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Preface 

The one area of broadcast electronics that seems to be 
shrouded in mystery is the antenna-and-feeder system. The 

reason is that most engineers who find their way into 
broadcasting become involved with circuits and circuit theory 

much more than with field theory. The engineer's field theory, 
like a muscle, becomes weak with disuse. The engineer could, 

if he had the time, brush up on antenna and field theory so that 
he could handle his antenna problems more efficiently. In the 
past. however, this has not been an easy task. 

Most of the texts on antennas have been either highly 

mathematical, or else too superficial to be of any value. 
Furthermore, the type of mathematics used in antenna work 
tends to be unfamiliar to one who doesn't use it on a regular 

basis. This means that to brush up on antenna theory the 
engineer would first have to brush up on vector mathematics, 
and the time required is rarely available. 

In working with broadcast engineers for over 30 years, I 
have found that there are three factors that cause problems in 
studying antennas: 

1. Most antenna texts present a great deal more 

information than is needed to enable one to operate 
and maintain an antenna system. The process of 



culling out the unessential is difficult, and there is a 

tendency to give up. 

2. The mathematical operations involved in calculating 

impedances and field intensities are not particularly 
difficult, but they are very tedious. This has been a 

serious obstacle in the past, but with the advent of the 

pocket electronic calculator, most of the tedious 
operations are eliminated. 

3. The engineer is apt to confuse the unfamiliar with the 

difficult. This is probably the most serious obstacle. If 

one has a preconception that a particular field of study 
is difficult, he will manage to make it difficult. An 

English author of a most readable book on calculus 
once introduced the subject with the adage "What one 
fool can do, another can." This adage applies equally 

well to antennas. All that the average broadcast 
engineer needs to know about antennas can be 

mastered with a little persistence. 

The book can be thought of as consisting of three parts. 

Chapters 1 through 4 review the basic principles that underlie 
all antenna and transmission-line operation. Concepts that 
most frequently cause trouble are reviewed in more detail. 
Chapters 5 through 16 deal with standard broadcast antennas. 

The standard broadcast antenna is such that the engineer must 

be concerned with all of the details of the system; therefore 
the treatment is quite detailed. Chapters 17 through 19 deal 

with FM and TV antenna systems. The approach here is 
completely different, because the FM or TV antenna is 
supplied as a manufactured component and most of the system 

is located at the top of a tall tower, where the engineer can't 
even gain access to it. In this case, he needs to know enough of 
the basic principles to understand manufacturer's specifi-

cations and interpret the few measurements that he can make. 
The remaining chapters are devoted to subjects that all 

antennas have in common. 
I would like to acknowledge the contribution that so many 

of my associates have made to my understanding of antennas. 

To the late Dan and Bill Hutton, John Battison. Palmer Greer. 



Don Pauley, and Chris Payne: to George Bartlett, of the 
National Association of Broadcasters who has done much to 
spread the knowledge of antenna theory and practice by 
supporting many seminars on the subject: and especially to 
Carl E. Smith, who has shared unstintingly his unending 
knowledge of the subject. Last, but far from least, is my 

gratitude to Grace, whose encouragement and inspiration 
made this work possible. 

John E. Cunningham 
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chapter 1 

Basic Principles 

All of the subjects covered in this chapter are very 
elementary. Every broadcast engineer has studied them at 

least once. Nevertheless, a review that points out features that 

are directly applicable to transmission lines and antennas is in 
order. Every engineer or technician who has participated in 

technical bull sessions knows that differences of opinion 

involving the operation of a complicated piece of equipment 

such as a television transmitter are quickly resolved. 

Discussions about such very elementary concepts as charges, 
fields. and magnetism. however, often show that our 

understanding of very elementary principles is fuzzy, to say 

the least. This fuzziness regarding elementary principles is 

often the underlying reason why devices such as transmission 
lines and antennas are often poorly understood. 

It is easy to see why elementary principles are not well 

understood. When we describe the operation of a complicated 

transmitter system, we describe it in terms of simpler units 

such as transistors. tubes. and resistors, knowing that our 
audience understands these simpler building blocks. When we 
get to something very basic. such as an electric charge, there 

are no component parts on which to base our understanding. 
We base our understanding on observations of experiments, 

rather than physical reasoning. Knowledge of this type is 
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disseminated in terms of what are really mathematical 

fictions. such as fields and lines of force. If a civilization in 

outer space mastered electromagnetic radiation and came to 
earth. we would probably find that their basic concepts were 

much different from ours. 
These concepts or mathematical fictions are important in 

that they are the only way we have of talking or writing about 

the subjects. They can, however, cause a great deal of 

confusion if the ground rules are not used properly. A case in 
point involves the speed of propagation of electric charges in 

conductors. 
Every schoolboy knows that electricity travels at the 

speed of light, which is 186.000 miles, or 300.000.000 meters, per 

second. It is also common knowledge that the charge carrier in 
conductors is the electron. It isn't unusual, therefore, to find 

people visualizing current in a conductor as consisting of a 
stream of electrons traveling through the wire at the speed of 

light. This idea vanishes when we apply the principles of 

physics to the problem. 
Physicists say that a current of one ampere corresponds to 

a flow of 6.4 x 1018 electrons per second. This is a goodly 

number of electrons, so at first glance this figure seems to 
support the earlier idea. However, though we know how many 

electrons pass a point in a second, we need to know how many 
are passing together before we can determine the speed of 

individual electrons. We see this when we note that cars 
traveling four abreast will only have to travel at a quarter of 

the speed of cars in single file to have the same number of cars 
pass a point in a given time. 

It requires an unimaginable number of electrons passing a 
point to produce an ampere of current, but there is also an 

unimaginable number of electrons available in a conductor. If 

we accept the physicists' figure of about 10 ' free electrons 

per cubic centimeter of copper, we can calculate that the 
speed of electrons in a No. 12 wire carrying one ampere is 

about 0.08 in. per second—a far cry from the speed of light. 
The above figure is based on steady, direct current. In 

antennas and transmission lines, we are interested in 

alternating currents with frequencies of one-half to several 
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hundred megahertz. At 1 MHz the signal changes direction 
every half microsecond. At the slow rate at which electrons 
move, they barely move at all before they change direction. 

If the electrons in a conductor actually move so slowly, 
what is all of this about electricity moving at the speed of 
light? The fact is, a current-carrying wire is analogous to a 
hollow pipe filled with marbles. The instant a marble is pushed 
into one end of the pipe, however long the pipe, a different 
marble pops out of the other end. The pushing effect travels 

through the pipe at a fantastic speed even though the speed of 
the individual marbles is quite slow. In an electric circuit, 
when a charge is introduced into one end, the effect is felt at 
the other end almost instantaneously, as if the charge itself 
traveled at the speed of light. 

Thus, although electron flow is a valid and useful concept 
in vacuum tubes, it hardly makes any difference in antennas 
whether we think of electrons, or simply of charges, without 
defining the charge carrier. 

CURRENT CONVENTIONS 

One of the more controversial subjects in electronics is the 
question of what convention should be adopted for the direction 
of current flow. For many years it was almost universally 

agreed that a current flowed from the positive pole of a 
battery, through the external circuit, back to the negative 
pole. The convention was used long after it was well known 
that the electrons which actually carry the charge flow in the 
opposite direction. With the advent of the vacuum tube, it 
became advantageous to consider the flow of electrons from 
the cathode to the plate as being the plate current, and in many 
texts, particularly those below the engineering level, the 
negative-to-positive convention was adopted. This made the 
explanation of vacuum-tube operation easy, but it means that 

the direction of the drop of potential in a circuit is considered 

the opposite of the direction of current flow. This is almost like 
considering water as flowing against the direction in which 
pressure is exerted. 

There will always be some inconsistency in application, 
regardless of what convention is adopted. In most of this book, 
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dealing as it does with high frequencies, we will have little 
occasion to concern ourselves with current direction, but in 
some of the explanations, we will have to consider the flow of 
charges. Since it is more convenient to consider a positive 

cause as producing a positive effect, we will consider current 
to consist of positive charges flowing from the point of higher 
or more positive potential. This will undoubtedly offend some 
readers at first, but the concept is easy to apply when one 
becomes accustomed to it. 

CHARGES AND FIELDS 

An earlier section said that current is a flow of electric 
charges, without defining what a charge is. This is where we 

get to a concept so fundamental that we have no other, more 
elementary. concepts that we can invoke to explain it. We 
know that like charges tend to repel each other, and unlike 
charges attract. Charge is the concept that we have invented 
to explain this repulsion or attraction. In Fig. 1-1 we have a 
metal ball suspended above the earth. When we close the 

switch in the circuit, current flows, charging the ball. Or we 
could say that the battery forced some of the electrons off the 
ball through the battery onto the earth. We also know that if we 
connect a conductor between the ball and earth, current will 
flow through the conductor until the ball is at the same 
potential as the earth. When the ball is charged by the battery, 
there is a potential difference of 100V between the ball and 

earth. After a conductor has been connected between the ball 
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Fig. 1-1. Charging a metal ball. 
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and the earth for a short time, there is no voltage between 

them. 
When the ball is charged. the electrons on the earth 

-know" that the ball is positively charged. and they are 
attracted to it. This attraction would take place even if there 
were absolutely nothing between the ball and earth. This 

action at a distance is repugnant to the average mind, so we 
say that there are lines of force between the positive charges 

on the ball and the negative charges on the earth. The lines of 

force are said to form an electric field. 

Ether 

The whole question of fields and lines of force can be very 

confusing. Back in 1865, long before the first radio signal was 
transmitted. James Clerk Maxwell. a Scottish physicist, 
theorized that light was actually an electromagnetic wave. His 
work implied that other electromagnetic waves might exist. 
About 20 years later a German physicist, Heinrich Hertz. 
actually demonstrated radio waves. To these early 
investigators, if light and electric and magnetic energy were 
propagated by a wavelike phenomenon, they must be waves in 

something. They didn't know just what this something might 

be, but they called it the ether. 
Inasmuch as electric and magnetic fields were known to 

travel through a vacuum, they assumed that the ether 

permeated all space and matter. This concept was very useful 

for practical applications. Instead of speaking of the 
permeability or permittivity of free space, physicists could 
speak of the permeability and permittivity of the ether. It is 
much easier to attribute properties to something, even though 

we don't know just what the something is, than to attribute 
properties to free space, which, by definition, is nothing. 

The concept of an ether was used by all of the early 
workers in radio, but scientists were troubled by the fact that 

no one had actually demonstrated the existence of the ether. 
They reasoned that if the ether did exist, either the earth 
moved through it, or it moved through the earth. Astronomical 
observations indicated that the earth must move through the 
ether. This meant that the velocity of light measured at the 
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surface of the earth should be faster in one direction than in 
the opposite direction. 

If a way could be found to measure the velocity of light in 
several directions on the surface of the earth, it should be 

possible to demonstrate the existence of the ether. In a 
now-famous series of experiments conducted between 1880 and 
1890, two physicists—Michelson and Morley—measured the 
velocity of light to a high degree of accuracy. Much to their 
surprise they found that the velocity of light is the same in all 

directions along the surface of the earth. 
The scientific community was faced with a dilemma: 

Some observations indicated that the earth moved through the 
ether, while others indicated that the ether moved with the 
earth—obviously a contradiction. After several futile attempts 
to explain the contradiction, the whole idea of an ether was 
dropped. 

This was indeed unfortunate for the practical-minded 
engineer, who must now state that radio waves are propagated 
through empty space by an electromagnetic field—which is 
just another way of saying that we haven't the slightest idea of 
how radio waves are propagated. 

This situation may be corrected in the next few years. An 
increasing amount of evidence is accumulating that the early 
investigators might have been right, and that there really is 

some sort of medium that carries radio waves, electric fields, 
and magnetic fields. In Europe two Nobel Prize winners, Dirac 
and De Broglie, have proposed that some sort of ether does 
exist. In this country Professor H. C. Dudley, of the University 
of Illinois, has written several papers that shed new light on 
the subject. Dudley points out that recent discoveries indicate 
that the whole universe is filled with a veritable sea of 
extremely small particles called neutrinos. He proposes that 
this neutrino is actually the medium that carries radio waves. 

If Dudley's work proves to be correct—and there is an 
increasing amount of evidence that it is—the engineer will 
have a much clearer idea of what is actually going on in 
circuits and antennas. In the meantime, the reader should 
adopt whatever concept is most comfortable to him, with the 
consolation that, at present, the scientists don't actually know 
much more about it than he does. 
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Charge and Capacitance 

Getting back to Fig. 1-1, if we were to repeat the 
experiment with a larger ball, or with the ball closer to the 
earth, we would find that more current would be required to 
charge the ball to 100V. This shows that voltage is not a good 

measure of how much charge we have. Actually the current in 

amperes that flows into the ball to charge it is the rate of flow 
of charge. The unit of measurement of charge is the coulomb. 
A current of one ampere means that charge is flowing at the 
rate of one coulomb per second. 

If different arrangements similar to that of Fig. 1-1 will 
take on a different amount of charge for the same value of 
applied voltage, we need some measurement that will tell us 
how much charge each arrangement will take with a given 

value of applied voltage. We do have such a unit in the farad. 
The ability of a physical arrangement to acquire a charge 
when a voltage is applied to it is called its capacitance, the 
basic unit of which is the farad. The amount of charge in a 
capacitor is given by the equation 

q = CV 

where q is the charge in coulombs, C is the capacitance in 
farads. and V is the voltage across the capacitor in volts. 

The farad, like so many basic units, is not of a very 
convenient size. In radio work we more commonly use 
microfarads or picofarads. 

So far we have assumed that there was only air, which is 
electrically about the same as free space, between the ball of 
our experiment and the earth. If we were to fill this space with 
a material such as polystyrene, we would find that the ball 
took on more charge for the same value of applied voltage. As 
a matter of fact, it would take on just about twice as many 
coulombs of charge. We account for this by saying that the 
relative value of the permittivity, or the dielectric constant, of 
polystyrene is twice that of free space. The actual numerical 
value of dielectric constant depends on the unit system we are 
using. We will come back to this later. 
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Magnetic Field 

By using analogies, we can also arrive at the concept of a 
magnetic field. If we were to pass a current through a coil of 
wire, we would find that it attracts pieces of magnetic 
material. We account for this attraction by saying that lines of 
magnetic force surround each current-carrying conductor. 

We have no need in this book for the units used to describe 
magnetic quantities, but perhaps the analogy with electric 
fields will be a little clearer if we state them briefly. We 

measure the ability of a current to produce magnetic effects in 
terms of the magnetizing force H. 

In a straight conductor the magnetizing force is expressed 
in amperes per meter and is numerically equal to the current 

in the conductor divided by its length. If we coil up the wire so 
that the magnetic effects of the turns reinforce each other, we 
usually state the magnetizing force in ampere-turns per 
meter. As with the electric field, the strength of the magnetic 
field can be measured in terms of the density of the lines of 
force. The unit of measurement of flux density B is the weber 
per square meter. 

Everyone knows that a magnetic field is stronger in 
ferromagnetic materials than in free space. To explain this. 
we have the simple equation 

p. = Bill 

where µ is the permeability of the material through which the 
magnetic field passes. Here again, the numerical value 
depends on the unit system that we are using. 

UNIT SYSTEMS 

There are several different systems of units used to 
specify different physical quantities. Each of these has its 
advantages and disadvantages. For example, there are two 
cgs ( centimeter—gram—second) unit systems. In the cgs 

electrostatic-unit system, the permittivity of free space is 
simply 1. This makes calculation of capacitance easy, but to 
keep the system consistent, the unit of voltage becomes the 
statvolt and the unit of current becomes the statampere. These 
are both oddball units that will not ring a bell with the average 
broadcast engineer. 

18 



In the cgs electromagnetic-unit system, the permeability 
of free space is 1. This simplifies the calculation of magnetic 
field and inductances but leads to the abvolt and abampere as 
units of voltage and current which are as unfamiliar to the 

average broadcaster as the electrostatic units. 
The unit system that is most widely accepted today is the 

so-called rationalized mks ( meter—kilogram — second ) unit 
system. In this system all of the commonly used quantities are 
expressed in familiar units such as volts, amperes, and ohms. 
The price that we pay for this very convenient system of units 

is that the permittivity €0 and permeability µ, of free space 
take on cumbersome values: 

E „ = 8.85 x 10 '2 farad per meter 
µ „ = 1.26 x 10 -6 henry per meter 

These two properties of empty space enter into the equation 

for the velocity of propagation of radio waves, as we shall see 
later on. 

ENERGY AND POWER 

Although power is given consideration in all parts of a 

broadcast station, energy is the more fundamental concept. 

Energy is defined as the capacity to do work. We are not 
interested in a strict definition of work. As far as we are 
concerned, it is sufficient to say that work is the capacity to 
move something against an opposing force. The object of any 
broadcasting system is to move electric charges in a receiving 
antenna somewhere. To do this requires energy. The energy 
must be carried from the transmitter, through the feeder 
system to the antenna, and there it must be radiated through 
space in the desired directions. 

The basic unit of energy is the joule. Many engineers have 
forgotten this because they find it more convenient to work 
with power, which is the rate of change of energy. A power of 

one watt means a rate of change of energy of one joule per 
second. Although power is usually more convenient for 
practical calculations, it is much easier to understand things 

like reactance and reflections on transmission lines if we think 
in terms of energy. 
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Average Power 

Figure 1-2 shows a source, such as an AC generator or 

oscillator, connected to a load. The resistance of the load is 10 
ohms, which is assumed to be purely resistive, with no 

reactive component. We have a voltage of 20V across the load, 
and according to Ohm's law, the current will be 2A. Therefore 

we know that the power in the load is 20V x 2A = 40W. This 

means that energy is flowing into the resistive load at a rate of 
40 joules per second. Without saying it, we realize that this is 
the average power, which is the power that we usually talk 

about. Common sense tells us that energy isn't actually 

flowing into the resistor at a constant rate. It must be zero at 
the instants in the cycle when both voltage and current are 
zero, and it must be maximum when both voltage and current 
are maximum. 

Fig. 1-2. A generator with a re-
sistive load. 

Instantaneous Power 

It is helpful in understanding just how energy flows in a 
circuit to consider the instantaneous power, that is, the power 

at any instant of time. The instantaneous power in any circuit 
is equal to the product of voltage and current at some instant. 

Figure 1-3 shows a plot of the voltage and current and their 
product for the circuit of Fig. 1-2. During half of each cycle 

both voltage and current are positive, and during the other half 

they are both negative. Since the product of two negative 

numbers is positive, the power is positive at all times and 
varies at twice the frequency of the applied voltage. Thus the 

energy enters the resistor in pulses. In purely resistive circuits 
this pulsating nature of power and energy rarely concerns us, 
so we speak of the average power, which is the average value 
of the power wave in Fig. 1-3. 

Energy in an Electrical Circuit 

There are some other rather useful principles illustrated 
in the circuit of Fig. 1-2. Since the circuit is resistive, the 
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Fig. 1-3. Instantaneous and average power. 

voltage and current are in phase at all times. This resistive 

nature of the load—or what is the same thing, the fact that the 
voltage and current are in phase—tells us that the energy is 

flowing in one direction and is not coming back. If the load is a 
resistor, the energy is converted into heat. If the resistive load 

represents the resistive component of some sort of motor, the 
electrical energy may be converted into mechanical energy. 

And if the resistance is seen at the terminals of an antenna, the 
energy is radiated. Although the theory of relativity shows that 
there is an interchange between matter and energy in some 
instances, as far as we are concerned the old law of 

conservation of energy still holds: Energy can neither be 

created nor destroyed: it is merely converted from one form to 

another. 
In Fig. 1-4 we assume that a source is connected to a load 

that is purely capacitive and has no losses. In this case, the 

voltage and current are no longer in phase. The current leads 
the voltage by 90°. This is logical since, at the instant that the 
source is connected, there is no charge in the capacitor. Our 
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earlier equation for the voltage across a capacitor can be 

written 

V =-- q/C 

This equation says there can be no voltage across a capacitor 

unless there is a charge in it. So in our circuit, as the current 
flows into the capacitor, charging it, a voltage builds up across 

it. 

Fig. 1-4. A generator with a 
capacitive load. 

We know that capacitors do not dissipate energy unless 

they have losses, so the average power in our circuit must be 
zero. But we also know that charge flows into and out of the 
capacitor and that this must represent some energy. The 

situation becomes clear when we consider the instantaneous 

power as we did in the resistive circuit. Figure 1-5 shows the 
voltage and current, and their product, the instantaneous 
power. The instantaneous power has twice the frequency of the 

applied voltage, but in this case it isn't positive all of the time. 

There are portions of the cycle where the voltage and current 
have opposite signs and their product is thus negative. 

Negative power is the rate at which energy flows toward the 

source ( generator). The curve shows that energy enters the 

capacitor for a quarter of a cycle, then returns to the source 

during the next quarter-cycle. 
The important point in this example is that when voltage 

and current are 90' out of phase. the net transfer of energy 

from the source is zero. Energy does in fact leave the source. 
and it is for a time stored in the electric field in the capacitor: 

but it is later returned to the source. This brings up the 

question of whether or not we can relate the amount of energy 

stored in the capacitor to the voltage that exists across it. We 

can do so by the equation 

W = 1/ 2C17 
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INSTANTANEOUS POWER 

CURRENT 

Fig. 1-5. Instantaneous and 
average power in a capacitor 

where W is the energy in joules. C is the capacitance in farads, 
and V is the voltage across the capacitor. 

We know that if the load in our simple circuit were a pure 
inductance with no losses, the voltage would lead the current 
by 90°. It isn't difficult to construct an analogy to the case 

where the load is capacitive. We can see that energy must flow 
in and out of the inductor, but no average energy is taken from 
the source. As with the capacitor. we have an equation for the 
amount of energy stored in the magnetic field of an 
inductance. It is 

W = 1/2L1 

where W is the energy in joules, L is the inductance in henries, 
and / is the current in amperes. 

In both the capacitance and inductance, the actual energy 

is stored in the associated electric or magnetic field. In fact, 
electric and magnetic fields are the only media that we know 

of in which we can store energy in its electrical form ( When 
energy is stored in a battery, it is actually stored in the form of 
chemical energy. ) 
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This leads us to a rather amazing, but logical, concept. 
Consider the circuit of Fig. 1-6, which consists simply of a 

source connected to a load some distance away. We know that 

the energy must get from the source to the load before it can 
do anything. We always assume, without wondering why, that 
the energy simply travels along the wires to the load, where it 
does whatever work the system was designed to do. We never 
stop to think that an ideal wire—one that has no inductance or 

capacitance —does not meet any of the requirements we have 
considered above for storing energy. But when we realize that 

each wire has inductance, with its incidental magnetic field, 
and that there is capacitance and an electric field between the 

wires, we have all the requirements for storing energy. Since 
we also know that in a capacitor or inductor the energy is 
actually stored in the associated field, this brings us to the 

rather startling conclusion that electrical energy is actually 
carried in the fields associated with wires, and not in the wires 

themselves! The wires merely serve to guide the energy to 
where we want it to go. This concept is hard to accept at first. 
Once accepted, it certainly makes radiation, whereby energy 
is propagated through space without the benefit of any wires at 
all, a lot easier to understand. 

( SOURCE il)S LOAD 

Fig. 1-6. Source with load at a distance. 

SUPERPOSITION PRINCIPLE 

One of the most useful concepts in all branches of physics, 
including antenna theory, is the superposition principle. The 
principle is very general and can be applied to any system, 
electrical or mechanical, wherein the elements of the system 

are linear. A linear element is one in which the response is 
directly proportional to the cause. Linear elements include 
resistances, inductances, and capacitances, but do not include 
such things as diodes. For our purposes the superposition 
principle can be stated: 
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In any system containing only sources of energy and linear 
bilateral elements—such as resistances, inductances. 
capacitances. transmission lines, and antennas—the total 
response with all sources active can be found by algebraically 
adding the responses that would be produced by each source act-
ing separately. 

This is quite a mouthful. All it means is that, in a system 

containing several sources, we can find out what is happening 
in any part of the system by finding out what would happen if 
each source acted alone, then algebraically combining the 

results. 
Superposition can be applied to any physical situation in 

which the responses are linear. For example, by reflecting on 

the principle, we can state with confidence that a bullet fired 
horizontally from a gun will strike the earth at the same time 

that a similar bullet would strike the earth if it was merely 

dropped from the same height. 
One place where superposition is very useful is in finding 

the field produced at some point by several antennas in a 
directional system. We simply find the field that would be 
produced by each antenna acting alone, then algebraically 

combine the fields to find the total resulting field. 
Figure 1-7 shows the application of superposition in finding 

the current in a series circuit. Of course, this particular 
problem could be solved by a much simpler method, but this 
exercise shows some of the subtleties involved in applying 

superposition. To apply the principle, we first make one of the 
batteries idle ( shorted) and find the current that would be 
produced by the other battery: then we reverse the process. 
Thus in Fig. 1-7B we replace battery B2 with a short circuit 

and find the current to be 3A, flowing counterclockwise around 
the circuit. In Fig. 1-7C we replace battery BI with a short 

circuit and find the current to be 2A, flowing clockwise around 
the circuit. Since the two component currents are flowing in 

opposite directions, the net current actually flowing in the 
circuit is their difference: IA, flowing counterclockwise 

around the circuit. 
There are several points about Fig. 1-7 that should be 

clearly understood. First of all, the component currents do not 
actually flow in the circuit of Fig. 1-7A. They are the currents 
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I = lA 41- I = 3A 

8V Bi 12V 

(A) 

I = 2A 

4 

(B) 

Fig. 1-7. Superposition example. 

(C) 
that would flow if each of the sources were acting alone, but 

the sources are not acting alone. The only current that actually 

flows in the circuit is the IA flowing counterclockwise around 

the circuit. Battery B2 doesn't contribute anything to the 
actual current. In fact, the current is flowing "backward" 

through this battery in such a direction as to charge it. The 

point is that even though the component currents do not have a 
true physical existence, they are useful in finding the actual 
current. There are physical situations where applying the 

superposition principle provides not only a convenient way to 

get a numerical answer to a problem but also a better 

understanding of the physical principles involved. 

We noted at the outset that superposition applies only 
when the response is linear. It is well to remember that power 

is not a linear function of either the voltage or the current in a 
circuit, and powers in a circuit or system cannot be found by 
simply adding the powers that each source would provide if 

acting alone. 

Figure 1-8 shows another simple series circuit. The 

current I' due to battery BI acting alone is IA, and the current 

I" due to battery B2 acting alone is 2A. The actual current in 
the circuit is 3A. Now, suppose that we tried to find the power 
in the 9-ohm load resistor by adding the power that would be 

supplied by each source acting alone. The power delivered to 
the load by each battery acting alone would be 

P' = ( I' R = (1)2 9 = 9W 
P" = ( 1")2 R = (2)2 9 = 36W 
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giving a total of 45W. Actually we know that the current in the 
9-ohm resistor is 3A, and the power is 

PI' R = ( 3) 9 = 81W 

Thus if we attempted to use superposition to add powers, the 

result would be in error. The reason for this is that 
( / ' + ( I" )2 is definitely not equal to (1' + 

9 
27V 

I= 
82 =. 9V B1.=.18V 9it 

T  P=I 2R=(9)(9)=81W 

1=--3A -so 

Fig. 1-8. Power in a simple series circuit. 

WAVES, WAVELENGTH, AND DEGREES 

When the term wave is used, one often thinks of waves in 
water. This is unfortunate because the waves we talk about in 
connection with radio are of a different nature. We use the 
word wave in two different senses. Radio waves are actually 
propagated by a wavelike action, but generally, when we use 
the word wave, we are speaking about a graphical 
representation of a physical phenomenon, not the action itself. 

Sine Wave 

The waveshape that concerns us most in antenna work is 
the sine wave. This wave is familiar to every broadcast 
engineer, but unless we keep our terminology clear, we get 
into some problems that will be very difficult to resolve. 
Figure 1-9 shows one cycle of the familiar sine wave. In this 
case, we will assume that it is the plot of voltage as a function 
of time. We find that the voltage smoothly increases to a 
positive peak, gently levels off, and smoothly decreases. It 
then does the same thing in a negative direction. The 
horizontal axis of our graph represents time. If the frequency 
of our wave was 1 MHz, the duration of one complete cycle, or 
period of the wave, would be 1 µsec. 

This wave is also a plot of a trigonometric function that, 
happily, behaves in the same way as most of the voltages and 
currents that concern us. This means we can use 
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trigonometric expressions to learn many things about our 
wave of voltage that would otherwise be hard to determine. 
The trigonometric function involved is the sine of an angle. If 
we vary the angle through 360°, the sine of the angle will vary 

just as the wave does in our illustration. This is shown by the 
set of numbers on the vertical axis of the graph. This is very 

convenient because it enables us to measure time periods in 
degrees. When doing this we should probably use the term 

electrical degrees to distinguish from degrees of arc, but 
common usage neglects this, and no trouble will be 
encountered if we keep the electrical concept clearly in mind. 

To measure time in degrees is actually to measure time in 
fractions of the period of a wave. For example, if we were to 
state that another 1 MHz sine wave lags that of Fig. 1-9 by 90°, 
we would be saying that the new wave occurs 90° later in time. 

Since 90° is one-quarter of 360°, we could say that any point on 
the second wave occurs a quarter of a period, or 0.25 µsec, 

later than the corresponding point on the reference wave. 

f= 1MHz 

TIME—g. 

PERIOD= 1 µsec 

Fig. 1-9. Sine-wave plot, amplitude versus time. 

The angle is usually called a phase angle. Note 
particularly that a phase angle ( or phase shift) expressed in 
degrees can only be converted to time if we know the 
frequency ( and hence the period) of the wave. Electrical 
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degrees are not absolute, but relative, units of time. If the 

frequency in our example was 100 kHz instead of 1 MHz, 90° 
would correspond to a time period of 2.5 gsec rather than 0.25 

µsec. 

Wavelength 

In broadcast work we are also interested in waves in space 

as well as waves in time. Suppose that the signal of Fig. 1-9 is 
radiated through space. Further suppose that we have a series 
of instruments spaced along the path that measure the signal 
strength at each point. Since the signal varies with time, it 

cannot have the same magnitude at all points in space at the 
same time. If at one instant we could stop time long enough to 
read all of the instruments and plot their indications as a 
function of distance along the path of propagation, the plot 

would be as shown in Fig. 1-10. The wave plotted here is 
identical in shape to the wave of Fig. 1-9, but it has a different 
meaning that should be clearly understood. Whereas in Fig. 1-9 
we have amplitude versus time at some point in space, in Fig. 
1-10 we have amplitude versus distance in space at a fixed 

instant of time. 

A
M
P
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U
D
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I 1 

DISTANCE 

Fig. 1-10. Sine-wave plot, amplitude versus distance. 

Since the wave of Fig. 1-10 is sinusoidal, we can express it 
in degrees, just as we did in Fig. 1-9. Here, however, a degree 
is an increment along the axis of the graph that represents 

FIELD-INTENSITY 

METERS 
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distance, not time. Before we can correlate the degree with 
actual physical distance in space, we must take into 
consideration how fast the wave is moving through space. We 
can then tell how much distance is represented by one 
wavelength or a fraction of a wavelength, which may be 

expressed in degrees. The formula that we use to do this is 

c 
x = — 

f 

where X is the wavelength in meters, f is the frequency in 
hertz, and c is the velocity of propagation. In free space c is 
300.000,000 meters per second. Thus our formula becomes 

300,000,000 300 
X —   or —   

finHz f in MHz 

This formula shows that when we specify a distance in 
degrees, we are actually specifying the time it would take one 

wavelength of our signal to cover this distance. This is 
comparable to measuring the distance between two cities in 

hours when we know the speed at which we will travel between 
them. 

There are two important facts to note about expressing 
distance in fractions of a wavelength or in degrees. First, the 
correlation with actual distance is only valid if we know the 
frequency. Second, the velocity of propagation enters into the 

relationship. As long as we are talking about propagation in 
free space, we can use the formulas given above: but when we 

get into a transmission line, where the velocity of propagation 

may be lower, we must make the necessary correction before 
we can correlate distance in degrees with actual physical 
distance. 

In summary, the wave nature of radio signals makes it 
possible for us to measure either time or distance in degrees. 

In each case, frequency is the fundamental concept: we must 
know the frequency before we can do anything. The frequency 
is determined by whatever is generating the signal, usually a 
transmitter. When expressing distances in wavelengths or 
fractions of a wavelength, we must be sure of the velocity of 
propagation. In dealing with antennas, we encounter signals 
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that can be represented by waves both as functions of time and 
functions of distance. Unless the distinction is kept clear in our 

minds, confusion will result. 
The situation is further complicated by the fact that we 

must also consider radiation at various angles in space, which 
are also expressed in degrees. If the nature of each quantity 

expressed in degrees is kept clear, the situation isn't bad. It is 

only when we have a rather hazy idea of what we mean by 
degrees that confusion results. 

PHASE LAG AND LEAD 

The radiation properties of antenna arrays depend on the 
phase of the signals that are applied to various elements. When 
dealing with feeder systems. we must keep track of all of the 
phase shifts that are encountered, whether they are introduced 
by networks or by the time delay required for a signal to pass 
through a transmission line. To control these phase shifts, we 

use networks to introduce a desired amount of phase shift. 
These networks may either retard the phase of a signal and 
cause it to lag the input signal, or they may advance the phase 
and cause it to lead the input signal. 

Phase Lag 

The concept of a network that causes the output to lag the 
input is easy to accept. All we have to do is find something that 
will introduce a time delay. This will correspond to a phase 
lag. and knowing the frequency, we can find the number of 
degrees corresponding to any given time delay. 

Phase Lead 

The concept of a phase lead, or advance, isn't as easy to 
accept. It may seem that a network that causes the output to 
lead the input must move something forward in time. Putting 
it another way, it looks as though the network must have some 
way of " knowing" what the signal is going to be like in the 
future if the network's output is to look exactly as the input 
wave will at some time in the future. Of course, this isn't 
possible. and there is a better explanation of what happens. 

Inasmuch as we are dealing with sign. als that do not vary 

much from one cycle to the next, even with modulation, we 
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consider what is usually called the steady-state response that 
we get at the instant we apply power to the system. The 
situation is analogous to a platoon of troops following the 

orders of a drill sergeant. If the troops are at ease and not in 
formation and the drill sergeant suddenly barks out an 

unexpected command, the immediate response is nearly chaos 

while everyone gets in the proper position. Very soon 
afterward, however, the platoon is a smooth-functioning group 
that efficiently carries out all subsequent orders. The situation 
in an electric circuit is much the same. If the network is "at 
rest." with no charge in the capacitors and no current in the 
inductors, and a signal is suddenly applied, there follows a 
period during which the voltages and currents adjust 

themselves to the new environment. This is called the 
transient period. Very soon after this—the exact time depends 

on the Q-factor of the network—the network settles down and 
follows the dictates of the applied signal. It is this steady-state 
situation that concerns us. 

Figure 1-11A shows an AC source connected through a 

switch and resistor to a capacitor. We will consider the voltage 
from the source to be the cause and the current in the circuit to 
be the effect. We know from elementary circuit theory that in 
a circuit containing both resistance and capacitance, the 
current leads the applied voltage—that is, the current reaches 
its maximum value before the voltage does. This looks like a 
clear case of the effect happening before the cause. 

We can resolve this apparent difficulty by looking at the 

voltage and current in the circuit during the transient period. 
Let us assume that the switch in the circuit is closed at the 
instant when the applied voltage is at its maximum value. The 
voltage across the source, resistor, and capacitor, as well as 
the current in the circuit, are shown in Fig. 1-11B. At the 

instant the switch is closed, there is no charge in the capacitor, 

so it looks like a short circuit. The current will be maximum, 
but all of the voltage will appear across the series resistor. At 
this instant the current is in phase with the applied voltage: 

that is. the effect is occurring at the same time as the cause. 
From this time on, the voltage across the capacitor increases 
and the source voltage decreases. 
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1 - lA 

(B) 

Fig. 1-11. Transient conditions in a circuit. 

It is easy to see that the current in the circuit will stop 
flowing when the source voltage and the voltage across the 
capacitor are equal. After this the capacitor voltage will be 
higher than the source voltage, so the current will start to flow 
in the opposite direction. Thus the current, which is really the 

effect, reverses direction before the voltage, which is the 
cause. The phase angle between voltage and current is 
determined by the values of resistance and capacitance in the 
circuit. In this case, the phase angle is 45°. Since the applied 
signal is sinusoidal, once the circuit reaches the steady state 
the current will always lead the voltage by 45°. 

VECTORS 

A vector quantity is one that has both magnitude and 
direction. Quantities such as force and velocity, which have 
both magnitude and direction, are vector quantities. We can 

specify them in several different ways. For example, if the 
wind is blowing at 5 miles per hour from a direction which is 

30° from north, we can specify the magnitude and velocity of 
the wind by a vector, which we write as 5/30°. The 5 indicates 
that the magnitude is 5 mph, and the 30° gives the direction. We 

can represent this vector graphically by drawing a line 5 units 
long at an angle of 30° from some reference line, which is 
usually, but not necessarily, the horizontal axis. The line itself 
is usually called a vector, and it is understood that the line is a 
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graphical way of representing both the magnitude and 

direction of some quantity. The 5/30° vector is shown in Fig. 

1-12. 

Fig. 1-12. Vectors and phasors. In 
vector notation a is an angle in 
space. In phasor notation a is a 
phase angle. 

REFERENCE LINE 

Vectors were originally used to specify physical quantities 

that had some direction in space. It was found, however, that a 
vector could be used to represent sinusoidal electrical 

quantities. When used in this application, the lines are more 

properly called phasors. 

Use of Phasors and Vectors 

There is a difference between a vector and a phasor: 

Vectors can easily be expanded to three dimensions, whereas 
phasors are restricted to two dimensions. Unfortunately, in an 

AM broadcast station the term phasor refers to a piece of 
equipment. This item was called a phasor long before the 

mathematical use of the word was coined. As a result, when 
the broadcast engineer hears the word phasor, he immediately 

identifies it with a piece of equipment. He has traditionally 

used the word vector to describe what the mathematicians call 
phasors, and this tradition will be respected throughout this 

book. 
A vector can be used to represent a sinusoidal voltage or 

current, or an impedance ( which is the ratio between them). 
For example, suppose that we wish to represent a current of 

5A as leading the applied voltage, which we take for a 
reference, by 30'. Our vector diagram for this current is 

exactly the same as the vector diagram of Fig. 1-12. The only 

difference is that in the previous case the angle represented an 

angle in space whereas in the present case it represents a 

phase angle. We express the current in the same way as we 

expressed wind velocity: 5/30'. 
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COMPLEX NUMBERS 

A vector is just another way of writing a complex number 
( a number that can be resolved into two components at right 

angles to each other). To keep things on familiar ground, 
suppose that we have a circuit consisting of a 4-ohm resistance 

in series with a 3-ohm inductive reactance, as shown in Fig. 
1-13A. We could write the impedance of the circuit as 

Z = 4 + j3 ohms 

Thus written, the impedance is said to be in rectangular form. 

The use of the boldface symbol ( Z) for impedance denotes 
that the vector is completely described, and not merely its 

absolute value given. To indicate the absolute value of a 
parameter, we use bars with the letter symbol, as in IZI. In 

general, the use of boldface type and bars will not be 
necessary in this book, because the context of the problem or 
discussion will make clear which aspect of a quantity is of 

interest. In future chapters, this special symbology will be 
used only when required to prevent confusion. 

We know from elementary AC theory that the magnitude 

of this impedance is 

IZI =VR + X2 = VT:7"-§", 5 ohms 

The phase angle between the applied voltage and the current is 

36.87°. Now we can write the impedance in the form 
Z = 5/ 36.87' 

The above impedance can also be represented by the vector 
diagram of Fig. 1-13B. When written in this notation, the 
impedance is said to be written in polar form. As we will see, 

some mathematical operations are easier when complex 
numbers are written in polar form, and others are easier when 

the numbers are written in rectangular form. We convert from 
one form to the other by means of a right triangle and the two 

simple trigonometric expressions shown in Fig. 1-13C. 

Adding and Subtracting Vector Quantities 

Addition and subtraction of vector quantities is much 
easier when they are expressed in rectangular form. The 

procedure is as follows: 
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(A) (B) 

C = 5 
0= 36.87) 

A=C sin 0=5 sin 36.87=3 

A B=C sin ()= 5 cos36.8' =4 

(C) 

Fig. 1-13. Using vectors to represent electrical quantities. 

1. Convert both numbers to rectangular form, using the 

method shown in Fig. 1-13C. 

2. Add the real and " imaginary" parts separately. 

3. Convert back to polar form if this form is required. 

Figure 1-14 shows an example. Here we add 5 / 36.8T 

4 + 3 
3 

(A) 

7 
(B) 

Fig. 1-14. Adding vectors. 

1 j4 

4 + j3 

3 + j4 
7 + j7 = 9.90/4_5° 

i3 
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and 5 / 53.13°. We use these odd angles to make the 
real and imaginary ( j ) numbers come out to whole 

numbers. The sum, when converted back to polar 
form, is 9.9 In Fig. 1-15 we have an example of 

subtraction, which is simply the reverse of the 
addition of Fig. 1-14. 

7 

4 

(B) 

7 + j7 

— (3 + j4) 

4 + J3=5/36 87' 

Fig. 1-15. Vector subtraction. 

3 

Multiplying and Dividing Vector Quantities 

Two vectors can be multiplied together easily when they 
are expressed in polar form. All we have to do to find the 
product is to multiply the magnitudes and add the angles. For 
example. suppose that we wish to find the vector voltage 

across an impedance of 10 / 15% when the current through the 
impedance is 5 / 30° ( i.e., 5 / 30° amperes). From Ohm's law 
we know that we have to multiply current by impedance to find 

voltage. That is 

V = IZ 
= 5 / 30° x 10 L 11° 
= ( 5 x 10) + 15° = 50 LLI_52V 
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Division of vectors is just as easy. To reverse the problem 

just stated, suppose that we are given a voltage of 50 / 45W  
and a current of 5 / 30°A and asked to find the impedance. 

50 / 45° 50 
Z = V/I —   — 45 — 30 -= 10 / 15- ohms 

5 / 30° 5 

Although vectors may be multiplied and divided in 
impedance problems, vector multiplication can not be used to 
find power. 

In summary, we can express any complex number in 

either rectangular or polar form. In antenna work the polar 
form is useful for combining the field intensities from various 
antenna elements. In this book we will use whichever form 
tends to make clearer the technical points in question. 

One does not actually have to go through the drudgery of 
performing the operations that we have presented. With an 
electronic calculator it is merely a matter of pressing keys. 
One should, however, have an understanding of the meaning of 
the quantities. 

ANOTHER LOOK AT IMPEDANCE 

The concept of impedance follows directly from Ohm's law 
for alternating currents and is familiar to every broadcast 
engineer. Nevertheless, when the concept is applied to such 
things as antennas and transmission lines, a great deal of 
confusion often results. For this reason we will briefly review 
the concept, with emphasis on some of its more subtle 
implications in antennas and transmission lines. 

Fig. 1-16A shows a 10V source connected to two terminals 
on a box. To keep things simple for the moment, we will 
consider our source to be a battery. At the moment, we have 

absolutely no idea of what might be inside the box, but meters 
connected to the terminals tell us that when we apply 10V, the 
current will be 1A. We can then say that the impedance 

"looking into" the box is 10 ohms when the applied voltage is 
10V. 

If we are told that the box contains no nonlinear elements 
and no sources, we can assume that the impedance will also be 
10 ohms for any other value of applied voltage. On this basis, 
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we can assume that the equivalent of whatever happens to be 
in the box is a 10-ohm resistor, as shown in Fig. 1-16B. This 
does not mean that the box actually contains a 10-ohm resistor. 

It might, for example, contain two 20-ohm resistors connected 
in parallel ( Fig. 1-16C). 

1 A 

.—.__ 1 ov 
T  

(B) 

1 

Fig. 1-16. Equivalent resistance. 

So far the situation is very simple: there is no room for 
confusion. Things are a little more complicated in Fig. 1-17A, 
where we have an AC source and a method of measuring not 

only the current but also its phase angle, with the applied 
voltage as a reference. Our applied voltage is 10V, and the 
current in this case is 2A. We also find that the current lags the 

voltage by the now-familiar angle of —36.87°. ( Since the 
current is lagging we prefix the phase angle with a minus 
sign). 

The question is now "What is the equivalent circuit of 

whatever is in the box?" We can specify the ratio of the 
applied voltage to the current as an impedance. If we are only 

interested in the magnitude of the impedance, we can apply 
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Ohm's law just as we would in the DC case. We indicate the 
impedance that we find in this way as VI to indicate that we 

know its magnitude but not its angle. Thus we can simply 
divide the magnitude of the voltage by the magnitude of the 

current to get the magnitude of the impedance. 

IVI 10 
= y  = 5 ohms 

Of course, this doesn't tell us the whole story. We know 

that the current is not in phase with the applied voltage, so we 
know that there is some sort of reactive component in the box. 
To find both the magnitude and angle of the impedance, we can 

perform the same division in polar form. 

V 10 
Z =-- —   — 5 / 36.87 ohms 

2 L 

This tells us that the box has an impedance that can be 

represented by the vector number 5 / 36.87°. The fact that the 
angle is positive indicates that whatever is in the box is 
inductive. We can derive an equivalent circuit for whatever is 
in the box by converting the impedance from polar to 
rectangular form, giving 

Z = R + jX, = 4 + j3 ohms 

Thus we can say that the equivalent circuit of whatever is 
inside the box is a 4-ohm resistor in series with a 3-ohm 

inductive reactance ( Fig. 1-1713). This doesn't mean that these 
elements are actually in the box. It just means that whatever 
actually is in the box will behave as these two elements at the 
frequency of interest. The box might, for example, contain a 
series-resonant circuit as in Fig. 1-17C. 

Self-Impedance 

So far we have been concerned with the impedances that 
are seen looking into the terminals of a box that contains only 
two terminals and no source. We call this impedance the 
self-impedance of the circuit inside our box. We could also call 
it the driving-point impedance seen at the terminals of the box 
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a = — 36.8T 
2A 

10V 

10V 

PHASE 

METER 0 

PHASE 

METER 

10V — 

PHASE 

METER 

(A) 

2A 

(B) 

2A 

- 10 

—36.87 

=5/36 87 OHMS 

Xc= 

3 OHMS 

(C) 

XL= 

4 5 OHMS 

X c -T 

2 OHMS 

Fig. 1-17. Equivalent circuits containing inductance and capacitance. 

As long as we have only one source of energy and one pair of 
terminals in a circuit, the self-impedance and driving-point 
impedance are really the same thing. Thus if we are talking 

about circuit elements such as resistors, coils, and capacitors, 
the driving-point impedance means the same thing as the 
self-impedance. 

In Fig. 1-18A we have a completely different situation, and 
one that we will encounter very frequently in antenna work. 

Here the box has two sets of terminals. We will assume that 
the bottom terminals, 1' and 2', are connected together and 
grounded. Again, we have no idea whatever of what might be 

inside the box, except that it contains no sources or nonlinear 
elements. There are several measurements we could make 

that would enable us to draw an equivalent circuit for 
whatever happens to be inside the box. 

We could, for example, apply a voltage to one pair of 

terminals while the other pair is open-circuited, as shown in 
Fig. 1-18B. and take the ratio of the applied voltage to the 

current. In Fig. 1-18B we see that if we apply 10V to the 
terminals at the left side of the box, a current of lA will flow. If 
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we divide the 10V by 1A, we get an impedance of 10 ohms. We 

call this the self-impedance between terminals 1 and 1' and 

usually identify it as Z1 . Remember that the other terminals 
were open when we made this measurement. By a similar 

measurement we see in Fig. 1-18C that the self-impedance 
between terminals 2 and 2', at the right ( which we will call 

Z, ) side of the box is 5 ohms. These two measurements tell us 
what will happen when we energize either pair of terminals 
separately, but they give no information whatever on what 

connection may exist between the two sets of terminals or 

what will happen if we energize both sets of terminals at once. 

Mutual Impedance 

There is another measurement that will enable us to draw 
an equivalent circuit for whatever is in the box. We can 
connect our source to one pair of terminals and measure the 
voltage that appears across the other pair, as shown in Fig. 

1-18D. The ratio of the voltage that appears between terminals 

2 and 2 ' to the current that is flowing in terminals 1 and 1' is 

called the mutual impedance Z2 between the two sets of 
terminals. In Fig. 1-18D it is seen to be 2 ohms. It may be 
surprising at first, but as long as our box contains only linear 

circuit elements ( resistances, inductances, and capacitances), 
it makes no difference to which terminals we apply the source. 

We could hare connected the source between terminals 2 and 

2', and the voltmeter between terminals 1 and 1', the mutual 
impedance would be the same in both cases. 

ZI2 = Z2I 

This concept of mutual impedance between two sets of 

terminals should be clearly understood. It is probably 

responsible for more confusion about the behavior of antenna 
feeder systems than any other factor. Remember, the mutual 
impedance is the ratio of the voltage that appears across one 

pair of terminals to the current flowing in the other pair of 

terminals. The voltmeter used to measure this voltage must 
draw negligible current. 

We are now in a position to draw an equivalent circuit for 
whatever happens to be in the box of Fig. 1-18A. There is a 
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(D) 

(A) 

(C) 

2 

10V 

Fig. 1-18. Unknown circuits with two sets of terminals. 

principle in circuit theory that any linear, bilateral circuit 

containing only linear passive components can be represented 
at one frequency by either a T or pi network. We will use the 

equivalent T-circuit because it will make the concepts involved 
clearer. 

Figure 1-19A shows a T-network. We can use the 

measurements of Fig. 1-18 to find the values of the elements in 

this circuit that will make it behave exactly like the box. When 

terminals 2 and 2 are open-circuited and current is flowing in 
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terminals 1 and 1 ' , the output voltage will be simply I, x Z. 

Therefore, 4 is equal to the mutual impedance Z2, in this 

case 2 ohms. 
Next, we know that the impedance at terminals 1 and 1' 

when the other terminals are open is the self-impedance 
between these terminals. We will call this impedance Z, , and 

in our example it is 10 ohms. Now, if we are to see this 
impedance when we look into terminals 1 and 1' with the other 

terminals open. then Z must be equal to Z1 — Z2 , in this 
case 8 ohms. Similarly, 4 must be equal to Z22 — Z2 , where 

I2 is the self-impedance between terminals 2 and 2 ' . We have 
now completely pinned down our equivalent circuit as shown 
in Fig. 1-19B. 

Za=Zii Z12 Zc=Z22 — Z12 

(A) 

(13) 

Fig. 1-19. Deriving an equivalent 1-circuit. 

2 

2' 

2 

2' 

Driving-Point Impedance 

So far we have defined two kinds of impedance in 
connection with our circuit: the self-impedance of each pair of 
terminals, and the mutual impedance between the pairs. We 
know that when terminals 2 and 2' are open, the driving-point 
impedance between terminals 1 and 1 ' —that is, the impedance 
seen looking into these terminals—will equal the self-
impedance associated with them. The same is true of the other 

pair of terminals. But if there was something connected to both 
pairs of terminals at the same time, the driving-point 

impedance at one pair would probably not equal its 
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self-impedance. We will not attempt to derive an expression 

for driving-point impedance into one pair of terminals that will 
hold regardless of what might be connected across the other 

pair. 
Figure 1-20 shows our equivalent T-network with voltages 

applied to, and current flowing in, both sets of terminals. We 

can use Kirchhoff's voltage law to write an equation for the 
voltages around the loops in the figure. The equation for loop 1 
is 

Vi _ I, — Z12 + Z12 Z12 

— II Z11 — '2 ZI2 

If we divide all of the terms of this equation by It , we get 

17, 12 
— z11 Z19 

Il II 

It is easy to see that this equation gives the ratio of the voltage 
between terminals 1 and 1' to the current that will flow in 
them. Since the ratio of a voltage to a current is an impedance, 
we call this impedance the driving-point impedance between 

terminals 1 and 1' and represent it by the symbol A . Thus the 
equation for the driving-point impedance between terminals 1 

and 1' becomes 

= A + 
11 

This equation is very important and should be studied 
carefully. It shows that in a T-network, which is a good 
equivalent for many antenna circuits, the driving-point 

impedance depends on the currents flowing in both pairs of 
terminals. Remembering this simple equation will often 
remove confusion that results from interaction between the 

networks in antenna feeder systems. 
We have now defined three different kinds of impedance 

associated with a network that has two sets of terminals. ( 1) 

The self-impedance ( Zil or Z22 ) associated with a pair of 
terminals is the impedance seen looking into the terminals 
when nothing is connected to the other set of terminals. ( 2) The 

Z12 
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mutual impedance (Z12 or 22.1 ) is associated with two pairs of 
terminals and is the ratio of the voltage across one pair of 
terminals to the current flowing in the other pair. The 
magnitude of the mutual impedance depends on how the two 

pairs of terminals are connected together. In a more general 
sense, it depends on how energy gets from one pair of 

terminals to the other pair. ( 3) The driving-point impedance 
associated with a pair of terminals is the ratio of voltage to 
current at the terminals under certain conditions. The 
driving-point impedance depends not only on self-impedance 
but also on the currents flowing in the network. 

To keep the mathematics comparatively simple, we have 
assumed that the impedances in our equivalent circuit were 
pure resistances. In general, this will not be true. Most of the 
impedances we encounter in antenna work will have reactive 

components. Thus the Zs in Fig. 1-20 would ordinarily have 
both magnitude and a phase angle. Furthermore, the current 
in loop 2 will often not be in phase with the current in loop 1. 
Thus we will have the phase angles of the currents to consider. 

Z1 — Z12 Z22 — Z12 

LOOP 1 
  Fig. 1-20. Equivalent l- circuit with 

voltages and currents. 

2 t 112 

LOOP 2 

NEGATIVE RESISTANCE 

A concept that rears its ugly head with annoying frequency 
in directional-antenna work is negative resistance. When a 
driving-point resistance found in an antenna feeder system 
turns out to be negative, it merely means that the current, and 

hence the power, is flowing out of the terminals rather than 
into them. This is illustrated in Fig. 1-21. Here we have the 
now-familiar T-network with two sources—one at each set of 
terminals. All of the voltages, polarities, and current 
directions are shown. We can now compute the driving point 

impedance at both sets of terminals: but in doing so, we should 
keep track of the polarity of voltages and the direction of 
current flow. We assume that a positive current is caused by a 
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positive voltage. Thus the driving-point impedance Z between 

terminals 1 and 1' is 

VI 
--= 

II 

li= 2.5A 

1 10 

..=. 45V 

1' 

15V 
Z1= —45V 18 OHMS 

2.5A 

45V 

2.5A 
= 18 ohms 

12= — 0.5A 

30 OHMS Z2= _ 05 

Fig. 1-21. Negative impedance. 

Now we compute the driving-point impedance between 

terminals 2 and 2 ' : 

V. 15V 
= - 

/2 —0.5A 
— 30 ohms 

Because of the signs, we find that the impedance between 

these two points is a negative number. All this means is that 
power is flowing out of terminals 2 and 2', as shown by the 
dashed line, instead of into them. A negative resistance means 

that energy is flowing opposite to the direction that it would 

flow in if the resistance were positive. The magnitude of the 

impedance is still simply the ratio of voltage to current at that 

point. Note that this is the only sense in which we shall use the 
concept of negative impedance. It is used in a different sense 
in connection with some semiconductor devices and 
oscillators, but that will not concern us. It is also important to 

note that only a driving point or mutual impedance can be 

negative: self-impedance is always positive. 
The value of our equivalent circuit can be better 

appreciated by considering Fig. 1-22. Here we have a very 

large, albeit fictitious, box that contains two antennas instead 
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of circuit elements. By using our equivalent T-network, we can 

reduce what would be a horrendous problem in field theory to 
a comparatively simple problem in circuit theory. 

2 

2 

Fig. 1-22. Antenna system and 
equivalent circuit. 

2 

2' 

VECTORS AND POWER 

Earlier, in applying Ohm's law, we found that we could 
multiply or divide vectors to find voltage, current, or 

impedance. all of which are vectors. The question naturally 
arises as to whether we can multiply voltage expressed as a 

vector by current expressed as a vector to find the power in a 
circuit. For example, if the voltage applied to a circuit was 

10 / 0-V and the current was 5 / — 60'. could we multiply them 
to get power? The answer is no. If we were to multiply them 

we would get 

10 x 5 / — 60°. = 50 / — 60°  

The fact that the product has an angle tells us that something 
is wrong. Power is simply the rate of flow of energy, and it 

doesn't have an angle. In other words, power is not a vector 

quantity. 

The reason that this simple approach to finding power 

does not work is that the power moving past a point in a circuit 
is equal to the product of the voltage and the component of the 

current that is in phase with the voltage. Figure 1-23 shows a 
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vector representation of our voltage and current. It can 
readily be seen that the component of the current that is in 

phase with the voltage is given by I cos O. or 5 x 0.5, so the 
power in our circuit is given by 

P = V(1 cos 0) = 10 x 5 x 0.5 = 25W 

1 

IN-PHASE COMPONENT 

OF CURRENT = I cos 0 

 is V 

Fig. 1-23. Vector diagram of current of 5A displaced from voltage of 10V by 
60°. 

EQUIVALENT SOURCES, POWER 
TRANSFER, AND EFFICIENCY 

So far we have had very good luck in drawing equivalent 
circuits for boxes containing only passive elements. We need 
an equally simple way of representing sources of energy, such 
as broadcast transmitters. This can be accomplished by a 
principle known as Thevenin's theorem, which is fully as 
useful as any of the principles we have investigated so far. 

Thevenin's theorem states that any circuit that contains 
sources can be represented at one frequency by an ideal 
voltage source in series with an impedance. Of course, this 
equivalence only holds true over the operating range where 
everything is linear. We couldn't, for example, short-circuit 
the output of a transmitter and expect it to behave as a linear 
device—in fact, it probably wouldn't behave at all. 

Over its normal operating range, however, we can expect 
a transmitter, signal generator, or almost any other source of 
power to look electrically like the equivalent circuit of Fig. 
1-24. The voltage source VT is an ideal constant-voltage 
source. It will produce the same output voltage regardless of 
what is connected to its terminals. The resistance Rs is the 
effective internal resistance. 
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Fig. 1-24. Thevenin equivalent circuit. 

Now that we have an equivalent circuit for a source, we 

can look at how load impedance will affect the amount of 
power we get out of the source. Figure I-25A shows a source 

connected to a variable load resistance Rf, . Figure 1-25B 
shows a plot of the power delivered to the load as a function of 

the ratio of the load resistance to the equivalent source 

resistance Rs . It can be seen that the maximum power will be 
delivered to the load when Rs = R1., that is, when the load 
resistance is equal to the internal resistance of the source. 

On the surface, this looks like a very desirable situation. 

but a little deeper look will show that it probably isn't as 

attractive as it first seems. The same current flows through 
both the internal source resistance and the load resistance. 
When the two resistances are equal, just as much power is 
dissipated internally in the source as is delivered to the load. 

We get maximum power in the load, but the price we pay is an 

operating efficiency of only 50q. If the load applied to a 

Rs 

(A) 

Fig. 1-25. Maximum power transfer. 

1 I I I 

1.0 1.5 2 2.5 

RLRs 

(B) 

50 



broadcast transmitter were equal to its effective internal 

impedance. the efficiency of the final stage would only be 50%. 
Most transmitters are operated at much higher efficiencies. 

In most cases, we don't know the internal impedance of a 
broadcast transmitter. The manufacturer normally specifies 
only the load impedance into which it is designed to work. 
Actually this is all we need to know to keep an antenna system 
operating properly. It is helpful, however, in trying to 
understand the operation of feeder systems. to get an idea of 
what impedance is seen looking into the transmitter output 
terminals. We can get a very rough idea of this from the 

specified load impedance and the operating efficiency of the 
final stage. 

Suppose. for example, that we have a transmitter that is 
designed to work into a 50-ohm load at an efficiency of 70% 

(Fig. 1-26). The efficiency of this circuit expressed as a 
decimal, is given by 

eff = 
Rs + 

Rearranging 

R. = R,.[ 1 [ — 1] 
eff 

Substituting numbers into this, we get 

R, = 50r — 1] = 50[0.431 = 21.4 ohms 
L 0.7 

Rs 

R1150 

EFF = 0.7 

Fig. 1-26. Transmitter operating into 50f2 load with 70% efficiency. 

Thus the internal impedance is about 21 ohms. This is only 
an approximation. but it shows that when a transmitter is 
operating at an efficiency of greater than 50%, its internal 
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resistance is lower than the source impedance into which it 
operates. This means that a transmitter, in general, acts more 
like a constant-voltage source than a constant-current source. 

Looking at Fig. 1-26, we can see that if Rs was much lower 
than lit , the voltage across the load wouldn't change much 
with small changes in load resistance. Also, if R was much 

larger than RI, , the load current wouldn't change much with 
small changes in load resistance. 

CONDUCTANCE, SUSCEPTANCE, AND ADMITTANCE 

The behavior of circuits and circuit elements is described 
in terms of the relationship between voltages and current at 

their terminals. This is most commonly done by specifying 
resistance. reactance, and impedance at the terminals. As we 
have seen, these three parameters are ratios of voltage to 
current and are measured in ohms. When circuit elements are 

connected in series, the total circuit impedance can be found 
by a vector addition of resistances and reactances. When 

elements are connected in parallel, finding the total circuit 
impedance is more complicated. 

With the parallel connection it would be much easier if we 
were to use the reciprocals of resistance, reactance, and 
impedance. These are conductance, susceptance, and 

admittance, respectively, and they are measured in mhos. 
These reciprocal quantities are ratios of current to voltage. 

Just as we could say that one ohm equals one volt per ampere. 
we could say that one mho equals one ampere per volt. 

Disadvantages of Admittance 

The reason admittance is not used more widely in 
broadcast work is twofold. In the first place, component values 

are traditionally specified in ohms. Although it might be easier 
to use mhos to solve a problem, by the time we have converted 

everything to mhos we have done as much work as if we had 
solved the problem using ohms. For example, suppose we 
want to find the total resistance of a 2-ohm and an 8-ohm 
resistor connected in parallel. The conventional approach is to 

take the product of the two and divide it by their sum. 

2 x 8 16 
R —  — 1.6 ohms 

2 + 8 10 
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We can find the total conductance of two conductances in 
parallel by simply adding them together. To do this in the 
above case, we convert each resistance to a conductance, then 

add them together 

G = 1/2 + 1/8 = 0.5 + 0.125 = 0.625 mho 

Then, to use the result in most applications, we would have to 
convert the conductance back to a resistance. If we had to 
make the computation by hand, we would gain nothing. 
Fortunately, with an electronic calculator the computation is 
very simple. Thus we can use the concept of admittance 

whenever it will either simplify computation or make things 
clearer. 

The only remaining obstacle to using admittance, 
conductance, and susceptance is that the magnitudes, being 
unfamiliar, are apt to be meaningless. For example, most 
broadcast engineers wouldn't realize immediately that an 
admittance of 20 millimhos was the same as an impedance of 
50 ohms. 

Inasmuch as the concepts are very useful, we will take a 
few minutes to review their meaning and the techniques for 
using them. 

Conductance and Susceptance 

Conductance is the reciprocal of resistance and is usually 
represented by the symbol G. That is. 

1 
G — 

Thus. a resistance of 5 ohms would correspond to a 

conductance of 0.2 mho or 200 millimhos. 
Susceptance is the reciprocal of reactance and is usually 

represented by the symbol B. The formulas for inductive and 

capacitive susceptance are 

27r fC B, = 
277- FL 

1 

Because susceptance is the reciprocal of reactance, inductive 
susceptance has a minus sign, whereas capacitive reactance 
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has a minus sign. Thus the total susceptance in a parallel 

circuit is Be — B1, . 
Admittance Y is a complex number that represents the 

ratio of current to voltage. It includes both conductance and 
susceptance. and in a parallel circuit it is equal to 

Y = G + jB 

The method of converting resistance to conductance, or 
reactance to susceptance, is straightforward. We simply take 

the reciprocal of one to get the other. When it comes to 
converting between impedance and admittance, there is often 

a great deal of confusion. For example, suppose that we have a 
resistance of 4-ohms in series with an inductive reactance of 3 

ohms. We know that the magnitude of the impedance is 5 
ohms. The impedance may be expressed as 

Z = R + jX = 4 + j3 = 5 ohms 

Now suppose that we want to find the admittance looking into 
this circuit. Since 1/4 = 0.25 and 1/3 = 0.33, there is a 

temptation to say that the admittance looking into the circuit is 

Y = G + jB = 0.2 + j0.33 mho 

This temptation should be resisted, because the expression is 

wrong. To find the right way to make the conversion, we must 
take a look at what our equations mean. 

When we write the expression Z = R + jX, we are stating 

that the impedance between two wires, such as the leads of the 
box in Fig. 1-27A, is the same as the impedance of a circuit 
consisting of a resistance R connected in series with a 
reactance X. When we write the expression Y = G + jB, we 

are saying that the admittance between two wires, such as the 
leads of the box in Fig. 1-27B, is the same as the admittance 
seen across a circuit containing a conductance G connected in 
parallel with a susceptance B. The two circuits are not the 
same. If we want to find the total admittance of two elements 
in series, we must take their sum over their product, just as 

with resistors in parallel. 
When we are concerned only with admittance and 

impedance. and when they are expressed in polar form, we 
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Z= R -+ iX 

(A) 

y= G + jB 

(B) 

Fig. 1-27. Conductances and susceptances connected in series (A) and 
parallel ( B). 

can simply take the reciprocal of one to get the other, that is. 
divide the vector quantity into 1. Thus if we want to find the 

admittance corresponding to an impedance of 2 / 30 ohms, we 
calculate 

1 1 
G=—   

2 , 30 -
--- 0.5 / — 30' mho 

55 



Chapter 2 

Principles of 
Transmission Lines 

It is necessary to locate an antenna at some distance from the 
transmitter. In television and FM stations the antennas are 
located on tall towers to get good coverage, in AM directional 

stations, antennas consist of two or more widely separated 

towers. It is necessary to get the signal to the antenna with a 
minimum of loss and with as little radiation as possible along 
the way. Transmission lines of one type or another are used for 
this purpose. In this chapter we consider properties of 

transmission lines that are fundamental and apply equally to 

all types of broadcast antennas. Later we will consider feeder 

systems for particular antenna types. 
One of the most important requirements for a 

transmission line is that it must not radiate signals. Radiation 

patterns can be controlled best at the antenna itself. If the line 
should radiate, it would not only waste energy, but it might 

radiate energy in such a direction as to defeat the directional 
design of the antenna. A directional antenna is designed to 

radiate a minimum amount of energy in certain directions, to 

"protect" areas served by other stations on the same 
frequency. If the transmission line radiated, it might put an 
interfering signal in the protected area. 

Whenever an RF current flows in a wire more than about 

1/10 wavelength long, the wire will tend to act as an antenna 
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and radiate energy. In a transmission line this tendency 
toward radiation is minimized by using closely spaéea 
conductors in which currents are flowing in opposite directions 
( Fig. 2-1). Inasmuch as the currents in the two conductors are 

in opposite directions, the fields from them will also be in 
opposition: and at a distance from the line, the fields will tend 

to cancel. 

MAGNETIC FIELD ELECTRIC FIELD 

Fig. 2-1. Fields around a transmission line. 

Field cancellation is fundamental to the operation of 

transmission lines. antennas. and all forms of shielding. We 
can assume that whenever an electric charge moves, it will 
tend to make every other charge in the universe move at the 
same frequency. If other charges in the same area move in the 

opposite direction. they will have equal and opposite effects on 
still other charges in the universe. This is how a coaxial cable 
minimizes radiation. The field from the outer conductor 

cancels the field from the inner conductor. It can be shown 
mathematically that this cancellation takes place right at the 
outer conductor. The outer conductor does not confine the field 

in the way a water pipe contains water. 

IDEAL LINE 

It is easier to gain insight into the operation of many 
practical devices by first considering an ideal model, studying 
its behavior, and then modifying it so that it more closely 
resembles a practical device. We do this with transmission 
lines by starting out with an idealized line. We assume that it 

consists of two parallel conductors that have no series 
resistance and no leakage between them. 

Having decided to neglect resistance, we can almost 
intuitively draw the equivalent circuit. Since each of the wires 
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has appreciable length, it has inductance. We know, therefore, 

that there will be series inductances in our circuit. Since the 
two conductors are in close proximity, we know that there will 

be capacitance between them. It is not surprising, therefore, to 
find that the ideal transmission line has an equivalent circuit 

like that shown in Fig. 2-2A. We can, without serious error, 

further simplify the circuit by placing all of the inductance in 
one conductor as in Fig. 2-2B. 

TO 

SOURCE 

T T T T o 

(A) 

TO 

LOAD 

(B) 

Fig. 2-2. Equivalent circuit of an ideal transmission line. 

o 

Of course, in an actual line the inductance and capacitance 
are distributed uniformly along the line, and not lumped as 

shown. Nevertheless, the equivalent circuit very closely 
approximates an actual line. In dealing with this circuit, we 
will not consider each of the inductances and capacitances 
separately, but will deal with the inductance and capacitance 

per unit length of the line. That is, we will use units like henries 
per foot and farads per foot. 

CHARACTERISTIC IMPEDANCE 

One very important property of any transmission line is its 
characteristic impedance. We can best understand this term 

by considering a fictitious line that is infinitely long. Let us 
connect a battery to this ideal line through a switch, as shown 
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in Fig. 2-3. Current flows when the switch is closed. All of the 
capacitances along the line have no charge in them before the 
switch is closed, so current rushes in to charge them. The 
current is not infinitely large, however, because it is limited by 
the series inductances. 

As a matter of fact, there is a definite relationship between 
the applied voltage and the resultant current that depends only 
on the construction of the line itself. Since the line is assumed 
to be infinitely long, a steady current flows. No matter how 

many fictitious capacitors become charged, there are always 
more to charge. What this means is that energy is flowing into 

the line, where it is stored in electric and magnetic fields. 
Since the energy is continuously flowing from left to right in 

the figure. and not returning, the voltage and current are in 

phase, and the line -looks like" a resistance. 

2A 

.=_,00v 
T T T T. 

(B) 
100V 

Z °— 2A 

Fig. 2-3. Impedance of an ideal transmission line. 

50e 

In circuit theory we call the ratio of voltage to current 
impedance, and since there is a definite relationship between 
the applied voltage and the resulting current in our infinitely 

long line, we can say that it has a characteristic impedance. In 
our example in Fig. 2-3 the applied voltage is 100V, and the 
resulting current is 2A: we can say that the characteristic 
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impedance Z, of the line is 

100V 
Z) — = 50 ohms 

2A 

The voltage and current in the line are in phase. This means 
that the characteristic impedance of our ideal line is a pure 
resistance of 50 ohms. 

As long as the ideal transmission line is infinitely long, it 
looks just like a resistor. There would be no way of telling by 
electrical measurements whether the battery in Fig. 2-3 is 
connected to an infinite line having a characteristic impedance 
of 50 ohms or to a 50-ohm resistor. 

In Fig. 2-4 we have the same 50-ohm line connected to a 
100V battery. Suppose we were to cut the transmission line at 
the line A-A. Inasmuch as the transmission line is said to be 
infinite, the remaining infinite section to the right of the cut 
must still look electrically like a 50-ohm resistor. We can 
therefore cut the line and terminate it in a 50-ohm resistance, 
as shown in Fig. 2-4B, and it will still look like a 50-ohm resistor 

at the input terminals. The line is then said to be terminated in 
its characteristic impedance. The input impedance of a line so 
terminated equals its characteristic impedance. This is true 

2A 

----100V 

-r 

(B) 

Fig. 2-4. Termination of a transmission line. 

TO 

TINFINITY 

a. 

50 tf 

RESISTOR 
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regardless of the length of the line, as long as we neglect any 
losses. When a line is terminated in some value other than its 
characteristic impedance, its input impedance will depend on 

the value of the terminating impedance and the length of the 
line, as well as on its characteristic impedance. 

In some older literature the characteristic impedance of a 
transmission line is called the surge impedance, because it is 
the ratio between the applied voltage and the current that 
would surge into the line if it were infinitely long. 

The value of the characteristic impedance of a 
transmission line depends entirely on its physical 
construction. In a lossless line the characteristic impedance is 
given by 

IT: z, = 7-

where L is the inductance in henries per unit length, and C is 
the capacitance in farads per unit length. Any units of length 
may be used as long as they are the same in both cases. 

The characteristic impedance can also be expressed in 
terms of the physical dimensions of the line. In a 2-wire open 
line 

d 
4 = 276 log — 

2D 

where d is the diameter of the conductors, D is their spacing, 
and both are expressed in the same unit. 

In a coaxial cable in which the space between conductors 
is filled with air, the characteristic impedance is given by 

D 
Z) = 138 log — 

d 

where d is the diameter of the inner conductor, D is the 
diameter of the outer conductor, and both are expressed in the 
same unit. 

A plot of characteristic impedance as a function of line 
dimensions is given in Fig. 2-5. 
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Fig. 2-5. Characteristic impedance graphs for 2-wire and coaxial mes. 

REFLECTIONS 

We are not always fortunate enough to have all of the 
transmission lines we work with terminated in their 

characteristic impedance. In standard broadcast work this is 

our goal. but in FM and TV we actually use the properties of 
transmission lines that are not terminated in this way to 

produce changes in impedance level. 
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The two extreme cases of lines that are not terminated in 
their characteristic impedance is when the far or receiving 
end of the line is either open or shorted. By studying these two 
cases, we can gain some insight into how lines behave with 
other values of terminating impedance. Let us first consider 

the case when the receiving end is open. 

Open Transmission Line 

Figure 2-6A shows a source connected through a switch to 
a line. Both the internal impedance of the source and the 

characteristic impedance of the line are pure 50-ohm 
resistances. For simplicity let us say that our source produces 

a DC voltage and that its open-circuit voltage is 100V. When the 
switch is closed, current rushes into the line to charge its 
distributed capacitance. Before the energy reaches the end of 
the line, the source has no way of "knowing" that the receiving 
end is open, so the line behaves just like a 50-ohm resistor. 
Thus, during this time, the voltage from the source divides 
evenly between its own internal impedance and the impedance 
of the line. There is 50V across the line and 50V across the 

internal impedance of the source. Thus a 50V wave will 
propagate along the line toward the receiving end. Bear in 
mind that the only way the energy gets to the end of the line is 
by being stored in the electric and magnetic fields associated 

with the conductors. 
Just as the voltage wave reaches the end of the line, there 

is a current of lA flowing in the equivalent inductance L of the 
last section of the line. This current charges the last capacitor 
C to a voltage of 50V. When this happens, the current stops 

abruptly: there is no place for it to go. Current is needed to 
sustain the magnetic field associated with L, and when the 

current drops to zero, the field collapses. The collapsing field, 
in turn, induces a voltage of such polarity as to increase the 
voltage across C. as shown in Fig. 2-6B. All of the energy that 

was stored in the magnetic field of L is transferred to C, and 
this is just enough to double the voltage to 100V. Thus a 50V 
wave propagates back toward the source, as shown in Fig. 
2-6C. raising the voltage across the capacitor to 100V. The 

current involved is lA because of the characteristic 
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impedance of the line. When the first capacitor in the line 
charges to 100V, the whole line is charged to 100V. There is 

now no current flowing in the line and no voltage drop across 

the internal impedance of the source, as shown in Fig. 2-6D. 
Under this condition all of the energy in the line is stored in its 

capacitance. 

(A) 

50V I = 1A-8. 1=0A-8. 

(B) 

50V 
1.-8.1 1A—s. 

100V 

100V 50V 

OV 

100V 

I = 1A 

(C) 

(D) 

Fig. 2-6. Reflection from an open transmission line. 
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There are two points worth noting about what happens 

when a signal reaches the open end of a transmission line: 

1. The voltage wave is reflected, in phase, with no change 
in waveform. 

2. The current is reflected, in the opposite phase, with no 

change in waveform. 

Shorted Transmission Line 

The situation where the receiving end of the line is shorted 
is shown in Fig. 2-7. In Fig. 2-7B, because the end of the line is 
shorted, we end the equivalent circuit with an inductance (a 
capacitor connected across the shorted end of the line would 

have no effect). As in the case where the end of the line was 
open, when the switch is closed a voltage wave of 50V travels 
down the line. Just ahead of the wave the voltage across the 
line is zero, and just behind the wave it is 50V. At the instant 
the wave reaches the end of the line ( Fig. 2-7B), there is 

nothing to limit the current in the inductor, and it increases 
until the induced voltage is just high enough to reduce the 
voltage across the last capacitor to zero. Note that the current 

is in the same direction, but that the induced voltage has the 
opposite polarity of that traveling down the line from the 
source. A very short time later the voltage rises across the 

preceding inductance and discharges the next capacitor. Thus 

there is a reflected wave of 50V that is out of phase with the 
original wave, as shown in Fig. 2-7C. This reflected wave 
reduces the voltage across the line to zero. The reflected wave 
of current is equal in magnitude to the original current, and 
since it is in phase with the original current, the current in the 

line doubles. After the reflected wave reaches the source, the 
current in the line is 2A; there is no voltage across the line, and 
all of the voltage drop is across the internal impedance of the 
source ( Fig. 2-7D). The energy in the line is then all stored in 

its inductance. 
There are two points worth remembering about what 

happens when a signal reaches the shorted receiving end of a 

transmission line: 

1. The voltage wave is reflected, out of phase, with no 

change in waveform. 
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Fig. 2-7. Reflection from a shorted transmission line. 

2. The current is reflected, in phase, with no change in 
waveform. 

RF Signals on Transmission Lines 

We use transmission lines to carry RF signals, not DC 
voltages as in the preceding examples. The reflection action is 
exactly the same for either RF or DC signals at any instant, 
but in antenna work we are not interested in instantaneous 

phenomena. Rather we are interested in the steady-state 
behavior of transmission lines. Because RF signals are 
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periodic sinusoidal voltages and currents, the manifestation of 
reflection will be considerably different than in the DC case we 
have just looked at. 

STANDING WAVES 

When an RF signal reaches the open end of a transmission 
line, the voltage is reflected, in phase with the incident voltage 
( Fig. 2-8). The reflected wave is what we would get if we folded 
the forward or incident wave back on itself. The actual voltage 
distribution along the line is the sum of the incident and 
reflected waves. Although the incident wave is moving to the 
right in the figure, and the reflected wave is moving to the left, 

the sum of the two will be a wave that doesn't move at all along 
the line. It is called a stationary or standing wave. 

(A) 

(B) 

(C) 

B C D E FGH 

FORWARD 

WAVE 

REFLECTED .."— 
WAVE 

RESULTING 

STANDING WAVE 

Fig. 2-8. Standing waves. 

At points B. D. F. and H, of Fig. 2-8, the voltage varies 
between a maximum positive and maximum negative value. 

At points A, C. E. and G, the incident and reflected waves 
cancel completely at all times, so the voltage at these points is 

zero. In a practical line the voltages do not actually reach 
zero. but some other minimum value. 

The points of maximum voltage of a standing wave are 
usually called voltage loops, and the points of minimum 

voltage are called voltage minima, or nulls. 
It is easier to get a good feeling for how standing waves 

are formed by considering the behavior of a rope that is tied 
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securely at one end ( Fig. 2-9). When the rope is given a shake, 
a wave travels along it toward the far end, which is secured. 
When the wave reaches the end of the rope, it is reflected back 

along the rope. and it gives a jerk when it gets back to the 
shaker's hand. If the rope is shaken rapidly, waves travel 
forward and backward along the rope at the same time. If the 
shaking is done at the proper rate, a standing wave is formed 
on the rope, as shown in the figure. This situation is analogous 
to the formation of standing waves on a transmission line. In 

both cases. a standing or stationary wave is formed by the sum 
of two waves of the same frequency moving in opposite 
directions. 

INCIDENT WAVE 

Fig. 2-9. Standing wave on a rope. 

REFLECTED WAVE 

/*--‘ 

If we were to measure the voltage of a standing wave 
along a transmission line with an RF voltmeter and plot the 
indications of the meter as a function of distance along the line, 
we would get a plot like that of Fig. 2-10. The indication of the 
meter would be proportional to the rms value of the voltage at 

each point and would not show the instantaneous value or 
polarity of the voltage. Standing waves are usually plotted in 
this way. 

Standing Waves for Various Terminations 

Inasmuch as a standing wave on a transmission line is 
caused by a reflection, which in turn is caused by a mismatch 

at the receiving end, the nature of the standing wave depends 
on the way in which the line is terminated. Figure 2-11 shows 

several different terminations and the resulting standing-wave 
patterns. 
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Fig. 2-10. Plot of a standing wave along a transmission line. 

In Fig. 2-11A the line is terminated in its characteristic 
impedance, and since there is no reflection in this case, there 
is no standing wave. In Fig. 2-11B we have the same situation, 
but there is some loss in the line. Although there is no 
reflection and no standing wave, the voltage drops along the 

line because of the losses in the line. 
Figure 2-1IC shows the standing-wave pattern that results 

when the receiving end of a transmission line is open. At the 
receiving end of the line, the voltage is maximum and the 
current is minimum. This is what we might expect, since with 

an open circuit at the end of a line, there is no place for the 
current to flow. The standing-wave pattern resulting when the 

receiving end of a line is shorted is just the opposite ( Fig. 
2-11D). The voltage at the receiving end of the line is now 
minimum and the current is maximum. This, again, is what 
we might expect because there can be no voltage across a 

short circuit. In the cases of open and shorted lines, the peak 
value of the standing wave will be twice the peak value of the 
incident voltage. 

Whenever a transmission line is terminated in anything 

except a resistance equal to the characteristic impedance of 
the line, there will be a reflection and, consequently, a 

standing wave on the line. If the termination is a resistance 
that is higher or lower than the characteristic impedance of 
the line, some of the energy in the incident wave will be 

absorbed in the termination; but since the resistance is not 
equal to the characteristic impedance of the line, some of the 
energy will also be reflected. 
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The voltage of the reflected wave can be found from the 
formula 

Ri Z) 

VII = V 
Z„ 

where V R = reflected voltage 
V1. = forward voltage 

Rt, = terminating resistance 

4 = characteristic impedance 

Inspection of this equation shows that the reflected voltage 
171, will always be equal to or less than the forward voltage 
. It cannot be greater than the forward voltage. 

Voltage Standing-Wave Ratio 

A common measure of the magnitude of a standing wave 
on a transmission line is the voltage standing wave ratio, or 
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VSWR. It is the ratio of the maximum voltage on the line to the 
minimum voltage: that is, 

VSWR = 
V„, „ 

The voltage standing wave ratio is also numerically equal to 
the ratio of the terminating resistance to the characteristic 
impedance of the line, or vice versa. It is usually arranged so 
that it will be a number greater than 1. Thus 

R, 
VSWR = -- or " 

4 R 1. 

The voltage standing wave ratio is based on the maximum 
and minimum values of voltage on a transmission line. We 
might just as well have specified a current standing wave 
ratio: it would have the same numerical value. In fact, much 
of the time, the ratio is specified simply as standing wave 
ratio. The reason for using the voltage standing wave ratio is 
that it is usually easier to measure the voltage on a line than 
the current. 

In general, a value of terminating resistance that is small 

compared with the characteristic impedance of the line will 
cause a standing wave pattern that is similar to that from a 
short circuit, except that the standing wave isn't as large. 
Similarly, with a resistance that is higher than the 
characteristic impedance of the line, the standing wave 
pattern will be similar to that resulting in an open circuit. 
Again, the standing wave will not be as large. 

In Fig. 2-11, E and F show the standing-wave patterns that 

result from resistive terminations that are higher and lower 
than the characteristic impedance of the line. The size, or 
magnitude. of the standing wave is a measure of how much the 
termination deviates from the characteristic impedance. The 
closer the value of the terminating resistance to the 

characteristic impedance, the smaller the standing wave. 

Inductive and Capacitive Terminations 

So far we have considered the termination of a 
transmission line to be a pure resistance. We found that if the 
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A 

termination were equal to the characteristic impedance of the 
line, all of the energy would be absorbed by the load. If the 
termination had any other value, some of the energy would be 
reflected back toward the source. Let's look at what would 

happen if the termination were a pure inductance or 
capacitance. We know that reactive elements such as 

inductances and capacitances only store energy and do not 
dissipate it: therefore, in a lossless line with a reactive 
termination, all of the energy will be reflected back toward the 
source. 

The exact nature of a reflection from a reactive 
termination depends on the value of the reactance. In Fig. 2-12 

the terminations have a reactance that is numerically equal tc 
the characteristic impedance of the line. 

Figure 2-12A shows a capacitive termination. The 
capacitive reactance and the resistive characteristic 
impedance of the line form a 45° phase-shifting network. The 

reflected voltage is shifted 45° in one direction, and the 

reflected current is shifted 45° degrees in the opposite 

direction. The standing-wave pattern is such that the voltage is 
maximum when the current is minimum, and voltage peaks 
are separated from current peaks by 90°, or 1/4 wavelength 
along the line. 

XL-Z. 

Fig. 2-12. Standing-wave pattern for reactive terminations. 

Figure 2-12B shows an inductive termination. The pattern 

is the same as in the capacitive case except at the load. Here 
the phases of voltage and current are just the opposite. This is 

because the phase shift of the voltage in an inductance is just 
the opposite of that in a capacitance. 
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DRIVING-POINT IMPEDANCE FOR VARIOUS LINES 

We have found that every transmission line has a 
characteristic impedance that depends only on the dimensions 
of the line, and not on its length or what may be connected to it. 
When the line is terminated in its characteristic impedance, 
the driving-point impedance—that is, the impedance seen 

looking into the sending end—is equal to the characteristic 
impedance of the line. We have also seen that with any other 

termination, of any type, there are standing waves on the line. 
Since impedance is the ratio of voltage to current, we can see 

that whenever there is a standing wave, the impedance varies 

along the line. 
Figure 2-13 shows an arbitrary length of transmission line, 

terminated in a short circuit, together with a plot of standing 
waves of voltage and current that exist on the line. At the 

termination the voltage is zero because a voltage cannot exist 
across a short circuit. The current at this point is maximum 
because current is maximum through a short circuit. The 

voltage reaches a maximum value at a point 1/4 wavelength 

from the load and then drops back to zero at a point 1/2 
wavelength away from the load. Thus, if we cut the line at a 
point 1/4 wavelength back from the shorted termination ( A-A 

in Fig. 2-13), the driving-point impedance would be very high. 
The line would for all practical purposes look like an open 

circuit. If the line was cut 1/2 wavelength from the load, it 
would have a very low impedance and would look like a short 

circuit. At other fractions of a wavelength the line would look 

like something between a short and an open circuit. We are 
now considering only lines with no losses, and a short-circuit 
termination, which doesn't absorb any energy. Now we can 
draw another conclusion about the driving-point impedance of 
such a line: the driving-point impedance seen looking into such 

Fig. 2-13. Standing waves on 
shorted transmission line. 
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a line is either zero, infinity, or some value of reactance: that 
is. the voltage and current at the sending end will be 90° out of 
phase. A resistive value of driving-point impedance would 
mean that energy was being dissipated somewhere rather than 

simply being stored in the line. 

In studying the behavior of open and shorted lines, it is 
useful to consider an element of a line that is 1/8 wavelength. 
Figure 2-14A shows a 1/8-wavelength line that is open at the 

receiving end. Since the end is open and the line is not very 
long, very little current will flow in it, and therefore 
practically no magnetic field will exist around the wires. This 

is equivalent to saying that there is little or no inductance. On 
the other hand, there will be a substantial voltage between the 
wires, so a substantial amount of energy may be stored in the 
electric field. This is the same as saying that the line has 
capacitance. Thus an open-ended 1/8-wavelength section of 
transmission line looks electrically like a capacitor at its 

driving point. That is, the driving-point impedance is 

capacitive. 
We can intuitively get a good idea of the magnitude of this 

capacitive reactance. We know that the voltage and current 

are shifted 90° in a 1/4-wavelength line, so it is logical to 
suspect that they will be shifted 45° ( in opposite directions) in a 
1/8-wavelength line. Thus the 1/8-wavelength open-ended line 
will behave exactly the same as a capacitive termination that 

produces a 45° phase shift. 
From circuit theory we know that a 45° phase shift is 

produced in an RC circuit where the capacitive reactance is 
numerically equal to the series resistance. In a 1/8-wavelength 
line that is open at the receiving end, the capacitive reactance 

seen looking into its terminals is numerically equal to the 
characteristic impedance of the line. Thus, an open-ended 
1/8-wavelength section of a 50-ohm line will have a 

driving-point impedance equal to a capacitive reactance of 50 
ohms. 

Now, let's look at a 1/8-wavelength section of line in which 

the receiving end is shorted ( Fig. 2-1413). Here, since the end is 
shorted and the line isn't very long, there is not much voltage 
drop across it or, consequently, much energy stored in the 
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electric field. This means that it will have little or no 

capacitance. On the other hand, since the far end is shorted, 

there is a large current, and quite a bit of energy is stored in 
the magnetic field. This means that inductance will 

predominate. By the same reasoning that we used in 

connection with Fig. 2-14A, we can conclude that a shorted 
1/8-wavelength section of line will look like an inductive 

reactance equal to the characteristic impedance of the line. 

Thus a 1/8-wavelength section of 50-ohm line shorted at the 
receiving end will have a driving-point impedance equal to an 

inductive reactance of 50 ohms. 

ZV 

•  

xc=zo liz=zdzb 

i=MZI 
1.-•-1 8 A -el 

(A) OPEN-ENDED 1 8-WAVELENGTH SECTION 

ha- 1 8 A--e-1 

(B) SHORTED 1 8-WAVELENGTH SECTION 

Fig. 2-14. Conditions in a 1/8-wavelength line. 

QUARTER-WAVE SECTION 

One of the most interesting lengths of transmission line is 
the quarter-wave ( 1/4-wavelength) section. This line inverts 

the impedance in which it is terminated. The shorted 
quarter-wave line may be thought of as an open 

1/8-wavelength section feeding a shorted 1/8-wavelength 

section. as shown in Fig. 2-15A. This is equivalent to putting a 

capacitance and an inductance in parallel, so the shorted 

quarter-wave line looks like a parallel-resonant circuit ( Fig. 

2-15B)—that is, it has a very high driving-point impedance. If 
there was no loss in the line, the driving-point impedance 

would be infinite. In practical lines with some loss, the 

driving-point impedance of a shorted quarter-wavelength 
section is not infinite, but very high. 
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The shorted quarter-wavelength section resembles a 
parallel-resonant circuit in other ways. The driving-point 
impedance is a capacitive reactance at frequencies above 
resonance, and an inductive reactance at lower frequencies. 

When the quarter-wave line is open at the receiving end, 
the voltage at the end is high and the current low, as we would 
expect with an open circuit. At the sending end—which is 
quarter wavelength, or 90° away—both voltage and current 
have changed by 90°. This means that at the sending end the 
current is high and the voltage is zero, so at the sending end 
the line looks like a short circuit. Of course, since all of the 
energy is reflected from the open end, there is no dissipation of 
energy. The only type of circuit that stores energy in both the 
electric and magnetic fields, and yet looks like a short circuit 
at one frequency, is the series-resonant circuit. The open 
quarter-wave line does, indeed, look electrically like a 
series-resonant circuit, as shown in Fig. 2-15C. 
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Fig. 2-15. Quarter-wave section of transmission line. 
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Thus, from the sending end, a shorted quarter-wave line 
looks like an open circuit, and an open quarter-wave line looks 
like a short circuit. This impedance inversion takes place with 
any value of termination except a resistance equal to the 
characteristic impedance of the line. When a quarter-wave 
line is terminated in a resistance greater than its 
characteristic impedance, its driving-point impedance is a 

resistance that is smaller than its characteristic impedance, 
and vice versa. The mathematical relationship between the 
characteristic impedance Z„ of the quarter-wave line, its 
terminating impedance Z , and its driving-point impedance 
Z ,„ is given by 

which can also be written 

Z() 

Zn = 

Z1, 

Z_ 

Thus a quarter-wave section of 50-ohm line terminated in a 
25-ohm resistor will have a driving-point impedance of 

502 2500 
= — — — 100 ohms 

25 25 

Using an equation given earlier, we can calculate the reflected 

voltage to be one-third of the incident voltage and opposite in 
sign. With this information we can plot the standing wave on 

the line ( Fig. 2-16). 
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Fig. 2-16.114À section of 50f2 terminated in 2511. 
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The quarter-wave line can be used as an 

impedance-matching transformer at a single frequency. This 

is of little interest in standard AM broadcasting, but it can be 

used to advantage in FM and TV antenna systems. 

The equation given for the driving-point impedance of a 
quarter-wave line can be used to show that a quarter-wave line 

also inverts reactance. A quarter-wave line that is terminated 

in a capacitance has an inductive reactance at its driving 

point, and vice versa ( Fig. 2-17). 

A 4 

x IT  

E X 
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CAPACITANCE LOOKS LIKE INDUCTANCE AND VICE VERSA 

Fig. 2-17. Reactance inversion. 

THREE-EIGHTHS-WAVELENGTH LINE 

The impedance of the three-eighths-wave line can be found 
as easily as that of the quarter-wave line. It consists of two 
sections that we are already familiar with—the 
one-eighth-wave line and the quarter-wave line. Consider first 

the three-eighth-wave line that is shorted at the receiving end 
( Fig. 2-18 A and B). The shorted eighth-wave section will look 

like an inductive reactance equal numerically to the 
characteristic impedance of the line. This inductive reactance 

then terminates the quarter-wave section, which will invert 
the impedance so it will look like a capacitive 

reactance—again, numerically equal to the characteristic 
impedance of the line. 

When the three-eighth-wave line is open at the receiving 

end, as shown in Fig. 2-18C, the driving-point impedance is an 

inductive reactance equal to the characteristic impedance of 

the line. 

HALF-WAVE LINE 

The half-wave line is of interest because it is used in FM 
and TV antenna feeder systems and because it can lead to 
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Fig. 2-18. Three-eighths-wavelength section. 

confusion when a line in an AM feeder system happens to be 
approximately half-wavelength long. The operation of the 

half-wave line is easy to see, because it consists of two 

quarter-wave sections connected together, as shown in Fig. 
2-19. The quarter-wave section nearest the termination inverts 

its impedance. The next quarter-wave section inverts the 
impedance again bringing it back to its original value. Thus 

the driving-point impedance of the half-wave line is exactly 

equal to the terminating impedance. 

SUMMARY OF TRANSMISSION-LINE IMPEDANCES 

We use the term impedance in three separate senses when 

working with transmission lines: 

1. The characteristic impedance Z, of the line itself 
depends only on the physical construction of the line, 
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Fig. 2-19. Half-wave section. 

and not on its length or on what might be connected to 
it. 

2. The terminating or load impedance, Z. is the 
impedance that is connected to the receiving end of 
the line. 

3. The driving-point or sending-end impedance Z, is the 

impedance seen looking into the sending end of the 
line. When the load impedance is equal to this char-

acteristic impedance, the driving-point impedance is 
equal to the characteristic impedance. With any other 
value of load impedance, the driving-point impedance 
will depend on the load impedance, the characteristic 

impedance, and the length of the line. 
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We can get a rough idea of the driving-point impedance for 
almost any line length and termination from the situations we 
looked at on the preceding pages. These can be summarized as 

follows: 

1. Open or shorted eighth-wave sections of line have a 
driving-point impedance that is reactive and 
numerically equal to the characteristic impedance of 

the line. 
2. Quarter-wave sections invert the impedance con-

nected to the receiving end. 
3. Quarter-wave sections act like resonant circuits. 

4. Half-wave sections have a driving-point impedance 

equal to the terminating impedance. 

Figure 2-20 shows whether the impedance along an open or 

shorted line is inductive, capacitive, or resistive. These charts 
are based on low- and high-resistance terminations, rather 
than on short and open terminations, because, in practice, we 
can get neither a perfect short circuit nor a perfect open 

circuit. 

VELOCITY OF PROPAGATION 

In the preceding sections of this chapter, we have 

considered the lengths of transmission lines in fractions of a 
wavelength. We have ignored the velocity of propagation of a 
signal in a particular line, on which depends the length of a 

wave. 
The wavelength of a signal—that is the physical length of 

one wave of the signal in space—is given by 

c 

f 
where c is the velocity of propagation-300,000,000 meters per 
second—and f is the frequency in hertz. If a signal were to 
travel at this same velocity in a transmission line, we could 
use this formula to find the physical length of a wavelength of 

transmission line. But, more often, the velocity is somewhat 
lower in a transmission line than in free space. 

There is a relationship between the characteristics of free 

space and the velocity of propagation in it that will give us a 
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little insight into velocity of propagation in a transmission line. 
The velocity of propagation of an electromagnetic wave in 
space is not just an arbitrary velocity, but is related in a 

definite way to the electric and magnetic properties of space. 
The velocity is given by 

1 
= 

1-41 Er) 

where „ = magnetic permeability of free space 

= permittivity of free space 

As stated earlier, in the rationalized mks system of units, 
these properties of space are given by 

= 1.26 x 10 
Ei) = 8.85 x 10 2 

Thus 
c = 1.26 x 8.85 x 10 18 / 1 = 300 x l & meters per 

second 

You will probably never have any occasion to use the values of 

1.14) and but the above equation will shed a little more light 
on the subject of propagation. 

We can write a somewhat similar equation for the velocity 
of propagation in a transmission line: 

1 
v = 

VLC 

where L is the inductance of the line in henries per unit length, 

and C is the capacitance of the line in farads per unit length. 
The unit of length may be anything—feet, meters, etc.—just as 
long as the same unit is used for both inductance and 
capacitance. 

The relationship between this equation and the preceding 
one for the velocity of propagation in free space can be 
appreciated by noting that permeability enters into the value 
of inductance, and permittivity enters into the value of 
capacitance. In an open-wire line in which the wire is made of 
nonmagnetic material and most of the space between the 

wires is filled with air, the velocity of propagation will be very 
close to that in free space. If, however, the space between the 
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conductors is filled with a material that has a dielectric 
constant greater than 1, the capacitance will increase and the 
velocity of propagation will decrease. In the extreme case of a 
coaxial line that is filled with a dielectric material such as 
polyethylene. the velocity of propagation is as low as 60% of 
the value of propagation in free space. 

Manufacturers of transmission lines specify the velocity of 
propagation in their products in terms of a velocity factor 

(VF). The velocity factor is the ratio of the velocity in the line 
to the velocity in free space. It is expressed either as a decimal 
or a percentage. Thus, for example, if a line has a velocity 
factor of 0.8, or 80%, the velocity of propagation will be 80% of 
the velocity in free space. 

Now we are in a position to find wavelengths in actual 
transmission lines. The physical length X of a wavelength in 
meters in a particular type of transmission line is given by 

300 
X = — x VF 

where VF is the velocity factor of the line and f is the 
frequency in megahertz. 

The number of wavelengths in a given physical length of 
transmission line is given by 

where l. = number of wavelengths 
-= physical length of the line in meters 

X = length of a wavelength in the particular cable as 
given by the preceding equation 

In many applications it is more convenient to express the 
electrical length of a transmission line in electrical degrees. 

Inasmuch as there are 360° in a wavelength, the length of a 
cable in degrees is given by 

X • = X// x 360 x VF 

where the symbols have the same meaning as in the preceding 

equations. 
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LOSSES IN TRANSMISSION LINES 

So far. in all of our discussions of transmission lines, we 

have considered only ideal lines with no losses of any kind. In 
many practical problems we can take this approach and 
ignore losses. In other cases, losses must be considered. 

In any practical transmission line there are two kinds of 

losses—those that result from the series resistance of the 
conductors in the line and those that result from leakage 
between the conductors of the line. These two types of losses 

can be taken into consideration by adding two components to 
our equivalent circuit for a transmission line ( Fig. 2-21). The 
series resistance R represents losses due to the resistance of 
the conductors, and the shunt component G represents losses 

due to leakage between the conductors. The shunt component 
is more conveniently considered as a conductance: that's why 
we use the symbol G. In most broadcast applications the 
leakage is so low that G is very low and can be ignored. 

(Remember, a low conductance corresponds to a high 

resistance.) 

Fig. 2-21. Loss resistances in transmission lines. 

The loss that is significant in broadcast applications is the 
series resistance of the conductors. The most common type of 
transmission line used in broadcasting is the coaxial line, so 
we use this type of line in our investigation of losses. Because 
the inner conductor is smaller than the outer one, its 
resistance is higher and it accounts for most of the loss in a 

coaxial cable. 
Due to the skin effect, RF currents only flow in the outer 

skin of a conductor. The skin depth decreases as frequency 

increases, hence the resistance increases. As a matter of fact, 
the series resistance of a coaxial cable increases very nearly 
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as the square root of the frequency. Thus the loss in a coaxial 
cable will be much greater at FM and TV frequencies than in 
the standard broadcast band. 

It is interesting to note that there is a relationship between 
the characteristic impedance of a coaxial cable and the loss 
that it introduces. Assume that the diameter of a coaxial cable 

is some known value. It might appear that we could reduce the 
loss by increasing the diameter of the inner conductor. To 
some extent this is true, but as the diameter of the inner 
conductor is increased, the characteristic impedance of the 

cable is lowered. This means that the voltage-to-current ratio 
becomes smaller. In other words, more current will be 
required to transmit a given amount of power. Since the loss is 

proportional to the square of the current, we will eventually 
reach a point where losses actually increase as the diameter of 

the inner conductor increases. 

Suppose that we take the opposite approach and reduce the 
diameter of the inner conductor. This raises the characteristic 
impedance of the cable and reduces the current, but it also 

raises the resistance of the inner conductor, so a point will 
again be reached where the losses increase. 

Thus there is an optimum ratio of the outer- and 
inner-conductor diameters that will result in minimum loss. In 
cable where the space between the conductors is air, this ratio 

is about 3:1, giving a characteristic impedance of about 70 
ohms. This value is rarely used in broadcasting because of 
other considerations, such as power-handling capacity, which 
optimizes at a value of characteristic impedance closer to 50 
ohms. 

There is another effect of losses in transmission lines that 
is rather unexpected. When we take the two resistances in Fig. 

2-23 into consideration, the equation for the characteristic 
impedance becomes 

R + j,„ L  

G + j,, C 

where L and C are the inductance and capacitance per unit 
length, R and G are resistance and conductance per unit 

length, and co is 2/rf. From this equation we can see that the 
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equation used earlier results when R and G are small enough 
to be ignored. Surprisingly, if the series resistance R becomes 

large, the characteristic impedance will have a reactive 
component. In broadcast work, lines are short and the j L 

term of the equation is high, so the reactive portion of the 
characteristic impedance is negligible. 

REFLECTION COEFFICIENT 

If we know the characteristic impedance of a transmission 
line, its length, and the load impedance connected to it, we 
have enough information to compute the voltage and current 

at any point on the line, as well as the standing-wave ratio. 
There are many different ways in which the parameters of a 

transmission line can be manipulated mathematically. In the 
process many different characteristics of transmission lines 
are described. The practical value of this is that we have many 
different measurements we can make to obtain the 

information we need. 
At standard broadcast frequencies we make heavy use of 

impedance bridges, so we must be able to determine the 
behavior of a transmission line from impedance values. At the 
higher frequencies used for FM and TV broadcasting, we 
usually use some sort of reflectometer, which tells us the 

standing-wave ratio, or the forward and reflected power on the 
transmission line. Therefore we must be able to use these 

parameters to determine the behavior of the transmission 
lines. By means of several equations we can usually find what 
we need to know about this behavior from the information that 

is available from our instruments. 
At the load of a transmission line, and all along the line for 

that matter, we consider three different voltages. The first is 

the forward voltage V, , which travels down the line toward the 
load. The second is the reflected voltage V„ which travels 
back along the line toward the source whenever the load 

impedance is not equal to the characteristic impedance of the 
line. The third voltage interest is the actual voltage along the 

line, which is the vector sum of the forward and reflected 
voltages at each point along the line. This voltage, as we have 

seen, varies with the distance along the line and is called a 
standing wave. 
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One useful parameter that specifies the nature of the 
reflection is the reflection coefficient K. It is a vector and is 
the ratio of the reflected voltage to the forward voltage, which 

is given as 
V.. 

K = --
V, 

The usual way of specifying the reflection coefficient is in 

polar form: K 
The reflection coefficient is merely another way of 

specifying what we have already specified in other terms. It is 

not surprising, therefore, to find that the reflection coefficient 
is related to the load impedance Z, and the characteristic 
impedance 3) of the line. The relationship is 

K — —  

+ Z, 

This equation can be rearranged to the following form, which 
is useful in some applications. 

The reflection coefficient is related to the standing-wave 

ratio by the equations 

VSWR = 1 + IKI 

1 — IKI 
KI VSWR — 1 I — 

VSWR + 1 

The bars in 111 mean that, in these two equations, we are only 

interested in the magnitude of the reflection coefficient: we 
don't need the phase angle, because a standing-wave ratio is 

not a vector. It tells us the ratio of the maximum to minimum 
voltage on a line, but it doesn't tell us where the maximum and 

minimum voltage occur along the line. 

Two additional concepts that are useful for dealing with 
transmission lines are forward power and reflected power. 
These concepts can be extremely troublesome if not properly 
understood. We can avoid confusion by remembering that 

power is merely the rate of flow of energy: energy is the more 
fundamental concept. Bearing this in mind, we can define the 
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forward power on a transmission line as the average rate at 
which energy moves from the source toward the load. If the 
line was terminated in its characteristic impedance, the 

forward power would be the same as the actual power 
delivered to the load, assuming that there are no losses in the 

line. 
When a line is not terminated in its characteristic 

impedance, some of the energy will be reflected from the load. 
Thus we can define reflected power as the average rate at 
which energy flows back from the load, along the line toward 

the source. 
There are several points to keep clear about forward and 

reflected power. They are both merely ways of expressing the 
rate at which energy flows back and forth along a transmission 

line when the load impedance is not equal to the characteristic 
impedance of the line. This rate has little to do with how much 
power is being delivered by the transmitter. For example, it is 

possible to have a transmission line with a forward power of 
150W and a reflected power of 50W with a transmitter 
delivering only 100W. The forward and reflected power deal 

only with the energy flow on the line that results from the line 
'being mismatched. A good example of this is the ideal lossless 

line that is open at the receiving end. If the characteristic 

impedance of the line was 50 ohms and the voltage applied to 
the line by the transmitter was 100V, both the forward and 

reflected powers would be 200W, and yet, once the standing 
wave was set up, the transmitter wouldn't be delivering any 

power at all. 
Obviously, if a transmission line is terminated in its 

characteristic impedance, there will be no reflected power and 
no standing waves. If the line is mismatched, there will be 
standing waves, and the reflected power will no longer be zero. 
Both standing waves and reflected power are measures of the 
same thing. We can convert from forward and reflected power 

to standing-wave ratio by the equation 

VSWR — 

1 + Vreflected power  
forward power 

N/reflected power 
1 —  forward power 
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PRACTICAL TRANSMISSION LINES 

There are three types of transmission lines that are used in 
broadcasting: open-wire lines, coaxial cables, and hollow 
vvaveguides. The coaxial cable has almost completely 
replaced the open-wire line, but there are still a few AM 

stations that use open-wire lines. Waveguides are only used at 
the UHF TV. 

Open-Wire Line 

The earliest transmission line used in broadcasting was 
the open 2-wire line, shown in Fig. 2-22. This line is simple and 
reliable, but unfortunately the fields from the conductors are 

strong at an appreciable distance from the line, with the result 
that any conductors in the vicinity of the line will disturb its 

characteristics. If a transmission line of this type is not to 

radiate energy, the currents in the two conductors must be 
equal in magnitude and opposite in direction. If any 

surrounding structure—or even the ground, for that matter—is 
closer to one conductor than the other, there will be capacitive 
currents that will cause the line currents to be unbalanced. 
Thus the line will radiate. 

LINES 

SPREADERS 

Fig. 2-22. Two-wire transmission line. 

A somewhat more recent open-wire line uses five or six 

conductors in an arrangement such as that shown in Fig. 2-23. 
The outer conductors in this arrangement are all at the same 
potential and are connected to the grounded side of the 

transmitter and the antenna. This arrangement is something 

like a crude approximation to a coaxial cable. Unfortunately 

the conductor spacing between the spreaders will change as 
the wires swing in the wind, which will cause the 
characteristic impedance of the line to vary. These lines are 

rapidly being replaced by coaxial cable. 
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Fig. 2-23. Five-wire open transmission line. 

Solid-Dielectric Coaxial Cable 

Figure 2-24 shows a coaxial cable that consists of a solid or 
stranded inner conductor with a braided outer conductor. The 
space between the inner and outer conductors is filled with a 
solid dielectric material such as polyethylene. The entire 

assembly is covered with a weathertight plastic jacket. 

Usually the power-handling capacity of this type of line is quite 
limited, and it is rarely used except in some low-power AM 
stations. This cable is flexible, and for this reason has often 
been used in sampling systems for directional antennas. In 

many cases, however, it is being replaced because it tends to 
be unstable, expecially when the ambient temperature varies 

over a wide range. 

COPPER BRAID OUTER CONDUCTOR 

POLTETNELYENE 

WIRE INNER CONDUCTOR Fig. 2-24. Solid-dielectric coaxial cable. 

Semirigid Coaxial Cable 

Semirigid coaxial cable is made with soft-drawn copper 
inner and outer conductors. The line is not particularly 
flexible, but it can be bent a few times before breaking, and 

therefore it is easy to fit to a particular application. The cable 
is made by a continuous process and is shipped on reels. Thus 
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it is possible to get single runs that are long enough to reach 
from the transmitter to the antenna in many stations. This 
avoids the necessity of making splices and joints, which are 
time consuming and potentially troublesome. 

In the semirigid cable the inner and outer conductors are 
spaced by either beads or a helix of dielectric material. These 

lines are becoming popular for broadcast use because they are 
easy to install and because very low standing-wave ratios can 
be obtained. Figure 2-25 shows a sketch of a helical insulated 
line. 

Fig. 2-25. Semirigid line with helical insulator. 

Rigid Coaxial Lines 

The coaxial line with the lowest losses and the highest 
power-handling capability is the rigid line, which comes in 
sizes of up to 6 in. diameter. Because it is rigid, it cannot be 
shipped on reels. It is usually supplied in 20-foot lengths. The 
lengths are fastened together by flanges and inner-conductor 

projections, called bullets (Fig. 2-26). 
Many rigid coaxial lines are pressurized with nitrogen or 

dry air to keep moisture out of the space between the 

Fig. 2-26. Rigid coaxial cable line. 
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Table 2-1. Typical Attenuation Values for Coaxial Lines. 

Line 

Attenuation, dB per 100 ft. at the Following 

Frequencies. MHz Velocity 

Factor 
1.0 50 100 500 100 500 

RG8/U 0 175 0 405 0 582 1 37 2 1 5 2 0.66 

RG-17/U 0 061 0.158 0.238 0 62 0 95 2 7 066 

Rigid 7/8 in. 0.0375 0.089 0.124 0 28 0 42 1 1 0 87 

1 5/8 in. 0.0195 0.043 0.063 0 147 0 213 048 096 

31/8 in. 0 0104 0 023 0 033 0 073 0 108 0 24 098 

6 1/8 in. 0.0049 0.011 0.016 0 033 0 049 011 098 

Heliax • 7/8 in. 0.034 0.077 0 11 0 25 0.36 0 46 0 92 

3 in. 0.013 0.029 0.042 0 097 0 130 0 33 093 

5 in. 0.0072 0.017 0 023 0.053 0 076 0 19 093 

' Reg ,siered Irade name 

conductors. Pressure gauges are provided so that any leaks in 

the line can be detected. 
The selection of a particular line is based on allowable loss 

or attenuation, power-handling capability, and ease of 

installation and maintenance. The attenuation of a line 
increases with frequency. Table 2-1 shows the attenuation of 

several different types of coaxial cables at various 

frequencies. 
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Chapter 3 

Radiation 
and Propagation 

There is no doubt that radiation is the least understood aspect 
of broadcasting. Most textbooks on the subject are of little 
help, because they are either too mathematical or too 
superficial. In this chapter we will review the subject of 

radiation, using no more mathematics than necessary. We will 
start out with the half-wave antenna because it is easiest to 

understand, then we will consider antennas that are more 
commonly used in broadcasting. 

In considering radiation we will not be very anxious to 

make everything strictly rigorous, rather we will take an 
approach that will make the subject more palatable. 

Before getting into the details of how an antenna radiates 
energy, we should make a distinction between two different 
types of fields we will encounter: 

1. The induction field about an antenna is the same as the 
electric or magnetic field that is found around any 

conductor that carries electricity. Its intensity 
diminishes rapidly with distance, or to state it more 

rigorously: The intensity of the induction field varies 
inversely with the square of the distance from the 
source of the field. Thus, if we move twice as far from 
the source of an induction field, the intensity of the 

field will be one-fourth as great. This field diminishes 
so fast that it is of no value for broadcasting. 
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2. The other field around an antenna is the radiation 
field. This field is properly called an electromagnetic 

field because it has both electric and magnetic 
components. These components act together to 
propagate the signal. The radiation field diminishes 
much more slowly with distance than the induction 
field: its intensity is inversely proportional to the 
distance from the antenna. It is this characteristic of 
the radiation field that makes it useful for broad-
casting. 

As discussed in the preceding chapter, when elec-
tromagnetic energy is carried by a transmission line, it isn't 
carried in the wires, but in the electric and magnetic fields 
associated with the wires. The conductors merely serve to 
guide the energy and cancel the fields at some distance from 
the transmission line. The object of a transmission line is to 

get energy from one place to another with a minimum of 
radiation. The object of an antenna is to radiate a maximum 
amount of the energy fed to it. 

INDUCTION FIELD 

In Fig. 3-1A we have a source of RF energy connected to a 
transmission line. For the sake of simplicity, we will assume 
that it is a 2-wire open line. The receiving end of the line is 
open, so if it is an ideal line, all of the energy reaching the 
receiving end is reflected back toward the source. We can 
think of the last 1/4 wavelength of the line, marked in the 
figure, as an open-ended quarter-wave section of transmission 
line. Such a section looks electrically like a series-resonant 
circuit. If we bend the ends of the last 1/4 wavelength of the 
line out so that they are at right angles to the wires in the line 
(Fig. 3-1B) we have what is commonly called a half-wave 
dipole antenna at the receiving end of the line. 

By analogy with an open quarter-wave section of 
transmission line, the half-wave dipole seems electrically like 
a series-resonant circuit when we look into its terminals. The 
half-wave dipole differs from an ordinary series-resonant 
circuit in many ways, but we can gain a little insight into 
antennas by comparing them. 
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Fig. 3-1 Development of a dipole 
from a transmission line. 

(A) 

(B) 

km— 4—ei 

In Fig. 3-2A there is no charge in the capacitor in the 

series-resonant circuit. When the signal is applied, current 

rushes in to charge the capacitor. Because the current is 

maximum, the magnetic field around the coil is maximum. An 
analogous thing happens with the dipole. At the instant shown, 

there is no charge on the ends of the dipole. The current is 
maximum, carrying positive charges to one end and negative 

charges to the other. Thus the magnetic field around the dipole 

is maximum. 
Figure 3-2B shows the situation a quarter of a cycle later. 

In the resonant circuit the capacitor is fully charged, so the 

current. and hence the magnetic field, is zero. All of the energy 
is stored in the electric field of the capacitor. Back at the 
dipole the ends are charged and the current and the magnetic 

field are zero. The electric field between the ends of the dipole 

is maximum. 

In Fig. 3-2C we have progressed still another quarter of a 

cycle. This is one-half cycle, or 180', later than when we 
started so we can expect things to be 180 out of phase with 
what they were in Fig. 3-2A. The current in the resonant circuit 
and dipole is maximum, as is the magnetic field, but the 

current is flowing in the opposite direction of the current in 

Fig. 3-2A. It is an easy step to Fig. 3-2C, where the charge is 

maximum and the current and magnetic field are minimum. 
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Thus in Fig. 3-2 we see that the energy in both a 

series-resonant circuit and a half-wave dipole is stored 
alternately in the electric and magnetic fields. Assuming that 

there are no losses and no radiation, the energy simply 

pulsates back and forth between the electric and magnetic 
fields around the antenna. These fields constitute what we 
called the induction field of the antenna. Note that they are 90° 

out of phase with each other. 
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Fig. 3-2. Analogy of dipole and series-resonant circuit. 

If this were all there is to it, antennas would be simple, and 

easy to understand. Of course, antennas must radiate energy. 
To understand radiation, we must go back to some of the most 

fundamental concepts of electricity and modify them slightly 
from the way that we learned them. Most of us first studied 
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electricity from the viewpoint of circuit theory. This is fine 

when we are dealing with circuits, where currents and 
voltages stay in the wires where we want them. It is 
inadequate when we deal with antennas, where we don't want 
the signals confined to circuits, but radiated through space. 

INDUCED VOLTAGE 

Figure 3-3 shows the familiar principle of induced voltage. 
When a conductor intercepts a changing magnetic field, a 
voltage is induced in the conductor. The induced voltage is 
proportional to the rate of change of the magnetic field. The 
equation for the induced voltage is 

Ad) 
V = —n 

At 

where V is the induced voltage, n is the number of turns on the 
coil, Ac¢ is a small change in magnetic flux, and At is a small 
change in time. Thus A(1)/At represents the rate of change of 
the magnetic field. The minus sign indicates that the polarity 
of the induced voltage is such that any current it causes to flow 

produces a magnetic field opposing the changing field that 
caused the induced voltage. This is about as far as we ever 
carry this principle when we are studying circuit theory. 

Fig. 3-3. Principle of induced 
voltage. 

CHANGING 

MAGNETIC 

— FIELD r 
/ \ 

/ 

n TURNS 

As far as the principle is concerned, the coil isn't 
necessary at all. Whenever we have a changing magnetic field, 
we have a changing electric field—that is, we have an induced 
voltage, even in an insulator. Of course, unless we have a 
conductor, we have no way of measuring the induced voltage. 

The general principle, then, is that whenever we have a 
changing magnetic field, we also have a changing electric 
field, even in free space. The intensity of the electric field is 

proportional to the rate of change of the magnetic field. In 
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MAGNETIC FIELD 

Fig. 3-4. Magnetic field induced 

by current. 

fact. when we are dealing with radiation, it is best to think of 
the electromagnetic field as the fundamental concept, and the 

electric and magnetic fields as components of it. 

ELECTRIC DISPLACEMENT 

Whenever an electric current flows in a conductor, there 

will be a magnetic field surrounding the conductor ( Fig. 3-4). 
Before we get into radiation, we must explore this concept in 
more detail. Figure 3-5A shows an RF source connected 
through leads to a capacitor. We know that an RF current will 

flow in the leads and that, as a result, a magnetic field will 
enclose the leads. Of course, the magnetic field will vary at the 
frequency of the source. Now let's look at what happens inside 

the capacitor. 
We know that the dielectric material between the plates of 

the capacitor is actually an insulator and that no current, or at 

least no electrons, can pass through it. When we studied 

elementary electricity, we learned that there is an apparant 
current in the capacitor, which is actually the result of 

electrons "piling up" on one plate and draining off the other 
plate. For this reason the apparent current through a 

capacitor is also called a displacement current. 
We shall now consider the interesting question of whether 

there is a magnetic field associated with the displacement 
current inside a capacitor. This isn't an easy question. In fact, 

there was a great deal of debate on the subject among early 
workers in electricity. If we think of an electric current only as 

a flow of electrons, we are tempted to say that displacement 
current inside a capacitor is a fictitious thing and couldn't 
possibly produce a magnetic field. This is wrong. James Clerk 
Maxwell, a Scottish physicist. was the first to postulate that 

there is in fact a magnetic field associated with displacement 

current. He used this assumption in deriving his now-famous 

equations. 
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Earlier we found that whenever we have a changing 
magnetic field, we also have a changing electric field. Now we 
add to this that whenever we have a changing electric field, 
even when we do not have a conductor ( Fig. 3-5B), we also 

have a changing magnetic field. Thus we see that the two fields 
are inseparable. Inasmuch as we see that these fields can exist 
and produce each other even in free space, the concept of 
radiation is becoming clearer. 
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Fig. 3-5. Electron current and dis-
placement current with their 
magnetic fields. 

(B) 

PROPAGATION TIME 

Electromagnetic phenomena do not take place instan-
taneously; there is some time required. Electromag-

netic fields do not travel at infinite velocity: they travel at the 
velocity of light, which, although fast compared with any other 
phenomenon, is still not infinite. 
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To see why we might need a time delay to explain 
radiation, look at Fig. 3-6. Here we have a half-wave dipole at 

the same instant of time as in Fig. 3-2B. The charge between 
the ends of the dipole is maximum, and the current is 

minimum. According to the law of charges, unlike charges 
attract. How, then, can the opposite charges flow away from 

each other to opposite ends of the dipole ( Fig. 3-6)? If 

electromagnetic phenomena took place instantaneously, the 
charges could not do this. The fact is, the positive charges at 

the top of the dipole, at the instant shown, are actually still 

being repelled by the positive charges that were at the other 

end of the dipole a half-wave earlier in time. This occurs 

because it takes 1/2 wavelength ( 180') of time for 
electromagnetic energy to travel 1/2 wavelength through 
space. 
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Fig. 3-6 Charges on dipole at one 
instant. 

RADIATION 

Once we have one kind of field, it will generate the other, 

and the action will continue causing the energy to propagate 
through space. This is shown in a rather crude fashion in Fig. 

3-7. Here we have an electric field at the left, and as it 
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Fig. 3-7. Electric and magnetic 
fields. 
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collapses, it sets up a magnetic field, which in turn sets up 
another electric field, and so on. 

Just how the field gets free of the antenna in the first place 
isn't as easy to visualize. A rough idea of what happens can be 

gained from Fig. 3-8. In Fig. 3-8A the charges at the ends of the 
antenna are maximum, as is the electric field. In Fig. 3-8B the 
current is such as to reduce the charges and hence the field. 
The lines of the field at the antenna are brought closer 
together. The field doesn't collapse completely, however, 
because some time is required for all electromagnetic effects 
to be observed at a distance. Thus, as the opposite charges on 
the ends of the antenna come together and cancel each other, 

the lines of the field become closed on each side of the antenna 
( Fig. 3-8C) . About this time, the field in the dipole reverses, so 
it repels the electric lines that have become detached, causing 
them to propagate through space as shown in Fig. 3-8D. Thus 
we will have a field with both electric and magnetic 
components, moving through space at the speed of light. 

A 

Fig. 3-8. Creation of closed electric lines at an antenna. 

The electric and magnetic lines are closed paths, so near 

the antenna, the wavefront will appear to be spherical. 
However, the sphere becomes large rapidly, and as soon as we 
are some appreciable distance from the antenna, we can 

consider the wavefront to be a plane, with the electric and 
magnetic lines at right angles. 

In antenna work the electric component of the field is 
usually called the E-field, and the magnetic component is 
called the H-field. This is because the letter E is used to 
symbolize the electric field intensity, and the letter H is used to 
symbolize magnetic field intensity. 
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POLARIZATION 

If a straight antenna is used to radiate a wave, the electric 
field lines are parallel to the antenna. So far, we have only 
considered antennas in space; we have not considered the 
ground. In broadcast work, antennas are usually either 

vertical or horizontal with respect to the ground. The electric 

and magnetic fields are also so oriented. We call the direction 

of the fields the polarization of the wave. Traditionally the 
direction of the electric field, rather than the magnetic field, is 

taken as the reference. Thus the wave from a vertical antenna, 

whose electric field is perpendicular to the ground, is called a 

vertically polarized wave. Hence all waves encountered in the 
standard broadcast band are vertically polarized. Likewise, 

the wave from a horizontal antenna, whose electric field is 

horizontal, is called a horizontally polarized wave. Waves from 

FM and TV antennas are usually horizontally polarized. 
It is possible to have a combination of vertical and 

horizontal polarization, in which the electric field actually 
rotates with respect to the ground. This is called circular 

polarization. At this writing, it is being used extensively in FM 

broadcasting and experimentally in TV broadcasting. 
Figure 3-9 shows the orientation of the fields for vertical 

and horizontal polarization. It shows the electric field lines at 
an instant of time. The lines are actually propagating through 

space in the direction shown ( left to right). The shaded sine 

waves in the figure show the relative field intensity at various 

points in space at a particular instant. 

FIELD INTENSITY 

The intensity of a radiated wave is measured in volts per 
unit of distance. The fundamental unit is the volt per meter 

(V/m). A field having an intensity of one volt per meter is very 
strong compared with most of those encountered in 

broadcasting, so the millivolt per meter, or even microvolt per 
meter, is commonly used. 

A field having an intensity of one volt per meter ( 1 V/m) 
would induce one volt in a conductor one meter long if the 

conductor was held parallel to the electric field and 

perpendicular to the direction of the wave. The radiation field 
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Fig. 3-9. Vertical and horizontal polorization. 

varies inversely with the distance from the antenna. Thus if a 
wave has a field intensity of 50 mV/m at a point one mile from 

an antenna, it will have a field intensity of 25 mV/m at a 
distance of 2 miles from the antenna. 

The intensity of an electromagnetic field in volts per meter 

is really only a measure of the electric field or the electric 

component of the electromagnetic field. Fortunately we need 
not specify the intensity of both the electric and magnetic 
components of the electromagnetic field to describe it 

completely. Once we are far enough away from the antenna 
that we can consider the waves to be plane waves, there is a 

very definite relationship between the electric component of a 
wave and the magnetic component. We only need to specify 
one of them to completely describe the intensity of the wave, 
and the electric component is traditionally used for this 
purpose. 
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There is an intriguing relationship between the 
magnitudes of the electric and magnetic components of a 

plane wave in free space. The ratio of the two is 

E 1 

H \FP-77 k— 
where E is the intensity of the electric field in volts per meter. 
H is the intensity of the magnetic component in amperes per 

meter eo is the permittivity, and µ, is the permeability of free 

space. Thus we have 

E 1 

H .85 10 I-j18.26 x 10 6 

= 377 Van 
Aim 

Since the meters in the numerator and denominator cancel 

out, we have 

E 
— = 377V/A 
H 

That is, the ratio of the electric component to the magnetic 
component of a plane wave is 377V per ampere. Now, we know 

that the ratio of volts to amperes is impedance, so we conclude 

that free space has a characteristic impedance, or wave 
impedance, of 377 ohms. This numerical value is not of 

particular interest, but it does make it clear why we have to 

measure or specify only one component of the field. 

FIELD INTENSITY VERSUS DISTANCE 

The radiation intensity of a wave varies inversely with the 

distance from the antenna. The reason for this will become 
clear if we go back to the more fundamental concepts of power 

and energy. What the antenna is actually radiating is 
electromagnetic energy. It is this energy that causes the 

charges in receiving antennas to move when impinged on by 
the radiated wave. The rate at which energy is propagated by 
a wave can be specified in terms of watts per square meter. 
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Suppose that the antenna in Fig. 3-10 is radiating energy 
;rough the beam shown at a rate of 8W. At point A, the beam 

intercepts an area of just one square meter. We can say that 
the power density, or wave power, at that point is 8 Wan? . 

8W ANTENNA 

1 m 2 

4m 2 

A 

2A • 

Fig. 3-10. Variation in power density with distance. 

At point B, which is twice as far from the antenna as point 

A. the beam intercepts an area of 4 rd . The beam still has a 
power of 8W, so the power density at point B is 2 W/ni 

(8/4 = 2). Thus, when we double the distance from the 
antenna, we decrease the power density to one-fouth. We can 

say, therefore, that the power density in watts per square 
meter varies inversely with the square of the distance from the 
antenna. 

In standard broadcast antennas we are not interested in 
power density. Rather we measure signal strength in terms of 

field intensity in volts per meter. The field intensity is 
proportional to the square root of power density; therefore, the 

field intensity varies inversely with the distance, not the 
square of the distance, from the antenna. 

GAIN AND DIRECTIVITY 

Much antenna-design work involves getting an antenna to 
radiate more energy into one region than into another. One 

measure of this property of an antenna is its gain. This is a 

relative term. If we say that an antenna has a certain amount 

of gain, we must state some reference. We might, for instance, 
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say that an antenna has a gain in a given direction of 2, 
referred to a half-wave dipole. This means that the antenna 
radiates twice as much power into a region as a half-wave 

dipole for the same value of transmitted power. 
One reference that is widely used in antenna work is the 

isotropic antenna, which radiates uniformly in all directions. 
Of course, it is not possible to actually build an isotropic 
antenna. No real antenna will radiate equally in all directions. 
Nevertheless, the isotropic antenna is a useful reference 
because its performance is easy to calculate. Since it is a 

fictional device, we avoid the problem of making a standard 
antenna that will perform properly. 

The field intensity around an antenna is always specified 
at some distance from the antenna. In broadcast work this 
distance is almost universally chosen as one mile. The formula 

for the area of a sphere is 

A = 47712 

where r is the radius of the sphere. Thus if we have an 

isotropic antenna at the center of a sphere having a radius of 
one mile, and if the power radiated was 1 kW, the power 
density at the surface of the sphere would be 

1000 
P — 47r ( 1609)2 = 0.000031 W/rd = 31 I.L.W/m2 

Note: There are 1609m in a mile. 

Since the wave impedance of free space is 377 ohms, we 
have a means of computing the field intensity when we know 
the power density. Using a formula that is analogous to the 

power formula 

Voltage = 

we can say that the field intensity in volts per meter is given by 

watts 
E = — x 377 ohms 

metee 

= x 377 = 0.1076 V, m 
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Thus the field intensity from an isotropic antenna at a distance 
of one mile with a radiated power of 1 kW is 107.6 mV/m. 

The gain of an antenna is usually expressed as a power 
gain. If an antenna has a gain of 2, it will radiate twice as 

many watts per square meter into a given region as an 
isotropic antenna would. If we want to know the field intensity 

at one mile, produced by an antenna that has a gain of 2, with a 
radiated power of 1 kW, we must take the square root of the 

power gain. Thus 

E = 107.6 x VT= 152.2 mV/m 

Antenna gain is frequently expressed in decibels. The 
formula for computing the gain in decibels is 

= 10 log pro /P 

where p is the power density from the antenna under 

consideration, and p ret is the power density from the 
reference antenna. The same units must be used for p and 
p ref • In terms of field intensity the gain in decibels is given by 

= 10 /og 
Eret 

E 
= 20 log 

Eref 

where E is the field intensity of the antenna under 
consideration, and Eref is the field intensity from the reference 
antenna. The same units must be used for E and E„f 

DETERMINING PATTERN SHAPE 

The statement that an antenna has gain suggests that we 
can get something for nothing. Of course, this isn't true. If an 

antenna radiates more energy into a region than would be 
radiated by an isotropic antenna, it must radiate less energy 

into some other region. The measure of how much energy an 
antenna radiates into various regions is called the radiation 

pattern of the antenna. 
The mathematical procedure for computing the radiation 

pattern for an antenna of arbitrary shape and size is very 
involved. Often the equations cannot be solved, because their 

solution depends on an accurate knowledge of the distribution 
of charge and current all along the antenna. If the pattern of an 
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antenna is known through measurements, the mathematician 

can go back and manipulate the equations until they agree 

with the measured results. In all but the simplest cases, he 
cannot accurately predict the pattern in advance. 

Fortunately for the broadcast engineer, it isn't necessary 

to compute the patterns of basic antenna elements. This has 
been done many times, and the results are readily available. It 

is helpful, however, to know the principles involved, because 

they give some insight into the behavior of actual antennas. 
Figure 3-11 shows an elementary antenna that is very 

short. Mathematically speaking, its length is infinitesimal. 

Since the antenna is very short, we can assume that the 

current is the same all through it. Of course, such an antenna 
is impossible to build, and it wouldn't be worth trying to 

approximate, because its losses would be extremely high. It is 
useful to consider, however, because a practical antenna can 

be thought of as being made up of a very large number of these 
elementary antennas—which are usually called elementary 

dipoles—and the contributions of all of them can be added to 

find the field from the real antenna. 

o  
A 

Fig. 3-11. Elementary infinitesimal dipole. 

By just looking at the antenna of Fig. 3-11, we can predict a 

few things about it. From an earlier discussion we know that 

the electric field is parallel to the antenna, and the magnetic 
field is at right angles to the electric field. Thus the maximum 

radiation will be broadside to the antenna, toward point A. The 

radiation will be zero off the ends of the antenna. It isn't 
surprising, then, that the radiation falls off as the cosine of the 
angle O. What we have no way of knowing—without solving 

some rather unpleasant equations—is the actual intensity of 
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the' field. Avoiding the unpleasant equations, we find that the 
field intensity is given by 

607r 
E = — 11 cos 0 

dit 

where E = field intensity in volts per meter 
d = distance from antenna in meters 

X = wavelength of signal in meters 
I = current in amperes 
/ = length of antenna in meters 

O = angle from a plane perpendicular to antenna 

Strictly speaking, 1 should be infinitely small, and we 
should use calculus to find the field intensity. Actually, we can 

get a valid solution if we assume that 1 is small but finite. We 
can simplify the equation a little by substituting 1609m for d 
and moving X under 1. The equation then becomes 

E = 0.117/-1 Icosi o 
X 

where //X is the length of our elementary dipole, expressed as 
a fraction of a wavelength. Thus, if the dipole is one electrical 

degree in length. and the current is one ampere, the field 
intensity becomes 

1 
E = 0.117 x 1 X — = 0.000325 V/m 

360 

Thus the elementary dipole produces a field intensity of 0.325 
mV/m one mile away, along the line broadside to the antenna, 
when the current is one ampere. 

At the moment we have an expression for field intensity as 
a function of the current in the antenna, but we have no way to 

relate this to the actual power transmitted. The relationship 
involves the resistance seen by the current in the antenna. Our 
elementary dipole offers a resistance of 0.0061 ohms to the 

current flowing in it. Using Ohm's law, we can find that the 
current required for an elementary dipole to radiate 1 kW is 

1000 
1 = = — 405A 

0.0061 
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Substituting this current into our equation for field intensity 
gives 

E = 0.325 x 405 = 131.5 mV/m 

This equation shows that the field intensity from an 
elementary dipole has a maximum value of 131.5 mV/m. The 
field intensity varies with the cosine of the angle O from a line 

that is broadside to the axis of the antenna ( Fig. 3-12). 

— — E = 131.5 mV/m at 1 mile 

Fig. 3-12. Pattern of elementary dipole for 1 kW ot radiated power. 

We can use the mathematical tools that we have developed 
so far to find the pattern of a half-wave dipole. To do this we 
must assume that the half-wave dipole, which is 180° in length, 

is made up of 180 elementary dipoles. We can't simply multiply 
the results that we obtained earlier by 180, because the current 
is not uniform in the half-wave dipole. For a first 

approximation, we can assume that the current on the 
half-wave dipole is sinusoidal, being maximum at the center 
and zero at each end ( Fig. 3-13). We can then break up the 
half-wave dipole into 180 elementary dipoles, each carrying 
the proper amount of current, and compute the contribution of 
each elementary dipole to the field intensity. We can then add 
these contributions together to find the field resulting from the 
half-wave dipole. The computations are rather lengthy, and we 

need not bother with the details here. 

CURRENT 

Fig. 3-13. Current distribution on 
half-wave dipole. 

A/2 

Figure 3-14 shows the radiation pattern of a half-wave 
dipole. It shows that the maximum field intensity at one mile is 
137.8 mV/m for 1 kW of radiated power. Note that this and 
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other theoretical patterns depend on the current distribution 

along the antenna itself. This point is important because there 

are many factors that influence the current distribution in 
practical antennas. Things such as lines that furnish current 

for tower lighting, other conducting structures in the vicinity, 
and even the guy wires on a tower will to some extent affect 

the current distribution. This effect, in turn, will result in some 
deviation of the actual radiation pattern from the computed 
theoretical pattern. 

t 
A./21 E = 137.8 mV/m AT ONE MILE 

E=137.8 cos (90 sin /9) 

cos 0 

Fig. 3-14. Pattern of half-wave dipole for 1 kW radiated power. 

ANTENNA IMPEDANCE 

So far we have considered a current flowing in an antenna 
without regard as to how it happened to get there. Obviously, if 

we are to have a current in an antenna, we must feed energy to 
the antenna at some point. At this point, wherever it might be, 

we see an impedance. Inasmuch as energy enters the antenna 
and doesn't return, the impedance must have a resistive 

component. In addition to the energy that is radiated by the 
antenna, some energy is stored in the electric and magnetic 

fields in the near zone of the antenna. This means that the 

antenna impedance will also have inductive and capacitive 
reactive components. The actual amount of resistance and 

reactance seen looking into an antenna depends on what part 
of the antenna we feed, the physical dimensions of the antenna, 
and the frequency of operation. 

Figure 3-15A shows a circuit that is a rough equivalent of a 
half-wave dipole. At the frequency at which the dipole is 

electrically 1/2 wavelength long, the inductive and capacitive 

reactances are equal and cancel each other. The equivalent 

circuit then becomes that shown in Fig. 3-15B, which consists 
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merely of two resistances. One of these resistances ( R, ) 
represents the loss or ohmic resistance of the antenna. Current 

flowing in this resistance is dissipated in the form of heat and 
is not available for radiation. The other resistance ( R ) is 

called the radiation resistance of the antenna. As far as we can 
see, looking into the terminals of the antenna, the energy that 
is radiated is dissipated in this resistance. 

R R 
O--ovvv--Nevv  

o  
(A) 

Fig. 3-15. Equivalent circuit of a 
half-wave dipole. 

(B) 

The total power entering the antenna is given by I ' R. 
where R = R. + R„ . The purpose of the antenna is to release 
as much energy as possible through radiation and as little 

energy as possible through losses. For this reason the ohmic 
resistance R, should be kept as low as possible. There is 
usually a minimum value below which it is impractical to 

reduce R, . Therefore it is desirable to keep the radiation 
resistance high compared with the value of R, . In general, 

short antennas tend to have low values of radiation resistance 
and, hence, high losses. The half-wave dipole has a radiation 
resistance of about 73 ohms, looking into its center. 

The voltage and current are not constant throughout the 
length of an antenna. In the half-wave dipole the current is 
zero at the ends because there is no place for it to go, and it is 

maximum at the center. The voltage is just the opposite, being 
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maximum at the ends of the antenna and minimum at the 
center. Impedance varies inversely with voltage, so it will be 

minimum at the center and maximum at the ends. The 
numerical value of the impedance varies from about 73 ohms 
to about 2500 ohms at the ends. Theoretically, the impedance 

at the ends would be infinite if the current actually went to 
zero. There is, however, always some capacitive current at the 
end of the antenna ( end effect.) 

At FM and TV frequencies it is often convenient to adjust 
the lengths of antenna elements so that they are resonant. This 
is usually impractical at standard broadcast frequencies, so 
the input impedance of standard broadcast antennas almost 

always has a reactive component. 
In all broadcast services it is important that the 

impedance of the antenna not change significantly over the 
bandwidth of the signal. Because of the wider bandwidths 
involved, this consideration is most important in TV 
broadcasting. 

VELOCITY OF PROPAGATION AND ANTENNA LENGTH 

The velocity of propagation of electromagnetic waves in 
free space is very nearly 300,000,000 meters per second. If the 
velocity of a wave on antenna were the same as in free space. 
the wavelength on an antenna would be the same as in free 
space and would be given by 

300,000.000 

where fis the frequency in hertz, and X is the wavelength in 
meters. Like a transmission line, an antenna has inductance 
and capacitance, and these tend to retard the velocity of 
propagation. The larger the diameter of the antenna, the more 

capacitance per unit length. Thus the velocity will be lower in 

an antenna of large diameter than in a thin wire. Figure 3-16 
shows the amount that the velocity of propagation is reduced 
as a function of the circumference in wavelengths. 

The fact that 1/2 wavelength is shorter on an antenna than 

in free space causes a great deal of confusion. At standard 
broadcast frequencies we ignore the actual wavelength on the 
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antenna and measure the height in electrical degrees, using 

the velocity of propagation in free space as a reference. ( The 
reason for doing this is shown in Chapter 6.) On the other hand. 

FM and TV antennas that are 1/2 wavelength long take the 
velocity of propagation into consideration. With transmission 

lines, we also specify length in electrical degrees, but here we 
do take the velocity of propagation along the line into 

consideration. 

NEAR AND FAR ZONES 

An antenna has an induction field, which is useless as far 

as broadcasting is concerned, as well as the radiation field, 
which is what we use in broadcasting. Although we have no 
interest in the induction field, we must remember that close to 

the antenna the induction field is much larger than the 

.002 

.001 
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Fig. 3-16. Effect of antenna circumference on wave velocity. 
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radiation field. This means that any measurements that we 

might make on the radiation field must be made far enough 
away from the antenna that the induction field will not 
introduce errors. 

It is customary to divide the region around an antenna into 
two zones—the Fresnel or near zone and the Fraunhoffer or 

far zone. The dividing line between the two zones is at a 
distance of e /2X, where D is the largest dimension of the 
antenna, and X is the wavelength, both in the same units, At 

this distance the induction and radiation fields are equal; 
beyond this distance the induction field diminishes with 
distance much more rapidly than the radiation field. 

For standard broadcast antennas there is another 

consideration that limits how close to the antenna site we may 
take meaningful measurements. This is because many such 

antennas consist of several towers. In our field calculations we 
usually consider an antenna as acting as a point source. To 

make meaningful measurements, we must be far enough away 
from the antenna that it will look electrically like a point 
source. This distance is often much greater than the distance 
to the far field. 
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Chapter 4 

Smith Charts 

One of the most useful tools for solving antenna and 
transmission-line problems is the Smith chart, shown in Fig. 

4-1. It can be used to find the standing-wave ratio, reflection 
coefficient, and impedances at various points in a feeder 

system with a minimum of mathematical calculation. In spite 
of its utility the Smith chart is not widely used by broadcast 

engineers. 
The reason the Smith chart is not more popular is probably 

that it looks very complicated. This may be partly because the 

scales are circular rather than straight. The fact is, once one 
becomes familiar with the various scales, the Smith chart is no 
more difficult to use than any other graph. and it saves a 
considerable amount of labor. As we see, there are many 

advantages to using circular scales, not the least of which is 
that any value of impedance can be within the boundary of the 

graph. 
Smith charts are available from most college book stores. 

They are available as either paper graphs or as plastic 
calculators with movable scales. The calculator is handy in 
applications where many different problems are to be solved, 
but the paper graph is fully adequate for broadcast 
applications and provides a permanent record of the 

computations. 
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IMPEDANCE OR ADMITTANCE COORDINATES 

.LLO 1.11411M111 

Fig. 4-1. The Smith chart, in full detail. 

Several variations of the Smith chart have been developed 

for particular applications. The form used throughout this 

book is called the normalized-impedance Smith chart. 

NORMALIZED IMPEDANCE 

To use the same chart with transmission lines of different 
characteristic impedances, we use a normalized impedance. 

This is simply a value of impedance that has been divided by 
the characteristic impedance of the transmission line we are 

using. For example, suppose that we are working with a 

system where the transmission line has a characteristic 
impedance of 50 ohms—a very common value in broadcasting. 

To normalize the impedances in the system, we would simply 
divide them by 50 ohms. 
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Suppose that we have a load impedance that has been 
measured on a bridge and found to be 200 + j150 ohms. To 

normalize to 50 ohms, we would merely divide both the 

resistive and reactive parts by 50 ohms. 

200 150 
z = + j— — 4 + j3 

50 50 

If the impedance was stated in polar form, we would 
simply divide the magnitude by 50 ohms, doing nothing to the 
phase angle. For example 

Z = 200 + j150 = 250 / 36.87 

250 / 36.87 5 / 36.87  z = 4 + j3 — —— 
5 3 

If we had a load impedance that was a pure resistance of 50 
ohms, when normalized it would be simply 1. 

Note that whereas we use the capital letter Z to designate 

an impedance, we use a lowercase z to denote a normalized 
impedance. Actually, what we call a normalized "impedance" 

is not an impedance at all. It is simply a ratio, a pure number 
that doesn't have any units such as ohms. When we normalize 

an impedance—say, 100 ohms—we divide by so many ohms, as 

shown below. 

100 ohms 100 = 2 
50 ohms — 50 

Note that the units ohms cancel out in the equation. The 

normalized value of impedance is simply 2, not 2 ohms. 
This point might be a little confusing at first, but a rather 

silly example will make it clear. Suppose that we wish to 

compare the numbers of apples in some baskets. If the basket 
that we use as a reference contains 50 apples and another 
basket contains 100 apples, the ratio of the two is 

100 apples 
  — 2 
50 apples 

and not 2 apples. Similarly, a normalized impedance of 2 
simply means that the impedance in question has twice as 

many ohms as the value to which we normalized it. 
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Fig. 4-2. Resistance axis of Smith chart. 

Before we can use a normalized value of impedance to 
solve any circuit problems, we must reverse the normalizing 

procedure by multiplying by the normalizing value, 
( characteristic impedance), which in our example was 50 

ohms. 
The normalized notation is sometimes called a per unit 

notation. In the example 100-ohm impedance has a per-unit 

value of 2 when referred to 50 ohms. This means simply that 

there are 2 ohms for each ohm in the 50-ohm normalizing 
value. 

When we normalize an impedance such as 200 + j150 

ohms, we get a complex number that is proportional to the 

magnitude of the original value and has the same phase angle. 

RESISTANCE SCALES 

The first line of the Smith chart that we will consider is the 

resistance axis ( Fig. 4-2). This is the only straight line on the 
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entire chart. The center of this line, which is called the prime 
center of the chart, is labeled 1.0. It corresponds to a 
normalized value of resistance of unity ( 1). If we had a 50-ohm 
pure resistance and were using a 50-ohm transmission line, we 
would have a normalized value of 1 and would represent it by 
placing a dot at the prime center of the chart. 

Below the prime center of the chart are points 
corresponding to normalized values of resistance greater than 
1, with the bottom of the chart corresponding to infinity. Thus 
100 ohms ( normalized to 50 ohms) would be represented by a 
dot at the point labeled 2.0. 

Above the prime center are normalized values less than 1. 
A 25-ohm resistance ( normalized to 50 ohms) would be 

represented by a dot at the point labeled 0.5 on the resistance 
axis. 

The resistance axis of the Smith chart is one axis of a 
graph, just as Y-axis of a rectangular graph is, but in the 
Smith chart the scales of the graph are circles rather than 
straight lines. The resistance scales are the circles shown in 
Fig. 4-3. 

A value of normalized resistance is assigned to each 
circle. The largest circle, which coincides with the outer edge 
of the chart. corresponds to 0: and a dot at the bottom of the 
chart corresponds to infinity. Thus any point on the circle 

labeled 1.0 corresponds to a normalized-resistance value of 1. 

REACTANCE SCALES 

The reactance scales, which appear as curved lines in Fig. 
44, are actually parts of circles. All of these lines are tangents 
to the resistance axis, which itself is the zero-reactance line. 
The circle that forms the outer edge of the chart can be 
thought of as the reactance axis of the chart. 

Each reactance line is assigned a value of normalized 
reactance, which is labeled near the outer edge of the chart. 
Reactance lines to the right of the resistance axis are used for 

positive or inductive reactance, and those to the left of the 
resistance axis are used for negative or capacitive reactance. 
Thus an inductive reactance of 100 ohms ( normalized to 50 
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Fig. 4-3. Resistance scales. 

ohms) would be represented by a dot on the reactance line 
labeled 2.0 on the right side of the chart. 

PLOTTING IMPEDANCES 

Now that we have a graph with both resistance and 
reactance scales, we can plot various values of impedance as 
points on the graph. Since the scales of our graph are in 

normalized values of impedance. we must normalize each 
impedance before we plot it. For the remainder of this chapter 

we will assume that we are working with a transmission line 

having a characteristic impedance of 50 ohms, and we will 
normalize all impedances to this value. 

Figure 4-5 shows several impedances plotted on the 
coordinates of a Smith chart. The absolute values, normalized 
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values. and locations of these impedances are tabulated as: 
Absolute Impedance, Normalized Value Point on 

Ohms Fig. 4-5. 
50 1 A 
50 + j100 1 + j2 

50 — j100 1 — j2 
100 + j100 2 + j2 D 

100 — ) 100 2 — j2 E 
Two points on the Smith chart are of particular interest in 
connection with solving certain transmission-line problems. 

The first is the impedance of an ideal short circuit. Here, both 

the resistance and the reactance are zero. The value of 
impedance is represented by a dot at the top of the chart, 

where the resistance and reactance axes intercept ( point F in 
Fig. 4-5). The other point of particular interest is the 
impedance of an ideal open circuit. Here the resistance is 
infinite and the reactance is zero. The resistance portion of the 

Fig. 4-4. Reactance scales. 
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Fig. 4-5. Impedances plotted from table in text. 

normalized value is infinity, because an infinitely large 

number divided by 50 is still infinitely large. Thus the 
impedance of an ideal open circuit is represented by a dot at 
the bottom of the chart ( point G in Fig. 4-5). 

To summarize, any value of normalized impedance can be 
plotted on the Smith chart. Pure resistances fall on the 
resistance axis, the vertical line through the center of the 

chart. Pure reactances fall on the zero-resistance circle, 
around the outer edge of the chart. Complex impedances 

having both resistance and reactance fall somewhere on the 

face of the chart. Impedances having an inductive reactance 

lie on the right half of the chart, and those having capacitive 
reactance lie on the left half of the chart. 

VSWR AND WAVELENGTH SCALES 

So far we have shown that any value of impedance can be 

plotted on a Smith chart. We haven't however, justified the use 
of circular rather than rectangular scales. We will do this now. 
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We saw in Chapter 3 that in a lossless transmission line not 
terminated in its characteristic impedance, impedance 
measured along the line varies with distance from the load. We 
also saw that the impedance repeats itself every 1/2 

wavelength along the line. Now we can see one of the 
advantages of the choice of coordinates on the Smith chart. All 

of the values of impedance measured along a transmission line 
will fall on a circle—the VSWR circle—on the chart. 

Suppose we have a 50-ohm transmission line that is 
terminated in a 100-ohm resistance. Using a formula from 
Chapter 2 we find that the standing-wave ratio is 

RI, 100 
VSWR = — = — = 2 

ZO 50 
Now, if we draw a circle centered at the prime center of the 
chart, with a radius equal to 2 on the resistance axis ( see Fig. 
4-6). all values of impedance that can be measured along the 

• « 
Ote .... e. 

Fig. 4-6. A VSWR circle for VSWR = 2. 
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line will fall on this circle. This will hold true as long as the 

losses along the line are negligible. 
The standing-wave circles are usually not printed on the 

chart. They are drawn for individual cases by the user of the 

chart. Remember that the radius of the circle is equal to the 
numerical value of the VSWR measured on the resistance axis 

of the chart. 
Looking at the VSWR circle in Fig. 4-6, we see that once we 

go around the circle from any point, we are right back to the 

impedance with which we started. This corresponds to moving 
along a transmission line a distance of 1/2 wavelength. Thus 

we can conclude that going around the Smith chart once is 

comparable to moving along a transmission line a distance of 
1/2 wavelength. 

Wavelength scales are provided along the outer edge of the 
chart and are marked in decimal fractions of a wavelength. 
The outer scale, which increases in a clockwise direction, 

represents distance along the line in the direction of the 

generator. that is. away from the load. The inner wavelength 

scale is marked in decimal fractions of a wavelength toward 
the load. 

With the scales that we have described, we can find the 

impedance at any point along a line, as well as the 

standing-wave ratio, if we know the load impedance and the 
characteristic impedance of the line. Suppose, for example, 

that we have an impedance of 50 + 350 ohms and a 50-ohm 

transmission line. The normalized value of load impedance is 

thus 1 + ji. which is represented as a dot at point A of Fig. 4-7. 
We can then draw a VSWR circle centered about the prime 
center of the chart and passing through point A. 

We can read the standing-wave ratio directly from the 

lower point on the resistance axis ( point B), where the VSWR 
circle intercepts it. In this case. the VSWR is about 2.6. This 
point also corresponds to the impedance at a point about 0.09 

wavelength from the load, as shown on the wavelength scale of 

the chart. 
A careful inspection of the VSWR circle in Fig. 4-7 shows 

many interesting things. At points B and C. where the circle 

crosses the resistance axis, the reactance is zero. At point C 
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the impedance is not only purely resistive, but it has its lowest 

value. This point, therefore, must correspond to the point on 

the line where the voltage of the standing wave is minimum 

and the current is maximum. Point B, which is 1/4 wavelength 
from C. corresponds to the point along the line where the 

voltage is maximum and the current is minimum. 
So far we have only dealt with conditions over a single 

half-wavelength of line from the load. Since we are considering 

the line to be lossless, we can find the impedance at any point 

along the line by merely going around the VSWR circle once 
for each half-wavelength of distance from the load. 

In practice, this is accomplished by merely subtracting 

the largest possible number of half-wavelengths from the line 
length. For example, if we have the situation of Fig. 4-7, where 

the normalized load impedance is 1 + ji, and we wish to find 

Fig. 4-7. All values of impedance along a line, however long, can be found 
on the Smith chart. 
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the impedance at a point 1 3/4 wavelengths away, we merely 
subtract 1 1/2 wavelengths from the total and find the 

impedance 1/4 wavelength from the load. This is at point D in 
Fig. 4-7. The impedance at point D is 0.5 — )0.5. This is the 
reciprocal of the normalized load impedance, which is just 

what we would expect, since a quarter-wave line inverts the 
load impedance. 

Earlier we saw that the input impedance of a lossless 
quarter-wave line is given by 

z„ = 

This equation is based on using absolute values of impedance 

in ohms. We can rearrange it to use normalized values of 
impedance by dividing both sides by Z,, giving us 

Z„ _ Z, 
4, Z1Z0 — Z1, 

If we use a lowercase z to represent normalized values, we 

have simply 

Z, 

z,„ 1/z, 

and the characteristic impedance of the line cancels out of the 

equation completely. This is another convenience that results 
from using normalized or per-unit values. 

RADIALLY SCALED PARAMETERS 

Depending on the type of Smith chart, there are as many 

as eight different radial scales ( Fig. 4-8). Each of these scales 
starts at the prime center of the chart and extends radially 

outward. In the Smith chart calculator these scales are printed 

on a plastic cursor that is pivoted at the prime center of the 
chart. In the printed charts the radial scales are printed along 

one side or along the bottom of the chart ( Fig. 4-9). 

The SWR scale gives the voltage or current standing-wave 

ratio ( Fig. 4-9). The scale may be used on a lossless 

transmission line by drawing a line from the standing-wave 
circle to the scale, as shown in Fig. 4-9, or by using a compass 
to transfer the distance between the prime center and 

standing-wave circle to this scale. The SWR scale is really not 
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Fig. 4-8. The radial scales of the Smith chart are located along one edge. 
SWR scale is useful for determining SWR on lossy lines. The reflection 
coefficient scale, together with the angle of reflection coefficient scale on 
the circular chart, is useful for finding the magnitude of the reflected 
voltage as a function of the forward voltage, also the angle between the 
forward and reflected voltages. 

necessary, particularly on lossless lines, because the 
standing-wave ratio can be read directly from the resistance 

axis below the prime center. The scale is useful in 

computations for lossy lines because, as we shall see later, the 

SWR curve on the chart is not a circle for such lines. 

Opposite the SWR scale, the VSWR is expressed in 

decibels. This parameter is sometimes useful. It is the ratio in 
decibels of the maximum to minimum voltage or current along 

Fig. 4-9. Using the SWR scale. 
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a transmission line and is given by 

VSWR, dB = 20 log 
E relltt 

Another radial scale, together with a scale on the chart 
which we haven't considered yet, can be used to find both the 

magnitude and the angle of the reflection coefficient. Figure 
4-10 is for the same load as Fig. 4-7, namely, 1 + ji. The radial 
line drawn from the prime center of the chart, through the load 
impedance, to the peripheral scale labeled angle of reflection 
coefficient, shows the angle to be about 63.4'. We can find the 

magnitude of the reflection coefficient by measuring the 
length of a line from the prime center of the chart to the load 

impedance ( 1 + j1 ) and transferring the distance to the radial 
scale marked reflection coefficient. The reflection coefficient 

in this case is about 0.45. This information gives us the 
magnitude of the reflected voltage as a function of the forward 

voltage, and the angle between the forward and reflected 
voltages. 

ANGLE OF REFLECTION 
OEFFICIENT 63.e 

Fig. 4-10. Finding the reflection coefficient. 
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Another radial scale on most charts is for the power 
reflection coefficient. We shall have no occasion to use this 

scale. 

LINE LOSSES 
So far we have considered that transmission-line losses 

are low enough that we can ignore them. In a great deal of 
broadcast work, this is entirely practicable. There are cases, 
however, where line losses are significant, and radial scales of 
the Smith chart provide a way of handling them without many 
tedious mathematical considerations. 

One effect of transmission-line loss is that the 
standing-wave ratio is not constant along the line. In a lossy 
line the reflected wave is attentuated as it travels back toward 

the sending end, so it will naturally have less effect on the 
voltage distribution along the line. Thus the standing-wave 

Fig. 4-11. The SWR curve for a lossy line. 
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ratio becomes smaller in a lossy line as we move closer to the 

source. For a lossy line the standing-wave curve is no longer a 
circle; it is a curve that starts at the load impedance and 

spirals clockwise toward the prime center of the chart, as 
shown in Fig. 4-11. 

How close the curve comes to the center depends on the 
amount of loss in the line. In an extreme case the spiral would 

come very close to the prime center of the chart. This would 

mean that the loss of the line was so great that the reflected 

wave would have no effect on the input impedance, which 
would then be equal to the characteristic impedance of the 
line. 

In practice, it is rather difficult to construct the spiral for 

a lossy line on a Smith chart. Fortunately it isn't necessary. 
There is a radial scale, transmission loss, 1 dB steps, that can 

be used. This scale ( Fig. 4-12) is a relative scale, so the 
divisions are not numbered. It is sufficient to know that the 
divisions are 1 dB apart. 

Assume, for example, that we measure a normalized 
impedance of 1.5 + j2 at the terminals of a transmission line of 

3/8 wavelength and we know that the loss of the line is 1 dB. We 
want to know the VSWR at both the input and load, as well as 
the load impedance. 

We start out just as we would with a lossless line, by 
drawing a VSWR circle through the measured impedance. 

This is the inner circle in Fig. 4-12, drawn through point A. We 
read the VSWR at this end of the line from point A on the figure 
and find it to be about 4.6. Now, to find the VSWR at the load, 

we use the radial 1 dB step scale. 

Transferring the radius of our VSWR circle to the 1 dB 
step scale, we find that the intercept is at about the second 

major division from the outer edge of the scale, as shown in the 
figure. Since the loss in the line is 1 dB, we move up to the next 

major division to form a new radius as shown. With this new 
radius, we can draw a new VSWR circle. This new circle, 

which passes through the load impedance, shows that the 

VSWR at the load is about 9. Inasmuch as the length of the line 
is 3/8 wavelength, we can find the load impedance by moving 

0.375 wavelength around the new circle toward the load. WE 
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éSWR CIRCLES 
AT LOAD 

AT LINE INPUT • 

Fig. 4-12. SWR circles for a lossy line. 

thus find that the actual load impedance is about 0.1 + j0.5 

( point B). 
This technique of drawing two circles to solve a problem is 

much easier than drawing a spiral, but remember: Each 
circle is valid at only one point along the line, whereas with a 

lossless line, one circle applies all along the line. 
An inspection of the I dB steps scale will provide a great 

deal of insight into how losses affect the standing-wave ratio on 
a line. If we start at the end of the scale, corresponding to the 
prime center of the chart, we see that the 1 dB steps are 
spaced very closely. Thus, if the VSWR at the load is small, 
even several decibels of loss in the line will not have an 

extremely great effect on the VSWR. If the VSWR at the load 
was 1.4 and the loss of the line was 3 dB, the VSWR at the input 

to the line would be 1.2. 
On the other hand, at large distances from the prime 

center of the chart, the decibel steps are spaced much farther 

apart. Thus, with large values of VSWR, even a small amount 
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4-13. The standing-wave ratio is infinite and is represented by a 
circle around the outer edge. The impedance at any point 

along this line is found by moving clockwise the appropriate 
fraction of a wavelength around the circle. Note that the circle 

coincides with the zero-resistance circle, which means that as 

long as there are no losses in the line ( which would cause our 
circle to become a spiral), the input impedance will be a pure 
reactance. As we move up along this circle, we find that the 

input impedance is a high capacitive reactance. This 
decreases until—when we reach the top of the chart, which 

corresponds to a distance of 1/4 wavelength from the 

open-circuited end—we find that the input impedance is a short 

circuit. This of course is what we would expect, since we know 
that an open quarter-wave line looks like a short circuit. 

As we continue around the chart, we see that the input 
impedance becomes an inductive reactance, first small in 
value, but becoming larger until, when we get to a point 1/2 

wavelength along the line, we are right back where we started. 
The input impedance is then an open circuit. 

If the receiving end of the line was terminated in a short 
circuit, we would have the same VSWR circle, corresponding 

to an infinite standing-wave ratio, but we would start at point C 
of Fig. 4-13 and again move clockwise around the chart to find 
the impedance at various points along the line. This 

demonstrates that a shorted line behaves the same as an open 
line except that the same conditions are displaced by a 1/4 

wavelength along the line. 
These examples show how familiarity with a Smith chart 

reinforces a knowledge of transmission-line principles and 

simplifies computations. 

GETTING IN AND OUT OF THE CHART 

We have looked over each of the scales on the Smith chart 
and seen how it relates the load impedance, impedance along a 

line, reflection coefficient and standing-wave ratio. Never-
theless. there are still a lot of lines on the chart, and until one 

has had quite a bit of practice, the chart is apt to be confusing. 
It is helpful to use some systematic method of plotting points 

on the chart and reading the desired results. 
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The way we enter a number on the Smith chart depends, of 
course, on the type of quantity. An impedance isn't entered on 

the chart in the same way as the angle of a reflection 

coefficient, for example. When we use the Smith chart, we 
know some quantities and use the chart to find others. The 
quantities that we start with come from either basic design 

considerations or from measurements that we can make. 
There are several different types of instruments for 

measuring transmission-line parameters. The particular 
measurement that is made depends on the availability of 
instruments and the application. For example, in the standard 
broadcast band, we frequently measure impedances on a 
bridge, whereas, in an FM or TV station, we might measure 
the reflection on a line. The beauty of the Smith chart is that it 
relates all of the transmission-line parameters. 

One parameter that fortunately is nearly always known in 
advance is the characteristic impedance of the transmission 
line. This means that normalizing any particular value of 

impedance is simply a matter of division. 
Frequently the quantity we start with is the value of an 

impedance. Using lowercase letters to represent normalized 

values of resistance, reactance, and impedance, we can 
express our number in the form z = r + ix. Suppose, for 
example, that it happens to be 1.4 + j2. To enter this value on 
the Smith chart, we start with the resistance. Since the top of 

the resistance axis appears at the top of the chart, we start 
there. Starting at point A in Fig. 4-14, we move down the 

resistance axis until we find the circle corresponding to 1.4. 
This is at point B. We know that the value we want to plot lies 
somewhere on this circle. To find out which way to go along 
this circle, we look at the sign of the reactance in the 
impedance we are plotting. In our example the sign is positive. 

This means that the impedance lies on the right half of the 
chart, so we move to the right along the 1.4 resistance circle 
until we come to the 2.0 reactance circle, point C in the figure. 

This procedure probably isn't necessary for one who is 
thoroughly familiar with the chart, but it is convenient and 

reduces the probability of error. 
If the impedance that we have just plotted is either a load 

impedance, or the impedance measured at some point along a 
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Fig. 4-14. Plotting data on the Smith chart. 

line that we can consider lossless, we can then determine 

many of the other parameters. We can construct a 
standing-wave circle and read off the VSWR. If it is a load 

impedance. we can also read off the magnitude and angle of 
the reflection coefficient. 

If the plotted impedance is the value measured at some 

point along the line, we need one more piece of information 
before we can find the value of the load impedance: either the 

distance in wavelengths from the point of measurement to the 

load, or the angle of the reflection coefficient. If we know that 

the load is a pure resistance but don't know what the value is, 
we can narrow it down to two values. A pure resistance would 
have to fall on the resistance axis, so its value is that at either 

point D or point E in Fig. 4-14. 
If one of the quantities that we know to start with is the 

standing-wave ratio, we can start by plotting the VSWR circle. 
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This then tells us all possible values of impedance along the 

line, but it doesn't tell us where they occur. We know that both 
the load impedance and input impedance are on this circle, but 

we must have more information before we can find anything 
more specific. In laboratory-type measurements with a slotted 

line, we can often find the distance in wavelength from the load 
to the first maximum or minimum of the standing wave. Since 
we know that the maximum and minimum of the standing 

wave occur where the VSWR circle crosses the resistance 
axis, we can use the wavelength scales to find the value of the 
load impedance. 

ADMITTANCE PARAMETERS 

Admittance, conductance, and susceptance are much less 
familiar concepts than impedance, resistance, and reactance, 
but no more difficult inherently. Admittance and related 
parameters were explained in Chapter 1. Admittance is 
reintroduced at this point for two reasons: 

1. There are situations in antenna and transmission-line 

work where using admittance rather than impedance 
considerably simplifies computations. 

2. The Smith chart greatly simplifies conversion from 
impedance to admittance, and vice versa. 

ADMITTANCE AND THE SMITH CHART 

If the admittance concept seems fearsome, the Smith 

chart will come to the rescue. First let us use the chart to find 
a value of admittance corresponding to a given value of 
impedance. To keep things simple, let's find the admittance 
corresponding to a resistance of 100 ohms. Normalizing this to 

50 ohms gives us a value of 2.0, which we represent by a dot at 

point A of Fig. 4-15. 
Now, we know that the normalized impedance seen looking 

into a quarter-wave transmission line is equal to the reciprocal 
of the normalized load impedance. We also know that this 
reciprocal is equal to the normalized load admittance. So all 
we have to do is go around the chart 180°, which corresponds to 
moving along a transmission line 1/4 wavelength, and read 0.5 
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Fig. 4-17. Expanded-scale Smith chart. 

from zero to infinity can be plotted on the Smith chart. One of 
the penalties we pay for this convenience is an inherent 
inaccuracy in reading the chart. This isn't very significant 
when the mismatch and hence the standing-wave ratio is high. 
It is annoying in a closely matched system, where the 

standing-wave ratio is held to close limits. For such cases, 
expanded charts are available, as shown in Fig. 4-17. Here the 
area near the prime center of the regular chart is expanded to 
cover the entire area of the regular chart. The scales are 
expanded radially about the prime center by a ratio of 4.42:1. 
On this expanded chart the magnitude of the reflection 
coefficients from 0 to 1/4.42 can be displayed, whereas, on the 
full chart, all possible values of reflection coefficient from 0 to 
1 can be plotted. The maximum standing-wave ratio that can 
be plotted without going off the edge of the expanded chart is 
1.59, which, in decibel notation, is 4 dB. 

The expanded chart is excellent for plotting trans-
mission line and load-impedance characteristics in systems 
where the standing-wave ratio does not exceed 1.59. 
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Smith charts with other degrees of expansion are 
available. In fact, a wide variety of special charts have been 

made at different times for particular applications. The two 

that have been described here are the ones most commonly 
used for broadcast work. 

USING THE SMITH CHART 

Although the main body of the Smith chart has only two 
sets of scales, for resistance and reactance, it can be used for 
many different purposes. 

Analyzing Networks 

The Smith chart can be used for analyzing networks 
because it provides an easy way of converting between 
impedances and admittances. Combining admittances in 
parallel is simply a matter of addition, the same as combining 
impedances in series. Figure 4-18A shows an L-network of the 
type used to match impedances in antenna systems. To 
analyze this network on a Smith chart, we must first normalize 
all of the impedances, preferably to the value of the 
characteristic impedance of the transmission line—in this 
case, 50 ohms. The normalized impedances are shown in Fig. 
4-18B. We can now add the impedances and admittances of the 
network directly on a Smith chart. 

j25 

(A) 

25 

j0.5 

(13) 

0.5 

Fig. 4-18. An L-Network, with actual and normalized impedances. 

The impedance of the load is a normalized resistance of 

0.5. Therefore we enter the Smith chart from the top and go to 
point A in Fig. 4-19A, which represents a normalized 

impedance of 0.5. Next we add the series reactance of + j0.5. 
This means moving along the 0.5 resistance circle to point B. 

The next element that we wish to consider is the capacitor. 
Inasmuch as the capacitor is connected in parallel with the 
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Reading the chart as an admittance chart, we see that the 

admittance at point C, which is the admittance of the resistor 

and inductor in series, is 1 — ji. We want to add the 

susceptance of the capacitor to this value of admittance. The 

susceptance of the capacitor is the reciprocal of its reactance. 

Since the normalized reactance in this example is — ji, the 

normalized susceptance will be +jl. We can add this 

susceptance by moving clockwise along the 1.0 conductance 
scale to point D. Here we see that the normalized admittance 

is simply 1.0. Converting from normalized values of 

admittance to absolute values, we must multiply by 0.02 mho, 

the reciprocal of 50 ohms. Thus the impedance seen looking 
into the network of Fig. 4-18 is 50 ohms. 

At first the above procedure looks like a lot of work to get a 

simple answer. It is a rather lengthy procedure until one 
becomes familiar with it: then it is not only easy, but it gives 

increasing insight into network behavior. 
Figure 4-20 shows another network that we may need to 

analyze. In this case, the resistor is connected in parallel with 

a capacitor, so we use conductance and susceptance values of 

these two elements, then convert to impedance to handle the 
series inductor. In Fig. 4-20B the resistance and reactances 

are normalized to 50 ohms. In Fig. 4-20C the resistive and 

i100 

(A) 

250 

i2 

(B) NORMALIZED IMPEDANCES 

IMPEDANCE 
ADMITTANCE 

-12 

Tjo.4 0.2 

(C) IMPEDANCE AND ADMITTANCE 

Fig. 4-20. The L-network referred to in the test. 
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that the impedance seen looking into the network of Fig. 4-19A 

is 50 ohms. 

Analyzing Data 

Another very useful application of the Smith chart is in 
analyzing data from measurements. For example, suppose we 

have a transmission line that is 1/4 wavelength long at some 

frequency and is terminated in a given impedance. If we vary 
the frequency, the line will no longer be 1/4 wavelength long, 

and the driving-point impedance of the line will vary. We can 
use the Smith chart to show not only the driving-point 
impedance of the line but also how the standing-wave ratio 

varies with frequency. 
Suppose, for example. that the 50-ohm transmission line 

shown in Fig. 4-22 is a quarter-wave line and is terminated by a 
100-ohm resistor. Assume that we want to know the input 

impedance looking into the line at the frequency f, , at which 

the line is a 1/4 wavelength long, and at two other frequencies. 

and fh . which are 10ei- lower and higher in frequency, 
respectively. First we normalize the 100 ohms to 50 ohms, 
giving a normalized resistance of 2.0. 

Zo= 50 OHMS 100 

À4ATfo 

fn=1.1fo 

Fig. 4-22. Transmission-line problem. 

We enter the Smith chart of Fig. 4-23 at this value. point A. 

To find the impedance at the sending end of the quarter-wave 
section, we merely move at a constant distance from the prime 

center of the chart, through 180'. Remember that 180' on the 
chart corresponds to 90' on the line itself. This brings us to 

point B. where we see that the normalized input impedance of 

the line is 0.5. At the frequency f • which is 10q lower than , 
the line length will be 10ré shorter than 1/4 wavelength. This is 
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above and below the center frequency. At the lower frequency 
the impedance has a slight capacitive component, and at the 

higher frequency it has a small inductive component. 

Interestingly, the standing-wave ratio will not change at all 

with frequency. All of the impedances lie on the same VSWR 

circle. 
Other uses of the Smith chart include plotting the results of 

measurements of various instruments so that we can find 
other parameters. For example, if an instrument gives us the 

magnitude and angle of the reflection coefficient, we can 

easily find the impedance or admittance. 

Plotting Antenna Impedances 

In an earlier example we saw that the standing-wave ratio 
on a transmission line does not vary with frequency as long as 
the load impedance remains constant. Unfortunately the 
impedance of most types of antennas does not remain constant 
as frequency is changed. Hence one of the factors that must be 

considered when evaluating the bandwidth of an antenna is the 

standing-wave ratio on the transmission line and how much it 
varies as the frequency and load are changed. One easy way to 

evaluate a situation of this type is to plot antenna impedance 
as a function of frequency on a Smith chart. The stand-

ing-wave ratio that occurs at any frequency can be read by 

simply drawing a VSWR circle through the impedance at that 

particular frequency. 
Suppose that at the terminals of an antenna we measured 

the driving-point impedance with an impedance bridge and 

found the following values at different frequencies: 

Frequency, Normalized 

Resistance Reactance kHz Impedance 
980 47 — 12 0.94 — j0.24 

990 47 —.j6 0.94 — j0.12 
1000 50 0 1.0 + j0 

1010 53 +j4 1.06 + j0.08 
1020 57 +j6 1.14 + j0.12 

Here we want to know the VSWR at the various frequencies. 

Plotting the impedances on a Smith chart, we get the plot 
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Chapter 5 

Standard 
Broadcast Antennas 

The history of AM broadcasting in the United States closely 

parallels the history of broadcast antennas. In the early days 
of broadcasting. the coverage of a station was determined 

almost entirely by the transmitter power. At first it looked as 

if the broadcast band was to be nothing but the scene of a 
power race, with a few extremely high-powered stations 

dominating the band. Broadcasting as we know it today is the 
result of developments in antennas. 

The AM broadcast band—or standard broadcast band, as 

it is called in the FCC Rules—consists of 107 channels, between 

535 and 1605 kHz. Carrier frequencies in this band are spaced 
at 10 kHz intervals. Stations are allocated these carrier 

frequencies in accordance with a system that allows service to 
almost every section of the country with a minimum of 
interference between stations. The allocation methods depend 
heavily on the use of directional antennas. 

The history of the directional antenna as applied to AM 
broadcasting is interesting. To fully appreciate it, one must 

have some idea of the pandemonium that once prevailed on the 
broadcast band. 

It isn't easy to tell just when the first commercial 
broadcast station went on the air. The first license to 

broadcast on a regular basis was issued in 1921 to WBZ, then 
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located in Springfield, Massachusetts. However, many 

broadcast stations were operating on an experimental basis 

long before then. Certainly station KDKA in Pittsburgh, 

Pennsylvania, was one of the earliest. 
By 1923 several hundred stations were on the air. At that 

time only two frequencies, 750 and 833 kHz, were allocated for 
broadcasting, and the interference was as severe as any of the 

"pileups" found on crowded ham bands today. Late in 1924, 96 

channels, between 550 and 1500 kHz, were set aside for 

broadcasting, and stations were assigned to particular 
channels. The earliest attempt to minimize inteference was to 

assign the same carrier frequencies to stations that were 
geographically as far apart as possible and, when necessary, 

to require them to share broadcast time. Old-timers will 

remember when radio-program listings in the newspapers 

carried the notation "silent night," indicating that a station 

would not broadcast on a particular night. The situation was 
far from satisfactory, but was the best that it could be with the 

state of the art at that time. 
The breakthrough that made broadcasting as we know it 

today possible was the development in 1921 of the AM 
directional antenna by Dr. Raymond M. Willmotte and 

Commander T. A. M. Craven, later an FCC Commissioner. 
The situation that led to the development involved a case of 
interference to signals from WTMJ in Milwaukee from 

WFLA-WSUN in Clearwater, Florida. Both stations operated 
on a carrier frequency of 620 kHz. A battle ensued, with MTMJ 
trying to force the Florida station off the air. Some idea of the 

state of knowledge of propagation at the time can be gathered 

from the fact that one theory advanced to explain the 
interference was that the signal from the Florida station 

traveled across the Gulf of Mexico and then up the Mississippi 

river valley to Milwaukee—even though this isn't a direct 
path. 

At the time, few broadcast engineers felt that the null from 

a directional-antenna system could be used to protect the 

service area of another station from interference. Dr. 

Willmotte believed that it could, and proceeded to prove it, 
thus starting the use of directional antennas in broadcasting. 
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The first AM directional array consisted of two guyed 
vertical towers, spaced 90° apart and fed through networks 

that were adjusted without the aid of modern impedance 

bridges. The results surprised not only the government 

inspectors but the developers themselves. Dr. Wilmotte 
reported that when the antenna was adjusted for minimum 

radiation in the direction of Milwaukee, the radio inspector at 
Atlanta. Georgia, which is in a direct line between the Florida 

and Wisconsin cities, wanted to know why the station was off 

the air without permission. 
The directional-antenna system, which is now a familiar 

sight across the country, became an essential part of the 

answer to problems of interference between broadcast 
stations. The allocation of frequencies to broadcast stations 

depends heavily on its use. 

SERVICE AREAS AND CLASSES OF CHANNELS 

The FCC recognizes three different types of service area 

of standard broadcast stations. The primary service area is 
the area where the groundwave from the transmitting antenna 

is not subject to objectionable fading. The secondary service 
area is the area served by the skywave from the antenna, 

where there is no objectionable interference. Skywave signals 

in the secondary service area are, however, subject to fading. 
The intermittent service area lies between the primary and 

secondary service area. It is the area where the groundwave is 

received but is subject to fading. Interference may also be 
present in the intermittent service area. 

Three classes of broadcast channels have been established 

in North America. A clear channel, in spite of its name. is not a 
channel that has only one station assigned to it. It is a channel 

on which one or more high-powered stations serve wide areas. 
All of the primary service areas of these stations, and all or a 

substantial portion of their secondary service areas, are 

cleared of objectionable interference. 
A regional channel is one on which several stations with 

powers of not more than 5 kW operate. Interference between 

stations is controlled by limiting the contours of their primary 

service areas. 
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A local channel is one on which several low-powered 
stations provide service to local communities. Stations 

operating on local channels operate with a power of not more 
than 1 kW in the daytime and 250W at nighttime. The primary 
service areas of these stations are limited by interference 
considerations. 

TIMES OF OPERATION 

There are several definitions of times of operation of 
broadcast stations that must be clarified. Daytime and 
nighttime refer to the time between local sunrise and local 
sunset. and vice versa, but local sunrise is not the time that the 
sun appears over the horizon. Rather the official time of local 
sunrise, as far as operating rules are concerned, is specified in 
the station license for each month of the year ( and similarly 

for local sunset). 
The broadcast day is not the same as daytime. It is the 

period of time between local sunrise, as specified in the station 
license, and midnight local time. 

The experimental period is the time period between 
midnight local time and local sunrise as specified in the station 
license. During this period any standard broadcast station can 

broadcast experimentally for purposes of testing and 
maintenance. The authorized frequency and power may be 
used for these purposes. However, these experimental 
broadcasts must not cause objectionable interference to 
stations that maintain a regular program schedule during this 
period. No station that is unauthorized to do so may broadcast 
programs during the experimental period. 

STANDARDS OF ALLOCATION 

Coverage of the entire country with standard broadcast 
signals is possible only because of a rather complex system of 
frequency allocation. Many different broadcast stations 

operate on the same frequency, and interference between 
stations is held to a minimum by specifying the maximum and 
minimum field strength that a particular station can radiate to 
any particular area. This control is accomplished by limiting 

the transmitter power and shaping the antenna pattern of each 
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station. The transmitter powers allocated to standard 

broadcast stations are: 250W, 500W, 1 kW, 2.5 kW, 10 kW, 25 
kW. and 50 kW. 

For purposes of allocation, stations are divided into four 

classes and several subclasses. The class of station, 

authorized operating power. and type of antenna pattern are 

based not only on the broadcast requirements of the United 
States but also on international agreements with Canada and 
Mexico. The object is to provide good broadcast coverage to 

all areas, while minimizing interference between stations. 
Class I stations are dominant stations that operate on 

clear channels, usually with an operating power of 50 kW, and 
never less than 10 kW. These stations provide primary and 

secondary service over a wide area and at long distances from 
the station. Their primary service areas are cleared of 

objectionable interference, both on their operating frequency 
and on adjacent channels. Their secondary service areas are 

cleared of objectionable interference on their operating 
frequencies, but not on adjacent channels. 

The United States has class I priority on 45 clear channels. 
Canada and Mexico have their own class I priorities, some of 
which are shared with the United States. Only one or two class 

I stations operate on each clear channel. 

A class II station is a secondary station operating on a 
clear channel with an operating power of between 250W and 50 

kW. Class II stations serve population centers and the adjacent 

rural areas. They are operated so as not to cause interference 
with the service areas of dominant stations operating on the 

same clear channel. There are 29 clear channels on which 

class II stations may operate. 
Class Ill stations share regional channels with several 

similar stations, each serving a population center and the 

surrounding rural areas. Class III stations operate with a 

power of between 500W and 5 kW. There are 41 regional 
channels. with more than 2000 class III stations. 

A class IV station operates on a local channel to provide 
service to a local area. The operating power is not more than 1 

kW during the day and 250W at night. There are six local 

channels, with 150 or more class IV stations on each channel. 
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PATTERNS, CONTOURS, AND FIELD INTENSITY 

To provide primary service to an area, a station must 

provide a signal that is strong enough to overcome the 
manmade noise that might be encountered in the area. The 

FCC Rules specify the following minimum field intensities for 
various types of service areas: 

Area Groundwave Field Intensity 

City business or factory areas 10 to 50 mV/m 

City residential areas 2 to 10 mV/m 

Rural—all areas during 0.1 to 0.5 mV/m 
winter, northern areas during summer 

Southern areas during summer 0.25 to 1.0 mV/m 

These values are based on the absence of fading and 
interference from other broadcast stations. No real standards 

of atmospheric or manmade noise have been established, 
because no uniform measurements are available. The FCC 

has. however, published a list of signal strengths that are 

considered satisfactory for overcoming manmade noise in 
towns of various sizes. The field intensities are: 

Population Ground wave Field Intensity 

Up to 2500 0.5 mV/m 

2500 to 10.000 2.0 mV/m 
10.000 and up Values given in the preceding paragraph 

In addition to the requirement for providing adequate field 
intensity in its service areas, a broadcast station must not 

radiate interfering signals into the service areas of other 

stations. This spatial distribution of the signals from broadcast 
stations is controlled by the design of the antenna system. To 

specify the field intensity in various directions from an 

antenna, we need some method of describing how the field 

intensity varies from one direction to another. This 
information may be tabulated or given in the form of a graph. 

Two types of graphs are commonly used to specify the 

directional characteristics of broadcast antennas—antenna 

patterns and field-intensity contours. The two look very much 

alike and should not be confused. 
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Antenna Pattern 

First let's look at the antenna pattern. To simplify things, 

we will assume that the antenna is located over a flat, 

perfectly conducting earth. Suppose that an engineer takes a 
field-intensity meter and walks around the antenna at some 

fixed radial distance, say, one mile and as he walks, he 

periodically reads the field-intensity meter and records its 
indication. After walking completely around the antenna, he 

might have a series of measurements as shown in Fig. 5-1. 
This information can be used to plot an antenna pattern on 

a circular chart, with the radial distance from the center 

BEARING FROM NORTH, FIELD INTENSITY, BEARING FROM NORTH. FIELD INTENSITY. 

DEGREES mVim DEGREES rnVim 

500 120 480 

15 504 135 460 

30 510 150 275 

45 498 165 390 

60 500 180 485 

75 502 195 498 

90 509 210 502 

105 501 225 510 

BEARING FROM NORTH. FIELD INTENSITY. 

DEGREES mV m 

240 502 

255 500 

270 501 

285 487 

300 475 

315 430 

330 465 

345 502 
mVen 

500 

Fig. 5-1. Antenna pattern for data shown. 
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representing field intensity and the angular scale indicating 
the bearing at which each measurement was made, as in Fig. 
5-1. This particular plot would be the pattern of our antenna at 
a distance of one mile. If the power of the transmitter was 
increased, the entire pattern would expand, but the shape 

would be the same. If the transmitter power was reduced, the 
entire pattern would shrink, but again the shape would not 

change. It is customary, when plotting a pattern, to specify the 
power that is being transmitted. 

Although this example illustrates the meaning of an 
antenna pattern, the assumption was made that the earth in 

the vicinity of the antenna was a perfect conductor. In the real 
world this is not true, and we could not determine the actual 
field intensity at one mile from an antenna by this method. We 

shall consider the proper method of doing this later. 
The portions of the pattern where the signal is strong are 

called lobes of the pattern. If there is one predominating lobe, 

it is usually called the major lobe. Smaller lobes are called 
minor lobes. Those portions of the pattern where the signal is 
reduced are called nulls, or minima. Strictly speaking, the 
term null refers to portions where the signal strength 
approaches zero and minima refers to those places where it is 
merely reduced. However, the use of the term null to refer to a 
bearing where the signal strength is reduced is so widespread 
that we follow the practice in this book. 

Field-Intensity Contour 

Another way to describe the directional characteristics of 
an antenna is to plot a field-intensity contour. Suppose once 

again that a broadcast engineer, equipped with a 
field-intensity meter, sets out to measure the directional 
characteristics of his antenna. Once again he walks 
completely around the antenna, but this time he does not 
maintain a constant radial distance from the antenna. Instead, 
he walks toward or away from the antenna until he obtains a 
certain indication on his field-intensity meter, say, 1 V/m. 
Suppose that each time he makes a measurement, he records 

the angular bearing from true north and the radial distance 
from the antenna at which the indication of the field-intensity 
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meter is 1 V/m. His measurement record would then appear as 
in Fig. 5-2. 

Now, if he plotted this information on a circular graph, he 

would obtain the graph shown in Fig. 5-2. This plot is called the 
one- volt-per-meter contour of the antenna. Here again, if the 

transmitter power was increased, the contour would expand, 
but its shape would not change. Likewise, if the transmitter 

power was reduced, the contour would shrink without 
changing shape. To be meaningful, the contour should also 
specify the transmitter power. 

The contour is important in that the service area of a 

station is protected to a minimum signal contour against 
interference from other stations. Another use of the contour is 
in assigning responsibility for cases of interference to 

listeners' receivers. The FCC Rules provide that any standard 

BEARING FROM NORTH DISTANCE FROM BEARING FROM NORTH. DISTANCE FROM 

(DEGREES) ANTENNA MILES (DEGREES) ANTENNA. MILES 

0 032 120 030 

20 033 140 028 

40 034 160 022 

60 031 180 020 

80 028 200 022 

100 029 220 020 

BEARING FROM NORTH DISTANCE FROM 

(DEGREES) ANTENNA MILES 

240 

260 

280 

300 

320 

340 

0 20 

0 20 

025 

0 26 

0 26 

0 29 

Fig. 5-2. Field- intensity contour. 
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broadcast station is responsible for adjusting all cases of 
interference to listeners within its one-volt-per-meter contour. 

We have now seen examples of both patterns and contours. 
They are two different ways of describing the directional 
characteristics of antennas. The pattern is a plot of field 
intensity at a fixed distance from the antenna at various 
angles. The contour is a plot of the distance from the antenna 
to a point of given field intensity at various angles. The 
distinction should be kept clearly in mind. 

Vertical Pattern 

The signal serving the primary service area of a station is 
propagated along the surface of the earth and is called the 

groundwave. It is specified in terms of a pattern calculated 
along the surface of the earth. Signals are also propagated by 

the sky wave, which is reflected from the ionosphere back to 
the earth. Skywave propagation provides coverage to sec-

ondary service areas of some stations and is a potential source 
of interference to other co-channel and adjacent-channel 
stations. 

The amount of signal that an antenna radiates at various 
angles above the horizon is specified by the vertical-radiation 
pattern. The vertical pattern, like the horizontal pattern, is 

usually plotted on polar graph paper. The radial scale is 
calibrated in field intensity, usually at a distance of one mile 

from the antenna. The angular scale is simply the angle from 
the horizon. Figure 5-3 shows the vertical-radiation pattern of 

90 

Fig. 5-3. Verticat-radiation pattern 
for vertical antenna ( only one side 
of pattern is shown). 
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a vertical antenna that is 1/4 wavelength in height. Note that 

the radiation is greatest along the surface of the earth but that 
there is still appreciable radiation at higher elevation angles. 

Usually, radiation above 60° is small, and not subject to 

propagation over long paths. It is the radiation at elevation 
angles below 60° that is responsible for both coverage to 

secondary service areas and interference to other stations. 

TYPICAL STANDARD BROADCAST ANTENNAS 

There are two types of antenna systems used in standard 

broadcast stations: nondirectional antennas, which consist of 
a single vertical tower, and directional antenna arrays, which 

have two or more towers. 

A nondirectional antenna consists essentially of a vertical 
tower, which radiates the signal; a network, which matches 

the impedance of the antenna to the characteristic impedance 
of the transmission line; and the transmission line itself. A 

typical system is shown in Fig. 5-4. Most broadcast 
transmitters are designed to work into the characteristic 
impedance of a transmission line, so no matching network is 
required between the transmitter and the line. 

TRANSMISSION 

LINE 

"DOGHOUSE 
TOWER 

TRANSMITTER 

Fig. 5-4. A typical nondirectional antenna system for AM broadcasting. 

Accessories 

The driving-point impedance seen at the base of a tower is 

never the same as the characteristic impedance of a 
transmission line. Thus a matching network is required. This 

network is located close to the base of the tower in a shelter 

that is commonly known as a "doghouse." Sometimes this unit 
is called a line- tuning unit, or LTU. In a nondirectional antenna 

the phase of the current feeding the antenna is not important, 
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so the phase characteristics of the matching network are not 

critical. About the only critical requirements of the matching 

network are low losses and a bandwidth adequate to transmit 

all of the sideband power. 
The transmission line is almost always a coaxial cable. A 

few open-wire lines are extant, but these are rapidly being 
replaced by coaxial cables. The requirements for the cable are 
low losses and adequate power rating to handle the licensed 

transmitter power. 
Besides the essential elements of the antenna and feeder, 

certain accessories are required. One of these is a 
tower-lighting system. The FCC and FAA rules require that all 

broadcast towers be lighted at night. If a tower is shunt fed, as 
in Fig. 5-5A, there is no problem; the lighting wires are simply 

run up along the side of the tower. Unfortunately, shunt 
feeding of broadcast towers poses some problems, and it is not 
commonly used. The usual broadcast-antenna tower has a 
base insulator ( Fig. 5-5B), and the base of the tower is not at 
ground potential. If the wires carrying power to the tower 
lights in B were run as in A, they would effectively 
short-circuit the signal at the base of the tower. It is necessary, 

therefore, to run the lighting power through some sort of 

SHUNT 

FEED 
LIGHTING 

CHOKES 

FLASHER 

TO COMMERCIAL 

POWER (A) 

TO 

COMMERCIAL (B) 

POWER 

—BEACON 

—SIDELIGHTS 

—RF FEED 

IN 

Fig. 5-5. Tower lighting arrangements for shunt- and series-fed AM anten-
nas. 
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arrangement that will present a low impedance to the 60 Hz 

power but a high impedance to the RF signal. 
A typical solution is to include isolation chokes, as shown 

in Fig. 5-5B. Another solution is the Austin transformer ( Fig. 

5-6). The two coils of this transformer are magnetically 
coupled so that the 60 Hz power will pass between them. They 

are physically separated by a great enough distance that the 
capacitive coupling between the primary and secondary will 
be small, and little signal power will be coupled through the 

transformer. 

TO TOWER 
LIGHTS 

TO POWER LINE 

Fig. 5-6. Austin transformer for tower lighting. 

Another essential part of the antenna system is a 
lightning-protection device. This usually takes the form of an 

air gap that will break down when the tower becomes charged. 

Parts of the Directional Antenna 

A directional-antenna system contains everything that is 
in the nondirectional antenna, and more. Figure 5-7 shows a 

block diagram of a 3-tower directional-antenna system. As in 
the nondirectional antenna, it is necessary to match the 

driving-point impedance at the base of each tower to the 
characteristic impedance of the transmission line. But in the 
directional antenna the relative phase of the current fed to 
each tower is critical, so an additional requirement is imposed 

on the matching network. It must not only perform the 

required impedance transformation, but it must do so with a 

predetermined amount of phase shift. 
At the sending end of the transmission lines feeding each 

of the towers, the signal must be divided so that each tower 

carries the proper percentage of the total current at the proper 
phase. Controls are provided to adjust the magnitude and 
phase of each of the tower currents. The equipment used for 
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PHASE 
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PHASE 

SHIFTER 

PHASE 

SHIFTER 

Fig. 5-7 Block diagram of direc-

tional-antenna system. 

this purpose consists of phase-shifting networks and power 

dividers. This equipment is usually referred to collectively as 

the phasor. 
The point in the system just before the power from the 

transmitter branches out is called the common point of the 
system. Here the impedance and current are measured to 

determine the power radiated by the system. 

One subsystem of a directional-antenna system that is not 
used in a nondirectional antenna is the antenna- monitoring 
system, formerly called the phase-monitoring system. This 

system is used to measure the amplitude and phase of the 

currents in each of the antenna towers to ensure that the 
pattern stays within its licensed limits. Small samples of the 

tower currents are picked up by sampling loops mounted on 
the side of each tower. The signals from the loops are carried 

back to the transmitter building, through coaxial cables to the 

antenna monitor ( formerly called the phase monitor). The 

antenna monitor indicates the ratios of the currents in the 

various towers of the array, as well as their phase angles. 
In general, the power delivered by the transmitter to the 

antenna system is given by the equation 

P = I ' R 

IMPEDANCE 

MATCHING 

NETWORKS 

COAXIAL 

LINES 

TOWER 1 

MPEDANCE 

MATCHING TOWER 2 

MPEDANCE 

MATCHING TOWER 3 
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where P = power from transmitter 

R = resistance measured at common point of system 

I = unmodulated RF current measured at common 

point 

To make an allowance for the additional losses that are 

unavoidable in a directional-antenna system, the FCC Rules 

state that the power shall be determined from the relationship 

P = I Ra 

where the constant a equals 0.92 in stations where the licensed 
power is 5 kW or less, or 0.947 where the licensed power is over 

5 kW. 
Another important part of a broadcast-antenna system is 

the current-measuring system. The rules require that the 
current at the base of each tower be measured at regular 

intervals. This measurement is made by a thermocouple 

ammeter, called the base-current ammeter. To protect the 
meter from damage that might be caused by lightning surges, 

it is usually switched out of the circuit except when 

measurements are actually being made. 

PROPAGATION OF STANDARD BROADCAST SIGNALS 

At the frequencies used for standard AM broadcasting, 
there are two primary modes of signal propaga-

tion—groundwave and skywave propagation. During daylight, 
propagation is entirely by means of the groundwave. It is this 

mode of propagation that provides coverage of the primary 

service area of the station. Starting about local sunset, signals 
begin to be propagated by the skywave. In this mode, signals 

are reflected from the ionosphere back toward the earth. 
Skywave propagation provides coverage of the secondary 

service area of a station, if the station has such coverage. It 

may also cause interference to adjacent channel or cochannel 
stations. 

Figure 5-8 illustrates both modes of propagation. Part A 

shows that the groundwave is strongest close to the antenna 
and falls off with distance. If the ground were a perfect 

conductor, the signal level would decrease linearly with 

distance from the antenna; but because the ground is not a 
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Fig. 5-8. Groundwave and skywave propagation. 

perfect conductor, the signal actually falls off more rapidly. 
During the daylight hours, when there is no skywave, the 

groundwave signal can be received until it is buried in the 
noise. At night, when the skywave signal appears, it is greater 

than the groundwave signal at a distance considerably less 

than the daytime range of the station. 
When the groundwave and skywave signals are nearly the 

same strength, they alternately reinforce and cancel each 

other, leading to serious fading of the signal at the receiver. 

The area where this occurs is called the intermittent service 
area ( Fig. 5-8B). The point where fading starts to become 
objectionable—at the so-called fading wall—marks the outer 

edge of the primary service area. One of the major 

considerations in broadcast-antenna design is to push back the 
fading wall. This is done by confining as much of the radiation 
as practicable to low elevation angles so as to reduce skywave 

radiation. 
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Chapter 6 

Vertical Antennas 

The vertical antenna is the exclusive radiating element in 
standard broadcasting. It is well suited to broadcast use. The 

vertical antenna's radiation is uniform along the surface of the 

earth, and because of its low angle of radiation, most of the 
energy is concentrated in the groundwave, which provides 

primary service. The slightness of radiation at high vertical 
angles minimizes skywave interference between stations at 
night. 

The vertically polarized signal from a vertical antenna 

suffers much less loss from low ground conductivity than a 

horizontally polarized signal does. This increases the area of 
groundwave coverage. Vertical antennas are also well suited 

for use as elements of directional antennas for standard 
broadcasting. Since a vertical antenna operating alone has a 

circular pattern in the horizontal plane, the design of arrays 
that must produce complex patterns is simplified. 

In standard broadcast work we are interested in four 
properties of the vertical antenna: 

1. The amount of radiation, or signal strength, along the 
surface of the earth 

2. The distribution of energy at vertical angles above the 
earth 
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3. The driving-point impedance, that is, the impedance 

seen across the terminals where energy is fed to the 
antenna ( usually across the base insulator) 

4. The losses associated with the antenna 

In studying the vertical antenna, we will first make some 
assumptions that, although not always true, considerably 
simplify our analysis. We will then modify our results so that 
they can be applied to practical antennas. 

BASIC PRINCIPLES OF VERTICAL ANTENNAS 

In our study of radiation in an earlier chapter, we worked 

with antenna elements that were dipoles. Much of our work 
was with the half-wave dipole. We didn't consider the effect of 
the ground as far as the antenna itself was concerned. The 

ground however, is an essential part of the vertical antenna 
and must be considered in all practical work. For now, let us 
think of the ground as a flat, perfectly conducting plane. We 
will later consider the effect of the finite conductivity of the 
ground. 

Our perfectly conducting ground can be thought of as 
being a large mirror, as far as radio energy is concerned. Thus 

the ground reflects any energy that is radiated downward 

from an antenna mounted above it. If a vertical quarter-wave 
antenna is mounted on the surface of the earth, the reflection 
will make it " look like" a half-wave dipole, as shown in Fig. 
6-1. The ground takes the place of the "missing" 1/4 

QUARTER-WAVE 
ANTENNA 

IMAGE ANTENNA 

u  — 
Fig. 6-1. Image antenna. 

2 
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wavelength of antenna, and reflection from the ground 
supplies the energy that would be radiated by the "missing" 
section. 

Understand that the image antenna doesn't actually exist. 
If there were a tunnel or cave under the antenna where 

measurements could be made, we wouldn't find the voltage or 
current shown in Fig. 6-1. The way in which an image antenna 
is formed by reflection can be understood by considering what 

happens when a flashlight is directed into a mirror. In Fig 6-2 
the flashlight is pointed in such a way that the light shines 

directly into the observer's eyes. The flashlight is actually 

pointed away from the observer, but the image flashlight in 
the mirror is pointed directly at him. The effect is the same as 

if an actual flashlight was located behind the mirror site with 
the mirror removed. This is directly analogous to the creation 
of an image antenna be reflection from the ground. Just as the 

direction in which the flashlight is pointing is reversed by the 
reflection, so the polarity of the charge on the image antenna 
will be reversed. 

MIRROR REFLECTED RAY 

IMAGE FLASHLIGHT 

Fig. 6-2. Explanation of image-antenna principle. 

Current Distribution 

The pattern of the vertical antenna, and its driving-point 
impedance are affected to some extent by the way the current 

is distributed along the antenna. A rigorous analysis of current 
distribution is quite complicated. Fortunately, such an 
analysis isn't necessary. We can make a few assumptions that 
will be adequate for most purposes. 
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Figure 6-3 shows a quarter-wave vertical antenna. If the 

antenna were infinitely thin, the current distribution would be 
sinusoidal. The current would be zero at the top, where there is 

no place for it to flow, and maximum at the base. In the same 
way, the voltage would be maximum at the top, where no 

current flows, and minimum at the base. In actual antennas 
the current distribution isn't exactly sinusoidal, but it is nearly 

so. Later we will see how the departure of the current from a 
sinusoidal distribution affects the radiation pattern and the 

driving-point impedance. 

• 

X14 ANT 
\ CURRENT DISTRIBUTION 

Fig. 6-3. Current on quarter-wave 
antenna 

Figure 6-4 shows a vertical antenna that is arbitrarily 
longer than 1/4 wavelength. To find the current distribution, 
we can start at the top, where the current is zero and the 

voltage maximum. The current will increase and the voltage 

will decrease as we proceed down the tower. 
If the antenna were ideal ( without losses), the current 

would decrease as shown by the solid line in Fig. 6-4A. 
Actually, in a practical antenna, it will be more as shown by 

the dashed line. Even then, there will be a great deal of 
variation from one tower to another. depending on the physical 
configuration of the tower. Similarly, if there were no losses, 

the phase distribution would be as shown by the solid line in 
Fig. 6-4B. The current would have one phase above the 
quarter-wave point and another phase below it. That is. the 

current would be flowing in one direction in the top part of the 
antenna and in the other direction in the bottom part. In an 

actual tower the current direction does reverse at about the 
quarter-wave point, but the transition is more gradual, as 
shown by the dashed line in Fig. 64B. We will have many 
occasions to consider the current distribution on a tower, 

because many of the properties of an antenna are intimately 

related to its current distribution. 
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Fig. 6-4. Current distribution and 
phase on a practical antenna. 

THEORETICAL 

ACTUAL 

(A) CURRENT 

—90° 0 + 90° 

(B) PHASE 

Radiation at Vertical Angles 

A 3-dimensional view of the radiation pattern of a vertical 
tower is shown in Fig. 6-5A. As long as the ground conductivity 

is uniform around the antenna, it will radiate equally well in 
all directions in a horizontal plane; that is, the pattern along 

the ground will be a circle ( Fig. 6-5B). This pattern is the same 
as would be seen in looking down on the doughnut-shaped 
pattern of Fig. 6-5A from the top. 

Although in broadcast work we are primarily interested in 
how well an antenna radiates energy along the surface of the 

earth, we cannot ignore its vertical pattern or how well it 
radiates energy at vertical angles above the horizon. 

Radiation at vertical angles is of interest for three reasons: 

1. The energy that is radiated at vertical angles is not 
available for coverage of the primary service area of 
the station. 
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2. Radiation at vertical angles provides coverage of the 
secondary service area of the station. 

3. Radiation at vertical angles may cause interference to 
cochannel or adjacent-channel stations at night. 

ANTENNA 
AXIS 

TOP I VIEW 

(B) 
— SOLID PATTERN 

(A) 
Fig. 6-5. Radiation pattern of a vertical antenna. 

EFFECTIVE FIELD INTENSITY AT ONE MILE 

All AM station allocations and antenna designs are based 
on the effective ( or inverse or unattenuated) field intensity at 

one mile from the antenna E„„ . (This is sometimes called 
simply the effective field.) This is the field intensity that would 
be produced if the antenna were located over a perfectly 
conducting earth. It definitely is not the field intensity that we 
would actually measure at a distance of one mile from the 
antenna. 

In making preliminary computations, we can use this 
theoretical effective field intensity. After a station is installed, 
the actual effective field intensity is determined from actual 
field-intensity measurements. Many different measurements 
are made to determine this value, so it is quite representative 
of the actual behavior of an antenna. 

Ideal Hemispherical Radiator 

The vertical-radiation pattern of an antenna depends on its 
height. As a reference we often use the theoretical pattern of 
an ideal hemispherical radiator that is mounted on the surface 
of the earth. Of course, such an antenna is not realizable 
physically, but if it were, it would have a semicircular pattern 
in the vertical plane ( Fig. 6-6). It is easy to calculate what the 
field intensity of such an antenna would be at a given distance 
from the antenna: thus it makes a convenient reference. 
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PATTERN 

Fig. 6-6. Pattern of ideal 
hemispherical radiator. IDEAL 

RADIATOR 
o 

Calculating Effective Field of Ideal Radiator 

The area of a sphere is given by 

A = 47T 72 

where A is the area, and r is the radius. The area of a 
hemisphere is half this value: that is, 

A = 2771' 

Now, we want to find the field intensity from our ideal 

hemispherical radiator at a distance of one mile. Since one 

mile is equal to 1609m, the area in square meters of a 
hemisphere with a radius of one mile is 

A = 27r x (1609)2 = 16,266,419 ni 

Let's assume that our ideal radiator is radiating 1 kW of 

power with 100% efficiency. The power density p at the surface 
of the sphere with a one-mile radius will be 

1000 
p =   0.00006 W/m2 

16,266,419' 

The relationship between radiated power and field intensity at 
some distance from the antenna is 

E = p.\77"7-7 

where p = power density in watts per square meter 
E = field intensity in volts per meter 
377 ohms = impedance of free space 

Therefore the field intensity from our ideal radiator at one 
mile is 

E = V0.00006 x 377 = 0.152 V/m 
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This means that the field intensity along the earth at a distance 

of one mile from an ideal, infinitely short antenna (uniform 
hemispheric radiator) would be 152.2 mV/m. 

The field intensity at a distance of one mile for antennas of 
other heights can be found by similar methods. Inasmuch as 
their patterns are not hemispherical, the mathematical 
operations for these antennas are more complicated. We will 

not calculate the field intensities here, but will merely tabulate 
them. 

Figure 6-7 shows four vertical antennas of different 
heights together with their vertical-radiation patterns. Notice 
that as the height of the antenna is increased, the 

vertical-radiation pattern is squashed, so that more energy is 
radiated along the surface of the earth. The signal intensity 
increases as the height of the antenna is increased, until a 

maximum is reached when the antenna height reaches 225°. It 

is not always practicable to use antennas of this height, 
because after a height of 180° is reached, a minor lobe starts to 
form at a vertical angle of about 60° (D in Fig. 6-7). This minor 
lobe can be desirable in that it may increase coverage of the 
secondary service area; or it can be undesirable in that it may 
cause skywave interference to other stations at night. 

A B C D 
C-Y --- 4;>>, ›  . 

VERTICAL 1/4 A 0 311A 1/2A 5/8A 

RADIATION VERTICAL VERTICAL VERTICAL VERTICAL 

PATTERN ANTENNA ANTENNA ANTENNA ANTENNA 

FIELD INTENSITY 90° 112° 180° 225' 

AT EARTH'S SURFACE 194 9 mV/m 200 mV/m 236 2 mV/m 267 mV/m 

Fig. 6-7. Vertical-radiation patterns for antennas of various heights. 

GROUNDWAVE SIGNALS 

The primary service area of a standard broadcast station 
is served by the groundwave. If the earth were a perfect 
conductor, computing the field intensity of the groundwave 
signal would be very simple. Figure 6-8 gives the field intensity 
at one mile from the antenna for various antenna heights, with 

a radiated power of 1 kW. To find the unattenuated field 

intensity for any other distance or radiated power, we merely 
have to substitute values into the equation 

E = 
E11 

d 
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where d = distance from transmitter in miles 

E0 = intensity of field at one mile, 1 kW 
P = radiated power in kilowatts 

Suppose, for example, that we have a 5 kW station with a 

90' antenna and wish to find the unattenuated field intensity at 

2 miles from the antenna. From Fig. 6-8 we find the value of 

to be about 195 mV/m. The other parameters are d = 2 and 
P = 5. Substituting these values into the above equation gives 
us 
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Fig. 6-8. Field intensity at one mile and 1 kW versus antenna height. 

Figure 6-9 shows a plot of the vertical-radiation 
characteristics of vertical antennas taken directly from the 

FCC Rules. The curves at the left represent field intensities in 
millivolts per meter for a radiated power of 1 kW. They give 

the field intensity at one mile along the surface of the earth 

and at all vertical angles. Inasmuch as there is no radiation at 

all from the top of a vertical antenna, the curves all go to zero 
at 90'. 

The curves at the right of Fig. 6-9 are apt to be confusing. 

The radiated power is not specified and is not assumed to be 
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constant. The radiated power for each antenna height is 
adjusted to produce a field intensity along the surface of the 

earth of 100 mV/m at one mile from the antenna. Thus the 
curve for each antenna height shows what the field intensity 

will be at a radius of one mile for all vertical angles if the field 

intensity along the surface of the earth is 100 mV/m. Both sets 
of curves of Fig. 6-9 are useful for calculating the field 

intensity that the antenna will produce at great distances from 

the antenna by skywave propagation. 

/ 50<'" 60' JOt--80* 

40* 

30' 
Y \  

025 à 
050x N 

90* 80° - 70' 6u° 
j 

280 240 200 160 $20 80 40 20 40 60 80 $00 MV/Il 

RADIATED POWER,1 KW EFFECTIVE FIELD 
FOR ALL HEIGHTS, 

100 MV/IA 

Fig. 6-9. FCC vertical-radiation characteristics. 

Earlier we computed a field intensity for a distance of 2 
miles from an antenna, assuming the ground was a perfect 

conductor. The calculation is useful in that it shows the 
theoretical maximum field intensity, but it doesn't tell us the 
actual field intensity. The ground is not a perfect conductor; in 

fact, it is a rather poor conductor that has both resistance and 
capacitance. The amount of resistance and capacitance 
depends on the frequency of the signal and the composition of 

the earth in the region of interest. At standard broadcast 
frequencies the earth acts as a resistance, and we can ignore 

the capacitive effects. 
It would seem at first glance that the earth is such a large 

conductor that its resistance shouldn't have much effect on a 
signal. This isn't true, because the skin effect confines signals 

to a layer close to the surface of the earth. 

Ground Conductivity 

The attenuation of radio signals due to the earth's 
resistance is normally expressed in terms of conducitivity 
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rather than resistance. Conductivity is the measure of the 
ability of a specific material, such as the ground, to conduct 
electricity. It is therefore different for different materials. It is 
the reciprocal of resistivity p, which is given as 

RA 
p = 

/ 

where R is the resistance of a certain specimen of wire or 
other conductor, A is the area of the specimen, and l is the 

length. Conductivity a-, then, is given as 
l 

(r = 

RA 

Conductivity is thus stated as so many mhos per unit length. 
For the earth it is given as so many mhos or millimhos per 
meter. If a solid cube of earth, one meter on a side, has a 
conductance of one mho between opposite faces, it has a 
conductivity of one mho per meter. 

Much of the literature dealing with the conductivity of the 
earth gives conductivity in electromagnetic units. These are 
units of the cgs electromagnetic system of units, which was 
formerly widely used in scientific work. To convert from 
electromagnetic units ( emu) of conductivity to millimhos per 
meter ( mhos/m) simply multiply by 10 14 . For example, the 
conductivity of sea water is about 5000 x 10 14 emu. The 

conversion is as follows: 

5000 x 10 - n emu x 10 '4 5000 mmho per meter 

Figure 6-10 shows the ground conductivity for the 48 

conterminous states of the U.S. and the lower part of Canada. 
(The U.S. map is included in the FCC Rules as Fig. R-3, and 

the Canadian map is available from Canada's Department of 
Communication.) From such maps we can find the 
approximate ground conductivity in any given area. Later we 
will see how to determine the ground conductivity in the 

primary service area of a station by using data from 

field-intensity measurements. 

Groundwave Field Intensity 

Once we know the ground conductivity in an area, we can 

compute the groundwave field intensity as a function of 
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NUMBERS ON MAP REPRESENT ESTIMATED EFFECTIVE GROUND CONDUCTIVITY 
IN MiLLIMNOS PER METER 

CONDUCTIVITY OF SEAWATER IS NOT SHOWN ON +/AP BUT IS ASSUMED TO BE 
5000 MILLIAINOS PER METER 

II FE] C3 E 
1 2 4 6 8 15 30 

113 e El El E 
1-5 3 5 7 10 20 40 

GROUND CONDUCTIVITY IN EMU 
FIGURES A10-'4 

Fig. 6-10. Numbers on map represent estimated effective ground conduc-
tivity in millimhos per meter. Conductivity of seawater is not shown on 
map, but is assumed to be 5000 millimhos per meter. 

distance. A common problem in determining whether or not 
interference will exist between stations is to determine the 
distance to a given field-intensity contour. The FCC Rules 
contain 20 graphs giving field intensity as a function of 
distance and ground conductivity. These graphs cover all of 

the frequencies in the standard broadcast band. 
Figure 6-11 shows the FCC graph covering signals between 

970 and 1030 kHz. Note that the curves in this graph are based 
on an unattenuated field intensity of 100 mV/m at one mile 
from the antenna. If the antenna does not produce a field 
intensity of 100 mV/m at one mile, which is likely, it will be 

necessary to scale the parameters. 
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Fig. 6-11. Field-intensity versus distance. 

Assume that an antenna produces an unattenuated field 

intensity at one mile of 100 mV/m and is located in an area 
where the ground conductivity is 6 mmho/m. Suppose we wish 

to find the distance to the 500 p.V/m ( 0.5 mV/m) contour. We 
can read the distance to the 0.5 mV/m contour directly from 
the chart as 32 miles. 

In most cases, the unattenuated field from the antenna at 
one mile will have some value other than 100 mV/m. Suppose 
for example, that the field intensity is 175 mV/m. To use the 

curves, we must multiply the desired contour, 500 MV/m, by 
the ratio of 100 mV/m to the actual unattenuated field 

intensity, 175 mV/m. 
100 

0.5 — = 285 µVim 
175 

This means that to find the distance to the 500 p.V/m contour of 

our antenna, we will have to find the distance to the 285 µV/m 
contour in the chart. We can now read this distance as about 39 
miles. 
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MINIMUM ANTENNA HEIGHT 

The FCC station allocations rely heavily on the 
unattenuated field from an antenna at a distance of one mile 
from the antenna. Of course, the actual field intensity is less 

than this value because of the attenuation of the earth; 
nevertheless, this figure is very useful in calculating actual 

coverage and interference contours. 
The FCC Rules require that any new station, or any station 

undergoing major modifications, have an antenna system that 
meets certain minimum standards. Figure 6-12 shows curves 
from the FCC Rules that specify the minimum acceptable 
antenna height for each class of standard broadcast station. If 
these minimum heights are not met. the Rules require the 
station to submit evidence that minimum field intensities at 

one mile from the antenna are provided. The requirements are 

summarized below. 
Class IV stations must have an antenna height at least as 

great as that shown by curve A of Fig. 6-12. If the class IV 
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station is assigned to a local channel, it may, in lieu of meeting 

the antenna-height requirement, submit evidence that the 
effective field intensity at one mile is at least: 

Power Field Intensity 

1 kW 150 mV/m 
250W 75 mV/m 

Class II and class III stations must provide a minimum 
effective field intensity at one mile from the antenna of 175 
mV/ m for one kilowatt of radiated power. 

Class I stations must provide a minimum effective field 
intensity at one mile from the antenna of 225 mV/m for one 
kilowatt of radiated power. 

SKY WAVE PROPAGATION 

During daylight the groundwave is the only mode of 
propagation of standard broadcast signals. At night the signals 
are also propagated by the skywave. In ( skywave ) 

propagation the signals that are directed upward above the 
horizon are refracted ( bent) by the E-layer of the ionosphere 
and directed back toward the earth. The action of a signal on 

reaching the ionosphere is not a simple reflection, but rather a 
gradual bending until the signal is directed back toward the 
earth. The. process of refraction is quite complex, but by 
means of a few simplifying assumptions, we can quite easily 
find the approximate field intensity of skywave signals. 

To keep the mathematics simple, we will assume that 

signals reaching the ionosphere are actually reflected from a 
virtual height, as shown in Fig. 6-13. Because of the curvature 

of the earth, the signals leave the earth on an angle O and hit 
the virtual reflecting layer at a slightly greater angle (I). The 

relationship between the two angles is given by 

cos  
cos (I) — 

1 + h /re 

where O = elevation angle 
(1) = incident angle with reflecting layer 

k = virtual height of reflecting layer 
= vadius of earth ( in the same units as h) 

180 



VIRTUAL REFECTING LAYER 

TRANSMITTER I RECEIVER 

EARTH SURFACE 

Fig. 6-13. Reflection of signal 
from ionosphere. 

The sum of the interior angles of a triangle is 1800: 

therefore we can write the equation 

= 2(4. - 0) 

where 4) is the angle at the center of the earth ( Fig. 6-13). Now, 
there is one more principle from geometry that will enable us 

to find the distance d between the transmitting antenna and 

the point where the signal returns to the earth: The distance 
along any great circle on the surface of the earth is given by 

d = r, 
where d is in the same units as r,, and cp is expressed in 

radians. 
The remaining step is to plug numbers into the equations. 

The radius of the earth is 3960 miles, and the commonly 
accepted value for the virtual height of the E-layer is 110 

kilometers, or 68.35 miles. We now can write the equations 

d = 138.2 ( (I) — 0) 

cos (I) = 0.983 cos 0 

where d is in miles, and the two angles are in degrees. 

Suppose, for example, that we wish to find the distance 
between a transmitting antenna and the point on the surface of 

the earth where a signal will return if it is radiated at an angle 

of 15° . Using the above equations, 

cos cl) = 0.983 cos 0 

= 0.983 cos 15° = 0.9495 
= 18.3° 

d = 138.2 ( 18.3° — 15°) = 454 miles 
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PROBABLE INTENSITY OF SKYWAVE SIGNAL 

The amount of ionization at any layer in the ionosphere 

depends not only on the time of day but also on such things as 

sunspot cycles. Our field-intensity computations are therefore 
approximate. For this reason it is customary to express the 
field intensity of skywave signals in statistical rather than 

absolute terms. We thus state a field intensity that we might 
expect to be exceeded part of the time. In station-allocation 

computations the FCC uses values that might be expected to 

be exceeded 10% and 50% of the time. Curves are given in the 
Rules that simplify the computations. 

Figure 6-14 shows a graph of the field intensities that 
might be expected 10% and 50% of the time at various 

distances from the transmitting antenna when the radiation at 
the pertinent elevation angle has a field intensity of 100 mV/m 

at one mile from the antenna. Thus this graph can be used to 

get a statistical measure of the field intensity of the skywave 

at any distance from the antenna. The first thing that we must 
know to use these curves is the pertinent angle of elevation, 

that is, the angle of radiation or departure. We can get this 
from Fig. 6-15, which is taken from the FCC Rules. 

1000 

100 ICI% 

10 

50% 

1 

1 

200 400 600 800 1000 1200 1400 1600 1800 anon 2000 ,enn .nn 

MILES 

Fig. 6-14. Skywave signals for 10% and 50% of the time. Skywave range for 
frequencies 540 kHz to 1600 kHz, based on a radiated field of 100 mV/m at 
one mile at the pertinent vertical angle. 
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E„ P 195V 10 
E = —  — 617 mV/m 

1 

where E0 = effective field intensity of 90° antenna at one mile 
for 1 kW ( Fig. 6-8) 

P = actual radiated power 

d = distance from the antenna in miles 

Now, to find the field intensity at one mile at an angle of 

11°, we use the contour curves on the right side of Fig. 6-9, 
From the curve for a 90° antenna, we see that if the field 
intensity along the surface of the earth was 100 mV/m, the 

field intensity at an angle of 11° would be about 98 mV/m. This 

is the same as saying that the radiation at an elevation angle of 
11° is 98% of the radiation along the horizon. We just found that 

in the case at hand the field intensity along the surface of the 

earth will be 617 mV/m, so the field intensity at an angle of 11° 

will be 

617 x 0.98 = 604 mV/m 

Now we go to the 50% curve of Fig. 6-14, where we see that 
the 50% field intensity would be about 58 mV/m if the radiated 
field intensity was 100 mV/m at an elevation angle of 11°. 

Actually, our field intensity at this angle was found to be 604 
mV/m, so the value of field intensity that we would expect to 

find 50% of the time at a distance of 500 miles would be 

604 
— x 58 = 350 mV/m 
100 

Finding the probable intensity of skywave signals 
admittedly isn't a simple procedure, but it is a very handy 

technique to be familiar with. If an engineer receives a 
complaint that his station is causing interference to a station in 

a distant city, the first thing he should do is to find what angle 
his antenna is radiating at. Then he can start checking to find 
out what might have gone wrong. 
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TOP-LOADED AND SECTIONALIZED TOWERS 

From the preceding discussions of groundwave and 

skywave propagation, it is apparent that, for the greatest 
primary service area with a given radiated power, we should 

maximize the field intensity along the surface of the earth and 
minimize the radiation at angles above the horizon. One 

approach is to use a tower that is nearly 1/2 wavelength high. 

If the height is increased beyond this, a high-angle lobe will 

form that can cause skywave interference and reduce the 

distance to the fading wall. 
As noted earlier, the vertical-radiation pattern of an 

antenna is related to the current distribution along the tower. 

In Fig. 6-16 we see that when a tower is greater than 180°, there 

is a phase reversal of the current. This means that current is 
flowing on the tower in two different directions at the same 
time. This is responsible for the high-angle lobe that is found in 

the vertical-radiation pattern in towers that are taller than 
180. If we could find a way to avoid the phase reversal in a tall 
tower, we could increase the field intensity along the surface 
of the earth without creating a high-angle lobe in the pattern. 

This can be done, and many different types of antennas have 

been designed for the purpose. 

180 

Fig. 6-16 Current direction at one 
instant. 

The simplest antenna of this type is the so-called Franklin 

antenna, or Franklin array, shown in Fig. 6-17. Here we have 
two 180° towers, one mounted on top of the other. This 
arrangement does not act lile a 360° tower, because of the way 
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180 

180 

PHASE-REVERSING Fig. 6-17. Franklin antenna. 

NETWORK 

FEED POINT 

BASE INSULATOR 

signals are fed to it. The feed system is designed so that the 
currents in the two 180° sections are in phase. This means that 
we have no phase reversal in the current distribution and 

consequently, no high-angle lobe in the vertical-radiation 

pattern. Several of these antennas have been in use for many 
years. The principal limitation has been keeping the currents 

in phase through all the weather conditions that affect the 
insulation between the two sections. Additional work is being 

done on sectionalized towers, and they may find wider use in 
the future. 

Another thing that we notice when comparing the 

radiation pattern with current distribution on antennas of 
various heights is that, in taller towers, which have greater 
radiation along the surface of the earth, the current loop, point 

where the current is greatest, is farther from the ground. It 
would seem, therefore, that if we could find a way to raise the 

current loop in an antenna, we would also increase the field 
intensity along the surface of the earth. One way of doing, this 
is by top loading ( Fig. 6-18). 

In an ordinary tower the current is effectively zero at the 
top of the tower simply because there is no place for it to flow. 

Actually, the current is not exactly zero, because there is 
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TOP-LOADING 
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Fig. 6-18. Top- loaded antenna. 
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always some capacitance between the top of the tower and the 
earth. This provides a clue as to how top loading works. When 
there is a structure such as the "top hat" of Fig. 6-18 at the top 
of the antenna, there will be a substantial current at the top as 

shown in Fig. 6-19. The top-loaded antenna looks electrically 
like a taller tower in that the point of maximum current is 
higher above the ground. 

Top-loaded antennas have been used in many cases in the 
past where, for one reason or another, taller towers were 
impractical. The combination of top loading and sectionalizing 

seems to provide an opportunity for improved control of 
current distribution and hence the vertical-radiation pattern of 
a tower. 

TOP-LOADED 

TOWER 

Fig. 6-19. Current distribution on 

• 
• 
• 
• 
• a top-loaded tower. 

CURRENT 

DISTRIBUTION 

.41- --e•I 

1 

TOWER IMPEDANCES 

Whenever we speak of the impedance of an antenna, we 

must be careful to specify the point in the antenna that we are 
talking about. An antenna is in many respects like a 
transmission line that is open at the receiving end. There are 
standing waves of voltage and current along the tower; 

therefore the impedance varies along the tower. At the top of 
the tower the current is zero, or nearly so, and the voltage is 

high. The impedance, which is the ratio of voltage to current, 
is also high at the top. If the current really dropped to zero, the 

impedance would be infinite. About 90° down from the top of 

the tower, the voltage is minimum and the current is 
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maximum. The impedance at this point will, therefore, be 

much lower. 
In standard broadcasting we are interested in the 

impedance at two points on the tower. One is the impedance at 
the base of the tower, where it is fed. The other is the 

impedance at the current loop, where the current is 
maximum. We will consider these two impedances separately. 

Base Impedance 

We are interested in the impedance at the base of the 
antenna for many reasons. Inasmuch as the base is where 

energy is usually fed to a tower, we must match the base 
impedance to the characteristic impedance of the 

transmission line for maximum power transfer and minimum 
reflection. Furthermore, the base impedance includes both the 

radiation resistance of the tower and the loss resistance 
assocated with it. If this impedance is extremely low, the loss 

resistance will be a substantial part of the total resistance, 

thus making the losses high. 
Figure 6-20 shows a plot of the resistance and reactance at 

the base of a tower versus tower height. In this figure the 
tower height is given in fractions of a wavelength. The height 

corresponds to the length of a wave at the operating frequency 

in free space; that is, the velocity of propagation along the 
tower is not taken into consideration when specifying the 

height. This might seem like a strange practice. After all, 
when we specify the length of a transmission line, we take the 

velocity of propagation into consideration. There are two 

reasons why we don't do the same thing with antenna height. 
One is that the velocity of propagation depends on the physical 
configuration of the tower and often is not known. The other is 

that the vertical-radiation pattern is easier to compute when 

the height is specified in terms of the velocity of propagation in 

free space. 
Considering the reactance curve of Fig. 6-20, we see that 

for antennas that are much shorter than 1/4 wavelength, the 
reactance is negative, or capacitive. Actually the tower 

contains both inductance and capacitance at all heights. The 
reactance is capacitive at tower heights below 1/4 wavelength 
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Fig. 6-20. Resistance and reactance versus tower height. 

because the capacitive reactance predominates at these 
heights. As the tower height increases, the capacitive 
reactance decreases until, at a height just below 1/4 

wavelength, the reactance drops to zero. At this height the 
inductive and capacitive reactances are equal and cancel each 

other. This height is often called the first resonance of the 
tower. As the tower height is increased above this value, the 
reactance becomes inductive and increases with tower height. 
At somewhere below 1/2 wavelength, the reactance again 
drops to zero. This point is called the second resonance of the 

tower. 
Looking now at the curve for the resistive part of the base 

impedance, we see that it increases with tower height from a 

small value to a maximum near the second resonance. 
Looking at both the resistance and reactance curves of 

Fig. 6-20, we see that at the first resonance the antenna looks a 

lot like a series-resonant circuit. The reactance is zero and the 
resistance is small. At the second resonance the antenna looks 

like a parallel-resonant circuit. The reactance is zero and the 
resistance is high. This is very similar to what we would find if 

we measured the impedance looking into transmission lines of 

comparable length that were open at the receiving end. Of 

course, the impedances of an antenna are not exactly the same 
as those of a transmission line, because an antenna is designed 
to radiate energy and a transmission line is not. 
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The ratio of the reactance to the resistance at the base of a 

tower is of interest because it influences the bandwidth of the 
tower. We can apply the concept of Q—that is, the ratio of 
reactance to resistance—to antennas as well as circuits. In 

antenna work we like to keep the Q low because high-Q circuits 

and antennas have narrow bandwidths and high losses. In 

standard broadcast stations we like to keep the Q of antennas 

and networks to not much higher than 3. 
Another part of the base impedance that is of interest is 

the ratio of the resistive component to the characteristic 
impedance of the transmission line. If the ratio is greater than 

about 10:1. the design of the impedance-matching network will 

be complicated somewhat. 
From the broadcast engineer's point of view, there isn't 

much that can be done about the height of a tower. He is 
interested more in how the impedance of a tower of a given 

height varies with frequency. Figure 6-21 shows the reactance 
and resistance seen at the base of a tower that is 90° high at the 

carrier frequency. Note that the reactance is inductive on 
either side of the carrier frequency and that the first 
resonance is just below the operating frequency. The FCC 

Rules require that the base impedance be measured at 5 kHz 

intervals over a range of 20 kHz below the carrier frequency to 

20 kHz above the carrier frequency. 
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Fig. 6-21. Base resistance and reactance versus frequency. 

Loop Impedance 

In directional antennas the magnitude and phase of the 
current at the current loop, which is about 90° from the top of 
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the tower, are sampled and used in computing the radiation 
pattern. It is thus useful to have some idea of the impedance of 

the antenna at the current loop. Unfortunately the relationship 
between base impedance and loop impedance depends on the 
actual current distribution along the antenna. This, in turn, 

depends on many factors, including the shape of the tower and 
the presence of other structures, such as guy wires. 

Figure 6-22 shows several different tower shapes and the 

current distribution of each. If the tower were infinitely thin, 
the current distribution would be very nearly sinusoidal. When 

the cross section of the tower is uniform, the current 
distribution can still be assumed to be sinusoidal for most 
practical purposes. When the tower cross section is not 

uniform, the current tends to increase with cross section. 

Fig. 6-22. Current distribution for various tower shapes. 

When the current distribution is sinusoidal, the base 
resistance is related to the loop resistance by the equation 

R, 
sin' h 

where Rb = base resistance in ohms 

Rt. = loop resistance in ohms 
h = height of the tower in degrees 

This equation neglects reactance, which isn't important, 

because the base reactance is tuned out by the 
impedance-matching network. 

To a first approximation the base and loop currents are 
related by the equation 

lb = II sin h 
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Fig. 6-23 Radiated field and radiation resistance as function of antenna 
height. 

where L, = base current in amperes 

= loop current in amperes 
h = tower height in degrees 

Figure 6-23 shows a plot of loop resistance for various 

tower heights. Of course, these curves are only approximate, 
but they are sufficiently accurate to give the engineer a good 
idea of the range in which tower impedances should fall. 
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Chapter 7 

Introduction to 
Directional Antennas 

By far the most widely misunderstood antenna system is the 
AM directional-antenna array. Directional antennas are 

designed by consulting engineers who specialize in the field, 
and often all maintenance other than the simplest routine 
inspection is also done by consulting engineers. The whole field 
is often thought of by the broadcast engineer as some sort of 

black art rather than an engineering discipline. 

One reason so few broadcast engineers master the 
principles of directional antennas is that the mathematical 
expressions involved are usually complicated. Another reason 
is that many directional-antenna systems seem to resist 
operating in the way they theoretically should. In this chapter 
we will develop the equations for determining the field 
intensity from a directional-antenna system. We will do this by 
considering each of the parameters that influences the field 
intensity, one at a time, and then combine all of the 

parameters into a single equation. In this way the complicated 
equation, when we get to it, will have lost some of its 

awesomeness. 
There are many parameters that enter into an equation for 

the field intensity from a directional antenna, including: 

1. The geographical orientation of the antenna system 

2. The spacing between the towers of the array 

193 



3. The bearing from some reference to the point where 
the field intensity is to be determined 

4. The relative phases of the currents in the towers 
5. The relative magnitudes of the currents on the towers 

Fortunately many of these parameters are fixed when the 

system is installed and do not have to be varied. For example, 
there is nothing a broadcast engineer can do about the spacing 
between the towers of an array once the towers have been 
erected. What the engineer needs to know is how all of the 
parameters of a system contribute to the antenna pattern, as 
well as how to hold the pattern within prescribed limits by 

varying only the magnitudes and phases of currents in the 
towers. 

Let us start by considering a simple array that has only 

two towers. To keep things simple, we will assume that the 
towers are of equal height and are located on a north—south 
line. We will further assume that the earth in the vicinity of the 
antenna is flat and that all field intensities we consider are 
along the surface of the earth. For now we will only be 

concerned with the shape of the pattern, that is, the field 
intensity in one direction as compared with that in another 

direction. In our analysis we will make use of the following two 

principles, which were described earlier. 
Linear Superposition. Inasmuch as our antenna system is 

a linear system, we can find the field intensity at some point in 
space by finding the field intensities that each of the towers 
would produce at that point if acting alone, and then combining 

the fields to find the resultant field. 
Vector Addition. We will consider the field produced by 

each tower of a directional-antenna array as a vector quantity, 

that is. a quantity having both a magnitude and a phase angle. 
We will find the resultant field intensity at a point in space by 

combining the field intensities from each of the towers by 

vector addition. 
In dealing with the field intensities from the various 

elements of a directional-antenna system, we will deal with 

two different sets of values. The first is the theoretical value, 

which was determined when the array was designed. This is 
really what the values of parameters ought to be. We will also 
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deal with measured values, which tell us what the values of 
parameters actually are. In this chapter we will only be 
concerned with theoretical or calculated patterns. In Chapter 
14 we will deal with field-intensity measurements and their 
interpretation. 

TOWER-SPACING EFFECTS 

Figure 7-1 shows two towers spaced along a north—south 
line. We will assume for the present that the currents in the 
two towers are in phase and have the same magnitude. We will 
represent the field intensity from each tower as 1 z 0, meaning 

that it has a unit magnitude and that the field intensities are in 
phase. The tower spacing is represented as the distance S. For 

our purposes, it will be much more convenient to express S in 
degrees than in feet. Of course, when we know the operating 

frequency, we can convert between degrees and feet whenever 
it is convenient to do so. 

Effects in Line with and Perpendicular to Towers 

In Fig. 7-1 we have two observation points. Point PE is due 
east of the midpoint between the two towers. Point Pw is due 
west of the midpoint. It is obvious that the signal from tower 1 
travels the same distance to PE as the signal from tower 2 
does. Since the fields are in phase at the towers and travel 

through the same distance, they will be in phase when they 
reach PE . Thus the resultant field intensity is the vector sum 
of the field intensities from the two towers, that is, 

E = E1 + E2 

N 
TOWER 2 J Eer_ 

— — — PE 

Fig. 7-1. Effect of tower spacing 
at right angles to line of towers. 
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(Here we have neglected any attenuation in the paths from the 

towers to the observation points. We can get around this 
simplification quite easily later on.) 

The paths from the towers to PE or Pw will still be equal if 
we move the towers apart or closer together. Thus the 

resultant field intensity at PE or Pw is independent of the 
spacing between the towers. In general, the field intensity 

along a line perpendicular to the line of towers and passing 
through their midpoint is independent of the spacing between 

the towers. That is, we can move the towers closer together or 

farther apart, but the signal along the midpoint line will not 
change. 

In Fig. 7-2 our observation points are along the line of 
towers. Point P, is due north, and point Ps is due south. Point 

P., is closer to tower 2 than to tower 1, so the signal from tower 

2 arrives at P, a very short time ahead of the signal from 
tower 1. This time difference is extremely small, but 
extremely important. It means that the signal from tower 2 

leads the signal from tower 1 by some phase angle. The 
amount of the phase angle is simply sz' where S is the spacing 

between the towers. It is for this reason that we specify S in 
degrees instead of feet. 

PN 
; 

TOWER 2 i E21Q-I. 

S' 

iTOWER 1 E izo2 

Ps 

The field intensity at P, is the vector sum of the signals 

from the two towers, but the signals are not in phase. because 

of the different path lengths. The resultant field intensity at 
point P, is 

Fig. 7-2. Effect of tower spacing 
along line of towers. 

E = E,  0° + E, 0° + S° 
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For example. suppose that the two towers were separated by 
180°. The resultant field intensity at point P, would be 

Q = E1 + E, 180' = E, — £2 = 

Since E, and E2 are equal, there would be no signal at all at 

point R. . 
A similar situation prevails at point R . Here the signal 

from tower 2 lags the signal from tower 1 by .3'. If the spacing S 

was again 180° the resultant field would be 

E = E z 0° + E2 L —180° = E, — E2 = 0 

Again, there is no signal at all at the observation point. 
In both examples above we somewhat arbitrarily assigned 

a 0° phase angle to the signal from tower 1 and assigned the 
lead or lag to the signal from tower 2. This merely means that 

we have chosen tower 1 as the reference tower. It is common 
practice in directional antenna systems to chose one tower as 
the reference tower. In most of the examples in this chapter 

we will designate tower 1 as the reference tower. 

Effects at Other Bearings 

Before going any further, we must stipulate that our 
observation points are not close to the towers. We must be far 
enough away that we are concerned with the radiation field. 

and not the induction field, from each tower. Next, we must be 
far enough away that we can consider the array of towers to be 

a point source of radiation ( this is shown in Fig. 7-3). If the 
observation point P is far enough away from the towers, we 
can consider the lines A and B to be parallel for all practical 

purposes. The equations that we will derive for field intensity 

will all be based on this assumption. This is why 

directional-antenna field-intensity measurements tend to be 

meaningless if they are made too close to the antenna site. 
So far we have found that tower spacing has no effect at all 

on field intensity at points east and west of our line of towers, 
but a very significant effect on the field intensity at points 

north and south of the towers. The question naturally arises as 
to what effect the spacing between towers has at observation 

points at other bearings. 
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TOWER 2 

TOWER 1 

Fig. 7-3. Effect of distance from 
towers. 

In Fig. 7-4 we have the same two towers as in the 
preceding section, but our observation point is no longer on the 
line of towers or perpendicular to the line. The observation 
point P is at an arbitrary angle e to the line of towers. Just by 
looking at the figure, we can tell that the signal from tower 2 
will travel over a shorter path than that from tower 1, so it will 
lead the signal from tower 1, in phase. We want to find out just 
how much phase difference there is between the two signals, 
and particularly how this phase difference is influenced by the 
spacing between the two towers. We have already assumed 

that the observation point is far enough away from the towers 
that we can consider the line from tower 1 to point P to be 
parallel to the line from tower 2 to point P. This assumption 
allows us to draw the right triangle shown in Fig. 7-4. From 
this figure we see that the path difference in electrical degrees 
between the signals is given by 

Path difference = S cos 0 

where S is the spacing in electrical degrees, and 0 is the 
bearing from the line of towers in angular degrees. In this 
expression we use both angular and electrical degrees to find a 
phase shift in electrical degrees. This should cause no 
confusion. In fact, the choice of these units simplifies the 
calculations. 

The expression S cos 0 will give the relative field intensity 
at any angle, even on the north—south and east —west lines 
that we investigated earlier. If the observation point is on an 
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east — west line, the angle 4) will be ± 90°. The cosine of 90° is 

zero, so the equation tells us that the spacing between towers 
has no effect on the signal at points due east and west of the 
towers. This is exactly what we saw in our inspection of Fig. 
7-1. If the observation point is due north or south of the towers, 
the angle Ç5 is 0° or 180°. At these values of ct., cos 4) is either +1 
or — 1. This means that the phase difference between the 

signals from tower 1 and tower 2 is either +S or —S, which is 
exactly what we found in our inspection of Fig. 7-2. Thus the 

expression S cos (t, is general and can be used to find the 
relative field intensity at any bearing from the line of towers. 

This expression gives some additional insight into the 
pattern of a 2-tower array. It shows that the relative distance 
traveled by signals from the two towers involves the function 

cos 4). An angle may have either a positive or a negative value 
without changing the value of its cosine. That is, cos 45° = cos 
—45°. This means that the pattern on one side of the line of 
towers will be exactly the same as the pattern on the other 
side; the pattern will always be symmetrical about the line of 
towers. This is true of any directional-antenna array where all 
of the towers are in a straight line, regardless of the number of 
towers. If we have a null on one side of the line of towers, we 
will also have a null on the other side at the same angle. Of 

course, the engineer operating a directional antenna can't do 
anything about the direction of the line of towers once the 
system is installed. The designer, however, can and does take 
advantage of the symmetry to obtain the desired pattern. 

TO POINT P 

TOWER 2 

S' 

S cosci) 

TOWER 1 E 1L0 

Fig. 7-4. Effect of spacing at bear-
ing 
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Effect of Phase of Tower Currents 

Figure 7-5 shows a 2-tower array in which we will assume 
that the currents in the two towers are equal in magnitude but 
not in phase. Tower 1 is to be our reference tower, so the phase 

angle of its current is 0°. The phase of the current in tower 2 
will be y° earlier or later than at tower 1. If the sign of y is +, 
the signal arrives at tower 2 earlier than at tower 1. If the sign 
of y is — , the signal arrives at tower 2 later than at tower 1. 

I 

TOVVER 2 E2A 

s. 

S cos (!) 

Fig. 7-5. Effect of phase dif-
ference between tower currents. 

TOWER 1 E igr 
Note that the phase angle y is not dependent on any of the 

other parameters in the system. By means of the phasor in the 

feeder system, we can make y assume any positive or negative 

angle that we wish. The effect of this phase shift is to change 
the relative time required for the signals from towers 1 and 2 

to reach any observation point. One thing that this additional 
parameter does for us is to give us an infinite variety of 

patterns. 
To see this a little better, let's put some numbers into our 

reasoning. Let's assume that all of our observation points are 

at the same radial distance from the center of our line of 
towers and that they are far enough away that we can consider 

the array a point source. The signal from tower 1 at any 

observation point will be 

E = E. LE 

The field intensity from tower 2 is given by 

E=E S cos 0 + y  
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The phase angle of S cos 4, + y includes the effect of the tower 
spacing S, the bearing angle 4), and the phase difference y 

between the currents in the towers, all expressed in degrees. 
We can now write an equation for the field intensity at any 
point, the only limitation being that the points all be at the 
same radial distance from the center of the array, and on the 
surface of the earth. 

E = + E2 /S COS da. + y  
One very interesting property of the preceding equation is 

that the field intensity at an observation point will be zero 
whenever 

S cos + y = ± 180° 

This means that for almost any value of y, we will have two 
nulls, one on either side of our line of towers. ( At some values 

of S and y there will be one null off one end of the line of 
towers.) In Fig. 7-6 we have the pattern of a 2-tower array 

where the spacing S between the tower is 120°, and the phase 
angle y between the tower currents is 100°. The pattern is a plot 
of the data given in the figure. Note that because the radiation 
pattern is symmetrical about the line of towers, it is only 

necessary to compute the pattern for angles between 0° and 
180°. 

Fag. 7-6. Pattern of 2-tower array. 

At this point we can note some other things about the 
patterns that we can get from a 2-tower array. If the quantity S 
cos 4) + y is large enough, we will get two nulls, which can be 
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moved by changing the phase of the currents between the two 

towers. If the quantity is made much larger. as when the 

towers are very widely spaced, there will be more than two 

nulls. 
In the data from which we plotted Fig. 7-6 ( see Table 7-1). 

the field intensity at all points has a phase angle. This is not 

important as far as the pattern is concerned, because the 

receiver has no way of "knowing" what the phase angle is. 

There is a case where we are interested in the phase angle 

of the field intensity from a 2-tower array. and that is when we 
wish to combine the patterns from two such arrays to form a 

more complicated pattern. 

0 120 cos 0 + 100 1 Lo + 1120 cos 0 + 100 

0 220 07L_7_ 

10 218 0 7L2 

20 213 06L1 

30 204 04L19 

40 192 0 2/Ida. 

45 185 0 IL-jr_5! 

47 182 0 03/ - 891 

48 180 0 
49 179 O02.92 

50 177 0 05838d. 

60 160 0 35/8Sr 

70 141 0 67(70 5. 

80 103 1 25101.0? 

90 100 1 2969! 

100 79 1 54D9-5.? 
110 59 1 7,29_2 

120 ao 1 06r 

130 23 2 OL112 

140 e 2 Od_e 

150 -4 2 OL-._2_Q. 

160 -13 2 0 L-_§..5! 

170 -18 2 0 i_r_9_9° 

180 - 20 2 OL:le 

Table 7-1. Data for Plotting the 
Pattern of Fig. 7-6. 

FILLING IN NULLS 

The pattern in Fig. 7-6 has nulls at bearings of 48 and 312. 

In these nulls the signals from the two towers of the array 

completely cancel each other; theoretically, there is no signal 
at all along these bearings. In a practical directional antenna, 
we do not have these complete nulls. There are several 

reasons for this. In the first place, an array with a complete 

null would be very difficult to adjust and very unstable. 
Second, although we may wish to reduce the field intensity 
along certain bearings to protect the service areas of distant 

cochannel or adjacent-channel stations, we rarely need to 

suppress the signal completely. A substantial portion of the 
population in the primary service area of our station may live 
in the direction of the nulls. In this case, we want to fill in the 
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nulls enough to provide service to these people. Finally, a 

perfect null is usually impossible to obtain, because 
reradiation from other objects, such as guy wires and other 

structures, prevents complete cancellation of the signals. 
To see how we might fill in a null a little, let's look at how 

we got the nulls in the preceding example. The reason the field 

intensities canceled completely along certain bearings is that 
the signals were equal in magnitude and 180° out of phase. If 
we were to keep the phase difference between the two signals 
180° but make their magnitudes unequal, the signals would still 

tend to cancel, but the cancellation wouldn't be complete. We 
would have a low field intensity in the direction where 
formerly there was complete cancellation of the signal. 
Obviously, the greater the difference in the signals from the 
two antennas, the greater the field intensity in the null. 

Strictly speaking, the term null refers only to those 
bearings where there is complete signal cancellation. We 

should speak of a minimum instead of a partially filled null. 
However we will continue to adhere to the broadcasting 

custom of calling pattern minima nulls. 

Field Ratio and Minimum Depth 

To specify how much a null will be filled by making the 
currents in the two towers unequal, we will make use of the 
concept of the field ratio F21 . This is simply the ratio of the 

field intensity from tower 2 to the field intensity from tower 1 
or 

E., 
F21 = 

When the two towers have the same height, the field ratio is 
equal to the ratio of the currents in the two towers. This ratio is 

usually designated as M21 and is given by 

M21 
/2 

= — 
/I 

We can write the equation for the field intensity from the 

two towers as 

E= E1 LO° + E2 Lo 
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where f3 is the difference in phase between the fields from the 
two towers. We can define the relative field intensity at any 

point as the ratio of the field intensity produced by an array to 
the field intensity that would be produced by tower 1 acting 
alone with the same value of radiated power. That is 

E2 
= 1 

E1 

Since F2, = E2 E1 , we can write this equation as 

E 
— = 1 0° + F21 zo 

By a rather lengthy manipulation, we can rewrite this equation 

as 

j ± F21 2 
E E,    + cos p 

2F21 

The term ( 1 + F21 2 )/( 2F21 ) is called the minimum-depth 
term. It is a measure of how much the nulls will be filled in. It 
is interesting that the term will not change value if we replace 

F2i with 1/F21 . For example, we can use 2 or 0.5 as the value of 
the field ratio and get 1.25 as the value of the minimum-depth 
term in either case. That is. 

1 + 0.52 
  - 1.25 
2(0.5) 

The minimum-depth term is always equal to 1 or more. 
When it is equal to 1, the null is perfect. At other values the null 
is filled in accordingly. Since in the expression for the 
minimum-depth term it makes no difference whether we use 

F2i or I/F21 , when we fill a null we need only concern 
ourselves with the ratio between the two tower currents. It 
makes no difference which tower has the larger current. For 
this reason the FCC Rules governing directional-antenna 
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systems place a limit on currrent ratios rather than current 

magnitudes. 

COMPLETE PATTERN SHAPE 

Now let's see if we can put all that we have discussed so 
far together to find the pattern of a 2-tower directional-antenna 
array. Before going further, we should note that in FCC 

documents the reference point for a pattern is always the 
center of the array, not necessarily one of the towers. Thus the 
origin of a pattern is a point midway between the two towers in 

a 2-tower array, the middle tower of a symmetrical 3-tower 
array, or the center of a parallelogram array. 

The pattern is plotted on polar-coordinate paper, with the 
center of the paper representing the center of the array. We 
can rewrite the equation for the field intensity in a form that 
places the reference point midway between the towers ( Fig. 

7-7). 

f3 4. 0 
E = / — cos (f) + — + E2 /_ — Cos —4 

2 2 2 2  

Inasmuch as our pattern is symmetrical, we only have to 

calculate the field intensities on one side of the line of towers. 

TOWER II E il/3/2  

7 

'If REFERENCE POINT 

S Fig. 7-7. Two-tower array with re-
ference point midway between 
towers. 

True Bearing of a Pattern 

So far we have considered that our tower p were along a 

north — south line. In practice, the line of towers is often at 
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some other angle ( Fig. 7-8). Of course, this needn't cause any 

confusion, because orienting the line of towers along any other 

bearing is just the same as picking up the pattern in Fig. 7-6 
and rotating it. When we are calculating the locations of nulls, 
or the field intensity at any bearing, it is convenient to use the 
line of towers as a reference. By simply adding or subtracting 
the angular orientation of the line of towers with respect to 
north, we can get the geographic location of the various 
features of the pattern. 

N 

p TOWER 2 

I / 

1./ 
UTOWER 1 
S 

Fig. 7-8. Change of reference axis. 

When a bearing is specified with respect to north, it is 
usually called an azimuth, or true bearing. Thus a radial line 
20° from the line of towers might be referred to as a bearing of 

20 degrees. And a bearing of 20° with respect to true north, 
rather than with respect to the line of towers, would be called 
20° azimuth or 20' true. 

The nulls of a pattern should be converted to true bearings 
to ensure that the primary service areas of other stations are 

properly protected. The geographic location of other stations 

will be known in terms of the bearing from true north, not in 
terms of the bearing of the line of towers. 

Putting Numbers on the Pattern 

We have developed the general shape of the pattern of a 

2-tower array and have seen how the tower spacing and 
relative magnitude and phase of the tower currents affect the 

pattern. The patterns we worked with however were relative 
rather than absolute. They showed the general shape of the 

pattern but gave us no idea of the actual field intensity in 
millivolts per meter at any bearing. We will now put numbers 

on the patterns so that they will actually be plots of field 
intensity. 
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Our equation for the effective field intensity at one mile 

can be written 

E = E1 [fl (0) z + F2I 12 ( 0) L 

where E1 = effective field intensity from tower 1 at one mile 

from antenna f ( O ), 

f2 ( 0) = vertical-radiation characteristic of towers 1 and 
2. 

F21 = field ratio 
f31 , 02 = phases of fields from towers 

In this equation we have introduced two new terms, f, ( 0) 
and f2 (0). These represent the vertical-radiation 

characteristics of our two towers, which were discussed in 
Chapter 6. For now, we will consider each of these terms to be 
equal to 1, because we are now only interested in the radiation 

along the surface of the earth. Thus the only problem 
remaining in specifying the field intensity at any bearing is to 

find the inverse or unattentuated field intensity at one mile 
from each tower. We will still consider the two towers to be 
identical: so if we find this field intensity for one tower, it will 

apply to the other tower as well. 
We can find the unattenuated field intensity at one mile 

from a tower in a directional-antenna system as we found it for 
a single vertical tower in Chapter 6. Using the curve in Fig. 6-8, 
we can find the field intensity for 1 kW of radiated power. We 
can then use that figure to determine the actual field intensity 

for whatever power is being radiated. 
Suppose, for example, that we have the 2-tower array of 

Fig. 7-8 and that both towers have a height of 90°. The total 
radiated power is 5 kW. From Fig. 6-8 we find that the 
unattenuated field intensity at one mile from the antenna is 195 

mV/m for a radiated power of 1 kW. The field intensity is 
proportional to the square root of the radiated power, so the 

unattenuated field at one mile for a radiated power of 5 kW is 
195Vr= 436 mV/m. The actual field intensity is then 

E = 436[1 z 0° + F21 S COS (i) + y 

Inasmuch as the two towers have the same height, the 
field ratio F2, will be the same as the ratio of the currents in 
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E = 436[1 D2 + F21/18 cos(5 24' 
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0.42 

Fig. 7-9. Two-tower array with pattern and data. 
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the two towers—in this example, 0.8. We can now solve the 
equation for various bearings and get the field intensity at 

each bearing. This will be the unattenuated or effective field 
intensity at each bearing at a radial distance of one mile from 

the center of the array. The data and pattern are given in Fig. 
7-9. The equation for the pattern calls for two partial nulls. The 

result of the unequal currents in the tower is that the nulls are 
filled to such an extent that the pattern varies smoothly 
instead of having sharp notches. 

PATTERN SIZE 

The term pattern shape, as used in the preceding 
discussion, is self-explanatory. The term pattern size is apt to 
be confusing. It is a measure of how much power is radiated by 
the antenna system. There are several ways that we can 
specify the size of a pattern. One way is to specify the 
root-mean-square or rms value of the field intensity. The rms 

value of an antenna pattern is equal to the radius of a circle 
plotted to the same scale that has an area equal to that 

enclosed by the pattern. Figure 7-10 shows the pattern of an 
array with 90° spacing and 90° phasing. The rms value is 
represented by the radius of the dashed circle. The units of the 

rms value are the same as the units of the pattern, usually 
millivolts per meter. 

There are several other ways that we can find the rms 

value of a pattern. One is to use a planimeter, which is a 

drafting instrument that, when moved along the contour of a 
closed curve, indicates the area enclosed by a closed curve. If 

..-• --- --- .... 
/ \ 

• 
\ RMS 

\ VALUE 

11 196 mV/m 

PATTERN 

Fig. 7-10. Pattern with rms value 
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such an instrument isn't available, the area can be found by 

plotting the pattern on rectangular graph paper and counting 
the squares enclosed by the pattern. When this is done, the 
scale of the rectangular graph paper should be the same as the 

radial scale of the polar graph paper on which the pattern was 
originally plotted. 

The FCC Rules provide that the rms value of the pattern 
have a certain minimum value, as given in Chapter 6. Using 

the curves in Chapter 6, we found that a 90° tower radiating 1 
kW of power will produce a field intensity of 195 mV/m at a 

radius of one mile from the tower. If two 90° towers in 

directional array radiate a total power of 1 kW, it might seem 
that the rms value of their pattern should also be 195 mV/m. 

This assumption, in general, is not correct, because the 
vertical-radiation characteristic of two towers in an array is 

not the same as that of either of the towers acting alone. An 

array may "squeeze down" the pattern to increase the 
radiation along the surface of the earth. By the same token, it 

may distort the pattern so that the radiation along the surface 

of the earth is less than would be radiated by one of the towers 

radiating the same power. This shows the reason for finding 
the rms value of a directional-antenna pattern. 

The rms value of a pattern depends on tower height, 

spacing, and phasing. Figure 7-11 shows the rms field intensity 
for a 2-tower array with 90° towers for various values of 
spacing and phasing. This shows specifically how the choice of 
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Fig. 7-11. Horizontal RMS field intensity as a function of tower spacing 
and phasing. 
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spacing and phasing may produce an array that actually has 

an rms gain over a single tower. In general, this is a design 
consideration rather than an operational one. The broadcast 

engineer should, however, be aware of the consideration. 

VERTICAL-RADIATION PATTERN 

OF A DIRECTIONAL ANTENNA 

The vertical-radiation pattern of a directional antenna is 

of particular importance to stations that operate at night. The 

skywave signal from such stations may easily cause 

interference in the primary service area of cochannel or 
adjacent-channel stations. There are two factors that enter 
into the vertical-radiation pattern of a directional antenna. 
The first is the vertical-radiation pattern of each of the towers 

in the array ( Chapter 6). The second factor is the spacing of 
the towers in the array. which affects the vertical radiation 
similarly to the way it affects the surface pattern. 

Figure 7-12 is a side view of a 2-tower array. The actual 

spacing between the tWo towers is Sc. Now let us look down on 

the array from point P, which is off the picture at the 
upper-right side. As with our other observation points, point P 
is far enough away that the lines from the two towers can be 

considered to be parallel. The spacing between the towers as 

seen from point P is no longer S, but appears to be shortened to 
S cos O. where 0 is the elevation angle in degrees. 

TO POINT P 

APPARENT 

TOWER 

de. SPACING 

S cosN 
S 

ACTUAL 

TOWER SPACING 

TOWER 1 TOWER 2 

Fig. 7-12. Foreshortening of spac-
ing due to elevation angle. 

Now we can write a very general equation for the pattern 

of a 2-tower directional antenna that applies not only on the 
surface of the earth but at any value of elevation angle O. In 
vector form the equation is 

E = E fl ( 0) cosH cosçb + +E2 f,( 0)/S, cos° cos(t, + )'2 
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We are now in a position to find the elevation angle O at 

which a null occurs. This is important because many 
directional antennas are designed to place a null in the 

vertical-radiation pattern to protect the primary service area 

of some other station. The field intensity above the surface of 

the earth is given by 

E = E, f, ( 0) z 0° + E2 12 ( 0) / S2 cos cf) cos° + y2 

We know that the field intensity will never be zero if El and E≥ 
are not equal. Its minimum value is given by the 

minimum-depth term 

1 -1- F21 2 

2F2, 

Its bearings are 

cos cos° + y2 = ± 180° 

Thus, with a tower spacing S of 90° and a tower phasing y of 
100°, the pattern will have a minimum value when 

90 cos el cos 0 + 100° = ± 180° 

This equation tells us several things. First, the null doesn't 

occur at the same bearing as we look at the antenna from 
different elevation angles. On the surface of the earth the 
elevation angle O is zero, so cos O = + 1. Thus the null occurs at 

the angle where 

90 cos .1,) = 180 — 100 = 80° 

cos çte = 90/80 = 0.89 

This is at a bearing of 27'. As elevation increases, the null 

rotates and occurs at different bearings. For example, at an 
elevation of 20°, the null occurs at a bearing ( angle to the 

antenna) of about 19°. 
From the foregoing we can see that even though we 

measure a null on the surface of the earth in the direction of a 

cochannel station, it is entirely possible to be nearly blasting 
the station off the air with a skywave signal. 

TOWERS OF UNEQUAL HEIGHT 

In all of our computations we have used towers of equal 

height. This not only simplified our computations, but it is 
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typical of most directional-antenna systems. Under some 
circumstances, however, the towers in an array are not all the 

same height. This often occurs when an FM or TV antenna is 

mounted on top of one of the towers after the system has been 

installed. The chief effect of unequal-height towers is that the 

field ratios from the two towers will no longer be equal to the 
current ratios. Suppose, for example, that we have one tower 

90° in height and another 112° in height. Referring to Fig. 6-8, 

we see that for 1 kW of power a 90° tower will provide an 
effective field intensity at one mile of 195 mV/m, and a 112° 

tower produces a field intensity of 202 mV/m. To get equal 

field intensities, we must reduce the current in the 112° tower. 

The field intensity is directly proportional to the current in the 

tower: therefore, the current Io in the 112° tower must be 
reduced by multiplying by 

195 
— = 0.97 
202 

Suppose that with these two towers we wish to produce a 

field ratio of 0.8. We can no longer make the current ratio 0.8, 
but must modify it by the figure that we just computed. Thus 

the current ratios must be 

= 0.97 x 0.8 = 0.78 — = 1.21 
Ii lo 

We can use either figure because, as far as the pattern is 

concerned, it doesn't matter which tower has the larger 

current. 

THEORETICAL AND STANDARD 

Several types of patterns are plotted for directional 
antennas. Some of these are theoretical, and others are 

empirical, that is, based on actual measurements rather than 
computations. Today the theoretical patterns are often 

actually determined on a digital computer by the designer. 

This saves a tremendous amount of labor in checking proposed 

designs to see if they will provide adequate protection to other 
stations and adequate coverage of the primary service area. 

The broadcast engineer will not be concerned with 

preparing theoretical patterns unless he is making a major 
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modification to this system. He should, however, be 
conversant with how they are prepared and what they mean. 

The FCC Rules require a plot of the theoretical pattern of 
the signal strength along the surface of the earth. This is a plot 
of the unattenuated or effective field intensity at a distance of 

one mile from the center of the array. When vertical radiation 
is significant as when a station is on the air at night, a similar 
pattern must be plotted for elevation angles up to 60°, with a 
separate pattern for each increment of 5°. 

Patterns must be plotted on polar graph paper of standard 
letterhead size. The graph area is then 7 by 10 in. The pattern 
must be oriented with 0° corresponding to true north, and not to 
the line of towers or any other reference. The scale divisions 

should be 1, 2. 2.5. or 5. Any field intensity on the pattern that is 
less than 10% of the effective field must be plotted on an 
expanded scale. A typical pattern is shown in Fig. 7-13. Note 
that the low field intensities to the south of the antenna are 
plotted on a x 10 expanded scale. 

PATTERN 
--MEOV 

Fig. 7-13. Pattern with MEOV 
(maximum expected operating 
values). 

Prior to January 18, 1971, the theoretical pattern was 
computed using some variation of the equations presented 
earlier in this chapter. The resultant pattern was similar to 
that of Fig. 7-13. After the pattern was plotted, the engineer 
made allowances for the typical deviation of directional 
antennas from theoretical performance. These allowances 
were made by increasing the pattern by roughly 5% in critical 
nulls. The new values were then added in the pattern as shown 

by the dashed line in Fig. 7-13. The values represented by the 
dashed line are called MEOV, or maximum expected 
operating values. MEOVs were used by the FCC in 

determining the amount of protection provided to other 
stations. Some engineers, just to be safe, would sketch an 
MEOV curve around the entire pattern. 
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If, during the proof of performance of the antenna system, 
the signals in the nulls could not be brought to the theoretical 
values, they might still be within the MEOV and thus meet the 

performance standards set forth in the station's construction 
permit. Thus we actually had two patterns—the theroetical 
pattern and the pattern represented by the MEOV curve. 

As of January 18, 1971, the FCC decreed that every station 
should have one pattern, the standard pattern. The standard 
pattern is actually the old theoretical pattern, modified by the 
addition of two factors. One factor is 2.5% of the rms of the 
fields of the individual towers, or 6.0 mV/m, which ever is 
greater. This factor is added to the theoretical value by what is 
called quadrature addition. This means that both factors are 
squared and then added together, then the square root is 
taken. The resultant figure is then multiplied by 1.05 to get the 
standard radiation pattern. 

The equation given in the FCC Rules for the standard 
pattern is 

E,d= 1.05V7E/17-7-7EQ-

The terms of this equation are discussed below. 

The field intensity E st(' of the standard pattern represents 
the expected unattenuated field at one mile. 

The theoretical pattern E th is calculated with an assumed 
loss resistance of one ohm at the current loop of any tower 
over 90° high, or at the base of an antenna less than 90° high. 

The quantity Q is the greater of the following: 

0.025 1( 0) Ens or 6.01(0) VP77 

The vertical form factor 1(0) is for the shortest tower in 

the array. This figure is taken from Fig. 6-9 and is used for 
plotting patterns at vertical angles. For the horizontal pattern 
it is 1. 

The symbol E„, stands for the root-sum-square or rss 
value of the field intensities of the towers of the array. The rss 
value should not be confused with the rms value. The rss value 
of a number of quantities is the square root of the sum of their 
squares ( the absolute value of an impedance is found from 
resistance and reactance). 
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The power input to the array expressed in kilowatts is 

represented by Pkw . If the power is less than 1 kW, the 
quantity 1 is used here. 

The FCC also requires that the rms value of the pattern be 
given. This is computed from the theoretical pattern in the 
above equation. 

The standard radiation pattern was adopted to do away 
with MEOV, which were inconvenient. The goal was for every 
station using a directional antenna to have only one pattern. 
Allocations and interference contours would then be based on 
patterns that were all calculated in the same way. The 
Commission has, however, recognized that directional-

antenna design is fraught with difficulties that cannot always 
be anticipated. If, when actual measurements are made of the 
radiation pattern, it is found that the radiation exceeds the 
standard pattern over a limited range, provision is made for 
augmenting the pattern. Augmentation is somewhat similar to 
adding an MEOV curve, except that a definite procedure is 
given for computing the augmentation, and the augmented 
pattern replaces the original standard radiation pattern. 

Hence there is still only one pattern for each station, which, in 
some instances, may be an augmented pattern. 

WRAP UP 

For the past several pages we have investigated the 
properties of the 2-tower directional-antenna array. Our 
purpose has not been to achieve design capability, but rather 

to acquire an understanding of how simple arrays operate. 
And much of the information that we developed in connection 

with the 2-tower array can be applied directly to more complex 
arrays. 
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Chapter 8 
Complex Directional— 

Antenna Arrays 

The 2-tower directional-antenna array described in the 

preceding chapter is capable of producing a wide variety of 

radiation patterns and meets the requirements of many 
standard broadcast stations. Quite a few other stations, 

however, require an antenna pattern that protects the service 
areas of many other stations while providing adequate 

coverage of their own service areas. This type of pattern is 
obtained by using more than two towers. Nine or more towers 

may be used in an array to obtain nulls at many different 
angles or to form very broad nulls in a particular part of a 

pattern. 
Regardless of the number of towers used in an array, the 

field intensity at any point in space may be found by first 
finding the field intensity that would be produced by each 

tower alone, then taking the vector sum of the several field 
intensities. Unfortunately, as the number of towers in an array 
increases, the complexity of the field equations also increases 
at a disturbing rate. The equations are not necessarily difficult 

to comprehend, but due to the large number of terms, solution 

is often tedious. 
Much of the complexity in the mathematical work is in 

getting the equations into a form for solving with a slide rule, 
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pencil, and paper. With an electronic calculator vector 
addition is less tedious. We will leave the terms of the 

equations that we use in vector form because it keeps them 
much simpler and makes them easier to solve with an 

electronic calculator. 
In this chapter we will develop a method of finding the 

field intensity at any point in space from an array containing 
any number of towers. We will consider a graphical technique 
that will show how the field from each tower contributes to the 
field intensity at any point in space. We will also consider 
examples of patterns that may be obtained from 3- and 4-tower 
arrays. 

SPACE REFERENCES 

In a 2-tower array the towers obviously lie in a straight 

line. When more than two towers are used, they may or may 
not all be in line. For this reason we must develop a reference 
system that will let the towers of an array be located anywhere 
with respect to each other. We do this by assigning a 
space-reference point for the array, which isn't necessarily 
located at any of the towers. We also assign a space-reference 
axis, which is a north—south line through the space-reference 
point. This is shown in Fig. 8-1. 

SPACE 

REFERENCE 

AXIS /TOWER 1 

SPACE-REFERENCE 

POINT 

Fig 8-1 Space- reference system 

With this system there is a spacing S and an azimuth angle 
e associated with every tower in the system. In the figure, SI 
is the spacing between tower 1 and the space-reference point. 
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The angle 4), is the angle between the space-reference axis 
and a line from the space-reference point to tower 1. If one of 

the towers of an array was located at the space-reference 
point, its spacing and azimuth angle would be zero. This is 

often true of the center tower of a 3-tower array. 

FINDING THE FIELD INTENSITY 

OF A THREE-TOWER ARRAY 

To intelligently operate and maintain a directional-
antenna system, the engineer must know the relationship 

between the parameters of the system and the radiation 

pattern. The parameters over which he has control are the 
amplitude and phase of the currents in the various towers. He 

is most interested in the field intensity at the monitoring points 

set forth in the station license. In general, the magnitudes and 
phases of all of the currents in all of the towers influence the 

field intensity at all of the monitoring points. The amount of 
influence that each current amplitude and phase has on the 

field intensity at each of the monitoring points depends on all 
of the design parameters of the array, including the tower 

spacing and orientation. 
We will start our analysis with the 3-tower in line array 

shown in Fig. 8-2. The towers are conveniently located on the 

space-reference axis. The center tower is located at the 

space-reference point of the array and is designated No. 1. We 
wish to find the effective field intensity at point P, which is 
located at a distance of one mile from the space-reference 
point, at an angle of 40° from the space-reference axis. We 

know from the superposition principle that the field E at point 

P will be given by an equation of the form 

E = E, z p, + E2 Z 02 + E3 z pi 

where EI , E2 , E3 = field intensities of towers acting alone 
f32 , /33 = phase angles of fields from towers, at 

point P 

Since we can easily solve an equation of this type with an 
electronic calculator without further manipulation, it is only 

necessary for us to find values for the Es and ps to be able to 
find the effective field intensity at point P. The Es are fairly 
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E 2 = E 3= 0.9E 1 

Fig. 8-2. Three-tower array. 

easy to find. From the information on the station license and 

from meter indications, we can compute the effective field 

intensity that each tower would produce from the techniques 

given in Chapter 6. 

Effective Field of Each Tower 

Suppose. for example, that all of the towers are 90° in 

height and that the total radiated power is 5 kW. Inasmuch as 

the towers are all the same height, the field ratios will be equal 
to the current ratios, which are specified on the license and 

can be measured with the antenna monitor. We will assume 
that the ratios are as shown in Fig. 8-2, that is, 

= E3 = 0.9 E1 
I, = I, = 0.9 /, 

The power radiated by each tower is proportional to the 

square of its current. Therefore we can compute the power 

from each tower as follows. 

+ 0.92 PI + 0. P1 = 5 kW 
PI = 5/2.62 = 1.91 kW 

= 0.81 P1 = 1.55 kW 
P3 = 0.81 P1 = 1.55 kW 

5.0 kW Total power 

Knowing the power radiated by each tower, we can use the 

information in Fig. 6-8 of Chatper 6 to find the effective field at 
one mile for each of the towers. From Fig. 6-8 we see that if the 
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radiated power was 1 kW, the effective field at one mile from 

each of the towers would be about 195 mV/m. Inasmuch as the 
field intensity is proportional to the square root of the power, 

we can now find the effective field for the actual radiated 

power. 

E . 195vi-g-= 271 mV/m 
E2 = 195V 1.55 = 244 mV/m 

195V-17-5- = 244 mV/m 

This gives numbers that we can substitute for the Es in our 

equation, which becomes 

E = 271 z pi + 244 L 02 + 244 L P3 

Phase Angles of Fields 

All we have to do now is find values for the ps. The angle 0 
is actually the relative phase of the signal from each tower 

when it arrives at point P. ( Remember from Chapter 7 that the 

way we got a desired pattern in the first place was to arrange 

things so the signals from the various towers would arrive at a 

point with different phases. The phase angle [3 of a signal at a 

point in space depends on the orientation of the towers, the 
spacing between the towers, and the relative phases of the 
currents in the towers. It is convenient to think of the angle 0 
as being the sum of two other angles. One is the space-phasing 
angle. which accounts for the orientation and spacing of the 
towers. The other is the relative phase y of the current in the 

tower. Thus 

p = space-phasing angle + y 

The space-phasing angle of each tower will have the form 

Space phasing angle = S cos ( On— ) 

where S is the distance in degrees between the tower and the 

space-reference point of the array, On is the angle between the 
space-reference axis and a line from the space-reference point 

to tower n, and O is the azimuth angle from the space-reference 
axis to the point P at which we wish to find the field intensity. 

There will be a space-phasing angle for each tower. 
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We have assumed in Fig. 8-2 that all of the towers lie on the 
space-reference axis; therefore, 0, and 02 are equal to zero. 

Angle 03 is equal to 180° because it is below the reference 
tower. In Fig. 8-2 we see that tower 1 is at the space-reference 

point, so SI is zero. Inasmuch as tower 1 is our reference 
tower, y, is also zero. Thus A becomes zero. At tower 2 we 
find that the space-phasing angle is 

S, cos ( 02 — 0) = 110 cos ( 0 — 0) = 110 cos 0 

Angle 0 in this problem is 40°. Thus 

S, cos ( 02 — = 110 cos ( 0 — 40) = 84° 
02 = 84. + 5. 89. 

Similarly, at tower 3 

S3 COS ( 03 - 0) = 110 cos ( 180 — 40) = — 840 
133 = —84° — 5° = —89° 

Completing and Tabulating the Solution 

Now we have numbers for the Os that we can substitute into 
our equation, which becomes 

E = 271 45L+ 244 / +89°  + 244 / —89° = 280 mV/m 

This tells us that the effective field at point P, which is at 
an angle of 40°, is 280 mV/m under the conditions described in 
Fig. 8-2. We could easily use our equation to compute the entire 
pattern of the array. Letting the azimuth angle 0 from the 
space reference be the variable, our now-familiar equation 
becomes 

E = 271 z 0 + 244 x /110 ( cos + 5°  

+ 244 /110 cos ( 180 — — 5°  

Using a calculator, we can compute the values of the vectors 
and tabulate them at various angles as in Fig. 8-3. 

This procedure can be used to find the effective field at one 
mile at any azimuth for any number of towers. The technique 
removes much of the mystery from the operation of a 
directional-antenna array and is summarized in Fig. 8-4. 
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Lb 244t110(cos qh) + 5 244/110 cos ( 180 L Gt.) — 5- E(mVm) 

0 244/115 244/— 115 65 

30 244/100 244 — 100 186 

60 244/K 244/— 60 515 

90 244a 244/— 5 757 

120 244/.— 50 244/ + 50 585 

150 244/— 90 244/ + 90 271 

180 244/— 105 244/ + 105 145 

Fig. 8-3. Pattern of array of Fig. 8-3. 

Finding the Contribution of Each Tower 

When an engineer finds that his antenna pattern is outside 

of its prescribed tolerances at some azimuth, it is very helpful 
if he knows just how the magnitude and phase of each of the 

tower currents contributes to the field intensity at that 
particular angle. We can find this by drawing a vector 

diagram for the field intensity at the angle of interest. All that 
we need for the job is a ruler and a protractor. 

Suppose that we wish to study the field intensity of the 

pattern of Fig. 8-3 at an azimuth of 30°. From the table we find 

that the equation for the field at 30° is 

E = 271 ¿ 0° + 244 ¿ 100° + 244 ¿ — 100° 

1. FIND MAGNITUDE OF FIELD VECTOR OF EACH TOWER. 

2. FIND CURRENT PHASE ANGLE OF EACH TOWER. 

3. ADD TOWER-CURRENT PHASE ANGLE TO ABOVE (2). 

4. ADD VECTOR CONTRIBUTION OF EACH TOWER. 

Fig. 8-4. Finding pattern of any array. 
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Inasmuch as we are only interested in the relative 

contribution of each tower, we can simplify the equation 
somewhat by dividing through by the field intensity from the 
reference tower, giving us 

lE = 1 z 0 + 0.9 z 100 + 0.9L-100 

The first step is to draw the vector corresponding to the 
first term on the right side of the equation. For convenience we 
will arbitrarily let 1 in. correspond to a relative field intensity 
of 1. The angle is zero, so we draw a 1 in. line from the origin to 
the right, as shown in Fig. 8-5A. Next, at the end of this vector, 

we draw another vector, corresponding to the field intensity 
from tower 2. The relative field intensity from tower 2 is 0.9 so 
we make this line 0.9 in. long. The phase angle is 244°, and we 

consider a positive angle to be a counterclockwise rotation. 
Therefore, with a protractor, we draw 0.9 in. line from the tip 
of the first vector at an angle of 100°, as shown in Fig. 8-5B. The 
final step is to draw the vector for the field intensity from 
tower 3. This is a 0.9 in. line, drawn from the tip of the second 
phasor at an angle of — 100° from the reference axis. The 
negative sign means that the angle is measured in a clockwise 
direction. 

The field at 30° is the resultant of the three vectors and is 
labeled E in Fig. 8-5C. By studying this vector diagram, we can 
not only determine the field at 30°, we can see just how the 
fields from the individual towers combine to form the desired 
field intensity. A vector diagram of this type can be drawn for 
each azimuth angle of interest. It is a good idea to prepare 
such a diagram for at least the angles on which the stations 

licensed monitoring points lie. With these diagrams available 
the engineer can to some extent determine just how each of the 

0 
E 1 

(B) 

E 1 

(C) 

Fig. 8-5. Vector contribution from each of three towers. 
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parameters of the system influences the field intensity at each 
of the monitoring points. Then, with this information he can 
plan the adjustments in advance and avoid a lot of cut-and-try 
operations. 

Contribution of Various Tower Currents and Phases 

In a 2-tower array a change in the amplitude or phase in 
either of the towers has an equal effect at any point, as long as 
the currents are equal. When an array has three or more 

towers, the effect of each of the towers is not equal at all 
bearings. In any case, a vector diagram can show just how a 
change in any of the tower currents or phases will affect the 
field intensity at the bearing for which the diagram was 
drawn. 

Figure 8-6 shows a vector diagram for a 3-tower array. 
This particular diagram was drawn to show the field intensity 
in a partially filled null. By studying the figure, we can learn a 
great deal about the factors that affect the field intensity on a 

particular radial. First of all, we can see how making the 
current in tower 2 smaller than the other two currents fills in 
the null. If the vector corresponding to E, were as long as the 
others, the tail of the last vector would land right on the 
starting point, indicating a field intensity of zero. By making 

the vector for E2 a little shorter than the others, we can avoid 
complete signal cancellation in the null. 

E3= 1. 0/120  

— 120 E2,_ 0.7/3 1 - 

31 

Ei=1.0AL 

RESULTANT FIELD 
Fig 8-6. Analysis of contributions 
to field intensity at any point. 

We can also see from the figure how the phases of the 
currents in towers 2 and 3 affect the resultant field intensity. 

Lets start with tower 2. If the phase angle was a little smaller, 
the effect would be to raise the tail of the final vector closer to 
the origin. Hence reducing the phase angle of tower 2 would 

reduce the length of the resultant. In other words, it would 
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reduce the field intensity in the null. If we were to increase the 
magnitude of the current in tower 2, we would raise the tail of 
the final vector, thus reducing the field intensity in the null. 

This type of vector diagram is probably more useful to the 
broadcast engineer than any other mathematical tool except 
his calculator. By constructing such diagrams for each radial 

that has a monitoring point, he can gain a great deal of insight 

into how the various adjustments of the phasor will affect the 
field intensity at each of the monitoring points. 

Three Nonaligned Towers 

Whenever the towers in a directional-antenna array are in 
a straight line the field will be symmetrical about the line. This 
is a great convenience when we are computing the radiation 
pattern because we only have to compute the pattern on one 
side of the line of towers; the other half of the pattern will be 
the same. Unfortunately, it isn't always possible to obtain the 
pattern required for a particular station location with an 

in-line array. The requirements for protecting other stations 
and providing service to the primary service area may well 

call for a radiation pattern that is not symmetrical at all. This 
type of pattern is obtained by using towers that are not in line. 

Figure 8-7 shows an unsymmetrical pattern produced by a 
3-tower array in which the towers are not in line. This 
arrangement is often called a dogleg array. 

Once we know the parameters of the array, we can 
compute the field intensity along any radial or the entire 
pattern, using the same techniques as for a 3-tower in-line 
array. Where 4) is the azimuth angle, we can write the vector 
equation for the array of Fig. 8-7 by inspection. 

E = 1 z 0° + 1.3 /135 cos 4 + 225° + 0.9 /135 cos ( 135° — cf))  

To keep things simple, we will only consider the shape of the 
pattern from this array. We will therefore let the field intensity 
from the reference tower equal 1. Solving the preceding 
equation for each 10° gives the table of field intensities in Fig. 
8-7. Note that when the towers in the array are not in line, the 
pattern is not necessarily symmetrical about the line of 
towers. We must, therefore, compute the pattern all around 

the antenna, not merely for one half as we did with the in-line 
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E2- 1.3/225 

El = 1 0A:_r_ 135 n`• S2= 135 
135 - S3= 135 

E3=0910 

cb 135(coscb) + 225" 135 cos(135' L .1)) E 

10 358 -77 2.7 

20 352 - 57 2.9 

30 342 -35 3.1 

40 328 - 12 3.1 

50 312 +12 2.9 

60 293 35 2.3 

70 271 57 1.6 
80 248 77 0.8 

90 225 95 0.0 

100 202 111 0.6 

110 179 122 2.2 

120 158 130 1.4 

130 138 134 1.6 

140 122 134 1.8 

150 108 130 1.9 

160 98 122 2.1 

170 92 111 2.2 

180 90 95 2.4 

190 92 77 2.5 

200 98 57 2.4 

210 108 35 2.2 

220 122 12 1.8 

230 138 - 12 1.1 

240 158 -35 0.5 

250 179 - 57 0.8 

260 202 -77 1.4 
270 225 - 95 1.8 

280 248 - 111 2.1 

290 271 - 122 2.1 

300 292 - 130 2.1 
310 312 -132 2.0 

320 328 - 134 2.0 

330 342 - 130 2.0 

340 352 - 122 2.0 

350 358 - 111 2.2 

360 360 - 95 2.4 

Fig. 8-7. Three tower dogleg array with pattern and data. 

227 



towers. We can now plot the pattern of this array as shown in 

Fig. 8-7. Note that there are nulls at azimuth angles of about 

90° and 240°. The 240° null is partially filled. The main lobes of 

the pattern are not symmetrical, hence most of the population 

of the primary service area would be located north and south 

of the station site. 
The null at 90° is very deep. It would probably be hard to 

keep the field intensity along this radial within the licensed 

value. This would be a good radial on which to construct a 

vector diagram to see just how the magnitude and phase of 
each of the tower currents contribute to the field intensity. 

Figure 8-8 shows such a vector diagram, constructed by 
drawing a vector of the proper length and angle for the field 

intensity from each tower along the 90° radial. Assuming that 

one tower of the 3-tower array is located at the 
space-reference point of the array, both the spacing and 
angular orientation of the two other towers can be varied by 
the designer. In addition, the relative magnitude and phase of 

the two other tower currents can be varied. This permits an 
extremely large number of patterns to be obtained by design. 

By the same reasoning, an engineer attempting to merely 
adjust the array can also produce a wide variety of 
patterns—none of which may be the one that he is trying to 

obtain. If vector diagrams are drawn to show how the phase 
and amplitude of each of the tower currents contribute to the 
field intensity at various points in the pattern, the adjustments 

will be easier to make. A diagram of this type should be 
constructed for at least each of the monitoring points specified 
in the station license. Of course, there will always be some 

interaction between controls that can't be predicted in this 

way. 

Fig. 8-8. Vector diagram for field 
intensity along 90 radial of array 
of Fig. 8-7. 
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SNI 

E 2,_,, 
SN 

SPACE 

REFERENCE 
SNI 

E ¡- 4,2 

(A) (B) 

Azinutl Pattern A Pattern IS Pattern C 

10 -200 1 - 1 

20 -200 1 - 1 

30 - 1.96 1 - .96 

40 - 1.87 1 - .87 

50 - 1.69 1 - .69 

60 - 1.41 1 -.41 

70 - 1.02 1 - .02 

80 -054 1 046 

90 00 1 1.00 

100 054 1 1 54 

110 102 1 2.02 

120 1.41 1 241 

130 1.69 1 269 

140 1.87 1 287 

150 1.96 1 2.96 

160 1 99 1 299 

170 2.00 1 300 

180 2.00 1 300 

190 2.00 1 3.00 

200 1.99 1 2.99 

210 1.96 1 2.96 

220 1.87 1 2.87 

230 1.69 1 769 

240 1.41 1 2.41 

250 1.02 1 2.02 

260 0.54 1 1.54 

270 0.00 1 1.00 

280 -054 1 046 

290 - 1.02 1 0.02 

300 - 1.41 1 -0 41 

310 - 1.69 1 -069 

320 - 1.87 1 -0.87 

330 - 1.96 1 -0.96 

340 - 1.99 1 -099 

350 -2.00 1 - 1.00 

360 - 2.00 1 - 1.00 

0 E 2bA1 

SNI oEIL 

SKI! 
o E2/-•62 

(C) 

Fig. 8-9. Synthesis of pattern by addition. 

SYNTHESIZING A PARALLELOGRAM ARRAY 

In one 4-tower array the towers are located at the corners 

of a parallelogram. The pattern of this array is obtained by 
combining the patterns of two 2-tower arrays that are oriented 
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Fig. 8-10. Null filling in 3-tower ar-
ray 

at different angles. Frequently very complex patterns with 
many nulls are formed in this way. Each of the two arrays has 
a tower spacing greater than 180° so each pattern will have 

more than two nulls. 

Parts A and B of Fig. 8-11 show two 2-tower arrays plus 

their patterns. In Fig. 8-11C the two patterns are added 
together to form a very complex pattern. 

This procedure of adding towers to an array to provide a 

more intricate pattern can be used to provide just about any 
type of pattern. A fifth or even a sixth tower can be added to 

the array of Fig. 8-11 to further change the pattern. 

PATTERN SYNTHESIS BY MULTIPLICATION 

One common method of synthesizing a desired pattern is 
to multiply two patterns together. Parts A and B in Fig. 8-12 
show the patterns of two 2-tower arrays. If the two patterns 

N 

1 

\ 

N 

(A) (B) (C) 

Fig. 8-11. Addition of 2-tower patterns to form a 4-tower parallelogram. 
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X 

N 

- - 

(A) (B) (C) 

Fig. 8-12. Multiplication of patterns to synthesize a 4-tower array. 

are multiplied together, the pattern of Fig. 8-12C results. Since 

0 multiplied by any number is still 0, the resultant pattern will 
have all of the nulls of the component patterns. If both of the 

component patterns have negative lobes in the same direction, 
the resultant pattern will have a positive lobe in this direction, 
since the product of two negative numbers is a positive 
number. The mathematical development of the resultant field 

intensities is rather lengthy and thus will not be given here. 
The multiplication method has been used frequently in the 

design of 4-tower parallelogram arrays because of its 
simplicity. If a station is required to protect the service areas 
of other stations in four different directions, one 2-tower array 
can be designed with two nulls and oriented so that it will 

provide the desired protection in two directions. Then another 
2-tower array can be designed to provide protection in the two 
remaining directions. Finally, the two patterns can be 
multiplied together to form a 4-tower parallelogram array. 

Losses from High-Angle Radiation 

A directional-antenna system is designed so that 
high-angle radiation is minimized and radiation along the 
surface of the earth is maximized. This increases the field 
intensity in the primary service area. Depending on the 

design, the rms field from an array may be either greater or 
less than the rms field that would be produced by one of the 
towers radiating the same amount of power. The antenna gain 

is a measure of the increase or decrease of radiation along the 

surface of the earth. If the gain is greater than 1, the array will 
have a greater rms field than would be produced by one of the 
towers radiating the same amount of power. 
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The gain of an array is a theoretical consideration and has 
nothing to do with losses in the system. It is defined by the 

equation 

where 

G, = power gain in horizontal direction 
= rms horizontal-field intensity when array is radiating 

full power 
= rms horizontal-field intensity that would be produced 

with reference tower radiating all of the power 

The gain is inherent in an array's design. Some systems have 

gain over the reference tower, but others have a loss. 

DIRECTIONAL-ANTENNA EFFICIENCY 

To completely describe the performance of the array, we 
must introduce another term—the efficiency of the 
array—which takes into consideration the losses in the system. 

The efficiency 17 is defined by the equation 

71 - 

Pr 

Pr + 

where P. = power actually radiated in system 
= power lost or dissipated in system, expressed in 

the same units as P, 

Losses in System 

The efficiency of a directional antenna is related to the 
rms field intensity by the equation 

71 = 
Ef) 

E, 

where E0 = rms horizontal-field intensity excluding losses 

E0L = rms horizontal-field intensity including losses 

One design objective is to keep the efficiency as high as 
practicable by reducing losses in the system. Another is to 

reduce losses from high-angle radiation. 
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Chapter 9 

Directional— 
Antenna Impedances 

To feed energy to each of the towers of a directional-antenna 
system with a minimum amount of reflection, the driving-
point impedance seen looking into the base of each tower must 
be matched to the characteristic impedance of the 

transmission line. Before this can be done, the driving-point 
impedance of each tower must be known. In Chapter 6 the 
driving-point impedance of a single tower was seen to depend 
only on the physical characteristics of the tower and, to some 
extent, on the ground system. Once the impedance of a single 
vertical tower is found, it isn't likely to change unless 

something goes seriously wrong. 
When a tower is used as an element of a directional-

antenna array, its driving-point impedance usually will not be 
anything like what it would be if the tower were acting alone. 
Furthermore, the driving-point impedance changes with the 
magnitude and phase of its current and the currents of the 

other towers in the array. 
Before going into the details of the impedances found in 

directional-antenna systems, let's briefly review just what 
impedance is. Impedance is always the ratio of a voltage to a 
current. A driving-point impedance between two terminals, 

such as between the base of a tower and the ground system, is 

the ratio of the voltage across these terminals to the current 
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flowing in them. Usually the voltage and current will not be in 

phase, so the impedance will be a vector or complex quantity. 
In a directional-antenna system we are interested 

primarily in the current in each of the towers. We adjust the 
networks in the system so that the tower currents have the 
proper magnitude and phase, and we let the voltage fall where 
it may. We are interested in the impedance at the base of each 
tower because we wish to minimize reflections on the 

transmission lines and to control the phase shift in the 
matching networks. 

To understand the driving-point impedance at the base of a 

tower, we must understand the factors that control it. We can 
consider the base connections of two towers of a directional 
antenna as being two sets of terminals of a network like that ir 
Fig. 9-1. The equation for the driving-point impedance is 

Z 1 = Zll + / /I ZI2 

where Z11 = self-impedance of tower 
Z12 = mutual impedance 

I, , L = current in towers 1 & 2 

Fig. 9-1. Self- impedance and 
mutual impedance. 

The first term of this equation, Z1, , is the self-impedance 
of the tower. It is what the driving-point impedance would be if 
there were no other towers close by. The second term consists 

of the ratios of the base currents in the two towers and the 
mutual impedance between them. The mutual impedance is 
often a source of confusion, so we will spend a little time 
looking into it. 

MUTUAL IMPEDANCE 

Whenever current flows in a transmitting tower, a voltage 
is induced in other towers nearby. This complicates the 
problem of feeding energy to the towers of an array 
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considerably. The ratio of a voltage induced in one 
antenna—say, tower 1—by the current flowing in another 

antenna, tower 2, is the mutual impedance between the two 
antennas. Because the system is linear and bilateral, the 

mutual impedance is the same regardless of which antenna 
carries the current and which has the induced voltage. The 
computation of mutual impedance is a mathematical 
nightmare. Furthermore, mutual-impedance computations 

are not always accurate. The designer of a system often makes 

measurements to verify his mutual-impedance computations. 

Fortunately, the average broadcast engineer will never be 
called on to actually compute the mutual impedance between 

two towers. He should, however, have some idea of what 
mutual impedance is and how it affects the operation of an 
antenna system. There are several things we can determine 
about mutual impedance without actually computing it. 

There is no easy way to find the mutual impedance 

between two antennas; the mechanism by which energy is 
coupled from one antenna to another is rather complicated. 
One thing that we can do to help the situation is to redefine the 
self-impedance of a tower slightly. We can consider the single 

tower as a device to which we furnish a current and we can 
think of this current as being the cause of anything that 
happens in the tower. This is a little different point of view 

than we normally have, because in circuit theory it is 
customary to think of voltage as the cause and current as the 

effect. 
If we think of the current in a tower as the cause, we can 

think of the voltage along the tower as being an induced 

voltage that results from the current. Thus the self-im-
pedance of a tower becomes the ratio of the voltage induced in 
it to the current that causes the voltage. With the aid of this 
definition, we can see that if we moved a second tower 
extremely close to a driven tower, the voltage induced in the 
second tower would be very nearly the same as the voltage 

induced in the driven tower. Hence, in this extreme case, the 
mutual impedance between the towers would be the same as 
the self-impedance of either tower ( assuming that they are 
identical in construction). 
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As we move a second tower away from a driven tower, we 
can safely assume that the induced voltage will be less. We 
also know that the field will take some time—although an 
extremely small amount of time—to get from the first tower to 

the second. Thus there will be some phase shift between the 
voltage induced in the driven tower and the voltage induced in 
the second tower, and the mutual impedance will be a vector 

or complex number. If the induced voltage in the second tower 
depended only on the radiation field of the first tower, things 
would be easier. Unfortunately, there is a great deal of 

coupling between the induction fields of the two towers. The 
induction field depends heavily on the actual physical 
configuration of the towers and is not easy to anticipate. 

Some idea of the magnitude and phase of the mutual 
impedance between two towers can be gained from Fig. 9-2. 
There we have a plot of the resistive and reactive components 

of mutual impedance between two 90° antennas versus the 
spacing between them. Some mathematical difficulties were 
avoided by assuming that the antennas were infinitely thin and 
that the current distribution was sinusoidal. Thus, the curves 
cannot be applied directly to practical towers, but they do give 
a general idea of how mutual impedance behaves. 

The first things that we notice about the curves is that both 
the resistive and reactive components seem to be nearly 

100 500 200 300 400 

SPACING IN DEGREES 

Fig. 9-2. Mutual resistance and reactance between two 90' towers. 
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periodic, and for some values of spacing they are negative. 

This isn't very upsetting in the case of the reactive component. 
Negative reactance is capacitive reactance, and that the curve 
varies between positive and negative values means simply 

that the reactive part of the coupling between the two antennas 
may be either inductive or capacitive, depending on the 
spacing between them. 

That the resistive component of the mutual impedance 
becomes negative for some values of antenna spacing tends to 
be disconcerting at first. Actually, a negative resistive 
component merely means that at some spacings the phase of 

the induced voltage has changed 180°. Inasmuch as the phase 
of the induced voltage depends on the spacing between the 
antennas, it is understandable that it should be negative at 

some spacings. In fact, the magnitude of the mutual 
impedance would be nearly periodic except that the resistive 

and reactive components do not reverse polarity at the same 
spacings. 

Another factor of interest in the curves of Fig. 9-2 is that 
the magnitude of both the resistive and reactive components of 
the mutual impedance tends to become larger as the two 
antennas are placed closer to each other. This is logical, 
because when the two antennas are closer together, more 
energy is coupled from one to the other. 

When two towers are of equal height we can simplify the 
situation somewhat, because the magnitude of the mutual 
impedance at any given spacing is directly proportional to the 
radiation resistance of each of the towers. The constant of 
proportionality is a function of the spacing between the 

antennas, as is the angle of the mutual impedance. Figure 9-3 
shows a plot of the ratio of the magnitude of the mutual 

impedance to the radiation resistance R. of the towers. This 

plot is based on infinitely thin antennas, but is usually within 
about 5% of the actual value. Also shown in the figure is a plot 

of the angle of the mutual impedance as a function of tower 
spacing. The angles are not as accurate as the ratios, because 

the reactive component of the mutual impedance is dependent 
on the induction fields of the antennas. The curves are 
nevertheless close enough for the average broadcaster's use. 
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Fig. 9-3. Mutual impedance 
500 between towers of equal height. 

In practice, mutual impedance is often measured in 
addition to being calculated. Once it has been measured, it 
rarely will change very much unless radical changes have 
taken place in the system. Usually, anything that changes the 

mutual impedance between two towers will also change the 
current distributions along the towers. This type of change 
might be a change in guy wires or some fault in tower-lighting 

lines. Changes of this sort can usually be detected from 
base-impedance measurements, particularly when they are 

made at more than one frequency. Whenever any change is 

noted in base impedances, the ground system is also suspect. 

DRIVING-POINT IMPEDANCE 

The impedance that we are most interested in when 

dealing with a directional-antenna system is the driving-point 
impedance at the base of each tower. This is the impedance 
that we must match to the characteristic impedance of the 

transmission line. The equation 
Z, = Z„ + /, / I, Z1, 
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for driving-point impedance, shows the various things that will 
influence the magnitude and angle of this impedance. One 
factor that will have a constant influence is the self-impedance 
of the tower. This depends only on the physical characteristics 

of the tower itself, and not on currents in the system. The 
second term of the equation causes all of the problems. There 
are several things that we can deduce about the influence of 
this term without bothering to put numbers into the equation. 

In a wide-spaced array the mutual impedance is small, 
and there will not be as much interaction between towers as in 

a close-spaced array, where the mutual impedance is large. 
Also, if the second term of the equation is large, it will have a 
pronounced effect on the value of the driving-point impedance. 

The examples and equations given so far have been 
concerned only with the driving-point impedance of a 2-tower 
array. In many directional-antenna systems there are more 
than two towers. The driving-point impedance seen looking 
into the base of a tower in a multitower array is given by 

= Zi, + Z12 
II II /I 

Z4 + • • •— 4- • •• 
li 

This is the same type of equation presented earlier, 

expanded for systems of any number of towers n. All of the 
mutual impedances between the tower of interest and each of 

the other towers, as well as the magnitude and phase of each of 
the other tower currents, have an influence on the 
driving-point impedance of each tower in the system. The 
amount of influence depends on the relative size and phase of 

each term in the equation. 
This is obviously a rather complex state of affairs. There 

are now so many different parameters that influence each 
driving-point impedance that it can take on nearly any value. 
The driving-point impedance of each tower can be calculated, 

although the calculations tend to be tedious. We will consider 
these calculations later in this chapter. Here we are concerned 
with the general values that the driving-point impedance 
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might have, as well as the physical significance that it might 

have. 
Before transforming the driving-point impedance of a 

tower to the characteristic impedance of a transmission line, 
we first tune out the reactive component as shown in Fig. 94. 
If the reactive component of the driving-point impedance is 
inductive, the tuning reactance in Fig. 9-4 will be capacitive; 
similarly, if the reactive part of the driving-point impedance is 
capacitive, the tuning reactance will be inductive. Thus, as far 

as the impedance-matching network is concerned, we are only 
interested in the resistive part of the driving-point impedance. 
The reactive part will be tuned out. The resistive part is what 

is transformed to the characteristic impedance of the 
transmission line. 

MATCHING 
NETWORK 

TUNING DRIVING-POINT 
REACTANCE' IMPEDANCE 

_±'X 

Fig. 9-4. Reactive part of driving-point impedance is tuned out. 

This doesn't mean that the reactive component of a 

driving-point impedance isn't important; it is. If the reactive 
component is very large compared to the resistive component, 
as it is in the case of very short towers, the impedance will be 
hard to match, and the arrangement will tend to have a very 

narrow bandwidth. 
The resistive part of the driving-point impedance of a 

tower might have almost any value—positive, negative, or 
even zero. The positive resistance is easy to understand. It is 
simply the ratio of voltage to current at the output of the 

impedance-matching network. A positive resistance means 
that energy is flowing into the tower and is not returning. 

240 



Negative Resistance 

It is easy to see how the resistive part of the driving-point 

impedance may be negative. In fact, in arrays containing four 
or more towers, the driving-point impedance of one or more of 
the towers is negative much more frequently than the average 
broadcast engineer would wish. The biggest trouble with 
negative driving-point resistances is the confusion that they 
usually produce in the mind of the engineer. Most of the 
impedances that he works with are positive, and there seems 
to be something mysterious about a negative impedance or 
resistance. 

Figure 9-5A shows a "black box" with the voltage and 
current at its terminals. Using Ohms's law, we decide that 
whatever is in the box is equivalent to a 20-ohm resistor. 
Because of the polarity of the voltage and the direction of 
current, we know that energy is flowing into the box. 

In Fig. 9-5B we have a similar box with the same 
magnitudes of voltage and current, but the direction of current 
has been reversed. Again applying Ohm's law, we decide that 
whatever is in the box is equivalent to a 20-ohm resistor; but 
because of the polarity and current direction, we conclude that 
the resistance is negative. This merely means that the energy 
is flowing out of the box instead of into it. 

+10V 
R= — +20 OHMS 

+ 0.5A 

1=0.5 

E = 10 = + 20 

ENERGY FLOW --e. 

(A) 

R= 
+10V 

—0.5A 

1= 0.5 

— 20 OHMS 

E = 10 = — 20 

ENERGY FLOW 

(B) 

Fig. 9-5. Positive and negative driving-point resistances. 

The concept of negative resistance will be a little clearer if 
we look at a block diagram of a somewhat simplified 
directional-antenna system ( Fig. 9-6). Here all of the energy 
comes originally from the transmitter. It does not, however, 
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flow directly through the system to the far field. As we saw 
earlier, some of the energy from each of the towers is coupled 

to each of the other towers. In two of the towers in the figure, 
more energy enters the tower through the network than is 

picked up from the other towers. Thus the impedance at their 
bases is positive and energy is flowing into them. With the 
third tower, however, the situation is just the opposite. Here 

the current is flowing out of the tower rather than into it so the 

sign of the resistance is negative. 

POSITIVE 
RESISTANCE 

POSITIVE 
RESISTANCE 

NEGATIVE 
RESISTANCE 

Fig. 9-6. Energy flow into a negative-resistance tower. 

One source of confusion regarding negative resistance is 
that only a driving-point resistance can be negative. Figure 9-7 

shows two boxes connected together. From the voltage and 

current between them, we can conclude that the impedance 
seen at the input of the second box is a resistance of 20 ohms. 

Now suppose that the box does in fact contain a 20-ohm 
resistor, and nothing more, as in Fig. 9-7B. Then, no matter 
what happens to be in the first box. the impedance seen at the 

input of the second box will always be a 20-ohm resistance. The 

reason is that, in this special case, the driving-point impedance 
seen looking into the second box is also the self-impedance of 
the 20-ohm resistor. If the second box contained a source, such 

as a battery, its driving-point impedance would depend not 
only on what was in the box but on what was connected across 
its terminals. 

Figure 9-7C shows the same two boxes, but this time with 

batteries and resistors. The impedance measured at the input 

of the second box is still 20 ohms. If we were to specify this 
same impedance looking back into the first box, it would still 
be 20 ohms, but the sign would be negative because energy is 

flowing out of the first box. The magnitude of the resistance 

depends on the voltages of the batteries in both boxes, as well 
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as on the values of the resistors they contain. Thus a 
driving-point impedance is merely the ratio of a voltage to a 
current at the input of a network or circuit or at the base of a 
tower. Its magnitude depends on what is connected to it. Its 

sign depends on the direction in which energy is flowing. There 

is no point in asking what we are measuring the resistance of 
when we specify 20 ohms in Fig. 9-7C; we are merely 
specifying the ratio of a voltage to a current. Its value depends 
on many factors. The same is true when we specify the base 
impedance of a tower in a directional-antenna system; we are 
merely specifying a ratio of the voltage to the current at the 
base. The value of this ratio depends on many different things, 
including not only the self-impedance of the tower but also the 
mutual impedances to other towers, as well as all of the 
currents in the system. Again, if the base impedance is a 
negative number, this merely means that energy is flowing out 
of a tower instead of into it. 

Zero Resistance 

From our equation we can see that not only may the 

resistive part of the driving-point impedance of a tower be 
positive or negative, it may very well be zero. Zero resistance 
is probably even more confusing than negative resistance. 
What does it mean? If the resistance between two terminals in 
a circuit is zero, then we have a short circuit, and in general it 

isn't advisable to apply any voltage at all to a short circuit. 
Perhaps we can get a better idea of what a zero driving-point 
resistance means by writing an equation for it, 

/, 
0 = Z, , + —:'- - Z,, 

I, 

Inspection of the above equation shows that what it really 
means is that no voltage at all is required to make the current 
I flow. Although this situation is impossible in passive 

circuits employing only real resistors, it is not at all 
uncommon in antennas. It means that the element whose 
driving-point impedance we are considering is parasitic; the 

current is caused by the voltage induced in the element by the 
currents in the other elements of the array. All we have to do is 

to short its terminals, and the proper amount of current will 
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R = 20 
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r 

(B) 

lA — 0» 

2 
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+ 0 
I R = 

20V + 20 

— 

Fig. 9-7. Driving point resistances discussed in text. 

flow to make the element behave as it should. This is true of 

the directors and reflectors in a Yagi antenna. 
At first glance, it might appear that a zero driving-point 

impedance would be desirable. It would save on transmission 
lines. All that we would need at the base of the tower would be 

a network to tune out the reactance. In general, however, the 

practice isn't followed in broadcast-antenna systems. The 
reason is that even the slightest change in the parameters of 
the system will make the driving-point impedance go either 
positive or negative, changing the parameters of the feeder 
system. Usually, whenever it is possible, the use of towers that 

have a very low or zero driving-point resistance is avoided. 
When such a tower is unavoidable in the design of an array, it 
is quite common to add some series resistance at the feed 

point. This will introduce some loss into the system; but 
usually there isn't much power fed to such a tower, and the 

improvement in the system is well worth the additional loss. 
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COMPUTING DRIVING-POINT IMPEDANCE 

The actual computation of a driving-point impedance has 
traditionally been considered a very tedious operation. It is 
necessary to convert several impedances from polar to 
rectangular form and back again. Fortunately, with the 
advent of a pocket calculator that will handle vector addition, 

this in no longer necessary. This capability alone will make the 

calculator a very worthwhile investment for the broadcaster 
who is involved in the computation of driving-point 
impedances. 

Let us consider as an example a 2-element array that has 

the following parameters: 

Zn 
Z22 
ZI2 

= 25 + j40 

= 25 + j40 
= 20—j15 

= 0.9 / 100° 

The first step is to express everything in polar form as follows: 

= 47 zir 

Z22 = 47 / 58°  

42 = 25 / — 37° 
— = 0.9 / 100° 

Now we can proceed to compute the driving-point impedance 

of tower 1 by the equation 

= Z11 
12 
ZI2 

Substituting numbers into this equation gives us 

Z = 47 z 58° + 0.9 / 100° + 25 / —37° 
A = 47 L111°. + 22.5 / 63°  
Z = 65 / 60° 

Now we convert back to rectangular form and find the 

driving-point impedance of tower 1 to be 

Z = 35.12 + j60 ohms 

We can find the driving-point impedance of tower 2 similarly. 
The only difference in the two equations is in the second term; 
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the ratio of the currents is now 1.11 instead of 0.9. Hence we 
have 

II 
Z2 = Z22 ± Z2 

12 

Z2 = 47 / 58° + 1.1 / — 100° + 25 / — 37°  
= 47 L.01 + 28 / — 137° 

Z2 = 22 

The driving-point impedance of tower 2 is thus 

Z2 = 4.5 + j22 

The computation of the driving-point impedances is 

clearly just a matter of pressing a few keys on a calculator. 

When more than two towers are involved, there are a few more 
steps; but the process isn't at all difficult. In fact, if the 
broadcast engineer would go through the steps, whether it is 

necessary or not, he would gain a great deal of insight into just 

how his antenna really works and what interaction between 
ratio and phase controls to expect. 
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Chapter 10 

Impedance 
Transformation 

and Phase Shifting 

The average broadcast engineer finds the networks used in the 
feeder system of a directional antenna confusing at best. Most 

textbook treatments of networks are highly mathematical— 

more so than is needed for maintaining and operating an 
antenna system. The few nonmathematical treatments usually 
make heavy use of graphs that are hard to understand and 
even harder to interpret. The subject is actually more 
unfamiliar than difficult. The small amount of effort required 

to understand how the networks in a feeder system operate is 
well worth while. The better an engineer understands how the 

networks in his antenna system function, the less apt he is to 

get in trouble while adjusting them. 
In a directional-antenna system, networks are used for the 

following purposes: 

1. Impedance matching between various parts of the 

system 
2. Phase shifting 
3. Power division 

Unfortunately, the three functions listed above are not as 
distinct as one might wish. Impedance-matching networks and 

power dividers introduce phase shift. Probably the greatest 
cause of difficulty in adjusting networks is the interaction that 
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takes place between their controls. For example, when one of 
the controls on a power divider is moved it might cause more 
phase shift than power division. Once one is familiar with the 
principles of network operation, this interaction can be 

anticipated and will not be as formidable. 

The subject of power division is treated separately, in the 
next chapter. 

IMPEDANCE-TRANSFORMING NETWORKS 

At audio frequencies, impedance matching is usually 
accomplished by a transformer. This impedance trans-
formation is easy to understand: Impedance is a ratio of 

voltage to current, and a transformer changes this ratio. 
At broadcast frequencies, impedance matching is 

accomplished by reactive networks. Just how a reactive 
network makes one value of impedance look like another value 
is not always clear. We will approach the subject by means of 
equivalent circuits. Once the concept of equivalent reactive 

circuits is well understood, the action of various 
impedance-transforming networks will fall logically into 
place. 

Equivalent Circuits 

Figure 10-1A shows a "black box" that contains only 
passive elements such as resistances and reactances. By 

Z -= 25 j25 

(A) 

(C) 

(B) 

j50 

Fig. 10-1. Equivalent series and parallel circuits. 

j25 
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means of an impedance bridge we find that the impedance 
seen looking into its terminals is 

Z = 25 + j25 ohms 

Remember, this impedance is a property of whatever happens 

to be in our box, and it tells us what the magnitude and phase 
angle of the current will be if we apply a given voltage to the 
terminals. Likewise, it tells us the magnitude and phase of the 

voltage that would appear across the terminals if we forced a 
given current through them. In other words, the impedance at 

the terminals of the network is a measure of the ratio of the 
voltage across the terminals to the current flowing in them. 

Series and Parallel Equivalence 

One thing the box might contain is the simple series circuit 
shown in Fig. 10-1B, which consists of a 25-ohm resistance in 
series with a 25-ohm inductive reactance. The important thing 
to remember is that this isn't the only circuit that our box 
might contain. For example, it might contain the circuit shown 
in Fig. 10-1C, which consists of a 50-ohm resistance in parallel 
with a 50-ohm reactance. On the surface these two circuits 
don't look at all alike, but a few simple calculations will show 
that the impedance seen looking into their terminals is exactly 

the same. 
The impedance seen looking into the terminals of the 

circuit of Fig. 10-1C is found by taking the product over the 
sum, just as we would do with parallel resistors. 

Z —  50 ( j50)  
50 + j50 

We can rationalize the denominator by multiplying both the 

numerator and denominator by the conjugate of the 
denominator. 

Z = 50 ( 50)  (50 — j50: 
50 + j50 ( 50 — j50) 

5° (5°2 )  + 5° (5°2 )  — 25 + j25 ohms 
502 + 502 502 + 502 
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Thus the impedance seen looking into the circuit, 25 + j25 

ohms, is exactly the same as the impedance seen looking into 

the series circuit of Fig. 10-1B. 
This equivalence of series and parallel circuits is the basis 

of all reactive impedance-transforming networks and must be 
clearly understood. Stated differently, a resistance and 

reactance connected in series look exactly like a different 
value of resistance in parallel with a different value of 

reactance. We can't tell the difference from any 
measurements that we make at the terminals of the network. 
This equivalence only holds true if we keep the frequency 

constant; but this restriction won't cause any trouble, because 

broadcast stations operate at a constant frequency. 
It doesn't make any difference at all to us which circuit is 

actually in the box of Fig. 10-1A. If we add the proper 

reactance at the input terminals to tune out the reactance in 

the box, we can make it look like either a 25-ohm resistance or 
a 50-ohm resistance, depending on how much reactance we 

connect at the input and how we connect it. 

Figure 10-2A shows our black box with a 25-ohm capacitive 
reactance connected in series with it. The inductive and 

capacitive reactances cancel, and the impedance seen looking 

into the circuit is a pure resistance of 25 ohms. 

Z 25 

o  

— j25 
j25 

25 

Fig. 10-2. Two values of pure re-
sistance obtained from the same 
black box. -

o 

Z -- 50 

o  

(A) 

150 50 

150 

(B) 
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In Fig. 10-2B we have the same black box, but this time 
with a 50-ohm capacitive reactance in parallel with the input 
terminals. Again the inductive and capacitive reactances 
cancel, and the impedance seen looking into the box is a pure 
resistance of 50 ohms. 

This concept is apt to be confusing at first. Let's go over it 
again. In Fig. 10-3 we have two terminals between which we 
measure impedance and find it to be 25 + j25 ohms. Let's say 
that we have no idea what is actually in the box. It might be 
either the series or the parallel circuit that we have 
considered. Or it might be neither of these; it might be the 
impedance measured across the base insulator of a tower. In 
this case, the resistance and capacitance are actually 
distributed along the tower, and one equivalent circuit is as 

good as the other. We might tend to think of the circuit in A of 
Fig. 10-3 as being more "real" than the one in B. But if we had 
started out with an admittance bridge, we would have found 

the admittance across the terminals of our box ( Fig. 10-3B) to 
be 

Y = 0.02 — j0.02 mho 

This is the equation for a 20 mmho conductance in parallel with 
a 20 mmho inductive susceptance. If we were to state this in 
terms of resistance and reactance, it would represent a 50-ohm 
resistance in parallel with a 50-ohm reactance. 

Z=25 + )25 Y _ 0.02 )0.02 

(A) (B) 

Fig. 10-3. Equivalent impedances and admittances. 

Again we see that it makes absolutely no difference what 
the actual circuit in the box might be. We are only concerned 
with what it looks like when viewed through its input 
terminals, and it can be represented equally well by either its 
series or parallel equivalent. 
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We can now generalize our equivalent circuits and derive 
simple equations that will enable us to find either circuit from 
the other. Before we do this, we should note two things. First of 
all, there is nothing sacred about the choice of inductive 
reactance in the example we have been considering. The 
techniques would work just as well if the reactance inside the 

box were capacitive; we would merely use an inductive 
reactance outside the box. In general, impedance-
transforming networks use both inductive and capacitive 
reactance. Second, either a capacitive or an inductive 
reactance will vary with frequency, so the series and parallel 
circuits will only be exactly equivalent at one frequency. The 
two circuits will be approximately equivalent over the 
bandwidth of a regular broadcast signal, so we can use them in 
broadcast networks. 

Now let's look at our equivalent series and parallel circuits 
and see if we can use them to understand impedance-
transforming networks in general. 

Conversion Between Series and Parallel Circuits 

Figure 10-4 shows a series network and its parallel 
equivalent. The parameters of the series network are 
designated by an s, and those of the parallel network are 
designated by a p. We can define the Q of the networks in the 
conventional way. The Q of the series circuit is 

Q= X' 

and that of the parallel circuit is 

RP 
Q — 

Xp 

Since the two networks are equivalent, they have the same 
value of Q. 

X. Rp 
Q= = 

X 

If the networks are to be equivalent, the impedance seen 

looking into their terminals must be equivalent. The 
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(A) 

Rp - ( 02 - 1)R, 

Xs - / R P R ° 1 
— — / 
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P - s 

Ro 
- Q2 - 
Rs 

Fig. 10.4 Driving equivalent series and parallel circuits. 

magnitude of the impedance seen looking into the series 
circuit is 

= R. + jX, 

The magnitude of the impedance seen looking into the parallel 
circuit is 

ZP Rp Xp 

Now, inasmuch as our two circuits are equivalent by 
definition, the impedances seen looking into them are also 
equal. Hence 

R, ( jX,  
Z, Zp 2 = + jX, —  

R i, + jX, 

We can substitute Q into this equation and simplify it, giving 

RP 
= Q2 + 1 

Rs 

This basic equation is all that we need to find one circuit when 
the other is given. 

Rp ()X, ) 
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In Fig. 10-4 all of the equations relating the parameters of 
the equivalent series and parallel circuits are summarized. We 
can use these equations to design a network that will make any 
value of resistance look like any other value of resistance as 
far as we can tell by any measurements. In general, we use 
one of two procedures. 

1. If we wish to make the resistance at the input of a 
network look larger than the resistance we have, we 
add a reactance in series, then tune out the equivalent 
reactance by adding a parallel reactance of the 
opposite type. Thus, if we added an inductive 
reactance in series with the existing resistance, we 
would use a capacitive reactance to tune it out. 

2. If we wish to make a resistance look smaller than it is, 
we add a reactance in parallel with it, then a series 

reactance of the opposite type to tune it out. 

L-NETWORK 

The circuits we have been using are actually L-networks, 
circuits whose configuration resembles the letter L. By a 
proper choice of components, such circuits can, in theory, 

effect any impedance transformation desired. We will see a 
little later that there are practical limits to the 
impedance-transformation ratio that we can use in broadcast 
work. 

We will start our consideration of uses for L-networks by 
transforming one value of resistance into another. Later we 
will consider cases where the impedance is not a pure 
resistance. 

Impedance Transformation by the L-Network 

Suppose, for example, that the impedance at the base of a 
tower is a pure resistance of 10 ohms and that we wish to feed 
the tower with a 50-ohm transmission line. For maximum 
power transfer and minimum reflections, we want a network 
that will transform the impedance of the tower to a pure 
resistance of 50 ohms. We will start by adding enough 
reactance X. in series with the 10-ohm resistance ( Fig. 10-5A) 
to make it look like a 50-ohm resistance in parallel with a 
reactance Xp ( Fig. 10-5B). 
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(A) (B) 

50 

Fig. 10-5. Making a load resistance look larger. 

The next step is to find the Q of the network, which is given 

= - 1 1 50 — 1 
V4- = 2 

Rs 10 

It is important to note that the Q of the network is determined 

entirely by the impedance-transformation ratio. Once we 
decide on the desired ratio, the Q of our network is established 
and there is nothing we can do about it. This has some rather 
important implications and puts a limit on the impe-
dance-transformation ratio that we can get in a practical 
network. 

The equivalent series reactance required in Fig. 10-5A is 

given by 

by 

X, = R, Q = 10 x 2 = 20 ohms 

The effective parallel reactance of the equivalent circuit of 

Fig. 10-5B is 

RP 50 
Xp = — = — = 25 ohms 

2 

Now we can represent the network we are building by the 
circuit on the left in Fig. 10-6A. The circuit on the right is 

equivalent to our network. We can take advantage of this 
equivalence by adding a 25-ohm capacitive reactance across 
the terminals of the network ( or across the 25-ohm inductive 
reactance of the equivalent circuit), as shown in Fig. 10-6B, 

canceling out the reactances but leaving us with a resistance 

of 50 ohms across the network terminals. We have thus 
transformed a 10-ohm resistance into a 50-ohm resistance with 

an L-network. 
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20 

• 

Z viO - 20 10 Z=10 + j20 j25 50 

A 

Z-50 - ;0 j25 10 

Fig. 10-6. Tuning out inductive re-
actance (A and B) by adding a 
capacitive reactance ( C). 

Now, for another example, suppose that we have a 

resistance of 100 ohms and wish to transform it into a 
resistance of 50 ohms ( see Fig. 10-7). Inasmuch as we know the 
required impedance-transformation ratio, we can determine 
the required Q of the network. 

(2= R4 77-1 = 1 1" 

Rs 50 
— 1 = 1 

Now, since we are trying to lower the impedance, we will 

connect a reactance in parallel ( Fig. 10-7B). The value of the 
parallel reactance is given by 

RP 100 
XP = = = 100 OhMS 

1 

We could use either type of reactance, but we will use 
capacitive reactance this time. Now we have to find the value 
of capacitive reactance in the equivalent series circuit of Fig. 
10-7D. It is given by 

= Rs Q = 50 x 1 = 50 ohms 

This is the value of capacitive reactance that we must tune out 

of our circuit to have an impedance that is a pure resistance. 
Hence we will use an inductive reactance of 50 ohms for tuning 
out the reactance. Our final circuit is shown in Fig. 10-7E. In 
this case, we transformed a 100-ohm resistance into 50 ohms. 
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(C) (D) 

+j50 

Z=-50 — j100 

(E) 

100 

100 

=50 

100 Fig. 10-7. Matching a 100-OHM 
load to a 50-OHM line. 

Configurations of L-networks 

Inasmuch as we can use either inductive or capacitive 
reactance in our L-networks, there are two configurations that 

can be used to transform impedance to a higher value ( Fig. 
10-8A and B) and two that will transform to a lower value (C 

and D). 
The choice of network configuration isn't arbitrary; we 

often take advantage of the characteristics of a particular 
configuration. For example, the circuits of Fig. 10-8A and C act 

as low-pass filters which tend to reduce harmonic radiation. 
The circuits of Fig. 10-8B and D act as high-pass filters. 

Although they are as effective as the others as far as 
impedance transformation is concerned, they provide no 
attenuation of harmonics. 

There is still another consideration in the selection of an 

L-network configuration. The circuits of Fig. 10-8A and C 

retard the phase of the current, causing the current at the 
output to lag the current at the input. The circuits of B and D 

advance the phase of the current. Sometimes in a 

directional-antenna system the choice of a configuration is 
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(B) 
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Fig. 10-8. Possible L- network configurations. 

decided by a need to introduce phase shift in a line going to a 
particular tower. 

Phase Shift in L-Network 

The L-network is composed of reactive elements, which 
store energy: and energy storage takes time. This, in turn, 
means that there will be some phase shift in the network. Of 
course, inasmuch as the input and load impedances are pure 

resistances, the input current will be in phase with the input 
voltage, and the output current will be in phase with the output 
voltage. The phase angle exists between the input current and 

the load current, or between the input voltage and the load 
voltage. 

The amount of phase lead or lag that is introduced by an 
L-network is given by 

,  1 
y = cos 

V r 

where y = phase shift in degrees 

r = ratio of R to R, , or R, to R, , whichever gives 
r>1 
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This shows that the phase shift, like the Q of the network, is 

completely determined by the impedance-transformation ratio 
r. Once we have selected an impedance-transformation ratio, 
we have specified the phase shift that the network will 
introduce, and there is little that we can do about it. We can 
decide whether we want the phase angle to be leading or 
lagging and select the network configuration accordingly, but 

we can't do anything about the magnitude of the phase shift. 
This is logical when we stop to think that in matching 
impedances we have to handle the resistance and reactance 
with the two variable circuit elements. We have nothing left to 
vary to control the phase shift. 

In nondirectional-antenna feeder systems phase shift isn't 
a problem. We have only one antenna and one transmission 
line, and we don't care how much phase shift is introduced by 

our networks. With a directional-antenna array, however, we 
care very much about the phase of the current feeding each 
tower. There are many places in a directional antenna where 
we can't use an L-network, because we can't tolerate the phase 

shift that it would introduce. This doesn't mean that we can't 
use L-networks at all in a directional-antenna system. These 

networks are, in fact, widely used where the phase shifts in the 
entire directional-antenna system are such that the inevitable 
phase shift in an L-network can be tolerated. 

DESIGN OF L-NETWORK 

The values of the reactive components of the generalized 
L-network of Fig. 10-9 can be determined from the equations 

given. By letting R, be the larger of the line or load 

x 

R2 X2 
Fig. 10-9. Equations for design of 

Ri L-network. 

r = 
R2 

R 1 
X1 _ 

a 

a = 

Ri 
X2 — 
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impedances and R2 the smaller, the circuit of Fig. 10-9 can 
represent any of the circuits of Fig. 10-8. Remember that the 
shunt reactance is always directly across the higher 

impedance. 
It is convenient to express the values of the parameters of 

the L-network in terms of the impedance-transformation ratio 

r, which is given by 

RI 
r 

R2 

It is also useful to define two other network parameters, a and 
b, in terms of the transformation ratio r. These two 

parameters are given by 

a —  , b — 1 

Of course, these values can be computed easily with an 

electronic calculator. In case a calculator with square-root 
capability is not available, the curves of Fig. 10-10 give the 

10 

5 

2 

10 

o 

.--

I X,' / 

c-r-----  R, R: 
R R7 

Ft÷: I-1 o o 

_ 

5 10 
VALUE Of r 

20 

Fig. 10-10. Data for L- network design. 
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values of a and b in terms of the impedance-transformation 

ratio r. 

Knowing a and b, we can easily find the values of X and 
X, from the equations 

R, 
X, = ±j—a X2 = -7)7 

The ± and -T- signs merely mean that if XI is an inductive 

reactance, X, must be a capacitive reactance, and vice versa. 
For example, if we wish to match a 10-ohm load to a 50-ohm 

transmission line, we find from Fig. 10-10 

a = 2.5, b = 2 

Therefore 

R, 50 
X, = j —a = j — = j20 ohms 

2.5 

and 
R, 50 

= —j — = = —j25 ohms 
2 

This is the same example that is given in Fig. 10-4. 

LIMITATIONS OF L-NETWORK 

In practice. there is a definite limit to the impedance-

transformation ratio that we can obtain with a single 
L-network without running into problems. One limitation of the 

L-network is that it will introduce phase shift as mentioned 
earlier, and there is nothing that we can do about it. If the 
system won't tolerate the phase shift, we must use another 

type of network. 
Another limitation of the L-network is its bandwidth. Our 

derivation of the L-network was based on the use of two 

reactances, one capacitive and one inductive. The reactance of 
any real inductance or capacitance changes with frequency, so 

the inductances and capacitances in a real network exhibit 

their design values of reactance at only one frequency. At 
frequencies above and below the frequency for which the 

network was designed, its performance deviates somewhat 

from the ideal. For broadcast applications the signal 
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transmission through the network must be reasonably 
constant over the bandwidth of the transmitted signal, 
otherwise sideband power will be lost. 

In Fig. 10-11 the response of an L-network having a 
low-pass-filter configuration is plotted as a function of 
normalized frequency. The response at the design frequency is 
given at 1.0 on the horizontal axis. At the point 1.1 is the 

response at a frequency 10% higher than the design frequency; 
at the point 0.9 is the response at a frequency 10% lower than 
the design frequency. 

r=2 

r=6 

r=10 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

Fig. 10-11. Frequency response of L-networks. 

Each curve is for a different value of impedance-
transformation ratio. The curves show that the bandwidth of 
the network becomes smaller as the transformatin ratio 
becomes larger. Earlier we saw that circuit Q is given by 

Q — 1 
Rs 

where lip /Rs is equal to the transformation ratio. This 
equation shows that a high impedance-transformation ratio 

corresponds to a high value of circuit Q, which we know means 
restricted bandwidth. 

The curves of Fig. 10-11 show that the sidebands of a 
broadcast signal will be attenuated if the transformation ratio 
is greater than about 10. Substituting this into the equation in 
the preceding paragraph gives 

Q = = Vi= 3 
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As a general rule, a single network is never used to obtain an 

impedance-transformation ratio greater than 10:1, and the 
circuit Q is kept to 3 or less. Many problems in direc-
tional-antenna systems can be traced to using a single network 
for an impedance-transformation ratio greater than 10. 

The curves of Fig. 10-11 can be made to apply to 
L-networks having a high-pass-filter configuration by simply 
letting the numbers on the horizontal axis represent the design 

frequency divided by the frequency of operation, instead of the 
inverse. Then 1.1 will correspond to a frequency 10% below the 
design frequency. In other words, the frequency scale will be 
reversed. 

THREE-ELEMENT NETWORK 

The most serious limitation of the 2-element L-network is 
that it introduces an amount of phase shift that depends on the 
impedance-transformation ratio. Once the transformation 
ratio is set, the amount of phase shift is set, and there is 
nothing we can do about it. By adding a third reactive element 
to our network, we can control the phase shift as well as the 
transformation ratio. 

The 3-element network is widely used to perform the 
following functions: 

1. Impedance transformation with arbitrary phase shift 
2. Impedance transformation with specified phase shift 
3. Control of phase shift without any impedance 

transformation. 

The 3-element network can take either of the forms shown 
in Fig. 10-12. They are called T and pi networks because their 

(A) T-NETWORK (B) PI-NETWORK 

Fig. 10-12. T and Pi networks. 
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configurations resemble the English letter T and the Greek 
letter 7r. For any desired impedance transformation, we can 
use either type. In network theory we can show that for any 
given T-network there is an equivalent pi-network, and vice 
versa. As with the L-network, both inductive and capacitive 
elements must be used. That is, if two of the elements are 

inductive, the third must be capacitive. 
Several combinations of reactive elements can be used to 

make up T or pi networks, some of which are shown in Fig. 

10-13. The 3-element network most commonly used in 
broadcast work is the T-network in Fig. 10-13A. This 
configuration is popular because it has the configuration of a 

low-pass filter, and at broadcast frequencies and power levels, 
variable inductances are more practical than variable 
capacitances. The remainder of this discussion of 3-element 

networks is based on this configuration, but the principles of 
its operation apply to other possible configurations as well. 

T TT  
(A) (B) 

  IHET 
(C) (D) 

Fig. 10-13. Three-element networks. 

In practical networks all three reactances are made 
variable. Variable capacitive reactance is obtained by 
connecting a variable inductor in series with a fixed capacitor 

as shown in Fig. 10-14. 
Figure 10-15A shows two L-networks connected one after 

the other. By replacing the two capacitive reactances X3 and 
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Fig. 10-14. Practical T- network 
commonly used in broadcast-
antenna systems. 

X3 " with a single capacitor having a reactance of 

X3 X3 " 
X3 — 

X3 X3 " 

we have the network of Fig. 10-15B. We can think of the 

L-section nearest the load as transforming the load impedance 
into some ficititious midpoint impedance Z,„ , which is higher 
than both ZL and Z„, . The second L-network transforms this 
fictitious impedance down to the desired value of input 
impedance g. • 

ZIN 

o  

Xi X2 

o  

X3 ' ZL 

o 
(A) 

xl X2 

Fig. 10-15. Derivation of T-
network. 

(B) 
o 

If phase shift isn't important, we can design this network 
just as we would design two L-networks. We have one extra 
component value, which can be chosen arbitrarily. 

Suppose we have the situation of Fig. 10-16, where we wish 

to match an 8-ohm resistive load to a 50-ohm line. We must 
make one arbitrary decision, so let's make the Q of the section 
closest to the load equal 2.5. 
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We can immediately find the value of X2 in the circuit by 
simply multiplying Z,. by Q as shown in the figure. The 
midpoint impedance Zr„ can be figured as the effective 
parallel resistance seen looking into the circuit. As shown, it 
works out to be 58 ohms. The capacitance X '3 of the L-section 
closest to the load works out to be 23.3 ohms. 

The rest of the problem consists of designing an L-network 
to transform the midpoint impedance of 58 ohms into the 
desired load impedance of 50 ohms. We first find the Q of this 

network, which we will call Q , to be 0.4. Now we can find that 
X, = 20 ohms and X3 " = 145 ohms. By combining X3 and 
X3 " according to the rule of combining parallel reactances, 
we find that X3 is also 20 ohms. 

We can find the phase shift through this network by adding 
the phase shifts in the two L-sections. 

1 1  
cos y, — _ — 0.37 = 68.2° 

1 1  
cos y2 — v — 0.93 y2 = 21.8° 

r2 V-57375T) 

Y = + Y2 = 68.2° + 21.8° = 90° 

This tecnhique can be used to analyze an existing 
T-network. The values of the elements of the network and the 
load impedance can be found with an impedance bridge, and 
the midpoint impedance can be computed. The phase shift 

through the network can then be calculated by adding the 
phase shifts of the two equivalent L-networks. 

T-Network-90° 

When all three elements of the T-network have the same 
numerical value, as in Fig. 10-16B, the network has some very 

interesting properties. In fact, it behaves very much like a 
section of transmission line that is 1/4 wavelength long. The 
common value of the three elements can be considered the 
characteristic impedance Zt, of the network. The input and 
output impedances are related to the characteristic 
impedance of the network by the equation 
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Zn = 
ZL 

where ZL is the load impedance connected to one side of the 
network, and Z. is the impedance that would be seen looking 
into the other end of the network. This is exactly the same as 
the equation relating the input and output impedances of a 

quarter-wave transmission line. As in the quarter-wave line, 

the output voltage and current lag the input voltage and 

current by 90°. 
Another way of stating the relationship expressed by the 

above equation is to say that the characteristic impedance of 

the network is the geometric mean of the input and output 

impedances. The geometric mean of two numbers is the 

zo 2 

ZIN — 5° X3' 

_ IftT — 1 = 
e- IN 

= 8 

58 
— — 1=0.4 X2 = R 0=8x 2.5=20 OHMS 
50 

Flr, 58 
X " = = — = 145 OHMS 
3 Q 0.4 

X1= R s0=(50)(0 4) = 200HMS 

Rm = Rs(Q2 + 1)=8(2.52 + 1)= 

58 OHMS 

X3 R ry'0 = 58/2.5=23.2 OHMS 

(A) 

Xi=j20 X2= )20 

Z,n= 50 = —j20 ZL=8 

(23.2)(1450  
—20 OHMS 

3 X3' + X3 - 23.2 + 145 

(B) 

Fig. 10-16. Deriving a T-network from two L-networks. 
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number that would be halfway between them on the C-scale of 
a slide rule. 

The 90° network is easy to design and adjust, because once 

the load and input impedances are known, the element values 
can be found easily. 

For example, suppose that we wished to design a 90° 
network to match an 8-ohm load to a 50-ohm transmission line, 

as we did in Fig. 10-16. We can rearrange the above equation to 
solve for the characteristic impedance, giving 

4 = 

Substituting values for Z. and ZL gives 

= VT57(17 = 20 ohms 

Thus all three elements of the network have a reactance of 20 
ohms, which is exactly what we found in Fig. 10-16. Either X 
and X2 will be inductive and X3 reactive, or else X, and X, 
will be capacitive and X3 inductive ( see Fig. 10-17). The 
network of Fig. 10-17A introduces a lagging phase shift of 90°, 
whereas the network of Fig. 10-17B introduces a leading phase 
shift of 90°. 

The network of Fig. 10-17A can be seen to be the same 
network we designed in Fig. 10-16 by letting the Q of the 
L-section closest to the load equal 2.5. This example gives a 
little additional insight into the operation of the 90° network. In 
the next section we will see how the 90° T-network can be used 
as a phase shifter. 

Phase Shifter-90° 

A very common 90° T-network is the so-called 90° phase 
shifter of Fig. 10-18. In this T-network all three reactances as 

(A) LAGGING NETWORK (B) LEADING NETWORK 

Xi=X 2,-- X 3=Z0= \,/ Z,,Z L 

Fig. 10-17. Configurations of 90° T-networks. 
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--"rr ee\--•— rv,e4r" 
X1 = j50 X2=j50 

ZIN= 5° X3=H50— T zL=5, 
Fig. 10-18. A 90' phase shifter. 

well as the input and output impedances have the same 
magnitude. Very frequently this value is 50 ohms and the 
network is inserted in a 50-ohm transmission line. 

By varying X, and X2 , we can vary the phase shift of the 
network over a range of ± 15° without disturbing the 
magnitude of the output current significantly. In the most 

common arrangement X1 and X2 are ganged to a single 
control so that they can be varied simultaneously. In some 
recent phase shifters only X, is variable; in most practical 
systems, this arrangement will disturb the magnitude of the 
load current more for a given amount of phase shift then when 
XI and X2 are both variable. 

The amount of phase shift, and the way the values of X 
and X2 affect it, depend on the load impedance seen looking 

back into the source. If the network were driven from a very 

high impedance or a constant-current source, X, would have 
no affect at all on the phase shift. If the network were driven 

from a very low impedance or a constant-voltage source, X 
would have a large effect on the phase shift. In actual systems 
the source acts as neither a constant-voltage nor a 
constant-current source. 

When the internal impedance of the source is equal to the 

characteristic impedance of the transmission line, varying X, 
alone produces a greater phase shift than when X2 is also 

varied, but it also produces a greater change in load current. 
For a 15° phase shift the load current will change by about 4%. 

When both X, and X2 are varied, a greater change of 
reactance is required to produce a given phase shift, but the 

load current does not change nearly as much as when only X, 
is varied. For a 15° phase shift the load current will change by 
less than 1%. 
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It is difficult to analyze the behavior of a phase shifter in a 
practical system because its behavior is dependent on the 

impedance that will be seen looking back from the input 

terminals toward the transmitter. Although impedances are 

usually matched throughout the feeder system the impedance 

of the feeder system usually isn't matched to the internal 
impedance of the transmitter. The reason is simple: Although 

the condition of matched impedance represents maximum 
power transfer, it also represents the condition of 50% 
efficiency. If the impedance of a feeder system were matched 

to the internal impedance of the transmitter, half of the 

available power would be delivered to the antenna, and the 

other half would be dissipated in the transmitter. This is not a 

desirable mode of operation. 
Figure 10-19 shows a transmitter connected through a line 

and a phase shifter to a load. The impedance is matched at the 
load and at the input and output of the phase shifter. The 
impedance is not matched at the input to the line leading from 

the transmitter. Most transmitters operate most efficiently 
when their load impedance is higher than their internal 

impedances. Inasmuch as the line is not matched at the 
sending end, the impedance seen looking back toward the 

transmitter from the input to the phase shifter depends on the 
length on the line. If the line is short compared to 1/4 

wavelength at the operating frequency, the impedance seen 
looking back toward the transmitter will tend to be lower than 

the characteristic impedance of the line. The line will thus act 
something like a constant-voltage source. If, on the other hand, 

the line between the transmitter and phase shifter is about 1/4 
wavelength, the impedance will be inverted and will be higher 

than the characteristic impedance of the line, and the line will 

XMTR 

\ 
IMPEDANCE 

NOT MATCHED HERE 
TT7 

IMPEDANCE 

MATCHED HERE 

Fig. 10-19. Phase shifter connected between transmitter and load. 
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look more like a constant-current source. This uncertainty 

about the value of the source impedance feeding a network has 
no significant influence on an impedance-matching network, 
but it does have an influence on the way a phase-shifting 
network behaves. 

GENERAL ANALYSIS AND DESIGN OF T-NETWORK 

Network analysis and design are really two very different 

problems. The engineer trying to understand how the networks 
in a station operate analyzes the networks. That is, he starts 
with the values of the elements of the network, which he finds 
from a diagram or by measurements, and then determines the 
magnitudes and phases of the input and output currents or 
voltages. The designer, on the other hand, starts with the 
desired magnitudes and phases of the input and output 
currents, and then finds the values of the elements of a 
network that will satisfy these requirements. 

Z IN 50 

A 

ZA= 8 + j20 YA= 0.02 - 10 04 

YB- 0.02 - JO 01 ZB 50 - 120 

Fig. 10-20. Analysis of a T-network. 

General T-Network Analysis 

We will first consider the matter of analyzing networks. 
Fig. 10-21 shows a T-network for which the values of all of the 

reactances are given. The network is intended to match a load 
impedance of 8 ohms to the characteristic impedance of a 

50-ohm line. As far as the solution of the network is concerned, 
it is a series— parallel network. So we have to combine 
impedances in series and parallel. This is normally a rather 
tedious procedure, but with a calculator that can handle vector 
calculations, there really isn't much work to it. 

In analyzing any network it is easiest to start at the load 
and work back toward the source. In Fig. 10-20 we see that, 
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I = 0 4/9_0' = 1 On° 

Z1,-= 50 +j20 +j20 Fig. 10-21. Voltages and currents 
in a T-network. 

E A -= 21 5/68 2'T 
4 1,-." 1 08'158 2°1 

looking at the load in series with X, —that is, looking to the 

right from line A, we have an impedance of 

Z. = 8 + j20 ohms 

This is an admittance of 

YA = 0.02 — :10.04 mho 

The next element of the network is a capacitive reactance of 

—120 ohms. This is the same as a capacitive susceptance of 

j0.05 mho. Since this element is in parallel with the other 

admittance, we can add it algebraically to the susceptance of 
the load; that is, 

Y„ = 0.02 — 10.04 + 10.05 = 0.02 + 10.01 mho 

To consider the last series element, it is convenient to convert 
back to impedance. 

= 50 — /20 ohms 

Adding the reactance of 350 gives us 

Z = 50 — )20 + j20 = 50 ohms 

Now that we know the value of admittance or impedance 

at each point in the network we can rather easily find the 
phases of the currents. The easy way to do this is to assume 

some value of load current, as in Fig. 10-21. One ampere is as 

good a choice as any. This current flows through X, and the 
load, so we can figure the voltage at the midpoint of the 

network by Ohm's law. 

= l(R + jX, ) = 1(8 + 320) = 21.5 / 68.2°V 

We can use Ohm's law again to find the current through the 

capacitor. 
E 21.5 / 68.2°  

lc = —x — 1.08 / 158.2°A 
20 / — 90° 

272 



The current lags the voltage across the capacitor by 90°, which 
is exactly what it should do. We now know the two currents L. 
and Ic , so we can find the current through /, , which is also the 
input current of the network, by using Kirchhoff's current law. 

/1 = IL + Ic = 1 z 0° + 1.08 z 158.2° = 0.4 z 90° 

We now have all of the currents in the network. The ratio of the 
output current to the input current is 

I, 
1, 

1.0 z 0°  
— — 2.5 z —90° 

0.4 L 90° 

Inasmuch powers are constant, the impedance-transformation 
ratio is the square of the current ratio. The phase shift through 
the network is —90° 

Any network can be analyzed by using these procedures. 
When a calculator is available, all of the computations can be 

made in a few minutes. 

DESIGN OF T-NETWORK 

By contrast, the design procedure is tedious and at times 
confusing. If all of the element values in the network are 
determined by a detailed analysis, the mathematical 
manipulations can be tedious indeed. Fortunately, there are 

formulas that can be used to design a T-network for any 
desired impedance transformation and phase shift. Of course, 
the consideration of keeping the impedance-transformation 
ratio to 10:1 or less applies in the T-network just as it does in 
the L-network. The formulas for the value of each of the 
elements of a T-network are as follows: 

NFIF, —, RI, gn xi - 

x2 = 

sin y tan 1, 

It2n RI, RI, _ 
sin y tan y 

X3 = 
sin y 

273 



where R. = desired input resistance 
R, = load resistance 
y =- desired phase angle between input and output 

currents 

To understand some of the implications of the above 

formulas, let us go back for a moment to the L-network. In 
considering an L-network, we found that the phase shift is 

given by 
1 

cosy= 

Now, if we use the above design formulas for a T-network 
having a phase shift given by this equation, we find that the 

value for either X, or X2 becomes zero. This means that we 
won't have any inductor at all for X, or X2 , and the network 

will become an L-network. This shows that the only reason we 
need three elements is to get some value of phase shift other 
than what we would get with an L-network for the same 

impedance-transformation ratio. 
Another interesting implication of the formulas is that if 

we wished to get a phase shift between zero and the value we 

would obtain from an L-network, X, would be negative, 
meaning that we would need a capacitive reactance at this 

point instead of the inductive reactance that we have shown. 

That is, if 

0 < y<cos-1 ( 

then X, will be a capacitor. 
Based on our formulas for the values of the T-network, we 

can define four different types of T-networks, each of which 

provides a phase shift in a given range, as shown in Fig. 10-22. 
Whenever an impedance-transforming or phase-shifting 

network is designed, it should be analyzed in detail to 

determine the relative magnitudes of the currents, the 
bandwidth, and the efficiency. 

Bandwidth of T-Network 

Like the L-network, the T-network is designed on the 

assumption that the inductive and capacitive reactances have 
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T 
1 

cos - 1 < ij,<180 
Vr 

(A) TYPE 1 ( Lagging) 

1 
cos - 1 < lipl< 180 

v7 

0 < Ocos - 
r 

(B) TYPE 2 ( LAGGING) 

0<-41,1< cos - 

(C) TYPE 3 (LEADING) (D) TYPE 4 ( LEADING) 

Fig. 10-22. The various types of T- networks. 

constant values. Inasmuch as the reactance of a coil or 
capacitor changes as frequency changes, we can expect ideal 
behavior from the network at only a single frequency. At other 
frequencies the response will be somewhat different. 

Figure 10-23 shows how output current varies with 
frequency. Note that as the impedance-transformation ratio r 
becomes greater, the effect of frequency is more pronounced. 

For this reason, in the T-network ( as in the L-network), it is 

R
E
S
P
O
N
S
E
 

1 - 

0 8 - 

0 6 

0 4 - 

0 2-

t i I 1 I 
05 06 07 08 09 1 0 1 1 1 2 1 3 1 4 1 5 

6 

= 10 

RATIO OF FREQUENCY OF OPERATION TO DESIGN FREQUENCY 

Fig. 10-23. Bandwidth of T- network. 
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not advisable to attempt an impedance transformation greater 
than 10:1 in a single network. Sometimes, when a greater 

impedance-transformation ratio is required, a T-network and 

an L-network are used in tandem. 

NETWORK EFFICIENCY 

If a network is inefficient, not only will power that could 
have been radiated be lost, but the components of the network 
will dissipate the wasted energy in the form of heat. This 

means that the components will require higher ratings than 

otherwise, and inasmuch as they will operate at higher 
temperatures, they will be more apt to fail or change value. 

For all practical purposes, we can make a couple of 
assumptions that make calculating the power lost in a network 

a simple matter. 

1. The currents in the network can be calculated by 

considering the elements of the network to be pure 
reactances with no losses. 

2. The losses in capacitors can be neglected because the 

losses in the inductors are so much greater. 

Based on these assumptions, it is rather easy to compute 

the loss in a network. When a network is properly adjusted, the 
input and load impedances will be pure resistances. The power 

in or out of the network will therefore be 

131 = R, + I12 R, 

Since we are assuming that all of the losses take place in the 
resistance in the inductances in the circuit, the network losses 

will be 

= Pm f R, f R 

where R, & R, are the resistances associated with XI and 
X, . These resistances are shown in Fig. 10-24 and may be 
determined from measurements with an impedance bridge. 

By a lengthy mathematical analysis of the loss in 

networks, we could show that the efficiency of a network 
depends only on the Q of the inductances, the impedance-

transformation ratio, and the amount of phase shift. The 
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X1 R R 2 X 2 

Fig. 10-24. Loss resistances in a T-network. 

greater the impedance-transformation ratio, the lower the 
efficiency of the network. And the more the phase shift differs 
from 90° ( for the type 1 network), the lower the efficiency. 

The analysis would disclose a rather surprising fact; that 

is, the efficiency of the network is not dependent on the 
number of coils used. Thus, the efficiency of a matching 

network can sometimes be improved by using two networks in 
tandem instead of one network. 

The efficiency of an L-network can be determined by the 
simple relationship 

Efficiency = 
RL  

RL x 

where RL is the load resistance, and g is the series loss 
resistance of the network. Inasmuch as a T-network is simply 
two L-networks in tendem, the efficiency is simply the product 

of the efficiencies of the two L-networks. 
Figure 10-25 shows a T-network designed to produce a 

phase shift of 160° and an impedance-transformation ratio of 
36. The coils are assumed to each have a Q of 100. The 
currents, based on a one-ampere load current, are shown in 
the figure, as is the efficiency. This network, which violates 
our fundamental rule that the impedance-transformation ratio 

should not be greater than about 10, is a good example of why 
we try to keep the impedance-transformation ratio low. The 

efficiency of this network is only about 8ré. This means that 
19q of the power fed to the network is dissipated in the 
network and does not reach the antenna. 

In Fig. 10-26 we have two T-networks in tandem. Each has 

an impedance-transformation ratio of 6 and a phase shift of 
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+j161 + j28.3 

I = 0.17A 

50 OHMS 

P1=0.17 2(1.6) + 1 0.28) 

= 0.33W 

Pout= 12 ( 1 4) = 1.4W 

1.4 

1.4 

,0—   Pout  _ 1.4/1.73 = 81% Efficiency, e'  
Pout ± PI 

Fig. 10-25. A 36:1 T-network. 

80°. The impedance-transformation ratio of the two networks is 

equal to the product of their individual impedance-
transformation ratios—in this case, 36. The phase shift through 
tandem networks is equal to the algebraic sum of their 

individual phase shifts—in this case. 160°. Thus the two tandem 
networks of Fig. 10-26 do exactly what the one network of Fig. 
10-25 does. As shown in Fig. 10-26, however, the efficiency of 

the tandem networks is about 96 . 

This example shows that two networks using a total of four 
coils, each having Q of 100, are more efficient than a single 

network using only two coils each having a Q of 100. Whenever 
-an engineer finds that in spite of all his efforts he can't seem to 

get an antenna feeder system to operate efficiently, he should 

check the efficiency to see if it might be improved 

considerably by using two networks rather than one. 
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One conclusion to be drawn from this discussion of 
efficiency is that it is very difficult to achieve high efficiencies 
with load impedances that are very low compared to the 
characteristic impedance of the transmission line. For this 
reason, designers try to avoid using towers that have very low 
driving-point impedances. Of course, if the power fed to such a 
tower is very small, a lower efficiency can be tolerated. When 
a high efficiency is required, two networks may have to be 
used in tandem. 

When we consider the efficiency in matching a 
transmission line to an antenna, we can't ignore the 
characteristics of the antenna itself. When an inductance is 
used to tune out the capacitive reactance of a short antenna, 
the efficiency of the combination is given by 

QL 
Efficiency, % — 

j12 

1=0.16A 

50 OHMS 

(A) 

0.12 

1=0.16A 

j19.33 

0.19 

QL QA 

j2.24 j3.48 

0.02 

1=0.38 

T T 
(B) 

1.4 

0.03 

I=1A 

1.4 

P4= 0.16 2(0.12) + 0.38 2(0.19 + 0.02) + 1(0.03) 

P R= 0.063W 

Pout=12(1.4)=1.4W 

Efficiency, °/0= Pout  96% 

Pout ± PI 

Fig. 10-26. Improved efficiency with two T-networks in tandem. 
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where QA = Q of antenna ( base reactance divided by base 
resistance) QL = Q of inductance 

Obviously, from this equation, the Q of the inductance 
should be as high as possible, and the Q of the antenna should 
be as low as possible. This is one reason why standard 
broadcast stations rarely use antennas much shorter than 90°. 
An antenna 50° high would have a Q of about 100. If the coil 
used for matching ( say, in an L-network) had a Q of 100, the 

efficiency of the combination would only be about 50%. 

SERIES RESONANCE 

The familiar series-resonant circuit is very frequently 
used in directional-antenna feeder systems. It has the 
following applications, each of which will be discussed in the 
following paragraphs: 

1. It can give a phase shift of a few degrees or either side 
of 0°. 

2. It provides a means of obtaining a variable capacitive 
reactance by using a variable inductance. 

3. It provides increased harmonic reduction in a 
T-network. 

Figure 10-27 shows the series-resonant circuit together 
with a plot of its impedance and phase shift. The impedance is 
seen to be very low at resonance, and higher on either side of 

Fig. 10-27. Series- resonant circuit 
and impedance plot. 

—j Xc 
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resonance. The equation for the magnitude of the impedance 

of a series-resonant circuit is 

Z R + — X, ) 

and the phase shift 0 between the voltage and current is 

— 
0 = tan'  " 

The Q of the circuit is defined as X1, /R, where R includes not 
only the intrinsic resistance of the inductance but any other 

resistance in series with the circuit. 
An important consideration in the use of series-resonant 

circuits in broadcasting is the voltage rise across the 
inductance and capacitance. The voltages across the 

capacitance and inductance are opposite in the phase, thus 
they cancel out as far as the external circuit is concerned. 
Nevertheless, high reactive voltages actually appear across 
the inductance and capacitance. They are approximately 
equal to the voltage applied to the circuit, multiplied by the Q 
of the circuit. If a circuit has a Q of 100 and one volt is applied, 
the voltage across the inductance and capacitance is in each 
case about 100V. At the voltages encountered in broadcasting, 
thc voltage rise would be prohibitive unless the Q were held to 

a very low value. As with the L-network, the Q of the circuit 

should be no greater than 3. 

Zero-Degree Phase Shifter 

Figure 10-28 shows a series-resonant circuit used as a 
phase shifter. It is called a zero-degree phase shifter because 
it shifts the phase up to about Li:15° around 0°, as compared to 

the T-network phase shifter, which shifts the phase about 90°. 

The 0° phase shifter is used where the characteristics of a 
feeder system are such that a 90° phase shift could not be 

tolerated. 
As shown in Fig. 10-28B, the complete circuit includes not 

only the resistance of the load, ( Ri, ) but also the resistance of 
the source (R, ) . The amount by which the phase shifts for a 
given change in reactance depends on the Q of the circuit 
hence upon the resistance of the source. We assume that the 

load resistance has been properly transformed by networks so 
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Fig. 10-28. Zero-degree phase shifter. 

that it looks like a pure resistance equal to the characteristic 
impedance of the line. 

The Q of the complete circuit must be kept low so as not to 
unduly restrict the bandwidth and so as to permit phase 
shifting without affecting the load current. 

Obtaining Variable Capacitive Reactance 

At the power levels used in standard broadcasting, 
variable capacitors are large and expensive, although 
vacuum-type variable capacitors are becoming practical. It is 

customary in broadcasting to use variable inductors rather 
than variable capacitors. Hence, when we need a variable 

capacitive reactance, we use the arrangement of Fig. 1-29, 
which is really just a series-resonant circuit used on the low 
side of the resonant frequency. 

jX= jX L — jX 
Fig. 10-29. Obtaining variable 
capacitor reactance. 

This circuit is not without its pitfalls. Suppose, for 

example, that we need a variable capacitive reactance of 
approximately 50 ohms at an operating frequency of 1 MHz. 

We could get this reactance with the arrangement of Fig. 
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10-30A which calls for a capacitor having a reactance of 100 
ohms. At 1 MHz this would mean a capacitance of 0.0015 µF. 
The calculations in the figure show the effect of a 1% change in 
the value of either inductive or capacitive reactance, such as 
might result from temperature changes. Note that if one of the 

series reactances changes value by 1%, the net reactance of 
the circuit will change by 2%. This is not objectionable. 

Suppose, however, that the designer tried to cut costs by 
using the circuit of Fig. 10-30B. Here the value of the capacitor 

is only 160 pF. At the power rating required for broadcasting, 
this would represent a substantial saving. However, as shown 
in the figure, if either of the series reactances changed value 
by 1%, the net reactance of the circuit would change by 20%. 
Such an arrangement would result in a very unstable system. 
Unfortunately, such arrangements are occasionally found in a 
broadcast-antenna system, sometimes as a result of building a 
network from whatever components happen to be available. 

j50 

ORIGINALLY 

0=150 - j100= - 150 

FOR I% CHANGE IN Xc 

X..150 - i101 - - 151 

(2% CHANGE IN X, 

T H100 A 

j950 

ORIGINALLY. 

X = 1950 - 11000 - ISO 

FOR 1%CHANGE IN xc — ji  000 
X = j950 - 11010 - - 160 

)20% CHANGE IN X) 

Fig. 10-30. Stability of series LC circuit. 

Harmonic Reduction 

Figure 10-31 shows a T-network that might be used for 

impedance matching in a broadcast-antenna system. The 
difference between this network and the basic T-network is 
that there is both a capacitor and an inductor in the shunt arm 
of this T-network. As we saw, an LC combination can be used 

to provide a variable capacitive reactance, using a variable 
inductor. However, it can be used for another purpose. 

For purposes of impedance matching, the shunt arm must 
have some specified value of capacitive reactance, say, 20 
ohms. Hence, in this case, the fixed capacitor and variable 
inductor are selected so that the difference between their 
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reactances will be 20 ohms. This means that the circuit will be 
operating at a frequency below the resonant frequency. Thus 
the impedance will be minimum at some higher frequency, 

where the circuit is resonant. By proper choice of the values of 
the capacitance and inductance, we can make the resonant 
frequency occur at the second. or any other, harmonic of the 
carrier frequency. This arrangement is particularly helpful in 
reducing second-harmonic radiation. The desired values can 
be selected from the equations below. 

At design frequency íd 
1 

27rfd L — — X, 
27Tfd C 

At harmonic frequency 

27Tfh L 
1 

2Trfh C 
— 0 

} SERIES-      RESONANT 
HARMO N I C  AT SECOND 

Fig. 10-31. A T-network used for harmonic rejection. 

MATCHING COMPLEX LOAD IMPEDANCES 

So far, we have seen that within certain practical limits, 
we can transform any value of load resistance into some other 
value of resistance, using an L- or T-network. In practice, the 
driving-point impedance of an antenna tower is rarely a pure 
resistance. There is almost always a reactive component. To 
obtain maximum power transfer and minimum reflection, this 
complex impedance must be transformed into a pure 
resistance equal to the characteristic impedance of the 
transmission line. This is accomplished by inserting the 
opposite type of impedance in series with the lead to the base 
of the tower. In many cases, this additional reactance can be a 
part of the matching network. 
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ZL, 25 - 125 

35.36 
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(C) 

- (25 

(35 36 

(D) 

Z=25 - 125 

(B) 

1125 

25 

Fig. 10-32. Handling reactive loads with a T-network. 

i25 

125 

Figure 10-32A shows a load impedance of 25 + j25 ohms. If 

we add a capacitive reactance of 25 ohms in series with this 

load, as shown in Fig. 10-32B, it will then look like a pure 
resistance of 25 ohms. We can then design an L-network or 

T-network to transform the 25 ohms into 50 ohms to match a 
transmission line. This is shown in Fig. 10-32C, where we have 

a 90° T-network in which the value of each of the elements is 

35.36 ohms—the geometric mean of the load and driving-point 
impedances. 

It isn't necessary to include the series capacitor of Fig. 

10-32C. We can instead let the 25-ohm reactance of the load be 
part of the network, as shown in Fig. 10-32D. This means that 
the reactance of the network element only has to be 10.36 

ohms, the difference between the 25-ohm reactance in the load 
impedance and the desired value of 35.36 ohms. 

This technique can be used to handle any practical value of 
load impedance. Remember that we have several configu-
rations of L- and T-networks to choose from. 
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Chapter 11 

Feeder Systems 
for Standard 
Broadcast Antennas 

Before a tower can radiate a signal, it must receive a signal 
from the transmitter. For proper operation it is essential that 

the line carrying the energy to the tower does not radiate 
energy. All of the radiation must be done by the tower. The 
distribution of energy to the towers is accomplished by an 
assembly of components called the feeder system. 

In case of a nondirectional antenna, the feeder system 
consists of a transmission line together with a network that 

matches the impedance seen at the base of the tower to the 
characteristic impedance of the transmission line. The feeder 

system of a directional antenna performs many more 
functions, including the following: 

1. Controlling the magnitude of the current fed to each 

tower 
2. Controlling the relative phase of the current fed to 

each tower 
3. Transforming the impedance seen at the common 

point of the system to a value suitable for properly 

loading the transmitter. 

The feeder system also includes components for supplying 

current to the tower lights, providing lightning protection, and 
measuring the amplitudes and phases of the tower currents. 
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These three subjects are covered in later chapters. Since the 

nondirectional-antenna feeder system is really a very greatly 
simplified version of the more general directional-antenna 
system, it will not be covered specifically. 

Once a directional antenna has been installed, the only 
adjustments for controlling the operating parameters of the 
system are located in the feeder system. In fact, just about all 
of the work in the day-to-day operation of a directional-antenna 
system consists of reading instruments and adjusting or tuning 
controls in the feeder system. 

FEEDING THE TOWER 

The most common way of feeding RF energy to a tower is 

to apply the signal across a base insulator that is placed 
between the bottom of the tower and the ground system ( Fig. 
11-1). There are disadvantages to this approach, however. 
When a tower is insulated from ground, there is the added cost 
of the base insulator, which msut support the weight of the 
tower, and there are difficulties in feeding power to tower 
lights and providing lightning protection. Hence many 
alternate methods of feeding energy to towers have been 
proposed through the years. 

The only alternate system that has gained even limited 
acceptance is the shunt arrangement shown in Fig. 11-1B. 
Here the base of the tower is connected directly to ground, and 
the energy is fed to the tower through a slanted wire, as shown. 
The system may be viewed as a single-turn, 3-sided loop that 
consists of the slant wire, the bottom section of the tower, and 
the ground path. The magnetic field from this loop induces a 
voltage in the tower, thus coupling energy to it. 

In theory it is possible to select a connection point on the 
tower for the slant wire so that the resistive component of the 
impedance will be equal to the characteristic impedance of the 
transmission line. The reactive component, which will always 
be inductive, can be tuned out by the capacitor connected in 
series with the slant wire. Care must be taken to minimize the 
losses in the ground path. Usually a copper strap is connected 
between the outer conductor of the transmission line and the 
center of the ground system. 
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TO 
TRANSMITTER 

BASE 
INSULATORS 

UNDERGROUND 
RADIAL GROUND 

SERIES -FED INSULATED SHUNT-FED NONINSUL ATED 
TOWER TOWER 

Fig 11-1. Series- and shunt-fed tower radiators. 

Although limited success has been achieved with shunt 
feeding of single towers, the method is seldom used in 
directional-antenna arrays. One reason is that the proper point 

for connecting the slant wire is not easy to find theoretically, 
so that a great deal of cut-and-dry work is required for 
optimum coupling. Also, radiation from the slant wire can be 

troublesome. 
With the series arrangement ( Fig. 11-1A), the two 

principal considerations are the driving-point impedance of 

the tower and the voltage across the base insulator. With a 
tower 90° in height, the voltage across the base insulator is 
minimum, being in the order of 200V to 250V for 1 kW of 
radiated power. The voltage across the base insulator is 
greatest when the antenna height is about 180°. The base 
voltage can then be as high as 1900V for 1 kW of radiated 
power. Since voltage is proportional to the square root of 
power, the base voltages for other powers can be obtained by 

multiplying the above approximate figures by the square root 

of the radiated power in kilowatts. 

TO • 
TRANSMITTER 

me" 
  e 

UNDERGROUND 
RADIAL GROUND 

LAYOUT OF FEEDER SYSTEM 

The geometrical layout of a particular feeder system 

depends on the type of antenna array and the location of the 
transmitter building. Each transmission line must terminate 

at a tower, and the lines must converge at the point where the 
power-dividing and phase-shifting equipment is located. 
Figure 11-2 shows several possible layouts of feeder systems. 
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There is little that the broadcast engineer can do about the 
layout of the system. But, if it has serious limitations, he can 
make changes whenever a major modification is initiated. In 
general, there are three rules of thumb for making a good 
layout. 

1. The phasor equipment—that is, the power-dividing and 

phase-shifting networks—should all be located in one 
place. There is always some interaction between the 
power-division and phase-shift controls, and if they 
are separated, adjustment becomes unnecessarily 

complicated. 
2. The transmission lines should not be any longer than 

necessary. Keeping the lines short minimizes losses in 
the system. 

3. When practicable, the phasor should be located in the 
transmitter building, bringing most of the adjust-
ments to one central location. 

PHASOR 

TOWERS 

TRANSMITTER 

TOWERS TOWERS 

PHASOR 

TRANSMITTER TRANSMITTER 
AND PHASOR 

Fig. 11-2. Possible feeder- system layouts. 

TYPICAL FEEDER SYSTEM 

Figure 11-3 shows a block diagram of a feeder system for a 
2-tower directional-antenna array. Tower 1 is the reference 
tower of the array. To understand how the feeder system 
operates, we will start at the reference tower and trace the 

signal back to the transmitter. Then we will do the same thing 
with tower 2. For convenience, we will consider the phase 
angle of the current entering tower 1 to be zero. The magnitude 
of the current flowing into this tower is 3.65A. 

The first element to be considered is an impedance-
transforming network ( in the antenna-coupler block) at the 
base of tower 1. This network transforms the driving-point 
impedance of the tower in to the characteristic impedance of 
the line. In this particular case, the driving-point impedance of 
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Fig. 11-3. Block diagram of directional-antenna feeder system. 



tower 1 is 27.5 + j16 ohms, and the characteristic impedance 

of the transmisson line is 50 ohms. Either an L or T-network 
might be used to accomplish the desired impedance 
transformation; usually the choice is based on phase-shift 

considerations. If a T-network is used, the phase shift can be 
adjusted to any desired value. If an L-network is used, we have 
to live with whatever phase shift the particular 
impedance-transformation produces. In the system of Fig. 11-3 
a 90° T-network is assumed. Its 90° phase shift, which is 
lagging, must be taken into consideration in figuring the 
relative phase of the currents feeding the two towers. In the 
figure the current feeding tower 1 is represented by a vector at 
0°. We must, therefore, represent the current at the input of the 
matching network by a vector that is lagging the reference 

vector by 90° as shown. 
The electrical length of the transmission line from the 

network at tower 1 back to the phasing equipment ( phasor) is 
259°. Inasmuch as the signal is delayed in passing through the 
transmission line, this phase angle is also lagging. Thus the 

current at the input to the transmission line is represented by a 
vector that lags the reference by 90° + 259°, or 349°. 

At this point in the particular system we are studying, 
there is a 0° phase shifter. In many systems there is no phase 
adjustment in the line to the reference tower. One phase shift 
adjustment is all that is required in a 2-tower array, as we are 
interested in the phase between the currents to the two towers, 
and changing the phase of either current will change the phase 
angle between them. The phase shifter in this line, although it 

isn't strictly necessary, adds flexibility to the system and 
provides a wider range of adjustment of the phase angle 
between the tower currents. We saw in an earlier chapter that 

a phase shifter can provide about 15° of phase shift without 
seriously affecting the magnitude of the current. If a phase 

shifter is provided in each line of a 2-tower array, we can shift 
the phase angle between the currents by as much as 30° 
without seriously disturbing the magnitudes of the currents 

significantly. 
Before any adjustments are made, the 0° phase shifter 

doesn't introduce any phase shift. Hence we can represent the 
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current at the input to the phase shifter by the same vector 

that we used to represent the current at its output—that is, a 

phasor with a lagging angle of 349° with respect to our 
reference ( the current to tower 1). At this point the line 

connects to a network called a power divider which we will 

look into later in this chapter. Now, let's look at the phase shift 

in the line feeding tower 2. 
At the base of tower 2 we have the same problem of 

transforming a complex driving-point impedance into the 

characteristic impedance of the transmission line. In this 

case, the driving-point impedance is 30 + j3 ohms, and the 
characteristic impedance of the line is 50 ohms. The 
magnitude of the current feeding tower 2 is 4.6A, and this 

current must load the current of tower 1 by 20°. Thus we can 

represent the current of tower 2 by a vector drawn at an angle 
of 20° with respect to our reference. 

Again, either a T or L-network may be used to accomplish 
the required impedance transformation. In this case, a 

T-network is used, and its phase shift is adjusted to — 59°. The 
reason for this particular value of phase shift will become 

apparent as we proceed. 
The current at the input to the impedance-transforming 

network at the base of tower 2 can be represented by a vector 

with a lagging angle of 20° + 59°, or 79°. The length of the 

transmission line from tower 2 back to the phaser is 180°, so the 

input current to the line can be represented by a vector with a 

lagging angle of 79° + 180°, or 259°. 
At this point a 90° phase shifter is inserted, and the current 

at the input to the phase shifter can be represented by a vector 
with a lagging angle of 259° + 90°, or 349°. We can see that the 

required phase of current from the power divider to the line 

feeding tower 2 is exactly the same as that for the line feeding 
tower 1. In other words, the two currents coming from the 

power divider are in phase, and by proper selection of 

components in the feeder system, the currents at the towers 

will have the required phase difference of 20°. 
It is important for any broadcast engineer in charge of a 

station with a directional antenna to know how the phase shifts 

in the feeder system combine to produce the required phase 

angles between tower currents. 
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It is interesting to note that the transmission line feeding 
tower 2 in our example is exactly 1/2 wavelength long. This 
would happen because of the geographical spacing between 
the towers and the transmitter house, not for any electrical 
reason. In a half-wave line the driving-point impedance is 

exactly equal to the load impedance. If the load impedance has 
any value other than the characteristic impedance of the line. 

there will be a standing wave on the line, but it's presence may 
go unnoticed. Sometimes this particular length of transmission 

line appears easy to match—until a standing wave causes the 
line to fail. 

POWER DIVIDER 

The purpose of a power divider is to take power from a 
single transmission line from a transmitter and distribute it to 

several transmission lines in such a way that the proper 

magnitude of current is supplied to each tower in an antenna 
array. The problem is shown schematically in Fig. 11-4A. Here 
we have two 50-ohm loads, representing the transmission lines 

to towers 1 and 2 in the array of Fig 11-3. As specified in that 
figure, 366W must be delivered to load 1, and 634W to load 2. 

This is to be accomplished by a yet unspecified circuit that has 
a driving-point impedance of 50 ohms. Applying Ohm's law to 
the problem, we can calculate the voltage and current applied 

to each load that will result in the proper amount of power 
being delivered. 

Low-Frequency Power Divider 

In ordinary 60 Hz power systems we have many 

power-division problems—delivering the proper amount of 
power to each lamp in a home, for example. At power-line 
frequencies power division is accomplished by controlling the 

amount of resistance of the load and operating the system on a 
constant-voltage basis. A low-resistance lamp draws more 
power from the line than a high-resistance lamp. In this type of 

system, impedances are intentionally unmatched. We don't 

want a load that will draw the maximum possible amount of 
power from a generating station! 

It is possible, however, to design a low-frequency 
power-dividing system that operates on a constant impedance 
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level. In fact, it is a good idea for us to do this in order to get a 
better idea of power division between impedances of the same 

value. 
Referring to Fig. 11-4, we see that load 1 ( 50 ohms) will 

require a voltage of 135.5V and a current of 2.71A to draw 
366W. Similarly, load 2 ( also 50 ohms) will require a voltage of 

178V and a current of 3.56A to draw 634W. Also, the 50-ohm 

driving-point impedance of whatever is in the box of Fig. 11-4 
will require a voltage of 223.6V and a current of 4.47A to draw 

the total required power of 1000W for the two loads 

(366 + 634 = 1000W). 

50 

P= 366W 
FROM 
TRANSMITTER 5012 

50 

P.- 634W 

366 34 _ =2.71A — 3.56A 
50 50 50 50 

\fir \ 15-7= \ 360 x 50 = 135.3V E2= \ 7211= 634 x 50= 178V 

Fig. 11-4. Power divider problem. 

We can easily specify a transformer to accomplish the 
necessary power division. Working on a voltage basis, we can 

specify a transformer like that shown in Fig. 11-5A, which has 

a turns ratio such that when 223.6V is applied to the primary, 
the proper voltages will appear at each secondary. The ratios 
work out to be 0.61 for load 1 and 0.80 for load 2. That is, for 
every 100 turns on the primary, there will be 61 turns on 

secondary 1 and 80 turns on secondary 2. ( You should carefully 
calculate the voltage, current, and impedance values at each 
point in the circuit of Fig. 11-5A to get a good feeling for what is 

going on. This will be helpful in understanding how an RF 

power divider operates.) In Fig. 11-5B we have simply 
replaced a transformer having a primary and two secondaries 

with an autotransformer having two taps on its single winding. 
A similar arrangement is used for RF power division. 
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Fig. 11-5. Low-frequency power divider. 

RF Power Divider—Series Type 

The circuit of Fig. 11-6 is similar to the series power 

divider shown in Fig. 11-5. In Fig. 11-6 all of the loads again 
have an impedance of 50 ohms. The problem is to deliver the 
proper amount of power to each load. Unlike the example of 
Fig. 11-5, the input to the divider does not necessarily have to 
have a driving-point impedance of 50 ohms. We can let it 
assume almost any impedance we wish, then transform this 

value of impedance back to 50 ohms with an impe-
dance-transforming network. In fact, as we will see, there are 
good reasons for making the driving-point impedance of the 
power divider higher than 50 ohms. 

The average broadcast engineer isn't interested in 
designing a power divider. Neither is he interested in just how 

the component values are arrived at. He is, however, greatly 
interested in how the various adjustments affect the 
performance of the antenna array. It is not uncommon to find 

a power divider with the adjustments so far from their 
optimum values that it is extremely difficult to get the array 
into proper adjustment. 

The circuit of Fig. 11-6 can be thought of as a parallel 
tuned circuit with two loads tapped off the coil. As such, it will 
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have a definite value of Q. If the Q is too high the circulating 
current, and hence the losses, will be high, and the bandwidth 
will be restricted. If the Q is too low, there will be a lot of 
interaction between the adjustments. 

It is usually easier to design a series power divider by 
starting with the proper position of the bottom tap. The 

reactance of part of the inductor between the lowest tap and 
ground should not be less than the characteristic impedance of 
the transmission line connected to the tap. After a system has 
been designed and installed, the easiest way to adjust it is to 
start with the setting of the top tap on the coil. This tap should 
be kept as high as possible on the coil to get the desired amount 
of current into the line that carries the most power. The 
positions of the other taps are then set for the proper amount of 
current in each line. There is a certain amount of interaction 

FROM TRANSMITTER 

(A) 

FROM TRANSMITTER 

(B) 

(C) - - 
Fig. 11-6. Series power divider. 

- - 

R1 
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between the adjustments, and the procedure may need to be 

repeated several times for optimum adjustment. 
As a general rule, the series power divider is well suited 

for use in arrays where there are more than three towers. The 
loads are not in parallel, and thus it is possible to keep the 
driving-point impedance of the divider at a high level. On the 
other hand, there is apt to be more interaction between 
adjustments than in the parallel power divider, which we will 
consider next. 

Although a practical power divider may use taps for 
adjustment ( Fig. 11-6B), a more common arrangement is to 

use vernier coils (Fig. 11-6C). Here smaller, continuously 
adjustable coils are tapped onto the main coil. Since the 
vernier coils are continuously adjustable, a very precise 
setting may be made of the effective position of each tap. If an 
adjustment is pushed to the extreme of its range, it is 
necessary to move the taps on the coil. 

Parallel Power Divider 

Going back for a moment to the low-frequency 
power-division problem that we considered in connection with 
Fig. 11-5, we could just as well have used a separate 
autotransformer for each line, as shown in Fig. 11-7. This 
figure is the basis for the parallel power divider shown in Fig. 

11-8. Here a separate coil is used for each transmission line. 
This arrangement has the advantage of less interaction 
between adjustments than with the series power divider. On 
the other hand, since all of the loads are in parallel, it is hard to 
keep the driving-point impedance high when more than three 
towers are fed from it. 

Fig. 11-7. Alternate low-frequency 
power divider—parallel type. 

R1 

To summarize, a parallel power divider is easy to adjust 
but is inefficient when there are more than three towers. In 
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Fig. 11-8. Parallel power divider. 

R2 

practice, the adjustments are usually made by vernier coils 

that are tapped onto the main coil, as with the series divider 

shown in Fig. 11-6C. 
To adjust the parallel power divider, the current to the 

tower that carries the most current is set first. If possible, this 

tap should be set to the top of the coil, as this will result in the 

highest driving-point impedance for the divider. For this 
reason, in some parallel dividers there is no adjustment for the 
line carrying the highest current; this line is merely connected 

to the top of one of the coils. 

Miscellaneous Power Dividers 

Although the series and parallel power dividers described 

in the preceding pages are by far the most commonly used 
types, many different arrangements are used, particularly 

where there are only two towers in the array and the problem 
of power division is not as complicated. Three such 
arrangements are shown in Fig. 11-9. 

The divider shown in Fig. 11-9A is sometimes called the 

unequal-resistance divider. Here two L-networks are used to 
change the impedance seen at the input of the network and 

thus the amount of power that the line draws. The power 
drawn by each line connected through such a network varies 

inversely with the driving-point impedance of the particular 

network. Thus if R, and R2 are the driving-point impedances 
of the two L-networks of Fig. 11-9A, the power division will be 
according to the relationship 

P, R, 

P2 = R, 

where P, and P, are the powers to towers 1 and 2. The input 
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impedance of the two networks in parallel is simply the 

parallel combination of the two driving-point impedances. 
The principal limitation of this type of power divider is 

that the phase of the current going to each line, as well as the 

input impedance of the divider, changes whenever an 

adjustment is made. This means that when we try to adjust the 
ratio between two currents, we also change their phase, thus 
necessitating readjustment of the phase control. Although 
some interaction between ratio and phase adjustments is 
common, with this particular type of divider the interaction is 
more pronounced, and proper adjustment of the controls is 
more difficult. For this reason, this power divider is rarely 
used on new installations. 

Another interesting circuit that has been used for dividing 

power between two lines is shown in Fig. 11-9B. In this circuit, 
if the load impedances remain constant, the input impedance 
will remain constant as long as the capacitor and inductor are 

varied together. As in the unequal-resistance divider, the 
power adjustment will also cause a phase shift. 

The power divider of Fig. 11-9C takes advantage of the 180° 
phase difference between the opposite ends of a center tapped 

IN 

A TWO L-SECTIONS IN PARALLEL 

IN 

C PUSH-PULL- 180 FEED 

45 

IN 

B OUARDATURE-90 FEED 

Fig. 11-9. Miscellaneous power-
dividing networks. 
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resonant circuit. It has been used with 2-tower arrays where 

one tower is much closer to the transmitter than the other, 
resulting in lines that have widely differing lengths. When the 

adjustment is near the center of the coil, the magnitude of the 
currents can be changed with very little phase shift. However, 
as the adjustment gets closer to one end of the coil, the effect 
on phase shift will be more pronounced. 

COMMON-POINT IMPEDANCE MATCHING 

The driving-point impedance of a power-dividing network 

is usually made as high as practicable. It is thus necessary to 
have some sort of arrangement to transform this impedance 
down to a more suitable value for matching to the transmitter. 
Many different circuit arrangements have been used for this 

purpose. One common arrangement is shown in Fig. 11-10A. 
This circuit can be best understood by redrawing it as shown in 
Fig. 11-10B, with the capacitor broken into two separate units. 

The input impedance of the coil portion of the power divider 

almost always has an inductive component, which is tuned out 
by capacitor C2. The driving-point impedance of this portion of 
the circuit is then a high resistance. The L-network formed by 
Cl and Li then transforms this impedance into the desired 

(A) 

MATCHING 

NETWORK 

Li 

(6) 

POWER DIVIDER 

Fig. 11-10. Matching power divider to common point. 
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common-point value, which is often 50 ohms. As shown in Fig. 
11-10A, the two capacitors can be combined and only one 
physical unit actually installed. 

Sometimes the series power divider is connected as shown 
in Fig. 11-11, with the capacitor at the top of the coil, the input 
tapped below this, and the various lines connected to taps that 
are still lower on the coil. The reason for this confusing 

arrangement becomes clear if the circuit is redrawn as in Fig. 
11-11B. Here the two inductors, Li and L3, can be seen to be the 
series arms of a T-network. Inductance 12 and capacitor Cl 

form the shunt branch. Thus the circuit is really a T-network 
connected to the tapped coil of a series power divider. Power 
division is accomplished by the setting of the taps, and the 
other three taps are used to transform the impedance into the 
desired common-point impedance. 

L1 (A) 

Fig. 11-11. Alternate matching ar-
rangement. 

BANDWIDTH 

One characteristic of directional-antenna systems that is 
often neglected is that of bandwidth. The antenna and the 

feeder systems are designed to operate properly at the carrier 
frequency. If the design is properly carried out, the system 
will work equally well out to the highest and lowest sidebands 

of the signal. This concept is often neglected, however, when 
an array is adjusted or when design changes are made. 
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If the bandwidth of the complete antenna system is too 
narrow, the following effects may be produced: 

1. The sidebands may be attenuated or accentuated, 
resulting in distortion of the signal and reduced 

radiated power. 
2. The phase shift at the sidebands may be substantially 

different than at the carrier frequency, resulting in a 
geographical shift of the pattern with modulation. This 
is particularly noticeable in a pattern with deep nulls. 

3. Inasmuch as narrow bandwidth is associated with 
high-Q circuits, the losses will be high and the 

efficiency of the system will below. 

The most common cause of inadequate bandwidth in an 
antenna feeder system is the use of a single network to effect 

an impedance-transformation ratio of greater than 10. A 
high-impedance transformation ratio results in high-Q 
circuits, and high-Q circuits inherently have a narrow 

bandwidth. Narrow bandwidth may also result from the use of 
short towers, but this is rare in any system installed in recent 
years, because short towers usually do not provide the 
minimum field intensity required by the FCC Rules. 
Sometimes a narrow bandwidth results from the use of a 

critical array to get a very complex radiation pattern. 
In any case, one effect of a narrow bandwidth is the loss of 

sideband power. There are two factors that contribute to this. 

First, the impedance seen by the transmitter varies over the 

bandwidth of the signal so that full modulation cannot be 
realized at higher audio frequencies. Second, the narrowband 
system simply will not couple the higher sideband frequencies 

to the antenna. 
When a system is found to have inadequate bandwidth, the 

cause should be found and, if possible. corrected. Narrowband 
systems are inherently unstable and will usually continue to 

cause problems until they are straightened out. One corrective 
approach that has been taken with limited success is to use the 
slightly different form of matching network described 

momentarily. 
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Figure 11-12A shows coil and a plot of how its inductive 
reactance varies with frequency. The plot is a straight line; 

the higher the inductance, the steeper the slope of the line. 

There are cases where the bandwidth of a network could be 

improved if we had a reactance whose slope was steeper. 
Unfortunately the size of the inductor is limited by the design 

of the network. There is a way that we can get the value of 

inductive reactance we need and, at the same time, have a 
reactance that varies faster with changes in frequency than 

the reactance or a simple inductor does. The scheme is to use a 

series-resonant circuit in place of one of the inductors in the 
network. Figure 11-12B shows a series-resonant circuit and 
how its reactance varies with frequency. Note that both of the 

circuits in Fig. 11-12 have a reactance of 50 ohms at the design 

frequency, but that the reactance of the series-resonant circuit 
changes more rapidly with frequency. 

X 

50 

OHMS 

XL= 50 XL 

X 

50 

OHMS 

Fig. 11-12. Variation of Reactance with frequency for an inductance and a 
series LC circuit. 

Figure 11-13A shows the usual type of T-network used to 
match a transmission line to a tower. The normalized 
impedance seen looking into the network is plotted by X, on a 

Smith chart in Fig. 11-14. If the network of Fig. 11-3A is 
replaced by the network of Fig. 11-13B, the result is a 

normalized impedance as shown by the Os in Fig. 11-14. 

XL 

LINE T T  ANTENNA LINE — ANTENNA 

(A) (B) 

Fig. 11-13 Usual T- network, in A T-network with series- resonant compo-
nent, in B 
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Fig. 11-14. Impedance of networks of Fig. 11-13. 

The fact that the points of the new-network plot are 
clustered close to the prime center of the chart shows that a 
much more constant load impedance is provided for the 
transmission line and, hence, for the transmitter. This 
example is based on an actual occurrence. The towers were 
too short to be good antennas, but with the modified network, 

satisfactory performance was obtained. 

HANDLING THE NEGATIVE-RESISTANCE TOWER 

In an array of four towers or more, the resistive part of the 
driving-point impedance of one or more of the towers often has 
a negative value. This means that the tower obtains its energy 
through the mutual impedance between it and the other towers 

of the array. This is a confusing situation, but if it is carefully 
thought out, it will cause no serious problems. We know the 
following things concerning the negative resistance tower: 
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1. The tower must carry a current of the proper 

magnitude and phase. 
2. The direction of the current is 180° out of phase with 

what it would be in a tower having a positive base 

resistance. 
3. We need some method of controlling the magnitude 

and phase of the tower current. 

The simplest, although not the most efficient, way of 
handling the negative-resistance tower is to terminate it 
through a matching network to a resistor, as shown in Fig. 
11-15. The energy that the negative tower actually gets from 
the other towers is thus dissipated in the resistor. The 
magnitude and phase of the current may be controlled by the 
parameters of the network. Naturally, this isn't a very 
efficient arrangement, particularly if the negative tower 
handles a substantial amount of current. 

TERMINATING 

RESISTOR 

---

NEGATIVE-RESISTANCE 

TOWER 

Fig. 11-15. Terminating a negative-resistance tower. 

The preferred way to handle a negative-resistance tower 

is to feed the energy back to the power divider, where it will be 
passed back into the feeder system again. In this way, all of 
the energy is radiated rather than some being dissipated in a 
resistor. 

Figure 11-16 shows an arrangement for recovering power 
from a negative-resistance tower. The procedure is to trace 

the phase of the signal from the power divider to the first 
tower, back into the system through the negative-resistance 
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tower, and back to the power divider. When the signal gets 

back to the power divider, it has the same phase as when it 

left. That is, it has experienced an integral number of 360° 

phase shifts. Note that when we add up the phase shifts, we 
must add or subtract 180° because the current in the 

negative-resistance tower is flowing in the opposite direction 

of the current in the other tower. 

A 

POWER 

DIVIDER 

o 

0-
9 

-90 

-290 

290' 

- 116 

- 117 -

\ n: 
TOWER NO. 1 

TOWER NO .2 

NEGATIVE 

RESISTANCE 

PHASE SHIFTS FROM A TO NO. 1 TO NO. 2, BACK TO A - 90' 

-290 - - 116 120- 180 - - 117' - 290' - 117: = 1080' 

-1080" = 360' 3= 0' 

ADD - 180' DUE TO CHANGE IN REFERENCE DIRECTION. 

Fig. 11-16 Arrangement for handling the negative- resistance tower. 

USING ONE TOWER AT TWO FREQUENCIES 

Although it would be impracticable with directional-
antenna systems, there may be occasions when two 

transmitters operating at different frequencies in the standard 

broadcast band use the same tower as an antenna. The 
problem in this case is to allow the transmitters to feed the 

tower but not each other. The common way to accomplish this 

is with resonant circuits. 
At A in Fig. 11-17 is an LC circuit that has two inductors 

and one capacitor. Branch 1 is inductive at all frequencies. 
Branch 2 is capacitive at frequencies below its series-resonant 
frequency and inductive at frequencies above resonance. Thus 
there will be one frequency below the resonant frequency of 2 
where its capacitance resonates with the inductance of branch 

1 to form a parallel-resonant circuit, which has infinite 

impedance ( assuming no losses). At a higher frequency 
(nearer fh in the figure), branch 2 will be a series-resonant 

circuit, and its impedance will be zero ( assuming no losses). In 
practice, the impedances will be neither infinite nor zero, but 
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they will be very high at fi  and low at fh . Thus circuit A will 

shunt any signal at frequency fh fed back from the tower, but it 
will not interfere with the progress of signal f toward the 
tower. With the arrangement of circuit A, the 

parallel-resonant frequency will always be lower than the 
series-resonant frequency. 

At B in Fig. 11-17 is another circuit with both series and 

parallel resonance, but with this arrangement, the 
parallel-resonant frequency will always be higher than the 
series-resonant frequency ( just the opposite of the case of 
circuit A). Consequently, B will pass IL energy to the tower 
but reject f,, energy. Together, A and B will pass IL 
transmitter, and bypass around the IL transmitter any fh 

energy that is fed back. 

f 1 --•--•---,_ 1( 

é fh B 

• 

A 

Th 
f h --40---•—re.'"‘—i 

B' 

--LA-A-eV --

if' 

TO TOWER 

Fig. 11-17. Feeding two transmitters to one tower. 

Below, in the figure, circuits A' and B' will pass f, energy 

to the tower and prevent any f,, energy from getting back to 
transmitter fh . 

By actually following the signal paths in Fig. 11-17, you can 
see that the energy from both transmitters is fed to the tower, 
but neither of the transmitters feeds energy to the other. 
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chapter 12 
Ground System 

The theoretical performance of a vertical antenna is derived 
by assuming that the antenna will be operating over a 
perfectly conducting earth. This type of analysis is useful in 
that it will show us the best possible performance that can be 
obtained from a given antenna. We never get the maximum 
theoretical performance for a number of reasons, one of which 

is that the earth is not a perfect conductor. 
To compensate to some extent for the effect of the 

conductivity of the earth on signal propagation, all standard 
broadcast stations are required to have a ground system. The 
ground system of a standard broadcast station consists of 
radial wires extending outward from the base of each tower. 

Usually these ground wires are buried. It seems that the old 
adage "Out of sight, out of mind" applies to ground systems. It 
is common for the ground system to almost never be 
inspected, and a deteriorated ground system is often 

responsible for many ills that befall a directional-antenna 

system, including low efficiency, loss of signal in the primary 

service area, and general instability of the array. 

BASICS OF THE GROUND SYSTEM 

Figure 12-1 shows a single-tower broadcast antenna. The 
electric field from the tower extends from the tip of the tower 
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to the ground. For simplicity the diagram shows only a single 

line of force. Where the line reaches the ground, a current 
flows through the ground back to the base of the tower. Thus 
the lines of the electric field are a part of a closed loop that is 

completed by the current flowing in the ground back to the 
antenna. 

TOWER 

GROUND 

LINE OF ELECTRIC FIELD 

CURRENT PATH IN GROUND 
Fig. 12-1. Ground current. 

If the earth were a perfect conductor, there would be no 
resistance to this current, and the lines of the electric field 
would be perpendicular to the ground at the points where they 

reached the ground. With an imperfect conductor, which the 
earth actually is, the situation is different. The lines of the 

electric field are not perpendicular to the earth, but are 
actually tilted forward in the direction of propagation ( Fig. 
12-2). This means that the direction of propagation of the wave 

is directed slightly toward the earth. This line of propagation 

can be resolved into two components at right angles to each 
other. One component, the regular ground wave, is directed 
along the surface of the earth. The other component is directed 
downward into the earth and represents the loss that is 

encountered when a signal is propagated over an imperfect 
conductor. 

Conductivity and Skin Depth 

The earth is actually both an imperfect conductor and a 
dielectric. At broadcast frequencies conduction is the chief 
phenomenon, and we can usually neglect the dielectric 
constant. The conductivity of the earth ranges from about 2 
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DIRECTION OF TRAVEL  

//i  

GROUND CURRENTS 

Fig 12-2 Tilting of electric vector of wave front 

mmho/m ( 2 millimho per meter) for dry, sandy locations to as 
high as 5 mho/m for sea water. Although the lowest 
conductivity found on the surface of the earth is about 1 
mrnho/m, scattering of the wave by rough terrain can 

introduce losses that will make the conductivity appear even 

lower than this. 
The current flowing in the earth back to the antenna ( Fig. 

12-2) penetrates the earth for some distance, but the depth of 
penetration is limited by the skin effect. The skin depth is the 
depth at which the current has fallen to about 37% of its value 
at the surface. This depth depends on frequency and is smaller 

at higher frequencies. Nearly 90% of all ground losses occur 
within this depth. Figure 12-3 shows the variation of skin depth 

with ground conductivity for various frequencies. 
The currents in the ground from all directions come 

together at the base of the tower. The ground loss is the sum of 

the losses due to all of the ground currents coming from all 

SURFACE Of 
EARTH 

100 
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60 
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30 
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CONDUC1 . VITY IVULLIM ,i0S PER METER 

Fig. 12-3. Skin depth versus ground conductivity. 
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directions. Without some sort of artificial ground system, 
these losses would be prohibitively high at broadcast 
frequencies. 

Radial Wires 

Experimental work has shown that at distances greater 
than about 1/3 wavelength from the base of the tower, ground 

losses are almost independent of the tower height. Closer to 
the antenna the losses increase rapidly as the tower height is 

decreased. Thus, for antennas of the heights normally used in 
standard broadcasting, the ground should have a good 

conductivity out to about 1/3 wavelength from the base of the 
tower. The usual approach to improving ground conductivity 

in the vicinity of the antenna is to install a ground system 

consisting of radial wires extending out from the base of the 
tower as shown in Fig. 12-4. 

/// 
240 RADIALS EACH APPROXIMATELY 

10 T015 DEGREES LONG AND BURIED 

2 TO 4 INCHES 120 RADIALS 

EXTENDED TO APPROXIMATELY 90 

DEGREES AND BURIED 6 TO 8 

INCHES ALONG THE EXTENSION. 

Fig. 12-4. Ground system for nondirectional antenna. 

The current FCC Rules specify that the radials should be 
at least 1/4 wavelength long and that there should be as many 
radials as practicable, but in no case less than 90. The Rules 

add that a system of 120 radials spaced every 3° and extending, 
0.35-0.4 wavelength from the tower is considered an excellent 
ground system. In addition, a square ground screen 24 or 48 on 
a side is often provided at the base of the tower, particularly 

when the tower height is such as to cause a high base voltage. 
Whenever a less-than-optimum ground system is used, the 

FCC requires a complete field-intensity survey to establish 
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that the effective field at one mile meets the minimum 

requirements. 
The radial ground system is chosen because the radials 

follow the natural paths of the ground currents. At one time, 
ground meshes of crossed wires were thought to form a good 
ground system. This approach is not used today, because the 

paths to the base of the tower are not direct, and circulating 
currents may flow, introducing additional losses. 

PRACTICAL GROUND SYSTEMS 

The diameter of the wire used for radials doesn't seem to 
have much influence on the efficiency of the ground system. 

Systems have been installed with No. 18 enameled wire and, at 
the other extreme, with 2 inch copper strap. Wire in the No. 10 
size is commonly used. In some areas the ground is especially 
corrosive, and the radial wires deteriorate rapidly. In all 
cases, the use of ordinary tin—lead solder should be avoided 
since it usually deteriorates rapidly. Connections should be 
brazed or made with silver solder. 

Some installations have ground rods at the end of each 
radial, with the outer ends of the radials bonded together as 
shown in Fig. 12-5. There is some question as to the 
effectiveness of these schemes except when the radial wires 
are too short. If the radial wires have the optimum length, the 
current will be greatest at the tower and will drop to zero at 
the ends of the radials. The way to tell whether or not bonding 
or ground rods would be advantageous is to check the current 

along a radial. If it drops to nearly zero at the end of the radial, 
there is little to be gained by using ground rods. If, on the other 

hand, there is still a substantial current at the end of each 
radial, it may be advantageous to install ground rods and tie 

the radials together as in Fig. 12-5. The ground rods must be 

STAKES DRIVEN INTO GROUND 

Fig. 12-5. Questionable ground system. 

312 



deep to be effective. Referring to Fig. 12-3, we can see that at 
the upper end of the standard broadcast band, the ground rods 

would probably have to be over 30 ft long to be effective. 

GROUND SYSTEM INSTALLATION 

Installing or replacing a ground system is not particularly 

difficult, but care should be taken to do a good job. The ground 
system is not something that can be dug up and fixed easily, so 

it is advisable to do the job properly the first time. Usually a 
properly installed ground system will do more to make an 
antenna system stable than any other single factor. 

Radial wires of at least No. 10 size should be used, and a 

ground screen about 24 by 24 ft is recommended. The radials 

should be plowed into the ground to a depth of about 6 in. and 
should be as straight as possible. The radials should be brazed 

to the sides of the ground screen, and any sections in the 
screen should be brazed together. At least two 2 in. copper 

straps should run from the bottom of the base insulator to the 

edge of the screen. The screen should be mounted on a frame 

at least 4 in. above the ground, and when the installation is 
completed, the screen should be filled with gravel. 

Heavy growths of vegetation in the vicinity of the antenna 

tower will increase losses. It is generally recommended that 

the area covered by the ground screen be treated to restrict 

the growth of vegetation. Used crankcase oil is quite effective 
for this. The rest of the area over the radials should be seeded, 

and the area should be mowed regularly to keep the grass low. 

When an existing ground system is replaced, there is often 
a building in the area where it is necessary to run a radial. 

Tunneling under a building is usually not practicable, so the 

best practice is to bury a 2 or 4 in. copper strap at a depth of 
about 4 to 6 in. around the periphery of the building ( Fig. 12-6). 
The radials that would normally lie where the building sits 

should be run to the strap and brazed to it. The radials can then 

be continued from the other side of the building as shown. 
Finally, in many cases, a ground strap at least 2 in. wide 

should be run from the ground screen to the transmitter 
building. 
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GROUND ALL INSIDE 

EQUIPMENT TO STRAP 
METHOD OF INSTALLING 

RADIALS AROUND BUILDINGS 

2" OR 4" STRAP AROUND 

BUILDING. BURIED 6' 

TOWER SCREEN /e 

1 CONTINUE RADIAL FROM THIS POINT FOR REQUIRED 

DISTANCIE 

RUN RADIALS TO EXISTING BUILDING 

STRAP AND BRAZE 

Fig. 12-6. Running ground system past a building. 

Wherever possible, all of the radials should be the same 
length. This isn't always possible, particularly in older 

installations, where the property belonging to the station may 
not be large enough to permit equal radials. For example, the 
antenna may be erected in the center of a rectangular plot as 
shown in Fig. 12-7A. Then the diagonal radials and those 
extending along the long dimension of the rectangle may be 
long enough, but there may not be enough property along the 
short dimension of the lot to permit radials as long as we would 
like to have them. The result is often that the pattern of a tower 
tends to be elongated as shown in Fig. 12-7B. About the only 

thing that can be done to help this situation is to install long 
ground rods at the ends of each of the shorter radials. This will 

probably improve the pattern, but in many cases it still will not 
be circular. 

(A) 

SHORT GROUND 

RADIALS 

0 Fig. 12-7 Effect of short ground 
radials. 

(B) 

DISTORTED 

PATTERN 
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DIRECTIONAL ANTENNA GROUNDS 

Although the ground system is important with any 
standard broadcast antenna, it is especially important with a 
directional-antenna system. The design of such a system is 
based on all of the towers in the array radiating 
omnidirectionally with equal efficiency. To accomplish this, 
each tower of the array needs an effective ground system. 

With most directional antennas the spacing between the 
towers is such that the radials from the various towers tend to 

overlap. This overlapping is undesirable and can be avoided by 
using the scheme shown in Fig. 12-8. Here 120 radials are 
installed around each tower. The points where the radials 

meet are connected together with a copper strap at least 2 in. 
wide. As with other connections in the ground system, the 
strap should be brazed to the radials. Another copper strap 
should be run between the bases of the towers and to the 

transmitter building. 

A — STRAP BETWEEN THE TOWERS 
B — STRAP AT POINT OF OVERLAP 

Fig. 12-8. Typical directional antenna ground system. 

EQUIPMENT GROUNDING 

The ground system of the antenna is the place in the 
station installation that we must consider to be the best 

ground. Equipment in the transmitter building must be 
connected to the strap leading from the ground system. 

When overhead coaxial transmission lines are used, they 
should be bonded to the ground system at intervals of not more 

than 20 ft ( Fig. 12-9). 
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TRANSMISSION POST BONDED POST BONDED 

GROUN 

LINt ri X ri r 
0 1 11._ 2 IN. STRAP 

2 

L 

BURIED BONDED 

IN 

TRAP 

2-IN. STRAP I  NOT MORE  

r THAN 20 FT 
Fig. 12-9. Grounding of overhead transmission lines. 

It is almost always necessary to have an impe-
dance-matching network at the base of each tower, and any 

grounds in this network should be bonded to the ground 

system. Care should be taken to properly ground any metal 
enclosures used to house matching networks or base-current 

meters. 
Figure 12-10 shows a satisfactory system of making a 

ground inside a cabinet. The line is insulated where it enters 
the cabinet, and a ground connection is made to the inside of 

the cabinet. In the same way, a strap from the ground system 

is insulated until it is inside the cabinet, where it is connected 
to the common ground. With this arrangement all of the 

currents will flow in the ground conductors on the inside of the 
cabinet, and there will be no stray currents on the outside 

surface. 

LINE 

INSULATE 

FROM GROUND 

[ INSULATE GROUND STRAP 

UNTIL IT IS INSIDE 

CABINET 

STRAP TO 

STATION GROUND 

Fig 12-10 Equipment-cabinet grounding. 

SPECIAL GROUNDING ARRANGEMENTS 

The ground system is one of the most important parts of 

the AM antenna system. It is responsible for most of the losses 
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associated with the towers and is a frequent cause of 
instability in directional systems. The ground system should 

be the best available, with radials that are long enough to do 
the job. 

\---ROAD OR CREEK 

A - STRAPS ALONG ROAD OR CREEK BONDED TO RADIAL WIRES 

B - BONDS UNDER THE ROAD OR OVER THE CREEK CONNECTING THE STRAPS 

Fig. 12-11. Special grounding arrangement to overcome an obstacle. 

There will always be situations where obstacles to a good 
ground system will be encountered. Sometimes, for example, 
there will be a road or stream running right where a radial 

should be. In a case like this ( Fig. 12-11), the ground system is 
laid out in the usual way on both sides of the obstacle. Then a 

copper strap is run along each side of the obstacle. Finally, 

copper straps are run through the obstacle to complete the 

circuit. The principles demonstrated in Fig. 12-11 can be 

modified so as to handle most obstacles in the way of ground 
radials. 
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Chapter 13 

Antenna 
Instrumentation 
and Measurements 

There are two classes of instruments used with standard 
broadcast antennas: ( 1) instruments used for measuring 

electrical parameters in the station and on the antenna, and 
(2) instruments used at some distance from the antenna to 
determine the intensity of the radiated field. This chapter is 
concerned with the first of these. Measurements of field 

intensity and their interpretation are sufficiently different that 
they are discussed in the next chapter. 

The first requirement for any measuring instrument is 
that its accuracy be better than the tolerance in the device or 

system it is intended to evaluate. If, for example, an ammeter 
is used to calibrate another ammeter, the accuracy of the 
standard should be about ten times better than the accuracy of 
the meter being calibrated. This principle may seem obvious, 

but it is frequently violated in broadcast practice. It is not 
uncommon to find an engineer trying to hold the phase angle of 

the currents feeding two towers to within 2° with a monitoring 
system that has an inherent error of 5° or more. Improving the 
accuracy of measurements in an antenna sytem usually pays 

off in improved system performance. 
There are three quantities commonly measured in an AM 

antenna system: current, impedance, and, in directional 

arrays, phase angle. 
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RF AMMETER 

The most common measuring instrument in standard 
broadcast antennas is the thermocouple RF ammeter. It is 

used to measure current at the base of each tower, as well as 
at the common point of a directional-antenna system. Most 

broadcast engineers feel that the thermocouple RF ammeter 
is the least reliable instrument in the entire station, and in 

many instances this feeling is justified. The RF ammeter can, 
however, be used and read more intelligently if its principles 
of operation are well understood. 

The heart of the thermocouple RF ammeter is a thermal 

converter, which consists basically of a short heater strip that 
carries the current being measured, plus a thermocouple to 
measure the temperature difference between the center of the 

heater strip and its ends ( Fig. 13-1). The operation of the 
thermal converter is based on these assumptions. 

1. All of the current being measured passes uniformly 
through the heater strip. 

2. All of the other parts of the instrument, except the 
heater strip, are at the same temperature. 

3. A constant amount of heat is generated throughout the 
heater strip by the current being measured. 

When the above three conditions are met, the temperature 
difference between the center of the heater strip and its ends is 

THERMAL 
CONVERTER 

DC MECHANISM 

Fig. 13-1. Thermocouple ammeter. 
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proportional to the square of the current being measured. The 
efficiency of the thermal converter is low, a thermocouple 
output voltage of 10 mV being typical for full-scale current. 
This voltage is measured by a conventional D'Arsonval 
permanent-magnet, moving-coil meter, which is calibrated to 
read in RF amperes. Whenever full-scale currents of less than 
about 500 mA are required, the thermal converter is usually 
housed in a vacuum enclosure to improve its efficiency. 

When an RF thermocouple ammeter is used under ideal 
conditions, it is capable of performing accurate measure-
ments. Unfortunately, the conditions in the average broadcast 
station are far from ideal. The meter is often located in a 

"doghouse" at the base of a tower, where it is subjected to 
temperatures that range from over 100°F in summer to below 
zero in winter. 

One frequent source of errors in RF ammeter 

measurements is temperature influence. The manufacturer of 
the meter compensates it so that its indication will be within 
prescribed limits over a wide range of ambient temperatures. 

However, the compensation is based on all parts of the meter 
being at the same temperature, which isn't always the case 

when the temperature of the meter is changing. For example, 
when an engineer goes to the dog house to check meter 
indications, the first thing that he does is frequently something 
that will change the ambient temperature. In the summer he 
may open a window or turn on a fan, and in the winter he may 

turn on a heater. When this is done, the temperature of the 
meter starts to change. The change of temperature is not 

uniform; some parts of the meter heat up or cool off faster 
than other parts. Under this condition the indication may be in 
error by a large amount. When the temperature of the meter 
stabilizes—that is, when all parts reach the same 
temperature—the indication should be within the prescribed 

limits 
One of the enemies of thermocouple ammeters is 

lightning. It is essential to have an arrangement that will short 

out the meter when it is not being read. The simple shorting 
switch of Fig. 13-2A will provide some protection for the meter, 
but it is not recommended. With this arrangement the meter is 
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(A) 

not completely removed from the circuit, and the length of the 
line is not the same when the meter is in the circuit as when it 
is out of the circuit. In some critical installations this small 
extra length of line is enough to disturb the indication of the 
meter. 

The arrangement of Fig. I3-2B is preferred. Here the 
meter is switched completely out of the circuit when it is not in 
use, and the length of the short is made equal to the length of 
the circuit through the meter, so that the length of the 
transmission line will not be disturbed when the meter is 
switched in or out of the circuit. 

TO 
TOWER   TOWER 

00 
MAKE-BEFORE-

(B) BREAK SWITCH 

Fig. 13-2. Base ammeter meter protecting switches. 

The most likely effect of lightning is that the heater of the 

thermocouple will be burned out. There is, however, a more 
subtle problem that can result from current surges due to 
lightning, even when the meter is switched completely out of 

the circuit. During a thunderstorm there are many surges of 
current throughout an antenna feeder system. In a good 

installation these surges are bled off through air gaps and 
lightning protectors. Nevertheless, very high currents may 

flow in the vicinity of the RF ammeter. As with all currents, 
there are strong magnetic fields associated with these. A 
transient magnetic field may interact with the field of the 

magnet in the meter and either strengthen or weaken it, 
depending on the relative directions of the two fields. If the 
indication of an RF ammeter changes considerably 

immediately after a thunderstorm, it is a good idea to check 
the calibration of the meter before suspecting that the antenna 
itself is at fault. 
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Another problem with thermocouple ammeters is that, 
like other permanent-magnet, moving-coil meters, they are 

usually calibrated for use on either a magnetic or nonmag-
netic panel, but not both. When a meter is mounted on a panel 
that is made of a magnetic material, some of the flux from the 
magnet is shunted through the panel, reducing the flux in the 
air gap of the meter. This causes the meter indication to be 

low. Manufacturers calibrate a meter for the type of panel on 
which it is to be used. It is common for a broadcast engineer to 
calibrate a thermocouple ammeter with it lying on a bench. 
But if the meter has been calibrated at the factory for use on a 
magnetic panel, it will be in error when used on the bench. 

One more source of error in an RF ammeter is the 
presence of stray capacitances between various parts of the 
meter and any RF conductors in its vicinity. As pointed out 

before, the proper operation of the thermal converter is based 
on all of the measured current passing uniformly through the 
heater strip. If a conductor such as a ground wire passes 
closer to one side of the meter than the other, some of the 
current in the heater strip may be shunted through the stray 
capacitance with the nearby wire, resulting in an incorrect 
indication. 

Inasmuch as the RF ammeter is used to measure the 
operating parameters of a broadcast station, its specifications 
and application are carefully regulated by the FCC. As of this 
writing these are two requirements of the FCC Rules that are 
troublesome: 

I. The full-scale indication of the meter must not be 
greater than three times the normal indication. 

2. When not being used, the meter must be stored in a 
suitable housing at the base of the tower where it is 
normally used. 

These two requirements dictate that different meters must be 
used to measure the currents in different towers of a 
directional-antenna array. If one meter could be carried 
around to each of the towers to measure the base currents, it 
would probably be easier to keep the ratios between the 
currents within limits, even if the calibration of the meter 
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were off a little. When separate meters must be used, as is now 

required, the calibration of each meter must be as accurate as 
possible to ensure that current ratios will be held within the 
limits specified in the station license. 

Remote RF Ammeter 

In addition to the regular base-current ammeters, most 
stations also use remote-indicating meters back at the 
transmitter to permit monitoring of base currents. The FCC 
Rules spell out no less than seven different acceptable ways of 

remote metering. These are: 

1. A second thermocouple may be installed at the base of 
the antenna, as shown in Fig. 13-3. Here the 
thermocouple output is fed through an RF filter to 
keep RF from flowing back along the metering lines. A 

calibration potentiometer is also included. 

TO TOWER 

TO REMOTE 
METER 

Fig. 13-3. Remote-meter thermocouple must be inserted ahead of base 
ammeter. 

BASE-CURRENT 
METER 

2. The second thermocouple may be inductively coupled 
to the line ( Fig. 13-4). 

3. The second thermocouple may be capacitively coupled 
to the line in a way similar to that used for inductive 

coupling. 
4. A current transformer may be used to couple energy 

from the line for the remote meter. 

5. Remote-control equipment may be used for the remote 
indication. 

6. The antenna-monitoring system may be used for the 
remote indication. 

7. When an antenna is shunt fed and contains only series 
tuning elements, with no shunt elements, a 
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transmission-line meter at the transmitter may be 
used for remote indication of the base current. 

In all cases, the coupling to the transmission line at the 

base of the antenna must be on the transmitter side of the 
regular base-current meter. Thus any stray currents flowing 
through the remote-metering system will not flow through the 
regular base-current meter which, as far as the FCC Rules are 
concerned, should be the last part before the base of the tower. 

The FCC Rules clearly place the responsibility for proper 
operation of any remote-metering system on the station 
licensee and the manufacturer of the equipment. Present rules 
require that the indication of a remote meter be checked 
against the regular base-current meter at least once a week. 

SAMPLING 

TRANSFORMER 

r ; BASE-CURRENT 
METER 

THERMOCOUPLE 

TO TOWER 

TO REMOTE METER 

Fig. 13-4. Inductively coupled remote meter. 

Calibration of RF Ammeter 

Usually the RF ammeters used for standard broadcast 
work will operate as well on DC or at 60 Hz as at radio 
frequencies. This characteristic provides a convenient means 

of calibration. The meter to be calibrated is connected in 
series with another meter of the same type to an AC source, 
and the two indications are compared. The problem is getting 
a meter that is known to be good for calibration purposes. 
Every station should keep one RF ammeter that can be 
returned to a calibration house periodically for checking. This 

meter should be used only as a standard for calibrating other 
meters. It should be stored where it will not be subject to shock 
vibration or temperature extremes. 

When an RF ammeter is calibrated with direct current, 
the indication should be checked when the meter terminals are 
reversed. If there is any difference in indication, it is caused 
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by some of the direct current getting into the millivoltmeter 
section of the meter. 

Modulation Switch 

The indication of an RF ammeter in the transmission line 
to the antenna of an AM station varies with the modulation of 
the carrier. With 100% sinusoidal modulation the indication 
will be 22.5% higher than with the carrier alone. Therefore, 

base currents must be read at instants when there is no 
modulation on the carrier. It is easier to accomplish this if a 
switch for removing the modulation from the transmitter is 

installed at each meter location ( see Fig. 13-5). When a current 
measurement is to be made, the engineer can wait for a pause 
in the program material, then press the switch for the short 

time required to make the measurement. In this way, he can 
be sure that the indication is not being influenced by 
modulation on the carrier. 

TO SPEECH 

AMPLIFIER 

RELAY 

TRANSMITTER 1. 

i- 0 CLOSE SWITCH 

/TO READMETER 

LOW-VOLTAGE 

CONTROL LINE 

DOGHOUSE 

Fig. 13-5. Switch to remove modulation from carrier during antenna-
current readings. 

RF Current Transformer 

One increasingly popular way of sampling RF current on a 
transmission line or at the base of a tower is to use an RF 

current transformer. Several of these have been developed 
over the years. One of the more recent is shown in Fig. 13-6. It 
consists essentially of a shielded toroidal core that carries the 

secondary winding of the transformer. The conductor carrying 
the current being measured passes through the toroid and 

serves as the primary of the transformer. A current 
transformer of this type produces a secondary voltage that is 
proportional to the primary current when the secondary is 

connected to a fixed value of load resistance. Shielding is 

325 



provided to minimize coupling through the electric field, so 
that the coupling between primary and secondary is through 

the magnetic field only. 
The device shown in Fig. 13-6 was designed specifically for 

use with antenna-monitoring systems. In such applications it is 

important that not only the transformer ratio but also the 

phase shift through the transformer be constant. Units of this 

type typically have a phase-tracking error of about 0.2° from 

one unit to another. 

TO TOWER 
CONNECTOR 
FOR METERING 

LINE 
Fig. 13-6. Current transformer for measuring base current. ( Courtesy of 
Delta Electronics.) 

The output of the current transformer is connected to an 

indicator by a circuit such as is shown in Fig. 13-7. Diode DI in 
this circuit rectifies the RF signal and provides a DC voltage. 

A diode of this type has both an offset and a dependence on 

temperature. In this circuit, diode D3, which is identical to D1, 

compensates for the effects of changes in temperature in Dl. 
The current required for operating the compensating diode is 

taken from the signal power by means of diode D2. 

D1 

Fig. 13-7. Metering circuit for use with transformer of Fig. 13-6. ( Cou tesy 
Delta Electronics.) 
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The metering circuit of Fig. 13-7 may be used at the base of 
a tower in place of a thermocouple ammeter, or back at the 
transmitter site as a remote indicator of base current. In any 
case, the base-current measurement system must meet the 
requirements of the FCC Rules and the station license. 

ANTENNA-MONITORING SYSTEM 

For a directional-antenna array to produce the proper 
radiation pattern, the magnitude and phase angle of the 
current in each tower of the array must be held at the proper 
values. These parameters are monitored by the antenna-
monitoring or phase-monitoring system. This system takes 

samples of the current in each antenna, transmits the samples 
to a central location, and compares their magnitudes and 
phases. 

Of course, a monitoring system should have an accuracy 
and stability at least as good as the accuracy and stability of 

the system being monitored. Unfortunately, in many direc-
tional-antenna systems this is not achieved. In fact, there are 

monitoring systems that are better indicators of wind velocity 
and ambient temperature than of the operation of an antenna 

system! The broadcast engineer charged with the 
responsibility of keeping a directional antenna operating 

properly must realize that his measurements and adjustments 
will be no better than his monitoring system. A monitoring 
system that is not stable should be replaced as soon as 
feasible. Present FCC Rules and regulations require that the 
antenna monitor itself be type approved by the Commission. 
At this writing, rules are pending that will tie down the rest of 
the monitoring sytem as well. 

Figure 13-8 shows a block diagram of an antenna-

monitoring system. It consists of three parts—a means of 
sampling the current in each tower, coaxial sampling lines for 
transmitting the samples to a central location, and an antenna 
monitor, which compares the magnitudes and phases of the 
samples. 

Sampling Devices 

Many different types of devices are commonly used for 

obtaining samples of currents in the towers of direc-
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ISOLATION COILS SHOULD HAVE SAME 

CHARACTERISTIC IMPEDANCE AS MONITOR LINES 

ALL MONITOR LINES SHOULD BE OF EQUAL LENGTH 

 SUPPORT EXTRA LINE IN OPEN 

ANTENNA 

MONITOR 

Fig. 13-8. Typical antenna-monitoring system. 



tional-antenna systems. Figure 13-9 shows three common 

arrangements. In Fig. 13-9A a current transformer is installed 
in the transmission line at the base of each tower. This system 
works well with arrays that are not critical and where the 
towers are not much more than 1/4 wavelength in height. This 

system samples the current in the transmission line, and not in 
the tower. With a quarter-wave tower the base current is a 

better indication of the radiated field than with taller towers. 
With towers that are much more than 1/4 wavelength in 
height, the relationship between the base current and the 

maximum current in the tower, and the arrangement of Fig. 
13-9A might not be satisfactory. 

In the method of Fig. 13-9B a sampling loop is mounted on 

one leg of a tower, preferably near the place on the tower 
where the current is maximum. The sample from a loop of this 
type is much more representative of the radiated field than a 
sample taken from the transmission line. In some instances, 

lines for tower lighting and cables for FM or TV antennas 
mounted on the tower cause the currents in the various legs of 
the tower to be unequal. The arrangement of Fig. 13-9B tends 

to sample the current in one leg of the tower. When the 
currents are unequal, this sample might not be representative 
of the radiated field. The arrangement of Fig. 13-9C provides a 
current sample that is more representative of the radiated 
field than in the other two arrangements. 

A A 
lfr 

SAMPLES RELATIONS OF SAMPLES RELATIONS OF MORE NEARLY SAMPLES 

CURRENT AND PHASE CURRENT AND PHASE CURRENT AND PHASE 
IN LEAD-IN IN ONE LEG OF RADIATED FIELDS 
(A) (B) (C) 

Fig. 13-9. Typical sampling methods. 
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Of course, broadcast engineers must generally learn to 

live with an existing monitoring system and seldom have the 
opportunity to specify exactly what they would like. 
Nevertheless, the engineer should be aware of the limitations 
of various sampling arrangements so that, when he has the 
opportunity, he can modify the system so as to improve its 

performance. 
Many different types of sampling loops are in common 

use. Some have single turns, others have multiple turns, and 
some are tuned. In Fig. 13-10A the loop consists of a single 

turn, with the tower itself forming one leg of the turn. The 
center conductor of the sampling line is connected to the 
bottom of the loop, which is insulated from the tower, and the 

outer conductor is connected to the tower just below the 

bottom of the loop. Of course, the connections to the tower 
must be electrically sound and weatherproof. 

TOWER LEG— INSULATION 

BONDED 

TO TOWER 

INSULATORS 

COAXIAL LINE 

TO ANTENNA MONITOR 

(A) (3) 

Fig 13-10 Sampling loops 

The loop shown in B in Fig. 13-10 is similar to that in A 
except that the loop is complete in itself and is bonded to the 
tower on one side. In both cases, the loop consists of only one 

turn and is mounted on a face of corner of a tower so that the 
plane of the loop passes through the vertical center line of the 

tower. 

BOND OUTER 

CONDUCTOR TO 

TOWER 
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Two other factors must be taken into consideration for 

towers that carry very small currents. ( 1) When a tower that 
is a long distance from the central location carries a very 
small current, there is sometimes not enough current in a 
single-turn loop to provide a usable sample back at the 

antenna monitor. ( 2) A loop on a tower that carries a very 

small current sometimes picks up more energy from a nearby 
tower that carries a large current than from the tower on 
which it is mounted. 

The first problem has been handled by using a multiturn 
loop and actually tuning the loop with a small capacitor to 

increase its output. With more sensitive modern antenna 
monitors, this problem is not as severe. A single-turn untuned 

loop will often suffice. When it doesn't, a multiturn loop is 
preferable to a tuned loop, which is much more apt to be 
unstable. 

The problem of a loop picking up a signal from another 
tower is usually solved by proper orientation of the loop on the 

tower. In the arrangement of Fig. 13-11A, each loop links some 
flux from each tower. In Fig. 13-11B each loop picks up a signal 
from the tower on which it is mounted but tends to miss signals 

from the other towers. 

TOWERS 

pt ki 1=i< 

LOOPS 

(A) Fig. 13-11. Avoiding pickup from 

TOWERS other towers. 

LOOPS 

(B) 

Whenever possible, all sampling loops in an array should 
be identical and mounted in the same way on the tower. 
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Mechanical stability of the sampling loop is very important. If 
the position or orientation of the loop changes with the wind, 
the indications will also change even though nothing in the 
array itself changes. Heavily galvanized clamps with at least 
3/8 in. diameter bolts should be used to secure the loop to the 
tower, and electrical connections to the sampling line should 
be made with 1/4 in. brass bolts with nuts and lockwashers. 
Insulators should be treated to shed moisture. Loops should be 
at least 10 to 20 above the ground and should not be mounted 
across a joint in the tower structure. 

Sampling Lines 

There has been a great deal of debate over the type of 
coaxial cable to be used for sampling lines. It is generally 
agreed that the phase stability of RG-type solid-dielectric 
cables is far inferior to the phase stability of the types of 
transmission line used to feed the towers. Many engineers 
have found that a monitoring system behaves much better if 
the sampling lines are made of polyethelene-foam-filled 
semirigid coaxial cable. Nevertheless, some systems that are 
not particularly critical obtain satisfactory results with 

RG-type sampling lines. 
The vertical location of the loop should be the same on all 

of the towers of the array, and the vertical runs of the 
sampling cables should be the same length. At the base 
insulator of the tower, some provision must be made to keep 
the tower from being shorted to ground through the sampling 
line. This is usually accomplished by isolation coils (Fig. 
13-12). These coils may be bought, or they may be made by 
winding the sampling line itself into a coil. In either case, the 
characteristic impedance of line through the coils should be 
the same as that of the sampling line, and all coils in the array 
should be identical. The outer conductor of the sampling line 
should be bonded to the tower at least at the bottom of the 
sampling loop and above the isolation coil. In tall towers, 
where the vertical run of sampling line is long, it should be 

bonded to the tower more frequently. 
The sampling lines from each tower to the central location 

should all be the same length. If the distances from the towers 
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Fig. 13-12. Isolation coil for sampling line. 

are not equal, which is usual, the excess line should be coiled 
up where it will be exposed to the same temperature as the 
other lines. Excess line from the closer towers should not be 
coiled up inside a building, where it would be subjected to a 
different temperature than the other lines experience. 

Checking the Sampling System 

There are two important considerations in any sampling 
system. First, the system should be as stable as possible. 
When a change in the ratio of two currents or in their relative 
phase is noted, it is nice to have a reasonable assurance that 
the change has taken place in the array itself, and not in the 

sampling system. Second, enough data should be available for 
the engineer to determine through tests whether his sampling 

system has changed and to get it back to its original condition. 
On each portion of a sampling line the following 

measurements should be made and recorded: 

1. The DC resistance of the line should be measured with 
the far end alternately open and shorted. In the open 
condition the resistance should be very high, and in the 

shorted condition it should be very low. 
2. The RF impedance of the complete line with the loop 

attached should be measured at some frequency 
where the impedance is high. This measurement will 
help to spot changes that have occurred in the line and 

loop over a long period of time. 

The subject of measurements of sampling systems is 

under consideration by the FCC at the present time, and more 
meaningful measurements will be developed and eventually 
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FEED 
LINE 

Fig. 13-13. More current will flow 
in one tower leg than in the 
others in this tower. 

spelled out in the FCC rules. In general, any measurement that 

can help the engineer detect changes that might have occurred 
in his sampling system will be well worth making. 

Tower Current 

The purpose of the base ammeter is to measure the 
current flowing into the base of the tower. The purpose of the 
sampling loop is to measure the current at the current loop of 
the tower. Ideally, there is a good correlation between these 
two currents but for this to be true, the current must be 
uniform throughout the tower. This means that the connection 
to the tower must couple the current equally to all of the legs. 
Usually this isn't a problem with uniform towers, but towers 
such as the one shown in Fig. 13-13 that have four legs and four 
base insulators may present problems. If the feed line is 
connected to one of the legs of the tower in Fig. 13-13, the 
current tends to be unequal in the four legs. The best way to 

feed a tower of this type is to bond copper straps to the legs 
(Fig. 13-14). The straps are bonded together at the point where 
they cross, and the feed line is connected at this point. 

Antenna Monitor 

The purpose of the antenna monitor, which was formerly 
called the phase monitor, is to accept the samples from the 

FEED 
LINE 

Fig. 13-14. Feed arrangement for 
4- leg tower. 

(BOTTOM VIEW) 
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Fig. 13-15. Potomac Instruments model AM-19D(210) digital antenna 
monitor. 

sampling system and provide indications of the ratios and 
phase angles between tower currents. The engineer compares 
the readings with the corresponding values specified in the 
station license to assure that the operating parameters of the 
station are within prescribed limits. Current FCC Rules 

require that the antenna monitor be type approved by the FCC. 

Antenna monitors with either analog or digital readouts 
are available. Figure 13-15 shows a modern antenna monitor 
with a large digital readout of both ratio and phase angle. 
Sampling currents from up to 12 towers can be handled by such 

an instrument. A particular tower is selected by means of a 

pushbutton control, and the instrument displays the current 
ratio and phase angle with respect to the reference tower of 

Fig. 13-16. Impedance bridge. 

TO 
DETECTOR 
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the array. Modern antenna monitors are compatible with 
remote-control equipment so that a display of current ratio 
and phase can be obtained at the remote-control location. 

IMPEDANCE MEASUREMENTS 

The values of resistance and reactance of towers of 
antenna systems are important parameters, as are the values 
of the components used in matching and phase-shifting 
networks. The broadcast engineer must have a means of 
accurately measuring these values. The common instrument 

used for measuring impedance at radio frequencies is the 
radio-frequency impedance bridge. A typical circuit is shown 
in Fig. 13-16. A signal source such as a calibrated signal 
generator is connected to terminals A and B in the figure. The 
impedance being measured is connected across the terminals 

marked Z. . A null detector is connected across the bridge. 

The bridge is balanced for both resistance and reactance 
measurements by variable capacitors rather than variable 
resistors. The precision variable capacitor is superior to most 
variable resistors in that is has better linearity, better 
accuracy, and lower contact noise. To measure resistance, 
capacitor C„ is varied until the output of the null detector is 

minimum. The dial of C is calibrated directly in ohms of the 
resistance component of the unknown impedance. Reactance 
is measured by varying C, until the bridge is nulled. For 
reactance, the dial of C. is calibrated in ohms at 1 MHz. At 
other frequencies a correction factor must be applied to the 

reading of the reactance dial. 

Inasmuch as the operation of the impedance bridge 
depends on detecting a null, all components must be well 
shielded, and any leakage must be balanced out. Balancing out 

the leakage is difficult with a bridge circuit because the circuit 

is unbalanced with respect to ground. Stray capacitances are 
balanced out initially by a balance control, which must be 

properly adjusted at each frequency at which measurements 
are to be made. 

Usually a well shielded signal generator is used for a 
signal source, and a communications-type receiver that will 
tune the standard broadcast band is used for a null detector. 
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Connections between the bridge and signal source are made 
with coaxial cable, and all components are well grounded. The 

signal source must be calibrated accurately because the 

accuracy of the measurements depends on an accurate 

knowledge of the frequency at which the measurements are 

made. 
Measurements on a distributed element, such as an 

antenna tower or transmission line, are complicated by the 

element itself acting as a receiving antenna. If a signal from a 

cochannel station is picked up, it will make the null very broad 

and hence will decrease the accuracy of the measurement. 
The interfering signal does not have to be very strong to 

seriously affect the accuracy of an impedance measurement. 

At the point of measurement, the signal from the source is 

intentionally set at a minimum, so a weak interfering signal 
will have a noticeable effect. The use of a receiver as a null 

detector makes it easy to tell when a interfering signal is 

strong enough to influence the accuracy of a measurement. 

When the bridge is balanced, the signal from the signal source 
will be at its minimum, and any interfering signal will be 

heard in the speaker of the receiver. 

Fig. 13-17 shows a scheme that can be used to measure the 

impedance of a load under operating conditions. Here a series 

resonant circuit, consisting of a capacitor and a tapped coil, is 

connected between the antenna ammeter and the load. If 

possible, the tap position on the coil should be continuously 
variable. Naturally, both the coil and the capacitor must be 

capable of carrying the full operating current. 
If the load has a capacitive component, the coil is placed 

closest to the antenna as shown in Fig. 13-17A. The positions of 

the coil and capacitor are reversed if the load has an inductive 

component, as shown in Fig. 13-17B. 

The voltmeter is a high impedance RF voltmeter. Its 

impedance must be very high compared to the value of the 

load impedance. 
The first step is to connect the voltmeter directly across 

the load. The load voltage ( V), together with the load current 

( I), will permit us to compute the magnitude, but not the phase 
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angle. of the load impedance from the relationship 

V 
= — 

1 

The next step is to slide the voltmeter along the coil until a 
point is found where the voltage indicated on the meter is 

minimum. At this tap position, the reactance to the right of the 
tap is equal and opposite to the reactive component of the load. 
The circuit to the right of the tap, including the load 

impedance, forms a series-resonant circuit. Thus the 
impedance seen looking to the right from the tap position is 
equal to only the resistive component of the load impedance; 
the reactances cancel out. This makes it possible for us to 
compute the resistive component of the load from the equation 

V 

where V,„,„ is the voltage at the position of the tap where the 
indication of the voltmeter is minimum, and / is the series 
current. If a high impedance voltmeter is used, the value of the 
series current I should be the same for both measurements. 

BASE-

MATCHING 

UNIT 

BASE-

CURRENT 

METER r - - - 

(A) 

Fig. 13-17. Method of measuring driving-point impedance. 
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We now know the magnitude Z of the unknown impedance 

and the value R of its resistive component. We can compute 
the magnitude of the reactive component X as well as the 
phase angle y from the equations 

X = Z- — ¡2 

tan y = R/ X 
Operating Impedance Bridge 

The operating impedance bridge, or 01B, permits 

measuring the complex impedance across a load under 
operating conditions. In directional-antenna systems. where 

the driving-point impedance of a tower is considerably 

different from its self-impedance, this instrument is 
invaluable. The instrument can operate with considerable 

power ( up to 5 kW ) being supplied to the load. This high power 
level permits the use of an internal null detector rather than a 
sensitive communications receiver and thus avoids many of 
the problems encountered with low signal levels. All of the 

components of the operating bridge are in parallel to ground, 
so that problems of stray capacitance encountered with a 

conventional impedance bridge are avoided. 
Figure 13-18 shows a simplified schematic of the operating 

impedance bridge. The circuit between the generator and load 

is interrupted by a short ( typically about 9 in.) section of 
transmission line with a characteristic impedance of about 150 

ohms. Because this section is so short, it has practically no 

effect on most antenna impedances found in standard 
broadcast stations. A second section of transmission line is 

IN (1 r) OUT 

R DIAL DETECTOR X DIAL 

Fig. 13-18. Simplified schematic of operating impedance bridge. 
(Courtesy Delta Electronics.) 
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lightly coupled to the main section. This second line has waves 
proportional to the forward and reverse waves in the main 
section. which in turn are a function of the resistive and 
reactive components of the load impedance. The measurement 

is accomplished by adjusting resistance and reactance dials 
for a null indication. The resistance dial is calibrated directly 
in ohms of resistance. The reactance dial is calibrated in ohms 
of reactance at 1 MHz. For measurements at other 
frequencies. a correction factor is applied to the dial 

indication. 
Problems of cochannel-station interference are minimized 

with the operating bridge by using sufficiently high power 

levels to minimize the effect of weak interfering signals. 
The operation of the operating bridge is straightforward. 

It can. of course, be used with a signal generator and a null 
detector. just like a conventional bridge. Then, however, 

leakage is just as important as in any other bridge 

measurement. 
When we are making bridge measurements at high power 

levels, we must exercise special caution. A short circuit at 5 
kW is usually much more expensive and hazardous than a 

short circuit at the signal levels of a signal generator. The case 
of the operating bridge must be properly grounded: otherwise, 

very high voltages may be encountered. 
Although the operating bridge can conveniently perform 

many impedance measurements that are impractical if not 
impossible with conventional bridges, a conventional precision 

impedance bridge is still needed in a standard broadcast 
station for precise measurement of the values of the 
components in the feeder system. 
A rather problematical impedance in a directional-

antenna system is the impedance at the common point. The 

power radiated by the station depends on the value of the 
common-point impedance, and this value can change with 

adjustments in the feeder system. A special version of the 
operating impedance bridge, called the common-point bridge. 

is available for permanent installation at the common point. 
Bridges of this type can handle up to 50 kW of power. 

340 



Provision is made in the common-point bridge for 
installing an RF ammeter. This permits measuring the 
common-point impedance at any time—even when the station 
is operating at full power—and continuously monitoring the 
common-point current. This in turn permits operating the 

station at its full authorized power at all times. Furthermore, 
periodic measurement of the common-point impedance often 

permits detecting changes in the other operating parameters 
of a directional antenna. 

Base-Impedance Measurement 

The driving-point impedance seen at the base of a tower is 
an important parameter in any AM antenna system. It must be 

known accurately and measured whenever there is reason to 

suspect that any of the parameters of the antenna system have 
changed. 

In nondirectional antennas, where there is only one tower, 
the driving-point impedance at the base of the tower is the 
same as its self-impedance, and the measurement is 
straightforward. In multitower directional antennas the two 
impedances are not at all the same thing, and the 
measurement is much more involved. 

An impedance is the complex ratio of the voltage across 
two terminals to the current flowing in them. Thus the 

impedance seen at the base of a tower depends on the current 
distribution on the tower itself. Anything that might affect the 
current distribution can change the base impedance. Leads 
from tower-lighting circuits and sampling loops are the items 
most likely to disturb the current distribution and hence the 

base impedance. Many engineers feel that it is advisable to 
feed tower-lighting circuits through an Austin transformer, 

particularly with directional antennas, because transformers 
seem less likely to disturb the base impedance. 

Self-Impedance 

The self-impedance of a tower is the impedance that would 
be measured across the base insulator with no other towers in 
the vicinity. This is. in fact, what is measured by connecting a 

bridge across the base insulator of a nondirectional antenna. 
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In a directional antenna the driving-point impedance seen 

across the base insulator of a tower depends not only on its 
self-impedance but also on the mutual impedance with other 
towers and the ratios of the currents in the towers. Considering 

only two towers, the driving-point impedance is given by the 

equation 
12 

Z1 = Z1 Z12 

where Z1 = driving-point impedance at base of tower 1 

Z, = self-impedance of tower 1 
Z12 = mutual impedance between towers 1 and 2 

I, = current in tower 1 
12 = current in tower 2 

Inspection of this equation shows that there was some way 
to make the current 12 in tower 2 zero, the driving-point 

impedance of tower 1 would be equal to the self-impedance; 

that is, the second term in the equation would equal zero. This 
can, in fact, be done, although it isn't always easy. The trick is 
to connect the base of tower 2 in such a way that little if any 
current will be induced in it from tower 1. If tower 2 is a 
quarter-wave tower, we can make its current minimum by 
merely floating it above ground. If it is a half-wave tower, we 
can reduce its current by grounding its base. If the length is 

some other fraction of a wavelength, we can minimize the 
current by connecting a series- or parallel-resonant circuit 
between the base of the tower and ground and tuning for 
minimum current. This adjustment is made by driving one 
tower with low power while adjusting the tuning networks for 
minimum current in the other towers ( Fig. 13-19). 

The driving-point impedance of any tower in a 
directional-antenna array can be measured directly by the 
method of Fig. 13-17 or by using an operating impedance 
bridge. As pointed out earlier, the operating impedance bridge 
has the advantage of permitting base-impedance 
measurements with the tower operating at substantial power 

levels. 
Impedance measurements are very important in standard 

broadcast stations. When power is determined by the direct 
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TOWER 1 TOWER 2 

TO 

TRANSMITTER 

Fig. 13-19. Detuning a tower 

method, the reading of the base-current meter is squared and 
multiplied by the base resistance to determine the operating 
power. In a directional-antenna system the same procedure is 

used, but both the impedance and current are measured at the 
common point. Base and common-point impedance measure-
ments should be made not only at the carrier frequency but 
also at several frequencies on either side of it. 

Figure 13-20 shows a plot of resistance and reactance 
measurements made at the common point of a direc-
tional-antenna system. This plot varies widely from one 
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directional antenna to another and is an indication of the 

bandwidth of the array. 

Measuring Mutual Impedance 

The average broadcast engineer generally has no occasion 

for measurement of the mutual impedances of an antenna 
array. About the only time such measurement is called for is 

when an array is first installed or when major modifications 
are made. The measurement requires an ordinary impedance 
bridge or an operating bridge. The procedure will be explained 
next, using a 2-tower array to keep things from becoming too 

complicated. It can readily be extended to the multitower 

case. 
The first step is to measure the self-impedances at the 

bases of the two towers with the current in the other towers 
brought to zero by either opening them at the base or detuning 

them. From these measurements we get the resistive and 
reactive components of the self-impedances of both towers. 

Z1 = RII jX1I 
Z22 = R22 + j X22 

We need one more quantity to compute the mutual 
impedance. We get it by measuring the impedance of tower 1 

when tower 2 is series-resonated. Tower 2 is series-resonated 
by connecting the base of tower 2 to ground through a 

reactance that is equal and opposite to the reactive component 

of its self-impedance ( Fig. 13-21). We will call the impedance 
that we measure at tower 1 under this condition Zit '. We can 

now compute the mutual impedance from the equation 

Z2 = VR22 (ZI1 I ) 

Z11= Rit 4- jX 
Z11 

2 Z22= R 22 4- iX 22 — 0, 

(A)rh  1 (B) 

Zi2=VR22(Z' 11 Z it) 

Fig. 13-21. Mutual-impedance measurement. 

— jX 22) 
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To solve the above equation, we must extract the square 

root of a vector quantity. This is done by taking the square root 

of the magnitude and dividing the angle by 2. Thus the square 

root of 4/30° is ± 2 / 15°. The ± means that there are actually 
two separate square roots. We can write —2 z 15° as 

+2, 15°  + 180° or 2 z 165°. Thus the two values of the square 

root of 4 / 30° are 2 / 15° and 2 / 165°. 
When we determine the mutual impedance between two 

antennas using the method just described, we obtain two 

values. To find out which one is correct, we can use the 
mutual-impedance graph in Chapter 9. The values in the graph 

will be close enough for us to distinguish which of the two 

values is correct. 
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Chapter 14 

AM Field 
Intensity Measurements 

Probably the most important measurement that a broadcast 
engineer is called on to make is the measurement of the field 
intensity of the signal from a directional antenna. 
Measurements must be made before a station license can be 
issued, as well as at regular intervals to assure that the 
pattern of an antenna hasn't changed from the values specified 
in the license. Not only is the measurement itself important, 
but proper interpretation of the measurement is equally 
important. 

FIELD-INTENSITY METER 

Fig. 14-1 shows a typical field-intensity meter of the type 
used at standard broadcast frequencies. It is essentially a 
calibrated receiver with a loop antenna and a meter to indicate 
field intensity. 

There are many reasons for using a loop antenna for 
field-intensity measurements. For one, it is possible to 
calculate the intensity of the field directly from the voltage 

induced in the loop antenna. This avoids the problem of 
determining the effective height, which we would have to do 
with some other types of antenna, such as a rod. Another 
advantage of the loop is its directionality. This permits us to be 
sure that the field being measured is received directly from 
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Fig. 14-1. Field-strength meter FIM-41. 

the antenna being investigated and is not reflected from some 
other object. 

Figure 14-2 shows a sketch of a loop antenna. Note that the 
direction of maximum pickup is along the plane of the loop and 
that there is a null in the direction perpendicular to the plane 

of the loop. In the instrument of Fig. 14-1 the loop antenna is 
mounted in the lid of the case and is connected to the input of 
the receiver when the lid is opened. The instrument has a 
calibrated attenuator, which permits measurements to be 

made over a wide dynamic range. Usually a calibrated 
oscillator is included to permit periodic checking of the 
calibration. 

347 



MAXIMUM 
PICKUP Fig 14-2. Basic loop antenna. 

MINIMUM 

PICKUP 

Some field-intensity meters are crystal-controlled at the 

carrier frequency of the station to avoid the requirement for 
accurate tuning. Others have a tuning range that includes the 

second harmonics of the standard broadcast band to allow 
measurement of the ratio of the second harmonic to the 

carrier strength. Highly selective filters are included to 

minimize errors from stations operating on adjacent channels. 

SELECTING THE MEASUREMENT SITE 

The first step in obtaining an accurate indication of the 
radiation from an antenna is to find a suitable location for the 

measurement. Conducting objects tend to disturb the field 

from an antenna and must be avoided when field-intensity 

measurements are made. Nearby conducting objects such as 
power lines, poles, signs, and similar structures within several 

feet of the measurement point can cause errors. As a rule of 
thumb, the distance from a conducting object to the spot where 

the measurement is made should be at least five times the 
height of the object. and preferably ten times. 

Other potential sources of field disturbance at a proposed 

measuremnt site are water and gas pipes, power lines, and 
other underground conductors. 

There are two other requirements for a site for accurate 

field-intensity measurements. For one, the site must be 
accessible in all kinds of weather so that the measurement 

may be repeated at any time. A site that isn't accessible 

because of deep snow in the winter or flooding in the spring is 

of little value. To check on whether or not an antenna pattern 
has changed, it is necessary to make measurements at exactly 
the same place where the original measurements were made. 

Additionally, the measurement site must be clearly 

identifiable. A clear and easy-to-follow description must be 
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provided. If practicable, a photograph should be taken so that 
the measurement site can be easily found and identified. 

The quality of a potential measurement site may be 
checked with the field-intensity meter. First of all, the 
direction of arrival of the signal, as indicated by the 
orientation of the loop, must be in the actual direction of the 
station. If the signal appears to arrive from a different 
direction, the proposed site is probably no good. Another very 
useful check on the quality of a site is to turn the loop antenna 
of the meter so that the null is in the direction of the station. 
The null should be sharp and deep. If the null is broad, the site 
is probably not suitable for accurate measurements. 

Another check is to make several measurements within a 
radius of 5 to 10 ft at the measurement site. The measured field 
intensity should be essentially constant all around the 
measurement site. If there are any shape changes, select 
another site. Even if one point in the area provided an accurate 
measurement, it would be nearly impossible to find the same 
spot for a subsequent measurement. 

Once a measurement site is selected, it should not only be 
identified so that it can be found easily in the future, it should 
be described well enough that newly constructed buildings, 
power lines, and the like that might render the site useless can 
be readily identified. It is a good scheme, whenever a 
measurement site is selected, to also select an alternate site. 
Then, if for some reason the original site becomes useless, the 
alternate site is available for future measurements. 

INVERSE FIELD AT ONE MILE 

The basis for all standard broadcast allocations is the 
effective or inverse field at one mile from the antenna. It is 
important to note that this is not the field intensity that we 
would measure if we were to take a field-intensity meter out 
one mile from the antenna and make a measurement. Before 
considering just how we go about finding the inverse field at 
one mile, let us review how field intensity varies with distance 
from the antenna. 

If the earth were a perfect conductor, the field intensity 
would vary inversely with the distance from the antenna. 
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Salt water is a nearly perfect conductor, for all practical 

purposes, but the earth itself is far from it. Suppose, for 
example, we found that the field intensity from a station was 
200 mV/m at a distance of 10 miles from the station over sea 
water. If we made a similar measurement 20 miles from the 
antenna, still over sea water, we would find a field intensity of 
100 mV/m. In other words, if we double the distance from the 

station, we find half the original field intensity. Now, over the 
ground the field intensity attenuates much more rapidly than 
over sea water because the earth is not a perfect conductor. 
Much of the signal is dissipated in the resistance of the earth. 
The amount of attenuation depends on the conductivity of the 
earth and the frequency of the signal. For the same value of 
conductivity, the attenuation will be greater for higher 
frequency signals. 

The conductivity of the earth varies from as little as one 
millimho per meter in dry, sandy locations to as much as 10 or 
20 mmho/m in areas where the soil is moist. The ground 
conductivities at various parts of the continental U.S. are 
given in Fig. 6-10. 

The inverse or effective field at one mile from the 

transmitting antenna that is used as the basis of allocation is 
the field that would exist if the ground were a perfect 
conductor. By making a series of measurements along a radial 
from the antenna and plotting them properly, we can find not 
only the effective field at one mile but also the effective value 
of ground conductivity in the vicinity of the station. 

RUNNING THE RADIALS 

To determine the effective field at one mile from the 
antenna, we must start with a series of measurements taken 
along radial lines extending out from the reference point of the 
antenna array. It is essential to have an accurate map of the 
area. The maps issued by the U.S. Coast and Geodetic Survey 
are the best for the purpose. If these are not available, state or 
county maps may be used, but the distances should be checked 
with an automobile odometer. Road maps often have large 
errors and should not be used unless they have been 
completely checked. 
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The first step in making radial measurements is to locate 
the antenna site on the map. Then a north—south line is drawn 
through the site. Following this, a protractor is used to draw 
the radial. ( See Fig. 14-3 for a typical map with a radial.) The 
map should then be studied to find suitable measurement sites. 
As many potential measurement sites as practicable should be 
identified along each radial. Except in rural areas, many sites 
will prove to be unacceptable because of the proximity of 

conducting structures. 

Fig. 14-3. Map with radial. 
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The measurement sites must not be too close to the 

antenna site. For a single-tower nondirectional antenna the 
nearest measurement site should be no closer than five to ten 
times the height of the tower. For a directional antenna the 
closest measurement site should be no closer than ten times 
the spacing between the most widely separated tower. The 
reason for this last condition is that a directional antenna is not 

much like a point source until one is a considerable distance 
from it. 

When the first satisfactory measurement site is located 
and the measurement made, both the measurement and a 
description of the site should be entered in a log ( Fig. 14-4). A 
column should be provided in the log for entering the radial 
distance from the array to the measurement site. This 
distance can be computed from the map and entered in the log 
later. The importance of proper identification of the 
measurement point cannot be overemphasized. Directional 
antennas cause enough problems without introducing others 
by making measurements that cannot be duplicated. 

STATION WXYZ 

POWER 5 kW 

FRED 1300 kHz 

MODE NONDIRECTINAL—TOWER 

RADIAL 40 TRUE 

DATE 3 - 13 - 76 

MEAS 

POINT 

DISTANCE 

(MILES) 

FIELD 

INTENSITY TIME COMMENTS 

a 1 2 152 5 1300 IN FIELD. 100 FT DUE NORTH OF RT. 304. 

9 1 7 148 1348 NE CORNER 8TH LANE, AND RT 4. 

10 22 147 1420 BY LAKE—SEE PHOTO. 

Fig. 14-4. Typical measurement-log entries. 

The first series of radial measurements are made with the 

antenna operating in the nondirectional mode. If the antenna is 
to normally operate this way, these measurements will 
establish the efficiency. With a normally directional antenna, 

the nondirectional measurements will be of great value in 
evaluating its directional performance later on. 

In general, the more measurements made along a radial, 
the better. When plenty of measurements are available, the 
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data can be analyzed much more precisely. For a 

nondirectional antenna at least 25 measurements should be 
made on each radial. For a directional antenna 40-50 
measurements should be made on each radial. 

The number of radials on which measurements are made 

depends on the complexity of the pattern. 

FINDING THE EFFECTIVE FIELD AT ONE MILE 

After all of the measurements have been taken along a 
radial, it is necessary to analyze them to determine the 
effective field at one mile from the antenna and the effective 
ground conductivity. This is most conveniently done with the 
aid of charts published by the FCC. These charts appear in 
Part 73 of the FCC Rules, and a typical one is shown in Fig. 
14-5. 
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Fig. 14-5. Groundwave field intensity versus distance, 970-1030 kHz. 
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FCC Field-Intensity Charts 

Before attempting to use the curves of Fig. 14-5, one must 
be thoroughly familiar with them and just what they are 

intended to show. The actual FCC curves show another, family 
of curves that extended out to 2000 miles, but these are not 
used by the broadcast-station engineer in checking his 
antenna. Referring to Fig. 14-5, at the top of the graph is a 
straight line that shows how the signal would be attenuated 
over a perfectly conducting earth. Note that the field intensity 

at one mile is 100 mV/m, whereas at 2 miles it is 50 mV/m. 
This is just what we would expect. since over a perfectly 
conducting earth the signal varies inversely with distance. 
Now, looking at the curve labeled 10, we can find the 
attenuation of a signal over ground having a conductivity of 10 
mmho/m. Note that in this case the field intensity at 2 miles 
from the antenna is only about 20 mV/m. The curve labeled 2 
shows the attenuation of a signal over ground having a 

conductivity of 2 mmho/m, which is about the lowest 
conductivity found in the U.S. In this instance, the field 
intensity at 2 miles from the antenna would be about 17 mV/m. 

The FCC curves are based on a field intensity at one mile 
from the antenna of 100 mV/m, but they can be easily scaled to 
handle other field intensities. For example, if our station 
produced an effective field of 500 mV/m at one mile, we could 

simply multiply all of the other points on the curves by 5. 

Finding the Conductivity 

Before we can use the FCC curves for a particular station, 

we must know the ground conductivity along each radial. It is 
important to realize that the conductivity might be different 

along different radials. We find the conductivity by plotting the 
measurements of field intensity on translucent graph paper 

with grid lines that exactly match the graph paper used in 
plotting the FCC graphs.* 

Figure 14-6 shows a plot of measurements taken along a 
radial of 290° true from a station operating on 1460 kHz. Once 
plotted, our graph ( Fig. 14-6) is placed on top of the 

* This graph paper is available from Keuffel & Esser Co., 1766 N St., NW. 

Washington, DC 20036, as graph paper 99-1101 ( orange lines) or 99-9901 ( green 

lines). 
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Fig 14-6 Plot of measurements. 

corresponding FCC graph ( Fig. 14-5) so that the vertical grids 

of the graphs exactly coincide. Both graphs are then held up to 

the light so that the lines on the FCC graph show through. Then 

our top graph is slid up and down until its measurement points 

fall on one of the curves of the FCC graph. In our example, the 

measurement points fall on the 20 mmho/m conductivity curve 

of the FCC graph. When the two graphs are superimposed, the 
result looks like the composite graph shown in Fig. 14-7. Note 
that the grid lines of this graph are like those on the graph we 

plotted in Fig. 14-6, but the shape of the conductivity curve is 

like that on the FCC graph in Fig. 14-5. 

Graphical Solution for Field 

To form the graph of Fig. 14-7, we trace the 20 mmho/m 

curve on our graph of measurements. Also, we trace the 

straight inverse-distance line on our graph. Now we can find 
the effective or unattenuated inverse field at one mile from our 
station. Note that it is the point where the inverse-distance 
trace from the FCC graph crosses the one-mile ordinate on our 

graph. In the example of Fig. 14-7, the effective field at one 
mile from the antenna is 120 mV/m, even though the actual 

measured field was only about 108 mV/m. 

The above procedure is extremely important in analyzing 
field- intensity measurements from a standard broadcast 
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Fig. 14-7. Figures 14-5 and 14-6 superimposed. 

station. Every broadcast engineer should be thoroughly 

familiar with it. For this reason the step-by-step procedure is 
given below. 

1. Plot measurements of field intensity versus distance 

on the proper type of graph paper. 
2. Place the graph on top of the proper FCC graph so that 

the vertical grid lines of the two graphs coincide 

exactly. 

3. Hold the two graphs up to the light so that the 

coordinates of both graphs can be read. 
4. Slide the top graph up and down until the measurement 

points on it fall on one of the curves of the FCC graph. 
Keep the two graph sheets in this position. 

5. Trace the proper conductivity curve of the FCC graph 

onto the graph that has been plotted so that the curve 
passes through the measurement points. This yields 

the ground conductivity along the radial. 
6. Trace the inverse-field curve from the FCC graph onto 

the graph that has been plotted. The point where the 
inverse-field line crosses the one-mile ordinate on the 

top graph gives the effective field at one mile from the 
antenna. 

356 



It is rare that all of the measurements that have been 
made along a radial will fall exactly on one of the conductivity 
curves published by the FCC. One method of making an 
approximate fit is to have as many of the measurement values 
appear above the curve as fall below it. 

It might appear superficially that the effective field at one 
mile from the antenna is a rather arbitrary figure on which to 
base allocations, but inspection of the method of deriving the 
figure will show that it is actually based on a series of 
measurements and tells much more about the performance of 

an antenna than any single measurement possibly could. 

Curve-Fitting 

When measurements are made on a nondirectional 
antenna or a directional antenna operating in the nondi-
rectional mode, the measurement points usually fit quite 
nicely on one of the conductivity curves on the FCC graphs. 

Occasionally, there is an abrupt change in ground conductivity 
along one or more radials. Then part of the measured data will 
fall on one of the conductivity curves, and the rest will fall on 

another curve. Such a situation is shown in Fig. 14-8. Here the 
measurements out to about 5 miles fall on the 10 mmho/m 
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curve. Beyond that the points fall on the curve corresponding 
to 2 mmho/m. In this case, there is an abrupt change at about 5 

miles from the antenna, where the land becomes sandy and 

dry. 
Usually directional-antenna measurements do not fit the 

conductivity curves as well as nondirectional-antenna 
measurements, particularly when made close to the antenna. 
One reason for this is that the directional antenna doesn't look 
as much like a point source as a nondirectional antenna does. 

By looking at the plot of field intensity versus distance along a 
radial of a directional antenna, we will usually see that the 
data behaves rather wildly when the measurement points are 
too close to the array. Figure 14-9 shows a plot of field intensity 
versus distance along one radial of a 2-tower array. Note that 

the field intensity actually increases with distance at certain 
points. In such a case it is better to rely on measurements 
taken at greater distances. Unfortunately, the radial may lie 

along a rather deep null in the pattern, and there may not be 
much signal strength to start with. 

There are other reasons for data skewing along the radial 

of a directional antenna, and sometimes these can't be pinned 
down; but the data is simply hard to place on any particular 
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conductivity curve. In such cases, it is sometimes helpful to 
take the ratio of the directional and nondirectional 

measurements taken at the same points. We then try to plot 
the ratios of the measurements to see if we can make them fit 

one of the FCC curves so that we can find the inverse field at 

one mile along the radial. If the ratios fall on one of the curves, 

the FCC will probably accept our data. When the ratios don't 

fit, we can try other things, such as taking the ratio of each 

measurement to the average ratio. 
This problem is most severe on radials in deep nulls where 

the signal must be held to a low value to protect other stations. 
There isn't much field intensity along such a radial in the first 

place, so the measurements are much more susceptible to 

such things as reflections from conducting objects. 
The interpretation of field-intensity measurements that do 

not fall into the normal pattern is more of an art than a 

science. The FCC is often helpful in this, and there are many 

consultants who specialize in directional-antenna work. 

CHECKING THE PATTERN 

The purpose of radial measurements is to establish or 

check an antenna pattern. The procedure used in checking a 
pattern is usually called a proof of performance. The initial 
proof of performance is made before the station license is 

issued. A directional-antenna system is built on the 
authorization of a construction permit, which is based on a 

theoretical pattern that is computed in accordance with the 
procedures given in earlier chapters. Then a complete set of 
measurements is made to assure that the actual pattern is 

within the prescribed limits. If it is, the station license is 

issued. 
Until 1971 each standard broadcast station with a 

directional antenna had two antenna patterns. The first was 

the theoretical pattern on which the construction permit was 
based. The second was a revised pattern based on actual 
measurements. Figure 14-10 shows a typical pattern. The solid 

line represents the theoretical pattern. In practice, it proved 
impossible to attain this pattern, so the limits were relaxed as 

shown by the dotted lines. The dotted lines represent the 
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140 

maximum expected operating value or MEOV, pattern. Since 
1971 all new installations and those that have had major 
modifications have only one antenna pattern, which is referred 
to as the standard pattern. 

In addition to the complete proof of performance that is 
required when a station is installed and when major 
modifications are made to the antenna system, partial or 
skeleton proofs are required under other conditions. When a 
station makes a request of the FCC to operate with parameters 
at variance from their licensed values, the Commission may 

require a skeleton proof of performance. A skeleton proof is 
also required when a station using remote control applies for 
license renewal. A skeleton proof consists of three or four 
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field-intensity measurements made on each radial specified in 
the original complete proof. 

When a station applies for permission to use 
third-class-licensed operators for routine duties, it must 

submit a partial proof, which consists of at least 10 field 
intensity measurements made on each radial. 

The number of radials on which measurements must be 
made depends on the complexity of the pattern. Eight radials 
are required to establish the nondirectional characteristics of 
an antenna, and if the pattern has many nulls and major lobes, 

many more may be required. The FCC considers three radials 
sufficient to establish a major lobe. 

Once the radial measurements have been made and the 
effective field at one mile determined for each radial, the 
pattern may be plotted. It is usually a good idea to plot the 
pattern to the same scale used in the original pattern so that a 
quick visual check can be made to see if there are any drastic 
changes. 

Suppose that a series of radial measurements have been 
made on 12 radials, and the effective field at one mile along 
each radial has been found to be as shown in Fig. 14-11. The 
pattern can then be plotted as shown in Fig. 14-11. Let us 
assume that the pattern is within the prescribed limits. 

The next step is to check the size, or the rms value, of the 
pattern. ( The rms or root-mean-square value should not be 

confused with the rss root-sum-square value. The rss figure is 
used in computing the standard pattern of the station.) The 
rms value of an antenna pattern is the radius of a circle, 
expressed in millivolts per meter, that has the same area as 
the pattern. 

There are several ways in which the rms value of an 
antenna pattern can be calculated. One way ( described in 
Chapter 7) is to determine the area enclosed by the pattern on 
a graph and calculate the radius of a circle of the same area. 
Another method is to square the effective field at one mile on 
each radial, find the average of the squares, and take the 

square root of the average. Using the example of Fig. 14-11, we 
would find the rms field as follows: 
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Effective Field (Effective Field) 

620 384 400 

600 360 000 

518 268 324 
372 138 384 

164 26 896 
62 3 844 

17 289 
59 3 481 

203 41 209 

354 125 316 

422 178 084 
600 360 000 

1 890 257 
1,890,257 

Eme 2 -   = 157.521 Er, = = 397 mV/m 
12 

This gives the rms field as 397 mV/m, which is only 

approximate. This method is only accurate when we have 
many radials, say, one every 5° of azimuth. 

The rms value of the pattern must be checked against the 

original value or any previous value that has been accepted by 
the FCC. Any substantial change in the rms value means that 

there has been a change in the antenna system and that it 

might no longer meet the license requirements. The usual 

change is that the rms value becomes smaller, which often 
means that the losses associated with the antenna or feeder 

system have increased. A frequent cause is deterioration of 

the ground system. The rms value will also decrease if the 
transmitter output power is lower than it should be. The 
common-point impedance and current should be checked for 
this. 

Sometimes, after extensive repairs to a directional 
antenna, the rms value of the pattern will increase. This is 

most apt to happen if the feeder system has been updated or 
the ground system has been replaced. 

MONITORING POINTS 

The station license of every standard broadcast station 
that uses a directional antenna specifies a number of locations 
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150° 

where measurements must be made at regular intervals to 
establish that the pattern has not changed. These are called 
monitoring points and are proposed in the original license 
application. The number of monitoring points depends on the 
complexity of the pattern. The field intensity must be 

measured at each monitoring point and the values entered in 
the station's maintenance log once every 30 days unless the 

station license requires a shorter interval between measure-
ments. 
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In general, there are three things that can cause the 
measurement at a monitoring point to deviate from the value 
specified in the station license: 

1. A change in the operation of the antenna system. This 

is sometimes the reason for making the measurement. 
Care should be taken to insure that the change is 

actually in the antenna system before any corrective 
action is taken. 

2. A change in the environment of the monitoring point. 

The usual change is new construction, such as power 
lines, water towers, or apartment buildings. Usually 
such construction will make the monitoring point 
useless, and permission must be sought to use an 
alternate monitoring point. 

3. A change in the conductivity of the soil. This is most 
likely to occur in the northern part of the U.S. 

The FCC Rules require that each monitoring point be 
properly identified. The identification should include a photo of 

the field-intensity meter in each location and a map showing 
the most accessible route to each location. This requirement 
may seem trivial, but often when a new engineer takes over at 

an old station, one of his most serious problems is finding the 
monitoring points. 

Good monitoring points are even more important than 

good points for running a radial. With a radial, many 
measurements are made, and if one of them happens to be 

made from a site that isn't really suitable, the effect will be 
averaged out when we compute the effective field. With a 
monitoring point, we normally have only one point on a radial, 

and if the site isn't suitable, a partial proof of performance 
may be required to establish a new monitoring point. The 
evaluation of measurement points was described in connection 
with radials. 

Although most of the measurements required by the FCC 
can be made at monitoring points or along radials, sometimes 

a great deal of information can be gathered by making 
measurements along an arc drawn through a monitoring point 

(Fig. 14-12). These measurements can be used to verify the 
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Fig. 14-12. Selecting points for cross- radial measurements. 

shape of a null in the pattern, to find out whether the position of 
a null has shifted, or sometimes even to find a null in the 

pattern that wasn't supposed to be there. 
The best way to make these cross-radial measurements is 

to carefully locate a few suitable measurement sites on a map 
and then make both directional and nondirec-

tional measurements at each point. The ratios of the 
nondirectional and directional measurements are found and 
then plotted ( Fig. 14-13). The ratio points will define the shape 

of the pattern. Any shift in the pattern can thus be easily 
detected. When more than one monitoring-point measurement 
is out of limits, the cause may be a shift in the pattern. One 
possible source of a shift is changes in the phase-monitoring 

system. If the monitoring system changes slowly, the engineer 
may think that the change is in the antenna system and adjust 
the phasor accordingly. As a result he will be rotating a 

perfectly good pattern to compensate for changes in his 

monitoring system. 

SEASONAL VARIATIONS 

One of the most perplexing effects in directional antennas 

in the northern part of the country is a change in signal 

• 
• 
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Fig. 14-13 Cross- radial measurements showing that pattern has rotated. 
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strength at monitoring points with changing temperature. 
Most engineers agree that the seasonal change in 
monitoring-point measurements has something to do with soil 

conductivity, but there is no general agreement as to the 
actual mechanism involved. 

In many stations the monitoring-point measurements 

made in the winter are considerably higher than those taken at 
other times. It is almost axiomatic that at northern latitudes 
the original proof of performance should be made in the 
winter. That way the monitoring-point measurements are not 
likely to exceed the licensed values. 

When a seasonal change in monitoring-point measure-
ments is noted, one must establish whether or not there has 
been a change in radiation at the antenna. The first thing to 

look for is any change in current ratios or phases. If the ratios 
and phases haven't changed, the monitoring-point change is 

probably due to a change in soil conductivity. If the 
field-intensity change is downward there is no serious 
problem. If the change is upward so that the licensed value for 
the monitoring-point measurement is exceeded, the station is 
operating in violation of the FCC Rules. The first thing to do is 
to notify the Commission and request permission to operate at 
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variance with the licensed value. At the same time explain 
what you are doing to correct the problem. A field change due 
to soil-conductivity effects can be verified by making radial 

measurements and plotting them against the FCC conductivity 
curves, just as we did to find the effective field at one mile. If 
the field change is found to be caused by a change in soil 

conductivity, the new measurements will fall on a different 
conductivity curve, as shown in Fig. 14-11. 

The curves of Fig. 14-14 show that the change is greatest at 

the points farthest from the antenna. Hence, the closer a 
monitoring point is to the antenna, the less subject it is to 
conductivity effects. This means that monitoring points should 

be as close to the station as is consistent with reliable 
measurements. Data of the type shown in Fig. 14-14 may be 

submitted to the FCC with a request for a change in 
monitoring-point values. 

Undoubtedly, as time passes, more will be learned about 

seasonal variations in the field, and better solutions to the 
problem will be discovered. 
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Chapter 15 

Parasitic Reradiation 

The reradiation of radio energy by structures is not a new 
problem. In 1922, the National Bureau of Standards investi-

gated the influence of the Washington Monument on the fields 
from distant stations. They found that the fields were 

perturbed enough to influence the accuracy of radio direction 
finders used in the vicinity of the monument. In 1924, Henry C. 

Forbes of the University of Minnesota reradiated a signal 

from a local broadcast station. Forbes inserted a telegraph 
key between his antenna and ground and transmitted CW 

signals a distance of about 3 miles. using only the reradiated 
signal from the broadcast station over a mile away. 

The reradiation problem manifests itself in broadcasting 

as a change of the antenna radiation pattern with the erection 

nearby of structures such as power lines, water towers, 

buildings, and bridges. Often, the station has no control over 

the structures that are erected in the vicinity of its antenna, 
and the first sign that a newly erected structure has influenced 

the antenna pattern is when monitoring-point measurements 

become abnormal. 

GENESIS OF THE PROBLEM 

When a broadcast station is constructed, a site is selected 

away from any large conducting structures that might 

368 



influence the radiation pattern. The site is usually in a rural 

area, often on high ground. To provide a good signal over the 

city of license, the station is often situated at the outer edge of 

the suburban area. Unfortunately, as the community grows, 
this is the area where growth is most likely to take place. 

New power lines are run into the area, and if the site is on high 

ground, it is a likely place for a water tower to be built. Too, 

this is the type of location often used by light industry, trucking 
companies, and telephone-switching centers, all of which are 

making increasing use of two-way radio and may erect towers 
to support their antennas. 

In short, practically every standard broadcast station is 

subject to the problems that may result from the erection of 
new conducting structures. If the potentially offending 

structure is intended to support a two-way radio, microwave, 

or broadcast antenna, recourse to the FCC is possible. 

Sometimes the expense of solving the problem may be borne, 
at least in part, by the owner of the structure. In other cases, 

the station may have to bear the expense. In almost all cases, 

the broadcast engineer or consultant must do the necessary 
engineering to solve the problem. 

There are two general types of problems that result from 
parasitic reradiation. Some structures reradiate enough 

energy to actually change the radiation pattern of an antenna. 

These are usually structures that are over 1/8 wavelength in 
height at the broadcast frequency. In general, the closer the 

structure is to the antenna site, the more it influences the 
antenna pattern. 

A second and lesser problem results when a smaller 
conducting structure disturbs the field locally to a sufficient 
degree to make field-intensity measurements at one or more 

monitoring points fall outside of their limits, but doesn't 

significantly affect the overall radiation pattern. This problem 
can be solved by getting permission from the FCC to use 

another monitoring point on the same radial. This shows the 
wisdom of providing alternate monitoring points whenever an 

application is filed with the FCC for a new station or for 
modifications to an existing one. 

When potential reradiation is spotted early enough, the 

engineer can contact the responsible parties and possibly work 
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out a solution before the problem actually exists. In other 
cases, construction is started in an area where it isn't likely to 
be noticed by the engineer before it causes a problem. The only 

thing that can be done then is to seek FCC permission for 
operating with parameters at variance and to start looking for 

the offending structure. 
Most reradiation problems can be solved by detuning the 

offending structure. This approach is facilitated if cordial 
relations are maintained with the owner of the structure since 
it involves alterations to his property. 

LOCATING PARASITIC STRUCTURES 

Before we can take any steps to minimize parasitic 
reradiation, we must first find the offending structure. The 
obvious tool to use for the job is the field-intensity meter. 
There is only one problem with this: The field-intensity meter 
is to be used to locate a comparatively weak field from a 
parasitic radiator in the presence of the strong field of the 

station. We can make such a measurement by taking 
advantage of the null of the meter's loop antenna at 90° from 

the direction of maximum pickup. Thus, if we find a place 
where a line to the station antenna and a line to the suspected 
structure intersect at a 90° angle, as in Fig. 15-1, we can 
measure the radiation from the structure with minimum 

interference from the station signal. 

• ANTENNA 
SUSPECTED 

/ STRUCTURE 

NULL 
LOOP OF FIELD-

e"--- INTENSITY METER 

Fig. 15-1. Minimizing signal from antenna. 

There is a principle of geometry that we can use to find 
suitable measuring points ( see Fig. 15-2). If the station 
antenna and the suspected structure are diametrically 

opposite each other on a circle, at any point on the circle the 

angle between lines to the ends of the diameter will be a right 
angle. Thus the angles at points A, B, and C in Fig. 15-2 are 
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right angles. Therefore, if we locate our field-intensity meter 
at any point on the circle, when the direction of maximum 
pickup is toward the suspected structure there will be a null in 

the direction of the station. Thus interference from the direct 
signal of the station will be minimized. 

ANTENNA 

SUSPECTED 

STRUCTURE 

Fig. 15-2. Measurement points for verifying parasitic reradiation. 

To use this principle, the engineer should get a good map 
of the area and draw a circle with the station antenna and 
suspected structure at opposite ends of a diameter. Then 
suitable measurement points can be picked out on the 
circumference of the circle. Measurements made at each of 

these points will determine whether or not a suspected 
structure is actually reradiating and, if so, the intensity of the 
radiation. Naturally, reradiation is more serious in patterns 
with deep nulls to protect other stations. 

Not every tall structure nearby will affect the pattern of a 
broadcast station. The effect on the pattern depends on the 

height of the structure. In one case, a microwave tower was 
erected, one section at a time, near a 4-tower directional-
antenna system. As construction progressed, the current in 
one tower of the antenna system began to drop as each new 

section was added to the microwave tower. The current 
continued to drop until it nearly reached zero. But, as more 
sections were added to the microwave tower, the current 

began to rise. When the microwave tower reached its final 
height, all of the tower currents of the broadcast antenna, as 

well as its pattern, were normal. 

371 



EVALUATING PARASITIC RERADIATION 

In cases of possible reradiation, all suspected structures 

should be carefully marked on a map. Then measurements 
should be made at several points selected in accordance with 

the principle illustrated in Fig. 15-2. If there is a strong field 
from the structure and the field intensity has changed at more 
than one monitoring point, it is reasonably certain that the 

radiation pattern of the station has changed, and the only 
recourse is to attempt to detune the structure. If the 

reradiation is comparatively weak and the offending structure 
is close to a monitoring point, it may only be necessary to 
establish a new monitoring point on the same radial. To prove 
that this is the case, it may be necessary to run measurements 

along the radial and compute the inverse field at one mile and 
compare it with the original computations. 

A parasitic radiator, like a regular antenna element, has 
both an induction and a radiation field. As in a regular antenna 
element, the induction field varies inversely with the square of 
the distance from the element, whereas the radiation field 

varies inversely with the distance. The induction field is apt to 
upset the field intensity at a nearby monitoring point, but it 
dies out so rapidly with distance that it does not disturb the 
pattern of the station antenna. The radiation field is the one 

that causes serious problems in the pattern. 

It is possible for stations that have nondirectional or 
comparatively simple patterns to have reradiation problems 
that do not show up in ordinary field-intensity measurements. 
The first clue to problems of this sort is usually complaints of 

poor reception. If a rash of poor-reception complaints is 
received, the location of each complainant should be 

pinpointed on a map. If several complaints of this type come 

from one area, the area should be searched for a reradiating 
structure. Often complaints of this type result from a structure 
casting a "shadow" over a certain area. 

AVOIDING PROBLEMS OF RERADIATION 

Although usually the broadcast engineer has no control 

over the location or configuration of structures that may cause 
reradiation problems, there are some cases where he has 
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some control and can avoid reradiation problems. For 

example, if the licensee of a standard broadcast station 

intends to erect a tower for a television station or an STL 
antenna, the broadcast engineer may be able to influence 

some of the specifications. Often, many different stations have 
their antenna facilities in the same general area on the 

outskirts of a city. Usually these stations will cooperate to 

forestall parasitic problems. If a structure is being built with 

the help of federal funds, it may be possible to bring pressure 
to bear on the responsible government agency to avoid 

parasitic problems. 

As a rule, if a structure doesn't receive much energy, it 
can't reradiate much. If possible, the offending structure 

should be located in an area of minimum signal from the 

broadcast antenna. If it is possible to build a structure in short 
sections with insulators, this will minimize the problem. 

Similarly, guy wires should be broken up with insulators. 

MECHANISM OF PARASITIC RERADIATION 

Most of the antenna elements that we have considered are 

fed with transmission lines but a line isn't always necessary. 

An antenna element may be fed directly by the 
electromagnetic field of another antenna. In fact, many 

antennas used at higher frequencies use parasitic elements 

that have no connection to the transmission line. 

The phenomenon can be understood from Fig. 15-3, which 

shows 1/2 wavelength of wire in the field of a broadcast 
antenna. For convenience, the wire is oriented vertically and 

we neglect the influence of the ground. Inasmuch as the wire is 
parallel to the electric component of the field, it will tend to 

short the electric field, and current will flow in the wire. That 

FIELD 

FROM BROADCAST ANTENNA 

1 INDUCED 

CURRENT 

INDUCED FIELD 

Flg. 15-3. Parasitic excitation of a wire 

A 

2 
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is, the wire will be excited just as though it were connected to a 

source of energy through a transmission line. It will carry a 
current at the same frequency as the incident field and will set 
up an electromagnetic field of its own. The two fields will 
combine vectorially, and the resultant field will depend on the 
magnitude and phase of the field from the wire. These, in turn 
will depend on the magnitude and phase of the current induced 
in the wire. 

The effect of the incident field on the wire will be the same 
as if there were a series of small generators distributed 

throughout its length as shown in Fig. 15-4A. The current 
distribution won't be nearly sinusoidal, as it would with one 
generator, but will have a bell-shaped distribution curve ( Fig. 
15-4B). The current will be zero at the ends of the wire because 
there is no place for it to flow. Conversely, the voltage will be 
maximum at the ends. The maximum current will be at the 
center. We would have almost exactly the same thing if we had 
a 1/4-wavelength wire grounded at the bottom as in Fig. 15-4C. 
Here the current would be zero at the top and maximum at the 
grounding point. From these examples we can see that we are 
apt to have reradiation problems from grounded structures 
that are approximately a 1/4 wavelength in height and from 

Fig. 15-4. Parasitic structures. 

(A) 

ungrounded structures that are about 1/2 wavelength in 

height. 
In only a few cases will a structure be an exact fraction of 

a wavelength in height. From our study of antenna 
impedances we know that an element that is not exactly 
resonant has some reactance; thus the current will not be in 

phase with the voltage. In reradiating structures this means 
simply that the phase of the reradiated field is not necessarily 
either exactly in phase or exactly out of phase with the incident 
field. 
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A hint of how we might cope with a reradiating structure is 
given in Fig. 15-5. Here we have a grounded quarter-wave 

structure. As pointed out above, the current will be maximum 

at the bottom and zero at the top. Suppose we could insulate 
the base of the structure from the ground as in Fig. 15-5B. Now 
the current will have to be zero at the bottom as well as at the 
top because there is no place for it to flow. ( This isn't strictly 
accurate, because there would be a capacitive path across the 
insulator; but it is accurate enough to illustrate the principle.) 

The parasitic structure of Fig. 15-5B would effectively be a 
short antenna, in terms of wavelength. This means that its 
radiation resistance and hence its efficiency would be very 
low. Such a modified structure is a step in the right direction 
because it is not an efficient radiator. Another property of a 
short antenna is that its impedance is highly reactive. If we 
wanted such a structure to radiate, we would try to tune out its 
reactance. Naturally we wouldn't do this to a structure we 
didn't want to radiate. 

It isn't feasible to insulate a structure such as a water 
tower from the ground. There are, however, ways that we can 
make it behave electrically as if it were insulated from 
ground. 

Fig. 15-5. Suppressing radiation 
by insulating a structure from the 

a ground. 

//// 
, ( B) 

MINIMIZING PARASITIC RERADIATION 

The most troublesome structure is a vertical grounded 
conducting structure that is about 1/4 wavelength high. This 
structure acts like a grounded quarter-wave antenna and 

reradiates the energy it intercepts quite efficiently. To see how 
we might minimize reradiation from such a structure, it helps 

to look at the way we minimize radiation from a transmission 
line. 
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(A) 

In a transmission line, charges are in motion, and they 

tend to make all other charges in the universe move in the 
same way. But the currents in the two conductors of a 

transmission line are equal and flow in opposite directions. 

Thus any effect that the current in one conductor might have 

on a distant charge is canceled by the opposite effect of the 
current in the other conductor. Now, if we can add another 

conductor to a reradiating structure and cause the current in it 
to flow in the opposite dirction of the current in the reradiating 
structure, there will be little or no radiation from the 

combination. 
Figure 15-6A shows a quarter-wave grounded vertical 

structure. An incident field causes current to flow in it just as 
in a quarter-wave vertical antenna. To this structure we can 

add other conductors in an outrigger configuration ( Fig. 

15-6B). We now need to make the current in the outrigger equal 

to that in the structure and opposite in direction. If the 

conductors are completely insulated from each other, as in 
Fig. 15-6B, the outrigger will be capacitively coupled to the 

structure, and the whole affair will reradiate just as much as 
the structure alone. If we connect the outrigger to the 
structure at the base, as in Fig. 15-6C, we will have the same 

situation. The assembly will behave electrically like a single 
conductor and will reradiate. 

INSULATORS 

INSULATORS 

(C) 

Fig 15-6. Quarter-wave structure and outriggers. 

If we connect the outrigger to the structure at the top ( Fig. 
15-7A), we have an entirely different situation. Electrically, 

the structure now looks like a quarter-wave coaxial 
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transmission line shorted at one end ( Fig. 15-7B). The 
structure may be thought of as the inner conductor and the 
outrigger as the outer conductor. If one end of a quarter-wave 
section is shorted, the other end looks electrically like an open 
circuit. Thus, inasmuch as the structure ( inner conductor) is 
connected to ground, the outrigger will have a very high 

impedance to ground. 

For current to flow into one conductor of a transmission 
line, an equal current must flow out of the other conductor. If 
current tries to flow between the structure and ground in Fig. 
15-7B, an equal current should flow between the outrigger and 

ground. But this is impossible because there is a very high 
impedance between the outrigger and ground. What we have 

done, in effect, is to make the structure a quarter-wave 
conductor isolated from ground, which is not a very efficient 
radiator. 

BOTTOM OF 

OUTRIGGER 

INSULATED 

FROM GROUND 

(A) 

STRUCTURE 

OUTRIGGER 

VERY 

HIGH 

IMPEDANCE 

(B) 

Fig. 15-7. Making an open quarter-wave stub with an outrigger. 

The above case is oversimplified in that the structure to be 
detuned happened to be exactly a 1/4 wavelength high. Most 

offending structures aren't this agreeable. Although the most 

troublesome structures are those that are close to odd 
multiples of 1/4 wavelength, only rarely is the height an exact 
multiple of 1/4 wavelength. In such cases, we can use a simple 

short circuit to connect the outrigger to the structure, but we 

must use some reactance. The added reactance effectively 
lengthens or shortens the structure to the point where it 
behaves like a shorted quarter-wave line. Usually a tapped coil 
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and capacitor, mounted in a weatherproof box as shown in Fig. 

15-8, are used for the purpose. The coil and capacitor can be 

connected either in series or in parallel, and the position of the 
tap on the coil can be varied to provide a wide latitude of 
adjustment. 

OUTRIGGER 

Fig. 15-8. Tuning the outrigger. 

TUNING BOX 

RADIATION 

STRUCTURE 

The structure and outrigger will not form a perfect 
transmission line, and the exact velocity of propagation will 

not be known accurately. Hence it is usually necessary to tune 
the network experimentally to minimize reradiation. The 
easiest way to do this is to have one man with a field-intensity 
meter stationed at a measurement point established as in Fig. 
15-5, and another man at the structure making the adjustment. 
Two-way radio sets can be used to relay the field-intensity 
measurements to the man making the adjustment at the 
structure. 

TUNING BOX 

INSULATORS 
Fig. 15-9. Detuning a tall struc-
ture by effectively breaking it into 
sections. 

TUNING BOX 
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1 

Fig. 15-10. Equivalent circuit of Fig. 15-9. 

I 

I 

Tall Structures 

Often problems are encountered with structures that are 
much taller than 1/4 wavelength. The best approach to 
detuning them is to effectively break them up into shorter 
sections ( Fig. 15-9). Each of the sections is effectively isolated 

from the others, and no substantial current flows in the 
complete arrangement. 

Figure 15-10 shows the equivalent electrical circuit of the 
arrangement of Fig. 15-9. It consists of two shorted 
quarter-wave sections of transmission line. The impedance 

seen looking into the open end of the line is very high, so very 
little current flows into it. This arrangement reduces the total 
current flowing in the structure to the point where reradiation 
is minimal. 

Water Towers 

Water towers are common sources of parasitic reradi-
ation. These towers come in various configurations but are 

always grounded. Figure 15-11 shows a water tower with an 

outrigger consisting of six wires. The arrangement is tuned by 
means of a coil and capacitor located at the top of the tower. 

Fig. 15-11. Detuning a water 
tower. 
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Chapter 16 
AM Antenna 
maintenance 

The discussions in this chapter are centered around the 
directional antenna because its maintenance is much more of 

a problem than that of a single tower. Furthermore, most of 
the procedures involving directional towers, networks, and 
feeder systems apply in a limited sense to nondirectional 
antennas as well. 

There are four aspects to a good maintenance program: 

1. Design considerations. The design of an antenna 
system definitely affects its ease of maintenance. 
Some factors that make an array hard to maintain 
may be inherent in the station's allocation and hence 
unavoidable; others can be avoided either during the 

original design or when a modification is made to the 
system. 

2. Tools. These include instruments for measurements 
and such items as complete diagrams which can give 
a great deal of useful information about the system. 

3. Maintenance procedures. These should be established 
and followed on a regular basis. 

4. Troubleshooting procedures. It isn't always possible to 
avoid troubles, even with the most effective 

maintenance system. It is necessary to have 
established procedures that will quickly lead to the 
root of a problem. 
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DESIGN CONSIDERATIONS 

Directional-antenna systems called critical arrays are 

antennas in which the pattern has deep nulls—a signal 
reduction of 20 to 1 or more—to protect the service areas of 
cochannel or adjacent-channel stations. In such systems it is 

necessary to hold very close tolerances on current ratios and 
phase angles. Limits of ±- 1% for current ratios and ± 2° for 
phase angles are common. Even a small change in the value of 
one or more of the components of the feeder system of such an 

antenna will throw it out of limits. This isn't necessarily the 
result of poor design. Use of such a tight pattern may be the 
only way that the station can be licensed. 

There are other design factors that make an array 
unstable or hard to maintain and can be avoided. Chief among 
these are the following: 

1. Improper grounds or an inadequate ground system 
2. Networks that match impedances that differ by more 

than 10 to 1 
3. Inadequate sampling and monitoring systems 

Each of these items has been discussed in earlier chapters in 
some detail. Whenever they are encountered in an array, they 

should be corrected at the earliest opportunity. 
It may seem superfluous to say that a system must be 

properly installed in the first place if it is to be kept operating 
properly with a minimum expenditure of time and money. 
Nevertheless, there are many directional-antenna systems 
that have seemingly insurmountable maintenance problems 

that can be corrected by merely doing the things that should 
have been done when the system was installed. Many 
broadcast-station licensees have found that the cost of getting 
the station on the air exceeded their estimates, with the result 
that the final phases of installation were carried out on a very 
limited budget. The best the engineer can do is to identify the 
troublespots and make plans for correcting them at the 
earliest opportunity. 

SYSTEM DIAGRAMS 

The first tool the engineer needs to develop an effective 

maintenance program is a set of accurate diagrams of his 
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system. Depending on the complexity of the system, this may 

be either one large diagram or a collection of smaller 
diagrams. A typical diagram of a 2-tower system is shown in 

Fig. 16-1. Note the details that are shown. Starting at the 

towers, the driving-point impedances, current values, phase 

angles, and radiated powers shown. 
Proceeding back toward the transmitter, the parameters 

of the base-impedance matching networks are given in detail. 

The reactance of each coil and capacitor at the operating 
frequency is specified and the positions of the taps on the 
various coils are given. The length of each transmission line in 

electrical degrees is stated, and full details of the phase shift 

and power-dividing networks are given. 
Complete information as in the diagram of Fig. 16-1 

permits the engineer to check for changes in the system 

whenever any of the measurements indicate that something is 

wrong. With the details given, each component can be checked 
with an impedence bridge to assure that its value hasn't 

changed. The notation of the tap positions of the various coils 
in the feeder system lets an engineer put all of the taps back 
where he found them if his adjustments do not produce the 

expected results. 
At each of the points labeled with a number in a circle in 

Fig. 16-1, a jack is provided for measuring current. If an 
operating bridge is available, the impedance at each of these 

points can be measured. The impedances are measured not 
only at the carrier frequency but at several frequencies on 

either side of the carrier. These measurements assure that 

there is no fault tending to limit the bandwidth of the array. 
The importance of a very complete diagram as a 

maintenance tool cannot be overemphasized. Periodic 
measurements at the various points can be compared with 
earlier measurements to detect trends that indicate changing 

values of components. Then defective components can be 

replaced before a catastrophic failure occurs and shuts the 

station down. 
A detailed drawing can also disclose design weaknesses in 

the system that may lead to instability. For example, a 
network that transforms impedances over a range of greater 
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Fig. 16-1. Detailed diagram of feeder system. (Courtesy Smith Electronics, 
Inc.) 

than 10 to 1 can be spotted easily. Such a network has high 
losses, narrow bandwidth, and a tendency toward instability. 

To avoid complicating the diagram of Fig. 16-1, the 

monitoring system is not shown. But an accurate diagram of 
the monitoring system is fully as important as the system 

diagram. After all, the monitoring system is one of the means 
we use to find trouble in the antenna system. It must be 

maintained fully as well as, if not better than, the antenna 
system itself. 

As with the feeder system, complete details of the 
monitoring system are shown on its diagram, including cable 

lengths and the open- and short-circuit impedances of all of the 
sampling lines. If for any reason it is suspected that the 
monitoring system has changed, measurements may be made 

and compared with the values on the diagram. 

MAINTENANCE RECORDS 

Next to the diagrams the most valuable maintenance tool 
is a very complete set of maintenance records. These should 

include a list of things to be checked periodically, as well as a 
record of what was observed. Although the FCC Rules require 

that a maintenance log be kept, additional maintenance 

records should be kept, and many more measurements should 
be made than are required by the Rules. The better the 
maintenance records, the easier it is to keep the array 
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functioning properly. It is always a good idea to log weather 
conditions daily, including temperature, humidity, and 
storms. This information can often be correlated with a 

serious change in some measured value to give an indication of 
the cause of the abnormality. This is particularly true of 
thunderstorms and windstorms. 

Whenever any quantity that is measured periodically is 
seen to change value unexpectedly, it is a good idea to plot the 
measurements against time, with notations of weather 

conditions added. Such a plot is shown in Fig. 16-2. Here we can 
see that although the base current to a tower probably varied 

too much at all times, the measurements clustered about a 
new value after a particularly severe thunderstorm. This 
would cause us to look for damage that might have been 
caused by a lightning surge. 
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Fig. 16-2. Plot of meter variations. 

1 M 

LICENSED 

VALUE 

MAINTENANCE SCHEDULE 

Almost every feature, either mechanical or electrical, of a 
directional-antenna system should be checked at regular 
intervals. The time between the various inspections depends 
on several factors. Certain measurements must be made at 
regular intervals because they are required by either the FCC 
Rules or the station license. An engineer taking over a station 
should immediately check the station license and construction 
permit to see just what measurements and measurement 
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limits are set forth. If the monitoring-point measurements 

must be made weekly and the current ratios and phase angles 
must be held to tight tolerances, it is a sure bet that the 
Commission thinks that the array is critical—and they are 
usually right. Naturally, inspections must be made much more 

frequently with a critical array than with one that has loose 
tolerances. 

Aside from the legal requirements, measurements and 
inspections must be made often enough to detect impending 

problems before they occur. How often is usually determined 
by experience. Certain inspections should always be made 
after a severe storm or whenever any of the regularly 
monitored parameters changes signifcantly. 

MECHANICAL INSPECTION 
A mechanical inspection is one that can be done without 

making electrical measurements. It is amazing how many 
troubles can be discovered by merely looking carefully at 
various parts of the system. 

Starting with the towers themselves, such things as paint 
and lighting accessories should be checked regularly. The 

lightning gap and base insulator should be inspected regularly 
for changes. The separation of the gap may change. Or dirt 
and dust may collect on the base insulator and, after becoming 
wet, actually burn, causing a carbon track across the 

insulator. It is good practice to protect both the lightning gap 
and base insulator from the elements. The insulator can be 

given a thin coat of silicone to avoid the collection of moisture 
and a small rain shield can be installed to protect the gap. 

The ground connection to the bottom of the base insulator 
and to the radials should be checked regularly. At least once a 
year the bolts on the tower should be checked. Another check 

to be made at least annually, and after every severe 
windstorm, is to use a surveyor's transit to assure that the 
towers are still vertical. The guy wires should be checked for 
tightness. Where cattle roam freely among the towers of an 

antenna, the guy wires are often used by the cattle to scratch 
their ever-present itches, which can cause turnbuckles to 
loosen. Protective sleeves can be put over the turnbuckles to 
avoid this problem. 
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The sampling loops should be inspected closeup or with 

field glasses. It helps if snapshots of the towers are available 
for comparison with the observations. Sampling lines, chokes, 
and tower-lighting lines should be inspected to make sure that 
they haven't been loosened by the wind or damaged by 
lightning. The area in the immediate vicinity of each tower 
should be free of vegetation, and the vegetation in the rest of 

the area should be kept mowed. 
An item that is often neglected in inspection is the fence 

around the base of the tower. If the fence is metal, it should be 

firmly grounded at regular intervals. These grounds often 
work loose with time and can cause instability. 

The next point for inspection, after the tower, is the 
"doghouse" at the base of the tower. All bolted connections 
should be checked to see that they are secure and free of any 
corrosion. The housing for the metering and impedance-

matching networks must be kept clean. Mice, rats, and snakes 
seem to favor doghouses and other equipment housings for 

shelter. Often they disturb the setting of impedance-matching 
elements. Housings should be tight enough to avoid this 
situation, and if necessary, rat poison should be placed in the 

doghouse. 
The feeder cables should be inspected regularly. If 

pressurized lines are used, the pressure should be checked and 

the gauges tapped lightly to make sure that they aren't stuck. 
If there is a leak in a line, it should be located and repaired as 

soon as possible, before moisture has a chance to penetrate the 
line. The ends of cables should be sealed against moisture. 

If above-ground cables are used, they should be checked to 

see that the ground connections haven't come loose. There 

isn't much that can be done by way of visual inspection of 
underground cables except to inspect the ends and pressure. If 

trouble is indicated, it is usually necessary to dig up the cable. 
The last item to be inspected visually is the phasor and 

power divider. Here again, all connections should be checked 
carefully. Taps on coils should be checked to see that they 
haven't come loose. It is helpful to mark the point on the coil 

where a tap is connected with fingernail polish so that if a tap 
should become loose and slip, it can be put back in its original 

position. 
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A harbinger of trouble in networks is often unusual heating 

of a coil or capacitor. A very useful tool for locating hot spots is 

a special crayon that changes color permanently at a 
predetermined temperature.* These crayons are available for 

different temperatures, and it is a good idea to put stripes 

around the capacitors and at various points on the coils, 
particularly near taps. Often a tap will loosen, causing a high 
resistance. with the temperature-sensitive marks, hot spots 

can be detected easily. Many capacitors of the types used in 

matching and impedance-transforming networks are actually 
made up of many smaller capacitors inside a housing. One or 

more of these small capacitors may deteriorate due to age or 
lightning surges. This type of trouble is almost always 

accompanied by a hot spot at some part of the case. 

If coils or capacitors run hot all of the time, even when the 
array is operating properly, it indicates excessive loss, and the 
situation should be corrected promptly. 

In summary, the mechanical inspection should include a 

careful look at all parts of the system to see if anything has 
changed since the last inspection. In spite of protective gaps. 

lightning surges do get into directional-antenna feeder 
systems. Sometimes the effects are obvious and can be 
recognized immediately. Other times the effects are more 

subtle, and it takes careful detective work to find them. In 
general, anything unusual should be noted in the maintenance 

record. A symptom might not seem important at the time it is 
observed, but it might provide a useful clue to the cause of 

trouble that develops later. 

ELECTRICAL MEASUREMENTS 

The FCC Rules require that the current ratios and phases, 

and usually the field intensity at monitoring points, be 

measured at regular intervals and the indications recorded. 

These measurements should be carefully reviewed as a part of 
the regular inspection procedure. It is important to keep 

records of the weather at the time the measurements are 

*A wide variety of temperature-sensitive paints, labels, and crayons are 
available from Tempil Division of Big Three Industries, Inc., 2001 Hamilton 
Blvd., South Plainfield, NJ 07080. 
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made. If some measured parameter changes from its usual 

value to another value during a storm and doesn't return to its 
usual value after the storm is over, you can be pretty sure that 
something has been damaged by the storm. If, on the other 

hand, a measured parameter changes value during a storm 

and then gradually returns to its usual value, that is an 
indication that something gets wet during a storm and dries 
out when the storm is over. The culprit might be the base 
insulator of a tower, a transmission line, a component in the 

doghouse, or any of many other things. 

DIRECTIONAL-ANTENNA STABILITY 

The most frequent complaint of the broadcast engineer 

against directional-antenna systems is that they are unstable. 
In some cases, the design is critical, and there will always be 
some instability. However, in the majority of cases, an 

unstable array can be tamed considerably with a little analysis 
of the trouble spots and some corrective modifications. The 

difference between a stable antenna system and an unstable 
one is often merely a matter of the time and money spent on 
installation and maintenance. Usually the cost of corrective 
maintenance will be repaid in a short time by the time saved in 

troubleshooting and by improved signal coverage. In the next 
several pages we will look at the most common causes of 
instability and see some ways in which it may be corrected. 

Variation in Ground Resistance 

One cause of instability in an array is changes in the loss 
resistance at the towers. This resistance is almost all in the 

ground system. The effect of a variation in ground resistance 
is most pronounced in close-spaced arrays of short towers. The 
reason is that these arrays usually have low driving-point 
impedances at the bases of their towers, and the ground 

resistance is a substantial fraction of the total resistance. 

One thing that can be done to minimize the effect of 
variations in ground resistance is to use tall towers in a 
wide-spaced array. This is of little interest to the engineer who 

has inherited a close-spaced array that uses short towers, but 
it is worth considering if it ever becomes necessary to move 

the station. 

388 



Once a system has been installed, there are four things 
that can be done to reduce the variation of ground resistance: 

1. For each tower use at least 120 radials that are an 
average of 0.4 wavelength long. The radials for each 

tower should be connected as described in Chapter 12. 
2. Install a square of copper mesh at least 24 by 24 feet at 

the base of each tower. All radials should be brazed to 
the screen. 

3. Be sure that all metal fences and other conductors are 
kept well away from the base of each tower. If a metal 

fence is used, it should be bonded to the ground system 
at frequent intervals. 

4. Keep all vegetation out of the area immediately 
adjacent to the tower. Vegetation over the rest of the 
ground system should be kept well mowed. 

These steps will very frequently tame a system that has 
been notoriously unstable since its installation. 

When an array that has been reasonably stable for some 
time after installation becomes unstable, the first thing to do is 

to make sure that there is still a ground system. In some types 
of soil the radials of old stations deteriorate to the extent that it 
is impossible to find any trace of them. Any part of the area 

covering the ground system that is heavily traveled should be 
checked to make sure that the radials haven't been broken. A 
sudden change in stability has in some cases been the result of 
one or more radials having been stolen. The presence of 
radials can be checked roughly with a field-intensity meter. 

Any sudden change in indication as the meter is carried over a 
radial may indicate that the radial has been broken at that 
point. 

Many arrays have one or more towers that have a very low 
positive or negative driving-point impedance. These may 

sometimes swing back and forth between positive and 
negative. This means that the tower is taking very little power 

from the feeder system and is acting rather like a parasitic 
element. A small change in the ground resistance associated 
with such a tower will produce a rather large effect. It is 
sometimes helpful to install a fixed resistor in the matching 
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network at the base of such a tower. This will tend to swamp 
the effect of changes in ground resistance. It will also increase 

the loss at the tower, usually such a tower handles a very small 
part of the total power, so the additional loss is not serious. 

Temperature Effect 

Changes in ambient temperature produce small changes 
in the effective length of transmission lines and hence in the 
phase shift that they introduce. This can be tolerated in some 

arrays, but in a critical array, every change is serious. In 
critical arrays it usually helps to bury all transmission lines so 
that they will not be exposed to changes in weather. 

Most thermocouple ammeters are temperature-sensitive. 
When calibrated at room temperature, they may be in error by 
as much as 5% in extremes of temperature. When all of the 
base-current meters of an array are at the same temperature, 
this error does not have a serious effect on current ratios, but 

if for some reason one doghouse has a different temperature 
than the others, the meter error alone may be sufficient to 
indicate that the licensed tolerance has been exceeded. This 
situation is apt to occur when the transmitter building is 

located adjacent to one of the towers. The meter and 
impedance-matching network for that tower may be in the 
transmitter building, where the temperature is held 
reasonably constant; but the meters and matching networks 
for the other towers are in doghouses, which are not heated in 
the winter or cooled in the summer. In a critical array the 

components at the bases of all of the towers should be subject 
to the same temperature variations 

When the network feeding one of the towers is in the 
transmitter building, the lead to the tower may be several feet 
longer than the leads to the other towers. As a rule of thumb, 
we can assume that a length of just about any wire has an 

inductance of about 1 µH per meter. This means that if the 
lead to one tower ( after the matching network) is 15 ft longer 
than the leads to the other towers, a substantial amount of 

inductance will be added in series with the base impedance of 
that tower. A 15 ft length of wire has an inductive reactance of 
about 19 ohms at 600 kHz and 50 ohms at 1600 kHz. In a critical 
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array this can cause problems. The problems can be 
minimized by adding an equivalent length of line at the other 

towers. The excess wire can be made functional by coiling it 
up into a small lightning-surge choke. 

Networks and Instability 

Networks are frequent contributors to instability. If the Q 
of a network is greater than about 3, the circulating currents 
will be excessive and the bandwidth of the network will be 

small. Large circulating currents heat components and 
change their value. This, in turn, changes the operating 

parameters of the array. If the required impedance-

transformation ratio is greater than about 10, it is better to use 

two networks in tandem than to use a single network. In this 
way the Q can be kept low. 

In the original design of a network where a small value of 
capacitive reactance is required, the arrangement of Fig. 16-3 
is often used. Here a small capacitive reactance is obtained by 
using a small capacitor ( high capacitive reactance) in series 
with an inductance. This arrangement is very economical 
because small capacitors cost less than large capacitors. If the 
principle is carried too far, however, the capacitive reactance 

will vary over a wide range when either of the components 
changed slightly. For example, in Fig. 16-3 we get 20 ohms of 
capacitive reactance by using 1000 ohms of capacitive 
reactance in series with 980 ohms of inductive reactance. At 1 
MHz this means we can use a 0.0002 µF capacitor to get 50 
ohms of capacitive reactance, rather than using 0.003 µF. At 
broadcast-antenna powers the saving is substantial. The 
arrangement seems, on the surface, to be ideal. However, the 

net reactance in the circuit of Fig. 16-3 is the difference 
between two large numbers, and such a quantity varies 
considerably when either of the large numbers varies only 
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Fig. 16-3. Unstable shunt reac-
tance. 
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slightly. For example, suppose that the reactance of the 
capacitor in Fig. 16-3 changed by 1% to 1010 ohms. The net 
capacitive reactance in the circuit would then change to 30 
ohms, a change of 33%. 

The chief reason for using the arrangement of Fig. 16-3 is 
that it is usually easier and more economical to make a 
variable inductor than a variable capacitor at the powers used 

in broadcasting. Another reason is that when the arrangement 

is used in the shunt arm of a T-network, it may be made series 
resonant at the second harmonic of the operating frequency, 
thus improving harmonic rejection. When the circuit is used 
for these reasons, the reactance of the capacitor should not be 

more than two or three times the desired value of net 
reactance of the circuit, if we are to avoid the problem 
mentioned in the preceding paragraph. 

In checking a system for causes of instability, consider 
every place where inductors and capacitors are used in series 
as a possible culprit. 

In practice, one of the most frequent causes of apparent 

instability is the antenna-monitoring system. All new antenna 
monitors are type-approved by the FCC, and they are usually 
very stable and accurate unless they have been damaged by 

lightning surges. Even the older antenna monitors, called 
phase monitors, are quite accurate. On the other hand, many 
sampling systems are anything but stable. When a sampling 
system is not stable, the engineer often thinks that his antenna 
array is not stable. This has caused many an engineer to 

retune an array that had nothing wrong with it and thus to put 
the monitoring-point parameters out of limits. 

Whenever a current-ratio or phase indication is unstable, 
the engineer should make every effort to assure that the 

change is actually due to a change in the antenna instead of the 
monitoring system. If current ratios and phase angles change 
but the field-intensity measurements at the monitoring points 

do not, the sampling-and-monitoring system should be 
carefully checked. 

When a monitoring system is found to be unstable, it 
should be repaired or completely replaced immediately. It will 
cause nothing but trouble, and the time and money required to 

replace it will be well spent. 
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Defective Transmission Lines 

Sometimes defective transmission lines are at the root of 
instability. After everything else has been checked, and 
replaced as is necessary, the transmission lines should be 

checked. The following checks should be made on each line: 

1. The open-circuit resistance 

2. The short-circuit resistance 
3. The line impedance 

The first two checks are DC measurements made to locate 
improper resistors in the line or connectors. The impedance is 
measured to locate defects that will only be evident at high 
frequencies. All of these measurements should be recorded 
with a description of the measurement setup so that the 
measurements can be duplicated later to see if anything has 
changed. 

Occasionally, a section of line is defective when received 
from the manufacturer. For example, the center conductor of 
a coaxial line may not be properly centered. In such a case, the 
high capacitance at the place where the line is defective 

causes a high current and, consequently, a hot spot. The 
heating may cause the characteristics of the line to vary, thus 

causing instability. Such a defect would cause an array to be 
unstable from the time it was installed. 

In summary, some critical arrays exhibit a great deal of 
instability. Usually, however, an unstable array can be tamed 
considerably by making a very careful check for correctable 
causes of instability. This is definitely true if an array was 
stable when it was first adjusted. 

RETUNING A DIRECTIONAL ANTENNA 
Even with the most rigorous maintenance schedule and 

the best preventive maintenance, the dreaded day comes when 
the array must be adjusted to make it operate within the 

licensed parameters. Most broadcast engineers view tuning a 
directional antenna about the same way they view a game of 
Russian roulette. They feel that you may not lose, but you can't 
really win. This definitely isn't a job for a beginner; there are 
so many interacting variables in a directional-antenna system 
that many situations can be recognized only after many years 

of experience. On the other hand, if the job is approached from 
a sound engineering basis by an experienced engineer, the 
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proper adjustments can be accomplished. In fact, once an 

engineer becomes familiar with the idiosyncrocies of a 
particular antenna system, he is often more proficient at 
adjusting it than even a consulting engineer. 

Preliminary Steps 

There are certain things that should be done before the 

adjustment of an array is attempted: 

1. The engineer should make sure that the situation he is 
trying to correct is not caused by a component failure. 
If one of the components in the feeder system goes 

bad, perhaps some improvement can be attained by 
adjustment, but it is a losing battle. Sooner or later the 

component must be replaced, and then it will be 
necessary to put the adjustments back where they 
were. It is better to be sure that all of the components 
are in good condition before the adjustments are 

attempted. 
2. The engineer should be familiar with the effect each 

control has on the pattern, also the amount of 
interaction he can expect between adjustments. This 
knowledge can be obtained by observing the 
consultant when he is tuning up or readjusting the 
array. There are other ways of becoming familiar 
with the action of the various controls, and these will 
be discussed later. 

3. Before any control is touched, a careful record should 
be made of all dial indications, tap positions, etc. This 

will come in very handy if the adjustment procedure 
gets out of hand and it becomes necessary to restore 

the original setting. 
4. It should always be remembered that the object of the 

procedure is to keep the pattern within its licensed 
limits. If possible, this should be done with current 
ratios and phase angles within the licensed tolerances, 

otherwise the FCC may require a complete proof of 
performance. 

5. Whenever possible, the situation that indicates 

readjustment is required should be carefully analyzed 

394 



to find possible reasons for the situation. Only then can 
the adjustments be made intelligently. 

There are several things that can be done to make the 
adjustment procedure much easier. The first is to determine 
just how each adjustment affects each current ratio and phase 

angle. This information can be gathered by carefully marking 
down the indication of a dial and then varying it in each 
direction while observing the effect on each current ratio and 

phase angle. The effect that each control has on the field 
intensity at each monitoring point can be obtained by an 
observer with a field-intensity meter at the monitoring point. 
As each control is varied on either side of its normal position, 

the observer can report the effect on field intensity. By 
carrying out these steps for each control on the power divider 
and phase shifter, a table can be made up that will show the 

effect of each control. 
Suppose that an analysis as described above indicated that 

two controls had more influence on the field intensity at a 
particular monitoring point then any of the other controls. 
Suppose further that the field intensity at this monitoring point 
was out of limits. Then, logically, we would start the 
adjustment procedure by using the two controls that had the 

most effect. Probably the entire readjustment could be carried 

out with only these two controls. 
Whenever any control of an array is varied, it might result 

in a change of the impedance at the common point. If it does, 
the common-point impedance should be adjusted before any 
further adjustments are made. This situation can be detected 
quickly if a common-point bridge is installed. Otherwise, the 
indications of the meters in the final stage of the transmitter 
should be checked. If the common-point impedance is 

disturbed very much, that will probably be shown by a change 
in the loading of the transmitter. 

Usually, when an array requires readjustment, the 

required change in the pattern is small. If a major 
readjustment of several controls seems to be required, there is 
probably some other trouble that should be corrected before 

the adjustment is made. When the pattern is only slightly out 
of limits, the various controls should be carefully nudged to try 
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to bring the pattern back within limits. Rarely can this be done 

by adjusting one control. In almost every array there is 

enough interaction that changing one control requires 

changing another. 

TROUBLESHOOTING A DIRECTIONAL ANTENNA 

If a careful maintenance program is in effect at a station, 
the probability of a catastrophic failure in the system is 

reduced considerably. Most components fail slowly. If they are 

watched on a regular basis, the impending failure can be 

detected and the component replaced beforehand. 

Storm Damage 

The most frequent cause of a catastrophic failure of any of 

the components of a directional-antenna is a thunderstorm or a 

severe windstorm. Damage of this type is often found by 
visually inspecting the system. Suppose, for example, that a 
system has been struck by lightning and has failed. The place 
to start looking for the trouble would be at the towers. 

Lightning enters the system through the towers and usually 

does the most damage there. The lightning tries to establish a 

path between a cloud and the ground. Unfortunately, some of 

the charge often gets back as far as the phasor. and it may 

destroy any component that stands in its way. If all of the 
components in the doghouse check out okay, each of the lines 

should be checked. Finally, the components in the phasor 
should be checked. 

Windstorms usually affect components on the tower. 

Sampling loops may be loosened or moved, or lines may be 
moved and connections broken loose. Here again, any damage 
is usually visible. 

A more insidious effect of lightning is partial damage to a 

component. A capacitor in a matching network may become 

partially shorted. The effect noticed at the time may be slight, 
but conditions will only grow worse as time passes. If the 
regular maintenance program requires following up any small 

changes in meter indications to find what component of the 
system has changed, this type of trouble will be located 
quickly. 
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Changes in Antenna-Monitor Readings 

Usually, the first sign of trouble in a directional-antenna 

system is a change in tower currents or phases. The first thing 
to do when current ratios or phases go out of limits is to check 

the field intensity at the monitoring points to see if the pattern 

has changed. If it hasn't, the trouble is likely to be in the 

monitoring system rather than in the antenna itself. If the 

pattern has changed, the way in which it has changed may 
give a clue as to the trouble. 

Suppose for the moment that the trouble is most noticeable 
in the ratio and phase in a particular tower. Because of the 

interaction between towers, there will almost always be some 
indication of trouble in the feeder lines of other towers. But if a 

component is faulty in one of the feeder lines, the indications 

pertaining to its tower will probably be out more than the 

other, tower indications. Suppose further that a change in 

monitoring-point measurements also indicates that the trouble 
is in the suspected tower. The next step is a careful visual 

inspection, not only of the tower itself but of all the components 
in its feeder system. Such things as faulty connections. 

loosened nuts and bolts, and loose or shifted ceil taps can be 
spotted, and the situation can then be corrected. 

If the visual inspection doesn't show anything wrong, 

electrical tests must be made. Here is where a complete 

diagram of the system showing the measured values of all of 
the components will be worth its weight in gold. The 

impedances can be checked, starting at the input to the 
base-matching network of the tower. If this impedance is okay, 

the measurements may be made back at the phasor. If at any 
point the impedance is far from its normal value, the values of 

the individual components may be checked with a bridge. This 
will usually disclose the source of the trouble. 

When the trouble seems traceable to one tower and yet all 
of the line impedances and component values are normal, look 
for something wrong in the grounding of that particular tower. 

Occasionally a situation is encountered where, without 
warning, all of the current ratios and phase angles in the entire 

array change drastically. At first glance it appears that the 

entire array has suddenly become defective. One common 
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cause for such a situation is a defect in the antenna monitor 
that renders all of the indications incorrect. The first check for 
this is to take actual base-current measurements at each of the 
towers. If the ratios as calculated from the base-current 

measurements are okay, the trouble probably is in the 
monitor. The manufacturer's instructions should be followed 

for troubleshooting the monitor. 
Another very common cause for all ratio and phase 

readings being wrong is trouble in some component in the line 
feeding the reference tower of the array. All of the current 
ratios and phase angles displayed on the antenna monitor are 
related to the magnitude and phase of the current feeding the 
reference tower. If the magnitude and phase of this current 
are not correct, all of the indications of the antenna monitor 
will be incorrect. Some troubles of this type can be recognized 
by temporarily connecting the antenna monitor to use one of 
the other towers as a reference. For example, if the current 
ratios of towers 2 and 3 with reference to tower 1 are both 0.6 
then, when tower 2 is used as the reference, the ratio at tower 3 

should be 1. This check won't always work, but it is worth a 
try. 

Whenever an array is adjusted to bring the current ratios 
and phase angles back to their licensed values, the field 
intensity at each of the monitoring points should be checked. 

Unfortunately, in many arrays, the ratios and phases can be 
brought back to their licensed values, but the pattern will still 

be out of limits. 

Monitoring Points Out of Limits 

Another signal for antenna readjustment is that the field 

intensity at one or more of the monitoring points is out of 
limits. When the field intensity is higher than the MEOV for a 
particular monitoring point, the situation is most serious. If an 

inspector from the FCC was to arrive on the scene, he would 
issue a citation. Whenever the indications at any of the 
monitoring points exceed their maximum licensed values, a 
good first step is to call the FCC. Explain what has been 
observed and what steps are being taken to find and correct 
the trouble. The Commission is usually cooperative in these 
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matters, and usually some way can be found to keep the 
station on the air legally while the trouble is being 
investigated. Depending on how critical the situation is. the 

station may receive telegraphic authority to operate with 

station parameters at variance with their licensed values, or 
possibly permission to operate with reduced power. 

When the field intensity at a monitoring point has dropped, 
the situation is not as serious, in that it won't cause 
interference to the service area of another station, but the 

signal may not be satisfactory in the station's own service 
area. In any case, the trouble should be found and corrected as 

quickly as possible. 
In northern latitudes a frequent cause of incorrect 

monitoring-point indications is the change in ground 

conductivity due to weather conditions. This trouble rarely 
appears suddenly, but is noticed as a gradual change in the 
field intensity, usually at all of the monitoring points. The 

array should not be readjusted; the trouble should be resolved 

some other way. 
Rarely will the field intensity decrease at all of the 

monitoring points unless something is wrong before the 
common point. The more usual situation is that the field 
intensity decreases at one or two of the monitoring points and 
increases at one or more of the others. Before doing anything 
other than performing a visual inspection, it is a good idea to 
analyze the situation to see how the current magnitude and 
phase in each tower affect the field intensity at each 

monitoring point. In fact, it is a good idea to have such an 
analysis available anyway, for it will save a great deal of time 

when it is needed. The best way to analyze the contribution of 
each tower to the field intensity at each monitoring point is to 
make a separate vector diagram of field intensity for each 

monitoring point. 
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Chapter 17 

FM and 
TV Antennas 

There are many basic differences between the antennas that 
are used in the standard broadcast band and those that are 

used for FM and TV broadcasting. From the point of view of 

the engineer who is charged with operating and maintaining 
them, the main differences stem from the frequencies that are 

used. FM and TV broadcasting is done at VHF and UHF, 
where the dimensions of an antenna are small enough that a 

complete antenna can be fabricated by a manufacturer and 
shipped to a station. In contrast, standard broadcast antennas 
are so large that the antenna and its ground system may 

occupy more than a square mile of space. Thus the standard 
broadcast antenna is made up of components that are often 
made by different manufacturers and assembled on the spot 

where the antenna is to be used. The job of the broadcast 
engineer is to keep all of the components working together as 
they were intended to. For an FM or TV station the entire 

antenna-and-feeder system may be made by the same 
manufacturer and shipped to the station nearly intact. Its 
maintenance is a whole new ball game for the engineer. 

Other differences stem from the service area involved. 
FM and TV service areas are protected simply by geographic 

separation. The signals normally travel in a line of sight, and if 
the stations are far enough apart, they won't interfere with 
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each other. In the standard broadcast band service-area 
protection is accomplished by appropriate design of the shape 

and size of antenna patterns. 
The FM broadcast band occupies frequencies between 88 

and 108 MHz. It is divided into 100 channels, each of which is 
200 kHz wide. thus FM broadcasting is a narrowband service. 

TV broadcasting occupies 82 channels, each of which is 6 MHz 
wide. The TV channels lie in the four bands 54-72, 76-88, 
174-216, and 470-890 MHz. TV is a wideband service; in fact. 
the requirement for wider bandwidth is one of the major 

differences between TV and FM antennas. It is important that 

the impedance at the terminals of the antenna remain 
reasonably constant over at least 10% of the bandwidth for TV 

and 0.2q of the bandwidth for FM. Some FM antennas are 
designed with a wider bandwidth so that the same antenna 

may be for used for more than one FM channel. This reduces 
the number of types of antennas that a manufacturer has to 
produce. 

In both the FM and TV services the usual practice is to use 

a horizontal and essentially circular radiation pattern. The 
FCC does not allow directional patterns in the horizontal plane 
for the purpose of reducing the required separation between 
stations on the same channel, but it does allow some 

directional gain to provide better coverage of populous areas. 

The signal in one direction may exceed that in another by no 
more than 10 dB. 

DEFINITIONS 

There are several terms used in connection with FM and 

TV antennas that haven't been used earlier in this book. Some 
of them are defined here. 

Antenna Height Above Average Terrain. This term is a 

measure of the height of the antenna with respect to the 
surrounding terrain. To find its values the average height of 

the terrain at distances of 2 to 10 miles from the antenna is 

found; then the height of the antenna above this average is 
taken. This procedure is repeated along eight radials, for each 

45° of azimuth, starting with true north. In general, a different 
average antenna height will be found along each radial. The 
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average of these heights is the antenna height above average 
terrain. Sometimes, fewer than eight radials are used when 
some of the area is over large bodies of water or outside of the 

United States. 
Where the antenna uses circular or elliptical polarization, 

the height is measured from the center of radiation of the 
horizontal component of the field. 

Antenna Power Gain. In FM and TV broadcasting the 
antenna gain is specified with respect to the gain of a 
half-wave dipole. The pattern of a horizontally oriented 
half-wave dipole is such that for 1 kW of radiated power the 
field intensity on the surface of the earth is 137.6 mV/m. 
Therefore, the gain of an antenna in decibels is given by the 

formula 
dB = 20 log ( E/137.6) 

where field intensity is mV/m. 
Decibels Referred to One Kilowatt, dBk. This is a 

logarithmic measure of power level. It is the number of 
decibels by which a signal is greater than 1 kW and is given by 

ndBk = 10 log P 

where P is power in kilowatts. 
Decibels Referred to One Microvolt Per Meter, dB. This 

logarithmic measure field intensity is the number of decibels 
by which given field intensity is greater than 1 µV/m. It is 
given by 

IldBu -= 20 log E 

where E is the field intensity in microvolts per meter. 
Effective Radiated Power, ERP. The effective radiated 

power is the product of the antenna power and the antenna 
gain. The antenna power as used here is equal to the 
transmitter power less the losses in the transmission lines 
leading to the antenna. It is frequently expressed in decibels 
referred to 1 kW ( dBk). When a circularly polarized antenna is 
used, an effective radiated power is applied separately to the 
vertical and horizontal components of the radiation. 

ANTENNA HEIGHT AND GAIN 

FM and TV signals travel in a straight, line-of-sight path. 
For this reason, the area served depends on the transmitter, 

402 



the height of the antenna, and the gain of the antenna. The 
horizontal-radiation pattern is usually circular or nearly so. 

Since protection of cochannel stations is accomplished by 
geographical separation, there is no need for directivity in the 
horizontal plane. In fact, the FCC Rules will not allow a 
directional pattern for the purpose of reducing the minimum 

separation between stations on the same or adjacent channels. 
Some directivity is allowed to permit the use of a desirable 
antenna site, but the ratio of maximum to minimum radiation 
in any direction can't be greater than 10 dB. 

The gain of an FM or TV antenna is specified with respect 
to the radiation from a half-wave dipole. If an antenna has 

gain, that means that the antenna radiates more energy into 
some region than would be radiated into the same region by a 
half-wave dipole. Because of the law of conservation of energy, 

this means that the antenna radiates less energy into some 
other region than would be radiated by a half-wave dipole. We 

don't get something for nothing. 
At the frequencies used for FM and TV broadcasting, 

half-wave elements are small enough that many of them can 
be mounted on a single tower. This permits us to stack antenna 
elements vertically and thus squeeze the pattern so that more 

energy is radiated in the horizontal plane and less at vertical 
angles. 

The FCC Rules regulate the effective radiated power of 
FM and TV stations. Thus the desired coverage can be 
obtained with some combination of transmitter power and 
antenna gain. At the high UHF TV channels, transmitter 
power is expensive, so antenna gains as high as 60 are found at 
these frequencies. 

The Rules also provide that a minimum field intensity be 
provided over the principal community which the station is 
licensed to serve. FM stations must provide a field intensity of 

3000-5000 µV/m over the community. The minimum required 

field intensity from TV stations depends on the channels used 
as shown below. 

Channels Minimum Field Intensity (dB) 
2-6 74 

7-13 77 
14-83 80 
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When the antenna site is on a hill and much of the principal 
community being served is in a valley, providing the minimum 

required field intensity is as much of a problem as providing 
coverage of the outer limits of the service area. 

RADIATING ELEMENTS 

FM and TV antennas come in many different 

configurations, and it is often difficult to see any resemblance 

to any familiar antenna element. Actually, most FM and TV 
antennas use elements that are based on four fundamental 
radiating structures: the dipole, the loop, the slot, and the 
helix. We will review each of these to see how it works and how 

it can be used to produce the desired pattern and gain. 
Figure 17-1 shows a half-wave dipole and its radiation 

pattern. We touched on this type ot antenna element earlier 

and saw that it has a terminal impedance of 72 ohms at the 
frequency at which it is resonant. The dipole looks electrically 

like a series-resonant circuit. Thus its terminal impedance is 
resistive only at one frequency. Fortunately, if the diameter of 
the arms of the dipole is increased, the inductance is 

decreased and the capacitance is increased. This has the same 
effect as lowering the Q of a resonant circuit. It tends to reduce 
the rate of change of impedance with frequency and thus 

increases the bandwidth. It is for this reason that TV antenna 

elements are made thick. 

Fig. 17-1. Radiation pattern of a 
half-wave dipole. 

Figure 17-2 shows some antenna elements that are similar 
in operation to the dipole. Figure 17-2A shows the biconical 
antenna, in which the arms flare out toward the ends. This 

configuration has a very wide bandwidth. Figure 17-2B shows a 

folded dipole. In this a second element is mounted parallel to 
the dipole, and the two are connected together at the ends. The 

current and voltage distributions are about the same in both 

elements. As a result the impedance at the terminals is about 
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300 ohms, versus 72 ohms for a regular dipole. The bandwidth 
of the folded dipole is greater than that of the regular dipole 
because the folded dipole has, in effect, a greater diameter. 
The input impedance can be increased still further by adding 
additional elements as shown in Fig. 17-2C. 

(B) (A) 

fø À/2 

Fig. 17-2. Basic half-wave antenna elements. 

(C) 

Figure 17-3 shows a loop antenna. Though the ordinary 

half-wave dipole can be thought of as an electric dipole. 
because the ends have an opposite electric charge at any 
instant, it is convenient to think of the loop as a magnetic 
dipole. The loop may be either square or round. In fact, any 
loop of wire will radiate if the currents in opposite sides are not 
equal and opposite and very close together. Radiation is 
always zero in a direction perpendicular to the loop, but a wide 

variety of patterns can be provided by various configurations 
of loops. 

INSTANTANEOUS CURRENTS 

Q p) 

(A) (B) 

Fig. 17-3. Elementary single-turn 
loops. 

The slot antenna is shown in Fig. 17-4A. Part B of the 
figure shows a dipole antenna that has been cut out of a sheet 

of metal. Of course, if we fed energy to it, it would radiate with 
the familiar dipole pattern. What isn't so obvious is that if we 

connected leads to the hole left in the sheet when we cut out the 

dipole as, in Fig. 17-4B, the hole ( slot) would also radiate. With 
the sheet positioned as shown, it would radiate in the 

horizontal plane with the same pattern as the dipole. The slot 
antenna has about the same bandwidth as the dipole. The input 
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impedance of the slot is related to that of the dipole by the 
formula 

Zslot = 

Gd !pole 

Thus, since the impedance seen looking into the dipole is 72 
ohms, the impedance seen across the center of the slot is 493 
ohms. A great deal of variation in the input impedance of the 
slot can be had by changing the place where it is fed. 

Strictly speaking, what has been said about the slot 
antenna is true only if the sheet from which the dipole is cut is 
considered infinite in extent. Current flows in the entire sheet, 
and since it is not infinite in extent, there will be reflections 
from the edges that interfere with the neat picture painted 
here. If the sheet is large compared to the slot, however, most 
of the energy will be radiated before it reaches the edges of the 
sheet so there won't be much reflection. Frequently the sheet 
is bent into a cylinder. 

35,476 

(A) 

À/41_ 

(B) 

Fig. 17-4. Slot antenna. 

À/2 

Figure 17-5 shows a conductor wound into a helix. This 
element radiates either along the axis of the helix or at right 
angles to the axis. When the diameter and pitch are properly 
chosen, the radiation is at right angles to the axis of the helix. 
Helical antennas have been used extensively in TV broad-
casting. 

POLARIZATION 

Traditionally, horizontal polarization has been used for 

both FM and TV broadcasting. In recent years circular 
polarization has been used increasingly in FM broadcasting to 
reducing the fading that is otherwise encountered in vehicular 
reception. As automobile FM receivers become more popular, 

406 



Fig. 17-5. The helix, basis of the 
helical TV antenna. 

this use of circular polarization may be expected to increase. 

Experimental use of circular polarization in TV broadcasting 

shows great promise for reducing " ghosts" ( spurious images 
in received pictures) in urban areas where there are many 

reflections. When a circularly polarized signal is reflected, its 
sense is reversed. That is, if a right-hand circularly polarized 

signal is transmitted, it becomes upon reflection from a 
building or other structure a left-hand circularly polarized 

signal. A receiving antenna of one polarization is -blind" to a 

signal having an opposite polarization. Thus, receiving 
antennas designed to receive right-hand-polarized signals will 

not see the left-hand reflected signals that cause ghosts. It is 
too early to tell whether or not this use of circularization in TV 
will become widespread. 

GAIN REFERENCE 

The gain of an FM or TV antenna is always referred to as a 

half-wave dipole. That is, the gain in a particular direction is a 

measure of how much more signal an antenna radiates in that 
direction than a half-dipole would. FM and TV allocations are 
based on horizontal polarization. The reference is thus a 

horizontal dipole. Figure 17-6 shows an end view of a horizontal 

END VIEW E - 137.6 mV ,m 

Fig. 17-6. Field intensity from 
half-wave dipole for 1 kW of 
radiated power. 
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half-wave dipole in free space. For the present, we will ignore 
the effect of reflections from the ground. The pattern has a 
field intensity in the horizontal plane at one mile from the 

antenna of 137.6 mV/m for a radiated power of 1 kW. The field 
intensity is proportional to the square root of the radiated 
power, so we can find the field intensity for higher powers by 
multiplying by the square root of the power in kilowatts. For 
example, if the radiated power was 50 kW, the radiated field 
intensity at one mile from the antenna would be 

E = 137.6V§i= 973 mV/m 

OMNIDIRECTIONAL PATTERN 

In AM broadcasting we use a single vertical radiator to 
obtain an omnidirectional pattern in the horizontal plane and a 
field that is vertically polarized. In FM and TV broadcasting 
we want an omnidirectional pattern, but we want the field to be 
horizontally polarized. Thus we cannot use the simple 
expedient of a single vertical element. 

Figure 17-7 shows a top view of a horizontal dipole and its 
radiation pattern. This pattern is far from omnidirectional. 
Now suppose that we were to use two dipoles at right angles to 
each other. Figure 17-8A pictures the fields that the two dipoles 
would produce if they were acting alone. Each dipole would 
have a pattern like that shown in Fig. 17-7. The way in which 
these patterns combine to form a resultant depends on the 
relative phase of the currents in each of the dipoles. 

TOP VIEW 

Fig. 17-7. Pattern of half-wave dipole (horizontal plane). 

If the two dipoles of Fig. 17-8A were fed in phase. the fields 
would add to produce the figure-eight pattern shown in Fig. 
17-8B. This isn't any better for our purposes than the field of a 

single dipole. But what if we excite the two dipoles 90° out of 
phase with each other? The fields in time quadrature and at 
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right angles combine in somewhat the way oscilloscope signals 
in time quadrature and applied to deflection plates at right 
angles combine to produce a circular Lissajous pattern. The 

turnstile array thus produces a pattern that is very nearly 
circular in the plane of the turnstile. 

• 
• 
• 

Fig. 17-8. Patters of dipoles at 
right angles. 

If the turnstile were in free space, without any conducting 
structures nearby. and if the elements were very short, the 
pattern would be a perfect circle. In practice, the elements are 

1,2 wavelength long and there is always a supporting structure 
nearby. As a result, the pattern isn't a perfect circle but is 
somewhat as shown in Fig. 17-9. This pattern deviates from 

true circularity, but it can be made good enough for most 
purposes. 

Fig. 17-9. Typical pattern of 
turnstile antenna. 

Another method that is used to get an omnidirectional 

pattern is to fold a dipole into a circle. Figure 17-10A shows a 
folded dipole together with the normal current distribution. 
The current is maximum at the feed point and minimum at the 

ends. In Fig. 17-10B the folded dipole is bent into a circle. This 
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antenna tends to radiate in all directions, but the radiation is 
not uniform. because the current is much greater on the side 
where the antenna is fed than on the opposite side, near the 
ends. The situation is improved in Fig. 17-10C, where the ends 

are brought close together and fitted with capacitor plates. 
The capacitive coupling tends to increase the current at the 
ends of the dipole. This makes the current distribution nearly 
uniform all around the antenna, and this in turn tends to make 
the pattern omnidirectional in the horizontal plane. By 

adjusting the capacitance at the ends of the dipole, the antenna 
can be tuned and the impedance adjusted. 

FEED POINT 

ADJUSTABLE 
CAPACITOR 

(B) 

Fig. 17-10. Development of an 
omnidirectional antenna. 

ANTENNA ARRAYS 

In FM and TV antennas we use arrays of elements to 
control the directivity of the vertical-radiation pattern. 
Because of the comparatively small size of FM and TV 
antennas we can stack many of them on a single tower. Figure 
17-11A shows the vertical-radiation pattern of a typical 
antenna. Note that since the signal propagates in a line-of-sight 
manner and is not reflected back to the earth, all of the energy 
radiated above the horizontal axis of the pattern is lost. Two 
steps can be taken to minimize this lost energy—stacking 
elements and tilting the beam. Figure 17-11B shows how the 
pattern is narrowed when several elements are stacked. Note 
that much more energy is transmitted along the horizontal 
axis, but that all above the horizontal axis is still lost. 

Figure 17-12A shows the pattern of a half-wave dipole as 
viewed from the end. It is assumed that the dipole is far 
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Fig. 17-11. Vertical-antenna patterns. 

enough from the ground that there will be no reflection. The 
pattern is thus a circle. It is similar to the pattern that we 
would see if we were to look directly down on the top of a 
vertical antenna. In Fig. 17-12B we have another half-wave 
dipole one wavelength above the first one. The pattern is now 
the vector sum of the field intensities of the two dipoles. Note 
that the pattern has been flattened, with more energy being 
radiated horizontally and less being radiated at vertical 

angles. In fact, the radiation is zero directly above and below 
the antennas. 

Figure 17-12C shows the pattern that results when six 
dipoles are stacked 1/4 wavelength apart. The pattern shows 
that most of the radiation is along the horizontal axis, which is 
desirable, but the pattern is still not optimum. For one thing. 

there are several nulls in the pattern at angles below the 

HORIZONTAL 
AXIS 

HORIZONTAL 
AXIS 

(A) DIPOLE (END VIEW) (B) TWO STACKED DIPOLES 

o 
o 

NULLS 

Fig. 17-12. Effect of stacking 
elements. 

0 
(Ci SIX STACKED DIPOLES 
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horizontal axis. Furthermore, half of the energy is radiated at 
angles above the horizontal axis, where it will never be 
received. We will first look at ways of removing the nulls from 
the pattern. 

Null Filling 

In our investigation of AM directional antennas we found 
that true nulls occur in a pattern because, at certain angles, 
the field from one antenna subtracts from that of another 
antenna so that the signal cancels completely. We found that 

nulls can be partially filled by making the currents in the 
various elements unequal. We have a very similar situation in 
the pattern of Fig. 17-12C. Here the nulls are not intentional, 
but result from stacking elements vertically to increase the 
radiation along the horizontal axis. The nulls exist because at 
certain angles the field intensity from one or more elements 
completely cancels that from the other elements. If the 
currents in the elements were not equal, their fields would not 
completely cancel. so the answer to the null problem is to feed 
unequal currents to the antenna elements. 

Figure 17-13A shows a 6-element antenna with the 
elements second from the top and bottom producing only half 
of the fjeld intensity produced by the other elements. There are 

no nulls in the pattern except directly above and below the 
antenna assembly. This is the technique of null filling by 
proper distribution of power. The pattern of Fig. 17-13A is the 

best so far. but half of the radiation is still lost at angles above 
the horizontal axis. This situation can be improved by beam 
tilting. 

Beam Tilting 

One way to accomplish a certain amount of beam tilting is 
to simply tilt the antenna itself slightly. Another way to 
accomplish beam tilting is to tilt the radiation from the 
antenna electrically. This is done by properly controlling the 
phase angle of the current in each element of the array. Figure 

17-13B shows the same 6-element array, but now the phase of 
the currents is such that the fields add in a direction slightly 
toward the earth. In the figure the phase shifts are such as to 
tilt the beam 2° toward the earth. 
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Fig. 17-13. Null filling and beam tilting. 
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Beam tilting is necessary not only to prevent radiation 
from being lost at vertical angles but also to make sure that 
the main lobe of the pattern actually reaches the surface of the 
earth. Because of the curvature of the earth, the maximum 

radiation of the antenna of Fig. 17-13A would never actually 
reach the earth. If an antenna is 1000 ft above the earth, the 
beam must be tilted at least 0.5° to reach the surface of the 

earth. Antennas on hills or mountains often use up to 2° of 
beam tilting for this reason. 

SIDE MOUNTING 

It once was assumed to be necessary to mount an FM or 

TV antenna on top of a tower, where there would be no 

supporting structure in the plane of the antenna to interfere 
with the radiation pattern. This is not always feasible, 

however, and at some stations both FM and TV antennas are 

mounted on a tower that is also used for AM broadcasting. 

It has been found that remarkably good radiation and 
impedance characteristics can be obtained with various types 
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of FM antennas mounted on the side of a tower. Undoubtedly, 
the antenna is detuned somewhat by side mounting, but the 
FM signal occupies a comparatively narrow band, and the 

antenna will often function very well. 

ANTENNA-PATTERN PLOTS 

With an AM antenna we use a polar plot of the pattern 
since we are concerned with how the signal distributes over 

the earth's surface. With an FM or TV antenna we are 
concerned with how and at what point the radiation from the 

antenna reaches the earth's surface. For this purpose it is 
often convenient to plot the pattern using rectangular 

coordinates. A rectangular plot of an antenna pattern is shown 
in Fig. 17-14. The vertical axis of the graph is graduated in 

terms of field intensity, and the horizontal axis is graduated in 

degrees below the horizontal axis through the antenna. This 
type of plot makes it easy to find the signal strength at any 

point along the surface of the earth. We know the height of the 
antenna above the ground, so we can calculate the angle at 

which the energy must leave the antenna to reach the surface 
of the earth at any given distance from the antenna. Many 
manufacturers specify the patterns of their antennas in 

rectangular plots. 
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CIRCULAR POLARIZATION 

Many FM stations are now using circular polarization, and 

some TV stations are experimenting with it. To produce 
circular polarization, an antenna usually radiates both 
horizontally and vertically polarized signals. To radiate 

vertically polarized signals with a dipole element, it must be 

Fig. 17-14. Rectangular antenna 
pattern. 
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oriented vertically. Thus many FM and TV antennas contain 

both vertical and horizontal elements. Figure 17-15 shows an 
example. Energy is fed to the elements by means of a power 

divider that is made of transmission-line elements. With this 
arrangement, only one transmission line from the transmitter 
is required. 

-HORIZONTAL 

ELEMENT 

VERTICAL 

ELEMENT 

POWER 

SPLITTER 

--TRANSMISSION 

LINE 
Fig. 17-15. Circularly polarized antenna with both horizontal and vertical 
elements. 

PRACTICAL FM AND TV ANTENNAS 

The FM or TV antenna, unlike a standard broadcast 

antenna, is furnished as a complete product by the 
manufacturer. In this respect, it is like an amplifier or 
transmitter. Usually, the broadcast engineer doesn't even 
have to concern himself with exactly how the antenna works. 
When he does become interested, all of the necessary 
information is in the manufacturer's literature. This is the 
opposite of the situation with an AM antenna for which there is 
usually no literature and no instruction book. The operation of 

any FM or TV antenna can be understood by extension of the 
principles of the basic antenna elements described earlier in 
this chapter. 

The main problems that the engineer will face regarding 
an FM or TV antenna involve the feeder system and the 

associated measurements. These matters are covered in the 
following chapters. 
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Chapter 18 
FM and 
TV Antenna 
Feeder Systems 

GENERAL CONSIDERATIONS 

As in any other type of antenna system, the principal objective 
of the feeder system of an FM or TV antenna is to provide an 
efficient transfer of energy from the transmitter to the 
antenna. Because of the high frequencies used, losses on 
transmission lines are higher and impedance matching over 
the necessary bandwidth is essential. This means that the 
standing-wave ratio on the transmission line must be kept low. 
FM stations transmitting only a single program with no 
subcarrier or stereo normally operate with a VSWR of 1.5:1 or 
less. FM stations carrying stereo or subcarrier broadcasts, as 
well as TV stations, operate with a VSWR of 1.1:1. The reason 
for the low VSWR is that serious reflections on the line would 
seriously distort the program material. 

If the driving-point impedance of an antenna does not 
match the characteristic impedance of the transmission line, 

there is a reflection back along the line. There is usually a 
mismatch of some magnitude at the sending end of the line, so 
the reflected wave will be re-reflected back toward the 

antenna. This reflected signal thus bounces back and forth 
along the line until it is radiated or is dissipated in the line. The 
portion that is dissipated in the line increases the loss, but 
otherwise it does no harm. In the case of a TV station, the 
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radiated portion of the reflected signal appears as one or more 

ghosts on the viewers' receivers. The magnitude of the ghost 
signal depends on the magnitude of the reflection, and the 
amount by which the ghost image is displaced from the 
original image depends on the length of the line. Naturally the 
situation becomes more objectionable when the line is long and 
the reflection strong. TV antennas are usually mounted on tall 
towers to provide good coverage, so reflections are always 

troublesome from this point of view. FM stations carrying 
stereo or subcarrier broadcasts experience reflections that 
manifest themselves as crosstalk between the channels. 

FM and TV stations always use coaxial cables as 
transmission lines, except for some UHF stations, which use 
waveguide. The principles of the feeder system are the same 
in either case. 

The choice of a particular transmission line depends on the 
transmitted power, the frequency of operation, and the length 
of the line. The line must have a power-handling capability at 
least as great as the total output power of the transmitter. The 
line should be rated for use at the operating frequency. 
Whenever the line length is more than a few hundred feet, the 
power dissipated in the line must be taken into consideration. 

Coaxial cables used for FM and TV transmission lines 
usually have a characteristic impedance of either 50 or 75 
ohms. They are always pressurized when run out of doors. 
Rigid lines are normally supplied in lengths of 20 ft. The 
lengths are joined by the use of flanges. No matter how 
carefully the sections are assembled, there will always be a 
slight impedance mismatch at the joint. At certain frequencies 
the reflections from the ends of the 20 ft sections will add to 
cause a serious standing wave on the line. Lengths must be 
selected to prevent cumulative reflections. 

Vertical runs of line expand because of heating of the line. 
This expansion is allowed for by mounting the top of the line 
securely and supporting it on spring hangers that are attached 
to the tower. 

The impedance of an FM or TV antenna may vary over a 
wide range, depending on the particular type of antenna. It is 

extremely important to match the impedance to the 
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characteristic impedance of the line. At FM and TV 
frequencies it is difficult to use the same types of networks 

that are used in the standard broadcast band because the 
required values of inductance and capacitance are very small. 
For this reason, transmission-line sections called stubs are 

usually used for impedance matching. 

IMPEDANCE-MATCHING STUBS 

An open or shorted section of transmission line has a 
driving-point impedance that looks like a pure reactance or 

susceptance. By selecting the characteristic impedance of a 
section of line, as well as its length, the engineer can control 
both the value of reactance seen at its terminals and the rate, 
or slope, at which the reactance varies with frequency. The 

slope of reactance versus frequency is always positive and is 
greater than that of a lumped inductance or capacitance. 

Instead of controlling the value and slope of reactance, the 

engineer can instead control the value of reactance at two 

frequencies. 
We saw earlier that we can transform any value of 

impedance into any other value by using an L-network 

consisting of a single inductance and a single capacitance. We 
can do the same thing with a stub connected across a 
transmission line . In Fig. 18-1 the reactance of section 1 in 

part A corresponds to the series reactance of the L-network in 
B, and the reactance of the stub section, corresponds to the 

shunt reactance of the L-network. 

2 

(B) 

Fig. 18-1. Stub tuner analogous 
to an L- network. 

In theory either a shorted or open section of line may be 

used as a stub, but in practice a shorted section is always used. 
There are two reasons. The shorted stub doesn't radiate 
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anywhere near as much as an open stub, and the length of a 
shorted stub can be varied easily by means of a shorting bar or 

disc. In considering that a shorted stub had a driving-point 
impedance that looked like a pure reactance, we neglected the 

losses in the stub. There are always losses, but these can 
nearly always be neglected. An impedance transformation 
accomplished by transmission-line sections is affected much 
less by the unavoidable losses than that obtained by a 
conventional network. 

There are many formulas that can be used to find the 
lengths of line used in matching-stub arrangements, but the 
simplest approach is to use the Smith chart to solve the 
problem. To solve stub problems, we must use admittance 
rather than impedance because the stub, by its very nature, is 
connected in parallel with the line. This is no problem, 
because, if the nature of the load is specified in terms of its 
impedance, we can transform this into admittance right on the 

Smith chart. Another advantage of using the Smith chart is 
that we don't even have to know the value of the load 
impedance or admittance. All we have to know is the 
standing-wave ratio and either the distance along the line to 
the load or the distance to a point on the line where the voltage 
is maximum or minimum. 

Single-Stub Problem 

Assume that we have a load impedance of 100 + j100 ohms 
and wish to use a single stub to match it to a transmission line 
having a characteristic impedance of 50 ohms. The first step is 
to normalize the load impedance to 50 ohms. 

100 j100 
— + — = 2 + j2 
50 50 

Next, by using a lengthy formula and a calculator, or a 
Smith chart, we find that the normalized admittance of the 
load is 0.25 — j0.25. Of course, we want the driving point of our 
matching arrangement to have a normalized admittance of 
1 + j0. In Fig. 18-2 we have the point 0.25 — j0.25 plotted on a 
Smith chart. We also have the locus of points corresponding to 
a conductance of 1, or the unit-conductance circle. Any 
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admittance that lies on this circle can be converted to an 
admittance of 1 + j0 by the susceptance of our shorted stub. 
The admittance seen across the line varies with distance from 

the load by taking on the values on a circle of constant 
standing-wave ratio. This is the dashed circle in Fig. 18-2. 
From this figure we can see that the admittance across the 
line intercepts the unit-conductance circle at a distance of 
0.219 wavelength from the load. The admittance at this point is 
1 + j1.6. If we continue along the dashed circle of constant 
standing-wave ratio, we find that it intercepts the 
unit-conductance circle against 0.362 wavelength from the 

load. This means that we could connect our stub, which has a 
pure susceptance, at either of these points to match the load to 
the line. Of course, there are other points like this each 1/2 
wavelength farther along the line from the load, as the 
impedance of a transmission line ( neglecting losses) repeats 

Fig. 18-2. Solution of single-stub problem. 
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every 1/2 wavelength. This is equivalent to going all the way 
around the Smith chart back to our original points. 

Now that we know the appropriate position of the stub, all 
we have to do is to find its length. The length has to be such as 

to produce a normalized susceptance of either —j1.6 or +j1.6, 
depending on whether we connect to the first or second point 
that we found in Fig. 18-2. We can use the Smith chart to find 
the length of the stub ( Fig. 18-3). The admittance of a shorted 

stub lies around the outer circle of the chart. On this path all of 
the admittances are pure susceptances because it is the locus 
of zero conductance. The admittance of a shorted stub starts at 
the bottom of the chart, where the conductance is infinite. 
Going around the chart toward the generator, we find that the 
normalized susceptance is —j1.6 at a distance of 0.089 
wavelength. Thus the stub should be 0.089 wavelength long. If 
we were to place the stub at the second of the two points that 
we found in Fig. 18-2, we would need a normalized susceptance 

Fig. 18-3. Finding stub length. 
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of + j1.6. As shown in Fig. 18-3, this requires a stub length of 
0.411 wavelength. 

In the above example, we found two different places on the 
transmission line where we could place a shorted stub to 

accomplish the desired impedance transformation. Inasmuch 

as line losses increase with the length of the line, we usually 
choose the point closest to the load. The two solutions to the 
problem are shown in Fig. 18-4. Note that the impedance seen 

looking into the matching arrangement is 50 ohms, which is 
what we wanted. The standing-wave ratio on a 50-ohm line 

connected to this point will be 1:1. That is, there will be no 
reflection from this point. The standing-wave ratio on the line 

between the stub and the load will be a little over 4:1. 

Fig. 18-4. Arrangements that satisfy the requirements in the single-stub 
problem. 

The single-stub tuner is simple to design and only involves 
adding one element to the transmission line. The principal 

problem involves using it on a coaxial line. The shorted stub 

isn't difficult to manufacture; it consists of a section of coaxial 
line with a shorting plunger ( Fig. 18-5). Unfortunately, the 
single-stub arrangement also requires an adjustable length of 
line from the load to the stub location. The manufacture of an 
arrangement that will provide an adjustable length of coaxial 
cable without disturbing its characteristic impedance is a 

nightmare. Sometimes the difficulty can be avoided by 
designing a matching section, then refining it by cut-and-try 

methods. Production models without adjustable sections can 
then be made from measurements. This has the disadvantage 

that adjustments cannot be made in the field. 
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Fig. 18-5. Shorting stub. 

Double Stubs 

The difficulties of the single-stub arrangement can be 

avoided by using a double stub such as is shown in Fig. 18-6. 

Here we have two stubs placed across the line. They are 
separated by some distance other than 1/2 wavelength. 

Common separations are 1/8 and 3/8 wavelength. The design 
problem is to select the lengths of the shorted stubs so that the 
impedance seen at the second stub is equal to the 

characteristic impedance of the transmission line. The 
problem is solved easiest by the use of a Smith chart. The 

length t1 of the first stub is chosen so that the admittance 
across the line at the point where the second stub will go will 

be on the unit-conductance circle of the Smith chart. The 

length 1, of the second stub is then chosen to tune out the 
susceptance. 

STUB 2 ISTUB1 

Fig. 18-6. Double stubs on coaxial line. 

12 

The big problem is to find the length of the first stub. The 

easy way is to select a stub spacing that makes it easy to use 
the Smith chart. When the spacing between the stubs is 1/8 

wavelength, the solution is easy. We want the admittance at 
the place where the second stub is to be located to lie on the 
unit-conductance circle in Fig. 18-7 . Since the admittance at a 

point 1/8 wavelength away is shown on the Smith chart by 
rotating 45° toward the load, we want the admittance at the 

point where the first stub is located to fall on the circle marked 
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Fig. 18-7. Finding the circle for stub 1 admittance. 

• 

UNIT . 

CONDUCTANCE 

stub I admittance. All that we have to do is to adjust the length 
of the first stub so the admittance at that point will lie on the 

circle. Then we can be sure that the admittance at the location 
of the second stub. which is 1/8 wavelength toward the 

generator. will lie on the unit-conductance circle. The second 
stub will cancel the susceptance and the match will be perfect. 

Double-Stub Problem 

Let us consider the case where the load impedance is 
100 + j100 ohms and the characteristic impedance of the 
transmission line is 50 ohms. We wish to match the load 
impedance to the characteristic impedance of the line, using 
the double-stub arrangement shown in Fig. 18-8. As in the 
single-stub example. we normalize the load impedance to 50 
ohms and then find the normalized admittance. As in the 
preceding case, the normalized admittance is 0.25—j0.25 and 
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8 

Fig. 18-8. Double-stub problem. 

100 j100 

there are two solutions to the problem. Looking at the Smith 
chart in Fig. 18-9, we see that by adding a susceptance of 
+j0.59 to the load admittance, the admittance will become 
0.25 + j0.34, which lies on the circle where we want it. We 
could use a Smith chart to find that this corresponds to a stub 
length of 0.335 wavelength. Now we continue from this point 

1/8 wavelength toward the generator and find the admittance 
1 + j0.163, which is on the unit-conductance circle, again, as 
wanted. Now we merely have to adjust the second stub length 

Fig. 18-9. Smith chart solution to double-stub problem. 
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so that its susceptance is —' 1.63. From a Smith chart we would 
find that this corresponds to stub length of 0.088 wavelength. 

The final solution is shown in Fig. 18-10. 

50 OHMS 

T 
0 088X 

  —§_—. 

0.335À 

--i--.. 100 + J100 

Fig. 18-10. Final answer to double-stub problem. 

Not all possible values of load impedance can be matched 
with any given stub spacing. The widest possible range of load 

impedances can be matched when the spacing between stubs 
is 1/2 wavelength: however, at this spacing the adjustment of 
the lengths of the stubs is so critical as to be impractical. The 
smallest range of load impedances can be matched when the 
spacing between stubs is 1/4 wavelength. A spacing of 1/8 or 
3/8 wavelength represents a good compromise between 
critical adjustment and the range of impedances that can be 
matched. If an impedance falls outside of the range covered by 

a particular stub spacing, it can be handled by adding a small 
fixed length of line between the load and the first stub. 

Stub impedance-matching arrangements are often called 

tuners. The commonest types are the single-stub tuner and the 
double-stub tuner but it is possible to have more than two 
stubs. All arrangements operate on the same principles. 

TAPERED LINE SECTION 

A tapered line section that is a part of the antenna itself is 
sometimes used for impedance matching. Several different 

types of tapering have been used, including linear (A in Fig. 
18-11) exponential ( B), and hyperbolic. In all of them the 
dimensions of the line are slowly changed from a size that 
gives one value of characteristic impedance to one that gives 
another value. In all cases, the tapered section must be at least 
1/4 wavelength long. This means that a tapered line section 
has a high-pass mode of operation. At all frequencies above a 
certain frequency, the tapered section will be a 1/4 wavelength 
or longèr, and the impedance transformation will be 
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Fig. 18-11. Tapered line sections. 

accomplished. At frequencies below this value, the length of 

the tapered section will be less than a 1/4 wavelength, and 

there will be a reflection. 

QUARTER-WAVE TRANSFORMER 

A quarter-wave transmission line has a driving-point 
impedance that is related to the load impedance by the 

equation 

— 

where Z. = driving-point impedance 

21, = load impedance 

4 = characteristic impedance of line 

This means that by properly selecting the characteristic 
impedance of a quarter-wave section of transmission line, we 

can transform a load impedance to a desired value. Inasmuch 

as a 1/4 wavelength is equal to 90°, the quarter-wave 
transformer ( Fig. 18-12) is very similar to the 90° T-network. It 
can match perfectly any two values of resistance. The 
quarter-wave transformer is frequency sensitive because the 
line section can only be a 1/4 wavelength long at one 

frequency. The bandwidth can be improved by using several 
such sections in tandem, with each one designed for optimum 
operation at a slightly different frequency. 

' 

Zo= 25 = 20 

120 120 

— j20Z 8 

(A) (B) 

Fig. 18-12. Quarter-wave transformer with analogous T-network. 
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BALUN 

Most FM and TV antennas are balanced: that is, they have 
two terminals, neither of which is at ground potential. The 
coaxial transmission lines, on the other hand, are unbalanced, 
in that the outer conductor is grounded. Thus we need some 
method of connecting a balanced load to an unbalanced 

transmission line. Devices that accomplish this are called 
baluns. from balanced-to-unbalanced transformer. If such a 
transformer is not used when driving a balanced load from a 
coaxial cable. the currents in the inner and outer conductors of 
the cable will not be equal. and the cable will radiate. 

At low frequencies we can transform from an unbalanced 
source to a balanced load with the transformer shown in Fig. 
18-13A. This arrangement is used to drive a push-pull stage 

from a single-ended stage. At higher frequencies such an 
arrangement would be very critical so a balun is used. 

One type of balun that is easy to understand is shown in 
Fig. 18-13B. This device takes advantage of the fact that the 
voltage and current are the same at both ends of a half-wave 
section of transmission line, but the phase of the signal passing 
through the section is retarded by 180°. This amounts to a 

reversal in polarity. 
There is an impedance transformation of 1:4 through the 

balun of Fig. 18-13B. This isn't easy to see at first, but in Fig. 
8-14 we see that the voltage across the load is twice the voltage 

 iUNBALANCED 

f4 

BALANCED 

(A) LOW FREQUENCIES 

UNBALANCED 

BALANCED 
Fig. 18-13. Matching balanced 
loads to unbalance lines. (B) RADIO FREQUENCIES 
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Fig. 18-14. One-to- four impedance transformation in a balun. 

across the line, whereas the current in the load is one-half the 
current in the line. Dividing the load voltage by the load 
current gives us the impedance seen at this point. 

2V 4 V 
— 

1/2 
where 17/./ is the input impedance. 

Many different configurations of transmission-line 
elements are used for baluns. All have their advantages and 
limitations. In television proper operation over the required 
bandwidth is an important consideration. 

HYBRID RING 

A transmission-line element that can be used for many 
functions, including connecting two transmitters to a common 
load, is the hybrid ring ( Fig. 18-15). This device is often made 
of coaxial components. It is sometimes called a rat race. The 
operation can be understood by tracing the paths through the 
ring, noting the phase shifts that are encountered through each 
path. The two paths from port 1 to port 4 are both the same 
length and have the same phase shift, so the signals traveling 
over the paths add at port 4. They also add at port 2. But the 
signal from port 1 cancels at port 3, and the signal from port 3 
cancels at port 1. 

AURAL AND VISUAL TV TRANSMISSION 

A television station actually has two transmitters—one for 
the visual signal and one for the aural signal. There are 

several ways that these two signals can be radiated without 
interaction between the two transmitters. The simplest 
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Fig. 18-15. Hybrid ring. 

approach is to use two antennas. In this case, two separate 
transmission lines are run to the antennas. 

When two separate antennas are used, the patterns must 
be as nearly alike as possible so that the sound will be heard 
wherever the picture is seen, and vice versa. Furthermore, the 
two antennas must be isolated from each other so that one does 
not pick up a substantial amount of the signal radiated by the 
other. Any interaction between the antennas would result in 
cross-modulation of the two signals. One solution is to use the 
top half of a superturnstile antenna to transmit the visual 
signal and the lower half to transmit the aural signal. 

Fig. 18-16. Diplexer for connecting aural and visual TV transmitters to an 
antenna. 
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A common arrangement for combining the outputs of the 

visual and aural transmitters is a bridge circuit known as a 
diplexer ( Fig. 18-16). This is used when there are two separate 
inputs to the antenna, one for north—south radiation and one 
for east — west radiation. The transmission line from the visual 
transmitter passes through a balun so that the signal is 
balanced to ground. The aural signal is fed from a coaxial line. 
The bridge is balanced so that no visual signal appears across 

the line from the aural transmitter and no aural signal appears 
across the line from the visual transmitter. 

Bridge diplexers of this type are made in many different 
physical configurations that facilitate connecting them to 
antennas and transmission lines. 
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Chapter 19 
FM and 
TV Antenna 
measurements 

There are completely different philosophies involved in the 
measurements made in FM or TV antenna systems and those 
made in AM antenna systems. In the AM antenna system the 
engineer is located within the confines of the antenna system 
most of the time. He walks between the elements ( towers) 
making measurements and observations. He has access to the 
driving points of all of the elements. His measurements are 
made on the parts of the system, and he infers from them the 
quality of performance of the complete system. 

In an FM or TV station the situation is completely 
different. The entire antenna is located on a tall tower, where 
only a steeplejack can gain access to the various elements. 
Impedance-matchiing networks as well as power-dividing 
networks are located up on the tower. The engineer must make 
most of his measurements on a single transmission line and 
from them determine whether the various elements of the 
system are operating properly. 

Even the field-intensity measurements that are made to 
verify the coverage of the station are different. In the AM case 
the measurements are made along the surface of the earth. 
and the effect of the ground is determined by these 
measurements. An FM or TV field-intensity measurement 
should be made about 30 ft above the ground. 
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In making and interpreting measurements of an FM or TV 

antenna, the engineer is concerned with transmission-line 

theory. His measurements are made at one part of a line, and 
if they are not correct, he tries to infer what is wrong along the 

line or at the other end. Another basic difference between AM 
measurements and FM or TV measurements is in the 

instrumentation. In the AM station, instruments such as 

base-current meters and operating bridges are actually part of 
the antenna system. In the FM or TV antenna system there are 
usually no instruments at all. There is no point in having 

instruments at the separate elements, because they are 
located where the engineer cannot read them. The 
instrumentation used to make measurements on an FM or TV 
antenna is a part of the transmitter itself. 

The transmitter is equipped with some type of 
transmission-line instrumentation that indicates voltage, 
current, or power. and usually, both forward and reflected 

parameters. For this reason, a working knowledge of 
transmission-line theory and the Smith chart is very handy for 

the engineer. It helps the engineer to use information that is 
available from instruments in the transmitter to diagnose 
troubles in the antenna system. 

TRANSMISSION-LINE INSTRUMENTS 

The transmission-line instruments commonly used on an 
FM or TV transmitter provide an indication of forward and 

reflected values of voltage, current, or power. There are 
several different arrangements that can be used for this 
purpose. One of the most common is the directional coupler. In 

its easiest-to-understand form, a directional coupler consists 
of an auxiliary transmission line loosely coupled to the main 
transmission line as shown in Fig. 19-1. The coupling from the 
main line causes waves to travel in the auxiliary line that are 

Fig. 19-1. Directional coupler. 
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proportional to the waves in the main line. Both ends of the 
auxiliary line are terminated in the characteristic impedance 

of the line so that there will be no reflection at either end. Thus 

the voltage across one terminating resistor is proportional to 

the forward voltage E; in the main line, and the voltage across 
the other terminating resistor is proportional to the reflected 
voltage E, in the main line. 

A type of instrument called a reflectometer measures the 
ratio of these two voltages. This is a measure of the reflection 
coefficient K of the load impedance. If the magnitude of the 

reflection coefficient is known, it is an easy matter to find the 
standing-wave ratio on the line. It is given by 

VSWR 
1 — IKI 

where K is the magnitude of the reflection coefficient, and 

VSWR is the voltage standing-wave ratio. 

FORWARD AND REFLECTED POWER 

The terms forward power and reflected power cause a 
great deal of confusion. They should be clearly understood 
because their measurement is reasonably easy and tells a 

great deal about what is going on in a transmission line. 

When the impedance of a load is not matched to the 

characteristic impedance of a transmission line, some of the 
energy that travels down the line toward the load is reflected 

back toward the transmitter. Power is the rate of flow of 
energy. Thus forward power is the rate at which energy 
propagates along the line toward the load. Reflected or 
reverse power is the rate at which energy is reflected back 

toward the transmitter. The power dissipated in, or radiated 
by, the load is equal to the difference between the forward and 

reflected power. This much seems reasonably clear. The two 
main questions are How much power is the transmitter 
delivering? and What happens to the reflected power? 

Figure 19-2 represents a transmission line connected 
between a transmitter and an antenna, and in it is connected 
for measuring both forward and reverse power. The forward 
power is 1000W, and the reverse power is 110W. It is easy to see 

that the power radiated by the antenna is the difference, or 
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1000W 
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1 110W - TO LOAD 

FORWARD REFLECTED 

POWER POWER 

Fig. 19-2. Forward and reflected power in transmission line. 

890W. The relationship between the standing-wave ratio on the 
line and the forward and reverse power is 

VSWR = 

Pr 
+ — 

P, 

V110 

1000 

1 
100 

1000 

1.33 
— = 2 
0.67 

If the characteristic impedance of the transmission line is 50 

ohms. the load impedance connected to the receiving end of 

the line is either 25 or 100 ohms because 

R, Z, 
VSWR = or 

Z, RI. 

Figure 19-3 is the same as Fig. 19-2 except that an 
impedance-matching network is added in Fig. 19-3. Now the 

transmitter sees a load impedance that is a pure resistance of 
50 ohms. Since between the transmitter and the matching 

network the impedances are matched, there will be a 

standing-wave ratio of 1:1 on that section of the line. That is, 

there will be no reflection from the impedance-matching 

NO REFLECTIONS REFLECTIONS 

VSWR = 1 VSWR = 2 

Z IN — 
FROM 50 OHMS 

TRANSMITTER 

890W 

MATCHING 

UNIT 
1000W 110W 

FORWARD REFLECTED 

POWER POWER 

1000W 

110W 

TO 

LOAD 

Fig. 19-3. Power from transmitter less than forward power in second sec-
tion of line. 
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network. This, in turn, means that on the line between the 
transmitter and matching network the reflected power must 
be zero. The only power that we can measure on this section of 

the line is the power that goes to the right in the diagram and 
continues right out through the antenna. Thus the power in this 
section is all forward power and is equal to 890W. This shows 
that forward power and reflected power are merely ways of 
expressing what is happening on the transmission line. The 
fact that the forward power on the second section of the line is 
1000W doesn't mean that the transmitter is putting out 1000W. 
It is merely a measure of the rate at which radiated energy 

plus energy stored on the line is moving toward the load. 
Likewise, the reverse power is merely a measure of the rate at 
which the energy stored in the line is moving toward the 
transmitter. Once this concept is clearly understood, forward 
power and reverse power show as clearly as anything what is 

going on in the transmission line. 

ANALYSIS OF MEASUREMENTS 

The purpose of making measurements on a feeder system 
is to verify that the system is operating properly, or to locate 
the trouble when it fails to operate properly. The biggest 
problem is to learn as much as possible about the operation of 
the antenna and feeder system by means of measurements 
made at one end of the transmission line. The Smith chart is a 
great help in interpreting whatever measurement data is 
available. It can be used to find various parameters of the 
system when other parameters are known. 

When the forward voltage V, and reflected voltage V, on 
a line are known, we can draw a standing-wave circle on the 
chart as shown in Fig. 19-4, using the relationship 

VSWR = 1+ 1 — 
Vf 

In the example of Fig. 19-4 the VSWR is 1.1:1. 
If the distance in wavelengths to the load is known, we can 

use the chart to find the load impedance. This is the impedance 
at the end of the transmission line, which may be an antenna, 
but more often is a matching arrangement of some type. In 
most FM and TV stations the length of the line is several 
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Fig. 19-4. Impedances on line having VSWR of 1:1. 

wavelengths, so the standing-wave circle actually makes 
several turns around the Smith chart. All lines have some loss, 
so instead of the circle of Fig. 19-4, the path will actually spiral 
outward as we get closer to the load ( Fig. 19-5). This tells us 

that with a normal line with no faults, the standing-wave ratio 
at the sending end will be less than it is at the load, because of 
the losses in the line. 

Standing Waves as Fault Finders 

A great deal of information about the system can be 
gained from merely knowing the standing-wave ratio at the 
sending end of the line. If the standing-wave ratio is very high, 
the line is probably open or shorted. Fortunately, nothing less 
than a catastrophic failure will cause the line to open, so we 
can assume that the fault is a short circuit. Open circuits on 
transmission lines can usually be located by visual inspection 
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Fig. 19-5. Impedance on a line with losses. 

with a pair of field glasses. A rough idea of where the short 
circuit is located along the line can sometimes be gleaned from 

the magnitude of the standing-wave ratio. If the normal losses 
of a line are known, we can calculate the maximum 

standing-wave ratio that will result from a short circuit at the 

load end of the line. This isn't conclusive, because the same 
standing-wave ratio that would result from a complete short 

circuit at the load might also result from a partial short circuit 
closer to the sending end. 

An open circuit in one of the antenna elements can often be 
found from the standing-wave ratio. Suppose, for example, 

that we have the antenna shown in Fig. 19-6 which consists of 
six elements. Let us assume that when the system is operating 

normally, we have a standing-wave ratio of 1.1:1. When one of 
the elements opens. the standing-wave ratio will go up to about 
1.2:1. ( Fig. 19-6C). If additional elements open, the 
standing-wave ratio will go still higher. 
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Ghosting and Discontinuities 

A fault in a TV feeder system can often be located by 
studying the ghost it causes on a TV receiver. The time 
required for one horizontal line of a TV picture is 53 µsec. 

During this time a signal can travel 26,150 ft from a point of 
reflection and back again. Thus we can use the distance by 
which a ghost trails the main picture on the screen of a TV set 
as a measure of the time between receiving the main picture 
element and the reflection. This time is a measure of the 
distance between the transmitter and the point on the line 

causing the reflection. The distance in feet is given by 

ghost displacement in inches 
Distance = 26.150  

width of picture in inches 

For example. if the ghost appears about 1/4 in. to the right of 
the picture on a TV screen that is 10 in. wide, the distance from 
the transmitter to the discontinuity that is causing the re-
flection is 

0.25 
Distance = 26,150 —= 65.4 ft 

10 
This scheme is very helpful in locating faults along the 

line. When it is necessary to have someone climb towers to 
look for faults, the situation is simplified considerably if he 
knows approximately where to start looking. Although this 
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Fig. 19-6. Troubleshooting an antenna system. 
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principle can only be used with TV signals, there is a method of 
measurement called time-domain reflectometry that uses the 
same principle and can be used on any antenna system. 

Time-Domain Reflectometry 

A time-domain reflectometer is a device that transmits a 

pulse along a transmission line and displays the reflections on 
an oscilloscope. When the velocity factor of the transmission 
line is known, the horizontal axis of the oscilloscope display 
can be calibrated directly in terms of distance from the 
transmitter to the point where the reflection is being caused. 
Usually. in FM and TV systems the velocity of propagation on 
the transmission line is very close to the velocity of 
propagation in free space. 

If a time-domain reflectometer is available, it provides an 
excellent way to keep track of slow changes in the feeder 
system. An oscilloscope camera can be used to record the 
reflection pattern when the system is operating properly. Then 
similar photographs can be taken at periodic intervals. 
Changes in the pattern indicate changes taking place in the 
system. A careful study of the patterns will show such changes 
in the system as slow corrosion of connections or water 
seepage into the system. 

FIELD-INTENSITY MEASUREMENTS 

Unlike a standard broadcast station, an FM or TV station 
is not required to make regular field-intensity measurements 
to assure that the radiating system is operating properly. In 
general, field-intensity measurements are only made when the 
station is originally put on the air or when major changes are 
made that influence the coverage of the station. 

The field-intensity meter used for FM and TV 
measurements is similar in many ways to the instrument used 
for standard broadcast measurements. It consists of a 
calibrated receiver connected to an antenna. The antenna is 

usually a half-wave dipole rather than the loop type used in the 
standard broadcast meter. The dipole is preferably mounted 
on a mast with a rotator so that it can measure the field 
intensity at a height of up to 30 ft above the surface of the 
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earth. Because of the frequencies involved in FM and TV 

broadcasting, the field intensity varies widely from one place 
to another on the surface of the earth. Measurements made at 
ground level would be meaningless; they would tell more 
about the environment of the measurement point than the field 

intensity of the signal. 
Very frequently field-intensity measurements to establish 

the coverage of a station are made from a specially equipped 
vehicle. The vehicle usually has a telescoping mast that 
carries the antenna. Sometimes measurements are made with 
the vehicle in motion and the measurement being recorded on 
a strip chart recorder. Where possible, the vehicle travels on 
roads that are along radials from the antenna. This 
measurement is a highly specialized procedure and is usually 

performed by a consulting firm with the proper equipment. 
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Chapter 20 

Lightning Protection 

One of the most serious threats to the proper operation of any 

broadcast station is the effect of lightning or static charges. 
The antenna, the feeder system, and even the transmitter may 
be damaged or completely destroyed by a stroke of lightning. 
The problem of providing proper protection is complicated 

because many aspects of lightning are not very well 
understood, and the theories of lightning phenomena have the 

habit of changing every few years. 
In addition to charges and lightning strokes associated 

with thunderstorms, static may build up on an antenna even 
when there is no lightning in the area. Usually, the buildup of 

an electric charge is greatest when there is a cool wind ahead 
of a rainstorm. The wind itself carries an electric charge, and 
this charge is imparted to conducting structures by the wind 
blowing over them. Perhaps the most striking demonstration 

of the effect of such static charges is the occasional arcing 
over of guy-wire insulators when there is no lightning in the 

area. 
Although a lightning stroke is more damaging, a static 

buildup on a tower can cause serious problems. Every 
broadcast engineer knows that the old wives tale to the effect 

that lightning never strikes in the same place twice is just 
that—an old wives' tale. If lightning only struck once, most 
engineers would consider themselves fortunate indeed. 
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Lightning is a manifestation of static electricity 
—electricity that exists between two charged bodies. It is hard 
to predict how lightning will behave, because one of the 
charged bodies in this case probably isn't what we would 
ordinarily think of as a body at all. It is a cloud that is 
continuously changing in shape and location. Only its 
properties are very difficult to study. As a result of the 
uncertainty about lightning the conventional approach to 
lightning protection is to arrange things so that the damage 
that it does is minimized. A newer approach to the subject is 
based on avoiding lightning altogether. 

DAMAGE PREVENTION 

The first place to implement defensive tactics against 

lightning is at the top of the tower. A small lightning rod is 
usually attached to the top plate of the tower, beside the 
beacon ( Fig. 20-1). The top of the rod is higher than the top of 
the beacon so that it will divert any lightning stroke away from 
the beacon, where it can destroy the lamp or fixture. This type 
of damage is not very extensive, but it is expensive to change a 
beacon at the top of a tower. 

Fig 20-1. Lightning rod on tower 

BEACON 

LIGHTNING 

ROD 

PLATE ON TOP 

OF TOWER 

The guy wires should be protected by putting two or three 
insulators in series at the top of each guy wire where it fastens 
to the tower. This will cause any static-charge that 
accumulates on the guy wire to discharge into the ground 
rather than through the tower. 

At the base of each tower an air gap is provided. In the 
event of a lightning stroke or static charge, the air in the gap 
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ionizes and dissipates the charge before it gets into the feeder 
system. Two types of air gaps are commonly used. The ball 
gap of Fig. 20-2A can be spaced closer than other types 
because its smooth surface is less apt to support ionization 
from the transmitted signal. It is. however, subject to icing 
and should be provided with a rain shield. 

The horn gap. shown in Fig. 20-2B, has the advantage of 
being self-extinguishing. When the gap ionizes because of a 
static discharge, the signal from the transmitter may sustain 
the arc. With the horn gap. the ionized air rises in the gap as it 

becomes heated by the arc. The distance between the 
electrodes of the gap increases with the height, so a point is 
soon reached where the gap is so large that the arc is 
extinguished. 

TOWER 

BASE 

INSULATOR 

(A) 

BALL GAP 

(B) 
HORN GAP 

GROUND STRAPS 

Fig. 20-2. Gaps for lightning protections. 

To keep the static charge in the gap and out of the feeder 
system, many engineers put a 1- or 2-turn in the feeder going to 
the base of the tower ( Fig. 20-3). The small inductance of the 
loop undoubtedly offers a high impedance to the steep 
waveform of a lightning discharge; however, if the turn should 
change shape. it will change the base impedance of the tower. 
This problem is more severe in tall towers that have a high 
base impedance and voltage. 

Another device that is often used to prevent the buildup of 
static charges is the static-drain choke. This is a coil that has a 
very high impedance at the operating frequency, but a low DC 
resistance. It is connected to bleed off static charges on the 

tower before they have a chance to build up to damaging 
values. If a static-drain choke is used, it should be connected 
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Fig. 20-3. Lightning choke. 

on the line side of the base-impedance-matching unit, as shown 
in Fig. 20-4. This way the choke will be connected across the 

50-ohm line impedance rather than across the base impedance 
of the tower. Base impedances cause enough problems of their 
own without the added uncertainty of a static-drain choke right 
across the base insulator. When a series capacitor is used in 
the impedance-matching network, the choke must be on the 

antenna side of the capacitor, but before the base-current 
meter. 

The base-current meter is a favorite target for both 
lightning and static discharges. Many installations use a 
simple shorting switch for protecting the meter. Actually, this 

arrangement provides little protection, a lightning or static 
surge is of extremely short duration. Since power is the rate of 
flow of energy. a rapid surge causes extremely high voltages 

and currents. The resistance and inductance of the shorting 
switch, though small, will be high enough to cause damaging 
currents to flow through the meter. The best form of meter 
protection is the make-before-break switch, which removes 
the meter from the circuit when the meter is not in use. 

ARC SUPPRESSION 

One of the problems incidental to lightning and static 
discharges is that they can initiate an arc somewhere in the 

STATIC-

DRAIN 

CHOKE 

GAP o 

177 /77 
Fig. 20-4. Static-drain choke 
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system that is sustained by power from the transmitter. The 
initial discharge may not cause extensive damage, but the arc, 
if it is not extinguished, can cause serious damage. We hope 
that any arc set up by a static discharge will be across a spark 
gap. but this isn't always the case. The arc is sometimes inside 
a coaxial transmission line, where it can cause serious 
damage by melting the conductors or metallizing the spacing 
insulators. This situation is avoided by a circuit designed to 

automatically extinguish the arc ( Fig. 20-5). 
Somewhere between the arc-suppressing circuit and the 

antenna, there is a capacitor, so that the only DC path to ground 
is through the RF choke in Fig. 20-5. This path includes a relay 
and a source of operating current for the relay. Normally, no 
current flows through the relay, because there is no DC path. 
If an arc occurs, the current through the arc completes the 

circuit for the relay, thus energizing it. The contacts of the 
relay are connected to the transmitter in such a way as to 
remove power from the feeder system. Thus, whenever an arc 
occurs across the transmission line, the relay opens, removing 

the transmitter power long enough for the arc to dissipate. 

r--)  I—  TO ANTENNA 

0-

6V RELAY 

ARCOVER IN LINE CAUSES RELAY TO OPERATE 
AND REMOVE TRANSMITTER MOMENTARILY 

25V ----

Fig. 20-5. Circuit to remove transmitter when arc occurs. (Courtesy Smith 
Electronics, Inc.) 

LIGHTNING ELIMINATION 

A comparatively new approach to the problem of lightning 
is lightning elimination. There has been a great deal of 

controversy about the merits of the system, but it has been in 
use long enough at many stations that its merits seem to be 
well established. The system is based on the principle of 
draining charges from the atmosphere before they can build 
up enough to cause a stroke of lightning. Many experts claim 
that it is not possible to drain off charges from clouds, and that 
the only function of a conductor such as a lightning rod is to 
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Fig. 20-6. Charges in thundercloud. (Courtesy of Smith Electronics, Inc.) 

divert a stroke of lightning from objects to be protected. 

Probably, Ben Franklin, with the evidence of his kite 
experiment, would argue that it is indeed possible to drain 
charges from a cloud. 

The new system operates on the principle that in a strong 
electric field, the air becomes ionized near a sharp point, and 
that the ions from the point migrate toward the opposite 
charge ( Fig. 20-6). The dissipation array used in the new 
system actually has many thousands of sharp points, as many 

as 20,000. An array is placed on top of each tower and is 
connected to ground through a static-drain choke. When a 

strong field is present. ions form at the points and migrate 

toward the clouds, thus dissipating the charge. Stations using 
this system claim that damage from lightning has been 
reduced drastically. 
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FCC field- intensity charts 
Feeder ststem, definition 

functions 
layout 
typical 

Feeding the tower 
Ferromagnetic materials 
Fields 

cancellation 
graphical solution 
ratio, directional antenna 

171 
171 
172 
353 
402 
197 
195 
200 
195 
49 
102 
387 
99 
23 
12 
95 
176 
12 

109 
213 
114 
19 
20 
315 
248 
49 
15 

140 
153 

165 
17 

115 
354 
286 
286 
288 
289 
287 
18 
15 
57 

355 
203 
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Meld intensity 
contour 
measurements 
meter 
of directional antenna. 
parameters 

vs distance 
of three-tower array 

First resonance 
FM antenna feeder 

systems. general considera-
lions 

measurements 
Force. lines 
Forward power 
Franklin antenna 

G 

Gain, of an antenna 
reference 

General analysis of T-network 
Geometric mean 
Ghosting 
Ground conductivity 

loss 
resistance. variation 

Ground system 
arrangements. special 

basics 
directional antenna 
equipment 
installation 
practical 

Groundwave 
Field intensity 
signals 

Half-wave dipole 
line 

Harmonic reduction 
Hemispherical radiator 
Hertz. Heinrich 
H-field 
High-angle radiation. losses 
Horizontally polarized 
Horn gap 
Hybrid ring 

Impedance 
antenna 
base 
characteristic 
driving-point 40,238 
matching. common point 300 
matching stubs 418 
measurements 336 
mutual 42.234 
normalized 118 
plotting 122. 148 
self 40 
surge 61 
tower 187 
transformation. L-network 254 
transforming networks 248 

Incident wave 67 
Ideal hemispherical radiator 171 

line 57 
Induced voltage 98.235 
Inductance field 95.97 

definition 94 
Inductive susceptance 53 

terminations 72 
Infinitely short antenna 173 
Instability 391 
Instantaneous power 20 
Intermittent service 165 

area 152 
Internal impedance. broadcast 

transmitter 51 

103. 155 
157 
440 
346 

193 
105 
219 
189 

416 
432 
15 

88. 434 
185 

106 
407 
271 
267 
439 
175 
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388 

316 
308 
315 
315 
313 
312 
159 
176 
173 

95. Ill 
78 

283 
171 
15 

102 
231 
103 
444 
439 

38.79 
112 
188 
58 

Inverse field intensity 
one mile 

Isolation coils 
Isotropic antenna 

Joule 

Kirchof Fs voltage law 

171 purposes 
349 three-element 
332 Neutrinos 
107 Nighttime 

Nondirectional antennas 
Normalized admittance 

impedance 
Nulls 

filling 
filling in 
minima 
minimum 

45 partially filled 

19 

L 

Lightning elimination 446 
protections 442 

Limitations of L-network 261 
Linear element 24 

superposition 194 
Line losses 131 

of force 15 
tuning unit iLTUi 160 

L-network 144. 254 
configuration 257 
design 259 
impedance transformation 254 
limitation 261 
phase shift 258 

Lobes 157 
Local channel 153 
Loop impedance 190 
Loss in transmission lines 85 

resistance 113.388 
Low-frequency power divider 293 

Magnetic field 18. 23 
Magnetizing force H 18 
Maintenance, design 

considerations 
procedures 
records 
schedule 
tools 

Major lobe 
Mathematical fictions 
Maximum expected operating 

value t MEOV 
operating values 

Maxwell. James Clark 
Measurement site. selection 
Mechanical inspection 
Michelson 
Microfarads 
Microvolt per meter 103 
Minimum depth. directional atenna 

203 
null 203 

Minima 67 
nulls 157 

Minor lobes 157 
Miscellaneous power dividers 298 
Mks 19 
Modulation switch 325 
Monitor. antenna 334 

phase 334 
Monitoring points 362 
out of limits 398 
Morley 16 
Mutual impedance 42. 46. 234 

measuring 344 

380 
380 
383 
384 
380 
157 
12 

360 
214 
15 

348 
385 
16 
17 

N 

Near zones 115 
Negative power 22 

resistance 46. 241 
resistance tower 304 

Networks 391 
analyzing 142 
efficiency 276 

o 
Ohmic resistance 
Omnidirectional pattern 
One tower at two frequencies 
One-volt-per meter contour 
Open transmission line 
Open-wire line 
Operating impedance 

bridge 01Bi 

Parallel equivalence 
power divider 

Parallelogram array. 
synthesizing 

Parameters. admittance 
radially scaled 

Parasitic element 
Parasitic reradiation 

structures, locating 
reradiation. evaluating 
mechansim 
minimizing 

Partial proofs 
Partially filled null 
Pattern, checking 

of signals 
omnidirectional 
proof of performance 
putting numbers on 
shape 
shape. determination of 
size 
synthesis by multiplication 
true bearing 

Period of a wave 
Permeability of ether 
Permittivity. of ether 
Phase angle 

lag 
lead 
monitor 
monitoring 
shift in L-network 
90 

Phasors 
Pi network 
Picofarads 
Planimeter 
Polar form 
Polarization 
Power 

average 
density 
forward 
instantaneous 
negative 
reflected 
reflection coefficient 
transfer 

Power divider 
low-frequency 
miscellaneous 
parallel 
unequal resistance 

Practical FM antennas 
TV antennas 

Primary service area 

247 
263 
16 

153 
160 
139 
118 
67 

412 
202 
157 
203 
203 

113 
408 
306 
158 
63 
90 

339 

249 
297 

229 
138 
128 
243 
368 
370 
371 
373 
375 
360 
203 
359 
155 
408 
359 
206 
209 
108 
209 
230 
205 
27 
15 
15 
28 
31 
31 

163.334 
163 
258 
268 

34. 163 
43 
17 

209 
35 

103.406 
19. 48 

20 
106 
88 
20 
22 
88 

131 
49 

292. 293 
293 
298 
297 
298 
415 
415 
152 
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Prime center 121 
Propagation. skywave 180 

time 100 
Properties of the vrtical antenna 166 
Proof of performance 359 

Quadrature addition 
Quarter-wave section 

transformer 

Radials, running 
wires 

Radially scaled parameters 
Radiating elements 
Radiation 

at vertical angles 
pattern 
resistance 
signals 

Rate of change 
Ratio 
Rationalized mks 
Reactance 

scales 
Rectangular form 
Reflected power 

wave 
Reflections 

coefficient 
coefficient K 

Reflectometer 
Regional channel 
Relative field intensity 
Re_radiation. avoiding 

genesis of problem 
Resistance loss 

ohmic h  

radiation 
zero 
scales 
prime center 

Resistivity 
Resonance, first 

second 
Retuning directional antenna 393 
RF current transformer 325 

power divider. series type 295 
signals on transmission line 66 

RF ammeter 319 
calibration 324 
remote 323 

Rigid coaxial lines 93 
Rms value 361 
Root-mean-square rmsi 209 

-sum-square rssr 215 
Running the radials 350 

215 
75 

427 

350 
311 
139 
404 
101 
170 
106 
113 
56 
98 
119 
19 
74 
121 
35 

88.434 
67 
62 

87.130 
88 

87. 434 
152 
204 
372 
368 

113.388 
46. 241 

113 
113 
243 

120.132 
121 
176 
189 
189 

S 

Sampling devices 327 
lines 332 
loops 163 
system. checking 333 

Seasonal variations 365 
Second resonance 189 
Secondary service area 152 
Sectionalized towers 185 
Self-extinguishing gap 444 
Self-impedance 40. 45. 341 
Semirigid coaxial cable 91 
Sending-end impedance 80 
Series arrangement 288 

equivalence 249 
resonance 280 
type RF power divider 295 

Service areas 152 
Shorted transmission line 65 
Shunt arrangement 287 
Sidemounting 413 
Sine wave 27 
Single-stub problem 419 
Steleton proofs 360 
Stin depth 309 

effect 85 
Skywave 159 

propagation 180 
signal. probable intensity 182 

Smith chart 118 
admittance 138 
getting in and out 135 
plots 134 
plotting data 137 
using 142 

Solid-dielectric coaxial cable 91 
Space references 218 
Special grounding arrangements 316 
Standard broadcast antennas. 

typical 160 
broadcast band 150 
broadcast signals, 
propagation 164 

of allocation 153 
pattern 213. 215. 360 

Standing wave 67.87 
as fault finders 437 
ratio 71 
various terminations 68 

Statampere 18 
Static-drain choke 444 
Statvolt 18 
Steady-state response 32 
Storm damage 396 
Summary, transmission-line 

impedances 79 
Superposition, current is 

series circuit 25 
field of antennas 25 
principle 24 

Surge impedance 61 
Susceptance 52.53 
SWR scale 123 
System diagrams. AM antenna 381 

T 

Tall structures 379 
Tapered line section 426 
Temperature effect 390 
Terminating impedance 80 
Termination, of transmission line 60 
Theoretical patterns 213 
Thevenin s theorem 49 
Three nonaligned towers 226 

element network 263 
Three-tower array. contribution 

of each tower 223 
effective field of each tower 220 
field intensity 219 
phase angle of fields 221 
tabulating solution 222 

Time-domain reflectometry 440 
measured in degrees 28 

T-network 43 
bandwidth 274 
design 273 
general analysis 271 
90' 266 

Tools. maintenance 380 
Top-loaded towers 185 
Tower current 334 

impedances 187 
of unequal height 212 
spacing effects 195 

Transformer. RF current 325 
Transient period 32 

Transmission lines, defective 
impedance. summary 
instruments 
losses 
open 
practical 
RF signals 
shorted 

Troubleshooting changes in 
antenna-monitor readings 

directional antenna 
monitoring points out 
of limits 

procedures 
storm damage 

Tuners 
TV antenna feeder systems. 

general considerations 
measurements 

Two frequencies and one tower 
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416 
432 
306 

U 

Unattenuated field intensity 171. 173 
Unequal-resistance divider 298 
Unit systems 18 

V 

Variable capacitive reactance 322 
Variation in ground resistance 3241 
Vectors ' 33. 48 

addition IN 
current 34 
impedance 34 
quantity 33 
sinsuoidal voltage 34 

Vector quantities. adding 35 
dividing 37 
multiplying 37 
subtracting 35 

Velocity of propagation 81, 114 
Vernier coils 297 
Vertical angles. radiation 170 

antenna, basic principles 167 
antenna. properties 166 
pattern 159 
radiation pattern 159 
radiation pattern of 
directional antenna 211 

Vertically polarized 103 
Visual TV transmission 429 
Voltage 17 

loops 67 
standing-wave ratio ( VSWR) 70 

Volt per meter ( Vim) 103 
VSWR scales 124.125 

Water towers 
Watt 
Wave. definition 

impedance 
incident 
power 
reflected 
sine 
standing 

Wavelength 
scales 

Weber per square meter 
Work. definition 

Zero-degree phase shifter 
resistance 

Zones, near and far 

379 
19 
27 
105 
67 
106 
67 
27 
67 
29 

124. 127 
18 
19 

281 
243 
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