AUTOMATION SPECIAL REPORT

- Is lights-out automation now possible?
- Supporting TV Everywhere
- Maintaining a high QoE for viewers
- IP networks — managed and unmanaged

+ Multiscreen revenues
+ New services
+ Retention
+ Quality of Experience (QoE)

= $$$

ALSO INSIDE:
COMPUTERS & NETWORKS
Metadata and MXF, part 2
THE HUMAN VISUAL SYSTEM
A "look" at how viewers see
C10HD

Big console power in a compact, simple and affordable package.

- Integrated Production Assistants; Dialogue Automix, C-Play, Station Automation and 5.1 Upmix
- Renowned SSL reliability and support
- Premium audio quality, ready for 5.1 production
- Simple to install with flexible I/O options
- Easy to operate for users of all skills levels

Get in touch

East Coast - Steve Zaretsky | T: 1 (212) 315-1111 ext. 15 | stevez@solidstatelogic.com
West Coast - George Horton | T: 1 (213) 249-9229 ext. 15 | georgeh@solidstatelogic.com

Take the video tour at:
www.solidstatelogic.com/C10

Broadcast Audio. This is SSL.
MKH 8070 Long Gun Microphone
Capturing the Moment.

The new MKH 8070 is in a league of its own. Its excellent directivity and off-axis linearity make it your ideal team member for major broadcast and sporting events.

It will reliably capture that magic moment from a distance with a true and natural sound, even under the toughest sonic and climatic conditions.

Part of the flexible MKH 8000 series, just add the M2D 8000 and it is a digital mic.

www.sennheiser.com
SPECIAL REPORT

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>AUTOMATION</td>
</tr>
<tr>
<td>32</td>
<td>Lights-out automation and new revenue opportunities</td>
</tr>
<tr>
<td></td>
<td>As more IP, file-based VOD and OTT services move in, so too can revenue.</td>
</tr>
<tr>
<td>36</td>
<td>Supporting TV Everywhere</td>
</tr>
<tr>
<td></td>
<td>Processing and management of more content has broadcasters considering new workflows.</td>
</tr>
<tr>
<td>41</td>
<td>Netting quality in the video stream</td>
</tr>
<tr>
<td></td>
<td>Profiting from video streaming starts with a quality viewing experience.</td>
</tr>
<tr>
<td>48</td>
<td>When IP is not “that IP”</td>
</tr>
<tr>
<td></td>
<td>A world of difference exists between IP in managed and unmanaged networks.</td>
</tr>
</tbody>
</table>

BEYOND THE HEADLINES

DOWNLOAD

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Router evolution</td>
</tr>
<tr>
<td></td>
<td>System requirements are keeping pace with changing signals.</td>
</tr>
</tbody>
</table>

FCC UPDATE

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Channel sharing</td>
</tr>
<tr>
<td></td>
<td>The FCC’s channel-sharing rules are now in effect.</td>
</tr>
</tbody>
</table>

DIGITAL HANDBOOK

TRANSITION TO DIGITAL

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Internet TV systems and coding</td>
</tr>
<tr>
<td></td>
<td>Content distribution is heading to the connected world.</td>
</tr>
</tbody>
</table>

COMPUTERS & NETWORKS

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Metadata and MXF, part 2</td>
</tr>
<tr>
<td></td>
<td>Take out some human elements to improve workflows.</td>
</tr>
</tbody>
</table>

PRODUCTION ROOM

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Intercom design</td>
</tr>
<tr>
<td></td>
<td>Digital and matrix-based systems rule today’s trends.</td>
</tr>
</tbody>
</table>

ON THE COVER:

A streaming video project has many variables, but the monetary equation’s root is video quality.
Now it's easy to build your own customized SD, HD and 3 Gb/s SDI router!

Build your own customized router any size you need! Universal Videohub is a powerful broadcast grade routing switcher featuring up to a massive 288 inputs, 288 outputs and 288 deck control ports. You can add interface cards to either regular SDI or optical fiber SDI connections as well as single or dual power supplies and single or dual cross-points for full redundancy. Cards can be removed when powered so all electronics can be swapped at any time for 24/7 reliability!

Industrial Strength Routing Switcher
With up to 288 inputs and 288 outputs, Universal Videohub has enough SDI connections for the largest facility. With so many SDI inputs and outputs, Universal Videohub is perfect for broadcast with multiple feeds, as well as post production where you need loads of monitoring! Universal Videohub also includes 288 RS-422 deck control ports for a complete routing solution.

SD ↔ HD Simultaneous SD, HD or 3 Gb/s Video
Universal Videohub handles mixed SD, HD and 3 Gb/s SDI connections all on the same router at the same time. Universal Videohub detects when an input changes, and automatically sets all the connected outputs to match the changed input. For a true broadcast quality solution, all SDI outputs are fully re-clocked and output SDI slew rates update automatically.

World's Highest Quality
With future proof 3 Gb/s SDI connections built in, Universal Videohub allows twice the SDI data rate than normal HD-SDI. Use 3 Gb/s SDI for 1080p60 and high resolution real time 2048 x 1556 feature film editing. 3 Gb/s SDI allows auto switching between all SD, HD and 2K video formats in both 4:4:4 and 4:2:2 quality.

Network Router Control
Universal Videohub is compatible with hardware control panels such as Blackmagic Design's Videohub Smart Control and for lower cost includes free software control panels for both Windows* and Mac OS X™. Software panels let you route from your desktop! Universal Videohub uses ethernet for the control panel interface so you can control your routing from anywhere in the world!

Mix and Match to Customize!
Universal Videohub SDI Interface (4 x SDI I/O) ... $385
Universal Videohub Optical Fiber Interface (4 x SDI I/O) $995
Universal Videohub 72 .. $3,945
Universal Videohub 72 Crosspoint .. $4,245
Universal Videohub 288 .. $8,345
Universal Videohub 288 Crosspoint ... $19,995

Learn more today at www.blackmagic-design.com/universalvideohub
FEATURE
51 HVS fundamentals
Knowledge of the Human Visual System is essential to understand how future equipment might be specified for improved performance.

NEW PRODUCTS & REVIEWS
APPLIED TECHNOLOGIES
55 Marquis Broadcast's Medway
57 EVS' C-Cast
59 SRS Labs' SRS 5.1

TECHNOLOGY IN TRANSITION
60 Facility remote monitoring
Media-aware systems can help when centralizing operations.

NEW PRODUCTS
62 FOR-A's FT-ONE slo-mo camera and more ...

DEPARTMENTS
8 EDITORIAL
64 CLASSIFIEDS
65 ADVERTISERS INDEX
66 EOM

SEE IT ONLINE!
Learn from the experts with Broadcast Engineering's Specialized Training eBooks and video tutorials.

GET CONNECTED!
Join us through social media at Facebook (www.facebook.com/broadcastengineering) and Twitter (www.twitter.com/BE_magazine).

Learn more at www.broadcastengineering.com/ specialized-training/.

Learn more at www.broadcastengineering.com
Great Things. Small Packages.

The UTAH-100 family of routing and distribution products from Utah Scientific has a well-earned reputation for value, performance, and reliability. Two new members of the family are adding **flexibility** to the list.

The UTAH-100/XFD Fiber Distribution Frame packs up to 16 channels of coax-to-fiber and fiber-to-coax conversion into a compact 1RU frame. Fiber-per-channel, WDM, and CWDM solutions, including Gigabit Ethernet over fiber, make this unit the logical choice for all of your fiber applications.

The UTAH-100/XHDA is a 3G-capable High Definition Distribution Amplifier with a big difference. It has 8 amplifier blocks, each of which can be programmed by the internal web interface to serve 2, 4, 6 or 8 outputs. This unmatched flexibility makes it perfect for mobile systems, allowing a single unit to replace racks of DAs.

The UTAH-100 family offers a wide selection of routers in all signal formats in sizes from 8x8 to 32x32 with standard built-in web control and options for built-in or remote control panels, third-party control interfaces, redundant power supplies. The family also includes Distribution Amplifier packages and modular DA solutions for all applications.

Contact your Utah Scientific representative today or visit us at: www.utahscientific.com for more information on this ever-expanding product family.
Heathkit closes its doors

I was sad to learn in early May that the venerable company Heathkit had closed its doors. I'll bet there are tens of thousands of Broadcast Engineering readers who cut their technology teeth on Heathkit products.

Heathkit, and fellow electronics kit makers like Allied Knight Kit and Lafayette Radio, produced a range of products focused on allowing people to build their own equipment. The kits, at one time, ran the gamut of audio, video, test and measurement, amateur radio, television, and other household items. These companies were responsible for introducing two generations of audiophiles, ham radio operators and general all-around tinkerers to the world of build-your-own electronics.

The premise was that a person could build something themselves, save factory labor, and end up with a higher-performing product. An additional benefit for some was the valuable electronics knowledge learned in the process. For several decades, that manufacturing model held true.

One of the most sophisticated Heathkit products was a color television. In fact, in May 2001, Broadcast Engineering reader Doyle Hill wrote me saying his father had purchased a Heathkit GR-2000 25in color TV in 1976, but never assembled it. For years, the kit remained in its original boxes. He asked me to publicize that he would like to give the kit to someone who would be willing to assemble and use it. Reader Ray Carlton took on that challenge, and he assembled the 25-year old television kit by December.

“I wish I could afford a Plexiglas cabinet, so I could admire its innards full-time,” Carlton said.

Carlton’s comment illustrates the pride kit builders typically felt about their completed projects. Sure, someone could buy a stereo amplifier, but it took time and skill to assemble a Heathkit AA141 amplifier with dual push-pull EL84 tubes in each output channel.

I too assembled a range of electronic kits. I trace my electronic roots to projects including Knight Kit ham radio receivers and transmitters. In addition, I built a wide range of Heathkit test equipment, including a VTVM, tube checker, digital frequency counters, DVM, audio and TV signal sources, and a vectorscope. I still own much of that equipment, and it all still worked at last check.

However, the era of LSIs, multi-layer circuit boards and, most importantly, cheap and efficient foreign labor brought an end to saving money through kit building. Soon, it was cheaper to buy electronics from Radio Shack, Best Buy or dozens of other box houses than to build it yourself.

Additionally, much of today’s equipment is software-based. See last month’s editorial on this year’s NAB exhibition. Although some companies touted new products, those announcements were often little more than software upgrades. The line between a new and upgraded product continues to blur.

While the companies mentioned at the beginning of this column have disappeared, so too have many storied names from inside these pages. Do you remember these firms: Ampex, Bosch, ITC, Leitch, Pluto, RCA or Vital? What other names could you add to this list?

While many Broadcast Engineering readers will be sad to learn of Heathkit’s demise, we can take solace in that new suppliers and vendors always will spring forth and flower, if even for a brief time, like summer dandelions.
Integrated Real-Time Solutions for Studios, Mobile Productions & Stadiums

SIGNAL TRANSPORT & ROUTING
- MEDIONET
 Fiber-based Real-Time Media Network
- ROCKNET
 Performance Audio Network
- RILINK
 Global Fiber Service

VIDEO PROCESSING
- Up-/Down-/Cross-Conversion
- Quad Split
- Frame Store Synchronizer
- Embedder/De-Embedder
- Test Pattern Generator
- On-Screen Display
- Timecode Insertion & Display

INTERCOM
- ARTIST
 Digital Matrix Intercom
- PERFORMER
 Digital Partyline Intercom
- ACROBAT
 Digital Wireless Intercom

TWO-WAY RADIO
- RIFACE
 Universal Radio Interface
- AIR / PRO / MAX
 Radio Headsets

See you at
IBC
Hall 10, Stand 10.A31

WUPPERTAL | BEIJING | BERLIN | GLENDALE | LONDON | MOSCOW | SINGAPORE | SYDNEY | VIENNA | ZURICH

www.riedel.net

Riedel Solutions Hotline
(818) 241 4696
Tell your story. Touch your fans.

With more than 60 hours of video content uploaded to YouTube every minute¹, people are producing high-quality video content in new ways every day. The good news is, you don't have to be a major TV studio to get in the game.

NewTek Live Production Solutions allow you to produce HD quality television. No more complex hardware, software or process diagrams. Spend more time getting your story to your fans, and less time worrying about how to reach them.
Volumes of signature looks to make each program distinct.
High-capacity media storage for a high volume of project work.
Flexibility to add up to eight camera angles from show, to show.
Built-in live streaming at the push of a button.
Stream, record, project and broadcast—all at once.

For more information, visit newtek.com today.
Router evolution
System requirements are keeping pace with changing signals.

BY SCOTT BOSEN

Routing switchers are a common element in a wide variety of television production and distribution systems. They provide an efficient, reliable and economical means of connecting signal source devices to the destinations where the signals are used. As the industry has evolved over recent years, from analog through digital and now to HD and higher-resolution systems, routing systems’ operating requirements have undergone a similar evolution.

History
Early routing systems essentially were blocks of single-bus switchers tied together to take advantage of a common set of inputs. Control generally was limited to a row of pushbuttons for each output. As systems grew in size from 30 or 40 inputs all the way to 60 or more, it became impractical to continue adding buttons to the control panels. That is when numeric addressing came into use. Operators keyed a source number on a keypad to select the desired source. With the introduction of addressing, it also became practical to create a control panel that allowed operators to select sources and destinations, giving rise to the variety of multibus and full-matrix control panels designed as central router control points for use in studios and master control rooms.

The next big advance in user interfaces for routing systems came with the introduction of alphanumeric displays that could present source and destination labels to the operator, eliminating the need for the paper “look-up tables” always taped to the rack next to the numeric panels. A control panel with alphanumeric displays made it easy for non-expert operators to control the router, greatly extending the routing system’s utility in streamlining the facility’s operations.

Today’s router control systems still largely depend on the operational practices developed in the early days of alphanumeric addressing. Because the control panels had a limited number of keys available, labeling systems were designed around the idea of grouping sources and destinations into “categories.” One of the keys in the keypad would access a category, and then a one- or two-digit number would select the desired member of that category. The category-plus-number system made it simple to, for example, select CAM 1 or VTR 22. Then, however, the operator needed to find the old lookup table to figure out that TEST 5 would yield SMPTE color bars. Some systems were able to display a descriptive name after the source was selected, but because the labels on the keys were fixed, users were stuck with a limited set of category names.

This history brings us to the current phase of control-panel evolution — panels with relegendable buttons. The availability of pushbuttons with built-in LCD displays and multicolor illuminations has at last freed us from the restrictions of a limited keypad with fixed labels. Early panels with LCD buttons took advantage of the fact that buttons could easily be

FRAME GRAB A look at the issues driving today’s technology

World’s tablet prices falling
Despite improved product technology and features, competition among tablet makers forced the device’s average price down a sizable 21 percent in a single year to $386 last quarter.

![Graph showing tablet prices](http://imsresearch.com)

Source: IMS Research

12 broadcastengineering.com | July 2012
Convert with AJA.

Mini-Converter and Rackmount products that make professional workflows work.

FS2
One box that does it all.
Dual-channel Frame Synchronizer and Format Converter

FS2 delivers dual-channel conversion and frame synchronizing power and flexibility in a slim 1RU space. With two independent video and audio processors, FS2 can do the work of two separate devices or combine both processors together for maximum flexibility.

FS2 features comprehensive analog and digital I/O to integrate into any workflow and allow multiple output types of any signal.

FiDO
Compact Fiber.
SDI/Optical Fiber Converters

With a compact design ideal for studio or mobile use, FiDO enables the transport of SD/HD/3G SDI over distances up to 10km using standard single-mode Fiber optic cable with your choice of LC, ST, or SC connectors. With 9 models to choose from, FiDO offers unmatched flexibility and cost efficiency for the long run.

UDC
Up/Down/Cross Converter.
High-Quality Conversion, Small Size

UDC brings AJA's industry-leading conversion technology to a small, portable device. Utilize high-quality up/down/cross conversion in any situation to provide great looking images in the studio or in the field.

Find out about our latest Convert products at www.aja.com
relabel, allowing the system’s administrator to change category names, for example, without the need for removing and relabeling the keycaps on every panel. This feature was a big advance in system flexibility, but the button labels essentially were fixed once the system programming was completed, and the panels were operated in the same way as panels with fixed-label keypads.

The latest generation of control panels takes full advantage of the dynamic labeling features of LCD buttons, allowing the panel’s buttons and displays to work in a dynamic mode, driven by internal menus in the panel software. This means the category-plus-number labeling system can be left behind at last, replaced by panels that provide unlimited flexibility in grouping sources and destinations into an intuitive and transparent structure for all operators, regardless of their technical training or expertise.

Soft panels

It is becoming increasingly important in today’s facilities for the router control system to provide “virtual” control panels — GUI representations of router control panels that can be presented on the screens of computers, phones and tablets that are all part of the broadcast facility.

A good GUI control panel system will provide a toolbox for designing an unlimited range of on-screen panels, from simple button-per-source panels to panels that support the setup of complex monitor walls. The ability to support multiple operating systems and Internet-browser-based panels can greatly extend the usefulness of the virtual control panel system.

The ability to publish the panels over a network with specific access rights for users or groups of users can also make the system much more useful. Close linkage to the control-system configuration files can make the panel-design process much simpler, allowing the panel to be designed with point-and-click navigation rather than having to type in the source and destination labels as the panel is being laid out.

Advanced control functionality

Modern routing systems are adding a number of features that involve various forms of signal processing with the router. (See Figure 1.) An example of this is embedded signal processing, which allows embedded audio arriving on digital video streams at a router’s inputs to be extracted, manipulated and re-embedded at the

Figure 1. Modern systems have added many features that require various forms of signal processing with the router.
HD Variable Frame Rate Camera

VFC-7000
"Flash EYE"

High-speed HD Recording

Compact, lightweight and configured as an all-in-one self-contained unit, the VFC-7000 is an easy to operate variable frame rate camera that is capable of High-speed 700 fps HD full frame recording. Frame rate can be varied from 24 to 700 fps. F mount (Option: PL mount) is available. Also DC drive is supported, making it optimal for recording outdoors and in other environments with no power source.

3 Types of Mounting are Available
- F Mount (Accessory)
- PL Mount (with Option)
- 84 Mount (with PL/84 Adapter)

FOR-A ALL STARS

HD Video Archiving Recorder
LTR-100HS/120HS

HD/SD Frame Rate Converter
FRC-8000

Sensorless Virtual Studio System
VRCAM2

3G/HD/SD Multi Purpose Signal Processor
FA-9500

HD Variable Frame Rate Camera
VFC-7000
"Flash EYE"

Continuous Innovation

www.for-a.com
outputs. Controlling these functions requires a new approach to the design of the control system and presents a tremendous challenge in designing a user interface intuitive yet powerful enough to take full advantage of this compelling new ability.

At the same time, external control of the router by automation, scheduling systems, editors and production switchers is increasingly important when it comes to integrating the router into the overall system. Having external control requires the ability of the router control system to communicate with external systems such as tally management, under-monitor display devices, and — with the expanding use of flat-panel-based monitor walls — the external multiview image processor.

Traditionally, communication from the router control system to these external devices has happened through a simple numeric interface. The router status was sent as a message that output XX was connected to input YY, which meant the external system’s programming needed to be reconfigured to match the router’s labeling configuration every time the router was updated.

In modern systems, it is possible to download the router’s programming information directly to the external device, allowing the complete system to be updated automatically when changes are made to the router’s configuration.

System configuration
The most time-consuming part of installing and maintaining a router control system is reprogramming dozens of control panels to reflect the new system configuration. (See Figure 2.) This is where the router control system can make a big contribution by automating repetitive parts of the process. Most systems offer a GUI for panel programming. The best systems allow the GUI to be customized. For example, an operator can create separate “views” of certain parts of the system to reduce on-screen clutter and allow the operator to focus on specific devices.

System monitoring
Once the router system is in operation, the control system must provide a comprehensive toolbox for monitoring its operation. (See Figure 3.) Alarm indicators such as power-supply failure and temperate alerts must be presented in a clear and easily understandable form to the maintenance crew so that corrective action can be taken to avoid service interruptions.

The monitoring/maintenance utility is also the logical place to provide tools for operational supervision, giving access to high-level functions such as tie-line management, identifying and troubleshooting hardware faults, and releasing locks.

In a growing number of facilities, the routing switcher is tied into an overall network management system (NMS). These systems monitor the health of the complete facility by receiving messages from the individual subsystems via SNMP communications. The routing system must be able to provide alarm information via SNMP trap messages, and additional functionality, such as loss of signal (LOS) alarms on critical inputs and outputs, can be very useful to the NMS in tracing the root cause of a service interruption through the various devices in the system.

The future
The increasing sophistication of router control systems has kept pace with the amazing growth of routers over the past few years.

Modern systems are infinitely easier to configure, manage and maintain than their predecessors, making it more practical to design systems based on a large, central routing switcher. In the future, we can look for the router to become even more tightly integrated into the facility, providing an expanding range of functionality that traditionally has been handled by dedicated equipment.

Control systems will expand to keep up with added functions while making the overall system more efficient. This will streamline workflow.

Scott Bosen is the director of marketing for Utah Scientific.
Imagine the Possibilities with Avid Motion Graphics

Your media is your lifeblood and Avid can help you use it more effectively than ever before.

Leveraging the latest advancements in real-time 2D/3D graphics creation, Avid Motion Graphics, a next-generation graphics platform, enables you to:

• Create stunning content that cuts through the visual clutter
• Let journalists quickly integrate graphics into their stories
• Get to air faster and easier

Find out how. Visit avid.com/AMG
Channel sharing

The FCC’s channel-sharing rules have become effective.

By Harry C. Martin

The FCC’s initial TV channel-sharing rules, adopted in April, went into effect on June 22, according to a notice published in the Federal Register. The new rules are a significant step in the FCC’s move towards incentive auctions and TV channel re-packing to accommodate the spectrum needs of wireless broadband proponents. Making room for more broadband wireless service is the No. 1 priority of FCC Chairman Julius Genachowski.

The Federal Register publication also set the deadlines for seeking reconsideration or judicial review of the FCC’s channel-sharing Report and Order. The deadline for petitions for reconsideration has passed, but aggrieved parties have until July 23 to ask a court of appeals to review the Report and Order.

Considerations

When channel sharing becomes a reality, it will be subject to the following considerations:

• Eligibility. Channel-sharing will be available only to full-power and Class A licensees who participate in the incentive auction process. What TV licensees are eligible for is not clear because most of the key details of the channel sharing procedure are yet to be determined. LPTV and TV translator stations are not eligible. Because they are secondary services, no provision has been made for their existence during or after band-clearing.

• Voluntariness. Sharing will be entirely voluntary. The initial channel-sharing rules state that broadcasters may opt in or out of the sharing plan and decide with whom they may want to partner.

• Single facility/separate licensing. While stations sharing a single channel will use a single common transmission facility, each will continue to be licensed separately. Each sharing licensee will keep its original call sign, retain all rights of an FCC license and remain subject to the full panoply of FCC rules.

• Minimum capacity. The manner in which a given 6MHz channel would be divided by sharing licensees will be left to the licensees, provided each sharing station retains enough capacity to operate at least one full-time SD programming stream.

• Must carry. The FCC asserts that the sharing rules will have no effect on stations’ cable and satellite carriage rights. Each separately licensed station will be entitled to the same carriage rights as long as it meets all of the usual technical requirements from the shared transmitter location.

• NCE-Commercial sharing. Commercial and NCE stations are permitted to share, as long as NCE licensees structure their arrangements to maintain their noncommercial status. Thus, if an NCE licensee now operating on a reserved channel elects to move to a non-reserved channel as part of a channel-sharing arrangement, the NCE station must continue to operate on an NCE basis. The FCC will decide in a separate context whether a commercial station can elect to share a channel that has been reserved for noncommercial use.

White space rules

The FCC’s “white space” proceeding may finally be over. In a Third Memorandum Opinion and Order (3rd MO&O) released in April, the agency disposed of a handful of petitions for reconsideration of a 2010 decision that modified technical specs for white-space devices as adopted in 2008. The 3rd MO&O has now been published in the Federal Register, which means the rules as modified became effective on June 18.

Harry C. Martin is a member of Fletcher, Heald and Hildreth, PLC.

Send questions and comments to: harry.martin@penton.com
IBC2012
Discover More

IBC is at the cutting-edge of new technology in the rapidly evolving electronic media industry. It couples a comprehensive exhibition covering all facets of today’s industry with a highly respected peer reviewed conference that helps shape the way the industry will develop in the future.

Take advantage of a variety of extra special features including:

- **Future Zone** showcasing the latest developments in broadcast technology
- **IBC Connected World** including demonstration area in Hall 14
- **IBC Big Screen** providing the perfect platform for manufacturer demonstrations and the Saturday Night Movie
- **IBC Production Village** presenting the latest camera technology in a purpose built environment
- **IBC Awards Ceremony** acknowledges those who have made a real contribution to the industry hosted on Sunday 9 September

www.ibc.org
IBC Fifth Floor International Press Centre 76 Shoe Lane London EC4A 3JB UK
T +44 (0) 20 7832 4100 F +44 (0) 20 7832 4130 E info@ibc.org

Register now at www.ibc.org/register
Today's TV viewers want more content from an increasing number of sources, and that means that Internet delivery is a growing phenomenon. With hybrid technologies emerging, it is reasonable to expect that television broadcast will increasingly use the Internet to expand throughput beyond that afforded by a single RF channel. But there are limitations to the Internet that must be understood in order to capitalize on this commodity, and some of those constraints are being overcome by new technologies.

Streaming can now provide a high quality of service

In general, Internet TV is a means to provide streamed video content to a PC, STB or Internet-connected TV, by means of an Internet connection. Internet Protocol Television, or IPTV, refers to a special case where a full-time TV subscriber connection is established by means of a dedicated line (and channel) to the telephone system central office. It is envisioned, however, that many Internet TV viewers will get their content though their Internet connection, and as such, receive OTT video service that shares bandwidth with other Internet traffic.

This sharing of bandwidth creates a QoS challenge for Internet TV service: While a terrestrial channel has a fixed bandwidth (i.e., 19.2Mb/s in the U.S.), an Internet TV service must share the bandwidth, both locally (e.g., within a viewer's household) as well as regionally (e.g., with other subscribers). This means the bandwidth available to a receiver can vary continuously over a wide range, and different subscribers may have different levels of guaranteed service, as well. Lowering the video bit rate to the least common denominator would result in poor video quality to everyone; to deal with this, several technologies are available.

Progressive download vs. streaming

The simplest way to deliver video over the Internet is to use progressive download, sometimes called "HTTP streaming." This is simply a bulk download of a video file to the viewer's terminal (i.e., Internet-connected TV, STB, PC, etc.). A temporary copy of the file is stored on the user's device, typically on a hard drive, and playback can start after a sufficient amount of the file has been downloaded. This means that content will always incur a considerable delay before it is available to be viewed, which makes a live service rather difficult to implement. However, because the files are downloaded using TCP, there can be a nearly 100 percent assurance that every single bit was transferred correctly.

True streaming, on the other hand, opens up a handshaking connection between the server and client using a set of Internet protocols to deliver streams, such as Real Time Streaming Protocol (RTSP), Real Time Messaging Protocol (RTMP) and Microsoft Media Services (MMS). A streaming connection delivers a video stream...
Introducing Spectrum ChannelPort

Harmonic's ChannelPort™ speeds the cost-effective deployment of new television channels by integrating flexible branding and master control switching with clip playback on the industry's most trusted playout platform. Fully compatible with all Harmonic Spectrum™ media server components, ChannelPort fits seamlessly into existing infrastructures to simplify the launch of new services.

Learn more at harmonicinc.com/channelport
with minimal buffering, allowing a nearly real-time presentation of the source content. In this respect, streaming has an advantage over progressive download, as continuous delivery is the goal, but the associated downside is that corrupted or missing packets are not detected. The consequence is that audio and video can have ongoing glitches when network congestion is experienced.

Adaptive bit rate streaming

To solve the QoS issue, adaptive bit rate (ABR) streaming has been developed. ABR allows each device to determine the quality of its connection and then use that metric to select the best-coded stream from a number of different quality streams. At the server end, a series of encoders encode a set of multiple streams at different bit rates, and these streams are then sliced up into segments or “chunks.” An ABR client in the viewer terminal detects the incoming stream bandwidth on the fly and uses this, along with a model based on the device’s CPU capability, to select a segment among the various streams.

A special manifest file precedes the first segment, providing the client with a list of URLs from which each segment can be accessed. As each segment is received, the client progresses to the next segment in that stream, or it can jump to a parallel segment in one of the other streams if the channel bandwidth changes because of congestion, etc. In principle, a handful of streams will provide enough granularity so that the viewer does not detect a change in picture quality.

Note that ABR provides high transmission bandwidth efficiency when a unicast transmission (i.e., one-to-one) is used, but it can also work well with multicast and broadcast scenarios depending on how well the Internet infrastructure distributes bandwidth to users. ABR has the potential to deliver an audio/visual experience that we have come to expect from linear transmission: low delay, fast start time and a consistent experience across viewers.

DASH-ing to the rescue: a universal ABR system

MPEG-DASH (Dynamic Adaptive Streaming over HTTP) is a newly standardized method for defining Stream Segments and Manifest Files for the purpose of ABR streaming. Several manufacturers have developed different solutions for ABR streaming. Adobe HTTP Dynamic Streaming (HDS) uses a format called F4F to deliver Flash videos over RTMP and HTTP. Apple HTTP adaptive Live Streaming (HLS) was developed for the iPhone and iPad, and is implemented using HTTP, H.264 and MPEG-2 Transport Streams, with a manifest file called M3U8. Microsoft Internet Information Services (IIS) Smooth Streaming is used within Silverlight on the Windows 7 phone and incorporates fragmented MP4 (fMP4) encapsulation, again with H.264 for video compression.

With these different enterprise systems, an interoperability problem exists because of proprietary protocols and manifest structures. Multiple ABR systems mean that different devices must either pick and choose which systems to support, leading to service-constrained devices, or must include all at increased cost. This situation has motivated companies and experts around the world to propose a single, standard ABR system.

![Figure 1. MPEG-DASH defines a standard set of Media Presentation Description and Segment Formats that enable adaptive bit rate IP video streaming.](image-url)
reused, with additional descriptive metadata for better client functionality, and legacy manifest files can be converted easily to MPD format, as well as sent in parallel for backward compatibility with low overhead. In addition, existing content and production equipment supporting legacy ABR streaming systems can be used for MPEG-DASH by means of a set of standard Profiles. Apple HLS content can be used with the DASH M2TS Main profile, and Microsoft IIS Smooth Streaming Content is suitable for DASH ISO-BMFF (Base Media File Format) Live profile.

Vendors are now proposing integrated workflow and delivery systems supporting ABR with multiple source formats, protocols, and on multiple devices. While encoding latency can be an issue for live streams, MPEG-DASH includes a profile optimized for live encoding that can achieve a latency of a few seconds by encoding and immediate delivery of short Segments.

New technologies and business models are providing broadcasters with the tools to compete.

In addition to delivery of any multimedia content, MPEG-DASH supports a broad range of use cases, including live, VOD, time shifting (nPVR), ad insertion, and dynamic update of program. MPEG-DASH also solves the problem of content repurposing to multiple devices with widely ranging capabilities. In principle, an MPEG-DASH-controlled stream can be targeted simultaneously to both large and small screens, as well as fixed and mobile.

Internet quickly becoming viable for long-form content

The once-exclusive realm of RF transmission as providing the highest quality content consumption experience is being challenged by streaming services. But new technologies and business models are providing broadcasters with the tools to compete with new service entities, and that’s where content distribution is headed.

Aldo Cugnini is a consultant in the digital television industry and a partner in a mobile services company.

Send questions and comments to: aldo.cugnini@penton.com
Metadata and MXF, part 2
Take out some human elements to improve workflows.

BY BRAD GILMER

Last month in this column, we looked at the importance of metadata to the professional media industry. We talked about different types of metadata (static and dynamic, technical and descriptive), and discussed the importance of the Unique Media IDentifier (UMID) and how it links metadata and content.

This month, we will focus on why metadata is so important, how rekeying of metadata is a common problem in file-based workflows, and how metadata contained in MXF files can reduce rekeying errors. We will also talk about application specifications produced by the Advanced Media Workflow Association (AMWA) that improve MXF metadata interoperability in file-based workflows.

Critical metadata

There are many reasons why metadata is critical to file-based workflows for professional media organizations. The first, and perhaps most compelling, reason is that files simply won’t play properly without the appropriate technical metadata. Files cannot be reliably identified without it, and for post production, in some cases it may be difficult or impossible to reliably determine how video was manipulated compared to the original source content without metadata. Overcranking (changing the frame rate of the source material in post-production) is one example. Linking the content to information contained in databases, business systems and other media applications is impossible without some sort of metadata.

Fast fail is important in professional media applications. Without metadata, an application must do a “deep dive” into the media, meaning that it must actually begin opening the media file to determine whether the application can decode and play back the content. The problem is exacerbated if the content is located remotely. Failing to implement Fast Fail might mean that an entire two-hour movie has to be transferred over a network (a time-consuming process), only to discover that once the transfer is complete, the file cannot be opened by the application.

Metadata can help applications that use indexing information to quickly move to a specific part of the content and begin retrieving it. Indexing to a specific point, or even knowing where the first frame of video is in a file cannot be accomplished without metadata. Partial restore is an important concept in professional media. Since media files may be large, it can take a long time to retrieve a short section of video from a movie, for example. Metadata can help applications that use indexing information to quickly move to a specific part of the content and begin retrieving the content from that point.

Even the relatively simple task of understanding what the expected structure of a file may be is conveyed with metadata. For example, is the file a simple one containing a single piece of essence (only video without its associated audio)? Is the file similar to a tape, containing a single video track and two or four channels of associated, synchronous audio? Does the file have a complex structure, including multiple pieces of video and audio with different timelines? The differences in these file types can make a huge difference to an application. Remember Fast Fail? It may be that the application is unable to handle anything but the case where the file looks like a video tape.

I know some of you are thinking of the many ways the issues raised above can be overcome without using metadata embedded in the file. Of course, you are correct. But, many of the solutions you may be thinking of are either proprietary or involve overarching media management systems.

I acknowledge that both proprietary solutions and media management systems are commonplace in professional media facilities. However, many users are looking for open, standards-based metadata solutions. Also, many media companies have implemented media management systems that do not fully leverage the benefits of file-based workflow metadata.

Some issues

One of the biggest issues facing media companies is how to efficiently move content to consumers, whether they are watching a TV, using a smartphone or some as-yet unknown device. All of these systems require metadata, along with the content in order to deliver a complete viewing experience. Unfortunately, the pressure on media companies to provide services has outstripped many organizations’ ability to properly build, test and commission.
You Need a Flexible, Scalable, Reliable Channel-in-a-Box Solution

Just Add ICE

ICE is the only channel-in-a-box solution designed from the point of view of the channel rather than the box. The result is an integrated IT-based playout solution that delivers robust, scalable and affordable operation whether you have one channel or 100+ channels.

Get the cold hard facts at snellgroup.com/ICE
systems to properly populate metadata fields in media applications. This has had some unfortunate results:

- **Human rekeying of metadata** — In this case, metadata for a piece of content already exists in a system, but operators have to manually rekey it because the company has not had time to engineer an automated solution.
- **Manual metadata entry** — Sometimes, metadata exists in a computer-unfriendly form, or in a form that cannot easily be translated from one computer system to another (information coming in by facsimile, for example). In this case, metadata is manually entered from paper or read from one computer terminal on one system and entered into a field on a different computer system.

In both of these cases, which are extremely common, there are three fundamental problems. The first is that these workflows, without question, will introduce errors. The second issue is that the workflow employs humans in a task they are not good at. The third problem is that these manual operations frequently duplicate effort that already was expended elsewhere within the organization.

An additional problem is that because we have humans doing something they are intrinsically not good at (manually copying numbers from one screen to another, for example), errors will continue to happen for as long as the workflow is in place, regardless of a worker's competence or training level. Additionally, errors addressing these issues. Unfortunately, the reality is that many times it is easier to hire another person and train him or her to do the manual operation, rather than undertake what usually appears as a huge, multi-year, multi-million dollar media system project. That said, multiple current solutions exist for users and manufacturers to make improvements to their systems now:

- **Use MXF** — MXF has become the standard for open, interoperable professional media interchange. The entire industry will be helped as more companies continue to move to a standardized file format for media interchange.

- **Use application specifications** — The AMWA has created application specifications specifically designed to improve file-based interoperability in particular use cases. Using these specifications will increase the likelihood of successful integrations, and will reduce the variability found in "wild west" MXF files.

- **Use shims** — Many AMWA Application Specifications include the concept of a shim. Think of a shim as a tape delivery specification. In the days of tape, many organizations specified the tape formats they would expect,
the video format (e.g. NTSC), the audio format (stereo, or mono on both channels, for example), and how and where timecode should be coded. A shim in the file-based world performs a similar function. Many application specifications allow variability within a range — for example, the application specification AS-03 for finished SD program delivery allows MPEG-2 compression at rates between 5Mb/s and 50Mb/s. But, it may be that you only want to accept 15Mb/s at your facility. A user-specified shim allows you to set your own specifics, as well as other “shim-able” AS-03 parameters.

- Use UMIDs properly — Last month, I talked about the UMID, and how it should be used. Proper use of UMIDs allows implementers to build systems that reliably deliver correct content efficiently.
- Look for MXF metadata import opportunities — Look carefully at workflows and determine where metadata embedded in a file can reduce rekeying and eliminate errors.

Summary

Last month, we talked about different types of metadata and the importance of unique identifiers in file-based workflows. This month, we have examined issues surrounding metadata re-entry and introduction of errors, and we have looked at ways to reduce errors and increase interoperability using open, standards-based formats. We also talked about the business drivers that are spurring media companies to move forward with file-based workflows. Metadata is the key to unlocking the true power and savings of this new technology.

Brad Gilmer is executive director of the Advanced Media Workflow Association, president of Gilmer & Associates, and executive director of the Video Services Forum.

Send questions and comments to: brad.gilmer@penton.com

THE NEXT GENERATION OF FULL DUPLEX WIRELESS

Performance of a rack mounted system - at a fraction of the cost!

- 8 people communicate simultaneously
- Dual channel with party line switching
- Self-contained headsets - no beltsacks
- Portable for on-location use
- Range up to 800 yards

1.800.399.5994 www.eartec.com

We’ve got you covered everywhere.

Clear-Com’s Tempest2400 system just got even more amazing with the new Seamless Roaming feature. Tempest wireless users can effortlessly roam through an expansive production area, comprising up to 16 different zones, with continuous and reliable coverage.

Combining this with Frequency Hopping Spread Spectrum and 2xTX transmission redundancy, Tempest2400 is the most dependable and sophisticated 2.4 GHz wireless intercom system, working flawlessly even in wifi saturated environments.

For more product information or sales contact:
www.clearcom.com

Clear-Com
Phantom Power Company

Tempest2400 with Seamless Roaming

NEW!

www.americanradiohistory.com
Today's intercom systems are quite different from those installed only a decade ago. What may have been an analog partyline system in the 1990s has evolved into digital partyline and matrix-based solutions. Additionally, today's high-speed, high-technology and sometimes high-risk productions demand ever more sophisticated and complex communications. Directors, TDs and crews must have reliable, portable and flexible intercoms. This article presents an overview on current intercom requirements and design trends while offering tips for technology selection.

Beyond the intercom

The demands placed on contemporary intercoms are as diverse as the installations where they are used. Scenarios include large production facilities with hundreds of users (maybe even with connections to remote production sites), as well as small studios or temporary OB systems with constantly changing configurations.

Besides a system's scalability for allowing the maximum usage for a large range of users, the amount of possible integration with facility technology is pivotal to an intercom system's ergonomics. Here, integration refers to the mixing of various signal types as well as various technologies and protocols.

Regarding the signal side of today's intercom systems, communication is more than just a simple link between two people. In addition to voice, analog and digital audio signals, data and control signals also need to be interfaced and managed. How an intercom system handles different signal types and integrates them is an extremely accurate indicator of its usefulness.

Integration can be understood in two different ways. One aspect is the kind of signal that can be handled. The other aspect relates to the interfacing side — how the system transmits the combined signals, and what transmission protocol is used.

In today's landscape, newer intercoms rely on digital audio for communication. This makes it easy to combine that audio with an AES3 and MADI-centric communications infrastructure. This allows facility designers to integrate equipment like digital audio routers seamlessly with the intercom system. Incorporating these signals into the matrix offers several advantages.

First, digital itself brings a lot of flexibility to the facility design, especially when it comes to integrating other equipment into the communications infrastructure. Second, relying on non-proprietary standards like AES3 and MADI opens the door to many options in facility design. Finally, a data-centric system enables the support of additional features such as embedded general purpose input outputs (GPIOs).

More than point-to-point

Modern broadcast and production environments often require the use of a variety of tools, such as analog and digital professional radios, partyline systems and wireless handsets.

The way an intercom system handles these outside signals is crucial to the overall systems' flexibility. And, any new intercom platform should also be able to interface with other broadcast equipment to facilitate workflows and, for example, integrate production signals like program feeds.
For handling connections over large distances, say, between a production facility and a remote studio, VoIP connections are a good solution. Session Initiated Protocol (SIP)-based technology supports the EBU Tech 3347 standard, which allows for connections to remote systems and integrates them into a single infrastructure. The only downside to using VoIP technology is that it does not provide real-time communication. However, broadcast applications are more concerned with connectivity rather than minimal latency (perhaps a few tens of milliseconds) that may occur with VoIP.

Audio/video bridging

A current intercom trend is to leverage the same technology used to deliver content for communication. Audio/video bridging (AVB) is an Ethernet-based technology that allows the use of a single infrastructure to transport multiple types of signals over the same network backbone. AVB permits both data communication and content to travel over an AVB-compliant network.

AVB makes use of several IEEE standards, including the following: IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications (gPTP); IEEE 802.1Qat: Stream Reservation Protocol (SRP); IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams (FQTSS); and IEEE 802.1BA: Audio Video Bridging Systems.

A key component in these standards is IEEE 802.1Qat, which provides a mechanism for bandwidth reservation. Contrary to common QoS schemes, 802.201Qat provides a reliable mechanism of reserving bandwidth for each audio or video stream. (See Figure 1.)

Any potential hazard regarding network overload is avoided through bandwidth management, which means identifying and denying streams that might exceed a network's capacity. It is also possible to reserve a portion of the available bandwidth for non-AVB traffic. This allows AVB devices to share the same cabling and infrastructure with non-AVB devices like network monitoring or control systems.

A protocol for device discovery, enumeration, connection management and control is currently undergoing the final phase of standardization and is due to be released soon. This protocol, IEEE 1722.1, will eliminate the need for dedicated cabling for intercoms, thereby reducing cabling costs.

Despite the potential for overall increased network complexity, the time required to set up communication networks will be reduced because only one network needs to be installed. Furthermore, AVB offers the possibility to use hardware from multiple manufacturers together on a single network.

The IEEE 1722.1 protocol will allow for easy integration of AVB into a broadcast workflow and facilitate interoperability between different manufacturers' devices.

![Block diagram of an AVB-based network](https://www.americanradiohistory.com)

Figure 1. This shows a block diagram of an AVB-based network. In addition to providing full intercom features, the network can intermix multiple vendors, control a range of non-intercom equipment and protect program content channels via IEEE 802.1Qat.

This design approach means simpler intercom installation, with expanded features, operating on a unified network. The real plus is that both communications and content can safely reside on a single and reliable IP network.

Christian Diehl is product manager, intercoms, Riedel Communications.
Streaming video project

Content
Video
Encoder
Encoder
Multiscreen processor
Encoder

+ Multiscreen revenues
+ New services
+ Retention
+ Quality of Experience (QoE)

= $$$$$
Lights-out automation and new revenue opportunities

BY STAN MOOTE

A "lights-out" automation system can increase advertising opportunities with multiple playlists.

It sometimes seems that the broadcast industry is in full retreat from an onslaught of IP, file-based VOD and OTT services. At the same time, technology that enables so-called "lights-out operation" of playback facilities hardly indicates there will be a boom in the broadcast labor force. Consider these two factors together, and it's easy to envision a future where a "broadcaster" is a lone 17-year-old serving as both on-air talent and the entire engineering department.

A good disaster recovery (DR) system backs up the complete chain, enabling quick and clean changeovers. Ideally, it will rarely be used, making it the perfect vehicle for running 90 percent operational, secondary and tertiary services — all new revenue opportunities.

But what if we viewed change not as the dismal beginning of the end, but rather as opportunity? After all, the toppling of barriers between broadcast and IP is not a one-way street, and the very tools we're implementing to make our operations more efficient can also be used to cost-effectively venture into new ways of delivering media.

In addition, local broadcasters possess a number of advantages over start-up service providers in the quest to profit in today's overcrowded media market. The draw of a trusted brand is potent, and local TV station viewer loyalty should not be underestimated.

The macroeconomics of lights-out

So let's start at the beginning: What exactly is required to go lights-out?

For playout, basic lights-out operations require an automation system driving transmission servers, the basic functions of station router, master control switcher, graphics/branding and logo inserter, along with various processing functions for up/down aspect conversions, audio mixing and mixing alerts. New technology for QA-ing server files eliminates the need for previewing. (Note: So-called station-in-a-box systems also contain many of these basic functions.)

Adding an asset management system aids with automatic server ingest, preloading of graphics and building playlists. The loop between playout, traffic and billing needs to be tightly controlled to ensure ads are played and billed out. Having a tight, interoperable system design with quality monitoring tools can basically eliminate makegoods.

Speaking of makegoods, an essential part of a lights-out operation is a robust disaster recovery (DR) system. A good DR system backs up the complete chain, not just one device at a time, hence enabling quick and clean changeovers. Ideally, a DR system will rarely be used, making it the perfect vehicle for running 90 percent operational, secondary and tertiary services — all new revenue opportunities.

The typical objective of implementing this kind of file-based, streamlined workflow is to automate tasks previously performed by operators to save time and money. But the same
TAME THE BEAST

Tormented by an unruly asset library? Conquer it with Invenio, a streamlined media asset management system that automatically catalogs, stores and retrieves content. Take the pain out of your workflow management and delivery.

INVENIO. broadcast.harris.com/inverio
tools that enable lights-out operation can also enable the creation of different output versions at little or no extra cost. In many cases, the same content can be used with different playlists, and different playlists mean more advertising opportunities.

With more and more consumers “cutting the cord” and watching various types of media from their Internet connections, having more channels on your digital multiplex is an ideal way to boost your product and services through the use of local advertising.

Consider a lights-out playout operation with full backup. (See Figure 1.) Two channels are 100 percent backed up, while the other two channels will be “bumped” in the case of a failure. Distribution of these extra channels can be in many formats, including OTA extra channels, mobile, OTT, Web streaming and closed-circuit targeted advertising or narrow-casting.

The power of television should never be underestimated, and local television even more so. In a world of information overload, local stations have the advantage of being trusted brands for news, sports and weather.

Linear TV's advantage in a nonlinear world

Key to the creation of new jobs is considering how and where secondary and tertiary channels are presented to customers, how the brand of the local TV station is used to draw viewers to these channels, and how the broadcaster can set about creating revenue opportunities from new sources.

The techniques wide brands can bring to call-letter stations h and advertising opportunities to the congested television landscape.

Brand loyalty

The power of television is often underestimated, and local television even more so. It is no surprise that information is often preferred to the local TV station's often preferred pursuit of trusty information.

One reason is that consumers become accustomed to the brand over a long period. They know the channels, and if something goes wrong, they will tune in to their favorite station. Consumers also know that television is regulated, which adds a protective layer of trust. In addition, television news organizations have earned a reputation for professional integrity, which attracts local viewership. Hence, any stream video branded with a local station logo has a certain strength that no start-up OTT serv

Locally produced content

Content rights are always a challenge, so the best way to fill secondary channels is to produce original content. Here again, TV broadcasters have advantages. First, they are already producing content on a regular basis. Second, they have an established platform they can use to direct an audience to their other services.

To take this further, think back to the 1960s when local stations produced many live shows. Later, we moved to taped productions, but all still done at the local TV station. Other than news, sports, weather and perhaps some local cooking segments, most of these local shows are all but gone. Amateurs are filling the gap by producing themselves and using the Internet for distribution, and in many cases, the quality of these programs is horrid. Local
the skills to produce high-
quality content, but only the motivation to try has been lost. Local broadcasters have the opportunity to take this back.

Advertising

Let’s get back to basics, what pays the bills? Local television is advertising. Businesses that advertise on television produce a greater awareness in the community, which typically relates to business growth and at least to steady revenue. The trick is to figure out how to provide more slots for local spots and take advantage of various emerging methods of targeted advertising.

Additionally, broadcasters can use the downtime at the station’s “lights-out” studio and remote crew to help shoot and produce local spots. We used to see this done live decades ago, but it was expensive when using tape and linear techniques. With newer technologies, these types of activities are no longer cost prohibitive.

So where are the jobs?

Let’s consider a concrete scenario in our new lights-out, nonlinear world.

A local community college wants to advertise a newly launched course. A spot can be aired on linear TV by a local station that is operating lights out, automated and with very low staffing levels. But once the spot is aired, how do viewers obtain additional information? The parents might use the phone to request a prospectus be sent to them through the mail, but the kids will head to their bedrooms for a rich-media experience to fill them in on the details.

Who better to create, manage and deliver that media experience than the people who know everything about how media works? Who better to create that service than the pros who edit, shoot and produce? Who better to sell that service than those who know the local advertising market? And who better to take advantage of the need for “trust” in media in the current explosion of content production, delivery mechanisms and garage brands?

The local broadcaster with the new jobs these projects created, that’s who.

Conclusion

There’s no doubt that the media business is changing, but it certainly isn't shrinking. With all the visual media being produced and consumed these days, the “YouTube Generation” is creating an environment where trust and brand have become massively important.

Local broadcasters have invested years of diligent work to earn the solid brand loyalty they now enjoy. It’s time to reap the benefits by leveraging your call-letter brand assets to create new revenue opportunities.

Stan Moote is vice president of business development, Harris Broadcast.

Discover Your Actual On-Air Quality And Performance

RTM - A real-time AV quality and lip sync monitor / recorder

New - Loudness Tracking with Alarm and Log

- IP Monitoring for OTT Quality Testing

VideoClarity

Tools for Video Analysis

visit www.videoclarity.com
Supporting TV Everywhere

BY NEIL MAYCOCK

The fantastic increase in online and mobile content consumption, in addition to traditional TV viewing, is driving a greater number and variety of media companies to take on the challenge of multiplatform content creation and delivery to outlets such as Netflix and iTunes. Traditional broadcast workflows do not economically scale to address the demands of this new delivery model, which requires processing and management of a much greater volume of content and metadata, as well as the ability to address the different format requirements associated with each consumption platform.

As a result of this shift, media businesses are considering new workflows and new approaches in managing them. Among these approaches has been the extension of automation back up the media supply chain, from its conventional role in master control into content production processes. This article will examine this changing role of automation, the more complicated workflows it now supports, fundamental considerations in implementing a more comprehensive process automation, and finally, the added business benefits that can be derived by using automation to facilitate efficient multiplatform content creation and delivery.

Broadening the scope of automation

The recent focus on broadcast automation has been directed primarily toward the introduction of IT-based technologies and the commercial and operational savings they bring. The demands of “TV Everywhere,” however, present a second dynamic that is fundamentally redefining what we understand by the term “automation.” To help media businesses maximize their resources and meet the demands of TV Everywhere cost-effectively, automation as we have known it — providing real-time, frame-accurate control over servers, switchers, graphics devices and such — is now extending outside of the master control environment to enable more sophisticated automation of media workflows throughout the entire broadcast operation.

Workflow has been a buzzword in the file-based domain for a number of years, and many of the solutions in this area have targeted the movement of digitized assets. The preparation and delivery of content to multiple platforms, however, demands greater workflow sophistication because it brings into play the manipulation and analysis of these digital media assets and their associated metadata through a combination of manual and automated processes. Responding to the significant rise in workflow complexity in a hybrid (manual/automated) environment, automation vendors are offering a new generation of solutions with much greater utility.
CONVERTERS FOR PROFESSIONALS

VERSATILE • AFFORDABLE • RELIABLE

matrox MC-100

Dual SDI to HDMI Mini Converter for 3G/3D/HD/SD Monitor • Distribute • Switch • Multiplex • Converge

Matrox MC-100 lets broadcast engineers and AV professionals satisfy their diverse needs when it comes to managing SDI signals. This single portable unit can be used as a HD-SDI switcher, a distribution amplifier, a multiplexer, and a 3D processing unit. You no longer need to purchase different devices to perform these tasks. Matrox MC-100 lets you do it all with one inexpensive, easy-to-use mini converter. It should be in every video professional's toolbox.

matrox Convert DVI Family

HD-SDI Scan Converter with Genlock and Region-of-Interest Support

Matrox Convert DVI scan converters let broadcasters easily and economically incorporate content from computers, iPads, and iPhones into news programs. They are also the perfect appliances to drive projectors and large displays at live events and in houses of worship. These products are ideal for creating broadcast video from computer applications such as Skype, YouTube, Google Earth, FaceTime, media players, presentation software, and web browsers.

starting at $995

www.matrox.com/video/converters/be
1.800.361.4903 (US and Canada), 514.822.6364
in facilitating the handling, performance and tracking of upstream processes.

Addressing workflow complexity
Workflow, in its simplest form, is easy to comprehend. It is a sequence of tasks or operations performed on a piece of media. In the management of multiplatform content creation and delivery, however, a simple and linear A-to-B-to-C sequence is rarely sufficient. Figure 1 demonstrates the uncomplicated flow of media in the unusual case that no variations in processing are required, and not a single issue arises as this processing is performed.

Figure 1. Shown here is the uncomplicated flow of media in the unusual case that no variations in processing are required, and not a single issue arises as this processing is performed.

— ranging from quality control to format checking to closed-captions validation — depend on one another and often link back on themselves. With all of these possibilities, real-world workflows need to be implemented with conditional logic that allows downstream operations to be determined by the results of upstream operations, or by the metadata associated with an asset. Multiple paths, various points of entry and exit, and differing final outcomes all are a given.

The accurate documentation of an operation’s current workflows, including manual and automated tasks, is a good starting point in designing and implementing an optimized workflow solution. The effort pays dividends by helping not only to identify a more streamlined flow of content from beginning to end, but also to highlight areas in which greater efficiencies could be realized with the aid of greater automation. Ideally, this information frees the business to eliminate cumbersome old ways of working rather than maintain workflow elements that undermine the advantages an automated system can yield.

Selecting a workflow solution
In the selection of a workflow management system, it is important to ensure that the system’s inherent capabilities are distinctly understood from capabilities that can be implemented through bespoke code or scripting by the supplier. Because about the only thing that is guaranteed in the digital media industry is change, it is also critical that any workflow system implementation is adaptable.
and can accommodate the changing needs of the business. The maintenance and ongoing adaptation of bespoke solutions can quickly become a costly burden.

The media company itself should be able to maintain the skill set necessary to adapt and optimize workflows throughout the life of the automation system. Rather than require custom coding for every alteration of the workflow, the system should facilitate these changes through flexible graphical interfaces for workflow design and management. More specifically, in dealing with a complex workflow, it is essential that users can describe a high level of sophistication to the system. The extent to which the user can refine the system has a direct impact on the system's total cost of ownership, as the ongoing running costs must be factored into any return on investment business case for a workflow automation project.

Other important criteria to consider are those associated with integration of the workflow management solution with other systems in place. For instance, if the operation is running a business planning system, consider how it can integrate with the workflow solution so that workflows can be automatically instigated by the planning system. Additionally, status of the workflow execution should be reported back to the planning system. The second integration challenge is interfacing all relevant media processing infrastructure, which is typically implemented via devicespecific APIs or even simple watch folders.

Addressing both aspects of the integration challenge is a standardization initiative called Framework for Interoperable Media Service (FIMS). A task force has been set up jointly by the Advanced Media Workflow Association (AMWA) and the European Broadcast Union (EBU), and the aim of this task force is to develop a common approach to integrate hardware and software components in modern digital media production facilities. While not yet a ratified standard, FIMS will ease the integration of systems that comply to it in the future.
Gaining business intelligence

Full integration of the workflow automation system into a business depends on the effective incorporation of the manual tasks carried out by operational staff with the automated tasks carried out by machines. Within a workflow, it should be possible to define manual tasks and assign them to an individual or to a specific group of operators. The system then can present users with clear "to do" lists and track not only who carries out an operation, but also when and how long it took to complete that operation.

The intelligence of the automation system is beneficial in several ways. In addition to enabling manual modification or interaction with workflows, superior systems incorporate a level of intelligence that helps to optimize the use of resources. For instance, in managing a group of devices (such as transcoders), some automation systems are able to facilitate efficiencies (such as load balancing) by allocating tasks to the appropriate devices.

Another key advantage of automating workflow is that the system can capture operational performance metrics that provide great insight into how the business is performing and the capacity within it. If the right data, such as how long a task took to execute, is captured by the workflow system, then the business can not only carry out historic reporting, but also model potential future demands on a system and estimate whether or not there is sufficient capacity to meet the demand or launch additional services.

Empowering content providers

By empowering the content provider to orchestrate, manage and control sophisticated content production processes, and by providing a high level of control and flexibility without the need for complicated customization, workflow automation makes content more accessible, supports more efficient allocation of resources and aids the business in reducing its overall operational costs. All of these benefits are significant enablers as media companies take on the challenge of multiplatform content delivery.

Neil Maycock is chief architect at Snell

SMPTE Compliant Video Switching Networks Over Fiber Multimode, Singlemode or CWDM Wavelengths up to 70 km

Contact us at 626-293-3400 or go to www.opticomm.com/videosfp
Netting quality in the video stream

BY JEREMY BENNINGTON

The streaming video era is upon us. The advent of streaming video technology is not only changing how traditional TV delivery is accomplished, it also is transforming business models, subscriber experience and content availability. It is creating a “video renaissance” for the broadcasting industry.

Why is streaming video technology transformative? What challenges does it solve? What problems may it create? What can I do about it? There are many questions, but one thing is for certain: We must find ways of enabling content to be consumed on not just the TV, but other devices and locations. Streaming video technologies make that possible and cost-effective.

Industry transformer

Streaming video technology has not only enabled almost anyone to provide any type of content directly to the subscriber, it has given the ability to change how we view the subscriber.

Historically, the video industry developed business models around a “television household.” This lumped all individuals in the home into a single group, even though each had distinct viewing preferences, habits and purchasing power. Also, it was hard to break down the TV household because individuals shared televisions. Similarly, early in the streaming video era, content was primarily delivered to a PC. It, too, was a shared device, although typically used by one individual at a time.

As broadband speeds increased, new streaming technologies were invented. Quality increased, and new devices like tablets and smartphones became commonplace in the home. The TV household was finally broken down to represent individuals, all having their own device. At this point, this evolution enabled the industry to provide specific content to each individual in the home, parallel to communal viewing on the TV and PC. Furthermore, advancements with game consoles, new set-top boxes and Smart TVs have enabled streaming video content on the television. As an industry, we can now technically provide content to any device in most homes. Moreover, we can provide content to individuals or the household.

With these new capabilities, broadcasters, video service providers and content owners can tailor content and business models to each individual next to traditional video business models. As we build these new individualistic models, it assumes that we can gather information about how video is being consumed, the quality of the viewing experience and how it impacts subscriber behavior.

Intentional quality reduction

One of the biggest challenges streaming video solves is the ability to provide content to any device over nearly any network. One of the biggest problems created when streaming video is the intentional and unintentional reduction of quality due to limited network or device capabilities. In many cases, the cause and effect on the subscriber is unknown. This unknown must be measured in order to better understand what drives user behavior and how service can improve.

Not only do we need to measure and understand streaming service quality provided to the
No Need to BRANCH OUT

G.R.O.W.
YOUR BUSINESS AT IBC 2012

Partner with Broadcast Engineering for IBC and:

Generate + Nurture Leads
Raise Brand Awareness
Optimize Visibility
World-Wide Networking

Contact Us:

WESTERN SALES MANAGER
George W. Watts III
gorgeww3@aol.com
360.546.0379

INTERNATIONAL/EUROPEAN SALES MANAGER
Richard Woolley
richardwoolley@btclick.com
+44.1295.278407

INSIDE SALES MANAGER
Julie Dahlstrom
julie.dahlstrom@penton.com
312.840.8436

Broadcast Engineering

www.americanradiohistory.com
Whether you plan to attend the show this fall or need access to show updates no matter where you are, look to our key coverage and expert analysis, including:

IBC Update E-news
Mobile App
IBC Blog
Videos
News
Products
Technology
Solutions
And More

BroadcastEngineering.com
Figure 1: One of the most critical places to apply PQM monitoring is prior to encoding and packaging of content (point A).

end user, we also need to ensure sourced video is high quality. If the source’s quality isn’t measured, then it is junk in and junk out, no matter how the video is encoded and sent over the streaming video network.

Solutions

Various operators, suppliers and standards bodies are working on different aspects of how to address these issues. The ATIS Internet Interoperability Forum is working on a standard to correlate end-user quality and source quality in a streaming video network. Complementary to that, the SCTE is working on video artifact definitions and measurement guidelines. The following two resolutions below are based on these developing standards, and can also be accomplished using various vendor implementations.

Resolution 1: Junk in, junk out — In any video network, it is critical to measure video quality at the origination. For a cable TV, satellite TV or IPTV operator, the source would be the incoming feed from a programmer before it is re-encoded for transmission over their networks. For a broadcaster, this might be the national feed being sent out from post production, or it could be the incoming feed from a remote. For a local affiliate, this might be the national feed received and the retransmit with local ads and content. The “junk in, junk out” issue arises anywhere video content is handed off to another party or is being re-encoded.

For instance, you could be monitoring video at a headend that has been encoded and re-encoded several times by other parts of the video distribution. Network and MPEG layers are typically error-free; however, the impairments are in the content itself due to prior encoding. Only perceptual quality monitoring (PQM) can identify visual artifacts within the content itself and determine video quality. PQM can identify video artifacts like: blockiness, blurriness, jerkiness, black screen, frozen screen, colorfulness, scene complexity, motion complexity, ringing and several other visual artifacts, regardless of cause. Definitions of these artifacts can be found in the SCTE HMS177 draft standard. Most tools that detect these artifacts can also use them to compute a mean opinion score (MOS). A MOS is a 1 (bad) – 5 (perfect) score of the overall video quality representing how an average viewer would rate video’s quality. Using the artifacts and MOS score, you will know at each point in the video transmission path if junk in results in junk out.

One of the most critical places to apply PQM monitoring is at the point prior to encoding and packaging of content for a streaming video service. Monitoring at point "A" provides a quality baseline for the service. (See Figure 1.) The same PQM monitoring is then applied for each of the bit rates at point "B" and compared to their counterparts from point “A.” From the comparison, the measurable degradation can be calculated. If the degradation is significant, or the quality was poor at the source, then the content should be halted or at least an alarm sent to operations. We can then catalog the quality for each bit rate and segment in a database for correlation with each view. (Measurement at point “B” in Figure 1 can be before or after the origin server, but before the CDN.)

Resolution 2: End-user quality of experience correlation and potential impacts — From the first resolution, we know the baseline quality of video prior to encoding and packaging for a streaming video service. We also know the quality of each bit rate by segment, so we know how much degradation is imposed when the
content is encoded to a lower bit rate. Using this information and telemetry from the streaming video client, the quality for each subscriber can be calculated, per service, and then correlated with user behavior.

The bandwidth and network quality for each subscriber may change over time, and the client will adapt to the conditions by requesting different bit rates and using various other techniques. Calculating each subscriber's quality is straightforward when using the new MPEG DASH standard on a client. (If another client like HLS or Smooth Streaming is used, the client metrics telemetry reporting may not exist, or it may be proprietary.) The MPEG DASH standard includes an option to provide telemetry and metrics that include what segment was requested, when it played and a reason if it didn’t. Using this information from point “C” in Figure 1, we can look up the quality measured back at point “B” for each segment that was played. Then, the user’s quality can be calculated over the entire viewing period. (See Figure 2.)

Figure 2. The MPEG DASH standard gives the option to provide telemetry and metrics at a specific point. This information is used to calculate a user's experience over an entire viewing period.
In addition to calculating each subscriber’s video quality, the average viewing quality across all subscribers is calculable as we gather this data from all the clients. From this data, it can be better understood how each subscriber is receiving streaming video service — not just from a bandwidth perspective, as many companies currently look at, but from a true perceived video quality perspective. This is critical as one looks over not just a single video viewing period, movie or clip, but over a longer time period. If users are experiencing high video quality consistently, they are more likely to use the service. If they have consistently low quality, they will have a different behavior, and yet another different behavior if it is inconsistent. The quality information can also be correlated with the percentage of video completion for a fixed video asset (like a TV episode, user generated clip or movie, for example) to understand the potential cause and effect on users. (See Table 1.) Similar conclusions can be generated for the length of someone watching a live broadcast or streaming channel.

<table>
<thead>
<tr>
<th>Video quality</th>
<th>Percentage viewed</th>
<th>Cause and effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent very good - perfect</td>
<td>75%-100%</td>
<td>People love this content.</td>
</tr>
<tr>
<td>Consistent very good - perfect</td>
<td>25%-75%</td>
<td>People may like this content.</td>
</tr>
<tr>
<td>Consistent very good - perfect</td>
<td>1%-25%</td>
<td>People do not like this content.</td>
</tr>
<tr>
<td>Consistent poor - good</td>
<td>$75%-100%</td>
<td>People really love this content, but I am not providing very good quality.</td>
</tr>
<tr>
<td>Variable quality</td>
<td>75%-100%</td>
<td>People really love this content, but I am not providing very good quality.</td>
</tr>
<tr>
<td>Variable quality</td>
<td>25%-75%</td>
<td>People may like this content, but they might love it if the quality was better.</td>
</tr>
<tr>
<td>Variable quality</td>
<td>1%-25%</td>
<td>People may like this content, but they might love it if the quality was better and consistent.</td>
</tr>
<tr>
<td>Started good quality than decreased</td>
<td>N/A</td>
<td>People got ticked off and stopped watching; they might like the content if I provided better quality.</td>
</tr>
</tbody>
</table>

Table 1: This shows the potential cause-and-effect range based on quality and percentage viewed.
Without correlating the video quality with the percentage viewed, it is difficult to understand what drives user behavior, keeping in mind that quality may not always be correlated with the bit rate since some content is harder to encode than others and may change throughout a program, asset or movie. For instance, if you were streaming a channel, the video quality decreased because the complexity of the content increased (i.e., going from a newsroom to a sports event). And, even though the bit rates remained the same, knowing the subscribers stopped watching it would be an important data point. Why did they stop? They didn’t stop watching because of the type of content; they may have wanted to watch the sporting event, but the degraded quality convinced them otherwise.

Conclusion
Streaming video is enabling a video renaissance where we, as an industry, are able to provide endless types of content to almost any device, anytime, anywhere and do so economically. However, in the process of becoming so flexible, the quality of video becomes much more variable than in our traditional HD/SD to a TV model. Understanding the quality of provided video is critical to any video service provider. In a streaming service, it becomes critical to understand the cause and effect on subscriber behavior. From there, more emphasis can be placed on monetization.

Jeremy Bennington is senior vice president of strategic development, Cheetah Technologies
A second requirement is that usage data must be relayed back to an analytics system. Content owners want to know much more than just how many viewers were served. They want to know about the quality of those streams.

Let's look more closely at the delivery architecture by breaking it down into three main layers: the monetization layer (analytics, transaction and billing systems, campaign and offer management), the management layer (managing and maintaining the flow of content through the system — packaging, workflow and content protection) and the delivery layer (actual transmission of content to the consumer).

Within cable and IPTV platforms, the production and collection of delivery data within the system are straightforward because all of the system components are directly under the control of the operator. However, with the transition from a managed IP environment to the public Internet (as in the case of OTT or multiscreen environments), there are some specific new challenges that must be addressed.

The “sessionless” issue

These new environments often rely on variable bit-rate delivery, one controlled by the client. Called HTTP-based adaptive bit rate (ABR) streaming, it is a process that adjusts the quality of delivered content based on changing network conditions with the goal of ensuring the best possible viewer experience.

HTTP-based adaptive streaming is a hybrid delivery method that resembles IP streaming but is based on an HTTP progressive download. The technology was first widely used in NBC’s production of the Summer 2008 Olympics in Beijing. Examples of ABR streaming include: IIS Smooth Streaming (used with Microsoft Silverlight), Apple Live Streaming and Adobe Flash Dynamic. Even though these technologies use different formats and encryption schemes, they all rely on HTTP. The media is downloaded as a long series of small progressive downloads, rather than one big progressive download.
In a typical adaptive streaming implementation, the content is chopped into many short segments, called chunks, and then encoded to the desired delivery format. Chunks are typically 2 seconds to 10 seconds long. The video codec creates each chunk by cutting at a GOP boundary, starting with a key frame. This allows each chunk to later be decoded independently of other chunks. In effect, this means that there is no direct "session," unlike RTSP that is traditionally used in managed network environments such as IPTV or cable.

The encoded chunks are hosted on an HTTP Web server. A client requests the chunks from the Web server in a linear fashion and downloads them using a plain HTTP progressive download. As the chunks are downloaded to the client, the client plays back the sequence of chunks in linear order. Because the chunks are carefully encoded without any gaps or overlaps between them, the chunks play back as a seamless video.

The "adaptive" part of the system comes into play when the video/audio source is encoded at multiple bit rates, generating multiple chunks each at a different bit rate. (See Figure 1.)

![Figure 1. Adaptive streaming requires the video be cut into small segments and then encoded into various bit rates prior to transmission.](image-url)

In the figure, the top row represents the video, with different colors denoting various bit rates. This bit-rate schema is generally defined at the time of encoding, although there are some new technology advancements that are able to perform this on a more dynamic and distributed basis. Even so, these schemes do not alleviate this issue of monitoring and reporting.
Because Web servers usually deliver data as fast as network bandwidth allows them to, the client can estimate available bandwidth and decide to download larger or smaller chunks ahead of time.

These techniques add complexity to the delivery process because they require the video to be cached and transmitted as close to the viewer as possible. Now the number of components in each delivered stream becomes fluid rather than fixed.

With this basic understanding, a potential problem becomes fairly clear. If there is no real session associated with the communication, and the operator has deployed distributed network caches to maximize bandwidth usage, how does the operator report the QoE of a specific session or even the quality of video that has been delivered to a specific client over a certain time period?

Possible solutions

There are at least two potential answers to this issue. First, implement a log-based monitoring system that pulls the log files from all possible locations, especially from the video servers, and attempt to build an effective correlation between individual files being transmitted and the client that is viewing those files. This method is attractive because it is fairly simple but does require an enormous amount of server horsepower for the analysis and correlation. In the most simplistic of examples, a 90-minute soccer match encoded at five different bit rates would create 13,500 files.

The second solution relies on the edge servers to play an active role in aggregating the information. The main requirement in this system is that the video servers be capable of using their video awareness and proximity to the client to create a virtual session. This enables the operator to report the actual QoE, or at least the bit rate being consumed by the client, in a way that is meaningful to the content provider.

Once a session concept has been introduced, it is then possible to report usage data tied to sessions and content, instead of fragments. Parameters of interest could include session length, average bit rate and engagement. (See Figure 2.)

Engagement is typically measured as session length versus asset length, i.e., it shows how much of the content that was actually watched. This type of measurement requires the system to understand what an asset is and that it has a certain length. Just knowing what fragments that have been delivered is not sufficient.

As viewership on tablets, OTT and even mobile devices increases, ABR delivery will become even more important. Engineers will need to better understand how to deploy distributed systems that embrace cost-effective video delivery while preserving the all-important QoE and data reporting. Whether being implemented as an operator CDN or an extension of the existing IPTV infrastructure, monetization, QoE and data reporting are likely to remain key areas of focus over the next few years.

Duncan Potter is chief marketing officer and vice president of operations, Edgeware.
Knowledge of the Human Visual System is essential to understand how future equipment might be specified for improved performance.

BY JOHN WATKINSON

On an evolutionary scale, film and television have a vanishingly short history. This means the senses of humans and other creatures evolved for some other reason than to watch screens. That reason is simple: survival. A creature with slightly more effective senses has a better chance of avoiding being eaten, finding food and finding a mate; therefore, we expect surviving species to have been selected for effective senses, which is indeed the case.
Reality vs. illusion

While I intend to concentrate here on the Human Visual System (HVS), it is worth noting in passing that all of the senses combine to create a model in our minds of what is around us. We call it reality, whereas it is only an illusion due to that part of our environment that our senses permit us to detect. If our senses were different, if we had the hearing of a dog and the vision of an eagle, our reality would be different. There is a spread of performance of senses between humans, and it changes with age and can be impaired by various substances. You might define reality as the remaining illusion due to a shortage of alcohol. There is no one reality, and many things must remain forever subjective.

For example, I have lost count of the number of times I have been informed that I must be uncomfortable on account of what I am wearing or the way I am sitting and so on. Some advice is then proffered as to how I could improve my comfort. People who act that way have yet to learn that their own reality may not reflect everyone else's and have a way to go in personal growth.

For a further example, a significant number of people have essentially no stereoscopic vision, and others are color blind to different extents. But because that is their reality, they don't know that they lack those abilities unless by chance they are tested. It follows that the average person viewing a TV screen will see more than some and less than others. Consequently, simply assessing quality by looking at the picture is likely to be unsatisfactory because someone else may see things that you missed. The regular use of objective quality measurements overcomes that problem.

HVS components

The HVS has some superficial similarity to a camera. Figure 1 shows that it has a lens, an iris and a sensor, but that is where the similarity ends. To make progress in understanding the HVS and in how to use a TV camera, it is vital to understand that in most respects, the two are completely different. The reality allowed to a TV camera by its sensing ability is different to the human sensation; therefore, the well-worn saying “the camera never lies” is one of the greatest fallacies I have ever come across. The fact is the camera always lies, and part of the art of the videographer is to keep it honest, or at least keep it to the story you are trying to tell.

The fact is the camera always lies, and part of the art of the videographer is to keep it honest, or at least keep it to the story you are trying to tell.

Human vision is extremely indirect, so what we call vision is not the image on the retina, but something that has been subject to what we might describe as extensive post-production. Essentially human vision comes from a kind of three-dimensional frame store, which contains a model of our surroundings. We are also in the model, so we can reach out and grasp things like focus rings and battery packs.

The reason for this arrangement is that it allows a huge field of view, around 180 degrees horizontally. I once attended a conference where another presenter had calculated the bandwidth needed to replicate the field of view of human vision with the same acuity, color gamut and the same temporal response. The result was, if I remember correctly, in the terabit per second region. Clearly, the

Figure 1. Shown here is the Human Visual System.
that the pixels shift. The system can be seen in Figure 2. The HVS then integrates a sharp image by adding a number of images over time with the pixels in multiple locations. Clearly this takes time, and it is one of the reasons for persistence of vision and the reduced visibility of flicker in the fovea.

In normal circumstances, our eyes never stop moving, and this is just as well because our vision is AC-coupled, and we can only perceive changes. One reason for this is that evolution resulted in the retina being back to front, with the light-sensitive layer underneath the blood vessels and nerves. The raw retinal image is like looking through a bowl of pasta. However, by keeping the eye moving, we can average out the shadows of the blood vessels and get the image. Only the good images can update the frame store, so we never see the pasta.

The cause might include a sound, a vibration, a change in radiant heat or touch sensed by the skin, or something detected by the peripheral vision. Because the primary purpose of peripheral vision is to alert the senses to a change in the environment, the response rate of peripheral vision is higher than foveal vision. Try looking away from a TV set so it appears right at the edge of your field of view, and you will see it flickering. You will also experience a strong urge to look at it, which stops the flickering. This is one of the mechanisms behind TV addiction.

The retina is covered in what are effectively pixels, although they are officially called rods and cones. The density of the pixels is low in the peripheral vision area and higher in the fovea. Only the fovea has color pixels. Peripheral vision sees in monochrome, and the sensation of color comes from the frame store. But color video will have to wait for another time. Interestingly, the density of pixels in the fovea is much less than we would find in a TV camera of similar acuity. In other words, the HVS appears to violate sampling theory. In fact, it doesn't because something else is going on, known as saccadic motion.

Saccadic motion

Saccadic motion is the involuntary constant minute oscillation of the eyeball. It has the result of shifting a given pixel to a large number of different locations so that over time, a high-resolution image can be built up from all the measurements made in various places.

The HVS causes the eye motion, and then cancels the resultant image shift in a kind of DVE, with the result...
The delay caused by the image processing is quite significant, so what we see is behind real time. However, if you move your hands together, you feel them touch at the same time as you see them touch because the HVS has shifted the position of our hands in the image to where it should be because it knows they are moving and how fast. The same mechanism allows you to catch a ball.

Another interesting difference between our eyes and a camera is that if a camera is panned very rapidly, the image smears out unrecognizably. When our eyes move rapidly from one point of interest to another, we don't see image smear, nor do we see darkness. What happens is that the eyes are essentially switched off when they move rapidly but we continue to see what is in our frame store. Magicians know this and can do things without the audience seeing because they elicit a rapid eye shift during the action they want to conceal. You can try looking at one of your eyes in a mirror, and then switching your gaze to the other eye. You will never see your own eyes move.

It should not be necessary to point out that a typical camera has only one eye, whereas many creatures, apart from the mythical Cyclops, have two eyes. The HVS merges the information from both eyes, such that we believe we are looking at life from a viewpoint half way between our eyes. Stereoscopy warrants an article of its own, so I won't go into it further here.

John Watkinson is a high-technology consultant and author of several books on video technology.
Medway
Marquis Broadcast’s software tool kit represents an effective way to manage metadata capture and transfer.

BY CHRIS STEELE

These days, increasing volumes of content are being repurposed for Internet distribution. In mid-January, the FCC issued the implementation schedule and standards for web captioning based on the 21st Century Communications and Video Accessibility Act of 2010. This means captioned content must retain closed captions when broadcast on the Internet.

Because closed captions have been used over many years, archives of captioned content in multiple formats currently exist, and the challenge is to convert this material into web content with the closed captions intact. Further issues are presented if the programs need to be edited or shortened, or the commercials need to be removed prior to web broadcast.

The platform
Marquis Broadcast’s Medway is a software tool kit that delivers a seamless integration between broadcast content applications. In some installations, it provides simple media transfer and conversion services between Avid or Apple Final Cut Pro 7 edit environments and broadcast servers. (See Figure 1.) In large-scale installations, it acts as the central hub, providing multiple, simultaneous, and high-volume media and metadata integration services across best-of-breed systems from multiple vendors.

In this instance, the solution allows media destined for the Internet and the captions associated with it to be edited at the same time, enabling easy conversion of material without caption loss. Such a workflow reduces the amount of manual operation as there is no requirement to re-edit the whole closed-caption sequence separately.

The cost-efficient workflow ensures editors can get the process right in one process execution.

The process
Medway transfers both essence and metadata, wrapped in an MXF file, enabling the entire production process to be maintained in a digital environment. Media can be rewrapped and transcoded during errors and significantly improving output quality.

The solution creates a unified working environment for broadcast ingest, post-production editing and transmission playout. Acting as a central hub for the facility, Medway transfers media and associated metadata at faster than real-time speeds over standard data networks. Where the workflow involves a mixture of media formats, transcoding is automatic.

Medway allows media destined for the Internet and the captions associated with it to be edited at the same time, enabling easy conversion of material without caption loss.

Metadata is gathered from the NLE workstation and augmented, either by the user based upon local rules for that particular type of transfer or from MAMs or servers. By allowing...
metadata to be managed and moved with its associated media, Medway enhances media tracking by ensuring media can never be lost. This maximizes the return on expensive assets.

In relation to closed captioning, the solution ensures the captions appear on the data track after the content has been ingested in Avid. By associating the closed captions with the media, both can be transferred simultaneously through an intuitive drag-and-drop interface. Both can then be edited within an Avid system. The closed captioning is transferred from the MXF data track to the data track for editing, and then back to the MXF data track for transfer, playout or archive. The recreated MXF file still retains the closed captioning, even after editing.

For web content, HD material might be converted to a lower resolution by a variety of third-party applications. Linking in this way allows the closed captioning to be edited at the same time as the conversion to SD takes place.

Managing file formats
Complex digital workflows can be hampered by expensive and repetitive operations brought on by file incompatibilities. With the move to file-based production workflows and recent legislative changes, Medway represents an effective way to manage metadata capture and transfer.

This solution supports moving essence and captioning data to and from editing and delivery to storage, archive and playout servers. The platform also supports full integration to MAMs and automation systems. Because Medway efficiently scales, it works well in installations ranging from a simple and straightforward workflow to more complex and advanced workflows.

Chris Steele is product manager for Marquis Broadcast.
EVS' C-Cast

The second-screen system enables new revenue opportunities for broadcasters.

BY JOHANN SCHREURS

Television viewers no longer limit themselves to a single screen. Instead, today's audiences multitask over Twitter, Facebook and other social media sites as they consume their media. Rather than risk losing those viewers, broadcasters can now provide original premium content to consumers via their second screens, including camera angles and highlights not seen in primary broadcasts. With the proper tools, the large amount of content on servers that is often wasted and unused can be monetized and delivered in near real time to viewers' connected devices.

Integrated system

The EVS C-Cast provides a set of integrated tools to support the development of content for these new screens in any live EVS multicamera production infrastructure, such as in OB facilities and TV studios. Delivering the additional content to viewers on second-screen media platforms relies on the descriptive metadata associated with event footage.

The system creates a second-screen timeline of events being produced into which external elements — such as ads, stats or surveys — can be inserted, enabling a high degree of interactivity and facilitating cause-and-effect programming. With an open architecture based on APIs, broadcasters can build their own Web application interfaces and charge subscribers for the service. The integrated engine suite is designed to make any multicamera content, as well as archives, highlights or third-party content, instantly available to Web-connected devices. The system is not an application, but rather the intelligence behind it, allowing customers to generate exclusive content on their own application interface. (See Figure 1.)

With an open architecture based on APIs, broadcasters can build their own Web application interfaces and charge subscribers for the service.

Any clips or highlights created during live productions can be made instantly available to Web app subscribers. The company's synchronized multicamera-angle recording allows the system to automatically process unseen footage or any clip

Figure 1. EVS' C-Cast interfaces with the company's multicamera production system to make content that might otherwise go unwatched available to second-screen devices, providing another potential revenue source for broadcasters. The system also provides support for adding external elements, such as ads, stats or surveys, from third-party systems.

July 2012 | broadcastengineering.com 57
created on the company’s servers for these other screens. During live operations, descriptive metadata as well as third-party stats can be integrated into the system database and associated with video clips and highlights, which are made available to the user in near real time.

Components
The complete workflow is composed of standard equipment, including XT/XS series servers and IPDirector.

More than 70 percent of tablet owners now watch sports on their TV sets while simultaneously consulting their Web-connected device as a second screen.

Installed at a production venue (OB van, studio or broadcast site), the C-Cast Agent server connects to the network, retrieves content and transfers it to C-Cast Central.

Installed at a datacenter and managed by the broadcaster, C-Cast Central assembles the content from one or several C-Cast Agent servers. It manages content, ensures delivery and directs availability via APIs. C-Cast Central is scalable to unlimited productions and applications, and includes the administration back office, CDN management, content syndication management and an API for second-screen applications. A viewer application manages viewers’ interactions on their devices. Both the viewer application and the Web server are usually provided by a Web service provider but can be supplied by EVS in a project management model.

New revenue opportunities
More than 70 percent of tablet owners now watch sports on their TV sets while simultaneously consulting their Web-connected device as a second screen. C-Cast enables broadcasters to take advantage of this social media engagement in ways that mean increased revenue opportunities.

Johann Schreurs is general manager, new media broadcast, EVS.
Surround everywhere
Surround sound doesn’t have to be lost on a stereo transmission path.

BY J. TODD BAKER

When the lights dim in a theater, or we flip on our A/V receivers at home, we take for granted that we’re going to hear great surround sound. But, many people don’t realize that you can get this same great experience with spatial rendering over headphones as well. This has opened up a world of possibility for audio on portable devices. Transmitting surround sound to cinemas and home theaters is fairly straightforward.

Whether it is a D-Cinema, broadcast or streaming environment or discussion, bandwidth constraints for audio are virtually nonexistent. But, how do we get the same mix to the bandwidth-constrained world of mobile devices?

Most audio for mobile devices, whether streamed as audio only or associated with video, is transmitted at 128Kb/s and below, if we’re lucky. Sometimes, it can be as low as 32Kb/s. Surround codecs cannot fit down such narrow pipes. Even if larger pipes were occasionally available, adaptive streaming concerns could force the content from a surround capable codec (192Kb/s+) into a stereo codec. This would cause a major shift in the audio image. Matrix formats, such as SRS 5.1 found in Microsoft’s Expression Encoder, enable content providers to stream surround over any stereo codec. Devices with spatial rendering will create a theatrical experience over headphones.

Matrix format
Prior to the advent of discrete surround codecs, nearly all broadcast and theatrical surround was delivered by a matrixed surround format. By taking the surround content from the mixing room and summing the channels in a specific manner during the downmix to stereo, difference information is preserved between the channels that cue the decoder where to extract the objects during playback for surround. In the absence of a decoder, matrix-encoded signals playback as stereo. When a decoder is present, in a home theater, multi-speaker renderer, or in TVs and mobile devices, with two-speaker spatial renderer, the surround mix is restored.

Downmixing
Before discrete surround codecs, nearly all surround content was mastered and archived in a matrix format. This same master was used for delivery to theaters or broadcast providers. Since it was a stereo compatible, Left total/Right total (Lt/Rt) master, the mix was preserved all the way to the final destination. Where mono delivery was required, a standard mono sum of the two channels delivered mono compatibility.

With the emergence of discrete surround codecs for theatrical and broadcast mixes, most facilities delivered both a 6-channel (5.1) and stereo-compatible mix, matrixed (Lt/Rt) or standard stereo (Left only/Right only – Lo/Ro). With the transition to HDTV in the U.S. complete, many mixes are only created in 5.1, leaving it up to the end-point of the codec (TV, for example) to handle any downmixing.

Within Expression Encoder, this downmix technique is moved upstream to the content ingest workflow in order to allow for a stereo compatible surround mix. The principle is the same as the one used in the early era of surround from broadcast and cinema. The SRS 5.1 tools provide streaming content providers the ability to ingest 5.1 audio into their Expression Encoder workflow. Utilizing the batching tools provided in Expression Encoder, multiple profiles can be created to export various file types.

Where higher audio bandwidths are available, discrete codecs can be used. When compressing for stereo codecs, the user can enable SRS 5.1 encoding to downmix a stereo-compatible matrix. Any of the stereo codecs supported by Expression Encoder can carry the resulting output.

Since a matrix format is stereo compatible, it is also supported within Silverlight-enabled players and browsers. Listeners can decode SRS 5.1 for playback over 5.1 speaker systems, using an AVR, or over two-speaker or headphone rendering on virtual surround enabled TVs and mobile devices.

When 5.1 discrete codecs took over the air, many people abandoned matrix formats. But, with the emergence of streaming content to mobile devices, the need for a stereo-compatible surround format has resurfaced. When rendering surround over headphones, the benefits of discrete codecs are lost. Matrix formats provide these renders with the information they need to present a cinematic experience on any mobile device, regardless of the limitations of today’s mobile bandwidth constraints.

J. Todd Baker is director of technology, SRS Labs.
Facility remote monitoring

Media-aware systems can help when centralizing.

BY JOHN LUFF

Parsing words carefully can sometimes lead to interesting results. This topic could cover monitoring over a large distance, or it could cover gathering information about systems within one facility. Then again, it could mean monitoring many facilities from one location. It seems to me that in the context of our changing industry, it needs to cover all three.

Increasingly, broadcasters are involved in one of many variants of centralized operations. That is often meant to construe centralized master control, though it could easily mean traffic, promotions or even a common transmitter facility for a region (as in Sutro Tower in San Francisco or Mount Wilson in Southern California). When viewed from the vantage point of the central facility, remote monitoring often means gathering information on the status of the remote facility and, most importantly, displaying it in a way that operators can quickly get a sense of the health of the remote location. Today, that means several kinds of information.

SNMP

For a centralized master control, it is important to access data about hardware as well as credible video to understand the end result of any potential failures noted by remote sensing. For instance, an SNMP monitoring system might report a failure in a video server, but what is more valuable to know is what the video and audio outputs look and sound like. By using a combination of IT-based remote sensing and return of confidence feeds as compressed audio and video, we can gain a much better view of the status. SNMP is a great tool and is integrated into the monitoring systems delivered by a number of manufacturers in our “space.” SNMP has three elements. Devices must have resident capabilities to respond to requests from a local SNMP monitoring system. The final element is a system that generates requests and aggregates responses into a practical user interface. There are a number of SNMP management software packages that can be used both for IT- and broadcast-centric hardware.

In our industry, it is often more convenient to buy the monitoring software along with modular equipment (DAs, conversion hardware, etc.). This can have two major benefits. First, there can be tight coupling between fault reporting and fault repair with control over a router, perhaps switching to a backup in the event of a failure of a particular circuit. Second, by merging signal transport hardware and the monitoring system into a closely coupled system, it is easy to get reports from each piece of modular conversion and distribution hardware about the health of the signal.

Consolidation

Of course there are other benefits to merging the facility monitoring into a small number of components. It becomes easy to have a single interface that is used to both monitor and control devices. This can permit operators to make adjustments when things are not quite perfect, like perhaps swapping audio tracks to remain on the air with a usable signal. Carrying it one step further, it is easy to see how a graphical user interface could, for instance, turn a defective device from green to red when a fault occurs, and with a simple mouse click permit the operator to bring up details about the fault. This could of course include pictures and sound to a larger monitor to permit quality evaluation.

The need to do that is easy to understand. An MPEG quality analysis system might sense the presence of excess macroblocking, causing an alarm. But it may be the best picture you have available due to rain fade in a satellite circuit, or even a faulty recording. Switching to a backup without seeing
the defect might not be a good idea. Another example might be audio silence, which might simply be a dramatic effect the producer intended. Having monitoring systems that are more media aware can thus allow better fault finding and smoother operation than multipurpose IT-centric systems. But, of course, the opposite is also true.

IT hardware

Today, we live in an increasingly hybridized world where purpose-built video and audio hardware has to interface well with IT-centric hardware. For example, we now find station-in-a-box systems for mastering control that are entirely IT-based, except for interface cards for live feeds. Monitoring such systems, along with video servers, transmitter remote controls and lots of other examples can be done with video industry packages that have SNMP capability. But in a large installation, there may well be more IT than video in the future, so finding a happy medium is critical if we consider growth of a system over the long term.

We should think about the topology of a monitoring system carefully. If a monitoring system has to operate over a WAN connection, one should carefully consider what happens if the interconnection goes down. If the monitoring system is critical, as in the case of a centralized master control facility remaining in contact with the remote locations, then a backup interconnection method needs to be determined. Both MTBF and mean time to repair (MTTR) will affect the decisions about provisioning backup interconnect bandwidth. It would not suffice to leave the receiving end of a central master control operating in hysteresis for a long period of time. A VPN over the Internet might allow at least thumbnails and SNMP traffic to continue even if higher quality video would be impractical.

The other side

I always suggest to clients that the remotely monitored facility have at least some routing that can be controlled from the other end, at the NOC. This allows the remote operator to switch a monitoring circuit between all potential points in the system over which they have monitoring and control, which is lot more cost-effective than increasing the number of “probes” and return video/audio circuits. We could learn a lot from NASA, which has been remotely monitoring and controlling rovers on Mars for years with a system latency measured in minutes, not milliseconds.

John Luff is a digital television consultant.

Send questions and comments to: John.Luff@penton.com
NEW PRODUCTS

FOR-A

FT-ONE

4K super slow-motion camera records up to 1000fps; images are captured as uncompressed raw data on the system's internal (RAM) memory, which has a recording capacity of 8.5 seconds; this data is then stored on one of two hot-swappable SSD cartridges; each cartridge can store 75 seconds of full 4K resolution images, enabling up to 150 seconds with a maximum of two SSD cartridges.

www.for-a.com

Broadpeak

BkA100

Video delivery analytics system is designed to streamline an operator's CDN; enables operators to access key information located in the video streaming servers; provides the operator's support team with critical system monitoring information, the operations department with capacity planning details and marketing with the analytical results essential for building an effective marketing campaign; identifies important metrics, as well as the raw data necessary to compute them, and then provides a shared view of the material that can be accessed simultaneously by a virtually unlimited number of users.

www.broadcastpix.com

Miranda

Kaleido IP X100

IP multiviewer is designed as a cost-effective solution for smaller applications; housed in a 1RU chassis; can handle monitoring of up to 24 SD or eight HD video programs; for subscriber delivery applications, the unit, when combined with the iControl Headend monitoring solution, provides remote signal visualization and probing capabilities that dramatically reduce mean time to repair; handles both MPEG-2 and H.264 (HD/SD) MPEG transport streams.

www.miranda.com

PESA

easyPORT series

At the heart of the “throw down” multi-format converter boxes is PESA's compact, four-port utility switch, which incorporates standard SFP-type pluggable module card cages; card cages can be populated to fit practically any combination of input and output signals, including HDMI/DVI, 3G-SDI, ASI, NTSC/PAL and IP-to-ASI conversion; an internal switch fabric allows users to select which input goes to which output; the module also can be set as a distribution module, allowing any single input to be transmitted to up to four outputs.

www.pesa.com

Broadcast Pix

Multiscreen support

New multiscreen support for the M/E Granite and Mica Video Control Centers; now, three "programs" can be generated using the system's program output and two enhanced PowerAux outputs, and each can be controlled by a separate panel or Soft Panel; the multiscreen technology is ideal for driving three image magnification screens, as each enjoys patented technology to maintain one frame of constant delay for continual lip sync throughout a presentation.

www.broadcastpix.com

Leader Instruments

OP43

Optional audio card for the LV5770 multi-monitor incorporates loudness measurement, lip-sync timing analysis and surround-sound monitoring; this doubles the total number of audio capabilities currently available for the LV5770, which already include 16-channel AES/EBU embedded audio input/output, Dolby Audio evaluation and decode, and 8-channel discreet or embedded digital-to-analog signal conversion.

www.LeaderAmerica.com

Triveni Digital

StreamScope MT-40 4.7

New release includes mobile DTV analysis capabilities; gives users the ability to monitor multiple terrestrial and mobile transport streams simultaneously and in real-time from any location across the network using a single integrated product; provides the same level of analysis for mobile transport streams as it does for terrestrial DTV; enables broadcasters to view EPG and ESG data sets and program guides, as well as verify ATSC, MPEG, A-78, SCTE and ATSC M/H standards and protocols.

www.trivenidigital.com
Litepanels

Daylight balanced on-camera light draws only 12W of power while providing the equivalent daylight illumination of a 50W HMI; weighs only 1.6oz; features full spectrum soft light output with visually accurate color temperatures; can be dimmed from 100 percent to 0 with no color shift; is flicker-free at any frame rate or shutter angle; has a conveniently located on-figure dimming knob; can be powered with six AA batteries (standard or rechargeable), an AC adapter or off the D-Tap of a professional camera battery pack.

www.litepanels.com

Emotion Systems

Audio media analysis tool has been updated with the addition of MXF support, as well as multiple language UI support; automatically resolves audio loudness errors in file-based media to ensure compliance with the latest international standards; analyzes file-based media by using accurate modelling of VU and PPM meters, and loudness detection parameters (ATSC A/85, EBU R128 and ITU-R BS.1770); operates in faster than real time.

www.emotion-systems.com

Roland Systems Group

iPad application controls M-480 digital mixing console; using wireless LAN to connect, users are able to adjust mixing parameters on stage or around the room, away from the M-480 positioned at the front of the house; by connecting the company’s Wireless Connect USB adapter to the console’s USB port, the M-480 can appear on a wireless network, enabling the iPad to connect and control the console.

www.rolandsystemsgroup.com

Wohler

Real-time, single-card-based standards converter enables on-the-fly conversion of WST/OP-47 to CEA-608/CEA-708 captioning standards; features two 3G/HD/SD video channels; allows for direct bridging and transcoding of captions/encoded subtitles without the need for additional hardware or offline conversion processing; provides transcoded data out of serial and/or Ethernet ports for logging, closed-caption file regeneration, direct connection to an ATSC encoder and use with the SMPTE Grand Alliance protocol.

www.wohler.com

TC Electronic

Features the company’s Radar Display, which provides a quick — yet detailed — overview of the loudness landscape of any stereo audio signal; main radar view shows loudness history, while the outer ring displays momentary short-term loudness; true-peak levels are shown in real-time on the right side of the user interface; two versatile descriptors can be set to reflect a variety of parameters, such as loudness range and program loudness.

www.tcelectronic.com

Strategy & Technology

System provides seamless operation of synchronized second-screen applications — viewed on smartphones or tablets — for cable, terrestrial and satellite platforms; can be deployed alongside any and all television devices and set-top boxes, regardless of the STB capabilities; enables broadcasters to synchronize their second-screen applications with both editorial and advertising content, independent of the content’s final distribution and delivery technology.

www.s-and-t.com

Emoteq

Second-screen synchronization

System provides seamless operation of synchronized second-screen applications — viewed on smartphones or tablets — for cable, terrestrial and satellite platforms; can be deployed alongside any and all television devices and set-top boxes, regardless of the STB capabilities; enables broadcasters to synchronize their second-screen applications with both editorial and advertising content, independent of the content’s final distribution and delivery technology.

www.emoteq.com

TSL

TallyMan VP (Virtual Panel)

Software-based control platform with touch screen is designed to simplify control of multiple router /Os; removes the need to install individual hardware panels each time a router is added, expanded or upgraded; can interface with any third-party router, vision mixer or multiviewer; ideal for news operations, sporting events and remote headends; allows users to switch equipment on and off remotely.

www.tsl.co.uk

ikan

MR7

High-definition field monitor features built-in H.264 recording abilities for instant playback, optional wireless transmitter and handheld rig; users can view 2K footage via 3G-SDI in HD with a 170-degree viewing angle, as well as confirm the recorded audio for each take with an internal headphone jack; waveform and vectoroscope features enable users to analyze camera’s image for color accuracy and intensity on-the-fly.

www.ikanextra.com

Vinten Radamec

ICE

Intelligent Control Engineering (ICE) technology has been incorporated into the new FH-145 and FHR-145 heads; platform provides a motion control system and drive train within the heads designed to deliver both the fastest and the slowest broadcast-quality movement; can drive a wide range of full-servo broadcast lenses using analog, digital or hybrid control mode; harnesses IP technology, allowing control from either the VRC or LCS systems over a standard Ethernet infrastructure.

www.vintenradamec.com
Make the move to HD

Trade-in your old IRD and get a new UC-IRD+ for only $1,495

Simply send your old IRD or modulator (analog or DVB-S) to qualify. For more details please contact us by phone or email.

+1-408-329-4158
sales@upcom.com
www.upcom.com

Equipment Wanted

WANTED - QUAD (2") VTRS, RCA OR AMPEX. WE WILL ARRANGE SHIPPING.
CALL ERIC (610) 324-7504

Products & Services

CBT Systems On-Air Lights

ON-AIR
ON-AIR

Made in the U.S.A.
Contact CBT Systems at 858-536-2927
www.cbtsystems.tv

Career Opportunities

Television Remote Engineer Needed - Come grow with us!

IMS Productions is expanding its fleet of mobile HD trucks and needs the right people to help achieve our goals. We're one of the industry's leading mobile television companies, and have an immediate opening for a qualified Engineer in Charge. Engineer should have extensive knowledge in Grass Valley Kalypso and Kayenne switchers, RTS ADAM intercom systems, Calrec Audio consoles, Chyron Hyper X 3, N Vision routers with Jupiter control and Sony HDC cameras.

Applicant must also have a large system overview as we cover major sporting and entertainment events nationwide and abroad. Engineer must have the equivalent of an associate's degree in applied electronics with a minimum of 3 year's mobile television experience. Above all, the applicant must be a self-starter with good work ethics, great attitude and the ability to work under pressure.

Sure...we offer a more than competitive salary and all the standards you'd expect from your next employer but more importantly we offer an opening into our family and team. We're large enough to handle events such as the Indianapolis 500 and the US Open yet small enough to show you why we're the best in our business for places to work.

If interested please email resume to Robby Greene at rgreene@brickyard.com or mail to IMS Productions at 4555 W. 16th St., Indianapolis, IN 46222.

For Sale

Acoustics First

To: Free Number:
Materials to Control Sound and Eliminate Noise™
http://www.acousticsfirst.com

Recruit Retain Explore

JOBzone

The Industry's #1 Job Zone

Finally, a job site created exclusively for the broadcast industry.

http://jobzone.broadcastengineering.com

FOR ADVERTISING SPECS:

www.pentondigitalads.com

Digital Guidelines and Mechanical Specs
Corporate vs. production IT
There is a difference.

BY ANTHONY R. GARGANO

There is an old saying that goes something like: With age comes wisdom. Actually, with age comes age — plus a lot of experience.

When I started in this industry, the great broadcast equipment companies were mainly American, with a few Europeans also thrown into the mix. That was when equipment was all about analog hardware, a business where one of the critical keys to success was manufacturing prowess. Then, Japanese influence brought high-quality, low-cost manufacturing combined with innovative designs, slick, intuitive user controls and ease of operation. Soon, the likes of RCA and Ampex were history, and upstarts Sony and Panasonic entered their broadcast heydays.

A digital Trojan horse
Unwittingly, the Japanese companies also sowed the seeds of their own downfall. As they developed even more technologically advanced products, they eventually introduced digital technology and formats. Digital technology proved to be a Trojan horse that allowed marketplace leadership to move back across the oceans and allow a mostly new crop of North American and European companies to again take the preeminent marketplace position.

Digital technology introduced a new competence into the mix: software development. At the time, the distinctive competence of those market-leading Japanese companies was in manufacturing. It wasn’t long, however, before some hardware functionality gave way to instruction sets embedded into upgradable firmware and software. Software development, where North America and Europe excelled, became the key driver.

The new driver opened opportunity for many new companies to not only enter the market, but to become highly successful in the newly-found enterprise. A common misconception at the time was that the Japanese could not develop software because of logic flow differences between Occidental and Oriental thought processes.

While some still maintain the errord thought, the reality then was that upgradable, software-defined products were an anathema to both a business infrastructure heavily invested in people and capital equipment assets necessary for high-volume manufacturing, and to a box-sale business strategy dependent upon sales of new and replacement boxes. So, rather than leveraging and advantaging the seeds of the technology they introduced, the Japanese companies went into denial and created their own version of Steve Jobs’ “reality distortion field” in a doomed attempt to protect their manufacturing investment.

As digital technology evolved, it enabled a new realm of software-defined architecture, from products and applications to systems and infrastructure. Coupled with this, and thanks to Mr. Moore’s Law, ever-increasing computing power took products from non-real time, to real time and even faster video processing. Once real time and faster-than-real-time proved viable, files and the new broadcast and production construct of file-based workflows and systems architecture took off.

With downsizing and staff consolidations a problem during this period, the technology revolution’s speed left traditional video engineering staffs scrambling through a decade of playing catch-up, setting up the perfect storm.

With an attitude of, “Gee, it’s just a file; we know how to handle files,” enter corporate IT. Thus, the advent of file-based systems led to the entry of corporate IT — where trouble desk response delays and staring at hour-glass icons were completely acceptable — into video network domains where a pause in data flow meant a dark screen.

While data streams and networks may be common denominators, deliverables, service level requirements and systems architectures are hugely different between production and corporate IT. Today’s production facilities and broadcast networks continually seek, to greater advantage, efficiencies and capabilities that file-based video networks can deliver. And, therein lies a danger.

In this era of outsourcing, consultants and internal IT department involvement, a thorough understanding of production IT in relation to corporate IT is essential to ensuring success of these expanding and complex projects.

Follow-up footnote
Regular readers may recall my December 2011 column on Emmy award-winning ABC Network engineer Steve Mendelsohn. I am sad to report Steve has lost his valiant struggle against pancreatic cancer. But, a fighter to the end, he bested doctors’ prognostications by a year.

Anthony R. Gargano is a consultant and former industry executive.
Encode. Transcode. Multi-Screen.

Evertz' new 3480 Media eXchange Platform is a combination of the most advanced compression technology and key system level functionality from Evertz’ extensive video, audio and VBI processing product lines. The platform simplifies video delivery offering multiple high quality linear distribution encodes/transcodes plus multi-platform simultaneous resolution encodes. With the addition of Evertz’ advanced compression algorithms, the 3480 Media eXchange Platform is the ideal solution for today’s broadcasters providing IP content to multi-platform systems.

www.evertz.com • 1.877.995.3700
From a Single Channel Playout Server to a Multi Channel Turnkey Broadcast Centre

It’s All in a PlayBox

- Single and Multi Channel Playout Automation with interactive CG and Graphics
- Traffic Management • Media Asset Management and Archive • Newsroom System
- Remote Redundant Playout • Ad Insertion and DPI • Time Shift
- IPTV and Internet TV Solutions
- Available in HD / SD and DVB (ASI/IP)

General Sales Contacts: sales.usa@playbox.tv • Website: www.playbox.tv

- PlayBox UK +44 1707 66 44 44 • PlayBox Bulgaria +359 2 9703050 • PlayBox Romania +4 031106 5115 • PlayBox Turkey +90 216 3379402
- PlayBox Turkey +90 216 3379402 • PlayBox Germany +49 7251 302 0445 • PlayBox Adria +381 113117286 • PlayBox Albania +355 44 80 45 52
- PlayBox Albania +355 44 80 45 52 • PlayBox USA +1 404 424 9283 • PlayBox Asia Pacific +603 7954 3400 • PlayBox India +91 9811913333
- PlayBox India +91 9811913333

www.americanradiohistory.com