
- Radio automation techniques

Production Technology:
- Video production switchers
- Digital audio production systems
Pro-Bel, the leading European supplier of routing systems, is now established in the U.S. We are committed to solving your video and audio routing system problems, be they analog or digital, with a wide array of established products.

- Analog Audio and Video Matrices.
- Digital Audio and Video Matrices.
- RS-422 and 4 wire matrices.
- Sophisticated user friendly controllers.
- Automatic tie line operation.
- Programmable control panels.
- Under monitor displays.
- Digital audio converters.
- Analog and Digital Video Keyers.
- Digital audio and video test sets.
- Custom systems.
IOT efficiency with HDTV capability. That’s what you’ll get with the all-new Harris Sigma™ Series, a family of 15–240 kW UHF TV transmitters.

Designed from the ground up specifically for the HDTV transition, Sigma sums Harris’ experience in broadcast transmission innovation, digital technology, solid state design and total systems integration.

Sigma provides you with exceptional redundancy, headroom and protection with such features as main/standby exciters, EEV-approved thyratron crowbar protection for the IOT and reserve IPA power.

You’ll appreciate the low-maintenance design with user-friendly controls, easy sub-assembly access and the lowest ambient noise level available. Our field-proven IPA and newly developed exciter should give you years of trouble-free operation. What’s more, a wide range of configurations and options will ensure you get the best transmitter for your application now or when you move to HDTV.

We invite you to find out why Sigma is the no-compromise choice for now and the future. Trust Harris Allied to make it a smooth transition. The world’s leader in broadcast technology.

Phone: 217-222-8200
Fax: 217-224-1439

Circle (3) on Reply Card

www.americanradiohistory.com
FACILITY AUTOMATION SPECIAL REPORT:
Automation technology has grown tremendously in recent years. This month's feature coverage examines some of the new technology available to broadcasters and cable systems. This new technology will result in improved reliability and quality to our audiences, and increased profit margins for our companies.

THIS MONTH...

26 Automating Cable Systems
By Jeff O'Brien, StarNet
Effectively implementing local, regional and spot advertising technology is critical to your cable system's bottom line.

36 Multicasting for TV broadcasters
By Ray Baldock, Odetics
Managing multiple program streams requires a new breed of hardware.

48 Radio Automation Techniques
By Greg Dean, Computer Concepts
Automation isn't "the A-word" around the radio station anymore.

58 Video Production Switchers
By Curtis Chan, Chan & Associates
Enjoy a new era of creative video production by equipping your facility with the latest switcher technology.

70 A Technical Glossary
By John Moretti, writer, producer and cartoonist
It's never too late to increase your knowledge of today's computer jargon. You may not know as much as you think.

OTHER FEATURE:

73 "Radio in Transition:" Digital Audio Production Systems
By Ken Tonkel, CBS
Digital audio systems are revolutionizing radio production.

ON THE COVER:
For broadcasters looking for new sources of revenue, multicasting holds great potential. Thanks to the effective marriage of computers and sophisticated, reliable mechanics, it is now possible to supply multiple programs and commercials from a single source through the convenience of a videotape library system. (Cover design and photography by Odetics.)
The audio consoles of tomorrow require technology designed to enhance the art of mixing rather than the labor of engineering. Mixers will no longer be captive to the narrow path of computer logic.

They will finally have a system with the same intuitive reasoning as their creative processes.

But tomorrow is here. The Harrison SeriesTen B console follows your actions and engineering style. It is an audio system that responds to you, rather than forcing you to respond to it. Real time, creative mixing is no longer a dream.

Tom Edwards and the Post-Production Department at The Nashville Network selected three Harrison SeriesTen B consoles for their unique ability to track in real-time. TNN mixes audio-to-video on-the-fly to keep the creative edge sharp.

The SeriesTen B is flexible - not only is it ideal for post, it has become the console of choice for demanding OB applications. Belgium Radio & Television has just added one, and Korean broadcasters have added three - one of which is installed in an OB van as well.
News

By Dawn Hightower, senior associate editor

FCC should reject non-duplication rule changes

According the National Association of Broadcasters (NAB), the Federal Communications Commission (FCC) should reject a cable industry proposal to modify the TV network non-duplication rules. NAB considers the proposal a thinly veiled effort to undermine a local broadcaster's ability to negotiate for carriage with a local cable operator.

The non-duplication rules generally permit a local TV affiliate to limit the distribution rights of the network programming it carries. Specifically, local TV stations can prevent local cable systems from importing a distant affiliate's network programming into their local market. NAB opposes a proposal by the National Cable Televisi

Progress toward terrestrial digital HDTV

The engineering department of the British Broadcasting Corporation (BBC) says the use of a high spectral-efficiency modulation technique, together with advances in digital compression, have made it possible in principle to transmit HDTV programs in a single 8MHz channel.

BBC Engineering and the French Thomson-CSF/Laboratoires Electroniques de Rennes (TCSF/LER) organization have collaborated in a successful experimental digital transmission using high spectral-efficiency modulation, as part of a project to develop the technology that will bring digital HDTV to the general public via terrestrial transmission networks.

A digital TV signal was broadcast in a standard 8MHz TV channel from a low-power transmitter located at the BBC's Crystal Palace mast in London. The signals were successfully received at the BBC's engineering research department, and at other test sites in south London and the adjoining county of Surrey.

The particular modulation technique used and the transmitting and receiving equipment were developed to convey about 60Mb/s in a single 8MHz UHF TV channel.

The system transmits two separate 30Mb/s signals, one of which is broadcast with horizontal polarization, the other with vertical. Continued on page 17
Nikon ENG/EFP lenses.
All you need to look good.

When you're on location with a CCD camera reaching for the best shot possible, you need ENG/EFP lenses that are compact, lightweight, and easy to maneuver. Lenses with the flexibility to adapt to any situation. Lenses with all the star qualities found only in a Nikon.

Our ENG/EFP precision lenses are created from the same superior glass and coating technology that have made Nikon the world renowned name in optics. Which means they're made with Nikon's exclusive Extra-Low Dispersion (ED) glass. And treated with special anti-reflection coatings to minimize ghosts and flare. Plus, their strong magnesium housing makes them extremely durable. So no matter how tough the assignment, Nikon ENG/EFP lenses are even tougher.

Our full line of outstanding ENG/EFP lenses includes the Nikon S9x5.5 wide angle lens — perfect for tight, close-up shots. The Nikon S19x8, with its unsurpassed focal length and range. The all-purpose Nikon S15x8.5. And the economical Nikon S13x9.

Want to create special effects with your CCD camera? We have ENG/EFP converters that will allow you to use your whole bag of Nikon 35mm SLR lenses. One lets you use wide angle lenses down to an effective focal length of 2 mm. The other lets you use long focal lenses out to 1200 mm.

And in the unlikely event something should happen to your Nikon lens, a simple call to our Nikon Express Loaner Service hotline will get you a loaner lens overnight. So you don't ever have to worry about a crew being out of action until you can get a lens repaired.

To learn more about how Nikon ENG/EFP lenses can make you look good, call 800-52-NIKON or (516) 547-4355 for our complete brochure. Or write: Nikon Electronic Imaging, Dept D1, 101 Cleveland Avenue, Bayshore, NY 11706.

SHOOTING STARS.

Nikon ELECTRONIC IMAGING

Circle (5) on Reply Card

©1992 Nikon Inc.

www.americanradiohistory.com
New federal regulations are now on the books that affect almost every provider of entertainment programming. This includes program producers, broadcasters, cable systems and even TV receiver manufacturers. The regulation is based on the Americans with Disabilities Act, which became law on July 26, 1992. Now, almost a year later, broadcasters are going to have to cope with some additional technical requirements. That’s the stick. The carrot is that stations may be able to gain additional market share by serving a long-unmet need.

The Americans with Disabilities Act is a broad piece of legislation that requires changes be made in the public and private sectors to meet the needs of people with disabilities. This population represents one of the largest minority groups in the country. Nearly 43,000,000 Americans have some form of disability that is covered by the new regulations. The largest segment of this group is the deaf and hard of hearing, representing 24,000,000 people.

Title II of the act states: “A public entity shall furnish appropriate auxiliary aids and services where necessary to afford an individual with a disability an equal opportunity to participate in and enjoy the benefits of a service program or activity conducted by a public entity.”

According to the Justice Department, auxiliary aids and services are defined as “...closed-caption decoders, open and closed caption, videotext displays or other effective methods of making aurally delivered materials available to individuals with hearing impairments.”

OK, so much for the legal jargon. What does all this mean to broadcasters and cable systems? It means an opportunity to provide a new service to a previously untapped audience.

Everything from national programming to movies, local news, sporting events and governmental meetings will be captioned. The market is exploding, and there are ample opportunities for those stations and cable systems willing to make a relatively small investment in the technology required to originate closed-captioned programming.

In July 1993, the Decoder Circuitry Act and the regulations devoted to providing captioning take effect. Broadcast Engineering magazine will continue to provide the needed information so that stations can begin implementing this technology.

System and station managers and engineers should not view these new regulations as another federal requirement, but as an opportunity to serve a new audience and enjoy a new business opportunity. Become a leader in your community. Provide closed captioning for your viewers now.

Brad Dick, editor
Stations Are Profiting From It.

FM stations around the world are finding more sophisticated ways to keep their listeners from cruising the dial. And OPTIMOD-FM 8200 has become a critical part of their strategy. Why? Because the 8200 is a technological breakthrough with bottom line impact. It lets you create a distinct, powerful sound that results in larger audiences, higher ratings and improved profitability.

Digital Makes the Best Even Better.

Digital technology not only improves the quality of the signal—it makes the OPTIMOD-FM 8200 more programmable, more flexible and more user-friendly. And it can actually help keep capital equipment costs down because it allows stations to expand and upgrade their system with software, rather than expensive hardware.

A case in point: all current 8200 owners will receive a new software upgrade free of charge. Version 1.0's sonic and operational improvements meet broadcasters' ongoing demands for superior audio performance and increased control—like customized bass response and automatic switching of presets for dayparting.

The New Standard.

The OPTIMOD-FM 8200 is now the new industry standard for digital audio processors. Call your dealer now for a hands-on evaluation of the 8200. In a market where stations live and die by the ratings, you can dominate the dial.
NAB seeks flexibility in HDTV channel usage

By Harry C. Martin

In comments filed with the FCC, the National Association of Broadcasters (NAB) has urged that during the transition to HDTV, broadcasters be permitted to employ the unused portion of their future HDTV signals to provide high-speed data broadcasting and other innovative services to consumers and businesses. According to NAB, broadcasters could deliver data at least 10 times faster than existing computer information services that are constrained by slow transmission speeds of 2,400-9,600bps.

Permitting such services would help the TV industry raise significant revenues, tapping an estimated $400 million data broadcasting market. This revenue would help pay for the transition to HDTV and encourage a rapid deployment of HDTV nationwide. TV stations today are taking advantage of unused portions of their existing signals to deliver teletexed services, scrolling billboards, credit card verification and interactive games.

July 1 is the deadline by which all aural broadcast STL, ICR and booster stations must be using FCC-authorized equipment.

Fine assessed for cable signal leakage

The commission has fined a cable system $23,750 for a rule violation concerning system signal leakage. The rules prohibit systems operating in the 54-216MHz band from radiating in excess of 20 microvolts per meter at a distance of 10 feet from the cable.

The system was emitting radiation in excess of this standard on two separate days in February 1992. The fine was levied even though the system had taken corrective action once the problem was revealed. The commission said the fine was justified by the threat to public safety caused by the leakage, which could disrupt operations on aeronautical and other public safety frequencies.

Under the commission’s standards, $12,500 is the base amount for excessive signal leakage. The fine was increased to $23,750 because the leakage was severe and occurred on two separate days, making the violation flagrant.

Filing window procedure for ITFS

The FCC is seeking comments on a proposal to institute a window filing procedure for applications for Instructional Television Fixed Service (ITFS) facilities.

Under the window procedure, a limited time period would be specified for filing applications for new facilities or for major changes in existing ITFS stations. The commission would no longer publish cut-off lists of accepted applications and invite competing proposals. Instead, the agency would issue a public notice announcing a filing window that would open at least 60 days hence. The window would remain open for a specified number of days, and no applications would be accepted before or after the window period.

Applications filed during the window that are not mutually exclusive with any other window applications would be placed on a proposed grant list. Mutually exclusive applications would be placed on public notice. In both cases, the commission would allow 30 days for the submission of petitions to deny. Then, the single uncontested applications would be granted while mutually exclusive proposals would be processed according to the current comparative criteria.

Pending adoption of the rules, the FCC will not accept applications for new ITFS facilities or major changes to existing facilities. However, applications on file and already cut off will be processed.

Cable Act home wiring provision implemented

In February, the FCC adopted rules prohibiting cable TV operators from removing cable home wiring upon termination of service without giving subscribers the opportunity to purchase the wiring. This

On July 26, 1992, federal regulations based on the “Americans with Disabilities Act” was passed. This year, broadcasters will have to cope with additional technical requirements. In July, the decoder circuitry and the regulations devoted to providing captioning will take effect.

The FCC also addressed concerns about signal leakage from cable home wiring. Signal leakage from cable systems may cause interference to aeronautical and public safety radio services. The cable operator who installed the cable home wiring will not be held responsible for signal leakage once cable service is suspended. However, the responsibilities of cable operators to prevent signal leakage from home wiring remain in effect as long as service is provided.
USE THE WRONG TOOL FOR HDTV SIMULCAST
AND YOUR STATION COULD TAKE A FINANCIAL BEATING.

JAMPRO can show you simulcast solutions that will change the way you look at HDTV.

If you would like a copy of "Antennas for HDTV Applications: A Performance Trade-off Analysis", presented at NAB '93, or a copy of JAMPRO's HDTV Question & Answer Handbook, call, fax or write us with your request.

JAMPRO Antennas, Inc.
The right tool for the job.

6340 Sky Creek Drive · Sacramento, CA 95828 · (916) 383-1177 FAX (916) 383-1182
Strictly HDTV

More on HDTV

By Curtis Chan

The special panel of the FCC's HDTV advisory committee has rejected the Narrow-MUSE analog transmission system of NHK, Japan Broadcasting Corporation. The 1.125/60 standard already is being used for many high-definition (HD) productions. Now its proponents can concentrate on establishing a unified production standard.

Of the other four digital HD transmission proposals, none has emerged from testing as a superior choice that could be recommended to the FCC as the basis for a terrestrial advanced TV standard. Additional testing is likely to be performed on the four digital systems, after the proponents have made the proposed improvements.

Richard Wiley, chairman of the advisory committee, stated that field testing in Charlotte, NC, on the winning system would be deferred until the improvement tests have been completed. This will push the time line five to nine months further down the road.

It's possible that a joint alliance between the remaining proponents could develop. At the onset of the advisory committee's efforts 5½ years ago, it was recommended that all system proponents consider pooling their resources. Over the years, as many of the entrants dropped out of the race, productive relationships developed among the remaining parties, including AT&T and Zenith, GI and MIT, and the Sarnoff Labs, NBC, Thomson and Philips. Furthermore, it was recommended that the parties consider an alliance in which they could attempt to pool their knowledge and resources in support of a single system. Any resulting technical proposal would not represent a new system but a combination of the four systems already tested.

One step ahead

Many of the proponents have discussed the possibility of joining forces. It was recommended that any proposed agreement should be submitted to the advisory committee for its review, comment and possible modification. If an all-proponent plan is to come about, a strong possibility exists that the technical subgroup would reassemble to work with the proponents to finalize an acceptable unified system concept within a 30-45 day time frame. If this scenario were to happen, another delay would be expected while the prototype system is built and subsequently in-house and field-tested.

Selection criteria

The advisory committee has set up 10 selection criteria that fall into three categories: spectrum use (service area and accommodation percentage), economics (cost to broadcasters, alternative media and consumers) and technology (audio-video quality, transmission robustness, scope of services and features, extensibility and interoperability considerations).

Spectrum use criteria

For NTSC allotment purposes, the United States is divided into three zones. Zone I is the northeastern part of the country. Zone III is an area with unusual propagation conditions and includes Florida, southern Georgia and a band skirting the Gulf of Mexico. Zone II is the balance of the country.

In any spectrum allotment plan, co-channel spacing determines the number of allotments that can be accommodated in any area. Therefore, the minimum first adjacent-channel spacings for all zones are 59.5 miles for VHF stations and 54.5 miles for UHF stations. The minimum co-channel separation distances for the NTSC service are summarized in Table 1.

Taboos

In addition to the restrictions on NTSC allotment spacings, restrictions are placed on allotments in the UHF portion of TV reception that might occur because of receivers' tuner characteristics.

To permit ATV broadcasting by every authorized TV broadcaster, a second channel must be provided to each broadcaster from within the presently allocated spectrum. Each system must be able to operate at closer co-channel spacings than its NTSC counterpart. This restriction also applies to the ATV/NTSC and ATV/ATV combinations. Because the greatest portion of spectrum must come from the UHF band, the selected ATV system must be relatively immune to taboo restrictions while still being able to operate in a closely spaced adjacent-channel situation.

Contrary to popular belief that the NTSC service area is defined by the Grade B contour, substantial interference from co-channel and adjacent-channel stations is encountered within the Grade B contour of many NTSC stations. That interference often is noticeable for VHF stations in Zone I. The ATV service is regarded as interference-limited rather than noise-limited.

A further consideration relates to the needed effective radiated power (ERP) for the ATV stations. The advisory committee assumed that the ERP for each ATV facility would need to produce the same viewing distance to the noise-limited ATV coverage contour as the distance to the companion NTSC station's Grade B contour. This leads to some interesting points. If it is assumed that the ATV station's antenna height is the same as that of the companion NTSC station, the resulting ERP in cases where VHF stations are operating with low antennas is greater than current equipment can provide. In digital-based systems, the basic requirement to maintain linearity during transient peaks places a responsibility on the ATV station to employ a transmitter. It should be capable of achieving peak power levels in excess of the average power used in service and interference studies. This indicates that some ATV stations may use lower power levels or greater antenna heights than used in previous spectrum studies.

Table 1. The minimum co-channel separation distance for the NTSC service.
In Your Hands
Our Science Turns To Art

Let your imagination soar! With Maxell Ceramic Armor Particle Tape Products, you'll have total creative control, combining great versatility, tremendous reliability and incredible output. Available in D-2, D-3, DAT, HD Digital 1" & Betacam SP. They are the tapes of tomorrow, produced for you, TODAY.

Maxell Corporation of America
22-08 Route 208, Far Lawn, New Jersey 07410
1-800-533-2836

Circle (8) on Reply Card
Orwell rides again

By John Battison, P.E.

After an extended hospital stay for a recurring back problem, my fingers feel a little stiff at the keyboard. This hiatus, however, prompted me to look back over the years. I was reminded that all AM engineers need to recall the occurrences of June 1990. At that time, much attention was being directed to RF emission bandwidth and spurious radiation, especially into adjacent channels. Eventually, the FCC passed a rule mandating new bandwidth restrictions. The National Radio Systems Committee (NRSC) produced the NRSC-1 specification, and life became easier for the station engineer for the next four years.

Direct your attention to FCC rule No. 73.44(d), AM Transmission System Emission Limitations. In this rule, measurements are to be made to show compliance with paragraphs (a) and (b). However (emphasis is mine), "licensees of stations complying with the ANSI/EIA-549-1988 NRSC-1 AM Pre-emphasis/De-emphasis and Broadcast Transmission Bandwidth Specifications (NRSC-1) prior to June 30, 1990, or from the original date of operation, will be considered to comply with paragraphs (a) and (b) of this section, absent any reason for the commission to believe otherwise." The section goes on to say that such stations are waived from having to make periodic measurements (described in No. 73.1590(a)(6)) until June 30, 1994.

Most of us remember the mad rush to purchase NRSC-1 filters and processing equipment to meet the rule and thereby obtain freedom from having to make any revealing emission tests. But now the demand has died down, and probably most engineers and stations have forgotten about the second phase of the process. That's why I'm writing about No. 73.1590. Readers may recall George Orwell's 1984 and its regime of Big Brother and double talk. Rule No. 73.1590 is not double talk, but it is a fact of life to be met and obeyed in the year 1994.

June 30, 1994, is a little more than a year away. How many stations have made equipment and/or emission tests since installing the NRSC-1 filters in a panic-stricken rush back in June 1990? Also, how many have NRSC-1 filters properly adjusted so that RF output from the transmitter really does comply with NRSC-1?

It is wise to budget now for the spectrum analyzer and other equipment that will be required next year.

FM stations do not have to make any emission measurements unless the transmitter is changed, or SCA or stereo operation is added. On the other hand, AM stations are required to make the test specified in No. 73.44(a) and (b) at intervals not exceeding 14 months. Because of NRSC-1, we have had a pleasant respite from making these tests (and worrying about the adequacy and compliance of their results) for a period of four years. But next year, Big Brother will once again be looking over our shoulders with keener eyes and more precise requirements. Instead of relying on pure observance "in the absence of reasons to the contrary," the commission will require proof that stations comply.

Testing requirements

For many, a spectrum analyzer will be the best tool to use for this job. Rule No. 73.44(a) reads, "emissions shall be measured using a properly operated and suitable swept-frequency RF spectrum analyzer using a peak hold duration of 10 minutes, no video filtering, and a 300Hz resolution bandwidth, except that a wider resolution bandwidth may be employed above 11.5kHz to detect transient emissions."

The rule continues, "alternatively, other specialized receivers or monitors with appropriate characteristics may be used to determine compliance with the provisions of this section, provided that any disputes over measurement accuracy are resolved in favor of measurements obtained by using a calibrated spectrum analyzer adjusted as set forth above." In other words, you can continue to use a communications receiver and a field intensity meter to satisfy yourself that your station is in compliance and thus document your report for the files. But — and here is the fly in the ointment — if the commission, or your competition, uses a spectrum analyzer and shows that you are out, then you are out. The spectrum analyzer has the last word.

Spectrum analyzers are not cheap. The least expensive ones run approximately $3,000, and may not do all that is required in this application. A recording device of some kind, such as a camera or graphic recorder, also will be needed. A well-heeled contract engineer could probably make a decent profit by investing in such an outfit. After quickly recovering costs, the consultant could get plenty of repeat business if the work is done properly and accurately. Another option, but less likely, is for several stations to get together and purchase the required hardware.

Regardless of equipment requirements and availability, it is now time for the forward-thinking station or contract engineer to consider how to cope with the impending requirement. Presumably, there will be 14 months in which to document the first emission test. The commission should allow the assumed compliance that follows from the four years of NRSC-1 usage to provide the breathing space in the following 14 months to prove it.

Nevertheless, it is not too early to take a look at your RF emissions today. You may get a shock when you see what is really going out. It also is wise to budget now for the spectrum analyzer and/or other equipment that will be required next year. If stereo conversion is in your near-future plans, a spectrum analyzer is almost a must.

Battison, BE's consultant on antennas and radiation, owns John H. Battison and Associates, a consulting engineering company in Loudonville, near Columbus, OH.
It's About Time

AUDIO PRECISION...We're in the studios, stations and networks and on the factory floor. You've seen Audio Precision at the trade shows and in the magazines and technical reviews...so now you're about to select your audio test and measurement equipment.

It's about time to look at the System One and Portable One from Audio Precision.

SYSTEM ONE is the industry standard. Over three thousand benches, factories, studios and stations around the world rely on System One for the final word in audio measurement:

- Complete analog and digital domain testing
- State-of-the-art performance and speed
- Now available with FASTTRIG, for subsecond audio channel testing
- Graphic results on PC screen; copies to printers and plotters
- GO/NO-GO testing against limits, automated procedures
- 2 to 192 channels

PORTABLE ONE PLUS has established itself as the compact, affordable leader in audio test sets.

- 12 different measurement functions
- Sweeps, graphs and printer port
- New GPIB control interface option
- Robust polycarbonate case
- Full stereo capability

System One and Portable One...two test sets each with the quality and performance that you have come to expect from Audio Precision.

We'd like to take some time to talk with you. We'll be happy to discuss your application and arrange for an onsite demonstration.

Audio Precision...The recognized standard in Audio Testing

P.O. Box 2209
Beaverton, OR 97075-3070
503/267-0832, 800/251-7750
FAX: 503/641-8906

INTERNATIONAL DISTRIBUTORS:

Australia: IRT Electronics Pty. Ltd., Tel: (61) 2 439 3744
Austria: ELSINCO GmbH, Tel: (43) 222 812 04 00
Belgium: Trans European Music NV, Tel: (32) 2 485 5011
Bulgaria: ELSINCO, h.e. Strelbishte, Tel: (359) 92 581 698
Canada: DERRADIO Distribution, Tel: (613) 566-3772
China: Hong Kong: A C E Electronics Co. Ltd., Tel: (852) 426-0367
Czech Republic: ELSINCO Praha spol. s r.o., Tel: (42) 2 4702 1 451
Denmark: ELIN Electronics aps, Tel: (45) 565 15 11
Finland: Genelec OY, Tel: (358) 2 1331 11
France: ETS Mesureur, Tel: (33) 1 45 83 66 41
Germany: RTW GmbH, Tel: (49) 221 70 91 30
Hungary: ELSINCO KFT, Tel: (36) 1 117 4654
India: RSTERNRECH Services PVT, Tel: (91) 2 836-4500
Israel: Dr. W. A. Gunther AG, Tel: (41) 1 910 41 41
Italy: Audro Link s.n.c., Tel: (39) 521-598723
Japan: TONIV CORPORATION, Tel: (3) 3 5088 6902
Korea: B&P International Co., Ltd., Tel: (82) 2 545-1457
Malaysia: Test Measurement & Engineering Sdn. Bhd., Tel: (60) 3 734 1017
Netherlands: TM Audio B.V., Tel: (31) 3 034 071 17
New Zealand: Audio Video Wholesalers, Tel: (64) 7847 3414
Norway: Lydconsult, Tel: (47) 9 193 81
Poland: ELSINCO Polska sp z o.o., Tel: (48) 22 10 79 10
Portugal: Acustron Elettroacustica LDA, Tel: (351) 1 941 4067
Singapore: TME Systems Pte Ltd., Tel: (65) 780 0540
South Africa: SOUNDREPRODUCTION, Tel: (27) 11 775-1315
Spain: Testa Electroacustica LEA, Tel: (34) 1 540 0087
Sweden: T & T Elektron AB, Tel: (46) 31 80 36 20
Switzerland: Dr. W.A. Gunther AG, Tel: (41) 1 910 41 41
Taiwan: ACESONIC Intl Co., Ltd., Tel: (886) 2 716 2386

Circle (9) on Reply Card

www.americanradiohistory.com
Managing stress

Defining stress

By Judith E.A. Perkinson

Several years ago, I attended a stress management workshop. At the time, I was going through a divorce, had just changed jobs, my boss was terrible, finances were tight and I had two small children to care for. During the workshop, I filled out a series of stress source checklists. Not surprisingly, my stress levels were off the top of the chart. According to the workshop leader, I should have been dead.

When I completed the stress indicators checklist, I found I was not demonstrating any dramatic signs of stress. The workshop leader was astounded, and explained that I must be one of those people with a high capacity for dissipating stress. Because he could not explain exactly how I managed to accomplish that feat, I left the workshop feeling lucky and a little frightened. Needless to say, I had lost some of my faith in traditional stress management workshops. Somehow, there had to be more to understanding stress than a series of checklists. I wanted an explanation as to how I was able to manage the stress in my life, when all indications showed that my stress levels were extremely high.

The traditional approach to stress management can leave a person confused and ill-informed. Stress management is not a series of checklists coupled with exercise and a well-balanced diet. Each person needs to develop a lifelong stress management system. This can be accomplished by educating yourself on the consequences of stress; identifying personal and job stressors, evaluating their effects and ways to cope with them; establishing a plan to reduce, eliminate or manage those stressors you have some control over; and developing a plan for coping with stress.

Last month we discussed how stress affects us. This month we will examine what stress is and where it comes from.

What is stress?

Stress is a mental, emotional, physical and behavioral response to anxiety-producing events, whether real or imagined. Stress is unavoidable. It is a natural reaction to positive or negative changes in your life. Stress can develop from any type of change, good or bad. It can result in physical, psychological and behavioral problems. Your mind and body can react to this anxiety in such ways as increased heart rate, blood pressure, metabolism and breathing.

The physiological response to stress is the same, whether you are trying to fix an expensive piece of equipment, accepting an award or being chewed out by your boss.

Stress management is not a series of checklists coupled with exercise and a diet. Each person should develop a lifelong stress management system.

Sources of stress

The source and amount of stress in your life changes constantly. It is a fact of life that you will have to adapt to changes at home, in the workplace and in your personal life. It is important to understand the types of events that produce stress so that you can gauge the amount of stress you must handle at any given period in your life.

1. Health (illness, injury, recovery).
2. Home and family (marriage, divorce, birth of a child, death of a family member, change in residence, remodeling, infidelity, holidays).
3. Personal and social (vacation, lawsuit, travel, return to/from school, arrest, victim of assault or robbery).
4. Work (change of employment, promotion, demotion, retire, get fired or laid off, increase or decrease in workload, trouble with boss or co-workers).
5. Financial (mortgage, foreclosure, major purchase, increase or decrease in wages, financial loss or gain).

- Daily sources. Quality of life can influence levels of stress. You can recognize daily sources of stress by determining which events make your life comfortable or uncomfortable. A neighbor's barking dog, road repairs on the way to work, a messy house or someone in the office who smokes can all produce stress. Sometimes, you may become so used to these stressors that you don't think of them as such. Things that reduce your quality of life can be sources of stress.

Types of stress

Not all stress has a negative effect. Three types of stress include normal, good and bad.

1. Normal stress keeps you on your toes, makes you aware and helps you keep a sense of concentration.
2. Good stress motivates you and gives you a positive sense of excitement and enthusiasm.
3. Bad stress has a detrimental effect on your physical and/or psychological well-being.

Often, the difference between normal, good and bad stress is the way it is handled. Furthermore, it is related to events that are within or out of your control.

Many sources of stress are beyond your control. For example, holidays, getting sick, accidents, bad weather, and paying taxes. Most people learn to handle these situations when they occur.

Although you cannot always control the sources of stress, you can control how it affects you. Your attitude toward life at home, work and yourself influences how you control stress. Some people are constantly building mountains out of molehills, while others seem to roll with the punches. Reaction to anxiety-causing events often is a matter of choice.

Next month, we will examine how your mind can help you develop a life-long working stress management approach.
In a typical broadcast day, DigiCart/II prepared and played more audio than its predecessors did in a week.

DigiCart/II goes far beyond cart machines and reel-to-reel decks—and even most digital machines. It's a uniquely powerful digital audio recorder, with software tools that bring color and interest to your work. In production, use DigiCart/II to make mistake-proof edits, precise fades, and seamless back-to-back cuts. On-the-air, get instant access to music and effects loops, voice-overs, delayed news feeds, and QuickStack playlists. DigiCart/II supports an eight-hour hard drive, and three new high-capacity cartridges—ideal for playing current inventory and moving audio between machines.

DigiCart/II is attractively priced and available now.
PLD basics

Circuit design

By John T. McGaughey

Part 1 of this series examined the concept of a programmable logic device (PLD) and how these ICs can be an important tool in circuit design. Even the typical small PLD actually contained two programmable arrays — one defining the function, a second providing additional control. Because the number of programmable links contained in even small devices can exceed 1,472, it is not surprising that these components failed to gain popularity until computer-aided techniques simplified their programming. Let's explore how software can ease the process of circuit design using PLDs.

Developing PLD applications

A PC running a logic compiler program is connected to an IC programmer unit connected by a serial or parallel port. Two types of logic compilers are available. To support the development of their own PLD business, some manufacturers supply compilers that are relatively specific to that company's own device programs. (Sometimes these are available at no cost. One notable example is the PALASM2 by Advanced Micro Devices Corporation.) Greater flexibility is possible with manufacturer-independent compilers, which support a wide array of PLDs from various manufacturers. These are fairly expensive, although some models are offered with reduced part support at a much lower cost.

With a PC and the software, an IC programmer is still required. High-quality units can be found in the $300-$500 range that support many of the most popular PLDs. The ICs can be purchased in low volume from mail order companies for $2 to $5. Because they are electrically erasable, experimentation is risk-free. Mistakes are simply erased.

Defining the function

Circuit development begins by creating a logic description file with a text editor. The file describes the logical function required in a format acceptable to the compiler.

The compiler translates the description to a JEDEC file format (Joint Electron Device Engineering Council). The process is analogous to software development, where source code is translated to machine code. In the process, a documentation file is produced to show exactly how the device was configured. Some compilers include a simulator for testing of the design to verify correct performance.

A logic description

Three sections make up a logic description file. The header section names the work, specifies a PLD and performs housekeeping tasks.

In the second, the pin declaration section, names are assigned based on signals connected to device pins. This permits descriptions to use meaningful names instead of pin numbers. Within the pin name, the signal is declared as active high or low, but the procedure also permits logical descriptions without specific information of signal status. (Active high or low refers to a 1 or 0 status as the condition of interest.) Also, pin input or output directions are deduced by the compiler by how they are used, so no direction is specified.

The third section of the file is the logic description section. This contains the logical equations made up of signal names and logic operators to specify the functions needed.

In Table 1, a short description file outlines a system to sound an alert if specified alarm conditions occur. The header names the description (alarm), selects a PLD (Type No. F273) and specifies a JEDEC (J) format output file. Five pin-declarations state four input conditions and an output to a warning light. Two inputs are active low; the remaining two are high. The equation for the alarm will make the alarm pin high if any of the four inputs are active. The pound symbol (#) represents a logical OR for this compiler; an exclamation point (!) denotes active low. Each complete statement ends in a semicolon (;) as required by the programming syntax. This code would be compiled to produce a JEDEC file suitable for the IC programmer.

Circuit development begins by creating a logic description file with a text editor.

If requirements change, such as an addition input or an alteration of the input active level, simple changes in the description solve the dilemma. Because this application uses only five pins of a possible 22 in this device, other unrelated logic could be implemented in the same PLD. Equations are not restricted to simple operations. They can be free form, which permits parentheses along with intermediate variables. Equations also can be created without specific assignments to given pins, similar to variables in mathematics. An equation name can be used in other equations for a building block approach. These conventions permit a final equation to appear quite simple, even though the actual function may be extremely involved.

Next month, we'll continue the series by describing a PLD-based alarm system constructed for the radio station WUGA-FM at the University of Georgia.
MOVE INTO THE FUTURE OF TELEVISION.
BVM-1911
Sony combines the quality and reliability of the BVM monitor series with the flexibility of either 4:3 or 16:9, set-up or no set-up, contact closure control or RS-422A control, and more.

BVW-400A
Sony Betacam SP® analog component acquisition products are ideal thanks to their small size, light weight, low power consumption and high quality images, giving you component signal integrity throughout the production process.
Sony unveils a full line of Digital Betacam® VTRs to give you a high performance, workhorse format with the ability to record a 10-bit SMPTE-259M signal.
WITHOUT LEAVING THE PRESENT BEHIND.
INTRODUCING
THE SONY INTEGRATED
DIGITAL COMPONENT SYSTEM.
BACK-PROOF. FUTURE-PROOF.
WITH ECONOMIC PROOF.

BVE-2000
The BVE-2000 editor connects to as many as 12 VTRs, controlling up to 6 in any one edit. Plus it features Advanced List Management capabilities.

DVS-2000C
This compact one mix/effects component digital video switcher offers 12 inputs. Its high performance processor provides superior Chroma Key and Frame Memory capability.
DMX-E3000
Designed for the digital editing environment, our DMX-E3000 audio mixer ensures advanced audio-follow-video performance.

Features include 16 inputs, 4-channel audio, standard 24-bit AES/EBU digital I/O, analog monitoring outputs and built-in preview switcher.

DME-3000
The DME-3000 digital effects system offers a powerful combination of 10-bit frame-processing and high quality digital effects such as page turns, lighting and ripple.
THE FUTURE IS HERE. NOW.

Picture the superior quality of digital component. Sharp colors, clean keys, dazzling effects and outstanding multi-generational copies. Now picture it in a full line of products. Products that are compatible with your existing analog component equipment; that complement each other and let you build an all-digital suite at your own pace – one piece at a time or all at once. Products that will take you into the future of television.

Introducing Sony’s affordable line of digital production products. Now, you can move into digital component without abandoning your current investment.

BACK-PROOF

Although the world of television is evolving, one thing is certain: analog acquisition and archive material will be around for years to come. That’s why with our new digital component system, going forward doesn’t mean leaving the past behind. Take our breakthrough line of Digital Betacam recorders and players. The DVW-A500, for instance, provides full playback capability with Betacam and Betacam SP tapes, bringing your analog material into the digital domain. Additionally, analog component source VTRs can be directly interfaced to the DVS-2000C switcher and DME-3000 digital effects system.

FUTURE-PROOF

Since all current Advanced Television transmission proposals combine a component digital signal and a wide screen aspect ratio, your production system will be better prepared for the future if it has the ability to match this combination. Our Digital Betacam recorders and players bring you the superior quality of digital component recording, and as with all Sony VTRs, are at home in both 4:3 and 16:9 aspect ratios. For viewing, the BVM-1911 monitor has also been designed to display either aspect ratio. Similarly, the DVS-2000C switcher and DME-3000 digital effects unit are software switchable between both ratios.

ECONOMIC PROOF

Perhaps the best feature of our new digital component equipment is its price-to-performance ratio. These products were designed to make digital component quality available to a wide range of industry users at a cost comparable to current analog component systems – and a value comparable to high-end production systems.

Sony has accomplished this not through compromise, but through innovative use of today’s technology. Each system component has the features you’ve come to expect. For example, the Digital Betacam VTRs come complete with built-in standard analog interfaces and video/audio pre-read. They also utilize Coefficient Recording – our unique, cost-effective implementation of Bit Rate Reduction technology. And every component has Serial Digital Interface, which makes installing your system both simple and economical by using a single coaxial cable. Furthermore, we offer you the flexibility to build a system at your own pace – all at once or piece by piece. All in all, making the transition to digital component without abandoning your current investment, is now an affordable reality.

For details and more information, call 1-800-635-SONY, ext. 2200.

INNOVATION AT WORK.

©1993 Sony Corporation of America. All rights reserved.

Sony Business and Professional Group
3 Paragon Drive
Montvale, Nj 07645-1735

*Based on manufacturer’s suggested retail price.

Sony, Betacam, Betacam SP and the Digital Betacam logo are trademarks of Sony.
News
Continued from page 4

with vertical polarization. Each 30Mbit/s signal compresses an orthogonal frequency division modulation (OFDM) ensemble of approximately 500 closely spaced carriers, all of which are digitally modulated using 64 QAM.

NAB wants FCC to reform FM licensing policies

The National Association of Broadcasters (NAB) is pressing its case for FM license reform with FCC regulators, using a commission proposal to change the reporting requirements for radio and TV licenses as the venue.

NAB supports a proposal to modify the broadcast license renewal form to determine whether a broadcast station is on the air. Regulators, however, were urged to use the information as part of a larger effort aimed at reducing the number of surplus radio stations.

NAB said the growth in the number of U.S. radio stations and the increased amount of interference among FM stations has worked against the interest of the broadcast industry and the listening public. NAB also noted other FCC reforms tackling interference problems on the AM band, and said similar efforts are needed for the FM band. NAB has offered one solution, which is the prompt deletion of silent FM stations that have been off the air for more than six months.

Greater use of directionals will cause interference

The National Association of Broadcasters (NAB) has told the Federal Communications Commission (FCC) that greater use of FM directional antennas will lead to interference.

In its filing, NAB underscored the importance of overhauling the commission’s FM allocation rules and policies, a request first made in February 1992.

NAB asked the commission to overturn an FCC decision, which encourages greater use of FM directional antennas. Many broadcasters assert directional antennas provide unreliable protection against interference. NAB fears that eliminating the 8km short-spacing rule, which restricts the use of directional antennas, will actually lead to more interference for stations slotted nearby on the FM dial and encourage more crowding on the FM band.

Call for papers

The Association of Central Canada Broadcast Engineers (CCBE), Technologists and Technicians Convention will be held Sept. 28-30 at the Skyway Trade and Conference Centre in Toronto, Canada.

This is the association’s 42nd annual trade show and convention. Gary Hooper of Telemedia Communications is the papers chairman. He can be reached at 40 Holly Lane, Toronto, M4S 3C3.

Central New York’s upcoming SBE annual convention

The 21st annual regional convention of the Society of Broadcast Engineers (SBE) Central New York Chapter 22, Syracuse, NY, will be held Friday, Sept. 10 from 9 a.m. to 5 p.m. The convention will be held at the Sheraton Inn Convention Center in Liverpool. Admission is free.

For more information on the convention, contact John Soergel, convention chairman, at 315-437-5803.

STANDARD EQUIPMENT.

Canare Patchbays handle every 75Ω standard in your plant, from Baseband Video to High Resolution Computer Graphics and, the studio interface standard of tomorrow…Serial Digital. Plus you get the following:

• WIDEST BANDWIDTH
 DC - 600MHz

• LONGEST LIFESPAN
 "Microswitch" contacts

• EASIEST INSTALLATION
 Jacks Screw To Front

• PERFECTLY COMPATIBLE
 Your Cords or Ours

• BEST BOTTOM LINE
 Less Expensive!

Call, or write today for a FREE technical brochure with complete specifications and the number of your local Canare dealer.
Troubleshooting

Care and feeding of coaxial transmission lines

Mechanical properties

By Dean W. Sargent

Now that you can select the correct size transmission line for the power you are going to run, let’s discuss what mechanical properties you want in your line. There are several types of flanges to choose from. The flange should be attached to the outer in the best manner. Some will be silver soldered, and some will be welded.

Silver-soldered flanges require much heat to the flange and outer tube. This will cover a large area and result in the copper becoming soft over a large area. If care is not taken in the soldering process, the flange will become distorted from the excessive heat. This can result in poor RF contact at the connection and possibly cause a leak from not compressing the O ring properly. The outer is likely to have dents around the flange where the wrench socket hits the tube while tightening the flange bolts. Never use a socket for this purpose; use a box end wrench.

Leaks that show up later are another problem that arises frequently with silver soldering. This is usually the consequence of flux embedded in the solder, which breaks down with time. This results in a leak from the normal flexing of the line with movement caused by wind and/or expansion and contraction because of temperature changes. Distortion of the outer (and inner) conductor can result if too much tension is applied at a flange because of improper tension of hangers, or worse, a jammed hanger. This can occur because of the softening of the copper tube in the soldering process.

Flanges welded in place using Heliarc welding do not suffer these problems. This process requires no flux, and the heat is confined to only the area to be joined, resulting in a much stronger joint. This is true in constructing elbows and tees. When using larger size line (8 9/16-inch and 9 3/16-inch), different manufacturers use different bolt hole patterns on their bolt-type flanges. In 4-inch transmission line, several different sizes of flanges (and tube) are used.

All inner conductors are not the same

The next item to consider is how the inner conductor is supported inside the outer conductor. Some manufacturers use “pin” insulators. These are Teflon pins passed through the inner conductor at various places to support the line. The presence of the Teflon is a discontinuity. If the spacing between insulators is an even number of quarter wavelengths at your frequency, the VSWR of each will add up. Pin insulators also tend to break easily when inserting or removing the inner conductor from the outer conductor. Care must be used when removing or inserting the inner in the outer.

Some manufacturers use a form of disc insulator that fits in a groove (called undercut) in the inner conductor and supports it in four places within the outer. The undercut is made a certain depth and width to compensate for the presence of the Teflon insulator, which also is made with the correct amount of material. This results in a compensated line section so that the discontinuity is extremely small. Figure 1 shows this undercut and the insulator that fits into it. This undercut or groove is machined into a piece of copper bar and the tube welded to it. The undercut has to be deep, because the Teflon insulator is thin and the depth is necessary to compensate for the mass of Teflon. This requires a good weld that does not protrude above the tube because a discontinuity will result. Some manufacturers roll this undercut into the tube itself, which results in an extremely thin tube at the location of the groove.

Figure 2 shows a new technique for this undercut/insulator. The undercut is not as deep. This undercut is put in the tube by a process analogous to what happens with heat shrink tubing when it is heated. The copper tube is shrunk down onto a die on the inside of the tube. The thickness of the tube is not affected, and no welding or grinding is necessary. The insulator is in two pieces. One piece is wide to fit the undercut and has a thin groove to accommodate the Teflon disc insulator that supports the inner inside the outer conductor. This results in a stronger line with extremely good electrical characteristics.

Elbows have inner conductors too

Several manufacturers offer elbows with no insulators. Although this eliminates the necessity for compensation, it does have a drawback. It is difficult to seat the inner connector into the elbow inner. Some manufacturers have a threaded hole inside the inner that a rod can be threaded into and the inner connector is inserted over this rod, a sleeve inserted over the rod and a nut tightened down on the sleeve. This pulls the bullet into the elbow inner conductor. It only works when you can have both elbows installed in the elbow. These elbows are invariable ones with short, equal length legs.

A better approach is to use longer length legs or one short and one longer leg that will allow the inner to be support ed with disc insulators, suitably compensated, which also will capitvate the inner so that the bullet can be inserted without any auxiliary equipment. This will ensure that the bullet is properly seated.

Figure 1. Old-style insulator and undercut.

Figure 2. New-style insulator and undercut.
With SuperWarp®, a new option for the Abekas A51+ Digital Special Effects System. Or try a burst. Slats. An oil drop effect. Even dual-sided page turns with one channel.

SuperWarp® lets you create sophisticated images that used to require a high-end effects machine.

And you get all the control and flexibility that you need. So now you can give your clients a spectacular range of effects. At a price that won't sink your budget.

For Details: 415-369-5111 • Atlanta 404-451-0637 • Chicago 708-699-9400 • Dallas 214-385-4544 • Los Angeles 818-955-6446 • New York 516-939-9000 • San Francisco 415-369-6791

Circle (12) on Reply Card
www.americanradiohistory.com
Facility automation

Automation was once perceived as a necessary evil. Today, it is another tool to improve your facility's bottom line.
Automation systems have been called everything from an answer to a prayer to some inappropriate terms that we can't print. My early days in radio involved working with some of the original automation systems. The systems often were filled with banks of relays, "peg board" programming matrices and sequential programming stepping relays. These early systems were prone to mistakes, many of which were humorous — as long as you weren't the station engineer.

One night I was listening to one of my favorite stations in Wichita, KS. The station's late-night programming relied on an old automation system. It was well after midnight, the network news had just ended and an Army public service announcement was aired.

The PSA finished, and then played over and over and over again. I think the cart played 27 times before someone discovered the problem and kicked the system to the next step.

Automation, especially for television, used to be looked upon as a technological evil. It was perceived as a harbinger of staff reductions, the onslaught of operatorless and engineerless radio and TV stations. Automation was seen as the end of the world as far as engineering jobs were concerned.

Today, automation is seen in a more realistic light. Although automation technology was never the devil it was often portrayed by some, neither were early systems the salvation offered by their evangelical salesmen.

Automation, like other technological developments, is merely a tool for improving quality and productivity. These two factors will translate into higher profits that benefit every facility employee.

Engineers and managers recognize the importance of efficient operation. Companies cannot afford to waste human or equipment resources. Many tasks in a broadcast or cable operation are repetitive and relatively non-challenging. Such tasks are often perfect applications for automation. Where tasks are relatively simple and recurring, automation is usually better-suited for the job than a person. Human power is more appropriate for those applications that require original thinking and problem-solving work.

It's no surprise that as automation technology began to offer solutions to operational problems, broadcasters and cable systems began to embrace it. And that's as it should be.

This month's feature coverage looks at how modern radio and TV automation technology is solving problems. Forward-thinking technical managers will look toward automation as a tool to help their facility's bottom line. After all, it's only through the profitable operation of our companies that we as employees can grow and prosper.

- "Automating Cable Systems".............. page 26
- "Multicasting for TV Broadcasters"........ page 36
- "Radio Automation Techniques"............ page 46
- "Video Production Switchers"............. page 58

Brad Dirk, editor
Figure 1. Digital satellite delivery of commercials can tie even the most remote cable systems together as an interconnect, or transport national and promotional spots for near immediate turnaround.

So now you can have full TBC and transcoding capability all in one unit. And all for one value price.

$5495

DIGITAL PROCESSING SYSTEMS INC.

In the U.S.
Call 606-371-5533

In Canada
Call 416-754-8090

Most revolutionary technology to hit the cable business since the satellite. Although compression was originally introduced to the cable industry primarily as a means to multiplex multiple signals onto one satellite transponder, digital compression and storage for playback has immediate applications for cable. One of the first areas to be directly impacted by this technology will be ad insertion.

Digital compression provides a vehicle for expanding local advertising while solving many of the reliability problems and limitations of tape-based insertion. Advances in computer technology allow the compressed digital video insertion system architecture to be almost entirely PC-based. Using standard 386/486 platforms, networked networks with hard drives, mean time between failure (MTBF) can approach 100,000 hours for individual components within the system.

Such digital systems also are not restricted to the old random-access rules. If a commercial resides in the system, it can be copied for playback in any order and to as many channels as necessary. Fixed position of all breaks is possible, and total on-line commercial inventory is only limited by storage capacity.

The modularity of the PC platform makes inventory expansion simple a matter of adding hard drives or other storage media. Additionally, adjustable data rates allow operators to control the playback quality without changing hardware. The relationship between playback quality (data rate) and overall spot storage capability can be customized to suit individual operations in a way previously not possible.

MPEG vs. JPEG encoding

Although the emerging international standard for compressed digital video is MPEG(II), JPEG is being considered by some manufacturers and operators for ad insertion. The JPEG move is fueled by the expense of MPEG real time compression. The number of calculations required to process analog video into full MPEG Interframe Bidirectional Predictive (IBP) frame compression is too great for even a 486/50 processor to handle without the help of a specialized video board to slow things down to one frame at a time digital capture. Even so, the process can take several hours to digitize and compress one
Until now your productions may have lacked vision.

Until now...

An intuitively operated switcher for live and post.
remote control provision for all popular editors, DVEs, still files, character generators...

For more information call (613)652-4886

Ross Video Inc., P.O. Box 880, Ogdensburg, New York, USA 13669 0880
Ross Video Limited, P.O. Box 220, 8 John St., Iroquois, ON., Canada K0E 1K0 Tel. (613)652-4886 Fax. (613)652-4425

Circle (19) on Reply Card
www.americanradiohistory.com
30-second analog commercial.

Real time MPEG encoding is accomplished by first converting analog video to CCIR 601 (digital video) and inputting it to a proprietary-designed VME-based IBP compression system. (See Figure 1.) These real time encoders sell for $100,000 or more and are used primarily in uplink applications. The current VME approach is too expensive, and PCs are too slow for the copy change requirements of local cable systems.

This dilemma led designers to consider the JPEG approach, which deals only with the individual frames. Compression algorithms are greatly simplified, and real time encoders can run on Sun workstations or PCs.

Unfortunately, this strength also is JPEG’s weakness. Breakthroughs in chip technology are expected to change this encoding advantage in the near future and may knock JPEG out of consideration for local ad insertion or other serious motion applications.

The advantages of MPEG(ll) are considerable. Using IBP frame encoding will provide much greater video quality in playback while using lower data rates than JPEG. Conservative estimates put this advantage at 2:1, and some experts believe that it can be as much as 4:1. This advantage can translate into reduced transmission times for downloading spots and increased on-line commercial storage for insertion. Additionally, MPEG(ll) will remain compatible with standard CCIR 601 digital sampling and provide a backward bridge to NTSC and PAL video formats.

Digital signal standardization in the cable industry eventually will reach directly to the subscribers’ set-top, making incompatible signals impossible to carry without additional headend transcoding. Such standardization will facilitate interoperability throughout the cable industry, and will extend beyond ad insertion to PPV and video-on-demand applications.

A typical system is shown in Figure 2. The playback ports consist of a smaller dedicated hard drive and the MPEG decompression engine. This drive need only be large enough to buffer at least one commercial break in advance of the network cue tone. With cable operations running 16 or more channels of insertion, these buffers must be staged far enough in advance of anticipated break times to avoid last-minute collisions on the network. The control software resident in the 486-based insertion controller must be able to handle staging operations, schedule updates, verification stamping and cue tone activated switching. Real time control is essential to local insertion. Also, keeping the PC’s CPU clock from drifting ensures accurate verification and commercial spot staging. An open architecture, PC-based system must have its clock monitored and updated to maintain scheduling accuracy and verification integrity. This is accomplished through a continuous, dedicated modem or demodulator connected to a central site that can automatically provide broadcast clock updates to the unattended head-end systems.

Providing local cable advertising places unique demands on the operators and equipment.

The file server provides the primary commercial archiving for the digital video playback system. Two types of storage media are being used in servers: large hard drives and 4mm DAT or 8mm digital tape cartridges. Tape-based storage provides greater storage at lower cost. However, access speed is sacrificed, and there may be potential reliability problems. Hard drives, on the other hand, are more expensive but highly reliable. As drive storage prices continue to drop, the large 1Gbyte and greater SCSI drives become an attractive alternative for use in commercial insertion.

Total commercial on-line inventory also is a function of the data rates used in compression. MPEG IBP frame commercials compressed at a 5.3Mbps rate will result in improved playback quality for most local cable operations. This data rate provides 29 minutes of video playback from one 1.2Gbyte drive. Drives can be ganged in the server for large storage capacity and then connected to the playback chassis via PC networking technology.

Figure 2. In this configuration, MPEG-compressed commercials are delivered to individual head-ends, stored digitally and played on up to 16 separate playback devices.
TAME THE MOST INTIMIDATING
SHOOTING CONDITIONS.

THE KY-27 LoLux VIDEO CAMERA

www.americanradiohistory.com
JVC® PROFESSIONAL

JVC's new KY-27 2/3" 3-CCD video camera sets the standard by which all other cameras of its type are measured. When first introduced, the KY-27's amazing LoLux feature was a revolution in the professional video industry.

Video professionals who chose the KY-27 for its low-light capabilities have come to appreciate the camera's total performance features, such as its excellent sensitivity, resolution and image quality. Sophisticated image processing and a host of electronic innovations guarantee perfect pictures, reliability and complete ease of operation—all for a price that's hundreds, or even thousands of dollars less than the competition.

"We find that the KY-27 is incredibly sensitive, has excellent resolution, and superb signal to noise characteristics."
John Kautzer, Chief Engineer, Southern Illinois University at Edwardsville Television Studio

LoLux Technology

In applications as low as 2 lux, users can now capture images never before possible. Once LoLux is switched on, the CCD's are maximized for low-light sensitivity equivalent to an electronic gain of 24 dB with an additional 6 dB, which is provided by JVC's unique CCD pixel readout system, for a total of 30 dB. All without the noise and picture degradation normally associated with this degree of gain.

Latest CCD Technology

JVC's latest 2/3" CCD technology incorporates an array of advanced features that set new standards for performance and sophistication. Sensitivity is dramatically improved by the new dome-type micro-lens, which utilizes JVC's light tracking simulation technology for highly efficient light conversion. The result is the nearly total elimination of vertical smear, flare and ghost images.

Lightweight Ergonomic Design

The KY-27 has been designed to offer near-perfect weight balance, with all its controls ideally located for total ease of operation. And the extensive use of solid-state circuitry provides excellent reliability and durability.

Variable Scan

The KY-27's Variable Scan function provides flicker-free shooting of CRTs, and features an electronic shutter with fine increments ranging from 1/60 second to 1/2000 second.

"The KY-27 gives our ENG crews much more flexibility because of its low-light performance, and the "full auto" mode allows us to concentrate on the shot instead of the camera."
Fred Yawnick, US Electro Dynamics, WA

Full Auto Shooting

In the Full Auto Shooting mode, the KY-27 operator has only to zoom, focus and press the trigger. All other functions are controlled automatically for total "point and shoot" ease of operation. This is a real plus when you have to quickly capture a shot and you don't have time to check your switch settings.

KY-27 shown with the BR-S422U recorder and optional lens.

THE TOTAL PERFORMANCE OF

www.americanradiohistory.com
Enhanced Automatic Level Control (ALC)

The new Enhanced ALC mode not only varies the gain, but also engages a variable shutter, allowing continuous automatic shooting in all light levels, from very dark to bright outdoors, without the need to suddenly switch the gain setting or insert an ND filter.

Full Time Auto White

This function analyzes the color temperature of the light source and then self-adjusts the setting. This allows you to follow a subject moving through different light sources, such as incandescent to fluorescent to outdoors, without stopping to take a new white balance for each lighting change.

A host of other features demanded by today's video professionals rounds out the KY-27's total performance capabilities.

- Star Filter
- Advanced Memory System (AMS)
- Low Power Consumption
- Remote CCU Options
- Auto Knee Circuitry
- SMPTE-Type Color Bars
- Component, Composite, Y/C, and RGB Outputs
- 2H Contour (detail) Correction
- User Selectable 8-pin or 12-pin 2/3" Lens Trigger
- 4 White Balance Settings
- No Misregistration from Terrestrial Magnetism
- No Lag, Burn or Deflection Distortion
- Color Matrix Circuit for Accurate Color Reproduction
- Genlock Circuit Built into Camera Head

"The features we find appealing are the low-light capability, its true-to-life color rendition and its general ease of operations."

Dan Block, ASCA Films

"We've had KY-27 cameras since December of '92. They've lived up to our expectations and we highly recommend them for both studio and location operations."

G. Riccardelli, Vice President Engineering, WTCZ-TV, an NBC Affiliate

FREE DEMONSTRATION

Send us this reply card and we'll arrange for you to have a FREE demonstration of the KY-27 at your nearest JVC dealer.

Name

Company

Address

City

State

Zip

Phone

For an even faster response, fax a copy of this card to JVC Professional Products at (201) 523-2077 or call 1 (800) JVC-5825.
Perfectly at Home in a Studio

The KY-27 offers a full range of accessories which make the camera ideal for studio configurations. In addition to a 4" viewfinder, cables, and a full line-up of lenses from all the major manufacturers, two camera control units, the RM-P200 and the RM-P300 are also available.

Direct Docking with a Variety of VTRs.

The KY-27 is designed to dock directly with the BR-S422U, BR-S411UB and BR-S420CU S-VHS recorders. Optional adapters allow docking with MII, Hi8, Professional Betacam and Broadcast Betacam recorders.

RM-P200 A basic camera control unit, the RM-P200 is very economical and operates up to 325 feet.

RM-P300 A deluxe control unit, the RM-P300 offers extensive controls with digital rotary encoders and an LCD menu display. And, it can operate up to 1,000 feet from the camera.

JVC PROFESSIONAL PRODUCTS COMPANY
41 Slater Drive
Elmwood Park, NJ 07407
1-800-JVC-5825

FREE DEMONSTRATION

JVC PROFESSIONAL PRODUCTS COMPANY
41 Slater Drive
Elmwood Park, New Jersey 07407

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 3920 ELMWOOD PARK, NJ
POSTAGE WILL BE PAID BY ADDRESSEE

JVC PROFESSIONAL PRODUCTS COMPANY
ATTN: Marketing Dept.
41 Slater Drive
Elmwood Park, New Jersey 07407
A standard ethernet interconnect will provide up to 10Mbps of throughput for staging commercials. At the 5.3Mbps data rate, spot files can be copied to the playback buffer drives in approximately one-half of real time. Such PC-based platforms allow the network architecture to be expanded to increase playback capability and/or staging speed as needed.

Although a cart system for every cable network would provide ideal flexibility, it would be cost-prohibitive.

Attempting to interconnect multiple head-ends or expand channel capacity beyond 16 places additional processing loads on the system controller. Such large designs require a multitasking operating system, such as Unix, and distributed processing in the form of smart machine control cards. This approach can effectively manage any outward expansion needed by an MSO or large cable system.

Future switching systems

In the near term, commercial insertion will still take place at baseband audio/video. This requires analog switching between the MPEG decompression playback cards and the satellite networks. Simple dedicated channel switching can be used, but a router provides more flexibility. Because digital video ports can be effectively shared across networks, a router means less ports in the system and a savings in decompression cards and high-speed SCSI drives and controllers. Customizing commercials at the head-end also is possible through the addition of a character generator. This affords operators and interconnects the ability to overlay generic promotional spots and commercials with system-specific tags after they have already been loaded into a digital storage system. Because the cable head-end is not driven by house sync, any router will require individual sync circuits on the output channels. A digital commercial insertion system is shown in Figure 3.

Gaining the maximum advantage requires that all signal switching eventually take place in the digital domain. However, initially all inserters will be essentially a hybrid digital/analog system. Commercials will be routed internally by digital staging, then decompressed to analog and switched into programming. The analog router also facilitates hybrid tape/digital video systems configurations that some operators are planning. This will ease the migration path from tape to digital video playback. In the longer term, signal switching may well take place digitally with MPEG-compressed commercials switched directly into MPEG programming streams and decoded at the subscriber's set-top terminal.

Verification systems

Until recently, commercial verification was standard with most insertion systems, often relying on a proprietary marking scheme that encoded IDs on one of the two audio channels. The ID tones are usually FSK bursts that include the essential spot and advertiser information. Some systems also provide SMPTE time code to locate and verify commercials during playback.

A new technology standard is emerging for use in commercial verification. Although designed for cable multichannel applications, it still retains the VBI active video encoding technique of its broadcast counterpart. The commercial identifier is read independently of the inserter's switching system and reports back to the controller.

Unlike over-the-air broadcasts, there are no guarantees that a commercial that reaches a channel modulator actually reaches the entire cable system. However, because the IDs are embedded in the active video, the verification decoder unit can be located remotely anywhere on the cable system to verify that the spots were run correctly. The decoder can even be positioned down the amplifier cascade or over remote microwave sites.

Fiber optics and head-end consolidation

One key to effectively integrating commercial insertion into large systems is the use of fiber. Tying contiguous franchise areas and even entire markets together with fiber-optic loops is already having a positive effect upon the logistics of local insertion. Head-ends, which were formerly remotely located, are now collapsed into single, larger centralized head-ends feeding many more subscribers. This means that the insertion system can easily service a larger area or the entire market in a hard interconnect. Consolidating insertion equipment at a single location also makes it easier for operators to improve quality and maintenance while making it possible to more quickly update commercials.

Such logistical improvements do have one drawback: A single insertion system cannot provide the kind of system-specific targeting that has built the local cable advertising business. The real advantage of fiber is that it allows cable systems to be zoned into more relevant market areas that may provide even more specific insertion capability than the previous individual head-end architecture. These zones become hubs that can be fed from one large, centralized insertion system with separate output channels for each network and each zone.

StarNet control room in West Chester, PA, monitors and retransmits all ad-supported cable network cue tones and deploys an MPEG digital uplink to send commercials to affiliates for storage and playback.
With the advance of digital video systems, hubs also can effectively operate from different locations (previously complete head-ends) taking advantage of a single fiber channel to connect them onto a network for receiving digital commercial downloads. This application is similar to the on-demand PPV systems planned to target nodes with as few as 200 subscribers. Fiber's ability to provide improved logistics and increased targeting also apply to multiple cable operators within the same market.

Satellite transmission for commercial distribution

Although all cable systems receive programming via satellite, only one major TV market in the country is currently using that synergy to deliver commercials to their affiliate head-ends. This market's interconnect has been a pioneer, but it is still videotape-based. Commercial master tapes are downloaded/recorded daily to unattended edit record VTRs for later playback. The interconnect has been able to eliminate tape bicycling and decrease turnaround time, making it more competitive with local broadcast stations. However, the tape-based inventory and random-access restrictions still persist, along with the continuing maintenance problems inherent in VTR operations. Digital satellite transmissions can be used in conjunction with digital commercial insertion systems to open up this delivery method to many more markets.

New uplink compression technology has been moving away from proprietary compression schemes to a standardized MPEG approach. The leading manufacturers of digital uplink systems have either dropped their proprietary compression schemes or moved toward the MPEG (II) standard. By splitting a transponder into two 21.5Mbaud halves, two broadcast-quality (8.3Mbaud) MPEG feeds can be multiplexed on to each half transponder.

If this new technology is used in a storage for playback application instead of live network retransmission, high volume commercial distribution can result. Although the data rates that will be used for local insertion playback will usually be lower (5.3Mbaud), the resulting spot files are still large — 18Mb to 20Mb each. This means that the standard dial-up lines normally used in cable to download schedules and retrieve verification logs too slow to move commercial copy to the head-end. A 9,600 baud modem could take as long as four hours to transfer one 30-second spot. Although other high-speed data transmission methods and fiber can tie remote cable head-ends back to a central traffic or production office, satellite delivery is the only method that can deliver the large amounts of data at the high-speeds required to all head-ends simultaneously.

MPEG digital uplink technology is new. At the end of March, only two companies in the world were deploying this delivery system. One of the two, StarNet, will use the technology to deliver commercials and promotional spots to affiliated cable head-ends for storage and playback into local insertion schedules. The delivery is extremely fast (43Mbaud) with spots passing through the uplink at a rate of one every four seconds.

The head-end digital insertion playback units are MPEG-based and addressable, retrieving only those commercials from the uplink feed that are slated for playback at that particular head-end. Such technology allows operators to streamline their operations and eventually tap into revenue streams from regional and national spot buys previously unavailable to them because of logistical problems.

More and better options

As digital and compression technology matures, cable systems will offer subscribers and advertisers more and better services. The advertiser will be able to target more accurately, thereby getting the most cost-effective coverage. The subscriber will benefit from having the availability of local and national commercials, which help control the pressure to raise subscription rates.

As these technologies move into the cable arena, engineers must become familiar with them and learn how to effectively implement them into their systems. The spin-offs from such advances will be rapid and widespread. No one should think that such improvements are the final stage. After all, we've only begun to enjoy the benefits resulting from the invention of that first semiconductor device, the point-contact transistor, developed by John Bardeen, Walter Brattain and William Shockley back in 1947.

For more information on automating cable systems, circle Reader Service Number 300.
Panasonic won an Emmy for the M.A.R.C. Cassette Library System in 1990. Now, Panasonic has won an Emmy for D-3 in 1992!

Half-inch Composite Digital gives today's most demanding broadcaster superb quality, performance and reliability at a cost effective price.

Cassette interchange is assured—across the room or across the country. The 8-14 channel coding, advanced error correction/concealment techniques, full field data shuffle and four individually editable digital audio channels add up to outstanding performance.

The Panasonic M.A.R.C. Cassette Library System has:

- A multi-user, multi-tasking Xenix operating system
- A multi-user Informix Data Base Management System
- An interactive Cassette Dub Station for quick and easy spot dubbing and program screening with automatic data entry
- Multi-element cassettes for programs and multiple spots per tape with no change in software
- Up to seven remote terminals via an Ethernet LAN.

Hundreds of broadcasters have already found out what makes Panasonic digital technology award-winning. Find out for yourself—call 201-392-6176.

Panasonic
Broadcast & Television Systems Company
Multicasting for TV broadcasters
Managing multiple program streams requires a new breed of hardware.

By Ray Baldock

Signal compression systems, perhaps the most significant technology highlighted at this year's NAB, will provide a wealth of new opportunities for the distribution of programming through the next decade and beyond. In addition to enabling terrestrial broadcasters to squeeze future HDTV signals into a smaller transmission bandwidth, several companies see signal compression technology as their entree into a new business called multicasting. Multicasters include those facilities originating two or more program feeds from a single location.

The enthusiasm for compression among non-terrestrial broadcasters (cable, DBS and telcos) is unquestionable, and it is the driving force behind several major players' ongoing attempts at redefining how entertainment is distributed. Multicast operations in a non-terrestrial broadcast environment can benefit from the lower cost of distribution provided by signal compression, plus the economies of scale afforded by centralizing and automating technical facilities.

Business environments for multicasting
Well-established national cable networks have already tripled the number of program choices available in the typical viewer's home over pre-cable days. Signal compression serves these networks' needs well and can greatly reduce their distribution costs. Consumers also benefit from greater accessibility to their entertainment preferences. Increased channel availability means more frequent start times for pay-per-view movies and/or greater diversity in the number of movies offered simultaneously.

Compressio technology also is enabling many cable networks to incorporate regional advertising. Meanwhile, most broadcast networks are already selling some of their time for regional commercial feeds, and they, too, may soon be looking to compression as a means of lowering their costs.

Multicasting is not new to local stations either. Several group owners (most with stations located in adjacent markets to each other) have consolidated their administration, technical facilities and engineering support into a single location to lower their operational costs. Other stations that feed a translator, or those feeding their signal for carriage on an out-of-market cable system, have provided a subregional feed of their programming with some of the breaks targeted specifically to that audience.

Many of these split-feed stations garner additional revenue by tailoring their subregional feed with commercials sold and aired exclusively in the remote area. Others provide a time-shifted version of...
Stop Talking Dirty.

Clean up your act with a Harris DX Series transmitter. Our patented digital modulation delivers the strongest, cleanest AM signal yet. With over 145% positive peak capability. As well as the lowest THD and IMD ever.

What’s more, you get 100% solid state reliability. Along with patented lightning protection that’s proven itself at more than 200 sites worldwide. And with typical AC to RF efficiency of 86% or better, you’ll get the lowest power costs of any AM transmitter.

If you’re ready for some more sweet talk about the DX Series 10-50 kW* transmitters, call Harris Allied today.

USA 217-252-8200
FAX 217-224-1439
Canada 800-268-6817
FAX 416-764-0729

* DX 100 to 1000 kW-plus transmitters also available. ©1992 Harris Corporation
their programming in a second feed to improve their share. In the case of a super-station, which is distributed nationally via satellite to cable head-ends, local spots are often replaced by national ones.

Often, an advertiser who is test-marketing a new product in the local market only will contractually require the station to cover the product’s spot if the station is carried nationally. In other cases, the station can benefit financially by replacing local spots with national advertisers who seek and will pay for the larger audience. Likewise, many syndicated programs are sold with market exclusivity and must also be replaced with alternate material when the station is viewed outside its home market.

On a larger scale, the entry of big league multicasters means that stations face further erosion of their market share. Without a strong local identity or popular network series, small-market independent stations face the greatest challenge for survival. According to several industry executives, these “indies” could be the first to fail in the face of additional competition from new multicaasters. Broadcasters need to redefine their market niche and, in some cases, they should consider new strategies to maintain their profitability.

With the recent developments in multichannel automation, it seems likely that some broadcasters will benefit by using the multicastrating concept as a means to centralize technical facilities.

Sourcing systems for multicastrating

Cart machines play an important role in multicastrating if the incremental cost of operating additional channels is to be minimized. Sourcing several channels from a single cart system places some new requirements on the control software, because several channels may be competing for common resources (such as VTRs or robotics). Further complications arise when multicut tapes are used and the same tape may be required on two different channels at a similar but not identical time.

Application software for all of today’s library management cart systems was originally designed for single-station, single-list operation. Although attempts have been made by some cart system manufacturers to provide for short breaks in the main channel so that a few spots can be replaced in a secondary feed, these systems are often severely restricted by the limited resources available within the cart system itself.

Direct-to-air spot replay for several channels, sourced from a single cart machine, is only possible when the duration of the material does not exceed the recycle time of the robotics on any channel. Events that occur simultaneously on two or more channels will often cause contention for the robotics, making the cycle time unpredictable. In cases where the channels are totally different (asynchronous), the designer must plan for operation where breaks are often unscheduled and where both channels might be running short-segment spots simultaneously. In this case, cycle time can be greatly limited by the system’s robotics.

Therefore, for consistently reliable direct-to-air multichannel operation, the allowable cycle time on each playlist has to be tightly specified. Placing such restrictions on the sales or traffic department is unrealistic and usually unacceptable as a solution, however.

A more practical approach that removes these constraints on how commercials are sold or scheduled involves the pre-compilation of spots for each break onto a separate break tape. This effectively...

If you look at this and see "ten," not "two," we’ve got the digital audio system for you.

The DAD 486x Digital Audio Delivery System lets you reap all the benefits of a powerful, CD-quality digital audio system without having to hire computer wizards to operate it. With your DAD on the job, you can throw away your cart and floppy disk machines, the carts, the disks and all the problems and expenses they’ve caused you. But since DAD's basic operation emulates standard cart machines, you won’t have to waste time learning unusual operating methods or incur brain damage trying to figure out complex computer screens. DAD’s easy, intuitive touchscreen operation lets you put it right to work boosting your audio quality, improving your audio operations and paying dividends on your investment quickly and efficiently.

But, underneath DAD’s easy to operate touchscreen is a powerful, hard disk-based production and playback system. DAD can even be configured as a networked system with multiple users and locations for even greater versatility and economy. With virtually unlimited stereo audio storage capacity, graphic waveform editing, capabilities and versatile automation, interface and operating features, your DAD system is far more than just a replacement for cart machines. It really is a complete Digital Audio Delivery System!

The DAD 486x

To receive more information or to find out how to put our DAD to work for you, call us at 1-800-ENCO SYS.
From now on, one head is better than two.

VISION SD 12 and 22 with patented Serial Drag

Traditionally, pan/tilt heads use one of two drag systems. Vinten's Serial Drag (SD) technology defies tradition. It gives you all the advantages of both drag systems but none of their disadvantages. You control the smoothest pans and tilts, regardless of drag setting, speed or temperature. And have the widest range of infinitely variable, precise settings with equal drag in each direction. For whip pans, there's instant drag breakaway and recovery.

Two SD systems — each with a sealed, fluid drag (shown in red) and an advanced, lubricated-friction drag (in gold) — are in the new SD 12 and 22 heads. Main elements, including fluid drag labyrinths, are magnesium, precision cast to tolerances measured in microns! The fluid in the labyrinths, a proprietary Vinten formulation, maintains constant viscosity from −40°F to +140°F. Of course, each head also has Vinten's exclusive, spring-assisted, counterbalance system for perfect "hands-off" camera balance at any tilt angle.

The compact SD 12 has a hefty 35-pound capacity. The SD 22 easily supports 60 pounds. Teamed with a VISION two-stage aluminum or carbon fiber tripod (the industry's lightest, strongest and most rigid carbon fiber tripods), you have an SD System. For ENG/EFP camera support and control, it doesn't get any better than this.

For more information, call your nearest Vinten location.

VINTEN BROADCAST INC., 44 Indian Lane East, Towaco, NJ 07082
(201) 263-4000 FAX (201) 263-8018
South — Sunrise, FL 33371 (305) 572-4344
West — Sun Valley, CA 91352 (818) 767-0306

Circle (23) on Reply Card
Automated broadcasting in Britain

By Harry A. Cole

Britain is a relatively small country with a population of approximately 56 million. Its terrestrially based radio and TV programs are broadcast from 50 main transmitting stations and nearly 1,000 lower-powered relay stations. Most of these transmitter sites operate unattended and provide coverage for more than 99% of the population.

At virtually any location, the British broadcast audience has its choice of four TV stations (all UHF) and at least five radio stations (FM/VHF and AM/MW or LW). (TV relay stations are installed to ensure adequate coverage for any location with a population exceeding 200.) Two of the TV channels come from the British Broadcasting Corporation (BBC), while the others are regionally based commercial services. Radio stations are similarly provided by the BBC and independent commercial operators. The BBC and commercial channels alike feature national and local material.

Most commercial radio and TV oper-
transmitter controlling and monitoring (ROCs), operators have their programming distributed and transmitted by National Transcommunications Limited (NTL), which has recently designed and implemented an innovative, integrated system of remote control and automation. More than 100 main TV stations and more than 300 relay and radio stations in Britain are currently on-line with this new control technology.

Central control
The new integrated service is based at four Regional Operating Centres (ROCs), each of which is responsible for controlling and monitoring a number of transmitter sites. Each ROC uses a DEC MicroVax computer and workstations on a local area network (LAN) leased from a wide area network (WAN). This configuration enables any ROC to have access to any other ROC's data, allowing 24-hour monitoring and control of the entire network from a single location, if required. From their workstations, operators are able to observe the status of the system and enter commands to control transmitter equipment or make configuration changes. The system is user-friendly, with a windows-like graphic user interface (GUI). Operators have a range of major operating tools available to them, including a network status display summarizing the overall network alarm status in a single window.

At the station end
The ROCs connect to a variety of terminal hardware at the stations under their control. The main transmitter sites use service controller systems. These offer a distributed approach to monitoring and control of the on-site equipment at the transmission facility, using robust Bitbus technology. This system architecture provides a high degree of flexibility for future expansion.

Most British transmitter sites operate unattended and provide coverage to more than 99% of the population.

At the smaller relay stations (outstations), dial-up facilities using compact microprocessor units may be employed instead. These can be configured to suit the requirements of each particular site. The primary functions required for such stations are logging and alarm reporting.

Decentralization
For station operators who require remote control and automation on only a small number of transmitter sites, and who wish to provide their own monitoring and control functions, the ROC's capabilities can be duplicated or replaced by the operator's own control site. In this case, a PC-based monitoring and control system using a Windows 3.1 GUI provides the same functions to the station operator as the ROC does in the larger system. The same dial-up terminal equipment previously described can be used at the stations, which allows the operators to migrate to larger control systems when desired, without replacing hardware at the outstations.

The remote hardware for radio station control includes a dedicated unit that monitors audio failures within the transmission system, locates faults and provides on-site corrective actions.

These remote-control systems have improved reliability and have reduced the cost of commercial broadcast station operations throughout Britain.
eliminates the contention for original tapes, minimizes the number of VTRs required for air, and removes the cycle-time restrictions. Cart machines have proved to be efficient compiling systems. They provide the ability to edit the tape together if a conflict for spots on the same tape or an access time problem precludes continuous assembly.

Where the highest quality is required, digital VTRs may be employed to minimize the generation loss during dubbing. With the availability of serial digital interfaces on most DVTRs, cart machine manufacturers can be expected to add digital switchers to their cart systems to provide the best possible performance in the digital environment.

For relatively low additional cost, several cart system manufacturers already offer split-feed capability using compiled reels for spot insertion on one or more output channels. (See Figure 1.) The approach adopted in these break-tape systems is simple and efficient for managing occasional spot insertion in a subregional feed. The break-tape assembly process

A comprehensive automation package should provide for control of devices outside the cart machine.

Clark listens to its customers and designs its complete line of audio/video cable accordingly. Now you can listen to Clark's new 700 Series snakes that are designed, as usual, with the customer in mind.

Why not give Clark a listen?

Cables available cut to length and terminated to your specs.

You can measure... with the best monitor and the most accurate test set.

The FMM-2/FMS-2 series monitors provide an even greater degree of precision measurement than ever before. You can measure S/N below 90 dB, You can measure crosstalk below 85 dB, You can measure separations of better than 70 dB, You can measure frequency response to better than 0.25 dB, You can measure distortions to lower than 0.01%, and much more. Our uncluttered panels and autoranging voltmeters make these measurements a dream.

Call or write for more information on Belar AM, FM, Stereo, SCA and TV monitors.
Belden has

BIG NEWS

for the broadcast industry

Belden is on the air with the industry's largest portfolio of new broadcast cables.

More than 60% of the products listed in Belden's new Broadcast Catalog didn't even exist just 2 years ago! Belden's new 48-page Broadcast Cable and Connector Catalog provides specifications for the industry's most complete line of cabling products, including audio multi-conductor cables, microphone cables, video coaxial cables, video coaxial cables, audio & video composite cables, bundled coaxial composite cables, fiber optic cables, cable assemblies and connectors.

New levels of excellence and innovation

During the past few years, Belden has introduced more product innovations for more broadcast cabling applications than any other cable company. This commitment to innovation and technical excellence is the reason Belden remains the broadcast industry's No. 1 cabling choice, worldwide. It's a position we've worked hard to earn and will fight hard to keep with new products, new options and even higher levels of excellence in the future.

For a FREE copy of Belden's new Broadcast Cable & Connector Catalog plus updates on our latest product innovations, contact your local Belden distributor or call toll-free: 1-800-BELDEN-4.
Broadcast Engineering

subregional outputs. can put. tape and switches, the channels are airing the same material switcher. During the breaks, an operator handles replay for the appropriate break tape. Many users would like pre-air, tape recording, and the integration of all functions within a more sophisticated cart system. Some developments along these lines were visible at NAB '93.

Automation and cart systems for multicasting

One demonstration at the show highlighted a new cart system configuration specifically designed to automate all tape functions for several stations within a single cart system. Advanced multichannel automation software for the system provided management of all feed recording, program replay and spot insertion for several independent stations on a 24-hour basis. (See Figure 2) Pre-air tape preparation, inventory management, as run logging and automation for up to eight lists, using up to 24 serially controlled devices, can be included in this system.

Some proponents envisage central broadcast operations centers that market technical services to licensees in their area.

Also demonstrated was a network split-feed system, (see Figure 3) that could automate a single program feed with as many as five or six regional breakaways. The number of stations served, or the number of breakaways provided, is limited only by the number of installed VTRs and the aggregate time required to complete.

Some proponents envisage central broadcast operations centers that market technical services to licensees in their area.

Figure 2. An advanced multicast operation that allows multiple stations to be served with independent, asynchronous schedules from a single storage/playback system.

Figure 3. VTR allocation and layout of a cart machine system for multiregional spot insertion.

is semi-automatic and requires only minimal operator supervision to select the record tapes and to initiate the compilation process. Only the unique segments of individual channels must be compiled onto the break tape, so complete time for a split feed is often extremely short. After completion, an operator moves the compiled reel(s) to the appropriate break-tape manager (BTM) for replay.

In this approach, the cart machine handles replay for the main feed while an independent BTM handles the switching of the pre-compiled breakaway material into the feed, using its own downstream switcher. During the breaks in which both channels are airing the same material at the same time, the BTM switches the cart machine to air. When the breaks are different, the BTM rolls the appropriate break tape and switches it to the subregional output. A separate BTM subsystem is required for each separate feed. Many such systems can be added to provide for a number of subregional outputs.

Although this approach generally works well, the cart machine still has a limited amount of off-air time to compile all of the break tapes. Some users would also like to eliminate any physical handling of the finished break tapes by operators. These and other concerns have generated increased interest in highly automated multicasting, and the integration of all functions within a more sophisticated cart system. Some developments along these lines were visible at NAB '93.

Also demonstrated was a network split-feed system, (see Figure 3) that could automate a single program feed with as many as five or six regional breakaways. The number of stations served, or the number of breakaways provided, is limited only by the number of installed VTRs and the aggregate time required to complete.
It Has Outperformed, Outclassed, Outsold, Outdistanced And Outlived Every Mixer That Ever Hit The Road.

Nothing compares to the Shure M267 Mixer. Nothing even comes close. The M267 is the most rugged, reliable, remote mixer ever made. And it has a road record to prove it. In fact, there's only one word to describe it: Outstanding.
Call 1-800-25-SHURE. The Sound Of The Professionals®...Worldwide.
pile the necessary material.

Regarding such limits, tape library systems now include storage for up to 300 tapes and 11 standard VTRs. With D-3 or S-VHS decks, up to 14 machines can be accommodated. Some systems can also handle mixed cassette sizes. A multicast-capable library system can include several sets of robotics to service a larger number of tasks simultaneously and can pass cassettes back and forth between its multiple libraries.

Multicasting brings new opportunities for the broadcaster as well as new challenges to equipment manufacturers.

The automation control for such a system assigns VTRs to specific functions and moves tapes to storage locations closest to the decks on which they will be played. Three or four decks (one recorder and two or three players) are normally assigned to the compile function in such a system. Compiling is usually continuous, unless shuttle time or the cycle time on the robotics prevents a tape from cuing in time to be rolled. In this situation, the compile manager will back up the record deck and edit the spot into the compiled reel. Because of this edit capability, and because the system is not running spots direct-to-air, source tapes may contain multiple spots per cassette without the constraints usually imposed in a direct-to-air system.

A typical network affiliate's schedule of spots can be compiled in about 3 1/2 hours. An independent station may require almost double that time to complete. To eliminate possible contention for resources in a multilist operation, resources should be assigned to each list until otherwise reallocated by an operator. Figure 4 shows the allocation of VTRs in a system supporting a multistation operation with record capability. Compiling, satellite-feed recording and on-air replay can occur simultaneously in such a system, providing continuous operation for several feeds.

With additional VTRs, the number of stations served by the system could be increased as long as the compile process can be completed in the time allotted. It is also possible (with additional VTRs) to run several compile lists so that break tapes can be made for several channels simultaneously.

Another desirable feature is the ability to react to last-minute changes, such as the replacement of a previously compiled spot with another of the same duration. In the event that there is no time to recompile the change, one way to handle this is by pulling and replaying the original tape in place of the compiled tape's spot. Whether the tape has been compiled or is replayed directly should make little difference to the operator viewing the schedule. Each program stream's schedule should be independent, generating an as-run log that is complete for each regional feed.

A comprehensive automation package should also provide for control of VTRs and other devices outside the cart machine. Switching could be handled using either a dedicated router or the existing station router. These external devices permit integration of programming from other VTR formats or even optical disks. Access to still-stores and other serially controlled devices could also be integrated under the same automation system. GPI control of additional equipment, such as keyers for the station's logo or affiliate tone generators, should also be available.

With an adequate number of available VTRs it is also possible to download a schedule of recordings to be made. This includes new spots to be transferred to the system and programs that must be recorded from satellite for later replay. The record list can include crosspoint designation so that incoming signals can be directed to the appropriate VTR in the system.

Imminent applications

This type of system has many possible applications. Economic conditions in some markets demand new strategies to control costs. Some proponents of the technology envision central broadcast operations centers that market technical services to many or all licensees in their area. For stations without a local news service to support, such sharing of resources may make economic sense.

With close attention paid to the quality of material being fed into the system, it may be possible to have a single operator controlling several stations. It may still be desirable, however, to provide a dedicated control terminal and operator for each feed. The client-server architecture of the automation control system should allow for such flexibility.

Likewise, it should be possible to segregate the control of specialized functions, such as compiling and feed recording to different physical locations. Such a configuration should also be easily changed, perhaps automatically by daypart, thereby allowing one operator to easily monitor another operator's channel during unstaffed breaks or overnight shifts without reconfiguring the hardware. Tiered access should also be incorporated to prevent unauthorized control by "view-only" workstations.

Multicasting will bring new opportunities for the broadcaster as well as new challenges to equipment manufacturers. The challenge of a fragmenting marketplace undoubtedly requires further, extensive examination by all parties. Several areas require significant work in refining automation for multicast application. Yet substantial advances have already been made that bring added flexibility to existing tape formats and provide new automation choices for the industry. Because HDTV and its requisite need for new hardware looms on the horizon, any systems that can extend the lifespan and broaden the applications for existing equipment inventories in the meantime are welcome indeed.

For more information on videotape library systems, circle Reader Service Number 301.
Comprehensive...User-friendly...and
POWERSFUL!

EVA
An affordable answer to your automation needs.

AAVS introduces EVA, a new affordable automation system for a variety of automation applications. EVA's comprehensive scheduling software utilizes the multimedia capabilities of the Apple Macintosh.

EVA allows automatic playback and recording of programs with any mix of VTRs, including digital. EVA also allows control of routing switchers and other system peripherals such as video production switchers, character generators, CD players, DATs, Video Disks, etc.

EVA's user-friendly screens let you see at a glance the status of each resource and event in relation to real, future, and past time. EVA's wide range of powerful tools provides access to all essential functions. Real time video picture displays allow you to make changes and modifications with speed and accuracy.

POWERSFUL and flexible: EVA is fully expandable with a variety of versatile options such as automated cassette loading with the DIVA MkII videocart machine, interfacing traffic and billing systems, and many more, all without redundancy of existing EVA hardware or software.

SEND or call today for further details on the EVA - a comprehensive and uniquely affordable automated resources management system which leads to a more efficient tomorrow.

Advanced Audio Visual Systems
By SENCORE
3200 Sencore Drive, Sioux Falls, SD 57107
Phone: 1-800-769-AAVS (2287) or (605) 339-0100
Fax: (605) 339-6157
Circle (29) on Reply Card
Or join us at NAB for an EVA demonstration - Booth #12747 Hall S2

www.americanradiohistory.com
Radio automation techniques

Automation isn’t “the A-word” around the radio station anymore.

By Greg Dean

As the competition for each advertising dollar intensifies, so does the demand for more efficient automation techniques in radio broadcasting. Fortunately, the PC marketplace has made available a vast array of powerful hardware at affordable prices. The radio broadcaster now faces a win-win situation—the ability to improve audio quality and reliability while decreasing operating expenses.

Three environments of automation are emerging:

1. Satellite: Local inserts into satellite-delivered programming.
2. Local automation: Automated delivery of locally produced programming.
3. Live-assist: Live delivery of locally produced programming using automated sources.

Automation with satellite delivery

The satellite automation environment allows the broadcaster time to focus on local events, because most other aspects of programming can be managed by the satellite service. The highly structured satellite format gives the broadcaster the opportunity to plan for the content of each local break. Cutaways will normally be filled with a cluster of commercials, but they also can be used for local features, such as sports, weather or remote broadcasts from an advertiser’s place of business. The local on-air talent can be limited to one or two regular voices used for recording the commercials. Sales staff can be used for the remote broadcasts.

A satellite automation system must be able to provide a high ratio of walk-away-to-maintenance time. It also must meet the timing challenges inherent in the satellite format through the use of automatically selected filler material and electronic time base adjustment.

Until the advent of digital audio storage and computer automation, satellite formats were limited in their creative endeavors by the shortcomings of analog satellite links and automation equipment. Today, the satellite providers are moving to digital audio systems, while the state-of-the-art in delivery automation equipment has also become all-digital. The real time random-accessibility to any piece of audio stored in a digital automation system provides significant advantages here. A satellite format is no longer restricted to six contact closures with which to "localize" a format.

Analog automation equipment required the local operator to manually change playback media (typically carts) with each announcer shift change at the network. Walk-away time was limited to the length of an announcer shift. Digital automation systems allow the electronic log to program the changes without operator intervention. The potential exists for the satellite service to send a change-voice command. It is now practical to have local liners and time-announce cuts using the voice of the current network announcer.

The digital system’s random-accessibility and the structure of today’s satellite formats make it reasonable for each satellite voice to record a range of time-check announcements using only the hours and minutes near the times of the format’s local cutaways. It isn’t necessary to record a cut for every minute of every hour. The automation equipment will choose the proper voice and cut matching the time at which it is being played. If, at a particular time, a cut hasn’t been recorded, the

Dean is chairman of Computer Concepts, Lenexa, KS.
As the manufacturer which performed the world's first installation of a full digital studio back in 1985, THOMSON BROADCAST is proud to introduce the 9200, the newest member of its digital switcher family. This unit is the crowning achievement of a design team that boasts almost a decade of experience in conceiving, manufacturing and delivering only component digital switchers. The 9200 is a compact 1M/E + DSK with functional innovations that blow away the standard limitations of switchers of this size: M/E or multilayer, video or key freeze, fluorescent display, double transition, input level correction, source memory Mem Box with keyframes and sequences, timeline control, 6 auxiliary busses, and more. Besides being feature-rich, the 9200 switcher is ergonomically designed and interfaces easily with existing equipment. THOMSON has funneled its years of experience to produce a powerful, innovative component digital switcher within an affordable package. We used our expertise to do the hard work, so you won't have to.

THOMSON BROADCAST

State of the digital art

9200 Component Digital Switcher

Circle (30) on Reply Card
automation computer simply substitutes a generic (non-time-related) cut recorded by the announcer.

Satellite automation always includes a switcher capable of turning off the network during local breaks. This switcher can be made remotely controllable (via dial-up phone line) in order to allow unattended, phoned-in reports to be aired (or recorded for later airing), such as weather bulletins or remote broadcast inserts.

Most digital automation systems are now capable of multitasking, such that at least one record and one playback function can be handled simultaneously. This allows closed-circuit broadcasts from the satellite service to be recorded by the automation system while it plays back audio during a local break. The recordings can be reviewed and edited or deleted by an operator when convenient.

Local automation

A local automation system is used in an environment where the broadcaster desires total control of program content. Typically, such a station has a number of announcers on staff, but wants to relieve them from having to sit at a microphone for the actual duration of the shift. The principle also applies to music-based operations and prerecorded non-music formats.

The major challenge for automated music formats has been maintenance of the on-line selection of music. CD libraries and juke box-like mechanisms have provided a substantial improvement over open-reel tape systems, but cueing times and sequencing problems still remain. Once again, the total random-accessibility and instant response time of an all-digital automation system — where all music material is contained on the automation computer's hard disk(s) — can help.

Announcers record their voice-over cuts while listening to the beginning or ending of each musical selection to be played during their air shifts. Voice tracks for a four-hour shift can be recorded in less than 30 minutes. The automation computer ensures the proper match of front/back announce cuts to the music selections. Sequencing of the voice, music and commercial elements is driven by files containing block format, music log and station log data. With all of the music stored on computer hard disk, no conflict in the sequencing of songs occurs. There would be no problem when attempting to play two cuts from the same CD back-to-back.

Stations using non-music, prerecorded formats simply record the short- and long-form audio elements into the automation system. This function can be either manually assisted or operate as an automated background recording near the time of broadcast. Most digital systems allow the simultaneous playback of an element while it is still being recorded, providing a versatile time-shifting capability. The on-air sequencing is again controlled by the same combination of block format, program element and station log data files.

Live-assist

Digital automation systems provide a number of interesting opportunities for live-produced formats. This environment is called live-assist because the automation system simply waits for commands from the live operator.

The station log and music logs typically are merged into one display from which the operator can sequence the elements. With a single keystroke, the operator tells the automation system to load a complete cluster of commercials into a queue and wait for the operator to give a subsequent instruction to begin playing them. With a few more keystrokes, the operator can reassert the sequence.

Digital automation systems also can be applied to the announcer desiring instantaneous access to various sound effects or other preproduced bits. Some systems offer a keypad of a few dozen push-buttons, which can be assigned to particular audio
Our competition is making a lot of noise about their wireless. Trouble is, their wireless make a lot of noise too.

Experience the Nady 950 UHF. The first quiet multichannel UHF wireless.

Fact: Due to problems inherent to UHF technology, like phase noise and residual frequency modulation, UHF wireless systems tend to be noisy.

Fact: Other companies offer high end UHF wireless systems that are 5-10 dB noisier than their VHF systems, and VHF systems that are 10-30 dB noisier than any Nady.

Fact: Some companies that offer a quiet UHF system don't advertise how they make it quiet by sacrificing headroom. So you're asked to accept less critical performance—to choose between noise and clipping.

Fact: Nady devoted extensive R&D to testing, simulating and modifying our UHF systems. Our engineers utilized circuit modeling and analog simulation software to optimize our design and compensate for manufacturing tolerances and variations in device parameters.

Fact: Nady engineers achieved the first truly quiet RF link for UHF wireless. The Nady 950's proprietary components and circuitry yield radio link carriers that are up to 20 dB quieter than any other UHF system. And Nady's specialized companding noise reduction delivers the best dynamic range—and headroom—in wireless today.

Fact: The Nady 950 features state of the art frequency synthesis. With several ten channel models in the 490-950 MHz range, and a 40 channel version in the 800 MHz range. Plus exclusive hiss mute circuitry, which maintains audio quality as the transmitter moves toward the outside limits of operating range. Variable bass boost. Balanced and unbalanced output. Switchable 115/220 and DC power. Available frequency bands for worldwide use.

Fact: You could pay a lot more for a UHF wireless system, and get a lot more noise. So choose the Nady 950 UHF.

Call us—we'll send you more info.
cuts and used to start them. Others use "virtual" button icons on a touchscreen for similar purposes. The assignment of audio to the various buttons can be loaded from personalized configuration files and changed on-the-fly during the shift.

These buttons also can be programmed to control any function for which the automation system has been configured. For example, some buttons could be assigned to the start, pause, resume and halt functions of recording from the telephone, eliminating the announcer's need to handle any tape for this purpose.

Finally, accuracy for advertisers is enhanced, because the station log directs the digital automation system in the selection of audio. The automation system can challenge the operator if the audio being selected is out of date. Digital audio storage on a computer also allows reliable verification of the current audio inventory against the log schedule for the next day's broadcast.

Benefits common to all environments

The digital automation system can provide a detailed audit of each event it has performed. A well-designed audit system saves these details to a computer file that can be manipulated with a vendor-provided report generator. The operator can create a fully detailed report of all activity for a given time period, or he can filter the data so that only the events related to a certain closure or the playback of certain audio is reported. By storing the audit data in a PC file, the archiving of performance data is simplified. Typically, a month's worth of audit data can be stored on a single 1.2Mbyte diskette.

Highly reliable delivery of audio is proving to be a major benefit of fully digital automation systems. These systems eliminate the traditional analog audio artifacts caused by wow-and-flutter, inconsistencies in tape-to-head contact and azimuth error.
Around The Clock Performance.

That's what you get when you put a Harris Platinum Series® VHF Transmitter to work for you. Its innovative power-block architecture gives you unsurpassed reliability. The solid-state modules operate at low junction temperatures for longer life. Parallel redundancy ensures that a failure won’t take you off the air. And its interchangeable visual and aural power amplifier modules are self-protected against six fault conditions. We offer our Platinum Series in all international broadcast standards and at power levels from 500 W to 60 kW. All backed by our 24 hour service center. If you’re looking for the most reliable, cost-efficient transmitter that’s the foremost in VHF solid-state technology, it’s time you looked at a Platinum. Exclusively from Harris Allied. To learn more, contact your Harris Allied representative or call us directly.

3200 Wismann Lane
P.O. Box 4290
Quincy, IL 62305-4290 USA
217-222-8290
Fax 217-224-2764

©1993 Harris Corp
www.americanradiohistory.com
A buyer’s guide to radio automation

By Greg Dean

When approaching PC-based automation for the first time, it helps to know what questions to ask. The following are a few common concerns about such systems, with some general answers supplied:

1. Why would I want hard disk automation for a format as simple as a satellite-delivered music service?

A well-designed satellite automation system allows a large amount of walk-away time. It can handle the timing challenges of the satellite format by accurately filling the breaks without leaving empty space.

2. All PC-based automation systems look alike. Are there significant hardware differences among them?

Definitely. Although the PC is a common element, each manufacturer adds proprietary hardware to handle the digital audio and switching. These differ in quality and capability.

3. What about software?

Again, significant differences exist between suppliers. Each system has a unique user interface, and some are much easier to run than others. Some systems have extra features that may not be important in many applications but could be critical to yours. Finally, some manufacturers test and debug their software more thoroughly than others.

The prospective purchaser is well-advised to check with other users before buying.

4. How feasible is a combination of satellite and live assist?

With the proper hardware and software, this shouldn’t be a problem. In a system that is well-designed for this purpose, switching between these modes could be as simple as toggling a single key. On the other hand, some systems make it extremely difficult to make a smooth change.

5. Does this kind of automation make sense in a live-assist environment?

Yes. Digital automation systems can provide a number of opportunities in the live format. For instance, the station log and music list can be merged onto a single screen from which the operator can arrange a program stream. Clusters of commercials can be loaded, rearranged or played with a few keystrokes. Out-of-date messages can be tagged and not allowed to play without an alarm to the operator. Again, a well-designed system will allow switching of the system to fully automated operation with minimal keystrokes.

6. What kinds of problems can trip a system?

The most frequently reported problems involve multiple simultaneous operations. For example, many systems can crossfade stereo from one spot to another during playback, but can have a problem doing this while recording new material into the system at the same time.

7. What happens if a computer crashes?

This is a major concern for broadcasters. A well-designed system can provide redundancy by duplicating the audio on more than one computer, often via a network. This allows quick switch-over if a device should fail.

MEASURE WITH PLEASURE

The A2 Audio Measurement System

- Full Dual Channel
- Communicates with PC
- Multifunctional DSP generator
- One key - one function
- Storable, large graphics display and printouts

Circle (59) on Reply Card
There are just a couple of things we can’t supply to broadcasters... buildings and voice talents.

Call AEQ and you will find almost everything you need for your local radio station or for your international broadcast network.

Our talented engineers can provide you with Systems Engineering Design, state of the art equipment, technical advice and, most of all, the expertise obtained through the set up of over a hundred radio stations using our own designed equipment over the last ten years.

Do not hesitate. Choose somebody who knows. Choose AEQ.

AEQ MP-10 Portable Mixer. Allows program production and news report from anywhere with an available telephone line.

AEQ SYSTEL-3000 Multipoint Multiconference System. Allows full duplex simultaneous intercommunication of up to 9 people. Controlled via PC or through AEQ CR-01 remote control console.

AEQ TH-02 Digital Hybrid. The ultimate solution to talk show problems.

AEQ BC-2000 Broadcast Mixing Console. Complete Modular design. 18, 25 or 35 module versions.

AEQ MP-10 Portable Mixer allows program production and news report from anywhere with an available telephone line.

AEQ SYSTEL-3000 Multipoint Multiconference System allows full duplex simultaneous intercommunication of up to 9 people. Controlled via PC or through AEQ CR-01 remote control console.

AEQ TH-02 Digital Hybrid is the ultimate solution to talk show problems.

AEQ BC-2000 Broadcast Mixing Console offers complete modular design with 18, 25 or 35 module versions.

- Power Amplifiers
- Digital Telephone Hybrids
- Frequency Line Extenders
- Distribution Amplifiers
- Broadcast Mixing Consoles
- Broadcast Portable Mixers
- Self Powered Monitors
- Line Amplifiers
- Line Equalizers
- "Turn-key" Projects
- ...and much more!

APLICACIONES ELECTRONICAS QUASAR, S.A.
C/ Rey Pastor, 36 Pol. Ind. Leganés 28914 - Leganés (Madrid) ESPAÑA Tel.: + 34 1 686 13 00 Fax: + 34 1 686 44 92

Circle (36) on Reply Card
www.americanradiohistory.com
Comparing systems

The following are some questions to ask when shopping for systems. Some can be answered by the manufacturer, while others are best addressed by experienced users.

1. What sort of experience does the manufacturer have?

When making a decision as to which product to purchase, be sure to find out how long the company has been producing the product, how much the company actually knows about the broadcast industry, how many units have been sold and the product's general track record. Ask manufacturers for a complete list of existing customers.

2. How good is the manufacturer's customer service?

Knowing this is critical. Does the manufacturer offer a toll-free (800) number? Is it staffed on a 24-hour basis?

3. How comprehensive is the system, and is it relatively easy to learn?

The more the system is capable of doing, the more there will be to learn. This does not necessarily mean that it has to be difficult. The user prompts should be easy to understand and should list all choices whenever possible. This will minimize incorrect responses and the possibility of users getting "stuck" in the system.

4. What sort of hardware does the system use? Is it PC-based or is it proprietary equipment?

A PC-based unit is preferable. Most failed components are available locally, allowing for a minimum of downtime.

5. How much hard drive capacity does the unit have? Is it expandable? Is data compression available?

Be sure the system you choose is flexible. It should offer large-capacity storage with the option to expand. Many systems allow additional drives to be added without significant interruption of the existing system's operation. Verify that audio quality is not compromised to obtain additional disk space. Some data-compression algorithms can provide additional storage without significantly compromising audio.

6. How does the system respond to a computer crash?

Is a computer network operation supported? What kind of backup procedures are offered? Which operations are affected by a lock-up? What happens to the on-air signal? How quickly can the system recover after a crash? What kind of situations cause crashes most frequently?

7. Are all cuts truly instant/random-access?

For systems that put all audio on hard disk, access time can be virtually instantaneous. Systems using machine control for external storage devices (CD juke boxes, DAT, carts) may require longer access times, and could run into conflicts in the sequencing of back-to-back elements from the same device/media.

8. Are last-minute changes possible?

How easy are they?

Well-designed systems allow last-minute changes to be made quickly and easily, minutes or even seconds before airing.

9. How easy is it to access multiple satellites?

This varies among systems. More sophisticated systems can do this efficiently, while others don't include the hardware and/or software to handle it.

10. Can the automation system be interfaced to our traffic and billing system?

Probably. Most automation systems interface with some or all of the standard traffic and billing systems. Specify your existing system when inquiring.

11. Has the manufacturer shown the ability to keep software current?

A few calls to existing users will quickly answer this question.

THE AUTOMATED MIXER THAT WAS COMPOSED, NOT IMPROVISED.

If you'd rather mix than mess around with a bunch of outboard boxes, we suggest a serious look at the new M-3700 Series from Tascam.

The M-3700 Series is a professional-quality mixing console with a perfect memory of its fader settings. A console whose automation isn't a pain in the pcts. And, starting under $14,000, whose suggested retail price isn't either.

Our automated console provides you with both snapshot automation (to recall any pre-set levels or switch positions stored as "scenes") and dynamic automation (to recall levels and switch positions locked to real-time locations).

The M-3700 also features an onboard disk drive, SMPTE timecode generator/reader, write/overwrite mode, choice of 24- or 32-channel configuration, and the ability to automate the main, monitor and aux sends, and EQ ON/OFF for each channel. With outboard computer screens, wires, mice or the usual added-on hassles.

From us, you'll get a compact, familiar-looking system that'll help you create the mix you want. And precisely recall any previous mix, so you can tweak some channels without affecting others. All without wasting your valuable time or talent.

The musician-friendly M-3700 Series automated mixing console. Now waiting to wow you at your nearest Tascam dealer.

TASCAM®

© 1992 TEAC America, Inc. 7733 Telegraph Road Montebello, CA 90640 213/720-3031
Circle (37) on Reply Card

www.americanradiohistory.com
They also eliminate the need for tape-head cleaning and cart rewinding, and banish forever the embarrassment of a misused cart. Systems in use today are reported to have run continuously for more than two years without physical maintenance. In addition, audio recorded on those systems more than two years ago sounds the same today as it did then.

The concept of a central bank for a station's audio also simplifies day-to-day operations. Pressure-sensitive labels no longer need to be typed, with all spot labeling stored in a consistent manner within the automation system. This also prevents the need to search through a number of studios for a particular cart — all the audio resides within the system.

On the other hand, because of such concentration of audio resources inside the system, reliability and redundancy is a major concern. Well-designed digital automation systems provide for redundancy by duplicating audio data on more than one computer (or hard drive) through the use of LAN technology. If one computer goes down, it can be replaced instantly with another (for example, either a shop spare or one from the production studio). After the failed device is repaired, it can be returned to service, whereupon any new audio data that was loaded during the outage is updated automatically. Some larger installations (10 to 16 workstations) have invested in a hot standby computer that does nothing but collect audio inventory to be used in the event of a failure of some other station on the LAN. In this case, the additional 6% to 10% expense is warranted.

In order to ease operators' transition from tape carts to digital automation systems, an automation system's user interface should accommodate the familiar tape environment as much as possible. Calling the audio files "carts" and providing a multicart capability can help in this respect. (The multicart is a simple, well-understood model for creation of a rotation mix, although its random-access incarnation here also allows individual cuts to be easily added or deleted, and the sequence of cuts easily changed.)

Conclusion

The radio industry has a unique need for reliable, instant, random-access to short segments of audio. The tape cart and analog automation systems have served the radio broadcaster well for 30 years. Such longevity gives testimony to the difficulty in designing a suitable replacement with sufficiently improved performance. Digital automation and hard disk audio-recording systems fill this role by providing a quantum leap in the technology of mass storage and delivery systems.

There is no question that this technology can improve the bottom line of the radio broadcaster. Consulting with broadcasters who have already converted to fully digital automation systems will probably convince you to join them.

For more information on radio automation equipment, circle Reader Service Number 302.
Video production switchers

Enjoy a new era of creative video production by equipping your facility with the latest switcher technology.

By Curtis Chan

For nearly 30 years, video switcher technology has undergone a continuous evolution, spanning the eras from monochrome hard switching to full-color, glitchless scene transitions. Throughout that time, however, three basic application guidelines have driven switcher designs. These include live on-air production, production and post-production. Within the last few years, switcher designs have looked to evolving technologies in responding to user needs. Broadly speaking, however, many approaches have continued to follow traditional methodologies.

Digital component and composite technologies, complemented by parallel improvements in digital signal processing (DSP), application-specific integrated circuit (ASIC) and software coding, have helped present-day switcher technologies branch away from the evolutionary tree. In doing so, digital switcher implementations in the mid- to high-end range have, and will continue to have, a positive impact on artistic creativity.

What's in an interface?

Probably the most difficult design part of a new, advanced production switcher is not in the merging images or in warping and twirling objects in 3-dimensional space. A good deal of thought, digital logic and computer computation may be needed to do those things, but a more difficult task is giving those capabilities to the switcher operator. Many manufacturers prefer to play it safe when it comes to switcher design. For example, several new digital composite and component switchers offer numerous innovative ways to integrate powerful digital-based features. But why have the manufacturers used more traditional lines of thought in their control panels? Why do they opt to disguise a switcher's newfound power behind an analog switcher facade?

Familiarity enables people brought up on more traditional analog-based interface concepts to experience an easier transition to the digital world. The typical digital switcher resembles a top-of-the-line analog switcher rather than a layering device. With the look and feel comes a major benefit — a significant reduction in the learning curve. The facility also enjoys faster, improved productivity through new layering, compositing, effects and routing sub-systems, and quality through improved digital electronics.

Several new digital composite and component switchers offer numerous innovative ways to integrate powerful digital-based features.

Through integrated digital technology, user-interface functions can be vastly improved. One approach uses intelligent assignment of hard keys with associated paths of processing. In another method, software macros and assignable soft keys access control features. For example, many digital switchers offer full programming of peripherals, such as digital disk cache recorders, digital special effects and still-stores, directly from soft-key graphi-
The Odetics TCS90 - The Only Cart Machine Designed with Your Future in Mind

With the TCS90, Odetics Broadcast gives new meaning to the word versatility. Featuring a unique ability to handle multiple cassette sizes and virtually all available broadcast formats, the TCS90 provides incomparable flexibility plus an open window to the future.

Field Changes Made Simple
Don't waste time second-guessing future tape deck format changes. The TCS90's simple, straight-forward design makes field upgrades easy and affordable. You can take advantage of technology upgrades as they become available.

Mix cassette sizes to match your needs
Odetics put its award-winning electromechanical expertise to work and developed a system that makes handling dual-sized cassettes simple and foolproof. With a capacity of 150 carts, there is enough on-line access for a full day of programming plus twelve to twenty-four hours of spots and promos, depending upon your format. And, with Odetics Multicut Software, the TCS90 can store several hundred spots on-line.

The Decision is Yours
Full compatibility with any news or station automation system lets you make choices that make sense for your station's needs. Built-in redundant hardware and software features make choosing Odetics a decision you can be sure of.

Buy for the Long-Term
Because Odetics products are fully compatible with each other, system obsolescence is never a concern. The TCS90 includes the same advanced features as the Odetics TCS2000 large library Cart Machine and all TCS2000 software and hardware options and accessories. It's no wonder Odetics Broadcast is the world-leader in large library automation systems.

Odetics Broadcast
1515 South Manchester Avenue, Anaheim, California 92802-2907 (800) 243-2001 or (714) 774-2200

Circle (38) on Reply Card

www.americanradiohistory.com
Rack Up A Versatile Routing System

When it comes to small and medium-sized routing switchers, Sierra Video Systems has a model to fit your needs. Our broadcast-quality routers are available in sizes from 5x1 to 32x32, in either composite or component video formats, with or without audio. With up to eight switching levels, multiple control panels and our three-port serial control system, one is "just right" for your application.

So whether you’re into OB vans, wideband RGB graphics, post-production editing, desktop video, multimedia presentations or a host of other applications, Sierra Video Systems has a router for you. With Sierra Video Systems, you know you’ve made the right choice.

The typical digital switcher resembles a top-of-the-line analog switcher rather than a layering device.

To realize the benefits of the networking approach, it is necessary to understand the concept of the networked system. Suppose that the system chassis contains three mix/effects (M/Es) modules. In addition, a central routing switcher accepts multiple inputs and all of the internal sources. Although a non-networked system has one dedicated control panel to control the system chassis, networking allows each chassis to support up to three identical control panels. This means that different operators control each M/E separately. For each of them, all of the switcher’s sources and features are available independently. However, because any single panel can control the entire system by simply acquiring more resources, it is necessary to use a full control panel in each targeted room.

Is this perceived as a benefit to the editor or to the client? Actually, it is a benefit to both. It ensures that operators are familiar with the switcher control panel, regardless of the room they are in or the number of M/Es they have under their...
THE GOLD STANDARD IN DIGITAL AUDIO DATA COMPRESSION

Endorsed by the world's most innovative manufacturers of broadcast equipment, apt-X™ digital compression technology has been incorporated at the heart of a host of products designed for the transmission or storage and retrieval of broadcast quality stereo audio.

Designed specifically for professional applications, the apt-X system delivers field-proven performance and reliability with a multitude of powerful features offering negligible coding delay while maintaining audio transparency.

Discover more. Find out for yourself why the broadcast industry overwhelmingly prefers the apt-X solution - the first hardware solution - the first single IC solution - the first choice solution.

Broadcast equipment currently incorporating apt-X technology includes products from:-
- Adver Communications • A.S.C • Asaca • B.B.C. • Broadcast Electronics • Canopus • Computer Concepts • Digital Broadcast Associates • Eela Audio • E.R.L. • Fidelipac • Gentner • Hitachi Telecom • Technology • International Datacasting Corp. • Ikegami • International Taetronics • Intraplex • J.T.M. • Kowa • KW Electronics • Maycom • Mcsey Associates • Positron • Scan Acoustics • Sonifex • Southern Broadcasting Systems • S.S.V.C. • Systembase • Tiesseci • TFT • The Management • Ubitech • Vistek.

apt-X™ means compress on technology you can bank on. Call today for further information.

The Industry Preferred Digital Audio Compression System.

Audio Processing Technology
Edgewater Road, Belfast BT3 9JQ
Northern Ireland
Tel 0232 371110 Fax 0232 371137

Audio Processing Technology
6255 Sunset Boulevard Suite 1026
Los Angeles CA 90028 USA
Tel 213 463 2963 Fax 213 463 6568

apt-X and apt-X™ are registered trademarks of Audio Processing Technology Ltd.
control. Clients do not feel that they are in a lesser-equipped room when they are producing simple titles and doing long-form editing and using only a limited amount of the system’s features.

In regard to the inner workings of the network, the switcher components communicate through an ethernet-type protocol via coaxial cable. The system’s intelligence resides in the control panel. The signal chassis simply interprets the commands and updates the hardware. In this way, each control panel knows what the other panel is doing, a necessity during resource sharing. In addition, to avoid the

Switcher on a chip

By Janet Matey

The rapid growth of desktop video can be tied to the application-specific integrated circuit (ASIC). Such devices have allowed a number of advanced systems to be achieved because of an overall reduction in individual components and space. To shrink the functions of a video production suite onto a few circuit boards that fit into a personal computer requires large scale integration.

A recently introduced device, called the SIESTA and designed by Matrox for its desktop equipment, special integrated circuits and ASIC, extends the concept of space reduction. There are approximately 50,000 individual gates in a 208-pin plastic quad flatpack surface-mount chip. Through various combinations of the gates, the IC includes the capability of a classic 3-bus video switcher architecture, along with a graphics channel and independent upstream and downstream keyers. These functions are expanded with a wipe generator and two 5-layer compositors, which enable individual layers to be added, removed or reprioritized during a transition. Dual-independent key processors support chroma, luminance and alpha channel keying with a rectangular mask feature.

Although the ASIC has contributed to the development of desktop video, its name suggests limitations. However, contrary to their “specific” nature, some ASICs are now adaptable through software to support a variety of tasks. Through ASIC tools functions, such as on-line post-production, live switching and non-linear editing can be contained in a single box to serve the video industry.

Matey is marketing director for Matrox Electronic Systems, Quebec, Canada.

![Figure 1. A block diagram of the Matrox SIESTA device](image-url)
Demands for more complex video service making you feel under-equipped? Maintenance space tightening up? Funding for new gear a problem? Tired of just getting by? Well, here's news.

Magni has the answer for you. A Signal Creator/WV561 generator-monitor set that does it all. This combination is just three rack units high. Yet it delivers full composite/component measuring and monitoring. It addresses multiple

FOR VIDEO SERVICE PEOPLE WHO DO EVERYTHING,

video formats and standards.

And you can buy it for a whole lot less than you'd pay for individual boxes. That's just for openers, too. So see your Magni dealer or call us at 800-237-5964 and ask about the Signal Creator/WV561 combo. We'll tell you everything. And show you why nothing else will do. From Magni Systems, Inc.,

9500 SW. Gemini Dr. Beaverton, OR 97005. (503) 626-8400.

© 1993, Magni Systems, Inc. Magni and Signal Creator are registered trademarks of Magni Systems, Inc.

Circle (42) on Reply Card

We pay attention to real needs.
Scheduling and subsequent billing can track the amount of time that any control panel uses acquired resources, billing the client with a system that charges per M/E time used.

Data collisions that are common on an ethernet environment, each system component is given a unique address, and the system is synchronized via an on-board counter resident in each control panel. The concept of a collisionless ethernet is important if there is a production application where effects recalls can't be interrupted by data collisions.

Resource sharing
In a networked system it is important to know if a control panel or part of the signal chassis function is available for allocation. A resource must first be available before it can be allocated. In this case, manufacturers of networked systems provide a menu-driven display that shows resource status information. Information includes the number and availability of signal chassis, M/E's and other resources. Within the architecture, prioritization takes place through a predefined hierarchy. The intelligence of the system might also extend to user-assignable setups and memory of acquired and released resources with all of its setups intact when on loan to another edit bay.

Billing and logging
Because the equipment is in the business of making money for its owner, a discrete logging system might be integrated into the unit. In this way, scheduling and subsequent billing can track the amount of time that any control panel uses acquired resources, billing the client with a system that charges per M/E time used. The time log would track the number of seconds used for each M/E, and present a total at the bottom of the list. A pause key would stop the clock when a rest break is in order.

Reduced router size
Imagine that each system chassis can accommodate \(n \) number of primary inputs, which can be any combination of video and key sources. If each input on a setup menu is named, sources can be assigned to the control panel with hard and soft labels. Primary inputs that are not assigned by hard labels can be retrieved through the soft labels in the menu. This emulates an internal router and means that different sources can be assigned at will, rather than using permanent assignments to bus row buttons on the control panel. If additional chassis are connected, then it follows that hard-labeled sources must be available to it. Intelligent software can keep track of where the sources are and route them to the correct button on the bus row. After all, when an operator

The Leaders in Specialized Products

Mark has a 40 year history of dedication to the design and manufacture of the highest quality microwave antennas. Mark's guaranteed performance specifications are a result of experienced attention to detail.

Radiation Systems Inc.
Mark Antennas Division
P.O. Box 1548, Des Plaines, IL 60017 U.S.A.
Tel: 708-298-9420 / Fax: 708-635-7946

A hybrid approach suggests other major benefits to networked switcher design.

SONEX.
CHEAP.

SONEX? Cheap? Unfortunately for us, everyone thinks SONEX is the most expensive acoustical control material. Fortunately for you, it's not. SONEX gives you more absorption per dollar than any other treatment. No lie. Call today for your free SONEX Information Packet.

Illbruck
Minneapolis, Minnesota
1-800-662-0032
Create production magic with BTS' new component digital production switchers.

Your business could multiply.

No matter what type of operation you happen to be - small, mid-size, high-end post-production, live production - or whatever kind of magic you want to perform, BTS has a Component Serial Diamond-digital switcher to perfectly match your studio or O.B. facilities.

There are four exciting versions to choose from, each one combining unbelievable creative digital video compositing talents with quick and easy control.

They offer the very latest features including BTS's DynaChrome keying power, Automatic Key Alignment, MultiMix and FXLoop to help you accomplish the most sophisticated editing tasks simply and cost-effectively.

They incorporate control over external DVEs, routers and editors for network flexibility. And what's more, they're ideal for use with both 4:3 and 16:9 formats.

To find out more about the amazing power of BTS Diamond-digital switchers, just write or call. In no time at all, a full color brochure will magically appear on your desk.
NEW from Accu-Weather®

✓ Spectacular UltraGraphix-PLUS™
New breakthrough! The best-looking graphics yet. Uses the highest resolution capabilities of your graphics system. Now used by KDKA-TV and the CBS network. See them for yourself at the NAB.

✓ Breakthrough Hi-Res Graphics Systems
By far your best value in computer graphic systems, priced from $8990 to $24,800 to meet any station's needs and budget. Recently purchased by the CBS network and top stations like KDKA-TV, systems include spectacular capabilities like VPIG™ InfoNavi™, 16/16™ overlay resolution, paint system, UltraGraphix-PLUS access, animation and much, much more.

✓ NEXRAD Doppler Radar
Accu-Weather can now give you real-time access to all Doppler radars - plus exclusive value-added products like NOW NEXRAD™. Get the best radar at Accu-Weather's special NAB price.

✓ Be first with FirstWarn™
Accu-Weather's FirstWarn receives official watches and warnings for your ADI and automatically generates a crawl over your broadcast signal. The industry's lowest price and fastest warnings!

Accu-Weather, Inc.
The World's Weather Leader™
619 W. College Avenue, State College, PA 16801
Call (814) 234-9601 x400 Fax (814) 238-1339

Circle (46) on Reply Card

RUGGED CASES
For Broadcast Equipment
• 220 off-the-shelf roto-molded sizes for fast delivery.
• Expert custom cushioning engineered for your most delicate equipment.
• Call us for a free color catalog.

HARDIGG CASESTM
393 North Main Street, So. Deerfield, MA 01373
Tel: (413) 665-2163, Fax: (413) 665-8061

Circle (47) on Reply Card

Multiple control panels
The use of multiple control panels has other benefits as well. For example, a particular control panel assigned to a specific room can be given full power of a particular chassis at a given time. If the chassis has two M/Es and a downstream keyer, these resources can be assigned to the specific control panel in use. Depending upon the job complexity, it may be desirable to split the M/E and the downstream keyer and assign control of each to a particular control panel simultaneously.

Suppose edit suite A takes control of M/E A. The operator has all the power of M/E A available. The M/E A program output also serves as line out. Edit suite B takes control of M/E B. The job taking place in edit B requires the power of M/E B plus the downstream keyer. If a third edit suite was involved, the two M/Es could be assigned to separate edit suites. Simultaneously, the downstream keyer remains with the assigned third suite.

Hybrid networking
In another circumstance, the same manufacturer might offer digital composite and component versions of the same networked system. The control panels might be identical. If so, the component and composite version chassis can be directly connected to the ethernet network. Now a single control panel can access two M/Es representing the two formats. Although M/E A might be component and M/E B composite, the output can be either one.

A hybrid approach suggests other major benefits to networked switcher design. For example, many clients transfer film to D1 for color purity. Suppose that the transferred program must then be encoded to the composite format to be edited with material from either Type C or D-2. In a composite edit bay. If the original material had blue or green screen chroma-key scenes, the quality of the chroma-key from the D-2 transfer experiences the bandwidth limitations of the format. In the hybrid approach, the operator directly keys calls up VTR3, the source is expected to appear there, regardless of the chassis being used at the time.

Keeping a traditional approach in our networked scenario, re-entering the upstream M/Es would require a primary input. Software would flag the input as a re-entry, and the system would route that source to the end of the bus row where it is expected in a traditional cascading mix effects architecture. Remaining sources feeding each chassis may be completely different and can be assigned to the last crosspoints. Because a number of hard-labeled sources and M/E re-entries are common to both switchers, this effectively increases the number of inputs available to each control panel.
The new Sachtler Vario Pedestals offer unique features for studio and OB operation:

1. Continuous column stroke, for shooting from sitting to standing person's height – Vario Ped 2 - 75.

2. Rock steady and 50 kg/110 lb lightweight, to carry equipment up to 90 kg/200 lb – Vario Ped 1 - 90.

3. Carriage and column can be disassembled in seconds – compact modules for ease of transportation.

4. Quickfix, allows instant change of fluid heads for flexibility – included.

5. Track width, narrow and wide, symmetric and asymmetric – set in no time and you well can expect precise, easy steering and crabbing, smooth and jerkfree column movement thanks to the patented Sachtler pneumatic system. Test for yourself the optimum camera support for all compact Studio/OB cameras, now!
the blue screen chroma-key scene in the D-I format and converts the processed key and fill signal to D-2 for compositing. For the material to be composited in component, the program can stay in D-1 and the result encoded and cut into the D-2 or composite record master.

Layering switchers
Digital disk recorders and low-cost memory storage expands the performance options available from a traditional switcher. With a compositing or layering switcher, the operator can access layers of a composite image simultaneously. The ability to adjust relationships between the various layers or elements of a composite before recording is an important benefit over conventional sequential compositing. With the ability to see and operate on all of the layers simultaneously, all attributes of a layer can be established relative to all other layers before rehearsing and finally recording. In a digital composite or component environment, the editor not only retains the ability to preview complex effects with the freedom to experiment as in the analog domain, but also has benefits inherent in digital processing, such as little or no generation loss and the ability to perform unlimited layers.

Mix/effects vs. layering
Conventional M/E-type switchers have three major elements:
1. M/E modules,
2. a program/preset bus; and
3. a downstream keyer.

Often, M/Es have dedicated background buses for A and B video with one or more dedicated keyers. A/B buses and M/E keyers have black, color background and the switcher video inputs as sources. M/Es re-enter the program/preset buses as sources, which have the same sources available as the M/Es. The program bus feeds the downstream keyer. (Figure 2.)

In a composing switcher, effects are created in layers. Layers can be defined as either backgrounds or keys stacked in order of priority to create a final composite.

Because the switcher treats each layer as a full background image or key, any combination of key and background elements become available to the operator in any desired image priority. Layers can be cut, mixed or wiped into or out of the video composite individually or in combination with other layers. At the same time, traditional attributes can be applied to each layer. Each layer will have an independent, user-assignable linear or nonlinear wipe and mix transition profile, transition rate and offset time. Each layer is independently controllable, offering complete arbitrary image control.

External effects processing
The benefits of digital processing, routing and software coding introduce new effects approaches for modern-day switchers. In the compositing switcher, each layer can generate a separate video fill and matte signal reflecting the key, wipe and mix parameters applied to it. These signals are available to external processing devices through video and key aux buses. Layers also can be grouped into a submix composite prior to an effects send. Flexibility in routing and switching architecture allows modified video and matte signals or subcomposites to be returned at any level within the overall video and key composite.

Serial digital inputs and framestores
One factor that has helped significantly to bring digital technology into the post and broadcast arenas is the serial digital distribution standard. No longer hindered by bulky parallel cables, serializers and deserializers allow simple BNC hookups in the edit suite. Most serializers and deserializers also incorporate equalization and buffering for long signal lines.

Lower-cost memory has had a direct impact on the incorporation of more than one framestore into switchers. In a compositing switcher, a separate framestore may be assigned to each input source, permitting any source to be live or frozen in building a composite image. Individual elements may be loaded into the frame buffer from any number of source machines, including source VTRs or disk recorders. New switchers also assign framestores to external key inputs for static keys or mattes. By sharing the framestores with the ability to perform key masking, a static garbage mask from a caption camera or paint system can be frozen. The mask generator is free to be used for other purposes. Wipe patterns also can be used for live key masks or frozen in a mask store for static masking, releasing the switcher wipe generator to perform dynamic masking or transition effects.

Aside from the fact that multiple passes through the system can be achieved without the need to record the output between passes, the framestore architecture also lends itself to off-line creation of effects. This is in direct comparison to the costly traditional approach of using multiple source VTRs.

The uniqueness of the system is in the user interface.

Parallels and projections
The advent of digital switcher technologies paralleled with the growth of digital VTRs and peripherals will change present operating methodologies and increase creative freedom. New upcoming standards for signal and control interfaces, along with more powerful computing power, will greatly enhance production throughput while minimizing interface concerns. As a result, broadcasters and production houses are given more incentives to consider equipping their facilities with the latest advances in switcher design and other digital-based systems.

- For more information on video production switchers, circle Reader Service Number 303.
Finally! Solve your digital audio copy problems for just $2595...

Your customers want “all digital.” Now you can give it to them with Roland's new SRC-2 Dual Sample Rate Converter. It's getting rave reviews from customers. “It sounds great!” “Very innovative--a remarkable design.” “I can crossfade and mix with the two digital inputs--fantastic!” “I intend to buy at least three of these units; every room will need one…”

Roland's ASIC chip set, two years in development, is what made this “leapfrog” sample rate converter design possible. So now the A/D, D/A signal degradation you've had to put up with is gone. And your “all digital studio” can really be...all digital!

For the solution to all your digital copy problems, call Roland at (213) 685-5141 ext. 337 or FAX (213) 722-0911.
A technical glossary

It's never too late to increase your knowledge of today's computer jargon. You may not know as much as you think.

By John Moretti

Let's face it. As digital is established as the new standard for audio production, most of us will become more dependent on computers. Whether you use or plan to use a computer for direct-to-disk audio recording, sequencing, sample editing and archiving, generating score sheets or simply balancing the books, it's important to understand enough basic terminology so that you can understand the problems.

The following is a purely practical expose of what all of those intimidating terms really mean:

- **386, 486.** The average number of pages found in the chapter titled "Plugging in the Mouse," in a manual for one of the newer-generation of IBM-compatibles.
- **A/D.** Anguish/Despair. The point in time near the beginning of a direct-to-disk recording session during which you realize the software has just enough bugs to prevent the completion of a project before the client's deadline.
- **Aliasing.** The practice of addressing an uncooperative computer with various derogatory nicknames — the majority of which are unprintable.
- **Bias.** A preference for the Macintosh's eloquent graphical-interface system brought on by a DOS-system user's struggle with its cryptic command language.
- **Buffer.** An ingredient found in many analgesics that calms the digestive tract during release of beneficial medication.
- **Brightness.** A measurement of the mental capacity needed to decipher the gobbledygook contained in a software manual.
- **Byte.** The largest portion of a meal that a computer user is able to consume between problems.
- **Card.** A thin, magnetically coded plastic rectangle useful for deferring the cost of necessary computer accessories.
- **Clock speed.** The perceived speed at which time passes while working toward a deadline — slowly at first and more quickly as things begin to go wrong.
- **Contrast.** The difference between a light area and a dark area (i.e., the difference between the darkest area of a computer screen and the circles under the eyes of a computer user).
- **CPU.** An acronym for Corporate Punishment Unit, a slang name for the computer's "brain."
- **Crash.** An instantaneous loss of consciousness caused by too many problems, too little sleep, and a diet rich in sugar and caffeine.
- **Cut-and-paste.** A procedure used to remove certain words from magazines and/or newspapers to write a threatening anonymous letter to the company that sold you the faulty computer gear.
- **D/A.** Despair/Anguish. The point in time following A/D (Anguish/Despair) during which the frustrated user realizes he can still beat the client's deadline — if he can convince the 12-year-old neighborhood computer whiz to debug the software.
- **DAT.** Diacritical Audio Termination. The ability of software to identify and accidentally delete only irreplaceable audio files.
- **Default.** A figure of speech used by someone who has just accidentally erased a hard disk. (i.e., "It's default of desoftware.")
- **Disk fragmentation.** A spinal condition caused by too many late nights hunched over a keyboard.
- **Dither.** A state of flustered excitement caused by a screen message, such as "eras-
The Vision Fund of America
An association of visual industry professionals to promote research and resources for visually impaired people

1993 Annual Awards Banquet
Thursday, May 6, 1993 at The Plaza Hotel
Join the entire video industry in honoring:

Atsushi (Herb) Matsumoto, President, Maxell Corporation
Brian S. Wood, Senior Vice President, Columbia House Video
Herbert Bass Co-Chairman, Unitel Inc.
Alex Geisler, Co-Chairman, Unitel Inc.

Proceeds from the Vision Fund Banquet benefit The Lighthouse National Center for Vision and Aging, an internationally known center dedicated to educating the individuals, their families and health care professionals about age-related vision impairment.

For banquet table reservations and journal advertising information contact:
Gilda Gold, Vision Fund Headquarters
c/o The Lighthouse, Inc.
800 Second Avenue
New York, NY 10017
Tel: 212-808-0077
ing hard disk now."

- **DOS.** DestroyedOpticSyndrome. An eye condition brought on by prolonged viewing of a tiny, monochromatic screen turned to full brightness in a dimly lit studio.

- **Dot pitch.** A slang term for throwing frozen hockey pucks into the monitor of a misbehaving computer.

- **Extended memory.** The mental capacity needed to recall important commands without re-reading an entire manual chapter.

- **FFT.** Fastest FailureTime. The length of time between completing setup of a computer-based studio system and the first failure of an integral piece of software/hardware — usually several hours.

- **File.** A police department document that describes when and where a computer novice was found running naked through the streets, screaming hysterically. Also see "dither."

- **Floppy.** The state of your legs following an 8-hour session in front of a computer screen.

- **Hard drive.** A term used to describe the drive home through morning rush hour after an all-night attempt at recovering the data from a crashed hard disk.

- **Hertz.** The sensation caused by crushing a misbehaving computer mouse between your teeth.

- **Import/export.** A fly-by-night computer box house that sells unsuspecting computer novice hardware that was assembled by ex-pro-wrestlers who were paid "by the piece."

- **Interface.** A slang term combining the prefix "inter" (Latin for "between") and "face." The time between grimaces caused by protocol incompatibilities.

- **I/O Idiot/Opportunity.** Customers who allow themselves to be talked into buying unnecessary items rather than admit they don't understand what the salesperson is talking about.

- **Lockup.** The "guest quarters" of the police department where you stay after being booked. Also see "file."

- **Mac.** An inexpensive, quick meal that contains the four basic food groups and that may be consumed during a "hard drive."

- **Megabyte.** Ingesting an entire pizza in one mouthful, thus simultaneously replenishing the body and making up for the time lost rebuilding an accidentally deleted audio file.

- **Megahertz.** The sensation caused by crushing a misbehaving computer mouse between your teeth the day after you've had a triple root canal.

- **Message.** A recorded communication left on an answering machine, informing a user preoccupied with a serious software glitch that the client's deadline has been moved forward by 24 hours.

- **MIDI.** Masochistic Inclination Dare In-
Digital audio production systems

Digital audio systems are revolutionizing radio production.

By Ken Tankel

The Bottom Line

The creative soul of a radio station lives in its production studio, where experimentation with new technical toys has always been welcome. But the stakes are rising as digital systems offer replacement of nearly the entire existing facility with a single box. Upcoming purchasing decisions therefore will exert unprecedented influence on the sound, style and future success of a station. An experienced user shares some insight on how to proceed in this month's radio revision report.

From its beginning, radio has steadily undergone technical development. In the past, most of these changes were evolutionary, taking place within the worlds of familiar analog audio and RF principles. Today, however, these changes are occurring in more fundamental and revolutionary ways.

Current digital audio technology offers the ability to manipulate, store, move and control audio in ways that far surpass what has been possible with the analog technology that preceded it. As a result, digital technology is being applied to radio broadcasting at a staggering rate.

In particular, digital editing and production systems have attracted significant attention. This technology may be the single best studio improvement a broadcaster can make. Its impact on production equipment has grown dramatically despite the difficult economy. This must mean that digital production tools are answering broadcasters' needs. (In other words, this is technology that can improve the bottom line.) In this regard, the following are important questions for which broadcasters seek answers:

- How can we get more work done in a given amount of time?
- Can the quality of our product be improved?
- Can expenses be reduced?
- How can we take maximum advantage of our existing facilities?
- Products that best serve these needs ultimately will be the ones that succeed in the marketplace. User reports consistently state that digital production systems address all of these important considerations.

Of course, if all your production work consists of dubbing music and agency-produced spots to cart, you can safely lock yourself in your existing production studio and not let new equipment in or money out. For virtually everyone else, however, a digital production system will guarantee that work gets done faster, quality improves and tape costs are reduced.

Decisions, decisions

Choosing from among the many digital editing systems available can be a daunting task. A good place to start is the price.
Set a budget figure, then look for systems in that price range. You will find that some editors include EQ, effects, mixing, time compression and expansion, time-code lock and chase, and multitrack editing. Some of these features may be unnecessary, and doing without them may reduce the cost without losing any features you require. But in examining these additional features, your opinions about them may change, and you may find some of them increasingly desirable. Therefore, the research process may have the effect of increasing what you are willing to spend.

Don't write off a system just because you have never heard of it or dealt with the manufacturer before. Many of these systems come from companies peripheral to the traditional broadcast industry. Consider the company's stature and stability, however. You are certainly going to want good, reliable support and service for some time to come on any digital production system that is purchased.

Take a test drive
It is essential to obtain personal demonstrations of as many systems as possible. Understanding what different devices offer can help you make an informed decision about the one that fits your particular application. Price is not the ultimate indicator of which system is better suited to your needs. The particular application at your station is what must drive your choice. Even a listing of a system's functions is not particularly useful, because that list alone does not tell the whole story. The system's user interface and ease of mastery are critical to making use of its production features.

For example, if your main production concern is preparing spots for air, and you have only one production studio (combed-operated by air personalities during their daily production sessions), a system that features speed and ease of use is of chief importance. If, on the other hand, you emphasize original in-house production and have a full-time production director who needs sophisticated multitrack capabilities, then a system with a steeper learning curve and more complex operation is justified to obtain the extra capabilities.

Also, consider that the system you purchase may have to respond to (or may itself generate) new and different production requirements down the road. Therefore, flexibility and room for growth are essential.

Real or virtual?
While shopping, bear in mind that a distinct difference exists between input/output (I/O) channels and recording tracks in these systems. Most units allow multitrack operations during production, but many of them allow input of only two channels at a time, and the output of a stereo mix.

The multiple tracks in such a system are called virtual tracks, in that they exist only in software and not in hardware. Other systems offer capabilities identical to multitrack tape recorders (see Figure 1), by which 4, 8, 16 or more tracks can be input and output simultaneously through individual, dedicated I/O channels (real tracks).

Be sure that you have an application that requires simultaneous recording and playing of multiple, separate tracks before you invest in a system equipped with real multitrack operation. For many broadcast applications, 2-channel I/O and virtual multitracking is sufficient, because productions are assembled from prerecorded 2-track sources. Most digital production/editing devices allow track-slippering, whereby the sources can be placed in any time relationship to one another after they are uploaded to the system. Real multitrack capability is only required if multiple tracks must be recorded in real time. This is much more common in performance or
Look who's going to improve your image.

You've heard a lot about Switchcraft, a leading manufacturer of quality audio components for more than 40 years. Now, see what we can do. Because Switchcraft can supply you with video components, too.

Look to us for standard video broadcast equipment, all made with the reliability and high quality you expect from Switchcraft. When it comes to our video insulated patch panels, you'll find our eye for detail is second to none. Each one can accommodate up to 26 jacks for a variety of requirements. Dual jacks provide a normal-through signal path without the use of looping plugs or patch cords. And, each panel comes with large designation strips for your own labeling.

Our video patch cords are available in popular lengths and colors - all built for efficient video signal transmission. Our patch cords come with rugged metal handles and optional rubber "boots" for a better grip. The "boots" offer enhanced flex relief and are available in your choice of colors - red, black, green or blue.

Switchcraft is dedicated to making your studio time as productive as it can be.

So whether you're thinking video or audio components, think Switchcraft. We've always done wonders with sound. Now we can improve your image, too.

For more detailed information, phone or FAX our Marketing Communications Department and ask for New Product Bulletins 426 and 427.
music recording applications than in typical radio production.

On a 2-channel virtual multitrack system, an auxiliary pre/post-send may be all the additional I/O that is needed. The simpler stereo configuration allows a digital production system to be installed in any stereo facility as easily as connecting a stereo tape recorder, while all of the multiple track mixing capability resides inside the system itself. (See Figure 2.)

The next question concerns the actual number of tracks required. A typical radio spot production might require two for the stereo music bed, two more for the intro and outro, one or two for voices, and one or two for effects. This means that six to eight tracks of internal mixing capabilities are probably a minimum requirement. If you can do with less, say four, be certain that the system you choose can be economically upgraded later.

Disk or RAM?

Some systems are disk-based and some are RAM-based. There are pros and cons to either strategy. At one extreme is a system that records audio onto hard disk(s) and uses RAM to store information about the edits that are made. This editing process is often called non-destructive because the original audio is never really altered. The edits are compiled into an edit decision list (EDL), which contains instructions about where to start and stop playing audio from the disk, how to fade in and out, and so forth. With this approach, the system can record for long periods of time onto high-capacity disk(s) while saving and comparing EDLs, allowing edits to be done and redone forever. But such a system can exact a speed penalty when you want to hear the edit or the entire edited piece. Up to 50% of the actual play time of the piece can be required for the system to prepare the edited piece for playback.

At the other extreme is an editor that works totally in RAM. This approach is extremely fast at carrying out editing operations and can always playback instantaneously. On the downside, editing in these systems is often destructive, in that cuts actually delete audio data (usually after you have the chance to review and undo the action), and recording time is limited by the amount of RAM.

Systems today occupy both extremes of this spectrum, and many exist in between, combining features of disk and RAM storage to create unique approaches.

Control interface

The user-control interface is another element that distinguishes systems and determines their suitability for your application. People constantly switch between serial and parallel processing modes. For instance, you are operating in parallel mode when you create a mix and control several faders at once. When you adjust EQ or an effects device, you typically work on one parameter at a time, which is the serial mode.
A production system that can be controlled only by a keyboard and a mouse (or trackball) requires you to stay in serial mode all the time. It will require several steps to do a simple crossfade. In fact, some systems will require switching between screens to make an edit — one screen to set the crossfade points and another to set the mix levels. Systems that provide dedicated hardware controllers offer the user real faders, transport buttons and other controls, allowing production to be done in a familiar and parallel fashion. Hardware controllers also eliminate some of the screen switching, perhaps making production move faster. Of course, such dedicated (or hard) controllers generally increase the size and cost of a system.

Remember that digital audio at the radio station eventually will move beyond the production system (if it hasn't already) and become integrated into the whole facility. Therefore, consider archiving and backup capabilities, digital I/O, networking between editors and audio file formats that allow files to be shared between different systems.

Tomorrow's work at the radio station will involve such integration of the entire station into a unified digital audio and control network. The experience gained by learning about and using the digital technology currently available will prove invaluable when these more complex systems arrive. Meanwhile, digital production systems can be used to your advantage today.
Xymox Systems’ Myriad Facility Manager

By Douglas Eady

Henninger Video, located just outside of Washington, DC, in Arlington, VA, is a high-end digital post-production facility. It offers six suites of on-line editing, off-line editing, video sweetening, duplication and standards conversion. The company also operates digital audio production, captioning and graphics divisions.

In an attempt to maintain high levels of productivity and creative excellence, Henninger set out four years ago to find facility management software that would conform to its needs. The first two years were spent developing an in-house system, using off-the-shelf Macintosh software. This system ran slowly, and its programming always seemed to be one step behind the facility’s requirements. Eventually this project was abandoned, and a bona fide facility management system was sought.

The system chosen was the Myriad Facility Manager by Xymox Systems. For two years it has provided Henninger with on-screen scheduling, job management, accounting, videotape library management and office automation. The company has grown significantly during this time, adding video editing and graphics facilities in Richmond, VA, and a consulting and equipment rental service in New York. The software easily accommodated these additions under separate company headings, connecting the Richmond facility to the Arlington computer via dedicated data line, and tying in the New York office via dial-up service.

System description

Xymox Systems has been developing this software since 1982. As production and post-production companies have joined the Xymox user list, different system modules have matured into a flexible and efficient facility management software package. The basic program that drives the software is Metropolis by Alpha Base. This is an adaptable relational database. A relational database allows the user to link (meaning to join or create a relationship between) information stored in many different disk files. It allows interchange and cross-referencing of information between different types of records, such as comparing the data in a group of invoices to the data in an inventory.

Henninger Video has 73 staff users on the system, so speed is always an issue. The database uses key files to help the search capabilities of the system. Key files contain pointers that keep track of how the data in the computer is organized and stored. Key files are associated with data files, which are collections of data that logically belong together. For example, a “company file” is a data file containing such information as names, street addresses and phone numbers of companies. An associated key file describes the format of this data’s storage in the data file. This structuring process allows the computer to retrieve information quickly.

Installation

Proper installation is a major part of any computer setup. First, software and hardware decisions must be made. Hardware decisions include selecting a host computer, power and backup power, climate control, cabling and workstation/platform choice (dumb terminals, Macintoshes or PCs). Substantial flexibility is available in the Xymox system, which can become an operational benefit. For example, Henninger’s project coordinators (schedulers) are a central resource for client contact, so their scheduling screens were required to show as much information as possible. Each of the schedulers was therefore equipped with a 19-inch color monitor and an uninterruptible power supply (UPS), which allow the schedulers to continue booking jobs even while the power is out.

Based on a detailed installation kit completed by the user, Xymox does the software setup. The company works with the client’s system administrator to assure maximum use and performance of the system. The system administrator chosen to set up the software should be well-versed...
Broadcast's Premier Telephone System!

Gentner Communications Corporation
Professional Audio Products
1825 Research Way / Salt Lake City, Utah 84119 / (801) 975-7200 / FAX (801) 977-0087
Circle (55) on Reply Card
www.americanradiohistory.com
in all facets of the facility. Because the facility management will link job management, tape library, purchase orders, accounts receivable, accounts payable, general ledger and the like, you will need a person who is able to make decisions and convey information on how the facility currently operates. Xymox works closely with the user here, and this can have substantial positive impact on the resulting system.

Some key points to remember at this stage include:
• Keep your clients in mind.
• Avoid establishing operations that will slow down the way you work.
• Be open-minded to change.

The facility management program can offer you new ways to be more efficient.

Naturally, training is critical in any new software installation. It’s also a good idea to involve employees throughout the process. They probably will have mixed feelings about issues that change their jobs, and keeping them informed can help them maintain a positive attitude toward the new system.

Operation
The Xymox facility management process uses a streamlined approach. Work orders are scheduled into the computer once, and that information then becomes part of the job management system. As the job is completed, work orders are updated and billed. The invoice information carries over to the accounting side of the computer, where it is posted and awaits payment.

Since Henninger Video installed this facility management software, the company’s size has grown tremendously, yet the support staff has not. This is due in part to the automation process. Here’s how the system is applied in Henninger’s operation: Each business day, schedulers book clients, move bookings and resolve conflicts. Every booking consists of a suite, an editor, an assistant editor and a hardware complement (recorders and effects equipment). As bookings are scheduled, templates load predetermined room configurations into the work order. The scheduler looks at the given room configuration and eliminates or adds resources as needed. This approach works well because the scheduler doesn’t have to remember what is available in the suite or from the floating inventory. Once a work order is confirmed, the scheduler prints the order, and it’s ready for the edit session.

The editor writes any changes made during the session on the work order and totals the actual times. The editor also fills in any duplication requests on the work order. After the editor and the client sign the work order as annotated, it is returned to the scheduler, who updates the account accordingly, collecting such data until the job is finished and ready to bill.

Throughout the process, any special rates due to the client are applied and calculated automatically (or else, system default rates are used). Once the job is ready to bill, all corrected work order data is sent to the accounting department, which prints a rough draft of the project’s bill, has it approved by marketing, and finalizes the invoice.

Other system elements that can further coordinate a facility’s efforts are the Video Tape Library, Purchase Orders and Time Clock/Time Card. As a client brings tapes into the facility, the Tape Library allows you to bar code sources and masters, and relate those tapes to a job. Tapes then can be searched for in a number of ways, such as by client, bar code ID, job number and tape title. The Tape Library also has an inventory program that enables blank tape stock to be tracked and billed.

The Tape Check-In/Out program allows tapes in the library to be scanned (via bar code) and quickly released from the facility with a printed shipping form.

The Purchase Order system allows anything purchased for a job or the facility to be tracked, and when appropriate, assigned to a work order. This information flows into accounts payable and provides an additional level of reporting detail.

The Time Clock module allows tracking of personnel with an electronic time in/out register. It displays or prints a status report for managers or the receptionist, indicating who is in the building. Tracking billable and non-billable hours is provided by the Time Card module. Billable work is entered against a job and/or work order and automatically posted for billing or job-cost tracking. Records of sick leave, vacation and overtime also are tracked here.

Results
The information you gain with such facility management software can seem overwhelming at first, especially if your facility has never been automated. You probably will begin to learn more about your facility and how it works. For example, it will show you the services your clients are using and those they are not. Information is stored on your salespeople, editors, machines — anything you schedule. Virtually unlimited reports are available.

The information the computer system provides has aided in the development of capital and personnel planning at Henninger Video. It also has been helpful to have access to information concerning work orders, client tapes and invoices for a client in a matter of seconds. Clients don’t have to wait long for answers, and the staff doesn’t have to spend a lot of time getting them.

For more information on Xymox Systems’ Myriad Facility Manager, circle Reader Service Number 305.

Editor’s note: Field reports are an exclusive EBE feature for broadcasters. Each report is prepared by the staff of a broadcast station, production facility or consulting company. These reports are prepared by the industry and for the industry. Manufacturer’s support is limited to providing loan equipment and to aiding the author if requested.

It is the responsibility of Broadcast Engineering to publish the results of any devices tested, positive or negative. No report should be considered an endorsement or disapproval by Broadcast Engineering magazine.
New Products

AC current adapter
By A.W. Sperry
• Model CA-200: measures 0.199.9A AC with 3% accuracy on 50-400Hz circuits; works with all A.W. Sperry digital multimeters and most other manufacturers’ models having a 0-200mV range and >1M input impedance; provides true RMS reading when used with a True RMS DMM. 5/8-inch jaw capacity; weighs eight pounds; 5.75" x 2.75" x 1.25".

STL system
By BEC Technologies
• Digital fiber-optic STL system: transmits up to 64 channels of full-bandwidth, bidirectional audio; maximum transmission is two miles multimode, with standard LED driver, or 25 miles single mode with an optional laser driver; 10Hz to 22.5kHz (-3) frequency response; THD+N less than 0.01%; dynamic range better than 92dB; fault-tolerant redundant communication technology assures fail-safe signal integrity.

Caption system
By Blue Feather
• Caption box: battery powered (7.25VDC, 12V nominal) allows for captioning on remote shoots; 6" x 61/4" x 21/2"; weighs one pound; features three ways to caption: Immediate mode allows user to caption while typing; Scroll mode allows user to type in the text ahead of time, and then play back the text with a remote speed control; Cursor mode allows user to type in text ahead of time, and then play it back one text line at a time by pressing a key; teleprompter with 12-inch viewing screen automatically included with caption box.

Software products
By Chyron
• CODI-X: a UNIX-based GUI software product introduced by Parsec Systems for the Chyron CODI; combines multiprocessor power of UNIX with the user-friendly characteristics of a GUI; a “C” library of CODIX programming subroutines for software developers and systems integrators is offered by Parsec Systems.
• CODI control panel: a Microsoft Windows-based software program introduced by R.E. Snader & Associates to control the Chyron CODI text and graphics generator, using 386 PC desktop or laptop computers; offers a GUI that includes menu bars and command buttons for selecting fonts, colors, solid or rambled backgrounds, and the character placement functions of the CODI; additional screens allow creation of auto sequences for auto playback or editor control as well as creation of master templates for repetitive text entry.

Multichannel digital video transmission system
By Artel
• SL4000: delivers six broadcast-quality video channels plus up to six audio signals and eight data signals per video channel over a single fiber; exceeds all RS-250C short-haul requirements; uses 12-bit digital architecture; provides signal-to-noise ratios through high-quality, non-compressed digital encoding; transmits over 40km without repeaters; supports up to 15 repeaters with no loss of baseband signal quality.

Digital audio workstation
By Avid
• AudioVision version 2.0: non-linear video editing system employs TimeLine Lynx and Lynx-2 synchronization; Micro Lynx and Lynx-2 options include simultaneous control of multiple transports, machine control from the AudioVision screen, slave AudioVision to external time code, control of ATRs, VTRs and film transports, and output of time code and MIDI time code from AudioVision.

Multichannel automation system
By Odetics
• OmniCart: compiles, records and plays-to-air simultaneously; software developed by Louth manages recording, program replay and spot insertion for several independent stations on a 24-hour-per-day basis; manages up to eight playlists for recording, replay or compiling; supports up to 300 multisport cassettes and accommodates mixed cassette sizes; supports a maximum of 11 to 14 VTRs; compatible with all broadcast VTR formats.

Synchronizer
By Ariess
• AI-2: a companion synchronizer for the ADAT digital recorder, designed and manufactured by TimeLine; permits stand-alone operation of ADAT professional digital audio recorders with Sony video editors, MIDI control devices and the TimeLine Lynx-2 and Micro Lynx synchronizers; features include SMPTE/EBU timecode chase, Sony BVE-900 video editor interface, LTC and MTC generation, and internal and external digital word clock interface.

Digital switch matrix
By ST Okeptron Systems
• AMISM 4856: unrestricted switch matrix allows users to connect any one of its 48 inputs to any or all of its 56 outputs; crosspoints can be controlled remotely from a host computer via RS-232 (422) serial interface or an IEEE-488 system; data is passed through matrix with modulation outputs widths of ±105 of input data and amplitude recovered to standard value.

Hard disk automation system
By BLU Electronics
• DigitStation: for use in airing spots, weather, etc.; replaces conventional automation and cart machines; includes computer (386-33 or better), color VGA monitor, 170 minutes of recording time, 300W UPS, printer and cables, modem, operation/installation manual, break time correction and 6-month warranty.
Adapters
By Tru-Connector Corporation
- RF coaxial adapters: offered in four general types for solving connector incompatibility problems in series or between series; available with any gender combinations; include lay-on-the-bench types, which are provided without mounting hardware, panel-mounted versions, through bulkhead right angle or straight-through types, and 3-way or 4-way adapters; capable of mating almost all types of incompatible plugs, jacks and receptacles.

Bidding module
By Xynox
- Advanced bidding module: provides spreadsheet functionality and flexibility in unlimited user-defined bid formats; full integration allows all designated bid rates to be accurately reflected in invoicing over a period of time or on a single job.

Acoustic foam blocks
By Netwell Noise Control
- SuperMAX: 12" x 12" squares made of polyurethane foam; designed to deaden the harshest noise sources in a variety of applications; 6-inch, 8-inch or greater standard thickness.

Coaxial adapter
By Pasternack Enterprises
- Model PE9368: 75Ω female to 75Ω BNC male has low loss over the frequency range of DC to 4GHz; features a brass nickel-plated body, uses PTFE insulation, a silver-plated contact and has an operating temperature range of -65°C to 165°C; mates with any 75Ω N female and BNC female connector that meets the interface requirement for MIL-39012.

Standby power system
By Patriot
- 300 VA model: microprocessor-controlled detection system transfers to inverter in 4ms or less under all conditions; 3- to 5-year battery life; regulated invert-
Overheard in all the best places.

It's the new Matrix PlusII intercom system. The system that more and more broadcast professionals and system integrators are starting to talk about. Matrix Plus II builds on the remarkable strengths of the original Matrix Plus—the new industry standard for high-performance communications. Matrix Plus II is a truly integrated, \textbf{100 x 100 digitally-controlled intercom} with easy-to-use visual display stations, a comprehensive modular interface system, external DTMF system control, and simplified, pull-down menu programming. Exclusive features include \textit{"Intelligent System Linking"} of multiple systems for expansion beyond 100 ports, and global remote control over crosspoint levels. There's also improved station communications for \textbf{long-line remote capability}, as well as optional, fully digitized single-pair wiring. Plus much more, including the highest level of service and support in the industry. Want all the details? Call us at (510) 527-6666. The Matrix Plus II. You'll be overhearing more about it.

\textbf{Matrix Plus II}
\textsc{From Clear-Com Intercom Systems}

\textit{© 1993 Clear-Com Intercom Systems. Matrix Plus is a registered trademark of Clear-Com. 945 Camelia Street, Berkeley, CA 94710. Tel. 510-527-6666, Fax 510-527-6699}
er output avoids stressing computer's power supply; features lightning, surge and overvoltage protection; full-time EMI/RFI noise filtering; includes status indicator and alarms.

Circle (355) on Reply Card

Software product
By SunRize
• SMPTE output: stand-alone software product used to stripe LTC time code onto audio- and videotape; generates and sends the SMPTE time code out of the Amiga's audio jack; locks to the video sync pulse of each frame of video when used in conjunction with a gen-lock or Video Toaster; includes 24, 25, 29.97 and 30 frames per second time-code generation, drop frame and non-drop frame time code, multiple reset points, fast forward, rewind, play and pause buttons.

Circle (352) on Reply Card

Routing switcher
By Knox Video
• RS16x16: a 16×16 audio/video matrix switcher in a streamlined 1 1/2-inch chassis; easy front-panel key-pad operation; can be controlled via the RS-232 input; any of 16 NTSC or PAL video inputs may be routed to any or all 16 outputs; stereo audio can follow or be routed separately; can store and retrieve 16 preset crosspoint patterns.

Circle (362) on Reply Card

Touchscreen
By Troll Technology
• Troll Cam: 14-inch color rack-mounted touchscreen for remote control of broadcast camera systems; users can control all camera facilities from the screen and touch the live video picture window to steer the camera in elevation and azimuth; camera positions and settings can be stored for future use or reference.

Circle (363) on Reply Card

Waveform/ vectorscope
By Hamlet/James Grunder & Associates
• PC-Scope: fully operational monitoring and measuring device for desktop video; plugs into any Amiga or IBM PC; produces highly accurate, digitally generated waveform and vector signals for display on any NTSC monitor; features variable gain control, built-in calibration pulse, and SCH and color framing indication; offers store and freeze functions, and composite and Y/C inputs and outputs.

Circle (364) on Reply Card

Transmitters/receivers
By Nucomm
• PT-3 and RX-3 series: units each weigh less than eight pounds; incorporate all of the existing possible frequencies available for ENG in the United States or internationally, including the offsets; band and frequency selection are made using rotary front-panel switches to directly select the channel and band; units have a total of 151 synthesized RF channels in the U.S. bands; include two field-programmable audio subcarriers with off-line-mic switches located on the front panel; audio channels have a built-in tone generator; video has an optional built-in video test generator with a programmable ID; built-in video generator can generate SMPTE color bars or multiburst test signals.

Circle (365) on Reply Card

Pre-amp
By D.W. Fearn
• VT-1: vacuum tube microphone preamplifier enhances the sound of audio studios' microphones; features modern components and computer-optimized circuitry.

Circle (368) on Reply Card

Serial digital components
By Gemnum Corporation
• GENLINK: a family of integrated circuits for the interconnection of digital TV equipment using the SMPTE 259M serial digital standard for coaxial cable.

Circle (358) on Reply Card

Equipment shelter
By FWT
• Aggregate exterior communications equipment shelter: designed to meet domestic and international cellular market demands for a light-weight shelter to protect critical communications equipment; weighs one-third that of a traditional shelter; easy to transport; bullet resistant.

Circle (359) on Reply Card

Routing switchers and DAs
By Nova
• RGB component video routing switchers and DAs: use NovaBlock video processing system modules; available in stand-alone, rack mount or computer plug-in configurations; switcher and DAs available in two versions, one for either RGB with sync on green or Y/R-Y/B-Y, and the other for RGB/S with separate sync; all units feature video bandwidths in excess of 40MHz, >70dB signal-to-noise ratio, <0.3% to 0.3° differential gain and phase; 4×1 vertical interval routing switchers offer several switching control methods; DAs may be configured as either 1×5 or 1×4 with looping inputs.

Circle (360) on Reply Card

www.americanradiohistory.com
MAY...

Program Transmission Systems

- Building an STL System
Building an STL system requires careful design because of the high reliability required. The author describes a process to help ensure that adequate fade margins are built into a station's STL.

- Measuring RF Levels in Complex Environments
Learn about the complex process of measuring RF field intensity on the New York World Trade Center. In what is probably the most comprehensive analysis of an RF environment, the author discusses the problems faced in measuring the multistation installation.

- Selecting a Transmission Line
Selecting the correct coaxial transmission line and then properly installing it is the key to long equipment life.

JUNE...

NAB Convention Replay

- From the Convention Floor: A Perspective
A look at the latest developments from the NAB convention floor and session rooms.

- Pick Hits of '93
BE's panel of experts toured the exhibit floor looking for those special devices and equipment for this year's winning roundup.

- Engineering Conference Report
A review of the major technical themes presented at the 1993 Engineering Conference.

- Show of Shows: A Comprehensive Exhibitor Listing
No one does a better job of highlighting the products shown at NAB.

Professional Services

NETCOM

STATE-OF-THE-ART ENGINEERING FOR AUDIO & VIDEO
TURNO-KEY SYSTEMS
DESIGN & DOCUMENTATION
EQUIPMENT SALE
CAD SERVICES
1465 PALISADE AVE., TEANECK, NJ 07666 (201) 837-9424

JUNE...

NAB Convention Replay

- From the Convention Floor: A Perspective
A look at the latest developments from the NAB convention floor and session rooms.

- Pick Hits of '93
BE's panel of experts toured the exhibit floor looking for those special devices and equipment for this year's winning roundup.

- Engineering Conference Report
A review of the major technical themes presented at the 1993 Engineering Conference.

- Show of Shows: A Comprehensive Exhibitor Listing
No one does a better job of highlighting the products shown at NAB.

Hyatt House
33 BLOOR STREET WEST
MAY... 71-72

ADVANCED SCA DEMOD CARDS — Set to frequency. Widely used by the broadcast industry — $19.95. Professional SCA radios now available. SCS Radio Technology — 1-800-944-0030 or 417-881-8401.

"TWO SCALA SL-8" Omni-Directional Low Power TV Antenna, 100 watt Ch. 67 and Ch. 69, excellent condition, $1500.00 EACH. Contact Mark 916-246-8782.

EQUIPMENT WANTED

WANTED: USED VIDEO EQUIPMENT. Systems or components. PRO VIDEO & FILM EQUIPMENT GROUP — the largest used equipment dealer in the U.S.A. (212) 865-2011.

VINTAGE EQUIPMENT: Microphones, "flags", stands, "on air" lights, blank discs. Film & TV cameras & accessories. Literature. 516-726-9835.

WANTED: Used 30 to 55' pneumatic telescoping mast. Mr. King 703-664-6373.

FOR SALE

SONY 1 INCH BVH-2000, 1100A, 1100 or 1000s with Warranty. Refurbished stand guide assemblies — $150.00. Selectcom, Cameras, TRDs, Decks, Monitors, or call for replacement parts. We buy clean late model equipment. (605) 786-1709 (215) 836-994-3849.

COMPLETE INTRAPLEX TDM-153 T-1 SYSTEM with Kentrox CS1a, 2.1 kHz, 3.7 kHz and 3 four-wire voice modules. Also includes expansion shelves, backup power supplies and spare master modules. System used for nine months only. Perfect condition! Will consider any offer. Contact Ron Russ, KBLA, 213-664-1500.

ADVANCED SCA DEMOD CARDS — Set to frequency. Widely used by the broadcast industry — $19.95. Professional SCA radios now available. SCS Radio Technology — 1-800-944-0030 or 417-881-8401.

"TWO SCALA SL-8" Omni-Directional Low Power TV Antenna, 100 watt Ch. 67 and Ch. 69, excellent condition, $1500.00 EACH. Contact Mark 916-246-8782.

April 1993 Broadcast Engineering 85

www.americanradiohistory.com
FOR SALE

Classified

Replace incandescent indicator lamps with high reliability LED equivalents.

Bright LED's
Standard Lamp Bases
- 100,000 hour (11 year)
- shockproof life
- 5, 12, 14, 24, 28, 48, 60 and 125 volts
- wedge, bayonet, gasket
- flanged, grooved, telephone side, and other bases
- Red, green, yellow, blue
specials - warm white, blue

Eliminate the need to relamp your control panels, switches and indicators

RIGHT BULB.
RIGHT PRICE.
RIGHT DELIVERY.
LAMP TECHNOLOGY, INC.
1645 Swannanoa Ave.
Burlington, VA 22001

315-587-1500
Fax: 315-587-1909
1-800-KEEP LIT

RS422 VTR REMOTE CONTROL
SONY, AMPEX, JVC, PANASONIC, HITACHI
Low Cost - Lots of Features
DNF INDUSTRIES (213) 650-5256
1032 N. Sweetzer Avenue, #212
LA, CA 90069

Be Classified Advertisements generate results.

Their Way
1. Only new equipment or used equipment
2. Salespersons
3. Limited inventories.
4. Sales pitches
5. Sell equipment only

BCS is changing the way you buy video equipment
NY-212-268-8800
LA-818-551-5858

The Broadcast Store
1. New equipment and used equipment.
2. Sales Engineers
3. 15,000 pieces of gear
4. Technical Newsletters
5. Buy, consign, sell, trade

NYC is changing the way you buy video equipment
NY-212-268-8800
LA-818-551-5858

SONEX Source
58 Nortack St. Northampton, MA 01060
"Your Source for Sonex Acoustical Foam"
Best Prices—Nationwide Delivery
500-454-1620 Ext. 0317
8 1/2 in 413-584-7614
10 in 413-584-7614
Credit Cards Accepted

NOBEL

50 Nortack St. Northampton, MA 01060
"Your Source for Sonex Acoustical Foam"
Best Prices—Nationwide Delivery
500-454-1620 Ext. 0317
8 1/2 in 413-584-7614
10 in 413-584-7614
Credit Cards Accepted

Classified Advertisements generate results.

For Classified Advertising or Professional Services information
Call Renee Hambleton at (913)967-1732.

SONY . AMPEX . BTS . DUBNER
GRASSVALLEY . PANASONIC

If You're Looking For the Best in Used Equipment
and You Want the BEST: DEAL . VALUE . SERVICE
CALL MIDWEST: (708) 251-0001 . CANADA (604) 850-7969

SUNWEST SATELLITE

CALL US For New and Rebuilt
Radio Broadcast Equipment

(804) 974-6466
1305-F Seminole Trail • Charlottesville, Va. 22901

Call 708 673 9200 or (76) on Reply Card

NEW! MET-ERASER ME-II

ERASER BETASP • • • • • • - 85dB
TABER M T S ENG. CO. $2,495
down
2417 EMARCADE RD.
PALO ALTO, CA 94303 415-493-3811

Identify and prevent RF communications site interference in minutes rather than hours.
Powerful PC software that picks up where all other Intermodulation programs leaves off.
- Transmitter Noise/Receiver Desense Analysis
- Intermodulation Signal Level Analysis
- Eliminates Manual look-up of filter curves

COMSITE PLUS
For a brochure, call 1-800-845-0408

www.americanradiohistory.com
FOR SALE

Do You Do Design? Production? Maintenance? of Broadcast Transmitters for FM, VHF-TV, UHF-TV

For Technical Support and Product Off-the-Shelf

- RF BiPolar Power Transistors
- High Power RF MOSFETs
- 50 Ohm Amplifier Pallets for UHF TV and FM
- FM Broadcast Amplifiers, 150W, 300W, 700W
- Combiners, Splitters, Isolators, Circulators, Tubes, Sockets, Cavities
- Capacitors, High Voltage, High Power and Chip
- SCRs, Rectifiers, Voltage Regulators, Rectifier Stacks

We Speak RF.

In the US: 1-800-RF POWER (1-800-797-6937).

In Canada 1-800-348-5580, International Inquiries 708-208-2200

Richardson Electronics, Ltd.

Corporate Headquarters
40W267 Keslinger Road
LaFox, IL 60147-0393

HELP WANTED

TELEVISION PRODUCTION FACILITY

Join a NEW state-of-the-art Television Production Facility. This progressive communications center includes studio, mobile production, 24 hr. teleport and post production.

Opportunity to Grow!!!

Positions currently available:
- Video Engineer
- Master Control Operator
- Teleport Uplink Engineer
- Video Maintenance Engineer

Salary commensurate with experience. Relocation package available.

Send Director of Engineering
Resume to: P.O. Box 7564
Charlotte, NC 28241

COMMUNICATIONS ENGINEER for television station. Individual must have electronic repair experience, able to read schematics, and perform limited combing. Salaried commensurate with experience. Full vacation/benefits package. Interested persons should call (703) 433-9193 M-F, 8a-5p, or send resume to: WSHV-TV, P.O. Box 7564, Harrisonburg, VA 22801. EOE.

TELEVISION MAINTENANCE ENGINEER — Northern Michigan television station seeking enthusiastic individual, familiar with RF, audio and video, FCC general class license required. Must have ability to troubleshoot to component level. Send resume to: 735 Co Broadcast Engineering, P.O. Box 12961, Overland Park, KS 66208-2961.

HELP WANTED

SERVICES

Jeeland Products, Inc.
Serving the world with quality rebuilt tubes since 1940.

CALL TODAY FOR A FREE INFORMATION PACKET
1-800-624-7626

75412 Highway 25, Covington, LA 70433
800-624-7626 • 504-983-2743
Fax: 504-892-7223

HELP WANTED

AUDIO/VISUAL TECHNICIAN

MTV NETWORKS has an immediate opportunity for an AV Technician at its midtown Manhattan headquarters. The individual we seek will be responsible for the installation, maintenance and repair of broadcast AV equipment, support and maintenance of internal cable TV distribution system; and project coordination.

Qualifications include a thorough knowledge of editing systems; excellent problem-solving, decision-making and communication skills; and the ability to work well in a fast-paced environment. A degree in Electronics and/or 5 years of related experience is required. Knowledge of digital editing systems preferred.

In return for your expertise, we offer a competitive salary, comprehensive benefits and an opportunity to join a highly respected organization. For confidential consideration, please send your resume, indicating salary history and requirements, to:

MTV NETWORKS
BHA BOX #6058
555 Madison Avenue, NY, NY 10022
(We can only respond to candidates who meet our qualifications)

An equal opportunity employer

CHIEF ENGINEER of Teleposition, the leading post production facility in the Rocky Mountains, is seeking a Chief Engineer. Must share our deep commitment to customer service. Ideal candidate should be familiar with CMX, Grass Valley, Abekas in the art of editing systems; excellent knowledge of editing systems, very well paced editing environment. Applicants must be able to work well with people and be on call 24 hours a day, 365 days a year. Applicants should have five years of related broadcast experience and must be able to manage a small staff and find and train volunteers for elaborate production activity. Applicants should understand the AV software and hardware needs of producers. Applicant must hold current FCC General Radiotelephone License and have 5 years experience as a broadcast Chief Engineer or equivalent experience. Send resume and copy of credentials to Don Brown, Director of Operations, 1700-19th Street, Suite 1113, Chicago, Illinois 60601. Chicago residency required within six months of hire. The City Colleges of Chicago is an Equal Opportunity/Affirmative Action Employer: Male, Female and Handicapped.

CLASSIFIEDS GET RESULTS!!!

April 1993 Broadcast Engineering 87

www.americanradiohistory.com
HELP WANTED

ELECTRONICS FIELD/SHOP ENGINEER. Swiderski Electronics, Inc. located in the Chicagoland area, is looking for an Electronics Field/Shop Service Engineer with a min. of 2 years exp. Individual to work with Broadcast/Industrial 1", 2", & 1/2" VTRs and related equipment. Full time position. Full company benefits. Send resume & salary history to: Human Resources Dept., 1200 Greenleaf Ave., Elk Grove Village, IL 60007. Fax resume to: (708) 364-5019.

AUDIO/VIDEO ENGINEER. The University of Texas Medical Branch at Galveston, located 50 miles south of Houston on the Gulf of Mexico, is seeking an experienced individual to provide specialized skills in installing, operating, maintaining and repairing video production and post production facilities and audio visual equipment. Experience with installment of facilities, cable TV and satellite preferred. Professional appearance and strong customer relations and communication skills also are preferred. Please send resume, identifying JOB #930502, to UTMB, Human Resources Department, Box 56146, Galveston, TX 77555-5146. UTMB is an equal opportunity and affirmative action employer. MF/HV. UTMB is a drug-free/tobacco-free workplace. UTMB only hires individuals authorized to work in the United States.

For information on BE’s classified advertising contact Renée Hambleton at (913) 967-1732 or FAX (913) 967-1901. Put BE to work for you!

USE BE CLASSIFIEDS!

Ad Index

<table>
<thead>
<tr>
<th>Reader Service Number</th>
<th>Advertiser Hotline</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAVS/Div of Scencore</td>
<td>25</td>
</tr>
<tr>
<td>Abeakas Video Systems</td>
<td>19</td>
</tr>
<tr>
<td>Accu-Weather Inc</td>
<td>45</td>
</tr>
<tr>
<td>AEQ SA</td>
<td>55</td>
</tr>
<tr>
<td>Ampex Systems Corp</td>
<td>24-25</td>
</tr>
<tr>
<td>Anthro Co</td>
<td>28</td>
</tr>
<tr>
<td>Audio Precision</td>
<td>13</td>
</tr>
<tr>
<td>Audio Processing Tech. Ltd.</td>
<td>61</td>
</tr>
<tr>
<td>The Broadcast Store Inc.</td>
<td>70</td>
</tr>
<tr>
<td>Frank R. Beamish & Co.</td>
<td>77</td>
</tr>
<tr>
<td>Belar Electronics Co.</td>
<td>26</td>
</tr>
<tr>
<td>Belden Wire & Cable</td>
<td>27</td>
</tr>
<tr>
<td>Broadcast Video Systems Ltd.</td>
<td>42</td>
</tr>
<tr>
<td>BTT Broadcast TV Systems</td>
<td>82</td>
</tr>
<tr>
<td>Canare Cable, Inc.</td>
<td>17</td>
</tr>
<tr>
<td>Clark Wire & Cable</td>
<td>42</td>
</tr>
<tr>
<td>Clear Com Intercom Systems</td>
<td>83</td>
</tr>
<tr>
<td>Cole Wire & Cable Co.</td>
<td>56</td>
</tr>
<tr>
<td>DPS</td>
<td>52</td>
</tr>
<tr>
<td>Enco Systems Inc.</td>
<td>22</td>
</tr>
<tr>
<td>Gentner Communications</td>
<td>56</td>
</tr>
<tr>
<td>GLW, Inc.</td>
<td>14</td>
</tr>
<tr>
<td>Grass Valley Group</td>
<td>21</td>
</tr>
<tr>
<td>Hardig Industries</td>
<td>67</td>
</tr>
<tr>
<td>Harris Allied</td>
<td>13</td>
</tr>
<tr>
<td>Ilbruck</td>
<td>44</td>
</tr>
<tr>
<td>ITS Corp</td>
<td>41</td>
</tr>
<tr>
<td>Jampco Antennas, Inc.</td>
<td>9</td>
</tr>
<tr>
<td>JVC Professional Products Co.</td>
<td>32A-D</td>
</tr>
<tr>
<td>Lamtech Technology</td>
<td>65</td>
</tr>
<tr>
<td>Ledtronics, Inc.</td>
<td>58</td>
</tr>
<tr>
<td>Leitch Incorporated</td>
<td>20</td>
</tr>
<tr>
<td>Magni Systems, Inc.</td>
<td>29</td>
</tr>
<tr>
<td>Maxell Corp of America</td>
<td>12</td>
</tr>
<tr>
<td>Midwest Audio/Video Engineering</td>
<td>86</td>
</tr>
<tr>
<td>Miletestek</td>
<td>55</td>
</tr>
<tr>
<td>Nady Systems, Inc.</td>
<td>33</td>
</tr>
<tr>
<td>Neutrik USA</td>
<td>53</td>
</tr>
<tr>
<td>Newton Instrument Co.</td>
<td>33</td>
</tr>
<tr>
<td>Nikon Electronic Imaging</td>
<td>85</td>
</tr>
<tr>
<td>Odetics, Inc.</td>
<td>19</td>
</tr>
<tr>
<td>OMB Sistema Electronicos</td>
<td>59</td>
</tr>
<tr>
<td>Ompl Labs, Inc.</td>
<td>77</td>
</tr>
<tr>
<td>Orbit, Div of AKG Acoustics</td>
<td>60</td>
</tr>
<tr>
<td>Panasonic Broadcast & TV</td>
<td>96</td>
</tr>
<tr>
<td>Pro-bol Inc.</td>
<td>27</td>
</tr>
<tr>
<td>Radiation Systems</td>
<td>34</td>
</tr>
<tr>
<td>Roland Corp. US</td>
<td>69</td>
</tr>
<tr>
<td>Ross Video Ltd.</td>
<td>31</td>
</tr>
<tr>
<td>Sachtler AG</td>
<td>56</td>
</tr>
<tr>
<td>Sanix Corporation</td>
<td>37</td>
</tr>
<tr>
<td>Shure Brothers Inc.</td>
<td>45</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>39</td>
</tr>
<tr>
<td>Sony Business</td>
<td>19</td>
</tr>
<tr>
<td>Storel</td>
<td>52</td>
</tr>
<tr>
<td>Switchcraft Inc./Div. of Ratheon</td>
<td>75</td>
</tr>
<tr>
<td>Taism/Teac America, Inc.</td>
<td>80</td>
</tr>
<tr>
<td>Tektronix, Inc.</td>
<td>29</td>
</tr>
<tr>
<td>Telx Communications, Inc.</td>
<td>74</td>
</tr>
<tr>
<td>Thomason Broadcast, Inc.</td>
<td>70</td>
</tr>
<tr>
<td>VEGA, A Mark IV Company</td>
<td>25</td>
</tr>
<tr>
<td>Videotek, Inc.</td>
<td>1B</td>
</tr>
<tr>
<td>Vinten Broadcast, Inc.</td>
<td>23</td>
</tr>
<tr>
<td>The Winsted Corporation</td>
<td>54</td>
</tr>
<tr>
<td>360 Systems</td>
<td>15</td>
</tr>
</tbody>
</table>

Advertising sales offices

CHICAGO, ILLINOIS

Gordon & Associates 218 President Street
New York, NY 10016

CHICAGO, ILLINOIS

Gordon & Associates 218 President Street
New York, NY 10016

SANTA MONICA, CALIFORNIA

Gordon & Associates 3033 Santa Monica Blvd. 3rd fl.
Santa Monica, CA 90404

OXFORD, ENGLAND

Richard Webster
Initials, Publishing Corp.
Unit 1, Ford Business Centre
Claydon Road, Deddington
Oxford OX4 4TH England
Telephone: 08658 5764
Fax: 08658 5840
Telex: 857449 NSG G

TOKYO, JAPAN

Meisy Rascakke
Orient Lab Inc., 1111 Grand Maison
Sugamocho-Chi 2-1
Shinkansen, Tokyo 102, Japan
Telephone: 03 235-8881
Fax: 03 235-1050
Telex: 33070 MYORINT

FREWSVILLE, SOUTH AUSTRALIA

John Williamson
Fanwil, Williamsburg, Vic. Ltd
139 Canterbury Street
Frewville, 5653, South Australia
Phone: 799-322 Fax: 08-9222

CLASSIFIED ADVERTISING

Overland Park, KANSAS
Bob Johnson Telecommunications, PO Box 1291
Overland Park, KS 66208. 913-687-0613

www.americanradiohistory.com
NEW FROM BROADCAST ENGINEERING

DIGITAL RADIO BASICS

A must for every broadcast management, engineering, operations and regulatory professional, covering the practical information you need to understand digital radio, including:

- **WHO** the key players are in terrestrial, satellite and cable delivery.
- **WHAT** benefits are provided by digital audio transmission, including clear explanations of data compression and channel coding systems.
- **WHEN** to expect the transition, including some scenarios for lucrative auxiliary data delivery.
- **WHY** digital radio is important, what has happened to date, and the issues that still need to be resolved.
- **HOW** future program formats, revenue streams and regulation could be affected.

DIGITAL RADIO BASICS—$30/copy

ALSO AVAILABLE FROM INTERTEC PUBLISHING

THE INFORMATION AGE CATALOG

INCLUDES MORE THAN 300 BOOKS, VIDEO & AUDIOTAPES

CALL 800-543-7771 or FAX 800-633-6219

BROADCAST ENGINEERING

Circulation Department

PO BOX 12902
OVERLAND PARK, KS 66282-2902
You need equipment that's loaded with useful, convenient features. But it also has to be affordable. Which is why we design our video and audio equipment to be such a great value. Take a look at just some of the ways Videotek gives you world class quality.

Prodigy™ Production/Post Production Switcher. Ten inputs, 100 event memory, linear keying, stereo audio, multi-level effects, and more. A lot of brain power in a small package.

RS-103 Series Routing Switchers. Our versatile 10x1 routing switchers come with 40MHz bandwidth, remote and RS-422 control and may be configured for component and matrix switching. The RS-103A also gives you three channel audio-follow-video.

VDP-8400 Frame Store Synchronizer. Our high performance four-field frame store/synchronizer is ideal for even noisy feeds from satellite, microwave, ENG, or remote feeds.

PDG-418 Production/Post Production Switcher. All the features of our Prodigy™, plus 18 inputs, independent control of downstream keyer and optional border generator.
Leitch introduces the STILL FILE Special Edition, a new, low cost version of the popular STILL FILE.

Now you can own America's most popular still store for as little as $18,995.

Call 1-800-231-9673 and ask for more information on the new STILL FILE Special Edition.

$18,995 includes 1500 fields of storage. Compact control panel is optional.