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Preface

R e o e e T i T e T T I

The one area of broadcast electronics that seems to be
shrouded in mystery is the antenna-and-feeder system. The
reason is that most engineers who find their way into
broadcasting become involved with circuits and circuit theory
much more than with field theory. The engineer’s field theory,
like a muscle. becomes weak with disuse. The engineer could,
if he had the time, brush up on antenna and field theory so that
he could handle his antenna problems more efficiently. In the
past. however, this has not been an easy task.

Most of the texts on antennas have been either highly
mathematical. or else too superficial to be of any value.
Furthermore. the type of mathematics used in antenna work
tends to be unfamiliar to one who doesn’t use it on a regular
basis. This means that to brush up on antenna theory the
engineer would first have to brush up on vector mathematics,
and the time required is rarely available.

In working with broadcast engineers for over 30 years, I
have found that there are three factors that cause problems in
studying antennas:

1. Most antenna texts present a great deal more
information than is needed to enable one to operate
and maintain an antenna system. The process of



culling out the unessential is difficult. and there is a
tendency to give up.

2. The mathematical operations involved in calculating
impedances and field intensities are not particularly
difficult, but they are very tedious. This has been a
serious obstacle in the past, but with the advent of the
pocket electronic calculator. most of the tedious
operations are eliminated.

3. The engineer is apt to confuse the unfamiliar with the
difficult. This is probably the most serious obstacle. If
one has a preconception that a particular field of study
is difficult, he will manage to make it difficult. An
English author of a most readable book on calculus
once introduced the subject with the adage ‘“What one
fool can do. another can.” This adage applies equally
well to antennas. All that the average broadcast
engineer needs to know about antennas can be
mastered with a little persistence.

The book can be thought of as consisting of three parts.
Chapters 1 through 4 review the basic principles that underlie
all antenna and transmission-line operation. Concepts that
most frequently cause trouble are reviewed in more detail.
Chapters 5 through 16 deal with standard broadcast antennas.
The standard broadcast antenna is such that the engineer must
be concerned with all of the details of the system: therefore
the treatment is quite detailed. Chapters 17 through 19 deal
with FM and TV antenna systems. The approach here is
completely different, because the FM or TV antenna is
supplied as a manufactured component and most of the system
is located at the top of a tall tower, where the engineer can't
even gain access to it. In this case, he needs to know enough of
the basic principles to understand manufacturer's specifi-
cations and interpret the few measurements that he can make.
The remaining chapters are devoted to subjects that all
antennas have in common.

I would like to acknowledge the contribution that so many
of my associates have made to my understanding of antennas.
To the late Dan and Bill Hutton, John Battison, Palmer Greer,




Don Pauley. and Chris Payne: to George Bartlett, of the
National Association of Broadcasters who has done much to
spread the knowledge of antenna theory and practice by
supporting many seminars on the subject: and especially to
Carl E. Smith, who has shared unstintingly his unending
knowledge of the subject. Last, but far from least., is my
gratitude to Grace, whose encouragement and inspiration
made this work possible.

John E. Cunningham
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Chapter 1
Basic Principles

All of the subjects covered in this chapter are very
elementary. Every broadcast engineer has studied them at
least once. Nevertheless, a review that points out features that
are directly applicable to transmission lines and antennas is in
order. Every engineer or technician who has participated in
technical bull sessions knows that differences of opinion
involving the operation of a complicated piece of equipment
such as a television transmitter are quickly resolved.
Discussions about such very elementary concepts as charges,
fields. and magnetism, however, often show that our
understanding of very elementary principles is fuzzy, to say
the least. This fuzziness regarding elementary principles is
often the underlying reason why devices such as transmission
lines and antennas are often poorly understood.

It is easy to see why elementary principles are not well
understood. When we describe the operation of a complicated
transmitter system, we describe it in terms of simpler units
such as transistors, tubes, and resistors, knowing that our
audience understands these simpler building blocks. When we
get to something very basic. such as an electric charge, there
are no component parts on which to base our understanding.
We base our understanding on observations of experiments,
rather than physical reasoning. Knowledge of this type is
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disseminated in terms of what are really mathematical
fictions, such as fields and lines of force. If a civilization in
outer space mastered electromagnetic radiation and came to
earth. we would probably find that their basic concepts were
much different from ours.

These concepts or mathematical fictions are important in
that they are the only way we have of talking or writing about
the subjects. They can. however, cause a great deal of
confusion if the ground rules are not used properly. A case in
point involves the speed of propagation of electric charges in
conductors.

Every schoolboy knows that electricity travels at the
speed of light. which is 186,000 miles, or 300.000,000 meters, per
second. It is also common knowledge that the charge carrier in
conductors is the electron. It isn’t unusual, therefore, to find
people visualizing current in a conductor as consisting of a
stream of electrons traveling through the wire at the speed of
light. This idea vanishes when we apply the principles of
physics to the problem.

Physicists say that a current of one ampere corresponds to
a flow of 6.4 x 10® electrons per second. This is a goodly
number of electrons, so at first glance this figure seems to
support the earlier idea. However, though we know how many
electrons pass a point in a second, we need to know how many
are passing together before we can determine the speed of
individual electrons. We see this when we note that cars
traveling four abreast will only have to travel at a quarter of
the speed of cars in single file to have the same number of cars
pass a point in a given time.

It requires an unimaginable number of electrons passing a
point to produce an ampere of current, but there is also an
unimaginable number of electrons available in a conductor. If
we accept the physicists' figure of about 10* free electrons
per cubic centimeter of copper, we can calculate that the
speed of electrons in a No. 12 wire carrying one ampere is
about 0.08 in. per second—a far cry from the speed of light.

The above figure is based on steady, direct current. In
antennas and transmission lines, we are interested in
alternating currents with frequencies of one-half to several
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hundred megahertz. At 1 MHz the signal changes direction
every half microsecond. At the slow rate at which electrons
move, they barely move at all before they change direction.

If the electrons in a conductor actually move so slowly,
what is all of this about electricity moving at the speed of
light? The fact is, a current-carrying wire is analogous to a
hollow pipe filled with marbles. The instant a marble is pushed
into one end of the pipe, however long the pipe, a different
marble pops out of the other end. The pushing effect travels
through the pipe at a fantastic speed even though the speed of
the individual marbles is quite slow. In an electric circuit,
when a charge is introduced into one end, the effect is felt at
the other end almost instantaneously, as if the charge itself
traveled at the speed of light.

Thus, although electron flow is a valid and useful concept
in vacuum tubes, it hardly makes any difference in antennas
whether we think of electrons, or simply of charges, without
defining the charge carrier.

CURRENT CONVENTIONS

One of the more controversial subjects in electronics is the
question of what convention should be adopted for the direction
of current flow. For many years it was almost universally
agreed that a current flowed from the positive pole of a
battery. through the external circuit, back to the negative
pole. The convention was used long after it was well known
that the electrons which actually carry the charge flow in the
opposite direction. With the advent of the vacuum tube, it
became advantageous to consider the flow of electrons from
the cathode to the plate as being the plate current, and in many
texts, particularly those below the engineering level, the
negative-to-positive convention was adopted. This made the
explanation of vacuum-tube operation easy, but it means that
the direction of the drop of potential in a circuit is considered
the opposite of the direction of current flow. This is almost like
considering water as flowing against the direction in which
pressure is exerted.

There will always be some inconsistency in application,
regardless of what convention is adopted. In most of this book,
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dealing as it does with high frequencies, we will have little
occasion to concern ourselves with current direction, but in
some of the explanations, we will have to consider the flow of
charges. Since it is more convenient to consider a positive
cause as producing a positive effect, we will consider current
to consist of positive charges flowing from the point of higher
or more positive potential. This will undoubtedly offend some
readers at first, but the concept is easy to apply when one
becomes accustomed to it.

CHARGES AND FIELDS

An earlier section said that current is a flow of electric
charges. without defining what a charge is. This is where we
get to a concept so fundamental that we have no other, more
elementary. concepts that we can invoke to explain it. We
know that like charges tend to repel each other, and unlike
charges attract. Charge is the concept that we have invented
to explain this repulsion or attraction. In Fig. 1-1 we have a
metal ball suspended above the earth. When we close the
switch in the circuit, current flows, charging the ball. Or we
could say that the battery forced some of the electrons off the
ball through the battery onto the earth. We also know that if we
connect a conductor between the ball and earth, current .will
flow through the conductor until the ball is at the same
potential as the earth. When the ball is charged by the battery,
there is a potential difference of 100V between the ball and
earth. After a conductor has been connected between the ball

+ CHARGES

FIELD

Fig. 1-1. Charging a metal ball.
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and the earth for a short time, there is no voltage between
them.

When the ball is charged. the electrons on the earth
~know"" that the ball is positively charged. and they are
attracted to it. This attraction would take place even if there
were absolutely nothing between the ball and earth. This
action at a distance is repugnant to the average mind, so we
say that there are lines of force between the positive charges
on the ball and the negative charges on the earth. The lines of
force are said to form an electric field.

Ether

The whole question of fields and lines of force can be very
confusing. Back in 1865, long before the first radio signal was
transmitted. James Clerk Maxwell, a Scottish physicist,
theorized that light was actually an electromagnetic wave. His
work implied that other electromagnetic waves might exist.
About 20 vears later a German physicist, Heinrich Hertz,
actually demonstrated radio waves. To these early
investigators, if light and electric and magnetic energy were
propagated by a wavelike phenomenon, they must be waves in
something. They didn't know just what this something might
be. but they called it the ether.

Inasmuch as electric and magnetic fields were known to
travel through a vacuum, they assumed that the ether
permeated all space and matter. This concept was very useful
for practical applications. Instead of speaking of the
permeability or permittivity of free space. physicists could
speak of the permeability and permittivity of the ether. It is
much easier to attribute properties to something. even though
we don't know just what the something is. than to attribute
properties to free space, which, by definition, is nothing.

The concept of an ether was used by all of the early
workers in radio. but scientists were troubled by the fact that
no one had actually demonstrated the existence of the ether.
They reasoned that if the ether did exist. either the earth
moved through it, or it moved through the earth. Astronomical
observations indi¢ated that the earth must move through the
ether. This meant that the velocity of light measured at the
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surface of the earth should be faster in one direction than in
the opposite direction.

If a way could be found to measure the velocity of light in
several directions on the surface of the earth, it should be
possible to demonstrate the existence of the ether. In a
now-famous series of experiments conducted between 1880 and
1890. two physicists—Michelson and Morley—measured the
velocity of light to a high degree of accuracy. Much to their
surprise they found that the velocity of light is the same in all
directions along the surface of the earth.

The scientific community was faced with a dilemma:
Some observations indicated that the earth moved through the
ether. while others indicated that the ether moved with the
earth—obviously a contradiction. After several futile attempts
to explain the contradiction, the whole idea of an ether was
dropped.

This was indeed unfortunate for the practical-minded
engineer, who must now state that radio waves are propagated
through empty space by an electromagnetic field—which is
just another way of saying that we haven't the slightest idea of
how radio waves are propagated.

This situation may be corrected in the next few years. An
increasing amount of evidence is accumulating that the early
investigators might have been right, and that there really is
some sort of medium that carries radio waves, electric fields,
and magnetic fields. In Europe two Nobel Prize winners, Dirac
and De Broglie, have proposed that some sort of ether does
exist. In this country Professor H. C. Dudley, of the University
of Illinois, has written several papers that shed new light on
the subject. Dudley points out that recent discoveries indicate
that the whole universe is filled with a veritable sea of
extremely small particles called neutrinos. He proposes that
this neutrino is actually the medium that carries radio waves.

If Dudley’s work proves to be correct—and there is an
increasing amount of evidence that it is—the engineer will
have a much clearer idea of what is actually going on in
circuits and antennas. In the meantime, the reader should
adopt whatever concept is most comfortable to him, with the
consolation that, at present, the scientists don't actually know
much more about it than he does.
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Charge and Capacitance

Getting back to Fig. 1-1, if we were to repeat the
experiment with a larger ball, or with the ball closer to the
earth, we would find that more current would be required to
charge the ball to 100V. This shows that voltage is not a good
measure of how much charge we have. Actually the current in
amperes that flows into the ball to charge it is the rate of flow
of charge. The unit of measurement of charge is the coulomb.
A current of one ampere means that charge is flowing at the
rate of one coulomb per second.

If different arrangements similar to that of Fig. 1-1 will
take on a different amount of charge for the same value of
applied voltage, we need some measurement that will tell us
how much charge each arrangement will take with a given
value of applied voltage. We do have such a unit in the farad.
The ability of a physical arrangement to acquire a charge
when a voltage is applied to it is called its capacitance, the
basic unit of which is the farad. The amount of charge in a
capacitor is given by the equation

q=CV

where g is the charge in coulombs, C is the capacitance in
farads. and V is the voltage across the capacitor in volts.

The farad, like so many basic units, is not of a very
convenient size. In radio work we more commonly use
microfarads or picofarads.

So far we have assumed that there was only air, which is
electrically about the same as free space, between the ball of
our experiment and the earth. If we were to fill this space with
a material such as polystyrene, we would find that the ball
took on more charge for the same value of applied voltage. As
a matter of fact, it would take on just about twice as many
coulombs of charge. We account for this by saying that the
relative value of the permittivity, or the dielectric constant, of
polystyrene is twice that of free space. The actual numerical
value of dielectric constant depends on the unit system we are
using. We will come back to this later.
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Magnetic Field

By using analogies, we can also arrive at the concept of a
magnetic field. If we were to pass a current through a coil of
wire, we would find that it attracts pieces of magnetic
material. We account for this attraction by saying that lines of
magnetic force surround each current-carrying conductor.

We have no need in this book for the units used to describe
magnetic quantities, but perhaps the analogy with electric
fields will be a little clearer if we state them briefly. We
measure the ability of a current to produce magnetic effects in
terms of the magnetizing force H.

In a straight conductor the magnetizing force is expressed
in amperes per meter and is numerically equal to the current
in the conductor divided by its length. If we coil up the wire so
that the magnetic effects of the turns reinforce each other, we
usually state the magnetizing force in ampere-turns per
meter. As with the electric field. the strength of the magnetic
field can be measured in terms of the density of the lines of
force. The unit of measurement of flux density B is the weber
per square meter.

Everyone knows that a magnetic field is stronger in
ferromagnetic materials than in free space. To explain this,
we have the simple equation

u = B/H

where u is the permeability of the material through which the
magnetic field passes. Here again. the numerical value
depends on the unit system that we are using.

UNIT SYSTEMS

There are several different systems of units used to
specify different physical quantities. Each of these has its
advantages and disadvantages. For example, there are two
cgs (centimeter—gram-—second) unit systems. In the cgs
electrostatic-unit system, the permittivity of free space is
simply 1. This makes calculation of capacitance easy, but to
keep the system consistent, the unit of voltage becomes the
statvolt and the unit of current becomes the statampere. These
are both oddball units that will not ring a bell with the average
broadcast engineer.
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In the cgs electromagnetic-unit system, the permeability
of free space is 1. This simplifies the calculation of magnetic
field and inductances but leads to the abvolt and abampere as
units of voltage and current which are as unfamiliar to the
average broadcaster as the electrostatic units.

The unit system that is most widely accepted today is the
so-called rationalized mks (meter—kilogram—second) unit
system. In this system all of the commonly used quantities are
expressed in familiar units such as volts, amperes. and ohms.
The price that we pay for this very convenient system of units
is that the permittivity ¢ and permeability p, of free space
take on cumbersome values:

€, = 8.85 x 10 * farad per meter
i, = 1.26 X 10 "% henry per meter

These two properties of empty space enter into the equation
for the velocity of propagation of radio waves, as we shall see
later on.

ENERGY AND POWER

Although power is given consideration in all parts of a
broadcast station, energy is the more fundamental concept.
Energy is defined as the capacity to do work. We are not
interested in a strict definition of work. As far as we are
concerned, it is sufficient to say that work is the capacity to
move something against an opposing force. The object of any
broadcasting system is to move electric charges in a receiving
antenna somewhere. To do this requires energy. The energy
must be carried from the transmitter. through the feeder
svstem to the antenna, and there it must be radiated through
space in the desired directions.

The basic unit of energy is the joule. Many engineers have
forgotten this because they find it more convenient to work
with power. which is the rate of change of energy. A power of
one watt means a rate of change of energy of one joule per
second. Although power is usually more convenient for
practical calculations, it is much easier to understand things
like reactance and reflections on transmission lines if we think
interms of energy.
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Average Power

Figure 1-2 shows a source, such as an AC generator or
oscillator, connected to a load. The resistance of the load is 10
ohms, which is assumed to be purely resistive, with no
reactive component. We have a voltage of 20V across the load,
and according to Ohm'’s law, the current will be 2A. Therefore
we know that the power in the load is 20V x 2A = 40W. This
means that energy is flowing into the resistive load at a rate of
10 joules per second. Without saying it, we realize that this is
the average power, which is the power that we usually talk
about. Common sense tells us that energy isn't actually
flowing into the resistor at a constant rate. It must be zero at
the instants in the cycle when both voltage and current are
zero, and it must be maximum when both voltage and current
are maximum.

102 20v Fig. 1-2. A generator with a re-
sistive load.

Instantaneous Power

It is helpful in understanding just how energy flows in a
circuit to consider the instantaneous power, that is, the power
at any instant of time. The instantaneous power in any circuit
is equal to the product of voltage and current at some instant.
Figure 1-3 shows a plot of the voltage and current and their
product for the circuit of Fig. 1-2. During half of each cycle
both voltage and current are positive, and during the other half
they are both negative. Since the product of two negative
numbers is positive, the power is positive at all times and
varies at twice the frequency of the applied voltage. Thus the
energy enters the resistor in pulses. In purely resistive circuits
this pulsating nature of power and energy rarely concerns us,
so we speak of the average power, which is the average value
of the power wave in Fig. 1-3.

Energy in an Electrical Circuit

There are some other rather useful principles illustrated
in the circuit of Fig. 1-2. Since the circuit is resistive, the
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Fig. 1-3. Instantaneous and average power.

voltage and current are in phase at all times. This resistive
nature of the load—or what is the same thing, the fact that the
voltage and current are in phase—tells us that the energy is
flowing in one direction and is not coming back. If the load is a
resistor, the energy is converted into heat. If the resistive load
represents the resistive component of some sort of motor, the
electrical energy may be converted into mechanical energy.
And if the resistance is seen at the terminals of an antenna, the
energy is radiated. Although the theory of relativity shows that
there is an interchange between matter and energy in some
instances. as far as we are concerned the old law of
conservation of energy still holds: Energy can neither be
created nor destroyed: it is merely converted from one form to
another.

In Fig. 1-4 we assume that a source is connected to a load
that is purely capacitive and has no losses. In this case, the
voltage and current are no longer in phase. The current leads
the voltage by 90°. This is logical since, at the instant that the
source is connected, there is no charge in the capacitor. Our
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earlier equation for the voltage across a capacitor can be
written

V=gq/C

This equation says there can be no voltage across a capacitor
unless there is a charge in it. So in our circuit, as the current
flows into the capacitor, charging it, a voltage builds up across
it.

Fig. 1-4. A generator with a

C
T capacitive load.

We know that capacitors do not dissipate energy unless
they have losses. so the average power in our circuit must be
zero. But we also know that charge flows into and out of the
capacitor and that this must represent some energy. The
situation becomes clear when we consider the instantaneous
power as we did in the resistive circuit. Figure 1-5 shows the
voltage and current, and their product. the instantaneous
power. The instantaneous power has twice the frequency of the
applied voltage. but in this case it isn’t positive all of the time.
There are portions of the cycle where the voltage and current
have opposite signs and their product is thus negative.
Negative power is the rate at which energy flows toward the
source (generator). The curve shows that energy enters the
capacitor for a quarter of a cycle, then returns to the source
during the next quarter-cycle.

The important point in this example is that when voltage
and current are 90° out of phase, the net transfer of energy
from the source is zero. Energy does in fact leave the source,
and it is for a time stored in the electric field in the capacitor:
but it is later returned to the source. This brings up the
question of whether or not we can relate the amount of energy
stored in the capacitor to the voltage that exists across it. We
can do so by the equation

W =1/2CV*
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where W is the energy in joules, C is the capacitance in farads,
and V is the voltage across the capacitor.

We know that if the load in our simple circuit were a pure
inductance with no losses, the voltage would lead the current
by 90°. It isn't difficult to construct an analogy to the case
where the load is capacitive. We can see that energy must flow
in and out of the inductor. but no average energy is taken from
the source. As with the capacitor, we have an equation for the
amount of energy stored in the magnetic field of an
inductance. It is

W = 1/2LI*

where W is the energy in joules, L is the inductance in henries,
and ! is the current in amperes.

In both the capacitance and inductance, the actual energy
is stored in the associated electric or magnetic field. In fact,
electric and magnetic fieldsare the only media that we know
of in which we can store energy in its electrical form (When
energy is stored in a battery, it is actually stored in the form of
chemical energy.)
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This leads us to a rather amazing, but logical, concept.
Consider the circuit of Fig. 1-6, which consists simply of a
source connected to a load some distance away. We know that
the energy must get from the source to the load before it can
do anything. We always assume, without wondering why, that
the energy simply travels along the wires to the load, where it
does whatever work the system was designed to do. We never
stop to think that an ideal wire—one that has no inductance or
capacitance —does not meet any of the requirements we have
considered above for storing energy. But when we realize that
each wire has inductance, with its incidental magnetic field,
and that there is capacitance and an electric field between the
wires, we have all the requirements for storing energy. Since
we also know that in a capacitor or inductor the energy is
actually stored in the associated field, this brings us to the
rather startling conclusion that electrical energy is actually
carried in the fields associated with wires, and not in the wires
themselves! The wires merely serve to guide the energy to
where we want it to go. This concept is hard to accept at first.
Once accepted, it certainly makes radiation, whereby energy
is propagated through space without the benefit of any wires at
all, a lot easier to understand.

SOURCE LOAD

Fig. 1-6. Source with load at a distance.

SUPERPOSITION PRINCIPLE

One of the most useful concepts in all branches of physics,
including antenna theory, is the superposition principle. The
principle is very general and can be applied to any system,
electrical or mechanical, wherein the elements of the system
are linear. A linear element is one in which the response is
directly proportional to the cause. Linear elements include
resistances, inductances, and capacitances, but do not include

such things as diodes. For our purposes the superposition
principle can be stated:

24




In any system containing only sources of energy and linear
bilateral elements—such as resistances. inductances.
capacitances. transmission lines. and antennas—the total
response with all sources active can be found by algebraically
adding the responses that would be produced by each source act-
ing separately.

This is quite a mouthful. All it means is that, in a system
containing several sources, we can find out what is happening
in any part of the system by finding out what would happen if
each source acted alone, then algebraically combining the
results.

Superposition can be applied to any physical situation in
which the responses are linear. For example, by reflecting on
the principle, we can state with confidence that a bullet fired
horizontally from a gun will strike the earth at the same time
that a similar bullet would strike the earth if it was merely
dropped from the same height.

One place where superposition is very useful is in finding
the field produced at some point by several antennas in a
directional system. We simply find the field that would be
produced by each antenna acting alone, then algebraically
combine the fields to find the total resulting field.

Figure 1-7 shows the application of superposition in finding
the current in a series circuit. Of course, this particular
problem could be solved by a much simpler method, but this
exercise shows some of the subtleties involved in applying
superposition. To apply the principle, we first make one of the
batteries idle (shorted) and find the current that would be
produced by the other battery: then we reverse the process.
Thus in Fig. 1-7B we replace battery B2 with a short circuit
and find the current to be 3A, flowing counterclockwise around
the circuit. In Fig. 1-7C we replace battery Bl with a short
circuit and find the current to be 24, flowing clockwise around
the circuit. Since the two component currents are flowing in
opposite directions, the net current actually flowing in the
circuit is their difference: 1A, flowing counterclockwise
around the circuit.

There are several points about Fig. 1-7 that should be
clearly understood. First of all, the component currents do not
actually flow in the circuit of Fig. 1-7A. They are the currents
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that would flow if each of the sources were acting alone, but
the sources are not acting alone. The only current that actually
flows in the circuit is the 1A flowing counterclockwise around
the circuit. Battery B2 doesn’'t contribute anything to the
actual current. In fact. the current is flowing ‘‘backward’
through this battery in such a direction as to charge it. The
point is that even though the component currents do not have a
true physical existence. they are useful in finding the actual
current. There are physical situations where applying the
superposition principle provides not only a convenient way to
get a numerical answer to a problem but also a better
understanding of the physical principles involved.

We noted at the outset that superposition applies only
when the response is linear. It is well to remember that power
is not a linear function of either the voltage or the current in a
circuit, and powers in a circuit or system cannot be found by
simply adding the powers that each source would provide if
acting alone.

Figure 1-8 shows another simple series circuit. The
current I’ due to battery Bl acting alone is 1A, and the current
I' ' due to battery B2 acting alone is 2A. The actual current in
the circuit is 3A. Now, suppose that we tried to find the power
in the 9-ohm load resistor by adding the power that would be
supplied by each source acting alone. The power delivered to
the load by each battery acting alone would be

P =(I'YR=(19=9W
P =(I'""¥ R =(2/9 = 36W
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giving a total of 45W. Actually we know that the current in the
9-ohm resistor is 3A, and the power is

PI* R=(3)?9=81W

Thus if we attempted to use superposition to add powers, the
result would be in error. The reason for this is that
(I'¥ + (I'")* is definitely notequal to (I' + I'')’.

.\,g\' )

- I*— 27V

-l lI= — =3A
90

BE T— P=12R=(9)9)=81W

I=3A —»

Fig. 1-8. Power in a simple series circuit.

WAVES, WAVELENGTH, AND DEGREES

When the term wave is used, one often thinks of waves in
water. This is unfortunate because the waves we talk about in
connection with radio are of a different nature. We use the
word wave in two different senses. Radio waves are actually
propagated by a wavelike action, but generally. when we use
the word wave, we are speaking about a graphical
representation of a physical phenomenon, not the action itself.

Sine Wave

The waveshape that concerns us most in antenna work is
the sine wave. This wave is familiar to every broadcast
engineer, but unless we keep our terminology clear, we get
into some problems that will be very difficult to resolve.
Figure 1-9 shows one cycle of the familiar sine wave. In this
case, we will assume that it is the plot of voltage as a function
of time. We find that the voltage smoothly increases to a
positive peak, gently levels off, and smoothly decreases. It
then does the same thing in a negative direction. The
horizontal axis of our graph represents time. If the frequency
of our wave was 1 MHz, the duration of one complete cycle, or
period of the wave, would be 1 usec.

This wave is also a plot of a trigonometric function that,
happily, behaves in the same way as most of the voltages and
currents that concern us. This means we can use
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trigonometric expressions to learn many things about our
wave of voltage that would otherwise be hard to determine.
The trigonometric function involved is the sine of an angle. If
we vary the angle through 360°, the sine of the angle will vary
just as the wave does in our illustration. This is shown by the
set of numbers on the vertical axis of the graph. This is very
convenient because it enables us to measure time periods in
degrees. When doing this we should probably use the term
electrical degrees to distinguish from degrees of arc, but
common usage neglects this, and no trouble will be
encountered if we keep the electrical concept clearly in mind.

To measure time in degrees is actually to measure time in
fractions of the period of a wave. For example, if we were to
state that another 1 MHz sine wave lags that of Fig. 1-9 by 90°,
we would be saying that the new wave occurs 90° later in time.
Since 90° is one-quarter of 360°, we could say that any point on
the second wave occurs a quarter of a period, or 0.25 usec,
later than the corresponding point on the reference wave.

+1 +V
- f=1MHz
w
- 2
02 +~
» 3 TIME—»
s |
|
—Vp2 :
I
|
-1 —vV !
~ PERIOD=1pusec |

Fig. 1-9. Sine-wave plot, amplitude versus time.

The angle is usually called a phase angle. Note
particularly that a phase angle (or phase shift) expressed in
degrees can only be converted to time if we know the
frequency (and hence the period) of the wave. Electrical
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degrees are not absolute, but relative, units of time. If the
frequency in our example was 100 kHz instead of 1 MHz, %0°
would correspond to a time period of 2.5 usec rather than 0.25
usec.

Wavelength

In broadcast work we are also interested in waves in space
as well as waves in time. Suppose that the signal of Fig. 1-9 is
radiated through space. Further suppose that we have a series
of instruments spaced along the path that measure the signal
strength at each point. Since the signal varies with time, it
cannot have the same magnitude at all points in space at the
same time. If at one instant we could stop time long enough to
read all of the instruments and plot their indications as a
function of distance along the path of propagation, the plot
would be as shown in Fig. 1-10. The wave plotted here is
identical in shape to the wave of Fig. 1-9, but it has a different
meaning that should be clearly understood. Whereas in Fig. 1-9
we have amplitude versus time at some point in space, in Fig.
1-10 we have amplitude versus distance in space at a fixed
instant of time.

(0] [C4) [[) e
I

AMPLITUDE

-

DISTANCE
Fig. 1-10. Sine-wave plot, amplitude versus distance.

Since the wave of Fig. 1-10 is sinusoidal, we can express it
in degrees, just as we did in Fig. 1-9. Here, however, a degree
is an increment along the axis of the graph that represents
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distance, not time. Before we can correlate the degree with
actual physical distance in space, we must take into
consideration how fast the wave is moving through space. We
can then tell how much distance is represented by one
wavelength or a fraction of a wavelength, which may be
expressed in degrees. The formula that we use to do this is

c

A= —

f

where A is the wavelength in meters, f is the frequency in
hertz, and c is the velocity of propagation. In free space c is
300.000.000 meters per second. Thus our formula becomes

300,000,000 300
= — or = —_—
finHz fin MHz

This formula shows that when we specify a distance in
degrees, we are actually specifying the time it would take one
wavelength of our signal to cover this distance. This is
comparable to measuring the distance between two cities in
hours when we know the speed at which we will travel between
them.

There are two important facts to note about expressing
distance in fractions of a wavelength or in degrees. First, the
correlation with actual distance is only valid if we know the
frequency. Second, the velocity of propagation enters into the
relationship. As long as we are talking about propagation in
free space, we can use the formulas given above; but when we
get into a transmission line, where the velocity of propagation
may be lower, we must make the necessary correction before
we can correlate distance in degrees with actual physical

distance.
In summary, the wave nature of radio signals makes it

possible for us to measure either time or distance in degrees.
In each case, frequency is the fundamental concept; we must
know the frequency before we can do anything. The frequency
is determined by whatever is generating the signal, usually a
transmitter. When expressing distances in wavelengths or
fractions of a wavelength, we must be sure of the velocity of
propagation. In dealing with antennas, we encounter signals
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that can be represented by waves both as functions of time and
functions of distance. Unless the distinction is kept clear in our
minds. confusion will result.

The situation is further complicated by the fact that we
must also consider radiation at various angles in space, which
are also expressed in degrees. If the nature of each quantity
expressed in degrees is kept clear, the situation isn’t bad. It is
only when we have a rather hazy idea of what we mean by
degrees that confusion results.

PHASE LAG AND LEAD

The radiation properties of antenna arrays depend on the
phase of the signals that are applied to various elements. When
dealing with feeder systems. we must keep track of all of the
phase shifts that are encountered, whether they are introduced
by networks or by the time delay required for a signal to pass
through a transmission line. To control these phase shifts, we
use networks to introduce a desired amount of phase shift.
These networks may either retard the phase of a signal and
cause it to lag the input signal, or they may advance the phase
and cause it to lead the input signal.

Phase Lag

The concept of a network that causes the output to lag the
input is easy to accept. All we have to do is find something that
will introduce a time delay. This will correspond to a phase
lag. and knowing the frequency, we can find the number of
degrees corresponding to any given time delay.

Phase Lead

The concept of a phase lead, or advance, isn't as easy to
accept. It may seem that a network that causes the output to
lead the input must move something forward in time. Putting
it another way, it looks as though the network must have some
way of “*knowing” what the signal is going to be like in the
future if the network's output is to look exactly as the input
wave will at some time in the future. Of course, this isn’t
possible, and there is a better explanation of what happens.

Inasmuch as we are dealing with signals that do not vary
much from one cycle to the next, even with modulation, we
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consider what is usually called the steady-state response that
we get at the instant we apply power to the system. The
situation is analogous to a platoon of troops following the
orders of a drill sergeant. If the troops are at ease and not in
formation and the drill sergeant suddenly barks out an
unexpected command, the immediate response is nearly chaos
while everyone gets in the proper position. Very soon
afterward, however, the platoon is a smooth-functioning group
that efficiently carries out all subsequent orders. The situation
in an electric circuit is much the same. If the network is ““at
rest.” with no charge in the capacitors and no current in the
inductors. and a signal is suddenly applied, there follows a
period during which the voltages and currents adjust
themselves to the new environment. This is called the
transient period. Very soon after this—the exact time depends
on the Q-factor of the network—the network settles down and
follows the dictates of the applied signal. It is this steady-state
situation that concerns us.

Figure 1-11A shows an AC source connected through a
switch and resistor to a capacitor. We will consider the voltage
from the source to be the cause and the current in the circuit to
be the effect. We know from elementary circuit theory that in
a circuit containing both resistance and capacitance, the
current leads the applied voltage—that is, the current reaches
its maximum value before the voltage does. This looks like a
clear case of the effect happening before the cause.

We can resolve this apparent difficulty by looking at the
voltage and current in the circuit during the transient period.
Let us assume that the switch in the circuit is closed at the
instant when the applied voltage is at its maximum value. The
voltage across the source, resistor, and capacitor, as well as
the current in the circuit, are shown in Fig. 1-11B. At the
instant the switch is closed, there is no charge in the capacitor,
so it looks like a short circuit. The current will be maximum,
but all of the voltage will appear across the series resistor. At
this instant the current is in phase with the applied voltage:
that is. the effect is occurring at the same time as the cause.
From this time on, the voltage across the capacitor increases
and the source voltage decreases.
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Fig. 1-11. Transient conditions in a circuit.

It is easy to see that the current in the circuit will stop
flowing when the source voltage and the voltage across the
capacitor are equal. After this the capacitor voltage will be
higher than the source voltage, so the current will start to flow
in the opposite direction. Thus the current, which is really the
effect, reverses direction before the voltage, which is the
cause. The phase angle between voltage and current is
determined by the values of resistance and capacitance in the
circuit. In this case, the phase angle is 45°. Since the applied
signal is sinusoidal. once the circuit reaches the steady state
the current will always lead the voltage by 45°.

VECTORS

A vector quantity is one that has both magnitude and
direction. Quantities such as force and velocity, which have
both magnitude and direction, are vector quantities. We can
specify them in several different ways. For example, if the
wind is blowing at 5 miles per hour from a direction which is
30° from north, we can specify the magnitude and velocity of
the wind by a vector, which we write as 5/30°. The 5 indicates
that the magnitude is 5 mph, and the 30° gives the direction. We
can represent this vector graphically by drawing a line 5 units
long at an angle of 30° from some reference line, which is
usually, but not necessarily, the horizontal axis. The line itself
is usually called a vector, and it is understood that the line is a
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graphical way of representing both the magnitude and
direction of some quantity. The 5/30° vector is shown in Fig.

1-12.
/ Fig. 1-12. Vectors and phasors. In

vector notation a is an angle in
space. In phasor notation a is a
phase angle.

a=30°

REFERENCE LINE

Vectors were originally used to specify physical quantities
that had some direction in space. It was found, however, that a
vector could be used to represent sinusoidal electrical
quantities. When used in this application, the lines are more
properly called phasors.

Use of Phasors and Vectors

There is a difference between a vector and a phasor:
Vectors can easily be expanded to three dimensions, whereas
phasors are restricted to two dimensions. Unfortunately. in an
AM broadcast station the term phasor refers to a piece of
equipment. This item was called a phasor long before the
mathematical use of the word was coined. As a result, when
the broadcast engineer hears the word phasor. he immediately
identifies it with a piece of equipment. He has traditionally
used the word vector to describe what the mathematicians call
phasors, and this tradition will be respected throughout this
book.

A vector can be used to represent a sinusoidal voltage or
current, or an impedance (which is the ratio between them).
For example, suppose that we wish to represent a current of
5A as leading the applied voltage, which we take for a
reference, by 30°. Our vector diagram for this current is
exactly the same as the vector diagram of Fig. 1-12. The only
difference is that in the previous case the angle represented an
angle in space whereas in the present case it represents a
phase angle. We express the current in the same way as we
expressed wind velocity: 5/30°.
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COMPLEX NUMBERS

A vector is just another way of writing a complex number
(a number that can be resolved into two components at right
angles to each other). To keep things on familiar ground,
suppose that we have a circuit consisting of a 4-ohm resistance
in series with a 3-ohm inductive reactance, as shown in Fig.
1-13A. We could write the impedance of the circuit as

Z = 4 + j3ohms

Thus written, the impedance is said to be in rectangular form.

The use of the boldface symbol (Z) for impedance denotes
that the vector is completely described, and not merely its
absolute value given. To indicate the absolute value of a
parameter, we use bars with the letter symbol, as in |Z]. In
general, the use of boldface type and bars will not be
necessary in this book, because the context of the problem or
discussion will make clear which aspect of a quantity is of
interest. In future chapters, this special symbology will be
used only when required to prevent confusion.

We know from elementary AC theory that the magnitude
of this impedance is

IZ| = VR + X* = V16 + 9= 50hms

The phase angle between the applied voltage and the current is
36.87°. Now we can write the impedance in the form
Z=5,3687

The above impedance can also be represented by the vector
diagram of Fig. 1-13B. When written in this notation, the
impedance is said to be written in polar form. As we will see,
some mathematical operations are easier when complex
numbers are written in polar form, and others are easier when
the numbers are written in rectangular form. We convert from
one form to the other by means of a right triangle and the two
simple trigonometric expressions shown in Fig. 1-13C.

Adding and Subtracting Vector Quantities

Addition and subtraction of vector quantities is much
easier when they are expressed in rectangular form. The
procedure is as follows:
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Fig. 1-13. Using vectors to represent electrical quantities.
Convert both numbers to rectangular form, using the
method shown in Fig. 1-13C.

Add the real and “‘imaginary” parts separately.

. Convert back to polar form if this form is required.

Figure 1-14 shows an example. Here we add 5 , 36.87°
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Fig. 1-14. Adding vectors.



and 5, 53.13°. We use these odd angles to make the
real and imaginary (j) numbers come out to whole
numbers. The sum, when converted back to polar
form, is 9.9 . 45°. In Fig. 1-15 we have an example of
subtraction. which is simply the reverse of the
addition of Fig. 1-14.

i7
- 4 _ i3
"3 ' 4

(A)

747
-3 +j4
4 + j3=5/36.87°

8)

Fig. 1-15. Vector subtraction.

Multiplying and Dividing Vector Quantities

Two vectors can be multiplied together easily when they
are expressed in polar form. All we have to do to find the
product is to multiply the magnitudes and add the angles. For
example. suppose that we wish to find the vector voltage
across an impedance of 10 £ 15% when the current through the
impedance is 5 , 30° (i.e., 5 . 30° amperes). From Ohm’s law
we know that we have to multiply current by impedance to find
voltage. That is

V=1IZ
=5,30° X 10 £ 15°
= (5 x 10) . 30° + 15° = 50 L 45°V
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Division of vectors is just as easy. To reverse the problem
just stated, suppose that we are given a voltage of 50 , 45°V
and a current of 5 ; 30°A and asked to find the impedance.

50 , 45° 50
Z=V/I= = — /45 - 30 =10 . 15°ohms
2,30° ]

Although vectors may be multiplied and divided in
impedance problems, vector multiplication can not be used to
find power.

In summary, we can express any complex number in
either rectangular or polar form. In antenna work the polar
form is useful for combining the field intensities from various
antenna elements. In this book we will use whichever form
tends to make clearer the technical points in question.

One does not actually have to go through the drudgery of
performing the operations that we have presented. With an
electronic calculator it is merely a matter of pressing keys.
One should, however, have an understanding of the meaning of
the quantities.

ANOTHER LOOK AT IMPEDANCE

The concept of impedance follows directly from Ohm’s law
for alternating currents and is familiar to every broadcast
engineer. Nevertheless, when the concept is applied to such
things as antennas and transmission lines, a great deal of
confusion often results. For this reason we will briefly review
the concept, with emphasis on some of its more subtle
implications in antennas and transmission lines.

Fig. 1-16A shows a 10V source connected to two terminals
on a box. To keep things simple for the moment, we will
consider our source to be a battery. At the moment, we have
absolutely no idea of what might be inside the box, but meters
connected to the terminals tell us that when we apply 10V, the
current will be 1A. We can then say that the impedance
“*looking into’" the box is 10 ohms when the applied voltage is
10V.

If we are told that the box contains no nonlinear elements
and no sources, we can assume that the impedance will also be
10 ohms for any other value of applied voltage. On this basis,
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we can assume that the equivalent of whatever happens to be
in the box is a 10-ohm resistor, as shown in Fig. 1-16B. This
does not mean that the box actually contains a 10-ohm resistor.
It might, for example, contain two 20-ohm resistors connected
in parallel (Fig. 1-16C).
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Fig. 1-16. Equivalent resistance.

So far the situation is very simple; there is no room for
confusion. Things are a little more complicated in Fig. 1-17A,
where we have an AC source and a method of measuring not
only the current but also its phase angle, with the applied
voltage as a reference. Our applied voltage is 10V, and the
current in this case is 2A. We also find that the current lags the
voltage by the now-familiar angle of —36.87°. (Since the
current is lagging we prefix the phase angle with a minus
sign).

The question is now “What is the equivalent circuit of
whatever is in the box?"" We can specify the ratio of the
applied voltage to the current as an impedance. If we are only
interested in the magnitude of the impedance, we can apply
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Ohm'’s law just as we would in the DC case. We indicate the
impedance that we find in this way as |Z| to indicate that we
know its magnitude but not its angle. Thus we can simply
divide the magnitude of the voltage by the magnitude of the
current to get the magnitude of the impedance.

V 10
|Z|= -IITII- = 5 = 50hms

Of course, this doesn’t tell us the whole story. We know
that the current is not in phase with the applied voltage, so we
know that there is some sort of reactive component in the box.
To find both the magnitude and angle of the impedance, we can
perform the same division in polar form.

v 10
7 = = =5, 36.87 ohms
I 2, —36.87° P800

This tells us that the box has an impedance that can be
represented by the vector number 5 , 36.87°. The fact that the
angle is positive indicates that whatever is in the box is
inductive. We can derive an equivalent circuit for whatever is
in the box by converting the impedance from polar to
rectangular form, giving

Z=R+jX, =4+ j3ohms

Thus we can say that the equivalent circuit of whatever is
inside the box is a 4-ohm resistor in series with a 3-ohm
inductive reactance (Fig. 1-17B). This doesn’t mean that these
elements are actually in the box. It just means that whatever
actually is in the box will behave as these two elements at the
frequency of interest. The box might, for example, contain a
series-resonant circuit as in Fig. 1-17C.

Self-Impedance

So far we have been concerned with the impedances that
are seen looking into the terminals of a box that contains only
two terminals and no source. We call this impedance the
self-impedance of the circuit inside our box. We could also call
it the driving-point impedance seen at the terminals of the box
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Fig. 1-17. Equivalent circuits containing inductance and capacitance.

As long as we have only one source of energy and one pair of
terminals in a circuit, the self-impedance and driving-point
impedance are really the same thing. Thus if we are talking
about circuit elements such as resistors, coils, and capacitors,
the driving-point impedance means the same thing as the
self-impedance.

In Fig. 1-18A we have a completely different situation, and
one that we will encounter very frequently in antenna work.
Here the box has two sets of terminals. We will assume that
the bottom terminals, 1’ and 2', are connected together and
grounded. Again, we have no idea whatever of what might be
inside the box, except that it contains no sources or nonlinear
elements. There are several measurements we could make
that would enable us to draw an equivalent circuit for
whatever happens to be inside the box.

We could, for example, apply a voltage to one pair of
terminals while the other pair is open-circuited, as shown in
Fig. 1-18B, and take the ratio of the applied voltage to the
current. In Fig. 1-18B we see that if we apply 10V to the
terminals at the left side of the box, a current of 1A will flow. If
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we divide the 10V by 1A, we get an impedance of 10 ohms. We
call this the self-impedance between terminals 1 and 1’ and
usually identify it as Z;, . Remember that the other terminals
were open when we made this measurement. By a similar
measurement we see in Fig. 1-18C that the self-impedance
between terminals 2 and 2’, at the right (which we will call
Z, ) side of the box is 5 ohms. These two measurements tell us
what will happen when we energize either pair of terminals
separately, but they give no information whatever on what
connection may exist between the two sets of terminals or
what will happen if we energize both sets of terminals at once.

Mutual Impedance

There is another measurement that will enable us to draw
an equivalent circuit for whatever is in the box. We can
connect our source to one pair of terminals and measure the
voltage that appears across the other pair, as shown in Fig.
1-18D. The ratio of the voltage that appears between terminals
2and 2’ to the current that is flowing in terminals 1 and 1’ is
called the mutual impedance Z, between the two sets of
terminals. In Fig. 1-18D it is seen to be 2 ohms. It may be
surprising at first, but as long as our box contains only linear
circuit elements (resistances, inductances, and capacitances),
it makes no difference to which terminals we apply the source.
We could have connected the source between terminals 2 and
2’, and the voltmeter between terminals 1 and 1’, the mutual
impedance would be the same in both cases.

Zl2 =ZZI

This concept of mutual impedance between two sets of
terminals should be clearly understood. It is probably
responsible for more confusion about the behavior of antenna
feeder systems than any other factor. Remember, the mutual
impedance is the ratio of the voltage that appears across one
pair of terminals to the current flowing in the other pair of
terminals. The voltmeter used to measure this voltage must
draw negligible current.

We are now in a position to draw an equivalent circuit for
whatever happens to be in the box of Fig. 1-18A. There is a
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Fig. 1-18. Unknown circuits with two sets of terminals.

principle in circuit theory that any linear, bilateral circuit
containing only linear passive components can be represented
at one frequency by either a T or pi network. We will use the
equivalent T-circuit because it will make the concepts involved
clearer.

Figure 1-19A shows a T-network. We can use the
measurements of Fig. 1-18 to find the values of the elements in
this circuit that will make it behave exactly like the box. When
terminals 2 and 2" are open-circuited and current is flowing in
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terminals 1 and 1’, the output voltage will be simply I, x Z, .
Therefore, Z, is equal to the mutual impedance Z, , in this
case 2 ohms.

Next, we know that the impedance at terminals 1 and 1’
when the other terminals are open is the self-impedance
between these terminals. We will call this impedance Z, , and
in our example it is 10 ohms. Now, if we are to see this
impedance when we look into terminals 1 and 1’ with the other
terminals open, then Z, must be equal to Z;, — Z; . in this
case 8 ohms. Similarly, Z. must be equal to Z, — Z» . where
Z» is the self-impedance between terminals 2 and 2'. We have
now completely pinned down our equivalent circuit as shown
inFig. 1-19B.

2.=Z11~ 213 Z¢=2p2— 242
AU o -

| O
Zp=212
I'0— . 02
(A)
1 2
8 3
2
10— . —072
8)

Fig. 1-19. Deriving an equivalent I-circuit.

Driving-Point Impedance

So far we have defined two kinds of impedance in
connection with our circuit: the self-impedance of each pair of
terminals, and the mutual impedance between the pairs. We
know that when terminals 2 and 2’ are open, the driving-point
impedance between terminals 1 and 1'—that is, the impedance
seen looking into these terminals—will equal the self-
impedance associated with them. The same is true of the other
pair of terminals. But if there was something connected to both
pairs of terminals at the same time, the driving-point
impedance at one pair would probably not equal its
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self-impedance. We will not attempt to derive an expression
for driving-point impedance into one pair of terminals that will
hold regardless of what might be connected across the other
pair.

Figure 1-20 shows our equivalent T-network with voltages
applied to, and current flowing in, both sets of terminals. We
can use Kirchhoff’s voltage law to write an equation for the
voltages around the loops in the figure. The equation for loop 1
is

Vi=hiZy — 2y +2y) - hLZ,
=12Z, - L le

If we divide all of the terms of this equation by I, , we get

It is easy to see that this equation gives the ratio of the voltage
between terminals 1 and 1’ to the current that will flow in
them. Since the ratio of a voltage to a current is an impedance,
we call this impedance the driving-point impedance between
terminals 1 and 1’ and represent it by the symbol Z . Thus the
equation for the driving-point impedance between terminals 1
and 1' becomes

Z =17, + -i Zy
I
This equation is very important and should be studied
carefully. It shows that in a T-network, which is a good
equivalent for many antenna circuits, the driving-point
impedance depends on the currents flowing in both pairs of
terminals. Remembering this simple equation will often
remove confusion that results from interaction between the
networks in antenna feeder systems.

We have now defined three different kinds of impedance
associated with a network that has two sets of terminals. (1)
The self-impedance (Z,, or Z,) associated with a pair of
terminals is the impedance seen looking into the terminals
when nothing is connected to the other set of terminals. (2) The
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mutual impedance (Z,, or Z, ) is associated with two pairs of
terminals and is the ratio of the voltage across one pair of
terminals to the current flowing in the other pair. The
magnitude of the mutual impedance depends on how the two
pairs of terminals are connected together. In a more general
sense, it depends on how energy gets from one pair of
terminals to the other pair. (3) The driving-point impedance
associated with a pair of terminals is the ratio of voltage to
current at the terminals under certain conditions. The
driving-point impedance depends not only on self-impedance
but also on the currents flowing in the network.

To keep the mathematics comparatively simple, we have
assumed that the impedances in our equivalent circuit were
pure resistances. In general, this will not be true. Most of the
impedances we encounter in antenna work will have reactive
components. Thus the Zs in Fig. 1-20 would ordinarily have
both magnitude and a phase angle. Furthermore, the current
in loop 2 will often not be in phase with the current in loop 1.
Thus we will have the phase angles of the currents to consider.

21y =242 2~ 2y

J Fig. 1-20. Equivalent I-circuit with
voltages and currents.

NEGATIVE RESISTANCE

A concept that rears its ugly head with annoying frequency
in directional-antenna work is negative resistance. When a
driving-point resistance found in an antenna feeder system
turns out to be negative. it merely means that the current, and
hence the power, is flowing out of the terminals rather than
into them. This is illustrated in Fig. 1-21. Here we have the
now-familiar T-network with two sources—one at each set of
terminals. All of the voltages, polarities. and current
directions are shown. We can now compute the driving point
impedance at both sets of terminals: but in doing so. we should
keep track of the polarity of voltages and the direction of
current flow. We assume that a positive current is caused by a
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positive voltage. Thus the driving-point impedance Z between
terminals land 1’ is

z,= 2V jg0HMS  zp= 2L _300HMS
2.5A “0s

Fig. 1-21. Negative impedance.

Now we compute the driving-point impedance between
terminals 2and 2':

V, 15V
Z, = = = —30 ohms
L -0.5A

Because of the signs. we find that the impedance between
these two points is a negative number. All this means is that
power is flowing out of terminals 2 and 2', as shown by the
dashed line, instead of into them. A negative resistance means
that energy is flowing opposite to the direction that it would
flow in if the resistance were positive. The magnitude of the
impedance is still simply the ratio of voltage to current at that
point. Note that this is the only sense in which we shall use the
concept of negative impedance. It is used in a different sense
in connection with some semiconductor devices and
oscillators. but that will not concern us. It is also important to
note that only a driving point or mutual impedance can be
negative: self-impedance is always positive.

The value of our equivalent circuit can be better
appreciated by considering Fig. 1-22. Here we have a very
large. albeit fictitious, box that contains two antennas instead

47



of circuit elements. By using our equivalent T-network, we can
reduce what would be a horrendous problem in field theory to
acomparatively simple problem in circuit theory.

| Pors

D2

P 2

5

Fig. 1-22. Antenna system and
equivalent circuit.

21— 242 22— 212
10 o2

VECTORS AND POWER

Earlier, in applying Ohm’s law, we found that we could
multiply or divide vectors to find voltage, current, or
impedance, all of which are vectors. The question naturally
arises as to whether we can multiply voltage expressed as a
vector by current expressed as a vector to find the power in a
circuit. For example, if the voltage applied to a circuit was
10 . 0°V and the current was 5 ;, —60°. could we multiply them
to get power? The answer is no. If we were to multiply them
we would get

10 ,0° X 5, —60° =50 , —60°

The fact that the product has an angle tells us that something
is wrong. Power is simply the rate of flow of energy, and it
doesn’t have an angle. In other words, power is not a vector
quantity.

The reason that this simple approach to finding power
does not work is that the power moving past a point in a circuit
is equal to the product of the voltage and the component of the
current that is in phase with the voltage. Figure 1-23 shows a
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vector representation of our voltage and current. It can
readily be seen that the component of the current that is in
phase with the voltage is given by I cos 8, or 5 x 0.5, so the
power in our circuit is given by

P=V(lcosf) =10 X 5 x 0.5 = 25W

\c
—

IN-PHASE COMPONENT
OF CURRENT =lcos0

eV

Fig. 1-23. Vector diagram of current of 5A displaced from voltage of 10V by
60°.

EQUIVALENT SOURCES, POWER
TRANSFER, AND EFFICIENCY

So far we have had very good luck in drawing equivalent
circuits for boxes containing only passive elements. We need
an equally simple way of representing sources of energy, such
as broadcast transmitters. This can be accomplished by a
principle known as Thevenin’s theorem, which is fully as
useful as any of the principles we have investigated so far.

Thevenin’s theorem states that any circuit that contains
sources can be represented at one frequency by an ideal
voltage source in series with an impedance. Of course, this
equivalence only holds true over the operating range where
everything is linear. We couldn’t, for example, short-circuit
the output of a transmitter and expect it to behave as a linear
device—in fact, it probably wouldn’t behave at all.

Over its normal operating range, however, we can expect
a transmitter, signal generator, or almost any other source of
power to look electrically like the equivalent circuit of Fig.
1-24. The voltage source V; is an ideal constant-voltage
source. It will produce the same output voltage regardless of
what is connected to its terminals. The resistance R; is the
effective internal resistance.
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Fig. 1-24. Thevenin equivalent circuit.

—0

Now that we have an equivalent circuit for a source, we
can look at how load impedance will affect the amount of
power we get out of the source. Figure 1-25A shows a source
connected to a variable load resistance R, . Figure 1-25B
shows a plot of the power delivered to the load as a function of
the ratio of the load resistance R, to the equivalent source
resistance R . It can be seen that the maximum power will be
delivered to the load when Ry = R, , that is, when the load
resistance is equal to the internal resistance of the source.

On the surface, this looks like a very desirable situation,
but a little deeper look will show that it probably isn’t as
attractive as it first seems. The same current flows through
both the internal source resistance and the load resistance.
When the two resistances are equal, just as much power is
dissipated internally in the source as is delivered to the load.
We get maximum power in the load, but the price we pay is an
operating efficiency of only 50%. If the load applied to a

Rs
AR .
2 .
RL o) n
S -
Z J
E .
(A) Z
<]
T T T T T
05 10 15 2 2.5
Fig. 1-25. Maximum power transfer. RURs
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broadcast transmitter were equal to its effective internal
impedance, the efficiency of the final stage would only be 50%.
Most transmitters are operated at much higher efficiencies.

In most cases. we don't know the internal impedance of a
broadcast transmitter. The manufacturer normally specifies
only the load impedance into which it is designed to work.
Actually this is all we need to know to keep an antenna system
operating properly. It is helpful, however, in trying to
understand the operation of feeder systems. to get an idea of
what impedance is seen looking into the transmitter output
terminals. We can get a very rough idea of this from the
specified load impedance and the operating efficiency of the
final stage.

Suppose, for example, that we have a transmitter that is
designed to work into a 50-ohm load at an efficiency of 70%
(Fig. 1-26). The efficiency of this circuit expressed as a
decimal, is given by
R,

Ry + R,

1
=R | —— —1
i "[eff ]

Substituting numbers into this. we get

eff =

Rearranging

1
Ry = 50[—7 = 1] = 30[{0.43] = 21.40hms

R <50

EFF=0.7

Fig. 1-26. Transmitter operating into 509 load with 70% efficiency.

Thus the internal impedance is about 21 chms. This is only
an approximation, but it shows that when a transmitter is
operating at an efficiency of greater than 50%., its internal
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resistance is lower than the source impedance into which it
operates. This means that a transmitter, in general, acts more
like a constant-voltage source than a constant-current source.
Looking at Fig. 1-26. we can see that if Ry was much lower
than R, , the voltage across the load wouldn’t change much
with small changes in load resistance. Also, if Rs was much
larger than R, , the load current wouldn't change much with
small changes in load resistance.

CONDUCTANCE, SUSCEPTANCE, AND ADMITTANCE

The behavior of circuits and circuit elements is described
in terms of the relationship between voltages and current at
their terminals. This is most commonly done by specifying
resistance, reactance, and impedance at the terminals. As we
have seen. these three parameters are ratios of voltage to
current and are measured in ohms. When circuit elements are
connected in series, the total circuit impedance can be found
by a vector addition of resistances and reactances. When
elements are connected in parallel, finding the total circuit
impedance is more complicated.

With the parallel connection it would be much easier if we
were to use the reciprocals of resistance, reactance, and
impedance. These are conductance, susceptance, and
admittance, respectively, and they are measured in mhos.
These reciprocal quantities are ratios of current to voltage.
Just as we could say that one ohm equals one volt per ampere.
we could say that one mho equals one ampere per volt.

Disadvantages of Admittance

The reason admittance is not used more widely in
broadcast work is twofold. In the first place, component values
are traditionally specified in ohms. Although it might be easier
to use mhos to solve a problem, by the time we have converted
everything to mhos we have done as much work as if we had
solved the problem using ohms. For example, suppose we
want to find the total resistance of a 2-ohm and an 8-ohm
resistor connected in parallel. The conventional approach is to
take the product of the two and divide it by their sum.

2x8 16
=——— =— = l.60hms

2+8 10
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We can find the total conductance of two conductances in
parallel by simply adding them together. To do this in the
above case, we convert each resistance to a conductance, then
add them together

G =1/2 + 1/8 = 0.5 + 0.125 = 0.625 mho

Then, to use the result in most applications, we would have to
convert the conductance back to a resistance. If we had to
make the computation by hand, we would gain nothing.
Fortunately, with an electronic calculator the computation is
very simple. Thus we can use the concept of admittance
whenever it will either simplify computation or make things
clearer.

The only remaining obstacle to using admittance,
conductance, and susceptance is that the magnitudes, being
unfamiliar, are apt to be meaningless. For example, most
broadcast engineers wouldn’t realize immediately that an
admittance of 20 millimhos was the same as an impedance of
50 ohms.

Inasmuch as the concepts are very useful, we will take a
few minutes to review their meaning and the techniques for
using them.

Conductance and Susceptance

Conductance is the reciprocal of resistance and is usually
represented by the symbol G. That is,
1
G= —
R
Thus, a resistance of 5 ohms would correspond to a
conductance of 0.2 mho or 200 millimhos.
Susceptance is the reciprocal of reactance and is usually
represented by the symbol B. The formulas for inductive and
capacitive susceptance are

B = 2xfC B - 1
2nFL
Because susceptance is the reciprocal of reactance. inductive
susceptance has a minus sign, whereas capacitive reactance
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has a minus sign. Thus the total susceptance in a parallel
circuitis B- — B, .

Admittance Y is a complex number that represents the
ratio of current to voltage. It includes both conductance and
susceptance, and in a parallel circuit it is equal to

Y=G+jB

The method of converting resistance to conductance, or
reactance to susceptance, is straightforward. We simply take
the reciprocal of one to get the other. When it comes to
converting between impedance and admittance, there is often
a great deal of confusion. For example, suppose that we have a
resistance of 4-ohms in series with an inductive reactance of 3
ohms. We know that the magnitude of the impedance is 5
ohms. The impedance may be expressed as

Z=R+ jX =4+ j3=>50hms

Now suppose that we want to find the admittance looking into
this circuit. Since 1/4 =0.25 and 1/3 = 0.33. there is a
temptation to say that the admittance looking into the circuit is

Y =G + jB =102+ j0.33mho

This temptation should be resisted. because the expression is
wrong. To find the right way to make the conversion. we must
take a look at what our equations mean.

When we write the expression Z = R + jX. we are stating
that the impedance between two wires, such as the leads of the
box in Fig. 1-27A, is the same as the impedance of a circuit
consisting of a resistance R connected in series with a
reactance X. When we write the expression Y = G + jB, we
are saying that the admittance between two wires, such as the
leads of the box in Fig. 1-27B, is the same as the admittance
seen across a circuit containing a conductance G connected in
parallel with a susceptance B. The two circuits are not the
same. If we want to find the total admittance of two elements
in series. we must take their sum over their product. just as
with resistors in parallel.

When we are concerned only with admittance and
impedance. and when they are expressed in polar form, we
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Z=R + jX y=G + B
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Fig. 1-27. Conductances and susceptances connected in series (A) and
parallel (B).

can simply take the reciprocal of one to get the other, that is,
divide the vector quantity into 1. Thus if we want to find the
admittance corresponding to an impedance of 2 , 30° ohms, we
calculate

1 1
G= = = 0.5 ,_=30° mho
2,30 Lot
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Chapter 2

Principles of
Transmission Lines

It is necessary to locate an antenna at some distance from the
transmitter. In television and FM stations the antennas are
located on tall towers to get good coverage: in AM directional
stations, antennas consist of two or more widely separated
towers. It is necessary to get the signal to the antenna with a
minimum of loss and with as little radiation as possible along
the way. Transmission lines of one type or another are used for
this purpose. In this chapter we consider properties of
transmission lines that are fundamental and apply equally to
all types of broadcast antennas. Later we will consider feeder
systems for particular antenna types.

One of the most important requirements for a
transmission line is that it must not radiate signals. Radiation
patterns can be controlled best at the antenna itself. If the line
should radiate, it would not only waste energy, but it might
radiate energy in such a direction as to defeat the directional
design of the antenna. A directional antenna is designed to
radiate a minimum amount of energy in certain directions, to
“protect”” areas served by other stations on the same
frequency. If the transmission line radiated, it might put an
interfering signal in the protected area.

Whenever an RF current flows in a wire more than about
1/10 wavelength long, the wire will tend to act as an antenna

56



and radiate energy. In a transmission line this tendency
toward radiation is minimized by using closely spacea
conductors in which currents are flowing in opposite directions
(Fig. 2-1). Inasmuch as the currents in the two conductors are
in opposite directions, the fields from them will also be in
opposition: and at a distance from the line, the fields will tend
to cancel.

MAGNETICFIELD ELECTRIC FIELD

Fig. 2-1. Fields around a transmission line.

Field cancellation is fundamental to the operation of
transmission lines, antennas, and all forms of shielding. We
can assume that whenever an electric charge moves, it will
tend to make every other charge in the universe move at the
same frequency. If other charges in the same area move inthe
opposite direction, they will have equal and opposite effects on
still other charges in the universe. This is how a coaxial cable
minimizes radiation. The field from the outer conductor
cancels the field from the inner conductor. It can be shown
mathematically that this cancellation takes place right at the
outer conductor. The outer conductor does not confine the field
in the way a water pipe contains water.

IDEAL LINE

It is easier to gain insight into the operation of many
practical devices by first considering an ideal model, studying
its behavior, and then modifying it so that it more closely
resembles a practical device. We do this with transmission
lines by starting out with an idealized line. We assume that it
consists of two parallel conductors that have no series
resistance and no leakage between them.

Having decided to neglect resistance, we can almost
intuitively draw the equivalent circuit. Since each of the wires
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has appreciable length. it has inductance. We know, therefore,
that there will be series inductances in our circuit. Since the
two conductors are in close proximity, we know that there will
be capacitance between them. It is not surprising, therefore, to
find that the ideal transmission line has an equivalent circuit
like that shown in Fig. 2-2A. We can, without serious error,
further simplify the circuit by placing all of the inductance in
one conductor as in Fig. 2-2B.

EERE]

Fig. 2-2. Equivalent circuit of an ideal transmission fine.

Of course, in an actual line the inductance and capacitance
are distributed uniformly along the line, and not lumped as
shown. Nevertheless, the equivalent circuit very closely
approximates an actual line. In dealing with this circuit, we
will not consider each of the inductances and capacitances
separately, but will deal with the inductance and capacitance
per unit length of the line. That is, we will use units like henries
per foot and farads per foot.

CHARACTERISTIC IMPEDANCE

One very important property of any transmission line is its
characteristic impedance. We can best understand this term
by considering a fictitious line that is infinitely long. Let us
connect a battery to this ideal line through a switch, as shown
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in Fig. 2-3. Current flows when the switch is closed. All of the
capacitances along the line have no charge in them before the
switch is closed, so current rushes in to charge them. The
current is not infinitely large, however, because it is limited by
the series inductances.

As a matter of fact, there is a definite relationship between
the applied voltage and the resultant current that depends only
on the construction of the line itself. Since the line is assumed
to be infinitely long, a steady current flows. No matter how
many fictitious capacitors become charged, there are always
more to charge. What this means is that energy is flowing into
the line, where it is stored in electric and magnetic fields.
Since the energy is continuously flowing from left to right in
the figure, and not returning, the voltage and current are in
phase, and the line **looks like™ a resistance.

r

—- 100V

o s s s
S A O

Z_J-:oov WI WI WI WI
1T T T T

100V
Zo= —— =500
2A

Fig. 2-3. Impedance of an ideal transmission line.

In circuit theory we call the ratio of voltage to current
impedance, and since there is a definite relationship between
the applied voltage and the resulting current in our infinitely
long line, we can say that it has a characteristic impedance. In
our example in Fig. 2-3 the applied voltage is 100V, and the
resulting current is 2A; we can say that the characteristic
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impedance Z, of the line is

100V
=——— = 50 ohms
2A

The voltage and current in the line are in phase. This means
that the characteristic impedance of our ideal line is a pure
resistance of 50 ohms.

As long as the ideal transmission line is infinitely long. it
looks just like a resistor. There would be no way of telling by
electrical measurements whether the battery in Fig. 2-3 is
connected to an infinite line having a characteristic impedance
of 50 ohms or to a 50-ohm resistor.

In Fig. 2-4 we have the same 50-ohm line connected to a
100V battery. Suppose we were to cut the transmission line at
the line A-A. Inasmuch as the transmission line is said to be
infinite, the remaining infinite section to the right of the cut
must still look electrically like a 50-ohm resistor. We can
therefore cut the line and terminate it in a 50-ohm resistance,
as shown in Fig. 2-4B, and it will still look like a 50-ohm resistor
at the input terminals. The line is then said to be terminated in
its characteristic impedance. The input impedance of a line so
terminated equals its characteristic impedance. This is true

2A A
—_ ]
]
l
—_100v | TO0
: INFINITY
T .
< : & . 2 o—
1
A
(A)
2A
—»
= 100V 500
T RESISTOR
(B)

Fig. 2-4. Termination of a transmission line.
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regardless of the length of the line. as long as we neglect any
losses. When a line is terminated in some value other than its
characteristic impedance, its input impedance will depend on
the value of the terminating impedance and the length of the
line. as well as on its characteristic impedance.

In some older literature the characteristic impedance of a
transmission line is called the surge impedance, because it is
the ratio between the applied voltage and the current that
would surge into the line if it were infinitely long.

The value of the characteristic impedance of a
transmission line depends entirely on its physical
construction. In a lossless line the characteristic impedance is

given by
Z| =V L

C

where L is the inductance in henries per unit length, and C is
the capacitance in farads per unit length. Any units of length
may be used as long as they are the same in both cases.

The characteristic impedance can also be expressed in
terms of the physical dimensions of the line. In a 2-wire open
line

d
Z, =276 log—
2D

where d is the diameter of the conductors, D is their spacing,
and both are expressed in the same unit.

In a coaxial cable in which the space between conductors
is filled with air, the characteristic impedance is given by

D
Z, =138 log-(-i-

where d is the diameter of the inner conductor, D is the
diameter of the outer conductor, and both are expressed in the
same unit.

A plot of characteristic impedance as a function of line
dimensions is given in Fig. 2-5.

61



700

600

400 /

300

200 /

CHARACTERISTIC IMPEDANCE
N OHMS
L
X

] 2 $ o 20 30 100 200 500 1000

1.

ale
a

TWO=WRE LINE
500
400 :
v A
X A
2 0 300 e
&z J,Ar
g -
00 >
£z 2 L1
5 g LT
F 100 //
0
1 2 3 45678910 20 50 100 200 500 1000
SON
d
l END VIEW OF
COAXIAL CABLE
d [+]
COAXIAL LINE

Fig. 2-5. Characteristic impedance graphs for 2-wire and coaxial ines.

REFLECTIONS

We are not always fortunate enough to have all of the
transmission lines we work with terminated in their
characteristic impedance. In standard broadcast work this is
our goal, but in FM and TV we actually use the properties of
transmission lines that are not terminated in this way to
produce changes in impedance level.
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The two extreme cases of lines that are not terminated in
their characteristic impedance is when the far or receiving
end of the line is either open or shorted. By studying these two
cases. we can gain some insight into how lines behave with
other values of terminating impedance. Let us first consider
the case when the receiving end is open.

Open Transmission Line

Figure 2-6A shows a source connected through a switch to
a line. Both the internal impedance of the source and the
characteristic impedance of the line are pure 50-ohm
resistances. For simplicity let us say that our source produces
a DC voltage and that its open-circuit voltage is 100V. When the
switch is closed, current rushes into the line to charge its
distributed capacitance. Before the energy reaches the end of
the line, the source has no way of ‘‘knowing’’ that the receiving
end is open, so the line behaves just like a 50-ohm resistor.
Thus. during this time, the voltage from the source divides
evenly between its own internal impedance and the impedance
of the line. There is 50V across the line and 50V across the
internal impedance of the source. Thus a 50V wave will
propagate along the line toward the receiving end. Bear in
mind that the only way the energy gets to the end of the line is
by being stored in the electric and magnetic fields associated
with the conductors.

Just as the voltage wave reaches the end of the line, there
is a current of 1A flowing in the equivalent inductance L of the
last section of the line. This current charges the last capacitor
C to a voltage of 50V. When this happens, the current stops
abruptly: there is no place for it to go. Current is needed to
sustain the magnetic field associated with L, and when the
current drops to zero, the field collapses. The collapsing field,
in turn. induces a voltage of such polarity as to increase the
voltage across C, as shown in Fig. 2-6B. All of the energy that
was stored in the magnetic field of L is transferred to C, and
this is just enough to double the voltage to 100V. Thus a 50V
wave propagates back toward the source, as shown in Fig.
2-6C. raising the voltage across the capacitor to 100V. The
current involved is 1A because of the characteristic
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impedance of the line. When the first capacitor in the line
charges to 100V, the whole line is charged to 100V. There is
now no current flowing in the line and no voltage drop across
the internal impedance of the source. as shown in Fig. 2-6D.
Under this condition all of the energy in the line is stored in its
capacitance.

I._,SOV | S 1A—»
v——o"" o— 0
50V—m o
PEN
100V — END
ov —
—0

o)

Fig. 2-6. Reflection from an open transmission line.
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There are two points worth noting about what happens
when a signal reaches the open end of a transmission line:

1. The voltage wave is reflected, in phase. with no change
in waveform.

2. The current is reflected. in the opposite phase. with no
change in waveform.

Shorted Transmission Line

The situation where the receiving end of the line is shorted
is shown in Fig. 2-7. In Fig. 2-7B, because the end of the line is
shorted, we end the equivalent circuit with an inductance (a
capacitor connected across the shorted end of the line would
have no effect). As in the case where the end of the line was
open. when the switch is closed a voltage wave of 50V travels
down the line. Just ahead of the wave the voltage across the
line is zero, and just behind the wave it is 30V. At the instant
the wave reaches the end of the line (Fig. 2-7B), there is
nothing to limit the current in the inductor, and it increases
until the induced voltage is just high enough to reduce the
voltage across the last capacitor to zero. Note that the current
is in the same direction, but that the induced voltage has the
opposite polarity of that traveling down the line from the
source. A very short time later the voltage rises across the
preceding inductance and discharges the next capacitor. Thus
there is a reflected wave of 50V that is out of phase with the
original wave, as shown in Fig. 2-7C. This reflected wave
reduces the voltage across the line to zero. The reflected wave
of current is equal in magnitude to the original current, and
since it is in phase with the original current, the current in the
line doubles. After the reflected wave reaches the source, the
current in the line is 2A: there is no voltage across the line, and
all of the voltage drop is across the internal impedance of the
source (Fig. 2-7D). The energy in the line is then all stored in

its inductance.
There are two points worth remembering about what

happens when a signal reaches the shorted receiving end of a
transmission line:

1. The voltage wave is reflected. out of phase, with no
change in waveform.
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Fig. 2-7. Reflection from a shorted transmission line.

2. The current is reflected, in phase, with no change in
waveform.

RF Signals on Transmission Lines

We use transmission lines to carry RF signals, not DC
voltages as in the preceding examples. The reflection action is
exactly the same for either RF or DC signals at any instant,
but in antenna work we are not interested in instantaneous
phenomena. Rather we are interested in the steady-state
behavior of transmission lines. Because RF signals are
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periodic sinusoidal voltages and currents, the manifestation of
reflection will be considerably different than in the DC case we
have just looked at.

STANDING WAVES

When an RF signal reaches the open end of a transmission
line, the voltage is reflected. in phase with the incident voltage
(Fig. 2-8). The reflected wave is what we would get if we folded
the forward or incident wave back on itself. The actual voltage
distribution along the line is the sum of the incident and
reflected waves. Although the incident wave is moving to the
right in the figure, and the reflected wave is moving to the left,
the sum of the two will be a wave that doesn’t move at all along
the line. It is called a stationary or standing wave.

— o FORWARD
(A) WAVE
®) REFLECTED
WAVE

©) RESULTING
1 STANDING WAVE

A B C D E F G H
Fig. 2-8. Standing waves.

At points B, D, F, and H, of Fig. 2-8, the voltage varies
between a maximum positive and maximum negative value.
At points A, C. E, and G, the incident and reflected waves
cancel completely at all times, so the voltage at these points is
zero. In a practical line the voltages do not actually reach
zero. but some other minimum value.

The points of maximum voltage of a standing wave are
usually called voltage loops, and the points of minimum
voltage are called voltage minima, or nulls.

It is easier to get a good feeling for how standing waves
are formed by considering the behavior of a rope that is tied
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securely at one end (Fig. 2-9). When the rope is given a shake,
a wave travels along it toward the far end. which is secured.
When the wave reaches the end of the rope, it is reflected back
along the rope. and it gives a jerk when it gets back to the
shaker's hand. If the rope is shaken rapidly, waves travel
forward and backward along the rope at the same time. If the
shaking is done at the proper rate. a standing wave is formed
on the rope, as shown in the figure. This situation is analogous
to the formation of standing waves on a transmission line. In
both cases. a standing or stationary wave is formed by the sum
of two waves of the same frequency moving in opposite
directions.

INCIDENT WAVE REFLECTED WAVE

Fig. 2-9. Standing wave on a rope.

If we were to measure the voltage of a standing wave
along a transmission line with an RF voltmeter and plot the
indications of the meter as a function of distance along the line,
we would get a plot like that of Fig. 2-10. The indication of the
meter would be proportional to the rms value of the voltage at
each point and would not show the instantaneous value or
polarity of the voltage. Standing waves are usually plotted in
this way.

Standing Waves for Various Terminations

Inasmuch as a standing wave on a transmission line is
caused by a reflection. which in turn is caused by a mismatch
at the receiving end. the nature of the standing wave depends
on the way in which the line is terminated. Figure 2-11 shows
several different terminations and the resulting standing-wave
patterns.
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Fig. 2-10. Plot of a standing wave along a transmission line.

In Fig. 2-11A the line is terminated in its characteristic
impedance, and since there is no reflection in this case, there
is no standing wave. In Fig. 2-11B we have the same situation,
but there is some loss in the line. Although there is no
reflection and no standing wave, the voltage drops along the
line because of the losses in the line.

Figure 2-11C shows the standing-wave pattern that results
when the receiving end of a transmission line is open. At the
receiving end of the line, the voltage is maximum and the
current is minimum. This is what we might expect, since with
an open circuit at the end of a line, there is no place for the
current to flow. The standing-wave pattern resulting when the
receiving end of a line is shorted is just the opposite (Fig.
2-11D). The voltage at the receiving end of the line is now
minimum and the current is maximum. This, again, is what
we might expect because there can be no voltage across a
short circuit. In the cases of open and shorted lines, the peak
value of the standing wave will be twice the peak value of the
incident voltage.

Whenever a transmission line is terminated in anything
except a resistance equal to the characteristic impedance of
the line, there will be a reflection and, consequently, a
standing wave on the line. If the termination is a resistance
that is higher or lower than the characteristic impedance of
the line, some of the energy in the incident wave will be
absorbed in the termination: but since the resistance is not
equal to the characteristic impedance of the line, some of the
energy will also be reflected.
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for various terminations.

The voltage of the reflected wave can be found from the
formula
R. - 2

Vi = Ve
‘ ' R, + Z,

where V; = reflected voltage
Ve = forward voltage
R, = terminating resistance
Zy, = characteristic impedance

Inspection of this equation shows that the reflected voltage
Ve will always be equal to or less than the forward voltage
Ve . It cannot be greater than the forward voltage.
Voltage Standing-Wave Ratio

A common measure of the magnitude of a standing wave
on a transmission line is the voltage standing wave ratio, or
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VSWR. 1t is the ratio of the maximum voltage on the line to the
minimum voltage: that is,

VSWR = YVoros

The voltage standing wave ratio is also numerically equal to
the ratio of the terminating resistance to the characteristic
impedance of the line, or vice versa. It is usually arranged so
that it will be a number greater than 1. Thus

VSWR = LA ori
Z,

15

The voltage standing wave ratio is based on the maximum
and minimum values of voltage on a transmission line. We
might just as well have specified a current standing wave
ratio: it would have the same numerical value. In fact, much
of the time, the ratio is specified simply as standing wave
ratio. The reason for using the voltage standing wave ratio is
that it is usually easier to measure the voltage on a line than
the current.

In general, a value of terminating resistance that is small
compared with the characteristic impedance of the line will
cause a standing wave pattern that is similar to that from a
short circuit, except that the standing wave isn't as large.
Similarly, with a resistance that is higher than the
characteristic impedance of the line, the standing wave
pattern will be similar to that resulting in an open circuit.
Again, the standing wave will not be as large.

In Fig. 2-11, E and F show the standing-wave patterns that
result from resistive terminations that are higher and lower
than the characteristic impedance of the line. The size, or
magnitude, of the standing wave is a measure of how much the
termination deviates from the characteristic impedance. The
closer the value of the terminating resistance to the
characteristic impedance, the smaller the standing wave.

Inductive and Capacitive Terminations

So far we have considered the termination of a
transmission line to be a pure resistance. We found that if the
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termination were equal to the characteristic impedance of the
line, all of the energy would be absorbed by the load. If the
termination had any other value, some of the energy would be
reflected back toward the source. Let’s look at what would
happen if the termination were a pure inductance or
capacitance. We know that reactive elements such as
inductances and capacitances only store energy and do not
dissipate it: therefore, in a lossless line with a reactive
termination, all of the energy will be reflected back toward the
source.

The exact nature of a reflection from a reactive
termination depends on the value of the reactance. In Fig. 2-12
the terminations have a reactance that is numerically equal tc
the characteristic impedance of the line.

Figure 2-12A shows a capacitive termination. The
capacitive reactance and the resistive characteristic
impedance of the line form a 45° phase-shifting network. The
reflected voltage is shifted 45° in one direction, and the
reflected current is shifted 45° degrees in the opposite
direction. The standing-wave pattern is such that the voltage is
maximum when the current is minimum, and voltage peaks
are separated from current peaks by 9%0°, or 1/4 wavelength
along the line.

v \vs N7/
1 y Yy
Q T
A
/ Ny \ N y Ny
[ / y ¥
¢ 3o
B

Fig. 2-12. Standing-wave pattern for reactive terminations.

Figure 2-12B shows an inductive termination. The pattern
is the same as in the capacitive case except at the load. Here
the phases of voltage and current are just the opposite. This is
because the phase shift of the voltage in an inductance is just
the opposite of that in a capacitance.
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DRIVING-POINT IMPEDANCE FOR VARIOUS LINES

We have found that every transmission line has a
characteristic impedance that depends only on the dimensions
of the line. and not on its length or what may be connected to it.
When the line is terminated in its characteristic impedance,
the driving-point impedance—that is, the impedance seen
looking into the sending end—is equal to the characteristic
impedance of the line. We have also seen that with any other
termination, of any type, there are standing waves on the line.
Since impedance is the ratio of voltage to current, we can see
that whenever there is a standing wave, the impedance varies

along the line.
Figure 2-13 shows an arbitrary length of transmission line,

terminated in a short circuit, together with a plot of standing
waves of voltage and current that exist on the line. At the
termination the voltage is zero because a voltage cannot exist
across a short circuit. The current at this point is maximum
because current is maximum through a short circuit. The
voltage reaches a maximum value at a point 1/4 wavelength
from the load and then drops back to zero at a point 1/2
wavelength away from the load. Thus, if we cut the line at a
point 1/4 wavelength back from the shorted termination (A-A
in Fig. 2-13), the driving-point impedance would be very high.
The line would for all practical purposes look like an open
circuit. If the line was cut 1/2 wavelength from the load, it
would have a very low impedance and would look like a short
circuit. At other fractions of a wavelength the line would look
like something between a short and an open circuit. We are
now considering only lines with no losses, and a short-circuit
termination, which doesn’t absorb any energy. Now we can
draw another conclusion about the driving-point impedance of
such a line: the driving-point impedance seen looking into such

-—12 )\—bl
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a line is either zero, infinity, or some value of reactance; that
is. the voltage and current at the sending end will be 90° out of
phase. A resistive value of driving-point impedance would
mean that energy was being dissipated somewhere rather than
simply being stored in the line.

In studying the behavior of open and shorted lines, it is
useful to consider an element of a line that is 1/8 wavelength.
Figure 2-14A shows a 1/8-wavelength line that is open at the
receiving end. Since the end is open and the line is not very
long. very little current will flow in it, and therefore
practically no magnetic field will exist around the wires. This
is equivalent to saying that there is little or no inductance. On
the other hand, there will be a substantial voltage between the
wires. so a substantial amount of energy may be stored in the
electric field. This is the same as saying that the line has
capacitance. Thus an open-ended 1/8-wavelength section of
transmission line looks electrically like a capacitor at its
driving point. That is, the driving-point impedance is
capacitive.

We can intuitively get a good idea of the magnitude of this
capacitive reactance. We know that the voltage and current
are shifted 90° in a 1/4-wavelength line, so it is logical to
suspect that they will be shifted 45° (in opposite directions) ina
1/8-wavelength line. Thus the 1/8-wavelength open-ended line
will behave exactly the same as a capacitive termination that
produces a 45° phase shift.

From circuit theory we know that a 45° phase shift is
produced in an RC circuit where the capacitive reactance is
numerically equal to the series resistance. In a 1/8-wavelength
line that is open at the receiving end, the capacitive reactance
seen looking into its terminals is numerically equal to the
characteristic impedance of the line. Thus, an open-ended
1/8-wavelength section of a 50-ohm line will have a
driving-point impedance equal to a capacitive reactance of 50
ohms.

Now. let's look at a 1/8-wavelength section of line in which
the receiving end is shorted (Fig. 2-14B). Here, since the end is
shorted and the line isn’t very long, there is not much voltage
drop across it or. consequently, much energy stored in the
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electric field. This means that it will have little or no
capacitance. On the other hand, since the far end is shorted,
there is a large current, and quite a bit of energy is stored in
the magnetic field. This means that inductance will
predominate. By the same reasoning that we used in
connection with Fig. 2-14A, we can conclude that a shorted
1/8-wavelength section of line will look like an inductive
reactance equal to the characteristic impedance of the line.
Thus a 1/8-wavelength section of 30-ohm line shorted at the
receiving end will have a driving-point impedance equal to an
inductive reactance of 50 ohms.

oV
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(A)OPEN-ENDED 1/8-WAVELENGTHSECTION
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(B)SHORTED 1 8-WAVELENGTHSECTION,

Fig. 2-14. Conditions in a 1/8-wavelength line.

QUARTER-WAVE SECTION

One of the most interesting lengths of transmission line is
the quarter-wave (1/4-wavelength) section. This line inverts
the impedance in which it is terminated. The shorted
quarter-wave line may be thought of as an open
1/8-wavelength section feeding a shorted 1/8-wavelength
section, as shown in Fig. 2-15A. This is equivalent to putting a
capacitance and an inductance in parallel, so the shorted
quarter-wave line looks like a parallel-resonant circuit (Fig.
2-15B)—that is, it has a very high driving-point impedance. If
there was no loss in the line, the driving-point impedance
would be infinite. In practical lines with some loss, the
driving-point impedance of a shorted quarter-wavelength
section is not infinite, but very high.
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The shorted quarter-wavelength section resembles a
parallel-resonant circuit in other ways. The driving-point
impedance is a capacitive reactance at frequencies above
resonance, and an inductive reactance at lower frequencies.

When the quarter-wave line is open at the receiving end,
the voltage at the end is high and the current low, as we would
expect with an open circuit. At the sending end—which is
quarter wavelength. or 90° away—both voltage and current
have changed by 90°. This means that at the sending end the
current is high and the voltage is zero, so at the sending end
the line looks like a short circuit. Of course, since all of the
energy is reflected from the open end, there is no dissipation of
energy. The only type of circuit that stores energy in both the
electric and magnetic fields, and yet looks like a short circuit
at one frequency, is the series-resonant circuit. The open
quarter-wave line does. indeed, look electrically like a
series-resonant circuit, as shown in Fig. 2-15C.

C

Fig. 2-15. Quarter-wave section of transmission line.
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Thus. from the sending end, a shorted quarter-wave line
looks like an open circuit, and an open quarter-wave line looks
like a short circuit. This impedance inversion takes place with
any value of termination except a resistance equal to the
characteristic impedance of the line. When a quarter-wave
line is terminated in a resistance greater than its
characteristic impedance, its driving-point impedance is a
resistance that is smaller than its characteristic impedance,
and vice versa. The mathematical relationship between the
characteristic impedance Z, of the quarter-wave line, its
terminating impedance Z,_ . and its driving-point impedance
Z, isgivenby

L _ %
Z Z,
which can also be written
7, = 2
"oz,

Thus a quarter-wave section of 50-ohm line terminated in a
25-ohm resistor will have a driving-point impedance of

_sg"_ 2500
25

= 100 ohms

Using an equation given earlier, we can calculate the reflected
voltage to be one-third of the incident voltage and opposite in
sign. With this information we can plot the standing wave on

the line (Fig. 2-16).
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Fig. 2-16. 1/4X section of 50Q terminated in 25Q.
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The quarter-wave line can be wused as an
impedance-matching transformer at a single frequency. This
is of little interest in standard AM broadcasting, but it can be
used to advantage in FM and TV antenna systems.

The equation given for the driving-point impedance of a
quarter-wave line can be used to show that a quarter-wave line
also inverts reactance. A quarter-wave line that is terminated
in a capacitance has an inductive reactance at its driving
point, and vice versa (Fig. 2-17).

A —]

P E

CAPACITANCE LOOKS L!KE INDUCTANCE AND VICE VERSA
Fig. 2-17. Reactance inversion.

THREE-EIGHTHS-WAVELENGTH LINE

The impedance of the three-eighths-wave line can be found
as easily as that of the quarter-wave line. It consists of two
sections that we are already familiar with—the
one-eighth-wave line and the quarter-wave line. Consider first
the three-eighth-wave line that is shorted at the receiving end
(Fig. 2-18 A and B). The shorted eighth-wave section will look
like an inductive reactance equal numerically to the
characteristic impedance of the line. This inductive reactance
then terminates the quarter-wave section, which will invert
the impedance so it will look like a capacitive
reactance—again, numerically equal to the characteristic
impedance of the line.

When the three-eighth-wave line is open at the receiving
end. as shown in Fig. 2-18C, the driving-point impedance is an
inductive reactance equal to the characteristic impedance of
the line.

HALF-WAVE LINE

The half-wave line is of interest because it is used in FM
and TV antenna feeder systems and because it can lead to
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Fig. 2-18. Three-eighths-wavelength section,

confusion when a line in an AM feeder system happens to be
approximately half-wavelength long. The operation of the
half-wave line is easy to see, because it consists of two
quarter-wave sections connected together, as shown in Fig.
2-19. The quarter-wave section nearest the termination inverts
its impedance. The next quarter-wave section inverts the
impedance again bringing it back to its original value. Thus
the driving-point impedance of the half-wave line is exactly
equal to the terminating impedance.

SUMMARY OF TRANSMISSION-LINE IMPEDANCES

We use the term impedance in three separate senses when
working with transmission lines:

1. The characteristic impedance Z of the line itself
depends only on the physical construction of the line,
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Fig. 2-19. Half-wave section.

and not on its length or on what might be connected to
it.

2. The terminating or load impedance, Z is the

impedance that is connected to the receiving end of
the line.

3. The driving-point or sending-end impedance Z, is the

impedance seen looking into the sending end of the
line. When the load impedance is equal to this char-
acteristic impedance, the driving-point impedance is
equal to the characteristic impedance. With any other
value of load impedance, the driving-point impedance
will depend on the load impedance, the characteristic
impedance, and the length of the line.



We can get a rough idea of the driving-point impedance for
almost any line length and termination from the situations we
looked at on the preceding pages. These can be summarized as
follows:

1. Open or shorted eighth-wave sections of line have a
driving-point impedance that is reactive and
numerically equal to the characteristic impedance of
the line.

2. Quarter-wave sections invert the impedance con-
nected to the receiving end.

3. Quarter-wave sections act like resonant circuits.

4. Half-wave sections have a driving-point impedance
equal to the terminating impedance.

Figure 2-20 shows whether the impedance along an open or
shorted line is inductive, capacitive, or resistive. These charts
are based on low- and high-resistance terminations, rather
than on short and open terminations, because, in practice, we
can get neither a perfect short circuit nor a perfect open
circuit.

VELOCITY OF PROPAGATION

In the preceding sections of this chapter, we have
considered the lengths of transmission lines in fractions of a
wavelength. We have ignored the velocity of propagation of a
signal in a particular line, on which depends the length of a
wave.

The wavelength of a signal—that is the physical length of
one wave of the signal in space—is given by

A=<

where ¢ is the velocity of propagation—300,000,000 meters per
second—and f is the frequency in hertz. If a signal were to
travel at this same velocity in a transmission line, we could
use this formula to find the physical length of a wavelength of
transmission line. But, more often, the velocity is somewhat
lower in a transmission line than in free space.

There is a relationship between the characteristics of free
space and the velocity of propagation in it that will give us a
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little insight into velocity of propagation in a transmission line.
The velocity of propagation of an electromagnetic wave in
space is not just an arbitrary velocity, but is related in a
definite way to the electric and magnetic properties of space.
The velocity is given by

1

Ky €
where u , = magnetic permeability of free space
& = permittivity of free space

C =

As stated earlier, in the rationalized mks system of units,
these properties of space are given by

o = 1.26 X 10°°
& =885 x 107"
Thus
c =126 x 885 x 107" /1 =300 x 1 meters per
second

You will probably never have any occasion to use the values of
% and & . but the above equation will shed a little more light
on the subject of propagation.

We can write a somewhat similar equation for the velocity
of propagation in a transmission line:

1
V= —m——
VLC

where L is the inductance of the line in henries per unit length,
and C is the capacitance of the line in farads per unit length.
The unit of length may be anything—feet, meters, etc.—just as
long as the same unit is used for both inductance and
capacitance.

The relationship between this equation and the preceding
one for the velocity of propagation in free space can be
appreciated by noting that permeability enters into the value
of inductance, and permittivity enters into the value of
capacitance. In an open-wire line in which the wire is made of
nonmagnetic material and most of the space between the
wires is filled with air, the velocity of propagation will be very
close to that in free space. If, however, the space between the

83



conductors is filled with a material that has a dielectric
constant greater than 1, the capacitance will increase and the
velocity of propagation will decrease. In the extreme case of a
coaxial line that is filled with a dielectric material such as
polyethylene, the velocity of propagation is as low as 60% of
the value of propagation in free space.

Manufacturers of transmission lines specify the velocity of
propagation in their products in terms of a velocity factor
(VF). The velocity factor is the ratio of the velocity in the line
tothe velocity in free space. It is expressed either as a decimal
or a percentage. Thus, for example, if a line has a velocity
factor of 0.8, or 80%. the velocity of propagation will be 809% of
the velocity in free space.

Now we are in a position to find wavelengths in actual
transmission lines. The physical length A of a wavelength in
meters in a particular type of transmission line is given by

300
A= TXVF

where VF is the velocity factor of the line and f is the
frequency in megahertz.

The number of wavelengths in a given physical length of
transmission line is given by

l
> = A
where l, = number of wavelengths
I = physical length of the line in meters
A = length of a wavelength in the particular cable as
given by the preceding equation

In many applications it is more convenient to express the
electrical length of a transmission line in electrical degrees.
Inasmuch as there are 360° in a wavelength, the length of a
cable in degrees is given by

ALY = A1 X360 X VF
where the symbols have the same meaning as in the preceding
equations.
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LOSSES IN TRANSMISSION LINES

So far, in all of our discussions of transmission lines, we
have considered only ideal lines with no losses of any kind. In
many practical problems we can take this approach and
ignore losses. In other cases, losses must be considered.

In any practical transmission line there are two kinds of
losses—those that result from the series resistance of the
conductors in the line and those that result from leakage
between the conductors of the line. These two types of losses
can be taken into consideration by adding two components to
our equivalent circuit for a transmission line (Fig. 2-21). The
series resistance R represents losses due to the resistance of
the conductors, and the shunt component G represents losses
due to leakage between the conductors. The shunt component
is more conveniently considered as a conductance: that’'s why
we use the symbol G. In most broadcast applications the
leakage is so low that G is very low and can be ignored.
(Remember, a low conductance corresponds to a high
resistance.)

Fig. 2-21. Loss resistances in transmission lines.

The loss that is significant in broadcast applications is the
series resistance of the conductors. The most common type of
transmission line used in broadcasting is the coaxial line, so
we use this type of line in our investigation of losses. Because
the inner conductor is smaller than the outer one, its
resistance is higher and it accounts for most of the loss in a
coaxial cable.

Due to the skin effect, RF currents only flow in the outer
skin of a conductor. The skin depth decreases as frequency
increases, hence the resistance increases. As a matter of fact,
the series resistance of a coaxial cable increases very nearly
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as the square root of the frequency. Thus the loss in a coaxial
cable will be much greater at FM and TV frequencies than in
the standard broadcast band.

It is interesting to note that there is a relationship between
the characteristic impedance of a coaxial cable and the loss
that it introduces. Assume that the diameter of a coaxial cable
is some known value. It might appear that we could reduce the
loss by increasing the diameter of the inner conductor. To
some extent this is true, but as the diameter of the inner
conductor is increased, the characteristic impedance of the
cable is lowered. This means that the voltage-to-current ratio
becomes smaller. In other words, more current will be
required to transmit a given amount of power. Since the loss is
proportional to the square of the current, we will eventually
reach a point where losses actually increase as the diameter of
the inner conductor increases.

Suppose that we take the opposite approach and reduce the
diameter of the inner conductor. This raises the characteristic
impedance of the cable and reduces the current, but it also
raises the resistance of the inner conductor, so a point will
again be reached where the losses increase.

Thus there is an optimum ratio of the outer- and
inner-conductor diameters that will result in minimum loss. In
cable where the space between the conductors is air, this ratio
is about 3:1, giving a characteristic impedance of about 70
ohms. This value is rarely used in broadcasting because of
other considerations, such as power-handling capacity, which
optimizes at a value of characteristic impedance closer to 50
ohms.

There is another effect of losses in transmission lines that
is rather unexpected. When we take the two resistances in Fig.
223 into consideration, the equation for the characteristic
impedance becomes

_/R+jL
G+ij,C

where L and C are the inductance and capacitance per unit
length, R and G are resistance and conductance per unit
length, and w is 27f. From this equation we can see that the
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equation used earlier results when R and G are small enough
to be ignored. Surprisingly, if the series resistance R becomes
large. the characteristic impedance will have a reactive
component. In broadcast work, lines are short and the j, L
term of the equation is high, so the reactive portion of the
characteristic impedance is negligible.

REFLECTION COEFFICIENT

If we know the characteristic impedance of a transmission
line, its length, and the load impedance connected to it, we
have enough information to compute the voltage and current
at any point on the line, as well as the standing-wave ratio.
There are many different ways in which the parameters of a
transmission line can be manipulated mathematically. In the
process many different characteristics of transmission lines
are described. The practical value of this is that we have many
different measurements we can make to obtain the
information we need.

At standard broadcast frequencies we make heavy use of
impedance bridges, so we must be able to determine the
behavior of a transmission line from impedance values. At the
higher frequencies used for FM and TV broadcasting, we
usually use some sort of reflectometer, which tells us the
standing-wave ratio, or the forward and reflected power on the
transmission line. Therefore we must be able to use these
parameters to determine the behavior of the transmission
lines. By means of several equations we can usually find what
we need to know about this behavior from the information that
is available from our instruments.

At the load of a transmission line, and all along the line for
that matter, we consider three different voltages. The first is
the forward voltage V; , which travels down the line toward the
load. The second is the reflected voltage V,, which travels
back along the line toward the source whenever the load
impedance is not equal to the characteristic impedance of the
line. The third voltage interest is the actual voltage along the
line, which is the vector sum of the forward and reflected
voltages at each point along the line. This voltage, as we have
seen, varies with the distance along the line and is called a
standing wave.
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One useful parameter that specifies the nature of the
reflection is the reflection coefficient K. It is a vector and is
the ratio of the reflected voltage to the forward voltage, which
isgivenas

V.
K=—
v,

The usual way of specifying the reflection coefficient is in
polar form: K ~ 6.

The reflection coefficient is merely another way of
specifying what we have already specified in other terms. It is
not surprising, therefore, to find that the reflection coefficient
is related to the load impedance Z and the characteristic
impedance Z, of the line. The relationship is
Z. -4
Z, + %

K=

This equation can be rearranged to the following form, which
is useful in some applications.

Z, Z,
K= — -1 — +1
YA %

The reflection coefficient is related to the standing-wave
ratio by the equations
1+ K| IK| = VSWR -1
1 - |K| VSWR + 1

VSWR =

The bars in |[K| mean that, in these two equations, we are only
interested in the magnitude of the reflection coefficient: we
don't need the phase angle, because a standing-wave ratio is
not a vector. It tells us the ratio of the maximum to minimum
voltage on a line, but it doesn’t tell us where the maximum and
minimum voltage occur along the line.

Two additional concepts that are useful for dealing with
transmission lines are forward power and reflected power.
These concepts can be extremely troublesome if not properly
understood. We can avoid confusion by remembering that
power is merely the rate of flow of energy: energy is the more
fundamental concept. Bearing this in mind. we can define the
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forward power on a transmission line as the average rate at
which energy moves from the source toward the load. If the
line was terminated in its characteristic impedance, the
forward power would be the same as the actual power
delivered to the load. assuming that there are no losses in the
line.

When a line is not terminated in its characteristic
impedance. some of the energy will be reflected from the load.
Thus we can define reflected power as the average rate at
which energy flows back from the load. along the line toward
the source.

There are several points to keep clear about forward and
reflected power. They are both merely ways of expressing the
rate at which energy flows back and forth along a transmission
line when the load impedance is not equal to the characteristic
impedance of the line. This rate has little to do with how much
power is being delivered by the transmitter. For example, it is
possible to have a transmission line with a forward power of
150W and a reflected power of 50W with a transmitter
delivering only 100W. The forward and reflected power deal
only with the energy flow on the line that results from the line
‘being mismatched. A good example of this is the ideal lossless
line that is open at the receiving end. If the characteristic
impedance of the line was 50 ohms and the voltage applied to
the line by the transmitter was 100V, both the forward and
reflected powers would be 200W. and yet, once the standing
wave was set up. the transmitter wouldn't be delivering any
power at all.

Obviously. if a transmission line is terminated in its
characteristic impedance, there will be no reflected power and
no standing waves. If the line is mismatched. there will be
standing waves, and the reflected power will no longer be zero.
Both standing waves and reflected power are measures of the
same thing. We can convert from forward and reflected power
tostanding-wave ratio by the equation

\/reflected power
forward power

VSWR = -
g /reflected power

forward power

1+
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PRACTICAL TRANSMISSION LINES

There are three types of transmission lines that are used in
broadcasting: open-wire lines, coaxial cables, and hollow
waveguides. The coaxial cable has almost completely
replaced the open-wire line, but there are still a few AM
stations that use open-wire lines. Waveguides are only used at
the UHF TV.

Open-Wire Line

The earliest transmission line used in broadcasting was
the open 2-wire line, shown in Fig. 2-22. This line is simple and
reliable, but unfortunately the fields from the conductors are
strong at an appreciable distance from the line, with the result
that any conductors in the vicinity of the line will disturb its
characteristics. If a transmission line of this type is not to
radiate energy, the currents in the two conductors must be
equal in magnitude and opposite in direction. If any
surrounding structure—or even the ground, for that matter—is
closer to one conductor than the other, there will be capacitive
currents that will cause the line currents to be unbalanced.
Thus the line will radiate.

0:5\ L)
| ) 1\\
" LINES
u_@L Yo~
b\ b

SPREADERS

Fig. 2-22. Two-wire transmission line.

A somewhat more recent open-wire line uses five or six
conductors in an arrangement such as that shown in Fig. 2-23.
The outer conductors in this arrangement are all at the same
potential and are connected to the grounded side of the
transmitter and the antenna. This arrangement is something
like a crude approximation to a coaxial cable. Unfortunately
the conductor spacing between the spreaders will change as
the wires swing in the wind, which will cause the
characteristic impedance of the line to vary. These lines are
rapidly being replaced by coaxial cable.
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Fig. 2-23. Five-wire open transmission line.

Solid-Dielectric Coaxial Cable

Figure 2-24 shows a coaxial cable that consists of a solid or
stranded inner conductor with a braided outer conductor. The
space between the inner and outer conductors is filled with a
solid dielectric material such as polyethylene. The entire
assembly is covered with a weathertight plastic jacket.
Usually the power-handling capacity of this type of line is quite
limited, and it is rarely used except in some low-power AM
stations. This cable is flexible, and for this reason has often
been used in sampling systems for directional antennas. In
many cases, however, it is being replaced because it tends to
be unstable, expecially when the ambient temperature varies
over a wide range.

Semirigid Coaxial Cable

Semirigid coaxial cable is made with soft-drawn copper
inner and outer conductors. The line is not particularly
flexible, but it can be bent a few times before breaking. and
therefore it is easy to fit to a particular application. The cable
is made by a continuous process and is shipped on reels. Thus
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it is possible to get single runs that are long enough to reach
from the transmitter to the antenna in many stations. This
avoids the necessity of making splices and joints, which are
time consuming and potentially troublesome.

In the semirigid cable the inner and outer conductors are
spaced by either beads or a helix of dielectric material. These
lines are becoming popular for broadcast use because they are
easy to install and because very low standing-wave ratios can
be obtained. Figure 2-25 shows a sketch of a helical insulated
line.

Fig. 2-25. Semirigid line with helical insulator.

Rigid Coaxial Lines

The coaxial line with the lowest losses and the highest
power-handling capability is the rigid line, which comes in
sizes of up to 6 in. diameter. Because it is rigid, it cannot be
shipped on reels. It is usually supplied in 20-foot lengths. The
lengths are fastened together by flanges and inner-conductor
projections, called bullets (Fig. 2-26).

Many rigid coaxial lines are pressurized with nitrogen or
dry air to keep moisture out of the space between the

Fig. 2-26. Rigid coaxial cable line.
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Table 2-1. Typical Attenuation Values for Coaxial Lines.

Attenuation. dB per 100 {t. at the Following
Line Frequencies. MHz Velocity
Factor
1.0 5.0 10.0 50.0 100 500
RGS/U 0.175 0.405 0.582 137 21 5.2 0.66
RG-17U 0.061 0.158 0.238 0.62 095 2.7 0.66
Rigid 7/8in. 0.0375 0.089 0.124 0.28 042 11 0.87
15/8in. 0.0195 0.043 0.063 0147 0213 0.48 0.96
31/8in. 0.0104 0.023 0033 0.073 0108 024 098
61/8in. 0.0049 0.011 0.016 0033 0.049 01 098
Heliax™ 7/8in. 0.034 0.077 on 0.25 0.36 0.46 0.92
3in. 0.013 0.029 0.042 0.097 0130 033 093
5in. 0.0072 0.017 0.023 0.053 0.076 019 093

*Registeredirade name

conductors. Pressure gauges are provided so that any leaks in
the line can be detected.

The selection of a particular line is based on allowable loss
or attenuation, power-handling capability, and ease of
installation and maintenance. The attenuation of a line
increases with frequency. Table 2-1 shows the attenuation of
several different types of coaxial cables at various

frequencies.
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Chapter 3

Radiation
and Propagation

There is no doubt that radiation is the least understood aspect
of broadcasting. Most textbooks on the subject are of little
help. because they are either too mathematical or too
superficial. In this chapter we will review the subject of
radiation, using no more mathematics than necessary. We will
start out with the half-wave antenna because it is easiest to
understand, then we will consider antennas that are more
commonly used in broadcasting.

In considering radiation we will not be very anxious to
make everything strictly rigorous, rather we will take an
approach that will make the subject more palatable.

Before getting into the details of how an antenna radiates
energy, we should make a distinction between two different
types of fields we will encounter:

1. The induction field about an antenna is the same as the
electric or magnetic field that is found around any
conductor that carries electricity. Its intensity
diminishes rapidly with distance, or to state it more
rigorously: The intensity of the induction field varies
inversely with the square of the distance from the
source of the field. Thus, if we move twice as far from
the source of an induction field, the intensity of the
field will be one-fourth as great. This field diminishes
so fast that it is of no value for broadcasting.
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2. The other field around an antenna is the radiation
field. This field is properly called an electromagnetic
field because it has both electric and magnetic
components. These components act together to
propagate the signal. The radiation field diminishes
much more slowly with distance than the induction
field: its intensity is inversely proportional to the
distance from the antenna. It is this characteristic of
the radiation field that makes it useful for broad-
casting.

As discussed in the preceding chapter, when elec-
tromagnetic energy is carried by a transmission line, it isn’t
carried in the wires, but in the electric and magnetic fields
associated with the wires. The conductors merely serve to
guide the energy and cancel the fields at some distance from
the transmission line. The object of a transmission line is to
get energy from one place to another with a minimum of
radiation. The object of an antenna is to radiate a maximum
amount of the energy fed to it.

INDUCTION FIELD

In Fig. 3-1A we have a source of RF energy connected to a
transmission line. For the sake of simplicity, we will assume
that it is a 2-wire open line. The receiving end of the line is
open, so if it is an ideal line, all of the energy reaching the
receiving end is reflected back toward the source. We can
think of the last 1/4 wavelength of the line, marked in the
figure, as an open-ended quarter-wave section of transmission
line. Such a section looks electrically like a series-resonant
circuit. If we bend the ends of the last 1/4 wavelength of the
line out so that they are at right angles to the wires in the line
(Fig. 3-1B) we have what is commonly called a half-wave
dipole antenna at the receiving end of the line.

By analogy with an open quarter-wave section of
transmission line, the half-wave dipole seems electrically like
a series-resonant circuit when we look into its terminals. The
half-wave dipole differs from an ordinary series-resonant
circuit in many ways. but we can gain a little insight into
antennas by comparing them.
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Fig. 3-1. Development of a dipole !
from a transmission tine.
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In Fig. 3-2A there is no charge in the capacitor in the
series-resonant circuit. When the signal is applied, current
rushes in to charge the capacitor. Because the current is
maximum, the magnetic field around the coil is maximum. An
analogous thing happens with the dipole. At the instant shown,
there is no charge on the ends of the dipole. The current is
maximum, carrying positive charges to one end and negative
charges to the other. Thus the magnetic field around the dipole
is maximum.

Figure 3-2B shows the situation a quarter of a cycle later.
In the resonant circuit the capacitor is fully charged, so the
current, and hence the magnetic field, is zero. All of the energy
is stored in the electric field of the capacitor. Back at the
dipole the ends are charged and the current and the magnetic
field are zero. The electric field between the ends of the dipole
is maximum.

In Fig. 3-2C we have progressed still another quarter of a
cycle. This is one-half cycle, or 180°, later than when we
started so we can expect things to be 180° out of phase with
what they were in Fig. 3-2A. The current in the resonant circuit
and dipole is maximum, as is the magnetic field, but the
current is flowing in the opposite direction of the current in
Fig. 3-2A. It is an easy step to Fig. 3-2C, where the charge is
maximum and the current and magnetic field are minimum.
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Thus in Fig. 3-2 we see that the energy in both a
series-resonant circuit and a half-wave dipole is stored
alternately in the electric and magnetic fields. Assuming that
there are no losses and no radiation, the energy simply
pulsates back and forth between the electric and magnetic
fields around the antenna. These fields constitute what we
called the induction field of the antenna. Note that they are 90°
out of phase with each other.
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Fig. 3-2. Analogy of dipole and series-resonant circuit.

If this were all there is to it, antennas would be simple, and
easy to understand. Of course, antennas must radiate energy.
To understand radiation. we must go back to some of the most
fundamental concepts of electricity and modify them slightly
from the way that we learned them. Most of us first studied
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electricity from the viewpoint of circuit theory. This is fine
when we are dealing with circuits, where currents and
voltages stay in the wires where we want them. It is
inadequate when we deal with antennas, where we don’t want
the signals confined to circuits, but radiated through space.

INDUCED VOLTAGE

Figure 3-3 shows the familiar principle of induced voltage.
When a conductor intercepts a changing magnetic field, a
voltage is induced in the conductor. The induced voltage is
proportional to the rate of change of the magnetic field. The
equation for the induced voltage is

v= _,A4¢

—n—

At

where V is the induced voltage, n is the number of turns on the
coil, A¢ is a small change in magnetic flux, and At is a small
change in time. Thus A¢/At represents the rate of change of
the magnetic field. The minus sign indicates that the polarity
of the induced voltage is such that any current it causes to flow
produces a magnetic field opposing the changing field that
caused the induced voltage. This is about as far as we ever
carry this principle when we are studying circuit theory.

. . CHANGING
Fig. 3-3. Principle of induced MAGNETIC

voltage.
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As far as the principle is concerned, the coil isn't
necessary at all. Whenever we have a changing magnetic field,
we have a changing electric field—that is, we have an induced
voltage, even in an insulator. Of course, unless we have a
conductor, we have no way of measuring the induced voltage.

The general principle, then, is that whenever we have a
changing magnetic field, we also have a changing electric
field. even in free space. The intensity of the electric field is
proportional to the rate of change of the magnetic field. In
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Fig. 3-4. Magnetic field induced
by current.

fact. when we are dealing with radiation, it is best to think of
the electromagnetic field as the fundamental concept, and the

electric and magnetic fields as components of it.

ELECTRIC DISPLACEMENT

Whenever an electric current flows in a conductor, there
will be a magnetic field surrounding the conductor (Fig. 3-4).
Before we get into radiation, we must explore this concept in
more detail. Figure 3-5A shows an RF source connected
through leads to a capacitor. We know that an RF current will
flow in the leads and that, as a result, a magnetic field will
enclose the leads. Of course, the magnetic field will vary at the
frequency of the source. Now let’s look at what happens inside
the capacitor.

We know that the dielectric material between the plates of
the capacitor is actually an insulator and that no current, or at
least no electrons, can pass through it. When we studied
elementary electricity, we learned that there is an apparant
current in the capacitor, which is actually the result of
electrons ‘‘piling up’’ on one plate and draining off the other
plate. For this reason the apparent current through a
capacitor is also called a displacement current.

We shall now consider the interesting question of whether
there is a magnetic field associated with the displacement
current inside a capacitor. This isn’t an easy question. In fact,
there was a great deal of debate on the subject among early
workers in electricity. If we think of an electric current only as
a flow of electrons, we are tempted to say that displacement
current inside a capacitor is a fictitious thing and couldn’t
possibly produce a magnetic field. This is wrong. James Clerk
Maxwell, a Scottish physicist. was the first to postulate that
there is in fact a magnetic field associated with displacement
current. He used this assumption in deriving his now-famous
equations.
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Earlier we found that whenever we have a changing
magnetic field, we also have a changing electric field. Now we
add to this that whenever we have a changing electric field,
even when we do not have a conductor ( Fig. 3-5B), we also
have a changing magnetic field. Thus we see that the two fields
are inseparable. Inasmuch as we see that these fields can exist
and produce each other even in free space, the concept of
radiation is becoming clearer.
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Fig. 3-5. Electron current and dis-
placement current with their
magnetic fields.

(B)

PROPAGATION TIME

Electromagnetic phenomena do not take place instan-
taneously: there is some time required. Electromag-
netic fields do not travel at infinite velocity: they travel at the
velocity of light, which, although fast compared with any other
phenomenon, is still not infinite.
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To see why we might need a time delay to explain
radiation, look at Fig. 3-6. Here we have a half-wave dipole at
the same instant of time as in Fig. 3-2B. The charge between
the ends of the dipole is maximum, and the current is
minimum. According to the law of charges, unlike charges
attract. How, then, can the opposite charges flow away from
each other to opposite ends of the dipole (Fig. 3-6)? If
electromagnetic phenomena took place instantaneously, the
charges could not do this. The fact is, the positive charges at
the top of the dipole, at the instant shown, are actually still
being repelled by the positive charges that were at the other
end of the dipole a half-wave earlier in time. This occurs
because it takes 1/2 wavelength (180°) of time for
electromagnetic energy to travel 1/2 wavelength through
space.

+ + + +
+ + +
+ +
+
@ Fig. 3-6. Charges on dipole at one
instant.

RADIATION

Once we have one kind of field, it will generate the other,
and the action will continue causing the energy to propagate
through space. This is shown in a rather crude fashion in Fig.
3-7. Here we have an electric field at the left, and as it

\\ [ \ DIRECTION
@ C |> OF PROPAGATION
—_—
N
H
/N
7 N~ S Fig. 3-7. Electric and magnetic

fields.
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collapses. it sets up a magnetic field, which in turn sets up
another electric field, and so on.

Just how the field gets free of the antenna in the first place
isn't as easy to visualize. A rough idea of what happens can be
gained from Fig. 3-8. In Fig. 3-8A the charges at the ends of the
antenna are maximum, as is the electric field. In Fig. 3-8B the
current is such as to reduce the charges and hence the field.
The lines of the field at the antenna are brought closer
together. The field doesn’t collapse completely, however,
because some time is required for all electromagnetic effects
to be observed at a distance. Thus, as the opposite charges on
the ends of the antenna come together and cancel each other,
the lines of the field become closed on each side of the antenna
{Fig. 3-8C). About this time, the field in the dipole reverses, so
it repels the electric lines that have become detached, causing
them to propagate through space as shown in Fig. 3-8D. Thus
we will have a field with both electric and magnetic
components, moving through space at the speed of light.
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Fig. 3-8. Creation of closed electric lines at an antenna.

The electric and magnetic lines are closed paths, so near
the antenna, the wavefront will appear to be spherical.
However, the sphere becomes large rapidly, and as soon as we
are some appreciable distance from the antenna, we can
consider the wavefront to be a plane, with the electric and
magnetic lines at right angles.

In antenna work the electric component of the field is
usually called the E-field, and the magnetic component is
called the H-field. This is because the letter E is used to
symbolize the electric field intensity, and the letter H is used to
symbolize magnetic field intensity.
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POLARIZATION

If a straight antenna is used to radiate a wave, the electric
field lines are parallel to the antenna. So far, we have only
considered antennas in space; we have not considered the
ground. In broadcast work, antennas are usually either
vertical or horizontal with respect to the ground. The electric
and magnetic fields are also so oriented. We call the direction
of the fields the polarization of the wave. Traditionally the
direction of the electric field, rather than the magnetic field, is
taken as the reference. Thus the wave from a vertical antenna,
whose electric field is perpendicular to the ground, is called a
vertically polarized wave. Hence all waves encountered in the
standard broadcast band are vertically polarized. Likewise,
the wave from a horizontal antenna, whose electric field is
horizontal, is called a horizontally polarized wave. Waves from
FMand TV antennas are usually horizontally polarized.

It is possible to have a combination of vertical and
horizontal polarization, in which the electric field actually
rotates with respect to the ground. This is called circular
polarization. At this writing, it is being used extensively in FM
broadcasting and experimentally in TV broadcasting.

Figure 3-9 shows the orientation of the fields for vertical
and horizontal polarization. It shows the electric field lines at
an instant of time. The lines are actually propagating through
space in the direction shown (left to right). The shaded sine
waves in the figure show the relative field intensity at various
points in space at a particular instant.

FIELD INTENSITY

The intensity of a radiated wave is measured in volts per
unit of distance. The fundamental unit is the volt per meter
(V/m). A field having an intensity of one volt per meter is very
strong compared with most of those encountered in
broadcasting, so the millivolt per meter, or even microvolt per
meter, is commonly used.

A field having an intensity of one volt per meter (1 V/m)
would induce one volt in a conductor one meter long if the
conductor was held parallel to the electric field and
perpendicular to the direction of the wave. The radiation field
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Fig. 3-9. Vertical and horizontal polorization.

varies inversely with the distance from the antenna. Thus if a
wave has a field intensity of 50 mV/m at a point one mile from
an antenna, it will have a field intensity of 25 mV/m at a
distance of 2 miles from the antenna.

The intensity of an electromagnetic field in volts per meter
is really only a measure of the electric field or the electric
component of the electromagnetic field. Fortunately we need
not specify the intensity of both the electric and magnetic
components of the electromagnetic field to describe it
completely. Once we are far enough away from the antenna
that we can consider the waves to be plane waves, there is a
very definite relationship between the electric component of a
wave and the magnetic component. We only need to specify
one of them to completely describe the intensity of the wave,
and the electric component is traditionally used for this

purpose.
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There 1s an intriguing relationship between the
magnitudes of the electric and magnetic components of a
plane wave in free space. The ratio of the two is

E 1

H_ o / &

where E is the intensity of the electric field in volts per meter,
H is the intensity of the magnetic component in amperes per
meter ¢ is the permittivity, and u, is the permeability of free
space. Thus we have

E ___ 1  _3p Vm
H \/8.85 x 1077 A/m
1.26 x 105

Since the meters in the numerator and denominator cancel
out, we have

E

— =377V/A

H
That is, the ratio of the electric component to the magnetic
component of a plane wave is 377V per ampere. Now, we know
that the ratio of volts to amperes is impedance, so we conclude
that free space has a characteristic impedance, or wave
impedance, of 377 ohms. This numerical value is not of
particular interest, but it does make it clear why we have to
measure or specify only one component of the field.

FIELD INTENSITY VERSUS DISTANCE

The radiation intensity of a wave varies inversely with the
distance from the antenna. The reason for this will become
clear if we go back to the more fundamental concepts of power
and energy. What the antenna is actually radiating is
electromagnetic energy. It is this energy that causes the
charges in receiving antennas to move when impinged on by
the radiated wave. The rate at which energy is propagated by
awave can be specified in terms of watts per square meter.
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Suppose that the antenna in Fig. 3-10 is radiating energy
through the beam shown at a rate of 8W. At point A, the beam
intercepts an area of just one square meter. We can say that
the power density, or wave power, at that pointis 8 W/nr .

8W ANTENNA
1m?2
4m2
B
*-—A—>
- 2A -

Fig. 3-10. Variation in power density with distance.

At point B, which is twice as far from the antenna as point
A. the beam intercepts an area of 4 nt . The beam still has a
power of 8W, so the power density at point B is 2 W/nrt
(8/4 = 2). Thus, when we double the distance from the
antenna. we decrease the power density to one-fouth. We can
say, therefore, that the power density in watts per square
meter varies inversely with the square of the distance from the
antenna.

In standard broadcast antennas we are not interested in
power density. Rather we measure signal strength in terms of
field intensity in volts per meter. The field intensity is
proportional to the square root of power density: therefore, the
field intensity varies inversely with the distance, not the
square of the distance, from the antenna.

GAIN AND DIRECTIVITY

Much antenna-design work involves getting an antenna to
radiate more energy into one region than into another. One
measure of this property of an antenna is its gain. This is a
relative term. If we say that an antenna has a certain amount
of gain, we must state some reference. We might, for instance,
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say that an antenna has a gain in a given direction of 2,
referred to a half-wave dipole. This means that the antenna
radiates twice as much power into a region as a half-wave
dipole for the same value of transmitted power.

One reference that is widely used in antenna work is the
isotropic antenna, which radiates uniformly in all directions.
Of course, it is not possible to actually build an isotropic
antenna. No real antenna will radiate equally in all directions.
Nevertheless, the isotropic antenna is a useful reference
because its performance is easy to calculate. Since it is a
fictional device, we avoid the problem of making a standard
antenna that will perform properly.

The field intensity around an antenna is always specified
at some distance from the antenna. In broadcast work this
distance is almost universally chosen as one mile. The formula
for the area of a sphere is

A = 4=7

where r is the radius of the sphere. Thus if we have an
isotropic antenna at the center of a sphere having a radius of
one mile, and if the power radiated was 1 kW, the power
density at the surface of the sphere would be

1000 0.000031 W/n’ = 31 uW/nr
= —m—m—— = ). m = nr
2 47 (1609)° a

Note: There are 1609m in a mile.

Since the wave impedance of free space is 377 ohms, we
have a means of computing the field intensity when we know
the power density. Using a formula that is analogous to the
power formula

Voltage = VpR
we can say that the field intensity in volts per meter is given by

/ watts
E= X 377 ohms

J

meter

= V0.000031 x 377 = 0.1076 V/m
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Thus the field intensity from an isotropic antenna at a distance
of one mile with a radiated power of 1 kW is 107.6 mV/m.

The gain of an antenna is usually expressed as a power
gain. If an antenna has a gain of 2, it will radiate twice as
many watts per square meter into a given region as an
isotropic antenna would. If we want to know the field intensity
at one mile, produced by an antenna that has a gain of 2, with a
radiated power of 1 kW, we must take the square root of the
power gain. Thus

E =107.6 X V2 = 152.2mV/m

Antenna gain is frequently expressed in decibels. The
formula for computing the gain in decibels is

G, =10logps /D

where p is the power density from the antenna under
consideration, and p,, is the power density from the
reference antenna. The same units must be used for p and
P . - Interms of field intensity the gain in decibels is given by

2
- =2OIog—E—

ref - ref

G, = 10log

where E is the field intensity of the antenna under
consideration, and E,,; is the field intensity from the reference

antenna. The same units must be used for E and E,.; .

DETERMINING PATTERN SHAPE

The statement that an antenna has gain suggests that we
can get something for nothing. Of course, this isn’t true. If an
antenna radiates more energy into a region than would be
radiated by an isotropic antenna, it must radiate less energy
into some other region. The measure of how much energy an
antenna radiates into various regions is called the radiation
pattern of the antenna.

The mathematical procedure for computing the radiation
pattern for an antenna of arbitrary shape and size is very
involved. Often the equations cannot be solved, because their
solution depends on an accurate knowledge of the distribution
of charge and current all along the antenna. If the pattern of an
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antenna is known through measurements, the mathematician
can go back and manipulate the equations until they agree
with the measured results. In all but the simplest cases, he
cannot accurately predict the pattern in advance.

Fortunately for the broadcast engineer, it isn’t necessary
to compute the patterns of basic antenna elements. This has
been done many times, and the results are readily available. It
is helpful, however, to know the principles involved, because
they give some insight into the behavior of actual antennas.

Figure 3-11 shows an elementary antenna that is very
short. Mathematically speaking, its length is infinitesimal.
Since the antenna is very short, we can assume that the
current is the same all through it. Of course, such an antenna
is impossible to build, and it wouldn’t be worth trying to
approximate, because its losses would be extremely high. It is
useful to consider, however, because a practical antenna can
be thought of as being made up of a very large number of these
elementary antennas—which are usually called elementary
dipoles—and the contributions of all of them can be added to
find the field from the real antenna.

]_.1 2
!

Fig. 3-11. Elementary infinitesimal dipole.

By just looking at the antenna of Fig. 3-11, we can predict a
few things about it. From an earlier discussion we know that
the electric field is parallel to the antenna, and the magnetic
field is at right angles to the electric field. Thus the maximum
radiation will be broadside to the antenna, toward point A. The
radiation will be zero off the ends of the antenna. It isn't
surprising, then, that the radiation falls off as the cosine of the
angle . What we have no way of knowing—without solving
some rather unpleasant equations—is the actual intensity of
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the'field. Avoiding the unpleasant equations, we find that the
field intensity is given by

60
E= ——]lcos#
dx

where E = field intensity in volts per meter
d = distance from antenna in meters
A = wavelength of signal in meters
= current in amperes
I = length of antenna in meters
= angle from a plane perpendicular to antenna

Strictly speaking, ! should be infinitely small, and we
should use calculus to find the field intensity. Actually, we can
get a valid solution if we assume that [ is small but finite. We
can simplify the equation a little by substituting 1609m for d
and moving A under I. The equation then becomes

!
E = 0.1171—|cos| 8
A

where I/X is the length of our elementary dipole, expressed as
a fraction of a wavelength. Thus, if the dipole is one electrical
degree in length. and the current is one ampere, the field
intensity becomes

1
E=0.117 X 1 X —— = 0.000325 V/m
360

Thus the elementary dipole produces a field intensity of 0.325
mV/m one mile away, along the line broadside to the antenna,
when the current is one ampere.

At the moment we have an expression for field intensity as
a function of the current in the antenna, but we have no way to
relate this to the actual power transmitted. The relationship
involves the resistance seen by the current in the antenna. Our
elementary dipole offers a resistance of 0.0061 ohms to the
current flowing in it. Using Ohm's law, we can find that the
current required for an elementary dipole to radiate 1 kW is

p 1000

I= — = —— =405A
R 0.0061
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Substituting this current into our equation for field intensity
gives

E = 0.325 x 405 = 131.5mV/m

This equation shows that the field intensity from an
elementary dipole has a maximum value of 131.5 mV/m. The
field intensity varies with the cosine of the angle 8 from a line
that is broadside to the axis of the antenna (Fig. 3-12).

‘l ==E=131.5mV/m at 1 mile

Fig. 3-12. Pattern of elementary dipole for 1 kW ot radiated power.

We can use the mathematical tools that we have developed
so far to find the pattern of a half-wave dipole. To do this we
must assume that the half-wave dipole, which is 180° in length,
is made up of 180 elementary dipoles. We can’t simply multiply
the results that we obtained earlier by 180, because the current
is not uniform in the half-wave dipole. For a first
approximation, we can assume that the current on the
half-wave dipole is sinusoidal, being maximum at the center
and zero at each end (Fig. 3-13). We can then break up the
half-wave dipole into 180 elementary dipoles, each carrying
the proper amount of current, and compute the contribution of
each elementary dipole to the field intensity. We can then add
these contributions together to find the field resulting from the
half-wave dipole. The computations are rather lengthy, and we
need not bother with the details here.

CURRENT

Fig. 3-13. Current distribution on
half-wave dipole.

= - |

| A2 —

Figure 3-14 shows the radiation pattern of a half-wave
dipole. It shows that the maximum field intensity at one mile is
137.8 mV/m for 1 kW of radiated power. Note that this and
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other theoretical patterns depend on the current distribution
along the antenna itself. This point is important because there
are many factors that influence the current distribution in
practical antennas. Things such as lines that furnish current
for tower lighting, other conducting structures in the vicinity,
and even the guy wires on a tower will to some extent affect
the current distribution. This effect, in turn, will result in some
deviation of the actual radiation pattern from the computed
theoretical pattern.

0
)\/2| E=137.8 mV/m AT ONE MILE

E=137.8 cos(90sin 6)

cos @

Fig. 3-14. Pattern of half-wave dipole for 1 kW radiated power.

ANTENNA IMPEDANCE

So far we have considered a current flowing in an antenna
without regard as to how it happened to get there. Obviously, if
we are to have a current in an antenna, we must feed energy to
the antenna at some point. At this point, wherever it might be,
we see an impedance. Inasmuch as energy enters the antenna
and doesn’t return, the impedance must have a resistive
component. In addition to the energy that is radiated by the
antenna, some energy is stored in the electric and magnetic
fields in the near zone of the antenna. This means that the
antenna impedance will also have inductive and capacitive
reactive components. The actual amount of resistance and
reactance seen looking into an antenna depends on what part
of the antenna we feed, the physical dimensions of the antenna,
and the frequency of operation.

Figure 3-15A shows a circuit that is a rough equivalent of a
half-wave dipole. At the frequency at which the dipole is
electrically 1/2 wavelength long, the inductive and capacitive
reactances are equal and cancel each other. The equivalent
circuit then becomes that shown in Fig. 3-15B, which consists
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merely of two resistances. One of these resistances (R,)
represents the loss or ohmic resistance of the antenna. Current
flowing in this resistance is dissipated in the form of heat and
is not available for radiation. The other resistance (R, ) is
called the radiation resistance of the antenna. As far as we can
see. looking into the terminals of the antenna, the energy that
is radiated is dissipated in this resistance.

O

Ro R, L

P

1
—

&
(A)
Ro Ry

O—VvVN\——VWVN—
Fig. 3-15. Equivalent circuit of a
half-wave dipole.

(e,

(B)

The total power entering the antenna is given by I? R,
where R = R, + R, . The purpose of the antenna is to release
as much energy as possible through radiation and as little
energy as possible through losses. For this reason the ohmic
resistance R, should be kept as low as possible. There is
usually a minimum value below which it is impractical to
reduce R, . Therefore it is desirable to keep the radiation
resistance high compared with the value of R, . In general,
short antennas tend to have low values of radiation resistance
and, hence, high losses. The half-wave dipole has a radiation
resistance of about 73 ohms, looking into its center.

The voltage and current are not constant throughout the
length of an antenna. In the half-wave dipole the current is
zero at the ends because there is no place for it to go, and it is
maximum at the center. The voltage is just the opposite, being
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maximum at the ends of the antenna and minimum at the
center. Impedance varies inversely with voltage, so it will be
minimum at the center and maximum at the ends. The
numerical value of the impedance varies from about 73 ohms
to about 2500 ohms at the ends. Theoretically, the impedance
at the ends would be infinite if the current actually went to
zero. There is, however, always some capacitive current at the
end of the antenna (end effect.)

At FM and TV frequencies it is often convenient to adjust
the lengths of antenna elements so that they are resonant. This
is usually impractical at standard broadcast frequencies, so
the input impedance of standard broadcast antennas almost
always has a reactive component.

In all broadcast services it is important that the
impedance of the antenna not change significantly over the
bandwidth of the signal. Because of the wider bandwidths
involved, this consideration is most important in TV
broadcasting.

VELOCITY OF PROPAGATION AND ANTENNA LENGTH

The velocity of propagation of electromagnetic waves in
free space is very nearly 300,000,000 meters per second. If the
velocity of a wave on antenna were the same as in free space,
the wavelength on an antenna would be the same as in free
space and would be given by

200.000.000
f

where f is the frequency in hertz, and A is the wavelength in
meters. Like a transmission line, an antenna has inductance
and capacitance, and these tend to retard the velocity of
propagation. The larger the diameter of the antenna, the more
capacitance per unit length. Thus the velocity will be lower in
an antenna of large diameter than in a thin wire. Figure 3-16
shows the amount that the velocity of propagation is reduced
as a function of the circumference in wavelengths.

The fact that 1/2 wavelength is shorter on an antenna than
in free space causes a great deal of confusion. At standard
broadcast frequencies we ignore the actual wavelength on the
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antenna and measure the height in electrical degrees, using
the velocity of propagation in free space as a reference. (The
reason for doing this is shown in Chapter 6.) On the other hand,
FM and TV antennas that are 1/2 wavelength long take the
velocity of propagation into consideration. With transmission
lines, we also specify length in electrical degrees, but here we
do take the velocity of propagation along the line into
consideration.

NEAR AND FAR ZONES

An antenna has an induction field, which is useless as far
as broadcasting is concerned, as well as the radiation field,
which is what we use in broadcasting. Although we have no
interest in the induction field, we must remember that close to
the antenna the induction field is much larger than the

CIRCUMFERENCE
WAVELENGTHS
=
[t
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WAVE VELOCITY
FREE-SPACE VELOCITY

Fig. 3-16. Effect of antenna circumference on wave velocity.
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radiation field. This means that any measurements that we
might make on the radiation field must be made far enough
away from the antenna that the induction field will not
introduce errors.

It is customary to divide the region around an antenna into
two zones—the Fresnel or near zone and the Fraunhoffer or
far zone. The dividing line between the two zones is at a
distance of D' /2\, where D is the largest dimension of the
antenna, and X is the wavelength, both in the same units, At
this distance the induction and radiation fields are equal;
beyond this distance the induction field diminishes with
distance much more rapidly than the radiation field.

For standard broadcast antennas there is another
consideration that limits how close to the antenna site we may
take meaningful measurements. This is because many such
antennas consist of several towers. In our field calculations we
usually consider an antenna as acting as a point source. To
make meaningful measurements, we must be far enough away
from the antenna that it will look electrically like a point
source. This distance is often much greater than the distance
to the far field.
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Chapter 4
Smith Charts

One of the most useful tools for solving antenna and
transmission-line problems is the Smith chart, shown in Fig.
4-1. It can be used to find the standing-wave ratio, reflection
coefficient, and impedances at various points in a feeder
system with a minimum of mathematical calculation. In spite
of its utility the Smith chart is not widely used by broadcast
engineers.

The reason the Smith chart is not more popular is probably
that it looks very complicated. This may be partly because the
scales are circular rather than straight. The fact is, once one
becomes familiar with the various scales, the Smith chart is no
more difficult to use than any other graph. and it saves a
considerable amount of labor. As we see, there are many
advantages to using circular scales, not the least of which is
that any value of impedance can be within the boundary of the
graph.

Smith charts are available from most college book stores.
They are available as either paper graphs or as plastic
calculators with movable scales. The calculator is handy in
applications where many different problems are to be solved.
but the paper graph is fully adequate for broadcast
applications and provides a permanent record of the
computations.
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IMPECANCE OR AOMITTANCE COORDINATES

RADIALLY SCALED PARANETENS

Fig.4-1. The Smith chart, in full detail.

e

Several variations of the Smith chart have been developed
for particular applications. The form used throughout this
book is called the normalized-impedance Smith chart.

NORMALIZED IMPEDANCE

To use the same chart with transmission lines of different
characteristic impedances, we use a normalized impedance.
This is simply a value of impedance that has been divided by
the characteristic impedance of the transmission line we are
using. For example, suppose that we are working with a
system where the transmission line has a characteristic
impedance of 50 ohms—a very common value in broadcasting.
To normalize the impedances in the system, we would simply
divide them by 50 ohms.
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Suppose that we have a load impedance that has been
measured on a bridge and found to be 200 + j150 ohms. To
normalize to 50 ohms, we would merely divide both the
resistive and reactive parts by 50 ohms.

200 150

2= —— 4 je—=4 +j3
50 50

If the impedance was stated in polar form, we would
simply divide the magnitude by 50 ohms, doing nothing to the

phase angle. For example

Z =200 + j150 = 250 , 36.87

z=4+j3=2-§gf3%87=5&5.87

If we had a load impedance that was a pure resistance of 50
ohms. when normalized it would be simply 1.

Note that whereas we use the capital letter Z to designate
an impedance, we use a lowercase z to denote a normalized
impedance. Actually, what we call a normalized ‘‘impedance"”
is not an impedance at all. It is simply a ratio, a pure number
that doesn't have any units such as ohms. When we normalize
an impedance—say, 100 ohms—we divide by so many ohms, as
shown below.

100ohms _ 100
50 ohms ~ 50

Note that the units ohms cancel out in the equation. The
normalized value of impedance is simply 2, not 2 ochms.

This point might be a little confusing at first, but a rather
silly example will make it clear. Suppose that we wish to
compare the numbers of apples in some baskets. If the basket
that we use as a reference contains 50 apples and another
basket contains 100 apples, the ratio of the two is

100 apples

=2

50 apples
and not 2 apples. Similarly, a normalized impedance of 2
simply means that the impedance in question has twice as
many ohms as the value to which we normalized it.
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Fig. 4-2. Resistance axis of Smith chart.

Before we can use a normalized value of impedance to
solve any circuit problems, we must reverse the normalizing
procedure by multiplying by the normalizing value,
(characteristic impedance), which in our example was 50
ohms.

The normalized notation is sometimes called a per unit
notation. In the example 100-ohm impedance has a per-unit
value of 2 when referred to 50 ohms. This means simply that
there are 2 ohms for each ohm in the 50-ohm normalizing
value.

When we normalize an impedance such as 200 + j150
ohms. we get a complex number that is proportional to the
magnitude of the original value and has the same phase angle.

RESISTANCE SCALES

The first line of the Smith chart that we will consider is the
resistance axis (Fig. 4-2). This is the only straight line on the
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entire chart. The center of this line, which is called the prime
center of the chart, is labeled 1.0. It corresponds to a
normalized value of resistance of unity (1). If we had a 50-ohm
pure resistance and were using a 50-ohm transmission line. we
would have a normalized value of 1 and would represent it by
placing a dot at the prime center of the chart.

Below the prime center of the chart are points
corresponding to normalized values of resistance greater than
1. with the bottom of the chart corresponding to infinity. Thus
100 ohms (normalized to 50 ohms) would be represented by a
dot at the point labeled 2.0.

Above the prime center are normalized values less than 1.
A 25-ohm resistance (normalized to 50 ohms) would be
represented by a dot at the point labeled 0.5 on the resistance
axis.

The resistance axis of the Smith chart is one axis of a
graph. just as Y-axis of a rectangular graph is. but in the
Smith chart the scales of the graph are circles rather than
straight lines. The resistance scales are the circles shown in
Fig. 4-3.

A value of normalized resistance is assigned to each
circle. The largest circle. which coincides with the outer edge
of the chart. corresponds to 0: and a dot at the bottom of the
chart corresponds to infinity. Thus any point on the circle
labeled 1.0 corresponds to a normalized-resistance value of 1.

REACTANCE SCALES

The reactance scales. which appear as curved lines in Fig.
4. are actually parts of circles. All of these lines are tangents
to the resistance axis. which itself is the zero-reactance line.
The circle that forms the outer edge of the chart can be
thought of as the reactance axis of the chart.

Each reactance line is assigned a value of normalized
reactance, which is labeled near the outer edge of the chart.
Reactance lines to the right of the resistance axis are used for
positive or inductive reactance, and those to the left of the
resistance axis are used for negative or capacitive reactance.
Thus an inductive reactance of 100 ohms (normalized to 50
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Fig. 4-3. Resistance scales.

ohms) would be represented by a dot on the reactance line
labeled 2.0 on the right side of the chart.

PLOTTING IMPEDANCES

Now that we have a graph with both resistance and
reactance scales, we can plot various values of impedance as
points on the graph. Since the scales of our graph are in
normalized values of impedance, we must normalize each
impedance before we plot it. For the remainder of this chapter
we will assume that we are working with a transmission line
having a characteristic impedance of 50 ohms, and we will
normalize all impedances to this value.

Figure 4-5 shows several impedances plotted on the
coordinates of a Smith chart. The absolute values, normalized
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values. and locations of these impedances are tabulated as:

Absolute Impedance, Normalized Value Point on
Ohms Fig. 4-5.

50 1 A

30 + 7100 1+ j2 B

30 — j100 1-j2 C

100 + 7100 2+ j2 D

100 — j100 2 —j2 E

Two points on the Smith chart are of particular interest in
connection with solving certain transmission-line problems.
The first is the impedance of an ideal short circuit. Here, both
the resistance and the reactance are zero. The value of
impedance is represented by a dot at the top of the chart,
where the resistance and reactance axes intercept (point F in
Fig. 4-5). The other point of particular interest is the
impedance of an ideal open circuit. Here the resistance is
infinite and the reactance is zero. The resistance portion of the

Fig. 4-4. Reactance scales.
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Fig. 4-5. Impedances plotted from table in text.

normalized value is infinity, because an infinitely large
number divided by 50 is still infinitely large. Thus the
impedance of an ideal open circuit is represented by a dot at
the bottom of the chart (point G in Fig. 4-5).

To summarize, any value of normalized impedance can be
plotted on the Smith chart. Pure resistances fall on the
resistance axis, the vertical line through the center of the
chart. Pure reactances fall on the zero-resistance circle,
around the outer edge of the chart. Complex impedances
having both resistance and reactance fall somewhere on the
face of the chart. Impedances having an inductive reactance
lie on the right half of the chart, and those having capacitive
reactance lie on the left half of the chart.

VSWR AND WAVELENGTH SCALES

So far we have shown that any value of impedance can be
plotted on a Smith chart. We haven’t however, justified the use
of circular rather than rectangular scales. We will do this now.
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We saw in Chapter 3 that in a lossless transmission line not
terminated in its characteristic impedance, impedance
measured along the line varies with distance from the load. We
also saw that the impedance repeats itself every 1/2
wavelength along the line. Now we can see one of the
advantages of the choice of coordinates on the Smith chart. All
of the values of impedance measured along a transmission line
will fall on a circle—the VSWR circle—on the chart.

Suppose we have a 50-ohm transmission line that is
terminated in a 100-ohm resistance. Using a formula from
Chapter 2 we find that the standing-wave ratio is

R 100

50
Now, if we draw a circle centered at the prime center of the
chart, with a radius equal to 2 on the resistance axis (see Fig.
4-6). all values of impedance that can be measured along the

Fig. 4-6. AVSWRcircle for VSWR=2.
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line will fall on this circle. This will hold true as long as the
losses along the line are negligible.

The standing-wave circles are usually not printed on the
chart. They are drawn for individual cases by the user of the
chart. Remember that the radius of the circle is equal to the
numerical value of the VSWR measured on the resistance axis
of the chart.

Looking at the VSWR circle in Fig. 4-6, we see that once we
go around the circle from any point, we are right back to the
impedance with which we started. This corresponds to moving
along a transmission line a distance of 1/2 wavelength. Thus
we can conclude that going around the Smith chart once is
comparable to moving along a transmission line a distance of
1/2 wavelength.

Wavelength scales are provided along the outer edge of the
chart and are marked in decimal fractions of a wavelength.
The outer scale, which increases in a clockwise direction,
represents distance along the line in the direction of the
generator, that is, away from the load. The inner wavelength
scale is marked in decimal fractions of a wavelength toward
the load.

With the scales that we have described, we can find the
impedance at any point along a line, as well as the
standing-wave ratio, if we know the load impedance and the
characteristic impedance of the line. Suppose, for example,
that we have an impedance of 50 + j50 ohms and a 50-ohm
transmission line. The normalized value of load impedance is
thus 1 + j1, which is represented as a dot at point A of Fig. 4-7.
We can then draw a VSWR circle centered about the prime
center of the chart and passing through point A.

We can read the standing-wave ratio directly from the
lower point on the resistance axis (point B), where the VSWR
circle intercepts it. In this case, the VSWR is about 2.6. This
point also corresponds to the impedance at a point about 0.09
wavelength from the load. as shown on the wavelength scale of
the chart.
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