Some notes about this scanned book.
1.

Due to poor print quality of the original diagrams, scanning proved difficult and the following four diagrams have been redrawn using EasyPC CAD software.
They are to be used in conjunction with the original associated text.
2.

In the main body of the book.
A few scanned pages have annotations added to help with reading circuit values etc.

No guarantees can be given to the accuracy of these annotations due to poor original print quality.
3.

Use of the zoom facility available in most Acrobat .pdf document readers will help to view component values.
4.

A small number of original pages had print quality too poor to make out the values.
Any suggested values are left to the reader to try out or pick a value they think works best.

Page 111.
Fig. 2.
Full range PWM circuit uses UJT combined with standard S-R flip flop.

Page. 111
Fig. 1.
Trigger Circuit Gives Less Pdiss, More Vout.

Page 331.
Figure 1.
Relay BCD - to - decimal converter
Page 331
Transistor Matrix for BCD - to - Decimal Indicator

Fig. 1. Relay BCD-to-decimal converter.

PAGE 406

Pulse-height Modulator multiplies voltage by frequency

Fig. 2 This practical circuit accepts input frequencies from 1 Hz to 1 kHz and control voltages from 0. 1 to 15 V . Note that voltage balance between points A and B doesn't depend on $V C$
Therefore pulse widthdepends only on the values of R3 and C1.

Page 406: Pulse-height modulator multiplies voltage by frequency
The value for R4 was not specified.
Data sheet for EC401 diodes not found, probably not critical.
The NTE116 diode may be a substitute (600V 1 Amp diode).
Many other silicon rectifier type diodes should substitute OK.

Electronic Circuit Design Handbook

Editors of EEE Magazine

With a specially written chapter for the guidance of the English reader by W. Oliver

FOULSHAM-TAB LIMITED
Slough Berks England

Foulsham-Tab Limited
 Yeovil Road Slough Berks England

Electronic Circuit Design Handbook

Copyright © 1965, 1968, 1970, 1971 and 1975 by Tab Books and Foulsham-Tab Ltd.

Reproduction or publication of the content in any manner, without the express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein.
Library of Congress Number 65-24823
Cat. Code No. 101

ISBN 0-7042-0162-3

Introduction Printed and Made In Great Britaln by A. Wheaton \& Co., Exeter

Balance printed in U.S.A.

The circuits in this comprehensive book are as varied as they are numerous. There are plenty of useful projects within these pages to please and interest every keen constructor of radio, television and electronic equipment.

A little adaptation is required in some cases to suit the needs of the British user, because this is a book of American origin and the circuits were designed in the first place around American devices (mostly in the solid-state class) and components.

Where the majority of items are concerned, this is no problem at all. Most of the leading British suppliers are currently carrying large and varied stocks of American diodes, transistors, integrated circuits and, to some extent, components. The lastnamed are much scarcer over here in Americanmade types than are American semiconductors and IC's; and you may need to substitute the nearest British equivalent to some specific American make or model where certain components are concerned.

Resistors and capacitors are mostly in what might be termed a "universal" category; the values, wattage ratings, etc., are sufficiently standardized internationally to present no problem. Colourcoding is also internationally standardized (without exception, in the present writer's experience) where fixed resistors are concerned. But colour codes for capacitors are more liable to variation and you should never rely on these being the same in capacitors from different sources or countries without verification. As for colour coding of transformer leadout wires, coils, etc., this is subject to great variation and must NEVER be relied upon without checking. Mistakes over colour coding of mains transformers could be damaging or dangerous; and mistakes over colour coding of mains leads, resulting in incorrect connections to plug terminals, etc., can easily be LETHAL, so you should NEVER trust to this coding without thorough verification where any imported mains equipment is concerned.

The colour coding of American mains leads, for instance, is quite different from our own; and if you are involved in the use of these, you must make sure by checking both ends of the leads from an appliance to identify each lead beyond all possible doubt before connection is made or the plug inserted into the mains outlet point or socket.

Substitution lists for solid-state devices (which may be obtained from a variety of sources, in trade
literature from semi-conductor manufacturers, distributors or retailers, in handbooks, etc.) are a great help in finding comparable types where the designer's original specification is hard to get. The vast majority of the circuits in this book are solidstate throughout; but there are a few which include valves among the active devices. American valves are stocked by most of the leading British suppliers (mail-order firms and large retailers), but if necessary an Equivalents List will help you to select British substitutions.

In valves, exact equivalents are quite common. But transistors and some other semiconductors tend to show greater variation which makes it difficult to find any exact equivalent to a given type. Substitution is often a matter of choosing the nearest comparable type; but adjustment of associated biassing resistor values may be necessary when using near-equivalents or comparables. Often one British type will replace many different typenumbers in the American ranges.
In this book, the schematics show the circuits and give essential data regarding component-values, etc. No attempt is made to give constructional drawings or physical layout patterns. The information is adequate for the experienced constructor who can work quite happily from circuit diagrams and needs no other drawings.
Absolute beginners may feel rather "lost" without the aid of layout drawings and printed-circuit board designs; but the latter are often a mixed blessing, being too easily upset or even rendered useless if radical changes must be made through substitution of components differing from the original specification in size, shape and leadout configuration.

Moreover, sticking too slavishly to working drawings or detailed layout designs may tend to handicap the beginner by discouraging initiative and the ambition to plan his own designs. Using a book such as the present one compels the beginner to think and plan for himself where practical construction is concerned; and this, in the long run, is of the utmost value-though, in the early stages, it may occasionally cause some delays, disappointments or even minor disasters, through learning the hard way!

Snags to guard against, in planning a practical layout, include unwanted interaction or feedback
through placing any components which are vulnerable to these effects in too close proximity to one another, or incorrectly orientated; and risk of overheating through lack of adequate spacing or ventilation for certain components which tend to run warm or even hot.

Preliminary experimental 'breadboarding" or temporary trial hook-ups will be advisable before committing oneself to more permanent and unalterable forms of construction, such as the use of printed-circuit boards (pcbs).

The question of safety looms large where beginners are involved. With projects powered entirely by low-voltage dry batteries (an inherently safe form of energy), no problem is likely to arise. But mains-powered projects are in a different category altogether. With mains there is always, lurking in the background, some element of danger. It can be a slight potential risk in cases where every reasonable precaution is taken; or it can be a downright lethal hazard if anyone goes to the opposite extreme and is utterly foolhardy. In general, although (contrary to popular belief) it is current rather than voltage which kills, the two are so inseparable that, in actual practice, one must act on the assumption that the higher the voltage the greater the risk, in most cases.

For this reason, and one or two others, British mains (running at 240 VAC 50 Hz) must be treated as more dangerous than American mains (usually running at $110-120 \mathrm{VAC} 60 \mathrm{~Hz}$, but with an alternative supply in some cases which offers twice that voltage).

The circuits in this book, being of American origin, are mostly designed (where they fall in the mains class at all) for use on the typical American mains voltage of $110-120$ or some figure within those limits. Thus, for example, on p. 37 Figs. 1 and 2 show circuits having a mains input from a 115VAC line.

The arrangement in Fig. 1, p. 37, is located in the actual "hot" line from the 115VAC mains and the components are in direct contact with the mains; a maximum shock risk. If this circuit were adapted for use on our 240VAC mains the danger would be even greater with this high-risk type of configuration.

The arrangement shown in Fig. 2 on the same page, however, uses a double-wound mains trans-
former. The secondary is rated at a voltage higher than that of the American mains; in other words the transformer steps up the voltage from 115 to 135; but the double-wound arrangement isolates the user from direct contact with the mains on the secondary side of the transformer, and the current through the secondary is nominally only 50 mA in normal operation.

For use on British mains the transformer would need to have a 240VAC primary winding, and in this case would be chosen to step down the yoltage, as only 135 volts output is required from the secondary.

Some American circuit designs are easily adaptable for British mains-say, by provision of a suitable double-wound mains transformer-while others are less amenable to easy conversion. Whatever method is proposed, make sure it is a safe one.

Nothing in this book must be misconstrued as an encouragement to construct or use any projects in a way which would contravene existing safety rules or regulations. If you are in the slightest doubt about any matter affecting safety, don't take risks; seek expert advice from a competent source, preferably at a local level. Some arrangements which are quite reasonably safe in one environment may be dangerous or even lethal in different surroundings. (That is, of course, the reason for extra stringent precautions in, for example, bathrooms where electrical equipment is concerned.)

To avoid delays or disappointments in completing constructional projects, make absolutely sure beforehand that you can obtain all the necessary components or materials, either in the specified form or in acceptable substitutions. Nothing is more annoying than to spend hours and pounds on a project only to find that supplies of some essential component are nowhere to be had!

Comprehensive catalogues can be bought from leading suppliers such as Home Radio of Mitcham, Laskys of London and other towns, Doram of Leeds, A. Marshall's of London and Glasgow, Electrovalue of Egham, Henrys of London, and various other firms. For full particulars and complete addresses of these concerns, see the advertisement pages of the principal technical journals catering for radio, electronic, and TV interests.

With over 400 different circuits involved in this book, it is obviously impossible in the present chapter to cover all the points that must be allowed
for in using these circuits for British versions of the projects.

The reader must, therefore, bear in mind the general principles of British and American electrical and electronic practice, making due allowance for the specific differences between the respective systems or techniques.

For example, where television circuits are concerned, one must remember that the various British standards involved are different from the American ones. Very briefly, the chief points of difference include these: American, 525 lines; British, 405 (the obsolescent standard) and 625 lines. British 405 -line transmitters, working on VHF channels and with AM sound accompanying the vision, are being gradually phased out. The $625-$ line transmitters on UHF channels supersede them, and these have FM sound on an intercarrier system.
American stations use FM sound with intercarrier at 4.5 MHz , British intercarrier is at 6 MHz . In colour TV, the Americans use the NTSG
system, whereas we use a modified PAL system. The American colour subcarrier is 3.58 MHz , and ours is 4.43 MHz . (An example of a circuit based on the American $3.58-\mathrm{MHz}$ version is on p. 177.)

Radio and other regulations differ in different countries. What is legal in the States is not necessarily legal here. Latest information should be obtained from the official departments concerned, if you are contemplating anything that could possibly contravene transmitting licence regulations, telephone regulations, etc. It is, in general, a punishable offence to operate a radio transmitter without the appropriate licence. The Radio Regulatory department of the Home Office, which deals with such matters, is at Waterloo Bridge House, Waterloo Road, London SE1 8UA.

A project such as that on p. 410, Automatic Telephone Recorder, would contravene regulations (of the Post Office) in this country and should be regarded therefore as of academic and not practical interest over here.

Electronic Circuit
Design Handbook

Electronic Circuit Design Handbook

Editors of EEE Magazine

With a specially written chapter for the guidance of the English reader by W. Oliver

Foulsham-Tab Limited
 Yeovil Road Slough Berks England

Electronic Circuit Design Handbook

Copyright (C) 1965, 1968, 1970, 1971 and 1975 by Tab Books and Foulsham-Tab Ltd.

Reproduction or publication of the content in any manner, without the express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein.
Library of Congress Number 65-24823
Cat. Code No. 101

ISBN 0-7042-0162-3

Introduction Printed and Made in Great Britain by A. Wheaton \& Co., Exeter

Balance printed in U.S.A.

The circuits in this comprehensive book are as varied as they are numerous. There are plenty of useful projects within these pages to please and interest every keen constructor of radio, television and electronic equipment.

A little adaptation is required in some cases to suit the needs of the British user, because this is a book of American origin and the circuits were designed in the first place around American devices (mostly in the solid-state class) and components.

Where the majority of items are concerned, this is no problem at all. Most of the leading British suppliers are currently carrying large and varied stocks of American diodes, transistors, integrated circuits and, to some extent, components. The lastnamed are much scarcer over here in Americanmade types than are American semiconductors and IC's; and you may need to substitute the nearest British equivalent to some specific American make or model where certain components are concerned.
Resistors and capacitors are mostly in what might be termed a "universal" category; the values, wattage ratings, etc., are sufficiently standardized internationally to present no problem. Colourcoding is also internationally standardized (without exception, in the present writer's experience) where fixed resistors are concerned. But colour codes for capacitors are more liable to variation and you should never rely on these being the same in capacitors from different sources or countries without verification. As for colour coding of transformer leadout wires, coils, etc., this is subject to great variation and must NEVER be relied upon without checking. Mistakes over colour coding of mains transformers could be damaging or dangerous; and mistakes over colour coding of mains leads, resulting in incorrect connections to plug terminals, etc., can easily be LETHAL, so you should NEVER trust to this coding without thorough verification where any imported mains equipment is concerned.
The colour coding of American mains leads, for instance, is quite different from our own; and if you are involved in the use of these, you must make sure by checking both ends of the leads from an appliance to identify each lead beyond all possible doubt before connection is made or the plug inserted into the mains outlet point or socket.

Substitution lists for solid-state devices (which may be obtained from a variety of sources, in trade
literature from semi-conductor manufacturers, distributors or retailers, in handbooks, etc.) are a great help in finding comparable types where the designer's original specification is hard to get. The vast majority of the circuits in this book are solidstate throughout; but there are a few which include valves among the active devices. American valves are stocked by most of the leading British suppliers (mail-order firms and large retailers), but if necessary an Equivalents List will help you to select British substitutions.

In valves, exact equivalents are quite common. But transistors and some other semiconductors tend to show greater variation which makes it difficult to find any exact equivalent to a given type. Substitution is often a matter of choosing the nearest comparable type; but adjustment of associated biassing resistor values may be necessary when using near-equivalents or comparables. Often one British type will replace many different typenumbers in the American ranges.

In this book, the schematics show the circuits and give essential data regarding component-values, etc. No attempt is made to give constructional drawings or physical layout patterns. The information is adequate for the experienced constructor who can work quite happily from circuit diagrams and needs no other drawings.

Absolute beginners may feel rather "lost" without the aid of layout drawings and printed-circuit board designs; but the latter are often a mixed blessing, being too easily upset or even rendered useless if radical changes must be made through substitution of components differing from the original specification in size, shape and leadout configuration.

Moreover, sticking too slavishly to working drawings or detailed layout designs may tend to handicap the beginner by discouraging initiative and the ambition to plan his own designs. Using a book such as the present one compels the beginner to think and plan for himself where practical construction is concerned; and this, in the long run, is of the utmost value-though, in the early stages, it may occasionally cause some delays, disappointments or even minor disasters, through learning the hard way!

Snags to guard against, in planning a practical layout, include unwanted interaction or feedback
through placing any components which are vulnerable to these effects in too close proximity to one another, or incorrectly orientated; and risk of overheating through lack of adequate spacing or ventilation for certain components which tend to run warm or even hot.

Preliminary experimental "breadboarding" or temporary trial hook-ups will be advisable before committing oneself to more permanent and unalterable forms of construction, such as the use of printed-circuit boards (pcbs).

The question of safety looms large where beginners are involved. With projects powered entirely by low-voltage dry batteries (an inherently safe form of energy), no problem is likely to arise. But mains-powered projects are in a different category altogether. With mains there is always, lurking in the background, some element of danger. It can be a slight potential risk in cases where every reasonable precaution is taken; or it can be a downright lethal hazard if anyone goes to the opposite extreme and is utterly foolhardy. In general, although (contrary to popular belief) it is current rather than voltage which kills, the two are so inseparable that, in actual practice, one must act on the assumption that the higher the voltage the greater the risk, in most cases.

For this reason, and one or two others, British mains (running at 240 VAC 50 Hz) must be treated as more dangerous than American mains (usually running at $110-120$ VAC 60 Hz , but with an alternative supply in some cases which offers twice that voltage).

The circuits in this book, being of American origin, are mostly designed (where they fall in the mains class at all) for use on the typical American mains voltage of $110-120$ or some figure within those limits. Thus, for example, on p. 37 Figs. 1 and 2 show circuits having a mains input from a 115VAC line.

The arrangement in Fig. 1, p. 37, is located in the actual "hot" line from the 115VAC mains and the components are in direct contact with the mains; a maximum shock risk. If this circuit were adapted for use on our 240VAC mains the danger would be even greater with this high-risk type of configuration.

The arrangement shown in Fig. 2 on the same page, however, uses a double-wound mains trans-
former. The secondary is rated at a voltage higher than that of the American mains; in other words the transformer steps up the voltage from 115 to 135; but the double-wound arrangement isolates the user from direct contact with the mains on the secondary side of the transformer, and the current through the secondary is nominally only 50 mA in normal operation.

For use on British mains the transformer would need to have a 240VAC primary winding, and in this case would be chosen to step down the voltage, as only 135 volts output is required from the secondary.

Some American circuit designs are easily adaptable for British mains-say, by provision of a suitable double-wound mains transformer-while others are less amenable to easy conversion. Whatever method is proposed, make sure it is a safe one.

Nothing in this book must be misconstrued as an encouragement to construct or use any projects in a way which would contravene existing safety rules or regulations. If you are in the slightest doubt about any matter affecting safety, don't take risks; seek expert advice from a competent source, preferably at a local level. Some arrangements which are quite reasonably safe in one environment may be dangerous or even lethal in different surroundings. (That is, of course, the reason for extra stringent precautions in, for example, bathrooms where electrical equipment is concerned.)

To avoid delays or disappointments in completing constructional projects, make absolutely sure beforehand that you can obtain all the necessary components or materials, either in the specified form or in acceptable substitutions. Nothing is more annoying than to spend hours and pounds on a project only to find that supplies of some essential component are nowhere to be had!

Comprehensive catalogues can be bought from leading suppliers such as Home Radio of Mitcham, Laskys of London and other towns, Doram of Leeds, A. Marshall's of London and Glasgow, Electrovalue of Egham, Henrys of London, and various other firms. For full particulars and complete addresses of these concerns, see the advertisement pages of the principal technical journals catering for radio, electronic, and TV interests.

With over 400 different circuits involved in this book, it is obviously impossible in the present chapter to cover all the points that must be allowed
for in using these circuits for British versions of the projects.

The reader must, therefore, bear in mind the general principles of British and American electrical and electronic practice, making due allowance for the specific differences between the respective systems or techniques.

For example, where television circuits are concerned, one must remember that the various British standards involved are different from the American ones. Very briefly, the chief points of difference include these: American, 525 lines; British, 405 (the obsolescent standard) and 625 lines. British 405 -line transmitters, working on VHF channels and with AM sound accompanying the vision, are being gradually phased out. The 625 -line transmitters on UHF channels supersede them, and these have FM sound on an intercarrier system.

American stations use FM sound with intercarrier at 4.5 MHz , British intercarrier is at 6 MHz . In colour TV, the Americans use the NTSC
system, whereas we use a modified PAL system. The American colour subcarrier is 3.58 MHz , and ours is 4.43 MHz . (An example of a circuit based on the American $3.58-\mathrm{MHz}$ version is on p. 177.)

Radio and other regulations differ in different countries. What is legal in the States is not necessarily legal here. Latest information should be obtained from the official departments concerned, if you are contemplating anything that could possibly contravene transmitting licence regulations, telephone regulations, etc. It is, in general, a punishable offence to operate a radio transmitter without the appropriate licence. The Radio Regulatory department of the Home Office, which deals with such matters, is at Waterloo Bridge House, Waterloo Road, London SE1 8UA.

A project such as that on p. 410 , Automatic Telephone Recorder, would contravene regulations (of the Post Office) in this country and should be regarded therefore as of academic and not practical interest over here.

Preface

While many of us may be reluctant to admit it, most modern electronic circuits are patterned after existing designs. A generation ago the minds of men like Eccles and Jordan, Wheeler, Hazeltine, Black, Schmitt, Hartley, Armstrong, and others developed the basic designs for many of today's circuits. Yet, even today, truly original circuits, bearing almost no resemblance to anything previously developed, occasionally reach the light of day. For the most part, however, the majority of new circuits are modifications of previous designs.

It is indeed fortunate that we do not slavishly worship a cult of originality simply for the sake of originalty. How wasteful it would be of our nation's engineering talent if we repeatedly re-invented the Schmitt trigger, the blocking oscillator, or the flip-flop. In truth, our progress can be measured in how successfully we can stand on each other's shoulders. Previously designed circuits are continually modified, refined, and improved as engineers adapt them to their specific needs. This is genuine progress.

This volume is a collection of circuits originally published in EEE magazine. The circuits were selected for their originality, novelty, or sophistication-but most of all, they were selected for their usefulness. These award-winning circuits can be used as building blocks in designing circuit configurations best suited to your needs. Most importantly, however, these circuits will serve as imagination triggers, stimulating you to think of more efficient designs for specific applications.

In this expanded Fourth Edition, 639 individual circuit designs are included, arranged as much as possible by function and applications. Of course, many circuits serve a multitude of functions and can serve in a myriad of applications. Some control circuits, for example, can also be classed as sensing or detection circuits. Many multivibrators described in the Pulse Circuits Section are also oscillator circuits. Thus, when seeking a circuit for a specific function, you'll find scanning the Contents pages the easiest way to locate the most applicable designs.

This book is the answer to the long-felt need for a one-source handbook of tried-and-tested circuits. It is also the answer to thousands of requests from readers of EEE, who virtually demanded that these circuits be published in book form.

Table of Contents

Section One-CONTROL CIRCUITS

21....A Reliable Open Loop Amplifier
22.... Zero-Crossing Sync Circuit For SCRs
22....Instrument Servo Cycling Circuit
23....Double-Channel Servo Controls Two Motors
23. ...Unijunction Latchup for SCR's Driving Inductive Loads
23....Simple Intervalometer
24....SCR-Zener Combination Senses Voltage Limits
24....Transistorized Phase Shifter
25....SCR Voltage Sensitive Time Delay Switch
25....Transistorized Motor Switching Circuit
26....Step Control for Motor-Driven Selector Switch
26....Beam Switching Tube Reset
27....Gain Control
27....Supervisory and Protective Relay Control
28....Variable Transistorized Phase Shifter
29.... Blower Delay Circuit
29.... Low Cost Servo Motor Control
31....Control Switching Circuit
31.... Remote Controlled Rotary Switch
32....Non-Interacting Positioning and Attenuating Controls
33....Dual-Linear Pot Approximates Sine Pot
33....Wide-Range Delay Circuit
34.... Peak-Hold Circuit
35.....Modified Limiter With Improved Accuracy
35....Signal-Powered DC Voltage Sensor Controls AC Loads
36. ...Simple Modification Prevents Single-Cycling With SCR Motor Drive
37....High-Voltage Triacs Reverse Capacitor Motor
38....Variable Control for Automobile Windshield Wiper

Section Two-REGULATOR CIRCUITS

39....A Time-Variant Attenuator
40....Servo-Motor Winding Stabilizes Power Amplifier Operating Point
40.... Motor Speed Control
41.... Zener Diode Regulator
41....Transistorized Speed Regulator
42. ...Snap Action Level Switch
42.... Low-Voltage Transistor Series Regulator
43. ... Blanking Circuit Clamps to DC Level
43. ...Non-Attenuating Voltage-Control Circuits
44. . . .Temperature-Stabilized Darlington
44....Low Cost Transistor Voltage Regulator
45....Transistor Voltage Regulator
45....AGC Amplifier
46.... High Frequency DC Restoration With Gain
46.... Zero Impedance Voltage Regulator
49....Two-Terminal Constant-Current Device
47.....Regulator Makes Two Power Supplies Out of One
48. . . . An Efficient Focus-Current Regulator Using the LM300
49....CRD Simplifies Design of Voltage Regulators
50....FET Improves Voltage Regulation and Allows Current Limiting
$50 . .$. Temperature-Stabilized Constant-Current Source
51.... MOS-FET Provides 60-DB Dynamic Range Low-Frequency AGC Circuit
52. ... An Inexpensive Bipolar Current Limiter
52....High-Efficiency Series Regulator
53.....Modulated DC Voltage Regulator
53.... High-Efficiency Series Regulator
54....Spare IC Gate Serves as Regulator
54.....Short-Protected Current Limiter Ignores Inrush Currents

Section Three-PROTECTION CIRCUITS
55.... High Voltage Power Supply Protective Circuit
56....Automatic Overload Circuit
56. ...Capacitor Discharger
57....Differential Voltage Circuit Protector
57. . . . An Electronic Circuit Protector
58.... Short-Circuit Protection of Regulated Power Supply
58.... Cathode-Ray Tube Grid Protection Circuit
59. ...PTC Thermistors Trip 50 Amp Contact at Limiting Temp
61....A Novel Magnetron Protection Circuit
61. . . .Inverter Control
62.... Low-Voltage Cutoff Circuit
62. ...Overload Protection
63.....Lifesaver Circuit
63.... High Input Impedance Meter-Protection Circuit
64....Single-Transistor Short-Circuit Detector
64.... Inexpensive Short-Proof Voltage Regulator
64.... Reduced-Power Overload Protection
65.... Simple Reverse-Phase Protection
65.... Duty-Cycle Limiter
66. ... Zener-Gated SCR Protection for Power Transistors
66. . . Zener Stabilizes Phase-Shift Oscillator
67....Current Transformer Gives Fast Overload Protection
67.... FET Provides Automatic Meter Protection
68. . . . Solid-State Relay-Circuit Breaker
69....Overvoltage-Protection Circuit for IC Power Supplies
69.....Adjustable-Overvoltage Circuit Breaker
70.... Modified 710 Maintains Accuracy at High Input Voltages
70.....FET Protection for op Amps

Section Four-FILTER \& SUPPRESSION CIRCUITS
71. . . Directional Frequency Splitter Filter
73.... Muting System for Motor-Tuned Receivers
73....Transient Suppressor for AC Circuits
74....Active Second Order Filter
74....Variable Rejection Band Filter
76. ...Low-Pass Filters for Wide-Band Harmonic Suppression
76....Transistors As Reactive Filter Elements
77.... Rectifier Transient Protection Circuit
77.... Output Stage With Active Filtering
78. ...Spike Suppressor for Power Converters
78. .. .Surge-Current Limiter Gives Fast Turn-Off
78.... Base-Emitter Protection in Monostable Multivibrators
79....The FET as a Voltage-Controlled Resistor
79.... Delay Line Output Amplitude Equalizer
80....Transient Load With Exponential Decay
80....Stable Q Multiplier
81.....Active Bandpass Filter With Adjustable Center Frequency and Constant Bandwidth
81.... Optimum Zener Decoupling
82.....Digital ICs Serve as Audio Filters
83. ...Simple Solid-State Noise Filter for Industrial Logic Systems
83.... A Novel Active Filter
84. ... High-Efficiency, Miniature Decoupler

Section Five-PULSE CIRCUITS
85....Fast Recovery Monostable Multivibrator
85....Fast Monostable Multivibrator
86....Current Switching Astable Multivibrator
87.... Current Fall Time Control
88....Variable One-Shot for Counter Display Time
88. ... Monostable 50-Millisecond Multivibrator
88....High Square, Variable Frequency Multivibrator
89.....Magnetic Control of Pulse Width
90....Self-Starting Multivibrator
90.....Noise-Free Pulser
91.... Simple Intervalometer
91....Free-Running Transistor Multivibrator
91....SCR Parallel Inverters in Correct Timing Sequence
92....Ultra-Long Monostable Multivibrator
93....Square Wave Chopper
93.... Redundant MSMV Retrigger Any Time
94....Tunnel Diode Trigger
95....Fast Turnoff Monostable Multivibrator
95....Positive Pulser
96.... High-Duty Cycle Monostable Multi
96.... Electronic Chopper
96....A Pulse Width Modulator
97....Self-Resetting Pulse Stretcher
98.....A One Microsecond Delay
98. ...Monostable Circuit With Negative Recovery Time
99.... Double Pulsed Sine Wave Circuit
100.... Wide-Range Constant Symmetry Multivibrator
101....Pulse Generator for High-Speed Computers
102.... Double Pulser
103. . . . Low-Impedance Multivibrator Output Circuit
104....Blanking Pulse Generator With Linear Pulse Width Control
105. . . .Square Wave Generator With Variable On and Off Times
105. ... Magnetic-Core Sequential Pulser
106. ...Transient-Protection Of Monostable Multivibrators
106. ...Stable-Fast Recovery Transistorized Multivibrator
107....Astable High Power Multivibrator
107. . . Pulse Generator Low-Frequency
108. ... Zero-Hysteresis Schmitt Trigger
108. . . . Voltage-Controlled Ramp-Trigger Generator
108. . . . Low-Cost Pulse-Length Controller
109. . . .Scope-Trace Intensification Converter
109. . . .Single-SCS Flip-Flop
109. ... Variable Time, Power One-Shot Multivibrator
110....Astable Multi Has Microsecond Fall
110. .. Unijunction Adds PWM Mode to S-R Flip Flop
111. ...Trigger Circuit Gives Less Pdiss, More Vout
111. . . . Combination Schmitt Trigger-Monostable Multivibrator
112. ...Delayed Pulse Generator
112. ...Frequency Divider With Independent Pulse-Width Control
113....PW Modulator as Multiplier and Bang-Bang Amplifier
113. ...Narrow Pulses with DTL Integrated Modules
114. ...Coaxial Cable Driver Circuit
114. .. . Wide Range Monostable Multivibrator
114. ...Fast-Recovery One-Shot Multi Gives 10:1 Width Control
115. . . . Pulse Amplitude Modulator
115. . . . High-Gain, Long-Pulse Monostable
116. ... Wide-Range Monostable, PRF Discriminator
116. . . Improved One-Shot Output Circuit
117.... Eliminating False Triggering in Monostable Multis
117.... Pulse-Width Discriminator
118. : . . Pulse Integrator Gives Constant Slopes
119. ...Improved Monostable Multivibrator Allows Wide Range of Pulse-Width Control
120....Sensistor Stabilizes Pulse Width of Monostable Multivibrator
120. . . .Tunnel Diode Speeds Word-Line Driver
121.... Current Source Improves Immunity of One-Shot
121. ...Simplified Schmitt Yields Fast Rise Time
122. ...Resonant Clock-Line Driver for MOS ICs
123. ...High Speed Saturated-Mode One-Shot
124. . . .Two-Pulse Monostable
125. ...Extra Transistor Provides Noise Immunity for Monostable Multivibrator
125. ... Zero (Quiescent) Power One-Shot
126. . . . IC One-Shot Needs No External Resistors or Capacitors
126. ...An Inexpensive Frequency Doubler
127. . . .Single NAND Package Improves One-Shot
127. . . .Versatile One-Shot
128. ... Simple One-Shot has Complementary Outputs
128. ... Resettable One-Shot with High Noise Immunity
129. . . . Ultralow-Duty-Cycle Pulser
129. . . Schmitt Trigger Uses Two Logic Gates
130.... Optically Driven Pulse Stretcher
130. . . . High-Speed, One-IC One-Shot
130.... Wide-Range Variable Pulse-Width Monostable

Section Six-COMPARISON CIRCUITS

131. ...Transistor Go-No Go Voltage Comparator
131.... A Phase Discriminator
132. . . . Pulse Amplitude Evaluator
133. ...Frequency Comparator Detects Coincidence Within 1^{-6}
134. ...Phase-Sensitive Demodulator With Pulse Reference
135....Comparator Uses Bilateral Transistor
135....Differential Voltage Comparator
135. ...Variable Schmitt, Amplitude Comparator
136.....Frequency Comparator Uses ICs
136. ...IC Voltage Comparator With Adjustable Threshold and Hysteresis
137. ...Voltage Comparator With Visual Readout
139.... Op-Amp Comparator With Latching Function
138. .. . Low-Power Multiple-Input Comparator for AC-DC Inputs
140.... Low-Components-Count Digital Comparators

Section Seven-AMPLIFIER CIRCUITS
141. . . "Power-Less" Pulse Amplifier
141. . . . Hybrid Tube-Transistor Amplifier
142. . . Driver Amplifier for $31 / 2$ and 6-Watt Servo Motors
142. . . . Hybrid Amplifier
144. . . . Constant Output AC Amplifier
145. . . . Additional Gain Circuit
145. . . . Grouping Amplifier
146. . . .High-Impedance Preamplifier
146. .. . DC Amplifier Has Infinite Input Impedance and 80 db Power Gain
147. . . .Failure-Proof Amplifier
148. . . . Adjustable Temperature Compensation
149.... Simplified Operational Amplifier
150. . . . Sensitive Relay Control Amplifier
151. . . Time Amplifier
152. . . .High Input-Impedance, Unity-Gain FET Amplifier
152. ...DC Drift Voltages Reduced With Ungrounded Supply
153. . . Amplifier With DC Controlled Gain
154. . . Opposed Collector Audio Amplifier
154. . . . Minimum-Interaction Summing Amplifier
155. . . . High-Level Wide-Band Video Amplifier
155. . . . Logarithmic Amplifier for Radar Signals
155. ... Starved DC Amplifier Has Low Noise, High Z
156. . . . Amplifier With Remote Gain Control
156. ... One Transistor, 50-db Dynamic Range Compression Amplifier
157. . . . Non-Inverting Pulse Amplifier Uses One Power Supply
157. . . . Operational Amplifier Gain Control from Zero to Infinity
158. ...400-Volt Output Transistor Amplifier
158. . . .Photocell Threshold Circuit
159. . . . Low-Noise Preamplifier Uses FET
159. . . . Current Sources Improve Amplifier Slew Rate
160. . . . Non-Linear Function Amplifier
161. ...Higher Speed, Gain, Output From IC Diff Amp
161. ... Current Boosters for IC Op Amps
162. . . . Isolated Line Driver With Short Protection
162. . . . Gain-Programmable Amplifier

Section Eight-OSCILLATOR CIRCUITS
163. . . Voltage Controlled Oscillator
163. ... Wide Range Variable Multivibrator

164: ...Stable Oscillator Circuit
164. . . . Low-Frequency C-Coupled Oscillator
165....Even Duty Cycle Blocking Oscillator
165.... A Synchronized Oscillator Circuit
166. ...A 0.01 Microwatt Multivibrator
167....Wide-Range, Voltage-Controlled Oscillator
167....Voltage-Controlled Variable-Frequency Oscillator
167....Inductor Raises Useful Sawtooth Frequency
168. ...Transistor Mixer Crystal Oscillators
169....RC Plate-Tuned Oscillator
169. ...Pulsed Audio Oscillator
170....Unusual Emitter Follower RC Oscillator
171.... Quasi-Sinusoidal Relaxation Oscillator
171....Improved Multi With Continuously Variable Rep Rate
172....High Efficiency Relaxation Oscillator
172.... Voltage-Controlled Oscillators
173.... Modified UJT Oscillator Has No Timing Error
173....Modified Unijunction Oscillator Reaches 500 kHz
174. ...Simplified One-Shot Multivibrator
175. ...Cascade UJT Oscillator Generates Linear Frequency Sweeps
176....Linear VCO Generates Sawtooth and Square Waveforms
177....Wide Range VCO Uses IC
177....FET Controls Crystal Oscillator
179....FET and IC Make Syncable Oscillator
179....Higher-Efficiency Chokeless Vertical Sweep
180....Improved VCO Uses TTL IC
181.....Gated Delay-Line Oscillator Eliminates Range Error
182....Improved One-Shot Multivibrator Using ICs Only
183. . . .Low-Cost Audio Oscillator With Stable Amplitude
183....UJT Oscillator Reconstructs Clock Signals
184. ...Low-Frequency Sine-Wave Oscillator
184.....A 5000:1 Frequency-Range Oscillator
185. ...LF Oscillator With Direct Digital Control
186. ...Crystal Oscillator Uses Logic Gates

Section Nine-INDICATOR \& ALARM CIRCUITS
187. ... Missing Pulse Detector
187. . . . Malfunction Indicator
188....High-Impedance Voltage Circuit
188. ...Varying-Frequency Warning Alarm
188. . . .Pulse-Peak Indicator
189.....Phase Indicator
189. . . . Exciter Lamp Failure Indicator
$190 . .$. Tone Decoder, Pulse Discriminating
190....Differential-Voltage or Current Alarm Circuit
191....Relay Arc Failure Detector
191....Target Bearing Indicator
192. . . . Overvoltage Indicator
192.....Multiple Station Diode Detection System
193. ...Flying Spot Scanner Sweep Alarm
194.Neon Indicator for Surgistor Points
194. ...Photocell Lamp Burnout Warning Circuit
194. . . Short-Circuit Alarm
195. . . .Pulse-Level Discriminator and Fault Indicator
195. . . .Gated Filter and Sample-Hold Circuit
196. . . .Combination Lamp Driver and Failure Indicator
196. . . .Fault Alarm Circuit
197....Low Voltage Transistors Drive Neon Indicators
197. ...Automatic Back-Up Lamp Circuit
198....Simple, Low-Cost Time Indicator

Section Ten-COUNTING \& TIMING CIRCUITS

199.... Transistorized Intervalometer
201.... Counter Uses Complementary Transistors
201....Transistor Time Delay Switch
202....Differentiating Clipper Circuit
202....Inexpensive Pulse-Time Telemeter
203....Sample and Hold Circuit With Bilateral Charging
204.... Low Power Binistor Action Ring Counter
205....Stable, Sensitive Pulse Height Discriminator
206. ...Digital Memory Display
207....Universal N-Bit Shift Register Uses N-Plus-Two-Pole Relays
208....Stepping-Switch Decimal Counter
209. ...Time Delay Relay
209. ...Sample and Hold Circuit With Long Memory
210....Wide Range Timing Circuit
210.....Relay Binary Counter Module
211....Simple Current Integrator
212....Zero-Order Data Hold
212....Precision Solid-State Delay Circuit
213....Interval Timer
213. ...Accurate Time Delays Up to Four Minutes
214.....Relay Chain Counts Consecutive Pulses
214....Relay Counters
215. ...Relay Flip Flop
216....Low-Frequency Stairstep Generator and Timing Circuit
217.... Simple FET Timer
217....Recycling Timing With Variable Duty-Cycle
217....Reversible Linear Counter
218. ...Inexpensive UJT-SCR Intervalometer
218. ...Stable Clock Oscillators Are DTL-TTL Compatible
219.... Low-Power Timer Drives Stepping Relay
219.... Versatile Timer
220....Wide-Range Programmable Clock for Low-Voltage Logic
221....Single Capacitor Converts TTL Gates Into One-Shot
221....Simple Analog Delay
222. . . .Voltage- or Pot-Variable 400-Hz Delay
223. ... Module -4 or -10 Counter
224....Combined Shift-Register Clock Driver and Power Supply
224. . . . Long-Delay Timer

Section Eleven-TEST \& MEASUREMENT CIRCUITS

225.... Accurate Engine Tachometer
225. ...Direct-Reading DC Beta Tester
226.....Checking Tracking of Stereo Controls
227.... Relay Life Tests Monitored With Magnetic Amplifiers
228.Relay Tester
228. ...Relay Chatter Detector
229.....Fast Acting Sub-Audio Frequency Meter
230. . . .Beta Tester
231....Standardized AC Voltage Reference Source
231. .. . Cable Harness Tester
232....A High-Stability Differential Voltmeter
233. ...Anti-Coincident Detector
233. ...Transistorized Tachometer
234.... Relay Life Failure Indicator
234....A Variable Beta Transistor
235. ...A Go No-Go Vacuum Tube Voltmeter
237....Feedback Method of Checking Tracking of Dual Potentiometers
238. ... Low Current Transistor Beta Checker
239.... Component Vibration Test Monitor
239. . . . Electronic Squib Simulator
240. . . Engine Tachometer
240. . . Simple Transistor Tester
241.... Dual Range DC Voltmeter
241. . . Frequency Meter-Tachometer Amplifier
242. . . . Simple Scope Setup Measures Differential Microvolts
242.... Simple Test Anticipates Transistor Failures In Complex Equipment
243. . . .Pulse Amplifier For Beam Intensity Modulation
243. . . .Schmitt Triggers on Nanoamp Inputs
244. . . .Parallel-Path Continuity-Checking Circuit
244. ...Automatic Scaling Circuit Uses ICs
245. . . .Plug-in Squaring-Unit For Signal Generator
245. ...Differentiating Amplifier Intensifies Scope Trace
246. . . .Pulse-Catching Probe
246. . . .Self-Contained Crystal Tester
247. . . . Direct Reading Period Meter

Section Twelve-GENERATOR \& SIMULATOR CIRCUITS

249. . . . Inexpensive Load Simulator
250. ... Ultra Linear Ramp Generator
250.... Constant Amplitude Sine Wave Source
251.... Simple Triangular Waveform Generator
251. . . .Transistorized All-Waveform Generator
252....Triggered Sawtooth Generator
252. ...Temperature-Compensated Constant Current Generator
253. . . . Linear Sweep Generator
254. . . . Radar Target Acceleration Simulator
255. . . . Efficient Even Harmonic Generator
256. ...4-Layer Diode Sweep (Synchronous)
257. ...Fast-Rise, Long-Width Pulse Generator
258. .. .Variable Pulse Generator
259. . . . Rectangular Waveform Generator
259.... Gated-Beam Tube Square-Wave Generator
260. ...Transistorized 15 Watt 60 Megacycle Generator
261. . . .High-Duty-Cycle Pulse-Width Generator
262. . . One-Stage Semiconductor Noise Generator
261.... Improving Linearity in Transistorized Sweeps
263. ... Unijunction Triangular Wave Generator
264. .. . Synthesis of Ignition Noise in the VHF Band
263.... Portable Pulse Generator
265. . . .Transistorized Linear Staircase Generator
266. ...Single Shot Square Wave Pulse Generator
264....A One Transistor Sawtooth Generator
265....Positive or Negative Slope Generator
265.....Wide-Range Voltage-Controlled Pulse Generator
266.... MOS FETs Give Long Time-Constant Ramps
267. .. . Low-Cost UJT Raster Generator
267....Simple Variable Width, PRR Pulse Generator
267....Variable-Voltage Current Sink
268....Improved Circuit For Constant-Current Source
268....Trigger Generator Sweeps From Audio Frequency To DC
269....Seesaw Circuit Gives Sine-Wave Power
268. . . . Crystal Controls Rep Rate of Simple IC Pulse Generator
270.... Unijunction Transistor Simplifies Trigger Sweep Generator
271....IC One Shot Generates Short-Duration Pulses and Eliminates Switch Noise
272....Trigger-Diode Simplifies Efficient Generation of Sawtooths and Pulses
273....Sequential Bipolar Multivibrator
274....Single IC Forms Wide-Range Triangle Square-Wave Generator
269. ... Keyed Multivibrator Produces Symmetrical AC Output
270. . . . FET Converts a Triangle Generator To a Sawtooth Generator
271. ...A Digital Boxcar Generator
272. ...Digital Ramp Generator
277....Long Duration Variable Linearity Ramp Generator
273. ...Step-Servo Motor Slew Generator
278....Wide Range Square-Wave Generator Uses One IC
274. ...Simple, Wideband AM Noise Generator
275. ...Low-Cost 60-Hz Sync

Section Thirteen-CONVERTER \& INVERTER CLRCUITS

281....Mag-Amp Regulates Static Converter
282. ...60-Cycle Inverter
283. ...Positive Square Wave To Negative Spike Converter
283. ...DC To Frequency Converter
284....Converts Sine Waves To Sawtooth or Square Waves
284.....High Power, Variable Frequency Inverter
285. . . .DC-DC Converter Diode-Starting Network
285.... Unbalanced To Balanced Lever-Shifter
286. ... Linear Period-To-Voltage Converter With Low Ripple
286.... Starting Network for Transistor Inverters
287. . . . New Line-Operated Inverter Offers Fast Switching and High Efficiency
288. .. .Simple Circuit Converts Pulse Duty Cycle Into Analog
289. ... Passive DC Converter for Geiger Counter
289....Signal-Powered Sine-To-Square Wave Converter
290....Differential to Absolute Value Converter
291....High Voltage DC-To-DC Converter

Section Fourteen-POWER SUPPLY CIRCUITS
293. . . . Full-Wave Control With One Trigger And One Control Rectifier
294.....Regulated Low Voltage Power Supply
294.... Zener Diode Bias Clamp
295....Reference Voltage Polarity Reversing Circuits
295. . . .High-Efficiency Power Supply Regulation
296.... Variable High Current Remote Power Supply
297....Automatic Chassis Ground Circuit
297....VHF Balanced Parametric Doubler
298. . . . 400-Volt SCR Constant-Current Source
298.... Low-Loss Biasing Circuit
299.... Constant-Voltage Current Sink
299....AC Power Interlock
299....Combined Battery Converter-Regulator Power Source
300.... Backward-Diode Power-Supply Reference Elements
301....Second Breakdown Gives Fast Pulses
301.... Universal Transformers
302....Precision Full-Wave Rectifier Uses Only One Op Amp

Section Fifteen-DETECTION \& SENSING CIRCUITS
303....In-Phase, Out-Of-Phase Sensor
304. ... High-Speed Threshold Device
305.... Large Slope Frequency Discriminator for Low Frequencies
306....Photo Diode Pickoff Gives Accurate Angular Reference
306. .. .Video Switch For Radar
307....Sampling Circuit
307....Pulse Coincidence Detector
308....Pulse Absence Detector
308.... Pulse and DC Monitor Circuit
309. ... Absolute-Value Phase Comparator
310.....Pulse Detection Circuit
311.....Peak Follower
311....Transient Spike Pulse Detector
312....Hi-Lo Voltage Cut-Off Circuit
312....Missing-Pulse Detector for Narrow Pulses
313....Square-Wave Symmetry Detector
313....Current Amplitude Detector
313. ... Boxcar Envelope Detector
314....Automatic Search and Control Circuit for Servo Loop
314....PRF Discriminator
315....Tunnel-Diode Pulse-Height Discriminator
315....Accurate DC-Level Detector
315....Phase-Locked Frequency Discriminator
316. ...Sine-Wave Zero Crossing-Detector
317....Product Detector Uses FET Tetrode
317....Pulse-Train Detector and Counter
318....Adjustable Level-Detector
318. . . Time-Delayed Schmitt Sensor
318.... Noise-Rejecting SCR Trigger Circuit
319.... Buffered Detector
319.... Boxcar Circuit Uses FETs
320....Threshold Detector Uses IC
320.... Sample-and-Hold Circuit Is Fast Yet Accurate
321. .. An Improved FET Sample-and-Hold Circuit
322....Thermistor Circuit Senses Air Temperature and Velocity
323....Fail-Safe Temperature Sensor
324. ...Pulse-Width Discriminator
324. ...Change-Of-Slope Detector
325. ... Peak Detector For Very Narrow Pulse
326....Tunnel Diode Minimum Pulse-Width Detector
326. ... Optical Tape-Marker Detector
326....High-Speed Synchronous Detector

Section Sixteen-DISPLAY \& READOUT CIRCUITS

329.... Photo Reader for Perforated Tape
330....Inversion Technique for Incandescent Lamp Readouts
330.... Low-Voltage Transistors Drive Neon Readout
331.... Multitrace Display Device
331....Transistor Matrix for BCD-to-Decimal Indicator
332.....Multi-Aperture Solar Cell Amplifier
333....Readout Circuit for Digital ICs
333....Three-State Indicator
333. . . . Lamp Driver Minimizes Lines To Remote Display Unit
334.... Electronic Dipstick

Section Seventeen-GATING \& LOGIC CIRCUITS
335. .. Gating With Varicaps
336. . . .Power Control by Digital Pulses
337. . . Exclusive OR Uses One Transistor
337. . . . Non-Stalling Flip-Flop for Capacitive Load
338. . . . Binary Flip-Flop Turns On
338. . . Phase Locked, Gated Oscillator With Amplitude Regulation
339. . . . XY Code Converter
339. . . Anti-Coincidence Detector
340. . . . Positive Transmission Gate
341. . . . Logic-Level Converter
341. . . Added Transistor Reduces One-Shot Recovery Time
341....Temperature-Compensated One-Shot
342. . . . Analog-Voltage Selection Switch
342. ... High Duty-Cycle One-Shot
343. . . . Crystal Controlled Multivibrator
344. . . . Variable-Hysteresis Schmitt Trigger
344. . . .Power One-Shot
344. . . Phanastran Delayed Gate
345. . . . Flip Flop Operated by Input Signal NOR
345. . . . Sample-Hold Circuit
346. . . . Flip Flop Has Improved Rise Timé and Stability
347. ... Emitter-Coupled Astable with Saturated Output
347. . . One-Shot Has Improved Temperature Stability
348. . . .Long-Duration One-Shot Uses Integrated Circuit
348. . . . Low-Cost Manual Pulser
348. . . . High-Speed Pulse Transmission Gate
349. . . TTL-DTL Interface to FET Analog Switch
350....IC NOR Gate Detects Zero-Axis Crossing
350....IC Functions as Sampling Amplifier or Tone-Burst Gate
351....Fast Logic Circuits With High Noise-Immunity
352. . . . Split Serial Adder Is Fast Yet Simple
353. ... A Broadband Low-Noise Gate Using Hot-Carrier Diodes
354. . . .Fast Binary-to-BCD
355. . . Inexpensive Video Distribution Amplifier Converts Logic

Signals For TV Displays
355. . . . Simple Circuit For Division By 8, 9, 10
356. . . . Three-State Logic Circuit
357. . . . Universal Digital Interface
357. . . . Fast BCD-to-Binary Converter

Section Eighteen-RELAY \& SWITCHING CIRCUITS

359. ... Precision-Timed Short-Interval Relay Switch
360....SCR Switch Eliminates Amplifier for Photoelectric Readers
360. . . . Step Switch Pulser
361....Relay Circuit Compares Successive Binary Numbers
361. ...Frequency Selective Transistor Switch
362. . . . Solid State Latching Relay
363. . . . Magnetic Latching Relay Flip-Flop
364. . . Simple Servo Follow-Up System
365. ... Integrated Pulses Control DC Output
366. . . .Starter Circuit for Flip-Flop
367....High-Impedance Diode Chopper System
367. ...Variable-Speed Stepping Switch Control
368. ... Solid State Variable Time Delay Relay
370.....Relay Control Circuit
369. . . . Phototransistor Operated Relay
371.... Voltage Controlled High Voltage Switch
370. . . .Solid-State DPDT Relay
371. ... Relay Lock-Release Circuit
372. ... Relay or Switch Driven Pulse Generator
373. . . AC Operation of a DC Relay
374. ...Stepping Switch Synchronizer
375. . . . Low Voltage, Fast Current Rise Inductive Load Driver
376. . . . One-Step Function on Switch Closure
377. . . UJT-Relay Circuit Gives Delayed Release
378. . . .Transistor Driven AC Relay
379. ...Simple, Drift-Free Voltage Comparator
380. . . .High-Power One-Shot Multi
381. . . . Latching-Relay Driver Requires No Standby Power
382. . . .Rate Circuit
383. ... High Power AC Static Switch
384. ...Forced-Switching Emitter Follower
385. ...Fast Recycling Time-Delay Relay
386. . . . Single-SCS Flip-Flop
379.... High-Current Switch Has High On-Off Z Ratio
387. ... Normal and Calibrate Mode Switching Circuit
388. . . Simplified 120 VAC Latching Circuit
381....Versatile Tunnel-Diode Discriminator
389. . . . Audio On-Off, Phase-Reversing Switch
390. . . . Minimizing Inductive Kick and Fall Times
391. . . . DC to DC One-Shot Starting Circuit
392.Integrator Clearing Circuit
393. . . . Motor Transient Anticipator
394. . . . Light-Activated Latching Relay
395. . . . Low-Cost Bistable Relay Circuits
384... . Solid-State Relay
396. . . . Added Transistors Reduce Capacitor Size for Relay Pull-in Delay
397. . . Improved Tunnel-Diode Threshold Circuit Has Adjustable Hysteresis
398. . . An Improved Rotary-Switch Interlocking Circuit
399. . . .Remote-Controlled Solid-State Switch
400. . . Slowed Solenoid Driver Circuit Eliminates Noise Spikes
401. . . .Simple Zero-Crossing Solid-State Switch

Section Nineteen-MISCELLANEOUS CIRCUITS

389. ... Impedance Matcher for Magnetic Amplifiers
390....Point-Contact Transistor Multiplier
390.... Eliminating Peak Clipping from Diode A-M Detectors
391.....Relay-Operated Energy Restoring Mechanism
392....Pushbutton Decade Box
392....Passive Frequency Doubler
390. ...Phast Shift Network with Third Harmonic Suppression
394....Emitter Follower Transmission Matching
391. . . . Averaging Circuit Has Equal Charge and Discharge Time Constants
392. . . . Combination DC Amplifier, Pulse Operated Relay and Pulse Stretcher
393. . . . Linear Limiter
397.... Hybrid Balaced Modulator for 100 Kc
397....DC Input Trigger Circuit
397....Dynamic Range Compressor
394. ...Plate-Cathode Follower Wien-Bridge Oscillator
398.....A Chatter Jammer Circuit
398....Complementary Emitter Follower Offers High Isolation
395. . . . FM Limiter
399.... Low Frequency Switching Circuit
400....Simple Wailing Siren Circuit
401.... Modified Emitter Follower Has No Offset
401.....Radiation Meter Uses MOS FET
402....Combined Tachometer and Dwell Meter
396. . . .SCRs Simplify Monostable Coil-Driver
397. . . . Double-Balanced Diode Mixer
398. ...Improved Absolute-Value Circuit
399. ...Phase Indicator for AC Tachometer
405.... Linear Modulator Has Excellent Temperature Stability
406....Pulse-Height Modulator Multiplies Voltage By Frequency
400. ...Delayed-Action Data Receiver
407....FETs Program Op-Amp Gain
401. ...Triggered Sweep Features Low DC Offset
402. . . . Pulse Generator-to-CCSL Interface
403. . . .Fixed Bias Extends Zener Range
404. ...Automatic Telephone Recorder
410....Constant-Amplitude Phase Shift
405. . . . Adjustable, Low-Impedance Zener
411....Fast-Recovery Integrator With Adjustable Threshold
406. ...Bipolar Analog-Digital Interface For Servos
412....Transformerless Ring Modulator

4r3.... Simple EIA Phone Level DTL Interface
413. ...Simple Gyrator For L From C
414....An Error-Stabilizer Analog Divider
414.... $60-\mathrm{Hz}$ Frequency Discriminator
415....Steering Diodes Insure SCR Commutation
415.....The Ideal Voltage Follower

A Reliable

Open Loop Amplifier

BY replacing the conventional closed loop with a semi-open loop configuration, the reliability of this differential dc amplifier has been greatly increased. In a semi-open loop approach, the active elements of the circuit are controlled by individual closed loops, permitting the gain characteristics to be determined by passive elements. Further improvement in reliability has been accomplished by reducing the number of components normally reguired for circuitry to provide the operating characteristics of this type of instrument.

The semi-open loop approach provides important features not possible with the closed loop method: isolation of the input from the output and a higher degree of filtering. The isolation of the input from the output offers several advantages including constant impedance level independent of the slewing rate of the amplifier and the absence of a unidirectional input current. Multipole filters with limiting slopes greater than 12 db per octave can be inserted internal to the amplifier and are completely isolated from the signal source and load effects.

The amplifier circuitry involved in the semi-open loop approach is shown in block diagram form in Fig. 1.

FIG. I-Arrangement of stages of open loop amplifier.
As shown in Fig. 2, input switch S_{101} is driven at a sampling rate of 400 cps . The input signal is impressed between the switch arm and the cen-
ter tap of the input transformer. The modulated input signal is magnetically coupled to the ac carrier amplifier by the secondary of T_{101}, and is referenced to the amplifier common. Isolation necessary to achieve high common mode rejection is established at the input by transformer coupling and electrostatic shielding.
The unity gain amplifier Q_{101}, Q_{102}, effects a high impedance transformation ratio to prevent loading of the input transformer, and provides a low source impedance to the gain attenuator S_{102}.
The loading of the unity gain amplifier, referred to the primary of the input transformer, is negligible; therefore, the input impedance of the total amplifier is determined by the half-primarv impedance of the input transformer at the carrier frequency of 400 cps . This value is always greater than one megohm and is independent of the amplifier's operating condition. Thus, the input circuitry provides a well isolated true differential input at a constant impedance level.
The gain attenuator S_{102} varies the overall gain of the instrument in fixed steps. Stability is assured by precision wire wound resistors.
A fixed gain amplifier ($Q_{103}-Q_{108}$) is completely enclosed in feedback to insure gain stability.
A multi-turn, high resolution trimming potentiometer R_{159} is provided in the feedback network to serve as a fine gain vernier. This control is accessible through the front panel for screwdriver adjustment and allows the user to trim the amplifier gain to a high degree of precision. The output of the fixed gain amplifier is transformer coupled to the second section of switch S_{101} to achieve synchronous demodulation. The demodulated signal is presented to an appropriate filter and appears at the filter output as an accurate reproduction of the input signal. This signal is presented to the dc amplifier to terminate the filter and provide ample power gain and output characteristics consistent with the loads commonly incurred in data acquisition systems.

FIG. 2.-Complete circuit of open loop amplifier.

Zero-Crossing Sync Circuit For SCRs

When scrs are used to control the ac power delivered to a load it is necessary to fire the SCRs at some selected point on the input sine wave. To do this, the SCR firing circuit must be synchronized with the zero crossing points of the sine wave to initiate a new timing cycle at each zero crossing. This synchronization can be done with the circuit shown.

Zero-crossing sync circuit.
$C_{2}, Q_{2}, R_{5}, R_{6}$, and T_{2} comprise the usual SCR firing circuit. Resistor R_{5} may be any control device, from a simple potentiometer to a servo control system.

To synchronize Q_{2} 's timing cycle so that it will start from each zero crossing, capacitor C_{2} must be discharged at each crossing. This is achieved as follows. Transformer T_{1} and rectifiers $C R_{1}$ and $C R_{2}$ form the zero-crossing reference by doubling the $60-\mathrm{cps}$ line frequency to $120-\mathrm{cps}$ pulsating dc. C_{1} differentiates this reference voltage and R_{1} discharges C_{1} at the end of each cycle. Zener diode $C R_{3}$ conducts in the forward direction during the negative portion of the differentiated reference cycle, reverse biasing Q_{1}. As long as Q_{1} is reverse biased its effect on
the UJT circuit is negligible, allowing Q_{2} to cycle at a frequency determined by its circuit values.

However, when the differentiated reference voltage starts to swing positive, $C R_{3}$ ceases to conduct and then supplies a positive pulse when its zener voltage is reached. At this point Q_{1} becomes forward biased thus effectively shorting Q_{2} 's bases. This causes Q_{2} to fire (regardless of the amount of accumulated charge on C_{2}) thus discharging $C_{2} . R_{4}$ is adjusted so that the breakover point of $C R_{3}$ is at the peak of the reference voltage (zero crossing point of the ac sine wave).

The polarities of $C R_{1}$ and $C R_{2}$ are so arranged that the sharp peaks of the reference voltage are positive after being differentiated by C_{1}. This provides a precise zero crossing sync pulse at each crossing. R_{3} serves as a current limiting resistor to protect $C R_{3}$ and $C R_{4}$ provides a small emitter bias so that Q_{1} will remain in its cut-off state until $C R_{3}$ conducts in its reverse direction.

In a-temperature control system, this circuit maintained the temperature of a liquid within $0.001^{\circ} \mathrm{C}$ of the set point within a range of ambient to $100^{\circ} \mathrm{C}$.

Instrument Servo
 Cycling Circuit

It often is desirable to cycle servo units from stop to stop for extended lengths of time to determine such things as wear characteristics and friction level changes. Limit stop switches can be incorporated on larger units, but on instrument servos, this is not practical. However, most of these servos use a potentiometer as the feedback element, and this can be utilized, as shown, to supply the required reversing signal.

With the servo positioned midway between its stops, motor drive is applied so that the pot arm is driven toward +30 v . When the breakdown voltage of $D_{1}(27 \mathrm{v})$ is exceeded, it conducts, turning on $Q_{1} . K_{1}$ pulls in, energizing
K_{3}, and the motor drive reverses. As the pot arm travels toward $-30 \mathrm{v}, Q_{1}$ turns off, and K_{1} drops out, but K_{3} remains energized through holding voltage applied to contacts 2 and 5. As -30 v is approached by the pot wiper arm, D_{3} conducts and turns on $Q_{2} . K_{2}$ pulls in, de-energizing K_{3}, and motor drive again reverses. As the pot arm moves back toward $+30 \vee, Q_{2}$ turns off, K_{2} drops out, and the cycle repeats.

Instrument-servo cycling circuit.
As shown, relay K_{3} reverses a dc servo input signal, but it could just as easily reverse the actual motor drive if desired. Similarly, the use of variable supplies and/or zeners with different breakdown voltages allows one to cycle the servo over any portion of its travel continuously.

Double-Channel Servo

Controls Two Motors

With only one servo amplifier driving two channels of servo control, the number of electronic parts can be reduced 50 percent. In the block diagram, if the shaft position representing the first signal changes, then a difference will occur between the signal position and its follow-up position. This difference will appear as a voltage at point (a) which is in phase with ϕ_{A}. This signal voltage will be amplified and appear across the control windings of both M_{1} and M_{2}, However, since M_{2} has its fixed-phase excitation from phase A, it will not respond to the signal. M_{1}, however, is referenced to ϕ_{B} and ϕ_{c} which is 90 degrees out of phase with the signal. The two-phase servo motor M_{1} will, therefore, respond to the signal while M_{2} will not. In a similar manner, M_{2} will respond only to signals generated at (b) by the second signal circuit because of the phase relationships.

This system serves best for servo loops with low dynamic

Two-channel servo system.
response since some quadrature voltage is generated in the amplifier when one channel is disturbed. This quadrature voltage, if large enough, can cause a slight shift in the null position of the other channel during the disturbance. In a servo loop with low dynamic response this quadrature voltage is negligible.

Unijunction Latchup for SCR's Driving Inductive Loads

When an scr, controlled by a unijunction transistor, is driving an inductive load, it may not turn on. When the unijunction fires, a pulse appearing at the scr gate begins to turn it on. The rate of current rise through the scr is limited by the inductance of the load so there is the possibility that the pulse at the gate may disappear before the load current rises above the holdon current level of the scr. If this happens, the scr will never turn on.

The unijunction latchup circuit for scr's turning on inductive loads and circuit waveforms.

A resistor across the inductor can eliminate the problem but this wastes power and it may call for a larger scr. A better circuit appears in the figure. When voltage is applied to the circuit, C_{1}, begins to charge through R_{1}. When the voltage at the emitter of the unijunction (point 1) reaches ηV_{z} (where η is the intrinsic standoff ratio of the unijunction and V_{z} is the Zener voltage), the emitter is forward biased and C_{1} discharges into R_{3}. The unijunction turns on and the voltage at the base of Q_{2} (point 3) drops instantaneously.

This change in potential turns Q_{2} on, forcing a large current into the unijunction emitter. This action holds the unijunction in saturation, causing the voltage at the gate of the scr to be continuous rather than pulsating. R_{1} and C_{1} are chosen to give the desired time delay from

$$
f \approx \frac{1}{R_{1} C_{1} \ln \left(\frac{1}{1-\eta}\right)}
$$

R_{2} depends on the desired temperature compensation. It is approximately $0.4 V_{b b} / \eta V_{g}$, where $V_{b b}$ is the initial voltage between points 2 and 3.

Simple Intervalometer

An intervalometer, as applied to the control of aerial cameras, generates pulses which cycle the camera at a rate such that the terrain is photographed with a constant overlap. The expression which defines the re-
quired rate is as follows:

$$
\text { Rate }=1.69 \mathrm{~V} / \mathrm{H} \frac{\mathrm{f}}{\mathrm{~F}} \times \frac{1}{1-0.01 \text { (overlap) }} ;
$$

where, $\mathrm{V}=$ velocity of aircraft in knots; $\mathrm{H}=$ altitude in feet; $f=$ lens focal length in inches; $F=$ format size in inches; and overlap is in percent.
Although there are several techniques which could be utilized, to produce the pulses, it was found that a simple relaxation oscillator would generate the required pulse rate over a wide range to an accuracy of better than 3 percent.

The basic circuit is shown in Fig. 1. The circuit as applied to aerial photography is shown in Fig. 2. A

Fig. 1. Basic pulse circuit.
Fig. 2. Actual circuit employed for aerial photography.
dc reference voltage is applied to a potentiometer whose arm would be rotated proportionately to the V / H ratio of the aircraft. This voltage is then added to a bias voltage which is set at just below the minimum firing level of the diode. Resistor R_{2} is made inversely proportional to the ratio of f / F, and C is set as a direct function of the factor: $1-0.01$ (overlap).

The values given in Fig. 2 for R_{2} and C are the ranges within which reliable operation is assured. The magnitude of the reference voltage can be changed to set the scaling of the circuit.
The following experimental data is useful in working out the initial design of this type of intervalometer for a specific application: At a total input of 300 v , an R of 1 meg , and a C of $1 \mu \mathrm{f}$, the pulse rate was found to be 3 cps . The frequency change as a function of the input voltage was $0.0133 \mathrm{cps} / \mathrm{v}$. Based on the above data, the following equation for pulse rate is obtained:

$$
\text { Rate }=0.0143 \frac{\mathrm{~V}-\mathrm{V}_{\mathrm{o}}}{\mathrm{RC}} \text { pulses } / \mathrm{sec} ;
$$

where, $\mathrm{R}=$ resistance in ohms; $\mathrm{C}=$ capacitance in farads; $V=$ total input voltage; and $V_{0}=$ bias voltage (approx. 140 for the NE96).

SCR-Zener Combination Senses Voltage Limits

Here is a crrcuit that can be used when an automatic switch is required to turn a circuit on or off as a result of changes in supply voltage above or below a predetermined value.

The circuit shown turns on at 12 v and turns off at 8 v . When the supply voltage reaches 12 v , the zener diode goes into its avalanche region, and the SCR receives gate power to turn on. The relay then is energized, providing on-off control for the circuit connected through the relay contacts.

When the supply voltage goes down to 8 v , the zener draws only leakage current, which is not sufficient to turn on the SCR. Also, the current through the SCR is below its holding current, and, consequently, the SCR is non-conducting. The relay is thus de-energized, turning the controlled circuit off. Rectifiers can be used for isolation between two controlled circuits.
This circuit is versatile and has many uses. The controlled circuit might be a battery charger which is automatically connected to the supply battery when the battery voltage drops to 8 v and is disconnected when the battery voltage reaches 12 v .

Voltage-limit sensing circuit.
The circuit can be adapted to suit any supply and controlled-circuit voltages within the limits of semiconductor devices, and can be made to sense supply voltage changes as low as 0.5 v . To change the operating point of the circuit it is only necessary to use a different zener diode.

TransistorizedPhaseShifter

0fTEN in servos or other systems employing phase sensitive detectors or phase relationships to convey intelligence, a method of bucking out residual phase shift of the associated circuitry is required. In this circuit we have a simple, straight forward method of continual phase adjustment through nearly 180 deg. (in this case, greater than 170 deg). The transistor acts only as a phase splitter, offering complementary outputs. Phase shift at point A is 180 deg., at point $B-0$ deg. By adjusting R_{1} through its range, proportional amounts of A and B are offered at the out-

FIG. I-Simple transistorized phase shifter, 0-180 deg. continuous.
put, determined by the specifie setting of R_{1}, and the phase of the output relative to input is approximately in proportion to these relative amplitudes.

This particular circuit is optimized in the range of 1.0 kc and operates satisfactorily from 600 cps to 4.0 kc . An adjustment of C_{1} / R_{1} ratio will shift this range. The transistor is a TI 2N1306.

SCR Voltage Sensitive Time Delay Switch

0FTEN, in missile circuit applications, a designer is required to mechanize a series of switched events initiated by a reference voltage level and separated by accurate time delays. A device for this purpose-simple, yet reliable, is presented here. The circuit in Fig. 1 can best be described as a voltage sensitive trigger which initiates sequenced thermal time delay relays. The relays used are Network Electronics' type M779, available normally open or normally closed, single-pole-single-throw, which operate on the fuse burnout principle. That is, when sufficient current passes through the relay fuse to burn it open, a spring loaded plunger is released which performs the required switching action. The time delay between rectifier firing and switch actuation is controlled by the resistance value (R_{3}, R_{4}, or R_{5}) in series with each separate relay fuse. The smaller the resistance, the shorter the delay time. Delays from 10 msec to $1.0 \mathrm{sec} . \pm 10$ per cent are readily obtainable with high reliability.
Applied voltage, E_{e}, is exponential and can be obtained from a standard type capacitor charging circuit. When voltage at point A reaches 22 v , the Zener diode conducts and applies the triggering

FIG. I-Voltage sensitive trigger circuit initiates sequenced time delays.
"signal" to the silicon controlled rectifier (SCR), $C R_{1}$, which "fires" and increases the currents through thermal elements of S_{1}, S_{2} and S_{3}. Resistors R_{3}, R_{4} and R_{3}, in this example, are chosen such that S_{1} closes 100 msec after $C R_{1}$ fires, S_{2} at 200 msec and S_{3} at 300 msec . As the last fuse burns open, power is removed from the circuit thus eliminating unnecessary load on the missile power supply. The sequence of events is shown in Fig. 2.

Although, in the circuit shown, 22 v at point A causes breakdown of the Zener diode, this voltage for breakdown can be varied along the exponential curve of Fig. 2 as long as there is sufficient power available at the SCR gate for firing. The resistance values in voltage divider $R_{2} / R_{1}+R_{2}$ are selected to insure necessary gate voltage and gate current to fire the SCR at lowest and highest temperature extremes. Actually, in the example given, the anode-to-cathode saturation voltage of the SCR is practically independent of ambient temperature at the operating current level. Thus, the voltage across the three relays will be essentially constant. This constant voltage with temperature is reflected in extremely accurate time delays from -65 to +100 C .

FIG. 2-Timing sequence as applied voltage, $E_{e,}$ builds up. CR_{1} fires after $10 \mathrm{msec} . \mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} close at 100 msec intervals thereafter.

Transistorized Motor Switching Circuit

The cincuit shows in Fig. 1 was developed as a pulsed motor control circuit. This circuit offers the advantage of requiring only one voltage source, and eliminates non-simultaneous contact closing problems of dpdt relays.

Fig. 1. Transistorized motor switching service.

Assume the relay is pulled in at position B when the circuit is in operation. This places $-v$ volts on onc side of de motor, M, and heavily forward-biases transistor T_{1}. As a result $V-V_{\text {sat }}$ goes to the other side of the motor. The preceding causes the motor to rotate in one direction. When the relay drops out to position A, T_{2} turns on, reversing the polarity at the motor and the direction of rotation.
$V_{\text {sut }}$ of the on transistor appears as forward-bias at the base of the off transistor. Diodes D_{1} and D_{2} act as nonlinear resistors effectively lowering the value of the off transistor base current. Resistors R_{1} and R_{2} together with diodes D_{1} and D_{2} determine the value of turn-on base current. Circuit betas, β_{c}, from 10 to 25 work well.

Step Control for

Motor-Driven

Selector Switch

In design of a test unit, the use of a motor-driven rotary selector switch was incorporated. The requirement of the switch was that it be operated as a single step per pushbutton actuation. The switch is a rotary selector switch driven by a $72-\mathrm{rpm}$ motor and contains a cam-operated sensitive switch interrupter.

The operator depresses and holds pushbutton S_{1}, energizing relay R_{1} and applying 115 -vac to the motor run winding. The motor starts running, driving the cam to a point to close the N.O. contacts of the interrupter switch. The interrupter switch energizes relay R_{2}, disconnecting switch S_{1} from relay R_{1}, locking R_{1}, and locking R_{2} through switch S_{1}. The motor of S_{2} continues to drive until the interrupter switch is opened by the cam, de-energizing. relay R_{1}, and stopping the motor.

Relay R_{2} remains locked in until switch S_{1} is released, releasing S_{1} then permits the switch to be recycled. The instant starting and stopping characteristics of the motor eliminate any necessity for mechanical indexing of the selector switch.

Circuit for step control of motor-driven switch.

Beam Switching TubeReset

The resef circuit shown below the dashed lines of Fig. 1 was developed to reset several beam switching tubes at one time.

Prior to this design, a thyratron was used to reset beam swiching tubes. In general, a single thyratron could only reset two or three beam switching tubes. The noise generation from the thyratron discharge was extremely objectionable. Where several thyratrons are used to reset several beam switching tubes in a chain, the noise frequently prevents stable reseting.
Figure 2 shows the resulting waveforms generated by the reset circuit. Waveform B is placed on all spades except the zero spade at time t_{1}. At the same time waveform C is placed on the zero spade. As all the spades go negative, the beam is cleared

FIG. I-Reset and MBS tube circuit.

FIG. 2-Waveforms produced by reset circuit.
from the beam switching tube.
At the end of waveform B, at time t_{2}, all spades return to their normal voltage except the zero spade. This differential ΔE as shown at waveform D reforms the beam to the zero spade. When waveform C returns to the normal spade bias level, at time t_{3}, the beam switching tube is ready to be stepped. The pulse widtht difference, $t_{3}-t_{2}$ is generated by the different $R C$ time constants of the grid circuits. The cathode speed-up capacitors are used to discharge the beam switching tube spade capacity for fast reset.

When not resetting, the circuit supplies a regulated voltage to the spades for more reliable operation. A single tube will reset 10 cascaded beam switching tubes in twenty microseconds without failure.

Gain Control

A simple circuit for adjusting the gain of a transistor amplifier over a large frequency range without changing the dc bias is illustrated. The bias current, and hence the operating point, is maintained by the overall resistance, $R_{\text {e, }}$ in the emitter circuit. The ac gain, however, is determined by that fraction of the emitter resistance bypassed to ground by the capacitor.

The relationship between the gain, G, and the unbypassed fraction of the emitter resistor, R_{x}, is

$$
G=\frac{\beta R_{L}}{r_{b}-R_{x} \beta}
$$

where
$G=$ gain of stage E_{0} / E_{i}
$r_{b}=$ effective base resistance
$\beta=$ common emitter current gain of transistor for $\beta R_{x} \gg r_{b}$

$$
G=\frac{R_{L}}{R_{x}}
$$

Hence, for a large range of potentiometer settings, the gain is inversely proportional to the variable $\boldsymbol{R}_{\boldsymbol{x}}$.

Transistor amplifier stage allows gain to be changed over a large frequency variation without effecting the dc bias.

Supervisory and Protective Relay Control

It is sometimes necessary that any one of a number of operators of an equipment shall, once he has gained control of a remote equipment, be guaranteed uninterrupted control until he voluntarily and positively relinquishes his control. Such a requirement was encountered during the design of control circuits for an airborne wideband instrumentation magnetic tape recorder, calling for protection of the track recorded on the tape against interruption or erasure.
The circuit shown in Fig. 1 provides this type of control by means of a push-for-control pushbutton, a control relay and a transfer or dumping relay, with a floating ground line between stations. Any
number of identical control stations can be connected.

Equipment control is obtained by actuating two relays, the control relay K_{111} and the transfer relay K_{112}, by means of a double-pole momentary-contact pushbutton switch S_{8}. The transfer relay is actuated only as long as the pushbutton switch is depressed and supplies 28 vde to the control relay which has a hold-in circuit. When the push-for-control switch is released, the transfer relay opens removing the direct 28 vdc connection from the control relay which is, however, held in at reduced voltage, obtained by dropping the 28 vdc supply through two 75 -ohm resistors in series. The station having control may now depress the record pushbutton causing the record relay to close, thereby gaining absolute control of the equipment. With the machine in the record mode no other position may gain control because the push-for-control ground return (floating ground line) is opened by contacts on the record relay. Consequently there can be no interruption to the record mode until the station having control pushes the stop switch, which stops the record mode by opening the 28 v supply to the record relays. This closes the contacts reinstating all push-for-control pushbutton switches. When this is done the transfer relay, at the station wishing control, shorts to ground the "hot" side of control

FIG. 1-Protective system prevents other remote stations from interrupting during recording process.
relay of the station relinquishing control, which, opens because there is now no voltage across the coil. The 28 volt source is protected by the series resistor R_{117}.

When the transport control unit has control its operator may initiate the rewind or fast forward modes as well as the record mode with absolute control. While the transport is in any of these modes no other position can get control and protection of recorded information is insured.

Variable Transistorized Phase Shifter

This unique application describes a simple $10-\mathrm{kc}$ phase shifting network integrated with an active device with power and impedance matching features.

Most single-phase shifting networks are readily controlled by use of an a-c bridge circuit (such as the Wheatstone type).
Figure 1 shows one of the basic arrangements

FIG. I-Basic phase shifter circuit.
incorporating a center-tapped transformer secondary to form two bridge arms. $O-A$ and $O-B$, both having equal induced voltages. The remaining two arms of the bridge are usually composed of two passive components, i.e. an inductor or capacitor in series with a variable resistor R_{1}. The phase shift voltage appears across the desired load at the points, O-G.
More often than not, it is assumed that no appreciable current will be drawn by the load selected. If so, then two distinct disadvantages will occur; excessive source power may be necessary; and reflected impedance variations will occur when adjusting phase control.

These problems can be resolved by the approach shown in Fig. 2. This features a similar bridge design, only the center tap is in the transformer's primary side with the common-collector configuration supplying the power. By reversing the bridge procedure and feeding the input signal being shifted into the center of the bridge arrangement, it is possible to balance the vectors across C_{2} and L_{1}. Consequently a 90 -degree phase shift signal appears across the transformer's primary winding, which is inductively coupled to the load via the secondary winding. This utilizes the common-collector's natural advantages; power gain, impedance matching properties, and little or no phase reversal.

The circuit provides a constant signal voltage (± 5 percent) with a variable phase feature (90 ± 15 degrees) while eliminating the standard phaseshifter disadvantages. Other advantages for this circuit include: low harmonic distortion, increased re-

FIG. 2-Suggested values: $R_{j}=100 \mathrm{~K} ; R_{k}=18 \mathrm{~K}$; $C_{1}=1500 \mu \mu f ; C_{2}=.047 \mu f_{;} Q_{1}=$ T12N1050; $T_{1}=1: 1.4,10 \mathrm{kc} ; L_{1}=2.4 \mathrm{mh}$ in series.
liability through simplicity, and compact packaging.
Because of component flexibility, almost any audio frequencies and/or input signal magnitudes can be handled. Initial design considerations for transistor selection would center around the critical parameters; maximum alpha cutoff frequency, and allowable emitter-base junction voltage (higher the better). Fixed bias is secured for the common-collector stage by R_{B} connected from the collector to base. This establishes the dc quiescent point for base current selected; with the series dc resistance of the inductor and half of the primary winding ,serving as the de load line for transistor Q_{1}. Superimposed upon this de load line of approximately 20 ohms is the 600 -ohm ac load reflected from the secondary. Manipulation for a desired phase position

is possible by adjustment of R_{D} in shunt with C_{1}. At precisely a phase shift of 90 degrees, this value was 21 kilohms.

The transformer must be of a fairly good quality. The unit in conjunction with the emitter-follower stage developed a slight phase angle to the real audio transformer was available with nearly equal primary windings, turns ratio of $1: 1.4$, and was capable of handling the $200-\mathrm{ma}$ dc unbalanced primary current through taps 1-2. This was required to maintain the correct dc bias for class A operation of the emitter-follower power stage. Analysis of the
phase rotation through 90 degrees reveals how the shifter functions (see Fig. 3).

Circuit applications for such a simple phase shifter include industrial areas for phase control of thyratron tube conduction, or possibly for correcting systems involving control synchro and resolver phase drift or shift, and demodulator reference signals.

Blower Delay Circuit

Asituation often arises in electronic equipment where it is desirable to have a blower or some. other cooling device remain activated for perhaps n seconds after the removal of the primary power source. This delay is necessary in equipment where because of weight or space limitation the cooling equipment is designed to maintain the equipment just below some critical temperature while operating. However, when the equipment is turned off

FIG. I-Temperature versus time for a typical system at shutdown.
the temperature in the device as a function of time actually follows a curve similar to that shown in Fig. 1. In one particular system the increase in ambient exceeded the safe allowed seal temperature for a magnetron causing eventual failure and replacement of an expensive device.

There have been a number of circuits designed to keep cooling equipment activated for some additional incremental time but most of these devices require a small but constant primary power drain or utilize complex and expensive mechanical timers. The switching circuit shown in Fig. 2 performs the desired function with a high degree of reliability at a minimum cost while maintaining circuit simplicity. This circuit has been built and performs very satisfactorily.

The operation of the circuit is as follows:
A dpdt Switch, S_{1}, is shown in the normally off position and since relay A is deactivated, contact A_{2} is open, and no power is applied to the n second timer B or the system. The circuit is activated by throwing S_{1} into the on position thus applying power to the system, relay A and the blower.

By activating relay A, contact A_{1} and the normal-
ly closed contact of the n second timer form a holding contact on relay A. Thus when contact X on S_{1} is broken, relay A and the blower remain on while

FIG. 2-Blower delay switching circuit.
primary power to the system through contact Y on S_{1} is removed.
When S_{1} snaps into its off position, contact Z then supplies 28 volt power through closed contact A_{2} to the time delay relay or timer B. After n seconds elapse the normally closed contact of B opens momentarily causing relay A to loose its holding contact which in turn opens contact A_{2}; thus, the timer is once again de-energized and the cycle is completed.

Advantages of this circuit are that the timer contact need carry only the line current of the blower and relay A rather than the load current of the entire system. Further, since the time n is not critical in most practical cases the timer is a relatively inexpensive device. No primary power is drawn by the system after n seconds and the contacts on relay A handle only the blower current and the timer current which is very much less than the system load current; therefore, a rather inexpensive relay may be used.

Low Cost Servo

Motor Control

This system was developed to meet a need for a low cost, photoelectric cell controlled servo motor.

The 10 -watt servo motor is a two-phase type with one 110 v ac winding and a center-tapped high impedance winding for use with vacuum tubes. The amplifier consists of two symmetrical channels to supply control voltage to the high impedance winding of the motor. The input to the amplifier is a d-c signal proportional to the illumination of the photocell. The first stage of the amplifier proper is cross connected to reduce the effects of drift in the de sec-
tion of the system and effects of tube variations.
The requirements of a two-phase motor are that the control windings must be supplied a voltage 90 degrees out of phase with the line winding. The output of the photocell is a de voltage which always exists in the same polarity with only ampl tude variations. In order to eliminate a chopper a simple method of simulating chopper action was required.

Phase shift can be obtained by use of a resistance and capacitance in series, however, to obtain con.siderable shift, high resistance and capacitance values (with respect to the frequency of operation) must be employed. Also the voltage appearing across the capacitance is comparatively low. It is possible to obtain a phase-shifted current by use of a resistance and inductance in series. This method was utilized in the system designed. The 24 -ohm resistor in series with the output winding of a small audio output transformer causes a phase-shifted voltage to appear across the secondary (original input of the transformer). This voltage is further corrected by use of the capacitor in parallel with the winding, also correcting some loss in waveform occurring in the transformer. The total output was in excess of the value required for application to the first amplifier, therefore the output was taken from the center tap of the transformer winding and loaded to ground by the 100 -ohm resistor.

This phase-shifted voltage is applied to the grids of the first stage of the amplifier in ac parallel through the coupling capacitors. It is additionally amplified and applied to the control winding of the servo motor. Being of equal values at the motor and supplied in opposition, no resultant motor rotation occurs. Some additional phase correction is obtained through the addition of the capacitors in parallel with the grids of the second stage of the amplifier
and in parallel with the motor control windings.
Because of the connection of the first stage of the amplifier, in which the grid resistor of one tube. returns to the cathode resistor of the opposite tube, a change in operating point of a given tube results in a correction being automatically applied to the other tube. The cathode-follower photocell amplifier, the dc level control tube and the first amplifier stage are connected through a common cathode circuit.

Resistors R_{2} and R_{4} are mechanically connected with proper ratio gearing to the servo motor and serve as position feedback control. Resistor R_{3} is utilized as a zero-center control.

The servo motor may be connected to a shutter in such a manner as to produce a given output from the photocell at the control point center of the operation being controlled. This might be a bin or hopper containing opaque material and being fed automatically by the servo system. As the contents increased above a given level, the illumination of the photocell would produce a signal such as to cause the servo motor to reduce the opening of a filler valve. With a reduction of the contents, the control valve would be opened.

In adjustment of the system, the shutter would be positioned at the proper level and with the correct filling of the container. The drive motor would then be disconnected and resistor R_{1} adjusted to produce equal voltages at the cathodes of the first amplifier stage. With the drive motor reconnected, resistor R_{3} is adjusted to balance the system about the control point.

This system was designed some years ago, as evidenced by the components called out. Replacement of tube types with more modern units would probably improve the reliability. The power supply

Low cost servo system is controlled by photoelectric tube.
divider system and the 8 volts supplied to the dc level control tube could also be modernized.

This system may be utilized in connection with any type of sensing device whose output is an amplitude modulated dc signal. The feedback control system shown may also be included more directly into the sensor output or the dc level control tube.

Control Switching Circuit

The circuit shown prevents an operator from progressing to a new switch position without returning the previous switch or switches to a specified position.
Such a circuit may be used with lamps as shown for supervisory control or the lamps may be replaced with relays for actual control of operations. This circuit also contains a warning indication or cutoff, not under the control of the operator.
In the circuit, switch S_{1} and lamp L_{1} are the on or system assigned unit: L_{2} is for test or adjust indication; L_{3} is for the in operation indication and L_{4} is for warning, malfunction or cutoff. Any number of L_{2} components may be connected in the series. If it is desired that L_{4} be supplied with an intermittent voltage to provide a flashing signal, it is necessary to insert a diode as shown to prevent a phantom circuit when a number of these systems are operated from the same power source.

In actual use, closing switch one (possibly remotely located and controlled by the supervisor), will start the operation or advise the operator that the controlled device is assigned for use. During the period necessary to setup, calibrate, or adjust

Supervisory control switching system
the device, the operator will close switch two, giving this indication and preventing the third unit from operating. After the necessary operation in position two, the operator turns off the unit two switch and then may turn on the unit three switch, placing the device being controlled in the desired condition (or giving indication of such).
If during the progress of the operation in a normal manner, the operator detects some undesirable occurrence he may close the switch of unit four, which in the supervisory system shown will not
stop the operation but will give the supervisor indication that a malfunction has occurred.
The relay contacts shown are part of a relay which may be connected to the device in an appropriate manner to give the same indication automatically. The contacts of the relay may be connected into the circuit shown as either normally closed or normally open, depending upon the nature of the voltage available to the relay coil under nonfailure conditions of the controlled device. It should be also noted that when unit two is operated, a failure signal from unit four cannot be generated, since during setup operations it may be normal to have a condition which might be abnormal in the operating condition.

An additional indication which might be of value can be obtained by connecting a lamp or relay as shown dotted at unit two. This lamp of course, indicates the alternate position of the switch to which it may be connected.

Remote Controlled Rotary Switch

Remote control of a distant rotary switch or stepping relay, is important in many applieations. It is always possible to pulse a connecting wire, thus presenting a known number of pulses to this distant rotary switch and stepping it a known number of steps, but this is not a particularly accurate method. It is also possible to have the distant switch search for a particular marked contact, but in this case it is necessary to have a multiplicity of wires between the rotary switch and the control console. It would be advantageous to have a distant rotary switch find a particular marked contact, and have all marking for up to ten contacts accomplished over one wire. The device described here provides a means for so controlling a distant rotary switch.

The detector portion of this device consists basically of a balanced bridge circuit as in Fig. 1. Two legs of this bridge are composed of the resistors associated with the controlling wafer switch, R_{1}, and a 7500 ohm resistor, R_{2}. The other two legs of the bridge are composed of the resistors associated with the controlled rotary switch, R_{3}, and another 7500 ohm resistor, R_{4}.

If the resistors set in the rotary switch are the same as the resistors set in the wafer switch then the bridge is balanced and there is no voltage between points A and B. If the wafer switch is now moved the resistance of R_{1} is changed, and there is a voltage difference between points A and B. This voltage causes a current to flow in the rectifying diode bridge, producing a current in the transistor base leads. Note that whether the potential of A

FIG. I-Bridge circuit used to detect signal for activation of rotary switch.
bridge either increases or decreases, until eventually the correct contact is reached. When this occurs the bridge is balanced, and all relay current is stopped.

It is possible, as shown in Fig. 2, to make adjustments for line resistance between the remote wafer switch and the rotary switch apparatus. The $300-$ ohm resistor shown as being variable may be adjusted such that the resistance of this resistor plus the combined resistance of the control wire and the ground wire equals 300 ohms.

FIG. 2-Remote rotary switch steps to match resistor values at control position.
is higher or lower than that of B (caused by a larger or smaller R_{1}), the direction of current is the same.

This current is amplified in transistor Q_{2}, which is an npn transistor, and Q_{1}, which is a pnp transistor. The amplified current from these transistors operates the relay.

Figure 2 shows the connections of the relay, wafer switch, rotary switch, and transistors. The wafer switch can be located some distance from the remainder of the equipment, and perform all necessary control over one wire plus ground.

As shown here the relay, in operating, energizes the rotary switch. As the rotary switch cocks it breaks the circuit to the relay, causing the relay to release. This in turn breaks the circuit to the rotary switch, which falls back and steps, thus changing the resistance of R_{3}. As the rotary switch steps the current resulting from the unbalanced

Non-Interacting Positioning and Attenuating Controls

This circuir adds a de positioning voltage to an input signal that is to be applied to a recording galvanometer. The major feature of the circuit is that the magnitude of both the input and the positioning voltages can be controlled independently, without interaction between the two controls. The total output voltage is equal to the sum of the positioning voltage and the attenuated signal voltage.
In the circuit, bridge 2 adds the dc offset to the output voltage, while bridge 1 sets up an equal voltage of opposite polarity across R_{2}. The ganging of R_{6} and R_{5} maintains the off-balancing of the bridges equal. There is no flow of current back through R_{1} from the positioning bridge circuits because the two voltages cancel at points B and C of R_{1}. Therefore, there is no voltage feedback to the input and adjustment of R_{1} will have no effect on the positioning circuits.

At the output, the maximum signal is reduced by the

Non-interacting position and aftenuating controls.
voltage-divider factor $R_{\mathrm{L}} /\left(R_{\mathrm{L}} \div R_{2}\right)$, which in the basic circuit is 50 percent. This shortcoming can be overcome by decreasing R_{2}. However, to maintain the effects of the two bridges equal, V_{1} must be increased by the same factor by which R_{2} was decreased and a resistor must be added between points D and E whose value is the difference between the new R_{2} and the old R_{22}. For example, if R_{2} were decreased to 11 ohms to make the maximum output voltage 75 percent of the input, then V_{1} should be increased to 4.02 v and a resistor of 22 ohms added between D and E.

Dual Linear Pot Approximates Sine Pot

In many control and computer systems, an analog output is required that is equal to the input multiplied by the sine or cosine of the angle on a controlled shaft. Although sine-cosine pots have been manufactured to perform this function, their cost often is too high to allow use in systems where a high degree of accuracy is not needed. A more economical method is shown.
A dual pot is connected as in Fig. 1. If R_{2} is much

Fig. 1. Two linear pots connected to approximate a half-sine wave.

greater than R_{1} (i.e. R_{2} does not load R_{1}), it can be shown that $E_{\text {out }}=4 X(1-X) E$, where X is the fraction rotated by the wipers. This parabolic function approximates onehalf of a sine wave with a maximum error of 0.056 E at 21 deg and 159 deg , as may be seen in Fig. 2.

A practical circuit which generates the positive and negative halves of a sine wave is shown in Fig. 3. This circuit approximates a sine function with a maximum error less than 10 percent. The error can be reduced by placing a buffer stage between the two pots and/or by using pots of better linearity.

Fig. 2. Comparison between pot approximation and sine function.

Fig. 3. Practical circuit for approximating complete sine function.

Wide-Range Variable Delay Circuit

This circuit was designed to provide a continuously variable delay from less than 10 msec to greater than 1 sec . The delay can be varied with good setability over the entire range due to the use of a single log tapered pot, R_{1}. The circuit was originally designed to delay a negative-going waveform in a negative true-logic system. The circuit is quite economical since it utilizes inexpensive commercial grade epoxy encapsulated silicon transistors.

The output stage Q_{5} is a saturated pnp switch, driven by a two-stage non-saturating differential amplifier (Q_{1}, Q_{2}, $\left.Q_{3}, Q_{4}\right)$. A slight imbalance in the input stage Q_{1} and Q_{2} will drive Q_{5} entirely on or off. The $R-C$ time constant is provided by C_{1} and R_{1}. Voltage divider R_{2} and R_{3} is used to allow the use of a $2.5-\mathrm{meg}$ pot (a $5-\mathrm{meg}$ pot is not commonly available in a \log taper). Q_{1} is the "normally on" side of the input amplifier; its on current is provided by R_{1}. This on current varies from approximately 3 to $700 \mu \mathrm{~A}$.

When a negative triggering pulse is applied to the base of Q_{2}, Q_{1} is driven off regeneratively by Q_{5}, which is driven on, pulling the junction of R_{10} and R_{11} from -15 V to -10 V . The voltage divider R_{10} and R_{11} is added to restrict this voltage excursion to 5 V to protect Q_{1} from excessive reverse $V_{B E}$.

At the end of the delay, Q_{5} turns off and C_{1} is recharged to -15 V through R_{10} and $C R_{1} . C R_{1}$ clamps the base of Q_{1} to -0.6 V during this recovery time. $C R_{1}$ also clamps the base voltage of Q_{1} during the quiescient interval when the hold-on current provided by R_{1} could pull the Q_{1} base

Wide-range, continuously variable delay is set by log-taper pot \mathbf{R}_{1}.
voltage negative by several volts depending on the setting of R_{1}.

The range of delay realized is typically from 6 msec to
1.5 sec , insuring that with $\mathrm{a} \pm 20$ percent pot tolerance and ± 10 percent capacitor tolerance the desired $100: 1$ range is still achieved.

Peak-Hold Circuit

In CONTROL systems and instrumentation, it's often necessary to hold the peak voltage of a short-duration analog signal for a longer period of time. For example, mechanical indicators such as pen recorders have slow response but will measure the peak value of short-duration signals if used with a suitable peak-hold circuit.

The circuit shown in Fig. 1 receives a short-duration analog voltage as input and holds the peak magnitude of the input for any required period up to several-hundred milliseconds. Fig. 2 shows the input and output waveforms.

Transistors Q_{1}, Q_{2} and Q_{3} (any normal switching transistors) form a combined Schmitt-trigger and one-shot circuit. Normally, transistor Q_{1} is cut off while Q_{2} and $Q_{\text {s }}$ are turned on. Diode D_{1} is then in the reverse-biased condition. When the short-duration analog signal appears at the input, the Schmitt-trigger action of transistors Q_{1} and Q_{s} shapes the signal and turns off Q_{3}. During the "off" time of

Fig. 1. Simple circuit holds the peak voltage of a short-duration input signal. Storage period is determined by the value of C_{1}.
Q_{3} (controlled by the $R_{1} C_{1}$ time constant), diode D_{z} is forward biased thus forcing $Q_{\text {z }}$ to be cut off regardless of the state of transistor Q_{1}. Because Q_{6} is cut off, capacitor C_{2} charges to the peak value of the analog input less the voltage drop of diode D_{z}. The capacitor holds the peak voltage until Q, is again turned on.

To avoid shunting capacitor C_{2}, an emitter follower can be added as an input buffer. The value of C_{z} determines the discharge time for the next input peak. The value of C_{t} determines the "hold" time of the circuit.

Fig. 2. Typical waveforms for the peak-hold circnit using component values shown in Fig. 1.

Modified Limiter With Improved Accuracy

The conventional limiter cir- changes with the position of cuit of Fig. 1 has two basic disadvantages: The rounded "knee" of the diode D, causes changes in limiting level for different input voltages. Current in the potentiometer causes further changes in limiting level. Because part of the diode current goes through each section of the potentiometer, the voltage drop
the potentiometer slider.
The modified circuit of Fig. 2 overcomes these disadvantages. Voltage gain between $E_{y u t}$ and point B is about 100. Transistor $Q_{\text {, }}$ operates as a common-base amplifier. Thus only a small change of $E_{\text {out }}$ is required to turn the diode full on and to overcome any voltage change due to diode cur-

Fig. 1. This commonly-used limiter circuit for integrators has the disadvantage that calibration varies with input level.

Fig. 2. Modified circuit gives improved accuracy because of the gain of grounded-base amplifier Q_{1}.
rent. The knee voltage of D_{z} at the base emitter junction. and the $V_{H E}$ of transistor Q_{1} do Resistors R_{6} and R_{3} provide not subtract from this action, bias for D_{r}. since both are "on" before Transistor $Q_{\text {, }}$ should have limiting occurs.

As the base current of Q_{1} is very small, this current causes no detectable change of potentiometer voltage at any setting.

Resistor R and diode $D, 0$ to 10 V protect Q_{1} from reverse voltage maintained within 0.1 percent.

Signal-powered dc voltage sensor

controls

 ac loadsA four-layer breakover diode simplifies the design of a voltage sensor that needs no external power other than the sensed voltage.

The circuit shown in Fig. 1 can be used to control various types of loads such as an ac relay, a lamp or an alarm horn. Fig. 2 shows how the sensor circuit is simply connected like a switch in series with the load, across a 115 volt ac line.
The load current should be sufficient to provide holding current for the SCR (typically 4 mA). The maximum current is restricted by the rating of the SCR. With the com-
ponents specified, and with suitable heat sinking of the SCR , the allowable load current is around 1.5 amps .

With the component values shown in Fig. 1, the input trigger level is approximately 9.3 volts. So the circuit will respond to any input voltage above about 10 V . An internal limiting circuit prevents damage due to excessive input voltage. Hysteresis of the circuit is around 100 millivolts.

The circuit works as follows. Breakover diode D_{q}, capacitor C_{1}, resistor $R_{\mathcal{Z}}$ and pulse transformer T_{1} together form a simple relaxation oscillator. Whenever the input voltage exceeds the breakover voltage of D_{q}, a train of pulses appears at the secondary of T_{1}. These pulses then gate the SCR output switch.

The pulse train is rapid enough to ensure almost full

Fig. 1. Simple voltage sensor with threshold voltage determined by four layer diode D_{2}. The pulse transformer isolates the sensing circuit from the load circuit.

Fig. 2. The voltage seusor is used like a simple switch connected in series with the load. If load current is insufficient to hold the SCR in conduction, the load must be shunted by a resistor R.
firing of the SCR during each plied to the load through the cycle of the 60 -hertz ac ap- switch. The SCR is operated
in a bridge circuit configuration. Components R_{s}, C_{8} and D_{s} suppress transients and rate effect (false triggering that occurs when the ac line is turned on near the peak of a cycle).

Because the input circuit derives its power from the voltage being sensed, input impedance is necessarily rather low. But it has been found to
be adequate in most applications.

For inputs below the breakover voltage of D_{2}, the input impedance is essentially the parallel leakage of C_{1}, D_{1} and D_{2}. This is typically several megohms.

When the input voltage exceeds the breakover voltage of D_{2}, the impedance fluctuates because of the charging and discharging of C_{1}. In this
mode, the minimum input impedance is 17 kilohms.

Zener diode D_{1} prevents the breakover diode D_{2} from reaching its holding current when the input voltage exceeds the trigger voltage. As the input voltage increases beyond that required for triggering, the pulse rate increases until a point is reached where the zener diode prevents further increase. The repetition rate, for
input voltages above this level, depends on C_{1}, R_{z} and the zener voltage. This rate must be sufficiently high to ensure a large conduction angle for the SCR . If the repetition rate is too low, it could cause a relay load to chatter.

Motorola's M4L series of four-layer diodes covers the range 8 to 12 volts. Other manufacturers offer diodes suitable for different voltages.

Simple modification prevents single-cycling with SCR motor drive.

A COMMON disadvantage of SCR phase-control circuits for ac motors is that the motor may run in a single-phase mode when continuous power is applied. This is because the inductance of the motor winding causes the motor current to lag motor voltage. However, a few extra components, added to the basic circuit, can eliminate the problem.

Let's look first at the conventional circuit. Fig. 1 shows a popular method of motorspeed control using SCR switches. In this full-wave circuit, $S C R_{1}$ applies power dur-
ing the negative half cycle and $S C R_{q}$ applies power during the positive half cycle. Motor speed is proportional to conduction angle, which is the same for each half cycle.

Figure 2 shows the waveforms for motor-current I_{M} and motor-voltage V_{M}. The motorcurrent I_{M} lags V_{M} by an angle α, which is a function of the applied power and the Q of the overall load circuit.

In case (a), the motor fixing angle ϕ_{a} (which defines conduction angle β) is greater than α_{a}. Thus the fixing angle controls the applied voltage

Fig. 2 a (left) In this example, the firing angle ϕ is greater than the current-lag angle α so single-cycling is not a problem.

Fig 2 b (right) In this example, however, ϕ_{b} is less than α_{b} so there is no motor voltage during the latter part of the negative half eycte.
for each half cycle, resulting angle has been decreased to in smooth control of motor ϕb in an attempt to increase speed.

But in case (b), the fixing α to α_{b}, which is greater than

Fig. 1. Conventional full-wave phase-control circuit has the disadvantage that the motor may "single cycle" with low firing angles.

Fig. 3 An inproved version of the fuil-wave phase-controt circuit, in which the added diodes and RC networks eliminate the single-cycling problem.
ϕb. Under these conditions, the motor current doesn't return to zero before $S C R_{t}$ (which controls the negative
conduction cycle) receives its turn-on pulse $V_{G r}$. Thus $V_{G I}$ occurs before $S C R$, has turned off. This puts a reverse bias
across $S C R_{1}$ when its turn-on pulse occurs. Consequently, the SCR doesn't turn on and the motor voltage isn't reapplied during the negative half cycle. This condition is known as single cycling.
The only known method for preventing single cycling is changing the SCR triggering mode from transient to steady state. In applications where this is impossible or uneco-
nomical, the fixing angle ϕ must be maintained greater than α, using some sort of limiting circuit.
Figure 3 shows a simple circuit modification that prevents single cycling. Assume that $S C R_{1}$ and $C R_{1}$ are conducting. Then $C R_{z}$ and R_{q} alallow C_{2} to charge to the negative peak of V_{M}. When V_{M} starts its upward slope, $C R_{2}$ becomes reverse-biased and C_{2}
retains the negative peak. Now, when $S C R_{q}$ receives its trigger pulse $V_{G 2}$, it can turn on because its cathode is at a low negative voltage.

When I_{M} finally goes to zero, at some point into the positive half cycle, $S C R_{1}$ will turn off, $C R_{2}$ will become forward-biased, and $S C R_{g}$ will apply V_{L} to V_{M} which will continue uninterrupted.

Resistor $\boldsymbol{R}_{\boldsymbol{q}}$ must be small
enough to provide the minimum turn-on holding current required by $S C R_{q}$. The network R_{1}, C_{1}, and $C R_{1}$ performs the same function as described for its counterpart-but at the end of the positive half cycle.

Reference

1. F.W. Gutziwiller, "G.E. SCR Manual, 4th Edition,' General Electric Company, 1967, p. 173.

High-voltage triacs reverse

capacitor

motor

Two triacs and two capacitors are the essential components for a simple bridge circuit that can control rotation-direction of a fractional-horsepower, capaci-tor-start, motor. With a suitable trigger circuit, also described here, motor direction can be controlled by IC logic voltages.

Figure 1 shows the bridge circuit, and Fig. 2 shows a suitable trigger circuit together with its power supply. The bridge and trigger circuit are coupled together by transformers T_{1} and T_{2}. No external power supply is needed, other than the 115-Vac supply for the motor.

Low-level logic, from an IC flip-flop, forward-biases either Q_{1} or Q_{3} at points L or R respectively; resulting in either "left" or "right" motor drive.

Unijunction oscillator Q_{6} provides pulsed emitter current which is conducted by either Q_{1} or Q_{2} depending on the input logic. One of the two pulse transformers then couples the pulsating signal to the corresponding triac Q_{s} or Q_{4}. Triac conduction determines the phase of the capacitor winding relative to the main winding. This, in turn, determines the direction of rotation.

Pulsed output from Q_{6} is synchronous with the ac line, because the supply voltage for
the unijunction is full-wave clipped ac derived from the sombination of transformers, rectifiers and zener. Of course, the pulse train ceases each time the line voltage orosses the zero axis. There is a short delay before the unijunction oscillator can restart with a new linevoltage cycle. This is because the timing capacitor must recharge to the firing voltage of Q_{5}. Delay is sufficient to allow the voltage to build up across the triac, thus ensuring reliable triggering.

The 75 -ohm resistor, shown in series with the main winding, allows motor direction to be reversed while the motor is running. This resistor is not required if the motor need only be reversed from standstill rather than while running. Also, the resistor is not needed if the motor is always heavily loaded. Use of a series resistor causes a sight reduction of starting torque.

A disadvantage of the simple two-triac controller is that it doesn't allow phase control of the motor - to vary the starting torque. This is because the nonconducting triac sees an extremely high voltage across the near-resonant motor-and-cacapitor circuit. Though the $400-$ volt triacs used here are adequately rated for full-phase running, they would not be able to withstand the $d V / d t$ conditions encountered with delayed triggering. If phase control is needed, a third triac in the main winding could be phase-controlled from a separate trigger source.

Fig. 1. Simple triac bridge controls direction of rotation of capacitor-type motor.

Fig. 2. Control circuit for the motor controlier. Depending on the input logic. pulses from the unijunction oscillator are transformer - coupled to one of the two triacs in Fig. 1.

The two-triac controller is foolproof. Simultaneous triac triggering, or a shorted triac, will stall the motor - which then draws about two-thirds of its normal running current. With the specified motor, current in the capacitor winding ranges from 500 mA rms at idling speed, down to 300 mA
with both triacs shorted. Current in the main winding is $1.6-\mathrm{A}$ idling and $500-\mathrm{mA}$ stalled.

RC networks across each triac minimize the possibility of unwanted $d V / d t$ triggering. The values depend on the inductance and back emf of the particular motor used. ${ }^{1}$ With
the motor specified here, the no-load back emf is about 800 V , resulting in $d V / d t$ of 2 V/ μ s.

The same basic circuit can
be used to control motors other heat sink. Very small motors than the one specified. Larger could be controlled by a simmotors would probably in- pler circuit with a triac concrease the dissipation of the nected from one winding or conducting triac, necessitating a the other, directly to the line.

Reference

1. "G.E. SCR Manual, 4th Edition," General Electric Co., 1967, p. 136.

Variable control for automobile

windshield

wiper

When driving a motor vehicle in very light rain, it is often desirable to operate the windshield wipers at infrequent intervals - say, for example, every 30 seconds. Depending on the condition of the rubber blades, it may be necessary to allow one or more wiping actions across the windshield for proper cleaning. The circuit described allows independent control of both frequency and interval, while still allowing the blade to run at its normal speed while wiping.
The circuit shown in Fig. 1 consists of a flip-flop, a unijunction timer driven by the flip-flop, and a relay which drives the wiper motor. When the windshield control switch S_{1} is turned on, +12 Vdc is applied to the driver and either Q_{1} or Q_{2} turns on. Assuming that Q_{2} is on, then capacitor C_{1} is then charged through the coil K_{1}, and via $C R_{1} R_{1}$ and the DUTY adjust resistor. Depending on the setting of the DUTY pot., unijunction transistor Q_{3} will be activated in about one

Fig. 1. Flip-flop circuit acts as a driver for windshield wipers and provides variable control.
to 80 seconds, and the flip-flop, eight seconds, and the flip-flop consisting of transistors Q_{1}, Q_{2} and associated circuitry, will be switched. This allows Q_{1} to turn on and Q_{2} to turn off, thereby causing K_{1} to close and supply power to the windshield wiper motor through the relay ground. Depending on the setting of the WIPES pot, control capacitor C_{1} will be charged through $C R_{1}$ and R_{2} in about one to
will be switched back to its former position. The WIPES control will usually be set for about one second for a single wiping action, however, this depends to some extent on the speed of the individual wiper motor. Thereafter, the cycle repeats at the time interval determined by the DUTY control.

Diode CR_{3} suppresses transsients that are produced when the relay coil is interrupted. Speedup capacitors C_{1} and C_{2} ensure proper flip-flop switching action. A separate ground wire should be used for the relay, since the motor current through this lead could produce a significant voltage drop and upset the flip-flop operation.

A Time-Variant Attenuator

0ccasionally it is necessary to measure a signal which has a greater dynamic range than the instrument available for recording the measurement. If the signal changes in a predictable fashion with respect to time, an automatic gain changing network can be used such that the signal to the recorder always lies within its dynamic range.

The circuit to be described accepts an input signal which changes over a range of 60 db and provides an output to the recorder within $20-\mathrm{db}$ limits. The gain is changed by attenuating the signal in three discrete steps, which eliminates any ambiguity in knowing the over all transfer function at any given time during the test. Thus, calibration is not affected and known scale factors may be applied during data reduction.

FIG. I-In the time variant attenuator, Bourns type 3250L-1-502 pots are used to vary the timing of the unijunction circuits. The silicon controlled switches are miniature units made by Solid State Products.

The circuit shown in Fig. 1 is based upon the voltage divider equation, $e_{\text {unt }}=e_{\text {in }} R_{p} /\left(R_{s}+R_{p}\right)$, where R_{p} is caused to change through the action of
two time delay switches. When the circuit is first actuated, both diodes are conducting and their dynamic impedance is quite low. In this case, R_{p} is equal to the parallel resistance of R_{1} plus the dynamic impedance of D_{1}, R_{2} with its diode, R_{3}, and R_{4}. As the series resistance of R_{1} and D_{1} is about 300 ohms, it is this value which sets the initial attenuation and causes the input signal to be divided by 200.

Applying power to the circuit has started the timing sequence by energizing the standard RC unijunction transistor time delay circuits, and when Q_{1}, the first unijunction to fire, triggers its associated silicon controlled switch S_{1}, D_{1} becomes back-biased, essentially removing R_{1} from the input circuitry. Now it is the parallel combination of R_{2} and its diode impedance, R_{3}, and R_{4} which makes up R_{p} and R_{2} is chosen such that now the circuit divides by 20. When the second scs is triggered by Q_{2}, D_{2} becomes back-biased and now only R_{3} and R_{4} make up R_{p}. The attenuator divides by 2 in this case and consists of only the three input resistors.
In setting up the circuit, the input impedance of the amplifier or recording device must be accounted for in selecting R_{3} and R_{4} as the attenuator cannot be loaded without changing the transfer function.
Because only passive devices are used to determine the attenuation factors, good stability is achieved and there is less than 3 per cent variation at any time over the temperature range of -50 C to 75 C . The noise characteristics are also quite good in that no noise could be measured with the instruments available.
As the attenuation is changed, there is a switching transient, during which data is lost, of about 30 milliseconds. The timing of the changes can be varied independently from less than a second to as much as a minute by selecting R_{t}, and the time stability is about 5 per cent over the above temperature range.

Servo-motor Winding

Stabilizes Power Amplifier Operating Point

The majority of transistorized servo-amplifiers employ class AB power stages in the common emitter configuration to realize the maximum power gain. (See Fig. 1). The quiescent current of these stages must be stabilized at a suitable small-signal gain level. A common emitter resistor used for this purpose will set the total emitter current but it will not correct unequal current sharing due to different base-emitter voltages. Furthermore, the resistor seriously reduces available output power for large input signals.

An improvement can be realized with the common collector configuration shown in Fig. 2. When driving a low-impedance load, such as a servo motor, the power gain is only slightly less than other configurations, and the output voltage is limited only by the saturation resistance of the output transistors.

The grounded collector circuit has certain advantages. First, a fact which does not appear to have been used previously, the motor control winding placed in the emitter circuit provides through its positive temperature coefficient a compensation for the negative temperature coefficient of the baseemitter voltage. Second, the winding will conveniently provide the proper separate emitter resistances necessary to equalize quiescent current sharing.

Either pnp or npn transistors can be used with this circuit. With npn transistors and a negative supply or pnp transistors and a positive supply, the collectors may be directly grounded for better heat dissipation.

The control winding impedance can be selected for maximum power output for a given supply voltage and transistor saturation resistance with the aid of the following relationship:

FIG. I-Conventional circuit for driving servo motors.

FIG. 2-Better current balance and temperature stability result with grounded collector circuit.
where $W_{m}=$ motor watts, $V_{c c}=$ collector supply voltage, $R_{s}=$ saturation resistance of output transistor, and $Z_{m}=$ control winding impedance.

Motor Speed Control

Regulation of speed of a small de motor is difficult, especially over a wide range, and when the driven load is subject to change. Also, the starting friction requires more voltage to overcome than that required to maintain rotation. The following circuit is capable of driving a small pm motor at speeds of less than one rpm up to full speed in direct proportion to the control voltage. For all practical purposes it eliminates the problems caused by starting friction.

The principle employed is to always apply full voltage, 12 volts in this case, to the motor. The speed is regulated by interrupting the voltage at a fixed frequency and controlling the on-time to offtime ratio.

Transistor Q_{1} is used in a conventional saw-tooth generator circuit. The output is -4 volts to -10 volts at a frequency of approximately 50 cycles.

This frequency was chosen because it gives optimum motor performance. Q_{2} couples the generator to the detector Q_{3} through a biasing network. Q_{3} will conduct only when that portion of the sawtooth wave which is more negative than the emitter, is applied to the base. Therefore, by varying the emitter voltage, the ratio of on to off time can be controlled. The ratio is in direct proportion to the control voltage, which is -1 to -6 volts. Q_{4} amplifies and squares the output of Q_{3} by going from cutoff to a saturated condition. A Schmitt trigger circuit is not used due to its hysteresis properties. $Q_{\text {: }}$ and Q_{6} are emitter followers to provide the power to drive the motor. An output rating of one ampere is quite conservative for the unit.

Zener Diode Regulator

A
simple regulator, continuously variable between 0 and 30 volts, is useful for bias and transistor testing applications. The design of such a regulator poses several knotty problems, however. As an example, the two-transistor feedback regulator (Fig. 1) suffers from poor regulation near full output. For this condition the ratio of R_{1} / R_{2} must be large to cut off the control transistor. The error signal is also divided by the ratio R_{1} / R_{2}. Further, the usual transistor regulator circuit does not go to zero for the control transistor requires forward bias (obtained from the output) to cut off the current passing transistor.

A circuit for circumventing this problem is shown in Fig. 2. The zener diode, in addition to performing a function as reference element, will provide a reduction in dc without attenuating the control or error signal. In the regulator circuit shown, 40 volts dc is applied to the load through the regulator transistor Q_{1} and a 10 -volt zener diode Z_{2}. Connected in this manner the emitter of Q_{1} will always be 10 volts more negative than the output terminal, providing the bias voltage and error signal for transistor Q_{2}.

For zero output voltage the potentiometer arm is moved toward the Z_{2} end, causing diode Z_{1} to avalanche. The voltage appearing across resistor R_{2} biases the control transistor, greatly reducing the junction resistance. Resistor R_{1} and transistor Q_{2} form a voltage divider to reduce the bias on the current passing transistor, Q_{1}. Under these conditions the emitter to positive terminal potential will be approximately 8.4 volts. Since this is less than the breakdown voltage of Z_{2}, no potential appears across the output terminals.

To obtain output voltage the potentiometer is rotated toward the R_{3} end. This reduces the bias on Q_{2}, decreasing the junction resistance of the regu-

FIC. 1-Conventional two-transistor regulator.

FIG. 2-Simple regulotor provides zero to 30 valts output.
lator transistor Q_{1}.
The use of a diode in series with the error signal reduces R_{1} / R_{2} ratio and improves the regulation at all voltage settings. Series-connected diode Z_{2} permits the output voltage to be reduced to zero. Both diodes are International Rectifier types.
For best regulation both diodes are selected in the avalanche region, well past the zener knee. If more output voltage is required, and a small minimum voltage can be tolerated, diode Z_{1} may be replaced with an MZ-3.9 and Z_{2} can be eliminated. With these changes it will not be possible to reduce the output below 4 volts.

Transistorized Speed Regulator

Conventional centrifugal governors for speed control of de motors are widely applied. The limitations of this type of control include the handling capabilities of the contact fingers, the violent changes of instantaneous speed rates caused by the governor contacts switching on and off a major part of the field power, the regulation drift due to contacts arcing and pitting, and the regulation accuracy.
A transistorized speed regulator, where the centrifugal governor is used only as an error detector loaded very lightly (microwatts), where the problem of arcing and pitting does not exist. where the drift is minimum and where the regulation is better than $\pm 1 / 4$ percent will be described.
The speed regulator is designed for a $1 / 2$ H.P. dc motor operated from 24 vdc supply. The anticipated input voltage range is between 20 v to 30 vdc , and rated motor speed is 6000 rpm .

A two-transistor amplifier is connected across the

Governor contacts handle only a few microwatts of power.

Table I. Test Data		
Input Voltage VDC Load Percent	Speed RPM	
20	0	5995
20	100	5986
24	0	6000
24	100	5995
30	0	6010
30	100	6010

minimum field resistor. No separate source of power is necessary for the amplifier. The only input is the 24 -vdc bus.
The amplifier consists of a preamplifier transistor $\left(Q_{2}\right)$ and a power transistor (Q_{1}). The centrifugal governor controls the signal current flow between emitter and base of the preamplifier. The signal current is a few microamperes. The signal power that the governor is required to handle is in the range of microwatts. The amplifier sensitivity is adjustable. The governor may be as small as desired, consistent with mechanical requirements.
Table I shows readings taken with varying conditions of input voltage and load.

Snap Action Level Switch

Preset audio power level indicators find many applications in the field of electronics. Circuits of this type are usually unreliable because in the ac to dc conversion the velocity component is lost. Therefore, if the integrated dc voltage is used to control a transistor-relay combination, the $I_{c o}$ and temperature effects on the transistor render the unit unrepeatable.
In the circuit shown here, a zener diode, with a zener knee of 10 v , was employed to allow the integrated voltage to reach a relatively high point.

The instant the zener breaks from nonconduction to conduction, the control transistor is forward biased. The transistor goes from cutoff to saturation in a snap-like action, thus actuating the relay. Level of operation is controlled by the adjustment of potentiometer R_{1}.
This circuit could also be used as a gating circuit if K_{1}, was replaced by a suitable transistor and load resistor combination.

Level switch circuit (top) has snap action effect when ac signal goes over zener conduction point (bottom).

Low-Voltage Transistor Series Regulator

Unlike a vacuum tube circuit, a low voltage transistor regulator does not require a reference voltage because of the difference in biasing between tubes and transistors. In Fig. 1, tube V_{2} must be biased for Class A operation (no grid cur-

FIG. I-Tube regulator using VR tube as reference.
FIG. 2-Transistor series regulator for-low voltage.
rent) to regulate properly. Therefore the grid of V_{2} must be negative with respect to its cathode. This can be accomplished by the VR tube which contributes to regulation by holding V_{K} constant.

Transistors, however, must draw base current for class A operation. Using the circuit of Fig. 2, it is unnecessary to insert a reference diode at the
emitter of Q_{2}. In fact, when the emitter of Q_{2} is grounded, emitter ground becomes the reference of Q_{2}. As $V_{D C}$ increases, so does $V_{E B}, I_{B}$, while V_{2} decreases and V_{1} increases, thereby decreasing or regulating $V_{D C}$.

Naturally, better regulation is obtained if $V_{E B} / V_{D C}$ is larger. This should be the reason for inserting a reference in the emitter leg of Q_{2} because the base of Q_{2} can be applied to a higher point on R, thereby applying a greater portion of the output voltage change to the base of Q_{2}. This improvement is limited to the reduction of voltage across $V_{1}\left(V_{E C}\right)$ due to the reference.

However, as mentioned previously, for low voltage regulators, $V_{E B} / V_{D C}$ will be sufficiently large for most applications.

Whether or not a reference diode is used, $V_{E B}$ can still vary with temperature. It is possible to use a silicon transistor for Q_{2} to minimize this effect. In addition $V_{E B}$ can be larger for silicon than for germanium, resulting in a larger $V_{E B} / V_{D C}$ ratio.

Blanking Circuit
 Clamps to DC Level

This blanking circuit clamps a linear amplifier's output to its dc operating level during the time the blanking signal is present. The necessary blanking signal is a negative rectangular pulse.

During blanking, Q_{1} and Q_{2} are saturated. Resistors R_{5} and R_{G} then form a voltage divider between $E(-20 \mathrm{v})$ and ground. If V is the operating level of the amplifier, the values of R_{5} and R_{6} should be chosen such that

$$
\frac{R_{6}}{R_{5}+R_{6}} \cdot E+0.3=V
$$

The emitter resistor R_{7} of emitter follower Q_{3} is returned to ground through Q_{2}. Since Q_{1} is saturated, the source impedance of Q_{3} is low and Q_{3} therefore has a low output impedance. The current flowing through Q_{3} should be sufficient so that Q_{3} can act both as a source and as a sink for the amplifier Q_{4}; hence the amplifier output is clamped to the voltage V.

To ensure clamping of all signal magnitudes,

$$
R_{\overline{7}}<R_{a} \frac{V}{E-V}
$$

In the circuit shown, this means that $R_{7}<4.5 \mathrm{~K}$.
In the absence of the blanking signal, Q_{1} and Q_{2} are off. Emitter follower Q_{3} has an extremely high source impedance, namely the parallel combination of the reverse biased base-emitter diode of Q_{1} and the output impedance of $Q_{v_{2}}\left(r_{c} / \beta\right)$. This source impedance divided by the beta of Q_{3} is the load for the amplifier during the positive-going excursion of the signal.
When the signal is negative-going, the amplifier is loaded by the parallel combination of the reverse biased baseemitter diode of Q_{3} and the output impedance of Q_{2}. In both cases this load is sufficiently small so that it can be ignored.

Blanking circuit ($\mathbf{Q}_{1}, \mathbf{Q}_{2}$ and \mathbf{Q}_{3}) controls output of linear amplifier $\mathbf{Q}_{\mathbf{4}}$.

Non-Attenuating

Voltage-Control Circuits

These circuits shift the de level of a signal without attenuating the ac signal voltage. The basic dc-level-setting component in each circuit is a zener diode.

In Fig. 1, the zener diode sets an exact voltage across resistor R, which does not change as the input voltage changes. However, the voltage above ground at the potentiometer slider varies directly with the input signal. Fig. 1 shows a circuit that transposes a zero dc voltage from a high impedance source to a low-impedance source in which the output can be set to exactly zero volts.

Figures 2a and 2 b show other possible arrangements. These circuits transpose to a more negative dc voltage. If the zener diodes and supply voltages are reversed and pnp transistors used, the circuits can be used to transpose to a more positive dc voltage.
The actual component values depend on the voltages to be transposed, but care should always be taken to draw enough bias current through the zener diode.

Fig. 1. Basic voltage-control circuit.

Fig. 2. Voltage-control circuits for shifting to a more negative dc voltage.

Temperature-Stabilized Darlington

Use of dambingron or beta-squaring circuits leads to severe offset-voltage changes as a function of temperature. If the $\Delta V_{b e}$ figure is about 2 mv per $\operatorname{deg} C$, a 25 C temperature change can give an output change of 50 mv per stage which can represent a 50 percent (or more) change in quiescent output.

Here are two circuit variations for minimizing or eliminating this temperature effect. Fig. la shows a typical Darlington while Fig. lb shows a modification that includes a pair of diodes and an additional resistor. In these circuits quiescent levels are assumed for silicon transistors at temperatures of 0 C and 50 C , and it is assumed that $I_{c 2}$ is about 10 ma and $I_{c 1}$ about 0.1 ma . Values of $V_{b e}$ as a function of I_{c} and temperature are manufacturer's specs for the 2 N 930 but they are typical for silicons.
Fig. 1 The Darlington circuit (a) and a modified version (b) offering temperature compensation.

Fig. 2. Use of complementary transistors reduces offset voltages by cancellation.

Table 1
Table 2

	Basic Cht.		Modified Ckt.		0 C		50 C
	OC	50 C	0 C	50 C	$V_{\text {b1 }}$. 85	. 85
V_{b}	2.35	2.35	2.35	2.15	$V_{\text {b2 }}$. 25	. 35
$V_{b 2}$	1.75	1.85	1.75	1.65	$V_{\text {bet }}$. 6	. 5
$V_{\text {vel }}$	0.6	0.5	0.6	0.5	$V_{\text {bea }}$. 75	. 65
$V_{\text {bee }}$	0.75	0.65	0.75	0.65	E_{0}	1.0	1.0
$V_{\text {dit }}$	-	-	0.6	0.5			
$\mathrm{V}_{\mathrm{d} 2}$	-	-	0.6	0.5			
E	1.0	1.2	1.0	1.0			

Table 1. Voltage Levels in the Basic and Modified Darlington.
Table 2. Voltage Levels in the Complementary Circuit
Table 1 shows the effect on the output voltage of the temperature change. In the basic circuit, the 20 percent change in output could well have been a 100 percent change had the quiescent output been 0.2 v . Note how, in the modified circuit, the effect of $\Delta V_{\text {be }}$ of Q_{1} and Q_{2} on E_{0} caused by temperature change is offset by identical changes in $V_{d 1}$ and $V_{d 2}$.

A second approach to controlling the effect of $V_{b e}$
changes with temperature involves the use of complementary transistors as in Fig. 2. It is perhaps more subtle in that it virtually eliminates $V_{b e}$ offset voltages by cancellation.

If we assume the same quiescent voltages in Fig. 2 (Table 2) as in Fig. 1, then, at $0 \mathrm{C}, \mathrm{V}_{b e 2}=0.75 \mathrm{v}$ and $V_{b e 1}=0.6 \mathrm{v}$. But in Fig. 2, these voltages are of opposite polarity so the total offset voltage is the difference (0.15 v) rather than the sum (1.35 v), an improvement of nearly an order of magnitude.

At $50 \mathrm{C}, V_{\text {be1 }}=0.5 \mathrm{v}$ and $V_{\text {be2 }}=0.65 \mathrm{v}$ and, in Fig. 2, the total offset voltage is still 0.15 v rather than the 1.15 v of Fig. 1 .

Though silicon transistors and diodes are used in these circuits, germaniums could be used just as well.

Low Cost Transistor Voltage Regulator

Many applications require an inexpensive, constant source of low voltage dc. Such a regulator, costing 5 to 7 times less than a zener diode, and having the same power rating, is given here. A further advantage is realized in that it can be set at the precise value of the voltage required, whereas the zener is purchased with a tolerance of 5 or 10 per cent.

This regulator was designed around a very inexpensive power transistor, the 2 N 554 . By using a minimum of parts, and a silicon diode (1 N 462) for reference as opposed to a zener diode, the regulator was produced (in quantity) for less than two dollars.

The forward characteristic of the general purpose silicon diode was used rather than the back characteristic of a zener diode. A 2 N 404 transistor was chosen as a feedback amplifier because of its reliability, uniformity, and low cost. In addition, a 10 ohm thermistor was added to make the circuit perform at any temperature within the -55 to 71 C range. The input voltage source to this regulator is a sea water activated battery which has a voltage which varies from 12.5 to 14.7 v depending on salinity and temperature. The output voltage of this regulator, with design load of 600 ma , varies from 6.3 to 6.4 v over the voltage input and temperature ranges indicated.

Fig. 1 Low cost transistor voltage regulator.

Transistor Voltage Regulator

|n the circuit shown, voltage V_{z} of reference diode D_{1} causes a current I_{1} to flow in the collector of Q_{1}. The current $k I_{1}$ flows through R_{2} and ($1-\mathrm{k}$) I_{1} flows into the base of Q_{2}. The constant k will be a value equal to or greater than a_{2} of Q_{2}. Current ($1-\mathrm{k}$) I_{1} causes a current $\beta_{2}(1-\mathrm{k}) I_{1}$ to flow through the reference diode.

Advantages of this circuit are: 1. High voltage operation. The only restriction is that $E_{c o}-V_{z}$ does not exceed the reverse break-down voltage of Q_{1} or $Q_{2} .2$. The output voltage is referred directly to a reference diode, and the output of this diode is stabilized by constant bias current which results from the constant ref-

Fig. 1. Voltage regulation is provided using transistors.
erence voltage. Thus, the reference diode regulates its own bias current to a constant value.

Extentions of this circuit are possible. For instance, R_{2} may be replaced by a low voltage zener. This will cause the effect of the load current on the reference diode bias current to be reduced by $\mathrm{r} / \mathrm{R}_{2}$, where r is the reference diode impedance.

Also, the regulator may be decoupled from the load by an isolation amplifier (series regulator amplifer), as shown in Fig. 2. This will further reduce the effect of the load current on the bias current.

Experimental values were found to be:
$V_{z}=-275 \mathrm{v}$
$E_{c c}=-300 \mathrm{v}$
$R_{1}=25 \mathrm{~K}$ (adjusted for approximately $\frac{1 / 2}{}$ ma current to zener).

$$
\begin{aligned}
& Q_{1}=2 \mathrm{~N} 526 \\
& Q_{2}=2 \mathrm{~N} 335 \\
& R_{L}=130 \mathrm{~K}(2 \mathrm{w}) \\
& R_{L}=20 \mathrm{~K}(5 \mathrm{w}) \\
& R_{L}=(\text { See Fig. } 2) \\
& R_{2}=6.2 \mathrm{~K} \\
& R_{2} \text { replace by } 10 \text { v zener diode. } \\
& R_{2}=6.2 \mathrm{~K}
\end{aligned}
$$

Fig. 2. Amplifier accomplishes good isolation.

AGC Amplifier

Many applications require a constant output voltage over a considerable range of input variation. This circuit was designed for such an application. The input may be varied from 2 to 15 volts peak to peak with output variation from 8 to 10 volts peak to peak. This performance was adequate for our use, but an extension of the design can control more closely.

The conventional method of age which controls gain by varying the current through an amplifier has a number of deficiencies. It is undesirable to change the operating point because of possible distortion. Transistors in general vary in gain by a useful amount only at low collector currents. This brings to mind the desirability of varying gain with a feedback loop. The accompanying circuit uses this principle.

Transistor Q_{2} is the controlled amplifier, with Q_{1} in a feedback path from collector to base. A bias variation on Q_{1} will vary its resistance and hence vary the feedback. Control voltage for Q_{1}

Wide range of input voitage is handied by this agc amplifier.
is derived from the output of Q_{2} by detection and a dc amplifier. Any variation of the output of Q_{2} is reflected in a variation in the output of the dc amplifier. This changes the resistance of Q_{1} in the feedback loop which varies the gain
of Q_{2}. An amplifier is shown after Q_{2} to bring the output voltage to the desired level. The operating frequency of this circuit is 20 kc for our application, but it will operate from approximately 5 to 100 kc as shown, and any range $\mathrm{ds}-$ sired with suitable component changes. Output variations may be reduced by a higher gain dc amplifier in the control portion of the circuit. Smaller capacitors in the de amplifier will provide a faster response time to input variation, if desired for the application.

High Frequency DC Restoration with Gain

The retention of a fixed de reference potential in association with a rectifier requires clamping. Basic circuits that perform clamping are shown in Fig. 1.

Fig. 1. Basic clamping circuits.
Fig. 2. Modified clamping circuit gives gain.
Diode $D 2$ provides effective clamping at audio and low radio frequencies, but at higher frequencies the effects of distributed capacitance make the clamp unsatisfactory. The higher the input frequency, the greater the charge across C_{D}. This will, in effect, backbias diodes $D 1$ and $D 2$ and prevent complete restoration of the reference potential.

The difficulty can be resolved by the addition of a few components which use this reverse bias to effective advantage. The modified circuit, shown in Fig. 2, uses the reverse voltage developed across D3 to turn on transistor Q1 to provide a low impedance path to ground, hence giving effective clamping.

The circuit in Fig. 3 illustrates how the modified clamp is used with $500-\mathrm{kc}$ sine wave input and 1 -mc

Fig. 3. Practical circuit for 500-kc-to-1-mc operation.
half-wave output. The transistor collectors are returned to a slight positive potential because of the large signal and supply voltages involved.

Zero Impedance Voltage Regulator

Described is a zero output resistance voltage regulator using two transistors and controlled positive feedback.
A basic emitter-follower type voltage regulator, using a complementary compound connection, is shown in Fig. la. The raw de input voltage, E_{i}, is pre-regulated by zener diode, Z, to a voltage level, E_{z}. The output voltage, E_{0}, is clamped to the zener voltage, E_{z}, through the base-to-emitter junction potential, $V_{B E}$, of transistor T_{1}. The output voltage, E_{0}, is

$$
\begin{equation*}
E_{o}=E_{z}-V_{B D} \tag{1}
\end{equation*}
$$

The output resistance is essentially

$$
\begin{equation*}
R_{o}=\frac{r_{o}}{\beta_{2}}+\frac{r_{b}+r_{z}}{\beta_{1} \beta_{2}} \tag{2}
\end{equation*}
$$

where r_{b} and r_{e} are the intrinsic r parameters of the base and emitter of T_{1} respectively; β_{1} and β_{2} are the base-to-collector current gains of T_{1} and T_{2} respectively ; and, \boldsymbol{r}_{z} is the dynamic resistance of Z .

A method of reducing the output resistance to zero is shown in Fig. lb. Most of the output load current, I_{0}, is sensed by sensing resistor, R_{8}. The voltage, V_{b}, thus developed is fed back through resistor R_{f} to the base of T_{1}. The feedback is positive; because, as output voltage E_{0} starts to drop due to a decrease in load resistance, the resultant increase in load current develops an increasing voltage, V_{8}, which when fed back to the base of T_{1} through variable resistor R_{f} tends to

Fig. 1. Two-transistor voltage regulator; a. without feedback; b. with positive feedback; c. with positive feedback and temperature compensation.
sase $\boldsymbol{E}_{\boldsymbol{o}}$. A proper adjustment of \boldsymbol{R}_{f} results in zero change in E_{0} as the load resistance is varied. The condition which must be satisfied is:

$$
\begin{equation*}
R_{f}=\frac{r_{z}}{R_{o}}\left(R_{z}-R_{o}\right) \tag{3}
\end{equation*}
$$

where R_{o} is given by Eq. 2. Hence, in order for R_{f} to be positive (real), R_{s} must be greater than R_{0}-the output resistance without feedback. Once R_{f} is properly adjusted to satisfy Eq. 3, it may be replaced with a fixed resistor of the same value.

Change in $V_{B E}$ with temperature, resulting in output voltage drift, is a major disadvantage of the circuit in Fig. lb. Positive feedback aggravates the condition. The circuit of Fig. lc incorporates a temperature compensating diode, D, placed in opposite polarity but in series with the base-to-emitter junction of T_{1}. Ideally, the junction voltage of the diode matches the junction voltage of the transistor with variations in temperature. The output voltage then remains unaffected. For the diode to remain biased "on," the following condition must be satisfied:

$$
\begin{equation*}
R_{1}<\beta_{2} R_{L} \tag{4}
\end{equation*}
$$

A measure of current overload protection is also offered by this circuit. The maximum load current that can flow ($R_{L}=0$) is given by

$$
\begin{equation*}
I_{0} \max =\beta_{2} \frac{\left(E_{z}-V_{B E}\right)}{R_{1}} \tag{5}
\end{equation*}
$$

The component selection shown in Fig. 1c is for a nominal $9 \mathrm{v}, 1$ a supply. By placing a 50 ohm potentiometer between the emitter of T_{1} and the cathode of diode D, with the wiper arm connected to R_{1}, the output voltage can be adjusted over a 1 v range.

Two-Terminal Constant-

Current Device

Thrs circuir is unique in that it can be encapsulated and used as a single component in a circuit to achieve a constant current in the same manner that a zener diode is used to achieve a constant voltage.

The circuit consists of a pnp and an npn current source connected in such a manner that each regulates the other's reference. Another feature is that the current through the compensating diodes $C R_{2}$ and $C R_{3}$ is the same as the current through the base-emitter junctions, which improves tracking with temperature. The circuit is efficient in that no additional current is required to bias the reference as in a conventional current source.

Values given are for 1 -ma current R_{1} and R_{2} can be changed for other currents. The circuit requires at least 8 v for proper operation. Maximum voltage is determined by transistor ratings.

The purpose of R_{3} is to provide the initial turn-on of the circuit. The source of current for the zener diodes is the collector current of the transistor that feeds it. At first turn-on of the circuit, there is zero drop across the zener
and visa versa (a bootstrap condition). The circuit will not start until a leakage current is provided. Once it is started, R_{3} contributes nothing except its current, which is added to the total. It could, in fact, be disconnected.

Constant-current source.
The compensating diodes compensate for changes in $V_{b e}$ with temperature. The temperature characteristics of a diode vary with currents hence the drop across the baseemitter diode and the compensating diode will more nearly track if the currents are the same.

Regulator Makes Two Power Supplies Out of One

Circuit development work often requires a dual power supply with equal positive and negative voltages about a common bus. Use of two separate supplies is undesirable both because of the perpetual shortage of power supplies in a development laboratory and because of the need to use a differential voltmeter to measure and set each voltage to get good tracking between the two supplies. The circuit shown here permits a conventional power supply to be converted to a dual supply with precisely matched positive and negative outputs.

The circuit is constructed in a small box which plugs into the output terminals of a conventional supply and which has available binding posts for the positive, negative, and common outputs. In use the conventional supply is set to twice the required voltage. Once the circuit has been adjusted initially, the positive and negative voltages will track within several millivolts without any further adjustments.

The circuit as shown is a unity gain follower with the input referenced to a precision divider connected between the positive and negative inputs. With 20 V at the input, the open loop voltage gain of the amplifier is about 4000 and the closed loop output impedance is less than 0.05 ohms. The output current will be limited to about 150 mA by the beta of the output transistors or to a lower value, depending on the power dissipation of the output transistors. The circuit normally is used with output voltages between 5 and 25 V (input voltage between 10 and 50 V) with output currents of 100 mA or less. Note that the output current flowing in the positive and negative supplies can be much higher than 100 mA .

The initial adjustment of the circuit is made by comparing the output voltage with a precision voltage divider connected between the positive and negative inputs. Potentiometer R_{1} is adjusted to balance the output voltage and potentiometer R_{2} is adjusted to give good tracking of the output voltage with a precision voltage divider convoltage.

Equal positive and negative voltages generated from single polarity powerr supply.

An efficient focus-current

regulator

using the

LM300

Other circuit designers have shown ${ }^{1}$ how IC voltage regulators can be used in a wide range of applications - to regulate current as well as voltage. National Semiconductor's LM300 is especially suitable for use as a current regulator, because it needs a low reference voltage of only 1.8 volts. This allows efficient operation, because only a minimum of voltage need be dropped across the currentsensing resistor.

The circuit described here regulates the control current through a CRT focus coil. Unlike other focus-current regulators that use ICs, this circuit has separate supply voltages for the focus coil and for the IC. Thus the unregulated input voltage is not restricted by the maximum allowable input (30 volts) for the LM300. The entire input voltage, less the saturation voltage of Q_{z} and the drop across the sensing resistor, is available to drive the load.

Output from the booster terminal (pin 2) of the LM300 drives Q_{t} which is a common-
base level-shifting stage. This in turn controls the pass transistor Q_{g}. Current through R_{s} generates the comparison voltage which is fed back to the LM300 input (pin 6). Resistor R_{6} provides the optimum source resistance for the feedback terminal of the IC. With a 2.2 kilohm source resistance, thermal drift is minimized and frequency compensation is satisfactory.

Capacitor C, provides frequency compensation for the LM 300 , while C_{1} filters noise at the reference terminal (pin 5). The diode across the focus coil damps inductive kickback during turnoff. Capacitor $C_{\text {: }}$ filters sweep-induced transients. Resistor $R_{\text {z }}$ merely minimizes the dissipation in Q_{r}, and is not essential to the circuit action.

Circuit performance is excellent. Here is a summary of measured performance:

- Line regulation : $<0.02 \%$
$\left(\Delta E_{i n}=25\right.$ to $35 \mathrm{~V}, I_{o}=$ $50 \mathrm{~mA}, R_{i}=400 \Omega$).
- Load regulation : $<0.05 \%$
($\Delta R_{1}=300$ to $500 \Omega, E_{i n}$ $\left.=30 \mathrm{~V}, I_{0}=50 \mathrm{~mA}\right)$.
- Rejection of $+12 \mathrm{~V}:<0.1 \%$ $\left(\Delta 12 \mathrm{~V}= \pm 10 \%, I_{0}=50\right.$ $\mathrm{mA}, E_{\mathrm{in}}=30 \mathrm{~V}, R_{i}=$ 400Ω).
- Temperature stability : \sim 0.3%
(0 to $+70^{\circ} \mathrm{C}$).

In this precision focus-current regulator, the focus coil and the IC regulator are fed from separate voltage sources. Thus the unregulated input voltage can exceed the allowable maximum for the IC.

Temperature performance is primarily determined by the IC, so the manufacturer's data should be used instead of the measured value to determine worst-case performance. In critical applications, other IC types (for example, the LM100) can be substituted for the LM300 to give improved temperature stability.

The circuit as shown will handle focus-coil resistances of

400 ohms, ± 10 percent, at temperatures up to 50 degrees C - with a 30 -volt supply and a maximum load current of 50 milliamps. Higher currents can be controlled if Q_{t} is replaced by a higher-power transistor such as the 2 N 3740 .

Reference

1. R. J. Widlar, "New Uses for the LM100 Regulator," Application Nore $A N-8$, National Semiconductor Corp., June 1968.

CRD simplifies design of

voltage

regulators

A relatively new device, the field-effect current-regulator diode, can replace four discrete components in conventional voltage-regulator circuits. Thus it reduces the size and cost of these circuits and improves their reliability.

Current-regulator diodes (CRDs) are available from two manufacturers, Motorola and Siliconix. Basically, the devices can be regarded as n channel FETs with an internal short from gate to source. Fig. 1 shows the equivalent circuit and the conventional symbol for a CRD.

The diodes are normally operated above pinch-off on the $V_{g s}=O$ curves, as shown in Fig. 2. At voltages higher than V_{P}, changes in drainsource voltage (V_{d}) result in very small changes of drain current (I_{t}). Thus, above pinch-off, the current through the device remains essentially at I_{p}, and the CRD functions as a constant-current source. Note the duality of the CRD with the zener diode which is, of course, a constant-voltage source.

The dynamic impedance $\Delta V_{d s} / \Delta I_{d}$ of CRDs is normally very large. Motorola's diodes

Fig. 1. A current-regulator diode behaves like an unbiased n-channel FET. The device is normally represented by the symbol shown right.
(1N5283-1N5314) have minimum dynamic impedances ranging from $235 \mathrm{k} \Omega$ to $25 \mathrm{M} \Omega$, depending on the value of I_{p}. Available pinch-off currents range from 0.22 to 4.7 mA .

In a conventional feedback voltage regulator, shown in Fig. 3, the output voltage of the error amplifier should result only from the difference between the sampled output voltage and the reference voltage. Unfortunately, unwanted error-amplifier signals can be produced by changes in bias voltage. The error amplifier derives its bias from the unregulated input voltage which may have ac ripple and dc level shifts superimposed on it. To eliminate the effect of input variations on the bias voltage, a preregulator stage is normally connected as shown.

Figure 4 compares a conventional transistor preregulator with the simpler approach using a single CRD. Both circuits give about the same performance, but the CRD circuit costs less. At present, the cost advantage is only about $\$ 1.00$, but the gap should eventually widen when increased demand lowers the cost of CRDs.

Fig. 2. When biased above the pinch-off voltage V_{p}, the $C R D$ forms a constant-current source.

A complete voltage regulator, using a CRD prereg, is shown in Fig. 5. This circuit delivers $u p$ to 200 mA at 10 V . Load regulation is 0.1% (zero to full load), and line regulation is 0.02% (for 2 Vrms input ripple at 400 Hz).

In choosing the right CRD for use as a preregulator. the circuit designer should consider the following interrelated factors:

- Temperature coefficient of the CRD.
- Quiescent operating point of the error amplifier.
- Maximum output current of the regulator circuit.

Current through the CRD is temperature dependent. The direction and magnitude of the

Fig. 3. Simplified block diagram of feedback voltage reg. ulator. Prereg circuit biases the error amplifier.

Fig. 4. Conventional transistor prereg with four discrete components can be replaced by a single CRD.

Fig. 5. Complete volt age regulator using a CRD prereg. Circuit is designed for a load current of 200 mA .

tempco depends on the pinch-5291) with a nominal I_{P} of off current. Because variations 0.504 mA was chosen.
in CRD current can cause var- One should check to see that, iations in output voltage of the when multiplied by the curregulator circuit, one should rent gain of the series control estimate the allowable drift be- elements, the CRD's current fore specifying the diode. One rating exceeds the maximum exshould then select a CRD pected load current.
whose pinch-off current falls One should also check that within the range that gives the rated dissipation of the acceptable tempco. CRD won't be exceeded. Mo-

The exact pinch-off current torola's CRDs have an allowis dictated by the design of able dissipation of 600 mW .
the error amplifier. The ampli- Of course, for constant-curfier should be biased to give rent operation, the applied volthigh gain and low temperature age should be greater than V_{P}. drift. For example, in Fig. 5, Also, to avoid avalanche breakthe RA1 error amplifier is down, the applied voltage specified by GE to give mini- should be below the rated mum drift at a bias current of $V_{\text {max }}$. For Motorola's CRDs 0.5 mA . Thus, a CRD (1 N - this figure is 100 V .

FET improves voltage regulation and allows

current

limiting

In The otherwise conventional regulator circuit of Fig. 1, a FET constant-current source has been used instead of a resistor to provide current for zener diode $C R_{,}$. This arrangement makes the feedback amplifier less dependent on regulator input voltage and load current. Thus it improves the voltage regulation. As a bonus, the circuit shown also provides automatic current limiting.

The constant-current source is shown inside the dashed-line rectangle. Resistor R_{S} is selected to bias the FET at a drain current I_{D} of approximately 4.5 mA . This current is sufficient to supply the collector of Q_{2} and to bias $C R_{1}$.
Zener voltage V_{z} provides a near-constant voltage across R_{g}, regardless of the setting of R_{i} (or output voltage V_{o}). Choice of input voltage $V_{i n}$ is restricted by the following relationship $V_{i n} \geqq V_{o}$ mar + $V_{z}+V_{p o}$, where $V_{p o}$ is the pinch-off voltage of the FET. The circuit shown was designed for an input of +45 V . With a $10-\mathrm{k} \Omega$ potentiometer for R_{l}, output is adjustable from approximately +6.5 V to +35 V .

Network, Q_{4} and R_{4}, provides automatic current limiting. When load current reaches the predetermined limiting
value, voltage drop across $R_{\text {, }}$ biases Q_{4} into conduction. Because the transistor bypasses $C R_{l}$, bias voltage V_{z} is removed and, hence, voltage across R_{3} is reduced. When this occurs, there is no longer sufficient base current to Q_{5} (and hence Q_{6}) to allow further increase in load current. Current in R_{4} can no longer increase because any increase would only tend to backbias Q_{6} still further.
Figure 2 shows typical output characteristics for two nominal voltages, 30 V and 10 V. Also shown are curves of percent regulation versus load current for the same two nominal output voltages. Note that load current is limited to just over 40 mA . At normal load currents, regulation is better than 0.1 percent.
The circuit shown is merely one example of the technique. The same constant-current source can be used in a variety of regulator circuits. This circuit could possibly be further improved by replacing R_{7} with a constant-current source also.
Another possible circuit improvement would be to connect the collector of Q_{4} to the base of Q_{5}. This would have little effect on regulation but could improve the current limiting. With the alternative arrangement, Q_{4} would need to absorb only the current given up by Q_{2} during current limiting. With component values shown, this current is about 3 mA . Thus Q_{4} would dissipate less power.

Fig. 2. Typleal quiput charecteristics and regulatian characteristics for nominal output voltagels of 30 V and 10 V . Note the cirrent limiting at around 40 mA load current.

Fig. 1n In this voltage regulator, the FET constant-current source (inside the dashed rectangle) provides improved regulation, because current through $C R_{1}$ is independent of input and output voltages.

Temperature-stabilized constant-

current

source

By careful design, one can greatly improve the temperature, stability of a conventional common-base current source.

Using an extra transistor, and matched components, the modified circuit gives an output current that's extremely stable over a wide range of ambient temperatures.

Let's look first at the conventional circuit shown in Fig. 1. It works as follows: Diode D_{1} provides a constant-voltage source for the base of Q_{1}. Be-
cause the base-to-ground potential is fixed, emitter current is essentially determined by R_{s} Then,

$$
\begin{equation*}
I_{\theta}=\frac{V_{b} \cdot V_{b e}}{R_{\theta}} \tag{1}
\end{equation*}
$$

But the $V_{b \theta}$ term can become quite significant, especially, at low zener voltages. However, we would like to operate at
these lower voltages so that less power will be dissipated in the regulating transistor Q_{1}.

One solution to the problem is to choose a zener diode such that its net $T C$ is approximate ly equal to the TC of Q 's base-emitter junction. (This is about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.) Then we have a combination which is

Fig. 1. A conventional ground-ed-base current source bas the disadvantage of poor temperature stability.
temperature-compensated, assuming that D_{t} and Q_{1} track reasonably well with temperature. A typical 4.3 - volt zener diode has a nominal TC of $0.037 \% /{ }^{\circ} \mathrm{C}$. This works out to $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, which is a fairly close match to the TC of Q_{i} 's base-emitter junction.

To ensure that Q_{1} and D_{t} will accurately track, in a practical circuit, we must hold their relative temperature constant. But, of course, if Q_{t} has to handle emitter currents

Fig. 2. Temperature drift can be minimized by matching the TCs of D_{1} and Q_{1} 's $V_{b a}$. There is little internal temperature rise in Q_{t}, because $Q_{\text {, }}$ handles the bulk of the load current. the dissipation will cause an in- be Darlington-connected to Q_{z}, ternal temperature rise in the with its collector returned to transistor. we can lem. carries the major portion Q the load current; Q_{1} merely supplies base drive for Q_{t}. The
load current still flows through $R_{\text {e }}$, so the regulating property of the circuit is unchanged.

In the complete working circuit of Fig. 3, the emitter resistance is adjustable, so that the load current can be set to the required value. A bypass capacitor minimizes noise voltages across the zener. The 390 ohm resistor biases the zener to around 20 milliamps, thus providing a low-impedance source at $Q_{\text {, }}$ base.

With the components specified in Fig. 3, the load current changes less than 0.5 percent with ambient temperatures in the range 0 to $+70^{\circ} \mathrm{C}$. With a 400 -ohm load, the circuit shown will deliver 50 mA .

If the higher currents are be Darlington-connected to Q_{z},
with its collector returned to \boldsymbol{R}_{e}. Of course, the value of $\boldsymbol{R}_{\text {e }}$ will need to be reduced. Its
value can be calculated by dividing $I_{\text {. }}$ into V_{*}. Then,

$$
R_{0}=\frac{V_{D_{1}}-V_{b e}\left(Q_{t}\right)}{I_{s}}
$$

Fig. 3. In this pructical circuit, the emitter resistance can be adjusted to set the load current. The zener is bypassed to minimize noise.

With a 4.3 -volt zener, this reduces to $R_{e}=3.7 / I_{e}$.
A stable constant-current source lends itself to many circuit applications. Some obvious applications include differential amplifiers, timing generators, long-tailed emitter followers and FET stabilizers.

MOS-FET provides 60-dB dynamic range

low-frequency

AGC circuit

Conventional transistor AGC circuits vary the gain by controlling the base bias current. The ratio of the range of transductances available between saturation and cutoff is about 40 to $1(32 \mathrm{~dB})$. This defines the range of automatic-gain control possible with conventional circuits.
The circuit in the figure uses an insulated-gate FET to increase the controlled gain range to about 1000 to 1 (60 $\mathrm{dB})$. The ratio of the off resistance to the on resistance of the FET sets the theoretical limit of the range. However, the input impedance of the

Schematic of MOS-FET AGC circuit.
associated buffer amplifier as well as noise pickup limit the practical off resistance.
R_{1}, R_{ℓ} and $Q_{,}$form a variiable attenuator which is controlled by the output of amplifier A_{s}. The attenuation can
vary from 0.9 to 0.0009 . Amplifier A_{i} is set at a gain of 1000 and is operated non-inverting to prevent loading of the attenuator. The output is full-wave rectified by A_{2} and fed to amplifier A_{s} along with
a reference from the $2-\mathrm{k} \Omega$ out-put-level potentiometer. Amplifier A_{s} integrates this sum and applies it to Q_{I} to complete the feedback loop. The clamp circuit is placed around A_{s} to prevent saturation with
zero or overload input signals. R_{y} is used to compensate the bias current of A_{i}. Both R_{s} and the zero control can be omitted if amplifiers A_{z} and A_{s} are capacitively coupled from the output.

An inexpensive bipolar current limiter

We often need a bipolar cur- while the other has a forward-rent-limiting diode. For this, biased gate to complete the two commercially-available di- current path. The forwardodes must be placed in an biased FET channel resistance opposing-series connection. connects the gate of the operThe circuit shown uses two similar FETs and two resistors to create the same function at a cost below that of one current-limiting diode.

The circuit is a straightforward FET current source, using source resistance to establish the current level. One FET operates in the normal sense ating FET.

Making the two resistors R_{A} and R_{B} variable allows unequal currents for the two polarities. Making one resistor fixed and the other variable allows close matching of the two current levels.

Good results have been obtained with the low cost

Low cost method to obtain variable bipolar current limiting.

2N3819 FETs, or with a matched dual FET, such as the 2N5199. Use 5% resistors for relatively well-matched currents.

High-efficiency series regulator

The major factor limiting efficiency in a series regulator is the minimum input-output voltage differential required for proper operation. Today's monolithic regulators require two to three volts, depending on supply current, to keep the output in regulation. Using the SG723 in the configuration shown reduces this differential to 0.5 V , even for an output current of several amps.
A series-pass transistor internal to the SG723 is used as a grounded-emitter amplifier to drive an external pnp power transistor. This modification, shown in the figure, allows the pnp transistor to be driven into saturation while providing prop-

Positive high-efficiency regulator uses an external pnp transistor. Minimum $V_{i n}=V_{\text {out }}+0.5 \mathrm{~V}=R_{c s} I_{L}$. Output $=7$ to 37 V . er biasing for the rest of the as a brute-force stabilizer. circuitry.

This circuit has excellent regulation due to the two additional stages of voltage gain. The added gain can cause stability problems but the large output capacitor ($50 \mu \mathrm{~F}$) acts

Current limiting using the internal shut-down transistor must be done in the negative line. This is necessary because the collector of the transistor tied to the compensation terminal is at a voltage lower
than the output.
The normal divider equations for the basic regulator apply. Note that the V_{z} terminal is used (available only in the N package), although an external $6.3-\mathrm{V}$ zener could be used at the $V_{\text {ous }}$ terminal.
voltage regulator

A series regulator, normally used to regulate the dc output of a power supply, can be amplitude modulated to produce an ac output across a low impedance (10 ohms). This allows the regulator to be used as a power amplifier having high gain and good efficiency.
In the circuit, C_{2}, R_{3} and R_{4}, and a $600-\Omega$ ac source have been added to modulate the regulator. A sine wave applied to the base of Q_{g} through C_{8} causes the output across R_{L} to vary at the same rate. Increasing the amplitude of the applied sine wave increases the output amplitude. R_{6}, which
normally controls the dc output, can be adjusted to set the operating point of the regulator to obtain maximum ac swing across R_{L}.

The response of the circuit is flat from 1 kHz to 20 kHz at 20 V pk-pk into the $10-\Omega$ load. Below 1 kHz the frequency response falls off due to coupling capacitor C_{q}. The low end can be extended to dc if R_{s} is made larger and C_{2} shorted. Under these conditions a larger modulating voltage is necessary for the base drive to Q_{s}.

Using the forward drop of a silicon diode (1N673) as the reference, one can obtain an undistorted output of 27 V pkpk across R_{L}. If the input to the base of Q_{s} is overdriven by the modulating signal, a clipped sine wave of $29.5 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ into the $10-\Omega$ load can be obtained.

Modification of a conventional dc series regulator yields a lowimpedance, high-output audio source.

The power transistors used for Q_{1} and Q_{2} have a cutoff frequency of 20 kHz . With
better transistors one can extend the upper limit of the frequency response.

High-efficiency series regulator

a basic problem in low-voltage $(5-6 \mathrm{~V})$ power supplies for ICs is efficiency, as quite commonly the regulated output is a small percentage of the input voltage. So the voltage drop across the series-pass transistor can approach the magnitude of the voltage delivered to the load, particularly at high ac-line inputs. As a consequence, reducing the minimum input-output differential of the regulator can substantially reduce series-transistor dissipation and thus greatly enhance efficiency.

A direct approach to reducing the series-transistor bias requirement is to arrange the circuit so that no device junction(s) appear in series with the output. As a result no operating bias (various $V_{\text {in...s }}$) can subtract from the available output and the minimum input voltage required for regulation is reduced to the output voltage plus the pass transistor's $V_{c p}$ (sat).

A practical example is shown in the figure where a pnp differential pair $\left(Q_{1}-Q_{z}\right)$ drives a pseudo-Darlington combination $\left(Q_{3}-Q_{4}\right)$. An auxiliary bias supply is used both
to supply regulated emitter current to the differential amplifier and to establish a voltage reference for output comparison.

The key to the low inputregulation threshold is the drive connection of Q_{4}. With Q_{s} 's collector current derived from the positive input leg (rather than Q_{4} 's collector as in a conventional Darlington) Q_{4} can operate down to a minimum $V_{c e}$ approaching saturation - while Q_{s} is still supplying active base drive, and can do so until Q_{4} is hard into saturation and the regulator loses control. An additional virtue of this connection is the ability to limit output current by forcing Q, to saturate (via the voltage developed across R_{g}) and limit Q_{4} 's base drive to a safe maximum under short-circuit conditions.

The rest of the circuit is straightforward. $\quad R_{8}$ and C_{2} frequency compensate the differential amplifier $Q_{1}-Q_{2}$. The scaling output divider ($R_{6}-R_{\gamma}$) compares the $-6-V$ output to the $+12-\mathrm{V}$ reference at one input of the diff amp. The opposite input is ground referenced through a resistance

Low-cost voltage regulator provides high efficiency by reducing the required input voltage.
equivalent to the divider's dc impedance. The tantalum input and output capacitors (C, and C_{3}) are typical solutions to the stability problems associated with normal connections to sources and loads.

This particular circuit handles loads up to 300 mAdc with load regulation of 1% (or an R_{0} of $20 \mathrm{~m} \Omega$). Line regulation, due to the low output conductance of Q_{1}, measures less than $0.5 \mathrm{mV} / \mathrm{V}$ of input change (or 66 dB of rejection to input changes).

The input-output differential is directly proportional to the saturation characteristics of Q_{4} and the output-current level. The device used in the figure requires only 370 mV of $V_{\text {re }}$ across Q_{4} to sustain regulation at 300 mA .

These characteristics are obtained quite economically, as all active elements are inexpensive plastic devices. Of the passive elements, only the tantalum capacitors are costly. The total component cost is about $\$ 2$.

Spare IC gate serves as

regulator

AN UNUSED gate in a multiplegate IC can serve as a zener regulator. In one case, it was necessary to derive 12 Vdc (for a digital IC and a reed relay) from an ac line that varied from 75 to 125 V . To cut costs, the $12-\mathrm{V}$ supply was developed from the ac line by a half-wave rectifier and a line-dropping resistor.

But the wide variation in line voltage and variable demands of the load required
some kind of regulator and a zener would have been too costly.

In the circuit shown, an unused gate in an Amelco 303CJ (a quad 2 -input NAND buffer capable of sinking 60 mA). was used as an active regulator. The input switching level in the 303 CJ is quite constant from one IC to another and also very temperature stable. Other NAND or NOR gates could be used as well.

In the circuit, R_{3} and R_{3} bias the gate in its active region while R_{5} reduces power dissipation in the output transistor. If $V_{e c}$ tries to rise, the gate input rises. This makes the output go lower, thereby drawing more current through

This simple circuit uses a spare IC gate from an Amelco 303CJ to regulate a $\mathbf{+ 1 2 - V}$ supply derived from a widely varyiug acliue voltage.
R_{2}, which causes $V_{c e}$ to decrease.

The circuit supplies 6 to 10 mA and $V_{c c}$ varies from 11.4 to 11.5 V as the line varies from 75 to 125 V . The circuit works well from 0 to $75^{\circ} \mathrm{C}$.

The circuit can be used, too, where the supply voltage is constant, but load current changes. It is then necessary to change values of R_{1}, R_{2}, R_{5} and C_{r}. Supply cost, excluding the gate, is about $\$ 2$ in single quantities, $\$ 1$ in 100 -up.

Short-protected current limiter ignores

inrush

currents

The simple current limiter in the figure protects itself from overdissipation in case of a shorted output. It also distinguishes between a shorted output and capacitive or cold-filament loads which can momentarily look like shorts.

As soon as the current in the circuit exceeds the limit value, 3 A in this case, the voltage drop across the cur-rent-sensing resistor R_{2} exceeds the cut-in voltage for the emit-ter-base junction of Q_{2}. This causes Q_{2} to conduct, thereby limiting the base drive to Q_{1}.

If the load resistance is reduced to zero, Q_{4} conducts and Q_{3} saturates, thereby turning Q_{2} off, and the current is limited by R_{3} in series with R_{2}.

If the load is a filament, R_{3} is necessary to allow the circuit to operate. If R_{s} is omitted, then when power is applied, Q_{4} conducts and Q_{3} saturates, keeping Q_{l} off. If R_{s} is added, a "starting" current flows through R_{s} and R_{q} to the load.
R_{s} is adjusted so the starting current is large enough to begin heating a cold filament. As the filament voltage increases to about $100 \mathrm{mV}, Q_{4}$ and Q_{3} turn off, allowing the load current to rise to the 3-A limiting value.

Though protected against short circuits, this current limiter will deliver momentary high current to uncharged capacitors or cold filameuts.

Section 3 PROTECTION CIRCUITS

High Voltage Power Supply Protective Circuit

WHEN a high voltage power supply is used to operate a klystron power amplifier there should be a means of protecting the high voltage power supply from damage due to excessive current drain. The most common cause of excessive current drain is a short circuit in the power amplifier. One approach to the problem is to remove line voltage from the power supply when a short circuit occurs at the load. To provide adequate protection the protective circu't must be extremely fast acting.

The circuit described here and shown in Fig. 1 consists of a high voltage power supply with an efficient protective circuit. This circuit can remove primary power from the power supply with:n a period of 8 to 15 msec after a malfunction has occurred at the load. The power supply illustrated is operated from three phase 440 volts at 400 cps and delivers 15 kv de to the load. The protective circuit consists of pulse transformer T_{2}, a silicon controlled rectifier, and a circuit breaker.

The primary winding of T_{2} is connected in series with the load at the output of the power supply. Voltage drop across th's winding is negligible so the full power supply potential is applied to the load. When the load becomes short circuited, the primary winding of T_{2} takes the place of the load across the power supply output so the potential between terminals 1 and 2 of T_{2} is equal to the power supply voltage. This voltage requires a few microseconds to develop due to stray capacitance in the primary winding of T_{2}. At the same time a pulse is induced in the secondary of T_{2}. The pulse amplitude is determined by the power supply voltage, E, times

the ratio of secondary turns to primary turns of T_{2}, or $N 2 E / N 1$. This pulse is coupled through capacitor C_{1} to the gate of silicon controlled rectifier $S C R_{1}$. The voltage, V_{3}, applied between the gate and cathode of $S C R_{1}$ is determined by the following equation; $V_{3}=C_{1} /\left(C 1+C_{2}\right) \cdot N_{2} / N_{1} \cdot E$.

When $S C R_{1}$ is triggered by the pulse, it conducts, drawing current through the trip coil of the circuit breaker and R. Current I increases rapidly to its maximum value of $48-1 / R$ and the voltage applied between anode and cathode of $S C R_{1}$ drops from $R / 48 \mathrm{v}$ to one dc. Current flowing through the trip coil opens the circuit breaker removing line voltage and the anode voltage applied to $S C R_{1}$. The circuit breaker is reset manually after the load has been repaired or replaced. Time required for this circuit to turn off power is within 8 to 15 msec which is sudden enough to protect components of the power supply from damage.

Care must be taken to apply a pulse of correct amplitude to the gate of $S C R_{1}$. If the pulse is too great, $S C R_{1}$ w:ll be damaged and too small a pulse will not trigger $S C R_{1}$. Switching time for the C35A is $2.5 \mu \mathrm{sec}$ when current flow is 4 amps dc . Faster switching time could not be achieved with higher values of I. Values of C_{1} and C_{2} were obtained by trial and error to reach the correct value of V_{3}.

The trip coil of the circuit breaker was designed for a current value of one fifth of that used. The principles involved in this protective circuit can be used with any power supply where rapid turn off is required for protection due to a sudden fault at the load.

Automatic Overload Circuit

The circuit described is an overload sensing device which will interrupt an applied voltage in the event of an overload, and sample at approximately one second intervals to ascertain whether or not the overload still exists. If the overload is removed, normal voltage will be restored; however, if the overload continues to exist the circuit will cycle, continuing to monitor the load until the overload is removed.

The circuit operates as follows: R_{1}, R_{2}, R_{3}, and Q_{1} comprise the current sensing network. R_{1} is chosen to keep its voltage drop constant at 0.60 v when the desired rated current is drawn (in this case, approximately 2.3 a). This drop is sufficient to forward bias the emitter-base-junction of Q_{1} and cause it to conduct. The collector of Q_{1} then swings from ground potential to +v . This positive going voltage is then applied to the base of Q_{2} via R_{4} and C_{1}. Potentiometer R_{3} permits current trip adjustment of approximately ± 20 per cent to be made.
Transistors Q_{2} and Q_{3} comprise a one-shot multivibrator which has a period of approximately 500 ms and is triggered by the output of the current sensor portion. The operation of this multivibrator is straightforward. Briefly, Q_{2} receives a trigger at its base which causes it to go into forward conduction, bringing its collector to ground potential. This negative-going voltage is coupled to the base of Q_{3} through C_{2}, causing the base drive to Q_{2} to be interrupted with subsequent turn-off of Q_{2}. This causes the collector of Q_{2} to go to approximately supply potential and in turn supply base drive Q_{4} directly through $R_{8} . Q_{2}$ is held in the "on" state for the duration of the period of the multivibrator.

Transistors Q_{4} and Q_{5} are connected in a time

Fig. 1-Overload sensing and control circuit.
stretch and recovery circuit. Transistor Q_{4} is an emitter follower current amplifier which transforms a high impedance drive from the output of the multivibrator to a low impedance in order to facilitate rapid charge of C_{3} through $C R_{1}$. Diode $C R_{1}$ also prevents rapid discharge of C_{3} by R_{9} upon completion of the period of the multivibrator. A dc return for the base of Q_{5} is provided by R_{10}. Capacitor C_{3} functions as a time stretch and reverse integrator which performs two distinct operations simultaneously: 1 . The time stretch serves to allow sufficient time for the multivibrator to recover in case of a repeat cycle; 2 . The reverse integrator permits the voltage to be gradually reapplied to the load instead of a step function. This prevents high surge currents and serves to protect regulator ant associated power supply components.

Transistor $Q_{\overline{5}}$ is connected as an emitter follower which presents a high impedance to the time stretch and recovery circuit so as to minimize loading. The output of this emitter follower drives the base of Q_{6} which is connected for operation as a switch. The collector of Q_{6} is connected to the base of Q_{7}. Potentiometer R_{13} allows the ouput voltage to be adjusted to the desired level. In the event of overload, the previously described circuits go into operation and Q_{6} shorts the base of Q_{7} to ground thus removing the voltage from the output.

Capacitor Discharger

Relay discharges power supply capacitors rapidly and safely.

The residual charge on power supply capacitors maintains an output voltage for a considerable time after shutting off the input power. This is objectionable for the testing of computer flip-flop modules, where a zero starting voltage is required.

Reducing the ohmic value of bleeder resistor R_{2} will reduce the discharge time, but this also lowers the output voltage and wastes power. An effective solution is shown in the diagram. When power is turned on, the normally-closed contacts of relay K_{1} open up, shutting off input power, de-energizing K_{1}, and causes its contacts to close. This, in turn, discharges the filter capacitors C_{1} and C_{2} through resistor R_{1}. Resistor R_{1} is a low-ohmage (25 to 50 ohms), high-wattage, current-limiting element which permits rapid discharge at a rate low enough to prevent burning of the relay contacts.

Differential Voltage Circuit Protector

Differential relay circuit provides over and under voltage protection.

The circuit described has the unique feature of offering undervoltage, overvoltage and ac or dc failure protection for equipment being life tested or running for long periods unattended. In military aircraft equipment operating from 28 v de with cooling fans operating on 115 v ac, failure of the ac line and subsequent loss of cooling can cause rapid deterioration of the circuits. When either the ac or de power fails the relay circuit shown here operates to open its normally closed contacts to the load circuits. By selection of a relay with a low pull-in voltage the circuit can be made to operate in such a way as to open the load circuits when the ac or dc voltage falls below or goes above a certain value. Transformer T_{1} provides isolation and stepdown of the 115 v line to match the 28 v at the other end of relay K_{1}. If K_{1} were selected to operate on 6 v any change in ac or dc resulting in the 6 v difference would actuate the relay and open the power to the load. If desired, a third set of contacts can provide an alarm indication. Resistor R_{1} will provide current limiting for the relay when the ac line fails completely. A dc line failure will allow the relay to operate through the normally low output impedance of the power supply while the additional parallel load of the relay coil resistance serves to lower the dc voltage from the poorly regulated halfwave power supply. Ultimate heat rise protection for the relay itself can be provided by a thermistor in contact with the body of the relay and offering a shunt path for excess current during periods of all-out ac or dc line failure.
A circuit of this type has application in the field of military designs where the specifications for the equipment itself often call for undervoltage and overvoltage protection with resumption of normal operation when the voltages are restored to their normal values.

Typical values for C and R_{1} are shown. The relay resistance will determine the value of the ther-
mistor chosen and it in turn depends on the degree of protection desired. Where only protection against either line failing is required this can be a standard 28 v type.

An Electronic Circuit Protector

The problem often arises of how to protect a transistorized, regulated power supply and the circuitry which it supplies.

It is usually desired that the circuit protecting device must tolerate transient overloads of the same magnitude which under continuous overload conditions it cannot tolerate. At the same time, the device must stop transient overloads above a given value and short circuits.

The circuit protector shown accomplishes these conditions. Within the dotted lines in the circuit is a common voltage regulator, using a series power transistor Q_{n}, and driver transistor Q_{1}.

Under heavy load conditions, the base to emitter voltage of Q_{n} will be about 1.5 volts. Each driver transistor will have about 0.7 volt from base to emitter. If a silicon controlled rectifier is added to the circuit as shown, with the gate and cathode connected across a current sensing resistor and the anode connected to the base of the first driver transistor, it is ready to perform the function of protection against harmfully large transient currents and short circuits.

If the current through the current sensing re-

Transistor protection circuit for regulated power supply. sistor is large enough to develop the necessary gate potential (about 0.7 volt for a 2 N 1595), the scr will conduct. During conduction, an scr will have a maximum of about 0.8 volt from anode to cathode, which is not sufficient to allow the driver and series power transistors to remain in conduction and the circuit is protected from the overload. The current sensing resistor is determined by the formula, $R=V_{G} / I_{\text {trip }}$, where V_{G} is the necessary gate to cathode potential to fire the scr.

The mechanical circuit breaker is used to protect against continuous overloads.

Short-Circuit Protection of Regulated Power Supply

THE CIRCUIT of Fig. 1 provides a practical solution to the problem of protecting series regulator transistors, during short circuit loading.
The series transistors are Q_{1} and Q_{2}. When a short circuit appears across A_{1} and A_{2}, Q_{1} and Q_{2} are in danger of being destroyed because of the time lag in $F_{1} . Q_{10}, Q_{3}, Q_{1} Q_{2}$ make up the basic unprotected regulator. Q_{8} and Q_{9} are the protective circuit. E_{1} is an unfused, low current, rectified supply that comes on as soon as the primary power is applied to the power supply.

Assume that A_{2} has been connected to chassis and R_{1} has been adjusted for -17 volts output at A_{1}. The base of Q_{8} is now at -17 volts. The emitter of Q_{\star} is held at -6 due to the D_{14} regulator diode. Q_{r} is in the off condition. The +10 volt power supply, E_{1}, applies power to the base of Q_{9} through R_{17} and \boldsymbol{R}_{16}. Because Q_{8} is off the voltage appearing at Q_{9} base is +10 volts.

The emitter of Q_{9} is in series with a three-volt regulator diode D_{15}. Any tendency for Q_{9} to conduct under the preceding conditions is inhibited

FIG. 1-Transistors Q_{8} and Q_{0} protect the power supply until the circuit is reset.
by D_{15}. (Making the emitter more negative than the base.) The regulator under these conditions is functioning normally.

If a short circuit (dotted line) occurs between A_{1} and A_{2} the base voltage of Q_{8} goes to zero volts while the emitter remains at $-6 . Q_{8}$ conducts heavily dropping the voltage at the junction of R_{16} and R_{17} from +10 volts to approximately -3 volts. This causes Q_{9} to conduct heavily. The impedance of Q_{9} drops to a low value causing its collector to assume a positive voltage of approximately +7 volts. This causes Q_{3} to go into a high-impedance condition which prevents power from reaching the bases of Q_{1} and Q_{2}.

Making the bases of Q_{1} and Q_{2} positive places them in a high-impedance state preventing power from being delivered to the short-circuit load. This
condition is self-maintaining and will remain until the reset button is pressed. If the short has been removed, pressing the reset button will place a sufficiently high cut-off voltage on the base of Q_{8}. The output will build up to -17 and the reset button can be released.
If the reset button is pressed while the short circuit is across the output, all of the cut-off voltage is dropped across R_{18} and Q_{8} remains conducting. The regulator cannot be reset until the short is cleared.

Cathode-Ray Tube Grid Protection Circuit

0ne problem associated with operation of most cathode ray tubes is that of transients when the tube is turned on or off. The effects of transients when the tube is turned on are generally observed as short duration blooms.
In the case of storage tubes of the direct view, high intensity type, blooming caused by transients of turning the tube on are highly undesirable since in many cases its duration is prolonged by the storage action of the tube. Transient blooms are in a long run detrimental to the operation and life of the tube.
Transient problems exist only with those tubes which are operated with a relatively high negative voltage on their cathodes with respect to ground, and where grid coupling capacitors have one side connected to a low voltage level signal source. Most electrostatically deflected tubes are operated with a basic circuit configuration due to the desirability of operating the deflection plates at relatively low B+ voltages. The characteristics of the tube dictate the high negative voltage on the cathode.

The negative source is generally of a moderately high voltage and for discussion will be assumed to be -1700 volts. See Fig. 1. Capacitor C will be assumed to be $0.1 \mu \mathrm{f}$ and R equal to 500,000 ohms. When the tube is off, capacitor C has no charge and the negative supply voltage is zero.
When the tube is turned on, the negative voltage of -1700 volts appears almost instantly at point A. (Point X is connected to a low voltage level, low impedance, signal source.) The grid of the tube is reluctant to change its voltage level from a value of ground potential. The grid will obtain its proper potential only after coupling capacitor C has had time to charge to the potential Z on the negative bleeder circuit.

There are two paths through which the capacitor may charge. One path is through resistor R and the second is from the cathode through the control grid. Due to the diode action of the control grid and cathode, the impedance of this path is much smaller

FIC. 1-Charging paths for grid coupling copacitor.

FIG. 2-Transient current poths in a c-r tube.

FIG. 3-Circuit designed for protecting grid of c-r tube.
than R and the greatest portion of the current required to charge the capacitor will flow through the grid.
After a fraction of a second, the current through the grid decreases to zero and the capacitor arrives at its final value of potential at Z by charging through resistor R.
The current drawn through the grid-cathode circuit is relatively large and tends to cause a large bundle of electrons to flow toward the tube screen with resultant blooming. Another way of looking at it is that during the capacitor charging period through the grid there is a positive grid to cathode voltage developed.
When the tube is turned off, the large negative voltage across the capacitor tends to hold the grid at its negative value and a large negative grid to cathode voltage momentarily occurs. This causes no blooming effects on the screen of the tube, but is not in its best interests. Grid to cathode voltage breakdown may occur. The only path in this instance for the capacitor to discharge through is resistor R.
When a zener diode is used to stabilize the voltage across the grid bias portion of the negative bleeder as shown in Fig. 2 a large current flows momentarily through the zener to the cathode and grid and may be capable of destroying the unit.

The circuit of Fig. 3 was designed as an answer.
Diode 1, Diode 2, C_{A} and R_{A} constitute the added components necessary to completely protect a cathode ray tube from transients.

When the tube is first turned on, capacitor C is charged through diode 1 and C_{A}. A small voltage due to the transient appears across the capacitor C_{A}. The voltage across C_{A}, if the power supply came on instantly, would be $C / C_{A}+C(-1700)$. This voltage should be lower than the voltage difference between the supply and that normally appearing at point Z during normal operation.

After the transient charging of C has occurred, C_{A} continues to charge above the grid bias level Z to the value at X through R_{A}. Resistor R_{A} charging capacitor C_{A} to a value of voltage more positive than the grid assures that diode 1 will not clip or limit any incoming video signal. In most cases positive grid to cathode signal operation is avoided, therefore R_{A} may be tied to the cathode with no interference with incoming video signals resulting. The time constant of R_{A} and C_{A} made equal to 1 to 2 seconds should give satisfactory operation for most applications. Diode 2 is ineffective in the circuit in any way during the on transient and will not limit or clip the video signal in a properly designed circuit. The voltage level difference between the supply and point Z must be greater then the most negative pulse expected in order to prevent diode 2 interference. This condition may be readily met in circuit design.

When the tube is turned off, the negative supply rapidly approaches zero. Diode 2 conducts assuring that capacitor C will not maintain a large negative voltage on the tube grid. The grid can never become more negative than the supply voltage since diode 2 will conduct to prevent such an action. The inclusion of diode 2 assures that a large negative voltage will not occur across diode 1 as well as the grid. Neither diode need have a large inverse voltage rating. Resistor R_{A} rapidly discharges C_{A} when the tube is turned on.

The circuit has no inherent long time lags to be effective. It is ready to operate again almost immediately after turn off. Small crystal diodes are used, which need not have high inverse voltage ratings. The circuit was found to be effective in preventing blooming and the destruction of reference diodes.

PTC Thermistors Trip

50 Amp Contact

at Limiting Temp.

Positive temperature coefficient ptc thermistors provides over-temperature protection when used to actuate the standard magnetc ac circuit breaker shown in Fig. 1. This ptc thermistor has a constant resistance of about 60 ohms over a range of temperatures and an abrupt rapidly increasing resistance after a prede-
termined temperature level is reached. The resistance versus temperature curves are shown for a family of ptcs in Fig. 2. A ptc can carry a continuous current of 70 ma in air without self-heating.

Small inexpensive single pole magnetic circuit breakers with 50 a contacts and toggle type on-off handles

Fig. 1. PTC thermistors used to trip 50 a contact at limiting temperature.
are available with coil ratings as desired from 0.015 to 50 a .

From one to six ptc thermistors wired in series and located as temperature protection sensors may be used. Standard fixed resistors are used in a voltage bridge to limit current through the thermistors and the breaker

Fig. 2. Family of curves for several PTC thermistors showing resistance versus temperature.
coil. Calculation with components for a 220 v supply are attached. An increase of thermistor resistance to 1220 ohms will trip the breaker. The resistance decreases with temperature reduction and the breaker may be reclosed.

Power to a 3-phase induction motor such as shown in Fig. 3, is furnished by a standard 3-pole contactor whose magnetic coil M is actuated by switch S. Circuit breaker B is used as the maintained contact switch and turns the control circuit on and off manually. One ptc thermistor is embedded in each phase of the winding
end turns. With the breaker closed, the motor will normally cycle on and off as controlled by S. In the event of over-temperature in any one or all phases of the winding the breaker will immediately trip, shutting down the motor, and its handle will go to the off

Fig. 3. PTC used with a 3-phase induction motor.

Fig. 4. PTC used with a single-phase motor.
position as an indication. With an 802-1 thermistor, this occurs at 105 to 110 C , a proper limiting temperature for general purpose motor windings. The motor cannot restart until manually reset after cooling.

The breaker is used as a manual control in Fig. 4 for starting and stopping a single-phase motor. One ptc thermistor is placed in the main winding to protect for running over-loads and one thermistor is in the starting winding to protect against a faulty acceleration such as centrifugal switch failure. Motor over temperature trips the power. The circuit is satisfactory for ± 10 per cent of the rated voltage.

Calculations:
Thermistors (in equipment) at normal temperatures:

$$
\begin{aligned}
& R_{\varepsilon}=\frac{\left(R_{\mathrm{t}}+R_{2}\right)\left(R_{\mathrm{r}}\right)}{\mathrm{R}_{\mathrm{t}}+R_{2}+R_{\mathrm{b}}}=\frac{(180+200) 1000}{1380} \\
& =275 \mathrm{ohms} \\
& \text { or, } \quad R_{\mathrm{t}}=\frac{R_{\mathrm{v}}}{R_{\mathrm{t}}} \frac{\left(R_{\mathrm{e}}\right)}{-R_{e}}-R_{\text {e }} \\
& V_{\mathrm{b}}=\frac{R_{\mathrm{e}}}{\left(R_{1}+R_{\mathrm{e}}\right)}(220)=\frac{(275)(220)}{3000+275} \\
& =18.5 \text { volts } \\
& \text { And, } \quad R_{e}=\frac{V_{b} R_{1}}{220-V_{b}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\mathrm{b}}=\frac{18.5}{1000}=18.5 \mathrm{ma} \\
& I_{\mathrm{t}}=\frac{18.5}{380}=48.7 \mathrm{ma} \\
& I_{\mathrm{c}}=\frac{220}{3275}=67.2 \mathrm{ma}
\end{aligned}
$$

Thermistors in equipment at trip temperature ($V_{b}=$ 36 v)

$$
\begin{aligned}
& R_{\mathrm{e}}=\frac{V_{\mathrm{b}} R_{1}}{22 \overline{0}-V_{\mathrm{b}}}=\frac{(36)(3000)}{220-36}=587 \mathrm{ohms} \\
& R_{\mathrm{t}}=\frac{R_{\mathrm{b}}, R_{\mathrm{c}}}{R_{\mathrm{b}}-R_{\mathrm{e}}}-R_{\mathrm{t}}=\frac{(1000)(587)}{1000-587}-200 \\
& \quad=1220 \text { ohms }
\end{aligned}
$$

For R_{1} use a 15 watt resistor.
For R_{2} use a 2 watt resistor.

A Novel Magnetron Protection Circuit

The circuit of Fig. 1 uses avalanche diodes in a protection circuit for sparking magnetrons. An audio oscillator feeds an auto-transformer which is used to step up the audio voltage to the point where the negative swing of the audio sine wave fires avalanche diode D_{1}. The characteristic curve of this diode is shown in Fig. 2. The $0.03 \mu \mathrm{f}$ capacitor then discharges through the avalanche diode and the transformer, rapidly reversing the flux direction in the winding. This flux reversal generates a voltage pulse across the winding which is coupled out through the 0.002μ capacitor to fire the 4 C 35 A hydrogen thyratron in a line-type modulator feeding a magnetron. After the discharge the avalanche diode recovers because it cannot draw enough sustaining current through R_{1}. The $0.03 \mu \mathrm{f}$ capacitor then is free to recharge from the $4 \mu \mathrm{f}$ capacitor. This portion of the circuit forms the drive pulse generator driven by the audio oscillator.

To obtain protection, either the magnetron pulse current or the inverse diode current can be monitored if the modulator is a line type with usual

FIG. I-Trigger circuit for modulator with spark protection and automatic threshhold adjustment.

FIG. 2-Avalanche diode characteristic curve.

circuitry. When the monitored pulse is of negative polarity the configuration used on the right hand side of Fig. 1 works quite well. The 51 ohm resistor in series with the 1 N 487 A diode and the $1-\mu \mathrm{f}$ capacitor is a diode peak voltmeter which relies on the small back conductance of the 1N487A and the low source resistance for slow discharge when the current pulse amplitude is reduced. The $1-\mu \mathrm{f}$ capacitor charges up to the peak value of the monitored pulse train. From then on little current passes through the 51 ohm resistor until an oversize pulse (caused by a magnetron spark, for instance) comes along. If this oversize pulse is of sufficient amplitude (as it will be with a spark) the voltage spike developed across the 51 ohm resistor will fire the avalanche diode through the $0.001 \mu \mathrm{f}$ coupling capacitor. The $4 \mu \mathrm{f}$ power supply capacitor now discharges through avalanche diode D_{2} and the 100 -ohm resistor. Since resistor R_{2} will not maintain sustaining current through the diode, this diode recovers and the $4-\mu \mathrm{f}$ capacitor recharges. During the time that the $4-\mu \mathrm{f}$ capacitor is not charged to its normal voltage the drive pulse generator is inoperative.
The net result is that several pulses are omitted every time the magnetron sparks. If the magnetron should spark on every pulse, the effect is a reduction in repetition rate which greatly reduces the average power flow into the magnetron and limits damage.

Inverter Control

Connecting the wrong battery polarity to an inverter can destroy its power transistors. This circuit provides built-in protection to transistorized inverters operating from a 12 v battery and providing $115 \mathrm{v}, 60$ cps output.
The relay is energized through the 15 ohm resistor and series diode when the positive and negative terminals of the inverter are respectively connected to the positive and negative sides of the battery. This action closes both contacts, lights a green bulb, and places the inverter in service. If incorrectly connected to the battery the relay fails to operate. Under this latter condition a red bulb lights implying error.
The complete circuit shown consists of two general purpose diodes, one 6 v dc relay, one resistor and two

GE-1816 pilot lamps. For just a few dollars this circuit provides protection for equipment worth much more.

Control protects transistorized inverters from being incorrectly polarized.

Low-Voltage Cutoff Circuit

The circuit presented here is designed to prevent failure in a satellite's electronic system due to low battery voltage. This design was developed for the Army Signal Corps' Courier Communications Satellite. Its function is to return the satellite from an active to a standby condition if the battery voltage falls below a pre-determined level.

FIG. I-Low-voltage de-energizer.
Fig. 1 shows the low-voltage cutoff circuit as it. is used in the Courier system. Relays K_{1} and K_{2} are Potter Brumfield SCl1's; K_{i} is a Potter Brumfield SL11 and K_{3} is the relay portion of a linevoltage sensor (Model 9760) made by Tempo Instrument, Inc. The sensor is designed to energize or de-energize the relay when the voltage across the coil is 24 volts ± 1 percent.

The cutoff circuit works in the following manner. When the satellite equipment is turned on by a signal from the ground station, either relay K_{1} or K_{2} (depending upon which command is given) is also energized by a relay driver in the command decoder. Operation of either relay in turn causes a voltage to be applied across the coils of K_{3} and K_{4}; however, the RC time delay across K_{4} results in K_{3} being energized first, which removes the voltage from K_{4} thereby preventing it from being energized. The circuit remains in this condition for normal active operation of the satellite.

If the battery, which has a nominal working voltage of 27 v , becomes discharged down to 24 v , K_{3} is automatically de-energized and this action
applies a voltage across the coil of K_{4}. Operation of K_{4} removes the ground from an OR gate in the command decoder which in turn de-energizes power-control relays in the remaining satellite equipment, including K_{1} or K_{2}. Thus, the satellite is returned to standby condition, allowing the batteries to be recharged by the solar cells.

Relay K_{4} is of the latching type and remains energized until it receives a signal from the command decoder, which is automatically generated every ten minutes. After this relay is reset and the batteries are recharged, the satellite is again ready to receive a command from the ground station to activate the system.

Overload Protection

This circuit gives fast, automatic protection with an adjustable trip level. The sample circuit shows it as it would be applied to a lab power supply.

Other fast automatic-protection devices usually have one or more of the following faults: not adjustable, poor regulation as load current approaches overload limit, load-limit setting varies with transi tor changes, complexity, and output voltage might not go to zero when tripped. This circuit avoids these faults. It is quite simple, has a wide-range adjustment of the trip current, is insensitive to changes of transistor characteristics, and the adjustable trip level can be set close to the operating current level.

The automatic overload-protection circuit is shown incorporated into a conventional regulator. The protection circuit consists of resistors R_{1}, R_{2}, R_{3}, and R_{4}; capacitor, C_{2}; diodes $C R_{3}$ and $C R_{2}$, and transistor Q_{1}, operating in conjunction with the existing regulator circuitry.

In normal operation (load current less than the trip level) R_{2}, R_{3}, and $C R_{3}$ are selected so that the drop across R_{3} is much less than 0.6 volts (silicon transistors assumed).

$$
R_{3}\left(V_{s}-V_{L}-V_{C R 3}-1.2\right) / R_{2}+R_{3} \ll 0.6 v
$$

where V_{a} is the source voltage, V_{L} is the output voltage, $V_{\text {CR3 }}$ is the zener voltage of $C R_{3}, 1.2 \mathrm{v}$ is the base-toemitter drop of Q_{3} and Q_{4} in series and 0.6 v is the base-toemitter drop of Q_{1}.

Therefore Q_{1} is cut off and the regulator operates as though the protection were not present.

Overload cut-out current level is adjustable with $\mathbf{R}_{\mathbf{1}}$.

When the load current reaches the preset trip level, the drop across R_{1} becomes great enough to turn on Q_{1}.

The trip-current is given by:

$$
R_{1} I_{L}>I_{02} R_{3} / \beta_{1}+0.6
$$

where β_{1} is beta for Q_{1}, R_{1} is adjustable to set desired I_{L}, I_{L} is the load current at trip level, and $I_{t 2}$ is the base ${ }_{1}$
current to saturate Q_{2}. When Q_{1} turns on, it saturates Q_{2}, dropping Q_{2} 's collector voltage to approximately: zero. The current through R_{3} increases. A second condition on R_{2}, R_{3}, and $C R_{3}$ is that under these conditions the drop across R_{3} is sufficient to turn on Q_{1}, which will saturate Q_{2}.

$$
\frac{\beta_{1}}{R_{3}}\left[\frac{R_{3}\left(V_{8}-V_{C B 3}\right)}{R_{2}+R_{3}}\right]-0.6>\underset{\substack{\text { Base current to } \\ \text { saturate } Q_{2}}}{\text { a }}
$$

This holds Q_{2} in saturation which cuts off the regulator string Q_{3} and Q_{4}, thereby protecting these transistors and reducing the output voltage to zero.

The turn-off switching is regenerative and fast: To reset the regulator the supply voltage is switched off and then back on.

Capacitor C_{2} prevents turn-on transients from triggering the protection circuit. Diode $\mathrm{CR}_{\mathbf{2}}$ blocks the switching current from R_{5}. Resistor R_{4} limits the base current to Q_{2}.

Lifesaver Circuit

| T is often desirable in line-operated, power-transformerless equipment to connect the chassis to the grounded side of the power line. While use of polarized receptacles affords a degree of protection, wiring reversals are common and the chassis may be placed at full line potential with respect to ground. In addition, use of polarized receptacles does not protect against an inadvertent "floating" neutral. Elaborate protective measures are then required to prevent personnel from coming in contact with the chassis.

The device described here uses the Underwriters Laboratories parallel blade connector with ground lug in conjunction with special circuitry to minimize the possibility of the chassis being "alive." The 115 v relays must find the proper relationship of voltage between the "hot," neutral, and ground terminals in order for power to be applied to the equipment. A fuse is used to provide the usual circuit protection.

The circuit can be housed in a small metal box on the connector end of the three conductor power cord. The black terminal of the line is normally routed to the fuse or circuit breaker of the branch circuit while the white is connected to the system neutral which is in turn grounded. The ground lug of the receptacle is connected to the grounded conduit system or, if nonmetallic sheathed cable is used, to a separate lead which is returned to the building ground.

When power is applied to the circuit, an undesired potential between the neutral and ground terminals causes fast acting relay K_{1} to be energized thus opening the normally closed contacts. This prevents operation of K_{2} so that power is not delivered to the load. If the desired connection exists, K_{1} will not operate; thus K_{2} will be connected between the "hot" and ground terminals of the connector and will supply power to the load. Contacts on K_{2} are adjusted so that the ground contacts close first and release last.

The only limitation of this circuit is that it does not protect against the condition where both the neutral terminal and the conduit ground system are at line potential with respect to earth ground. Such a fault is rare and unlikely to occur.

KI - FAST ACTING IISVOLT AC RELAY
K2- 115 VOLT AC RELAY WITH CONTACTS
APPROPRIATE TOLOAD. CONTAC TS AJUSTED TO CLOSE IN ORDER ANO OPEN IN INVERSE ORDER OF CONTACT NUMBERS.
Fig. 1-Lifesaver circuit.

High Input Impedance Meter-Protection Circuit

It often is necessary to provide overload protection and an effective increase in impedance for a meter movement while at the same time preserving the linearity of the meter. The circuit shown meets these requirements with a linear response from -0.2 to +0.2 volts across a 500 -ohm meter and limits the meter voltage to these maximum values for input swings up to ± 15 volts. Two complementary amplifiers are used differentially to allow bi-polar inputs.

High input overloads (± 15 volts) are possible because of the high $B V_{E R O}$ of Q_{1}, which protects the circuit, and also because of constant-current source Q_{5}. which provides protection to the meter. The current level in Q_{5} (and thus the clipping level) is set by R_{4}.

With the input shorted, Q_{5} supplies equal current to Q_{1} and Q_{4} and to Q_{2} and Q_{3}. While the input is increasing in a positive direction, Q_{1} and Q_{2} are turning on and Q_{3} and Q_{4} are turning off. When $e_{i n}$ becomes greater than +0.2 volts, Q_{5} is supplying all of its current to Q_{1} and Q_{2} while Q_{3} and Q_{4} are turned off. As the input voltage is further increased to +15 volts, the collector voltage of Q_{5} increases at the same rate. This keeps a constant voltage across the emitter resistors of Q_{1}, thus limiting the current through the meter. R_{3} sets the dc level at 0 volts across the meter with the input shorted.
One method of setting the clipping level is to supply a low-frequency sine waye at the indut and observe on a

Meter voltage is limited to $\pm 0.2 \mathrm{v}$ and is linear in its nctive region.
scope the voltage across a 500 -ohm load while adjusting R_{1} and R_{2} until the clipping level is greater than ± 0.2 volts. Input impedance is greater than 1 meg for all input voltage.

Although the circuit was designed for a 500 -ohm meter, minor circuit modifications will adapt it to other meters. Silicon planar transistors can be used for low leakage at high temperatures.

Single-Transistor

Short-Circuit Detector

The current-amplification feature of a transistor lends itself nicely to the protection of dc power circuits. Most dc power sources have millivolt shunts which are used in metering. This shunt (or an equivalent length of wire) can be used to drive the base of the transistor to indicate overloads.

Almost all dc supplies can develop up to ten times normal load current on a bolted short circuit. This usually is far too much current.

In the circuit shown, a $400-\mathrm{mv}$ signal (4 times overload) at the base shunt causes a base current of 0.060 ma and a collector current of 2.3 ma at room temperature. The relay will operate when 2 ma flows in the collector. This gives a transistor beta of $38.3(2.3 / 0.06=38.3)$.
Therefore the circuit will disconnect the dc power when

Single-transistor short-circuit detector.
four times normal current is reached. The operating point should be designed to override normal load and switching surges and still be below maximum short circuit current. Four or five times normal seems reasonable.

Inexpensive Short-Proof

Voltage Regulator

Designed to provide a constant 24 v at currents up to 500 ma, this voltage regulator turns itself off when its load is short-circuited. Restarting is automatic when the short is removed. Regulation is within 1 percent for currents from no load to 500 ma and with input voltages from 26 to 34 v .
As the load current increases, all three transistors conduct more heavily until, at a collector current of about 20 ma , Q_{2} becomes saturated, and the base current of Q_{1} is thereby limited. The maximum output current in milliamps is approximately 20 times the beta of Q_{1}. If the load resistance is sufficiently low, the output voltage will become too small to maintain conduction in Q_{3}, thus turning the regulator off. The short-circuit output current is about 100 ma , supplied through R_{1} and $C R_{1}$. Under normal operation no current flows through R_{1} or $C R_{1}$ except during starting, unless the input voltage exceeds about 37 v .

If manual starung is desired, R_{1} and $C R_{1}$ may be replaced with a 3900 -ohm resistor. The short-circuit in this case will be only about 10 ma . Starting is accomplished by a switch which momentarily disconnects the load from the regulator.
Q_{1} and $C R_{1}$ may be mounted on the same small heat sink. A 3 -inch square piece of aluminum is sufficient, since it is only necessary to dissipate about 2 w .
Total parts cost is less than $\$ 16.00$ for the automatically

Inexpensive short-proof voltage regulator.
started regulator, and less than $\$ 10.00$ for the manually started version.

Reduced-Power

Overload Protection

This circurt features a minimum number of components to accomplish overload protection of a series-regulated power supply. The output current decreases as the load resistance decreases above the set value.

The circuit was developed to reduce power dissipation of the series transistors under overload or short circuit conditions. Most power supply protection circuits under overload conditions go into a constant-current regulating mode, requiring high power dissipating capabilities under short circuit conditions.

A typical power-supply schematic is shown in Fig. 1 with the overload protection circuitry enclosed by dashed lines. Zener diode, $C R_{1}$, resistors R_{1} and R_{2} and transistor Q_{3}

Fig. 1. Low-power overload protection circuit.

Fig. 2. Output characteristic.
provide a constant-current source to the series regulator.
Transistor Q_{2} and resistors $R_{3}-R_{7}$ comprise the over-load-protection circuitry. Typical values are shown for a 30 -vdc, 0.25 -amp supply with current limiting to start at 0.31 amp .

The curve in Fig. 2 indicates the negative resistance effect due to the positive feedback through R_{7}. As the load current increases, the voltage across R_{5} increases until Q_{2} is biased into conduction.

The emitter voltage of Q_{1} then increases until Q_{1} is cut off which causes the output voltage to start decreasing. The voltage feedback from $\boldsymbol{R}_{\mathbf{7}}$ then causes the emitter voltage of Q_{2} to decrease and Q_{2} further conducts, causing Q_{1} to cut off completely.

A direct short across the output actually causes the output current to drop to less than half nominal current.

The important feature is that under short circuit conditions power dissipation is actually decreased in the series regulation transistors.

Simple

Reverse-Phase Protection

Navigation systems can be seriously damaged if the phase rotation is reversed by careless or accidental. power transfers. Thi; circuit protects the system and determines phase rotation on initial startup or installation.

A full-wave bridge and sensitive relay are added to the existing phase rotation indicator as shown.

If proper rotation is connected, the ABC lamp will light and the Sigma relay will close the control circuit and allow operation. With reverse phase rotation, lamp BAC will light up and the relay will fail to close the control circuit and prevent operation.

The principal components added are a 22RJCC Sigma relay with a 2500 ohm coil, four general purpose diodes and a conventional 28 vdc three-pole relay.

The proper phase rotation is indicated by lamp ABC, which is paralleled with a full-wave bridge and relay circuit to connect the source to the system.

Duty-Cycle Limiter

It is sometimes necessary to limit the duty cycle of pulse modulated transmitters below a certain level. The circuit shown passes a modulation signal without limiting until a duty cycle of 1 percent is reached. Thereafter countdown begins and the duty cycle is held at approximately 1 percent but never exceeds it.

Components C_{1} and R_{2} integrate the pulsed signal and establish an average dc level proportional to duty cycle. This dc level is coupled through emitter follower Q_{1} to a voltage-controlled astable multivibrator consisting of Q_{2}, Q_{3}, and Q_{4} and associated components. This multivibrator, which runs unsynchronized with the PRF of the input signal, has its duty cycle controlled by the base voltage of Q_{4}. Its output is direct coupled to a tandem AND gate Q_{5} and Q_{6}.

A continuous output from diode AND gate D_{5} and D_{6} is obtained when Q_{5} and Q_{6} are cut off and a signal is applied to D_{6}. Divider network R_{13} and R_{14} allows tandem gate Q_{5} and Q_{6} to be switched on after a 1 -percent duty cycle has been reached. The signal is then counted down at a rate determined by the duty cycle of the astable multivibrator. Q_{7} is an emitter follower used as a modulator driver.

Zener-Gated SCR Protection

for Power Transistors

Here is a relatively inexpensive and reliable way to protect power transistors from excessive dissipation due to over-voltage. In the original application, seven 2 N174As were paralleled to serve as the pass stage of a constantcurrent dc power supply. Current regulation was required under doubly adverse conditions of changing source voltage and changing load values.

The equipment was designed for operation by relatively inexperienced personnel, and the SCR protective circuitry was included to prevent transistor damage by remote-control selection of 20-A load current with the source voltage set at the $40-\mathrm{V}$ level. If this occurred, the product of the collector-to-emitter voltage and the collector current would exceed the transistor dissipation rating and transistor burn-out would occur in a very short time, even though properly heat-sinked.

A 2 N 1909 SCR was used as a controllable "short circuit" across the 2N174As. Since the current-regulator control amplifier requires about a 5 -Vdc compliance voltage across the 2N174As, the SCR gate was referenced to a $10-\mathrm{V}$ zener

SCR protection for seven paralleled power transistors.
diode (1 N 1523), so that if the collector-to-emitter voltage of the 2N174As equalled or exceeded the zener voltage, the SCR gate was permitted to draw triggering current through the zener diode.

The 2N1909 has a turn-on time of a few microseconds when gated by a steep wavefront, or step function, which is much faster than needed to protect against junction overheating in power transistors.
The virtual shorting effect of emitter to collector by SCR conduction is permissible in this application. The desired result is effected by the regulator losing control. The 2N174As are turned off, and load current flows through the SCR. Turn-off of the SCR is accomplished by reducing the source voltage to the SCR extinguish level. Upon increasing source voltage, the current regulator once again assumes control.

The zener-controlled gate has a further excellent characteristic in that a "soft-drive killer*" design deficiency does not exist. The SCR turn-on time is defined by the sum of the zener diode turn-on time and the turn-on characteristic of the SCR in use. Typical turn-on time for the 2N1909 is about 2μ sec. The zener blocking-switching action, then, serves to prevent a constant flow of SCR gate current at levels below the SCR triggering level. Zener diode leakage current flows in the gate lead, but this amount of current is far less than a damaging amount.

Zener Stabilizes Phase-Shift Oscillator

A low-voltage zener diode has a rounded knee characteristic that makes it an excellent current-variable resistor for AGC purposes, since it permits operation with larger signal levels than possible with ordinary diodes. Typical

Fig. 1. Characteristics for 1N702.
characteristics of the 1 N 702 are shown in Fig. 1, while Fig. 2 shows a phase-shift oscillator (Q_{1}) in which the gain is controlled by coupling a 1 N 702 zener diode, $C R_{1}$, across the emitter resistor. (C_{5}, C_{6}, R_{7} is a non-polar capacitor combination.)

The phase-shift oscillator consists of the oscillator proper, Q_{1}; the AGC amplifier Q_{2}, and a complementary emitter follower $Q_{4}, Q_{\text {: }}$, with a driver stage Q_{3}.

Fig. 2. Stabilized phase-shift oscillator.

The input capacitor to the phase-shift network is connected to the circuit output rather than the collector of Q_{1}. In this way, the feedback overcomes the zero crossover distortion of the complementary emitter follower. At the collector of Q_{1} there is a compensatory fast rise and fall at these points. $C R_{3}$ and R_{16} minimize crossover effects. Phase-shift resistor R_{3} is connected to the base of Q_{1} instead of to ground. All the signal current therefore flows into the transistor, and the relatively small input impedance
is in series with R_{3} instead of shunting it.
Diode $C R_{2}$ detects the output amplitude, and the resulting current, plus the bias current through R_{12}, is amplified by Q_{2}, which upon excessive input current reduces current through $C R_{1}$ by reducing the potential at the tie-point of R_{8} and R_{9}. The dynamic impedance goes up, decreasing the gain of Q_{1}, and output amplitude is lowered. Output dc level is such as to keep $Q_{\bar{i}}$ conducting, thereby maintaining a self-starting capability.

Current Transformer Gives Fast

Protection

IN HIGH-vOLTAGE transistorized
power supplies, current limiting as a means of short-circuit protection is often inadequate. Large values of current and voltage will quickly exceed the control transistor's power rating. If a current transformer
a fast and effective short-circuit protection can be obtained that will reduce the power expended in the control transistor during overloads to a negligible level.

The current transformer T_{1} samples the current supplied

Fast reacting overload protection circuit uses current transformer to sense current to voltage regulator.
to the voltage regulator. Diode D, rectifies the sampled current and a voltage drop is produced across resistor R_{1}. R_{1} is selected to trigger the silicon-controlled rectifier $S R C_{1}$, when a predetermined value of overload current is reached. Capacitor C, serves as a filter for the rectified signal.

When a current overload occurs, additional voltage is generated across R, which triggers $S C R_{1}$ on. With $S C R_{1}$ on, no base current is available to the control transistors Q_{1} and Q_{2}, and these transistors are turned off. With Q_{i} off, the transistor is required to sustain only the unregulated voltage $E_{i n}$, thereby reducing its expended power to a negligible amount.

The circuit can be reset by removing the input voltage or by providing a manual reset switch $S W$, to eliminate the holding current of the SCR.

The current transformer used in the circuit shown was wound on an EI-187 core with an 8-turn primary and a 120-turn secondary.

FET provides automatic meter

protection

MOST METER-PROTECTION circuits use some sort of nonlinear device to shunt the meter and thus divert high currents. Though these circuits do protect the meter, many of them
have the disadvantage that they also load down the external circuitry, causing errors. Errors can be minimized by using a series resistor and by recalibrating the meter together with its protection circuit. But, of course, this increases the cost.

Other protection circuits employ fuses or circuit breakers, but these are often slow and must be manually replaced or
reset after each overload.
The circuit shown here has none of the drawbacks mentioned, yet it requires only two inexpensive components. It was developed for an application where the usual voltages of interest were in the range 2 to 3 volts, but where accidental overload voltages up to 14 volts could occasionally occur. With the components shown,
there is no noticeable effect or meter accuracy with voltages to full scale. Yet with 16 volts applied, only 6.7 volts appear across the meter.

Maximum allowable voltage depends on the breakdown voltage of the FET. Circuit action is such that, below the onset of conduction in the zener diode, only the FET "on" resistance is in series with the

meter. This resistance is neg- voltage to the FET, cutting it ligible compared to the meter off and preventing excessive resistance. When the zener meter current.
diode conducts, it applies gate

This simple and effective meter-protection circuit uses only two inexpensive components.

Solid-state relay/circuit breaker

The circuit in Fig. 1 pro- time constant established by vides on-off power control with R_{2} and C_{1} prevents tripping by fault and overload protection. transient overloads such as It eliminates the need for a caused by incandescent lamps. mechanical circuit breaker However, if the overload or (which is too slow to protect fault continues beyond the dusemiconductors) or fuse (which ration of the time delay, the cannot be reset). charged capacitor halts current
Power is supplied to the flow and causes Q_{z} and $Q_{\text {, }}$ load when a logical "I" (5.0 to turn off.
Vdc) is applied to terminal I. To reset the circuit, a logical With transister $Q_{\text {; }}$ biased on, "1" applied to terminal 2 turns capacitor C_{1} starts charging Q_{2} on, thereby discharging C_{1}. toward the value of the supply If the overload persists, the voltage through resistor R_{z} and trip cycle is repeated. transistor Q_{2}. Up to rated load, Capacitor C_{2} prevents mainthe potential at point A is taining the circuit closed on an greater than the reference voltage established by zener $R D$, and transistor Q_{s} is biased on. This shunts C_{1} and holds Q_{2} and Q_{1} on.

In the event of an overload or fault, the potential at A falls below the established reference voltage, whereupon $R D$, becomes non-conductive and a trip cycle is initiated. Transistor Q_{s} is turned off causing C_{1} to start charging toward the supply voltage. The

Fig. 1. This solid-state relay provides on-off power control with fault and overload protection. It obviates circuit breakers and fuses.
raising or lowering the refer- zener voltage for $R D_{1}$. Loadence voltage at point A. This current rating of the circuit is is done by selecting the proper controlled by R_{z}.

Overvoltage-protection circuit for

IC power

supplies

Many circuit designers use series voltage regulators to power linear ICs, because, with many types of ICs, gain depends on supply voltage. To maximize the open-loop gain of IC op amps, supply voltage should be as high as possible. But there is then a danger of damaging the ICs if the seriesregulator fails or becomes shorted. Over-voltage protection is therefore essential.

Figure 1 shows how a simple protection circuit can be added to an otherwise conventional series regulator. The added components are Q_{1}, Q_{2} and R_{i}. If Q, becomes shorted, the protection circuit reduces the output current to a very low value.

The circuit is designed such that, with normal load currents, $I_{E_{1}}$ is sufficient to hold Q_{z} in saturation. Resistor R_{l} is chosen to maintain a suitable($V_{C E s}$ $V_{B E I}$) with the predetermined value of $I_{E 1}$. Transistor Q_{1} 's collector current $I_{C 1}$ provides base drive for Q_{2}.

If Q, saturates or becomes shorted, $V_{B E_{I}}$ approaches zero and I_{c} decreases due to back biasing - of Q_{i} 's base-emitter junction. With a reduced value of $I_{C B}, V_{C E t}$ increases, thus causing the output voltage to fall.

Negative supplies can, of course, be protected by a similar technique. Transistor Q_{t} should then be NPN and $Q_{\text {t }}$ should be PNP. Fig. 2 shows a dual supply that provides ± 15 volts for IC op amps.

In general, switching-t ype transistors should be used for this circuit to provide fast response. Transistor $Q_{\text {z }}$ should be chosen to have suitable $V_{C E} s_{A A}$ and $V_{C E O}$. For Q_{1}, $V_{C B}$ should be greater than the sum of $V_{C E s}$ and E_{0}.

Interaction of the protection circuit with the regulator circuit is not serious. Current $I_{E t}$ depends on the unregulated input voltage but, provided the regulator has sufficient gain to correct for variations in the impedance of Q_{ε}, input variations have little effect on output voltage.

Of course, if the total load current is less than $I_{E_{i}}$ the regulator won't work. Therefore, the output divider network should draw all of $I_{E_{1}}$ plus whatever minimum current is needed by the regulator.

Fig. 1. Simple overvoltage-protection circuit ($R_{,}, Q_{1}, Q$) c:m be added to any conventional series regulator.

Fig. 2. Complete dual 15 -volt power supply for IC op amps has protection circuits in each line.

Adjustableovervoltage

 circuit breakerThis circuit serves as an overvoltage protector and, at the same time, generates trigger pulses for an alarm or other functions.

The pass transistor, Q_{1}, is normally on; it is turned off when SCR Q_{2} fires. Zener D_{t} keeps the gate of the programmable unijunction Q_{s} at a constant voltage. Q_{s} 's anode voltage is kept below the zener voltage. Where the supply voltage rises and Q_{3} 's anode voltage exceeds the gate volt-
age, Q_{s} fires, turning on Q_{8}, which cuts off Q_{t} and the load.
By selecting a suitable R_{g} / R_{s} ratio, one can set Q_{j} 's anode voltage and thus, the voltage at which the circuit will trip. When Q_{s} fires, it generates complementary pulses A and B which can be used to trigger other circuitry.

After the circuit trips it stays off until the supply voltage is shut off, at which time Q_{z} commutates and resets the circuit.

In many cases, it may be desirable to actuate a relay or lamp without controlling a load. In these applications, one can eliminate Q, and the load,

The $\mathrm{R} 2 / \mathrm{R} 3$ ratio determines the trip point of this overvoltage protector.
substitute a relay or lamp for circuit to trip at different R_{f} and use more than one levels.

Modified 710 maintains accuracy at

high input voltages

IT IS OFTEN NECESSARY to protect the inputs of comparators ($\mu \mathrm{A} 710$) against excessive voltage inputs. A typical application would be a zero-crossing detector placed at the output of an op amp with amplifier output swinging ± 10 volts. The usual over-voltage protection circuit resembles the circuitry of Fig. 1. In this circuit, R_{S} is made relatively high to limit the drive current required of amplifier A_{1}. This resistor reduces the accuracy of comparison by $I_{o f f} R_{8}$ where $I_{o f f}$ is the offset current of the 710 .

The circuit of Fig. 2 overcomes this problem. When $V_{i n}$ is more positive than $V_{p,}$ (Pinch-off voltage of Q_{1}), Q_{1} is off and Q_{2} is on since $C R_{q}$ is back biased. Thus the gate of Q_{2} is allowed to float and assumes the same potential as the source with the result that Q_{2} is on. When $V_{i n}$ is more negative than $V_{p 2}, Q_{2}$ is off and Q_{1} is on. In either case, the impedance seen by $V_{\text {in }}$ is approximately $R_{a}+R_{b}$ and the input voltage of the comparator is $\left(V_{i n}\right)\left(R_{b}\right) /\left(r_{a}+\right.$ $\left.r_{b}\right)$. The voltage and the pinchoff voltages should be chosen to be less than the input and differential voltage ratings of the comparator (5 volts for the $\mu \mathrm{A} 710$).

Fig. 1. Usual comparator protection circuit which introduces an error of $I_{a f f} R_{N}$.

Only when the difference be- 710's input. Maximum contween V_{1}, and ground is less ductance (Gds in Fig. 3) is than the pinch-off voltages, do obtained only near the comboth FETs conduct resulting in parison point where $V_{G S}=V_{1}$ a low impedance path to the - ground $=0$.

Fig. 2. New comparator protection circuit extends differential and input voltage ranges while maintaining accuracy.

Fig. 3. Graph of FET conductance versus comparison points.

FET protection for

Here's a circuit to protect op amps from destruction due to the application of a voltage source at the output - even momentarily. The amplifier shown, designed to operate from $\pm 15 \mathrm{~V}$, has survived, without damage, the application of 40 V to its output, when this circuit was used.

The protection comes from an inexpensive, plastic-cased JFET, the 2 N 3819 , which has
an $I_{\text {DSs }}$ of 10 mA , an on resistance of 200Ω and a breakdown voltage exceeding 50 V . Enclosed in the loop of the op-amp circuit, designed to deliver 5 mA , the FET has almost negligible effect on performance. The two 1-M Ω resistors keep the FET fully on.

If a low-impedance voltage source is connected to the output, the FET permits only 10 mA to flow from the amplifier. The excess voltage is de- the $20-\mathrm{k} \Omega$ feedback resistor. amp's input to protect against veloped across the FET and Diodes can be used at the op too high input voltages.

Section 4
 FILTER \& SUPPRESSION CIRCUITS

Directional Frequency Splitter Filter

The filter to be described was designed to allow simultaneous transmission of tv and fm frequencies ($54-220 \mathrm{mc}$) in one direction and subfrequencies ($0-39 \mathrm{mc}$) in the opposite direction in community or closed circuit tv systems. This feature can be utilized for broadcasting live community tv shows of local interest such as news or sports, or for two-way tv communication in schools, military bases or hospitals.

A modified repeater amplifier station is shown in Fig. 1 for two-way tv communication. As indicated in Fig. 1, the directional frequency splitter consists of two low pass filters to pass signals from $0-39 \mathrm{mc}$ and two high pass filters to pass signals from 54-220 mc.

The main difficulty encountered in the design of the composite filter was obtaining sufficient rejection and isolation of undesired signals with a reasonably sized package. A standard five-inch rack mounted panel was decided upon. The high pass filters attenuate the low-frequencies at least 75 db ,

FIG. 1-Modified repeater station.

FIG. 2-Low pass filter.
and the low pass filters attenuate the high frequencies at least 75 db . All filters have a maximum vswr of 1.2 over their pass band.

Another important requirement is that the attenuation of frequencies between 39 and 54 mc should be at least 40 db between the amplifier input and output terminals with the amplifier removed and the cable input and output terminals terminated in 75 ohms , the characteristic terminating impedance of the filter. This provides sufficient gain margin at the critical crossover frequency to pre-

vent unwanted oscillations in the circuit.
The original design was based on Tchebycheff equal ripple behavior in the stop band by proper selection of the m and k values of the many sections of filters required for rejection specifications of 75 db minimum. It was found to be expedient and resulted in a less complex filter to deviate slightly from pure Tchebycheff design to eliminate inadequate rejection between amplifier input and output terminals. This was experienced originally since a

FIG. 4-High pass filter.
common cutoff frequency was chosen for the low pass and high pass filters to provide both satisfactory pass band vswr and adequate stop band attenuation with minimum components. Deviation also permitted meeting all specifications utilizing standard stocked values of capacitors (all coils being adjustable).

Each low pass filter consists of two m derived terminating half sections, three m derived full sections and two constant k full sections as shown in Fig. 2. Figure 3 gives equations for the various type low pass sections.

Each high pass filter consists of two m derived terminating half sections, three m derived full sections and four constant k full sections as shown in Fig. 4. Figure 5 gives equations for the various type high pass sections.

When the high pass and low pass filters are connected in parallel at one end, the shunt legs of the terminating m half sections can be eliminated if the terminating half sections have equal m values

$f_{0}=$ CUTOFF FREQUENCY OF FILTER
$1 \infty=$ TRAP FREQUENCY OF m SECTIONS $=f 0 \sqrt{1-m^{2}}$
Rn = NOMINAL FILTER IMPEDANCE $* \frac{1}{2 \pi f_{0} \sqrt{L_{i} C_{0}}}$
FIG. 5-High pass filter design equations.
and the product of the cutoff frequencies equals the product of the highest useful frequency of the low pass filter and the lowest useful frequency of the high pass filter.

The complete circuit with trap frequencies and component values is shown in Fig. 6. Since all inductors are variable and vary from theoretical

Table I - Coil Data

L1, L3, L5, L7, L10, L23, L26, L28, L30, L32 5
L12, L13, L20, L21 .. 7
L11, L22 ... 9
L2, L4, L29, L31 ... 10
L15, L18 .. 11
L9, L24 .. 14
L14, L19 .. 15
L6, L27 .. 17

FIG. 6-Complete circuit of frequency splitter. All capacitor values are in $\mu \mu \mathrm{f}$.
values due to coupling, stray capacitance and inductance of tie points, the number of turns is listed which will give a convenient adjustment. The low value capacitors in the high pass filter sections are compensating capacitors for the unavoidable (for practical manufacturing considerations) series lead inductance of the series high pass capacitors. The trap sections are first adjusted to their proper frequency indicated in Fig. 6, and all remaining inductors are then adjusted for best pass band vswr.

All coils are air wound on a 0.25 inch diameter. The ten 5 -turn coils have No. 22 polyurethane insulated wire. All other coils are No. 20 polyurethane. Table I gives the numbers of turns for all coils.

Muting System for Motor-Tuned Receivers

USE of fractional horsepower dc motors for remote tuning or channel changing of marine, communications, and television receivers has become widespread. Since this type of motor is a prolific source of electrical noise, its use entails the employment of some system of noise suppression. The obvious and conventional method is to use a muting relay, which means additional power consumption and possible space problems.
The muting system described herein was developed for use in conjunction with a retrofit channelchanging system for an eight-channel marine radio. Instead of a muting relay, the circuit utilizes four components whose total cost is less than that of a single relay. Operation is dependent upon the fact that the input current to a commutator-type motor is full of spikes and fluctuations.
Application of power to the motor causes an immediate surge of noise current through the primary of the transformer. The resultant high voltage appearing across the secondary is rectified and filtered, and then applied to the first audio stage as cutoff bias. As long as the motor continues to run, the noise currents will keep the audio system effectively silenced.
A convenient feature of this system is that no components of critical value are required. The transformer can be an output transformer with a turns ratio of around $50: 1$, and since the noise currents contain no low-frequency components, only a very small core size is necessary.
The rectifier can be any diode having an inverse voltage rating of 100 volts or more. The resistor should be a small fraction (less than one-tenth) of the audio grid resistor, and the capacitor is chosen for the desired muting hold time, or the time the audio is disabled after the motor stops. In the circuit shown, the audio amplifier remains cut off for

Noise puises from motor are rectified and used to bias audio stage to cutoff.
approximately 0.25 second after power is removed from the motor. The author developed this circuit while employed at Pearce-Simpson, Inc., Miami, Fla.

Transient Suppressor for AC Circuits

Suppressing the kickback of inductive loads, such as relays, solenoids, etc., when the power is interrupted is usually done by connecting a nonlinear circuit element across the load. Such nonlinear elements are zener diodes, selenium arc suppressors and others. The difficulty is that they must have their voltage characteristic tailored very carefully to suit the particular operating voltage of the system. Also, the sharp breakdown needed for fully effective suppression is difficult to obtain at a reasonable cost.
The circuit shown is composed of inexpensive

Capacitor fed by bridge rectifer forms transient suppressor of inductive kickback.
components and has the interesting feature that it can operate over a voltage range limited only by the voltage ratings of the diodes and capacitor, and yet the clamp voltage is always very sharp and adjusts itself to be equal to the peak line voltage. This is ideal for most applications.
The diodes form a full-wave bridge rectifier which has a resistor and capacitor across its output. The resistor is large and serves only to discharge the capacitor after the power is turned off. The capacitor is made as large as practical. When power
is first applied, the diode bridge immediately charges the capacitor to the peak line voltage. Once charged, the capacitor floats across the line. When power is interrupted, the high-voltage kickback exceeds the peak line voltage and the diode bridge conducts the transient into the capacitor, and the energy of the transient is dissipated in trying to charge the capacitor to a higher voltage. If the capacitor is large enough, the voltage across it will not increase significantly. No danger of ringing exists because the diodes will interrupt a reversal of current. The diodes need not be large since they only conduct surges of short duration.

Active Second Order Filter

I^{t}r is often desirable to use active filters to overcome difficulties of simple passive filtering. The following filter provides low phase shift and a near flat response to its corner frequency with a minimum number of components. The circuit of Fig. 1 consists of a simple second-order filter combined with a transistor emitter follower which provides the necessary positive feedback.

The emitter follower provides sufficient feedback

$f=\frac{1}{2 \pi R_{1} C_{1}} \cdot \frac{1}{2 \pi R_{2} C_{2}}-1 \mathrm{ke}$
FIG. I-Circuit of active low pass filter.

FIG. 2-Response of low pass filter.
to produce a damping ratio of 0.6 , however, since the feedback can never exceed unity, the circuit is unconditionally stable. The time constants of
$R_{1} C_{1}$ and $R_{2} C_{2}$ are made approximately equal, however, the impedance of $R_{2} C_{2}$ should be about five times that of $R_{1} C_{1}$ so that loading of the first filter section by the second is negligible. Typical circuit values for a 1 -kc low pass filter are included in Fig. 1. The frequency and phase characteristics of this filter are presented in Fig. 2.

FIG. 3-Active high pass filter.

The R 's and C's may be interchanged as shown in Fig. 3 to provide an active high pass filter. In this form of the circuit the bias divider resistors, R_{b} and $\boldsymbol{R}_{b}{ }^{\prime}$, also function as \boldsymbol{R}_{2}.

The input to the low pass filter may be direct coupled (eliminating $C_{i n}, R_{b}$ and $R_{b}{ }^{\prime}$ of the low pass) to the output of a high pass filter to form an active band pass filter. The output impedance of the active filters is low and performance is relatively insensitive to loading. The filter insertion loss is close to zero db .

Variable Rejection Band Filter

Voltage sensitrve band-pass filter circuits have been used in equipment for re-creating speech or vocal sounds by selecting appropriate audio frequencies from a noise signal source containing a wide range of frequencies in response to a control voltage developed from a sampling of frequencies in the original spoken words.

An amplifier is arranged to pass selective bands of frequencies in response to a control voltage which acts to change the parameters of a parallel-T band rejection filter connected in a negative feedback path of the amplifier. The band rejection characteristics of the filter are varied by changing the impedance value of resistors 12,13 and 14 in Fig. 1. As shown in Fig. 2 each of the resistors comprise a plurality of resistors which may be selectively connected in parallel by a sequence of relays $15,16,17$ and 18 which are activated by the control voltage appearing at an input terminal.

The amplifier circuit of Fig. 1 uses a triode fed by the noise signal. The cathode of the triode may
be biased somewhat above ground potential by a bypassed cathode resistor. Output signals are developed across a plate load resistor and appear at the output terminals.

Negative feedback path is provided between plate and grid through capacitor 36 , resistor 37 and the parallel-T band rejection filter network. The grid may be biased by grid leak resistor 38 which is coupled through resistor 37 and the filter network. The grid resistor is effectively connected in series with the filter network, rather than in parallel at the filter network output, and therefore will not impair the action of the filter.

The twin-T filter comprises a high-pass T section including a pair of series connected capacitors 39 and 40 and resistor 14 and a low-pass T section including the series resistors 12 and 13 and the capacitor 41.

By varying resistors 12,13 and 14 , the rejected band of frequencies may be shifted, these frequencies becoming the new pass bands of the amplifier. If the values of capacitors 39,40 and 41 and resistors 12,13 and 14 are properly chosen, the rejection bands and pass bands may be maintained at very closely the same width in cycles and may be evenly spaced along the frequency spectrum.

In the speech re-creation application, the spectrum assigned to the speech was approximately from 100 to 6000 cycles. This primary audio spectrum was divided into three major sub-bands of approximately 100 to 1500 cycles, 1500 to 3000 cycles and 3000 to 6000 cycles. In addition, the 100 to 1500 cycle major sub-band was operated on in a special manner to identify the pitch information. This resulted in a fourth sub-band in the 100 to 300 cycle range.

A voltage sensitive bandpass filter, of the type described here, was assigned to each of these major sub-bands. The filter selected a minor sub-band within the major sub-band. Because of the wide range of frequencies to be covered, optimum circuit constants were not necessarily the same in corresponding position in filters operating in different major sub-bands.
The various pass bands can be made the same width in cycles, which, of course, requires a changing Q of the filter with frequency. Some filters have been built with matching Q and reactance curves to give this constant width in cycles, but these filters are by contrast very complicated.

In the time domain of speech, the 5 -millisecond delay due to the relays was completely insignificant.

The filter is electrically noisy when the contacts change and transients are introduced. This was anticipated and the effect was actually enhanced for the following reasons: During relatively steady state speech sounds, such as vowel sounds, the relays were relatively inactive and the noise injected was negligible. However, when some of the fast

FIG. I Selection of resistors for filter is done by voltage comparators controlling relays.

Table of Values

Major sub-band 100 to 1500 cycles		
Number of minor sub-bands		
Capacitors 39 and $40 \quad 0.006$ microfarad		
Capacitor 41	0.012	crofarad
Bandwidth	200	es approximately
Minor sub-band	R_{12}, R_{13}	R_{14}
Center Frequency	Noninal Values	Nominal Values
200	110,000 ohms	25,000 ohms
400	64,000 ohms	15,000 ohms
600	44,000 ohms	10,000 ohms
800	35,000 ohms	7,500 ohms
1000	30,000 ohms	5,100 ohms
1200	25,000 ohms	4,500 ohms
1400	20,000 ohms	3,500 ohms

speech transients were formed, such as the explosive sounds T, P, B, etc., the relays were very active and introduced a great deal of noise. Since the speech sounds themselves were noisy, the filter noise was believed to enhance the efficiency of the job the filter was supposed to perform.

By way of example, the following table of typical values is given for the major sub-band of 100 to 1500 cycles. For simplicity, resistor 37 is considered a constant, although in actual practice it was incrementally adjusted to make the output minor sub-bands of equal amplitude.

Low-Pass Filters for Wide-Band Harmonic Suppression

Signal generators and other signal sources, no matter how precise, always produce harmonics and spurious signals along with the desired signal. For some applications this is of no importance. For many others, these spurious signals can be extremely annoying. For example, when making slotted line measurements, the presence of even a small amount of harmonic signal can affect the measured vswr seriously. In measuring the selectivity and interference rejection of a receiver, the signal source must be "clean."

Ideally, an extra tuned circuit after the output attenuator would solve the problem. This is impossible from a practical viewpoint due to the tracking problem. A low-pass filter will often serve the same purpose but is useful over a range of less than one octave. If the desired signal is lower in frequency than $1 / 2$ of the filter cut-off, second harmonics will be passed. If the signal is higher than. cut-off, it, too, will be attenuated. Thus the less-thanoctave limitation.

If a series of low-pass filters is used, a wide range of frequencies can be accommodated. An analysis shows that if the cut-off frequencies of the various filters were spaced by a ratio of 1.6 to 1 , the widest frequency range could be covered with a limited number of filters and still produce satisfactory rejection of second harmonics and all higher spurious signals. For example, if the lowest filter cut-off is chosen to be 1000 mc , this filter can be used for frequencies from about 650 mc to 1000 mc . Then,

FIG. I-Filters consists of inductance and shunt capacitance.
by using filters with cut-offs of $1600,2500,4000$, 6500 , and $10,000 \mathrm{mc}$, a frequency range of 650 mc to $10,000 \mathrm{mc}$ is covered with just six low-pass filters.

However, it is not convenient to be constantly changing filters in coaxial circuits. Screw-on type of connectors are slow to attach and disconnect. Bayonet types are not very satisfactory for leakage and stability. To make the use of a series of filters convenient, it was necessary to develop a switching mechanism.

For many years there has existed a good coaxial switch which was developed and used for coaxial attenuators. This switch works on a pull-turn-push principle to disengage and engage the coaxial connectors at each end of the attenuator. Once the attenuator is disengaged, it is only necessary to rotate the desired attenuator into position with a standard turret mechanism.

To use this switch for coaxial filters, it was necessary to develop a line of filters of identical length covering the entire frequency range. This was done using a combination of lumped-constant and transmission line techniques. In Fig. 1, a cross section of the filter is shown. The series inductance is a coil of the appropriate inductance, while the shunt capacitance is a section of low characteristic impedance line. The combination can be used to produce

FIG. 2—Filters are combined with pull-turn-push coaxial switch.
excellent low-pass filters, over a very wide frequency range.

By using these filters and the turret switch, it was possible to develop a turret filter which would pass fundamental frequencies over a range of almost 20 to 1 and still have 40 -to- 60 db attenuation on all harmonics. For one application, a unit was built with the filters mentioned above to cover the frequency range from 650 to $10,000 \mathrm{mc}$. For another application, cut-off frequencies of $200,320,500,800$, 1300 , and 2000 mc were used to cover the range from 120 to 2000 mc . A patent application has been filed on the device, shown in Fig; 2.

Transistors As Reactive Filter Elements

ATRANSISTOR may appear as capacitive or inductive to a circuit if the transistor is used in a Miller amplifier configuration. Inductances as high as 20 henrys and capacitances as large as 100 uf can be simulated using these circuits.

In Fig. 1A the transistor is used as an inductive reactance. If an ac signal is applied across collector to ground the voltage across C will lag the current. The base current I_{b}, of the transistor will change in proportion to the voltage variation across C. The output of the transistor will be a current which lags the voltage of the applied ac, giving an inductive effect. The inductive reactance will be equal to the X_{c} minus $R C$ phase losses multiplied by the beta of the transistor. An emitter follower circuit is used to increase the input impedance of the tran-

FIG. I-Equivalent circuits for inductive (A) and capacitive (B) transistor circuits.
sistor. If not, the capacitor would discharge through the base emitter junction and exhibit a very low cross-over point.
In Fig. 1B the transistor is used as a capacitive

FIG. 2—Parallel-tuned circuit resonant at about I kc. reactance. Here the current through C passes directly into the base. The capacitive output of the transistor is approximately equal to $h_{f e}$ times X_{c} minus $R C$ phasing losses.

In Fig. 2, the Circuit of Fig. 1A and B are connected in series to form a parallel-tuned circuit. They resonate at approximately 1 kc and exhibit a Q of approximately 7. The inductive reactance is equivalent to a 200 mh choke across a $0.1 \mu \mathrm{f}$ capacitor.

Rectifier Transient

Protection Circuit

Transients created by the collapse of a transformer magnetic field or inductive devices switched in and out of a power supply load can be absorbed in many ways.

A large electrolytic capacitor across the load, Fig. 1, appears to be the best "absorber"; however, this condenser filter creates poor regulation that may not be tolerable. By adding a diode in series with the capacitor as shown in Fig. 2, C will charge to the peak of the ac cycle, then uncouple until a higher pulse comes along. Repetition of pulses will gradually increase the charge across C, and a bleeder resistor R may be used as shown in Fig. 3 to counteract this rise.

Transients in the load of opposite polarity will be shunted to ground by conduction of the rectifiers. Transients from the transformer side will be coupled to the electrolytic by the transformer center tap (or by a conducting rectifier in other circuits); thus, this circuit affords protection from both directions.

Devices requiring pure dc, such as transistor amplifiers, can be run off the same supply by attaching the load to C.

Output Stage With Active Filtering

Many applications require that the output stage match a high-impedance amplifier to a low-impedance load and also attenuate unwanted noise outside the useful bandwidth. The circuit, Fig. 1, combines all of these features without the use of bulky inductors. The frequency response is that of a low-pass L-C network with a coefficient of damping (c / c_{o}) ranging from 0.4 to 2 . The network can be made maximally flat by proper selection of the ratio R_{3} / R_{4}. Experiments and calculations show this to be approximately 0.8 , but it de-

Fig. 1. Active filter output stage.
pends on some transistor parameters such as r_{e}, β, and the location of the poles determined by $R_{1} C_{1}$ and $R_{2} C_{2}$.
The $R_{1} C_{1}$ time constant is determined by the cutoff frequency desired. $R_{2} C_{2}$ has the same time constant, but R_{2} is made five times R_{1} to prevent loading of the first network. The emitter resistance, $R_{3}+R_{4}$, should be as low as possible especially if transients are anticipated.

Rigorous analytical means can be used to describe the operation, but a brief summary is that real roots of $R_{1} C_{1}$ and $R_{2} C_{2}$, located on the real axis of the complex S-plane, can be made to become complex con-
jugate with the application of feedback, thereby simulating an L-C network.

Spike Suppressor for Power Converters

Although it is possible to design and manufacture power-converter transformers with very low leakage reactance, such transformers usually are expensive, particularly if high power levels are involved. A tape wound core of $50-50$ nickel-iron alloy often is used, but hand-winding of the primary may be necessary if bifilar winding is to be used.
In many cases, the cost of such construction prohibits its use. A more economical method is shown.
An additional winding is placed on the transformer. The number of turns in this winding is made slightly (about 5 percent) less than the number of turns on the primary winding. The diodes can then conduct only during the time when a spike voltage appears at the transistor collectors which exceeds the supply voltage by about 5 percent plus the forward drop of the diodes. In a typical $12-\mathrm{v}$ design very inexpensive diodes can be used. The spike-suppression winding will carry very little average current and the wire size can be chosen on the basis of the allowable voltage drop.

One difficulty will be apparent in the design as shown: leakage reactance between the primary winding and the spike-suppression winding will tend to nullify the advantages gained. This problem can be minimized by merely tapping the primary winding at about 95 percent of its turns.

Extra winding for CR1 and CR2 suppresses transients.
One of the greatest advantages to this circuit, in
addition to its cost saving features, is the fact that unlike most transient clippers, this design does not divert the spike energy into a dissipative element. The energy is returned to the input power source, thereby actually improving the efficiency!

Surge-Current Limiter

Gives Fast Turn-Off

The surge current that flows during turn-on of a non-linear device such as a motor or incandescent lamp can be destructive to the transistors or SCRs used for control purposes. In a motor, the initial current is limited only by the armature current; in a lamp, the cold resistance is about 20 times less than the operating resistance. Thus if full signal is applied when the equipment is turned on, the limited current rating of the control device can easily be exceeded.

The obvious solution is to use a delay network so that the applied voltage builds up slowly. A simple RC circuit provides a delay at turn-on, but also delays turn-off. This second delay is undesirable in most cases. The solution then is to make the network unilateral.

Fig. 1. Diode decreases turn-off time.
Fig. 2. Shunt resistor might be eliminated and another diode added.

The diode in the circuit allows the capacitor to charge slowly to provide the necessary turn-on delay, but prevents capacitor discharge current from flowing through the load. Turn-off thus is instantaneous. Resistor R_{2} can be eliminated, as in Fig. 2, thus reducing operating drain when the signal source has a low output impedance. Another diode, $D 2$, can be added to insure fast decay by bypassing R_{1}.

Base-Emitter Protection in Monostable Multivibrators

[^0] Fig. 1a), effectively applying a negative voltage on the
base of Q_{1}, which, initially, is very close to the value of the supply voltage.

This undesirable effect can be alleviated with two diodes, as shown in Fig. Ib. When Q_{1} is on, diode D_{1} is conducting and the forward-bias voltage on the base of Q_{1} is isolated by diode D_{2}. When Q_{1} is off, the negative discharge voltage on its base is now applied also to the

Typical monostable multivibrator (A) and improved circuit with diodes (B).
emitter via diode D_{2}, causing low $V_{\text {RE }} D_{1}$ isolates the discharge voltage until its value reaches the critical point, causing Q_{1} to turn on.

The circuit shown produces a pulse width of 200 $\mu \mathrm{sec}$.

The FET as a Voltage-

Controlled Resistor

The unique properties of the field-effect transistor can be used to make an excellent voltage-controlled resistor, both for dc and for ac.

One example is a high-impedance ($100-\mathrm{K}$ or more) dropping resistor, working into an audio-frequency anti-resonant filter (Fig. 1). Since the iron-cored inductors of the filter are sensitive to signal amplitude, a constant voltage must be delivered to the filter when the input varies.

The circuit of Fig. 2 performs the desired functions. Since the input is ac, the drain-source voltage is alternately positive and negative. Due to the bi-directional characteristic of the drain-source channel, either end may be used as the source.

Fig. 1. Voltage control for audio-frequency filter.

When the input is positive, terminal A serves as the source and B as the drain, and when the input is regative, terminal A serves as the drain and B as the source. In either case, $C R_{1}$ and $C R_{2}$ insure that the gate is reversebiased with respect to the terminal which serves as the source.

Self-bias is developed across R_{1} or R_{2} (depending on input polarity). With low input (low bias), the drain-source

Fig. 2. FET voltage-controlled resistor.
resistance is a few hundred ohms. As the input, and consequently the bias, increases, the drain-source resistance increases to several hundred thousand ohms.

The FET used in this case is the 2 N 2386 . With a $100-\mathrm{K}$ resistor in place of the filter, the output increases with input up to approximately 10 v peak to peak, and stays constant with inputs over 50 v peak to peak. Without R_{5} and R_{6}, the output limits at less than 10 v peak to peak, and actually decreases with increasing input; however, some distortion is introduced.

Delay Line Output Amplitude Equalizer

The circuit shown in Fig. 1 was developed to provide a pulse train from a delay line with. out the use of amplifiers for each delay line tap.

FIG. I-Delay line output amplitude equalizer.

FIG. 2-Waveforms at points identified in text.
As shown in Fig. 2, waveforms A through G, the signal to noise ratio at all taps is approximately the same, however the noise output from the first tap, at 30 microseconds, is about the same amplitude as the desired signal output from the last tap, 630 microseconds. When the signals are added together without equalization, wave-
form H results. As can be seen, the 400 and 630 microsecond delayed pulses are lost in the noise from the first taps.

In the circuit shown, R_{1} through R_{6} attenuate the signal and the noise by varying amounts for each tap. The output pulse train waveforms are
shown at I. A single amplifier is used where desirable to amplify the signals. If the difference in the desired alternation at adjacent taps is not great, some of the alternation resistors R_{1} through R_{6} may be eliminated by increasing the value of the others.

Transient Load With Exponential Decay

A capacitor is often used as a transient load with exponential decay. However, for heavy load or wide range requirements, use of a capacitor is not feasible due to size and range limitation.

Fig. 1a. Circuit monitor provides transient load with exponential decay.

Illustrated in Fig. 1A is a circuit which has wide application as an exponential decay transient load that is compact in size and is of extended range. When a voltage $E_{d c}$ is applied by the closing of switch S_{1}, base B of transistor Q_{1} is initially at ground potential due to capacitive action of C_{1}; thus, Q_{1} conducts most heavily. As C_{1} charges, the conduction of Q_{1} decreases. Maximum load current I_{1} is established by adjusting resistors R_{2} and R_{1} (Fig. 1B). Time duration, t, is established by the product values of C_{1} and the sum

Fig. lb. Output waveshape shows exponential decay for current with time.
of R_{2} and R_{1} (Fig. 1C). Insertion of resistor R_{3}, permits a constant current I_{2} level of operation. Use of the 1 ohm resistor R_{1}, provides a current monitoring device. The current may be displayed directly on an oscilloscope. The circuit is useful in applications that require simulation of a transient load with an exponential decay.

VDC	R_{3}	I_{2}	C_{1}	t	I_{1}	R_{2}
	-	-	50 MFD	50 MS	18.7 a	0.7
32	-	-	100 MFD	1 SEC	6.3 a	4.1
32	-	-	70 MFD	300 MS	8.0 a	3.0
32	-	-	70 MFD	100 MS	21.5 a	0.5
32	28	1.1	70 MFD	300 MS	7.0 a	3.6
32	200	0.16	70			

Fig. 1c Time durations for various combinations of $\mathrm{C}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$.

Stable Q Multiplier

This circuit fulfills a need for a high-selectivity, singlefrequency tone filter that often is required in simple telemetry systems. In the audio frequency range, physically small high-Q inductors are unavailable. To obtain high selectivity (Q of about 200) with compact inductors requires a Q multiplier stable over a wide temperature range, such as the circuit shown.

Transistors Q_{2} and Q_{3} form a two-stage amplifier. The emitter resistors R_{5} and R_{8} are bypassed at the required tone frequency by the respective series-tuned resonant circuits L_{1}, C_{2} and L_{2}, C_{3}. This basic circuit is a bandpass amplifier with peak response at the tone frequency, but rather broad in bandwidth. However, because of the bypass configuration, points A and B are exactly in phase at the resonant (tone) frequency. Inserting a small conductance (R_{6} and R_{7}) between these points allows positive feedback at this frequency. The amount of feedback is varied by R_{7}; decreasing the resistance of R_{7} increases selectivity. At resonance, the driving impedance into the base o Q_{2} becomes very low. and thus an emilter follower Q_{1} is used to increase the input impedance.

Stable Q multiplier.

In a typical application the circuit was adjusted for a center response frequency of 8 kc and bandwidth of 40 cps . The tone output remained constant within 2 db over a temperature range of $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Active bandpass filter with adjustable center frequency and constant bandwidth

Active Filters are becoming more and more popular now that low-cost op amps and linear ICs are widely available. The simple bandpass filter, shown here, needs just an op amp plus a few discrete components.

In this circuit, a single resistor controls the center frequency without changing the bandwidth or the gain.

With the component values shown, center frequency can be shifted from 1.6 kHz to 2.4 kHz by changing R_{c} from 1100 ohms to 406 ohms. The 3-dB bandwidth remains constant at 260 Hz . Center-frequency gain varies only ± 0.5 dB from the nominal 26 dB . Bandwidth at the -10 dB points is 775 Hz .

Filters can be designed for
a wide range of parameter values. Here is a simple step-by-step procedure for calculating the component values from specified values of bandwidth, gain and range of center-frequency adjustment:
Step 1. Choose values for midfrequency $f(\mathrm{~Hz})$, nominal voltage gain G, and 3-dB bandwidth $\Delta(\mathrm{Hz})$.
Step 2. Select a convenient Value C for the capacitors. Step 3. Calculate the required resistor values from the following equations:
$R_{A}=\frac{1}{2_{\pi} \Delta G C}$
$R_{O}=\sqrt{\frac{R_{B}=\frac{1}{\pi \Delta C}}{2_{\pi} C[(2 f 2 / \Delta)-\Delta G]}}$

Circuits, designed by this tech- a comb filter in which each secnique, can be used singly as tun- tion can be individually adjusted able filters; or they can be used to an exact frequency. in multiple combinations to form

Value of Rc determines the center frequency of this band pass filter. Adjustment has no effect on bandwidth.

Optimum zener

ates from a $29-V$ supply with

decoupling

Decoupling capacitors are often used across zeners, as in Fig. la, to filter out conducted interference. Because the zener's internal resistance R_{z} is small compared to the bias resistor R_{R}, the value of R_{z} determines the filtering, as shown in the equivalent circuit of Fig. Ib. The effective filter cutoff frequency f_{c} equals $1 /$ ($2 \pi R_{z} C_{p}$).

The small change in Fig. 2a can improve performance significantly. The de regulation remains the same but, for decoupling, the value of R_{z} is negligible and the network, whose equivalent circuit appears in Fig. 2b, has the maximum possible value of series resistance, $R_{s} / 4$. The cutoff frequency, now equal to 4/ ($2 \pi R_{k} C_{p}{ }^{\prime}$) is reduced by a factor of $R_{8} / 4 R_{z}$ for circuits with $C_{p}=C_{p}{ }^{\prime}$.

As an example, let's assume a $6.2-\mathrm{V}$ zener regulator oper- conductive interference up to 1000 Hz . A $3-\mathrm{k} \Omega$ resistor R_{g} provides $7.5-\mathrm{mA}$ bias current to the $5-\Omega$ zener. For the shunt capacitor of Fig. la we need

$$
\begin{aligned}
C_{p}^{\prime} & =\frac{1}{2 \pi \times 1000 \times 5} \\
& =31.8 \mu \mathrm{~F}
\end{aligned}
$$

For the revised circuit, however, we can use

$$
\begin{aligned}
C_{p} & =\frac{1}{2 \pi \times 1000 \times 750} \\
& =0.21 \mu \mathrm{~F}
\end{aligned}
$$

for a reduction in capacitor size by more than two orders of magnitude.

The proposed circuit would use two $1 / 8$-watt resistors and a $0.2-\mu \mathrm{F}$ capacitor operating at about 18 V . The less effective network has a $1 / 4$-watt resistor and a $30-\mu \mathrm{F}$ capacitor operating at 6.2 V . The component trade-off favors the newer circuit.

Load circuits with internally generated noise may still require the conventional decoupling. In that case, the proposed circuit, if used with a capacitor across the zener, effectively decouples residual noise from the power line.

Fig. Ia. Basic circuit of zener shunted by decoupling capacitor used to filter out conducted interference.

Fig. Ib. Uiquivalent circuit of lïg. Iat.

Fig. 2a. Slight modification of earlier circuit gives significant improvement.

Fig. 2b. Equivalent circuit of Fig. 2a.

Digital ICs serve as

audio filters

In most conventional marker beacon receivers, coded audio frequencies (400, 1300 or 3000 Hz) associated with particular indicator lamps are selected by LC tuned circuits. Since the tuned circuits operate at audio frequencies, they are large and heavy. Other components sometimes used to obtain the required audio selectivity, such as RC notch filters, are cumbersome and often unreliable since tight component tolerances and typical long-term instability leave much to be desired.
In the alternate system shown in Fig. 1, the more conventional filter circuitry is replaced entirely by digital ICs. The arrangement shown is actually a simple, low-frequency counter. Since the counter capability required for effective audiofrequency selectivity is low, the time-base frequency can be selected such that it may vary as widely as 25% from its initial nominal value. Reliable longterm operation is thus assured and, of course, no periodic tuning is required.

Operation of the counting circuit is conventional, with counting and display periods of approximately 4 ms each. When

Fig. 1. A digital-IC frequency counter selects the proper coded audio signals for driving the proper display lamps.
the gate-control line is positive, the gate is closed, and the previous count is displayed. At the instant the gate-control line goes low, the counter flip-flops are reset, and the gate (which also serves as part of the monostable multi that shapes the input-signal waveform) is enabled, allowing the counter to accumulate one count for each input cycle that occurs while the gate is open.

| Input
 Freq
 $(H z)$ | Cycles
 in typical | 4-ms count |
| :--- | :--- | :--- | :--- |

Fig. 2. Typical lamp states as a function of input frequency.

After the gate closes, the accumulated count is displayed. Since the duration of the count cycle (which is determined by the time-base period) is constant, or nearly so, then the count that is accumulated and subsequently displayed is proportional to the frequency being counted. With the values given, each of three frequencies of interest will light an associated lamp.
A tabulation of the lampdisplay output states as a function of input frequency over the range of $100-4000 \mathrm{~Hz}$, the normal marker beacon receiver audio-frequency bandwidth, is shown in Fig. 2. The tabulation is for illustration only. It does not consider the normal
± 1-count ambiguity. Any degree of audio selectivity can be provided at the cost of added circuit complexity. The principal aim here is to provide a minimum reliable realization of the required function.

The indicator lamps are disabled during the counting period to prevent display-lamp flicker. The system is extremely immune to noise-induced false-count displays since a fresh count is made and displayed every 8 milliseconds.
The use of inexpensive plas-tic-package RTL, like the MC700 P series, is quite suitable if extreme temperature range is not a problem. Five chips are required to implement the design as shown.

Simple solid-state noise filter for industrial

logic

systems

This circuit provides a useful interface between a noisy outside world and the necessary quiet of timing and logic circuits associated with electromechanical controls.

Even with 24 -volt logic circuits, noise is often a serious problem in situations where control lines may be extremely long, and where there may be considerable 60 -hertz radiation - for example, with installations such as SCR mill drives. Buffer relays are often used for logic interface in high-noise environments; but these are slow, expensive and bulky. Passive filter networks provide another possible answer; but these are also expensive, they cannot filter out dc level shifts, and they adversely affect the rise and fall times of the logic signals.

Though the circuit described here is relatively crude, it is simple and effective. It has none of the disadvantages associated with relays or passive filters. It is a three-terminal active net-
work; and needs no external power other than the input logic.

The circuit works like a Schmitt trigger. There is no output until the input voltage exceeds the breakover voltage of the 4 -layer diode D_{1}. When D_{1} switches to the "on" state, the output jumps to the zener voltage of D_{2}. Level fluctuations and noise at the input are taken up by R_{1}.

With the specified components, input "on" and "off" levels are 9.1 volts and 5.6 volts respectively. Noise immunity is 6 volts ac with the input dc level at zero. With the input dc level at 24 volts, the output will not switch with ac inputs of up to 12 volts. The table shows dc switching levels and ripple at various noise frequencies.

During turnoff, the output re mains in the "on" state until the current in D_{1} decreases below its holding value. The following equations will allow the circuit designer to select component values to suit his needs.
For output "on,"

$$
\begin{equation*}
V_{i n} \leq I_{H} R_{1}+V_{z} \tag{1}
\end{equation*}
$$

and,
$R_{1}<\left(V_{(B R) P}-V_{s}\right) / I_{B}$ (3)
Resistor R_{2} provides a current path for D_{1} at the time when the
diode begins to trigger. Without R_{2}, triggering would be poor because of the high impedance of this circuit are 20 microseconds the zener below its knee. The and 8 microseconds respectively. value of R_{2} must be low enough One further advantage of the cirto aid turn-on of D_{1}, but not so cuit is that diodes D_{1} and D_{2} can low as to cause the output volt- easily be inverted to provide the age to drop significantly while same circuit action for negative the input decreases.
logic voltages.
RIPPLE REDUCTION FOR VARIOUS NOISE FREQUENCIES

RIPPLE ON ZERO VOLTS dc OUTPUT	INPUT (oc)		INPUT (dc)
	VOLTAGE	FREQUENCY	VOLTS
10 mV	6 V	100 Hz	0
50 mV	6 V	1 kHz	0
400 mV	6 V	10 kHz	0

Simple, three-terminal active filter works like a Schmitt trigger, yet needs no external de supply.

A novel active

 filterA simple modification of a multiple inverse feedback filter gives either constructive or destructive interference at a selected frequency. The filter $\left(A_{1}\right)$ both shifts the signal phase by 180° and gives unity voltage gain at the tunable center frequency f_{o}. The filter output is either added to the original signal for a null, or is subtracted for a peak in summing amplifier A_{z}. The amount of filter output used determines the depth of the null or the height of the peak. With the switch in the null position, the
null is complete at the maximum setting of R_{4}. With the switch in the peak position, the peak is up by 6 dB at the maximum setting of the potentiometer. In addition, the bandpass response of the filter is available at output 2.

Three-dB bandwidth and midband voltage gain are independent of frequency control R_{y}. The feedback filter works best for Q values less than 10 and has reasonable component values down to low audio. In terms of f_{o}, the center frequency , and Δ, the 3 -dB bandwidth in Hz , the time constants for the filter are: $R, C=1 / 2$ $\pi \Delta, R_{2} C=I / \pi \Delta$ and $R_{s} C=$ $1 / 2 \pi \Delta\left(2 f^{2} / \Delta^{2}-1\right)$.

Typical values for $f_{0}=1000$ Hz and $\Delta=232 \mathrm{~Hz}$ are: C $=0.005 \mu \mathrm{~F}, R_{i}=138 \mathrm{k}, R_{z}$ $=275 \mathrm{k}$ and $R_{\mathrm{s}}=5 \mathrm{k}$.

This active filter provides bandpass, band-reject and band enhance responses.

High-efficiency, miniature

decoupler

It's usually necessary to decouple the power supplies used with high-gain amplifiers to prevent oscillation due to feedback through the power lines. A disadvantage of the conventional network at the top of the figure is that decoupling is not very effective at low frequencies where good decoupling is often very important.

For example, a $1000-\mu \mathrm{F}$ capacitor has a reactance of 160Ω at 1 Hz , so $1-\mathrm{Hz}$ ripple is attenuated by a factor of only about 60. It is at frequencies of about 1 Hz that motor-boating oscillation occurs. Further disadvantages of
this circuit are that it introduces phase shift, increasing the possibility of oscillation, and it requires physically large components.

The lower circuit in the figure overcomes all these disadvantages. The 1 N5283 is a current-regulator diode, which is a two-terminal field-effect device with common source and gate as one terminal and drain as the other. The 1 N 4737 is a conventional regulator diode.

When used with a load requiring almost zero current, the attenuation of this circuit at 1 Hz exceeds 50,000 to 1 from dc to many kilohertz. The fact that attenuation is maintained down to dc is a significant advantage in preventing low-frequency oscillation. The circuit also uses small components.

Excellent decoupling from dc to very high frequencies can be achieved by adding an rf choke in series with the input

The conventional decoupling circuit at the top uses large components, yet it's not effective at low frequencies; it introduces phase shift and increases the possibility of low-frequency oscillation. The bottom circuit eliminates these problems, offering high attenuation from dc to high frequencies.
to the 1 N 5283 and a capacitor across the decoupled output. Decoupling can be maintained for load currents that aren't
negligible compared to the zener current by using an appropriate emitter-follower circuit as a buffer.

Section 5 PULSE CIRCUITS

Fast Recovery Monostable Multivibrator

TThe circuit shown in Fig. 1 requires fewer components than a standard one-shot multivibrator and it has a fast recovery, usually on the order of $1 / 100$ of its period. It may be triggered with either positive or negative pulses.

Initially both transistors are conducting. Base current is supplied to Q_{2} thru R_{3} which keeps it in saturation. Since Q_{2} is saturated, base current is supplied through R_{2} to saturate Q_{1}. In this state capacitor C has a charge of almost V volts.

With the circuit in this stable state it may be triggered into the unstable state by a positive pulse at the base of Q_{1} or a negative pulse at the base of Q_{2}. In either case the net result of the trigger is to turn off Q_{2} thus allowing its collector to go positive, this turns off Q_{1} and its collector goes to ground. In this way both transistors are cut off.

The timing is done in much the same way as in a conventional one-shot, the base of Q_{2} is initially at approximately V volts and it is charging toward $+V$ volts. When the base voltage reaches zero volts Q_{2} will conduct which turns Q_{1} back on. Note that transistor Q_{1} can supply large collector currents to recharge C to its original voltage very rapidly.

The period of the one-shot is given approximately by:

$$
\tau=0.69\left(R_{1}+R_{3}\right) C
$$

The recharge time constant is given by:

$$
\tau_{\mathrm{Rch}} \approx R_{3} C / \beta_{1}
$$

The diodes $C R_{1}$ and $C R_{2}$ are used to protect the base to emitter junction from excessive voltages,

FIG. I-Circuit of fast recovery monostable multivibrator.
if however transistors with a high inverse $V_{B E}$ rating are used, these diodes may be omitted.

Typical values for resistors R_{1} and R_{4} would be 1000 ohms; for R_{2} and $R_{3}, 10 \mathrm{~K}$; and capacitor C to suit. Transistor Q_{1} can be a 2 N 1132 or 2 N 1259 ; Transistor Q_{2} can be a 2 N 697 or a 2 N 706 . The diodes can be 2 N 663 or equivalent.

Fast Monostable Multivibrator

DELAY WAVEFORMS of short duration and fast rise and fall times may be obtained using current switching techniques. Nonsaturating circuitry and drift transistors are used in the circuit shown in Fig. 1.

In the stable state T_{2} is on and T_{1} is off. The base of T_{2} is returned to the negative supply through R_{3} holding T_{2} on. The voltage at the base is clamped to approximately -0.5 v (the on voltage of silicon diode D_{1}) so that the emitter of T_{2} is slightly negative. This means that the emitter base junction of T_{1} is reverse biased, holding T_{1} off. The current through T_{2} is determined by E_{1} and R_{1} so T_{2} is held out of saturation by picking R_{4} sufficiently small.

When an impulse of current is applied to the base of T_{2}, the voltage there becomes positive to the point where D_{2} conducts and clamps the base voltage to +0.5 v . The emitters of T_{1} and T_{2} try to follow the base voltage of T_{2} but when the emitters become positive, the emitter base junction of T_{1} becomes forward biased and T_{1} turns on, turning T_{2} off. Thus, during this transient condition the common emitter current is switched from T_{2} to T_{1}.

This current, now flowing in the collector circuit of T_{1}, tries to raise the collector potential toward ground. This is prevented initially by the capacitor since the voltage across it cannot change instantane-

FIG. I-Current switching monostable multivibrator uses two IN266G silicon diodes and two 2 N384 transistors.
ously and the potential at the other end of the capacitor is clamped by D_{2}. Therefore none of the current switched through T_{1} passes through R_{2} but rather through the capacitor into the junction of D_{1}, D_{2}, and R_{3}, and the base of T_{2}. This current is in the same direction as the trigger pulse, and thus holds T_{2} off.
The collector current in T_{1} charges the capacitor and consequently the current builds up in R_{2} at the expense of the current in the capacitor. When the current through the capacitor decreases to E_{2} / R_{3}, the base of T_{2} is zero and is going negative, turning T_{2} back on. The current in T_{1} starts to decrease which causes the current in the capacitor to decrease more rapidly, causing even more current to flow through T_{2}. This regenerative action causes the common-emitter current to switch rapidly back to T_{2}.

With the values shown, the common emitter cur-
rent is 2 ma and the current through R_{3} is 1 ma . Thus, when the capacitor charging current falls to

FIG. 2-Multivibrator output wave. form.

1 ma , the circuit returns to its stable state. Then the time of the delay pulse is $0.69 R_{2} C$. Delay times of 1 to $25 \mu \mathrm{sec}$ result when R_{2} is varied over its range, with the capacitor value shown. Longer delays may be obtained by using a larger value capacitor.

The $51-\mathrm{ohm}$ resistor in the collector of T_{2} develops 0.1 v across it due to the 2 -ma current. If a larger output voltage is required, it may be obtained by increasing the common emitter current or increasing the collector impedance. The particular value used is of a proper value to drive a coaxial cable. Figure 2 shows an oscilloscope trace of the output waveform. The particular waveform shown has a duration of $6.4 \mu \mathrm{sec}$ and a rise time limited by the oscilloscope used. The actual rise time of the circuit is approximately $15 \mathrm{~m} \mu \mathrm{sec}$.

Current Switching Astable Multivibrator

Asimple $10-\mathrm{mc}$ pulse generator was recently required. Conventional saturating astable multivibrators were difficult to design at frequencies greater than 1 to 5 mc . The storage and switching times were great enough fractions of the halfperiod that the cross-coupling capacitors were discharged before the conducting transistors were turned off, and the circuits would not operate. Conventional methods of preventing saturation, such as shunting excess base current through the collector of the conducting transistor with a diode, were not attractive because of the extra parts required. The circuit which was finally developed uses a very simple principle to prevent saturation, and presented some extra advantages in addition.
The circuit, shown in Fig. 1, uses the principle of injecting a known current into the emitter of the transistor and clamping its base to a known voltage. Assume Q_{1} is initially conducting and Q_{2} is nonconducting. Capacitor C is being charged by current I so that the emitter voltage of Q_{2} is decreasing. The base of Q_{2} is clamped to a voltage determined by $R_{c 1}, R_{b}$, and the collector current of Q_{1}. When the emitter voltage of Q_{2} becomes low enough that
Q_{2} begins to conduct current, the emitter current of Q_{1} decreases, increasing the base voltage of Q_{2}, which turns off Q_{1}.

Now Q_{2} is conducting, Q_{1} is nonconducting, and current $K_{1} I$ is charging C so that the emitter voltage of Q_{1} is decreasing. Eventually Q_{1} will begin to conduct again, the collector of Q_{1} will decrease the base voltage of Q_{2}, and Q_{2} will turn off. Now Q_{1} is conducting, Q_{2} is nonconducting, and the cycle will repeat.

FIG...I-Current switching astable multivibrator and its waveforms.

The following equations are easily derived once the operation is understood:

$$
\begin{aligned}
& R_{c 1}=\frac{V_{c c}-\left(1+k_{2}\right) V_{c b}}{\left(1+k_{1}\right) I} \\
& C=\frac{k_{1} I}{\left(1+k_{1}\right) f \Delta \Delta \bar{V}} .
\end{aligned}
$$

(When switching time is small fraction of $1 / \mathrm{f}$)

$$
\begin{aligned}
& \Delta V=R_{c 1} I \frac{1+k_{1}}{1+k_{2}}-2\left(V_{b_{e}}-V_{j}\right) \\
& e_{o}=\Delta V_{c 2}=R_{c^{2}} I\left(1+k_{1}\right)
\end{aligned}
$$

where $k_{1}=t_{1} t_{2} ; t_{1}=$ time Q_{1} conducts; $t_{2}=\operatorname{time}$ Q_{2} conducts; $k_{2}=R_{c 1} / R_{b}=$ degree of freedom in choosing parameters; $V_{c b}=$ reverse bias on collec-tor-base junction of Q_{1} when Q_{1} conducts; $\Delta V=$ change in voltage across C during half-period; $V_{b e}=$ base-emitter voltage of Q_{1} or Q_{2} when conducting; $V_{j}=$ base-emitter voltage of Q_{1} or Q_{2} just before conducting, and $f=$ frequency.
It is simple to pick values of $V_{c c}, R_{c 1}$, and $R_{c 2}$ so that neither transistor saturates. The collector voltage rise time of neither transistor is limited by a cross-coupling capacitor, so the output is a good square wave. The frequency is more stable than that of the conventional multivibrator. If the equations for C and V are combined, it is seen that the frequency is approximately independent of $V_{c c}$ and I, and is not sensitive to changes in $V_{b e}$ as is the conventional multivibrator.

Only one capacitor is required. At low and medium frequencies the capacitor is the largest component in the circuit, so this circuit will be smaller.

Polarized capacitors may be used if extremely low frequencies are desired, since the emitter voltage of Q_{2} is always positive with respect to the emitter voltage of Q_{1}.

Current Fall Time Control

In many memory circuits such as inhibit drivers, word drivers, etc., the load for the output transistor consists of a series $R L$ circuit to a supply voltage. The rise time in such a circuit is therefore 2.2 L/R measured from 10 to 90 per cent. Timing allowance is made for this rather slow transient.

Fig. I-Circuit with controiled fall time.
To protect the transistor at turn-off from the energy stored in the inductance, a diode clamp is generally used between the collector and the supply voltage. The fall time is therefore only slightly faster than the rise time, speeded up only by the help from the added forward voltage of the diode.

When the inductance is appreciable, as in an inhibit winding for a coincident current memory, the fall time is so long that it limits the memory cycle time, adding dead time before a subsequent read operation may be performed. It was found desirable to have a faster fall time than rise time, which was realized conveniently by the circuit of Fig. 1.

In the circuit, diode D_{2} is a zener diode and diode D_{1} is conventional to prevent forward current in D_{2}. When transistor Q_{1} is turned on, the current rise time is $2.2 L / R$ as before. When the transistor is turned off, the collector is clamped to a voltage consisting of the sum of the series zener voltage and forward voltage of diode D_{1}, superimposed on supply voltage V. The fall time from 100 per cent to O is calculated from the equation $t_{f}=$ $L / R[\ln (k / k-1)] \quad$ where $k=\left(V_{\text {zener }}+V_{f\left(D_{1}\right)}\right.$ $+V) / V ; k>1$

An advantage of this circuit, in addition to the faster fall time, is the fact that there is a sharp break at zero current rather than the exponential decay toward zero of a simple diode clamp; the sharpness of the zero current point is a result of an exponential decay toward a negative current equal to $\left(V_{z}+V_{f}\right) / R$ but cut off at zero when the diodes stop conducting.

In the application for which the circuit was de-
signed, the fall time was decreased from 0.80 microsecond to 0.32 microsecond. For this application V was $20 ; R, 73$ ohms; $D_{2}, 1 \mathrm{~N} 764: D_{1}, 1 \mathrm{~N} 690$; and $Q_{1}, 2 N 1384$.

Variable One-Shot for Counter Display Time

Avariabli pulse width of up to one-minute duration was required to control the display time of a digital counter. A standard one-shot multivibrator was modified by inserting in the timing capacitor feedback path a high-gain low-leakage silicon transistor for high input impedance. This allowed the use of a smaller capacitor than would otherwise have been required, and the use of a variable resistor which could be made large without being appreciably influenced by the temperature dependent parameters (leakage and current gain) of the transistors.

With a 500 K -ohm potentiometer R and a $120-\mathrm{p} . \mathrm{f}$ capacitor C, the output pulse width at pin 8 is variable from 1 second to 1 minute. Stability is very good over moderate temperature and supply voltage variations.

Output pulse width of one-shot mv is variable from one second to one minute.

The voltage level at pin 8 is normally - 3 volts. Upon application of a positive input pulse, transistor Q_{1} is turned off and Q_{2} is turned on; pin 8 swings to - 11 volts and pin 2 swings from - 11 volts to -3 volts. Capacitor C couples an 8 -volt positive pulse to the base of Q_{3} which is initially at -3 volts. The emitter of Q_{3} (pin 3) then swings from -3 volts to +5 volts and maintains Q_{1} in the off state after the input positive pulse is gone. After C has discharged sufficiently to cause the emitter voltage of Q_{3} to decay from +5 volts to -3 volts, Q_{1} turns on and Q_{2} turns off. The discharge slope at pin 3 is quite steep at -3 volts because the point is
seeking - 6 volts; thus, turn-on of Q_{1} is sharply defined. The net result is a negative 8 -volt pulse at pin 8 whose duration is determined almost completely by the values chosen for C and R.

Monostable 50-Millisecond Multivibrator

THis complementary type 50 -millisecond pulse width monostable multivibrator is designed to have both transistors in a nonconducting state until the circuit is triggered into operation with a negative going pulse of 2 volts or more. The intro-

Circuit might have errors

Neither transistor of this monostable multivibrator conducts until an input pulse is applied.
duction of such a pulse into the input causes Q_{1} to be driven into saturation.
Capacitor C_{1} charges to -15 volts through $R_{2}-R_{3}$ and $R_{5}-\mathrm{BE}$ junction of Q_{2}, driving Q_{2} into saturation. It also applies base drive to Q_{1} thru R_{4}, holding Q_{1} in a conducting state until C_{1} has completed charging. Q_{2} ceases to conduct and removes the base drive from $Q_{1} . C R_{2}$ functions as a discharge path for the charge on C_{1} when Q_{1} stops conduction, allowing the circuit to recover within 20 per cent of the pulse period. $C R_{3}$ is a clamp diode, for a 0 to - 6 -volt output pulse.

High Square, Variable Frequency Multivibrator

Previously published circuits for achieving improved rise and fall times in astable multivibrators have resorted to the use of additional transistors and voltage clamps with attendant cost increase and marginal improvement. The circuit described here combines fall time of 75 nanosec using inexpensive audio transistors and general purpose diodes with frequency range adjustment using a single control element.

The circuit requirements were for a frequency
range of 4 to 15 kc with a minimum squareness of 1500 at 4 kc , which represented a fall time of 83 nanosec. This was to be done without resort to any

FIG. I-Squareness of 1670 at 4 kc is provided by circuit composed of two audio transistors and four diodes.
exotic (i.e., relatively high priced) components.
Assume the situation in Fig. 1 of Q_{2} in the on condition and Q_{1} in the off condition. Collector load resistor R_{7} is paralleled with R_{6} since $C R_{4}$ is forward biased. Discharge current for C_{2} flows through the series combination of R_{2}, R_{4}, and R_{5}. This is possible because with Q_{2} on, $C R_{2}$ is forward biased with its cathode connected to a negative source through $R_{2} . C R_{3}$ is reverse biased since its cathode is essentially at ground potential.
When C_{2} has completed discharging, the -baseemitter junction of Q_{1} will be forward biased, and the transistor will turn on. The collector of Q_{1} will rise toward ground, forward biasing $G R_{1}$ and causing C_{1} to discharge through Q_{1}. This will turn Q_{2} off and reverse bias $C R_{4}$. Thus the collector voltage of Q_{2} can approach $V_{c c}$ as fast as the time consta of R_{7} and the transistor diode capacitances will allow, since the charging current path for C_{2} is now through R_{6}.
It should be noted that only the timing current flows through the variable frequency control R_{4}, preventing any change in bias condition. The duty cycle should remain reasonably constant provided R_{3} and R_{5} are matched within 5 per cent. Any high back resistance diode with low junction capacitance may be used for $C R_{1}-C R_{4}$. The diodes used here were low cost $60-\mathrm{v}$ germanium units.

Should Q_{1} and Q_{2} attempt to simultaneously turn on, sufficient base drive can not be obtained through $C R_{2}$ and $C R_{3}$ for sustained operation, consequently both Q_{1} and Q_{2} will turn off. The circuit is selfstarting.

The circuit has a frequency range of 4 to 15 kc with adequate margin; the fall time is 75 nanose, giving a squareness of 1670 at 4 kc . The circuit requirements were met using two audio transistors.

Four general purpose diodes and one resistor were: the only additional components required over the number in a classical multivibrator.

Magnetic Control of Pulse Width

Design engineers often have need for a reliable and simple linear pulse width control for use in equipment design or as test equipment in the laboratory. Such a requirement appeared on a product improvement program for a portable radar test set. Additional restrictions imposed on the device were light weight, small size, and low cost.

Several methods of obtaining the variable pulse were considered including a triggered monostable multivibrator and a variable delay line. The multivibrator was tried and abandoned because of its marginal operation with the short pulse widths and short rise times required. A variable delay line was considered and discarded due to physical size and mechanical problems.

The schematic shows the circuit configuration of the pulse width control selected as most economical

Pulse width can be varied over a range of four to one by adjusting the diode current.
and most reliable. Blocking oscillator transformer T_{1} has a normal (unloaded) pulse width of about two microseconds which is narrowed as required by the adjustment of R_{L} and the rectifying action of $C R_{1}$ which introduces a dc component in the transformer winding and tends to saturate the core.

Cathode resistor R_{K} is adjusted to compensate for manufacturing tolerances in blocking oscillator transformers and vacuum tubes. The circuit provides a pulse output with variable width over a range of four to one. It has been used for pulse durations in the one-microsecond range and will probably work for several hundred microseconds
depending on the transformer used.
The concept is applicable to transistor blocking oscillators as well as vacuum tube circuits where wide range control of pulse width is required. Transistor circuits utilizing this principle have been built with good results.

Self-Starting Multivibrator

In a Conventional application of a free-running multivibrator, difficulty is often encountered in self-starting. The conventional multivibrator is

FIG. I-Conventional free-running multivibrator circuit.

FIG. 2-Modified bias arrangement assures starting of multivibrator.

shown in Fig. 1. On initial turn on, or if in use with test equipment, both capacitors are switched simultaneously, and conditions may arise in which both Q_{1} and Q_{2} will be fully conducting. (Amount of saturation is determined by R and the negative bias voltage.) With both Q_{1} and Q_{2} saturated, their incremental gain is low. Loop gain may not be sufficient to ensure oscillation.

A solution to this problem is shown in Fig. 2. The bias bus is derived from a full-wave rectifier circuit, D_{1}, D_{2}, R_{E} and C_{B}. If both Q_{1} and Q_{2} are drawing current, no bias voltage will be formed. Loop gain will be high enough to allow starting.

Noise-Free Pulser

ACONVENTIONAL transistor monostable multivibrator (Fig. 1) is very noise sensitive. The transistor is forward biased through resistor R_{B}. This resistor is usually picked to provide just enough current to saturate the transistor. This current is a function of the load resistor R_{L} and the beta of

FIG. I-Small noise pulses are amplified in a conventional multivibrator.
the transistor. A voltage swing at the input is transmitted through capacitor C to the base of the transistor, causing it to shut off. The pulse width is equal to $R C \ln \left(V_{i n}+10\right) / 10$. Unfortunately any voltage swing at the input can cause the transistor to shut off. Thus, a small noise pulse at the input can be amplified in the one shot.

A desensitized monostable multivibrator is shown in Fig. 2.

During steady-state conditions V_{3} is at $-\mathbf{1 . 8 9}$ volts.

When an input voltage is applied to C, point V_{1} rises. However, no "off" current is transmitted through diode D_{1}, until point V_{1} rises more than 1.89 volts. Thus, the voltage at V_{2} is that shown in Fig. 2. The peak swing is 1.89 volts less than that of the input signal. The pulse width is

$$
T=R C \ln \left(V_{i n}+8.1\right) / 10
$$

This is less than the pulse width of the original circuit but has one distinct advantage. No pulse output is generated unless the input voltage is greater than 1.89 volts. Some rejection of unwanted noise spikes has been obtained.

Diode D_{2} is used to provide isolation between

FIG. 2-Noise rejection provided by one diode in this circuit can be adjusted to a desired level.
the input voltage and the voltage divider R_{1}, R_{2}. This diode also enables quick recharge of capacitor C when the input signal goes negative.

Noise rejection is controlled by the voltage divider R_{1}, R_{2}. This can be set at any desired level.

The greater the noise rejection amplitude the less the pulse width, all other factors being equal. The circuit described was used with a 10 -volt input swing.

Simple Intervalometer

Many applications arise where a repetitive pulse train is required with wide tolerances in repetition rate and pulse duration allowed. The pulses may be used to actuate cameras, counters, stepping switches and similar devices. Figure 1 shows the circuit diagram of the intervalometer. The only components required are one relay, one capacitor, and two resistors. The circuit takes advantage of the fact that the pull-in voltage of a relay is higher than the drop-out voltage.

When a voltage V1 is applied, the voltage across the relay starts to rise at a rate determined by the $R_{1}-C_{1}$ time constant. When the pull-in voltage is reached, the relay energizes closing the control contacts. C_{1} then begins to discharge through R_{2} and the relay. When its drop-out voltage is reached, the relay reenergizes and the control contacts open. C_{1} will again start rising and the cycle continues until V_{1} is removed. The result is that the control contacts will open and close alternatively.
The repetition rate is determined by \boldsymbol{R}_{1} and \boldsymbol{C}_{1}. Repetition rates from 0.1 to 20 pulses per second are practical. The pulse duration is determined by R_{2}, C_{1} and the relay. Durations of 10 milliseconds to 5 seconds are feasible. Values shown are for a 28 -volt pulse train with a repetition rate of approximately 5 pulses per second and a pulse duration of 50 msec .
Design values are chosen according to the best compromise in terms of keeping V_{1} and C_{1} relatively small and maintaining compatibility with the pulse requirements. V_{1} must be high enough so that the voltage divider action of the relay, R_{2} and R_{1} will allow the relay to reach its pull-in voltage and allow the use of a relatively small capacitor for a given repetition rate. The pulse duration is limited by the size of C_{1} and the relay resistance.
For variable repetition rates and pulse durations, potentiometers may be used for R_{1} and R_{2}.

FIG. I - A Sigma 8000 G or equivalent is used in the intervalometer.

Free-Running Transistor Multivibrator

THE ordinary free-running multivibrator consists of two inverters cross ac coupled and biased on with resistance to a negative voltage. This circuit has the disadvantage of unreliable starting, since, if both transistors are saturated and in a quiescent state, the loop gain may be less than unity, and an external signal is required to start oscillation.
Reliable starting is frequently achieved by using a common emitter resistance which is made sufficiently large so that both transistors cannot be saturated simultaneously. Use of the common emitter resistance has the disadvantage that the output signal does not return to ground, and is therefore not compatible with other logic circuits without buffering or ac coupling.

If no emitter resistance is used, and the biasing resistors of the ordinary free-running multivibrator are returned to their respective collectors instead of a negative supply, as shown in Fig. 1, then the transistors cannot be saturated in the quiescent state and reliable starting is achieved. Furthermore the signal returns to ground, so that it may drive inverter stages directly.

The frequency is varied by changing either or

FIG. 1-Signal returns to ground in this free-running multivibrator circuit.
both of the capacitors, as in the conventional multivibrator. With the values shown, the frequency of oscillation is approximately one megacycle. The corresponding waveform is shown. Any supply voltage not exceeding the transistor rating may be used.

SCR Parallel Inverters in Correct Timing Sequence

For applications such as triggering silicon controlled rectifier parallel inverters, a pulse generator is required which produces high energy pulses alternately from two separate outputs. It is necessary that the pulses occur in the correct timing sequence from the instant that the supply voltage is switched on, otherwise the inverter circuit will fail.

The unijunction transistors in the circuit shown
will generate pulses alternately from outputs 1 and 2 and will start in the correct timing sequence when the supply voltage is applied. This circuit consists of two relaxation oscillators which are synchronized by capacitor C_{3} connected between the two emitters. This method of synchronization is unique and depends on the nonlinear charging characteristics of capacitors C_{1} and C_{2}.

Potentiometer R_{3} is used to adjust the time interval between the pulses from the two outputs. The range over which this time interval may be varied is determined by the value of C_{3} (the smaller the value of C_{3}, the greater the possible range of the time interval). In the circuit as shown, synchroniza-

Double-output pulse generator consists of two relaxation oscillators synchronized by capacitance.

b VOLTAGEAT OUTPUT**

c VOLTAGE AT OUTPUT \# $\# 2$

SCALE I VERTICAL-VOLTAGE (5 VOLTS/DIV.) HORIZONTAL-TIME,RIGHT TO LEFT (0.5 MS/DIV.)

Waveforms at emitters and outputs of scr parallel inverter.
tion is achieved with values of C_{3}, as low as $0.001 \mu \mathrm{f}$.
Negative pulse outputs can be obtained with this circuit by adding small values of resistance between ground and the lower ends of C_{1} and C_{2}. This circuit can also be used in variable duty cycle power control circuits by adding a npn control transistor in shunt with C_{1} or C_{2}.

Ultra-Long Monostable Multivibrator

Generator of long-time pulse draws no current while quiescent. Transistor Q_{1} is a 2 NI442, scr Q_{2} a 2 NI 595 or 3A31, and unijunction Q_{s} a $2 N 489$.

THERE are three major disadvantages for the generation of a long-time pulse when employing the conventional monostable or one-shot multivibrator. One transistor stage is always turned on and thus draws current in the quiescent mode.

For the generation of a long-time pulse or gate, the designer is limited in his selection of the time constant in that for values above 100 K , a freerunning mode may result under temperature variation. Therefore, his only choice is that of a higher value of C, which may be impracticable. He is also limited by loading effects which do not allow the time constant to approach the full value of $R C$.

For long-time generation, poor leading or trail-
ing edges of the output gate are inherent when taken from either collector.

The circuit to be described has a quiescent power drain of zero. Because of the circuit isolation, high values of R (up to 1 megohm) may be used to achieve a long time generation.

The circuit generates a step function gate with gcod leading and trailing edges as well as providing a delayed pulse of either polarity (positive or negative going) which may be used for triggering cascaded circuits.

A conventional pnp transistor (Q_{1}) is normaily in the on condition (forward bias of R_{6}) and thus is conducting and applies $B+$ to Q_{2} (a siliconcontrolled rectifier). Q_{2} is in the off condition until a positive trigger pulse is applied to its base. Q., now conducts and the step voltage appearing across R_{2} also energizes the unijunction circuit $\left(Q_{3}\right)$ The capacitor starts charging and when the breakdown
voltage for Q_{3} is reached, Q_{3} fires giving positive and negative pulses. The positive pulse is coupled back to the base of Q_{1} which drives Q_{1} out of conduction thus opening up the $B+$ supply to $Q_{2} . Q_{2}$ thus is reset to the quiescent mode.
The values shown for R_{3} and C_{2} give a pulse duration of 50 seconds. The circuit has an accuracy of 8 per cent over a temperature range of +60 to -10 C and can easily be compensated for better accuracy.

Square Wave Chopper

Fig. 1A. Circles produced by 100 Kc sine and cosine waves.

Fig. 1B. Transistorized circuit produces square wave output.

Fig. 2. Waveshaper for input and output of square wave chopper.
radar display console symbol illustrated in Fig. 1.
T_{1} and T_{2} represent the unblanked signals intensifies the larger and smaller symbol rings respectively. The interruption of T_{2} causes the smaller symbol ring to open. The Circuitry which changes the sine and cosine wave amplitudes for the smaller symbol will not be discussed.
System clock pulses are applied to the bases of Q_{1} and Q_{4}. Q_{1} inverts the negative pulse and applies it to $D L_{1} . D L_{1}$ is a delay line with its output terminal shorted to ground. Assume $D L_{1}$ equals $10 \mu \mathrm{sec}$ and is tapped at $5 \mu \mathrm{sec}$. The positive pulse will be transmitied through Q_{2}, and if Q_{3} is back-biased, to the base of Q_{7} in the flip-flop. Thus Q_{7} will be turned off. Meanwhile, the positive pulse continued through the delay line until it reaches the shorted end. There the pulse is reflected with a polarity reversal, thus resetting the flipflop.

If the interrupt control signal turns Q_{6} off, additional pulses will be applied to the flip-flop. The negative pulse through Q_{4} is not inverted and resets the fipflop $3.75 \mu \mathrm{sec}$ after the pulse passed through $D L_{1}$. The reflected pulse in $D L_{2}$ is positive and turns Q_{7} off 2.5 $\mu \mathrm{sec}$ later. The interruption has now been completed, and the negative pulse from $D L_{1}$ resets the flip-flop.

Redundant MSMV

Retrigger Any Time

A circuit design problem called for an extremely reliable msmv that could be retriggered at any time. The output pulse would then remain in the high state for a predetermined time. This means that if the trigger pulses are closer together than the time constant of the circuit a positive dc output will result. If the trigger pulses are further apart than the time constant, normal msmv action will take place and the output will be a pulse of fixed width.
The circuit in Fig. 1 is made up of four identical legs placed in a series-parallel configuration and can withstand any one component failure without loss or degradation of the output and up to three failures if they occur in the proper modes. The probability that the redundant configuration will operate successfully for one year is 0.99989 . A corresponding nonredundant circuit has a probability of success for the same time interval of 0.9915 . One hundred such redundant
circuits in series have a probability of success for one year of 0.989 . One hundred nonredundant circuits would have a probability of success for one year of 0.43 .

In describing the circuit, only one leg will be considered (Fig. 2). All legs work in the same manner and one leg could be used alone if redundant operation were not required.

Transistor Q_{2} is normally in the saturated state. The potential at point A is approximately 1.3 v (two energy gaps above ground). When a positive going pulse appears at the input, it is differentiated and a positive

Fig. 1-Redundant msmv circuit.

Fig. 2-One leg of circuit.

Fig. 3-Waveforms.
spike appears on the base of Q_{1}. Transistor Q_{1} saturates and point A is pulled down to $-5 v+V_{C E(S A T)}$ or about -4.8 v . This turns off Q_{2}.

Transistor Q_{1} turns off, and the potential at point A begins to rise exponentially toward +8.0 v . When the potential at point A reaches $1.3 \mathrm{v}, Q_{2}$ again turns on and the cycle is complete.

The time constant is formed by R_{1} and C_{1}. Resistor R_{2} is small compared to R_{1} and has negligible effect on the time constant. Resistor R_{2} is placed in series with the capacitor to limit the maximum collector current of Q_{1}. Resistor R_{1} must be small enough to supply enough
base current to saturate Q_{2}. Transistor Q_{2} must be a fast high beta device.

Diodes are inserted in the base circuits of the second transistors to insure that $B V_{\text {eso }}$ is not exceeded.

The equation for the output pulse width is easily derived if the waveforms shown in Fig. 3 are studied.

$$
\begin{gathered}
v=V_{1}-\left(V_{1}-V_{2}\right) e^{-t / R_{1} \sigma_{1}} \\
\begin{array}{l}
\text { (the exponential } \\
\text { potential rise } \\
\text { of point } A \text {) }
\end{array} \\
e^{t / R_{1} O_{1}}=\frac{V_{1}-V_{2}}{V-v} \\
t=R_{1} C_{1} \ln \frac{V_{1}-V_{2}}{V_{1}-v}
\end{gathered}
$$

potential rise
of point A)

Since Q_{1} conducts for a finite amount of time ($1 \mu \mathrm{sec}$) as shown in Fig. 3, this factor must be included in the calculation of the time constant. Also, since transistor Q_{2} again conducts when $v \quad 1.3 \mathrm{v}$, this value should be substituted in the expression.

The equation for the period in $\mu \mathrm{sec}$ now becomes:

$$
T=R_{1} C_{1} \ln \frac{V_{1}-V_{2}}{V_{1}-1.3}+1
$$

For the circuit shown:

$$
\begin{aligned}
& V_{1}=+8 v \\
& V_{2}=-4.8 v \\
& T^{=13.84} \approx 14 \mu \mathrm{sec}
\end{aligned}
$$

The tolerance on the output pulse can be made as tight as desired by making R_{1} and C_{1} precision components and limiting voltage variations.

Tunnel Diode Trigger

|n many satellite applications it is desirable to switch high-speed binary-counter stages using input voltages having unpredictable rise times.

The circuits of Fig. la and Fig. 2a are pulse-conditioning circuits. They accept input signals with rise times ranging from a slow-changing dc variation, to a steep pulse with a rise time of a fraction of a microsecond. From this wide input range, these circuits generate triggers that are suitable for switching high-speed binary-counter stages. Two variations of the pulse-conditioning circuit are shown. Both are for positive going input signals, but Fig. la shows the design for a negative-supply at the binary stage. In both diagrams Q_{1} and Q_{2} are silicon transistors, and the 1N2939 tunnel diode is of germanium. Both circuits have operated satisfactorily over the temperature range of -50 to +100 C .

Circuit operation hinges on the presence of the 1N2939 tunnel diode in series with Q_{1}, and the bias arrangement at Q_{2}. In Fig. $1 a, Q_{1}$ is cut off in the steady-stage condition, and Q_{2} is conducting as an emitter-follower stage. Base current from Q_{2} flows in the reverse direction through the tunnel diode. The collector of Q_{2} is at 2.5 v positive. When the input signal voltage applied to the base of Q_{1} (Fig. lb) reaches approximately 2 v , the emitter current of Q_{1} rises to about 1 ma. The peak current of the tunnel diode is 1 ma ; therefore, when the input reaches the 2 v level, the tunnel diode will instantaneously switch to the high voltage state. This produces a positive step
voltage of about 0.5 v across the terminals of the diode (Fig. lc). The rise time of the step voltage is steep enough to drive a high-speed binary-counter stage, but the amplitude is too small for reliable triggering. The step-voltage is, therefore, applied to the base of Q_{2}, which in the steady-state condition is operating as an emitter-following biased on. When the step voltage is applied to the base of Q_{2}, the base voltage rises immediately, but the capacitor across the emitter resistor of Q_{2} prevents the emitter dc voltage from instantaneously following the base. Q_{2} then acts as a grounded-emitter amplifier. The transistor saturates, and the collector goes to near ground potential (Fig. 1d), thus providing sufficient voltage swing at the junction of the 1 N 252 diodes to switch the state of the binary-counter stage.

Fig. 1.
(a) Pulse conditioning circuit with positive supply.
(b) Input signal.
(c) Output at diode terminals.
(d) Transistor output.

The circuit of Fig. 2a has the tunnel diode placed in the collector circuit of Q_{1}. Because this circuit is designed for use with binary stages of negative supply voltage, the tunnel diode must be in the collector circuit to produce the proper polarity step voltage when Q_{1} conducts. Q_{2} is a PNP transistor with a positive emitter supply. The pulse produced at the collector is positive which is the correct polarity to switch the negative voltage supply binary-counter stage. Figs. 2b, 2 c , and 2 d show waveform data analogous to that shown in Fig. 1.

Fig. 2
(a) Pulse conditioning circuit with negative supply.
(b) Input signal.
(c) Output at diode terminals.
(d) Transistor output.

Fast Turnoff Monostable Multivibrator

FIG. I-Monostable multivibrator circuit designed for fast turnoff.

Acircuir of a monostable multivibrator with a long delay time and yet fast rise and fall times is shown in Fig. 1.
In this circuit, diode D_{z} decouples the charging capacitor, C, from the transistor Q_{2}, allowing it to recover rapidly. Capacitor C is charged by resistor R_{1}. The monostable pulse width, $\tau_{P W} \cong R_{2} C$, which in this circuit is 1 millisecond. The unloaded rise and fall times are each 30 nanoseconds. Pulse amplitude is clamped at 5 volts.

Positive Pulser

Asimple circurr which produces a positive output pulse on both the leading and lagging edges of an input pulse should find many applications. Such a circuit is shown in Fig. 1.
With the input at ground, Q will be off and the

FIG. I-This circuit produces a positive pulse for every transition of the square wave input.
output will be at approximately -10 volts. When the input is negative, R_{1} and L provide a dc path which clamps the base of Q to ground, therefore the output is again at -10 volts. During the leading or lagging edge of the input waveform, the RLC circuit will resonate producing a positive and negative going waveform at the base of Q. The negative portion of this waveform will drive Q into saturation and the output will switch to ground. The result, then, is a positive output pulse, ten volts in amplitude, for every transition of the input waveform.

An analysis of the unloaded RLC circuit shows that the voltage developed across the inductor will be an underdamped oscillation for a step function input when $1 / L C-1 /\left(2 R_{1} C\right)^{2}>0$. A fig. ure for $L C$ may thus be obtained by using this expression. Any reasonable values of L and C, giving the proper product, may be used. With the base of Q connected to the output of this RLC circuit only one negative oscillation will occur, since the low input impedance of Q, as it is driven into saturation, shunts L. Thus the base waveform appears as shown in Fig. 1.

With the component values shown, a ten-volt pulse is produced at the output for every transition of an input square wave greater than three volts in amplitude. The output pulse resulting from the positive rise of the input will be slightly delayed since the base waveform goes positive before it goes negative for a positive input transition. The output pulse width is a function of how hard Q is driven into saturation, and therefore is dependent on the input pulse amplitude and the type of transistor used.

High-Duty Cycle Monostable Multi

High-duty cycle monostable multi.
A capacitor discharging through a Shockley diode can be used to quickly turn off a monostable multivibrator to make ready for the next pulse.
In the circuit shown, the set pulse causes the flip-flop to change state. This starts an exponential voltage rise across the $1 / 2-\mu \mathrm{f}$ timing capacitor. When the timing voltage rises sufficiently, the Shockley diode, type 4E 20-8, breaks down, discharging the capacitor very rapidly. The negative discharge pulse is used to re-set the flip-flop through the $30-\mathrm{pf}$ capacitor. The flip-flop then is ready for the next trigger pulse.

This methed allows triggering within $25 \mu \mathrm{sec}$ after termination of a 2 -sec output pulse.

Electronic Chopper

This circuir can be used in all of the usual chopper applications; it was originally assembled for use as the first stage of a wide band (dc up to several kc) amplifier.

Input 1 is the signal to be amplified; R_{g} is optional and is for protection of V_{1}. Input 2 is a square wave of frequency several times (say 10) higher than the highest frequency of input 1 . The high voltage supply must be very stable, as it is the reference, or zero level of the output; i.e., with no input at $1, B+$ and $R_{4} I_{p}$ determine the output. R_{4} is limited by the input impedance of the next stage. and the upper frequency limit desired.
R_{1} and $C R_{1}$ insure that grid G_{3}, will not go positive, and make the input 2 amplitude requirements less scvere. The transconductance of G_{3} is apparently not very closely controlled, and a large amplitude square wave must be available if tube selection is not possible, as the square wave must cut off the tube. According to the manual, typical operation is characterized by $E_{\text {Plate }}=100 \mathrm{v}=E_{g 2} ; R_{2}=68$ (this may be increased to provide degeneration; 100 ohms was chosen for use); $I_{g 2}=4.0 \mathrm{ma}, I_{p}=10 \mathrm{ma}$.

With a plate supply of $150 \mathrm{v}, R_{4}=150-100 /$ $10 \times 10^{-3}=50 / 10 \times 10^{-3}=5 \mathrm{~K} . \mathrm{R}_{3}=150-100 /$ $4.4=50 / 4.4=13 \mathrm{~K}$. This may present a problem if the lowest frequency is dc, because this value cannot be bypassed. The μ of this tube is $\left(g_{m} r_{2}\right)=$ $0.25 \times 10^{6} \times 4300 \times 10^{-6} \quad$ is approximately $1 / 4 \times 4400$ or 1100 . Since degeneration at the cathode for a given resistor is μ times that at the screen for the same resistor, an R_{3} of $110 R_{2}$ or 110 K will result in the same degeneration as will result from 100 ohms for R_{2}. For $R_{3}=13 \mathrm{~K}$, the equivalent $R_{2}=13 \times 10^{3} /$ 1.1×10^{3} or about 10 ohms. There is roughly 10 per cent degeneration at the screen for these values; if this

Electronic chopper
is too much distortion R_{2} can be raised, although an adjustment of R_{4} may be necessary.
C_{1} is chosen on the basis of the lowest frequency to be amplified. If this frequency is very low, C_{1} can be omitted subject to the discusion above. R_{g} and R_{5} were arbitrarily chosen at 1 K and $1 \mathrm{M} . R_{1}$ depends on CR1. With a 1 N 34 A diode, $R_{1}=15 \mathrm{~K}$ is satisfactory although larger values are permissible. Depending on the end use of the signal, a filter to remove the square wave may be used. Further use of the basic circuit can be obtained by having the $B+$ controlled from some other source: this area was not investigated.

A Pulse Width Modulator

Most pulse width modulators are one of two types, the conventional voltage modulated monostable multivibrator, or the voltage controlled phantastron. Both suffer from the disadvantage that they cannot be modu-
lated over a very large range with tolerable linearity. The plantastron is the better of the tivo, but even at hest it is only capable of a maximum pulse length to minimum pulse length ratio of $10: 1$, and with poor linearity. The circuit to be described is good for up to $350: 1$ ratio with nearly perfect linearity.

Pulse width modulator circuit.
The circuit works as follows. Tubes V4 and V5 com. prise a bistable multivibrator. Initially V5 is conducting and $V 4$ is cut off. A moduation voltage between zero and +175 v is applied at point A. Any time after this a negative trigger voltage is applied to point $B . V 5$ cuts off, V4 conducts and the drop in V4 plate voltage is coupled, via cathode follower V1, to the disconnect diodes V2a and V2b. Thus, point C of the Miller integrator V3a and V3b starts to rise from zero volts dc at a linear rate. If unchecked it could rise to +175 v. V4, in addition to being part of a bistable multivibrator is also a cathode coupled blocking oscillator. That is, it would be a blocking oscillator except for the reversed biased diode, V6a, in its grid circuit. The cathode of this diode is connected, via the pulse transformer, to the modulation voltage. Its plate is being gradually raised towards the level of the modulation voltage by the miller integrator output. When the integrator output exceeds the modulation voltage the diode conducts, the blocking oscillator grid circuit is completed and the circuit delivers one pulse. This pulse flips the bistable. The plate of V4 then goes positive and turns on the disconncet diodes V2a and V2b, resetting the integrator in preparation for the next trigger pulse. Since the integrator output can only rise to the valuc of the modulation voltage before reset occurs the on period of the integrator is controlled by the modulation voltage and is directly proportional to same. The pulse width modulated output is shown at point D , hut could also have been taken from either plate of the bistable.

The rate of rise of the miller integrator is determined by C_{1}, R_{3}, the voltage at the grid of V3b during the sweep, and the- 150 v power supply; and equals, in volts per second, $\frac{144}{R_{3} C_{1}}$ Output pulse length then equals $\frac{R_{3} C_{1 \cdot \text { Emod }} \cdot}{144}$. Keeping R_{3} at IM, the minimum value of C_{1} works out empirically to be $0.01 u$. This results in a maximum pulse length of 12.2 msec for a modulation voltage of +175 v , and a minimum pulse length of 70 usec for a modulation voltage of +1 v . With larger values of C_{1} the dynamic range is
better, and with C_{1} equal to 0.05 af , the limits of modulation voltage are +175 v and +0.5 v for pulse lengths of 61 msec and $173 \mu \mathrm{sec}$ respectively.
R, adjusts the dc level of the waveform to the disconnect diodes and is used to set the base line of the sawtooth output at point C to zero volts during the quiescent condition of the circuit. R_{2}, a calibration adjustment, sets the value of an initial voltage step at the beginning of the sawtooth. This step may be positive, negative, or non-existent depending on the setting of R_{2}. To calibrate the circuit apply a modulation voltage of +100 v and provide a source of triggering voltage of at least 20 v peak to peak at a slow repetition rate. (The circuit has a maximum duty cycle of about 70 per cent.) Measure the output pulse length. Then decrease the modulation voltage to +1.0 v . Set R_{2} to cause the output pulse length to be $\frac{1}{100}$ of the previously measured value. Repeat both steps once. The circuit will now accept any value of modulation voltage between +0.5 v and +175 v .
The bistable was necessarily designed to switch on very low values of trigger voltages. This insures the blocking oscillator-voltage comparator of working with only one output pulse from the blocking oscillator.

Self-Resetting Pulse Stretcher

The purpose of this circuit is to detect a $20-\mu \mathrm{sec}, 5-\mathrm{v}$ pulse or group of pulses and produce an output pulse which persists for a designated period of time after the last input pulse disappears. The circuit is self-resetting to its quiescent state and draws no current in the quiescent state.

The circuit is designed to be simple, and, with the exception of the charging capacitor, lends itself to microcircuit fabrication techniques.

In the circuit shown, an input pulse of at least $20-\mu \mathrm{sec}$ width and $5-\mathrm{v}$ amplitude turns Q_{1} on, which in turn causes Q_{2} to conduct thus locking Q_{1} on, independent of the presence of an input pulse.

With Q_{1} and Q_{2} conducting, the output voltage drops to about 0.6 v and capacitor C charges toward the supply voltage through R_{2}. When the voltage at point A rises sufficiently, the unijunction is triggered on, supplying a positive turn-off pulse to the base of Q_{2} which in turn causes Q_{1} to

Self-resetting puise stretcher. Gate turn-off SCR can be used instead of two transistors.
cease conducting, and the output voltage returns to its quiescent value.

In the final circuit, a gate turn-off SCR is used to replace Q_{1} and Q_{2}, as shown.

The following are the test results for values shown: Minimum Detectable Pulse Width $20 \mu \mathrm{sec}$
Minimum Detectable Pulse Amplitude 1.6 v
Turn-on Delay
Delay ($\mathrm{C}=0.005 \mu \mathrm{f}$)
Maximum PRF
Turn-off Fall Time
$20 \mu \mathrm{sec}$
$0.6 \mu \mathrm{sec}$
$55 \mu \mathrm{sec}$
10 kc
$1.5 \mu \mathrm{sec}$

A One Microsecond Delay

A circuir using four components can be constructed to deliver a good, solid pulse in the region of one microsecond. The circuit which is especially useful to a designer who needs a short pulse from a longer input is shown in Fig. 1. Output waveforms from positive and negative going input pulses are shown in Fig. 2.

Transistor Q is normally on and in saturation. During this time a quiescent output level of 0 v is provided. Any positive transient at the input is commutated through capacitor C and drives the base of the transistor positive, cutting it off. The transistor remains off with the output at $-V$ for a time determined by R and C. When the voltage at the base returns to approximately -0.1 v , the transistor once again conducts returning the output to 0 v .

Where the rise time of the positive going transient of the input is much less than the desired pulse widths, the output pulse width $\simeq 0.7 \mathrm{RC}$; slower rise times add to the pulse width.

Fig. 1
Fig. 2

$Q=2 \mathrm{~N} 396 \quad \mathrm{R}_{\mathrm{I}}=1 \mathrm{~K} \quad R=10 \mathrm{~K} \quad \mathrm{C}=150 \mathrm{pf}$
Fig. 1. A delay of 1μ sec can be obtained with the circuit shown.

Fig. 2. Output waveforms compared with input signals.

Monostable Circuit

with Negative Recovery Time

One disadvantage of most monostable pulse generating circuits is the fact that they have a finite recovery time. During this dead time following each output pulse, the typical circuit will not respond to an input trigger pulse. Hence, any input pulses which occur during the recovery period are lost. The circuit shown here completely overcomes this difficulty. It will respond to an input pulse immediately after the end of its output pulse. Moreover, it will also respond to input
pulses which occur before the end of its output pulse. Thus, it may be said to have negative recovery time. For example, assume a trigger pulse is received and the circuit begins its normal 1000μ sec cycle. Suppose, then, that another trigger pulse is received after 500 $\mu \mathrm{sec}$. In this case, the output pulse will last $1500 \mu \mathrm{sec}$, which is $500 \mu \mathrm{sec}$ longer than usual. In general, the output pulse will continue until $1000 \mu \mathrm{sec}$ after the last trigger pulse.

The operation of the circuit is straight forward. Under normal conditions the current through the 180 K resistor forward-biases Q_{1} to saturation. Q_{2} is hence biased at cutoff. The 0.01 capacitor is thus charged to about +1 v . The trigger pulse discharges the 0.01 capacitor down to about -17 v , thus turning off Q_{1} and turning Q_{2} on to saturation. Current through the 180 K resistor gradually recharges the 0.01 capacitor. After $1000 \mu \mathrm{sec}$ the capacitor reaches normal +1 v , and the transistors revert to normal conditions. The 150 K resistor and 200 pf capacitor constitute a feedback network which insures that the output pulse will have fast rise and fall times. Diode D_{1} prevents the 0.01 capacitor from being recharged by the input driving source. Diode D_{2} protects the base-emitter junction of Q_{1} from excessive reverse bias. Diode D_{3} and the 680 K resistor provide stable cutoff bias for Q_{1}. Diode D_{4} provides some bias to insure that Q_{2} remains fully cutoff.

Several application precautions should be observed. One is that the input pulses should be of standardized voltage and of sufficient length to fully discharge the 0.01 capacitor. Otherwise, the length of the output pulse will vary as a function of trigger pulse duration and amplitude. Secondly, the output should be direct coupled; because, if the input prf is great enough, the output pulses will merge into a dc voltage.

The length of the output pulse may be made either longer or shorter by changing the 0.01 capacitor or the standard trigger pulse voltage. The length of the out-

Monostable circuit with less than zero recovery time.
put pulse will be directly proportional to either of these. The base line of the trigger pulse should be slightly positive so as to reverse-bias diode D_{1}.

In general, this circuit may be regarded as a monostable multivibrator wherein the normally conducting transistor is determined by whether the diode, D_{2}, is forward or reverse biased.

Double Pulsed Sine Wave Circuit

In many applications it is necessary to generate a pulsed sine wave signal. Other applications require generation of a pulsed sine wave signal that can be adjusted to either build up or die out in amplitude with succeeding sine wave cycles.

Figure 1 shows a double pulsed sine wave circuit of tremendous versatility. Output 1 of this circuit gives a pulsed fixed-frequency sine wave whose amplitude with succeeding sine wave cycles can be adjusted to either build up, die out or remain constant. Output 2 of this circuit gives a pulsed-variable frequency sine wave whose amplitude with succeeding sine wave cycles remains constant.

The portion of the circuit comprising Q_{1} and Q_{2} is a free-running multivibrator. The frequency of this free-running multivibrator is set by the circuit components to be approximately 333 cps . This multivibrator is unsymmetrical and the circuit components were selected to make one semiperiod of the circuit to be twice as long as the other semiperiod. Further adjustment on semiperiod duration is accomplished by adjustment of the $20-\mathrm{K}$ pot.

The output of the multivibrator is fed through a coupling and speed up circuit to a transistor switch
circuit whose emitter returns to ground through the parallel resonance tank circuit of a Colpitts type oscillator.

The operation of this portion of the circuit is as follows: During the semiperiod of the free-running multivibrator when the base of transistor Q_{3} is made negative compared to its emitter, current flow in the emitter of transistor Q_{3} passes through the parallel resonance circuit and prevents it from oscil-

FIG. 2 - Waveform of pulsed signal output when feedback is correct.

FIG. 3-Excessive or insufficient feedback produces waveforms shown.
lating. During the other semiperiod of the freerunning multivibrator, when the base of transistor Q_{3} is not negative compared to its emitter, current does not flow in the emitter of transistor Q_{3} and the tank circuit oscillates at its natural frequency.

FIG. I-All diodes are IN645A and all transistors are Motorola 2N65IA. Type 236S-I-203 Bourns Trimpot was used for the 20 K pot at top left, 224 S -I- $\mathbf{- 2 5 2}$ for the 2.5 K pot, and 224 S -I-102 for the IK pot at O

Feedback to the tank circuit is accompished by adjustment of the $1-\mathrm{K}$ pot. If the feedback is insufficient to sustain oscillations, the pulsed signal at Output 1 will slant downwards (as shown in Fig. 3) and appear to die out.
If the feedback to the tank circuit is more than enough to sustain oscillation, the pulsed signal at Output 1 will slant upwards (also in Fig. 3) and appear to build up. The pulsed signal at Output 1 will appear as shown in Fig 2 when the feedback to the tank circuit is exactly the proper amount to sustain oscillations. Circuit components in the Colpitts oscillator were chosen to make the resonance frequency 6.4 kilocycles per second.
The 10 K pot in the emitter circuit of Q_{5} adjusts the amplitude of the signal of Output 1 as desired. Transistors Q_{4} and Q_{5} were paralleled to get more current output. A single transistor with more current handling capability could be substituted for Q_{4} and Q_{5}.

The transformer in the collector circuit of transistor Q_{3} passes the semiperiod square waves that originated in the free-running multivibrator to act as control voltages for a six-diode gate. (Equations and explanation of operation of this six-diode gate are given in detail in "Pulse and Digital Circuits" by Millman and Taub pp 445-447.) The pulsed signal at Output 2 will appear as shown in Fig. 2. The sine wave frequency of the pulsed output signal can be. selected as desired by the audio oscillator shown in Fig. 1. The 250K pot adjusts the amplitude of the signal of Output 2.

Wide-Range Constant Symmetry Multivibrator

0FTEN it is desired to have a square-wave signal source which is variable over a wide range of frequencies. Further, it is desirable that the symmetry, or duty cycle, of the wave remain constant. Conventional multivibrator circuits for accomplishing this suffer from limited frequency range, and the symmetry is dependent upon the tracking of two ganged potentiometers (see Fig. 1). Resistors R_{b} determine both the base drive in the on transistor and the rate of discharge of capacitor C, which is holding the other transistor off. The frequency range possible with this technique is limited by the range of base currents which will allow successful switching of the transistors.

A range of from 5 to 10 is about the limit of this method. Further, the squareness of the wave shape, that is the ratio of the half-period to the full-time is determined by:

$$
\begin{gathered}
\text { Sq. = Half-Period/Fall-Time } \\
=0.7 R_{b} C / 3 \quad R_{c} C=1 /\left[4.3\left(R_{b} / R_{c}\right)\right]
\end{gathered}
$$

But the maximum value of the ratio of R_{b} and R_{o} is determined by the dc beta of the transistors,

FIG. I-Classical multivibrator circuit and its output waveform.
that is:

$$
\text { Sq. }=\left(R_{b} / R_{c}\right) / 4.3=d c \text { beta } / 4.3
$$

For present-day transistors, this means that the squareness is limited to about 10 to 20.
The conventional circuit suffers finally from one more point. If both transistors are on, the state is stable. That is to say, the circuit is not inherently self-starting.
In the new circuit, Fig. 2, two pairs of transistors are employed, one pair of each polarity type. Base drive and timing current flow paths for a typical quasi-stable state are shown. Notice that the base drive to the on transistor is determined by a fixed resistor R_{b}, and that the discharge of capacitor C_{1} is determined by $R_{b}+R_{v}$. The timing currents for the other quasi-stable state will also flow through R_{v}. The one resistor will determine the frequency, so the symmetry will remain essentially constant if the R_{b} resistors are a good match. No accurately tracking, ganged pots are necessary.

The period of the square-wave will increase linearly with R_{v}, which may be varied from a shortcircuit to an open-circuit without upsetting the bias conditions of the transistors. When R_{v} is zero, the period will be determined by R_{b}; if R_{v} is made infinite, the period will be limited by the leakage of the circuit elements (in particular, by the $I_{\text {ebo }}$ of the pnp transistors and $I_{c b o}$ of the npn transistors).
The npn transistors will clamp the output wave at V_{1}, increasing its squareness by about two to four, depending on the ratio of V_{1} and V_{2}. Further, the squareness is now limited by the ratio of R_{v} and R_{c} and can be made quite high. A squareness of $2-300$ is readily attainable. (If this is not a high enough value of squareness, a resistor, R, of value $R=R_{c} V_{1} /\left(V_{2}-V_{1}\right)$ can be inserted in series with the capacitors. The fall-time of the circuit will them be independent of the capacitor recharge and depend on the transistor hole storage only. The author has attained square waves of two-three seconds duration with $30 \mathrm{~m} \mu \mathrm{sec}$ fall time . . . a squareness of 10^{8}.)

If both pnp transistors try to turn on, both npn transistors will turn off, turning off the pnp transistors. The circuit is inherently self-starting.

Since supply V_{1} is used as a clamp, it is always receiving power, and any small battery can be used. Or, alternately, since the load to V_{1} is constant, a

FIG. 2-New my circuit and its collector waveform.

FIG. 3-Switching circuit to vary symmetry.
suitable resistor to ground bypassed with a capacitor can be used.
It is useful to be able to change symmetry on duty cycle without changing the frequency. This can be accomplished by using the switching circuit in. Fig. 3 instead of C_{1} and C_{2}. The values shown will give duty cycles of $50,33-1 / 3,25,20$, and 10 per cent.
The new circuit uses two more transistors than the classical approach but these more than earn their keep by providing fast fall-times, wide range with a single control element, and self-starting.

Pulse Generator for HighSpeed Computers

In some large high-speed computers, timing considerations make it prohibitive to propagate pulses from a central unit over long distances. These .pulses, which are the basic timing signals of the computer, would be severely attenuated and distorted by the transmission line. The de levels, on the other hand, may be propagated without serious deterioration, suffering only in the way of rise and fall times. For this reason, in a computer which requires high pulse repetition rates, it is sometimes necessary to transport a level over the distance and
then convert to puise form in the proximity of the recipient device.
To convert the level to a pulse, a transistor switch is turned off by the positive going wavefront, energizing a ringing circuit. To make the circuit operation independent of the level waveform, direct coupling is mairtained at the input to the ringing stage. The input triggering of this stage is accomplished when a definite threshold level is exceeded. A pulse generator which performs the level-to-pulse conversion for a computer is shown in Fig. 1.
A pulse generator of this ringing type will be inherently prf sensitive. This sensitivity is seen by the degradation of the ringing amplitude as the frequency limit is reached. However, a positive biased emitter configuration will permit reliable, insensitive operation at frequencies well above that of a conventional grounded emitter circuit. For example, the circuit of Fig. 1 is capable of reliable operation for frequencies four times its grounded emitter capability. The increase in operating frequency is attributed to a larger inductor charging voltage, therefore, it will be shown that the input frequency limit is a function of e_{L}.

Assume the input of Q_{1} is at its minus level, Q_{1} is saturated, L_{1} is fully charged, and D_{1} is backbiased. The circuit will remain in this quiescent state until the input goes in a positive direction to cut off Q_{1}. When Q_{1} goes active and toward cutoff, the collector current decreases causing the inductor field to collapse, and the familiar LC ring results. The initial ringing excursion is in the negative di-

FIG. I-Ringing type of pulse generator.
rection and is critically damped to zero volts by damping resistor R_{5}. This damping assures the generation of only one negative pulse for each positive transient at the input of \boldsymbol{Q}_{1}. The output pulse width is dependent upon the values of L_{1} and C_{3} in the relation

$$
\mathrm{PW}=\pi \sqrt{L_{1} C_{3}}
$$

Transistor Q_{2} is always in dc cutoff. It is normally off while Q_{1} is on and is held in cutoff by the forward drop of D_{1} while Q_{1} is off. It is desirable that D_{1} have a low forward voltage to afford a better

FIG. 2-Graph shows advantages of positive emitter circuit.
noise rejection at the base of Q_{2}. The base capacitor of $Q_{2}\left(C_{3}\right)$ will be driven by a pulse of amplitude.

$$
v_{p} 2 / \pi i_{o} \sqrt{L_{1} / C_{3}}
$$

where $i_{o}=$ the instantaneous inductor current when Q_{1} comes out of saturation.
After the pulse is terminated, Q_{1} will remain quiescently off until its base input goes negative, at which time D_{1} is still conducting and L_{1} begins to charge. Since the voltage across the inductor is

$$
e_{L}=L_{1} d i / d t
$$

the inductor will charge only during the time of changing collector current.

During this time D_{1} is conducting and clamps the upper end of the inductor to the diode voltage V_{f}. If, then, the emitter is grounded, the voltage across the inductor is $e_{L o}=V_{f}-V_{C E}$. Therefore, the value of e_{L} limits the charging rate of the inductor since $d i / d t=e_{L o} / L_{1}$. Consequently, if the input repetition rate is too fast, the circuit will be caused to ring before the quiescent collector current I_{c} is attained; and a less than standard voltage pulse results. To obtain the full pulse amplitude, the inductor must be allowed a charging time

$$
t_{L} \geqslant I_{\sigma} / d i / d t \text { or } t_{L} \geqslant I_{\sigma} L_{1} / e_{L}
$$

and since the input period T must be $T \geqslant 2 t_{L}(50 \%$ duty cycle), then

$$
T \geqslant 2 I_{c} L_{1} / e_{L}
$$

or

$$
f \leqslant e_{L} / 2 I_{c} L_{1}
$$

Therefore, the dependence of the input frequency upon the inductor charging voltage is seen in this last expression.

To obtain a larger e_{L}, the emitter of Q_{1} is raised above ground by a positive voltage reference using the stabistor D_{2} (SG 22 or 1 N 816). The positive emitter voltage is limited by the stable off state of Q_{1}. The designer must effect a compromise between the maximum input frequency and the stable dc operation of the input circuit.

Figure 2 is a graph showing the relation between the inductor current and the inductor charging time for a grounded emitter and a positive referenced emitter for Q_{1}. The value of t_{L} at $160 \mathrm{~m} \mu \mathrm{sec}$ on the graph is the inductor charge time required for the positive emitter case as given in Fig. 1.
Of the two co-ordinates on the graph, if first
$t_{L}=160 \mathrm{~m} \mu \mathrm{sec}$ is chosen as the starting point, note the serious reduction in current output for the grounded emitter case ($e_{\mathrm{L} \text { o }} / L_{1}$). Secondly, if we start with the collector current I_{c}, note the much larger charging time required, which limits the input repetition rate. Hence, the positive emitter circuit allows a four-to-one advantage over the grounded emitter configuration.
Results of bench tests verified the predictions as to the improvement in frequencies attained by the positive emitter versus the grounded emitter configurations with everything else unchanged. Input frequencies up to four me were achieved with the positive emitter circuit while the same circuit with the emitter grounded became prf sensitive slightly above one mc.

Double Pulser

In digital applications, it is often necessary to sense a change in state or to trigger a pulse on the leading and trailing edge of an input waveform (See Fig. 1). A simple one-transistor device to do this might be called a double pulser.
The circuit in Fig. 2 is essentially an amplifier

FIG. I - Two pulses form square wave.

with emitter resistor biasing. For small input voltages (negative with respect to ground for a pnp transistor), this is a linear network. An equivalent

FIG. 2 - Amplifier is linear network.

FIG. 3-Equivalent circuit showing current loops. circuit for this amplifier is shown in Fig. 3.

Assuming small signal linear analysis, we can find
the input impedance of this device.

Solving loop equations,

$$
\begin{aligned}
& l_{1}= {\left[\left(E_{i n} / R_{B}+r_{b}+r_{e}+R_{B}\right)-\right.} \\
&\left(r_{e}+R_{B}\right)\left(r_{e}+R_{E}-a r_{c}\right) / \\
&\left.R_{B}+r_{e}+r_{c}(1-\alpha)+R_{c}\right]
\end{aligned}
$$

The input impedance is given by:

$$
l_{1}=E_{i n} / R_{B}+R_{i n} \text { or } R_{i n}=E_{i n} / l_{1}-R_{B}
$$

This is after combining terms:

$$
\begin{gathered}
R_{i n}=r_{b}+\left(R_{E}+r_{e}\right)\left(r_{c}+R_{c}\right) / \\
R_{E}+r_{e}+R_{c}+r_{c}(1-\alpha)
\end{gathered}
$$

assuming:
$r_{c} \gg R_{c}$
$r_{c}(1-\alpha) \gg R_{c}+r_{e}+R_{B}$
$R_{E} \gg r_{e}$
we get:

$$
R_{i n} \sim r_{b}+\left(R_{E}+r_{e}\right) /(1-a) \sim B R_{H}
$$

This analysis is very approximate but it can give some idea of the circuit characteristics involved.

The current in the base is:

$$
i_{b}=E_{i n} / R_{B}+B R_{E}
$$

Collector current is:

$$
i_{o}=-B E_{i n} / R_{B}+B R_{E}
$$

Voltage out is:

$$
\begin{gathered}
E_{\text {out }} \simeq-10-B E_{\text {in }} R_{c} / R_{\mathrm{B}}+B R_{B} \\
\text { if } B R_{E} \gg R_{B} \\
E_{\text {out }} \simeq-10-E_{\text {in }} R_{c} / R_{E}
\end{gathered}
$$

This is a very approximate relationship between $E_{\text {in }}$ and $E_{\text {out }}$. It is a straight line over the linear region (Fig. 4-Curve 1).

The linear characteristic of this circuit breaks down when the transistor saturates. This occurs when: $\quad\left|E_{\text {in }}\right| \geqslant\left|-10 R_{E} / R_{E}+R_{c}\right|$

When the transistor saturates, it looks like a lowimpedance passive device and the equivalent circuit is shown in Fig. 5.
$E_{\text {out }}=\left[\left(E_{\text {in }} / R_{B}+-10 / R_{c}\right) /\left(1 / R_{B}+1 / R_{E}+1 / R_{c}\right)\right]$
This is a straight line shown in Fig. 4-Curve 2:
The composite approximate $E_{\text {out }}$ versus $E_{\text {in }}$ char-

FIG. 4-Approximate values of output versus input voitage.
acteristic of this circuit is shown as the crossed line in Fig. 4.

Investigating this characteristic, when $E_{\text {in }}=0$, $E_{\text {out }}$ is -10 v because the transistor is cut off. When $E_{\text {in }}$ is very negative, $E_{\text {out }}$ is also negative.

A practical example shows the use of this circuit.
Let R_{B} be 100 ohms, $R_{c} 5000$ and $R_{E} 1000$.
$V_{B A T}=-\left|10(1)^{k} /(1+5)^{k}\right|=-1.67$ volts
For the linear region $E_{\text {out }} \simeq-5 E_{i n}-10$ and for

FIG. 5-Each change in state of output waveform provides a positive puise.

FIG. 6-Resistance inherent in transistor.
the non-linear region $E_{\text {out }}=0.975 E_{\text {in }}-1.95 \simeq$ $E_{i n}-2$.

The characteristic is shown in Fig. 5. From this characteristic, for an input pulse going from 0 to - 10 volts, the output will be negative for both of these states and will only go positive during the transition.
Therefore, we have a monostable device that nominally rests at -10 volts and produces a positive pulse every time the input waveform changes state (Fig. 5).
When this circuit was hooked up, results very much as predicted were attained. Hysteresis effects in the transistor causing unequal pulse amplitudes, and a slope less than unity for the saturated region were the main departures from the theoretical predictions. This latter occurrence is understandable when the transistor resistances involved, Fig. 6, are considered.

Low-Impedance Multivibrator Output Circuit

Advantage is taken of the push-pull feature of a multivibrator in the circuit shown to drive a stacked triode combination. This arrangement overcomes the usual disadvantage of an ordinary cathode follower which has unequal output impedances for fast rise and fall time signals.
In operation, starting with a positive-going signal out, the upper triode of the stack behaves

Stacked triodes provide constant output impedance.
as an ordinary cathode follower with an output impedance of approximately

$$
\left[\left(r_{p} R_{K}\right) /\left(r_{p}+R_{K}\right)\right] R_{K}
$$

Then R_{K} is the lower section resistance, and it is cut off by the negative-going signal from the multivibrator. This would make R_{K} very high and the output impedance is then r_{p}. On the next half cycle the upper triode would tend to be cut off and the lower triode grid driven positive, causing it to conduct. The output impedance is again r_{p} instead of R_{K} as in an ordinary cathode follower. The resulting output impedance is constant and very low, about 2000 ohms.

Blanking Pulse Generator With Linear Pulse Width Control

The circuit described provides a blanking signal starting with an input pulse and remaining on for some nominal portion of the pulse period regardless of drop outs due to noise in the triggering pulse. Information of the approximate input pulse frequency was obtainable from the rotational position of a shaft, the shaft position being linearly proportional to the frequency over each decade of a one cps to 10 kc range.

The functional elements of the circuit shown in Fig. 1 are transistors Q_{1} and Q_{2} forming a flip-flop, a dc level inverter comprised of zener diode D_{3} and transistor Q_{3}, unijunction transistor Q_{4} in a timing circuit, and transistor Q_{5} pulse amplifier. Unijunction timing circuits operated in the manner shown, with transistor flip-flops, essentially form hybrid one-shot networks recognized for their excellent pulse shape and high duty cycle capability.

The stable state of the network when ready to recognize an input pulse has Q_{1} and Q_{2} collectors at 0 and -9 v respectively. With this condition, zener diode D_{3} is in its low conductance region thereby providing no bias current to transistor Q_{3}. Q_{3} collector is then at -10 v as is the emitter and base 1 terminals of unijunction Q_{4}. An input pulse causes Q_{1} and Q_{2} collector voltages to interchange value. The increased effective supply voltage to the zener diode now exceeds the zener potential of this device resulting in a heavy bias current which saturates Q_{3}. Capacitor C_{5} starts charging

FIG. I-Blanking puise generator.
exponentially to the 10 v potential of Q_{3} collector. When the capacitor charges to the peak point emitter voltage of the unijunction, a narrow negative pulse appearing at base 2 is amplified by Q_{5}. This latter pulse resets the flip-flop returning the network to its original state to await the arrival of a new input pulse.
A cycle of operation is initiated by the leading edge of a positive input pulse, setting the flip-flop. With the blanking pulse width exceeding the input pulse width, drop outs will have no effect since they would only attempt to cause set action to a flip-flop already in the set state.
In the particular application for which the circuit was designed, the input pulses had a maximum 50 percent duty cycle. The blanking pulse width was selected as 70 percent of the period of the input. Blanking period in the unijunction timing circuit is proportional to the product of R and C_{5}, where R is the sum of R_{12} and the unshunted portion of potentiometers R_{13} and R_{14}, these potentiometers being ganged to the shaft containing the input frequency information. Since the shaft position was directly proportional to frequency, and the blanking pulse had to be inversely proportional to frequency, it was necessary that R be inversely proportional to per-cent shaft rotation over $10: 1$ ranges of frequency. The proper variation of R with shaft position was obtained by using a 25 K linear taper pot with clock-wise rotation in series with a 100 K logarithmic taper pot of counter clock-wise rotation.
Very satisfactory results were obtained with this blanking pulse generator even when tested with a modulated cw signal to simulate a worst case
noise condition. The network demonstrated better than a 99 percent duty cycle capability over the entire frequency range. The choice of potentiometer tapers resulted in a maximum 5 percent tracking error from the nominal duty cycle selected.

Square Wave

Generator with Variable

On and Off Times

This simple square wave generator may be used to drive relays, flash lamps, drive computer gates, and other applications. Output is adjustable from 0.5 cps to 60 kc at currents up to 150 ma without appreciable waveform corner rounding.
The basic oneration of the circuit is as follows: When current is first applied to the circuit, Q_{1} begins to conduct, causing the potential of its collector to rise. This action charges capacitor, C_{2}, through re-

Square wave generator for variable pulse widths and variable interval between pulses.
sistor, R_{6}, which brings transistor, Q_{2}, into the cutoff state. With Q_{2} cut off, its collector becomes more negative. Thus, a negative charge is placed across C_{2}, which speeds up the on time for Q_{3}. When the charge across C_{2} is equal to 0.63 of the power supply voltage, C_{2} discharges through the low impedance of Q_{1} and the second half of the cycle begins. The circuit combinations of R_{2}, R_{3} and $C R_{1}, R_{1}, R_{7}$ and $C R_{2}$ and R_{10}, R_{12} and $C R_{4}$ provide a reverse base drive, decreasing the turn-off time of Q_{1}, Q_{2}, and Q_{3}, respectively. $C R_{3}$ acts as a single and gate controlling amplifier Q_{3}.
The calculations for C_{1} and C_{2} are:

$$
C_{1}=\frac{\Delta I_{1} \Delta T_{1}}{(0.63) E} ; \quad C_{2}=-\frac{\Delta I_{2} \Delta T_{2}}{(0.63) E}
$$

where:
$\mathrm{V}=11$ volts
$I_{2}=Q_{2}$ collector current $=0.0317 \mathrm{a}$
$I_{1}=Q_{1}$ collector current $=0.0306 \mathrm{a}$
$T_{1}=$ Interval between pulses in sec.
$T_{2}=$ Pulse width in sec.
R_{11} is made equal to

$$
R_{11}=\frac{V_{o}}{\left(0.15-I_{L}\right)}
$$

where
$V_{0}=11$ volts
$0.15=$ max. collector current of Q_{3}
$I_{1}=$ load current
If a relay is connected directly across the output, it may be necessary to add a resistor in parallel with the coil. This reduces the inductive voltage created by the coil and prevents damage to the transistor.

Magnetic-Core Sequential Pulser

This circuit, when triggered, provides high power, electrically isolated, sequential pulses. The number of pulses is determined by the number of stages.
With core 1 in a "one" state and all other cores in a "zero" state, the trigger pulse (40 ma for $1 \mu \mathrm{sec}$) causes a regenerative action between $N_{c 1}$ and $N_{b 1}$. Transistor Q1 saturates and a large current $I_{c 2}$ (output pulse) flows in the $N_{s 2}$ winding on core 2. $I_{c 2}$ sets core 2 to a "one" state. When the output of stage 1 falls to zero, C_{1} charges through $R_{L 1}, D_{2}$ and $R_{b 2}$. The initial charging-current spike triggers stage 2. Stage 2 resets and its output sets core 3 . This action continues for the number of stages used.

A single trigger pulse is transmitted from stage to stage. saturating each transistor and then turning the transistor of as the induced voltage drops to zero. Adjacent-stage outputs are shown ($50 \mathrm{ma} / \mathrm{div}$ vert. and $5 \mu \mathrm{sec} / \mathrm{div}$ hor).

The output pulse width is determined by:

$$
T_{s w}=\frac{V_{C} \phi}{E}
$$

where $T_{s t c}=$ output pulse width or switching time of the core
$N_{r}=$ number of turns in the collector winding
$\phi=$ switchable flux of the core
$\mathrm{E}=$ supply voltage (E_{1}) minus volt-

$$
\text { drops } V_{c e} \text { and } V_{D 1}
$$

It is desirable to use a high voltage for E_{2} so that the back emf, generated in $N_{s, 2}$ when core 2 is set, will not distort the leading edge of the output pulse.
In order to minimize the number of turns required for N_{c}, E_{1} must be small. These requirements are met by having two supply levels (E_{1} and E_{2}). D_{1} and D_{2} prevent current flow between the supply levels. The output pulse amplitude can be varied by changing R_{I}.
The component values shown will generate a 11.5μ.sec pulse. Stages using 123 -maxwell cores have been used to obtain pulse widths of $40 \mu \mathrm{sec}$. By returning the last stage to the first, a ring counter (which would require no drive pulse) can be built.

Transient-Protection Of Monostable Multivibrators

The simplicity and reliability of the monostable multivibrator makes it a logical choice for a multitude of timing applications. Unfortunately, its susceptibility to triggering as a result of power supply transients may severely restrict its practical use. The circuit shown in Fig. 1 is a monostable multivibrator which is totally insensitive to power supply transients.
To fully understand its operation, consider the mechanics of supply transient triggering. The coupling between the cut-off collector and saturated base is shown in Fig. 2A. Assuming the circuit in equilibrium, then the coupling capacitor, C_{c}, is charged to nearly

Fig. 1. A monostable multivibrator insensitive to power supply transients.

Fig. 2. (A) Coupling between the cut-off collector and base; (B) Step increase in supply voltage causes a charging current to flow; (C) Step decrease in supply voltage causes C_{C} to discharge through R_{L} and the base of the conducting transistor.
full supply voltage. A step increase in supply voltage will cause a charging current to flow, as shown in Fig. 2B, which aids the saturation bias. A step decrease in supply voltage will cause C_{c} to discharge through the load resistor R_{L}, and the base of the conducting transistor, as shown in Fig. 2C. The discharge current opposes the saturation bias and is approximately 1 $\mathrm{ma} / \mathrm{volt}$ step for $R_{\mathrm{L}}=1 \mathrm{~K}$. In the majority of circuits this is more than sufficient to completely reverse bias the saturated transistor.

The addition of the diode in series with the cut-off collector load is the key to transient protection. Any
step decrease in supply voltage will cause the diode D_{1} to be reverse biased. Assuming a minimum back resistance of 1 M , the discharge current of C_{c} will now be limited to the order of $1 \mu \mathrm{a}$./volt step, and in most circuits even an instantaneous loss of battery will not produce false triggering.

It should be noted that the addition of the diode in no way alters the normal triggering of the cut-off side, since in this case, the discharge path of C_{c} is provided by forcing the cut-off side into conduction.

Stable-Fast Recovery Transistorized Multivibrator

TRANSISTORS 2N33B DIODES IN4E6A

OUTPUT PULSE WIDTH FOR VALUES SHOWN IS $186 \mu \mathrm{p}$.

FIG. I-Stable fast-recovery multivibrator.

The unique monostable multivibrator shown has the following highly desirable features:

- Output pulse width stability of better than 1 percent over the temperature range- 55 to 85 C when using mica condensers and wire wound resistors for the timing components R_{1} and C_{1}.
- Ability to reset and trigger again at a duty cycle of 95 percent or more with less than a 1 percent shrinkage of the output pulse width from a value measured at a low duty cycle operation.
- Excellent squareness of both the positive and negative output pulses.
- Built-in emitter follower output transistors which provide low output impedances both for heavy current flow out of and also back into the multivibrator.
- These desirable features, especially that of the squareness of the output pulses with a circuit which has a very low current drain off the power supply.
- The output pulse width is independent of interchange of transistors and is unaffected by loading. - For a 50 percent change in $B+$ the output pulse width changes less than 1%.
These outstanding features are gained at the expense of adding two additional transistors and
diodes (Q_{1} and $Q_{2}, C R_{1}$ and $C R_{2}$) to the normal monostable multivibrator configuration. Transistor Q_{1} reduces the recovery time associated with capacitor C_{1} and the normal collector load resistor R_{2} by a factor of β, which for high gain transistors can give an improvement factor of better than one hundred. Transistor Q_{2} serves a similar function in connection with capacitor C_{2} and its recovery time. The improvement in circuit performance with the addition of Q_{2} is not as marked as that with the addition of Q_{1} due to C_{1} generally being one or two orders of magnitude larger in value than C_{2}. However, the fourth transistor Q_{2}, when added to the circuit, does improve all the former mentioned characteristics somewhat.

In order to reduce the current drain on the B+ supply, diodes $C R_{1}$ and $C R_{2}$ are added to the circuit. These diodes provide the de return path for the capacitors C_{1} and C_{2}. For example, when Q_{3}, the normally off transistor, is triggered on, its collector voltage drops rapidly toward ground. However, capacitor C_{1} will hold the voltage at the emitter of Q_{1} positive until $C R_{1}$ goes into forward conduction. With $C R_{1}$ in forward conduction, the driving impedance to bring the voltage at the base of Q_{1} to ground becomes that of two forward conducting diodes $\left(C R_{1}\right.$ and the saturated transistor $\left.Q_{3}\right)$. The path for current flow during the off time of Q_{4} (time T_{0} to T_{1}) is as shown in the Fig. 1. This unusual technique for providing a dc return path for C_{1}, renders a significant improvement in performance over similar circuits using low resistances from the emitters of Q_{1} and Q_{2} to a $B-$ supply. This improvement is due to two factors: It greatly reduces the current load on the supplies; and it provides a lower drive impedance at the emitters of Q_{1} and Q_{2}, thereby coupling the important wave-forms through to Points A and B more reliably than can be done with resistors to a B- supply. Diodes $C R_{3}$ and $C R_{4}$ are added to the circuit to prevent back breakdown of the base to emitter junction of Q_{3} and Q_{4}.

Patent (No. 2,976,432) has been assigned to the Government with a free non-exclusive license to Westinghouse Electric Corporation.

Astable High

Power Multivibrator

Many articles have been written about flip-flops using silicon controlled rectifiers scr's. All of these circuits required external triggers for operation. A common or representative application for this type of flip-flop is in converter power supplies. Here the high current carrying capability of the $s c r$ is used to provide an efficient conversion of dc to ac on a transformer primary. For applications of this nature it is desirable to eliminate the external trigger circuit to minimize components. A simple astable circuit design is shown. The voltage dividers R_{1} and R_{2} provide the gate voltage for the scr's. When the power is first applied to the circuit,
both voltage dividers will start charging the associated capacitors C_{2} until one scr breaks down. This initiates the oscillation which is typical of this type circuit. If

Astable multivibrator
$S C R_{1}$ fires first the anode of $S C R_{2}$ is driven to 20 v momentarily. The charging of C_{1} then begins until the gate voltage of SCR_{2} is reached which then reverses the cycle. The time constant on the gate circuits $R_{2} C_{2}$ must be large compared to other circuit time constants $R_{4} C_{1}, R_{3} C_{1}$ to realize efficiency of operation and steep waveforms. Thus, frequency control is a function of the $R C$ value in the ser gate circuits.
This cireuit design required only the addition of six inexpensive components to accomplish astable operation. This results in considerable savings by eliminat. ing the driving trigger circuit requirement. By varying the value of R_{r} this circuit can be made to operate as a monostable or bistable flip-flop also, but in this case some low level external triggering is necessary. If the gate voltage, V_{1}, never reaches triggering potential neither scr will trigger on. By supplying an external trigger to either scr that scr will switch on and remain on. A trigger at the other scr gate will cause the circuit to switch to its other stable state; bistable operation has been obtained by increasing the value of both 76 K resistors.

Increasing the value of just one of the 76 K resistors will cause the circuit to be monostable. By supplying a trigger to the $s c r$ biased off that $s c r$-can be switched on forcing the circuit to go to an unstable state. After a given time approximately, $3 R_{2} C_{2}$ the circuit will return to its one stable state automatically.

Pulse Generator

Low-Frequency

This pulse generator uses a two-transistor equivalent circuit for a double-base diode, providing better reliability and more uniform performance. Applications for this circuit are in recycling timers, indicator readout devices and switching regulators.

The circuit, as shown, will produce positive pulses at frequencies from as low as .05 cps to over 10 kc , depending on the values chosen for the circuit parameters. The frequency is variable over a wide range by varying C_{1} and R_{1} and the pulse width may be adjusted by varying R_{5}. With the
values shown. the frequency is about $1 \mathbf{c p s}$ and the pulse width is about 30 msec .

When power is applied, C_{1} starts charging toward ground potential until it reaches a voltage, V_{r}, established by the voltage divider consisting of R_{3} and R_{r} plus the base-emitter conduction voltage of Q_{1}. At this time the regenerative combination of Q_{1} and Q_{2} is actuated and they both go into saturation. C_{1} discharges through the saturated transistors Q_{1}, Q_{2}, and Q_{3} and the resistors R_{2}, R_{3}, R_{5} and R_{6}. Transistor Q_{3} is turned on by the discharge current through $R_{\text {; }} ;$ and a very high current gain is obtained through the compounded connection of Q_{3}, Q_{4} and Q_{5}. This high current gain provides the capability of delivering up to several amperes to a load. For applications requiring less load power,

Low-frequency pulse generator.
$Q_{\text {; }}$ may be omitted and the output taken from the collector Q_{4}.

After the pulse is initiated, the reference voltage, V_{r}, takes on a new value due to the shunting of R_{3} by R_{5} in series with R_{6} and Q_{3}. As the voltage on C_{1} approaches this new value of V_{r}, Q_{1}. becomes biased off and all of the transistors are abruptly cut off. The circuit uses little power between pulses since all transistors are in the "off" state.

Zero-Hysteresis Schmitt Trigger

In a Schmitt trigger circuit, hysteresis is essentially caused by differences in I_{1} and I_{2}, and hysteresis limits can normally be defined as $I_{1} R_{E}-I_{2} R_{E}$. There would be zero hysteresis if either of two conditions were met: $I_{1}-I_{2}$ $=0$ or $R_{E_{-}}=0$. The first is difficult to achieve, usually requiring matched transistors and matched collector load

Zero-hysteresis Schmitt trigger.
resistors. The second condition, $R_{E}=0$, cannot be met because the Schmitt trigger requires an emitter resistor for regenerative feedback used in the switching action.
One other way of reducing the hysteresis to zero is to simply set $I_{1} R_{E}-I_{2} R_{B}$ equal to zero by replacing R_{E} with a constant voltage source, such as a zener diode. Small variations in I_{z} do not affect the zener voltage, hence zero hysteresis.

Voltage-Controlled Ramp/Trigger Generator

This circuit provides a voltage ramp and/or positive and negative trigger pulses with approximately a 6:1 linear range of frequency control. Frequency is controlled with a de signal at the base of transistor Q_{1}.

The circuit consists of a constant-current source Q_{1} in series with charging capacitor C. The voltage across C rises linearly with time until the firing potential of unijunction Q_{2} is reached, at which time C discharges rapidly through R_{2}. Varying the operating point of Q_{1} sets the magnitude of the charging current, which in turn ${ }^{\text { }}$ controls the time required for Q_{2} to fire. The frequency is given approximately by

$$
f_{0}=\frac{2}{t}\left(1-\frac{V_{c t}}{V}\right)
$$

where $t=R_{L} C$
$V_{c o}=\mathrm{dc}$ control voltage
$V=$ supply voltage
For C ranging from 0.001 to $10 \mu \mathrm{f}$, the frequency ranges from below 10 cps to well beyond 20 kc .
The circuit has several other desirable features. The

Wide-range, voltage-controlled ramp/trigger generator. Charging current for timing capacitor C_{1} is set by the operating point of \mathbf{Q}_{1}.
input impedance is quite high (approximately 250 K for the values shown) due to the common-collector configuration of Q_{1}. The trigger output impedance can be made quite low to obtain either maximum power or voltage gain. The ramp linearity is within ± 5 percent over the working range. However, to preserve linearity and control range, the output should be coupled through a buffer stage or emitter follower. The circuit also is relatively insensitive to power supply variation and temperature effects.

Low-Cost

Pulse-Length Controller

Airborne strip-chart cameras generally are controlled by an electro-mechanical intervalometer. However, the pulse length put out by most intervalometers is often too long. Since the intervalometer is often needed for other functions it cannot be eliminated. Here, therefore, is an inexpensive device that can reduce the duration of the intervalometer pulse without affecting its operation with other apparatus.

In one application, the minimum pulse length available from the intervalometer was 400 msec ; the maximum pulse duration needed was only 100 msec . In the circuit shown the incoming pulse is applied to the normally common side
of the circuit and the supply or $V_{c c}$ side is grounded. When power is applied, C_{1} charges through R_{1} and R_{2}. As C_{1} charges, it puts reverse bias on Q_{1}, generating a ramp waveshape at the collector. This waveshape is then R-C coupled to Q_{2}, which acts like a Schmitt trigger by detecting a preset voltage level and then turning off completely, thus generating a square wave whose pulse length is controlled by

Low-cost pulse-length controller.
R_{2} and can vary from 5 to $600 \mathrm{msec} . Q_{3}$ and Q_{4} are modified emitter followers which provide isolation and prevent loading of the timing transistors, Q_{1} and $Q_{2} . Q_{5}$ is the power switch which turns on as Q_{2} turns off. A high-speed mercury wetted relay was used as the load for Q_{5}, giving still further isolation from load variations. All components, excluding the relay, came to less than $\$ 20.00$.

Scope-Trace Intensification Converter

To intensify a trace such as an A-Scope radar presentation on a commercial scope, such as Tektronix's 535 or 545 , a negative-going pulse, $15-\mathrm{v}$ minimum amplitude, is required on the cathode of the scope circuit to do an acceptable job. The problem is, invariably, the pulse to be intensified is positive-going and seldom in the $15-\mathrm{v}$ amplitude region. This pulse must therefore be processed before application to the cathode of the scope circuit.

This circuit was designed as the means of processing a positive pulse with a minimum amplitude of 250 mv for application to the cathode of the scope circuit. A $250-\mathrm{mv}$

Scope-trace intensification converter.
signal drives the amplifier to saturation and a negativegoing replica, 22 v in amplitude, appears across the collector load. The $1-\mathrm{K}$ resistor in the base prevents oscillation and prevents excessive storage time. The $1000-\mathrm{pf}$ capacity prevents deterioration of base from high dc voltages and is large enough to carry a long pulse with negligible sloping. Since the transistor only draws current when pulsed, the battery may be left connected. Its service life is almost equal to its shelf life.

Single-SCS Flip-Flop

This circuir uses only one silicon controiled switch, a 3N58, to perform a flip-flop function over a wide temperature range.

In the circuit, differentiated positive pulses are applied to the cathode gate and anode gate alternately to turn the SCS on and off. When the SCS is off, the steering diode D_{3} and rectifying diode D_{2} are reverse-biased so that the pulse is applied only to the cathode gate to turn the SCS on. When the SCS is turned on, D_{1} is reverse-biased while the reverse bias on D_{2} is removed by D_{3} and therefore the pulse is applied to anode gate to turn the SCS off.

Single-SCS flip-flop.

The diode D_{4} is inserted so that the 470 -ohm resistor does not load the positive pulse applied to the anode gate. The diode D_{6} is placed so that the turn-off pulse will not appear at output. Diode D_{5} prevents the differentiated negative pulse from appearing through D_{3} at the output while the SCS is off.
If the anode gate and cathode gate are brought out separately, the circuit can be used as set-reset flip-flop with appropriate signal.

The circuit operates satisfactorily over the temperature range of $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

Variable Time, Power One-Shot Multivibrator

This one-Siot multivibrator switches load currents of a few milliamps to over 1 amp for a precise time interval ranging from a few milliseconds up to a minute. It requires minimal power in the "off" position and is not affected by repeated operation.
It is an excellent solid state substitute for slug relays, dash pots, and thermal timers. Several stages can be cascaded to establish a sequence of timed operations. Relay coils shunted with diodes can readily be used as loads to give multiple independent contact closures.
In the circuit's quiescent stage, the power supply drain is in the microamp range. A positive input trigger pulse fires SCR Q_{1}, and starts two circuit actions: load current through R_{L} and charging of C_{T} through R_{T} and R_{3}. After the desired time interval the voltage on C_{r} becomes equal to a critical level (roughly one-half the dc supply voltage) and the emitter-to-base-1 resistance of unijunction transistor Q_{2} suddenly falls to a low value which, in effect, places the voltage on C_{r} from anode to cathode of Q_{1} via C_{c} so as to drive Q_{1} to an "off" condition. With Q_{1} "off," the circuit is back in its quiescent state and ready for repetition of the cycle.

With the values shown in the circuit and R_{r} set at 680 K , a 1 -volt trigger pulse initiates a $1-\mathrm{sec}$ "on" period, during which a load current of 70 ma is delivered to the 200 -ohm resistor (R_{L}). The "on" period is reproducible to within 5
parts per thousand when the circuit is triggered once each second.
In a high-current application, dc voltage $=30 \mathrm{v}, R_{L}=21$ ohms, $C_{T}=6.8 \mu \mathrm{f}, C_{\sigma}=6.8 \mu \mathrm{f}$, and $R_{r}=750 \mathrm{~K}$, a load

High-power one-shot multivibrator.
current of 1.3 amp flows for 15 msec with R_{T} set at minimum and for 7 sec with R_{r} set at 1 meg .

The "on" time for the circuit can be calculated from:

$$
t_{o n}=\frac{\left(R_{T}+R_{3}\right) C_{T}}{0.43} \cdot \log \left(\frac{1}{1-n}\right)
$$

where $n=$ UJT intrinsic stand-off ratio.

Astable Multi

Has Microsecond Fall

Although the free-running multi can be easily designed to give microsecond rise times, the fall times are generally too slow to be of use in a triggering application. If the application calls for microsecond rise and fall times, the following technique may be used.

(a)

(b)

Fig. 1. (a) Astable sets and resets bistable; (b) resulting waveforms.

The fast rise times of the astable multi are used to alternately set and reset a bi-stable flip flop as shown in Fig. 1 (a). This results in the output waveform of the bi-stable following the astable with the important exception that the fall times are fast, being limited mainly by the transistor parameters and loading. See Fig. 1 (b). In practice, microsecond rise and fall times
are easily obtained.
The circuit in Fig. 2 is a typical application which required a 5 cps square wave with microsecond rise and fall times.

Fig. 2. Symmetrical 5 cps astable multi with flip flop waveform squaring.

Unijunction Adds

 PWM Mode to S-R Flip FlopIn many pulse-width-modulation applications the designer will attempt to use a standard monostable multivibrator and adjust the RC time constant for the desired modulation. Usually the resistance is adjusted by replacing it with a transistor used as a constant-current source as in Fig. 1. This technique will work, but only over a limited modulation range, typically 40 to 60 percent. This limited range is due to the variation in base bias current (I_{B}) in the "on" transistor with variation of the resistance in the RC combination. At the extremes of modulation, the "on" transistor is either in heavy saturation with small R (large base drive) or barely in saturation with large values of R (small base drive).

The circuit shown in Fig. 2 combines a standard setreset flip flop with a unijunction transistor to produce a PWM output which is linearly adjustable from 0 to 100 percent. The operation of this circuit does not involve variation of circuit parameters but obtains PWM action by variation of the charging rate of capacitor C.

Output A of the set-reset flip flop goes high when negative input $E_{\text {in }}$ is applied to the set input. As A goes high, A goes low and inverter Q_{1} is turned off. This releases the

Fig. 1. Limited-range PWM circuit.
emitter E of UJT Q_{3} from its clamp to ground and capacitor C begins charging towards +28 v through constant-current source Q_{2}. When Q_{3} fires, the positive pulse generated

Fig. 2. Full-range PWM circuit uses UJT combined with standard S-R flip flop.
across R_{1} (in base 1 of Q_{3}) is inverted by Q_{4} and a negative pulse is applied to the reset side of the SR flip flop returning it to its original state. The pulse width of the output at A is, of course, defined by the base current I_{B} of Q_{2}.

Trigger Circuit Gives

Less $\mathrm{P}_{\text {diss, }}$ More $\mathrm{V}_{\text {out }}$

Here is an improved trigger circuit with regenerative switching action similar to the conventional Schmitt trigger circuit. Basically, the improved circuit consists of an npn common-emitter stage iollowed by a pnp stage and a selected amount of positive feedback.

The emitter of the npn stage, Fig. 1, is referenced to a voltage source, V_{Z}. When the input voltage is low, the output is low. When the input voltage exceeds the tuven-on threshold, the regeneration provides a rapid transition of the output voltage from low to high. Likewise when the input voltage drops below some sustaining level, the output voltage rapidly returns to low. R_{1} is the

Fig. 1. Improved trigger circuit.
mixing resistor for the input signal and R_{2} is the mixing resistor for the feedback signal. With $R_{2} \gg R_{1}$, as will generally be true, the turn-on threshold is approximately 0.5 volts greater than $V_{Z} . R_{5}$ establishes the operating point of $C R_{1}$. Turn-off input voltage is determined by the percentage of feedback used, and by the loading caused by the base input resistance of $Q_{1} . R_{3}$ and R_{4} reference the base of Q_{2} to $+E_{c c}$ when Q_{1} is off, which prevents conduction of Q_{2}. When Q_{1} is on, R_{4} limits the base current of Q_{2} to some desired value.

Fig. 2. Conventional Schmitt trigger circuit.
C_{1} and C_{2} are speed-up capacitors which insure high loop gain for transients, and consequently, fast rise and fall times.

The improved trigger circuit in Fig. 1 has the following advantages over the conventional Schmitt trigger circuit shown in Fig. 2:
E Reduced power consumption, since in the "off" state neither transistor is conducting.

- Full-range output voltage swing. The output voltage of the improved trigger switches from 0 to $E_{c c}$. The baseline output voltage of the conventional Schmitt trigger is determined primarily by the divider effect of $\boldsymbol{R}_{\mathbf{1}}$ and R_{5}.
Low output impedance. When on, the output impedance of the improved trigger is limited only by the low saturation resistance of the pnp transistor. The output impedance of the conventional trigger is equal to $\boldsymbol{R}_{\mathbf{4}}$. Lower output impedance in the conventional circuit is achieved at the cost of additional standby power dissipation, because of a lower value of $\boldsymbol{R}_{\mathbf{4}}$.

Disadvantages of the improved circuit are:

- More parts required. The improved circuit requires a zener diode and one additional capacitor more than the conventional circuit. However, for a turn-on threshold of +0.5 v , the diode and one resistor are eliminated.
E Some input signal appears in the output. A small amount of input signal is coupled to R_{L} through R_{1} and and R_{2} when the trigger circuit is off. If this effect is objectional, a diode in series with $R_{\mathbf{2}}$ would prevent positive inputs from reaching R_{r}; a diode in series with R_{1} would prevent negative inputs from reaching R_{r}.

The circuit shown in Fig. 1 was tested at room temperature. Both the rise and fall time (10 to 90 percent) measured $0.15 \mu \mathrm{sec}$. With $R_{2}=40 \mathrm{~K}$, turn-on voltage is 6.97 v and turn-off voltage is 6.49 v .

Combination

Schmitt Trigger-Monostable Multivibrator

Three transistors in a complementary configuration combine the function of a Schmitt trigger and a monostable multivibrator.

The advantages of the circuit are two-fold: the triggering level is accurately controlled and the output pulse width is independent of input drop-out since the circuit is regenerative.

In the circuit, as soon as the input level crosses a threshold established by P_{1}, then Q_{1} and Q_{2} turn on. R_{5} increases

Schnitt trigger, $\left(\mathbf{Q}_{1}, \mathbf{Q}_{2}\right)$ aud monostable multi $\left(\mathrm{Q}_{2}, \mathrm{Q}_{3}\right)$.
the regeneration of the circuit by providing additional turnon current to $Q_{1} . Q_{3}$ is normally on and Q_{2} normally off; therefore, C_{2} is charged as shown in the figure. As soon as Q_{2} turns on, the positive step through C_{2} turns off Q_{3}. Positive feedback from Q_{3} through R_{7} back to the base of Q_{2} insures that if the level at the input drops below the triggering level of Q_{1}, then Q_{2} will still remain turned on. C_{2} discharges through R_{8} until Q_{3} turns on, thus terminating the cycle.
The figure shows the Schmitt trigger to be made up of Q_{1} and $Q_{\dot{2}}$, and the monostable of Q_{2} and Q_{3}.

Delayed Pulse Generator

This circuir generates an output pulse delayed in time relative to an input pulse. Only three transistors are used rather than the four that would be needed in the more conventional method for generating a delayed pulse, a pair of "one-shots."

Before the circuit is pulsed, Q_{1} is off, and Q_{2} and Q_{3} are on. The input pulse turns on Q_{1}, and through the action of C_{1}, turns off Q_{2}. This state remains intact for a time determined by C_{1}, R_{3}, and $R_{4} . C_{1}$ charges through R_{3} and R_{4} and eventually turns Q_{2} back on, thereby turning Q_{1} back off. When Q_{2} turns on, Q_{3} turns off due to the action of $C_{2} . Q_{3}$ remains off for a time determined by C_{2}, R_{6}, and R_{7}, C_{2} charges through R_{6} and R_{7}, thus turning Q_{3} back

Fig. 1. Delayed pulse generator.
R2 poor print, thought to be 12 k
on. The result is a delayed pulse at the collector of Q_{3}.
Fig. 2 shows how various waveforms are time-related to each other. The delay time, t_{1}, can be adjusted with the

Fig. 2. Circuit waveforms.
potentiometer R_{3}. For the values shown, this is of the order of $10 \mu \mathrm{sec}$. The pulse width, τ, can be adjusted with the potentiometer R_{6}. This time is also about $10 \mu \mathrm{sec}$. The rise and fall times of the output pulse are less than 0.5 $\mu \mathrm{sec}$.

Frequency Divider With

Independent Pulse-Width

Control

In many pulse-frequency division circuits, additional circuitry is often required to reshape the pulses. For example, if a standard one-shot multivibrator is used as the divider, the width of the pulse is increased as shown in Fig. 1. However, pulses of the desired width, as in Fig. 2, may be obtained as the division is being accomplished with the circuit of Fig. 3.

In the circuit, Q_{1} is normally off and the collector of Q_{1}

Fig. 1. Input (A) and output (B) from standard multi.

Fig. 2 Input (A) and output (B) from frequency-divider circuit.
at $+12 \mathrm{v} . Q_{2}$ is on and its collector is at approximately 0 v . The first positive pulse will turn Q_{1} on and Q_{2} off. The time duration that Q_{2} remains off is determined by R_{1}. and C_{1}. When Q_{2} is off, C_{2} charges toward +12 v through

Fig. 3. Frequency-divider circuit.
$R_{;}$and $C R_{2}$. As C_{2} charges, some of its current flows through $C R_{3}$ and R_{2} to insure that Q_{1} remains on. The time constant of R_{2} and C_{2} must be greater than that of R_{1} and C_{1}.

When the charge on C_{1} allows Q_{2} to turn on, its collector will return to $0 \mathrm{v} . C R_{2}$ is now back-biased and will prevent the discharging of C_{2} by $Q_{2} . C_{2}$, which was charged through a low impedance, will discharge through \boldsymbol{R}_{2} thus holding Q_{1} on. Q_{1} will ignore any additional pulses until C_{2} has discharged. R_{1} and C_{1} control pulse width, and $R:$ and C_{2} control the time between output pulses.

The components shown divide $50-\mathrm{msec}$ pulses by 5 without changing the pulse width. However, a great variety of outputs may be achieved by changing the circuit time constants. Pulse risetimes may be improved and the range of operation can be extended by adding an emitter follower between points A and B in Fig. 3.

PW Modulator as Multiplier and Bang-Bang Amplifier

The circuit of fig. 1 is a relatively simple pulse-width modulator with a couple of interesting applications. The circuit combines an astable (Q_{1}, Q_{2}) and a differential $\left(Q_{3}, Q_{4}\right)$ circuit. The differential circuit will keep the sum of the base currents of Q_{1}, Q_{2} constant such that the basic carrier frequency remains fairly constant. The pulse width, however, will depend on the division of the total base current as determined by the input signal to the differential.

It takes only a simple RC averaging network to detect the pulse-width modulated output. A $100-\mathrm{mv}$ swing at the input produces a $20-\mathrm{v}$ demodulated output swing, linear to within 5 percent. The gain of 200 can be used to increase the linearity by feedback. In the circuit of Fig. 2 the demodulated output will follow the input within 5 percent/ $200=0.025$ percent.
A relatively simple analog multiplier is possible by applying the output to a switching circuit in which the collector supply, and therefore, the pulse amplitude, is proportional to the other factor, y, in Fig. 3. The demodulated output will be proportional to the product $x y$.

Finally, the pulse-width modulator may be used as a bang-bang audio amplifier, Fig. 4. A small transformer

Fig. 1. Basic pulse-width modulator circuit.
Fig. 2. As an accurate information carrier.
Fig. 3. As an analog multiplier.
Fig. 4. As a bang-bang audio amplifier.
may be used if the carrier frequency is high. Earphones connected to the secondary will do the averaging and demodulation directly. A buffer stage may be necessary. Because of the bang-bang operation, a minimum of heat is dissipated.

Narrow Pulses with DTL Integrated Modules

When designing logic, it frequently becomes necessary to obtain narrow pulses corresponding to the leading edge of a signal. With standard circuits this is not a problem since the signal can be differentiated with a capacitor-resistordiode combination. But if DTL integrated circuits are being used, this cannot be done since the input to the DTL circuit is a diode AND gate.

The logic circuit shown can be used to generate pulses approximately 60 nsec wide corresponding to the leading edge of a pulse. It has been found that the addition of only one module to the system is usually needed since gate 2 is normally present and 1 and 3 are in a single module.

The input pulse is applied at point A and is passed through gate 2 since point C is normally high. The output at B then goes low, forcing the output of the OR gate high.

Integrated circuits provide narrow pulses on leading edge.

Gate 1 now has two high signals so its output, point D, goes low inhibiting Gate 2 and forcing point B back to a high level. The circuit will then stay latched in this position until cleared by A going low, allowing point D to go high. The circuit is now ready for another cycle.

The width of the pulse is only dependent upon the propagation delay of the modules and may be made wider by placing a capacitor from point C to ground if necessary. Note that gate 2 may have more than one input. That is, it may be used to perform a normal AND function by applying a signal to point F.

Coaxial Cable Driver Circuit

Here is a circuit that can drive digital information through long lengths of coaxial cable. Pulses of $30-\mathrm{nsec}$ rise and fall time have been sent through 1155 ft of 50 -ohm co-ax (RG/188U), and through 650 ft of 93 -ohm co-ax ($\mathrm{RG} / 62 \mathrm{U}$). Since risetime (τ_{r}) can be related to frequency (f) by the equation $f=0.352 / \tau_{r}$, a risetime of 30 nsec means that a frequency of 10 to 20 mc is coupled into the supply and ground leads. R_{4}, C_{2}, and C_{4} comprise a decoupling circuit which eliminates this. These capacitors, C_{2} and C_{4}, must be good quality, high-frequency units. Since tantalytic and electrolytic capacitors become inductive in this frequency range, they must not be used here. Sprague monolithic capacitors were found to be suitable. Also, great care must be used in laying out this circuit-the power and ground leads as well as input and output leads, must

Coaxial cable driver circuit.
be as short as possible.
For use with a different characteristic-impedance co-ax, merely replace R_{8} with the characteristic impedance of the co-ax selected. The output level, of course, will change. This can be easily calculated.

There is no noticeable deterioration in the wave shape (input to co-ax vs. output) with a ± 20 percent variation in R_{8}.

Wide Range Monostable

 MultivibratorThe addition of one transistor to a linear one-shot increases the range through a ratio of 150 to 1 . In the circuit shown, Q_{6} is the extra transistor. Its associated circuitry is shown within the dashed lines.
Q_{5} is normally on, Q_{1} and Q_{3} are off. Q_{6} is forwardbiased and therefore provides a steady base current to Q_{5}. A positive pulse coming in through C_{5} cuts off Q_{5} and turns on Q_{1} and Q_{3}. This positive step is transmitted through C_{1}, which was charged to approximately -15 v and maintains Q_{5} off during the one-shot timing cycle. C_{1} charges through constant-current source Q_{3} at a rate determined by the setting of P_{1} and the voltage across it, approximately 5.7 v . When the voltage at the collector
of Q_{3} has reached $-1 \mathrm{v}, Q_{5}$ starts turning on, Q_{1} begins to turn off, Q_{6} starts conducting, turning Q_{5} on harder. This cycle of events is regenerative so that Q_{5} rapidly saturates and cuts off Q_{1} which in turn cuts off Q_{3}.

The circuit effectively separates the charging current. through C_{1}, which varies the timing of the one shot, from the biasing current turning on Q_{5}, which should be con-

Added transistor \mathbf{Q}_{6} increases range of monostable.
stant. The current through Q_{3} has to be only sufficient to set Q_{5} into the active region and thus start regenerative action.

Fast-Recovery One-Shot Multi Gives 10:1 Width Control

Most one-shot multivibrator circuits that have short recovery time compared with the output pulse width use additional transistors and diodes to provide a discharge current that is much greater than the charging (timing) current. This disadvantage of extra components is not present in the circuit shown here, which is currently in use in a commercial radar range unit and a pulse analyzer.

The pulse width can be readily varied from $0.1 \mu \mathrm{sec}$ to 10 msec in decade ranges by using appropriate timing capacitors. Risetime of the output pulse is essentially constant at about 10 nsec over the entire width control range. Further, very high duty factors (90 percent for shorter widths and 97 percent for maximum widths) can be realized because the recovery time is nearly a constant fraction of the pulse width.

With an npn and a pnp transistor, both transistors in the multivibrator are simultaneously on or off, as contrasted with the usual case in which one transistor is on while the other is off. In the circuit shown, Q_{1} and Q_{2} are off during the pulse-width period, the longest time interval in the circuit. In addition to achieving high duty factors, use of the npn and pnp configuration provides a large discharge current path for the timing capacitor, C, without the requirement for additional components.

A negative-going trigger is applied to the base of Q_{2} via $C R_{1}$ and $C R_{2}$ to turn Q_{2} off. The resulting positive change at the collector of Q_{2} appears at the base of Q_{1} to quickly
cut off Q_{1}, and the emitter of Q_{1} is restrained from following the base of Q_{1} by timing capacitor C. Thus, Q_{1} remains in the cutoff state and regeneratively completes turning off the base of Q_{2}. Both Q_{1} and Q_{2} remain off until C charges to the voltage level present at the base of Q_{1}. This level is set by R_{5}, the width control, to determine the time required for the emitter and base voltages of Q_{1} to equalize.

When the emitter and base voltages of Q_{1} are equal, Q_{1} and Q_{2} conduct as heavily as they can (limited primarily by their internal resistances) to discharge C to its quiescent voltage level. Timing resistor R_{2} functions to maintain sufficient current in the emitter of Q_{1} so that the circuit remains on over the entire range of R_{5} after the heavy discharge current dies out. $C R_{3}$, a disconnect diode, permits the output at the collector of Q, to swing a full 12 V regardless of the setting of $R_{5 .}$.

Opposite polarity transistors allow fast recovery with broad width control.

With the exception of timing capacitor C, component values are as indicated on the schematic. The value of C is determined from the following relationship: C (pf) $=$ Maximum Pulse Width ($\mu \mathrm{sec}$) $\times 10^{2}$. The value of C for a decade range of 1 to $10 \mu \mathrm{sec}$, for example, is 1000 pf .

In addition to having a fast recovery time, this circuit exhibits several other features: essentially constant trigger sensitivity over the complete width range (a pulse width of many milliseconds can be generated with a trigger width of 50 nsec); only one power supply is required; no large recharge current flows through the power supply to cause transients; a width control range of $10: 1$ is readily obtained with a remote (up to 10 ft) control; and timing capacitors that determine the decades over which the pulse width is variable can be remotely (up to 10 ft) located on a range switch by using coaxial cable with the shield grounded at the circuit but not at the switch.

Pulse Amplitude Modulator

It is often desirable to amplitude modulate a pulse train with an audio signal or some other input, such as noise. This circuit will satisfactorily perform this function over an audio signal range of 0 to approximately 200 kHz with input pulses over $1 \mu \mathrm{sec}$ in duration. The maximum attainable percent modulation is dependent on the modulation frequency with approximately 80 -percent modulation available at frequencies up to 3 kHz decreasing to 30 percent at an audio input of 200 kHz .

Pulse-amplitude modulator.
The circuit consists of an emitter follower which determines the collector voltage for a saturated pulse amplifier Q.. Amplifier Q_{1} scrves as an inverter to make the pulse input positive-going. Q_{1} may, of course, be omitted if the input pulse train is negative-going (input at ground during pulse and positive between pulses). An emitter follower may also be added, if desired, in order to drive low impedance loads.

High-Gain, Long-Pulse Monostable

This one-shot has the following advantages over more conventional types: high current gain, long pulse width with relatively small timing capacitance and low dissipation in the off state.

The trigger pulse turns on Q_{1} and Q_{2}. Transistor Q_{2}. besides supplying load current, provides lock-up drive to Q_{1} through R_{12}, R_{7} and $C R_{2}$. Capacitor C_{3}, charges toward $Q_{.}$'s collector voltage through R_{y} and $R_{1,1}$. When the charge on C_{3} reaches the sum of the voltage on zener $V R_{1}$ plu; the gate-to-cathode firing voltage of Q_{3}, Q_{3} turns on. The voltage on the anode of Q_{3} drops to nearly the $V R_{1}$ voltage and the left side of $C: 2$ is pulled considerably negative to insure turn-off of Q_{1} and hence, $Q_{2 .}$. The base of Q_{1} doesn't go negative but is grounded through R_{4}. Diode $C R_{2}$ is included to prevent destruction of Q_{1} by exceeding its $B V_{\text {elw, }}$, rating.

The maximum pulse length obtainable for a given value of C_{3} is limited by the $I_{\text {ago }}$ of Q_{3} (which determines ihe maximum value of R_{11}), the leakage resistance of

High-gain, long-pulse monostable.
C_{3} and the gate firing current required for Q_{3}.
Resistors R_{2} and $R_{1:}$ are optional in that reset time
specification may be met through the effect of source and load impedances. Diode $C R_{4}$ allows C_{3} through R_{13} or the load.

The circuit shown is adjusted for a pulse width of 11 sec and drive a $19.6-\mathrm{K}$ load. Transistor Q_{2} must be saturated in order to provide maximum output and a definite charging voltage ($V_{\text {ci4 }}$) for C_{3}.

Wide-Range Monostable, PRF Discriminator

The monostable circuit of Fig. 1 can be electronically adjusted to vary its output pulse width from several seconds to $0.2 \mu \mathrm{sec}$. With the feedback path shown in dashed lines, it performs as a PRF discriminator with output dc voltage as a function of frequency from below 3 Hz to 300 kHz .

The input pulse, which should be of uniform amplitude and width, is applied to diode $C R_{1}$ and charges capacitor C_{1} up to peak amplitude. Transistor Q_{2} is immediately cut off, Q_{3} conducts, and Q_{4} is shut off. The output at the collector of Q_{4} rises to power supply level in about 0.1 $\mu \mathrm{sec}$.

The charge on C_{1} leaks off through Q_{1}. The amount of leakage current is determined by the input control voltage applied to the base of Q_{1}. When the potential on C_{1} is sufficiently low, Q_{2} clamps the base of Q_{3} to ground, shutting Q_{3} off, and Q_{4} conducts again, pulling down the collector potential with a speed which is about $1 / 1000$ th of the pulse width at the wide end, and $0.1 \mu \mathrm{sec}$ at the narrow end.

Any monostable and an averaging network constitute a PRF discriminator. In the present circuit the range of such a configuration is extended by feeding back from the averaging network R_{4}, C_{2} a voltage which will, as the frequency goes up, narrow the pulse width to make it possible to go to still higher frequencies. This voltage is fed to the pulse-width controlling transistor Q_{1} through resistor R_{5}. A bias input through R_{6} assures that, at low frequencies there

Fig. 1. Electronically-adjustable monostable.

Fig. 2. Frequency characteristic.
is a finite pulse width ($5 \mu \mathrm{sec}$) to give a finite output and feedback action.

Figure 2 shows a plot of input frequency versus output
voltage. The high end can be extended by using a narrower input pulse. Conversely, the low range can have better definition by using a wider input pulse at the expense of high frequency response. The response curve can be modified, of course, by including a shaping network in the feedback path.

Improved One-Shot Output Circuit

It is sometimes necessary to take the output of a oneshot from the timing side to obtain the correct polarity output pulse. This is normally accomplished with a resistive divider (R_{1}, R_{2}) and capacitive speed-up as shown in Fig. 1. A- serious limitation of this circuit is the large variation in output pulse width resulting from the use of Q_{1} 's collector voltage to drive the output amplifier. Because of the limited current available to recharge C_{1}, the trailing edge of Q_{1} 's collector voltage pulse is a ramp. The point on the ramp where Q_{3} turns on, and hence the output pulse width, is a function of the divider accuracy, the supply voltages, the beta of Q_{3}, and the load.

In the improved circuit, Fig. 2, the timing current serves to discharge C_{1} during the active timing period and supplies base drive to the output amplifier during the recovery period. This is accomplished by replacing the clamp diode on the right side ($C R_{2}$ in Fig. 1) with the base-emitter junction of the output amplifier.

Transistors Q_{1} and Q_{2} form an astable multivibrator with Q_{2} normally biased on. Transistor Q_{3} is also normally turned on by the current through R_{4}. The positive-going leading edge of the input pulse, differentiated by C_{1}, turns on Q_{1}. The resulting negative-going pulse at the collector of Q_{1}, coupled through the timing capacitor, C_{2}, turns off Q_{3} and holds off Q_{2}. Resistor R_{4} discharges C_{2}, turning off Q_{2} at the end of the active timing period. As Q_{2} turns

Fig. 1. Basic one-shot output circuit.

Fig. 2. Improved one-shot output circuit.
on, Q_{1} turns off. The positive-going pulse at Q_{1} 's collector, coupled by C_{1}, turns Q_{2} off harder and supplies speedup drive to turn on Q_{3}. Transistor Q_{3} is now held on by the current through R_{4}, and C_{2} is recharged through the base emitter junction of Q_{3} by R_{2}.

For the power supply voltages and component values shown, the active timing period is:

$$
T_{a}=R_{4} C_{2} \ln \frac{6.6}{12.6}=0.646 R_{4} C_{2}
$$

The recovery period is:

$$
T_{r}=5 R_{r_{2}} C_{2}
$$

If Q_{3} is a low-leakage silicon transistor, the timing performance will not be affected.

The improved circuit, besides using less power, gives improved timing accuracy with the use of fewer components.

Eliminating False Triggering in Monostable Multis

The addition of three diodes and one resistor to a conventional monostable multivibrator permits an increase in the timing resistor, R_{t}, without making the circuit susceptible to false triggering.

The monostable should be able to accommodate large timing resistors for two reasons: a wider variation of pulse width can be achieved without changing C, and larger R / C ratios can be used, thereby increasing the duty cycle.

In the conventional monostable, large values of R_{t} cannot supply enough base drive to Q_{1} to provide adequate noise immunity when the monostable is in the quiescent state, making the circuit susceptible to false triggering.

In the modified monostable
shown, substantial base drive is supplied by R_{b} when in the quiescent state. A negativegoing trigger step at the input turns Q_{1} off, driving Q_{2} into saturation and diverts Q_{1} base current through D_{1}. At this time the junction between C and D_{3} goes negative. Both D_{2} and D_{3} are now cut off. C must now charge through R_{t} to $V_{b e}$ of Q_{1} before Q_{1} can turn on.

When Q_{1} turns on, Q_{2} cuts off, allowing R_{b} to supply hard base drive to Q_{1}. The monostable will stay in this state until intentionally triggered.

The maximum value of R_{t} depends on the β of Q_{1}. The value of R_{t} may be extended by using a high- βQ_{1} or by driving Q_{1} with an emitter follower.

Extra components allow better triggering operation in mono stable multi.

Pulse-Width Discriminator

Fig. 1. Duty-cycle of input signal determines the output voltage of this discriminator.

Fig. 2. Output waveform of discriminator is filtered to give the average level $\mathrm{E}_{\text {oic }}$.

The simple pulse-width discriminator shown in Fig. 1 gives linear changes in output voltage for changes in input duty-cycle. The rectangular input signal can vary in amplitude without affecting the output, because Q_{1} and Q_{2} are operated in the switching mode. This discriminator was used in a self-balancing servo loop in which R_{2} was a potentiometer geared to a servomotor:

The time constant $R_{g} C_{c}$ must
be large relative to the period of the input waveform. This gives constant-current base drive to the "On" transistor. The current must be sufficient to cause saturation. The base of the "Off" transistor is returned to ground and re-verse-biased by the emitter junction of the "On" transistor.

Since the transistors operate in the switching mode, the output voltage will swing between fixed positive and negative
voltages, with the average value dependent on the duty cycle as shown in Fig. 2. The dc output voltage is given by

$$
E_{o}=V_{o c}\left[\begin{array}{lll}
1 & -2 & \frac{t}{T}
\end{array}\right]
$$

where t / T is the duty cycle and $V_{o c}$ is the open-circuit voltage seen looking into the output terminals.
$V_{o c}=\frac{R_{z}\left(V_{\theta c}\right)}{R_{i}+2 R_{z}}$
Neglecting the filter network,
the impedance seen looking into the output terminals is is simply R_{z} in parallel with the series combination of R_{1} and R_{z}.
Offset, due to unequal saturation voltages. is not a problem when the detector is used in a low-gain loop. For highgain applications, offset can be minimized by operating the transistors in the inverted mode. The circuit will requir increased drive in this mode.

Pulse integrator gives constant slopes

The pulse-integrator circuit shown in Fig. 1 provides constant slope outputs controlled by two input pulses. Negativegoing pulses at the base of Q_{1}, charge capacitor C_{1}. Positivegoing pulses at the base of Q_{2} discharge the capacitor.

During both charge and discharge, the current is constant. So the output voltage changes linearly for the duration of an input pulse. When there is no
input pulse, the output level remains constant because of the charge on C_{1}.

Circuit equations are derived ${ }^{1}$ as follows:

Normally the base of Q_{t} is at $V_{c c}$, and the transistor is biased off. When an input pulse appears at the base, the base voltage drops to V_{1}. This turns on Q_{1} and the emitter current provides a constant-current charging source for C_{1}. This charging current is,

$$
\begin{align*}
i_{E_{1}} & =\frac{V_{c c}-\left(V_{1}+V_{B E_{1}}\right)}{R_{1}} \\
& =\frac{V_{p}=-V_{B E_{1}}}{R_{1}} \tag{1}
\end{align*}
$$

Therefore
$C \frac{d V}{d t}=\frac{V_{p}=-V_{B E I}}{R_{1}}$
or
$d V=d t\left(\frac{V_{p}-V_{B E_{1}}}{R_{1} C_{1}}\right)$
Where $d t$ is the time during which Q_{1} is on.

Transistor Q_{2} is normally off. If an input pulse is applied to the base of Q_{2}, the base rises to the new voltage V_{2}. This turns on the transistor, and its emitter current is,

$$
\begin{equation*}
i_{E z}=\frac{V_{z}-V_{B E z}}{R_{z}} \tag{3}
\end{equation*}
$$

As before, the current is constant. But this current discharges capacitor C_{1}. The change in capacitor voltage is derived in the same way as for the charging case above.
Then

$$
\begin{equation*}
d V=d t\left(\frac{V_{z}-V_{B E z}}{R_{\ell} C_{1}}\right) \tag{4}
\end{equation*}
$$

So the net voltage on the capacitor, caused by a charging pulse and a discharge pulse is,

$$
\begin{gather*}
V_{x}=V_{x}^{\prime}+ \\
T_{1}\left(K_{c}\right)-T_{g}\left(K_{d}\right) \tag{5}
\end{gather*}
$$

where constants K_{c} and K_{d} are values calculated from the expressions in parentheses in Eq.

2 and 4. V_{x} is the new voltage on C_{1} and V_{x} ' is the preceding

Fig. 1. Constant-current charge and discharge circuit integrates pulses.

Fig. 2. Simplified pulse Integrator with typical component values.
voltage.
Now, because transistors Q_{1} and Q_{2} saturate during conduction,

$$
V_{x}(\max) \approx V_{1}
$$

and

$$
V_{x}(\min) \approx V_{s}
$$

Transistors Q_{3} and Q_{4} provide unity gain and present a
high shunt impedance across C_{1} : Equations for the gain and output impedance of FET amplifiers are given in many textbooks and application notes. ${ }^{2}$ Emitter-follower stage Q_{5} gives a further reduction in output impedance.

Typical component values for the charge-discharge circuit are shown in Fig. 2. For simplicity, the output stage is omitted in this figure. Typical input and output waveforms are shown in Fig. 3, for the circuit of Fig. 2. Note that the rise and fall time

Fig. 3. Typical output waveform for the circuit shown in Fig. 2. Note that charge and discharge time constants are both $10 \mathrm{~V} / \mathrm{ms}$.
constants are identical, and all output changes are linear ramps.

The slopes of the charge and discharge ramps in Fig. 3 are calculated using the component values of Fig. 2 and assuming
$V_{p}=V_{2}=1.6 \mathrm{~V}$, and $V_{B E 1}=$ $V_{B E Z}=0.6 \mathrm{~V}$.
Then

$$
\begin{aligned}
& \left.\frac{d V}{d t}\right|_{\text {charge }} \\
= & \frac{V_{p}-V_{B E_{t}}}{R_{1} C_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1.6-0.6}{0.1 \times 10^{-3}} \\
& =10 \mathrm{~V} / \mathrm{ms}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \left.\frac{d V}{d t}\right|_{\text {discharge }} \\
& \quad=10 \mathrm{~V} / \mathrm{ms} .
\end{aligned}
$$

References

1. Richard S. Hughes, "Selected Semiconductor Circuits," NAVWEPS Report 9039 (NOTS TP 4038), July 1966.
2. "High-Input-Impedance UNIFET Amplifiers," Siliconix Application Note, February 1963.

Improved monostable multivibrator allows wide range of pulse-width control

Conventional monostable mul- itor C from the collector of tivibrators allow only a limit- Q_{z} during the "off" period. ed range of pulse-width con- Thus the charging potential trol. This is because the re- for the capacitor is defined sistive element of the RC by potentiometer $R_{\mathbf{q}}$. But the timing network also supplies capacitor's discharge path is bias for the "on" transistor. the same as with a convenSo any attempt to vary the tional one-shot. When the resistance over a wide range circuit is triggered, the posiwill upset the trigger conditions tive end of the capacitor is of the circuit.
With the modified one-shot circuit of Fig. 1, however, pulse width can be adjusted over a range of 100 -to-1 or more without any change in oias level or output amplitude. Pulse width can be set with a potentiometer as shown, or externally controlled by a dc voltage or an ac modulation signal.

In the circuit shown, diode $C R_{1}$ isolates the timing capac-

Fig. 2. Multivibrator pulse duration as a function of control potential.

Fig. 1. This voltage-controlled monostable can be pulse-width modulated over a 100 -to-1 range without change in amplitude or sensitivity.

$$
\begin{array}{ll}
\text { where, } & V_{o n(Q I)}= \\
V_{b e(o n)} & +V_{C R z}+V_{R} \text { (2) }
\end{array}
$$

The circuit gives good linearity for small changes of V_{C}. Fig. 2 shows the measured and calculated values of τ plotted as a function of control voltage.

Control ratio is governed by the value of the timing capacitor C. This is because $\tau_{\text {min }}$
is fixed while $\tau_{\max }$ depends on C. With suitable choice of components, large control ratios are possible.

For external modulation, one can set V_{C} to a voltage that gives half the maximum required τ. Then symmetrical modulation can be applied via isolation capacitor C_{M}. Of course, one can also offset V_{i}. to allow asymmetrical modulation.

Sensistor stabilizes pulse width of monostable multivibrator

Some circuit designers have shown how dual-gate ICs can easily be converted into oneshot multivibrators, merely by the addition of a few discrete components. ${ }^{1}$ This approach eliminates the need for special IC one-shots, thus reducing the number of different IC types required in a complete equipment.

But, modified gates usually give poor temperature stability. Pulse width of a monostable can vary by as much as ± 10 to $\pm 20 \%$ over a -55 to $+125^{\circ} \mathrm{C}$ temperature range. The simple circuit, shown in Fig. 1, uses a Sensistor to improve the temperature stability. This technique confines variations of pulse width to within a much smaller range of around 3%.

With these component values, the circuit gives a $4-\mathrm{ms}$ output pulse width. Outputpulse amplitude is approximate-
ly 1 V . The circuit requires an input drive pulse having an amplitude of 2 V and a width of $0.5 \mu \mathrm{~s}$.

With a $50-\mathrm{k} \Omega$ pot, as shown in the schematic, the pulse width can be adjusted over a ten-to-one range with a maximum width of 5 ms . The Sensistor shown has been selected for optimum temperature stability of pulse widths in the range 3 to 5 ms . Other pulse widths will require different Sensistor values for optimum tempco. Suitable values are shown in the table. Still greater stability can be achieved using series or parallel combinations of Sensistors.

Maximum operating frequency for the circuit is approximately,

I

$f=P_{W}+\left(5 \times 10^{-4}\right) \mathrm{pps}(1)$
where P_{W} is the pulse width in milliseconds

Of course, the recovery time

Dual-gate IC, plus external RC network, forms a simple oneshot. Temperature stability can be improved by using a Sensistor as shown.
of the circuit depends on the value of C_{I}. The equation shown is only valid for the specified capacitance. The Sensistor values, for optimum stability, were determined empirically using a polycarbonate capacitor for C_{r}. Sensistors were selected from the TI, TM$1 / 8$ series.

Reference

1. Donald Femling, "One-Shot Multivibrator Kills Switch Bounce,"

Pulse width (ms)	Sensistor resistance (ohms)
5	2.2 k
3	2.2 k
2	1.5 k
1	1.0 k
0.5	1.0 k

Tunnel diode speeds

word-line

driver

This high-Speed, high-power, driver circuit can deliver 220 milliamps to a 160 -ohm load. Delay time is 5 ns , and rise and fall times are each 4 ns. Nominal output-pulse width is 18 ns.

All parameters of the output pulse (for example, peak current, delay time, rise and fall times and pulse width) are independent of repetition rate Pulse width is easily adjustable.

The circuit comprises a tunnel diode TD, and three transistors. The tunnel diode operates monostably. it improves switching time and controls the duration of the output pulse to the load. In the original
application, the load R was a balun connected to a word drive line in a computer memory circuit.
When there is no input pulse, Q_{1} is saturated and Q_{2} and Q_{3} are cut off. A negative input pulse triggers $T D_{\text {, }}$ from a low voltage to a high-voltage state. This produces a negative pulse at point A which drives Q, from saturation to cutoff. This, in turn, drives Q_{2} and Q_{3} to saturation, thus energizing the load R with a negative pulse.

Note that, because all three transistors are normally cut off or saturated, total power dissipation is a minimum.

Current-feedback resistors R_{t} and R_{2} compensate for temperature effects and unit-to-unit variations in performance of Q_{1} and Q_{2}. Bypass capacitors C_{I} and C_{q} boost the ac gain and improve the switching time

Tunnel diode $T D_{t}$, in this simple word-line driver, acts as a one-shot to give fast switching speed and adjustable recovery time.
of the circuit. Time constants er than the minimum cycle $R_{t} C_{t}$ and $R_{z} C_{z}$ are both small- time needed to maintain a con-
stant dc output level that does not shift with variations in repetition rate. Voltage levels at the emitters of Q_{1} and Q_{2}
recover within the minimum cycle time.
Width of the output pulses is easily adjusted over the
range 15 to 22 ns without dis- of inductor L. Recovery time turbing the switching speed. of the tunnel-diode circuit, This is done by merely stretch- which is very short, is detering or compressing the turns mined by R_{3}, R_{4}, L and V_{1}.

Current source improves

immunity of one-shot

One-shot multivibrators with long time constants tend to be susceptible to false triggering from power supply line noise. This problem can be overcome by using a current source to isolate line noise from the timing circuitry.

Transistor Q_{i} is a current source that supplies current to transistor Q_{i} and resistor R. The voltage across R is held at 1.2 volts by diode D_{1} and the $V_{B E}$ drop of Q_{2}. Transistor Q_{0} is a low-pinch-off FET $(-0.3$ volt for pinch off) and is normally conducting ($V_{G s}=$ +0.4 volt) to keep the current source on. When a positive trigger pulse arrives at the input
of $Q_{U}, V_{G S}$ is driven negative to approximately -1.0 volt and the FET is nonconducting. Q_{1} is thus turned off, and this turns off Q_{2}. Resistor R holds the timing line at low potential while Q_{1} is nonconducting. When $V_{g \times}$ of the FET reaches about -0.3 volt due to the discharge of C_{T}, Q, conducts and turns on the current source. The circuit is now back in its steady-state condition, ready for another trigger pulse.

Capacitor C is needed to prevent misfiring from high-frequency noise spikes on the supply line. A value of $0.01{ }_{\mu} \mathrm{F}$ is sufficient for most purposes. Resistor R_{T} should be much larger than R, for proper operation. A minimum value for $\boldsymbol{R}_{\boldsymbol{r}}$ is around 10 k . Because of this limitation, the one-shot is not capable of short-duration pulses (less than $50 \mu \mathrm{~s}$). However, long-duration pulses can be ob-

In this unusual one-shot, transistor Q_{1} and capacitor \dot{C} isolate the timing circuitry from transients on the de line.
tained with relatively small 40 volts or as low as 2 volts. capacitors. A time duration of If V_{g} changes from 40 to 4 1 hour is obtained with $R_{T}=$ $10 \mathrm{M}, C_{T}=330 \mu \mathrm{~F}$.

This one-shot will operate over a wide power-supply voltage range. With the transistors shown, V_{s} may be as high as
volts, the timing period varies only 10 percent. Operating at a supply voltage of 20 volts, the circuit is unaffected by 15 volt noise spikes on the power supply line.

Simplified Schmitt

yields fast rise time

The basic Schmitt trigger seems such a straightforward circuit that one might ask how it could possibly be made any simpler. But for some applications, the component count can be further reduced to give improved results.

All capacitors can be eliminated, leaving a circuit with are less than 12 ns . excellent performance at mini- One practical application for mal cost. The circuit shown in the circuit is sine-to-square Fig. 1 covers a frequency wave conversion. Used in conrange of 10 Hz to over 100 junction with a low-cost audio kHz without adjustment of generator, the circuit provides component values. Waveform a wide-range square-wave sigis excellent at all frequencies, nal source. and both rise and fall times The speed-up capacitors, that

Fig. 1. Speed-up capacitors aren't necessary in this simplified Schmitt trigger that converts sine waves to clean square waves.

ig. 2. Output waveform is excellent over a wide frequency range, as shown in these scope pictures. Vertical scale for both wayeforms is $1 \mathrm{~V} / \mathrm{cm}$. Frequencies are 30 Hz (left) and 100 kHz (right). Horizontal scales are $5 \mathrm{~ms} / \mathrm{cm}$ and $2 \mu \mathrm{~s} / \mathrm{cm} \mathrm{respec}$ tively.

Fig. 3. At 100 kHz , rise and fall times are both less than 12 ns . Vertical scale for these pictures is approximately $0.6 \mathrm{~V} / \mathrm{cm}$ and horizontal scale is $20 \mathrm{~ns} / \mathrm{cm}$. Rise and fall times are each 15 ns gross or 11 ns net (adjusting for scope response).
the circuit gives near-perfect waveforms over a wide range. Figure 2 shows the output square wave at 30 Hz and at 100 kHz . Fig. 3 shows expanded views of the leading and trailing edge of a $100-\mathrm{kHz}$ output signal

One other unusual feature of the circuit shown in Fig. 1 is that the load resistor is connected at the end of the output
cable. This connection gives better results than the conventional approach. The Belden cable is specified because this has lower capacitance than most widely-available flexible cables. Length should not exceed eighteen inches, but this is probably adequate for most test-bench applications.
Lead dress and layout aren't very critical but output-cable length is critical. After the
cable has been cut, the exact ages are changed. Lower input values of R_{L} and R_{3} should be voltages give faster rise times, determined for optimum fall and can be used when lower time. The value of R_{i} is then outputs are acceptable.

The transistors aren't too critical and low-cost types are usually adequate. Recommended types include TI 2N4418, TIS 48 or TIS 49; Fairchild $2 N 4275$ or EN2369A; Motorola MPS2369. These are all Usually, no further adjustment epoxy equivalents of the 2 N is needed unless the input volt- 2369 .
chosen for optimum rise time. This resistor should be a 1 watt noninductive (composition) type.

Finally R_{1} is adjusted to give symmetrical square waves.

Resonant clock-line

The CIRCUIT shown in Fig provides an efficient and eco- in parallel, the total load capacnomical way of delivering fast itance for the clock driver may pulses to large capacitive loads. be as high as 2700 pF . This One useful application for the means that peak currents of circuit is to provide clock up to 350 mA will be needed pulses for cascaded MOS shift to generate a rise time of registers. around 200 ns .
Circuit designers often need Complementary emitter-folto connect a large number of lowers are commonly used as series-resonant circuit together with the load capacitance. MOS shift registers in series output stages for clock-line -to form delay circuits, for drivers. But these circuits can- not work into large capacitive loads, because the transistors
are forced to operate continuously within their linear re-gions-thus the dissipation becomes excessive.

The circuit of Fig. 1, however, actually takes advantage of the load capacitance. Basically, the circuit consists of an inductor and a switch, connected in series with the clock line to form a series-resonant tank circuit. The switch is closed long enough to allow one half-sinusoid to be induced across the load; then it is openud, and another switch is closed, across the load, to terminate the half-sinusoid and prevent further oscillation.

Figure 2 shows the input and output voltage waveforms, and the current waveform. At time T_{1}, an input pulse turns on Q_{1} and turns off Q_{2}. Current flows first down through the load, via the inductor and Q_{r}. Then the current reverses
and flows back through diode D_{i}. At time T_{z}, the trailing edge of input pulse turns off Q_{1} and turns Q_{q} back on; this completes the output pulse and clamps the output to +15 V .

The input pulse width, or the value of the inductor, should be adjusted so that pulse duration is equal to the resonant half-period of the tank circuit.

$$
\begin{equation*}
T=\pi \sqrt{L C} C_{l o a d} \tag{1}
\end{equation*}
$$

Theoretically, the peak voltage across the load is 30 V , i.e., twice the $\mathrm{B}+$ voltage. But circuit losses prevent the output amplitude from achieving the full theoretical value. Typically, the output pulse has an amplitude of 25 V as shown in Fig. 2.

With the component values shown in Fig. 1, and with L $=6.8 \mu \mathrm{H}$, a total of 34256 bit MOS registers have been operated at a clock frequency

Fig. 2. Typical waveforms for the resonant line driver. During the positive half-cycle current flows through Q_{i}, and during the negative half cycle it returns via D_{d}.
of 620 kHz . If the capacitive load is reduced, the clock frequency can be increased. For example, eight 128 -bit registers
have been operated reliably with a clock frequency of 4 MHz . In the latter case a $1-\bar{\mu} \mathrm{H}$ inductor was used.

High speed saturated-mode

one-shot

This circuit offers better performance than currently-available IC one-shots which give minimum pulse widths of around 100 ns . An improved input-trigger circuit allows output pulse widths of ${ }^{\prime}$ less than 30 ns. Pulse width doesn't depend on the duration and amplitude of the trigger pulse.

With the components shown in Fig. 1, the circuit maintains a pulse width of 30 ns ± 5 ns over a temperature range of -55 to $+80^{\circ} \mathrm{C}$. For pulse widths greater than 200 ns, the variation is less than 1 percent over the same temperature range.

The circuit works as follows: Initially Q_{1}, Q_{2}, Q_{4}, and G_{p}, are all "on" and Q_{3} is "off." A negative-going transition at the input then turns off Q_{i}. Since Q_{z} emitter is now opencircuited, Q_{z} turns off. This then turns off Q_{4} and G_{1}, and turns on Q_{3}.

As Q_{3} turns on, C commu-
tates and holds off Q_{ε} while the capacitor discharges through R_{z}. When the voltage at $Q_{\text {, }}$ base reaches the threshold level of the transistor, Q, turns on. The collector voltage of $Q_{\text {: }}$ then turns off Q_{J} and turns on Q_{6} and G_{r}.

Note that Q_{1} turns on again before Q_{2} does. Note also that C_{1} is rapidly charged by an active pull-up TTL input. When Q_{6} turns on, C_{2} is rapidly charged by Q_{4} thus providing fast recovery:

In designing this type of circuit, one should make sure that $R_{1} C_{1}$ is less than $R_{2} C_{2}$. The latter time-constant will then control the pulse width. Diode D_{1} lowers the initial voltage across C, so that Q,'s base-emitter junction won't break down. (For the 2N2784, $B V_{E B O}=4 \mathrm{~V}$.) The diode also compensates for the change in initial voltage across $C_{\text {: }}$ caused by the temperature drift of Q_{2} 's base emitter "on" voltage.

Other one-shot circuits that are triggered by negative-going inputs, have the disadvantage that diodes and an extra capacitor must be included in the base circuit of Q_{g}. With these types of circuits, the

Fig. 1. The push-pull action of Q_{3} and Q_{4}, and the unusual trigger circuit (Q_{1}, R_{1}, C_{1}), allows this one-shot to generate extremely fast pulses.

Fig. 2. Typical input (bottom) and output (top) waveforms for the circuit of Fig. 1. Horizontal scale is $10 \mathrm{~ns} / \mathrm{div}$. and vertical scale is $1 \mathrm{~V} / \mathrm{div}$.
trigger capacitor tends to partially discharge the timing capacitor, giving an output pulse whose width depends on the amplitude and duration of the trigger pulse.

With the arrangement shown here, however, the trigger circuitry (Q_{1}, R_{1} and C_{1}) does not interact with the timing ele-
ments (R_{z} and C_{z}).
Transistors Q_{3} and $Q_{\text {. oper- }}$ ate in push-pull so that the transistor turning on tends to pull the saturated transistor into its linear region. This arrangement minimizes storage time and provides a high-speed TTL-compatible output. Typical input and output waveforms
are shown in Fig. 2.
The relationship between pulse width (in ns) and the value of C_{z} (in pF) is given approximately by the following equation:

$$
\mathrm{C}_{2}=\frac{\text { Pulse width }}{0.7 \mathrm{R}_{2}}
$$

(where R_{2} is expressed in $k \Omega$).
Though described here as a discrete-component circuit, the high-speed one-shot can also be built as a hybrid or monolithic IC. Note, though, that Q_{4} is a pnp transistor, so it wouldn't be economically feasible to include it on the same monolithic chip.

Two-Pulse

Monostable

THE MODIFIED monostable shown in Fig. 1 gives two pulses instead of one. The duration of the pulses and the interval between them are all independently adjustable. Fig. 2 shows the output waveform. The first output pulse is triggered by the input pulse, and T_{1}, T_{2} and T_{3} are adjustable. The circuit shown is much simpler than the conventional approach, which would require three one-shots to generate the same output.

Initially Q_{1}, Q_{3} and Q_{4} are "on" and Q, is "off." Capacitor

Fig. 1. Modified monostable gives two pulses for each input trigger pulse.
C_{1} is fully charged and C_{3} is discharged. Transistor $Q_{\text {, }}$ clamps the collector of Q_{z} via D_{1}.

When the input pulse trig-: gers the monostable, Q_{2} turns "on" thus turning $Q_{,}$"off." But
until C_{3} charges, both inputs to D_{1} and D_{z} are below the threshold of Q_{3} set by the divider R_{t} and R_{2}. Thus Q_{3} and Q, turn "off."

Capacitor C_{3} now charges until it is clamped by Q_{3}, turning Q, and Q_{4} "on." When the monostable "times out" it regenerates to its initial state with Q_{i} "on" and Q_{z} "off." This discharges C, and turns Q, and Q_{4} "off" again.

Capacitor C_{1} now recòvers through R_{s} until the threshold of Q_{3} is exceeded. This again turns on Q_{3} and Q_{6},
clamping the collector of Q_{2}. Thus two pulses are generated from a single one-shot. Components R_{6} and C_{1} determine T_{3}, recovery of C_{1} through R_{5} determines T_{2}, and the charge time of C_{3} through R_{3} determines T_{2}. Equations 1, 2 and 3 give the values of. T_{1}, T_{z} and T_{s} respectively.

Diodes D_{1} and D_{z} isolate the collectors of Q_{i} and Q_{2}. $\mathrm{Re}-$ sistor R_{6} provides a reverse current to speed the turnoff of Q_{4}. Diode D_{4} provides a protective clamp to limit the reverse bias applied to Q_{4}.

Fig. 2. Each of the durations T_{1}, T_{z} and T_{s} is adjustable. Typical times are shown, using the component values of Fig. 1.

Extra transistor provides noise immunity for monostable multi-vibrator

This circuit is a conventional one-shot multivibrator with some added components. These components (Q_{2}, R_{2} and R_{4}) eliminate one of the major disadvantages of the conventional circuit.

First, imagine that C_{z} and $R_{\overline{5}}$ are connected directly to the base of Q_{1} in the usual way. Then, since Q_{1} is normally saturated, negative-going pulses are required for triggering. They are usually applied to Q_{t} base. The circuit is then very susceptible to triggering by negative-going pulses which may be coupled to $Q_{,}$emitter either from the $V_{c c}$ line or•directly from the output.

But, with the improved cir-
cuit, Q_{2} emitter is operated above ground to give noise immunity at Q_{3} emitter. The steady gate-emitter voltage of Q_{2} is that needed to saturate Q_{1}, plus the desired noise immunity. With the component values shown for R_{2}, R_{3} and R_{4}, noise immunity at Q_{3} emitter is. 0.5 V . The corresponding trigger voltage, for the conventional circuit, at the same point is about 0.01 V . Though the modification raises the required trigger level at Q_{3} emitter, it causes no change in the input-trigger sensitivity.

Addition of Q_{2} gives an added bonus. Because of the current gain of Q_{2}, the maximum value of R_{5}, to allow complete

Addition of Q_{2}, R_{2} and R_{\leq}to a conventional monostable multivibrator raises the noise immunity without affecting input sensitivity.
saturation of Q_{1}, is much tor. Pulse width is approximalarger. Thus the output-pulse tely equal to $0.7 \times R_{5} \times C_{2}$. width can be much greater, With the values shown, pulse with a given practical capaci- width is about 3 seconds.

Zero (quiescent)

power

 one-shotThe one-shot in Fig. la, unlike the conventional text-book circuit, draws no standby current in the normal or off mode. This zero-power one-shot uses the holding-current technique for turning off an SCR.

When either a dc level or an ac-coupled pulse turns on SCR, $C R_{i}$, an exponentially decaying current l_{B} flows. This sustains $\beta I_{B}=I_{\sigma}$ collector
current which is designed to be greater than the SCR holding current. As I_{B} becomes smaller than the SCR holding current, the regenerative action cannot be sustained and the SCR turns off. Resister $\boldsymbol{R}_{\boldsymbol{c}}$ limits I_{1} to less than the SCR holding current. R_{s}, R_{4} are leakage-protection resistors. Ca pacitor C_{2} protects the SCR gate from noise spikes.

The on time of the one-shot is a function of the β of Q_{i}, and the holding current of the SCR, $C R_{i}$. Table 1 shows typical on time versus $\tau,\left(R_{1} C_{1}\right)$.

Advantages of this one shot are:

1) Addition of a resistor and

Zero standby current one-shot in signal (a) or power (b) configurations.

Table 1. τ vs. measured on time

\boldsymbol{T}	R_{l}	C	Measured On Time
100 ms	10 k	10 uF	270 ms
10 ms	10 k	1 uF	27 ms
1 ms	10 k	.1 uF	2.7 ms
100 ms	5 k	20 uF	370 ms
10 ms	5 k	2 uF	.37 ms
1 ms	5 k	.2 uF	3.7 ms
100 ms	$1 . \mathrm{k}$	100 uF	550 ms
10 ms	1 k	10 uF	55 ms
1 ms	1 k	1 uF	5.5 ms
1			

a diode will provide a very fast rising edge at point A in addition to the fast falling edge at point B for signal purposes (see Fig. 1b).
2) Longer on time is possible because the on time is proportional to n where n can be designed greater than 2 instead of the conventional 0.69 .
3) $+V_{c c}$ is not a limitation in this circuit because of $V_{B E}$ reverse breakdown.
4) There is an inherent lock-
out feature. Trigger pulses can occur and not affect the on time of the one shot because of the latched-on SCR.
5) The circuit can be used as signal one shot or power one shot by driving a load off the collector of Q, as in Fig. 1 b . If the load on time is required to be T seconds then the one-shot time constant should be $3 T$ or $4 T$ so that Q_{1} can be assured of saturation for the first time constant.

IC one-shot needs no external

(such as hex inverters) are ideal for this approach. Both RTL and DTL circuits are suitable; the circuit of Fig. 1 uses DTL. The number of inverters cascaded in the path from the input to the flip-flop's direct-set terminal must be even for DTL and odd for RTL.

In Fig. 1, the steering inputs to the clocked flip-flop (which can be J-K or R-S) are so arranged that the flip-flop will assume the zero state $t_{p+, s}$ seconds after a negative clock transition. With the DTL flipflop shown, this time is 15 to 55 ns for the negative transi-

Fig. 1. This simple one-shot uses the propagation delay of cascaded inverters, instead of an RC network, to define its recovery time.
erated from logic-level transitions), cascaded inverters can be used instead of resistors and capacitors. The advantage of the latter approach is that it employs ICs instead of discrete components. Thus it simplifies packaging.

Economical multi-gate ICs
tion at \bar{Q} output and 25 to 75 ns for the positive transition at the Q output.

After a negative clock transition, the direct set terminal S_{1} of the flip-flop stays high for $t_{p d i}$ seconds. This period is the overall propagation delay through n cascaded inver-
ters. At the end of the delay, er stages would be required to the voltage at S_{D} goes low, produce a pulse from both forcing the flip-flop into the outputs of the flip-flop under "I" state where it will remain worst-case conditions. In prac-

Fig. 2. Typical output waveforms from the \bar{Q} terminal (top) and the Q terminal (bottom). Vertical scale is $2 \mathrm{~V} / \mathrm{div}$ and horizontal scale is $100 \mathrm{~ns} /$ div.

until the next negative clock tice, however, $50-100 \mathrm{~ns}$ pulses transition. at repetition rates from zero to
Obviously one should use 9 MHz have been obtained enough inverters to ensure that with as few as two inverters. the total delay $t_{p \prime i}$ is greater Figure 2 shows typical outthan $t_{\text {pif }}$, the delay through put waveforms for the circuit the flip-flop. For example, in the DTL circuit shown, where inverter propagation delay is between 25 and 80 ns per stage, a minimum of six invert- flop.

An inexpensive

frequency doubler

The standard transition detector (Fig. 1), which detects pulse transitions in only one direction, can be made into a frequency doubler. This change
can be instrumented by changing the NAND gate at the output of Fig. 1 to an exclusive OR gate (Fig. 2). This modification allows the new circuit to detect pulse transitions in either direction. The width of the output pulse is determined by the delay in the inverters. If longer pulse widths are desired, a feedback capacitor (shown by the dotted lines in

Fig. 1. This is the circuit of a transition detector using IC logic gates.

Fig. 2. Changing the output NAND to an exclusive OR converts the circuit to a frequency doubler.

Fig. 3. The circuit of Fig. 2 can be instrumented in a single quad-exclusive OR IC.

Fig. 2) may be added. The availability of quad-exclusive OR gates enables the designer to implement the frequency
doubler in one package as shown in Fig. 3. These gates are available in both TTL and DTL.

Single NAND package improves one-shot

Fig. 1. The typical NAND one-shot suffers the likelihood of output instability and oscillation.

Fig. 2. Improved NAND one-shot provides cleaner, more stable output.
With these gates, the output to $T=350 \mathrm{C}$. Timing capacitors ranging width, T, equals $1.3 R C$ and, Input pulse widths longer from 100 pF to $100 \mu \mathrm{~F}$ have with $R=270 \Omega$, this simplifies than 30 ns can initiate an out- been used successfully.

Versatile one-shot

This circuit uses standard dig-ital-IC voltage levels as inputs and can be inhibited or enabled at any time without causing an output. Duty cycle approaches 98 percent at trigger rates of 500 kHz .

Comparable IC monostables are limited to 50 percent duty cycle and are noise sensitive
during long pulse times. Also, IC monostables may trigger on an inhibit command unless the inhibit occurs during the oneshot period.

The input gate (Q_{3} and Q_{4}) is enabled with a logical 1 at point A and inhibited with a 0 at the same point. If the inhibiting function is not needed, the emitter of Q_{3} should be grounded and Q_{4} omitted. A logical 1 at point B starts a timing cycle. Q_{1} is a 2 N3819 JFET while all other transistors are 2 N 3704 s .

Versatile one-shot mono may be enabled or inhibited at any time without a false output.

Simple one shot has complementary outputs

The circuit shown in Fig. 1 put of the UJT drives the outis a one-shot multi that is capa- put of G_{2} to binary 0 . Fig. 2 ble of being pulse-width modu- is a timing diagram of circuit lated. The circuit is actuated operation.
by a strobe input to G_{1} which $\quad Q_{2}$ is a linear current source drives the output of G, to to charge C_{1}. Since Q_{L} is norbinary 0 . This level turns Q_{1} mally on, the current of Q_{2} is off and allows the voltage bypassed to ground thru Q_{1}. across C_{1} to build up accord- V_{C} determines the amount of ing to $V_{C_{1}}=\mathrm{it} / C_{1}$. At a speci- current delivered to C_{1}. Linefied time, unijunction Q_{3} will arity of 0.1% has been achievfire discharging C_{1}. The out- ed with this circuit. Replacing

Fig. 1. This one shot is capable of being pulse-width modulated by V_{c}. It is capable of high duty cycles and can supply complementary outputs.
the current source with an opamp single-ended current pump increases the linearity to 0.02%.

The duty cycle (not repetition rate) is determined by the speed of the logic used and the saturation storage time of Q_{1}. Q, may be replaced by an hex
inverter with an uncommitted collector (SN7405N-J) for increased speed. The control voltage V_{r}, determines the amount of current to C_{1} and therefore controls the output pulse width. The scale factor of supply voltage V_{C} is controlled by resistors R_{3}, and R_{2}.

Fig. 2. Timing diagram of circuit operation. Note that the control voltage is bipolar.

Resettable one-shot with high noise

It's often necessary to vary the firing time of a one-shot from a remote point. In conventional one-shot circuits, if an external timing resistor is more than a few inches from the card rack, random noise can fire the circuit. In the circuit shown here, noise won't fire the one-shot, even with the timing resistor several feet from the logic chassis. Noise immunity is equal to that of a flip-flop.

If one wants to reset this one-shot during its firing cycle, it is merely necessary
to apply a logic 0 to the reset input.

If we assume the flip-flop, made of two NAND gates, is in its reset state, Q is at logic 0 and \bar{Q} is at 1 . The 1 from \bar{Q} holds Q_{1} on, which holds R_{i}, R_{z} and C at ground, thus preventing Q_{2} from firing. When a 0 pulse is applied to the trigger input, the flip-flop changes state and \bar{Q} goes to 0 and Q changes to a 1 . With \bar{Q} at a $0, Q_{1}$ is turned off.
C charges through R, and R_{2}. When C charges to a voltage set by the intrinsic standoff ratio of the unijunction transistor, Q_{2}, it fires. A voltage is developed across R_{s}, turning Q_{3} on for approximately $500 \mu \mathrm{~s}$. This brings the Q output of NAND 1 to
ground, thus resetting the flipflop. The Q returns to a 0 and \bar{Q} returns to a 1 . The length puted from $T=C\left(R_{j}+\right.$ R_{q}).

The timing resistor for this resettable one-shot can be several feet away from the circult without allowing noise to fire the circuit.

Ultralow-duty-cycle

pulser

It's often necessary to generate a fast-rise pulse (or a train of pulses) whose width is very short relative to the overall period or rep rate. The circuit shown provides a period-topulse ratio of 30,000 to 1 .
The timing circuits R_{i}, C_{t} and R_{2}, R_{s}, C_{2}, are those of a standard multivibrator. Resistors R_{4}, R_{5}, R_{6}, and R_{γ} limit the current during the switching period and must be divided as shown for controlling the base drive of Q_{1} and $Q_{s} . R_{g}$, C_{3} and R_{11}, C_{4} are speed-up circuits to enhance switching and provide drive for the heavy currents through Q_{s} and Q_{1} during the switching interval. Q_{4} is required in a Darlington arrangement with Q_{5} only because of the high resistance of R_{2}. With low-leakage transistors, a third transistor may be added and R_{2} increased to 10 megohms to provide period-to-pulse width ratios as high as $100,000: 1$.

During operation, Q_{1} and Q_{2} are simultaneously in either the on or off state, with Q_{s}, Q_{4} and Q_{5} all in the state op-
posite to that of Q_{t} and Q_{g}. Thus as Q_{4} and Q_{5} start to turn on, Q_{z} is turned off and $Q_{\text {, }}$ is turned on, turning Q_{1} off. It is not necessary to have D_{6}, R_{11} and C_{4} in the circuit if an output is required only at A. If $V_{B B}$ is equal to or less than the transistor baseemitter breakdown voltage, all diodes can be eliminated.
This circuit can be used as
an astable, monostable, or bistable multivibrator by making R_{1} a potentiometer. This also allows variation of pulse width. For the circuit shown, the pulse width is 50 microseconds, with a rise time of 200 nanoseconds, a fall time of 20 nanoseconds and periods ranging from 500 microseconds to 1.5 seconds. The pulse width and period can be scaled
up or down while still realizing ratios of 10,000 or more.
The versatility of the circuit allows extremely low impedance drive for the complementary outputs at points A and B, while maintaining very low power consumption. If Darlington connections are made at all four corners of the circuit, the current required can be less than 1 mA .

This circuit generates fast-rise pulses with widths very short relative to periods. All diodes are 1 N 4148.

Schmitt trigger uses two

logic gates

Two ttl inverters and a few components are used in the figure to form a Schmitt trigger. The gates may be any type of TTL inverter. They are connected in series with a smallvalue feedback resistor in the common power-supply ground lead.

The cascade connection of the gates causes them to always be in opposing logical states.

This causes a constant voltage drop across the $22-\Omega$ resistor. This drop results in a constant offset voltage. The addition of a second resistor at the output terminal corrects this situation. The extra current drawn through the output resistor, when the second gate is in the zero state, causes an increase in the feedback voltage. This enhances the switching speed of the first gate.

With the values shown, the circuit has a positive-going threshold of 2.4 V and a nega-tive-going threshold of 2.0 V . Threshold values and hysteresis can be changed slightly by varying the external resistors.

The normal load capacitance

This Schmitt trigger is made from two TTL gates.
at the output results in ac output capacitance, it may be feedback. If the actual applica- necessary to add a 100 pF tion does not provide sufficient from output to ground.

Optically driven
 pulse

 stretcherA light-emitting diode and a phototransistor can be used to drive a pulse stretcher, as in Fig. 1. In this circuit, Q_{4} is the normally-on transistor in a monostable multi.
When an input pulse drives the LED, phototransistor Q_{2}, which is photon coupled to the LED, causes Q_{4} to turn off and Q_{3} to turn on.

The base of Q; is held to
$V_{C E(S A T)}$ of the phototransistor until the input pulse drops to zero. At this time C_{t} begins to change toward +10 V . When the base of Q_{4} reaches about 0.6 V , the circuit resets and Q_{4} comes on while Q_{3} goes off. The delay, or "stretch" time, after the trailing edge of the input pulse is a function of the $R_{5} C_{1}$ time constant, the supply voltage, the phototransistor saturation voltage and the turn-on voltage of Q_{4}.
For the values shown, a $3-\mu \mathrm{s}$ input pulse creates a 55 -
ms output pulse with an ampli- A monostable multi serves as a pulse stretcher, driven by a tude from $V_{(E f(S, T)}$ to $V_{r, r}$. phototransistor which is triggered by light coupled from a LED.

A monostable multi serves as a pulse stretcher, driven by a
phototransistor which is triggered by light coupled from a LED.

Wide-range variable pulse-width

monostable

A slight change in the external circuitry of the Motorola MC851P monostable permits wide-range continuous operation. The unmodified MC851P gives complementary output pulses that can be adjusted by the addition of external capacitors. The use of the recommended range of external variable resistor permits a

High-speed, one-IC

one-shot

Using a single, DTL or TTL quad 2 -input gate, the circuit in Fig. 1 generates a shortduration pulse that can be extremely useful as a strohe or
reset signal. It's a modified set-reset latch that generates a pulse that lasts slightly longer than three propagation times, typically 40 to 70 ns .
A single pulse is generated each time a command is given. regardless of its duration. The width of the output pulse can be extended up to 500 ns by adding a capacitor, C_{x}, at terminal Q.
lig. 1. (Top) Ant input command of any duration generates a single output pulse.
Fig. 2. Timing diagram shows pulse widths, which depend on propagation delays of the individual gates. Widths can be extended by adding a capacitor. Timing is expressed in propagation times.

Transistor Go-No Go Voltage Comparator

Many applications arise where an unknown voltage must be compared to a standard voltage within certain preset voltage limits. The accompaning schematic shows a go-no go transistorized voltage comparator that will perform this function.
This circuit contains few components and is relatively inexpensive to build. The entire circuit contains only transistors, two potentiometers, three relays, three indicator lamps, a triple-pole doublethrow switch and a battery.
Each transistor is forward biased so that 1 ma of base-to-emitter current will drive the transistor into saturation, closing the relay in the collector circuit to light an indicator light.
Potentiometers R_{1} and R_{2} are adjusted to allow 1 ma of base-to-emitter current to flow in both transistors at the preselected high and low limits that the unknown voltage may differ from the standard voltage.
The "O.K." indicator lamp is wired to light when switch S_{1} is closed and less than 1 ma of base-toemitter current flows in either transistor. When switch S_{1} is closed one of the three indicator lamps should always light thus indicating that the battery is in good condition.
In the circuit that was constructed the voltage comparator was found to be sensitive enough to detect as low as 0.5 v difference between the stand-
ard and unknown voltage. Better sensitivity can be obtained if a germanium npn transistor with a low base-to-emitter voltage drop is used instead of the silicon 2N699 transistor.

Go-no go voltage comparator circuit. Transistors muet be mounted on heat sink.

A Phase Discriminator

The circuit illustrated in Fig. 1 will deliver half-wave pulses to only one of the two loads as determined by in-phase or 180 -degree phase difference between the input signal and the reference source. This circuit is useful where different devices, such as heating and cooling equipment, are to be actuated upon a change of signal phase. The components are not critical, being limited only by their maximum ratings. The particular choices in Fig. 1 were made purely on the basis of availability. The waveforms are shown in Fig. 2, while the rms voltages are given in Fig. 1.

For in-phase signals, the voltage at the collector is clamped to ground for the positive signal halfcycle, and no signal appears at either load. During
the negative half-cycle the emitter-base junction of the transistor is reverse biased, unclamping the collector. Thus the negative signal half-cycle, passed by D_{2}, appears across $R_{L 2}$.
For out-of-phase signals, both the collector and emitter junctions are forward biased during the negative half-cycle of the signal, thus clamping collector to ground. During the positive half-cycle of the signal the reverse biased emitter junction allows the signal to remain un-clamped. 'Diode D_{1} conducts and the positive half-cycle appears across $R_{L 1}$.

FiG. i-Voltage appears across either of the two load resistors depending upon poiarity of input signal.

SIGNAL	\curvearrowleft	\backsim
REFERENCE	\curvearrowleft	\curvearrowleft
COLLECTOR	-	$-\cap$
$R_{\text {LI }}$	-	$-\cap$
$R_{\text {L2 }}$	-	-

FIG. 2-Waveforms at various points of phase dis-. criminator circuit.

The capacitor has been added to smooth out the small transient spikes during the switching periods.

Pulse Amplitude Evaluator

The circuit shown in Fig. 1 was devised to locate pulses falling within a given range of amplitudes, rejecting all others falling above or below the preset limits of acceptance. The evaluation may be performed at any required level, with the upper and lower limits of acceptance variable to the desired range.

Unless the input is derived from a dc amplifier, it is necessary to restore the base line to a fixed reference, in this case, +12 v . A common-base transistor configuration, Q_{1}, is employed for this purpose rather than the more conventional junc-
tion-diode clamp. The impedance looking into the emitter of Q_{1} will be less than the forward resistance of a diode by a factor of approximately ($1-\alpha$), allowing more complete clamping action and minimum base-line drift with large signal, high duty-ratio pulse trains.

The signal is then fed to the unity-gain phase splitter Q_{2}, resulting in equal amplitude, opposite polarity pulses at the collector and emitter. Diode D_{1} at the collector is reverse biased by the voltage divider R_{4}, R_{6}, and the input impedance of Q_{3}. In this case the latter is quite small compared to R_{6},

FIG. I-Circuit of pulse amplitude evaluator.
(less than 150 ohms), and may be neglected. The value of R_{4} may be calculated by:

$$
R_{4}=R_{6}\left(\frac{V_{e}}{V_{1}-V_{e}}\right)
$$

Where: $V_{e}=$ amplitude at the midpoint of the acceptance range.
Thus, the cathode of D_{1} is clamped at V_{e} until the input rises beyond V_{e}, when D_{1} becomes for-

ward biased, and the cathode is allowed to follow the input signal.
Conversely, D_{2} is forward biased by the voltage divider R_{5}, R_{7}, and the input impedance of Q_{3}, which may again be ignored. Resistor R_{5} may be calculated by:

$$
R_{5}=R_{7}\left(\frac{V_{e}}{V_{2}-V_{e}}\right)
$$

Unlike D_{1}, the voltage at the cathode of D_{2} will
follow the input signal until the threshold point V_{e} is reached, at which time D_{2} is reverse biased and the cathode is held at V_{e} as the input continues to increase.

The resulting pulses at R_{6} and R_{7} are then added algebraically and amplified in $\cdot Q_{3}$. The transfer characteristic of this portion of the circuit is shown in Fig. 2. In this application, V_{e} was set to 3 v .

From this point the pulses are fed to emitter follower Q_{4} and Schmitt trigger $Q_{5}-Q_{6}$ where acceptance levels are set by adjusting R_{13}. Thus, the trigger circuit will fire only when the pulses appearing at the input are within the desired latitude of peak amplitude.

If it is desired to retain the original amplitude information, the Schmitt output can be used to enable an and gate as shown in Fig. 3.

FIG. 3-Technique for retaining original pulse information using pulse evaluator to enable an AND gate.

Frequency Comparator Detects Coincidence Within 10-6

This circuir is designed to detect frequency differences, to an accuracy of one part per million, between two separately derived signals of the same frequency. The frequencies that can be compared range from $60 \mathrm{kc}: 60 \mathrm{kc}$ to $1.2 \mathrm{mc}: 1.2 \mathrm{mc}$. This is by no means a limiting range, but merely represents the range tested.
The frequency difference can be measured in any one of two ways, depending on equipment available. The first method is indicated by the block diagram of Fig. 1A where the time interval between one cycle of the difference frequency is counted. The second method is indicated by the block diagram of Fig. 1B, where the meter will deflect each time the difference frequency begins a cycle. A stop watch can be used to measure the time between deflections, the time being $=$ period of the difference frequency.
The circuit operation for the first method does not require any circuitry to the right of dashed line a.a in Fig. 2. Its operation is as follows: Q_{1} is used to modulate f_{2} by f_{1} to obtain a beat note between f_{1} and f_{2}. The amplitude of $f_{1}=f_{2}=0.75 \mathrm{v}$ rms. Beat note f_{d} is detected at point c by the $L C$ network which is a low pass 1 -ke filter.
Q_{2} and Q_{3} provide dc amplification for f_{d}. During the positive half cycle of $f_{d^{\prime}}, Q_{2}$ is biased so that it will be saturated and Q_{3} is biased so that it will

FIG. I-Two arrangements for measuring frequency difference to one part per million.

FIG. 2-Circuit to left of dashed line is used for method shown in Fig. IA, complete circuit is needed for second method, in Fig. IB. Collector resistor for $\boldsymbol{Q}_{\mathbf{1}}$ is 2.5 K .
be held off; thus, point d is held at B-. During the negative half cycle of f_{d}, Q_{2} will be held off and Q_{3} will then saturate driving point d to ground. Therefore, a square wave of peak-peak voltage $=$ B - is developed across point d to ground.

The developed square wave is then fed into the common input of the start and stop inputs of a counter having a Time Interval function. The Start Input can be set to trigger when point d goes to B-, and the Stop Input can be triggered at the same point of the cycle one period later.

To use the second method for measuring f_{d}, the circuitry to the right of dashed line a: a is also required. The object of the rest of this circuit is to provide square pulses of a frequency $=f_{d}$ and of such a width as to be able to be properly integrated by a dc voltmeter. The width must be adjusted so that its time constant is somewhat larger than the voltmeter time constant.
To obtain the desired pulse, the square wave across point d is differentiated by the series $R C$ network. The resulting spikes are rectified by the germanium diode, and the remaining positive spikes turn Q_{4} off; Q_{4} is a normally saturated transistor. When Q_{4} is shut off, Q_{5} will then saturate due to the change in the collector voltage of Q_{4}, Q_{5} will remain on until Q_{4} is turned back on, an event determined by the time required for C to discharge. C will discharge through R until the base of Q_{4} goes slightly negative. As the base of Q_{4} goes negative, Q_{4} will again saturate and Q_{5} will shut off. Thus a pulse of a height $=B$ - and a width $=$ $R_{1} C$ is developed and can be used to deflect a dc voltmeter.

A supply of 20 volts, and five pnp switching transistors were used during the circuit test.

Phase-Sensitive Demodulator with Pulse Reference

Phase-SEnsitive demodulators are often very important in ac servos for stabilization, as they allow the use of dc phase-shift networks. This application is shown in the block diagram of Fig. 1. The ac from the preamplifier is applied to the phasesensitive demodulator. The output is phase-shifted by the proper amount in a lead network, and then

FIG. I-Servo using demodulator and lead network stabilization.
modulated with the ac reference for application to an ac servo motor.
The demodulator described in this article uses a pulse reference, rather than a sine wave or square wave. The use of a pulse reference allows conduction only at the peaks of the carrier signal. The output is applied to a capacitor which holds its voltage in between pulses. This circuit has an inherently good discrimination against any quadrature component of the signal. The ripple voltage for a constant amplitude input is practically zero, while in conventional demodulators there is a ripple voltage under these conditions. It can be shown that the ripple amplitude for the pulsed demodulator with a sine wave input is $\left(2 f_{s} / f_{c}\right) \cos \omega_{s} t$, while the ripple amplitude of a conventional demodulator with a shunt RC load is $\left(2 f_{s} / f_{c}\right) \cos \omega_{s} t+\left(1 / \pi f_{c} R C\right) \sin$ $\omega_{s} t$. This second term could theoretically be reduced

FIG 2-Circuit of pulse demodulator with pulse reference.
by making RC large, but in practice it is difficult to reduce.
The time constant of the pulsed demodulator is 1/ $\left(2 f_{c}\right)$ since no output is obtained until the peak of the carrier is reached. However, the time constant of the conventional demodulator is essentially the same. A disadvantage of this circuit is that it has a high output impedance, and therefore must be fed into a circuit with a high input impedance, such as an emitter follower.

Figure 2 shows the pulse reference and demodulator circuit. A sinusoidal reference voltage of about 100 volts rms is applied at the 100 K resistor. The two IR MZ 5.6 zener diodes give a square wave of 12 volts peak-to-peak. This is applied to a differentiating circuit, giving a pulse output as shown on the diagram. The time constant of this circuit is $0.0015 \times 10^{4}=15$ micraseconds. For a $400-\mathrm{cps}$ carrier, the period is 2500 microseconds, and therefore the differentiating circuit will produce a good pulse for this frequency and for frequencies as high as 6000 cps . An emitter follower is used to allow the differentiating circuit to feed into a high impedance.

A full-wave demodulator is used, and therefore it is necessary to have a pulse for each half-cycle of the carrier frequency. Thus, the output of the emitter followed is sapplied to a transformer giving a center-tapped high impedance output. This is applied to transistors which are negatively biased at the emitter so that only sharp positive pulses will appear at the output.

The collectors of these transistors are connected to transformers. The secondary of each transformer has a 1 N 91 diode across it to short out positive pulses that would normally appear there. A 1.2 K resistor across the primary of each transformer reduces nonlinear loading effects due to the diode. The output of the transformer is applied through a large capacitor to the bases of the demodulator transistors to give a positive voltage during the time when there is no pulse. This assures that the transistors will not conduct during this time, and will only conduct when a pulse is applied.

The input signal is applied to a transformer with a center-tapped secondary. The center tap is grounded, and each end is connected to two transistors with collectors tied together for each pair. When a negative pulse is applied to the transistor base, the pair conduct whatever voltage is on the transformer at the time.
For the arrangement shown, the pulses are such that one pair of transistors conducts during the positive half cycle of the carrier, and the other pair conducts during the negative half cycle, sending current in the same direction into the $1_{\mu \mathrm{f}}$ capacitor. Full-wave demodulation reduces the magnitude of high frequency in the output, and in addition, this high frequency is double the carrier frequency making the filtering problem much easier.

Comparator Uses Bilateral Transistor

ALTHOUGH bilateral transistors have been available for sometime, very little has appeared in the literature concerning unique uses for these devices.

A comparator circuit has been developed which depends upon bilateral transistor action as the basis of its operation. The circuit shown in Fig. 1 can be used as a voltage comparator by connecting one input to some reference level and allowing the second input to vary. Assume that input B is referenced to -5 volts. Its emitter to base junction is, therefore, back biased. However, diode D_{2} will conduct causing base current to flow in Q_{1}, holding Q_{2} on. Since Q_{1} is bilateral, a similar condition prevails if the inputs are reversed. When the voltage levels at inputs A and B become equal (-5 volts), there is no base current flowing in Q_{1}. This causes Q_{2} to cut off and the output rises to $+V_{c c}$.

The circuit is also capable of functioning as a digi-

FIG. I - For computer use, digital comparator circuit gives pulse output when there is a difference between two numbers.

FIG. 2-Output waveforms when two numbers are equal or unequal.
tal comparator. In a digital computer, it is frequently necessary to ascertain when two numbers become. equal. The circuit is capable of comparing the two numbers in the following manner: it gives a pulse
output when there is a difference between the two numbers and a dc level ($+V_{c c}$) when and only when the two numbers become equal. Figure 2 shows a typical system application and the output waveforms for the conditions when the two numbers are equal and unequal.

Other possible uses for bilateral transistors include multiplexing, intercom and two-way telephone communication systems.

Differential Voltage Comparator

This differential voltage comparator was developed to provide a "go-no-go" indication when two input signals are compared. If the two signals are within a preset differential voltage, the relay is not actuated and a "go" indication is provided. When the two signals differ by more than a preset differential voltage, the relay is actuated and a "no-go" indication is provided. The circuit operates if the signal on terminal 1 is either positive or negative with respect to terminal 2. A balance control is provided to adjust the circuit balance through a relay actuated with an equal positive and negative differential voltage. The sensitivity control

Fig. 1 Voltage comparator.
adjusts the differential voltage over a range of 50 to 150 mv . The input voltage to terminals 1 and 2 may vary over a range of -6 to 6 v . Transistor Q_{3} serves as a constant current source for transistors Q_{1} and Q_{2} and simultaneously provides a high impedance between their common emitters and the power supply. In this manner a high common mode rejuection is provided which keeps the differential voltage sensitivity from varying more than 1 per cent over an input signal range of -6 to +6 v . The thermal resistors consist - of a thermistor in parallel with a fixed 1.5 K resistor and provides temperature compensation for the variation in the base-to-emitter voltage of Q_{4} and Q_{5}. The circuit exhibits a hysteresis of not more than one to two per cent.

To explain the operation of the circuit, assume terminal 2 is at zero volts. If terminal 1 is also at zero volts, the current will be the same in Q_{1} and Q_{2}, therefore, the voltage at the bases and emitters of Q_{4} and Q_{5} will be the same an dthey will be cut off. Consequently, Q_{2} will also be cut off and the relay will not be actuated.

If the voltage on terminal 1 is now made more positive by 100 mv , Q_{1} will draw more current than Q_{2} thus the emitter of Q_{5} will be positive with respect to its base and will conduct. The collector current of Q_{5} causes Q_{6} to conduct and actuates the relay. The conduction point of Q_{5} is critical when the base-to-emitter voltage is about 0.7 v . The operation is similar if terminal 1 is made negative. Under this condition Q_{4} conducts instead of Q_{5}.

Sensitivity is quite independent of power supply votages and will work from 20 to 24 v without readjustment: The circuit was designed to operate over a temperature range of 0 to 50 C .

This circuit was developed for and used in a test console for comparing telemetered data received from a MIDAS satellite vehicle. When the received data was not within 100 mv of the data transmitted, a "no-go" indicator would be actuated.

Variable Schmitt, Amplitude Comparator

The circuit shown can be used either as a Schmitt trigger with a variable trigger voltage (where V_{B} determines the trigger voltage), or as an amplitude comparator (where the amplitude of V_{A} is compared with the amplitude of V_{B}). These functions are obtained by using a minimum-hysteresis Schmitt trigger ${ }^{1}$ and applying the voltage V_{B} to the base of Q_{2} through R_{B}.

Features of the circuit are:
\square A variable trigger voltage is readily obtained without changing the load on the input signal.
\square A regenerative comparator is obtained having negligible hysteresis.

The circuit is simple and inexpensive, and its operation is readily predictable.
\square The circuit readily provides high speed operation.

Formulas for the resistor values can be found in the ref-
erence. The parameters used were:
$V_{T}=7.0 \mathrm{~V}, V_{c}=7.0 \mathrm{~V}$, $V_{s 1}=24 \mathrm{~V} . V_{s 2}=0 \mathrm{~V}, R_{E}$ $=1 \mathrm{~K}$ and $R_{B} \stackrel{2}{=} \mathrm{K}$.

The resistor values shown are within 2 percent of the calculated values; 1-percent resistor tolerance was used throughout.

The voltage comparator formula giving the trigger voltage at point $A\left(V_{T A}\right)$ as a function of V_{B} is linear:
$V_{T A}=V_{T}+\frac{R_{E}}{R_{E}+R_{X}}$.
$\frac{R_{T}}{R_{T}+R_{B}} V_{B}$
where V_{T} is the trigger voltage with $V_{B}=0$ and R_{T} is the parallel combination of ($R_{L}+$ $\left.R_{i_{2}}\right)$ and $\left[\left(\beta_{2}+1\right)\left(R_{E}+\right.\right.$ R_{X})]. This reduces to:
$V_{T A}=7.000+0.116 V_{B}$ for the values shown. The curve shows the experimental plot of $V_{T A}$ vs. V_{B} to be in excellent agreement with that predicted by the formula. The hysteresis for the circuit shown was 30 mV .

Reference:

1. William E. Zrubek, "Minimum-Predictable-Hysteresis Schmitt Trigger." EEE. Dec. 1963, pp. 40-43.

Variable Schmitt trigger, amplitude comparator in which \mathbf{V}_{B} controls trigger level or is compared with \mathbf{V}_{TA}. Comparison of calculated and experimental triggering points (below).

Frequency Comparator Uses ICs

The circuit shown in in Fig. 1 can be used as a control circuit for VCOs, as a go-no-go frequency comparator, or as a
frequency discriminator. There are two inputs to the circuit, a standard frequency and an unknown frequency (labeled
$T A C H$ in the diagram). If the unknown frequency is less than the standard, then the output dc level is low. If the un-
known frequency is higher than the reference frequency, then the output dc level is high.

When the two input fre-
quencies are identical, the circuit behaves as a linear phase discriminator. Unlike frequency discriminators that use tuned circuits, this digital discriminator has no humps in its characteristic curve.

The circuit shown in Fig. 1 was originally part of a larger circuit which included oscillators and VCOs. The dual NOR gate $I C_{6}$ is not really a part of the frequency comparator circuit, so for the purpose of this analysis it can be ignored. In the original application, $I C_{6}$ gave the correct levels, rise time and fanout for driving the comparator circuit.

Assume that the inputs are at points S and T in the diagram. Assume also that the first incoming pulse is on the S line. Then, this pulse sets the A output of $I C_{2}$ to "low" and simultaneously sets the B output to "high." (Note that the gates of $I C_{2}$ and $I C_{s}$ are crosscoupled to form flip-flops.)

The next S pulse propagates through gate B of $I C_{6}$ to set the B output of $I C_{s}$ to "low," with the A output "high." These outputs are connected to Q_{t} and Q_{2}. Therefore Q_{1} collector goes "low" and Q_{z} goes "high."

Because Q_{2} collector is "high" it disables the B gates of $I C_{1}$ and $I C_{3}$, allowing no change for further incoming S pulses.

Fig. 1. Digital frequency comparator uses no tuned circuits.

Now, when the first T pulse arrives after a series of S pulses, it propagates through gate A of $I C_{3}$ to set gates B and A of $I C_{z}$, "low" and "high" respectively. This drives the collector of Q, "low," thus enabling gates A and B of $I C_{4}$. After this occurs, the next T pulse will then propagate through gate A of $I C_{4}$ to set gate A of $I C_{3}$ "high." As the circuit condition has not been reversed, any number of T pulses in a row, without an ad-

Fig. 2. Timing diagram shows the effects of T frequencies higher and lower than the S frequency.
ditional S pulse, will cause no further changes in output level. This will be seen more clearly, if the reader compares Fig. 2 with the above description.

The output can be selected to be of either polarity, for a given frequency relationship, by selecting the appropriate output of $I C_{s}$.

IC voltage comparator with adjustable threshold and

in or out of the circuit, de- A_{1} is then more positive than pending upon the input signal level.

In Fig. 1, differential amplifier \boldsymbol{A}_{1} is biased by zener diodes $C R_{I}$ and $C R_{2}$. Buffer amplifier Q_{I} couples the output signal from A_{1} to gate G_{1} of the triple-gate driver A_{2}. The remaining two gates, G_{2} and G_{3}, alternately switch pots R_{6} and R_{i} into the reference node formed at pin 7 of A_{1}. Gate G_{i} produces an IC-compatible output with suitable fan-out. A_{1}.

Initially, input voltage $V_{\text {in }}$ is As $V_{i n}$ increases, it eventupin 1; thus Q_{1} is held off because its base is at $V_{c c}$. Gates G_{1} and G_{2} are connected to the collector of Q_{l}, so these are also held off. But gate G_{s} conducts, holding one end of R_{7} at ground potential. Because the gates of SUHL driver A_{2} have no pull-up resistors, R_{G} is effectively out of the circuit. Thus the ratio of R_{s} and R_{7} alone determines the reference voltage at pin 7 of
ence voltage at pin 7. When the input voltage exceeds this "upper trip level" by about $25 \mathrm{mV}, Q_{1}$ conducts and turns on gates G_{t} and G_{p}. Output voltage $V_{\text {out }}$ then drops to the low state and gate G_{s} turns off This disconnects R_{7} from the dircuit and introduces R_{6}. Provided R_{6} has been previously set correctly, the reference level now abruptly drops to a lower voltage. This new voltage, set by the ratio of R_{s} and R_{6}, is the "lower trip level."
If $V_{i n}$ decreases and falls below the lower trip level by

Fig. 1. This circuit can replace the simple Schmitt trigger in applications where both trigger levels must be adjustable. R_{6} sets the lower trip point and Rz_{7} sets the upper trip point.
at least $25 \mathrm{mV}, Q_{1}$ will turn off, again turning off gates G_{1} and G_{2}. This restores $V_{\text {out }}$ to a high level and places R_{γ} back in the circuit to reset
the upper trip level for the next cycle, as shown in Fig. 2.
Because of the good temperature stability of the CA. ${ }^{7} 05$, threshold voltage of this cir-

Fig. 2. When the input voltage exceeds the upper trip level, the output voltage drops to its low state. Later, when the input voltage falls below the lower trip point, the output voltage is restored to its high state.
cuit varies very little with tem- ed. Stability primarily depends perature. Only small currents are needed to hold R_{6} and R_{7} at ground, so variations in gatesaturation drops can be neglecton the stability of the reference voltages. If necessary, $C R_{z}$ can be replaced by a temperaturecompensated zener.

Voltage comparator with

visual

readout

The circuit shown in Fig. 1 provides visual indication of circuit continuities. It does this by comparing system voltages with a reference voltage.

With no voltage applied to the switch, V_{in} is zero. An external 28 -volt reference voltage applied to D_{3} causes it to conduct. And with lamps $D S_{1}$ and $D S_{2}$ off, the base of Q_{1} is at ground potential. The transistor becomes forwardbiased, shunting R_{2}, so that no current flows through the resistor. Current then flows from the 28 -volt supply through lamps $D S_{3}$ and $D S_{4}$ turning them on.

If a voltage V_{2} (28 V for the circuit shown) is applied through the switch, D_{1} conducts, lighting $D S_{1}$ and $D S_{2,}$, and extinguishing $D S_{3}$ and $D S_{4}$. This is because the Q_{1} is cut off by the input voltage, thus causing D_{2}, to conduct, and D_{3} to be turned off.

Input resistor R_{1} limits the starting current to the lamps to increase their life. If more accurate comparison is needed. R, could be eliminated.

The circuit acts as a go-nogo indicator. The lamps $D S_{1}$ and $D S_{2}$ give a circuit continuity indication while $D S_{3}$ and $D S_{+}$give an open circuit indication. Note that the lamps are paired, with one redundant lamp in each pair. Thus if a lamp fails, the circuit will still give an unambiguous indication.

In the original application

Fig. 1. Simple go-no-go indicator monitors circuit continuity of electronic systems.
for this circuit, the system volt- easily be modified for other age was 28 Vdc . The circuit can supply voltages.

Op-amp comparator with

latching

function

By adding just a few components to an operational amplifier comparator, one can obtain a latching function. The circuit compares an input signal against a reference voltage, and when the reference voltage is exceeded the output switches and the comparator latches up. This circuit is the electronic equivalent of a latching relay. Resetting is accomplished manually or electronically. Input impedance and trip point are independent of the input level E_{1}.

In the figure, the input signal and reference level are summed together through R_{1} and R_{z}. If E_{o} is positive, then Q_{1} will be saturated and D_{5} will block the 60 mV of $Q_{\text {, }}$ saturation voltage from the summing junction of the operational amplifier. When the in-
put level goes more positive than $-E_{R}$, the output of the op amp will swing negative to about -1.6 V and Q_{1} will switch off. With Q_{1} off, approximately +2.5 mA will flow into the summing junction through R_{3} and R_{4}.

The latching operation is regenerative and analogous to the operation of a flip-flop. The amplifier will remain latched up with its output negative because

$$
\frac{+15 V}{R_{3}+R_{t}}>\left|\frac{E_{1}}{R_{1}}+\frac{E_{z}}{R_{z}}\right|
$$

with any combination of input voltages.

Resetting may be accomplished by several means, one of which is to short the collector of Q_{i} to the common. A manual pushbutton can do the job, or an extra transistor Q. can be used if a logic signal is available.
Accuracy of the circuit depends almost entirely on the

This op-amp comparator latches up when the input signial exceeds the reference.
match between R_{t} and R_{i}. The resistor R_{i}. The choice of op latching-circuit sensitivity can amp is not critical and most be varied somewhat by vary ${ }^{-}$IC or inexpensive discrete ing the bias on Q_{1} through the units will perform well.

Low-power, multiple-input
 comparator
 for ac/dc

 imputsThree or more ac or dc inputs can be compared directly with the comparator shown in the figure The input with the largest amplitude yields a positive output state. The circuit consumes very little power only 2 mW for the 3 -input example shown, an audio-frequency voltage comparator. Each input is rectified and applied to the base of a transistor which forms one side of a Schmitt trigger. Both sides of each section are coupled to the emitters of the corresponding transistors in the other sections. Bias voltages are chosen so that only one input

This 3 -input amplitude comparator is based on repetitive 2 -transistor sections that lend themselves to construction of an n-input comparator. The transistors are 2×4286.
transistor can be on, and two output transistors must be on. Thus, one output transistor must be off, providing one high output at +7 V . This high output will always be from the section having the
highest input amplitude.
Circuit operation is very similar to that of a two-transistor Schmitt trigger. Suppose that Input 1 has the largest amplitude. Q, will be held on by the input signal, and Q_{2}
will be off. Because of the $Q_{,}$ emitter current in the $10-\mathrm{k} \Omega$ emitter resistor, Q_{s} and Q_{5} are biased off, holding Q_{4} and Q_{6} on. Now, suppose that the Input 2 amplitude increases. As Q_{3} begins to turn on, Q_{4}
is biased off by the coupling from the Q_{z} collector. $Q_{,}$must turn off because of the increased emitter voltage as Q_{s} turns on, and Q_{2} must turn on because of coupling from the Q, collector

Low-component-count digital

comparators

The most straightforward method of comparing the state of a counter with a number selected by thumbwheel switches is to compare the outputs of
counter flip-flops and digital switches with an Exclusive-OR, as in Fig. 1. This approach is adequate if the number of switches is small. But as the quantity goes up, the logic becomes more complex since each switch requires a comparator.

A simpler solution is to add diodes to the thumbwheel switches to form an AND gate

Fig. 1. The Exclusive-OR approach is the most direct one for comparing the output of a digital switch with that of counter flip-flops. But when several switches are used, each requires a comparator.

Fig. 2. In this approach, AND-gate diodes, driven by counter flip-flops, perform the comparisons
and drive this configuration with the flip-flops of the counter (Fig. 2). The output will be high (+5 V) only when the counter matches the setting of the switch (count 8 in the example). As long as there is a mismatch, at least one diode will provide a path to ground, keeping the output low.
While there is a mismatch, the output (A in Fig. 2) will be about $\pm 1 \mathrm{~V}$. That's the low output of the IC, typically 0.4 V , plus the forward drop of the
diode. This exceeds the highest " 0 " that most ICs will tolerate (+0.8 V typ).
To avoid erroneous circuit operation, one should place a voltage comparator in the line and use a reference of 2 to 3 Vdc. The comparator output will then be high only when the output is at +5 V .

If many decade switches are used, each decade is driven by the corresponding counter decade and the commons tied together to form one output. -

Section 7

AMPLIFIER CIRCUITS

"Power-Less" Pulse Amplifier

IT IS possible to construct pulse amplifiers which draw very little quiescent current. Indeed, if the duty cycle is relatively low, the operating current differs very little from its quiescent value.
By merely alternating pnp and npn common emitter stages, and by returning the base resistor of each stage to its emitter, all stages are cut off (See Fig. 1).

FIG. I-Direct coupling and use of complementary transistors produces pulse amplifier chary of quiescent current.

It is interesting to observe that all stages are directly coupled, obviating the need for interstage capacitors. In addition, input and output stages are essentially at ground potential. Since the input pulse amplitude of 0.1 volt was below that necessary to overcome the input contact potential of the first transistor stage, it was necessary to cause Q_{1} to conduct slightly. However, the total current was still only 0.7 ma .

By choosing the proper pnp-npn combination of common emitter and common base configurations and by selecting the appropriate supply voltage polarity, one can obtain any input and output pulse polarity while still maintaining all the desirable features already stated.

Hybrid Tube-Transistor Amplifier

HIGH INPUT Impedance into a transistor amplifier was obtained by using the circuit shown in the diagram. A device was desired to take the output of a photomultiplier tube and convert it to a low impedance and at the same time it was desirable to have some voltage gain. It was also desirable to operate the circuit from the same 6 v dc supply that was used on the remainder on the amplifier.

The circuit illustrated is a combination of vacuum tube and transistor circuitry. The vacuum tube portion of the circuit is basically a cathode-follower connected triode, to provide the desired high input impedance. The coupling to the transistor, however, does not come from the cathode as it normally would. The base of the transistor is connected directly to the plate of the tube, thus making the base current the same as the plate current; also, any variations in the plate current appear as changes in the base current of the transistor.

The transistor portion for the circuit consists of a pnp large signal audio transistor connected in common emitter configuration. No dc bias feedback was used on the model built, however, by adding a resistor from emitter to base and another from collector to base, the temperature stability will be greatly increased with a sacrifice of gain.
The voltage gain of the circuit is about three times, without dc feedback; a gain of about one or slightly higher is possible with dc feedback. The maximum voltage out is about 1 v rms ; this can be increased by increasing the supply voltage. The gain of the circuit does not vary greatly with changes in the supply voltage, (heater excepted). When the
supply voltage was changed from 6 v dc to 12 v dc the gain of the overall circuit changed only 10 per cent. The power requirements of the circuit are

Hybrid circuit provides high input impedance, low output impedance with voltage gain.
small, the total current, not including the heater, is only about 5 ma . The output impedance is low and can be connected to a long cable for remote indication purposes.

Driver Amplifier for 31/2 and 6-Watt Servo Motors

Adetailed circuit is presented in Fig. 1 for a high-performance servo-motor-driver amplifier. The characteristics of the amplifier are as follows: gain $30 \mathrm{db}, \pm 0.5 \mathrm{db}$ variation including all temperature, all beta, and all component tolerance changes; input impedance 400 K ohms; output impedance 400 ohms.

To achieve such desirable characteristics, three important features are incorporated in the design.
$\mathrm{A} \pm 25$ volt well-regulated supply is used. Thus, stabilization of the operating points of the input stage is easily achieved, while maintaining an adequate output-voltage swing under adverse temperature and component tolerance conditions.
An npn-pnp feedback-amplifier pair is used in the input stage. This configuration has a voltage gain which can be reliably stabilized against beta variations, while providing a high input impedance. Close control of the stage gain is important, since overall feedback is used over two transformer stages.

An output transformer is used to couple the output transistors to the servo motor. The reason for using an output transformer instead of directly driving 28 -volt servo motors is two fold: By proper design an optimum match can be made, resulting in the use of the smallest possible transistors in the

FIG. I-Motor driver amplifier circuit was developed for the Radan-500 system.
output stage. A negative feedback winding is easily obtained and is used to provide tight feedback from both halves of the output stage. Such a feedback winding will reduce cross-over transients and increase the input impedance of the amplifier.

The interstage transformer is ac coupled, since any dc biasing current would necessite a large iron core if a high primary inductance is desired. Its turns ratio is $1: 1$ overall.

The output transformer has a turns ratio of $1: 3.34$ overall primary to 115 -volt secondary. The feedback winding has 2.5 per cent of the secondary turns.

The development work was done while the author was Group Leader, Circuit Design, Radar Dept., General Precision Laboratory.

Hybrid Amplifier

HERE is an amplifier that makes use of the advantages of tubes and transistors in a manner that lowers cost and saves power.

It is simpler and less expensive to design an amplifier with an input impedance of one or two hundred thousand ohms or higher using a vacuum tube than with a transistor, and it is not as temperature sensitive as a transistor. On the other hand, to design an output stage with an output impedance less than about 100 ohms requires a vacuum tube cathode follower with a g_{m} of approximately 10,000 micromhos, and such a tube usually draws fairly large heater and plate currents. A transistor connected grounded collector can give an output impedance well under 100 ohms with less power consumption and circuit complexity without difficult temperature stability problems.

The amplifier schematic in Fig. 1 embodies the principles mentioned. The overall voltage gain is approximately 95 with a frequency response that is $\pm 0.5 \mathrm{db}$ from 1 kc to over 50 kc . The total harmonic distortion is 0.5 percent or less at an output
of 8.5 volts peak-to-peak across a 500 -ohm load. The output impedance of the amplifier is less than 75 ohms. The total B drain is only 15 ma .
In Fig. 2a is a block diagram showing each stage function as far as the signal is concerned. The first and second stages are the two halves of a 12AT7 connected in cascade. The output stage is a 2 N 1123 (stud-mounted equivalent of 2 N 597) connected in the emitter follower configuration.
The output impedance of an emitter follower is approximately $Z_{o}=Z_{s} ; \beta$ where Z_{s} is the source impedance seen by the base. For the 2N1123 and

FIG. I-Hybrid amplifier has gain of 95 from 1 kc to 50 kc .

FIG.2-Arrangement of stages for signal and for dc.
$Z_{o}=75, Z_{8}=4,500$ ohms. This means that the parallel impedance of the two base resistors, the preceding plate load resistor, and the preceding
plate resistance should not be more than 4,500 ohms.
The gain obtained from this stage for a given tube will be limited by the maximum plate load resistor consistent with a value of 4,500 ohms for Z_{8}. It remains for the first stage to provide the rest of the gain needed to obtain the overall amplification required. The maximum gain that can be obtained in this stage is limited by the fact that if the plate load resistor is made too large the shunt capacitance will cause a loss of gain at the higher frequencies.

To obtain the required low harmonic distortion and also stabilize gain with changes in tubes, etc., inverse feedback was required. Lowest distortion and a saving in parts was obtained by overall voltage feedback around the three stages as well as individual stage feedback on the 12AT7 tube.

Figure 2b is a block diagram showing the amplifier configuration from the $d-c$ standpoint. In this application the desired transistor emitter current was not a great deal larger than the combined plate currents of the two halves of the 12AT7. A supply of 250 volts (and 6.3 v , ac) was available. It appeared convenient to put the transistor in series with the two paralleled halves of the 12AT7. In this way the only wasted power was in a resistor (R in Fig. 2b) shunting the lower current device, the 12AT7. Despite the series-parallel connection, an open in either triode or the transistor will not cause damage to the other two, nor will a short circuit in any of these three elements cause damage to the other two.
Referring to Fig. 1, the cathode bias resistors for both triodes are unbypassed, constituting single stage feedback around each triode. For the first stage $Z_{L}=22 \mathrm{~K}$ ohms and the gain is 40 without feedback. For the second stage, Z_{L} equals the parallel combination of $22 \mathrm{~K}, 10 \mathrm{~K}, 470 \mathrm{~K}$, and the input imped. ance of the 2 N 1123 . This impedance is given approximately by β times the amplifier load impedance and is 27 K ohms. This gives 18 for the second stage gain.
The feedback factors, β^{\prime}, for these two stages are 0.01 and 0.04 , giving stage gains of 28 and 11 respectively. The 27 K -ohm resistor from the emitter of the 2 N 1123 to the cathode of the first stage forms an inverse feedback path around all three stages. Without this feedback, the voltage gain of the complete amplifier is approximately 270 . The feedback factor equals 0.014 , giving a closed-loop voltage gain of 95 . The use of inverse feedback in this manner also lowers the output impedance of the amplifier below the value of 75 ohms calculated for the 2 N 1123 alone.
Using the same tube and transistor a frequency response up to at least 100 kc and greater gain or a lower output impedance can be obtained. An amplifier with an output impedance of 15 ohms with the same output voltage across a load of 120 ohms has been built using the same circuit.

Constant Output AC Amplifier

The crrcuit presented will maintain a nearly constant (± 5 percent) ac output for a 10:1 change in input. This phenomenon is achieved by using the variable gain characteristic of a tetrode transistor in conjunction with dc feedback which is proportional to the ac output.
The gain of a tetrode may be varied by either of two methods. One method uses a reverse bias between one of the bases and the emitter while the other base is forward biased. The, second method uses a transverse bias between the two bases. Of the two methods of gain contol, the second method was selected because it has less effect upon the common emitter input impedance of the tetrode.
The basic relationship between common base gain and common emitter gain is given by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{FE}}=\mathrm{H}_{\mathrm{FB}} / 1-\mathrm{H}_{\mathrm{FB}} \tag{1}
\end{equation*}
$$

when H_{Fb} in the common base dc gain and H_{FE} is the common emitter dc gain. As a result of this relationship, a small change in H_{FB} will result in a relatively large change in H_{FE}. It follows from this that the ac configuration should be common emitter to take advantage of the maximum gain change and the dc configuration should be common base to keep the variation in dc operating point (quiescent current level) as small as possible. These two fac-

FIG. I-Basic amplifier circuit.

FIG. 2-Stages of practical circuit.
tors are incorporated in the basic circuit of Fig. 1.
In the basic circuit, E_{3} and R_{1}, in conjunction with the relatively low dc resistance of L_{1}, form a dc common base circuit. The combination of L_{1} and C_{2} results in an ac common emitter circuit wh'ch is the desired result. This combination resulted in a change in H_{FE} (ac common emitter current gain) of $15: 1$, while H_{FB} (dc common base current gain) changed only 25 percent (4:3).

If variable resistor R_{8} in series with E_{2} in Fig. 1 were replaced by a transistor, we now have a means
of controlling the gain of the tetrode transistor by a small de signal. For the complete circuit, it is only necessary to rectify a sample of the ac output, compare it to a reference, and then apply the error signal to the transistor which controls the transverse bias of the tetrode. The system is shown in the block diagram of Fig. 2.
The final complete circuit is shown in Fig. 3. In this circuit $\mathrm{C}_{3}, \mathrm{~T}_{2}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{R}_{3}$, and Q_{2} comprise the rectification and detection portion of the circuit. C_{3} is a dc blocking capacitor. T_{2} permits full wave rectification and acts as a high impedance paralleling the ac load. D_{1} and D_{2} are for full wave rectification. Q_{2} amplifies the rectified signal and R_{3} causes Q_{2} to have a high input impedance. The combination of transformer and two diodes may be

FIG. 3-Complete circuit contains amplifier for the difference signal.
replaced by a bridge rectifier in most applications.
Capacitor C_{4} and resistor R_{4} form a filtering circuit for the output of $Q_{2} . R_{4}$ also acts as a further current limiting resistor for Q_{2} (along with R_{3}).

The combination of E_{4} and R_{5} determines the reference level for the output. Since $I_{C 2}$ (Q_{2} collector current) is proportional to the ac output, when $\left[I_{\mathrm{C} 2}+\mathrm{I}_{\text {CBo3 }}\left(\mathrm{Q}_{3}\right)\right] \times \mathrm{R}_{5}>\mathrm{E}_{4}$, Q_{3} will be turned on. If less than E_{4}, Q_{3} will be reverse biased. The reference level for control is therefore determined by E_{4}, R_{5} and $I_{\text {Cbo3 }}$.

Transistors Q_{3} and Q_{4} are a two-stage amplifier for the difference signal between the ac output and the reference. The output of these two transistors is the transverse bias of tetrode Q_{1}. In the circuit, R_{8} is a current limiting resistor for Q_{3}. Inductor L_{2} and C_{5} insure that the transverse bias control $\left(Q_{3}\right.$ and $\left.Q_{4}\right)$ is isolated from the ac signal being
applied to base 2 of the tetrode transistor \mathbf{Q}_{1}.
The circuit of Fig, 3 was assembled with materials readily available in the lab, and therefore the transformers and chokes are not optimum. The circuit will operate satisfactorily as shown. The 3N45 tetrode transistors were used at a level far below their power capabilities because a particular application was in mind during the design of the circuit.

The circuit may be made more versatile by using another stage of controlled gain amplification in series with the stage shown. Both stages could be controlled by one feedback circuit if care is taken to split the output of Q_{4} between the two stages being controlled. Closer control may be obtained if there is further amplification between the controlled tetrode and the output or if another stage is added in the control circuit.

Since the circuit uses dc as a feedback control, the number of stages of amplification between the controlled tetrode and the output is entirely up to the designer. There is no phase shift problem in the feedback control. The control should also have very little dependence upon the frequency of operation within practical limits. Another advantage is that the control system will not increase distortion of the ac signal but rather will tend to decrease the distortion (a normal phenomenon of transverse biased tetrodes).

Additional Gain Circuit

In the circuit shown in Fig. 1 the system is a simple amplifier with cathode follower loading and output when the potentiometer arm is set at ground level. As the arm is raised above ground the gain of the amplifier can be raised to any desired value, 10 thousand being used in one case without reaching the niaximum. This is a positive feedback circuit similar to the Q multiplier. It is a particularly convenient and stable way to trade bandwidth for gain, for with the potentiometer arm at ground the additional gain circuit effectively isn't there. With the pot arm raised so as to square the or ginal gain (effectively two stages in cascade) the phase shift of the single stage will have been multiplied by two, as it would by two stages in cascade. Thus, although the amplifier being loaded only by a cathode follower will perform better than two stages in cascade, the output impedance is low, and the second stage is very simple.
However, the virtue of this circuit is that the gain can be set at whatever level is desired and if less than the square of the original gain is desired, the phase shift added is proportionately small. If only a little more gain is needed, very little extra phase shift is added to the output of the circuit.

The circuit as shown will reach infinite gain when the feedback signal is sufficient to replace the in-
put, or when the resistance below the pot arm is equal to the total cathode resistance divided by the

Additional gain circuit is similar to Q multiplier. original gain of the amplifier. In this case the amplifier's gain would be about 50 , so that for high gain the pot arm would be raised to nearly 400 ohms.

One of the drawbacks of this circuit is Miller effect. For high gain the amplifier should be a pentode to reduce $C_{g p}$. However, $C_{g k}$ is also multiplied by the additional gain so that for a high-impedance input this might limit performance. However, when used only for limited additional gain, the added Miller effect is usually negligible. Note that if a pentode amplifier is used it will be capable of giving high gain simply because it is cathode follower loaded, permitting doubling of the plate load resistor, or if the same load resistor is used, additional bandwidth is obtained which this circuit can convert to gain.
The principle described will also work in transistors, but three gain stages are required so as to have enough gain to make the resistance below the potentiometer arm negligible when inserted in the emitter leg of the first gain stage. Emitter bypass capacitors can be omitted with the resultant gain loss and improved linearity. Gain can then be made up by the additional gain circuit.

Grouping Amplifier

Combining several frequencies on one output, as required in frequency multiplexing systems, is done by the circuit shown. It permits connection of several high impedance sources to a low impedance as in an operational amplifier adder arrangement. The low input impedance is obtained in the first stage by operating it in the grounded base configuration.

Greater than 40 db isolation between inputs is provided and all spurious signal outputs are 40 db below any single desired signal in the composite output when each input is held below 0.25 v , rms.

Resistors R_{25}, R_{26} and C_{4}, C_{5} are power supply decoupling nets which may be varied according to specific requirements. R_{21}, R_{22} and R_{27}, R_{28} are conventional biasing networks and work in conjunction with R_{23}, R_{24} and R_{29}, R_{30} respectively to maintain proper transistor biasing for a maximum of dynamic range within the circuit.

Capacitor C_{1} holds the base of Q_{1} at signal ground; C_{3} is a conventional coupling capacitor. C_{2} is an in-
put coupling capacitor and must be chosen large enough to present a negligible impedance compared to the input impedance at the emitter of Q_{1} (approximately 50 ohms) plus the parallel source impedance of all inputs each in series with $10 \mathrm{~K} . R_{1}$ through R_{20} are input resistors which insure high isolation betwees any two input signals. The gain of the amplifier for any one input is nearly proportional to the value of these resistors, and the value may be varied according to application depending on desired gain and input source impedance.

The gain of the circuit from any one input to output may be approximated closely as follows: Since the emitter of Q_{1} is very nearly at signal ground potential, a 1 -volt signal at input 1 causes 0.1 ma in R_{1}. Practically all this current flows into the emitter $Q_{1}\left(Z_{i n}=50\right)$ and appears at the collector. At the collector the current divides into three paths of interest, R_{23}, R_{28} (in parallel with R_{27}) and the base of Q_{2}.
The input impedance to Q_{2} is approximately $h_{\text {fe }}$ times 1 K or say 44 K . 'Thus the 0.1 ma at the collector of Q_{1} divides into 0.04 ma to $R_{23}, 0.04 \mathrm{ma}$ to R_{28}, and 0.02 ma to the base of Q_{2}. This last current causes $h_{t e}$ times 0.02 ma to flow in the collector of Q_{2}. Thus without the negative feedback resistor R_{26}, the output voltage is approximately 44×0.02 $\times 5.6 \mathrm{~K}=5$ volts. The gain of the circuit without feedback is therefore 5 . With no external load, $5.6 / 47=1 / 8$ the output current returns to the input. The transfer gain, K, is then $K=A /[1+A(1 / 8)]$ $=3$.
The small amount of negative feedback was found to greatly improve linearity at high output levels. It may be determined statistically that with 20 inputs each at 0.5 v rms and with a transfer gain of 3 the output voltage will exceed peaks of plus and minus 13.5 volts five per cent of the time; this assumes a Gaussian voltage distribution. Clearly the preservation of linearity at high output levels is necessary if many inputs are used each at a convenient level. Since the circuit is unconditionally stable, R_{26} can be chosen according to application to vary gain, output impedance, etc.

Up to 20 inputs can be handled by grouping amplifier.

High-Impedance Preamplifier

Predictable performance and reliability over extremes of temperature and variations of transistor characteristics are features of the circuit shown. The measured input impedance over a temperature range of 30 C to 95 C is 32 megohms.

The input impedance is a function of two negative feedback loops. The minor loop couples the signal

Gain of the high-impedance input amplifier is 13 and output impedance is 20 ohms. Frequency response ranges from 0.5 cycle to 20 kc .
at the emitter of Q_{2} back to the collector of Q_{1}. The major feedback path samples a portion of the output signal at the junction of R_{7}, R_{8}, R_{4} and couples it to the emitter of Q_{2}. The gain of the amplifier is determined by the ratio of R_{4} to R_{3}. The major feedback loop also controls the de voltage level at the emitter of Q_{4}, keeping it constant.
For example, if the dc voltage at the emitter of Q_{4} tends to change in a negative direction, then a fraction of this change is observed at the junction of R_{4}, R_{7}, and R_{8}. Current flow into Q_{2} will increase, and the base of Q_{3} will become less positive. This change is then compared to the zener diode potential and the difference is amplified by Q_{3} and Q_{4}.
This action continues until the dc voltage at the emitter of Q_{4} stabilizes at its previous level.

DC Amplifier Has Infinite Input Impedance and 80 db Power Gain

THe amplifying system shown in Fig. 1 exhibits a power gain in one stage which approaches three times the maximum power gain of any other semiconductor device. Its input impedance is much greater than any known semiconductor circuit and much higher than any tube circuit, except an electrometer tube.

The system consists of an input signal which frequency modulates a Hartley type oscillator, and a detector for the modulated signal. A change in

FIG. I - Frequency-modulated oscillator and slope detector provide high-gain de amplifier.
the dc voltage applied to the input will change the oscillator frequency and the slope-detected output. It is, therefore, a dc amplifying device.
The oscillator acts as a power source which feeds the detector. The slope detector responds only to a change of frequency, delta, which it converts to a change of output. The conversion efficiency is determined by the portion of the slope used and the Q of the characteristic curve. The delta power-out is a function of the delta frequency and the oscillator power.
The delta frequency is also a function of the signal input. Increasing the oscillator power increases the gain, therefore the gain is variable and can be designed for any value required. Since output loading has no effect on input signal, it is a purely unilateral device.
Referring to the circuit diagram: a dc voltage impressed on the input terminals would be impressed in series with the bias path. The dc resistance of the diode is 1,000 megohms or 10^{9}. With one volt applied, the power input will be 10^{-9} watts. If we can get 10^{-3} watts at the output, we have realized a $69-\mathrm{db}$ gain. In an experimental model, a diode of 2.4×10^{11} ohms was used to give a onemilliwatt output. Calculated power gain was 80 db .

If an ac signal is applied, the signal sees the junction capacitance C_{j} in parallel with C_{1} to ground since L_{1} represents no reactance until the rf frequencies are approached. The $Z_{i n p u t}$ is, therefore, capacitive and can be designed to a small value.

In the experimental model the input capacitance C_{j} plus C_{1} was $70 \mu \mu \mathrm{f}$, with an oscillator frequency of $30 . \mathrm{mc}$. There is a good argument for a higher oscillator frequency, which would allow much lower C_{j} plus C_{1}. If a unit could be designed with C_{j} plus C_{1} of $1 \mu \mu f$, the $Z_{i n}$ at 10 kc would equal 15 megohms.
It must be noted that the dc return path for the diode bias voltage is through the input terminals. The signal source must have a dc path through it, but the resistance of this path may be as high as 500 meg without disturbing the circuit.

The frequency response of the device is in the audio range and though this represents a limitation to the circuit, it can be improved with further design. A patent is pending.

Failure-Proof Amplifier

TAars circuit was developed as part of a highly reliable military communications system. In several locations in this system it is necessary to provide dual circuitry for all transistor networks, since these networks are the most prone to failure. The most common network is an amplifier, and the following circuit provides for the interconnection of two identical amplifiers such that a failure of any transistor in either amplifier results in no change in output power.

FIG. I-Simplified schematic of bridge feedback amplifier.

FIG. 2-input impedance equals transistor input impedance when feedback is divided equally between series and shunt with the input, as shown. Output impedance is controlled by derivation of feedback voltage from current and voltage of the output.

All major amplifiers in the system use a bridge feedback arrangement which provides close control over input and output impedances and gain response, this being conducive with the system's high quality performance. A simplified schematic of a bridge feedback amplifier is shown in Fig. 1.

A voltage is developed across R_{c} which is proportional to the current in the load, and the voltage across R_{v} is proportional to the voltage across the load. The addition of these voltages is fed back to a bridge in the input circuit. The input bridge is balanced to divide the feedback voltage into series and shunt with the input signal.

Figure 2 shows the input and output bridge redrawn to indicate the balance conditions used in the application. The output bridge controls the output impedance, and the input bridge controls the input impedance. As stated, two amplifiers were paralleled to maintain a through circuit should one amplifier fail.

Figure 3 shows how the input signal is divided to feed both amplifiers by using separate windings on the input transformer. Combination of the outputs is achieved through a two-core hybrid arrangement, the need for this hybrid will be explained later.

The trick in this circuit is the common feedback path to the input of both amplifiers. Consider the case when both amplifiers are identical, both having the same open-loop gain and phase. Note the polarities at the output from each amplifier, points a and b are at the same potential. It would therefore be possible to connect the feedback lines at $X X$, instead of returning individual feedback voltages to their respective amplifiers, i.e. a to c and b to d, with no change in output level.
If, with the common feedback we fail one amplifier, by removing a transistor for example in amplifier B, then the voltage developed at a would see an identical feedback circuit consisting of the input and output bridge of the failed amplifier connected across its own bridge circuits. The voltage at a is therefore reduced to one half its former value resulting in 6

FIG. 3-Failure-proof amplifier showing common feedback connection.
db less feedback, or 6 db more gain in A.
This extra power from A is divided equally between the hybrid balance resistor R_{b} and the output, thereby maintaining an output level at the value held before transistor failure. Without the hybrid and its balance resistor we would not be able to maintain an unchanged output level.

It is common that the individual amplifiers may have different open-loop gain responses and one amplifier may gradually deteriorate due to ageing of transistor parameters, for example. Under these conditions the common feedback connection serves to select the amplifier having the highest open-loop gain, and hence better distortion and level stability, to do more work in a ratio greater than that of the
open-loop gain differences. The better amplifier will develop a larger feedback voltage, a voltage higher than that required by the poorer amplifier will have its gain suppressed still further than if its own feedback voltage was operating alone.
As stated previously, the balance resistor, R_{b}, receives the same power as is delivered to the load under extreme conditions where one amplifier is failed. When both amplifiers have the same gain response then no power is delivered to the resistor as can be seen by inspecting the phasing of the hybrid windings. However, the probability of having two identical amplifiers is slight, so a voltage will usually appear across R_{b} due to the gain differential. Accordingly it is convenient to establish a maximum allowable gain differential between amplifiers and to monitor the voltage developed across R_{b}. By this means a failing amplifier may be located in service and replaced with no interruption of system operation.

Degradation of transistor parameters or removal of any transistor is completely protected with respect to output level and reflection coefficients at both input and output of the amplifier. If a short-circuit occurs within the transistor, then impedance changes may result, depending upon where the short is placed.

Any configuration of amplifiers can be used, provided the phasing is arranged to be as shown in the diagram. The configuration shown has been used in our own application with success.

Adjustable Temperature Compensation

Afairly common requirement is a wide band operational or integrating amplifier with good dc stability. Rise time and overload considerations force a choice of transistor and operating point for the input stage which makes reduction of the net input current difficult. In an extreme case, an adjustable base current supply with adjustable temperature coefficient becomes necessary. An example of such a design is shown in Fig. 1.

The 1N754A and 1N758A Zener diodes were used to gain some immunity from supply voltage change, and have no further significance. Pot R_{4} is a voltage zero adjustment with a range of about $\pm 0.1 \mathrm{v}$. No temperature compensation is provided here, as 2N706's selected for roughly equal base currents at 1-ma emitter current usually have base-emitter voltage drops that track within a few microvolts per degree.
The network on the left-hand side is designed to provide the base current required by an average 2N706 operating at 1.1 -ma emitter current. This is about 30μ at room temperature, decreasing at
about $0.3 \% /{ }^{\circ} \mathrm{C}$, or about 18μ a over 60 C . Irransistors with $20<I_{B}<40 \mu$ are selected for the stage, as accommodation of a larger range yields difficulties with potentiometer resolution. R_{2} is adjusted for zero volts on its arm at 25 C . This voltage decreases about $3.5 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ due to the coefficient of the 1 N 276 's, providing by way of R_{3} the required temperature dependent part of the base current. R_{1} and the selected resistor provide the remaining base current.

Operation of the circuit is most easily described by outlining the adjustment procedure. The complete amplifier is connected as shown in Fig. 2, where V_{2} provides an easy measurement of net input current $I_{\text {in }}=/ V / 100 \mathrm{~K} . R_{3}$ is set at its open spot or disconnected. R_{1} and the selected resistor are adjusted for $V_{2}=0 . R_{4}$ is set for $V_{1}=0 . R_{3}$ is then set to about mid-range, and R_{2} set for $V_{2}=0$. It should now be possible to rotate R_{3}, which controls temperature coefficient, over its entire range without affecting V_{2}. These operations are comparable to balancing a bridge to the end that the temperature coefficient adjustment will have no effect at room temperature. The temperature is then shifted to, say, +50 C , and R_{3} adjusted for $V_{2}=0$. The remaining coefficient varies slightly with temperature, and an optimum adjustment will require a plot over the working range with a second compromise adjustment of R_{3}. A plot of a typical amplifier after final adjustment is shown in Fig. 2.

FIG. 2-Measurement setup and plot of temperature
As a matter of interest, a second order, or curva-. ture, correction could probably be made with a thermistor. At about this point, a chopper stabilizing scheme seems a more sensible approach.

FIG. I-Temperature coefficient is controlled by R_{3}.

Simplified Operational Amplifier

In-flight analog computers frequently require single-ended operational amplifiers with reasonable drift requirements and few components. Typical specifications include an open-loop voltage gain of greater than 72 db with a closed-loop bandwidth to 1 kc . Output swing should be twu-thirds of B+ into a 200 -milliwatt load. The input should draw negligible amounts of power from the summing network.

Design specifications require three direct coupled inversion stages (Q_{2}, Q_{3}, and Q_{4}) for high gain and phase inversion and an emiter follower input stage $\left(Q_{1}\right)$ to obtain the high input impedance. Drift stabilization is performed by the unique common mode operation of Q_{1} and Q_{2}. The output stage Q_{4} is of high voltage, medium power design for output requirements. High frequency stabilization is obtained through C_{1} and C_{2}, their associated resistors and the intrinsic collector capacitance of the transistors. An offset bias network is provided by R_{8} and R_{9}.
Precise selection of the transistors simplified the circuitry besides considerably assisting the drift and stability problems.

Silicon transistors were used throughout to minimize drift. The reasoning behind the choice and circuitry of Q_{1} and Q_{2} is observed from a form of the well-known transistor collector current equation:

$$
\Delta_{T} I_{c}=-\alpha_{N} I_{c o}\left(e^{q V_{e}{ }^{\prime} k \Delta_{T}}-1\right)+I_{c o}\left(e^{q V_{c} / k \Delta_{T}}-1\right)
$$

From this equation it is observed that the change in collector current due to change in temperature is minimized if the emiter and collector voltages are made small. This was done by operating Q_{1} and Q_{2} at low collector currents and arranging their collector voltages to be small. The pnp to npn choice

Schematic of simplified transistor operational amplifier.
of Q_{1} and Q_{2} was to obtain the input potential near zero volts and provide a common mode cancellation of $V_{b e}$. The final selection of R_{1} and R_{2} is a matter of inverse temperature curve matching to cancel the effects of $V_{b c}$ on Q_{1} and Q_{2} and to minimize the drift of succeeding stages in the circuit. The starved operation of the first stages is also advantageous in that little current is drawn from the input network and they operate at low internal power. The production drift tolerance curve is presented on Fig. 1.
Specific transistor characteristics are also used in eliminating multiple stabilization networks. The Miller Integrator effect was used in conjunction with transistors Q_{3} and Q_{4} to minimize the size of

FIG. I-Temperature-drift range of operational amplifier.

FIG. 2-Transistor equivalent circuit.
C_{1} and C_{2} which were used in the first two roll-off networks. The third, fourth and fifth lead-lag networks are the transistors Q_{3}, Q_{1} and Q_{2} respectively. The equivalent circuit used for the transistor network is given in Fig. 2. From this the individual transistor transfer function is derived. In practical form this transfer function is

$$
\frac{e_{o}}{e_{i}} \cong \frac{-\beta R_{L}}{\left(h_{e i}+\beta R_{e}\right)}\left[\frac{\left(h_{e i}+\beta R_{e}\right) C_{c} s+1}{\beta R_{L} C_{c} s+1}\right]
$$

From this equation, the lead and lag time constants can be manipulated by variation of R_{e} (emitter resistance) and R_{L} (load resistance). The total

FIG. 3-Phase-gain characteristic of operational amplifier.
transfer function is a multiplication of the transistor transfer functions with the additional network functions. The total phase-gain plot for the theoretical and for the actual design is given in Fig. 3.

Because of Q_{1} and Q_{2} input circuitry, only $B+$ had to be stabilized and then only to 1 per cent. Due to power dissipation from the input network, summing components of less than 200 K are pref£rred.

The circuit met and in most cases far exceeded the original requirements.

Sensitive Relay

 Control AmplifierAreflex circuit is employed to ensure full use of the available gain of a two-stage relay control amplifier. In a conventional amplifier, the tube which controls the relay in its plate circuit acts only as a dc amplifier. In the circuit of Fig. 1, the same tube is also used as an ac amplifier, thereby increasing the overall sensitivity by a factor approximately equal to this ac gain.
The arrangement is especially useful in cases where there is insufficient space for more than one tube envelope. A high conductance twin triode, a 12AT7, provides a relay control triode of good sensitivity while the mu of 50 is sufficiently high to ensure gain stability in the degenerative amplifier of V_{1}.
Best results are obtained at high signal frequencies (400 cps or more) where advantage can be taken of the relay inductance providing a higher ac impedance to V_{2} resulting in increased gain. The input signal is applied through the transformer which may be of any ratio provided that the secondary resistance is low. One $0.5 \mu \mathrm{f}$ capacitor acts both as an insulator and de filter forming a smoothing network in conjunction with the 100 K resistor and $0.5 \mu \mathrm{f}$ reservoir capacitor. The amplified signal at V_{2} plate is applied to the grid of V_{1}. The output of V_{1} is rectified in a voltage-doubler circuit and the

FIG. I-A $10-\mathrm{mv}$ rms $60-\mathrm{cps}$ signal to this sensitive amplifier energizes the relay.
resulting positive dc potential controls the grid of V_{2} and hence the condition of the relay. In the absence of a signal, the relay is held off by the cathode bias provided by the 1 K and 27 K resistors (about 9 volts).

Time Amplifier

A simple circuit to amplify time generates an output pulse width that's a linear function of an input pulse width. The circuit is stable, easy to calibrate, and adaptable to a wide range of time-amplification factors and pulse widths. With two stages, the circuit can amplify nanosecond pulse widths to seconds.

Operation of the circuit is based on the fact that the voltage across a capacitor charged from a constantcurrent source is directly proportional to the value of current and the length of time the current is applied. When a constant current charges the capacitor for a length of time, the time required to return the capacitor to its original voltage with another constant current of opposite polarity will be a linear function

Fig. 1. Block diagram of the time amplifier and timing waveforms.
of the ratio of the two currents (Fig. 1). Linearity of the function depends on the capacitance, voltage change, and current ratio. Accuracy of time amplification depends only on the accuracy of the two currents.

The circuit (Fig. 2) includes an input switch, a constant-current discharge load, a constant-current charge generator, and a voltage clamp. The input switch Q_{1} turns on the constant-current discharge circuit for the duration of the input pulse. Q_{2}, R_{1}, and voltage reference V_{1} form the constant-current-discharge load. Emitter resistor R_{1} provides a feedback path for collector current and thercby generates a constant current discharge approximately equal to V_{1} / R_{1}.

Voltage source V_{3} and R_{2} form a simple constantcurrent charge generator. This current remains on at all times. It is switched between capacitor and voltage source V_{2} by the base-to-emitter junction of clamp transistor Q_{3}, whose collector circuit generates the output pulse.

During static conditions, the charge current is switched through the clamp, thereby providing an output voltage equal to V_{2}. When a pulse is applied to the input switch, the capacitor starts discharging at a constant rate. At the same time, the voltage change across the capacitor back biases the clamp transistor and the collector switches to V_{1}. The actual capacitor current is now the difference between the discharge and charge currents. When the input pulse is removed, the capacitor starts to recharge and continues until the capacitor voltage reaches approximately V_{2}. Then the clamp transistor switches on, stopping the capacitor charge and switching the output voltage back to V_{2}.
After the clamp has switched, another input pulse may be applied. If several input pulses are applied during one cycle, the circuit will add and amplify the total time of the input pulses.

Most of the circuit's components are not critical. The only strict requirements are for the current-determining resistor and power supplies. The simplest design approach is to determine the discharge current first. It is limited by the rating of the input switch and discharge transistor. The duty cycle and input pulse width are also determining factors.

Fig. 2. The time amplifier.

| Input
 Microseconds | $\mathbf{R}_{\mathbf{1}}$ | $\mathbf{C}_{\mathbf{1}}$ | $\mathbf{R}_{\mathbf{2}}$ | Output
 Milliseconds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0.1-1.0$ | 51Ω | 8200 pf | 3.2 M | $0.1-1.0$ |
| $1.0-10.0$ | 51Ω | $.082 \mu \mathrm{f}$ | 3.2 M | $1.0-10.0$ |
| $10.0-100$ | 510Ω | $.082 \mu \mathrm{f}$ | 3.2 M | $1.0-10.0$ |
| $100-1000$ | 510Ω | $.82 \mu \mathrm{f}$ | 320 K | $1.0-10.0$ |

Component Values for Several Time Amplifications.

After the current has been chosen, the capacitor value can be calculated from the maximum input pulse width and allowable voltage swing (less than $V_{2}-V_{1}$). The charge-current circuit values can be calculated from the discharge current and the required amplification. A few values are shown in the table.

The remaining components are determined from requirements for back biasing and signal-level control. The charge current must be large compared to the collector leakage of the discharge transistor and emitter-to-base leakage of the clamp transistors. If leakages were constant, they could be calculated into the circuit.

High Input-Impedance, Unity-Gain FET Amplifier

Telemetry data-processing applications frequently require unity-gain amplifiers with a dc input impedance approaching that of an electrometer tube, and a performance level approaching that of a chopper-stabilized potentiometric amplifier. Common applications would be for sample-and-hold demodulation, and active filters.

The design is based on a field-effect transistor driving a compound emitter-follower buffer. The compound emitter-follower performance is typically at current gain of 2500 and a voltage gain of 0.995 . Output voltage from the compound emitter follower fed back to the field-effect transistor does two things: it multiplies the naturally high input impedance of the field-effect transistor by a factor of about 200 ; and it linearizes the operation of the field-effect transistor by keeping its current or voltage supply very nearly constant.

Fig. 1. High input-impedance, unity-gain amplifier. Three constant-current sources supply the circuit, composed of a p-channel field-effect transistor driving a compound emitter follower.

Power for the field-effect transistor is derived from the compound emitter-follower output via two positive-feedback (boot-strapped) voltage sources (See Fig 1). Complementary voltage cancellation is achieved with a Siliconix p-channel field-effect transistor driving a 2 N 86 i pnp silicon-alloy transistor. Adjustment of the potentiometer in the field-effect transistor source supply permits the output voltage (E_{0}) to be the same as the input voltage $\left(E_{1}\right)$. In practice, E_{1} can be grounded with a clip lead and the potentiometer adjusted until E_{0} is at ground
level. At this point, the gate-source bias voltage of the 2N2607 equals the base-emitter voltage of the 2 N 861 . This set-up procedure automatically establishes an optimum point of high transconductance for the field-effect transistor.

Fig. 2. Constant-current sources.
Two current sources are shown in Fig. 2. Current source A is very simple, but requires 150 v . This supply does not have to be a highly regulated voltage. Current source B is very effective, but requires 3 additional transistors. For single units, the zener diode boot-strap voltages could be replaced with isolated power supplies or batteries.

DC Drift Voltages Reduced

With Ungrounded Supply

Although differential amplifiers can be used to reduce drift voltages. they have the disadvantage that one side of the input and output cannot be simultaneously grounded. However, if the power supply is allowed to float with respect to ground, the drift voltages

Fig. 1. Simplified circuit showing floating power supply.
can be cancelled and the amplifier can be made singleended.

Figure 1 shows a simplified amplifier circuit of this type. In this circuit the drift voltages are shown as $e_{d_{1}}$ and $e_{A 2}$, which we assume equal. The 1.5 -volt battery B_{3} fixes the collector-to-base voltage of the non-signal carrying transistor Q_{2}, and the other voltages adjust for this particular base-to-collector voltage.

Let us assume that the drift voltages $e_{d 1}$ and $e_{d 2}$ are external to the transistors and that, because $e_{d 2}$ is small compared with the supply voltage B_{2}, the current through $Q_{\underline{2}}$ is constant. Then it follows that the bias voltage for Q_{2} must also be constant. The emitter of $Q_{\underline{2}}$ as shown
in Fig. 1 is thus at a fixed voltage with respect to ground. The negative terminal of B_{2}, however, moves with respect to ground by the amount of variable voltage $e_{d 2}$. The emitter of Q_{1}, however, does not move with respect to ground because it differs from the voltage at the negative end of B_{2} by $e_{d 1}$ which equals and cancels e_{12}.

If Q_{1} and Q_{2} are identical and if negligible base currents flow and if no output load is present, then the voltage at the collector of Q_{1} will be the same as at the collector of Q_{2}, because the circuit is symmetrical. Also, since B_{1} is the same voltage as B_{3}, the output voltage is the same as the negative terminal of B_{3}, namely ground potential. If an input signal is introduced and if the base currents still are negligible and no output load is present, Q_{1} will operate as a normal amplifier since its emitter is fixed with respect to ground. We now have an amplifier stage, the output voltage of which is centered about zero, having one side of both input and output grounded, and with drift voltage cancelled out.

In an actual amplifier the results differ slightly from an ideal amplifier because of base current flow and because of the output load. Most of the drift voltage originates inside the transistor instead of outside as shown, but the results are as described. Drift voltage is, of course, not entirely cancelled, but is greatly reduced.

Figure 2 shows a practical two-stage preamplifier.

Fig. 2. Practical two-stage preamplifier.
which uses emitter followers at the input to increase the input impedance to about 1 meg and also uses emitter followers at the output to decrease the output impedance to less than 1000 ohms. Note that with pnp and npn transistors one battery can be eliminated (B_{1} of Fig. 1). Each signal-carrying transistor, such as $Q_{1 A}$, and its associated drift-cancelling companion, such as $Q_{1 D}$, should have a common heat sink. Voltage gain is about 200. Steadystate current drawn by the input circuit may be reduced to zero by first shorting the input and then adjusting the input current control until the output voltage does not change when S_{1} is opened.

Amplifier with DC

Controlled Gain

|n certain circuit applications it is desired to control the gain of a small signal amplifier by means of a dc voltage. By so doing, the adjustment potentiometer (if one is used) does not carry signal current, and remote control is easy. In order to obtain dc-controlled gain, an element must be used whose impedance is a

Fig. 1. Basic circuit of amplifier
with de controlled gain.
function of the current passing through it or of the voltage across it. In the circuit shown, a Zener diode is the element which controls the gain of the amplifier.

The basic circuit is shown in Fig. 1. Q Q_{2} is a dc current generator whose current is controlled by the base voltage. This currert passes through Zener diode D. This Zencr is the collector impedance of linear amplifier Q_{1}. The high output impedance of Q_{2} is seen by Q_{1} in parallel with Z_{d} and can be ignored.

When the input signal is large, the diode current will vary with the signal and distortion will occur. Small input signals are therefore necessary; and, if

Fig. 2. Final circuit of amplifier.
needed, a suitable attenuator can precede Q_{2} so that the input signal will be sufficiently small.

The complete circuit is shown in Fig. 2. The Zener diode is an RT 6 which has a nominal breakdown of 6 v . Zeners with breakdown voltages of 6 v and higher have dynamic impedances which are quite independent of temperature variations.

Resistor R_{1} is in series with D so that the output signal will not be too small when the current is set for maximum value. Resistor R_{3} limits the maximum gain to some reasonable value and prevents saturation of Q_{1}. The input of Q_{1} is bootstrapped to obtair a large value for the input impedance with relatively small values of divider resistances. The input impedance is approximately the parallel combination of βR_{4} and $R_{4} R_{7} / r_{e}$; where $r_{e}=25 / i_{e}$. Here βR_{4} is about 90 k and $r_{e}=25$ ohms, so that the input impedance is about 40 k .

The expression for the gain is

$$
K=\frac{R_{3}\left(R_{1}+Z_{d}\right)}{R_{1}+R_{3}+\frac{1}{Z_{d}}\left(\frac{1}{R_{s}}\right), ~}
$$

where

$$
\frac{1}{R_{z}}=\frac{1}{R_{4}}+\frac{1}{R_{5}}+\frac{1}{R_{6}} .
$$

With the values shown, this becomes

$$
K=0.8 \frac{Z_{d}+.05}{Z_{d}+1.05} ;
$$

from which follows $K_{m i n} \cong 0.04$ (when $Z_{d}=0$)

$$
K_{\max } \cong 0.80\left(\text { when } Z_{d}=\infty\right)
$$

In the circuit of Fig. 2 the control voltage is limited to -4 v . Thus, the gain is adjustable between 0.04 and 0.70 , a range of 1 to 18 . The input signal is a sine wave of $1 \mathrm{v} \mathrm{p}-\mathrm{p}$, and the output shows negligible distortion and negligible variation with temperature variations.

One application for the circuit is the automatic volume control of radio circuits. Also, a constant amplitude signal generator can be developed from this circuit. Other possible applications are in waveform genera+ing circuits.

Opposed Collector

Audio Amplifier

The amplifier shown is of interest because of the opposed collector method of achieving high gain. Presently the unit uses standard large size components, two pen cells for power, and is constructed in a $1-1 / 4 \times$ $2-1 / 2 \times 3-3 / 4 \mathrm{in}$. plastic case.

Opposed collector audio amplifier.
The basic circuit is an adaptation of a push-pull outage stage. 1N483 silicon diodes (similar types can be substituted) provide the proper dc bias levels. High beta germanium transistors and small emitter resistors supply a large current swing to the output, transformer with only millivolts of input.

The advantage of the opposed collector connection is that although the transistors are drawing nearly 13 ma , the currents balance closely and little resulting current flows in the collector load. Further, since the beta of these transistors is near 100 , the transferred emitter impedance is not excessively low for most magnetic pickups. Too, the de base current tends to flow out of the base of one transistor and into the other, again
minimizing the resultant dc through potentiometer and pickup. Finally, because of these balanced conditions and the known high impedance of an open collector, voltage gain is proportional to collector load impedance up to gains of over a thousand. Gains of this magnitude are obtained with larger batteries, zeners instead of diodes in the input path, and a 100 K collector
load impedance. Also, adjustment of the emitter impedances may be necessary to balance the two opposed currents. The circuit can then be used as a low level de comparator or a stne wave clipping circuit with sensitivity of a few millivolts. Substitution of two parallel, oppositely polarized silicon diodes for the collector load further improves the wave squaring characteristics of this circuit. Gain achieved this way instead of with cascaded stages actually uses less package space because no coupling or bypass capacitors are needed at all.

This omission of capacitors plus pickup loading probably account for the frequency response of the unit into dynamic speaker earphones despite the fact that no recording characteristic compensation was used. High impedance magnetic earphones will not give good results due to their very limited bass response. High fidelity pickups having 10 mv output at standard stylus velocities will have very good listening volume, and pickup having output above 3 mv will be satisfactory. For low impedançe stero-phones (both sides driven in parallel) a 5 K to 4 ohm or a 2.5 K to 1.8 ohm transformer is best and ealsily obtainable. High impedance (two thousand ohms) phones can be connected directly in place of the transformer primary if their dc resistance isn't too high, 400 ohms being a practical limit, and lower R being preferable.

Minimum-Interaction

Summing Amplifier

This is an operational-type amplifier that uses currentsumming to hold the voltage at the input node, point A,

Minimum-interaction summing amplifier. Feedback through \mathbf{R}_{2} maintains point \mathbf{A} at zero volts.
at zero volts. If more than one input is used, there will be an exact summation of the inputs, with no interaction between inputs.

This is accomplished as follows: A positive signal at the input will cause a current $A V / R_{i}$ to flow into the node. The output causes a current of $A V / R_{2}$ to flow out of the node, and since $A=R_{2} / R_{i}$, the node voltage is held at exactly zero volts.

The gain from any input to the output is merely the ratio or R_{2} / R_{i}, where R_{i} is the series resistor at that par-
ticular input. Any gain from 0.01 to 1000 is possible.
The $5-\mu \mathrm{f}$ input capacitor prevents oscillation and removes noise from the input. At first it may seem to limit the amplifier to dc summing, but since the input node is always at zero volts, the input capacitor does not degrade frequency response.
As a sine-wave amplifier with a gain of 1000 , the bandwidth is dc to 20 kc , and this may be increased to 5 mc with better transistors.

High-Level Wide-Band

Video Amplifier

This circurt was developed to drive an 8 v pulse into a 100 ohm load. The circuit uses emitter degeneration in the first stage and negative feedback in the second stage.

The frequency response of the amplifier is from 5 cps to 30 mc . The voltage gain is 26 db , and the undistorted sine wave output is 10 v p-p into a 100 ohm load. The circuit gives good linearity and has good. stability.

Frequency response can be increased to 50 mc by adjusting the bypass capacitor, C_{2}, of Q_{1} and by adjusting the bias.

Fig. 1. Wide-band video amplifier.

Logarithmic Amplifier

for Radar Signals

The circuit shown in Fig. 1 has highly linear log output over a 30 db dynamic range, and has been used in obtaining antenna patterns on an operating radar system. Its output current is directly proportional to the pulse repetition frequency and \log of the peak rf pulse power.

The underlying principle is based on the fact that the time required for an exponential discharge to reach an arbitrary constant value is proportional to the \log of the starting voltage. The $470 \mu \mathrm{f}$ capacitor, C_{1}, is charged by $C R_{1}$ to a value that is a function of the power into the detector mount. At the end of the radar transmit pulse, the voltage across C_{1} drops exponen-
tially toward zero. This exponential waveform is amplified in a Darlington amplifier containing Q_{1} and Q_{2}. Some clipping takes place in this Darlington stage for high level input signals.
The positive going input to Q_{3} is clamped at ground

Logarithmic amplifier for radar signals
potential by $C R_{2}$ and further amplified and clipped by the remaining two stages. The output of the final stage is a negative rectangular pulse of constant amplitude whose duration is proportional to the log of the peak pulse power into the detector mount. This output is suitable for driving an oscillograph.

Starved DC Amplifier Has

Low Noise, High Z

Transistohized low noise, high input-impedance ac amplifiers often are considered difficult to design-and with good reasons. To optimize the first stage, a careful compromise must be made among transistor parameters: $V_{c e}, I_{c}, h_{F E}$, semiconductor material, and base resistance. But if ac amplifier design is obtuse, the problems encountered in dc input stages are multiplied tenfold.
Fortunately the parameters that lead to low noise in a de input stage, namely starved currents and reduced voltages, also lead to a high input impedance. Actually the term "input impedance" becomes "base current" when referring to dc amplifiers.
A wideband transistor input stage was needed for a chopper stabilized amplifier intended to resolve 10 microvolts. The maximum permissible base current was 10 nanoamps.
The first decision was to use an emitter follower, since wide bandwidth and low noise tend to be contradictory requirements in a voltage-gain stage, Secondly, the low noise figure and minute input-current requirement dictated what has been termed a "squarved" condition (squashed and starved $V_{c e}$ and I_{c}).

To maintain this condition, forward-biased silicon diodes $D_{1 . s}$ and D_{t-5} regulate and decouple the negative and positive power supplies, respectively. Tran-
sistors Q_{1}, Q_{2}, form an npn-pnp gain-multiplication pair. The transistors are chosen for low noise, wide bandwidth, and substantial $h_{\text {re: }}$ at low collector current. Resistor R_{1}, a critical factor in deciding noisc factor, sets the transistor carrents and provides ample drive for the next stage. Resistor R_{2} almost completely cancels the base drive current, thereby raising the efective input impedance.

Starved low-uoise amplifier input stage. Emitter follower has wide bandwidth, and input curreut less than 10 ua.

The dc amplifier, when constructed, had a bandwidth of 100 kc , an cquivalent input noise less than 10 microvolts rms (neglecting dc drift, which is compensated for by the chopper), and an input current of about 8 nanoamps. Two units can be used differentially to compensate for temperature and power supply changes, resulting in a highly reliable amplifier, or a precision voltage-regulator front-end stage. An additional attractive feature of the design is its high-speed recovery from overload.

Amplifier with

Remote Gain Control

With this circuir, an operator at a console 1000 feet away can control a wide-band amplifier's gain from maximum to zero with a simple two-wire, low-voltage dc connection.

Fig. 1. Remote-gain control operates through Raysistor.
Fig. 2. Gain control characteristic.
The advantages of this circuit are its complete isolation between control and signal circuits; its linear gain control relationship over most of the control potentiometer's range;
and its capability for supplying a large-amplitude, undistorted output signal. The circuit in Fig. 1 has a maximum output of 15 volts peak-to-peak. Distortion is low because of the large emitter resistances.
The basic component is a Raytheon Raysistor connected in the emitter lead of a common-emitter transistor amplifier. The photoconductive element of the Raysistor is used as an unbypassed variable emitter resistor. This resistance varies from over 1 meg down to about 600 ohms as the control current to the lamp element changes from 0 to 30 ma .

Two methods of gain control are at work. One is simply that the amplifier gain is inversely proportional to the unbypassed emitter resistance; as a rule of thumb, gain equals collector resistance divided by unbypassed emitter resistance. The second is that as emitter resistance increases, emitter current decreases, causing transistor beta to decrease (the effect used in reverse AGC circuits).

The change in Raysistor signal resistance with control current is roughly logarithmic in nature. Beta decrease with decreasing current also is logarithmic. This circuit cancels one logarithmic effect against the other, thus achieving a linear gain control relationship. Figure 2 shows the measured gain control characteristic.

The component values were chosen to satisfy particular requirements, i.e., a maximum gain of 1 , a low output impedance, and a certain frequency response.

One Transistor, 50-db Dynamic Range Compression Amplifier

Non-saturating amplification of widely ranging video signals often is difficult to achieve in transistor circuits. The amplifier shown provides a minimum output signal level of 1.0 v with an input of 20 mv , but does not saturate with a 5 to 6 v input. In the actual application, the signal is later processed for risetime and duration information.

Wide dynamic range compression amplifier with voltage transfer function.

The circuit provides a minimum gain of 1 and a maximum gain of 15 . The diodes across the collector load resistors change the stage gain and impedance by shunting the resistors, one by one, as signal input is increased. The $100-\mathrm{K}$ pot is initially adjusted with zero signal to provide about $50 \mu \mathrm{a}$ collector current. Q_{1} must be a high beta at low current transistor such as a 2 N 336 A . Capacitor C_{B} is selected for proper frequency response. The voltage transfer function for the circuit is shown in the accompanying curve.

In actual application, two such circuits are cascaded.

The second amplifier provides a maximum gain of 5 and minimum gain of 1 . Overall input-output characteristics are 20 mv to 5 v input with 1.5 to 8 v output. By selecting load resistors and diodes, the gain characteristic can be made to follow many curves.
For Class A amplification, the ac-coupled dynamic load is similar except that two diodes are connected in opposite polarity in parallel with the various load resistors and the biasing circuit is altered.

Non-Inverting Pulse Amplifier Uses One Power Supply

This pulse amplifier increases the amplitude of 1 -pps pulses from +12 v to +28 v and also decreases rise and fall times. See Fig. 1. This circuit should also work well up to 50 meg pps with component value adjustments.
Q_{1} is initially held off due to the saturation of the previous stage. $\boldsymbol{R}_{\mathbf{6}}$ provides a leakage path to ground for $\boldsymbol{I}_{\text {cbo }}$ and prevents turn-on (in the absence of a pulse input) of Q_{1} even at elevated temperatures. R_{1} is a current-limiting resistor and C_{1} is selected to minimize storage (t_{s}) and fall (t_{f}) times. A positive-going pulse impressed at the base of Q_{1} turns Q_{1} on and the collector of Q_{1} drops from +35 v to approximately zero. This negative-going pulse is applied to the base of the pnp transistor $Q_{2} . Q_{2}$, which is initially held off due to the +35 v on its base, now turns on and the output at its collector (point A) is again inverted to a positive-going pulse. R_{2} and R_{3} are selected to give the required base drive to turn on Q_{2} with a signal applied at the input.

Rise and fall times, at the output, are lowered considerably because of the speed-up capacitor C_{1} and the complementary scheme of Q_{1} and $Q_{2} . Q_{1}$, due to the presence of C_{1}, provides an overdriven (spiked) pulse at the trailing

Fig. 1. Single power supply pulse amplifier.
Fig. 2. Input and output waveforms.
edge of its output. This pulse (at the base of Q_{2}) turns off Q_{2} harder and provides a sink for the stored charge in the base of Q_{2}. Thus, the output pulse's trailing edge (fall time) is approved.

A 5 -K potentiometer may be substituted for R_{5} to give an adjustable pulse output from 0 to +28 v . An emitterfollower can be added at point A if a low impedance drive is required.

Operational Amplifier Gain Control from Zero to Infinity

The use of oplerational amplifiers in analog computers, servo amplifiers, or any other electronic systems requires a practical adjustable gain control.
Two general methods of gain control for the operational

Fig. 1. Four methods of gain control. Method shown in 1d is most practical method for control from zero to infinity.
amplifier circuit are in common use. In the first method, Fig. la, the voltage gain is:

$$
\frac{e_{o}}{e_{1}}=f \frac{R_{f}}{R_{1}}
$$

where f is the thactional resivance of potemtioncer R.
The garn of this circuit varies from aco to $R_{r} / R_{\text {. }}$
The second method is used when more gain is desired. For Fig. 1b the gain is:

$$
\frac{e_{i}}{\varphi_{i}}=\left(-\frac{1}{1-f}\right) \frac{R_{f}}{R_{i}}
$$

The minimum gain of this circuit is unity times the ratio of R_{l} to R_{i}. The maximum theoretical gain is infinity; the maximum practical gain, obviously. is less.

Each of these two circuits has its uses and limitations.

Fig. 2. Range of gain for control circuit of Fig. 1d.

A more useful circuit combines the above two circuits with a dual potentiometer.

Here.

$$
\frac{e_{0}}{e_{i}}=\left(\frac{f}{1-f}\right) \frac{R_{j}}{R_{i}}
$$

The gain moves from zero to infinity. A still more general approach is shown in Fig. 1d, where

$$
\frac{e_{0}}{e_{i}}=\left[\frac{R_{3}+R_{4}}{(1-f)} \frac{R_{3}+R_{4}}{}\right]\left[\frac{f R_{2}+R_{1}}{R_{1}+R_{2}}\right] \frac{R_{f}}{R_{i}}
$$

To rapidly calculate the beginning and ending points for a desired gain characteristic use the following:

For $f=0$

$$
\frac{e_{0}}{e_{i}}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \frac{R_{f}}{R_{i}}
$$

For $f=1$

$$
\frac{e_{0}}{\rho_{i}}=\left(\frac{R_{3}+R_{4}}{R_{4}}\right) \frac{R_{f}}{R_{i}}
$$

Or:

$$
0 \leqslant \frac{R_{1}}{R_{1}+R_{2}} \leqslant 1 \leqslant \frac{R_{3}+R_{4}}{R_{4}} \leqslant \infty
$$

The gain must start less than unity and terminates between unity and infinity. Obviously, infinite gain is impractical. The maximum gain achievable is dependent on the characteristics of the operational amplifier.

400-Volt Output Transistor Amplifier

Here is a differential voltage amplifier capable of swinging more than 400 V line-to-line. A gain of 100 X can easily be obtained and the output
quiescent level is at O V to ground. The operating voltages can be obtained from tube-type supply busses, with the drain from the $150-\mathrm{V}$ supplies about 60 mA .

The power transistors can made such as pnp's for Q_{5} and be purchased for less than $\$ 10$ total. While the circuit was constructed of on-hand components and transistors, certain obvious substitutions can be Q_{6}. The power transistors are mounted on IERC \#UP2-TOV-7 separate heat sinks.

The input and driver stages employ small back-to-back

Direct-coupled differential amplifier provides $400-\mathrm{V}$ output swing.
type heat sinks. The zeners can be mounted side by side, in a row, with silicone grease impressed between them for thermal linking. A $0.01-\mu \mathrm{F}$ disc capacitor can be connected across the Q_{5}, Q_{6} bases for reduced noise and increased feedback stability. In layout, sufficient insulation resistance should be maintained between the high-level output and the feedback junction points.

The circuit was constructed for use as a low frequency oscilloscope amplifier for a special application. No attempt was made to optimize this circuit beyond the requirements of 400 V peak swing, drift less than $\pm 1 \mathrm{~V}$ over normal room temperature range a $5-\mathrm{kHz}$ bandwidth and a peak noise level of 3 V . The amplifier is quite forgiving for a shorted output, supply voltages applied in any sequence, or burnout from overdrive.

Photocell Threshold Circuit

This variable-threshold photocell amplifier draws negligible current in the quiescent state. When the incident light reaches
the predetermined threshold level, the circuit switches rapidly from $12-\mathrm{V}$ to zero output. These output voltages are
standard logic levels. The low current-drain allows battery operation of the circuit.

The original application for
this circuit was to detect day or nighttime conditions, and thus select the best operating frequency for a transmitter.

The threshold level had to be variable to compensate for photocell variations and also to allow the frequency changeover point to be advanced or retarded.

The circuit works with any resistive detecting device such as a thermistor or humidity sensor, as well as with the photocell shown here. Other resistance values can be accommodated by changing the $470-\mathrm{k} \Omega$ resistor in series with the detector.

Transistors Q_{1} and Q_{z} form a differential amplifier, with the reference voltage at the base of Q, set by the voltage-
divider adjustment. As Q_{2} is normally on and Q_{t} is off, the base-emitter junction of $Q_{\text {, }}$ is back-biased. When the light input causes the photocell resistance to increase, Q_{t} turns on and Q, turns off. Thus $Q_{\text {s }}$ is forward-biased and current flows into the base of Q_{6} to saturate that stage.

The collector of Q_{b} switches rapidly from +12 V to zero, giving an output compatible with standard logic.

Note that all transistors, except Q_{8}, are off in the quiescent state, thereby lowering the power drain.

Light-activated switching circuit uses a resistive photocell.

Low-Noise Preamplifier

Uses FET

If the source impedance is high, a FET gives less noise than a bipolar transistor, even at frequencies as low as 10 Hz . Thus, for an amplifier to be used with a high-impedance transducer, a FET provides the best input circuit.

The preamplifier shown here, was designed for use with a 330 pF hydrophone over the frequency range 10 Hz to 10 kHz .

Positive feedback through C_{1} reduces the shunting effect of the source impedance. The
hydrophone has an impedance of approximately $48 \quad \mathrm{M} \Omega$ at 10 Hz . The voltage gain of the FET stage is 20 dB . This stage gain reduces the effective noise contributed by subsequent transistors. Resistor R_{t} provides $40-\mathrm{dB}$ negative feedback, giving a closed loop gain of 40 dB for the complete preamplifier. This resistor also provides dc feedback. which stabilizes the bias conditions over a wide range of operating temperature.

Measured voltage gain of this amplifier varies from 40.2 dB to 40.5 dB over the stated frequency range. Measured equivalent-input-noise voltage is -113 dBV at 10 Hz and -157 dBV at 10 kHz .
Voltage gain can be in-

Low-noise preamplifier for low-capacitance transducer.
creased to 60 dB by reducing effect on noise. But this will R, to $90: 9$ ohms, with little reduce the $3-\mathrm{dB}$ bandwidth.

Current sources improve amplifier slew rate

Differential amplifiers sufFER from slew-rate slow down when driving capacitive loads. This effect is due to the RC-
time of their collector networks. improvement in slew rate is By replacing the resistive col- realized. Fig. 1 illustrates a lector network with a constant typical improvement. The circurrent source, a substantial cuit illustrated in Fig. 2 dem-
onstrates the use of a npn con-stant-current network in a typical deflection amplifier.

From Fig. 2, we see that

Fig. 1. This graph shows the transient response of the differenfial amplifier with and without the constant-current load.
the circuit is a symmetrical differential amplifier, Q_{1} and Q_{s} are identical current sources. The network forming Q_{1} 's current source is $Q_{1}, C R_{1}, Q_{7}, R_{6}$ and R_{g}. Transistor Q_{7} is used as a 6.2 V zener diode. This equivalent zener has an extremely low impedance and
will maintain 6.2 V with only a few $\mu \mathrm{A}$ of current. $C R_{1}$ compensates for $V_{B E}$ drifts of Q_{1} therefore, the voltage drop across R_{g} is essentially 6.2 V . R_{6} supplies the current for Q_{r} and base drive for Q_{1}.

Under large output condi-

Fig. 2. This is the circuit of a high-voltage deflection circuit with current sources as output collector loads.
tions the current variation the current through R_{8} is a through R_{6} is maximum, since constant. The only dynamic the entire signal appears across current variation under largeR_{6}. However, Q_{7} maintains a signal conditions is the current $6.2-\mathrm{V}$ constant drop due to its through R_{6}. The output impedlow dynamic impedance. Since ance into the collector of Q_{2} this voltage appears across R_{8}, is close to 100 k .

Non-linear

function

amplifier

Processing video signals with a linear quantization method is inefficient because too many levels exist for small signals and too few exist for large signals. In order to achieve economy in the use of quantized bits without changing the quantam level, it is necessary to pass the noise and signal through a non-linear function amplifier to make the rms voltage constant. The circuit shown improves system efficiency for signals of greatest occuring frequency.

This circuit uses a monolithic log amplifier in order to get the desired compression before a 6-bit A-D conversion. $V_{\text {; }}$ is attenuated by -20 dB and

This non-linear amplifier, made with IC op amps, synthesizes $\mathbf{V o}=2.5 \log _{10}\left(\mathbf{V}_{\mathrm{i}}+1\right)$.
level shifted by $I C_{1}$. Log amplifier $I C_{z}$ compresses the attenuated signal V_{r}. The output of $I C_{z}$ is amplified by $I C$, to a voltage range equivalent to V_{i}. $I C_{6}$ acts as a temperature compensator and output level shift-
er. Small output offsets may be nulled with R_{7}. The output transfer function is; Vo $=2.5$ $\log _{a 0}\left(V_{i}+1\right)$. Temperature stability is within 1% for a -10 to $100^{\circ} \mathrm{C}$ range.

The transfer curve's shape
may easily be altered by changing either the function's scale factor or constant. Adjusting the closed-loop gain of $I C_{1}$ varies the curve's order while adjusting IC,s gain varies the scale factor.
output from IC diff amp

Monolithic differential amplifiers are extremely attractive for dc and wideband amplifiers but the low operatingvoltage requirements limit their applications to only lowlevel circuitry. With a hybrid combination of discrete components and an IC diff amp, we can greatly improve performance. The figure shows how we can minimize the number of external components while yielding a substantial increase in circuit capability.

The speed of the CA- 3005 is limited by the collector-tobase capacitance of Q_{t} and Q_{2}. By limiting the apparent dynamic voltage swing across this capacitance, we can reduce the degenerative ac feedback and boost speed. The dynamic levels of the IC collectors are clamped to the zener voltage
so the maximum dynamic voltage swing appearing across the collector-to-base junction is $e_{\text {in }}$.
The gain of Q_{1} and Q_{z} is a function of collector supply voltage. By maintaining this voltage at V_{z}, we avoid dynamic gain variations with varied input levels.
Transistors Q_{4} and Q_{0} operate in a common-base configuration since their emitters see a high-impedance drive. A common-base configuration can be viewed as delivering the greatest possible speed for a given transistor type, so $Q_{\text {s }}$ and Q_{5} are extremely fast. The common-base configuration also allows operation from a high supply voltage since $B V_{C E O}$ is no longer the significant breakdown parameter. Instead, $B V_{C B O}$ now becomes the limit. For the $2 \mathrm{~N} 4299, B V_{c e o}$ is 400 Vdc , but $B V_{\text {(}}$ bo is 500 V .

By allowing a greater voltage swing across the active device, we realize increased gain. Gain for the diff amp is directly proportional to R_{L} / R_{e}, where R_{θ} is the intrinsic re-

By operating discrete transistors in a common-base configuration we can boost an IC diff amp's gain, speed and output voltage.
sistance of Q_{i} and Q_{2}. Since boost circuit gain proportionwe can now increase R_{L}, we ally.

Current

boosters for

IC op amps

Aside from the matter of cost, there's an important functional limitation to increasing the current output from IC op amps: thermal feedback to the input circuitry causes voltage offsets. The best way to overcome the problem is to use a physically separate current booster.

The figure shows (A) a $100-\mathrm{mA}$ booster with zero quiescent current. It uses the full output current of a preceding op amp (typically 5 or 10 mA). If the output current level is less than $V_{B E} / R_{e}$, the entire output current is supplied by the amplifier itself. Currents above $V_{B E} / R_{e}$ are supplied by the complementary emitter followers.

We can extend the output to the $1-\mathrm{A}$ range by cascading a similar booster (B in the figures), by adding complementary transistors (C) or by combining both (D). And if we want to limit short-circuit currents, we can use the popular circuits (E, F).

Diode types are not critical and the transistors are chosen to satisfy power and bandwidth requirements.

Various schemes for boosting current from IC op amps to $\mathbf{1 0 0}$ $\mathrm{mA}(A)$ and to $1 \mathrm{~A}(B, C, D)$ and for limiting short-circuit current (E, F).

Isolated line driver

with short

protection

When it's necessary to transmit digital data over a transmission line while maintaining isolated signal returns at opposite ends of line, the driver circuit shown can be used to advantage. The circuit, compatible with TTL and DTL logic, is powered by a $+5-\mathrm{V}$ supply, and has short-circuit protection.

The pulse transformer is driven by transistor $Q_{\text {, }}$ whose base drive is provided by resistor R_{2} when gate B is cut
off. Current limiting is provided by the combination Q_{2} and R_{r}. This current limiting protects Q_{1} from high collector currents caused either by an inadvertent short across the transformer secondary winding or transformer saturation.

When the voltage drop across R_{1} reaches approximately 0.7 V , transistor Q_{q} begins to turn on, thus limiting the base drive to Q_{1} and consequently limiting its collector current. With the value of R, as shown, the current is limited to 200 mA .

The circuit was used to transmit data with a pulse width of 300 ns over a 75 -ohm transmission line at a rate of

This line-driver circuit offers simplicity with current limiting and signal-return isolation. Any DTL or TTL NAND gates can be used at the input.

600 kHz . A much higher frequency could be used, but the duty cycle must be kept small
enough so the power dissipation of Q_{1} is not excessive with the output shorted.

Gain-programmable

amplifier

The circuir in Fig. 1 enables the gain of a non-inverting op amp to be changed externally. The control device is a FET, which shorts feedback resistor R_{3} to ground. Additional gain variation could be obtained by dividing R_{s} into smaller incre-
ments and shunting each segment to ground with its own control FET. With the "digital input" at zero volts, Q_{1} turns on but is held out of saturation by Schottky diode $D_{2} . Q_{i}$ then injects current into the gate of Q_{2} through the reverse capacitance of $D_{3} . Q_{2}$ turns on, making its drain-tosource resistance about 10 ohms. This value is negligible compared to feedback resistors R_{1} and R_{2}. The resulting opamp gain is $\mathrm{Eo} / \mathrm{Ei}=\left(R_{1}+\right.$

Fig. 1. This circuit's gain is programmable with standard logic levels.

Fig. 2. Output voltage variation as a function of the digital control signal. Analog output voltage scale is $1 \mathrm{~V} / \mathrm{cm}$ and the digital input voltage scale is $10 \mathrm{~V} / \mathrm{cm}$. The time scale is 200 $\mu \mathrm{s} / \mathrm{cm}$.
$\left.R_{2}\right) / R_{2}$. If R_{2} is $1.13 \mathrm{k} \Omega$ and R_{1} is $10 \mathrm{k} \Omega$, the resulting gain is 10 .

When the "digital input" is 5 volts, Q_{1} is off and the gate of Q_{2} is driven to -15 V . This negative gate bias causes the drain-to-source impedance of Q_{2} to approach an open cir-
cuit. Now the gain becomes $\mathrm{E} / \mathrm{Ei}=\left(R_{1}+R_{z}+R_{s}\right) /\left(R_{g}\right.$ $\left.+R_{s}\right)$. If R_{1} and $R_{\mathcal{R}}$ are still at $10 \mathrm{k} \Omega$ and $1.13 \mathrm{k} \Omega$, respectively, and if R_{3} is $8.87 \mathrm{k} \Omega$, the resulting gain is 2 . Fig. 2 shows the variation of the analog output as a function of the digital control signal.

Section 8 OSCILLATOR CIRCUITS

Voltage
 Controlled Oscillator

Here is a simple voltage-controlled oscillator that basically consists of a variable current source (Q_{1} and its bias circuit), a capacitor and a voltage-controlled switch (unijunction transis'or Q_{2}). The output signal can be used to trigger a bistable flip-flop.
With no input signal, Q_{1} acts as a constant-current source whose current is determined by R_{1}, R_{2} and R_{3}. Q_{1} will charge C_{1} linearly and Q_{2} fires when the voltage across C_{1} reaches Q_{2} 's emitter peak-point voltage. The unijunction transistor then discharges C_{1}, causing a negative spike at B_{2}. With the component values shown, the oscillator center frequency was 8 kc . The period is determined by the equation,

The output frequency is determined by the time needed for constant-current source \mathbf{Q}_{1} to charge \mathbf{C}_{1} to the peak-point voltage of UJT \mathbf{Q}_{2}.

$$
T=\frac{V_{p} C_{1}}{i}
$$

where:
$V_{p}=$ UJT emitter peak-point voltage
$C_{1}=$ capacitor value
$i=$ current thru Q_{1}
$T=$ period between pulses
When an input signal is applied to the base of Q_{1} the current flowing through Q_{1} is varied, thus varying the time required to charge C_{1} up to Q_{2} 's emitter peakpoint voltage. Due to the phase inversion in Q_{1}, the output frequency is 180 degrees out of phase with the input voltage.

The circuit was temperature tested using a polystyrene capacitor for C_{1}. The frequency varied 3 percent between $-50^{\circ} \mathrm{F}$ and $+150^{\circ} \mathrm{F}$. Most of this variation occurred at the low temperatures, so that it is reasonable to speculate that the frequency could be held to ± 0.3 percent by placing the circuit in a temperaturecontrolled oven.

Wide Range

Variable Multivibrator

$\mathrm{T}_{\text {he }}$ hybird astable and monostable multivibrators described in the literature have shown good stability and an improved range of continuous frequency variation over the conventional circuit configurations. (The hybrid circuits have exhibited a range of frequency change of up to $30: 1$.) This has been achieved at the price of adding another active semiconductor device, usually a unijunction transistor. The circuit of Fig. 1 reverts to the more conventional astable form, and is a

Fig. 1. Modified astable multivibrator.
variation of a circuit described earlier. ${ }^{1}$ The modified astable shown has a frequency change ratio of $120: 1$ at

50 percent duty cycle, with symmetry variable by ± 97.5 percent. The frequency range for the values shown is from 5 msec to $600 \mathrm{msec}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$.

Among the many applications for a circuit with this capability is as a pattern source for generating keyed dc or keyed tone signals for testing digital communications and data processing equipment. For example, a four bit digital word has sixteen possible values; eight of these values can be programmed using this circuit. Six standard seven unit teletype characters can be generated, making the circuit an inexpensive baud
(Continued on page 40)
${ }^{1}$ Mattox, William J.. '"High Square, Variable Frequency Multivibrator", Electronic Equipment Engineering, July, 1961.

Fig. 2. Converted circuit of Fig. 1 to monostable multivibrator operation.
generator for testing communication circuits. With the symmetry and frequency range available, digital words up to 40 bits in length may be simulated. This is not to imply that all combinations are possible, but by proper adjustment of the timing, certain discreet values can be programmed.

The circuit of Fig. 1 operates in the conventional astable manner, with R1 and R2, and R9 and R10 forming the collector loads for Q1 and Q2. R3 and R8 are the base drive limiting resistors; while diodes CR1 and CR2 isolate the output terminals from the charging circuits for Cl and C 2 , thus providing an extremely square output waveform. Note that for all practical purposes the base drive and timing circuits are independent, an advantage not found when attempting to vary the frequency of a standard astable circuit. To prevent a ramp from appearing at the leading edge of the positive going waveform, R2 should equal R4, and R7 should equal R9. Also R3>>R2 and R8>>R 9 .

For digital or other type systems where the basic circuitry is repeated many times, the circuit of Fig. 1 can be converted to a monostable multivibrator by the omission of R4, R6, R7, and C2. No other changes are necessary, and with a suitable trigger a one-shot is available. This is shown schematically in Fig. 2. For the values given in Fig. 2, the output pulse width at the collector of Q2 can be varied from 0.25 msec to 300 msec , a ratio of $1200: 1$. This rather wide range should make the circuit attractive for a variety of uses. A waveform with good squareness can also be obtained from the collector of Q1 through the isolating action of CR1 as explained above.

Stable Oscillator Circuit

This circuit achieves excellent frequency and amplitude stability; accomplished by eliminating all grid current in the tank circuit, and by isolating the tank from the driving tube by the use of resistive degeneration.

Unlike most oscillators which limit by forcing the grid positive, drawing current into the tank coil, this circuit limits by forcing the grid of V_{1} negative; therefore greatly reducing the g_{m} of the tube. Thus, no dc ever flows in the tank coil.

Tube V_{1} is a tetrode cathode follower with the screen driven by the cathode, thus its input impedance as seen by the tank is very high, and changes of tube parameter will affect the resonance only slightly.
The driver circuit, V_{2}, is cathode driven with a grounded grid. This both maintains the cathode voltage, allowing the negative swing limited by V_{1}, and preserves the zero phase shift which is a characteristic of this circuit. The plate of V_{2} is coupled to a potentiometer which regulates the positive feedback necessary for oscillations. Use of "Nuvistor" tetrodes makes this circuit economical on power, and reduces temperature drift.
For nonsinusoidal low impedance output, couple to the cathode resistor. If a very pure sine wave is dedesired, couple with a high impedance load to the grid of V_{1}. Be careful that this circuit is an equivalent constant resistance, as either reactive or variable loads will reduce stability, By proper compromise in the feedback pot setting, both excellent stability and near constant amplitude over a wide tuning range may be achieved.

Resistive degeneration allows isolation of the tank circuit from the driving tube while eliminating all grid current from the tank.

Low-Frequency

C-Coupled Oscillator

The simple and inexpensive oscillator in Fig. 1 is designed for frequencies from 5 cps to 300 kc but its advantages are more obvious at low frequencies. The frequency is quite stable over a wide range of temperature and dc-voltage changes.

Conventional configurations like the Clapp or Hartley require dual inductors or capacitors and, even with
tank circuits, another capacitor is required for coupling to the next stage. For low frequencies, these extra components are large and costly. For operation over wide frequency ranges, ac coupling introduces additional problems because loop gains decrease with frequency.

The oscillator in Fig. 1 overcomes these problems by using the tank not only to control frequency but

Fig. 1. A stable low-frequency oscillator.
Fig. 2. A coupling circuit useful for driving varying loads.
also to couple the signal to the next stage. The diode at the base of Q_{2} provides an ac ground from the tank capacitor for positive voltage swings, while Q_{2} 's base emitter junction provides the ac ground for negative swings. There is a small discontinuity in the ac-grounding circuit when $V_{b e}$ of Q_{2} is with 0.1 v for a germanium transistor and diode and within 0.6 v for silicons.

The resulting waveshape discontinuity at the collector of Q_{1} can be smoothed by C_{1}. This capacitor produces degenerative feedback which will reduce all high-frequency changes at the collector. It will also limit the maximum frequency of operation.

Tests showed that with $L=2$ hy and $C=28 \mu \mathrm{f}$, the circuit could oscillate below 4.6 cps . Dc biasing of the capacitor allowed the use of electrolytics. At frequencies around 100 cps , frequency stability with respect to supply-voltage changes of 20 percent was within 0.1 percent. Drift was 0.2 percent from 25 to 100 C.

Loading the circuit with a 22 K resistor from collector to ground lowered the frequency by 0.5 percent. The coupling circuit in Fig 2 can be used to eliminate this frequency change when the oscillator is used to drive a Schmitt trigger or other varying load.
R_{1} can be reduced if greater loop gain is required for low $h_{f e}$ transistors and R_{2} can be replaced by a crystal for tighter frequency control.

Even Duty Cycle

Blocking Oscillator

The design of a free-running blocking oscillator may prove to be a problem when the duty cycle is $50 / 50$. This problem may be alleviated by the insertion of capacitor, C_{1}, across resistor R_{2}, as shown in the figure.

The $R_{2} C_{1}$ time constant is adjusted so that $t=10 R C$, where $\mathrm{t}=1 / 2 \mathrm{f}_{o}$, and f_{o} is the frequency in question. The circuit was designed for operation at 400 kc .

Since the on time is essentially controlled by the magnetizing inductance determined by values of $L_{2} C_{2}$, and the off time by time constant $R_{1} C_{2}, R_{1}$ must be made excessively small to insure that C_{2} can discharge in a short period of time to a point where transistor Q_{1} turns on. After Q_{1} switches on C_{1} is charged as shown. Thus, C_{2}, is required to discharge to a point where the base-to-emitter voltage $V_{B E}$, becomes positive instead of ground potential. The circuit then generates another pulse.

$R_{1}=300$	$R_{4}=1.0 \mathrm{~K}$	$Q_{1}=2 \mathrm{~N} 708$
$R_{2}=2.0 \mathrm{~K}$	$C_{1}=62 \mathrm{pf}$	$D_{1}=\mathrm{FD} 126$
$R_{3}=470$	$C_{2}=.01 \mu \mathrm{fd} T_{1}=\mathrm{AE} 441-3(\mathrm{MCI})$	

Blocking oscillator provides even duty cycle.

A Synchronized

Oscillator Circuit

A Synchronized oscillator circuit was required for a timing operation with a variable synchronized signal whose nominal frequency is in the order of $1 / 170$ of the oscillator frequency. No integral relationship existed between synchronizing signal and oscillator signal frequencies. The best available scheme was synchronization of an oscillator by interrupting a current of known magnitude and direction in a coil (usually an element of the oscillator). However, delays existed in this scheme between the end of the synchronized interval and the start of oscillations of the order of 0.3 microseconds which was unsatisfactory.

Thus, a synchronized oscillator was devised using an astable multivibrator as the basic electronic circuit. The frequency stability could be made 1 part in 4000 using temperature stable elements (film resistors, etc.). This oscillator is shown in Fig. 1. Transistors Q_{1} and Q_{2} constitute a conventional astable oscillator pair. Diodes $\mathbf{C R}_{1}$ and $\mathbf{C R}_{2}$ prevent the large negative potential that appears between base and emitter of Q_{1} and Q_{2} from breaking down the base-emitter junction of these transistors.

The synchronizing pulse is applied to the cathode of diode $C R_{3}$, thus cutting Q_{2} off and forcing Q_{1} to saturate in the normal astable manner. When the synchronizing pulse passes, oscillations begin with Q_{2}
saturating first. The oscillations happen as a result of a slight positive spike created by the stray capacity across $C R_{3}$ which causes Q_{2} to conduct. A capacitor of 20 micro-micro farads placed across $C R_{3}$ assures that this transition occurs with negligible delay from

Fig. 1-Synchronized oscillator.
the termination of the synchronizing signal.
One situation which occurs and must be remedied is described here. If the synchronizing signal occurs at a time when Q_{2} is cut off, as a result of the natural oscillation mode, then the synchronizing signal will not disturb the natural oscillation until Q_{2} tries to return to the saturated state. This might be as long as a half clock interval. A transistor switch was inserted which is closed by a positive signal occurring at the same instant as the synchronizing signal. If Q_{2} is off, at the arrival of the synchronized signal C_{1} is charging and has not yet reached its final state. Transistor switch Q_{3} quickly discharges capacitor C_{1} to the ground potential, thus assuring that during the synchronizing interval the oscillator will be forced into the condition where Q_{2} is nonconducting and Q_{1} is in the conducting mode. The pertinent waveshapes are shown in Fig. 2.
For this application the synchronized signal had a width of 6.0 micro-seconds. However, the circuit would operate properly with a minimum synchronized signal of 2.0 microseconds. The oscillator frequency was 68.4 kc and the synchronizing signal 400 cps .

Fig. 2-Timing Waveforms

A 0.01 Microwatt

Multivibrator

The basic multivibrator consists of two amplifying devices which alternately conduct and cut-off as the multivibrator switches from one state to the other. Therefore one device is always conducting.

By making one device a pnp transistor and the other an npn transistor, both can be made to conduct at the same time for part of the cycle, and both can be made to cut-off the remainder of the cycle. If the conducting time is made very short compared to the non-conducting time, the average power used is very much less than when one is always conducting.
Such a multivibrator is shown in Fig. 1 and has a frequency of about 40 cps . It operates at 0.6 supply voltage at a current of about $0.015 \mu \mathrm{a}$, and has a total power consumption of $0.009 \mu \mathrm{w}$.

Fig. 1 Multivibrator having extremely low power consumption.

Fig. 2 Multivibrator with low output impedance.

As the frequency is increased, more power is required. For comparison, a higher frequency circuit, Fig. 2, is shown. This circuit oscillates at 840 cps and draws $1.6 \mu \mathrm{a}$. It differs from Fig. 1 in that a resistor is added in the emitter circuit of the 2 N 1711 transistor. A triangular pulse, about $10 \mu \mathrm{sec}$ wide at the base, appears across this resistor. The pulse is surprisingly large, about 0.4 v , and because of the low impedance of the circuit, is useful in driving additional circuits.

Complementary symmetry allows flexibility in the polarity of the output pulses. This is because the output can be across either, or both, collector resistors, or across a resistor in either, or both, emitter circuits. Frequency can be controlled by varying the capacitance, the base resistance, or the base-bias. For example, a temperature-to-frequency conversion can be made by simply replacing one base resistor with a very high resistance theirmister. (The circuit will not operate unless the base resistances are very high). Alternate transistors which have been used are 2 N 338 or 2 N 697 for the npn and 2 N 495 for the pnp.

Wide-Range, Voltage-

Controlled Oscillator

This transistorized butler oscillator was designed to provide a 70 per cent frequency deviation. Placement of a series-tuned circuit in the feedback path between emitters of Q_{1} and Q_{2} makes the frequency relatively independent of transistor parameters. L_{1}, which is adjusted for a loop gain just sufficient for sinusoidal oscillation, also provides shunt peaking to stabilize the output amplitude over the range of control.

By adjusting L_{2} the circuit shown was tuned to 2 Mc with a 1 v control. The frequency deviation from this point was minus 205 kc at 0 v to plus $1,289 \mathrm{kc}$ at 20 v .

The frequency deviation is not linearly proportional to the control voltage in the lower half of the voltage

Fig. 1. Wide range, voltage controlled oscillator. range. Therefore, a requirement for linear deviation will necessitate a shaped control characteristic.

Voltage-Controlled VariableFrequency Oscillator

This circuit was designed as a voltage-controlled variable-frequency oscillator. Without the 10 K resistor, the circuit is the well known unijunction transistor ujt oscillator. The voltage toward which the capacitor charges is controlled by the incoming dc voltage when the 10 K resistor is included. A low input voltage makes the capacitor charge towards a lower voltage, which means that it takes longer for the capacitor to charge up to the breakdown voltage of the ujt. This gives a slow pulse repetition frequency prf.

Conversely, a high input voltage allows the capacitor to charge towards a higher input voltage. Thus, the time it takes the capacitor voltage to reach the break-

Voltage controlled variable frequency oscillator.
down voltage of the ujt is reduced and the prf increases. It should be noted that this circuit is not meant for use where linearity is important.

Output, in pulses per second, for two values of \mathbf{C}

C $0.68 \mu \mathrm{fd} \pm 10 \%$		C $0.2 \mu \mathrm{fd} \pm 20 \%$	
$\operatorname{liv}_{(v d c)}$	$\begin{aligned} & \text { OUT } \\ & \text { (pps) } \end{aligned}$	$\operatorname{IN}_{(\mathrm{vdc})}$	$\begin{aligned} & \text { OUT } \\ & \text { (pps) } \end{aligned}$
0	670	0	220
5	1700	5	530
10	2300	10	720
15	3000	15	870
20	3700	20	1100
25	4000	25	1230
30	4550	30	1400

Inductor Raises Useful Sawtooth Frequency

The novelty of this circuit consists of adding an inductor to cause ringing and thereby extend the operation of a sawtooth oscillator, notably a four-layer diode, to higher frequencies. The technique is also applicable to other, similar negative-resistance devices.

Fig. 1. Basic negative-resistance sawtooth oscillator with associated waveforms.

Consider the simple sawtooth oscillator in Fig. 1a, consisting of resistors R_{1}, R_{2}, capacitors C_{1} and four-layer diode D_{1}. The waveforms for normal circuit operation are shown in Fig. 1b. For higher frequencies, the resistor R_{1} is reduced or the voltage V_{1} is increased. The waveforms, however, degenerate to those shown in Fig. 1c. The problem is that the capacitor charging current carried by the negative-resistance device is close to or above the valley current on the negative-resistance characteristic. Therefore
the diode terds to latch up in the conducting state. In one application, this caused a circuit not to operate satisfactorily above 10 kc for reasonable values of capacitance. about 500 pf .

Fig. 2. Improved circuit with necessary ringing evident in sawtooth waveforms.
The solution is to add a choke coil in series with the capacitor C_{1}. Thus the capacitor discharge through the diode excites the $L C$ circuit and the resulting rings cut off the four-layer diode. The modified circuit was thus capable of operating well above 100 kc with no tendency toward instability. The waveforms are shown in Fig. 2b.

Transistor Mixer Crystal Oscillators

FIG. 1—Basic oscillator circuit-a Colpitts.

Aclrcurt which will allow one transistor to do the work of two will not only save the price of a transistor but will generally effect a saving in space and other component parts. Three mixer crystal oscillator combinations based on this philosophy are shown in Figs. 2 to 4.
Oscillator-Mixer A (Fig. 2)

FIG. 2-Mixer-oscillator combination A.
Characteristics of this circuit are: Frequencyinput $30-40 \mathrm{mc}$; output (i.f.), 10.455 mc ; crystal, third overtone operating 10.455 mc lower than the signal frequency.

It will be observed that the oscillator configuration is the familiar Colpitts circuit, shown basically in Fig. l. Capacitors C_{1} and C_{2} should be chosen carefully for correct operation. In parallel with
C_{1} and C_{2} are the transistor capacitances-the col-lector-to-base and the base-to-emitter capacitances, respectively.

As a mixer, the transistor is operated in the grounded emitter configuration. Tuned circuit L_{1}, Fig. 2, has a low impedance to the i.f. frequency but a high impedance to the crystal frequency. L_{1} and its associated capacitor should be tuned to the overtone crystal frequency.
The values of the various components have been compromised. They are not particularly critical within reasonable limits.

Oscillator-Mixer B (Fig. 3)

FIG. 3-Mixer-oscillator combination B.
Characteristics of this circuit are: Frequencyinput 10.455 mc ; output (i.f.) 455 kc ; crystal frequency, 10 mc .

Although the transistor is a Philco type, others such as the TI S054A will give excellent performance at the frequencies concerned.

The $200 \mu \mathrm{~h}$ choke is used in lieu of a tuned circuit normally resonant at the crystal frequency. The oscillator is operated at the fundamental frequency of the crystal. The 22,000 ohm resistor is paralleled with the r.f. choke to damp out spurious oscillations which tend to occur at a frequency determined by the choke and associated capacitances.

Capacitor C_{1} insures a low impedance for the signal to ground but is part of the i.f. tuned circuit at the i.f. frequency. As a mixer, the values of the various componentes are not overly critical.

Oscillator-Mixer C (Fig. 4)

FIG. 4-Mixer-oscillator combination C.
Characteristics of this circuit are: Frequencyinput 27 mc ; output (i.f.) 455 kc ; crystal frequency, 455 kc higher than the received frequency.
The transistor used is a Philco 2 N 1745 , although others may give similar performance.

The tuned circuit in the collector lead is adjusted to the frequency of the crystal. As a mixer the transistor is operated grounded base. Ground-
ed base configuration has been found proferable to gromuded emitter connection when the crystal frequency is near the signal frequency. The coupling between the link and L_{1} should be adjusted so that the tuned circuit does not pull the crystal out of oscillation. The correct amount of coupling coincides with good selectivity requirements.

Components are somewhat more critical than those associated with the two oscillators previously deseribed. The miser is more critical of over-injection, and I_{2}, should be adjusted for maximum gain rather thim for maximum oscillator output. Gencrally. L_{2} is tuned slightly lower in frequency than the frequency of the crystal.

The 500 pf capacitor, C_{2}, creates a low impedance to ground for the oscillator but is absorbed in the i.f. tumed circuit at the i.f. frequency.
Feedback may be adjusted by varying the value of C_{1}. This capacitance is effectively in series with signal and should be as large as possible consistent with reliable oscillator operation.

RC Plate-Tuned Oscillator

Aspectal variety of the Wien-Bridge audio frequency ascillator as shown in Fig. 1 was constructed to generate a useful source of signal voltage by a one-stage instead of a two-stage regenerative amplifier. In addition, it makes a signal voltage available directly from an impedance matching transformer instead of a buffer amplifier for isolation purposes.
The oscillator tube is a triode-connected beam 'power 35A5; however, other power triodes can be operated satisfactorily. The Wien Bridge forms the plate load of the tube, and its reactive components determine the resonant frequency of operation as expressed by the relation: $F_{o}=1 /$ $2 \pi \sqrt{R_{1} C_{1} R_{2} C_{2} \mathrm{cps}}$.

One end of the matching transformer primary is connected to the midpoint of the bridge reactive components: the other end is connected to the grid leak of the tube. An intermediate tap on the primary is grounded. The cathode lead is tied either slightly above or below the grounded tap. The degree of amplifier gain and regenerative action is regulated by the position of the cathode in the feedback loop of the transformer. The grid-leak time constant should be equal or greater than ten times the period of oscillation, and is given by the following relation: $R_{g} C_{g}=10 T_{o}$ where $T_{o}=1 / F_{o}$. The signal output is obtained from the transformer secondary.

Consider that a steady current flows in the tube circuit. Assume a small momentary increase in plate current occurs due to some transient effect. The plate voltage will decrease. Since the voltages across the Wien-bridge capacitors cannot instantly follow the plate change, the midpoint of this RC
network will drop below ground potential. Current from ground consequently flows through the transformer primary and induces a positive voltage on the grid. Accordingly, the original increase in plate current will continue until limited by the rise in grid-leak bias.

At this time, the bridge capacitors have been overcharged through the B supply, and this causes the midpoint of the RC network to go above ground potential. Current then flows to ground through the transformer primary, and induces a negative voltage which adds to the grid-leak bias, thereby tending to cut-off the plate current. As the cut-off point is reached, the induced negative voltage is lifted from the grid-leak. The amount of grid-leak bias only does not hold the tube at cut-off; hence, the plate current is allowed to increase. This cycle is repeated at a frequency given in the formula.
This oscillator can be operated as a self-modulated signal source. For example, when the primary of

FIG. I-Plate-funed RC oscillator circuit for 1000 cps .
the matching transformer is connected in parallel with a capacitor, its resonant frequency will be modulated by the Wien-bridge selective frequency network.

Using the values shown in Fig. 1 for R and C, the frequency is about 1000 cps . For higher frequencies, capacitors C_{1} and C_{2} could be of the dual-section type with common rotor drive for ease of frequency range control.

Pulsed Audio Oscillator

Repetition rate, duty cycle, and frequency can be easily varied for the pulsed audio oscillator shown in the diagram. Transistors Q_{1} and Q_{2}, together, form an emitter coupled multivibrator circuit, and Q_{2} is a grounded base audio oscillator. Once each cycle, the multivibrator action shuts off the normally free-running audio oscillator. The oscillator output is thus pulsed as shown in the diagram.
The oscillator on time is controlled by the RC time constant in series with the charge path 1 in the figure. Charge path 2 establishes the oscillator off time. It was desired to have a small duty cycle, on time much less than off time. This action was accomplished by the addition of diode $C R_{1}$. The
diode conducts during the oscillator on time and effectively shorts R_{4}. During the off time R_{4} is in the circuit, hence the orr time is greater than the on time. Resistor R_{4} controls the orf time independent of the on time. Resistor R_{3} can be adjusted

Diode provides small duty cycle of pulsed audio oscillator.
to control the on time but it will also effect the orf time in the same direction.

The collector of Q_{2} must not employ a series dropping resistor or saturation will take place and the oscillator action will be destroyed. Capacitor C_{4} together with the transformer's primary inductance set the oscillator frequency. For the component values specified, the oscillator frequency is 920 cycles, the on time is 0.07 second, and the off time is 0.27 second.
The circuit is designed for good bias stability and it is not very voltage sensitive. The 32 -volt supply gives a secondary output of 21 volts, rms.

Unusual Emitter Follower RC Oscillator

Voltage gain of an RC network can be arranged to be greater than unity with zero phase shift at a particular frequency. If this is used as a feedback element with an emitter follower amplifier, oscillation will result provided the loop voltage gain is greater than unity.

This technique gives a simple one-transistor RC oscillator of high stability, predictable performance, large output voltage, and low distortion. Because the emitter follower connection gives relatively high input impedance and low output impedance, the RC network may be severely mismatched to the amplifier, and thus the frequency determining parameters may be made independent of the transistor. The frequency may be adjusted over a wide range by simultaneous adjustment of the capacitors, or over a narrower range by adjustment of only one capacitor, (C of Fig. 3), which may be a varicap.

Suitable circuits may be derived from 180 -degree phase shift networks. Figure 1 shows a generalized
three-terminal network giving such phase shift. It is seen that the voltage of terminal 3 with respect to terminal 2 is greater in magnitude than the input voltage. If the terminals are interchanged as in Fig. 2, terminal 2 being grounded, the output voltage will be greater than the input voltage, and in phase with it. As the network is passive, there cannot be power gain; the output impedance is higher than the input impedance.

Many networks of this type are suitable as oscillators. One useful version is shown on Fig. 3. The gain of this circuit at $W_{o}=G / C$ is
$\left(\frac{e_{i}}{e_{o}}\right)_{W_{o}}=\frac{n(1+m+n)}{1+m+m n+n^{2}}$
This is maximum for a given value of m if $n=$ $(1+m)(1+\vee 2)$, when

$$
\left(\frac{e_{i}}{e_{o}}\right)_{W_{o}}=\frac{4+3 \sqrt{2}}{4+2 \sqrt{2}+m(1+\sqrt{2})}
$$

This reaches its maximum value at $m=0$, and drops to unity at $m=\sqrt{2}$.

The input and output impedances are

FIG. 1-Three-terminal network provides 180-deg phase shift.

FIG. 2-Network with terminals transposed.

FiG. 3-Oscillator circuit formed from network.

FIG. 4-Emitter foilower oscillator has high stability and output.

$$
\begin{aligned}
& \frac{1-j}{2 G} \frac{1+m+m n+n^{2}}{m^{2}+n+n^{2}} \\
Z_{o}= & \frac{1-j}{2 G}
\end{aligned} \frac{n(1+m)(1+m+n)}{m\left(m^{2}+n+n^{2}\right)}, ~ l
$$

Suitable practical values are $m=1 / 5, n=3$ giving a gain of 1.16, when $Z_{i}=0.64 R, Z_{o}=4.44 R$, where $R=1 / G$.
A suitable 1-kc oscillator circuit is shown in Fig. 4 , using only one power supply. Potentiometer P sets the gain io achieve low distortion. An output voltage of about 8 volts p-p may be obtained with a 15 -volt power supply. The ioad must be large enough to keep the gain above 0.862 . If the load is tapped down on the emitter resistor, as indicated, the oscillator will be immune to load variations, even a dead short circuit. The effective source impedance will be somewhat less than 1000 ohms with the values indicated.

Current analogs of these circuits using the common base connection may also be built. Mismatch between amplifier and network is in this case easier to achieve, but the waveform is generally not as good, unless more complex amplitude control elements are used.

Quasi-Sinusoidal Relaxation Oscillator

Relaxation oscillators are usually associated with sawtooth waveforms and neon glow tubes; however, this relaxation oscillator generates a sinusoidal output and uses a 4-layer (or Shockley) diode. Only four parts are required: the diode, a resistor, a capacitor, and an inductor (which can be the primary winding of a transformer).

Basically, the circuit is an oscillating tank circuit which is periodically re-energized by a relaxation type of operation. When E is first applied current will flow into the series $L C R$ circuit and the voltage across the diode will begin to rise. In the "open" state the megohm impedance of the diode will have little effect on the LCR circuit hence it
may be neglected; however when diode voltage reaches the critical or firing voltage, the diode will suddenly become a low impedance of a few ohms. With the diode fired, the circuit becomes the $L C$ tank circuit shown. The diode will remain fired until the circulating tank current reduces the resistor current below the holding current of the diode. When the diode opens, the series circuit will be formed again and one cycle of operation will be complete.

Waveforms and tank circuit action in quasi-sinusoidal relaxation oscillator circuit.

Component values of L and C will depend upon the desired frequency of operation; the 4-layer diode must have a firing voltage less than the applied voltage, other characteristics, (recovery time, holding current, etc.) will depend upon the application. The exact value of R can best be obtained experimentally, by adjusting for the minimum resistance required to maintain oscillation (this also provides the most sinusodial output waveform). Normally, the resistor value will be less than the product of the holding current and firing voltage; this is due to the addition of the circulating current in the $L C$ tank circuit to the resistor current. Hence the Q of the $L C$ circuit and output loading are compensated for by the proper value of R. It is noted that R does have a minimum value (when the resistor current exceeds the sum of the holding current and circulating current) which will cause the diode to remain fired continuously.
Frequencies from 15 kc to 175 kc have been generated using standard 4 -layer diodes. Typical values for 120 kc unit using a 30 -volt diode are: $E=45$ volts, $C=0.0003 \mu \mathrm{f}, \mathrm{L}=25 \mathrm{mh}, R=2.6 K_{\text {t }}$

Improved Multi With Continuously Variable Rep Rate

[^1]become flat. and the triangular wave becomes linear. When the current source is made variable, the repetition rate becomes variable.

Improved multi with continuously variable rep rate.
The expression describing this variation of the period with current is:

$$
I_{u} \frac{c\left(I_{1}+I I_{2}\right)}{I_{1} I 2}
$$

In a symmetrical arrangement $I_{1}=/ \underline{1}$.

$$
T \propto \frac{2 C}{I_{1}}
$$

The repetition rate thus varies directly with the magnitude of the constant biasing current.

Capacitance Value-C		Repetition RateContinuous Variation		
100	$\mu \mathrm{f}$	5.6 cps	to	10 cp
10	$\mu \mathrm{f}$	56 cps	to	100 cps
1	$\mu \mathrm{f}$	560 cps	to	1 kc
0.1	$\mu \mathrm{f}$	5.6 kc	to	10 kc
0.01	$\mu \mathrm{f}$	56 kc	to	100 kc
0.001	$\mu \mathrm{f}$	560 kc	to	1 mc
330	pf	1.55 mc	to	2.68 mc

Therefore, by using a variable current control resistor, one multivibrator can be used over a very wide range of repetition rates with few components, as is shown in the table. For this circuit the repetition rate may be varied by more than 70 percent. If an analog waveform is impressed on the current biasing transistor, voltage-to-frequency conversion results.

Because the amplitudes of both the square wave and the triangular wave are fixed by the transistor internal voltage drops, these amplitudes remain fairly constant over the full frequency range.

High Efficiency Relaxation

Oscillator

Tins circuit was developed for use as a voltage-controlled oscillator in a high efficiency switching regulator. It is a relaxation-type oscillator which provides short, fast pulses to trigger a multivibrator. It has many advantages over the common unijunction relaxation oscillator, such as: higher power output, lower power consumption, faster pulse risetime, higher maximum operating frequency, higher relia-
bility, and, with the new plastic-case transistors, lower cost.
The oscillator consists of a simple $R-C$ ramp generator coupled to a high efficiency trigger circuit. In the circuit, Q_{1} is initially off if the voltage at its base is less than:

$$
V_{B 1}=\frac{V R_{3}}{R_{3}+R_{4}+R_{5}}+V_{B E 1}+V_{B E 2}
$$

Timing capacitor C_{1} will charge up via control resistor R_{1} until its voltage reaches the point at which Q_{1} begins to conduct. If resistor R_{1} can supply enough current (about $1 / 2 \mu \mathrm{a}) Q_{1}$ turns on. As Q_{1} turns on its collector voltage falls, driving the, base of Q_{2} negatively, causing Q_{2} and thus Q_{1} to conduct more. Both Q_{1} and Q_{2} will be driven into saturation by the charge in C_{1} and C_{2}. The base current of Q_{1} in saturation will discharge C_{1} through limiting resistor R_{2}; and if resistor R_{1} cannot supply enough current to keep Q_{1} in saturation (about 0.5 ma), the trigger will turn back off by the same regenerative action that turned it on.

Using the parts values shown, the permissible range of values for R_{1} is found to be between 50 K and 25 meg . With R_{1} set at 1 meg the oscillator operates at about 75 kHz putting out $10-\mathrm{v}$ negative-going pulses with risetimes

Relaxation oscillator composed of ramp generator driving a trigger circuit.
of 10 nsec and fall times of $1 \mu \mathrm{sec}$. Power consumption is 1.5 mw .

With R_{3} at 10 K the upper operating frequency is about 1 MHz , limited by the recharge time of C_{2} through R_{3} and R_{5}. Pulse width is about $0.5 \mu \mathrm{sec}$ but can be lengthened by increasing C_{1} and/or R_{2}. For example, with $C_{1}=100$ $\mu \mathrm{f}, R_{1}=1 \mathrm{meg}$, the pulse width is 25 msec and the frequency is 0.25 Hz .

Supply voltage and temperature affect the frequency since they set the charging rate of C_{1} and the triggering voltage. In a closed loop feedback system, with R_{1} replaced by a control transistor, the effects of supply voltage and temperature on the frequency will be compensated for by the feedback.

Costs might be estimated as follows: Q_{1} and $Q_{2}: \$ 0.50$ each; R_{1} to $R_{5}: \$ 0.05$ each; and C_{1} and $C_{2}: \$ 0.23$ each, for a total component cost of \$1.71.

Voltage-Controlled Oscillators

The usual low-frequency voltage-controlled oscillator is a relaxation oscillator delivering a rectangular or pulse waveform controlled by a dc voltage, with frequency dependent upon the magnitude of this dc control voltage. The circuit in Fig. 1, however, produces an excellent sine wave with very good linearity over the indicated 1000 -cps range.

This circuit is basically a resistance-controlled three-section phase-shift oscillator. The frequency of the circuit,

Fig. 1. Voltage-controlled oscillator using FETs.
using untapered sections, is determined from:

$$
f \simeq 1 / 2 \sqrt{6} \text { H } R C .
$$

In this oscillator, field effect transistors Q_{1} and Q_{2} appear as linear voltage-variable resistors controlled by $0-7 \mathrm{v}$.
The circuit in Fig. 2 uses conventional transistors in place of the FETs. Linear frequency response with re-

Fig. 2. Voltage-controlled oscillator using conventiona! transistors in place of FETs.
spect to the contol voltage, does not exist in the circuit since Q_{1} and Q_{2} are operated in the knee region. However, lack of linearity when the control voltage is servo'ed may not be a disadvantage. Note that in each circuit an increasing voltage increases frequency.

Modified UJT Oscillator Has No Timing Error

When power is applied to a pulse occurs at B_{1}. For succeedconventional unijunction oscil- ing pulses, C charges from lator circuit (Fig. 1), the ca- $V_{\text {E: }, ~ w h}$, to V_{p}. This causes a pacitor C must charge from difference between the period zero volts to the peak-point of the first cycle and that for voltage V_{P} before the first succeeding cycles, as shown in

Fig. 1. Basic UJT oscillator (A) with waveforms (B). This circuit has timing error, due to time taken to charge capacitor to V_{p} during first cycle.

Fig. 1b. The error may be applied, Q_{2} saturates and rapserious in some applications. idly charges C to $V_{R\left(S_{A} T\right.}$. The It can be eliminated by a simple circuit modification.

Fig. 2a shows a method requiring one extra transistor and two resistors. When power is voltage at point A is equal to $V_{E(S A T)}+V_{B E}, Q_{2}$ is cut off and no current can flow into C except through the timing resistor R_{r}.

Fig. 2. Modified circuit has no error because capacitor is initially charged by transistor \mathbf{Q}_{2}.

Modified Unijunction Oscillator Reaches 500 kHz

The basic unijunction transistor relaxation-oscillator circuit of Fig. la is limited to approximately 70 kHz . However, by adding a transistor and resis-
tor as shown in Fig. 1b the frequency range can be extended to 500 kHz .

For the basic circuit to oscillate, the load line formed
charging resistor R_{T} and supply voltage V_{1} must intersect the UJT characteristic curve in the negative-resistance region to the left of the valley
point as shown by line A in Fig. 2. The minimum value of R_{T} is, therefore, restricted by this point. Reducing the value of C_{T} can also increase
the frequency of oscillation. but its minimum value is restricted by the inherent characteristics of the UJT. Therefore C_{T} will be treated as a constant.

With the addition of Q_{2} and R_{2} (Fig. 1b), the value of R_{T} can be reduced so that the static load line is as represented by line B in Fig. 2. The circuit oscillates because the dynamic load line is actually as shown by line C.
In the modified circuit, transistor Q_{2} is normally cut off and the charge current for C_{T} is $\left(V_{,}-V_{E}\right) / R_{T}$. When Q_{1} fires, Q_{z} goes into saturation, and the charge current

Fig. 1. Basic unijunction relaxation oscillator (a) is limited to frequencies below 70 kHz . By adding transistor Q_{2}, this range can be extended to 500 kHz .

Fig. 2. Characteristic curves for basic and modified relaxation oscillator circuits.
i_{r} flows into the collector of Q_{2}. The resultant decrease in Q, emitter current shifts the load line into the negativeresistance region of the characteristic curve and oscillation is sustained.

Simplified one-shot multivibrator

Complementary switching transistors simplify the design of a one-shot multivibrator. The resulting circuit has the advantage that quiescent current is negligible.
The circuit is extremely versatile. With minor changes in component values it will also work as a free-running multivibrator or as a trigger circuit.

Let's look first at the one-shot mode. The circuit is shown in Fig. 1, with typical component values for one-shot operation.
When the circuit is dormant. Q_{1} and Q_{2} are both inactive and there is no charge on the capacitor. When a positive pulse is applied to the base of Q_{1}, both transistors turn on and drive one side of the capacitor positive. Regenerative feedback then causes Q_{2} to saturate. This places the circuit in the steady. state "on" condition and puts almost the entire supply voltage across C.

The circuit remains "on" until the capacitor discharges through base resistor R_{1}. After this discharge period (determined by time constant $R_{1} C$) the circuit returns to the initial state.

Current flow, for the one-shot

Fig. 1. (left) Complementary transistors simplify design of one-shot multivibrator. Current flow paths are shown for the quiescent "off" state. Fig. 2. (right) One-shot circuit redrawn to show current flow after triggering. With modification of component values, the same basic circuit becomes a free-running multivibrator.
circuit in the "off" condition, is shown in Fig. 1. The currents are the leakage current of Q_{1} and the low collector currents of Q_{1} and Q_{2}. Using the well-known relationships between these currents, we find that for the stable state,

$$
\begin{gather*}
I_{c b o 1} R_{t}<\beta_{1} R_{g} I_{c b o t}+ \\
V_{b e 1} \tag{1a}
\end{gather*}
$$

or
$R_{1}<\beta_{1} R_{z}+\left(V_{b e 1 /} I_{c b o l}\right)(1 \mathrm{~b})$
We can see, therefore, that the
voltage required to turn on Q_{1} is
as shown in Eq. 2.
The circuit will become a free-running multivibrator if the component values are such that the relationship of Eq. 1 changes to that shown in Eq. 3.

Further, if the relationship of Eq. 1 is reversed, the circuit becomes a trigger circuit with a stable "on" state that can be triggered off with a negative input pulse.

For the normal one-shot mode, we can derive the circuit equations as follows: If the
circuit has been activated by a positive pulse it is in its metastable state and current flow is as shown in Fig. 2. The input level returns to zero at the cnd of the input puise, and the capacitor charges to a voltage V_{c} given by Eq. 4. We can express the collector current in terms of $V_{c c}$ and $R_{3 .}$. This modifies the expression for capacitor voltage to give Eq. 5.

The capacitor then starts to discharge through R_{i} and R_{2}, producing a voltage at Q_{t} base

$$
\begin{gather*}
V_{T}=I_{c b o t}\left(\beta_{t} R_{z}-R_{t}\right)+V_{b e t} \tag{2}\\
V_{b e t}=I_{c b o l}\left(\beta_{t} R_{z}-R_{t}\right) \tag{3}\\
V_{c o}=V_{c c}-V_{s a t z}-I_{c z} R_{z}\left(\frac{\beta_{t}+\beta_{2}}{\beta_{t} \beta_{z}}\right) \tag{4}\\
V_{c o}=\left(V_{c c}-V_{s a t z}\left(\frac{R_{s} \beta_{t} \beta_{z}-R_{z}\left(\beta_{1}+\beta_{z}\right)}{R_{s} \beta_{t} \beta_{z}}\right)\right. \tag{5}\\
V_{b t}=V_{c o} \exp \left(-\frac{R_{t}+R_{z}}{\left.R_{t} R_{z C} t\right)}\right. \tag{6}\\
V_{t}=V_{b e}+\frac{R_{q}\left(\beta_{t}+1\right)}{R_{s} \beta_{1} \beta_{z}}\left(V_{c c}-V_{s a t z}\right) \tag{7}\\
T_{t}=\frac{R_{t} R_{z} C}{R_{t}+R_{z}} \times \\
{\left[\frac{\left(V_{c c}-V_{s a t z}\right)\left[\beta_{1} \beta_{z} R_{s}-R_{z}\left(\beta_{t}+\beta_{z}\right)\right]}{V_{b e} R_{s} \beta_{t} \beta_{z}+R_{g}\left(\beta_{t}+1\right)\left(V_{c c}-\left(V_{s a t z}\right)\right.}\right]} \tag{8}
\end{gather*}
$$

Fig. 3. Typical voltage waveforms for the circuit of Fig. 2. operating in the one-shot mode.
given by Eq. 6. This voltage is given by Eq. 8.
turns off Q_{t} when it decreases to Typical waveforms for the the value given by Eq. 7. There- one-shot multivibrator are fore the total "on" time for Q_{1} shown in Fig. 3.

Cascade UJT oscillator generates linear

frequency

sweeps

This sweep oscillator consists of two stages, shown separated by the dotted line in Fig. 1. The first stage generates a lowfrequency sawtooth signal that controls the higher-frequency sawtooth generator of stage two. Both stages are simple relaxation oscillators using unijunction transistors.

The first stage determines the repetition rate and frequency range of the swept output. The second stage generates the output sawtooth waveform and determines the amplitude.

Figure 2 shows the emittervoltage waveform of Q_{1}. The amplitude of this signal determines the frequency range of the sweep, while the frequency determines the repeti-
tion rate of the sweep.
When the first-stage output voltage is applied to the second stage via buffer-amplifiè Q_{2} the second stage oscillation frequency increases as the control voltage rises. Output frequency can be calculated from the following equation:

Figure 3 shows the relationship between $V_{E z}$ and the output frequency. Fig. 4 lists the effects of the various components that control the performance of the generator.

Of course, the maximum operating frequencies are restricted by the characteristics of the unijunction transistors. Also, the frequency of the second stage must be higher than the frequency of the first stage. Usually, a ratio of ten or more is acceptable.
Both oscillators in this circuit have better linearity than standard unijunction oscillators. This is because the capacitor charging voltages are greater

Fig. 1. Simple sweep-frequency generator consists of two cascaded unijunction oscillators.

Fig. 2. Waveform of the first unijunction oscillator determines the repetition rate and frequency range of the swept output.
than the corresponding interbase voltages of the unijunctions. Sweep linearity can be further improved by replacing R_{3} with a constant-current source.

In the original application, the sweep generator output was passed through a narrow bandpass filter to produce a short-duration signal. Figs. 1, 2 and 3 show component values and performance for the circuit that was built and tested for this application.

Fig. 3. Output frequency of the second stage is a linear function of the emitter voltage of Q_{2}.
Fig. 4. Circuit parameters can be varied independently by changing component values as shown in this table.

$$
\left.\begin{array}{rl}
f= & \frac{1}{R_{4} C_{2} \ln \left(\frac{V E_{E} 2}{}-V_{E 3}(\min)\right.} \\
V_{E 2}-V_{E 3}(\max)
\end{array}\right)+t_{1} .
$$

| | Adjust | To Increase | To Decrease |
| :--- | :---: | :--- | :--- | :--- |
| Freq range | C_{1} | Increase $V_{C R 1}$ | Decrease $V_{C R 1}$ |
| Rep rate | $T_{C 1}-R_{3} C_{1}$ | Decrease T_{1} | Increase $T_{C_{1}}$ |
| Freq output | $T_{C 2}=R_{1} C_{2}$ | Decrease $T_{C 2}$ | Increase $T_{C 2}$ |

Linear VCO generates sawtooth and square

waveforms

Using IC of amps, one can design an inexpensive voltagecontrolled oscillator having better than 0.5 -percent linearity over a freqency range of almost an octave. Component cost for the complete circuit shown in Fig. 1 is less than $\$ 40.00$. Though other VCO circuits can be built at lower cost, they do not have the performance of the circuit shown here. For example, neither biased astable multivibrators nor unijunction-transistor oscillators can approach the linearity of this circuit.
With the component values shown in Fig. 1, the output frequency covers the range 40 to 70 kHz , when the input voltage is varied from 4 to 7 Vdc. The center frequency depends on the value of capacitor. C_{1}. Center frequencies, from 30 Hz to 750 kHz , can be achieved simply by changing C_{1} from $2 \mu \mathrm{~F}$ to 60 pF .

Frequency stability is good. During tests on the prototype circuit at constant ambient temperature and with constant input voltage, the output frequency changed less than 0.1 percent in two hours after a 45 -minute warmup. A $60^{\circ} \mathrm{F}$ increase in ambient from normal room temperature increased the output frequency by four percent. Heat sinks on the op amps aid temperature stabilization and were used for the circuit tested.
The circuit simultaneously produces both sawtooth and square wave outputs. Phase of
these output signals is synchronized as shown in Fig. 2. The square wave has a rise time of 100 ns from 0 to $\pm 0.6 \mathrm{~V}$. This output is suitable for direct coupling to some types of IC logic circuits. Of course, the sawtooth wave can be easily filtered to give a sine wave if desired.
The circuit works as follows: A dc input voltage and its inverse generated by amplifier A_{1}, are applied alternately through diodes D_{g}, D_{10}, to the op-amp integrator A_{2}. When the output voltage of A_{2} reaches one of two threshold levels, $V_{T_{1}}$ or $V_{T_{2}}$, it triggers the multivibrator circuit A_{s}. The following equations define the threshold levels $V_{T_{1}}$ (for positive-going charge) and $V_{T 2}$ (for negative-going charge):
$V_{T_{1}}=\frac{R_{s}+R_{4}}{R_{q}} \times\left(12-E_{D}\right)$
$V_{T 2}=\frac{R_{s}+R_{4}}{R_{1}} \times\left(12+E_{D}\right)$
(where E_{D} is "on" voltage of a single diode).

Because the output of the multivibrator is connected to the diode bridge, the network D_{7} through D_{10} periodically reverses the direction of charge current to A_{2} and, therefore, periodically changes the polarity of the ramp voltage at the output of A_{2}.
The sawtooth, generated at the output of A_{2}, has voltage limits determined by Eqs. 1 and 2. If $R_{1}=R_{2}$, and $R_{5}=$ R_{6}, the output from A_{s} is a square wave having an amplitude of approximately 3 V . The trailing edge is rounded as shown in Fig. 2. The per-

Fig. 1. IC op amps simplify the design of this VCO which gives a triangular wave at the output of A_{2} and a square wave at the output of A_{3}.

Fig. 2. Typical output waveforms for the circuit of Fig. 1. Vertical scales are $2 \mathrm{~V} / \mathrm{div}$ for the triangular wave and $1 \mathrm{~V} / \mathrm{div}$ for the square wave. Horizontal scale is $2 \mu \mathrm{~s} / \mathrm{div}$.

iod T of the square wave is given by Eq. 3
$T=$

$$
\begin{equation*}
\frac{C_{1}\left(V_{T 1}-V_{T 2}\right)\left(R_{5}+R_{6}\right)}{V_{i n}-E_{D}} \tag{3}
\end{equation*}
$$

Note that the multivibrator A_{s} is never allowed to saturate. To operate the VCO at fre-
quencies below 10 kHz , the circuit designer should add a resistor in parallel with C_{1}. This will prevent A_{2} from integrating its offset current. The total time constant of the added resistor and C_{1}, should be much longer than the period of the VCO output.

Adding two resistors and two capacitors will convert a $\$ 3$ IC logic element into a miniature voltage-controlled oscillator. The complete low-cost VCO is useful as an fm generator, phase-locked loop reference, or analog-to-digital converter.

The MECL MC359 dual NOR gate is cross-coupled with C_{1} and C_{2} to form an astable multivibrator. The following equation determines the frequency of oscillation:

$$
\begin{array}{r}
f=\frac{I}{R_{1} C_{1}+R_{z} C_{z}} \\
\times \frac{1}{\ln \frac{e_{1}-e_{z}}{e_{1}-e_{3}}}
\end{array}
$$

Where e_{1} is the control volt$\begin{array}{ll}\text { Minimum } \\ \text { pacitance, } & \begin{array}{l}\text { Frequency } \\ \text { with Zersus Ca- } \\ \text { Voltage. }\end{array}\end{array}$ | $\begin{array}{l}\text { pacitance, } \\ \text { Voltage. }\end{array}$ | with | Zero |
| :---: | :---: | :---: |
| Control | | |

$\mathbf{C}_{1}, \mathbf{C}_{2}$	Frequency
$100 \mu \mathrm{~F}$	0.5 Hz
$10 \mu \mathrm{~F}$	6.3 Hz
4700 pF	20 kHz
110 pF	757 kHz

age, $e_{2}=-1.2 \mathrm{~V}$ and e_{3} $=-0.9 \mathrm{~V}$ for the MC359.

The circuit shown in Fig. 1 has a linearity of $\pm 5 \%$ over a frequency deviation of $\pm 55 \%$ of center frequency. Sensitivity is greater than 24% of center frequency per volt. Fig. 2 shows a typical response for a center frequency of 112 kHz .

Measured temperature stability is $0.08 \% /{ }^{\circ} \mathrm{C}$. Maximum frequency of oscillation is above 2 MHz and the minimum frequency is limited only by the size of the components, as shown in the table.

Fig. 1. Crosscoupled NOR gate provides sensitive low-cost VCO.

Fig. 2. Variation of frequency with control voltage is linear within $\pm 5 \%$.

FET controls crystal

oscillator

Channel resistance of a FET is voltage dependent. When operated without drain bias, the N-channel depletion-type junction FET, specified here, acts as a linear resistor for ac signals up to about 1 V pk-pk. The voltage-dependent resistance can be used to vary the effective tuning capacitance of a crystal and, thus, the frequency of a crystal oscillator. The oscillator described was used in a phaselocked loop as a $3.58-\mathrm{MHz}$ subcarrier oscillator for color television.

Figure 1 shows the relationship between drain current and drain voltage when small positive and negative drain-source voltages are applied to a 2 N 5163 FET. Note that, over the range shown, each current-voltage characteristic is like that of a resistor whose value is deter-
mined by gate-source voltage. Though the curve is shown ónly for $V_{D S}$ up to $\pm 50 \mathrm{mV}$, the relationship is, in fact, linear for higher values of $V_{D S}$ to about $\pm 0.5 \mathrm{~V}$. Thus ac signals of up to 1 V pk -pk can be handled without distortion.

In. Fig. 2, we can see more clearly how drain-source impedance varies with the applied gate-source voltage. Note that the reactive component is almost constant and that resistance varies substantially. This suggests that the device can be useful as a voltage - controlled resistor for small ac signals.

But, FETs have one major disadvantage for many circuit applications. There are wide variations in IDSs ("on" current) and g_{m} (forward transconductance) due to production spreads and the effects of temperature. Usually this means that devices must be carefully selected or that the circuit must have "setup" controls or considerable negative feedback.

However, in the case of zero drain-source bias (i.e. ac cou-
pling), $I_{D s s}$ has little effect and no correction for its variation is needed. Furthermore, as the oscillator described here is intended for use in a phase-locked loop, variations in g_{m} can also be ignored, as long as we pro-
vide the minimum necessary loop gain. In this application, the FET offers the additional advantage of high input impedance. Thus it easily interfaces with a simple phase detector.

Figure 3 shows the equivalent

Fig. 1. For small values of VDS, the 2N5163 FET behaves like a resistor with value determined by Vgs.

circuit of the basic crystal oscillator without FET control. Oscillation frequency is given by Eq. 1.

$$
=\frac{\frac{f_{o}-f_{r}}{f_{r}}}{2\left(\frac{C_{o}}{C_{1}}\right)\left(1+\frac{C_{m}}{C_{o}}\right)}
$$

where f_{r} is series-resonant crystal frequency. f_{o} is oscillating frequency C_{m} is effective circuit capacitance seen by crystal
C_{o} is shunt capacitance of crystal
C_{t} is equivalent series capacitance.

Also,

$$
\begin{equation*}
C_{1}=\frac{2 C_{2} \Delta f}{f_{\tau}} \tag{2}
\end{equation*}
$$

where C_{2} is series capacitance required to produce frequency change Δf when oscillator frequency is f_{r}. Therefore,

$$
\begin{gather*}
f_{o}= \\
f_{r}-\frac{\Delta f}{\left(C_{0}+C_{m}\right)} \times C_{2} \tag{3}
\end{gather*}
$$

To see how we can vary effective capacitance with a volt-age-controlled resistor, let's look first at the simple RC circuit of Fig. 4. The impedance of this network is given by Eq. 4.

$$
\begin{gather*}
Z= \\
-j\left(\frac{1}{\omega C_{A}}+\frac{1}{\omega C_{B}+\frac{1}{\omega C_{B} R^{2}}}\right) \\
+\frac{R}{1+\omega^{2} C_{B}^{2} R^{2}} \tag{4}
\end{gather*}
$$

So, as R goes from zero to infinity, capacitance of the network goes from

$$
C_{A} \text { to } \frac{C_{A} C_{B}}{C_{A}+C_{B}}
$$

If, now, we substitute this network for the tuning capacitor
C_{2} in the crystal-oscillator circuit of Fig. 3, we will be able to control the oscillating frequency f_{0} by varying the resistance R. Fig. 5 shows the frequency control achieved with this technique.
In the complete circuit, shown in Fig. 6, R is replaced by a FET circuit. Given the crystal parameters and the desired control range for the oscillator, one can easily determine the FET operating point, and derive the necessary values for C_{A} and C_{B} in a practical circuit. Also shown in Fig. 6 is the phase detector that completes the phase-lock loop. In the original application, fine adjustment of a color-TV sub-carrier oscillator allowed accurate control of picture tint.

syncable oscillator

Figure 1 shows a $1-\mathrm{kHz}$ oscillator that can be synchronized over a wide frequency range. Using temperature-compensated resistors ($R_{1}, R_{2}, R_{g}, R_{4}$) and a capacitor one can hold the free-running frequency to 1% accuracy from 0° to $60^{\circ} \mathrm{C}$.
The output regularly shifts between positive and negative saturation, thus producing a square wave with 50% duty cycle. The frequency is determined by the RC time constant and the voltage divider.

$$
\begin{gathered}
f=\frac{1}{2 T}=\frac{E_{0}}{2 E_{t} R C} \\
E_{t}=\frac{1}{R C} \int_{0}^{\mathrm{T}} E_{0} \mathrm{~d} t
\end{gathered}
$$

If the output has just switched to positive saturation $(+15$ V), the capacitor starts charging to +15 V through R_{1}. But as soon as the voltage level at point D (established by the $R_{1}-R_{2}$ voltage divider), the output switches to negative saturation. Immediately after this transition the capacitor starts discharging towards -15 V . When the capacitor voltage reaches zero, the output switches to positive saturation and the process repeats.

If it weren't for the $11-\mathrm{M} \Omega$ resistor, the voltage at point D during negative saturation would be slightly below ground. With the $11-\mathrm{M} \Omega$ resistor, point D is 0.7 mV above ground. The capacitor thus normally swings from +0.7 mV to +3 V.

When a sync pulse is received and the output is in negative saturation, point D is

Fig. 1. This square-wave oscillator can be synchronized at frequencies up to 60 kHz .
at 0.7 mV . When the capacitor discharges to ground the output goes to positive saturation because D is slightly above ground. If the output ${ }^{-}$is in positive saturation when a sync pulse arrives, the output stays in positive saturation. Thus, whenever a sync pulse arrives the output remains in or switches to positive saturation.

The FET used in the circuit is a 2 N 3972 , with a pinch-off voltage of -0.5 to -3 V . The syncing source is an IC gate with a $6-\mathrm{k} \Omega$ load. Circuit values are determined as follows:

With the sync amplitude low, there is 20 V across $6 \mathrm{k} \Omega+$ $20 \mathrm{k} \Omega+60 \mathrm{k} \Omega$.

$$
I_{x}=\frac{20 \mathrm{~V}}{86 \mathrm{k}}=0.23 \mathrm{~mA}
$$

$I_{x} \times 60 \mathrm{k} \Omega=14 \mathrm{~V}$. Point A is at -1 V and B is at -0.3 V. The FET shorts the capacitor and thus synchronizes the oscillator.

When sync amplitude is high, point C is at ground and the $20 \mathrm{k} \Omega$ is in parallel with the $100 \mathrm{k} \Omega$. Then,
$I_{x}=\frac{15 \mathrm{~V}}{20 \mathrm{k}+60 \mathrm{k}}=1.88 \mathrm{~mA}$
$I_{x} \times 60 \mathrm{k}=11 \mathrm{~V}$ Point A is at $-15+11 \mathrm{~V}$ $=-4 \mathrm{~V}$. Point B is at -4 $+0.7 \mathrm{~V}=-3.3 \mathrm{~V}$.
With B at -3.3 V , the FET is cut off and the oscillator functions normally.

The IC, a $\mu \mathrm{A} 709$, operates satisfactorily from 0 to 60 kHz . At higher frequencies, band-
width limitation causes distortion. For higher frequencies, use a $\mu \mathrm{A} 702$ or $\mu \mathrm{A} 710$.
For large values of C and high frequencies, the capacitor may not fully discharge during the sync pulse. Also, for large values of R offset currents of the operational amplifier tend to cause errors.

Fig. 2. Capacitor voltage and output waveform in response to sync pulses.

Higher-efficiency chokeless

 vertical sweepThe advantage of a chokeless vertical deflection circuit for
small-screen B\&W TV is well the efficiency. In this self-known-the elimination of cost- oscillating circuit, feedback ly copper for choke windings. from the collector of Q_{2} (or But the sweep circuit with a choke tends to be about three times more efficient. Its efficiency is typically 25% compared with a bit better than 8% for the chokeless system.

The chokeless circuit of Fig. 1 can be modified to improve
from the yoke) to the base of Q_{1} and direct connection of Q_{2} 's base to Q_{1} 's collector insure positive feedback. When the supply is turned on, current flows through R_{1} and R_{2} creating a positive ramp voltage across C_{2}.

This voltage causes the collector voltage of Q_{2} to fall and induces a negative voltage at the base of Q_{1}, via C_{1}, thus holding Q_{1} off. The emitter voltage of Q_{2} also rises as its base voltage rises. This emitter voltage can be fed back to the base of Q_{1}, tending to charge C_{1} such that the base of Q_{1} goes positive.

When this happens, Q, conducts and turns Q_{z} off. The rapid rise of the voltage at Q_{q} 's collector keeps Q_{i} conducting for the duration of the retrace period. Retrace time is here controlled by the $R_{3} C_{1}$ time constant which determines the time required for the current to decay to a value such that Q_{1} cannot continue to conduct. When Q_{2} stops conducting, C_{1} starts charging again, repeating the cycle.
Q_{2} and Q_{s} constitute a totem pole output. As the current in Q_{q} rises, the voltage across R_{σ} rises. The forward-biased diodes D_{1} and D_{2} couple this voltage back to the base of Q_{s}, reducing the conduction of Q_{s}. During retrace, when Q_{1} conducts, Q_{2} turns off and Q_{s} saturates. recharging C_{s}.

The constant-voltage forward characteristic of the diodes shifts the dc level and couples the voltage across R_{6} back to the base of Q_{s}, without attenuating the ac component.
We can improve the efficiency of this system if we can achieve part of the yoke-current reversal by resonating the yoke with a capacitor and isolating the yoke for the portion of the retrace pulse that exceeds $\mathrm{B}+$. This is done in Fig. 2.
Now let us replace the integrator capacitor C_{2} of. Fig. 1 with C_{4} and C_{5} as in Fig. 3, the final circuit. The voltage at the emitter of Q_{2} can then be integrated and fed back to provide some linearity correction. Also, C_{5} is returned to the yoke to provide overall Miller feedback. C_{5} also bootstraps the yoke to the emitter-follower

Fig. 1. This self-oscillating vertical-deflection circuit for small-screen black-andwhite TV requires no choke. But it is quite inefficient.
$\left(Q_{s}\right)$ part of the circuit. The size of C_{5} affects retrace time. C_{g} prevents spurious oscillation.
The final circuit generates a yoke current of $0.6 \mathrm{~A} \mathrm{pk-pk}$ in a $25-\mathrm{mH}, 10-\Omega$ yoke from an $18-\mathrm{V}$ supply. Retrace time is 1.35 ms .

Fig. 3. Further improvements and necessary controls complete the chokeless sweep circuit.

Improved VCO

Other circuit designers have shown how IC gates can be
cross-coupled to form a multivibrator. They have also shown how this type of circuit can be used as a linear VCO^{\prime}. By careful design, using a TTL IC, this type of circuit can be operated at much higher frequencies than before.

With the component values shown, the circuit of Fig. 1
gives a center frequency of 7 MHz , with low and high frequency limits of 3 MHz and 11 MHz respectively. As shown in Fig. 2, the linearity is better than 5 percent of full-scale over the whole range.
The maximum possible frequency for this type of circuit is determined by the practical
size of the components in the RC timing networks. Of course, the actual value of the timing capacitance includes stray capacitance and the value of the timing resistance includes loading effects.

At the higher frequency limit, capacitor size can only be reduced to the point where
internal and stray capacitances become significant. Similarly, the size of the timing resistor cannot be reduced past the point where the IC devices saturate and where powerdissipation limits may, possibly, be exceeded.
To overcome these limitations, there is little that can be done about stray and internal capacitance. However, the timing resistor can be replaced by an active device. This active device will then provide a low-impedance resistive element for the timing network. In practice, we achieve this by selecting an IC from the TTL family. The low-impedance source provided by the specified IC gives a maximum oscillation frequency of 25 MHz when used in conjunction with an 18 pF timing capacitor.

Frequency control is achieved by varying the supply voltage which, in turn, controls the charge current. Output waveform is square with fast rise and fall times (typically
less than 5 ns). One disadvantage of the circuit is that output amplitude varies with the control voltage. This limitation can be overcome by feeding the output to another gate or buffer.

The diode network provides sink current when the gate inputs are "low." Base current returns through the diode and resistor to the output. Thus the diode provides the correct output conditions, as though the gates were terminated with other gates.

It was found, experimentally, that silicon planar diodes give best performance in this application. So far, this phenomenon has not been fully explained. The diode interacts with the IC in some way; possibly the diode capacitance cancels the internal capacitances of the gates.

Reference

1. Edward S. Donn, "Wide Range VCO Uses IC," EEE, May, 1967 p. 182.

Fig. 1. High-frequency VCO uses cross-coupled IC gates. TTL logic allows oscillation frequencies of 25 MHz or higher.

Gated delay-line oscillator

eliminates

range error

Conventional crystal-con-

 trolled clock oscillators have the disadvantage that their outputs can't easily be synchonized with turn-on gate pulses. At the instant of turn on, the phase relationship, between clock signal and gate pulse, is indeterminate. In ranging applications, this uncertainty causes a possible range error of plus or minus one count..A delay-line oscillator, as shown in Fig. 1, avoids this problem. Clock pulses always start in phase with the leading edge of the gate pulse and stop with the trailing edge. Output is thus coherent with the gate
signal. Clock frequency depends on the delay line, and is given by the relationship, $f=1 / 2 d$
(1) where f is the frequency in MHz and d is the delay of the line in $\mu \mathrm{s}$.

Experimental delay-line oscillators have been operated at frequencies as high as 22 MHz . Possibly, operating frequency could be extended to 30 or 40 MHz , but at these frequencies the delay line becomes very short and the values of discrete components start to become very small. With the components shown in Fig. 1 , frequency is 5 MHz .
Another advantage of the delay-line oscillator is that it gives a squarewave output. In Fig. 2, the $5-\mathrm{MHz}$ output oscillations are shown at the top and the bottom trace is a negative-going gate signal.

Operation of the circuit is quite simple. As $Q_{,}$is turned

Fig. 1 Simple delay-line oscillator has the advantage that output clock signal always starts in phase with the input gate signal.
on, a negative pulse at the collector travels down the delay line to turn off the base of Q_{r}. Then, when Q_{1} turns off, a positive pulse from the collector travels down the delay line to turn Q_{1} back on. Transistor Q, provides gating.

This stage is normally biased on, to keep the oscillator off. A negative input pulse at the base of Q_{2} cuts off the transistor, allowing the oscillator to start.

The delay line for the circuit of Fig 1 is a commercial unit
manufactured by PCA Electronics. The type DL-1000-0.12289 has an impedance of 1 $\mathrm{k} \Omega$ and a delay of 100 ns . Of course, discrete-component delay lines can be used instead of packaged lines. For a test at 20 MHz , a four-section line was constructed using $2.2 \mu \mathrm{H}$ series inductors and $3-\mathrm{pF}$ shunt capacitors.
The RC network in the gate circuit is selected to give re-
liable triggering. With $V_{c c}$ of +10 V , and with the $15-\mathrm{k} \Omega$ and $10-\mathrm{k} \Omega$ resistors shown, a negative $5-\mathrm{V}$ gate pulse can just turn off Q_{z} (or turn on the oscillator). The base resistor is shunted with a capacitor for speed up. This helps Q_{λ} to switch rapidly. Of course, though the circuit is designed for a $5-\mathrm{V}$ gate pulse, higher voltages can be used.

Fig. 2. Typical output (top) and input (bottom) waveforms for a $5-\mathrm{MHz}$ gated oscillator. Horizontal scale is $1 \mu \mathrm{~s} /$ div. Vertical scales are $2 \mathrm{~V} / \mathrm{div}$ (top) and $5 \mathrm{~V} / \mathrm{div}$ (bottom).

Improved one-shot

multivibrator

using ICs

only

A previously published circuit ${ }^{1}$ showed how flip-flop ICs could be connected with external gates to form a one-shot multivibrator. But the circuit had a disadvantage. If the time delay through the gates were insufficient, triggering of the flip-flop could be unreliable. An improved circuit shown in Fig. 1 eliminates this problem.

This circuit uses one flipflop and one or more gates. A falling clock pulse sets the flipflop after a short internal propagation delay. When the Q output of the flip-flop reaches about 1.5 volts, the gate threshold is reached. After a propagation delay, the gate's output
falls, thus resetting the flip-flop. The gate propagation delay allows adequate time for the flip-flop to complete its "set" transition which is already well under way when the Q output reaches 1.5 V .

As shown in Figures 2 and 3 , the output pulse of \bar{Q} is narrower than Q. This is a characteristic of the flip-flop circuitry. The \bar{Q} is set directly by the falling voltage on R_{D}. This setting of the \bar{Q} output is internally coupled to the Q output of the flip-flop to cause it to reset. The time lag required for the Q output to reset after \bar{Q} has set is equivalent to one gate delay. Hence the Q output pulse is the widest.

This circuit will work with flip-flops and gates of most logic families. If, for some reason, the resulting output pulse is not wide enough for the application, width can be increased by adding gates in

Fig. 1. One-shot circuit uses just one flip-flop and one gate. Circuit triggers reliably for a wide range of gate delays.
series with the single gate shown. If an even number of gates is required, then the \bar{Q} output should be used to drive

Reference

1. Theodore Shepertycki, "IC oneshot needs no external resistors or capacitors," EEE, December 1968, p. 102. the gates.

Fig. 2. The Q output of the flip-flop. (Vert. $=1.0 \mathrm{~V} / \mathrm{cm}$, horiz. $=50 \mathrm{~ns} / \mathrm{cm}$, Vcc $=4.0 \mathrm{~V}$.)

Fig. 3. The Q output of the flip-flop. (same scale as Fig. 2.)

Fig. 4. The output of the SE480 gate. (same scale as Fig. 2)

Low-cost audio oscillator with stable amplitude

A BIFET AMPLIFIER, with a FET and a bipolar transistor in a single package, can be used to build a simple audio oscillator. Because the BIFET provides constant-current output (beyond pinch off), the oscillator has good amplitude stability over a wide range of supply voltages. Changing the supply voltage by 25% or so causes no measurable change in output amplitude.

The high gate impedance allows the use of a high-Q tank circuit. Thus output distortion can be extremely low. Output waveform is sinusoidal and, with the $10-\mathrm{kHz}$ circuit shown, harmonic distortion is about 0.1 percent. With a 24 -volt power supply, oscillator output amplitude is 1.5 Vrms into a 3 kilohm load.

The Mullard Vinkor assembly is capable of providing Q's of 400 or more. With the specified core and windings, the compact transformer has a tuning range of 10 percent. The oscillator is intended for fixed frequency operation and
the transformer is adjusted to compensate for capacitor and core tolerances.

For a practical design, the tank circuit should have a Q of at least 10 and must be tapped to provide some voltage gain between the source and gate of Q_{1}. Resistor R_{1} limits the current through the device. It can be bypassed, though in most cases this is unnecessary.

An attempt was made to measure the temperature coefficient of the amplifier and it appears that for reasonably high-Q circuits it can be ignored.

Possible applications for this circuit include master oscillators and tone generators in electronic organs, or local oscillators for broadcast receivers. The circuit costs more than say a unijunction oscillator, but where a sine wave with good amplitude and frequency stability is required it would seem to be the best choice.

Text states:
Combination bipolar-FET amplifier simplifies
this low cost audio oscillator which generates a low distortion sine wave with good frequency

UJT oscillator reconstructs clock signals

This circuit reconstructs a clock signal from data, such as an NRZ signal, that has no accompanying clock. Basically, the circuit consists of a uni-junction-transistor oscillator triggered by a monostable multivibrator.

IC NAND gates G_{1}, G_{2} and G_{3}, plus transistor Q_{2}, comprise the one-shot. Total cost of these components, together with the timing elements R_{3} and C_{1} is less than $\$ 5$. Thus the approach is cheaper than using a packaged IC one-shot. For example, when this circuit was designed, Fairchild's DTμ L951 IC one-shot was selling for around $\$ 50$. If required, further cost savings could be achieved by replacing the input amplifier (Q_{1}, R_{1}, R_{q}) with the unused gate of the DTμ L946.
ground; but the method causes timing errors. The effect is different because the period, when charging from ground to the UJT firing point, is not the same as that for the freerunning oscillator.

Diode D_{1} provides overvoltage protection for NAND-gate G_{3}. Resistor R_{g} should be adjusted to give a frequency slightly below the data rate. The circuit shown was designed
ly 30 kHz .
With the given component values, maximum operating frequency is around 50 kHz . However, maximum clock frequency is determined by the UJT and by the values of the timing elements R_{8}, R_{9} and C_{2}. Operating frequency can be increased by choosing a different type of UJT and by using a smaller time constant:

$$
T=\left(R_{g}+R_{g}\right) C_{2}
$$ achieve synchronization by shorting the timing capacitor to

Clock resynchronizer consists of a UJT osiliator (Q_{4}) triggered by a one-shot multivibra. tor ($\mathrm{Q}_{2}, \mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3}).

Low-frequency sine-wave oscillator
 one-hertz bandpass filter with

It is often difficult to build low-frequency sine-wave oscillators because of the problem of regulating the amplitude. Shown in Fig. 1, however, is a simple one-hertz oscillator with stable amplitude and low distortion.

The twin-tee network is a
approximately unity gain at the center frequency (James J. Murphy, "Electronics," September 16, 1968). Its output is fed through a high-impedance buffer amplifier, A_{l}, to its input. The gain of A_{1} can be chosen so that the amplitude of oscillation is constant (zero damping), or decreases or increases exponentially (positive or negative damping). The gain setting for zero damping is extremely critical.

Fig. 1. This $1-\mathrm{Hz}$ oscillator provides high stability, low distortion. The R_{t} / R_{2} ratio $m u s t$ be selected to provide a small amount of positive damping.

Fig. 2. Waveforms at the output of A (top, $5 \mathbf{V} /$ div) and at the output of $A_{2}(\mathbf{2 0} \mathbf{V} / \mathrm{div})$.

This is the usual source of the negative zero crossing. trouble in this type of circuit. Thus the oscillator runs free

In the circuit shown, the gain of A_{1} is adjusted by the ratio R_{1} / R_{2}, so the circuit has small positive damping. The oscillations are amplified and clipped by A_{2} and fed through a small capacitor, C_{1}, to the input of A_{i}. As the output voltage of the oscillator passes upward through zero, the oscillator is given a positive impulse by the leading edge of the clipped sine wave, and similarly a negative impulse is given at
for most of each cycle, but is "pushed" for a short time each cycle, much like the balance wheel of a watch.

The twin-tee filter must work into a high impedance, so the reactance of C_{1} at 1 Hz is made to keep loading negligible. Potentiometer P_{1} determines the risetime of the clipped sine wave and hence the magnitude of the impulse to the oscillator and the amplitude of oscillation.

A 5000:1 frequency - range

 oscillatorThe common NPN-PNP re-
generative-relaxation oscillator (Fig. 1) can be converted into a very-wide frequency-range oscillator (Fig. 2). If R (Fig. 1) is a variable resistor used to continuously change the frequency of oscillation, the range will be limited to one to one and a half orders of mag-
nitude. Q_{1} and Q_{2} will be forced to stay on if R is made small enough to maintain the required base current in Q_{i}.

Two different circuits are used to show the flexibility of the design.

By returning the resistor to the collector of $Q_{\text {, }}$ (Fig. 2)
the transistor draws base current from only the timing capacitor $C_{t} . C_{t}$ recharges when the transistors are off, to a voltage equal to E_{t} plus the base emitter drops of Q_{1} and Q_{2}. The transistors then start into conduction. The transition
(Continued on next page)

Fig. 1. The basic circuit for a popular relaxation oscillator.

Fig. 2. One modification of Fig. 1 permits a very wide frequency range.
is helped by the speed-up capacitor, C_{g}. Table 1 shows the period of oscillation for a

R	$1 / f$	$\mathrm{E}_{\text {out }}$
$10 \mathrm{k} \Omega$	$2.6 \mu \mathrm{~s}$	-21 V
$100 \mathrm{k} \Omega$	$23 \mu \mathrm{~s}$	-26 V
$1 \mathrm{M} \Omega$	$210 \mu \mathrm{~s}$	-26 V
$10 \mathrm{M} \Omega$	2 ms	-26 V
$50 \mathrm{M} \Omega$	9.5 ms	-26 V

Table 1. Oscillation period and output voltage for various values of \mathbf{R} in Fig. 2.
range of values for R.
In the next diagram (Fig. 3), the discharge time of C_{8} is increased, by placing R_{1} in series with the base of Q_{1} The 5 to 10% temperature derived instability that is inherent in this modification is quite adequate for many applications. The frequency of oscillation is 2 Hz with a 20% duty cycle. The addition of $C R$, allows a higher bias voltage between the base of Q_{2} and C_{t} keeping the size and cost of C_{t} down. A larger value of R would normally be used but high humidity conditions can affect a conventional 20 or $30-\mathrm{M} \Omega$ resistor.

Fig. 3. Another modification of Fig. 1 allows one to generate very low frequencies but sacrifices temperature stability.

LF oscillator with direct digital control

A subsonic telemetry system uses oscillators to generate four tones which are to produce $200-\mathrm{ms}$ bursts under direct digital control. The circuit shown produces low distortion tones at a level of 3 Vrms , developing full amplitude in the first half cycle after turnon, and producing no transients when starting or stopping.

There are three sections. The oscillator itself consists of an operational amplifier and a twin-T feedback network. The MC785P AND-expander section functions as a keyer, stopping and enabling the oscillator. The MC726P J-K flip-flop functions as a monostable with a 7 -ms period and acts as a starter to produce full output, immediately after the oscillator is turned on, by applying a positive pulse to point A.

When oscillating, the twin-T network consisting of R_{2}, R_{3}, R_{b}, C_{b} and C_{b}, serves as the feedback network for the op amp. Frequencies are determined by C_{a} and C_{b} as listed in the table and R_{s} provides

This oscillator generates a cboice of four low-frequency tone bursts under direct digital control. Tones are turned on or off rapidly, with no transients.
precise frequency control. Amplitude is adjusted with R_{4} and is set so that zeners D_{1} and D_{z} are just conducting on peaks. Distortion is slight and output level is stabilized. R_{7}, $R_{g}, R_{g}, C_{4}, C_{5}$ and C_{6} are stabilizing components for the op amp.

Freq. determining components

	C $(\mu \mathrm{~F})$	C_{b} $(\mu \mathrm{F})$	C_{c} $(\mu \mathrm{F})$	R_{o} $(\mathrm{k} \Omega)$
20 Hz	5.6	2.2	100	5.2
28 Hz	3.3	2.2	50	5.6
36 Hz	3.3	1.5	50	10
44 Hz	2.2	1.0	40	12

If the control input goes high, the impedance of the MC785P AND-expander collector goes low, effectively acgrounding point A. The twin-T is then effectively shunted to ground, and replaced by \boldsymbol{R}_{5} and \boldsymbol{R}_{θ} which become input and feedback impedances for the amplifier, producing a voltage gain of 100 but with input grounded. Oscillation dies out within a half cycle. C_{c} prevents dc offsets from being coupled from the AND-expander to the amplifier input.

If the control input goes low, the AND-expander col-
lector impedance goes high, and oscillation can commence. Without the starting circuit, oscillation builds over a period of a few cycles. The starting circuit, however, applies a positive pulse to point A through C_{z} and R_{a} of approximately 7 ms or $1 / 4$ period of the oscillator frequency. This added energy brings the first half-cycle up to full amplitude. R_{a} must be adjusted with change in frequency according to the table, as the Q of the twin-T decreases with frequency and therefore the amount of pulse current required to develop full ampli-
tude decreases as frequency is increased.

The flip-flop, C_{t} and R_{i} form a monostable multivi-
brator. Prior to a negativegoing pulse from the control input to the clock lead, the driving C_{D} negative. Current
flip-flop is cleared and C_{t} is from Q through R_{1} discharges charged to approximately $3 \mathrm{~V} . C_{t}$ through 0 V and continues When the control input goes till C_{b} is positive, clearing the low, Q goes high, \bar{Q} goes low, flip-flop.

Crystal oscillator uses logic gates

The crystal oscillator in the figure is simple and stable. Since it uses no reactive-component resonators, it's physically small and easily packaged.

The circuit has two logic gates, G_{i} and G_{2}, biased approximately in their linear region and connected through the crystal to form a positive-feedback loop. A third gate, G_{s}, buffers the loop signal and delivers the output, which is approximately a square wave with a duty cycle of about 40 percent.

Any of the DTL/TTL families can be used, but the particular gate used should be a buffer type with low output impedance in the high or low state. A 932 buffer was used in the circuit shown.

Frequency stability is essentially that of the crystal, which operates in the series mode on
the fundamental frequency (1 to 3 MHz in this circuit). The circuit sees the crystal's series resistance so, at the frequency of interest, the resistance should be low compared with that at spurious frequencies.

The feedback resistors should be chosen to bias the gate input to the approximate center of its $1 / 0$ swing. Over the voltage and temperature range that a particular logic family will see, the feedback should be chosen so that a " 1 " output results in a " 0 " input and vice versa, making certain that input-impedance effects are not neglected. The crystal should work into a relatively high impedance, but if R_{1}, R_{2} and R_{s} are too large, the gate output can no longer feed back a proper bias to its input and a " 1 " output can no longer drive the input to " 0 " or near " 0 ."

Capacitor C_{1} eliminates ac output impedance of G_{1} effrom G_{1} 's negative-feedback fectively eliminating ac feedpath while C_{2} isolates the G_{1} back from G_{2} 's input. and G_{2} dc-bias loops, the ac

This entire crystal oscillator is powered by the nominal 5 V used by the logic gates, but it starts and runs reliably with voltages from 3.8 V to 7 V over -55 to $+125^{\circ} \mathrm{C}$.

Section 9 INDICATOR \& ALARM CIRCUITS

Missing Pulse Detector

At this laboratory there are many different timing pulses and gates in use, all recurring at a 20 pps rate but of durations ranging from $2 \mu \mathrm{sec}$ triggers to 30 msec gate signals. At times, certain of these are suspected of "skipping" occasionally. A skipped pulse can result in overcurrents and automatic shutdown of large equipment. The cause of the overcurrent remains unknown but if one happens to be watching an oscilloscope presentation of the pulse at the time it skips the occurrence may be seen. Even though it is not too difficult to determine a single skipped pulse from a cathode-ray tube presentation, watching an oscilloscope for such an event becomes quite tedious after a few minutes.

The circuit described herein was designed to accept any of the signals above, without requiring adjustment, and provide a visual alarm if the pulse being monitored is absent for one or more periods ecifically, if the interval between any two pulses taceeds 75 msec, the warning light appears and remains on until reset by the push-button switch. For satifactory operation, the input must be a rectangular, positive-going signal of amplitude 10 v or greater. Duration of the signal can be as little as $2 \mu \mathrm{sec}$ or as much as 40 msec .
Operation of the circuit is as follows: Q_{1} is an emitterfollower current amplifier which provides several milliamperes base drive to Q_{2} without loading the input signal appreciably. A positive pulse at the input will cause C_{1} to discharge through Q_{2} and $C R_{1}$; when the input pulse terminates, C_{1} begins to charge through R_{1} and the base of Q_{3}. Transistor Q_{3} discharges C_{2}, which after a millisecond begins to charge through $\boldsymbol{R}_{\mathbf{2}}$. The voltage across C_{2} continues to rise until it is once more discharged by Q_{3}; the peak voltage attained by C_{2} is hence a measure of the interval between input pulses.

Transistors Q_{4} and Q_{5} comprise a two-transistor equivalent of the pnpn triode, which has the characteristics of a thyratron. When the voltage across C_{2} ex-
ceeds 5 volts, Q_{4} and Q_{5} are turned on and remain on until the emitter circuit of Q_{5} is momentarily interrupted by the reset pushbutton switch. The value of R_{2} is chosen so that the peak voltage across C_{2} is just sufficient to fire $Q_{4}-Q_{5}$ for input pulses spaced 75 msec . The circuit is readily adaptable to other pulse repetition rates by a suitable choice of time constant $R_{2} C_{2}$.

Fig. 1-Detector for giving visual alarm when pulse skips.

Malfunction Indicator

This cincuit has been designed to indicate malfunctions, such as high and low line potentials and excessive voltage nulls. It has a sensitivity of 0.5 v over a temperature range of -55 to 125 C .

The indicator, I, is connected so as to show a malfunction under "no-power" condition. Each half cycle, the silicon control switch (scs) anode current is reduced below its holding current, making it insensitive to extraneous firing transients. Thermistor T_{1} provides bias temperature stability, and thermistor T_{2} compensates the anode firing voltage. Zener 1N966 compensates the cathode firing voltage and allows the scs to be operated with a 0.5 v change in line. D_{2} prevents current from flowing through the scs during its "off"
period. All points can be monitored without interference from each other, and the potentials can be either dc or ac of any phase or frequency. D_{1} and the $4 \mu f$ capacitor can be eliminated, if a de supply is monitored instead of the ac linc.

Fig. 1. Malfunction indicator.

High-Impedance Voltage Monitoring Circuit

Complementary transistors \mathbf{Q}_{1} and \mathbf{Q}_{z} provide high input impedance for this voltage-monitoring circuit.
in a blocking oscillator circuit with a high input impedance and low hysteresis at the switching limits.

When the input voltage is inside the preset limits, both transistors are back-biased and cut off. The input impedance is then determined by the quality of the base-emitter diode of the transistors. This circuit's input impedance is higher than 5 meg. Silicon transistors would allow a much higher value.

Resistor R_{1} is adjusted to allow npn transistor Q_{1} to be forward-biased at the desired high-voltage limit. R_{2} is adjusted to allow pnp transistor Q_{2} to be forwardbiased at the desired low-voltage limit.

If the input voltage is outside these preset limits, one transistor will start blocking-oscillator action and provide input signals to the silicon-controlled switch (SCS). This will energize relay K_{1} and provide an output indication through its contacts. If a visual indication is adequate, an indicator lamp can replace the relay and capacitor.

The circuit can be used to monitor a wide range of voltages if collector and bias voltages are chosen to match the input voltage range.

The circuit values and voltages shown here allow monitoring, of voltages in the +1 -to- 6 -volt range. At constant ambient temperature, the error is a few millivolts and hysteresis is negligible. For use over an ex-

Varying-Frequency Warning Alarm

A variable-tone alarm generator can be heard easily in noise environments where a single-tone or even an ampli-tude-modulated tone would not be heard. Here is an oscillator circuit whose output frequency changes continuously.

The low-frequency sawtooth wave on the emitter of unijunction transistor Q_{1} is fed through R to the emitter of Q_{2} where it modulates the higher frequency oscillator Q_{2} and its associated timing capacitor C. The frequency modulation is accomplished by changing the charging current to capacitor C. The varying-frequency tone taken from the

Varying-frequency warning alarm.
emitter of Q_{2} can then be amplified and used as an alarm by providing suitable external gating.

Pulse-Peak Indicator

This circuit indicates the peak of a fast voltage pulse to within one of several predetermined voltage ranges. These ranges are established by tunnel-diode level-sensing circuits and indicated by a series of "exclusive-or" dual-coil reed relays.
The circuit shown indicates the peak of an incoming negative voltage pulse within one of the following ranges: $10-15$ volts, $15-20$ volts, $20-25$, and 25 volts and above. Minimum switching voltage is 2 v . The circuit is divided into four similar channels.

Assume that an $18-\mathrm{v}$ voltage pulse is applied. The signal is large enough to momentarily switch tunnel diodes D_{1} and D_{2} to a high-voltage state, but not large enough to switch D_{3} and D_{4}. Hence, Q_{5} and Q_{6} will be latched "ON."

The contacts of K_{1} will be open because both coil A and coil B of K_{1} will be carrying current and the coils are arranged so that their magnetic fields are in opposition. The contacts of K_{2} will be the only ones closed because only coil A of K_{2} is carrying current, but not coil B; hence, no flux cancellation. The contacts of K_{3} and K_{4} will be open because neither coil A or B in K_{3} or K_{4} will be carrying current. The reset switch must be operated to turn all silicon controlled switches "OFF" before the next pulse can be measured. The circuit operation is similar for other voltage levels.

The number of ranges may be increased by adding additional channels. The voltage range of one channel can be narrowed by appropriate adjustment of the tunnel-diode level sensing potentiometers. Polarity reversal can be obtained by reversing the tunnel diode, changing to an npn
transistor, and coupling to the anode gate of the silicon controlled switch. Multiple contacts could be incorporated in the reed relay assembly or the single reed relay contact could be used to energize a multiple contact relay.

Pulse-peak indicator circuit.
The tunnel-diode level sensing circuits have functioned satisfactorily to detect the peak of pulses resembling half sine-wave shapes having a $1-\mu \mathrm{sec}$ width at 50 -percent amplitude points. The level adjustment has remained constant to within ± 2 parts per thousand at room temperature for several weeks.

Phase Indicator

This CIRCUIT provides a simple means of determining the succession of phases of a 3 -phase 120 -v source used in synchro work. Terminals A, B, C are connected to the three terminals of the source to be checked. If the neon bulb lights, interchange any two leads; the light then extinguishes and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ indicate the correct sequence.

If power on any one line is lost, the neon bulb will light. This feature may be useful for monitoring purposes.

Fig. 1. Phase indicator circuit.

Fig. 2. Three-phase waveforms with phase sequence for lighting neon lamp.

Figure 2 shows the three phases a, b, c with respect to a neutral point. From these waveforms the subjacent waveforms b and c with respect to a are derived. These two waves are seen to be 60 deg out of phase with each other.

If terminals A, B, C of the circuit in Fig. 1 are connected respectively to terminals a, b, c, it will be seen that phase b, through $60-\operatorname{deg}$ lag network R_{1}, C_{1}, assumes the dashed waveform of Fig. 2 at point y, and phase c, through attenuation network $R_{2} R_{3}$, assumes the identical waveform at point x, hence there is no potential difference across the neon bulb, which stays unlit. However, if terminals B and C are interchanged, sine waves at x and y will be 120 deg apart, and the neon bulb will light.

Exciter Lamp Failure Indicator

0N Rapidly moving conveyor belts and similar applications employing photoelectric counting or sorting devices, considerable time is lost if the photocell exciter lamp should fail without detection. Many methods of detection of such failure have been developed but the circuit shown is simple, easy to install, reliable, and adaptable to existing circuit configurations.

Circuit for indicating lamp failure of photoelectric system.

A good exciter lamp provides continuity through its filament to hold relay $R L_{1}$ closed. Upon failure of the exciter lamp, however, the continuity is
lost through the exciter lamp filament and $C R_{1}$ further prevents continuity through the transformer winding. The relay de-energizes and drops out. Suitable devices connected to the relay can serve to warn the operator, stop the operation, or both. Diode $C R_{2}$ and C_{1} serve as a de source for the relay. Resistor R_{1} limits current through the relay coil.

Tone Decoder,

Pulse Discriminating

This decoder is designed to mute a receiver until a continuous 10 sec tone is received, at which time the speaker and a call light will be turned on. The speaker will remain alive and the light on until a reset switch is operated. A short discharge feature is included so that the unit will not respond to a tone interrupted

Fig. 1. Pulse discriminating tone decoder.
by dial pulses. This will permit the alerting of a special group of receivers by use of a long uninterrupted tone from standard secode type of equipment. Provision is included to monitor the channel while still allowing the call light feature to be operative. Tone frequency is 2805 cps .
Theory of operation: The decoder must respond to a 10 sec pulse of the proper frequency and discriminate against a series of shorter pulses. Any time the tone is interrupted the time required for the decoder to respond is reset. A series of pulses will not cause the circuit to function. The operation of the circuit is as follows:

Audio is fed to V_{14}, which is a tuned amplifier. The L-C circuit is resonated at the required frequency. Output of the tuned amplifier is fed to a rectifier which converts the enhanced tone to a dc voltage. This voltage is introduced to the grid of $V_{1 B}$. A tone at the correct frequency will generate enough positive voltage to cause the tube to conduct and activate relay K_{1} in the plate circuit.
When K_{1} is activated, capacitor C_{7} will charge through R_{9}. Any interruption of the tone will cause K_{1} to drop out, discharging C_{7}, thus returning the charging circuit to zero condition. When the voltage across C_{7} reaches the ignition point of the neon bulb, it will fire and place a positive voltage on the grid of V_{2}. This will cause current to flow in the plate circuit of this tube, activating relay K_{2}, connected so that it will latch in the "on" condition until manually reset. Reset is accomplished by shorting the coil of K_{2}, causing it to drop out.
The audio output transformer, T105, is connected to a load resistor in the standby condition. When K_{2} is
activated, the audio is transforred to the speaker. A monitor switch duplicates the above function so that the receiver may be used normally. The call light will function normally during the time the switch is in the monitor position. The lamp will indicate that a coded signal has been received.

Differential-Voltage or Current Alarm Circuit

Here is a detector circuit with high sensitivity and stability, followed by an audio amplifier, to serve as a differential voltage or current alarm. The input may be either dc or low frequency ac. The output is a distinctive series of audio beeps or a continuous tone, and occurs only when a selected polarity unbalance is present at the input.

The input stage Q_{1} is a squegging blocking oscillator. Under quiescent conditions there is both degenerative feedback through the N winding and regenerative feedback through the P winding, and no oscillations occur. If point B is made positive with respect to point A, diode D_{2} is closed and D_{1} is open, increasing the degenerative coupling. However, if point A is made positive with respect to point B, diode D_{1} is closed and D_{2} is open. Under these conditions the net feedback is regenerative, and the stage breaks into oscillation.
The oscillation frequency is determined by the components used, and is about 2 kc for those shown. Capacitor C_{1} serves both to isolate the input signal from the remainder of the alarm circuitry and as a base-leak bias capacitor for the blocking oscillator. Its very large value here ensures squegged oscillations at the rate of about 2 bursts $/ \mathrm{sec}$. Reduction of the value of C_{1} causes Q_{1} to operate in the nonsquegging mode.

The signal at the collector of Q_{1} is coupled to the base of

Differential-voltage or current alarm circuit.
Q_{2} by C_{2}. This stage operated approximately class B to minimize Q_{2} collector dissipation and maximize loudspeaker output. Under these bias conditions Q_{2} tends to squelch output due to common-mode input at D_{1} and $D_{2} .{ }^{.}$The short time-constant of C_{2} and R_{5} is also helpful in this respect. The direction of the unbalance between points A and B causes the alarm output. This may be reversed by interchanging the input signals applied. The circuit becomes a sensitive current alarm if points A and B are connected across an appropriately small value current-sensing resistance. The differential sensitivity and temperature stability are mainly dependent upon the degree of balance between the characteristics of D_{1} and D_{2}, and the windings of T_{1}.

Relay Arc Failure Detector

Certain relay design configurations, particularly those of the subminiature military type, are susceptible to failure when load current is interrupted and when a potential difference simultaneously exists between the relay frame or enclosure and its contacts. A common application condition satisfying this requirement would be a power control relay with its enclosure electrically connected to the load system ground or neutral. The manifestation of failure is a transient arc discharge between the contacts and grounded parts of the relay, e.g., its header.

In the case of the subminiature military type relays referenced, a $2 \mathrm{amp}, 115 \mathrm{v} \mathrm{rms}, 60$ or 400 cps resistive load is representative of the type of circuit in which failure may occur. Depending on the degree of load circuit protection, the effect of this phenomenon may range from simple actuation of an overload protection device to complete destruction of the relay. These failures are attributed to random or undertermined causes because of the general lack of recognition of the mode of failure. The circuit shown here provides a positive means of detecting this type of failure.

Relay arcing to case is defected by test fixfure.
The Form-C contact K_{14} and its load circuitry $Z_{L 1}$ and $Z_{L 2}$ represent a spdt relay under test. Its coil circuit and cycling means are not shown. The enclosure of K_{1} is returned to the load system ground through fuse F_{1}. Detector relay K_{2} is a sensitive dpdt relay, chosen such that its coil current is small compared to the rating of F_{1}. When the spst momentary switch S_{1} is closed, K_{2} pulls in and is held in by means of the normally open contact of $K_{2 A}$. The battery, E, represents a dc source for the coil of K_{2}, independent of the load circuit source for $K_{1 A}$, but with a common ground point.
When failure occurs, F_{1} opens, de-energizing K_{2}. The normally closed contact of $K_{2 A}$ closes, lighting $D S_{1}$, a failure indicating lamp. Auxiliary control of the life test circuitry, such as interrupting cycling and opening the load supply line may be accomplished by means of $K_{2 B}$. With such an arrangement,
the test cannot be resumed until F_{1} is replaced and S_{1} is again depressed.
The circuit shown is for testing only one relay. Multiple testing requires a detector circuit for each relay under test and a suitable arrangement of the auxiliary control contacts such that any one failure will result in the desired control function.

Target Bearing Indicator

Asimple visual indicator device was desired which could be synchronized with a rotating, directional, underwater acoustic transducer to indicate the relative bearing at which the transducer was pointing when a target s:gnal was received. The detecting device provided an ac output of considerable amplitude when a signal was received, which could be used to operate the indicator. Also the transducer drive mechanism had available a synchro output proportional to bearing. This output was used to drive a small servo motor, the shaft of which was directly coupled to the shaft of a standard four-tap sinecosine potentiometer (Fig. 1).

The detector output was applied directly across the pot, and the four vector voltage ($\sin , \cos ,-\sin$, and -cos) were connected to the four deflection plates of a cathode-ray tube. If the voltage applied to the spot were a dc voltage, the spot would traverse a circular pattern with a radius proportional to the applied voltage.

An ac voltage produces a rotating bar crossing

FIG. I-Servo motor is coupled to sine-cosine potentiometer for target bearing indicator.
the center of the scope, and by diode clipping one half the signal, a pointer emanating from the center can be produced. In operation the spot is adjusted, with no signal, to rest at the center of the screen. With a signal present the signal amplitude is adjusted to produce a line from the center to the
edge of the screen. A further improvement in signal discrimination was effected by using a long persistance (P7) phosphor screen, and coupling the signal to the intensity control grid, an integration of reoccurring signals at the same bearing are more obvious than those signals caused by random noise.
The indicator required was constructed quickly and inexpensively by modifying a standard oscilloscope. The standard mask was replaced by one made of plexiglass having the bearing calibrations engraved around the outer rim. Edge lighting made the calibrations show up quite well.

Overvoltage Indicator

In an industrial test system, voltages from zero to 1,500 volts appear on a line. The line is connected to two black boxes, one of which handles voltages from 0 to 150 v , and the other handles voltages in excess of 150 v . It therefore is desired to route the voltages appearing on the line automatically to the black box which is designed to handle it.
The system is shown in Fig. 1. Applying 152 v of any frequency to the line, the pot is set so that the neon bulb fires. This applies a high negative voltage to the grid of the tube which deenergizes K_{1} which in turn deenergizes K_{2}. When the system is off, the high voltage box is connected to the line. After the

FIG. I-Circuit for switching voltages from an industrial test line.
tube is warmed up it switches to the low voltage box, and switches to the high voltage box only when a high voltage appears on the line. If the tube fails, the high voltage box is connected.

This circuit also can be used as an excellent overvoltage protector and indicator.
Rectifier $C R$ is a Sarkes Tarzian $126-100-\mathrm{H}-\mathrm{Q}$ but
any 2000-v low-current rectifier will do. Relay K_{1} is a Sigma $4 \mathrm{a} 10,000 \mathrm{~S}$. Glow lamp TH, an NE68, must be installed in a lightproof box. Alternately, an NE2 or similar type can be used if suitably aged.

Multiple Station Diode Detection System

his design was applied when a night watch service company wanted to monitor distant stations over a limited number of telephone wires. The objective was 200 stations per wire pair. The problem was to detect which particular station was in the

RA AND RB: $200,300,400,600,800$
$1000,1200,1500,2000$
2500,3000,4000,5000
6000 , OR 7500Ω
FIG. I-Use of diodes at central station and monitored stations allows detection of the one of 200 that is in the alarm state.
alarm state. The system did not have to detect more than one alarm at a time since this is a rare situation.
The alarms are all in series and are activated by opening the normally closed switch. A simple approach would have been to place a different resistor in shunt with each switch and have central station note the change in resistance on the outgoing pair of wires. This, however, would require 200 different resistance values. Since there is some variation in the telephone line itself, the method was too critical.
The problem was solved by using only 15 different resistance values. These were connected as shown in the diagram. R_{A} and R_{B} could be any one of the 15 values which permits 225 combinations (15×15). The alternating current goes through dc ammeter- A and R_{A} of the Alarm-On circuit during one half of the cycle and through dc ammeter $-B$ and R_{B} during the other half cycle. Therefore each ammeter responds to its corresponding resist-
ance and reads one of 15 discrete values during the alarm condition. By checking the combination of readings against a wall chart, the operator at the central station immediately knows which of the 200 stations is activated.
The technique is also applicable to digital transmission over wires. For example, if 10 resistance values were used (instead of 15), then any one of 100 numbers could be transmitted with non-critical automatic equipment detecting and processing this at the central station.

Flying Spot Scanner Sweep Alarm

Areliable system for detecting the lack (or presence) of sweep, intended to prevent burning of a flying spot scanner face phosphor in the event of loss of sweep, is shown in the block diagram of Fig. 1. The system consists of a differentia-tor-amplifier, a high and low level detector, an inverter, and a summing and blanking generator.

Circuit action is as follows (see Fig. 2). Yoke current variation is differentiated R_{1}, C_{1} or C_{2} and the resultant square wave B is fed to $Q_{1}-Q_{2}-Q_{3}$ amplifier, whose quiescent (zero input) output is adjusted to 10.0 volts by R_{2}. With any changing yoke current, Q_{2} and Q_{3} are either saturated or cut off. R_{3} adjusts the high Schmitt to pull in when C is greater than 15 volts and R_{4} adjusts the low Schmitt to drop out when C is below 5.0 volts. These
outputs are summed at F, and amplified and inverted at F^{\prime} for blanking pulses.
The wave form analysis shows normal (changing) yoke current from t_{1} to t_{2}, yoke current stopping $t_{2}-t_{3}$, and a blanking pulse rising at t_{3}.
Gain of Q_{1}, Q_{2} must be increased if $R_{1}, C_{1}-C_{2} T$ is decreased to insure reliability at faster alarm times. Alarm time $=R_{1} C_{1}$ or $R_{1} C_{2}=10 \times 10^{3}$ $2 \times 10^{-6}=20$ milliseconds.
All circuits designed at minimum β. Circuit proved stable at temperatures to 50 C . Although higher temperatures were not tested, do stabilization is

FIG. I—Block diagram of sweep alarm system.
more than generous throughout. Note $Q_{9}+Q_{10}$ held off by -15 , drawing minimum $-1 b^{*}$ until driven on by Q_{6} or $Q_{8} R_{L}$. $\left.{ }^{*}-150 \mu \mathrm{a}\right)$.
Input A voltages in the order of $+5 \mathrm{v},-5 \mathrm{v}$ triangular wave were tested but differentiating any slope (with sufficient gain Q_{1}, Q_{2}) will cause either saturation or cut off of $\boldsymbol{Q}_{2}, \boldsymbol{Q}_{\mathbf{3}}$.

FIG. 2-All transistors of the sweep alarm are type 2 N I302 and all diodes are type 1 N497. R_{2}, R_{3}, R_{4} are Bourns 275 Trimits.

Neon Indicator for Surgistor Points

In a power supply using a protective surgistor there is no way of knowing when the surgistor points are open or closed. This is important since the surgistor may drop as high as 40 volts rms when in series with the power transformer primary.
To indicate whether the points are open or closed, some type of circuit is needed that draws negligible current and gives some indication that the surgistor is dropping line voltage. Another problem is that the surgistor resistance is not constant but changes as it heats.
The circuit shown does the job adequately by indicating with a neon tube when the points are open. This is accomplished by using a voltage tripler to give the neon firing voltage required. Although this circuit has poor voltage regulation, the small current drawn by a neon tube will not affect firing voltage. A series resistor of 47 K was chosen for this application; however, this may be altered to compensate for different load conditions of the power transformer. The circuit shown will

Drop of 25 volts in primary circuit actuates neon lamp.
work for a range of V_{1} from about 25 to 40 volts rms input which is sufficient for most vacuum tube circuits.

Photocell Lamp

Burnout Warning Circuit

The circuit rllustrated in Fig. 1 can be used when photocells are employed to indicate a bad-spot, end-of-tape, or load-point, on a magnetic tape. It should be understood that the tape is processed by a computer via a magnetic tape handler. The photocell watches the tape, and when a mark (reflective spot, hole, etc.) appears, the photocell signals back to the computer indicating the condition or position of the tape. If the photocell lamp burns out, this signal can
no longer reach the computer, therefore troubles can develop.

The lamp is rated at 6 v , and is a G.E. type 328 bulb. It can also be operated at 5.3 v to improve life. A dropping resistor can be used by operating from an available 6.3 v ac source. The voltage drop across this

Fig. 1 Photocell lamp burnout warning circuit.
resistor (1.0 v) is rectified, filtered, and is used to drive the base of a transistor. The transistor energizes a relay whose contacts control a warning line. Thus, when a lamp burns out, the transistor can no longer energize the relay and the relay contact gives a warning signal to the computer.

Maximum operating temperature is 65 C .

Short-Circuit Alarm

DURING THE WIRING of today's complicated backplane for computers, where point to point wiring is used, short circuits between voltage buses or a voltage bus shorted to ground because of wiring errors or solder splashes are commonplace. If these shorts are not detected and removed as soon as they occur and are left in the computer to be found after the wiring is completed, many hours of debugging time could result. The circuit described here sounds an alarm as soon as a short occurs between any two of five different voltage buses or any one of the voltage buses to ground.

Short-circuit alarm.

The circuit uses a model SC-628 Sonalert device for the alarm, which oscillates at 2.5 kHz when the circuit is activated due to a short. These units can be obtained in a variety of frequencies.
Proper circuit operation is made possible by the use of the SG22 stabistors. The consistent EI curves for these devices are essential for proper stabilization.

While no shorts occur, Q_{1} conducts and Q_{2} is off. As soon as a short occurs between any two of the six input lines, Q_{1} will shut off and Q_{2} will conduct. This causes the alarm to sound until the short is removed.
The supply can be any voltage between -6 and -20 v . The higher the voltage, the louder will be the alarm.
With 20 volts for $-V_{c c}$, the current when an alarm is obtained is only 8 ma , which makes this alarm circuit suitable for battery operation. The standby current is about 1 ma .
The alarm circuit cannot be used unless the voltage buses are floating. This does not present a problem because the power supplies do not get installed until after the rack wiring is complete.

Pulse-Level Discriminator and Fault Indicator

This circuit was devised to monitor and indicate gyrowheel output faults. It sounds an alarm if the gyro wheel is locked up, as indicated by an input signal that remains at a high current (or voltage) level for a period of time longer than a preset interval. The meter-relay upper "set point" is adjusted to 120 ma (the meter relay is a non-
locking type). As the input signal reaches $120 \mathrm{ma},\left(t_{1}\right)$, the meter relay latches and K_{1} is pulled in. Plus 28 volts is applied to point $A . S C R_{1}$ is held off because its minimum breakover voltage ($V_{R \theta}$) is 50 v . Capacitor C_{1} charges toward +28 v . If the input drops to 95 ma (good wheel curve), after 3 sec (t_{2}), the meter relay will move off the set point and K_{1} will be de-energized, removing +28 v from point A. The unijunction transistor (Q_{1}) has not been gated on because the $R C$ time constant, determined by R_{1}, R_{2} and C_{1}, has been set to 3 sec .

Pulse-height discriminator.
If, however, the wheel locks up, the input signal remains at 120 ma and now is present at point A for a a period long enough (3 sec) to permit capacitor C_{1} to charge enough to fire the unijunction Q_{1}. The SCR will now be gated on by the output from Q_{1} and the alarm circuit actuated. At t_{3}, where the input signal goes to zero, the dc voltage is again removed from point A. The alarm current can now be turned off by pushing reset switch S_{1}.

Automatic indication of a fault and resetting of the alarm circuit for continuous signal pulses can be achieved by removing the wire from B to C and connecting points A and B together.

Gated Filter and Sample-Hold Circuit

The basic circuit shown in Fig. 1 is a gated low-pass filter. If R_{6} is removed, it becomes a sample-hold circuit. In the filter mode, it functions as a unity-gain amplifier with two alternative time constants. These are selected by opening or grounding the gate terminal. In the sample-hold mode it functions as an amplifier, as long as the gate is grounded. If the gate is opened, the output will no longer follow the input, but will be held at the last voltage level. Gating does not cause transients at the output.

Normally, for both circuits, the gate terminal is grounded. Thus Q_{5}, D_{5} and D_{6} are biased off. The push-pull pair Q_{s} and Q_{4} alternately charge and

Fig. 1. Basic circuit of gated low-pass filter with two alternative time constants. Removing R_{6} gives a sample-hold circuit.

Fig. 2. Frequency response of filter with short time constant (gate grounded) and long time constant (gate open).
discharge capacitor C. The biasing Q_{4}. Transistors Q_{1} and driving impedance caused by Q_{2} are also turned off. With these transistors is quite small and the time constant will be almost entirely due to R_{3} (assuming $R_{s} \gg R_{s}$). The dc level at the emitters of Q_{s} and Q_{4} is almost equal to the input level since the diode drops of D_{1} and D_{2} cancel those of D_{3} and D_{4}. Also the base-emitter drops of Q_{1} and Q_{2} cancel those of Q_{3} and Q_{4}.
When the gate voltage goes positive, Q_{5} is turned on, grounding Q_{1} emitter and backbiasing Q_{3}. Thus the emitter of Q_{z} is driven positive, back-
transistors Q_{1}, Q_{2}, Q_{s} and Q_{4} electrically removed from the circuit, the capacitor is now charged and discharged by R_{6}.

Normally R_{s} is small (fast filter response) and R_{6} is large (slow response). Note also that the input impedance of Q_{6}. should be much larger than R_{6}. If R_{6} is very large ($>20 \mathrm{~K}$) it will be necessary to replace
the Darlington circuit Q_{6} and Q_{γ} with a FET circuit to achieve the required impedance at this point.

The frequency responses for the two filter time constants are shown in Fig. 2. The cutoff frequencies are determined by the following equations:
For the short time-constant ($R_{6} \gg R_{3}$),

$$
\mathrm{f}_{\mathrm{s} \mathrm{~dB}}=\frac{1}{2 \pi}\left(\frac{1}{R_{3} C}\right)
$$

(assuming that the input impedance of Q_{6} is much greater than R_{g}).
For the long time-constant (R_{3} gated out),

$$
\mathrm{f}_{3 \mathrm{~dB}}=\frac{1}{2_{\pi}}\left(\frac{1}{R_{6} C}\right)
$$

Combination lamp driver and

failure indicator

WHEN inStrument panels dis: play critical information, some across the incandescent lamp sort of failure indication is is a neon indicator. If the often needed - to show if lamp fails, the neon indicator information is missing due to is no longer shorted by the
lamp failures. The circuit of Fig. 1 provides automatic indication of lamp failures. It consists of a two-stage Darlington amplifier with a lamp as a load at the collector of the output transistor. Directly

Fig. 2. The same basic circuit can provide independent failure indication for several lamps as shown here. -年

Fig. I. In this simple lamp driver, the neon indicator provides failure indication for the incandescent lamp.
lamp filament and will therefore fire. Holding current for the neon indicator is supplied by a separate 60 -volt line via R_{2}. Diode $C R_{1}$ isolates the neon voltage supply from the one lamp driver drives several lamps.

The component values for the circuits are quite flexible and mainly depend on the
line driver.
An extension of the same circuit, as shown in Fig. 2, can provide independent failure indication in situations where current ratings of the lamps. The values shown will handle almost all 28 V lamps and can be readily adapted to lamps of other ratings.

Fault Alarm Circuit

To be truly comprehensive, a failure indicator should give audible as well as visual alarm. The operator must be able to silence the alarm manually.

The circuit shown performs the fault condition still exists. all these functions. When the buzzer is silenced, a second lamp lights to "acknowledge" the operation and confirm that

The input to this circuit is a pair of normally-open relay contacts, which close in the event of equipment failure.

The circuit works as follows: Initially all transistors are "off" until a fault occurs and contact K_{1} closes. This turns on $Q_{\text {, }}$ and Q_{r}. Transistor $Q_{\text {s }}$ may

conduct momentarily, but not The SCR is ready to be fired long enough to light the since anode voltage is present "acknowledge" lamp. The col- but not gate voltage. Closing lector voltage of Q_{2} reverse- the "silence" switch fires the biases Q_{s} to hold it "off." The SCR. This turns off Q_{2}, voltage drops of diodes $C R_{i}$; silencing the buzzer and turn$C R_{z}$ and $C R_{s}$ give suitable bias ing off the "fault" lamp. conditions for Q_{2} and Q_{3}. Both Transistor Q_{3} now conducts, the "fault" lamp and the buz- lighting the "acknowledge" zer remain energized until the lamp. This lamp remains on fault is removed or the until the fault is cleared.
"silence" switch is actuated.

Fault alarm circuit has buzzer and lamp. Switch S_{1}, silences the buzzer and transfers indication from $D S_{t}$ to $D S_{z}$.

Low voltage transistors
 drive neon

indicators
plied to the base saturates Q_{t} and effectively grounds point A, turning on the neon. Collector current will be small, and determined by R_{1}, R_{3} and Vcc. An ideal supply for use as $V C c$ is a full-wave rectified but unfiltered dc. The return to zero of $V c c$ twice each period will insure turn-off of the neon.

The supply is 85 volts peak derived from 120 volt centertapped transformer. With the circuit values as shown the maximum collector voltage is 27.5 volts. The $82-\mathrm{k} \Omega$ resistor gives fair brightness for an NE2E bulb.

Any transistor with a collector rating of 25 volts will be adequate at Q_{r}. In fact, transistors with 15 volt ratings have been used quite successfully for Q_{1}. If the transistor suffers breakdown, the large collector impedance limits the current. Since the supply voltof the neon.

With the base of Q_{1} at age is pulsating, the condition ground, Q_{1} and the neon arc will be removed 120 times a off. A positive potential ap-second.

Low-cost, low-power neon indicator drive circuitry.

There is no reason this circuit can not be used to drive Nixies or other commercial
neon type displays. The transistor input is compatible with most IC logic levels.

Automatic back-up

lamp
 circuit

A wIDE variety of equipment depends upon a light source
for operation. If the lamp fails, damage can occur. Such equipment usually provides lamp failure circuits, which may activate a buzzer or alarm to notify the operator of the failure, and indicate that replacement of the lamp is warranted.

The circuit in the figure provides for an automatic switch-over to a backup lamp; letting the system operate normally if a lamp failure occurs during operation.

The lamp L_{1} is activated when power $(+28 \mathrm{~V})$ is applied. Lamp L_{1} is activated
first because of its low cold resistance to ground as compared to the resistance path of $L_{\text {g }}$ and the 4-layer diode D_{1}. In this way resistor R_{J} has a voltage drop across it of 18 volts and the voltage across L_{i} is 10 volts, well below the 4-layer diode threshold.

If L, burns out, the circuit multiple redundancy to such current flow is interrupted and the voltage goes toward +28 V, the 4-layer diode breaksdown through the resistance of $L_{2} . D_{1}$ latches because of the sufficient holding current due to the current path completed through the diode, and L_{2} lights with approximately the same intensity as L_{1}. The location of the lamps is such that L_{2} provides the circuit functions of L_{1}. When L_{1} is replaced it again assumes control.

The same technique, shown dashed, can be used to provide
circuits. More lamps and 4layer diodes can be added as required. For independent operation of such multiple circuits, a small capacitor may be included across the 4-layer diodes. In any case, the inherent differences in each diode device would probably , avoid the necessity for additional capacitors.

The circuit can be adapted to operate with other (different rated) bulbs, or with multiple filament lamps using common electrode connectors in the same glass enclosure. -

Automatic lamp back-up circuit using 4 layer diodes.

Simple, low-cost time

 indicatorA simple, low-cost time indicator can be obtained using four lamps, a slow rep-rate clock, lamp drivers and TTL decoding logic.

In the circuit shown, lamp D lights three minutes after a negative pulse is applied to the "start" lead. This lamp stays lit for 30 seconds. Lamps A, B and C light during the threeminute time cycle in a binary sequence and are used as an
indication of total cycle time.
When a negative pulse occurs at "start" the TTL flipflop removes ground from the $0.034 \mathrm{~Hz}(30 \mathrm{sec})$ clock and grounds the reset of the SN 7492. Every 30 seconds the clock fires, making a change occur at the lamps. When the SN7492 goes to a seven count, the TTL logic resets the flipflop inhibiting the clock. This event lets the counter-reset go high, thus resetting all the lamps. Note that the seven count occurs so rapidly that it is not seen on the lamps. The binary sequence could be decoded but its direct usage provides circuit simplicity, a greater number of lamp changes and a valuable attention-getting feature.

In this circuit, lamps A, B and C light in a binary sequence during a three-minute time cycle.

Transistorized Intervalometer

DURING a development program for rocket borne instrumentation, it became necessary to produce a signal delayed from an initiating signal. Space for the device was limited and stability over a wide environmental range was required.

Acceleration and shock loads of at least 50 G were anticipated, with temperature ranges of minus 10 degrees F to at least plus 120 degrees. Supply voltage variations of plus or minus 25 percent would be encountered. An output signal of a minimum of 10 milliseconds capable of supplying 20 amperes to a very low resistance load was specified.
Immediate considerations indicated that a transistorized monostable multivibrator (or Schmidt trigger type) would require the minimum of components.

A basic concept of the system is shown in Fig. 1

FIG. I - Basic circuit for switching polarized relay.
and consists of a power source, a two-position switch, a capacitor, and a polarized relay. With the switch in the upper position, the capacitor is charged through the relay coil resistance, however, the relay does not operate since the charging current is chosen to be improper polarity.
Moving the switch arm to the lower position discharges the capacitor through the relay causing it to operate for a period of time dependent upon the capacitor's value and the voltage of the power source. Extension of this concept replaces the switch and relay with transistors and adds biasing
and a feedback path to reset the circuit following an input pulse. Voltage regulating and clamping circuits complete the design.
Figure 2A shows the final circuit of the delay section. Transistors Q_{1} and Q_{3} are npn types 2N78 and Q_{2} is a pnp type $2 \mathrm{~N} 44 . D_{1}$ and D_{2} are 5 -volt zener diodes and D_{3} is a 9 -volt zener. The power source is a battery of ten HR-1 Silvercells, whose nominal voltage, after charging, is approximately 18.7 v .

Capacitor C_{1} and resistor R_{5} provide the delay determining components and the output pulse is derived from the circuit by differentiating the trailing edge of the pulse at the collector of Q_{1}.
Three points exist at which the circuit may be conveniently triggered. As is common with monostable systems, each has a minimum triggering level. At the base of Q_{1} an input signal of about 0.25 volt positive will trigger the circuit. At the collector of Q_{1}, a somewhat larger signal is required, while at the collector of Q_{3}, still a larger signal must be applied. The trigger point at Q_{3} was chosen for the circuit, due to the relatively low apparent impedance and the higher trigger level, which must be above that maintained by D_{3}. In the triggering system, resistor R_{9} serves to prevent C_{2} from holding a charge of such polarity as to prevent repetitive triggering. R_{8} limits the current through the combination when the switch is closed.

In the untriggered state, transistors Q_{1} and Q_{2} are nonconducting, and Q_{3} is conducting to the limit allowed by resistor R_{6}, because of the positive bias applied by R_{5}. Diode D_{2} and resistor R_{4}, adjusted for about five ma through D_{2}, serve to regulate the bias level applied to the base of Q_{3} to a greater degree than that afforded by D_{3} alone. Capacitor C_{1} is raised to the voltage level set by the parallel leakage path of Q_{2} collector-emitter and D_{1}, its
other terminal being near ground through the baseemitter of Q :.

Upon being triggered, Q_{1} conducts heavily, being limited by R_{1}, thus grounding the base of Q_{2} causing it also to conduct heavily. This switches the positive lead of C_{1} to ground, as in Fig. 1, in turn biasing Q : off. The voltage at the collector of Q_{3} rises to near the regulated supply level, a portion of the rise being coupled to the base of Q_{1}, thus holding the entire circuit in a stable condition until sufficient of the charge on C_{1} has leaked off to permit the positive bias to again cause Q_{3} to conduct.

In a circuit depending on the time constant of a capacitor and resistor, it is important to maintain the charging levels and charging and discharging resistances to maintain repeatability. Ideally these resistances would be zero or at least remain constant, placing the majority of the repeatability figure in the stability of the prime time determining components. When transistors are incorporated in such a circuit, a large part of the possible variation, with specific transistors, is due to the $I_{c b o}$ change due to temperature. In the particular circuit, with D_{1} removed, this $I_{c b n}$ change in Q_{2} causes sufficient variation in the charge on C_{1} to place operation outside the specified limits. Since the collector-emitter of Q_{2} is in series with R_{2} and $I_{c b o}$ changes appear as voltage changes applied to D_{1}, its regulation action effectively swamps $I_{\text {cuo }}$ variations. Additionally,

FIG. 2-Complete circuit of transistorized intervalometer.
since Q_{2} conducts heavily, several milliamperes, the load swings primarily to D_{2} during Q_{2} cutoff, relieving D_{3} of wide load changes. The collector circuit of Q_{1} provides an area of additional temperature compensation if desired, by inserting a Fenwal RB 33L1 thermistor in series with approximately

5000 ohms resistance, in parallel with R_{1}. As temperature increases, reducing thermistor resistance, an increased positive bias is applied to the base of Q_{2}, lowering the effects of $I_{c b o}$.

Capacitor C_{1} has demonstrated relatively insignificant effects on the performance with changes in temperature. High quality Mylar 5 - $\mu \mathrm{f} 10$-v capacitors have been incorporated as well as solid tantalytic units with no degradation within the limits of the tests performed. No resistor in the units manufactured (more than a dozen) was chosen beyond the ten-percent stock unit. With C_{1} of 5μ and R_{5} approximately 80 kilohms, a time delay of about 200 millisec is obtained. Increasing R_{5} to about 300 kilohms increases the time interval to about one second. Considerably longer intervals have been obtained using as high as $300 \mu \mathrm{f}$ for C_{1}. It is not possible to increase R_{5} to much above 470 kilohms due to malfunctioning of the system.

Switch selected resistors may be assembled for obtaining a number of prechosen time delays. A trimming potentiometer should be included in series, to effect time interval correction at the shortest period of time interval. A one-megohm pot in parallel with C_{1} provides a satisfactory high end trimming control.

Use of a pot in parallel with a high quality capacitor may appear to degrade the performance of the capacitor, but explains the lack of significant difference in performance with capacitor types, since variations in leakage resistance with temperature govern the time interval to a greater extent than changes in absolute capacitance.

The basic circuit was modified as shown in Fig. 2B. to provide a means of obtaining the required high current and output pulse duration. Since the requirements specified only a minimum duration of output pulse, a time interval of about 35 millisec was chosen and all temperature compensation dispensed with.

Not having a relay of suitable sensitivity at hand, transistor Q_{0} was added as an emitter follower to drive the relay. The relay used was a P and B SC11D type, with a 33 -ohm coil resistance, and the 22 -ohm resistor in series with the coil was utilized to limit the maximum current through the coil. For lower current requirements, the load could be connected directly in place of the relay coil. While this relay is overloaded, tests showed that it would interrupt a 35 -ampere load, at an application period of 75 millisec for at least 50 operations.

The final assembly group of units were thoroughly tested for conformance to the requirements. Pulse to pulse repeatability was normally within five parts in 10,000 and day to day repeatability was easily within the limits of plus or minus one per cent of the selected time interval. All units were expended in the program.

The basic circuit generates pedestals of good rec-
tangular configuration at various points, which may be utilized as gates in other applications. A series of the basic units could be connected as frequency dividers, by adjusting sequential units for a time duration of one count less than the division period required, since no output can be obtained following the initial input pulse, until the circuit has reset.

Counter Uses Complementary Transistors

Designed for switching at a 1-mc rate, the counter shown in Fig. 1 uses transistors in complementary pairs so that only one stage draws current from the power supply. The reason for this is that the on

FIG. I-One-mc counter witth complementary transistors. stage has both transistors conducting; the orf stages have both transistors cut off. In an application where the on state is caused to move from stage to stage, the average power dissipated by the counter is that of a single conducting stage, and is independent of the number of stages.

Another unique feature of the circuit is that it prefers the orf state. When the supply voltage is turned on, both transistors are biased off and remain off until the stage is turned on by the advance pulse. There is then no transient overload on the power supply resulting from clearing the counter.

In the off state, no current flows in the circuit, and point 1 in Fig. 1 is at zero volts. The advance pulse is negative, dropping from +10 volts to approximately +1.2 volts, when the trigger amplifier is pulsed into saturation. Diode $C R_{2}$ remains reverse biased and inhibits transmission of the advance pulse.

In the on state, Q_{1} and Q_{2} are both in saturation, and point 1 is at approximately +8.8 volts. During the advance pulse, $C R_{2}$ conducts and current flows through the triggering capacitors C_{2} and C_{3}. The

FIG. 2-Outputs of adjacent stages are shown with reference to the advance or shift pulses.
npn Q_{1} is turned off, and the pnp Q_{2} of the next stage is turned on. The switching is regenerative in both stages, and as shown in Fig. 2, results in a shifting of the on state down the counter with each advance pulse.
The circuit rise time is less than 0.02 microsecond; fall time is 0.03 microsecond. The circuit was designed and tested to operate over the ambient temperature range of -55 C to +150 C .

Transistor Time Delay Switch

This transistor switch is designed to operate a given missile-borne, $4 \cdot \mathrm{pdt}$, dc relay with the following requirements. The initially energized relay is to be de-energized four minutes after voltage appears at the output of a sensor device. The relay has two spare sets of contacts, a coil resistance of 350 ohms, and controls a 25 -ampere circuit. The control unit for the relay is to operate from a voltage source of 25 to 37 volts dc and consume no power after relay drop out. The control circuit may be considered in two sections: a medium-power transistor switch consisting of Q_{3} and Q_{4}, and a fourminute timer of Q_{1} and Q_{2}.

Initially, voltage is applied to the energize terminal of the switch section. Current is withheld' from the base of transistor Q_{3} by the relay inductance and the capacitance of C_{3}. Current flows through resistors R_{8} and R_{9} to the base of Q_{4}, switching the transistor and energizing the relay. Transistor Q_{3} remains off because the low emitter voltage of Q_{4} is too low to supply much base current to Q_{3} through R_{10}.

When the timer supplies a current pulse to the base of Q_{3}, the transistor saturates and its low emitter voltage then reduces the current through R_{9} to Q_{4}. Transistor Q_{4} turns off and the voltage across the relay is reduced below the minimum holdin voltage.

Power is removed from the circuit by normally-

Circuit of transistor time delay switch.
open contacts of relay K_{1}. This transistor switch is unique in that the relay coil is an integral part of a flip-flop and the inductance provides turn-on of the proper transistor. Turn-off is accomplished by a current pulse from the timer section.
Time delay is provided by the unijunction transistor circuit of R_{3}, C_{2}, and Q_{2}. To obtain the fourminute delay without using an extremely large capacitance value for C_{2}, the resistance of R_{3} is too large to supply the required peak-point emitter current of transistor Q_{2}.
For the circuit to function, the peak-point emitter current value must be exceeded to trigger Q_{2} to the negative resistance region of the emitter voltage versus emitter current characteristic curve. However, a unique innovation is employed which enables one to use the extremely large resistance value of R_{3}.
By adding the pulser circuit of transistor Q_{1}, a low frequency voltage pulse is developed across resistor R_{4} which is in series with the timer capacitor C_{2}. When C_{2} is charged to the peak-point emitter voltage, transistor Q_{2} is triggered by a voltage pulse on R_{4}. Capacitor C_{2} then discharges a current pulse to transistor Q_{3} which trips the switch as described earlier.

Differentiating Clipper Circuit

IN many timing applications, differentiating a narrow pulse in the order of $0.1 \mu \mathrm{sec}$ presents the problem of admitting into the circuit hash and random noise impulses. The circuit shown eliminates this difficulty, using relatively few, inexpensive parts. In addition, the leading and lagging edges ot the incoming pulses are separated and may be used to set the timing of logic circuits or pulse width discriminators.

The circuit is composed of two transistors, Q_{1} and Q_{2}, which are reverse biased through bleeder networks according to their respective pnp or npn configuration. Transistor Q_{1}, which has the differential input applied to its emitter, is biased at the base with +2 volts, thus preventing negative spikes

Differentiating circuit for narrow pulses.
from passing. At the same time it allows only pulses greater than 2 volts to be conducted, keeping noise and other pulses of smaller magnitude out. The threshold level may be set as high as the reverse bias for the transistor will permit (for 2N1132 $V_{B E R}=5$ volts). A positive pulse of 5 volts at the input results in a voltage swing of nearly 25 volts at the collector.

Transistor Q_{2} works similarly but in the negative direction. This transistor, a 2 N1644 common base configuration, is biased at -2 volts, thus permitting only pulses more negative than 2 volts to pass. The pulse width obtained from a $0.1 \mu \mathrm{sec}$ pulse will be 50 nsec because of the differentiator action.

Inexpensive

Pulse-Time Telemeter

This circuir telemeters the output of a resistive transducer. Two basic circuits, a unijunction pulse gènerator, and a multistage ring counter are used in the manner described. The resistive transducers are sequentally switched into the pulse generator through steering diodes from the collectors of the pnp transistors of the ring counter. Each time the unijunction fires, the ring counter advances one step thus placing the next transducer and the fixed timing capacitor. The pulses from the unijunction are stretched to a suitable value for modulation of a transmitter. The data

Pulse-time telemeter.
are thus transmitted as a pulse train with spacing between pulse proportional to transducer R values.

Light bulbs are used as collector loads to provide a visual inspection of the circuit operation. A reset button turns the system on. This circuit has been bench tested and will be used on a high altitude balloon flight in the near future for telemetry of ambient pressure, differential pressure, and various temperatures.

Sample and Hold Circuit with Bilateral Charging

In processing PAM data it is often necessary to increase the energy content of a series of low-duty-cycle, amplitude-modulated pulses that result from demultiplexing a particular channel of a PAM pulse train. To accomplish this, a sample and hold circuit with bilateral charging has been designed. This circuit (Fig. 1) was designed specifically for sampling and holding 0 - to 5 -volt information received via a sampled-data telemetry link, and it is currently in use in PAM-FM and PAM-FM-FM ground stations.

Upon command, the sample and hold circuit charges the holding capacitor to the value of the
input data on pin 18. The voltage on the capacitor is then held until the next sample, at which time the holding capacitor is charged to the new value of the input data. This process repeats for every command received on pin 13 and the output data is taken from the holding capacitor via an isolation amplifier. In this manner the circuit functions as a demultiplexing gate and as an amplifier.

To prevent source loading, the input impedance at pin 18 is relatively high, approximately 100 K ohms, in the off state. In normal operation many of these units are connected in parallel, allowing a large number of channels to be demultiplexed simultaneously. The input impedance of the unit in the on state is somewhat lower than 100 K ohms; however, this presents no problem because normally only one unit is in the on condition at a given time.

The output impedance of the bilateral charging circuit in the off state is approximately 1 megohm minimum without the selection of matched transistors for Q_{7} and Q_{8}. Selecting transistors Q_{7} and Q_{8} results in an extremely high output impedance, thus large discharge time-constant of the holding capacitor, because their leakage currents can ideally cancel each other and none would flow into or out of the holding capacitor.

The unit has high peak charging current capabil-

FIG. I-Sample and hold circuit with bilateral charging.
Transistor Q_{7} is a 2 N1304 and Q_{8} is a 2 NI 305.
ities, in the order of 200 ma, and essentially all of the current is supplied by the $\mathbf{1 0 - v o l t}$ supplies. This puts hardly any current requirements on the source and it is effectively used only to catch the voltage on the holding capacitor through a near unity voltage gain, high current gain amplifier.

The main advantage of this charging circuit is that it is bilateral and can deliver peak currents of 200 ma to the holding capacitor or accept peak currents of 200 ma from the holding capacitor. In this manner the voltage on the capacitor can be changed rapidly in the positive or negative direction, thus eliminating the conventional dump circuit and making it possible to generate a true non-return-to-zero waveform.

In the charging, or on, state, the input data to be sampled on pin 18 is transferred by the two emitter follower transistors Q_{5} and Q_{6} to the output bilateral charging transistors Q_{7} and Q_{8}. Afte ${ }^{-}$ the holding capacitor has been charged, the bilateral charging circuit is in a balanced state.

The voltage rise from base to emitter of Q_{5} equals the voltage drop across \boldsymbol{R}_{17} and the base to emitter voltage drop of Q_{7}. Also, the voltage drop from base to emitter of Q_{6} equals the voltage rise across R_{18} and the base to emitter voltage rise of Q_{8}. In this balanced state a small bias current is allowed to flow through Q_{7} and Q_{8}, thus eliminating any dead zone of the circuit and helping to keep the dc offset from input to output, pin 18 to pin 22, equal to zero or very nearly zero if the four transistors are not exactly matched. In this balanced bilateral arrangement, rapidly changing data in the range of -5 volts to +5 volts can be stored on the holding capacitor. Transistor Q_{7} will be turned on hard while it is charging the capacitor in the positive direction and transistor Q_{8} will be turned on hard while it is discharging the holding capacitor in the negative direction.

To deactivate the bilateral charging circuit, the keying circuit provides two low-impedance paths to the 10 -volt supplies. A normal dc key input voltage on pin 17 would be -10 volts for the off state and zero volts with respect to common for the on state. If the ac key input is being used on pin 13, a 10 -volt positive pulse will suffice for the on state and an absence of a pulse keeps the bilateral charging circuit in the off state.

In the off state, Q_{1} of the keying circuit is turned off due to the bias on its base. The off condition of Q_{1} allows base current to flow into Q_{2} via R_{4} and R_{5}, thus saturating Q_{2}. The saturated condition of the phase splitter allows both Q_{3} and Q_{4} to saturate, since the emitter of Q_{2} is more positive than the base of Q_{4} and the collector of Q_{2} is more negative than the base of Q_{3}. The low-impedance paths to the 10 -volt supplies are provided by the saturated transistors, Q_{3} and Q_{4}, that actually deactivate the bilateral charging circuit. When Q_{3} saturates, the base of Q_{8} and the emitter of Q_{6} are pulled to
$\dagger 10$ volts, thus back-biasing the base to emitter junction of both Q_{i} and Q_{4}. Similarly, when Q_{1} saturates, the base of Q_{7} and the emitter of Q_{5}, are pulled to - 10 volts, back-biasing the base to emitter junction of both Q_{5} and Q_{y}. In this manner all four transistors of the bilateral charging circuit are turned off, providing a long discharge time-constant for the holding capacitor and a high input impedance in the off state.

Some of the numerous applications for this circuit are a sample and hold circuit to sample and hold analog data that is to be digitized, a high current capability data gate feeding a resistive or reactive load, and a keyed dc restorer with high current capability, as shown in Fig. 2.

FIG. 2-Bilateral charging circuit used in de restoration.
In this circuit the input data is fed through to the output via the coupling capacitor and the isolation amplifier. Upon command, the coupling capacitor is effectively shorted to the same potential as the voltage reference. This allows the coupling capacitor to be charged to a potential that is the difference between the input data at the particular command time and the voltage reference. In the off state, the circuit presents a high impedance to the coupling capacitor and thus the correct dc component can be inserted quickly and retained for a relatively long time.
By utilizing the bilateral charging circuit in this application, the dc voltage on the coupling capacitor can be changed quickly in either direction and the impedance of the voltage reference can be relatively high because the amount of current required from the voltage reference is very low.

Low Power Binistor Action Ring Counter

The binistor action ring counter was designed for low cost, high reliability and minimum power dissipation. This ring counter application is extremely useful in digital devices as a time distributor and commutator. The maximum clock rate of the counter is well over 100 kc and it will operate over a temperature range of +70 C to -60 C .
Bistability is achieved by interconnecting a $\operatorname{pnp}\left(Q_{2}\right)$ and $n p n\left(Q_{1}\right)$ as diagrammed. When base current is supplied to Q_{1}, its collector voltage decreases until it exceeds the emitter bias of Q_{2}.

When this occurs, Q_{2} is driven into conduction which further drives Q_{1} into conduction and this regenerative action continues until Q_{1} and Q_{2} are in a saturated state. Parallel outputs are taken from the collector of Q_{1}. Turn on time for a "one" is typically .3 microseconds and its output level is the $V_{C E}$ drop of Q_{1}.

When the emitter of Q_{2} is triggered by a pulse more negative than the base of Q_{1}, the collector

in ring counter schematic, parallel outputs are taken from $Q_{1,}$ 2N388 at lower left.
current of Q_{2} is reduced, thus decreasing the base current of Q_{1} which in turn limits the collector current of Q_{1} and further cuts off Q_{2}. This regenerative action results in both Q_{1} and Q_{2} returning to the cutoff condition. This "zero" state transition or "turn off" time is typically 0.5 microseconds and its output level is the collector bias supply of Q_{1}.
The "one" is shifted through the ring counter by capacitively coupling successive stages. The positive transition of a preceding stage couples a positive pulse to the base of the following stage causing it to saturate. The shift pulse must be of shorter duration than the time constant of the coupled stages. By this method the "one" is shifted through the counter.
Prior to start a "clear" pulse is required to reset all stages to the cutoff or zero condition. The "clear" pulse must be of such duration to mask the coupling pulse between stages. A five microsecond pulse was used. An "insert" or read-in pulse is also required to set a "one" in the first stage. The insert pulse can be derived from the trailing edge of the clear pulse or any external source but must occur after the clear pulse. The shift pulse is "or'ed" with the clear pulse and used to trigger the driver which supplies the proper shift pulses and bias to the stages of the ring counter.
Each stage is temperature stabilized by reverse biasing the stage of Q_{1}. As in binistors the betas of Q_{1} and Q_{2} do not appear in the leakage current equations at the node formed by the base of Q_{1} and the collector Q_{2}. The equation for the leakage current of the "off" stages is $I_{C O 1}+I_{E O 2}+I_{C o 2}$.

The ring counter as shown can compensate for approximately 220 microamperes leakage current.

Since one stage only is conducting at any time the dissipation of the ring counter proper is only 150 milliwatts, thus making it suitable for low level operation.

Stable, Sensitive

Pulse Height Discriminator

Circuits which trigger when an input signal reaches a well defined threshold play a vital part in nuclear and spectrometry counting experiments. A circuit such as this is used when it is desired to exclude unwanted noise or other small pulses from signals being counted. Many trigger circuits have been designed to perform this function; however, they lack the stability or sensitivity required in many cases especially if supply voltage and temperature variations are encountered. The following circuit was developed for use in satellite and rocket applications, but should be applicable to laboratory experiments as well.

Shown in Fig. 1 is the new discriminator circuit using a 1 ma silicon tunnel diode, $\mathbf{C R}_{1}$, as the amplitude sensing element. This is coupled to a transistor stage, Q_{1}, for amplification and feedback to obtain a monostable characteristic. Input pulses are coupled across the tunnel diode through a backward diode, $C R_{1}$, for isolation.

Operation may best be described by following through a typical triggering sequence and referring to the curves of Fig. 2. These curves represent the actual volt-amp characteristics of the diodes and transistor base-emitter junction. In addition, two composite curves, shown dotted, were plotted by adding corresponding current or voltage points.
Pribr to receiving any input signal, a 0.7 ma bias for the tunnel diode is supplied through $\boldsymbol{R}_{\mathbf{4}}$ which is regulated through the low dc resistance of the delay line, $D L_{1}$, by the 7 zener diode, $C R_{3}$. This is shown as point 1 on the intersection of the tunnel diode curve and the R_{4} load line. An input pulse exceeding approximately 180 mv coupled through CR_{1} will trigger the tunnel diode into the high voltage

FIG. 1-Discriminator Circuit.

FIG. 2-Graphical Operation of Circuit.
state designated as point 2 on the composite plot. The bias current is now shared almost equally between the tunnel diode and the transistor base-emitter junction shown by points 3 and 4. This amount of base current causes Q_{1} to saturate, reducing the voltage across the zener diode close to zero. This drop in potential is propagated through the delay line and appears as a loss of hold bias on the tunnel diode after a one-half microsecond delay. With no bias, the tunnel diode switches back to its low voltage state, cutting off the base current to Q_{1}. The transistor then swi ches off and reestablishes the zener regulated potential, E_{z}. After another half microsecond delay, the 0.7 ma bias is restored (point 1 again) readying the circuit for the next pulse. Theoretically the resolution time of the discriminator is equal to twice the delay line propagation time, 1 microsecond. Actual measurements indicate 1.4 microseconds to be typical, due to the significant junction capacitance of $C R_{s}$. Each time the discriminator is triggered a $7-\mathrm{v}, 0.8$ microsecond pulse is generated, suitable for driving directly binary counters or other digital logic. The output waveform is shown in Fig. 3.

A small bias, established by the voltage divider R_{2}, R_{s}, is used in series with $C R_{2}$ since the voltage

FIG. 3-Output Waveform
swing across the diode alone is insufficient to cause Q_{1} to switch fully on. The backward diode, $C R_{1}$, isolates low impedance sources from shunting the negative resistance region of $C R_{2}$. If a high impedance current source is used to drive the discriminator, $C R_{1}$ and R_{1} could be omitted. The circuit would then trigger on a 0.3 ma pulse.

The zener diode $C R_{3}$ serves to limit the output pulse amplitude in addition to regulating the tunnel diode bias through the 45 ohm dc resistance of the delay line. This regulation is imperfect, however, and almost exactly compensates for variations in the smallbias voltage developed across R_{3}. The resulting bias current through $C R_{2}$ remains essentially constant in spite of changes in supply voltage, thereby maintain-
ing threshold stability.
Temperature stability of the threshold is determined by the balance between the positive temperature coefficient of the zener cliode, $C R_{3}$ and the negative coefficients of the two diodes, $C R_{1}$ and $C R_{2}$, and the carbon-film resistor R_{4}.

Over an ambient temperature range of -20 C to +60 C and supply voltage range of 12 to 20 v , a threshold stability of 1 percent is maintained. Furthermore, the potential speed of the tunnel diode produces a threshold almost completely independent of input pulse rise time.

Digital Memory Display

Many display devices require auxiliary storage units such as relays for holding information. after pulsed readout, or for converting the signals from low-level transistor circuits to high level display needs. Significant overall equipment cost savings could result from a transistor-compatible display which is self-storing in response to pulsed digital readout. Such a self-storing display should also provide automatic reset upon receipt of a new signal. In some applications, an auxiliary static readout of stored numbers is very important.

These features are realized by an application of neon tubes in a storage-type display device. Using this technique, a typical decimal indicator requires ten neon bulbs and eleven resistors as shown in the circuit diagram on page 38.

The property of neon tubes which requires a definite firing potential level above that potential required to hold them in conducting position is used in operation of this storage-indicator. The dc potential is chosen above the firing potential level. Assume that a typical neon tube fires at 60 volts, and maintains discharge at 50 volts. With the 70 volt dc level, twenty volts is dropped across resistors R_{0} and R_{x} when the 0 indicator is fired. With an R_{0}^{\prime} to R_{x} ratio of 1 to 3 ; then 5 volts will appear across $R_{\text {o }}$ and 15 volts across R_{x}. Thus, the potential on all tubes except N_{0} is held to 55 volts, under the firing level, and only tube N_{0} will be fired. A dc potential across resistor R_{\circ} of 5 volts is produced, which can be used for static memory output to drive transistorized or tube operated circuits as desired.

Now assume a 15 volt input pulse at tube N_{3}.

Circuit of digital readout system.
This exceeds firing potential by driving tube N_{3} to 70 volts. Current flow through resistor R_{x} will approximately double momentarily with two tubes
fired, and the 30 volt drop will cause tube N_{o} potential to drop to 40 volts, well under extinction potential. This is the self-resetting action desirable for a storage type display. After N_{o} becomes extinguished, the input pulse may be removed, and N_{3} will remain fired in the same manner as for N_{u}.

Because of the low power, low potential input pulses, readout from transistorized circuits is entirely feasible.

Universal N-Bit Shift Register Uses N-Plus-2 Two-Pole Relays

THis versatile and economical shift register is capable of speeds of up to fifty operations per. second. It features parallel or serial read-in, serial read-in from left or right, parallel and serial readout, shifts right or left, circulating or non-circulating. Output is contact closure to ground for lamp or other read-out. It is non-volatile, retains information indefinitely if power is off, and uses one relay per stage, plus two common control relays. The relays are all standard dual-coil magnetic latching type.
Upon closure of "shift command" contact, relay K_{x} operates to "set" position. Contact $K_{x} A$ then energizes the "reset" coils of relays K_{1} through K_{n} resetting them to the " 0 " state. After several milliseconds delay, relay K_{y} operates to "set" position
and contact $K_{y} B$ enables the "set" coils of relays K_{1} through K_{n}.

Contact $K_{y} A$ resets relay K_{x} to initial condition, and contact $K_{x} A$ resets relay K_{y} to initial condition.

When relays K_{1} through K_{n} are enabled, the capacitor in each stage is given a discharge path through the "set" coil, and to ground via contact $K_{\nu} B$. The capacitor may or may not be charged. If it is charged, it energizes the relay to the "set" or " 1 " condition. If the capacitor does not happen to be charged, the relay remains reset in the " 0 " condition.

The capacitor is charged if the previous stage is in a " 1 " condition, and not charged if the previous stage is in a " 0 " condition, thereby propagating ones and zeroes along the shift register.

The normally-closed contacts of relays K_{1} through K_{n} short-circuit the capacitor if the previous stage is in the " 0 " condition, or these contacts open and permit the capacitor to charge through its charging resistor, if the previous stage is in the " 1 " condition.
For parallel read-in, switches S_{1} through S_{n} are set up as desired, and then pushbutton switch $P B_{1}$ is operated. This enters the information in parallel into the shift register.

For serial read-in, switch S_{η} must be in "read-in" position, and the information is entered from left by closure of "read-in (L)" contact if switch S_{x} is in "right shift" pasition, or information is entered from right by closure of "read-in (R)" contact

In the shift register, all A and B normalily open contacts of relays K_{1} through K_{n} are tied together and go to readout indicators I_{1} through I_{n}. Capacitors are $8 \mu \mathrm{f}$ and diodes are IN537. Unmarked resistors are 250 -ohm, 5 -watt.
if switch S_{x} is in "left shift" position.
The "shift command" contact must be closed momentarily once for each shift.
The read-out for all stages are lamps I_{1} through I_{n}, which are lighted to indicate a " 1 " and dark to indicate a " 0 ". Other loads such as recorders etc. may be put in parallel with lamps.

Stepping-Switch

Decimal Counter

The circuit of Fig. 1 is intended to cause a series of stepping switches to act as a decimal counter to count the number of cards passing through an IBM type 523 punch. In the original application, the stepping-switch bank contacts caused the count to be punched into the cards and performed other control actions not shown in this diagram. The auxiliary relays insure proper action of the stepping switches by stretching the $13-\mathrm{msec}$ pulses from the punch and they also generate alarm signals in case the stepping switches fail to advance.
The circuit is arranged so that the bank contacts of the stepping switch never carry current while they are moving; all making or breaking of current is performed by the auxiliary relays or by the interrupter contacts on the stepping switches. The
interruptor contacts, which are intended for just this service, open when the stepping switch coil is energized and close after it is de-energized. The bank contacts move ahead by spring action when the coil is de-energized.

The set pushbuttons allow a desired count to be set up by advancing each switch one position each time the button is pressed. The reset pushbutton, through the action of interrupter contacts A causes all switches to step automatically to the home position where action is stopped by the opening of the ofr-normal contacts ON. In order that counting will start with the count of one rather than the count of zero, the home position is the one pasition on the units-count switch; on all other switches, the home position is the zero pesition.

Automatic counting of the cards starts with a 13msec $40-\mathrm{v}$ signal which, acting through the contacts of relay K_{7}, closes relay K_{3} which locks itself up through its own B contacts and the B contact of relay K_{5}. As relay K_{3} closes, it energizes the coil of stepping switch K_{1}. About 170 msec later, a 13msec pulse from the punch is applied to one side of the coil of relay K_{6}. Since the stepping switch K_{1} has now had some 150 msec to set, its B contacts should be open, and relay K_{6} should not be actuated. If for some reason, the stepping switch has not been energized, relay K_{6} will close, activating the error alarm flip-flop. The next signal from the punch is

FIG. I-Counter circuit using stepping switches.
a 20-msec "punch-completed" pulse which energizes relay K_{5} and causes it to lock in through its own D contacts. At the same time, the B and C contacts of relay K_{5} release relay K_{3} and stepping switch K_{1} respectively, allowing the stepping switch to advance one count. As switch K_{1} is de-energized, its C contacts short out relay K_{5}, dropping it out. As the next card starts through the machine, a pulse which occurs about 65 msec after the action described above, is applied to the A contact of relay K_{5}. If the relay is still energized, indicating that one of the stepping switches has failed to advance, this pulse will pass through the closed contacts to activate the alarm flip-flop. About 170 msec after this test, relay K_{7} is activated to start the next count cycle.
This counter uses a set-on-nine carry scheme rather than a ripple-down carry on zero. When stepping switch K_{1} is in the nINe position, the closing of relay K_{3} to energize switch K_{1} also acts through the A contacts of K_{3} to energize relay K_{4} which, in turn, through its C contacts, energizes the coil of the tens stepping switch K_{2}. When relay K_{5} opens its B and C contacts, both stepping switches move ahead; the units switch to zero, the ten switch to one. This carry action can be extended to any number of digits.

The stepping switches are Clare Type 20 with 48 -volt coils. The relays are Clare Type J. Relays K_{3} and K_{4} have 48 -volt coils; K_{6} and K_{7} have 40 -volt coils and K_{5} has a 24 -volt coil with a series resistor to allow it to operate from a 40 -volt pulse.
The circuit gives the stepping switches about 150 msec to energize their coils, about 150 msec to step ahead after the coils are de-energized, and provides a check on each operation. All contacts are protected against arcing by back-to-back selenium diodes across coils to limit back voltage and the bank contacts never make or break current. These precautions may seem rather elaborate, but they do give a highly reliable counting system.

Time Delay Relay

Relay. K in Fig. 1 is a standard 2-pole type with coil resistance of 420 ohms. The 4 D 50 M is a four-layer diode (Shockley) which.starts conducting at 50 volts ± 4 volts. Potentiometer R_{1} (Bourns Trimpot) may be 20 K ohm and resistor R_{2} about 27 K . C is $6 \mu \mathrm{f}$.
With these values a delayed energizing time of approximately 400 milliseconds is obtained.

When switch S is closed, C starts to charge to the negative potential (-28 vdc) When the charge reaches approximately 20 volts, the four-layer diode breaks down and conducts causing relay K to become energized. K is now kept in the energized

FIG. I-Simple time delay circuit uses four-layer diode.
state by the four-layer diode thus the relay does not need to utilize a set of its contacts to hold it energized. To de-energize the relay, a switch or other controlling device may be inserted in series with the ground return.

Delay durations from 50 milliseconds up to 5 minutes were obtained by varying the RC time constant.

Sample and Hold Circuit with Long Memory

This circuir is used to sample and hold the value of a varying input voltage at a time controlled by a key pulse. The secondary of pulse transformer T_{1} supplies enough current through diodes $C R_{1}$, $C R_{2}, C R_{3}$, and $C R_{4}$ to effectively conhect the input to the memory capacitor during the key pulse interval. During the off time, the diodes $C R_{1}, C R_{2}, C R_{3}$, and $C R_{4}$ isolate the input from the memory capacitor regardless of input polarity, except for any conduction path through the pulse transformer secondary

FIG I-Sample and hold circuit.
Usually, a blocking capacitor (shown in dotted lines) which is small relative to the memory capacitor is placed in series with the transformer secondary. However, it must be shunted with a resistance to prevent its charging until no further diode conduction occurs. The capacitor value and shunt resistance must be chosen carefully, based
on the range of sampling rates over which the circuit must operate. At best, the circuit is usually a compromise.

By using the Zener diode $C R_{5}$ shown in this circuit, leakage through the transformer secondary is reduced to that of the diode. The Zener diode is chosen to have a breakdown voltage greater than the maximum difference between input and output. Thus, the circuit can be made to operate over a wide range of sampling rates, with improved sampling accuracy, shorter key pulses and longer memory.

Wide Range Timing Circuit

Significant advantages in applications where long timing intervals and good temperature stability are required can be provided by the timing circuit shown. It is similar to the hybrid oneshot multivibrator circuits described in the literature, but offers improvements in operating margins, recovery time, and temperature stability.

Transistors Q_{2} and Q_{3} are low leakage germanium npn transistors which form a flip-flop designed for operation at ambient temperatures up to 80 C . The unijunction transistor, Q_{1}, is a low-leakage, high-sensitivity type which is used in a simple relaxation oscillator circuit to perform the timing function. In the quiescent condition Q_{3} is conducting and the emitter of Q_{1} is clamped to a low voltage by diode D_{1}. Timing is initiated by a negative trigger pulse at the base of Q_{3} which turns Q_{3} off and Q_{2} on. The clamping diode, D_{1}, is then reverse biased and C_{1} is allowed to charge through R_{1}.

Timing interval of this circuit can be varied from 10 millisec to 0.3 second.

After a period of approximately $0.8 R_{1} C_{1}$ the voltage across C_{1} exceeds the peak point voltage of the unijunction transistor causing it to fire. The discharge current of C_{1} generates a positive pulse across R_{2} triggering the flip-flop back to its quiescent state. When this triggering action occurs, C_{1} partially discharges through the emitter
of Q_{1} and is then completely and rapidly discharged through D_{1} and the collector of Q_{3}. This action establishes the initial voltage on C_{1} and thus serves to reduce the variation of timing interval with temperature and duty cycle.

Operating tests on the circuit have demonstrated a high degree of accuracy over a wide range of temperature, duty cycle and trigger amplitude. Testing to extreme temperatures indicated that the circuit could operate up to 105 C which was well above both the design temperature limit and the maximum rated operating temperature of the germanium transistors.

The time interval changed by less than 0.4 per cent over an ambient temperature range of 25 C to 80 C and by less than 0.7 per cent over a range. of duty cycle from 1 to 95 per cent. The circuit was triggered reliably by pulses having a width of $2 \mu \mathrm{sec}$ or greater and an amplitude from 0.2 to 4 volts. The timing interval, nominally 60 milliseconds, can be varied over a range from 10 milliseconds to 0.3 second by suitable choice of R_{1}. Other timing ranges can be achieved by changing the value of C_{1}.

Relay Binary Counter Module

Conventional double-pole relays may be employed to produce modular stages of a binary counter. Each module requires two relays, two resistors and two diodes. n modules may be cascaded to yield a counter of $2^{n}-1$ total count.
The basic module circuit is shown in Fig. 1. Relay A coil actuates contacts a_{1} and a_{2}. Similarly for relay B. Inputs are applied to relay K coil whose contact is labelled \hat{k}. All relays are shown in the de-energized state.
When a pulse is applied to the coil of pulse repeater relay K, the relay pulls in and relay A coil becomes energized by application of voltage through normally open contact k and normally closed contact b_{1}, to the high side of coil A. Relay A pulls in and locks up through normally open contact a_{2}.
After the pulse input to relay K collapses, relay K drops out. Relay B coil now become energized by application of voltage through normally closed contact k and normally open contact a_{1} to the high side of coil B. Relay B pulls in and locks up through normally open contact b_{2}.

Upon receipt of a second pulse, relay K again closes and relay A is forced to drop out by application of voltage through normally open contact k and normally open contact b_{1} to the low side of coil A.
Upon collapse of the pulse input to relay K, relay K drops out and relay B is forced to drop out by application of voltage through normally closed contact k and normally closed contact a_{1}.
The circuit is now in the same state as prior to

FIG. I-Schematic of module.

FIG. 2-Module cycle sequence.

FIG. 3-Three-stage binary counter.
receipt of the first pulse, namely all relays deenergized, and the application of further pulse inputs to relay K produces the same cycle of events as described above. Figure 2 illustrates the cycling sequence.
The b_{2} contacts of relay B provide readout and output from the circuit. Odd pulses produce output on terminal X, even pulses or no pulse input produces output on terminal Y. Diodes $C R_{1}$ and $C R_{2}$ provide isolation between the relay module and output circuitry.

Cascading of modules identical to that of Fig. 1 can produce an n stage binary counter. A 3 -stage counter is shown in Fig. 3. Readouts can be both direct binary or binary complemented from full count of the n stage counter.

Simple Current Integrator

Voltage developed across a capacitor may be utilized to measure the time integral of current (accumulated charge) regardless of the form in which it arrives at the capacitor. However, the total charge that can be measured accurately is limited by the available capacitance. If a trigger mechanism is arranged to discharge the capacitor and operate a register after a preset level is reached, the cycle may be repeated many times and the total accumulated charge measured as a digital output.

A meter relay coupled to an electrometer tube can provide a simple trigger system that does not suffer the instabilities of a gas thyratron trigger or the complexities of the tachometer type integrators.

A model of the current integrator described here has been in daily use for more than 2 years as an x-ray beam current integrator. Other than a

FIG: 1-Circuit of current integrator. Lettered leads connect to power supply leads of Fig. 2.

FIG. 2-Rectifiers R3 and R6 each consist of three in series.
weekly check on its accuracy, resulting in occasional adjustment, it has not required servicing.
As current flows to C_{1} (Fig. 1) the grid of the electrometer tube begins an exponential rise from a negative voltage and approaches 0 volts. As the grid voltage approaches zero, electrometer current flows. When the current reaches a value that has been preset on the meter relay, the con-
tact close, causing the locking coil to be energized. At the same time the two relays in series with the locking coil are energized. One of these relays has a set of normally open contacts across C_{1}. The movable arm of this relay has been replaced with an arm made of Teflon with the contact point connected to the high impedance end of C_{1}, thus providing a very high impedance path for the input circuit. This relay, when energized, discharges the capacitor. The discharge time is short (10 millisec) compared to the average cycle time (10 seconds). Therefore, the integrator presents a "dead condition" for only 0.1 per cent of the cycle.

Relay K_{2} energizes a mechanical register by which a visual indication of the number of completed cycles is given, and de-energizes the meter relay locking coil so that all relays can return to the de-energized state. The mechanical register can be of the preset-count type, equipped with an end-limit switch to terminate measurements when the desired integral has been reached.

The cleanliness of the high impedance components is essential, as is the light shielding of the electrometer tube. Capacitor C_{1} is a Glassmike type and is washed thoroughly in petroleum ether to eliminate all traces of grease film. The electrometer tube, C_{1} and K_{1}, are installed in a lighttight, hermetically-sealed box. With a clean, properly working circuit, a small charge placed on C_{1} will neither leak off nor gain over a period of days.

Figure 2 shows the power supply, which is voltage regulated as well as temperature compensated in the plate and bias sections.

Line voltage variations of 10 per cent change the output voltages, by only 0.0001 per cent ${ }^{1}$. The temperature stability of the series-connected rectifiers R_{3} and R_{6} and zener diodes Z_{2} and Z_{4} is $0.004 \% /{ }^{\circ} \mathrm{C}$.

Sensitivity of the circuit can be varied by changing the value of C_{1}, the bias voltage C, and by the adjustable scale contact of the meter relay.

With a bias voltage of -30 volts and an input current of $10^{-8} \mathrm{amp}$, a range in triggering time of approximately 1 second to more than 1 minute is available.

Other possible applications of the integrator are densitometry, average computing, power totalizing, and radiation alarm systems.

Zero-Order Data Hold

A zero-order data hold circuit is required in some sampled-data systems and analog-to-digital converters. This circuit is one that samples an analog signal and then holds that sample value for a period of time much longer than the sampling aperture.

The circuit in the figure has been used to sample inputs with an accuracy of 0.1 percent of full scale
using a sampling aperture of $1.25 \mu \mathrm{sec}$ or longer. The holding accuracy, of course, depends on the input resistance of the following stage. Operating into a 2 meg load, the voltage deviation can be kept to less than 0.1 percent of full scale if the ratio of holding time to sampling time is 10 or less.
Q_{1} and Q_{2} provide a switch that is essentially bilateral since the voltage across the capacitor C can make a full-scale transition in either a positive or negative direction during one sampling aperture. The diodecapacitor combination in the base of the switching transistors insures that the base-to-emitter breakdown voltage is not exceeded since the back resistance of the diode is much greater than that of the base-emitter junction. The value of C required for 0.1 percent sampling accuracy can be determined from

$$
C=\frac{t_{s}}{6.91 R}
$$

where $t_{s}=$ sampling aperture and $R=$ resistance in charge and discharge path of \boldsymbol{C}.

Sample-and-hold circuit.

Precision Solid-State

Delay Circuit

Abstract

This circurr gives time delays of over three minutes without the usual tantalum or electrolytic capacitor. The low leakage requirement for the timing capacitor, C_{1}, is easily obtained with a mylar capacitor. The timing interval is initiated by applying power to the circuit. At the end of the timing interval, which is determined by $R_{1} C_{1}$, the 2 N 494 C fires the SCR. This places the supply voltage, less about 1 volt, across the load. Load current is limited only by the rating of the SCR, which is from 1 amp to 25 amp for the types specified in the circuit. A calibrated potentiometer can be used in place of R_{1} to permit setting a predetermined time delay after one initial calibration. The charging resistor, R_{1}, must be small enough to supply the minimum firing current (peak point current, I_{p}) of the UJT plus the leakage current of the capacitor when the UJT emitter is biased at its peak-point voltage. The 2 N 494 C requires a minimum I_{p} of 2.0μ a. This places a limit of 3 meg for R_{1} and permits time delays to $6 \sec \left(C_{1}=2 \mu \mathrm{f}\right)$ without using the additional 2 N 49 I relaxation oscillator. The circuit, as shown, effectively reduces the minimum I_{p} requirement by a factor of 1000 by pulsing the upper base of the 2 N 494 C with a $3 / 4$-volt negative pulse. This

negative pulse rate is not critical but it should have a period that is less than $0.02 R_{1} C_{1}$. The negative pulse causes the peak point voltage to drop slightly and if the voltage level at C_{1} is greater than this, the unijunction will fire with the necessary I_{p} supplied from C_{1}. With this technique, this circuit gives time delays of about one hour with 2000 meg at R_{1} and $2 \mu \mathrm{f}$ at C_{1}. The repeat-

Delay is set by $\mathbf{R}_{1} \mathbf{C}_{1}$ time constant.
ability of the time delay from one day to the next is within 0.15 per cent. R_{2} can be adjusted or selected for best stabilization of the firing point over the required temperature range.

A pulse transformer can be used in place of the 27 ohm resistor if it is necessary to have the timing circuit isolated from the power switching (controlled rectifier) circuit which, for instance, mght be connected to the ac line.

The input impedance of the unijunction transistor is greater than 1500 meg before it is fired. The maximum time delay is mainly dependent upon the maximum values of R_{1} and C_{1} consistent with the low leakage requirement.

The diode D_{1} allows higher values for R_{1}. For example, with an accuracy of $1 / 2$ percent at $25^{\circ} \mathrm{C}$ and 5 percent at $55^{\circ} \mathrm{C}$, without D_{1}, R_{1} is limited to 15 meg , but with D_{1}, R_{1} can be increased to $10,000 \mathrm{meg}$.

Interval Timer

Inexpensive relays can be used to provide excellent timing accuracies with high isolation in this unijunction-transsistor timing circuit. The circuit uses the power gain of the emitter junction of UJT Q_{1}.
In the "off" state, the power dissipated in the relay is łess than 10^{-9} watts and in the "on" state the power dissipated can approach 1.5 watts, depending on the relay coil resistance.

Depression of S_{1} produces sufficient firing voltage for UJT Q_{1}. This causes emitter-current modulation, which results in actuation of R_{y}. Upon conduction of Q_{1}, the base of transistor Q_{2} is switched from a cutoff to a saturation state. This results in the voltage $V_{b b}-V_{c \theta\left({ }^{(84 T}\right)}$ being applied to the timing network of R_{1}, R_{2}, and C_{1}.

When C_{1} charges to the peak firing voltage of UJT Q_{3}, a negative pulse is generated at its base 2 element. This pulse is fed back through C_{2} to the emitter of Q_{1} which results in operation on the unstable (negative resistance) portion of the emitter characteristic curve. This causes Q_{1} to switch to a nonconductive state and completes the cycle. The timing constant of R_{1} and R_{2} and C_{2} is determined by the formula $T=-\left(R_{1}+R_{2}\right)\left(C_{1}\right) \ln (1-n)$ where n is the intrinsic stand-off ratio.

Interval timer.

Accurate Time Delays

up to Four Minutes

Accurate tham delays greater than one minute are difficult to achieve using conventional methods. However, with a unijunction transistor as the switch, an accuracy of $\pm 1 \%$ at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ for time delays between one and four minutes can be achieved.

Four-minute timing circuit.
Although the circuitry in Fig. 1 was designed for a controlled environment, the temperature range can be extended by including a thermistor temperature-compensating network in the constant-current configuration Q1.

In the circuit shown, the input AND gate is enabled by a $-6-\mathrm{v}$ input. This negative voltage cuts the gated clamp $Q 2$ off and allows the timing capacitor C_{1} to charge linearly through the constant-current generator Q1.

When the charge across the timing capacitor C_{1} reaches the peak-point emitter voltage of 6.4 v , unijunction Q3 fires and the 1-v positive pulse developed across R_{8} triggers the $80-\mathrm{msec}$ one-shot multivibrator composed of Q4 and Q5.

In the quiescent state, the $80-\mathrm{msec}$ one-shot multivibrator provides one enabling input to the two-input AND gate. However, the triggering of the one-shot
multivibrator inhibits the input control AND gate and re-enables the gated clamp $Q 2$. The saturation voltage $V_{\text {esat }}$ (Q3) stored by C_{1} is discharged through $Q 2$ to ground. This action allows the full amplitude of the charging ramp voltage to be utilized and extends the time duration appreciably.

The complementary output of the one-shot multivibrator provides True or False output logic levels for associated circuitry. Adjustable time delays between one and four minutes are possible by varying trimmer potentiometer R1.

Relay Chain Counts Consecutive Pulses

This relay circuit is designed to provide an output pulse if, and only if, a given number of input counting pulses are received consecutively

Counter relay chain provides low-cost fail-safe operation. If the counting pulses are interrupted by a reset pulse, the entire consecutive count starts over again from zero. As a secondary feature, all relays are normally energized so that coil failure or power failure can result in a premature output, but never an overcount.

At the beginning of a count all relays are energized and held-in through the contacts of the A relays. As the count contacts close, K_{14} is shunted and dropsout, but $K_{1 B}$ is held-in through its own contacts in series with the contacts of the count switch. As the COUNT contacts reopen, signifying the completion of the first pulse, $K_{1 B}$ drops-out. The second count pulse will drop-out $K_{2 A}$ on make and $K_{2 B}$ on break, and so on down the line until pulse n drops-out $K_{n A}$ and $K_{n B}$. The $(n+1)$ pulse will pass straight through to the output. A reset pulse at any time will re-energize all dropped-out relays. The minimum duration of the reset pulse must be equal to the pull-in time of the type of relay used, multiplied by the number of pairs of relays in the chain.

A typical circuit for counting three consecutive pulses may use four relatively inexpensive spdt relays.

Relay Counters

Counters which count in accordance with the binary cyclic code can be constructed to operate reliably using relays with double-throw contacts. In
the circuits to be described, a counter with 2^{n} stable states requires n relays and a total of n^{2} contacts.

A counter with four stable states is shown in Fig. 1. This counter uses two relays and four contacts. Relay A is made up of the coil labelled A and the contacts labelled A_{1} and A_{2}. Similarly for Relay B. Both relays are shown in the deenergized state.

Table 1 describes the stable states through which

TABLE I-
 Stable States of Two-Stage Counter

Stable State	Relay	
	A	B
1	0	0
2	0	1
3	1	1
4	1	0

this counter progresses as switch S is alternated between positions P and Q. A zero represents the deenergized state of a relay; a one represents the energized state.

Figures 2, 3, and 4 show counters having 8, 16, and 32 stable states, respectively. Table 2 lists the 32 stable states through which the last counter

FiG. 1 - Two-stage counter.

FIG. 2-Three-stage counter.
progresses. Portions of this describe the stable states of the smaller counters. Stable states 1 through 8, and columns C, D, and E describe the operation of a three-stage counter. Stable states 1 through 16, and columns B, C, D, and E describe the operation of a four-stage counter.

Circuits for counters with more than five relays can be obtained by extrapolating from the figures shown.

The author expresses his thanks to Sidney M.

FIG. 3-Four-stage counter.
Stone for the experimental verification of these circuits.

TABLE II-Stable States of Five-Stage Counter

Stabie State	Relay				
	A	B	C	D	E
1	0	0	0	0	0
2	0	0	0	0	1
3	0	0	0	1	0
4	0	0	0	1	0
5	0	0	1	1	0
6	0	0	1	1	1
7	0	0	1	0	1
8	0	0	1	0	0
9	0	1	1	0	0
10	0	1	1	0	1
11	0	1	1	1	1
12	0	1	1	1	0
13	0	1	0	1	0
14	0	1	0	1	1
15	0	1	0	0	1
16	0	1	0	0	0
17	1	1	0	0	0
18	1	1	0	0	1
19	1	1	0	1	1
20	1	1	0	1	0
21	1	1	1	1	0
22	1	1	1	1	1
23	1	1	1	0	1
24	1	1	1	0	0
25	1	0	1	0	0
26	1	0	1	0	1
27	1	0	1	1	1
28	1	0	1	1	0
29	1	0	0	1	0
30	1	0	0	1	1
31	1	0	0	0	1
32	1	0	0	0	0

FIG. 4-Five-stage counter.

Relay Flip Flop

Designed for use with an automatic machine tool, the circuit shown in the illustration functions as a binary counter. The system has proven reliable where slow-speed counting or sequence switching is required.
Normal resting position of relay contacts and the

Switch actuated by machine tool operates binary counter relay.
momentary contact sensitive switch are as shown in the schematic. The 108 -v supply was taken from the existing equipment.

Capacitor Charges to 108 v through relay contacts $4-3$, and sensitive switch contacts $A-B$. A holding current of 1 ma flows through the relay coil. This magnitude of current is insufficient to close the relay.

When the normally-closed, momentary contact, sensitive switch is actuated, the charged capacitor C is switched across the relay coil resulting in a large current flow actuating the relay contacts. The 1 -ma holding current flowing through B is ample to hold the relay closed when the switch returns to the normally open position. Capacitor C will now discharge through relay contacts 3-2 and sensitive switch contacts $A-B$.
Another actuation of the normally closed sensitive switch connects the discharged capacitor C across the relay coil where it appears as a virtual short circuit, de-energizing the relay and allowing the relay contacts to return to the original position.

Low-Frequency Stairstep Generator and Timing Circuit

Astairstep generator that will accept pulse inputs, either random or evenly spaced, and produce an output after a fixed number of inputs is often useful in measuring and recording lowfrequency data. The circuit shown in Fig. 1A is capable of accepting pulses having any fixed width from a millisecond to several hundred milliseconds and producing a stairstep output having any number of steps from two to one thousand.

Transistor Q_{1} with R_{1}, R_{2}, R_{3} and zener diode D_{1} form a constant current generator. Capacitor C_{1} acts as a storage reservoir for the current output at the collector of Q_{1}. Resistor R_{1} is adjusted to cancel out the leakage current occurring in C_{1}, R_{5}, and Q_{2} when C_{1} is half charged. With this adjustment, leakage can be controlled close enough so that an error due to leakage is less than one percent if a pulse input is more frequent than one every

twenty seconds. Unijunction transistor Q_{2} triggers at a fixed value of emitter voltage. The point at which Q_{2} triggers is fixed by the voltage across zener diode D_{2}.
When Q_{2} starts to discharge, a positive pulse is fed through C_{2} and turns on the controlled rectifier

FIG. 2-Repeat cycle timer results by revising basic circuit shown in Fig. I.
Q_{3}, which in turn discharges C_{1} essentially to zero. Then Q_{3} recovers and presents a high impedance to current flow as soon as the voltage across C_{1} falls to zero, as there is not a high enough current output from Q_{1} to sustain conduction.

Adjustment of R_{2} provides the desired amount of input current during a step input to fix the number of pulses in one group of steps.
An impedance matching amplifier, Q_{4} and Q_{5}, is capable of driving a relatively low-impedance load. With the proper balance of R_{5} and setting of R_{10}, the output can be adjusted to provide an output of 0 to 3 volts.

Figure 1B shows the waveforms obtained in the circuit. By changing R_{1} to a smaller value and eliminating R_{2}, the output is a sawtooth with a linearity of one percent. The quality of the capacitor used for C_{1} is important for linearity. The period of the sawtooth is variable from 10 milliseconds to 15 min utes, depending on the value of C_{1} and R_{1}. The circuit has performed satisfactorily with a value of $600 \mu \mathrm{f}$ for C_{1}. The only criterion for reliability is that Q_{3} be capable of handling the high pulse current during discharge of C_{1}.

By modifying the circuit to that of Fig. 2, a repeat cycle timer is constructed capable of providing output pulses over a dynamic range of several thousand. In this circuit Q_{3} is fired through the second pair of relay contacts to insure that sufficient current is passed to C_{3} to provide a positive and consistent period of relay closure. The time that the relay remains closed is determined by size of C_{3} and R_{5}.
The biggest advantage of this type circuit other than the wide dynamic range it covers is the large amount of ripple it will tolerate from the prime power source. If diodes D_{4} and D_{5} are added, as shown in dotted lines in Fig. 2, along with C_{4}, the unit will tolerate transients of as high as ± 100 percent of the supply voltage and of several microseconds duration.

Simple FET Timer

This solid-state timer uses a FET constant-current source to eliminate time-period errors due to unregulated power supplies and line transients.

In the "reset" switch position, the timing capacitor charges to the pre-set positive voltage on the divider network. The timing cycle begins when the switch is moved to the "time" position. The positive capacitor plate then is grounded and a negative voltage equal to the original positive capacitor charge is transferred to the base of bipolar transistor Q_{2}. The output voltage v_{o} rises to +12 V .

The FET, connected as a self-biased constant-current supply, now begins to linearly remove this negative charge in a time $t=C V / I_{D}$, where $C=$ capacitance, $V=$ reset voltage $+V_{B E_{1} S A I_{1}}$, and $I_{D}=\mathrm{FET}$ constant drain current.

The timing cycle ends when Q_{2} turns on, and drops the output voltage v_{o} to $V_{c \varepsilon_{(} s A r}$. Sharp turn-on action is provided by a regenerative action increasing available FET constant current as Q_{2} turns on.

To achieve overall zero or near zero temperature coeffi-

Low-cost, wide-range FET timer circuit.
cient for the timer, the FET constant drain current is set by R_{1} to the FET nominal zero T.C. drain current, about $-10 \mu \mathrm{~A}$. Operated thus, the timer shown has a time period approximately $0.1-50 \mathrm{sec}$ controlled by R_{2}.

Total component cost for the circuit using a U-110 FET
is estimated at $\$ 12.76$ in small quantities and $\$ 9.97$ in 100 and up quantities. With a lower cost, lower g_{m} U-146 FET, component costs are $\$ 10.76$ in small quantity and $\$ 7.42$ for 100 and up.

Recycling Timing With Variable Duty-Cycle

This circuit was designed to offer, at low temperatures, a variable recycling time delay with adjustable time-on, timeoff.

In the circuit, the $100-\mathrm{K}$ variable resistors control on and off times. Some refinements are necessary to make the circuit operational down to $-65^{\circ} \mathrm{C}$ (a minimum beta of 20 at this temperature is required). For $-50^{\circ} \mathrm{C}$, an unselected transistor will perform well with 300 ma load.
If a small current is used, 50 ma or so, the second transistor could be eliminated, as could SM 72 as long as the emitter current of the trigger is increased, by changing the bias, to about 3.5 ma .
The circuit as shown has a time delay of 0.300 sec to 6 sec . Care should be taken when the 300 msec level is

Recycling timer with variable duty-cycle.
set because the base bias, i.e., 100 K , may now be almost as low in value as the load resistance, and the multi will not start.

Reversible Linear Counter

This circuit provides uniform discrete steps in output voltage for pulses at the input terminals. Negative pulses at A cause positive steps in the output voltage. If terminals A and B are joined, positive pulses will cause negative steps, and negative pulses will cause positive steps in the output voltage. The input pulses, however, must be short and of small enough amplitude so that

Counter circuit in which negative pulses at \mathbf{A} give positive steps in output voltage. Counting is reversed by applying positive pulses at B.
overshoot of the trailing edge will not drive the counter in reverse.
Operation is as follows: initially the voltage between the base of Q_{2} and the reference bus, will be the voltage across $C_{s} \pm 0.7$ volts (conducting potentials of diode D_{1} and the base-emitter diode of Q_{q}). The voltage at the collector of Q_{1} will be zero, since Q_{1} is not conducting.
A negative pulse into terminal A will cause Q_{1} to conduct, and the collector voltage will approach $V_{C C}$. Capacitors C_{2} and C_{3} form capacitive volt-age-divider, but C_{s} apparent $=$ C_{s} actual $(\beta+1)$, where β is the current amplification factor of Q_{2}. The charge which
flows into C_{3} is $(\beta+1)$ times the charge which flows out of C_{2}. When the input pulse is removed, the collector voltage of Q, returns to zero in a time determined by R_{2}. The charge which must flow back into $C_{\bar{z}}$ flows from C_{3} through D_{1} and is approximately equal to the charge which was forced into the base of Q_{2}. The net charge
left in C_{3} is β times the charge from C_{2}.

Assuming that the voltage step across C_{3} is small compared to supply voltage, this voltage increase,

$$
E_{s t e p}=\frac{\beta \times C_{2} \times V_{C C}}{C_{s}}
$$

$C_{2} \quad \mathrm{X} \quad V_{C C}$. This relationship holds for all values of voltage
across C_{s} until the voltage across Q_{z} is less than 1 V . Positive pulses into terminal Q_{z} to the positive supply bus, B cause exactly the same ac- or the base of Q_{4} to the refertion, via Q_{3}, C_{5} and Q_{4}, but in ence bus. This circuit can also the opposite direction. Coinci- be used as a net frequency indent pulses cancel, so this dicator by shunting C_{3} with a counter can add and subtract resistor. The average output simultaneously. FET Q_{5}, is an voltage will then be proportionemitter follower, which pre- al to the frequency of pulses vents loading of C_{3}.

The counter can be reset to zero by clamping the base of voltage will then be proportion-
al to the frequency of pulses at A less the frequency at B.

Inexpensive UJT-SCR Intervalometer

Often a circuit is required that operates at the end of a pre-determined period for a second pre-determined period (unlike the time delay relay, which merely switches on or off). A monostable multivibrator will do this, but for time periods more than about 4 sec the timing capacitor becomes bulky, since it is not feasible circuit-wise to have the timing resistor large in transistor MV circuits.

A transistor MV, for 5 sec , requires about $500 \mu \mathrm{f}$. The circuit shown, however, works with small values of timing capacitor, here $3 \mu \mathrm{f}$, low standby curren: (5 mA) and with the values of R_{t} shown, gives time periods from below 5 to near 10 sec . Longer periods are easily obtainable.
Circuit operation is based on the familiar SCR with commutator capacitor for switching "other off" connected anode-to-anode. When power is first
applied, $S C R_{2}$ is switched to conduction by the voltage-divider action of the relay coil through the $2.2-\mathrm{K}$ resistors to ground. The voltage at the gate is about 0.75 V . The unijunction base 1 is at nearly the same potential as base 2 , since point A is near supply potential. Thus, the unijunction does not conduct.
When a trigger pulse is fed to the $S C R_{1}$ gate, it is turned on and commutates $S C R_{2}$ off. The unijunction base-1 circuitry is now near ground potential. $S C R_{2}$ loses its $0.75-\mathrm{V}$ gate signal since point A is near ground. The unijunction now functions as a familiar pulse generator.
The first pulse triggers SCR_{2}, which commutates $S C R_{1}$ off, and the circuit is once again in standby, awaiting the next signal pulse. Other uses can be obtained by replacing the relay coil with a different type of load. Total cost of the SCRs and UJT shown is $\$ 4.95$.

Low-cost intervalometer using unijunction transistor and two SCRs.

are DTL/TTL compatible

Stable clock oscillators

These two crystal oscillators provide stable clock sources that are completely compatible with DTL and TTL ICs. The circuits operate from a single +5 Vdc power line and have
a minimum number of component parts. Over the temperature range 0 to $+70^{\circ} \mathrm{C}$, frequency stability of each circuit approaches that of the crystal alone.

The circuit shown in Fig. 1 generates a $1-\mathrm{MHz}$ clock signal, while that shown in Fig. 2 is designed for $100-\mathrm{kHz}$ operation. Fig. 3 shows the temperature drifts of both oscil-

Fig. 1. Simple $1-M H z$ clock oscillator operates from $+5 V$ supply and gives output levels compatible with digital ICs.
lators. Drift is well within the $\pm 50 \mathrm{ppm}$ expected from the specified crystals. Supply-voltage susceptibility is good too. Changing the supply voltage from 4.5 to 5.5 V produces a frequency change of less than $\pm 3 \mathrm{ppm}$ at all temperatures.

Both circuits use a Colpitts type feedback configuration that doesn't need inductors. The circuits are designed for par-allel-resonant crystals that require $32-\mathrm{pF}$ nominal shunt capacitance.

In the $1-\mathrm{MHz}$ circuit, feedback capacitors C_{1} and C_{2} provide the necessary shunt capacitance. In the $100-\mathrm{kHz}$ circuit, on the other hand, the values of
C_{1} and C_{2} needed for oscillation are much higher. So an extra capacitor C_{3} is added to give the necessary shunt capacitance.

Emitter follower stage Q_{z} and a 932 DTL buffer gate complete the circuit. The wavform at Q_{z} emitter is a sine wave with the bottom clipped. The two buffer gates, in series, amplify and clip the signal to produce a square wave with rise and fall times of less than 50 ns .

Some adjustment of R_{3} may be necessary to achieve a symmetrical output square wave. With the specified IC gate, the circuit will drive up to 25 DTL loads or 12 TTL loads.

Fig. 2. For lower frequencies, as in this $100 \cdot \mathrm{kHz}$ circuit, an ad. ditional capacitor C_{3} is needed to provide the correct shunt capacitance for the crystal.

Fig. 3. Frequency varies less than ± 30 ppm over the temperature range 0 to $+70^{\circ} \mathrm{C}$. Stability is determined primarily by the crystal.

Low-power timer drives

stepping relay

The extremely low forwardblocking current of some SCRs (for example, GE's C106B, with $I_{f x} \simeq 0.1 \mu \mathrm{~A}$) allows the design of inexpensive timing circuits which can drive inductive loads (such as stepping relays), yet which require a minimum of continuous power.

The circuit shown has a current drain of only $25 \mu \mathrm{~A}$ when cycling at 1 pulse/min. This allows battery operation in
portable applications. For dc operation, a $90-\mathrm{V}$ battery is suitable. Alternatively. the circuit will work directly from rectified ac (half-wave or fullwave), using a $110-\mathrm{V}$ line.

Timing depends on the supply voltage as well as on the RC time-constant. With the component values shown ($\mathrm{R}=$ $10 \mathrm{M} \Omega, \mathrm{C}=25 \mu \mathrm{~F})$, the circuit cycles at 5 -minute intervals using a $90-\mathrm{V}$ battery, or at 10 -minute intervals using half-wave rectified ac. For optimum efficiency and timing accuracy, a low-leakage capacitor should be used.

Circuit operation is extremely simple. Capacitor C charges
from the supply line via resistors R_{1} and R_{2}. When the capacitor has charged to around 65 V , the neon fires and triggers the SCR. The charge on the capacitor is dumped through the relay coil, activating the relay. The discharged capacitor then starts to recharge, commencing a new cycle. Resistor R, allows adjustment of the cycling rate, while resistor R_{2} determines the minimum cycle period.
In addition to its efficiency, the circuit has other advantages. the SCR is self-commuting - no special turnoff circuitry is needed. The circuit reliably drives inductive loads

This timing and driver circuit for stepping relays offers high efficiency, provided a low-leakage capacitor and SCR are used.

- the trigger signal is present until the SCR is fully conducting. Recycle time can be very short - the capacitor is discharged through the SCR and not through the neon or through a resistor.

Versatile timer

The circuit shown functions as a one-shot, variable pulse delay or oscillator. Stability with temperature and supply-voltage variations is excellent. Recovery time is extremely short, allowing duty cycles to about 98%.

For one-shot action the D and PRESET inputs of the integrated flip-flop are held at logic 1. A positive-going edge at the $C P$ input triggers it to the set state. When the timing capacitor C charges sufficiently to turn on Q_{z}, Q_{1} and Q_{z}
switch on, clearing the flip-flop. This turns on Q_{0} which discharges C and holds it at 0 V until the flip-flop is again triggered.
The clear pulse or "Time Out Pulse" at the collector of Q_{t} is useful since it occurs at
the trailing edge of the output pulse. The circuit is thus useful for pulse delay. One-shot action is disabled if the D input is held at logic $O . R_{+}$allows a 4-to-1 adjustment of output pulse width.

With R, set at mid-range, the

Wide-range programmable clock for

 low-voltage logicInput-current changes can program the rep rate of this timing generator over four decades. Timing can be provided from less than one microsecond to more than a minute with a single capacitor change. The generator works with RTL (3.6-V) logic.

A positive input current from the programming logic is integrated by the integrator in the figure ($Q_{1} Q_{2} Q_{3}$). A negative ramp appears across C_{1}.

When sufficient current has been integrated, the current through R_{4} switches tunnel diode $C R_{\mathrm{l}}$ to its high state and turns on Q_{4}. The output pulse generated by this turn-on drives Q_{5} deep into saturation.

The timing capacitor $C_{\text {, }}$ now recharges through Q_{5} and $R_{3} R_{4}$ until the tunnel diode returns to its low state. At this time, both Q_{4} and Q_{5} turn off and a new integration cycle starts.

The period between pulses is determined by the input-current integrated by C_{1} and the output pulse width is primarily determined by the $R_{3} C_{1}$ time constant.

The generator free runs at a slow rate from the effect of
time-out period t equals $3.4 \times$ $10^{3} \mathrm{C}$. Conversely, $C=0.29 \times$ $10^{-3} t$.

If the PRESET input is held at logic 0 , the circuit free-runs, making it useful as an oscillator. 'The zener assures good sta-
bility with supply-voltage variations. The series diode compensates the effects of temperature on $V_{B E}$ of Q_{g}. The zener and diode with series resistor supply four complete timing circuits.

This timing generator, operating at R'TL levels, can be current programmed over a wide range.
input offset current (about 0.2 $\mu \mathrm{A}$). Free running can be stopped by either opposing the offset current with a negative current of larger value or supplying a disable input to the reset transistor. For time-delay applications, either the input currrent can be switched on or the disable removed. The magnitude of offset current is of little consequence if the gen-

This highly stable circuit can be used as a one-shot, variable pulse delay or oscillator.
programming. This rate variation was obtained with a 47 nF capacitor for C_{1} and various resistances ($2.7 \mathrm{k} \Omega$ to $50 \mathrm{M} \Omega$) and series diodes switched by
logic elements. The circuit was also used with a $47-\mu \mathrm{F}$ capacitor to generate one-minute time pulses and with a $47-\mathrm{pF}$ capacitor for a $2-\mathrm{MHz}$ conversion os-
cillator for a pulse-width ADC. Preliminary tests indicate about 1% linearity of current-to-frequency conversion from 0.1 to $100 \mu \mathrm{~A}$ which suggests
additional applications as a ramp generator and current-tofrequency converter.

Single capacitor converts TTL

gates into one-shot

Digital systems, with TTL ICs, frequently require fixed delay elements. Often, delay lines are impractical because they are too bulky, or because they don't give the necessary fine increments. In these cases a one-shot multivibrator can be used, provided it doesn't need too many discrete components. The circuit shown in Fig. 1 uses only two IC packages and a discrete timing capacitor to produce a versatile one-shot.

Sylvania's SG120- series SUHL gates have an additional output lead for use with gate expanders. Turn-on delay of the gate depends on the capacitance between the expander terminal and ground. According to the manufacturer's data sheet, delay varies over a range of 125 ns for a capacitance change of 30 pF .

In the one-shot circuit of Fig. 1, capacitor C_{T} loads terminal m of gate A_{s} to give the required delay. Gates A_{1} and A_{2} are cross-coupled to form a simple S-R flip-flop,
capable of being set by a negative pulse or step at the input. The steady-state condition is with the input high. Then gate A_{2} is low and gates A_{s} and A_{1} are high.

When the flip-flop is set by a negative-going input, A_{2} goes to the high state thus forcing A_{1} low and allowing C_{T} to begin charging. Gate A_{3} is still high. When C_{T} charges to approximately twice the baseemitter drop of the gate junctions, A_{s} goes low, causing the output of A_{1} to return to the high state.

The flip-flop will not reset until the input has returned to the high state. However, provided the input is a narrow pulse that returns to the high state during the timing interval, the flip-flop will reset as soon as A_{3} goes to the low state. In Fig. 2, the solid lines show the normal mode of operation and the dashed lines show what would happen if the input remained low after completion of the one-shot period.

When the input returns to the high state, the flip-flop resets, discharging C_{T} in preparation for the next cycle. Recovery time depends on this discharge, thus it is proportional to the value of C_{T}.

For proper circuit operation,
the input must remain negative long enough to set the flip-flop (at least 20 ns). Also, A_{1} must not be too heavily loaded or the circuit will not reset. For greater versatility, the two unused gates in the SG143 can be connected in series to buffer the output of the one-shot. This arrangement will produce push-pull positive and negative outputs and will avoid loading problems.

Delay period can be adjust-
ed by varying either C_{T} or the charging current. To vary the current, one can either adjust the supply voltage to A_{3}, or one can add a resistor (at least $1 \mathrm{k} \Omega$) from pin-I to pin-D of A_{s}.

The circuit has the disadvantages that period depends on supply voltage and ambient temperature. For precise fixed delays, it will be necessary to use a well regulated power supply and possibly some form of temperature control too.

Fig. 1. Unusual one-shot multivibrator exploits the inherent delay of a SUHL SG120-series gate when its expander ter. minal is capacitively loaded.

Fig. 2. The input pulse must return to the high state before completion of the delay period. If it does not, the capacitor won't be discharged in preparation for a new cycle.

Simple analog delay

A single low-Q inductor can provide long delays of analog signals, retaining amplitude information, where the bandwidth requirement is small. The patented circuit, in Fig. 1, uses a buffer-driven, tuned, RLC network.

A positive input excursion causes the tuned circuit to pro-
duce a positive voltage recovery swing the moment the input voltage returns to zero. The RLC network is sufficiently damped to provide only one significant recovery transient. The first recovery tends to be a function of LC network's center frequency.

The resonant frequency of
the network can be determined swing, but sufficiently close to from

$$
f=\frac{\sqrt{\frac{1}{L C}-\frac{1}{4 R^{2} C^{2}}}}{2 \pi}
$$

The procedure is to establish non-inverting amplifier. An the R at a value sufficiently wanted excursions from the above the value $\sqrt{L / 4 C}$ to output and enhances the dygive a substantial first-recovery namic range. The adaptive
clamp anticipates the first positive recovery amplitude since the negatively driven pulse discharges C_{2}, thereby lowering the negative clamping level. Changes in clamping also tend to vary the width of the output pulse. With longer-duration inputs the output pulse tends to lengthen, helping to improve frequency response.

The time constant of the clamp is about equal to twice the reciprocal of the center frequency of the RLC network. The circuit has a dynamic range over which the output
 amplitude follows the input amplitude linearly of about 30 dB. A greater range is possiblefig. 1. With the component values shown, this circuit (positive-input version) provides 6 -ms direction so the output is likedelay over a 25 to $150-\mathrm{Hz}$ frequency range. The output follows the input over a $30-\mathrm{dB}$ range.

Fig. 2. Typical delay-circuit output as a function of input pulse length
with some distortion. Delay is about 6 ms .

The output is within the 3 dB points over a range from 25 to 150 Hz . Fig. 2 shows the output response as a function of the input signal length. The delay circuit is unipolar; it accepts inputs of only one
that of a half-wave rectifier. A full-wave delay requires two units with some provision for 180° phase inversion.

The circuit can be stacked in series to provide longer delays and taps can be provided to select delay points.

Voltage- or pot-variable

 ms one-shot so the output looks like the original square wave, delayed.

Fig. 2. Waveforms at key points in the delay circuit

When the input goes positive, reaches the trigger level of Q_{2} turns on and discharges C_{2}. Negative excursions are bypassed by $C R_{r}$. When the input goes low at the end of the positive excursion, voltage comparator A, senses the low voltage and its output goes low. C_{z} begins to charge through the variable current source ($R_{2} R_{r} R_{2} Q_{t}$), which determines the slope of the charging curve.

When
When the voltage across C_{z} uses standard SUHL gates.

Modulo 4 or

- 10 counter

Table 2. Counting states when a " 0 " is applied to the "Modulo-4" input.

FF1	FF2	FF3	FF4
0	0	0	0
1	0	0	0
0	1	0	1
1	1	0	1
0	0	0	0

A MODULO-10 asynchronous counter can be built with four JK flip-flops and two gates as shown in the figure (neglecting the dashed lines). The
Table 1. Flip-flop counting states when
the wires shown in dashed lines im the
figure are removed or when a "l" is
applied to the "Modulo-4" input.

FF1	FF2	FF3	FF4
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0
0	0	0	1
1	0	0	1
0	0	0	0

counter counts in a normal BCD fashion as shown in Table 1. If the frequency of the incoming clock is f_{s}, flipflop $F F_{6}$ counts at $f_{t} / 10$ and provides the carry input to the next stage of a counter, if required.

However, by adding two wires (dashed lines), we get either a modulo- 4 or -10 depending on the level of a control signal designated Modulo4. If the Modulo-4 signal is at a logic " 0 " level, the modulo is 4 , as in Table 2, which shows the counting pattern when the

This is a modulo-10 counter when a " 1 " signal is applied to the "Modulo-4" input, and a modulo-4 counter when a " O " is applied there.

Modulo-4 signal is logic " 0 ". When the Modulo-4 signal is " 1, ," the modulo is 10 .
If the Modulo-4 signal $=$ " 0, , $F F$, is inhibited from toggling to the $Q=" 1$ " state. Also, since the output of $G_{2}=" 1$ " in this configuration, $F F_{4}$ becomes merely a toggle flipflop. Since $F F_{4}$'s clock is $F F$, ($=f_{1} / 2$), flip-flop $F F_{4}$ counts
at $f_{1} / 4$.
Whether the counter is mod-ulo-4 or $-10, E F_{4}$ is the carry to the next stage of a counter. Also, since $F F_{s}$ does not count in the modulo- 4 condition, the modulo of the counter can be logically switched each cycle (4 or 10 counts) without requiring clocks to resync the counter.

Combined shift-register clock

driver and

power

supply

In systems using a small number of MOS-shift registers, in conjunction with TTL or DTL logic, the shift registers may be the only components requiring a negative supply and a 2-phase clock. The cost of this extra supply may be saved by using the pulse-transformer clock driver shown in Fig. 1.

In Fig. 1, both clock phases, ϕ_{1} and ϕ_{2}, and the negative supply for the shift register, $V_{D D}$, are generated by an ex-
ternal TTL or DTL clock. The clock-driver power supply operates from a 5 V supply.

For phase 1 clock pulses, Q_{1} is driven into conduction. Q_{2}, normally held on by R_{2}, is cut off by the signal coupled through C_{1}. At the same time, a negative pulse from the transformer (T_{1}) secondary drives clock line ϕ_{1}, negative via diode D_{1}. When the output of the TTL gate driving Q, goes low, Q_{1} is cut off and Q_{2} is turned on by C_{1}. This sequence causes the clock line $\left(\phi_{1}\right)$ to be returned to +5 V and completes a ϕ_{1}-clock pulse cycle. At the same time the clock pulse is generated, D_{2} charges C_{s} producing the negative supply voltage $V_{D D}$.

The ϕ_{2} circuit consisting of $Q_{3}, \quad Q_{4}, \quad T_{2}, \quad D_{3}$ and D_{4} is

Fig. 2. In the photo, the top trace is data output and the next two traces are the two-phase clock signals. Data rate is 5 MHz and clock rate is 2.5 MHz .

Fig. 1. This circuit supplies a two-phase clock voltage and a negative supply for MOS-shift registers. It interfaces with DTLTTL logic and only requires +5 V .
identical to the $\boldsymbol{\phi}_{1}$-clock section. The ϕ_{2} circuit also contributes to $V_{D D}$.

For the widest frequency of operation, no loads other than shift registers (MOS) should be operated from $V_{D D^{*}}$. Shift registers draw current only during clock pulses, so that effective loading of each clock pulse remains independent of frequency.

This circuit has been operat-
ed without change of pulse
width from a $40-\mathrm{Hz}$ to $5-\mathrm{MHz}$ data rate (clock rates of 20 Hz to 2.5 MHz). without loss of stored data. Fig. 2 is a photograph of waveforms in a typical circuit for driving two Intel 1402-type shift registers.

Each transformer consists of a 5-turn primary, a 15-turn secondary ($V_{D D}$) and a 8-turn secondary $\left(V_{D D}\right)$ wound on a Magnetic Inc. D41408-UGX73 cup core.

Long-delay timer

Producing long delays using the low voltage from which ICs operate can be difficult. The circuit shown provides delays up to more than one minute.

The delay period commences when a start pulse is applied to the $\mathrm{R}-\mathrm{S}$ flip-flop formed by A_{1} and $A_{2} \cdot Q_{2}$ turns off, allowing R_{T} to provide charging current for the timing capacitor C_{T}.

When the voltage across C_{T} exceeds the $\mathrm{V}_{\text {be }}$ of Q_{1} plus the level set at its base by the IC, Q_{1} turns on, resetting the flipflop, and terminating the delay period.

With a V_{cc} of 3.6 V the delay time $T_{d}=R_{T} C_{T}$ and, with the values given, T_{d} equals 60 seconds. Resistor R_{3} is used to provide some noise immunity, but it may be omitted if noise is not a problem. If used, R_{3} should equal $0.7 R_{T}$ to guarantee proper reset action.
Since loading A_{1} 's output will greatly affect the delay period, A_{s} is used to provide a buffered complementary output.

This circuit provides long delays, even with the low voltages used for ICs.

Section 11
 TEST \& MEASUREMENT CIRCUITS

Accurate Engine Tachometer

This highly stable accurate tachometer is designed for use with engines using any battery voltage may have 4,6 , or 8 cylinders.

The circuit is basically a single-shot multivibrator with a meter movement in the collector circuit of the normally-off transistor. Diodes D_{1} and D_{2} clamp the input voltages to the battery supply to prevent input voltage spikes from harming transistor Q_{1}. Resistors R_{1} and R_{2} form a bias network to keep transistor Q_{1} turned on. When Q_{1} is in conduction, a voltage is produced across R_{3} which keeps Q_{2} cut off. Any input pulse will be passed through C_{1} which establishes an ac reference point and the positive component of this pulse will cut off transsistor Q_{1}. This, in turn, turns on the transistor Q_{2} for a time determined by the value of C_{2} or C_{3} and R_{2}. A single pole double throw momentary switch allows the meter scale to be expanded by a factor of 10 , and inertia of the meter movement allows the pulsing dc current to be averaged. Switch S_{1}, a single-pole three-contact rotary, is used to switch the meter movement through one of three calibration potentiometers corresponding to 4,6 , or 8 cylinders. A $10 \mathrm{w}, 6.2 \mathrm{v}$ zener diode regulates collector supply voltage so that meter readings will be independent of supply voltage.

A clip lead connected to C_{1} is attached to the center high-voltage lead of the distributor, and the battery connected to the plus and minus supply leads. Care must be exercised that no direct connection is made to the high voltage but merely a capacitive coupling is achieved.

The meter used can be marked off in any suitable scale divisions from 0 to $3,000 \mathrm{rpm}$, or 0 to 10,000 rpm. A linear scale is used for this purpose. The author used a $0-1 \mathrm{ma}$ movement and retained the

Circuit of expanded scale tachometer.
original scale markings to indicate 0 to $10,000 \mathrm{rpm}$. Calibration of the meter can be obtained on each scale by attaching a $60 \mathrm{cps}, 110 \mathrm{v}$ signal across the input and adjusting calibration resistor R_{4} (8 cyl) for a meter reading of 900 rpm (the scale expansion switch may be used for this purpose), adjusting calibration resistor $R_{5}(6 \mathrm{cyl})$ for a meter reading of 1200 rpm , and R_{6} (4 cyl) for a meter reading of 1800 rpm .

A 1 K resistor can be used in place of R_{5} for use with 2 cyl. outboard engines and a flashlight battery supply may be used as a power supply. Calibration for this engine using 60 cps would be 1800 rpm .

Direct-Reading DC Beta Tester

The instrument here described gives a direct reading of the dc current amplification factor of the transistor (just saturated) being tested.

The transistor operates in the antisaturation circuit of Fig. 1. When the transistor is saturated, or near saturated, the voltage drop from collector to emitter will be less than the voltage drop over D_{2}
plus the emitter-base diode of the transistor, and a current will flow via D_{1}, until the base current is just great enough to keep the transistor so near bottoming, that the voltage drop over D_{1} plus collector to emitter equals that of D_{2} plus emitter-base.

Figure 2 shows the tester circuit used in our laboratory. It shows beta in the range $9-100$ at a collector current of $10-11 \mathrm{ma}$. The meter will show full-scale reading if beta is 9 or less, and zero if the beta is 100 or higher.
Resistor R_{3} is added to give the upper limit of beta. It adds a base current which does not flow through the meter, but which is great enough to saturate the transistor if beta is 100 or higher. It. also reduces the influence of the $I_{\text {rimo }}$ of the transis-

FIG. I-Antisaturation circuit and Fig. 2 (right) complete circuit of beta tester. A Philips goldbonded Ge OA5 is, used for D_{1} and a Philips Si OA200 for D_{2}.
tor, so that $I_{c, t, r}$ of 10μ a only gives an error of 10 per cent if beta is 100 (or 1 per cent if beta is 10).
Between the outer limits beta can be calculated from the following formula

Beta $=\frac{1 / R_{1}+(1-M) / R_{2}}{M / R_{2}+1 / R_{3}}$
Where M is the meter reading 0 to 1 .
Or the meter may be calibrated to show beta directly by this formula. If a linear scale of beta is wanted, it is necessary to use an instrument which is most sensitive at small currents.

Checking Tracking of Stereo Controls

ASTEREO loudness or volume control is usually a tandem control which consists of two controls ganged together and operated by a common shaft. Manufacturers of stereo equipment have suggested standards for db tracking of stereo loudness controls. The most liberal of these specifications is $5-\mathrm{db}$ tracking between the front and rear controls at the -55 db down position. The most difficult specifica-
tion is $2-\mathrm{db}$ tracking between the front and rear section from 0 to -50 db and $4-\mathrm{db}$ tracking from -50 to -60 db .

Designing a circuit to measure the difference in 'attenuation in db's between two controls involves many things. The dc could be applied to the two controls and the output voltages measured on vtvm's, but ratios would have to be calculated and converted to db's. The easiest method was to use an

FIG. I-Basic circuit for measuring tracking of stereo controls.

FIG. 2-Final circuit for measuring difference in attenuation between two tandem controls.
audio signal input and measure the output with an audio vtvm. To get the db difference in attenuation it was only necessary to subtract one meter reading from the other. The Ballantine audio vtvm (with 10 megohms input impedance) with direct reading scales of 0 to 20 db was found to be convenient for this test.

Another point to consider is end loading and tap loading of the controls. On a single tap control the usual tap load is 15 per cent of the overall resistance and on a double-tap control the tap loads are 5 and 15 per cent of the overall resistance. End loading, when specified, is usually 0.1 of 1 per cent of the overall resistance.
Figure 1 shows the basic circuit suggested by makers and users of stereo loudness controls. Figure 2 shows the actual circuit used in one laboratory for measuring the difference in attenuation in db's between two tandem mounted controls. If end load-
ing is desired $S W_{1}$ is opened and R_{1} is adjusted to the desired value. If the 31 per cent tap is to be loaded, $S W_{2}$ is closed and R_{2} is adjusted to the proper value. If the 69 percent tap is to be loaded, $S W_{3}$ is closed and R_{3} is adjusted to the proper value.
The control under test is connected and the output of the audio generator is adjusted until the vtvm's read 10 volts. If it is desired to match the controls at the tap, R_{4} is used to make the vtvm's read the same value, when the contact arms are set at the taps. The controls are then rotated from the clockwise to the counterclockwise and the readings are taken from the two vtvm's.
The readings are subtracted one from the other and the difference reading in db indicates how well the two controls are tracking. By adding db's as the attenuator switch is turned on the vtvm's, it is easy to find the -50 db and -60 db down points.

Relay Life Tests Monitored With Magnetic Amplifiers

MIlimary Specification MIL-R-5757 C, Paragraph 3.8.1, states in part, "Following the life test, the voltage drop shall not exceed 200 millivolts except that for contacts rated at 2 amperes or less, the contact resistance shall not exceed 0.10 ohm."
To automatically monitor the contact voltage drop of a relay during life test, the monitoring device must have an output (indicate contact failures) when its input is 200 mv or more. When its input is less than 200 , the monitoring device must not have an output. In addition, the monitoring device must not have an output during the half cycle when the contacts of the relay under test are normally open. At that time, the contact voltage drop would normally be equal to the applied voltage; but the monitoring device must not indicate a failure of the contacts for this condition.
The requirements were met, through use of the circuit shown in Fig. 1, for a spdt relay. The principles involved can be extended to the testing of relays which contain more than one pole by duplicating the circuit shown for each additional pole.
The monitoring device was composed of a magnetic amplifier (Acromag type 761); an output relay (Potter \& Brumfield, model PW5LS) ; and a means for calibrating and adjusting the device. The device was so adjusted that, with less than 200 mv input, the contacts of the output relay would be open (no output). With 200 mv input, the contacts of the output relay would close, and the output would be recorded to indicate a failure of the relay under test.

During normal operation the self-test-switch was set on position 2. The cam-operated switch, in series with the test relay coil, cycled the test relay with equal on and off pulses at a rate of 10 to 12 cycles per minute, as required by MIL-R-5757 C, Para-

FIG. I-Circuit for automatic monitoring of relay life tests.
graph 4.6.15.
Two other cam-operated switches, A and B, were used to switch the monitoring device from one set of contacts on the test relay to the other set at the proper time. These cams were adjusted such that switch B would close just after the test relay was energized and would open just before the test relay was de-energized. At all other times switch B was open. Switch A was operated in a similar manner.

With the self-test-switch set on position 1 and the cam-operated switches cycling on and off, a failure of the test relay was simulated on the normally open contacts. With the self-test-switch set on position 3, a failure was simulated on the normally closed contacts. This was done to check the monitoring device for proper operation.

The monitoring device was calibrated by turning off the test switch and adjusting the contact power supply to the rated voltage for the test relay. The calibration potentiometer was then adjusted to give a reading of 200 mv on the vtvm. The feedback switch was opened and variable resistors $R_{F B}, R_{B}$, and R_{C} were each adjusted to maximum value.

At this time the output from the monitoring device was 28 v , dc. R_{B} was decreased slowly until the output switched to zero. The feedback switch was then closed and $R_{F B}$ was decreased slowly until the output switched back to 28 volts. $R_{F B}$ was slowly increased until the output switched back again to zero.

The test switch was set at the calibrate position and R_{c} was slowly decreased until the output once more switched to 28 volts. The calibration potentio-
meter was then adjusted to give a reading of 190 mv on the vtvm. This caused the output to switch to zero. The calibration potentiometer was adjusted for a reading of 200 mv on the vtvm and the output switched back to 28 v , dc.
This completed the calibration of the monitoring device, and the test switch was set to normal. The self test switch was set to position 2; the coil power supply and the recorder were turned on; and the cam-operated switches were set in operation. The life test was underway. At regular intervals during the life test the monitoring device was checked for proper operation by setting the self-test-switch to position 1 or 3 in order to induce a failure indication as described.
Typical values for the variable resistors $R_{n}, R_{F B}$, R_{C} follow: $R_{\beta}=15,000, R_{F \beta}=130,000, R_{c}=8,100$ ohms.
With the test switch in the calibrate position and the calibration potentiometer adjusted to give various vtvm readings, the values of control current (I_{c}), and of the voltage applied to the coil of the output relay (E_{R}) were as follows:

VTVM Reading	I_{c}		$E_{12} \mathrm{DC}$
-	0		4 volts
190 mv		$\mu \mathrm{a}$	4 volts
200 mv		$\mu \mathrm{a}$	14 volts
30 volts	3.3	ma	18 volts

Since the coil of the output relay is rated at 14 v , de, it will pull-in when the input to the monitoring device rises to 200 millivolts.

When it is desired to monitor contact resistance of contacts rated at 2 amperes or less, the circuit described may be used if the rated current is multiplied by the maximum allowable resistance (0.10 ohm) to obtain the maximum allowable voltage drop. The monitoring device must be calibrated to give an output when the contact voltage drop (input to the monitoring device) exceeds the specified limit.
Since the two control windings in the mag-amp contain a total of approximately 470 ohms, and the control windings will withstand a current of 50 ma ; if the input voltage is limited to 30 volts maximum only 130 ohms are required in series with these windings. This gives a total of $\mathbf{6 0 0}$ ohms in the control circuit. Since approximately 23μ a control current is required to cause an output from the monitoring device, relays with contact ratings as low as 138 milliamperes can be monitored.

Relay Tester

In any reliability program, one of the essential requirements of a relay tester is to determine the pick-up and drop-out voltages. This system was designed to afford a quantitative analysis of these two conditions in a matter of seconds. Re-

Complete circuit of relay tester.

peatability characteristics are quickly and easily observed by this method.

The schematic shows a motor-driven 360 degree continuous potentiometer, R_{1}, and K_{x} is the relay under test. The meters are memory type which use special solenoid-actuated mechanisms to permit the retention of a reading taken at any desired instant.

When S_{1} is closed (momentary contact), the motor starts and the cam and microswitch S_{2} keep the paralleled contact closed so that the motor will make one single revolution and stop. The potentiometer turns and varies the voltage applied to the relay coil, from zero through 28 volts and back down to zero. Both meters will follow the voltage variations.

Relay K_{x} will be energized at some given voltage, e.g. 14 volts. When K_{1} is energized by the closing of K_{x} contacts, the holding coil of meter M_{p} is energized and the pick-up voltage reading is maintained.

Meter M_{d} continues to read up scale as the voltage increases to 28 volts and then starts down scale as the potentiometer goes through 180 degrees. When the drop.out voltage, e.g. 6 volts, is reached K_{x} drops out and since K_{1} was latched-in by its own contacts, it does not open any circuits but provides the ground return for the holding coil of M_{d} which then maintains its readings.

Note that M_{d} was not actuated when the voltage originally went through the 6 -volt point due to the fact that K_{x} had not as yet been energized.
These readings may be checked for repeatability by again closing S_{1} or a new relay may be inserted for testing. Each time S_{1} is pressed, K_{1} is deenergized and reset.

Relay Chatter Detector

Importance of reliable chatter-free relays in airborne electronic equipment is often overlooked. In most situations, current from primary power supplies must pass through at least ane set of relay contacts before it reaches an electronic subeystem.

Chattering of these relay contacts can have serious

FIG. I-Lamp lights if any relay contact opens for 0.1 microsecond.
consequences since many electronic circuits are sensitive to power supply fluctuations and transients.
False triggering of electronic switches and keying of transmitters are two examples of what relay chatter can do. Relay chatter can also produce large amounts of rf noise when the load is partially inductive.

To preclude having these chatter problems, relays can be tested under simulated flight conditions, and the inferior relays can be detected. A relay being tested is mounted on a mechanical vibrator and the circuit shown in Fig. 1 monitors the contacts for chatter if one contact opens for as long as $0.1 \mu \mathrm{sec}$, the 3A151 controlled rectifier is gated, causing the indicator light to come on.

Normally, the 3A151 gate-cathode junction has zero bias because it is shunted by the relay contacts. However, when one contact opens. the gatecathode junction is forwarded biased by the 28 -volt supply, causing the device to turn on (ton<0.1 μ sec). Once the 3A151 is on, the only way to turn it off is to interrupt its anode current; therefore, switch S_{1} is provided to reset the monitoring circuit. A 3A151 is extremely sensitive, and it can be gated by applying its B+through a switch as well as by an actual gating signal. To prevent this anode triggering, an RC filter consisting of a 200 -ohm resistor and a $0.1-\mu \mathrm{f}$ capacitor is used to dampen switching transients. The other $200-\mathrm{ohm}$ resistor's only function is limiting current.

This chatter monitoring technique has the advantages of fast response and explicit indication.

Fast Acting Subaudio Frequency Meter

Afrequency measuring device was required that would provide a meter indication of frequencies in a range from 0.2 to 10 cps . In addition, the meter had to respond rapidly (preferably within 1
cycle) to changes in input frequency and without "bobbing" at low frequencies.
In the circuit developed to solve this problem, the input signal is fed through a conventional limiting and differentiating network and a bistable flipflop so that it is converted into a square wave.
The instrument measures the period of the square wave, and this is indicated on a meter which is calibrated in units of frequency (such as pulses per minute).
Time interval is measured by measuring the voltage to which a capacitor charges during one-half cycle of the square wave.

By alternately charging each one of a pair of

(0 OR-6 VOLTS)
FIG. I-Basic frequency measuring circuit.
capacitors, a steady voltage is maintained on the one which is connected to the meter while the other is charging. The means by which this is accomplished is as follows:
As shown in Fig. 1, two separate charge-discharge circuits are used, and the meter is connected to these through diodes so that it indicates the highest voitage of the two. This involves no time constants and insures rapid rise or fall of the meter reading if the rate should change.
Consider the circuit of Fig. 1, and the voltage waveforms of Fig. 2. Suppose initially that capacitor C_{1} and C_{2} are discharged, that V_{1} is zero, and that C_{3} is charged to 1.5 v in the polarity shown.
If then, V_{1} is switched to -6 volts, C_{3} rapidly charges to 6 volts through the emitter circuit of Q_{1}, and then continues to charge more slowly through the 4.7 K resistor to 7.5 v cutting off tran-

FIG. 2-Waveforms in frequency measuring circuits.
sistor Q_{1}.
As soon as Q_{1} becomes cut off, C_{1} begins to charge slowly through the 18 K resistor, reaching a value v_{1} depending on the time interval T_{1}. Voltage v_{1} will then be indicated on the meter.
As the second pulse operates the flip-flop, V_{1} becomes zero and V_{2} is -6 volts charging C_{2} to v_{1} during T_{2}. During T_{3} the meter reads the voltage across C_{2} while C_{1} is discharged by Q_{1} and again charges to v_{1}.
Since each of the capacitors C_{1} and C_{2} is discharged by its shunting transistor at alternate states of the flip-flop, the voltage to which the capacitor is charged is dependent only on the present charg-
ing time and not on the previous one.
Fig. 3 shows a more complete circuit diagram with component values. With the values shown, the meter will provide a useful indication of frequency over the range from 0.2 to 10 cps . The frequency range can be changed by changing the time constant in the charging and discharging networks. An instrument built according to the circuit diagram of Fig. 4 was easily fitted into a standard meter case with its own battery supply. It will operate on pulsed or square wave inputs covering the range of 1 to 10 volts peak-to-peak. Increased accuracy and improved linearity can be obtained at the expense of additional circuit complexity.

FIG. 3-Complete circuit for frequency meter for 0.2 to 10 cps .

Beta Tester

The circuits shown in Fig. 1 and 2 are useful for measuring dc beta, or $h_{\text {FR }}$. The first finds its best application at low currents, where the effects of heating are negligible. The second is used at higher currents, where the use of short pulses keeps the power dissipation low.
The advantages of the two circuits are that they are very simple, accurate, easy to design, and give direct automatic read-out, due to feedback action.

Usually it is desired to know the base current at a given collector current and voltage. Of the three parameters, the accuracy to which the voltage is known is least important.

The current through R_{2} is applied to the base of the first of the two amplifier transistors, in the Darlington compound configuration. This is amplified and finally applied, as I_{B}, to the base of the test transistor, T_{t}, which is driven on hard. However, T_{t} cannot saturate because of the voltage
drop through the bases in series, and especially through the zener diode. That is, feedback action takes place such that if the test transistor were to tend towards saturation, this would tend to cut off the amplifier and reduce I_{B}, thus restoring the original condition. Finally a stable collector voltage is reached; this is given by:

$$
V_{C B}=V_{B E(t)}+V_{z}+V_{B B(1)}+V_{B E(2)}
$$

It is apparent from this that since these voltages are a slight function of current, these components and their operating points must be chosen to keep this effect to a minimum.

For the currents, the following equations apply:
$I_{B}=I_{1}\left[a_{1}+a_{2}-a_{1} a_{2}\right]$. $I_{B}=I_{1}[\alpha(2-\alpha)]$, for $\alpha_{1}=\alpha_{2}$ $I_{B} \simeq I_{1}$ (within 1 percent, for α as low as 0.90)
or $I_{B} \simeq V_{1} / R_{1}$
$I_{\sigma}=I_{2}\left(1-1 / \beta_{1} \beta_{2} \beta_{3}\right)$ $I_{\sigma}=I_{2}\left(1-1 / \beta^{3}\right)$ for $\beta_{1}=\beta_{2}=\beta_{3}$ $I_{\sigma} \simeq I_{2}$ (within 0.1 percent for β as low as 10)

$$
\begin{aligned}
& \text { or } I_{C} \simeq\left(V_{P}-V_{C B}\right) / R_{2} \\
& \text { then } h_{F E}=I_{\sigma} / I_{B} \simeq I_{2} / I_{1} \\
& \min h_{F B} \simeq R_{1} / R_{2}
\end{aligned}
$$

FIG. I-Circuit for measuring de beta at low current.

FIG. 2-Pulses permit measurements at higher current.
Figure 2 shows an actual design that has been found to operate quite satisfactorily. It is designed to test $h_{F E}$ under the conditions $V_{O B}=10 \mathrm{v}, I_{o}$ $=10 \mathrm{ma}$.
In practice, one plugs in a transistor and reads I_{B}. $V_{C E}$ can be trimmed up with the $500-\mathrm{ohm}$ pot for the first reading, and afterwards will remain constant with ± 5 percent. Note that if β is less than 20 the voltmeter will go no higher, since T_{1} and T_{2} saturate. This feature can be adapted to go-no-go testing.

The accuracy of $h_{F B}$ measurement has been found to better than 5 percent for $h_{P B}$ between 20
and 200 . Since the accuracy of the peak reading meter was ± 5 percent, this was felt to be quite good.

Standardized AC Voltage Reference Source

The associated circuit was developed to meet the need for an accurate 100 v ac rms source as the reference voltage for a divider to correlate vacuum tube voltmeters. A $4-1 / 2 \mathrm{in}$. $50 \mu \mathrm{a}$ meter was mechanically made zero center and the scale numbering removed by erasure, after which - and + symbols were added with India ink to indicate voltages either side of 100.00 .

The dc voltage on one side of the meter is held constant by a Zener diode, and is compared with voltage at the other terminal $(+)$ which is obtained by divider action wi.hout stabilization protection. A diode rectifier and high quality Mylar capacitors insure consistent peak dc voltage to the meter. Initial output voltage standardization is done by adjusting the two input controls for an exact 100.00 v circuit סutput as determined with a reference standard. The 1000 ohm po-

100 vac reference supply.
tentiometer is then adjusted for zero center scale meter reading. Circuit sensitivity is such that a shange of 1.825 v produces full scale deflection (25 divisions), which is the equivalent of 0.075 v per division and 0.075 percent. A low distortion line voltage regulator must be used to take full advantage of the circuit capabilities. The three diodes across the meter do not in.erfere with normal operation, but protect it against damage when the unit is turned on. The relatively low resistance across the Zener diodes performs a similar function when the unit is turned off. The 100 K resistor across the Mylar capacitors is the meter return to common when the output voltage is less than 100 v , since under this condition the more positive Zener voltage will not flow through the high reverse resistance of the meter diode. Wire wound resistors are used in the output voltage divider for stability.

Cable Harness Tester

This test set will test continuity of wiring, connections to proper terminations, and shorting or shielding to any wiring. The test set is self testing and will also indicate the fault of any defective cable harness (does its own trouble shooting).

FIG. 1-Cable Harness.
The maximum number of lamps in one group is shown in the schematic, Fig. 1. One push button switch actuates one group of lamps. If more than one button is pressed, the group of lamps will be actuated by the button wired closest to the current regulator. It is impossible to operate more than one group of lamps at a time.

The current regulator limits the lamp current through the string should there be an error on the cable being tested causing most of the lamps to be shorted out. The ground test button switch opens the return to the chasses to determine if the wire shielding is touching any of the wires.

With the test specimen disconnected, press group 1 push button switch. All the lamps (red and green) in that group should light up. Then repeat with group 2 and so on. Any lamps which do not light at all indicate burnout and should be replaced. A short between lamp groups will cause lamps to light in the group where the short is present. The cable may contain an infinite number of wires. Sufficient lamp groups will be needed for additional wiring. The terminations (cable connector and terminal identification) should be marked on the panel next to each red and green lamp.

With the test specimen connected and the proper group of lamps actuated, a good cable will cause all the green lamps to light and all red lights to be off. A red light on will indicate an open wire or connection. Several lights off will indicate a short between the off lights (check panel marking for short identification).

Corrections:

1. The Bourns Trimpot to be a 10 ohm \#236S-1-100.
2. The 6 v zener diode to be replaced with a IN540 diode (cathode-to-base of transistor).
3. The resistor from lase of transistor to ground to be 560 ohn 2 w .

The above change were made to allow 25 v to appear across the lamp strings so that the 23 bulbs can light up satisfactorily.

A High-Stability

Differential Voltmeter

The high-impedance, differential-input, transistorized panel voltmeter shown produces zero-point accuracy from -40 to 85 C . A stable zero-point eliminates the need for an undesirable zero-control. As a comparitor device, the meter compares the voltage under test with a known Zener-regulated reference voltage.

This circuit is a differential, Darlington-connected emitter-follower, employing a pair of 2 N2060's with an unusually high degree of parametric symmetry. The bias point is stabilized by using a consiant current sink connected to a 2 N 1613 transistor and biased at 2 ma I_{e}. Residual unbalance is trimmed by R_{2}, and the gain which is limited by R_{m} to about $50 \mu \mathrm{v}$ full scale, may be further reduced to 0.5 v full scale by \boldsymbol{R}_{1}. Circuit power consumption is 72 mw . Zero-point drift is unreadable from -50 to 125 C . Input impedance is about. 1 Meg .

Accuracy is limited by source impedance matching, and to keep it down to 1 percent, unmatched source impedance should be less than 10 K . Thus, when using the unit to accurately compare a test voltage to a reference, both should have the same source impedance. Common mode limits are approximately 5

Differential voltmeter with a high degree of stability.
vdc. Trimmer potentiometers are used for \boldsymbol{R}_{1} and \boldsymbol{R}_{2} since no adjustments are necessary after balance and gain have been adjusted. Normal precautions should be taken as with all high impedance devices, i.e., keep
away from rf fields, moisture, and any other source of unbalance.

Anti-Coincident Detector

Simple circuit indicate direction of break in specimen under test.

Failures in structural test specimens occuring in two microseconds or slower can be detected for direction of failure with the simple circuit shown. One mil wires $A B$ and $C B$ are glued to the test specimen with one end of each connected together at point B and the other end of one wire is connected to ground and the other wire to 28 v dc through a 3 K resistor. If the failure occurs from left to right, wire $C B$ will open first and permit the scr to be triggered through wire $A B$ and the lamp will burn. If the failure occurs from right to left, wire $A B$ will open first and the scr will not be triggered and the lamp will remain off. Diode in the gate circuit is used to prevent inadvertant triggering of the scr as a result of the standing voltage at point B due to the resistance in wire CB.

Transistorized Tachometer

Tecumser Products Co. had a use for a tachometer that could be connected and disconnected from an engine quickly enough to allow production line speed adjustments. An instrument was designed whose input was a pulse from the high voltage ignition lead.
The pulse is picked up by a probe which has a flexible hook on its end. The hook is looped over the ignition cable in use and is just pulled away after the engine speed is set. The capacitance between the probe tip and ignition wire and the capacitance in the probe cable act as a voltage divider.

The probe is made from RG 58A/U coaxial cable. Approximately one inch of the shield is removed from the cable for coupling to the ignition wire. This capacitance is enough to produce a pulse width
of a few tens of microseconds and about 1 volt high in the cable. The 1 K resistor provides a termination for the cable and produces a better trigger pulse.
The pulse is fed through a capacitor and a diode to Q_{1}, the first stage of the mono-stable multivibrator (hereafter referred to as the multi). The diode isolates the multi from the probe except when the multi is being triggered. The capacitor provides dc isolation at the transistor base.
Since the transistors are npn type, the positive ignition pulse from the probe will make Q_{1}, which is held off by voltage divider resistors $R_{1} \& R_{2}$, conduct. The multi then switches states and produces a positive pulse at the collector of Q_{2}.
This voltage pulse, of constant height and width, has a frequency that is equal to the engine spark frequency. The pulse is direct coupled to an emitter follower circuit which isolates the indicating milliameter from the multi. The emitter is biased positive by $R_{s} \& R_{4}$. Thus the emitter follower will be cut off, keeping current from flowing in the meter except when the multi is putting out a pulse.
Thus the meter gets a current pulse whenever there is a spark. The average value of current is then proportional to the rpm of the engine. The mechanical damping of the meter is enough to damp the meter well down to speeds of 1000 rpm . A capacitor could be used for further damping.
A calibration signal is provided by passing line voltage through a diode clipping network. The output of the network is differentiated by C_{1} and the resulting pulse triggers the multi on negative slope (since this signal is coupled to the collector). Since the engines that these tachometers were designed for gave one spark per revolution, the calibration signal calibrates the meter at 3600 rpm. Calibration is accomplished by adjustment of the $500-\mathrm{ohm}$ pot and R_{5}. The latter is used to initially calibrate the milliammeter and calibrate out the effects of pulse length.

Capacitor C_{2} and resistor R_{6} adjust the pulse length. The values were chosen so that with an engine speed of 4000 rpm (full-scale reading), the pulse length is about 75 per cent of the period between pulses. As transistors vary in leakage current and the capacitors used were of 20 per cent tolerance, the pulse length varies within these limits. In the ten instruments that were built, the value of R_{5} varied from 0 to 1000 ohms.
Because the output pulse height of the multi also determines the current through the meter and because this he ght is determined by the supply voltage, a regulated supply is necessary. This is accomplished by V_{1} which regulates the rectified voltage before the divider resistors which reduce the voltage to 13 v .
There was considerable trouble encountered in getting a pulse from the ignition wire that would reliably trigger the multi. This problem was complicated by lack of a good oscilloscope plus the fact
that the instrument would be used near other engines that would interfere with its operation by giv ng spurious triggers. It was determined that much of the interference of false triggering was caused by pulses put out by a meter into the power line and hence picked up by a second meter. After
shielding the line cord and putting filter capacitors across the line both in the plug and in the tachometer, the instruments could be operated near other engines and other meters and still give a reliable reading for engine to which attached.

FIG I-Tachometer couples to high-voltage lead of engine with quick-disconnect cable.

Relay Life Failure Indicator

MANy monitors have been devised for the purpose of detecting relay failures under resistive load conditions. These units contain expensive multi-tube, transistor or magnetic amplifier devices which sample at the correct cycle time the voltag? drop across the closed test contacts. This voltage is amplified and sent to a trip or counter circuit.

Although these devices may be necessary in the low dry circuit area, Fig. 1 shows a monitor using only one tube which can be used on contact loads as low as one milliwatt. No voltage amplification

FIG. I-Circuit of relay under test is isolated from monitor circuit.
takes place in the tube and its response time can be varied from 100 milliseconds to many seconds. Since there is no direct or physical connection to the test circuit, it offers safety where high voltage
loads are encountered.
The test relay is pulsed at a rate of $5-20$ pulses per second. Source E and resistor R supply the correct power to the test contacts. A non-inductive type resistance is used at R.

The pulse power flows through L_{1}, a coil of 3 to 6 turns of No. 18 wire, therefore the inductive power is coupled to L_{2}, a coil of about 200 to 500 ohms and many turns of wire. The L_{2} output is rectified by D_{1} and placed across C_{1}. Capacitor C_{1} builds up this charge to many volts as long as the test contacts continue to pulse.

The charge cannot leak off fast because of the back resistance of D_{1}, therefore a negative charge is placed on the tube grid which prevents it from firing. Failure of the test relay contacts allows this charge to leak off at a time rate controlled by R_{S} (20 to 100 meg). The tube will then fire, pulling up relay K which shuts off the pulsing circuit.

A Variable Beta Transistor

0ne vital component needed for transistor circuit development and circuit reliability testing work is a low-limit beta transistor. If one also wants to simulate low-temperature beta in the circuit, the desired minimum beta will be lower than the manufacturer's limit. Occasionally, after much use (or
abuse), a transistor will have the desired low beta, but this cannot be depended upon. Besides, if an individual has acquired such a gem, it's sure to have been borrowed whenever it is needed.

At a particular collector current, the nominal beta transistor requires a particular base current, but a low-beta transistor will require proportionally more. Additional base current can be drawn by a shunt element, but its properties should resemble a for-ward-biased diode. Therefore, a shunt element composed of a series resistor and a diode (forward conducting) of the same type of semiconductor (silicon, germanium, etc.) would simulate the base-emitter junction in bypassing part of the base current. Figure 1 shows an npn circuit and Fig. 2 the pnp equivalent. If the resistance is variable, a circuit consisting of transistor, variable resistor, and a diode can constitute an effectively variable beta transistor.

By using the circuit described with a very high beta transistor, a circuit being developed can be tested quickly for the effect of beta variation due

FIG. I-An npn variable beta device.

FIG. 2- A pnp variable beta unit.
to manufacturing tolerance, high and low temperature, and aging with the twist of a knob. Alternately, this circuit can be used for gain control. At high frequencies, the possible difference in junction capacitance between the transistor base-emitter junction and diode junction may cause problems.
For a specific example, the 2 N 697 npn silicon transistor has a specified beta range from 45 to about 120. The bulk of the transistors received from a particular manufacturer had betas around 80 , but it is possible to receive transistors with betas at the lower limit. With 10 ma collector current, the beta

FIG. 3-Gain augmentation circuit.

FIG. 4 - Variable gain augmentation circuit.
of a low limit transistor will drop to about 30 at -60 C. Low temperature testing of a circuit can
be simulated by use of the proper value of beta without the delay and inconvenience of using an environmental chamber. At a stage where design is very fluid or for reliability testing, such a circuit can be used to great advantage.
The graph of Fig. 5 shows the variation of effective current gain for a 2 N 697 transistor with a

fIG. 5-Variable beta characteristic of a 2 N697.
beta of 102 at 10 ma , versus the value of the resistance in series with the 1N808 silicon diode. The 1N808 diode has a low forward resistance. A diode having a higher forward resistance would have a curve intersecting the B axis at a higher value, and would be more nearly linear.

For a given type of transistor and diode, a set of curves for various unshunted betas and collector currents could be developed. From such a set of curves, a resistor-diode shunt element could be picked which would simulate a desired beta.

Conversely, of course, a high-beta transistor can be simulated by use of two low-beta transistors, connected as shown in Fig. 4 or Fig. 5. Actually, an infinite gain can be achieved when the base current feed-back becomes equal to the input signal. This is the 'potentiometric' amplifier sometimes used in servo work. By use of a potentiometric feedback circuit and the shunt circuit, an equivalent transistor with a gain variable from high to low limits can be designed for limit testing of circuits, etc. Unfortunately, a universal, calibrated version of Fig. 5 cannot be built because de levels vary with supply voltages and collector currents. However, for any given set of circuit conditions (transistor type, supply voltage, load resistor) a 'variable beta transistor' can be quickly devised which will simulate the gamut of possible betas.

A Go No-Go Vacuum Tube Voltmeter

The voltmeter, described here is designed for applications in which a specified voltage with a specified tolerance must be accurately monitored by unskilled personnel. It provides an indication to its operator by three lights which indicate that the unknown voltage is "low", "go", or "high" with re-
spect to the preset upper and lower "go" limits. A "go" band as narrow as 0.1 volt can be obtained.

Although the high and low limits may be quickly and easily adjusted to any desired values within the range of the instrument, the primary usefulness is in applications involving production testing, acceptance testing, military or commercial inspection, quality control and other tests involving large batch sampling or 100 per cent testing of a given component on the production line.

Its chief advantage is that its readout is rapid and foolproof. No judgment or meter reading ability is required of the operator. In this respect, it is readily adaptable to automation or automatic factory concepts.

The circuit, as shown in the illustration, performs a comparison of the unknown voltage with accurately preset reference voltages. Cathode followers prevent loading of either the circuit under test or the reference voltages. Since the unknown voltage is applied directly to the grids of vacuum tubes, the input resistance may be made as high as other vtvm's. Circuitry consists essentially of two comparison circuits: one to compare the unknown to the lower reference voltage, and one to compare it with the upper reference voltage. An ac voltage, 6.3 volts at 60 cps , is applied through a high impedance to both comparison circuits, and also to the inputs of high gain ac amplifiers. Comparison circuits act as parallel switches or gates across the amplifier inputs. That is, the diodes and cathode followers modulate the ac supply, so that the ac inputs to the amplifiers are proportional to the differences between the unknown voltage and the reference voltages, provided the diodes are biased in the reverse direction. If the diodes are forward biased, they effectively shunt the signal to ac ground.
Relays in the plate circuits of the amplifiers are arranged in a logical manner, so that the "high" lamp is lit by the "high" relay when the unknown voltage is higher than the high reference.

When both relays are energized, the "go" light is turned on, indicating that the unknown voltage is within the predetermined pass band.
The reference voltage can be set with extreme accuracy without the use of a meter, by connecting a ten-turn linear potentiometer with a vernier dial or digital reading dial across well-regulated voltage source.

The instrument as built covers a basic range of 0 to +100 volts. However, this range can be extended indefinitely with dividers. Also, the circuit can be modified to read negative voltages by returning the 47 K cathode resistors to a negative

Circuit of go no-go vacuum-tube voltmeter. Tubes are all type I2AX7, diodes IN69.
supply instead of to ground, and using a negative reference voltage. Rectifiers could be used to adapt the circuit to ac measurements.
Errors due to variations of tubes T_{1} and T_{2} are extremely small because a cathode follower has 100 per cent negative feedback. Its small signal gain is as follows:

$$
A=\frac{R_{k}}{R_{k}\left(\frac{u+1}{\mu}\right)+\frac{1}{g_{m}}}=\frac{1}{\left(\frac{\mu+1}{\mu}\right)+\frac{1}{g_{m}} \cdot \frac{1}{R_{k}}}
$$

The formula indicates that gain is affected only to a very small degree by variations in R_{k}, μ or g_{m}, provided μ is high, and R_{k} is large compared to $1 / g_{m}$. These conditions are fulfilled in the circuitry.
In addition, the reference-voltage cathode follower and the test-voltage cathode follower are the two halves of a dual triode; hence, any changes of gain due to filament voltage variation, plate supply voltage variation, aging, ambient temperature variation, etc., are negligible because the changes occur simultaneously and in the same direction in both triodes and thus tend to cancel out.
Errors due to variations of tubes T_{3} and T_{4} are also extremely small because there is no requirement for these tubes to have an exact gain. A great excess of gain necessary to operate the relays is

Circuit of modified age system.
provided and considerable reduction of tube gains do not change the circuit operation.

Feedback Method of Checking Tracking of Dual Potentiometers

The method to be presented is especially useful whenever the tracking specifications specify that the ratio of the two output voltages, or resistances, lies within certain limits, usually specified in db . The two sections of the dual potentiometer need not be of the same resistance value.
As a typical example, consider a stereo volume control. These are usually used in conjunction with a balance control. Typical specifications require that after balancing at maximum loudness, one output voltage should be within 3 db of the other output voltage from 0 to -50 db and within 5 db from -50 to -60 db .

FIG I
Two methods of checking tracking of dual pots.

FIG 2
The simplest method of checking is shown in Fig. 1. The use of voltmeters calibrated in db permits the direct subtraction of readings to determine db difference. The ratio of the output voltages is $e_{a} / e_{b}=\left(r_{a} / r_{\text {amax }}\right) /\left(r_{b} / r_{b \max }\right)$ since the balance pot is adjusted for equal output voltages when the dual pot under test is at maximum output. Tap loading and end loading resistors can easily be connected in the circuit when required.

Note that R_{a} is equal to or greater than r_{a} maximum since there may be some resistance between the brush and outside terminal when the pot is at maximum. Similarly, r_{a} minimum may not equal
zero ohms.
Although this method is simple, it is time consuming to read two meters and subtract their difference at several discrete points throughout the rotation of the dual pot. Meter ranges will have to be changed several times. In addition, the accuracy, depending on the type of meter and the portion of scale used, is affected by the subtraction process.

To obtain a faster, more accurate, and continuous method of checking dual pots, the following method was devised using an operational amplifier principle as shown in Fig. 2. The amplifier used is a Philbrick K2-W. If the gain, A, of any conventional amplifier, is large enough the gain with feedback is $A_{f}=e_{o} / e_{i}=r_{a} / r_{b}$.

The procedure to be followed is:

1. Turn dual pot to maximum
2. Set output voltage, \boldsymbol{e}_{o}, to some convenient level by varying the input voltage, e_{i} (15.8 mv or -34 dbm is used in our tester). The input voltage is then
$e_{i}=\frac{e_{o}}{A_{f}}=\frac{r_{b \text { max }}}{r_{a \max }} e_{o}$
3. Slowly rotate the dual pot throughout its range. The output voltage at any pot setting (e_{o}^{\prime}), is

$$
\begin{aligned}
& e_{o}^{\prime}=\frac{r_{a}}{r_{b}} e_{i}=\frac{r_{a}}{r_{b}} \quad \frac{r_{b \max }}{r_{a \max }} e_{o} \\
& \frac{e_{o}^{\prime}}{e_{o}}=\frac{r_{a} / r_{a \max }}{r_{b} / r_{b \max }}=\frac{e_{a}}{e_{b}} \text { (in Fig. 1). }
\end{aligned}
$$

Thus the output voltage compares to the reference voltage in the same proportion as the ratio of the two output voltages of Fig. 1. This ratio can be read directly in db or converted to voltage readings, depending on the type meter available.
4. The determination of the -50 and -60 db points is not necessary unless the tracking exceeds the 3 db limits. This is done by switching the pot into the circuit of Fig. 1 and measuring the output voltage with a known input voltage. A judicious choice of the input voltage eliminates the need for changing meter scales.
Dual pots from 2.0 megohms to 20 K ohms have been tested in this maner. The minimum value of r_{a} that can be tested depends on the output impedance, current capability of the amplifier and the reference voltage, e_{o}. This minimum value is 20 ohms in our case, with the following amplifier and generator characteristics.

$$
\begin{array}{rlrl}
A & =15,000 & Z_{g} & =0.1 \text { ohm } \\
Z_{o} & =1,000 \text { ohms } & f & =100 \text { cycles } \\
I_{o} & =2 \mathrm{ma} &
\end{array}
$$

This method is very flexible and can be easily modified to test dual pots under different specifications.

To test dual pots where no balancing control is used, simply perform step 2 using the outside terminals, instead of turning the pot to maximum and using the center terminal. In this case, $e_{a}^{\prime} / e_{0}=$ $\left(r_{a} / R_{A}\right) /\left(r_{b} / R_{B}\right)$ To check the normalized resistance ratio between center and outside terminal, simply substitute accurate known resistance when performing step 2. In this case, $e_{0}{ }^{\prime} / e_{0}=\left(r_{a} / R_{A}\right.$ stamara $) /$ ($r_{b} / R_{\mu \text { standard }}$).

Low Current Transistor Beta Checker

AUSEFUL PARAMETER for evaluating a transistor is beta or $h_{f e}$ and typical transistors have values of approximately 10 to well over 200 . As shown by the curve of Fig. 1, the slope decreases with increasing collector current, showing that beta decreases proportionally. For small current transistors this slope does not greatly change, resulting in a fairly constant beta, but on high power or high current transistors it can decrease by as much as 50 per cent.

FIG. I-Beta curve on which tester is designed.
A simple tester that measures beta under low current conditions would serve as a quick evaluation of most transistors. The transistor beta checker to be described will perform this function with an accuracy proportional to its initial calibration. Zener diodes are used to maintain a constant voltage source for accuracy.

On the low leakage range, the meter is in a bridge circuit for zero reference, Fig. 2. On the high leakage range, the meter is back biased with a zener diode of approximately 6.2 v . These steps are necessary to oppose any collector leakage current through the meter for zero reference.

One leakage range takes care of current up to and slightly over 1 ma and the other handles up to 10 ma . This balancing is done with the base of transistor under test open. Then an incremental base current of $10 \mu \mathrm{a}$ is applied to the base and the collector current read on the meter.

The metcr is calibrated from the formula, beta $=\Delta I_{c} / \Delta I_{b}$ with $V_{0 c}$ constant, and in this case with a 1-ma meter full-scale beta will read 100. The meter can be shunted for higher ranges.

It would be useful to know how much collector leakage current is present in the transistor under test. This can be found by measuring the back hiasing of the meter. This value corresponds to the leakage current. By inserting a milliameter in series with the beta meter, and first on the high leakage range, calibrate $R_{1,}(6 \mathrm{~K})$ directly with the reading of the meter. This is done without using a transistor in the test socket. The same could be done on the low range, although it is not necessary. It may be necessary to vary R_{9}, R_{11} and R_{13} to get the required ranges with particular meters used.

FIG. 2-Circuit of transistor beta checker.
The base current now has to be set. Assuming that approximately 6.2 v is applied to the transistor under test and that the average base to emitter bias is approximately 0.2 v , this leaves 6 v to be applied to the base through R_{1}, giving $10 \mu \mathrm{a}$ of base current. A more accurate method could be used by making R_{1} variable and, with the transistor removed, connecting a microammeter between the base and emitter while depressing the beta switch. Set R_{1} for $10 \mu \mathrm{a}$ of current to establish the proper current required for given meter and beta range.

In the model constructed, the base current was stepped in increments of $10 \mu \mathrm{a}$ so that a beta curve could be plotted with base steps up to 60 μ a. This method is very useful with transistors that start out with very low beta.

To adjust meter shunt R_{8}, get a high beta reading on the low range and adjust R_{8} for the same reading on the high range. R_{7} may have to be chosen so that the zener will always see a constant impedance when switching from one range to the other. By applying an ohmmeter across the meter and R_{7}, check that the resistance remains constant from one range to the other.

Insert a transistor in the test socket and set polarity switch 2 depending on the transistor being checked. Depress switch 1 to the zero position and rotate appropriate R_{10}.

Rotating R_{10} balanced out the leakage current so that the meter reads zero. Depress switch 1 to read beta. While it is depressed, zero the meter with R_{10} and change $S W_{3}$ to the next position. This gives a new reading of beta for another
increment of $10-\mu \mathrm{a}$ base current. If the beta curve is linear, beta will remain constant. The procedure is repeated up to the sixth position, giving an overall beta reading. Caution must be exercised while stepping higher increments of base current which could result in overloading the zener diodes.

Component Vibration

Test Monitor

Visual indication of momentary contact malfunctions occurring in components during vibration testing is accomplished by the circuit shown. It also indicates a permanently opened or shorted condition of a component being vibration tested. The nature of the fault can be determined by a reset switch. Two channels enable the monitoring of several components simultaneously. Operating time is approximately 25 microseconds. This allows the detection of faults which occur below a cutoff frequency of 40 kilocycles.
The component or components are connected in the grid circuit of a 5718 triode so that the grid bias of the tube is lost if a malfunction occurs. This allows the tube to be driven to saturation. This saturation current acts as a gating current to a silicon controlled rectifier in the cathode circuit of the tube. Upon application of the gate current, the scr extinguishes an indicating light, connected in parallel with it. This is accomplished by replacing the normally high forward impedance, presented by the scr in the unfired condition, with the very low forward impedance of the scr in the fired condition.
After the gate signal has been applied, the scr will conduct in the forward direction, even after the gate signal has been removed. To reset the scr after it has been fired, it is necessary to reduce the anode voltage to zero for a short interval of time. This is accomplished by depressing a normally closed reset switch.

Circuit of vibration test monitor for components.
The resets also provide a means of determining the nature of the malfunction. For example, in testing of devices having normally closed contacts, such as a relay, the lamp should go on initially. During the vibration test, the lamp would go out if the contacts open momentarily. To detect whether a momentary or permanent short has oc-
curred, the associated reset switch is depressed and released. If the lamp remains on, the open was momentary. If it goes out on release, the open is permanent. Proper selection of test terminals provides testing of normally open contacts.

Electronic Squib Simulator

Propellant actuated fasteners, fired by electrical detonation, are widely used in missiles, boosters, and space systems to effect vehicle separation. These devices are invariably of the one-shot variety. They have very low impedance prior to firing and act as an infinite impedance after firing.
The circuit described simulates the electrical characteristics of a primer or squib. It is useful in testing the firing circuits which actuate the vehicle fasteners in that the electrical load and duration may be varied over wide limits.
Two power sources are required for operation. The squib firing source is E_{1}. A second power source, E_{2}, of higher voltage than E_{1}, is used to reverse bias Q_{1}, and switch off E_{1}.

Application of E_{1}, forward biases Q_{1} and Q_{2}. The base currents are de ermined by R_{1} and R_{2}, which are sized for saturation of each transistor. Current flows through the emitter-collector of Q_{1} and R_{L}, with almost the full value of current flowing through R_{L}.

Capacitor C_{1}, begins charging through R_{5}. The charge then becomes proportional to the time constant $R_{5} C_{1}$, and causes sufficient voltage to appear at the gate of $S C R_{1}$. Hence, the $S C R_{1}$ conducts. Firing of the $S C R_{1}$ applies a reverse bias to the emitter-base junctions of Q_{1} and Q_{2} causing them to cut-off.

Diode D_{1} permits E_{1} to forward bias Q_{2} causing it to initially conduct, but E_{2} reverse biases Q_{1} after the $S C R_{1}$ fires. Dicde D_{2} prevents E_{1} from reverse biasing the $S C R_{1}$ prior to firing.

Switch S_{2} provides reset capability for the circuit. The maximum value of load current is determined by selection of R_{L}. If a silicon controlled rectifier with lower sensitivity is used instead of the 2N1872, typical values of R_{5} and C_{1} are 1 K and $10 \mu \mathrm{fd}$.

Fig. 1-Electronic Squib Simulator.

Engine Tachometer

The cincurt shown was conceived after many hours. of experimentation. It was desirable to have a tachometer suiiable for use where no battery or power source were available. Once the tachometer was installed, a minimum amount of maintenance would be required.

The coil is a relay field coil. A coil from a Potter and Broomfield KCP-11 10 K relay was used. The coil bobbin fits nicely on a $7 / 16 \mathrm{in}$. bolt used for mounting. In the case of an outboard motor, the pickup coil should be mounted near the rotating magnets of the flywheel. Where a separate magneto is used, as in the case of some stationary and aircraft engines, the pickup coil is mounted on the side of the magneto case. The mounting should be as close to the rotating magnets as possible. On most automotive engines, where no such rotating magnets are available, a variable reluctance pickup is used. This involves use of a magnetized core for the coil. It is easily accomplished by obtaining a small permanent magnet from an old speaker, gluing it to the head of the steel bolt, and using it as the core of the pickup coil. The assembly is mounted over the fan blades of the generator with the permanent magnet opposite the coil.

It is important that the coil mountings be firm, rigid, and made of aluminum to maintain calibration.

Calibration is accomplished by comparing the tachometer reading on the installation to a known standard. Most garages have a tachometer available for such a purpose.

Several units have been built at a cost of about $\$ 5.00$ each.

PICK UP COIL
SIMPLIFIED TACHOMETER
Fig. 1-Simplified tachometer.

Simple Transistor Tester

A circuit which checks a transistor for damage, wide ranges of $h_{F E} I_{E O}, I_{C E S}$, and $I_{C Z O}$ is shown in the figure. In addition, this circuit can be used to check diode forward and leakage current.

To measure $I_{C o}$ switch S_{1}, is set to position 1 , switch S_{2}, is set to the proper position for the type of transistor under test; current $I_{C o}$, can then be read from the meter.

To measure $h_{F E}$, first set S_{1} to position 2, and switch S_{4}, to position 4. Adjust resistor R_{4}, until meter M, indicates a predetermined constant value $V_{I B}$. Then S_{4} is switched to position 3 and contact S_{3}, is depressed; \mathbf{M} will indicate $h_{F E}$ directly.

Resistor \boldsymbol{R}_{4}, is large enough to provide a voltage reading from M without drawing current from $I_{\text {oo }}$. With S_{4} at position 4, the voltage $V_{I B}$, indicated by the meter, is given by the relationship
where I_{B} is the base current.
With S_{4} at position 3, the voltage indicated by M when S_{3} is depressed, is

$$
V_{I C}=\frac{I c R_{2}}{R_{4}+R_{z}+R_{m}} R_{m}
$$

Where I_{σ} is the collector current.
Thus,

$$
\frac{V_{I C}}{V_{I B}}=\frac{I_{C} R_{5}}{I_{B} R_{2}}
$$

Let $N=R_{2} / V_{1 B} R_{5}$ be a normalizing factor. By choosing N properly, one makes the meter read $h_{F B}$ directly. The value of $V_{1 B}$ determined here will be the predetermined constant mentioned before for adjusting R_{4}.

The function of $S_{3 c}$ is to prevent short circuit of the power supply V_{θ}, in the event S_{30} is closed accidentally during the measurement of I_{00}.

If $V_{0}=12 \mathrm{v}, R_{5}=1 K, R_{2}=50 \mathrm{~K}$, and $R_{1}=100: \%$ the normalizing factor can be easily set to be unit, and the range of $h_{F E}$ over 100 can be read.

Transistor tester.
$S_{1}=3 P 2$ position
$S_{2}=2 P D T$
$S_{3}=3 P$ push button, $S_{3 A}=S_{3 B}$ normally open, $S_{3 C}$ normally closed.
$S_{4}=2 P 2$ position
$M=100 \mu$ full scale
$R_{m}=$ meter resistance
$\boldsymbol{R}_{1}=$ Resistance for varying I_{B} to get $h_{f o}$ of different type of transistors.

Dual Range DC Voltmeter

This design was conceived by the author and is in use at present in factory checkout test equipment. The re-

Fig. 1. Dual range voltmeter.

$M 1=50 \mathrm{mv}$, 1 ma , basic movement Unimeter.
$R_{1}=27 \mathrm{ohm}, \pm 5 \%, 1 / 2 \mathrm{w}$ resistor.
$R_{2}=110 \mathrm{ohm} \pm 5 \%, 1 / 2 \mathrm{w}$ resistor.
$\boldsymbol{R}_{3}=5 \mathrm{~K}$ Potentiometer
CR1 $=$ Zener diode, $27 \mathrm{v}, \mathbf{l}$ w.
CR2 $=$ Diode 1N540.
S1-A, Sl-B $=$ Rotary switch

Fig. 2. Rear view of dual range voltmeter.
quirement was for a meter to measure dc voltages within a range of 18 to 38 v and be able to measure 30 v $\mathrm{dc} \pm 0.1 \mathrm{v}$ at which amplitude a relay was to actuate. Both requirements were satisfactorily met with by a single meter, a 2 pole-2 position rotary switch, and a few additional components as shown in the figure.
With the switch in position 2, the meter and multiplier resistor are connected as a standard 0-50 vdc voltmeter. With the switch in position 1 the multiplier resistor is disconnected, and R_{1} is shunted across the meter to allow $\cong 3$ ma through the zener diode CR1.

The CR2 diode is for temperature compensation. Approximately 27 v is then held across CR1 and CR2 and the meter becomes $\cong 27$ (low end of scale) to $\cong 32 \mathrm{v}$ (high end of scale) voltmeter thereby changing sensitivity to $0.1 \mathrm{vdc} /$ division. Potentiometer R_{3}, is used for exact 30 vdc calibration.

The two ranges of the meter are as follows:
Range $1-0-50$ VDC, $1 \mathrm{v} /$ div. Range $2-E x p a n d e d ~ s c a l e ~$ at $30 \mathrm{vdc}, 0.1 \mathrm{v} / \mathrm{div}$.

Frequency MeterTachometer Amplifier

The unijunction transistor can be used for a simple, inexpensive tachometer amplifier or frequency meter as shown in the circuit of Fig. 1. In this circuit the potentiometer is adjusted to give a steady-state emitter voltage, below the peak point voltage, by an amount determined by the desired input pulse sensitivity. Each time a negative pulse of sufficient amplitude occurs at the input the ujt is triggered and the lufd capacitor is discharged through the ujt. The capacitor is then recharged through the potentiometer and the dc ammeter. The current through the meter has a sawtooth waveform rather than a pulse waveform. Thus, this circuit shows less tendency for flutter at low input frequencies than conventional tachometer amplifiers.

The meter reads the average capacitor charging current which is promotional to the frequency of the input pulses as expressed by,

$$
I=\left[V_{1}-0.5 V_{E(\text { sat })}\right] f c
$$

where V_{1} is the steady state voltage across the capacitor; $V_{E(\text { sat) }}$ is the emitter saturation voltage of the ujt; and f is the pulse frequency. A variable resistor can be used in parallel with the meter, for accurate calibration. To obtain good linearity the capacitor should

FREQUENCY METER TACHOMETER AMPLIFIER

Fig. 1 Frequency meter Tachometer Amplifier.
be fully charged before a pulse occurs. A fully charged capacitor limits the maximum input frequency of the
circuit. The output resistance from the center arm of the potentiometer should be low making possible a high operating frequency, but high enough to prevent the ujt from being bistable. Generally, a value of 3.3 K is adequate to fulfill the latter requirement. In critical cases, the resistance can be reduced appreciably by adding a small inductor ($10-100 \mathrm{mh}$) in series with the meter. This inductor acts to limit the current to the ujt during the switching interval without limiting the available current for recharging the capacitor. The size of the inductor should be chosen to give a critically damped waveform, i.e. there should be no appreciable overshot on the capacitor charging waveform.

Simple Scope

Setup Measures

Differential Microvolts

The need to calculate microvoltage arises when attempting to measure low level differential or singleended ac signals on an oscilloscope. A resolution of better than a trace width was required. The problem can be solved by using a 50 microvolts/centimeter differential plug-in connector in conjunction with an rms millivoltmeter connected to the "Vertical Output" terminal of the scope (see figure).

Three precautions should be observed. First, the sensitivity to common mode voltages can be minimized by injecting a 1 volt 60 cycle sine wave at point " A " and adjusting the "Differential Balance" control for minimum reading on the vtvm.

Second, the scope-millivoltmeter combination may be calibrated from the scope "Calibrate" reference, remembering that a given trace pattern results in the

For preferred low level signal measurement: isolation power transformers, short twisted shielded cables, and single point grounding are emphasized.
same vertical output on all scope sensitivity ranges. This reference voltage is square; therefore, the rms conversion appropriate to the signal waveform should be applied, namely:
Rrns voltage reading equals one half the peak to peak calibration square wave.

Third, a short circuit input noise calibration is necessary if very low levels are to be measured. This calibration depends on the plug-in bandwidth settings.

Suppose the rms noise voltage is V, and the measured signal plus noise rms voltage is E, then the true rms signal voltage is very nearly $\left(E^{2}-V^{2}\right)^{1 / 2}$.

Good low noise and grounding techniques, as shown in the figure have enabled a few microvolts to be measured with ω ut difficulty. The grounding techniques include low capacity isolation power transformers for both scope and millivoltmeter, and a single large copper ground conduetor.

The measurement procedure outlined has proved valuable for noise checking of thousands of low level analog instrument cables associated with computercontrolled industrial processes.

Simple Test Anticipates Transistor Failures In Complex Equipment

As the complexity of equipment using transitors has increased, the problem of obtaining some indication of transistor failure in advance of actual breakdown has become one of vital importance. It simply is not possible to test each of 1000 or more transistors which may be in one piece of equipment.

There are two parameters which, when checked, provide a fairly accurate picture of a transistor's condition, there are beta and $I_{c o}$. If all the transitors can be checked for these parameters and found to be within design limits, the equipment may be reasonably

Tester anticipates failures in complex equipment transistors.
expected to be in good condition as far as transistors are concerned.

These parameters may be checked by making the bias power supply variable, in a system which has been designed to accommodate such a test. Beta of the transistors may be checked by increasing the bias
to the point where the base drive to the transistors is barely sufficient to overcome the bias and still drive the transistor. Any transistor with a low beta will not receive enough drive and will be found when the circuit fails to operate. The $I_{c o}$ may be checked by lowering the bias to the point where an excessive leakage current will cause a faulty transistor to turn on and, as with the beta test, be found when the circuit fails. These are not absolute tests, but they are simple to employ and can perform a valuable service. The voltage excursions to be used must be calculated by the designer for each piece of equipment. An example is now shown.
Example

$$
V_{1}(\max)=R_{5}\left(\frac{V_{3}}{R_{2}+R_{3}}-\frac{V_{2}}{\beta_{\min } R_{2}}\right)
$$

$V_{1}(\min)=\left(R_{5}\right) I_{c o}(\max)$
(approximate equations)
Design Values $\beta=10$ (min)

$$
I_{c o}=0.25 m a(\max)
$$

The test values to be used for V_{1} are +2.5 v and +15 v .

Pulse Amplifier for Beam

Intensity Modulation

This pulse amplifier is a suggested modification to a Tektronix oscilloscope, to allow CRT beam intensity modulation from 3-v logic levels.

The output is connected to the external CRT cathode terminal through a short piece of coaxial cable. Rise and ${ }^{\circ}$ falltimes of 100 nsec result. If a variable pulse amplitude is desired, R_{5} could be replaced with a potentiometer with the output taken from the wiper. The shift in dc level is unimportant since the signal is ac coupled to the cathode.

The only power supply used is the internal -150 v . Current drain on the supply is about 10 ma . No temperature compensation is needed due to the low leakage current ($0.01 \mu \mathrm{a}$ at $V_{c b} \max$) of the transistor used.

Z-axis modulation circuit.

Schmitt Triggers on

Nanoamp Inputs

Here is a high-reliability Go, No-Go test circuit that cannot be damaged or even affected by overloads of 1000 V or more at the input. The circuit's major application is in leakage testing components such as capacitors, diodes and insulation up to $150^{\circ} \mathrm{C}$ ambient.

An input of less than 300 nA triggers the output relay. With R_{I} the test resistance (such as cable insulation), a $1000-\mathrm{V}$ test potential will cause relay triggering if R_{1} falls below 3000 meg . However, if R_{I} fails and shorts over, the Schmitt is completely protected. Only a $1-\mathrm{mA}$ input current flows under this fault condition. Therefore, if a wirewound input resistor is used as shown, 1000 V can be sustained and 2000 V handled for a short period. At voltages below 400 V or so, a film or even carbon input resistor can be used.

Bipolar transistors were used in the circuit instead of FETs since the transistor version was judged cheaper, simpler and easier to protect against high voltages.

Circuit operation is straightforward. Q_{1} and Q_{2} form a direct-coupled Schmitt with positive feedback occurring through the $12-\mathrm{meg}$ resistor instead of through commonemitter coupling. It is important to note that the 2 N 2483 transistor is a low-saturation (switching) transistor with other characteristics similar to the standard low-level type 2N929. It is this characteristic that allows Q_{1} to pull its collector

Low-level current-detector Schmitt circuit.
voltage low enough to completely turn off Q_{2}. This also explains why Q_{2} can be successfully switched off despite leakage current that may occur in an economy transistor at high temperatures.

The $Q_{1}-Q_{2}$ Schmitt is coupled to a relay-driving transistor through a $2.7-\mathrm{K}$ resistor. This resistance is low enough to allow proper saturation to cut-off operation of the 2 N 697 but still allows enough voltage swing (about 5.4 V) to the $12-\mathrm{meg}$ resistor to cause proper positive feedback to the Q_{1} stage.

Typical performance is as follows: pull-in, 0.59 V ; dropout, 0.32 V ; hysteresis, 0.27 V or about 270 nA . The trigger points shift less than 200 mV with temperature increase to $85^{\circ} \mathrm{C}$, and hysteresis increases only about 10 percent with temperature.

Parallel-Path Continuity-Checking Circuit

This circuir was required for accurate continuity checking in automatic test equipment, where nonseparable, parallel paths were to be monitored within the equipment under test. The circuit operates over a temperature range of $+40^{\circ}$ to $125^{\circ} \mathrm{F}$ and is independent of power supply voltage variations.

The current flowing through the circuit being checked is limited so as to prevent damage to low-power circuits. Resistance levels for continuity checks are set at $5,20,100$ and 1000 ohms.
The basic checking circuit consists of a voltage-divider input network, a differentialamplifier comparator, two emitter followers for isolation of the differential-amplifier inputs, a reference voltage and a level detector.

The input network consists of R_{1}, R_{2}, and R_{3} and the circuit under test. This network provides at the base of $Q_{1,1}$, an input voltage whose level depends on the value of resistance of the circuit under test. The output of emitter follower $Q_{1,1}$ applied to one side of the differential amplifier, is compared with a reference voltage generated by R_{10} and R_{11} and isolated from the dif-ferential-amplifier transistor $Q_{2 B}$ by emitter-follower $Q_{1 B}$.

The differential amplifier output at the collector of $Q_{., A}$ is used to drive a level
the output is ground. by this configuration.

Continuity-checking circuit handles parallel paths.
detector, Q_{3}. The detector reference voltage level is held constant by zener diode D_{1}. When the resistance under test is greater than the nominal value, the output at the collector of Q_{3} is a positive voltage. If it is less than nominal,

The level detector is used to drive an output circuit (not shown) giving visual indication and to supply a logic signal to the system within which the checker is used. The circuit operates without adverse effect from power supply variation because of the high com-mon-mode rejection provided

Several voltage dividers may be used, depending on the desired continuity resistance

Voltage dividers for various continuity resistance levels.
level. Voltage divider No. 4 is The test accuracies for the used for performing the $1000-1000$-ohm continuity test were ohm test. Voltage dividers within 10 ohms, for the 100 Nos. 1, 2 and 3 may be used ohm test within 1 ohm, for the to replace No. 4 for monitor- 20 -ohm test within 0.2 ohm , ing 5, 20 and 100 ohm levels, and for the 5 -ohm test within respectively. These ranges 0.1 ohm . Accuracies could be were selected within the auto- improved, if desired, by inmatic test equipment using re- creasing the current through lay switching circuits. the voltage dividers.

Automatic Scaling Circuit Uses ICs

When using a voltmeter or similar indicator to measure a wide range of voltages, it is normal to have a manual range-selector switch.

The circuit shown here provides automatic range selection. With these typical component values the circuit has two ranges, $0-1 \mathrm{~V}$ and $0-10 \mathrm{~V}$ fs. Similar circuits have been buill with up to four different ranges.

The $\mu \mathrm{A} 710$ amplifier and transistor Q_{1} comprise the electronic range switch. The input
to this amplifier is compared with a fixed reference, derived from the divider network R_{4} and R_{5}. The $\mu \mathrm{A} 702$ amplifier has variable gain, controlled by the feedback network R_{1}, R_{z} and R_{3}. The ratio of this network is switched by transistor Q_{t}.

The gain of the $\mu \mathrm{A} 702 \mathrm{am}$ plifier is given by the formula

$$
\begin{aligned}
& E_{o u t}=(1+n) E_{i n} \\
& \text { where } n=\frac{R_{s}}{R_{t}+R_{z}}
\end{aligned}
$$

Automatic scaling circuit gives two meter ranges. With values shown here, scales are 1 V and 10 V fsd.

It can be seen from this ${ }^{-}$and R_{3}, the output of the negative thus shutting off Q equation that because Q_{1} shorts R_{i}, the switching circuit will control the output voltage of the $\mu \mathrm{A} 702$ amplifier.

Normally, when the input voltage is less than the reference voltage set by divider R_{4} the output of the $\mu \mathrm{A} 710$ goes
negative thus shutting off Q and decreasing the gain. The capacitor provides damping for smooth crossover of scales. Note that, using an isolation diode, Q, can drive a scale indicator. This will show which range has been selected.

With the circuit shown there is an offset in the output, on the $10-\mathrm{V}$ scale, due to $V_{C E}$ of Q_{i}. If this is undesirable, it can be reduced by using a FET or by operating Q_{1} in the inverted mode to give lower $V_{C E}$.

Plug-In Squaring-Unit for Signal Generator

Schmitt trigger circuit which shapes the output of a sine-wave generator.

A square-wave generator is often required for the design and test of digital equipment. This simple circuit will increase the versatility of existing test-equipment by converting sine waves into square waves. It is suitable for use with any sine-wave generator having a 600 -ohm output and an output-level control.
The basic circuit used is a schmitt trigger which is constructed on perforated epoxypaper board and mounted along with the input/output connectors, on/off switch and a mer-
cury battery in a small box. This results in a self-powered plug-in unit which is compatible with most audio generators having a GR-type connector for the output terminals.

The symmetry of the output square-wave is adjusted using the output-level control on the sine-wave generator. With the circuit shown, the battery life is limited, but could be increased by raising the values of the collector-load resistors of the two transistors. Other types of battery may also give longer life.

Differentiating Amplifier Intensifies Scope Trace

This circuit automatically corrects the intensity of an oscilloscope trace for variations in vertical writing speed. It is assumed that the intensity will be initially set by the user, with no vertical input to the scope, and that increased intensity will be required as the input-signal frequency increases. The gain control allows the intensity to be balanced for vertical and horizontal deflections. The output of the circuit is connected to the cathode of the CRT. Trace intensity is practically constant, for rise times ranging from very-slow to $0.01 \mu \mathrm{sec}$.

With an input of $50-\mathrm{mV}$ rms, the output is $17-\mathrm{V}$ peak at 100 MHz and above. For

Differentiating circuit gives increased gain at high freqnencies to compensate for loss of brightness in CRT.
frequencies below 100 MHz , output voltage is directional proportional to input frequency. The circuit will work with input levels as low as 10 mV . Input impedance is approximately 20 K when the gain control is set to maximum. Thus, for most applications, the input to this circuit can be paralleled with the input of an existing scope amplifier.

The circuit is so designed that positive and negative in-
put pulses will give the same tor C_{t} which shunts the base forward-biased by $R_{\text {, }}$ and R_{4} trace intensity, assuming that of Q_{2}, as determined by R_{j}, to compensate for the baserise times are identical. This This arrangement is used, in- emitter drop. The gain of is achieved by having separate stead of a conventional gain amplifier Q_{s} is unity, defined differentiating stages for positive and negative signals. Transistor Q, amplifies only posi-tive-going voltages and Q_{5} amplifies negative-going voltages. Both these stages are normally cut off.

Emitter follower Q_{1} is directcoupled to amplifier Q_{2}. Gain control is provided by capaci-
control, so that dc conditions by the emitter degeneration of will not change with gain. $\quad R_{r}$, and the collector shunting Positive signals at Q_{z} col- of R_{6}. Thus for a symmetrical lector are differentiated by C_{z} input signal, the voltages at and R_{z} to drive Q_{s}. Negative the base of Q_{3} and Q_{4} are of signals from Q_{z} are differentiat- equal amplitude and opposite ed by C_{6} and R_{5} to drive Q_{5}. polarity. These signals are reBoth of these circuits have the combined at the output because Q, and $Q_{\text {, }}$ share the same Transistor Q_{s} is slightly collector resistor.

Pulse-catching probe

The probe in the figure detects as 10 ns . If this speed is not and displays four conditions in DTL and TTL circuitry. If the input is open or at logic " 1, " the logic 1 light will be on continuously. If in the logic " 1 " state a negative-going pulse is detected, the logic " 0 " light flashes on then off, indicating that a negative-going pulse bad been present.

If the input is at logic " 0 ," the logic 0 light will be on continuously. If in the logic " 0 " state a positive-going pulse is detected, the logic I light flashes on then off, indicating that a positive-going pulse had been present.

A continuous pulse train causes both lights to be on. At low repetition rates, the duty cycle of the pulse train can be estimated from the light brightness ratio. The duration of the flash is controlled by the one shots and can be adjusted. A duration of about 0.3 second works nicely.

The probe uses TTL gates and detects pulses as narrow
required, DTL gates can be substituted. The input buffer gate minimizes loading on the circuitry being tested. Discrete components can be used for an input buffer to provide overvoltage protection.

The two sections of the circuitry work the same way. When a logic " 1 " to logic " 0 " transition occurs at the input of a section, the one-shot is triggered and outputs a logic " 1 " for 0.3 second. The logic " 0 " state will set the RS flipflop and cause the lamp driver to light the lamp. If the logic " 0 " is still present when the one-shot has timed out, the RS flip-flop still outputs a " 1 " until the logic " 1 " state is again present at the input. The logic " 1 " at the input then allows the reset of the flip-flop and extinguishes the light. If a neg-ative-going pulse triggers the one-shot, the RS flip-flop remains set until the one-shot has timed out.

This versatile logic probe detects and defines pulses.

Self-contained crystal tester

Two transistors and a handful of components combine to produce a crystal tester. The crystal to be tested is inserted into a test socket and switch S_{1} depressed. If the crystal is good (i.e., if it oscillates) the pilot lamp glows; if the crystal is bad the pilot lamp remains off. The entire unit can be battery operated and will fit into a 2 $\times 4 \times 11 / 2$-in. package.

Transistor Q_{1} and associated components form an untuned Colpitts oscillator which can oscillate over a wide range of crystal frequencies. When a good crystal is being tested, several volts pk -pk appear across R_{2}. This ac voltage is level shifted by $C_{s}-D_{p}$, peak detected by $C_{4}-D_{2}$ and the resultant dc voltage used to turn on Q_{2} which turns on the pilot

This simple go/no-go tester checks crystals over a frequency range of 3.5 MHz to 90 MHz .
lamp. A non-oscillating crystal produces no drive to Q_{2} and the lamp remains off.

This unit has been used to
test crystals ranging from 3.5 to 90 MHz . Crystals which fail the test generally have broken leads or dirty contacts.

Direct reading period meter
 The average voltage is
 $$
V_{a v}=\frac{\frac{p V_{p}}{2}}{2 p}=\frac{p I}{4 C}
$$

The period of a repétitive waveform can be read directly on an ordinary milliammeter or voltmeter with the circuit shown. The readout is linear with period and allows any standard linear scale to be used.
The circuit in Fig. 1 consists of a constant-current source formed by Q_{1}, Q_{2}, and R_{1} that charges C_{i} when switch Q_{3} is turned off. The flip-flop switches on alternate cycles of the input waveform, thus C_{1} is allowed to charge during one cycle and forced to discharge the following cycle. Amplitude of the ramp voltage appearing on C_{1} depends on the period p of the input signal. The peak voltage is

$$
V_{p}=\frac{p I}{C}
$$

The average voltage on C_{1} is directly proportional to the period of the input signal. Q_{4} is an emitter follower to reduce the loading on the con-stant-current source. $C R_{1}$ keeps Q_{4} from reverse biasing and acting like a rectifier when C_{t} is discharged. $C R_{2}$ prevents C_{1} from discharging completely so that Q_{s} is in its linear region when the ramp starts.
R_{2} and C_{2} combined with the inertia of the meter movement form an integrator so that the meter will show a steady reading proportion to $V_{a v}$ and to period p.

A Motorola MC779P, multifunction integrated circuit, contains the flip-flop, two buffers and an expander to form the trigger circuit shown in Fig. 1. The trigger-level control allows the period of almost any waveform to be measured. Q_{5} and C_{3} force the flip-flop to reset
after the input signal has been removed long enough for C_{3} to charge to about one volt. This prevents the meter from pinning.

Meter readings over a decade
are quite linear. Supply voltages are not critical and need not be closely regulated. The charging capacitor C_{1} can be switched to make a multi-range instrument.

Fig. 1. The direct-reading period-meter circuit uses a Motorola MC779P as well as discretes.

Fig. 2. Waveforms of the circuit in Fig. 1.

Section 12

GENERATOR \& SIMULATOR CIRCUITS

Inexpensive Load Simulator

When testing semiconductor power supplies for ripple attenuation and output impedance it is necessary that measurements be made at different values of load current. A large rheostat may be used to simulate a variable load. A more economical solution is to use an inexpensive, readily available power transistor.

The circuit shown in the diagram was intended to present a variable load to a 30 v supply rated at 0.6 amp max. With the center arm of the pot at the collector end, $V_{c b}$ equals zero and the transistor

Transistor load simulator for testing power supplies.
is in saturation. The load current is therefore established by R_{1} at $30 \mathrm{~V} / 50 \mathrm{ohms}$ or 0.6 amp . As the pot arm is turned down towards the emitter the transistor comes out of saturation and the load current decreases. With the base shorted to the emitter the collector current is some small value essentially equal to $I_{c o} /\left(1-\alpha_{n} \alpha_{i}\right)$. At 30 v this may be about 10 ma in germanium and less in silicon.

Ultra Linear Ramp Generator

This circuir was designed to fill the need for an ultra linear ramp in a high accuracy, low speed, voltage to pulse width converter. Using the circuit,
a plot was made showing departure of the ramp from a straight line between the 10 and 90 per cent points of the ramp. Linearity measured was better than 0.02 per cent and was limited somewhat by the measuring method and equipment.
The circuit shown is for a very long ramp but the principle can be used for many speeds and the relay can be replaced by two switching transistors for high-speed use. Of course the transistors introduce an error into the starting voltage of the ramp not found with the relay.
The circuit combines a transistor constant current source and a correcting circuit to compensate for the slight droop in slope near the end of the ramp (probably due to decrease in beta as collector voltage decreases with charging of \boldsymbol{C}_{1}). As long as the voltage across the capacitor is less than about 8 volts, the 2 N 329 transistor keeps a constant voltage across its emitter resistors since the transistor's base is also kept at a constant voltage by the Zener referenced back to the +20 -volt supply. Thus a constant emitter current flows, and the transistor having a reasonably high beta has a very similar current flowing from its collector to charge the capacitor. Leakage in a good pnp alloy transistor is an extremely small part of the total current and has little effect.

Varying junction drop with temperature can be compensated by putting a conducting diode, of characteristics similar to the transistor base-emitter diode, in series with the Zener diode.

Even with this constant current set-up there is a small decrease in collector current as C_{1} charges, amounting to between 0.1 and 0.25 per cent nonlinearity. If a properly timed decreasing voltage can be inserted at point A in series with the constant current emitter resistor, this will slightly increase drop across the emitter resistor, and increase emitter current sufficiently to bring the transistor's
collector current back to a true constant value. As the correction needed is small (about 20 mv), a crude approximation to a decreasing voltage drop will be sufficient. A second ramp at point B, a standard exponential charging curve, does the job.

As the $100 \mu \mathrm{f}$ electrolytic charges and its voltage increases toward plus 20 volts, the current drawn decreases. This current decrease shows up as a small voltage change across the linearity adjusting pot common to both ramp circuits. Proper adjustment of this control results in just enough decrease to compensate the other errors.

No ramp type bootstrap was used since it was discovered that any reasonable transistor amplifier drew enough current to add more than 0.1 per cent nonlinearity. In use, this ramp was loaded only with an ultra low leakage biased-off transistor in the input of a voltage comparator which drew current only at the moment of comparison.
It is interesting to see that a very large changing voltage injected at A can over compensate and give a positive exponential waveform output which is the reverse of the negative exponential charging curve.

Ramp linearity measurements are most easily

Test circuit at bottom is substituted for C_{1} during adjustment of linearity control of ramp generator.
made with a precision voltage source, a time interval meter, and a high sensitivity dc voltage comparator. By measuring the time between relay contact opening and comparator firing time when the ramp reaches a known voltage, a plot of voltages vs. time can be made. A precision time interval meter timed with a stable crystal oscillator should be used to make measurements comparable with the accuracy of the ramp.

Adjusting the linearity control can be done as follows. Substitute the test circuit shown for the film capacitor. Also substitute a small divider and pot on a floating battery for the linearity control, so the voltage between plus 20 v and A can be adjusted between zero and plus a couple of hundred
millivolts. Start with V_{1} on the meter at zero and note with maximum possible precision the milliammeter reading. Increase V_{1} to the desired maximum voltage the ramp will reach in operation. Next increase A voltage until the meter returns to its original reading. This will have to be done several times with a very good meter, correction for parallax, etc. since the changes in current are very small. Note the dc value of the voltage between plus 20 v and A needed.

Constant Amplitude Sine Wave Source

Need for a small battery operated, fixed frequency sine-wave calibration source, operating between 0 and +70 C , having less than 1 per cent harmonic distortion, and constant in output amplitude to within ± 1 per cent, fostered the design of the circuitry shown in Fig. 1. Basically, the circuit generates a constant amplitude square wave and hen filters this square wave in a low pass network.
The circuit consists of a free-running multivibrator Q_{3} and Q_{4}, switching transistor Q_{2}, constant current regulator Q_{1}, zener diode D_{2}, and low pass filter F_{1}. The free-running multivibrator Q_{3} and Q_{4} alternately turns the associated switching transistor Q_{2} off and on. The coupling used betwen the multivibrator and Q_{2} is shown in Fig. 2. A $10-$ ma constant current set by Q_{1}, D_{1}, and R_{1}, flows through Q_{2} when Q_{8} is on and through zener diode, D_{2}, when Q_{2} is off.

FIG. I-Circuit for generating constant amplitude sine waves.

Thus, the square wave amplitude across D_{2} is determined on the negative half cycle (Q_{2} off) by the voltage developed from the constant current through D_{2}, and on the positive half cycle (Q_{2} on) by the collector-emitter saturation voltage of Q_{2}. Over the operating temperature range, zener diode
D_{2} maintains a constant voltage to within 0.14 per cent, and the change in Q_{2} sautration voltage is less than 0.33 per cent of the square-wave amplitude.
This constant amplitude square wave is then

FIG. 2-Multivibrator and Q., coupling.
passed to F_{1}, a 1500 -cps cut-off, low pass filter, where ideally, only the fundamental frequency component of the input square wave appears as a sine wave across the filter load R_{L}. Constant amplitude and minimum distortion of the sine wave output is achieved by operating the multivibrator at approximately 850 cps . At this input frequency the transfer characteristics of the low pass filter F_{1} are high attenuation to second and higher order harmonics, and constant output for small variations in multivibrator frequency due to temperature effects.
High-temperature starting of the multivibrator is insured by the +3 volt bias supply and the associated resistors R_{2}, R_{3} and diode D_{3} shown in Fig. 2.
The frequency stability is 4 per cent from 0 to 70 C at -18 volts. At this voltage, battery drain is 13 ma . The 3 -volt battery supplies 60 microamperes. Distortion is less than 1 per cent and output voltage is approximately 3 volts rms. The actual value depends upon the 1 N 1530 chosen, resistance of R_{L}, etc.

Simple Triangular Waveform

Generator

The circurt shown in Fig. 1 will provide a triangular waveform with essentially linear ramps having equal rise and fall times.
Operation of the circuit is as follows: Capacitor C_{1} charges thru R_{1} to the point where the Zener voltage of $Z R_{1}$ is overcome, then C_{2} also begins to charge thru $R_{1}, C R_{1}$, and $Z R_{1}$. When the voltage across C_{1} reaches the breakdown potential of the

Shockley diode $S R_{1}, C_{1}$ begins to discharge rapidly thru $S R_{1}$ and R_{2}. This sudden discharge of C_{1} causes $C R_{1}$ to become reverse biased preventing the charge on C_{2} from following the path taken by C_{1}, thus C_{2} must discharge thru R_{3}. The result of this series of events is a triangular waveform across R_{3}, as shown by Fig. 2A. Resistor R_{2} serves to limit the current thru $S R_{1}$, and is assumed to be equal to zero for this discussion.
To obtain a linear output, the breakdown voltage of the Shockley diode must be small compared to the applied voltage E. The ratio should be in the order of 4 -to- 1 or greater. Linearity is equally dependent on $V_{z / a}$, the charge left on C_{2} when $Z R_{1}$ closes being no less than $3 / 4 V_{z}$. In order for the output to have equal rise and fall times these two conditions must be met:

$$
\begin{aligned}
& \frac{R_{3} C_{2}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{1}{4} \\
& C_{1}=C_{2}
\end{aligned}
$$

From the above it is obvious $R_{1}=2 R_{3}$
With the above conditions in mind the rise and fall times of the output are approximated by:

$$
\begin{aligned}
& T_{f}=R_{3} C_{z}\left[\ln V_{z}-\ln \frac{V_{z}}{a}\right] \\
& T_{r}=R_{1}\left(C_{1}+C_{2}\right)\left[\ln \left(E-V_{z}-\frac{V_{z}}{a}\right)-\ln \left(E-V_{z}\right)\right]
\end{aligned}
$$

Where:
$V_{z}=$ The breakdown voltage of $Z R_{1}$
$V_{s}=$ The breakdown voltage of $S R_{1}$
$a=$ a number $1>a>4 / 3$ determined by the degree of linearity desired.
$E=$ the applied voltage.

FIG. I. Diode circuit provides triangular waveform.

FI'G. 2. Output of waveform generator (A) and waveform across C_{1} (B)

It is interesting to note the waveform across \mathbf{C}_{1}. is that of a double ramp as shown by Fig. 2B. Because V_{8} is small compared to E, the most linear portion of the charge curve of $R_{1} C_{1}$ and $R_{1}\left(C_{1}+\right.$ C_{2}) is used to obtain the double ramp. For this reason the two ramps are considered practically to be straight lines with slopes as follows:

The slope in volts per sec of the first ramp is:

$$
S_{1}=\frac{a V_{z}+V_{z}}{(a)\left(T_{z}^{2}\right)}
$$

Where:

$$
T_{s}=R_{1} C_{1}\left[\ln E-\ln \left(E-V_{z}-\frac{V_{z}}{a}\right)\right]
$$

The slope in volts per sec of the second ramp is:

$$
S_{2}=a \frac{\left(V_{z}-V_{z}\right)-V_{z}}{(a)\left(T_{r}\right)}
$$

Transistorized

All-Waveform Generator

WAVEFORM generators are commonly called upon to deliver the following outputs: sine, triangular, square, and sawtooth.
A single circuit capable of delivering all these waveforms has, up to this point, involved a great deal of complexity.
A two-transistor circuit capable of generating all four waveforms is shown in Fig. 1. The function selector is a switch which accomplishes minor circuit modifications which control the shape of the output waveform. The circuit is essentially a common base amplifier in series with a Miller reactance transistor. The reactance transistor simulates an inductance of approximately 20 henrys.

In switch position 1 the circuit is a sine wave oscillator where Q_{1}, the effective inductive reactance, is shunted by capacitor C_{1} to act as a tuned circuit. The feedback is from the emitter of Q_{1} to the emitter of Q_{2} and is resistance coupled. The emitter of Q_{1} is used as the take off point for the feedback loop, producing the effect of a Hartley tapped coil. Resistor R_{8} is adjustable, and acts as a feedback control. Frequency is 450 cycles per second with a total distortion of 0.8 percent.
A triangular wave is provided in switch position 2. No components have been changed except in the feedback loop where R_{4} has been replaced by C_{3}. This adds capacitive phase shift back into Q_{2} causing it to act as an oscillator and Miller integrator at the same time. The Miller integrator linearizes the sine wave output of the tank circuit, generating triangular wave form.

A square wave results with switch position 3 . The feedback is again resistive. Here an LR feedback oscillator is formed where Q_{2} is fired on and

FIG I-Two-transistor circuit provides choice of four different wave shapes.
off by the LR time constant. The switching time is dependent on the circuit constants and the transistor characteristics.
In switch position $4, C_{1}$ is out of the circuit, and sawtooth waves are produced. The feedback is capacitive, and a Miller integrator capacitor C_{4} and load resistor R_{5} are switched into the base of Q_{2}. Here the square wave circu't with a Miller integrator feeds the base of Q_{2} from the collector of Q_{2}. This causes the square to ramp to its maximum voltage which produces a linear sawtooth waveform.

The circuit is quite versatile in generating well defined waveforms. It is suitable for applications in which fixed or limited ranges of repetition rates are required.

Triggered Sawtooth Generator

$I^{\text {r }}$T was found that by connecting the Shockley 4-layer diode with a transistorized integrating circuit a free-running sawtooth generator could be made (Fig. 1). With the addition of a capacitor and a supply voltage change it was found that the sawtooth generator could be triggered into operation and the triggered sawtooth generator (Fig. 2) was conceived.

The wave shape generated by the triggered sawtooth generator is different from most sawtooth generators in that the ramp starts from the steady state condition with a quick drop after which the ramp rises back to the steady state condition. In the conventional sawtooth generator, the ramp starts from the steady state condition and rises to a maximum and then there is a quick drop back to the steady condition.

The supply voltage of the triggered sawtooth generator was set at 18 volts dc, but this was not enough to cause the circuit to run free. The collector of transistor Q_{1} is then setting at 18 volt dc. If a
pasitive pulse of 10 volts is then applied to the collector, the potential between collector and base will be nearly 28 volts and is sufficient to break down the 4 -layer diode to a low-resistance path between collector and base. With the collector voltage ap-

2 1 SEC/cmHORIZ
0.5 V/em VERT

FIG. I-Free-running sawtooth generator.

TRIGGER WAVE SHAPE
10V/em VERT
I 1 SEC/ © m HORIZ
PULSE WIOTH 0.2μ SEC 400 PPS PRF
(LOWER).
EXPANDED COLLECTOR WAVE SHAPE
lov/em VERT
IJSEC/Cm HORIZ
FIG. 2-Triggered sawtooth generator.
plied to the base, the transistor will then pass current and thus the collector voltage will drop.

When the drop between collector and base is down to about one volt, the 4-layer diode will return to a high resistance path and the collector voltage is no longer applied to the base. The voltage on the base, stored in capacitor C_{F} (about 0.8 v), begins to leak off through R_{B} and the base to emitter resistance of the transistor. The current through the transistor will start to decrease and thus cause the voltage on the collectory to increase.

The increase in voltage on the collector is fed back to the base through C_{F} and tends to buck the decrease in base voltage to a much slower rate. The result is a gradual increase of voltage on the collector or a ramp. As the collector voltage rises it eventually reaches the supply voltage of $E_{c o}$ and the ramp stops until the circuit is triggered again.

The free-running sawtooth generator of Fig. 1 operates in the same manner as the triggered saw-
tooth generator except that the supply voltage is made higher than the breakdown voltage of the 4-layer diode on the free-running circuit. The wave shape seemed to be much better with $E_{c c}$ of 40 volts rather than an $E_{c c}$ of 20 volts which was just enough for oscillation.

Temperature-Compensated Constant Current Generator

IN A vco application, requiring a constant current source, the wide range of temperatures experienced, -55 C to +125 C , affected the linearity of the oscillator.

As shown in Fig. 1, the reverse voltage charac-

FIG. 1-Constant-current generator is temperature compensated.
teristic of the diode, in conjunction with the baseemitter characteristic of the transistor, stabilizes the collector current by maintaining a constant voltage across resistor R.
The $V_{b e}$, of the 2N495 transistor selected, exhibits a temperature coefficient of $-2 \mathrm{mv} / \mathrm{C}^{\circ}$, and dictated a similar coefficient for the zener diode. The 1N467 was found to have this property.

A similar arrangement may be devised using an npn type of transistor. Both circuits may be used together to provide a bipolar current source.
A more satisfactory type of transistor temperature compensation is thus provided than can be normally attained using conventional non-linear components.

Linear Sweep Generator

The circuit shown in Fig. 1, generates linear sawtooth voltages over the range of $100 \mu \mathrm{sec}$ to, and above 10 seconds, of constant amplitude. It offers interésting possibilities as a gated or free-
running sweep circuit.
The basis of operation is Miller type feedback with T_{4} as amplifier, C_{T} and R_{T} the timing network and T_{8} a gate. Transistors T_{3} and T_{2} provide an impedance changer to match the low input impedance of T_{4}.

In the steady state, transistor T_{3} is cut off, T_{4} is on, its current supplied through R_{6}. The base of T_{4} is held positive by returning R_{T} to the supply voltage $E_{c o}$.

A positive gate on the base of T_{3} drops the collector voltage e_{c}. This change occurs across timing capacitor C_{T} and is transmitted through the impedance changer to the base of T_{4} cutting it off. Next follows the linear rundown at the collector of T_{3}, characteristic of phantastron type circuits.
The approximate relationship between the supply

FIG. I-Ohmic values of resistors follow: R_{1} and R_{5} -100; $R_{2}-2700 ; R_{3}, R_{4}$ and $R_{6}-4700 ; R_{3}-100 \mathrm{~K}$. All transistors are $2 N 388$ and $E_{c c}$ is $-22 v$, and $E_{b b}$ is - $6 v$.

FIG. 2-Output waveform at designated points of linear sweep generator circuit.
voltage and the timing network is

$$
e_{c}=E_{c c}\left(1-t / R_{t} C_{t}\right)
$$

This was found to hold true for R_{T} in the order of 1 megohm. For R_{T} above that value, shunting effects of the impedance changer have to be considered. The slope of the sawtooth varies linearly with changes of C_{T}. Sweeps of $100 \mu \mathrm{sec}$ to 10 seconds were consistent with capacitance variation from $0.0001 \mu \mathrm{f}$ to $1 \mu \mathrm{f}$. The amplitude remained constant over entire range. Output waveforms are in Fig. 2.

An attempt to make the circuit free running was also successful. This was done by introducing positive feedback from the collector of T_{2} to the base of T_{3} through a 330 K resistor (between points C and A in Fig. 1). Other ways of accomplishing the same are still being investigated.

This circuit will perform equally well with npn and pnp germanium transistors. 2N388 and 2N396 were tested (reversed power supplies) without change in performance. With silicon transistors (2N118), small circuit modifications were necessary, mainly due to the higher saturation resistance of T_{1} and T_{2}. Nevertheless, there seems to be no major limitation in that respect.

Radar Target Acceleration Simulator

In testing radar range tracking systems, it is often desirable to provide a target with a controlled acceleration. A rather elemental method for providing such a target is to use a phantastron delay circuit modified by the addition of a synchronous motor driven capacitor in the feedback loop.

A pulse used to trigger the phantastron is considered the radar transmitted pulse, and a second pulse, triggered by the trailing edge of the phantastron square wave, the radar echo. Time between

FIG. I-Square law function is desirable.
pulses, or range, can be set to desired values by combinations of resistance between a positive supply and grid, and capacitance between plate and grid of the tube used in a phantastron circuit. Capacity variations produce essentially linear delay var-

FIG 2-Graphical representation of capacitor.
iations. Therefore, a variable capacitor having a square law characteristic, driven at constant velocity will, when used in this circuit, cause the trailing edge to move in time at a square law rate. This in conformance with the standard acceleration

FIG 3-Circuit for simulating acceleration.
formula, $S=\left(a t^{2}\right) / 2$ which is a square law function. See Fig. 1.

Straight line frequency capacitor plate design is applicable or the procedures outlined in the article "Designing Variable Capacitors for Function Generators", page 131 of the March 1960 issue of Electronic Equipment Engineering can be used. If acceleration and deceleration are desired, in decreasing and increasing range, capacity variation will be as shown in Fig. 2. A no change or dwell position is desirable if single functional cycles are desired. During this period, an auxiliary cam may be used to operate a stopping limit switch. An overriding switch initiates the action.

This capacitor is designed to function as follows:

1. Decrease capacity at a square law rate for one second. 2. Continue capacity decrease, but at a decreasing square law rate for one second. 3. Dwell for a period at minimum capacity. 4. Increase capacity at a square law rate for one second. 5. Continue capacity increase, but at a decreasing square law rate. 6. Dwell for a period at maximum capacity.

The moving plates will be cardioid shaped, formed

STATOR PLATE
ROTOR PLATE
FIG 4-Configuration of capacitor plates.
by a straight line frequency plate folded back on itself. The fixed plates will be round with straight entering edges. Attention must be made to provide a standard minimum to avoid discontinuities, and to keep capacity to ground very low. To determine the amount of capacitor variation necessary, the following procedure is used. For example, say 200 G acceleration is desired, in one second:
$200 \mathrm{G}=200 \times 32.2 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}=6440 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}$ direct radar range $\cong 1000 \mathrm{ft}$ per $\mu \mathrm{sec}$
then, $200 \mathrm{G}=6.44 \mu \mathrm{sec} / \mathrm{sec} / \mathrm{sec}$
and, $\mathrm{S}=3.22 \mu \mathrm{sec}$.
Therefore, during a period of one second, the shift of the target echo pulse amounts to $3.22 \mu \mathrm{sec}$, and the capacitor is designed to provide this.

Some adjustment of acceleration is possible with this unit. See Fig. 3. Components $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} determine the length of square wave. Values are chosen to the range desired. Capacitors C_{1} and C_{3} being normally fixed, adjusting R_{1} to a small value, and C_{2} to a large value to obtain the required range, will have the effect of decreasing the acceleration caused by operating C_{1}, since it will be a smaller proportion of the total capacitance in the RC circuit determining the length of square wave.

Conversely, adjusting R_{1} to a large value and C_{2} to a small value to obtain the required range, will have the effect of increasing the acceleration caused by operating C_{1}, since it will be a larger proportion of the total capacitance in the RC circuit determining the length of square wave, or range.

Circuit values shown result in a transmitted to echo pulse of approximately $230 \mu \mathrm{sec}$ and adjustable acceleration. This can be changed to suit particular applications by changing the timing constants in the phantastron circuit. Figure 4 illustrates one capacitor design that was used with success.

Efficient Even Harmonic Generator

FRequency multiplication may be performed either by class \mathbf{C} operation of amplifiers or by use of a rectifier with both types requiring high Q filters. In either case, the efficiency is extremely low and additional amplification and filter stages are necessary. The combination of the rectifier followed by an amplifier is the preferred choice for maximum efficiency. Such circuits have been discussed in the literature and proposals made which increase the efficiency by using the dc from the rectifier to operate the following amplifier. A still further improvement is obtained by the circuit to be described which employs a ring modulator in place of the rectifier multiplier for the production of even harmonics.
The maximum conversion gain of the rectifiermultipler alone is $G_{0}=1 / n^{2}$ where n is the harmonic number. With the following amplifier a transistor of high power gain, the overall conversion gain will still be less than unity with a typical value being 0.9 . Note that it is no longer a truly passive device.

Figure 1 gives the circuit of the passive multiplier. No special effort was made to obtain good balance. Tests were made with the fundamental frequency

FIG. 1—Possive efficient even hormanic generotor.

FIG. 2-Hormonic generotor outputs.
of 1 kc . At 2 kc , the conversion gain was 0.76 and at 4 kc , it was 0.14 . That is, the conversion gain was approximately 3 times the maximum gain of a rectifier multiplier. At the second harmonic, an insertion loss of only 3 db makes an amplifier not essential except where large amounts of power are required. The output at other harmonics is of in-
terest. This is depicted in Fig. 2 as the wave analyzer readings for the laboratory model of Fig. 1. The conversion gain for the fourth, sixth and eighth harmonics is essentially the same. All the odd harmonics and the even ones above the eighth can be considered as balanced out since all fall below the $30-\mathrm{db}$ attenuation level as does the fundamental. The rejection of the fundamental is a highly desirable feature of this multiplier.

Theoretical analysis of the circuit is derived from the output of an ideal balanced modulator which is

$$
e_{o}=E_{m} \cos \left(w_{c}+w_{m}\right) t+E_{m} \cos \left(w_{c}+w_{m}\right) t
$$

Where w_{c} equals w_{m} and E_{m} equals E_{c}, this becomes

$$
e_{o}=E_{0}\left(\cos 2 w_{0} t+1\right)
$$

thus indicating the predominace of the even harmonics. Further description of the outputs for this special case can be obtained from the knowledge that less than 60 db attenuation will occur for the following,

$$
\begin{aligned}
& n f_{\mathrm{c}} \\
& (2 n+1) f_{c} \pm f_{c} \\
& (2 m+1) f_{c} \pm(2 n+1) f_{\mathrm{c}} \\
& 2 m f_{c}+2 n f_{\mathrm{c}} \\
& (2 m+1) f_{c} \pm 2 n f_{o}
\end{aligned}
$$

Capacitor C in Fig. 1 was chosen to reject all unwanted harmonics. Better tuning of the output than was attempted in this model can considerably improve the conversion gain and spurious rejection. Practical conversion gains at the second harmonic can approach 0.9.

Capacitor C_{1}, experimentally selected, can be used to reduce the phase shift introduced by the multiplier where this is of interest. It is not essential to the operation of the harmonic generator.

4-Layer Diode Sweep (Synchronous)

The circuir in Fig. 1 produces a linear 20 -volt sawtooth with few components. With adjustment of component values its maximum sweep rate can reach 100 kc . Besides simplicity and a wide latitude of sweep rates, this circuit features synchronous operation and very fast retrace.

Since the ratio of off to on resistance is about one million to one in the 4-layer diode D_{1}, the sawtooth as shown in Fig. 2 has good linearity and very fast retrace. This fast retrace eliminates the need for blanking in oscilloscope applications.
The use of diode D_{2} in the sweep circuit allows synchronous operation over a large range of signal amplitudes. Thus, in oscilloscope applications R_{1} will not require additional adjustment after once set for minimum signal. Synchronous switching occurs because diode D_{2} is open and the voltage across D_{1} is greater than sweep voltage, when the signal voltage is negative.
The sweep voltage and synchronizing signal cause

FIG. I-Resistors of the synchronous sweep circuit are noninductive types.

Linearity of the sweep waveform is apparent in Fig. 2, left. Some 10 -kc sine waves using the four-layer diode for sweep are shown in Fig. 3, right.
the voltage across D_{1} to obtain the 4 -layer switching voltage and capacitor C discharges through D_{1} and D_{2}. The discharge current decreases to a value less than the 4 -layer holding current and D_{1} opens. Resistor R_{4} serves as a current limiter to protect the diodes.

The approximate frequency of operation is given by

$$
f \simeq \frac{V_{s}}{V_{D_{1}}\left(R_{2}+R_{3}\right) C}
$$

where $V_{D_{1}}$ is the switching voltage.
Figure 3 shows an unblanked oscilloscope trace of a 10 -ke sine wave using this oscillator for sweep.

Fast-Rise, Long-Width Pulse Generator

The circuit shown in Fig. 1 was developed to provide a variable, long-width pulse with fast rise and fall times. Although the width in our application needed only to be as long as 20 msec , the principle of operation will allow a 1 min pulse to be generated with
rise and fall times of $1 \mu \mathrm{sec}$ or less.
The initial conditions are Q_{1}, Q_{2}, Q_{4} off, Q_{3} on, and $C R_{1}$ held in its low voltage state by current

Fig. 1. Pulse generator.
through R_{1} and R_{2}. A positive input pulse turns Q_{1} on briefly, allowing sufficient current to flow through R_{1} and the tunnel diode, $C R_{1}$, so that it sets to its high voltage state. This action turns on Q_{2} and is the start of the pulse. Output voltage will remain across R_{3} until the tunnel diode is returned to its low voltage state.

The output voltage is fed through an R-C integrator to the emitter of Q_{4}, a unijunction transistor. When the peak-point emitter voltage is exceeded, Q_{4} fires. The resulting negative pulse turns off Q_{3}. As Q_{1} is also off at this time, the reduced current through $C R_{1}$ allows it to reset to its low voltage state. Q_{2} now turns off, and the pulse is complete.
Pulse width is adjusted by R_{4}. Rise and fall times are determined primarily by the switching characteristics of $C R_{1}$ and Q_{2}.

Variable Pulse Generator

This circuit is a variable frequency generator of low impedance pulses. It operates with any power supply voltage from 1.5 to 20 v , and will generate symmetrical or nonsymmetrical pulses at rates from less than $\frac{1}{2} \mathrm{ppm}$ to more than 200,000 pps.

The capacity values chosen for C_{6} and C_{7} determine the center frequency of operation. Controls R_{18} and R_{19} provide a frequency adjustment of $1 / 2$ to double the center frequency. These controls may also be used to individually adjust up and down pulse durations.

When operating with a 12 v power supply, values for C_{6} and C_{7} of 200 pf were found to give a center frequency of 100 Kpps ; values of $1,000 \mu \mathrm{f}$ gave a center frequency of 1 ppm .

Basic circuit operation is as follows: At any instant either Q_{1} or Q_{2} is saturated and the other of the pair is cut-off. The voltage at the collector of the cut-off transistor is approximately the supply voltage; the voltage at the collector of the saturated transistor is approximately $\frac{1 / 2}{}$ the supply voltage. These two levels are provided as reciprocal low impedance (700 ohms)
output signals via emitter followers Q_{7} and Q_{8}.

Pulse generator provides variable frequencies from low impedance pulses. All resistors are in kilohms, 10 percent, $1 / 2$ w; all transistors are 2 N 35 or similar: all unmarked capacitors are in picofarads.

Transition of the output signals from one state to the other occurs when the cut-off transistor comes into saturation. For example, assume Q_{2} had been cut off and just came into saturation; this causes a negative spike to pass via C_{6}, Q_{3} and R_{3} (by-passed by C_{1}) to the base of Q_{1}, thereby cutting Q_{1} off. Q_{1} will now remain off until the voltage at the Q_{1} base reaches ${ }_{32}$ the supply voltage. This occurs when C_{6} has been sufficiently charged through R_{18} and R_{18} to bring the voltage at the base of Q_{3} up to $7 / 10$ of the supply voltage. When this happens Q_{1}, coming back into saturation, sends a negative spike through C_{7} causing Q_{2} to cut-off. Now the duration of this state is determined by the chosen values of C_{7}, R_{19} and R_{17}.
This circuit, feeding into a Schmitt circuit, has been in use for controlling repetitive operation of certain analog computers. It has also been used as a source for the checkout of digital circuits. Further utility may be gained at larger potentials by using higher voltage transistors.
Unexplored but potentially useful applications of this circuit, may be discovered by substituting an information source for the supply voltage thereby obtaining modulated information as the output signals for Q_{7} and Q_{8}.

Rectangular

Waveform Generator

The circuit shown in Fig. 1 is capable of generating rectangular waveforms of variable frequency and symmetry without interaction of the functions. Closer observation of Fig. 1 reveals that the network consists of conventional circuits coupled together to obtain the desired results and can be used to modulate a small transmitter for remote control purposes. At a receiver, the signal is decoded, thus separating the frequency and symmetry components which are used for two remote functions.

The generator consists of three well known circuits whose functions are presented here. Q_{1} is a standard blocking oscillator. Q_{2} acts as a constant current source
which allows C_{1} to discharge linearly over the frequency range determined by proper choice of $\mathrm{C}_{1} . \mathrm{R}_{1}$ controls the fine frequency adjustment by forward biasing transistor Q_{2}. As Q_{2} becomes biased into conduction, the collector-emitter junction resistance becomes lower, allowing C_{1} to be discharged sooner, thus increasing the frequency [Ed. note: $f=1 / 2 \pi r_{e} c_{1}$]. The output waveform at the collector of Q_{2} is a linear ramp or sawtooth wave.

Transistor Q_{3} is connected as an emitter follower

Fig. 1-Rectangular waveform generator.
which allows some isolation between the sawtooth generator and the following circuit. Potentiometer R_{3} controls the symmetry of output waveform.

Transistors Q_{4} and Q_{5} form a conventional Schmitt Trigger with the trip point set at approximately -2 v . Varying this trip point will affect the symmetry range

Fig. 2-Waveforms showing how output wave varies with amplitude of ramp voltage (setting of $\mathbf{R}_{\mathbf{\prime}}$). At A, symmetrical wave results. See text for conditions that cause waveforms at B and C.
attainable.
A symmetrical waveform is obtained (Fig. 2A) as follows: R_{3} controls the amplitude of the ramp voltage applied to the base of Q_{4}. As the ramp voltage begins to rise, it reaches the -2 v trip point of the Schmitt Trigger. Transistor Q_{δ} turns on and remains on until the ramp voltage drops rapidly below the lower trip point of the Schmitt Trigger. Since the output waveform is symmetrical, the trip point is reached at the center of the rising ramp voltage. For other than symmetrical waveforms the ramp voltages is varied so that Q_{5} remains on for a shorter (Fig. 2B) or longer (Fig. 2C) time depending on the setting of \boldsymbol{R}_{3}.
Low priced components are used throughout the circuit, and almost any type of pnp transistor can be used with excellent results. The circuit operates normally over a wide voltage range (approximately -15 v to -45 v) supply. With a $0.01 \mu \mathrm{f}$ capacitor for C_{1}, the frequency range is variable from 60 cps to 7 kc .

Gated-Beam Tube SquareWave Generator

WITH nùmerous solid-state/semiconductor designs and applications appearing lately, perhaps it would be technically refreshing to present a four-stage tube design reminiscent of the good old days.
This useful design was conceived to develop a square-wave generator unit or instrument capable of amplifying frequencies without attenuation toat a minimum-the tenth harmonic of the squarewave fundamental, from which a signal output starting below 50 to 500,000 pulses/second could be adjusted over a desirable range without waveform distortion.

This is achieved by employing a twin-triode 12AU7 as a symmetrical multivibrator, using a

6BN6 as the gated-beam tube, a 6AN6 as a wideband amplifier stage, and a 6AG7 tube as a cathode follower output. Separate frequencies of operation are provided by changing the grid-plate R-C networks by means of switching S_{1} and S_{2}. (See Fig. 1

The non-sinusoidal signal appearing across pıate load R_{2} is applied through C_{11} to the gated-beam clipper, V_{2}. Both plate and screen voltages on this tube must be kept low for good clipping.

A square-wave signal appears across plate load R_{20} and is applied via C_{15} to the cathode follower critput stage which permits a low impedance output. Small vaiue plate load resistors were selected for. each amplifier stage to provide wide frequency response and to minimize distributed capacitance effects. This is desirable so that the final square wave signal would be free of overshoots, damped ringing, and/or high frequency phase shift problems.

Output signal level may be adjusted by means of R_{27} from approximately 0.8 to 8 volts peak to peak. R_{26} and R_{28} were added later to prevent over-adjusting the control to extremes. Rise time is good and for the $500-\mathrm{kc}$ signal is better than 0.07 microsecond.

Since a square-wave signal is satisfactory for checking an amplifier to at least the tenth harmonic of its fundamental repetition ratio, it is not necessary to provide continuous frequency coverage in a square-wave generator such as this. Hence, four or five separate frequencies were chosen as useful in normal occasions. For these reasons repetition rates selected were $50,1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ and 500 K pps (position A of switch). These were applied with equal versatility to the design applications and testing of various audio, pulse, and video amplifier designs.

ALL CAPACITORS IN $\mu \mu F$ UNLESS NOTED

FIG. I-Test generator using gated-beam concept.

Transistorized 15 Watt 60 Megacycle Generator

Recent advances in the field of VHF power transistors have resulted in applications that were not possible a short time ago. Such an application is the 15 watt 60 megacycle generator which is described here.

Fig. 1-15 WATT 600 Mc Generator

NOTES: 1-ALL RESISTANCE IN OHMS K $=1000$	$5-T_{1}\left\{\begin{array}{l} \text { PRIMARY }=7 \text { TURNS } \\ \text { SECONDARY }=2 \text { TURNS } \end{array}\right.$
2-ALL TRANSFORMERS ARE \#22 WIRE, BI-	$\mathrm{T}_{2}\left\{\begin{array}{l}\text { PRIMARY }=4 \text { TURNS } \\ \text { SECONDARY }=2 \text { TURNS }\end{array}\right.$
FILAR WOUND ON CTC LS6-0-2C4L FORMS	$\mathrm{T}_{3}\left\{\begin{array}{l} \text { PRIMARY }=4 \text { TURNS } \\ \text { SECONDARY }_{1}=2 \text { TURNS } \end{array}\right.$
$\begin{aligned} 3-Q_{1}, Q_{2} & =2 N 1143(T) \\ Q_{3} & =2 N 1505(P S!) \end{aligned}$	SECONDARY $=2$ TURNS
$Q_{4}, Q_{5,} Q_{0}=$ PT613 (PSI)	$\left\{\begin{array}{l}\text { PRIMARY }=5 \text { TURNS }\end{array}\right.$
$4-$ L1 $=5$ TURNS \#18 WIRE, $3 /$ " $^{\prime \prime}$ DIAMETER	T4 $\left\{\begin{array}{l}\text { CENSR } \\ \text { SECONDARY }=4 \text { TURNS }\end{array}\right.$

The output of such a generator was checked with a wattmeter which indicated an output of 15 watts. A sampling scope displayed a visual clean waveform and a spectrum analyzer showed all unwanted harmonics to be down 40 db or more.
The bandwith of this circuit is slightly greater than 6 mc and is symmetrical around the fundamental frequency. This generator is transformer coupled rather than most transistorized power amplifiers, which usually contain "pi" or "T" coupling. Various coupling methods were tried in this circuit, but none work as well as the transformer coupled circuits. Too, transformer coupling showed no more loss than other methods and was not as critical to tune.
Q_{1} is a common oscillator circuit using the collector to emitter capacitance of the device as a feedback looip. If necessary, a small shunt capacitance may be added. This method works well above 50 megacycles for most transistors. However, for frequencies below 50 megacycles, the phase shift in such a circuit may not be adequate to provide efficient operation. When working in the megacycle range, stray capacity may be a serious problem. Therefore, it may be necessary to tap the feedback capacity on the collector tank circuit to obtain the proper value of capacitance. However, oscillators at 30 megacycles have been constructed in which this was not necessary when used with the tran-
sistor shown in the figure.
Q_{2} is operated in the common-base configuration to permit ac coupling to the oscillator, while still providing sufficient oscillator-to-load isolation.
Q_{3}, Q_{4}, Q_{5} and Q_{6} are all power amplifiers with Q_{5} and Q_{6} operating in the push-pull mode. All of the stages are operated with grounded-collector configurations to obtain maximum power dissipation. The collector leads are tied to the transistor case and the transistors are heat sinked. Any low frequency oscillations that may occur in the power stages can be minimized by placing 100 micro-henry chokes in series with the emitters. This, however, is usually not necessary.

When terminated by a 50 ohm load, the power output in succeeding stages is approximately 100 milliwatts from $Q_{2}, 1$ watt from $Q_{3}, 3$ watts from Q_{4} and 15 watts at the output. By operating Q_{5} and Q_{0} at 40 volts dc, a power output of better than 20 watts is obtained. However, to operate continuously at this level would require some type of cooling device or a heat sink of almost infinite size. All of the power stages in either case operate at greater than 50 per cent efficiency.

High-Duty-Cycle
 Pulse-Width Generator

This circuit generates a stable and variable pulse width from a fixed pulse-width input. The generator uses two 2 N 1308 's. It accepts a negative pulse at the input. A positive-pulse input can be applied by changing T_{1} and T_{2} to type 2 N 1309 and reversing their collector voltages.

The generator, though simple and stable, has a maximum duty cycle as high as 93 percent. The output voltage is 20 v peak-to-peak into an open circuit and the output impedance is 1000 ohms. When terminated in a 1000 ohm load, the output voltage is 10 v peak-topeak. The circuit operates as follows:

A 4 -v negative pulse is applied to the base of T_{1}, an amplifier-inverter. Capacitor C_{2}, resistors R_{1}, R_{2} and the input base resistance of T_{2} differentiate the waveform at the collector of T_{1} into a $16-\mathrm{v}$ sawtooth which is negative in polarity. R_{1} changes the bias of T_{2} allowing its quiescent state to vary over the slope of the sawtooth. T_{2} saturates with only a few tenths of a volt, so the waveform at the collector of T_{2} will be a square wave, the width of which is controlled by potentiometer R_{1}.

Variable-pulse-width generator provides very high duty cycle.

The pulse generator has been operated with repeti-
tion rates as low as 30 cps and as high as 2 mc , with pulse widths of $600 \mu \mathrm{sec}$ to 100 nsec , respectively.

With the input and circuit values as shown in the schematic, the output is as shown and the maximum duty cycle is 92 percent with a $63-\mu$ sec input rep rate. For a 4 -v peak-to-peak input, $600-\mu \mathrm{sec}$ wide, with a $16,666-\mu \mathrm{sec}$ rep rate, C_{1} should be $0.33 \mu \mathrm{f}$ and C_{2} should be $1 \mu \mathrm{f}$. Then the output would be 20 v peak-to-peak, with. pulse width variable from 600 to 16,200 $\mu \mathrm{sec}$ and maximum duty cycle 93 percent.

One-Stage Semiconductor Noise Generator

The conventional way to design a semiconductor noise generator is to amplify the noise voltage developed across a conducting zener diode. However, note that if the noise level is 1.5 mv , a gain of 80 db is required to produce 15 volts, which means at least 3 stages of amplification are needed. But since the transistor is primarily a currentamplifying device, and the noise current of a zener diode is about $1.5 \mathrm{mv} / 50$ ohms or $30 \mu \mathrm{a}$ (where 50 ohms is the dynamic impedance of the zener diode), a much more efficient design is possible.

One-stage semiconductor noise generator.
The figure shows a circuit in which the zener current is fed to the base of transistor, which has a nominal current gain of 75 . The zener diode serves two purposes: it produces a noise signal current, and it stabilizes the collector operating point. The drop across R_{2} is about 2 volts. The load resistor R_{1} determines indirectly the zener current. Noise signal across R_{1} is 15 volts peak to peak. If C_{2} is added to filter out the high frequency end, the amplitude drops (for $C_{2}=0.1 \mu \mathrm{f}, e_{\text {omt }}=0.5 \mathrm{v}$).

Improving Linearity in Transistorized Horizontal Sweeps

Conventional techniques for linearizing horizontal TV sweeps are not practical in transistorized systems because of the every narrow dynamic range of the damper diode and the switching characteristic of the driver transistor. The method to be described here, however, provides better than ± 0.5 percent linearity, referred to the displacement error from a theoretical straight line. Flatface correction is also employed so that the linearity figure is as observed on the kinescope.
The technique consists of placing a transformer in the yoke circuit as shown in Fig 1. The current I is adjusted to be about 10 percent greater than I_{L} by adjusting L, and

Fig. 1. Equivalent circuit.
is shaped by R to compensate for the second-order component of the sweep current due to yoke resistance and switch losses. The correcting voltage is applied to the yoke leg of the circuit through transformer $T_{\text {, }}$ which consists of two tightly coupled windings on a powdered iron core.

A practical circuit, shown in Fig. 2, uses this technique to deflect a $16-\mathrm{in}$. CRT employing a 52 -deg deflection angle and $15-\mathrm{Kv}$ acceleration voltage. The line rate was $28.35 \mathrm{kc}, 945$ lines. Linearity was better than ± 0.25 percent on the breadboard. The supply voltage can be varied to vary the width or amplitude of the sweep. C can be increased for deflection at the standard 525 -line rate. Practical circuit coil data:
L_{1} : 150 turns No. 30 enameled wire on No. 187 EI 4914 core (Magnetic Metals Co.)
T_{1} : Primary and secondary both 7 turns No. 24 wire on powdered iron core. Use bifilar windings.
T_{2} : Primary: 150 Turns No. 30 wire.
Secondary: 30 Turns No. 26 wire.
Core: No. 187 E [4914.
Yoke, Ly: Syntronics Y62-BB8P C3431-3-6, 160ph total.

Fig. 2 Practical deflection circuit.

Unijunction Triangular

Wave Generator

In this circuir two current generators produce a triangular wave by alternately charging and discharging a capacitor. A unijunction transistor and diode function together as a switch to reverse the slope of the ramp.

Transistor Q_{1} acts as a current generator supplying I_{1}, and transistor Q_{2} acts as a current generator for I_{2}. $\left(I_{1}>I_{2}\right.$.)

Let us assume- that Q_{3} is off and the emitter voltage of Q_{3} is V_{1} at $t=t_{0}$. (See Figs. 1a and 1 b .) The diode D_{1} is forward biased and C_{1} is being charged by the current (l_{1} $-I_{2}$). The emitter voltage, v_{t}, also is rising; when $v_{B}=V_{p}$ at time t_{1}, Q_{3} fires, causing v_{B} to fall to V_{1} along the path indicated in Fig. 1c. The diode is now reverse-biased, and Q_{2} begins to discharge C_{1} with the current I_{2}. When the capacitor discharges to V_{1}, the diode becomes forwardbiased. The current generators produce a net current (I_{1}
$-I_{2}$), and C_{1} holds $v_{z}=V_{1}$, but this point is below the emitter characteristic of Q_{8}, so Q_{3} turns off to complete the cycle.
The value of the positive slope is given by $\left(I_{1}-I_{2}\right) / C$ and the value of the negative slope is given by $-I_{2} / C$. The peak-to-peak voltage of the wave is ($V_{p}-V_{1}$).
The potentiometer is used to adjust the wave's symmetry. An emitter follower or similar high-impedance stage can be used to take the output directly from the collector of $\mathbf{Q}_{\mathbf{2}}$.

Fig. 1. UJT triangular wave generator (1a) with output wave (1b) and UJT switching path (1c).

The design criteria for the circuit are: $I_{1} \leqslant 2 / 3 I_{v}$; $I_{2} \leqslant 2 / 3 I_{1} ; V_{s 2}<V_{1} ; V_{B 1}>V_{p}+V_{D} ;$ and $C_{t}>C_{0 r}$ where I_{V} is the UJT's valley current, $V_{a_{1}}$ and $V_{y_{2}}$ are the dc emitter voltages at the emitters of Q_{1} and Q_{2}, V_{p} is the UJT's peak voltage, V_{D} is diode D_{1} 's threshold voltage, and $C_{\text {or }}$ is the critical capacitance that will just sustain oscillation in the UJT. The factor $2 / 3$ in the first two criteria is a rule of thumb which is not hard and fast.
I_{1} and I_{2} in Fig. Ia were set at 6 and 3 ma respectively to be compatible with the $8-\mathrm{ma}$ minimum valley current of the $2 \mathrm{~N} 1671 ; V_{s 2}$ is held at about 3 v maximum. The currents I_{1} and I_{2} and the value of C_{1} may be easily changed to obtain variations in symmetry, slope and frequency. With the values shown, the frequency is about 2.5 kc .

Synthesis of Ignition Noise in the VHF Band

In design of mobile communications receivers it is often advantageous to have a laboratory source of simulated ignition noise for purposes of research and development.
Ignition noise, as generated by internal combustion engines, consists of high level, short duration pulses of unpredictable wave shape. The pulse repetition.frequency of these pulses is dependent on engine speed. The problem of synthesizing ignition noise is primarily, that of generating a wave shape which has the highest average noise value in the frequency band desired. The frequency band in this case is 132 to 165 mc .

Consider first a repeated triangular pulse which is possibly the closest approximation to the actual wave shape of ignition noise pulses (Fig. 1).

The spectral distribution of this wave shape is of the form $(\sin x / x)^{2}$ where $x=n \pi t_{0} / T .{ }^{1}$ A plot of the function is shown in Fig. 2.

The value of the nth harmonic in the Fourier series expansion for a repeated triangular pulse is given by

$$
\begin{equation*}
C_{n}=2 A_{a v g}\left[\frac{\operatorname{Sin} n \pi t_{o} / T}{n \pi t_{o} / T}\right]^{2} \tag{1}
\end{equation*}
$$

Consider now a repeated square pulse (Fig. 3) which has a spectral distribution of the form $\sin x / x$ where $x=n \pi t_{o} / T .{ }^{1}$ A plot of this function is given in Fig. 4.

The value of the nth harmonic of the Fourier series expansion for a repeated square pulse is given by

$$
\begin{equation*}
C_{n}=2 A_{a^{\prime \prime}}\left[\frac{\operatorname{Sin} n \pi t_{o} / T}{n \pi t_{o} / T}\right] \tag{2}
\end{equation*}
$$

By comparing Eq. 1 and 2 it is obvious that C_{n} for a repeated square pulse is larger than C_{n} for a repeated triangular pulse. It is apparent therefore that, for application in a broad band noise generator, a repeated square pulse is more desirable than a repeated triangular pulse.

As it is impossible to develop a pulse generator with zero rise time, the actual pulse shape that can be generated is closely approximated by a repeated symmetrical trapezoidal wave, as shown in Fig. 5.

This wave shape has a spectral distribution of the form ($\operatorname{Sin} x / x$) (Sin y / y) where $x=n \pi t_{1} / T$ and $y=n \pi\left(t_{1}+t_{0} / T\right)$. A plot of this function in x and y is shown in Fig. 6.

Figures 2, 4 and 6 show that there are frequericies at which $C_{n}=0$. These occur at all points where $\left(n t_{o}\right) / T$ is a whole number, that is, at $\pi, 2 \pi$ $3 \pi, \ldots n \pi$, radians. Figure 7 shows an expanded view of a typical frequency at which $C_{n}=0$.

If the center frequency, f_{o}, of the receiver is such that it falls directly on a node, noise is always present, since there is always a finite bandwidth in a receiver. The amount of noise present is dependent upon the actual bandwidth in question.

On the basis of this analysis, a reliable, relatively inexpensive pulse generator was developed, the prime design goal being the fastest rise time possible with a low overall cost and a minimum of components. A block diagram of the generator is shown in Fig. 8.

Figure 9 shows the complete schematic of the ignition noise simulator. The variable prf clock circuit utilizes a 2 N 491 unijunction transistor. The prf of the clock is determined by the RC network of $R_{1}+R_{2}$ and C_{1}. The prf is adjustable from 100 to $1,000 \mathrm{cps}$ to match various engine speeds by adjusting R_{2}. By using low temperature coefficient components, the clock is quite stable over a wide temperature range.

The blocking oscillator circuit is of conventional design, the choice of pulse transformer and transistor being dictated by the pulse width and rise time desired.

An emitter follower output is desirable for low output impedance and high impedance transfer

FIG. 9-Circuit of ignition noise simulator.
into the collector circuit of the blocking oscillator. Because a standard emitter follower circuit would tend to reduce, or at best match, the rise time of the pulse from the blocking oscillator, the tertiary of the pulse transformer is connected to the base and emitter of the equivalent output transistor. This creates an emitter follower switch. This switch improves the rise time by approximately 20 per cent. By connecting Q_{3} and Q_{4} in a conventional "Super Beta" compound connection, it is possible to drive into a low impedance with little or no loading on the blocking oscillator.
Using a prf of 250 cps , pulse width of 1.5 micro seconds, rise time of 55 nanoseconds and driving into a 25 -ohm load, the noise level achieved is approximately 50 micro-volts at 150 mc in a 100 -kc bandwidth.
The generator material cost is less than $\$ 30.00$. It has a power drain of less than 100 mw , and is stable over a temperature range of -20 C to +55 C .

Portable Pulse Generator

n many instances there arises a need for a pulse generator for calibration of certain electronic devices. One such need is for calibrating a scaler such as is used in nuclear counting systems. Most scalers have built-in test generators which develop pulses at line frequency. This will not satisfy the needs of the technician when trouble develops at higher counting rates. It was with this require-
ment in mind that the following pulser was constructed.

FIG. 1-Portable generator provides pulses up to 900,000 per minute.

The circuit shown in Fig. 1 is a basic multivibrator employing two subminiature tetrodes. Pulse repetition is variable from 180,000 to 900,000 per minute. Pulse size may be varied from 0 to 4 volts, positive or negative, and pulse duration is 10 microseconds. The frequency of the multivibrator is controlled by a 2 -megohm potentiometer. This varies the discharge time of C_{1}, the feedback capacitor from the plate of V_{2}. The two diodes in the output are pulse shaping devices, passing positive overshoot during negative output and reversing the situation with positive output. A onemeghom control is used across the output to vary the pulse height. This is advantageous in working with discriminator circuits.
Photos of both positive and negative outputs are shown in Fig. 2 and 3. These photos were taken

FIG. 2—Positive output. FIG. 3-Negative output. Vertical setting at 2 volts per cm and horizontal at 10 microsec per cm.
from a Tektronics 545 oscilloscope. Power requirements for the units are 3 ma at 30 volts plate supply, and 40 ma at 1.4 volts for the filament supply. Under these conditions reasonably long battery life can be expected.

The entire unit is housed in an aluminum box $6 \times 4 \times 3$ inches with room to spare. The cost of the unit is under $\$ 20$ and it can be constructed in two hours. This has proved to be a most valuable piece of test equipment.

Transistorized Linear Staircase Generator

n computer or display electronics there is often a need for a long duration ($>.5 \mathrm{~min}$), many (>10) step, staircase generator.
Counter and ladder-adder arrangements find limits in this range in uniformity of step size and
in de stability of step level.
Utilizing a high (1000) gain, high $Z_{\text {in }}$ (>1 meg. ohm) operational amplifier, and charging C_{2} with a reset pulse at A, we were able to generate a 600 step, 5 -volt, 5 -minute staircase with less than .5 mv difference in step size and less than one percent slope in step level.
A reset pulse at A will charge C_{3} and C_{2} to a level corresponding to the duration and amplitude of the reset pulse.

The output will remain stable in that the discharge time for C_{2} is 40 sec . While any incoming pulse at B is differentiated in $C_{1} R_{2}$ and the positive pulse fed to discharge C_{2} and base of Q_{1}. For incoming pulse deviation, discharge time for C_{2} is 40 mil sec , therefore any incoming positive pulse will be integrated for its duration. By feeding a "comb" in at B, each spike will cause a step in the output, whose amplitude is a function of spike amplitude and duration.

The 20 K pot at B serves as a step size control while the 1000 -ohm pot at the output serves to adjust output level.

The TI 495 commercial silicon transistors were selected for high β (100). The IN457A diodes were selected for low leakage ($.025 \mu \mathrm{a}$).

The $-15 v$ and $100 \mathrm{~K}-\mathrm{ohm}$ resistor at the base of Q_{4} merely serve to handle $I_{c o}$ in reset device.

High-gain amplifier circuit used in linear staircase generator.

Single Shot Square Wave Pulse Generator

Frequently there occurs the need for a pulse generator capable of single shot operation in the micro or millisecond range capable of large current and voltage dissipation. Such a circuit could be done with a multivibrator transistor circuit or such a circuit driving a relay. Transistors alone will provide adequate pulse range but no actual open circuit exists at any time, furthermore, inductive circuits may damage such units. When transistors drive a relay the lower pulse range is limited to the operate time of the relay.

The circuit shown avoids both these limitations
to a large degree by taking the difference of opcrate times between two relays. Mercury wetted contact relays were chosen for their lack of electrical contact bounce, stability and current capabilities.

Circuit produces pulses from 10 microsec to 200 msec in length.

Relay A, operated by means of a pushbutton, in turn closes the circuit to relay B and C. Relay B closes the circuit path through B and C, however, C operates at a later time, thereby opening the circuit path. This time delay is determined by the values of capacitance and the $350-\mathrm{ohm}$ potentiometer. This circuit is capable of excellent pulse accuracy being ± 1 per cent from 100 microseconds up. Below 100 microseconds ± 6 per cent was observed, however it is believed this could be improved by better quality components.

A One Transistor Saw-tooth Generator

0peration of this generator relies upon transistor delay for resetting of the circuit.
Consider the instant when the transistor begins conducting. Point B is at $-v$ volts, it then rises positively until the transistor saturates. The silicon diode D_{2} is reversed during this period and point A charges towards ground at a rate determined by $C R_{2}$. Point A will continue going positive so that D_{1} conducts and reverse-biases the transistor until it falls out of saturation. The time taken for the transistor to again become forwardbiased and for the collector current to rise to: $(V-v) / R_{3}$, allows adequate time for point B (and therefore A) to fall to $-v$ volts, thus completing the cycle.

The design considerations are as follows: For the transistor to saturate: $R_{1}<\beta R_{3}$.

For the transistor to turn off: $R_{2}<R_{1}$.
B must rise more rapidly than A. The circuit at B must discharge capacitor C more quickly than the transistor turns on.

The approximate charge time of A is:

$$
t_{r}=\frac{C \cdot v^{\cdot} R_{2}}{V+v / 2}
$$

The approximate discharge time of A and B is:

$$
t_{f}=\frac{-\bar{V}-v / 2}{\frac{C \cdot v}{R_{3}}-\frac{V+v / 2}{R_{2}}}
$$

Consider the case where $V=2 v, R_{1}=50 R_{3}$, $R_{2}=25 R_{3}$.
then, $t_{r}=C R_{2} / 3 ; t_{f}=C R_{2} / 24$.
The formula relating the collector current I_{r} and the base current I_{b} during turn-on, with a transistor of cut-off frequency $f x$ is:

$$
I_{t}=I_{t}\left(1-e^{-, n t}\right)
$$

Making the asumption that the delay, before I_{c} exceeds ($V-v$)/ R_{3} approximates to the turn-on time, the following conditions must be met:
$1.6 / \omega<t_{r}$ (neglecting collector and stray capacitance)
$2.3 / \omega>t_{f}$ i.e. $0.8 / C R_{2}<f x<88 / C R_{2}$

The linearity of the waveform may be improved by replacing R_{2} with a current generator or by making V / v large. A higher current gain allows the circuit to be designed for a wider range of frequency. The latter may also be attained by strapping a suitable tunnel diode between the base and emitter.

Single-transistor generator employs germanium diodes at D_{1} and D_{3}, and a silicon type at D_{2}. Waveforms shown occur at points A and B.

The circuit may be synchronized by applying a positive pulse to the base of the transistor.

Good results have been obtained using a 4 -mc germanium alloy-junction transistor. The transistor cut-off frequency may be effectively degenerated by connecting a capacitor between base and ground.

Positive or Negative Slope Generator

This circuit generates linear ramps, either negative or positive, by switching on and off two current sources charging a capacitor.

A negative gate into the base of Q_{1} turns on Q_{1}, which turns on Q_{2}, and the emitter of Q_{3} therefore sits at -12 v , thus turning on Q_{5} and turning off Q_{4}. The constant current furnished by Q_{5} will charge C_{3} in the negative direc-
tion until clamped by the base-collector junction of Q_{5}. When Q_{2} turns off, the emitter of Q_{3} will be at about +12 v. Q_{4} turns on and Q_{5}, turns off. The capacitor charges in the positive direction until clamped by the base-collector junction of Q_{4}. The purpose of Q_{3} is to present an equal

Positive or negative slope geuerator.
low impedance either at +12 v or at -12 v to each of the current sources.

Wide-Range Voltage-Controlled Pulse Generator

With a change in input of only 0.5 v , the pulse generator in Fig. 1 will change frequency by a factor of more than 1 to $10,000,000$.

The frequency is determined by the time it takes the charge on capacitor C_{1} to leak off through transistor Q_{1}, which has a collector cutoff current in the order of milli microamperes. When the potential on C_{1} approaches ground, it triggers Schmitt trigger Q_{3}, Q_{4} through the action of buffer stage Q_{2}, Q_{3} becomes non-conducting and recharges C_{1} through diode $C R_{1}$ and resistor R_{2}.

Fig. 1. Frequency of voltage-controlled pulse geuerator is determined by discharge time of C_{1}.

Fig. 2. Linear voltage-controlled frequency circuit.
Field-effect transistor Q_{2} is cut off again, but lag network R_{1}, C_{2} delays the resetting of the Schmitt trigger until C_{1}
is sufficiently charged. After reset, the collector potential of Q_{3} drops down to its previous level and back-biases $C R_{1}$.
Sufficient hysteresis and regenerative action is built into the Schmitt trigger and Q_{4} acts also as an output amplifier.

The output pulse is about $1 / 3 \mu \mathrm{sec}$ wide with rise and fall times in the order of 20 nsec , except in the megaHertz range where they are $50-100$ nsec.
The low-frequency end can be extended below 0.05 pps by adding back biased diode $C R_{2}$. Leakage through $C R_{1}$ and $Q: y$ to ground is balanced and compensated for by seepage through $C R_{2}$ from the power supply. Resistance through $C R_{1}$ and $Q_{\text {:2 }}$ to ground at room temperature is in the order of 10 gigaohms. When Q_{2} clamps C_{2} to ground it acts as a "source follower."
The output frequency increases by a decade for every $60-\mathrm{mv}$ input increment. A linear function can be obtained by using feedback as shown in Fig. 2, assuming that the output of an averaging network varies linearly with frequency when pulse width is constant.
For example, with amplifier A in Fig. 2 consisting of a single transistor and the time constant of the averaging network being 1 msec , a linear response within 350 Hz was obtained from 0 to 70 kHz . This may be improved considerably by making amplifier A a high-gain amplifier.

MOS FETs Give Long Time-Constant Ramps

Many times the need aries for a very slow rate-of-rise linear ramp generator (less than $0.1 \mathrm{v} / \mathrm{sec}$). Conventional transistor ramp generators require a very large integrating capacitor for slowly rising ramps, since the capacitor charging current must be large to minimize the loading effect and leakage current of the pick-off transistor.

The metal-oxide-silicon field-effect transistor, with a typical leakage resistance of $10{ }^{13} \mathrm{ohms}$, virtually eliminates the effect of loading and leakage on the integrating capacitor when it is used as the pick-off device. This permits a drastic reduction in the value of capacitor charging current and thus a reduction in the value of integrating capacitor.

A source follower can be constructed using a MOS FET in which the source voltage will be typically 5 to 6 v greater than the gate voltage. Moreover the potential between the source and gate will remain almost constant for a wide range of drain-to-source voltage. This is true providing the drain current $\boldsymbol{I}_{\boldsymbol{d}}$ is held constant (see Fig. 1). It is this

Fig. 1. Typical characteristics for MOS FET type 1004.

Fig. 2. Ramp generator circuit.
Fig. 3. Ramp output waveform.

property combined with the high input resistance which makes possible a simple ramp generator such as the one in Fig. 2.

In the circuit, when switch 1 is opened, the $2-\mu \mathrm{f}$ capacitor starts to charge. The capacitor charging current is determined by the current through the $50-\mathrm{meg}$ resistor. The value of this current is $I_{c}=V_{g i} / R=0.12210^{-6} \mathrm{amp}$. $V_{g,}$ is 6.1 v for this particular FET when the drain current is held constant at 1 ma.

The source will follow the gate voltage as the capacitor charges, but the source-to-gate voltage will remain a constant 6.1 v . Therefore the capacitor charging current will remain constant. The result is a very linear ramp function with better than 1-percent linearity for an output of 6.1 to 18 v and a rate of rise of $0.061 \mathrm{v} / \mathrm{sec}$ (see Fig. 3).

Ramp functions of much longer durations can be generated using larger values of R and C; however, care must be taken to select a capacitor with very low leakage.

Low-Cost UJT Raster Generator

This circuit answered the need for a simple, low-cost, stable raster generator for use in a breadboard transistorized flying-spot scanner. It could be adapted for similar use in closed-circuit television cameras and monitors.

Unijunction transistor Q_{1} is a relaxation oscillator at approximately 10 kHz , the frequency chosen as the horizontal

Unijunction transistor serves as relaxation oscillatnr at horizontal sweep frequency.
sweep rate. Positive pulses at base 1 of the UJT serve two purposes: they are used as the sync pulses for horizontal sweep and as the drive to the vertical waveform generating circuitry.

The pulses are amplified by Q.. which operates into saturation, and clamped by $C R_{1}$ to 8 v . Thus, uniformity of pulse shape is assured. They are then ac-coupled into Q:i, which serves as a source of constant-current pulses for a UJT staircase generator stage. The staircase waveform across capacitor C_{3} is applied to the vertical input of the scope and the sweep rate is adjusted so that each step on the waveform is slightly longer than one sweep of the trace. Potentiometer R_{7} adjusts the current per pulse into Q:: and therefore the voltage per step across the capacitor.

Since the UJT fires and discharges C_{3} at a voltage equal to the intrinsic standoff ratio of Q_{+}times the supply voltage, adjusting R_{7} effectively determines the number of steps on the staircase. Because the number of steps per cycle is the number of lines per field, and also a stable integral multiple of the pulse repetition rate of Q_{1}, interlaced scanning is easily and reliably achieved. Since the field retrace time is the time during which C : discharges through Q_{4} into R_{10}, the positive pulse available across R_{10} is conveniently used for retrace blanking.

Simple Variable Width, PRR Pulse Generator

FEW commercial pulse generators produce pulses that are sufficiently variable in width to provide a large duty cycle. The simple ancillary circuit shown here gives a wide range of control over pulse width and pulse-repetition rate while maintaining oscilloscope synchronization.

Several oscilloscopes, such as the Textronix 531, have output jacks for a high-voltage sawtooth-wave whose fre-

Simple pulse source uses scope output.
quency corresponds to the sweep rate. When this circuit is attached to the output jacks, variable resistor \boldsymbol{R}_{1} controls the amplitude of the sawtooth wave, which is applied to the base of Q_{1}. When the value of R_{1} is increased to allow only the peak of the sawtooth wave to supply base current to Q_{1}, a narrow pulse appears at the collector of Q_{1}. If R_{1} is decreased to a minimum, Q_{1} will be maintained in an on state for sufficiently long periods to approach a 100 -percent duty cycle. The output pulse may be monitored by the oscilloscope and will appear in synchronization with its sweep.

A small module, complete with a 9-v transistor-radio type: battery and R_{1} can be constructed with banana plugs so that it can be plugged directly into the sawtooth output jacks. Another transistor switch or a Schmitt trigger could be built into the same module to improve waveform.

Variable-Voltage Current Sink

A silcon planar transistor operated in the second breakdown mode, provides an excellent high-current, shortduration pulse generator. This approach is simpler and cheaper than others using devices such as SCRs or avalanche transistors.

Second breakdown in transistors can be destructive, because the emitter current is
concentrated in local hot spots and will eventually melt the silicon if sustained. But carefully designed pulse generators, using this mode of operation, are reliable because the cycle is completed before thermal buildup becomes excessive.

With the components shown, this circuit gives 30 -A

Fig. 1. Switching circuit with transistor driven into second breakdown to give $\mathbf{4 0}$-nsec pulses at $\mathbf{3 0}$-A peak.
pulses of $40-\mathrm{nsec}$ duration. Generators using this circuit have been operated continuously at 130 kHz repetition rate. with no apparent deterioration in performance.

The capacitor charges to $B V_{r e m}$ of the transistor, and the base of the transistor is pulsed with enough current to drive the transistor into second breakdown. For the transistor shown, this occurs with $I_{\beta}=40 \mathrm{~mA}$. The capacitor voltage is monitored to detect switching. Any switching that occurs is cer-
tain to be in the second breakdown mode because normal switching would require a transistor current gain of 750 to give $30-\mathrm{A}$ pulses.

During conduction in the second breakdown mode, the transistor voltage is low (approximately 10 V). Current is limited by the load resistance and the internal resistance of the transistor. Rise time of the output pulse is typically less than 10 nsecs. Pulse duration is determined by the $R C$ time constant and by stray circuit inductance.

Fig. 2. Typical output pulse for the circuit shown in Fig. 1. Horizontal scale is 20 nsec/div and vertical scale is $5 / \mathbf{d i v}$ ($18 \mathrm{~A} / \mathrm{div}$).

Improved Circuit for Constant-Current Source

The conventional current source circuit shown in Fig. 1 has the disadvantage that there is considerable variation in output current I_{i}, with variations in supply voltage E. This is because the zener diode has internal resistance. A solution to the problem is to add the resistor R_{2}, shown dotted in the figure.

Using the Thevenin equivalent circuit, the circuit can be represented as shown in Fig. 2, where $R_{i,}$ and $R_{3,}$ have been replaced by a generator and an equivalent emitter resistance R_{E}. Assuming $l_{z} \gg l_{b}$ and $\alpha=1$, adding voltages around the base-emitter loop gives

Fig. 2. To simplify the analysis, the circuit of Fig. 1 has been redrawn to show the Thevenin-equivalent generator and impedance in the emitter circuit.

$$
\begin{align*}
& V_{z}+I_{z} R_{z}-V_{n E} \frac{-E R_{3}}{R_{3}+R_{2}}-I_{0} R_{k}=0 \tag{1}\\
& \text { Where } I_{\%} \quad \frac{E-V_{z}}{R_{z}+R_{1}}
\end{align*}
$$

Therefore

$$
\begin{equation*}
I_{0} \doteq \frac{V_{z}}{R_{k}}+\frac{\left(E-V_{z}\right) R_{z}}{\left(R_{z}+R_{1}\right) R_{k}}-\frac{V_{n k}}{R_{k}}-\frac{E R_{3}}{R_{k}\left(R_{3}+R_{z}\right)} \tag{2}
\end{equation*}
$$

Then, for changes in load current I_{0}, due to supply voltage changes

$$
\begin{equation*}
\frac{d I_{n}}{d E}=\frac{R_{z}}{\left(R_{z}+\overline{\left.R_{1}\right) R_{k}}\right.}-\frac{R_{3}}{\left(R_{3}+R_{2}\right) R_{B}} \tag{3}
\end{equation*}
$$

Fig. 1. The performance of this current source circuit can be improved by adding the resistor shown dotted.

From which, for no change in output current with variations in supply voltage

$$
\begin{equation*}
\frac{R_{z}}{R_{z}+R_{1}}=\frac{R_{3}}{R_{3}+R_{2}} \tag{4}
\end{equation*}
$$

The optimum value for R_{z} can be determined from equation 4 if R_{1}, R_{z} and R_{3} are known. Also it is possible to design current sources in which the output current varies directly or inversely with variations in supply voltage in any required ratio.

Trigger Generator

 Sweeps from Audio-Frequency to dcA CIRCUIT USED universally to large with respect to the terprovide a swept audio frequen- minal frequency, or when the cy is the voltage-controlled frequency is required to sweep oscillator. However, when the to dc, other methods must be desired frequency change is used. A common technique is
the use of the difference signal between a fixed frequency and the output of a VCO.

The circuit shown here provides another way of approach
without the complications of frequency mixing. The basic circuit element is an operational amplifier connected as an integrator. The transfer func-
tion for such an integrator is, the input voltage, e_{i}.
ideally,

$$
-\frac{e_{0}}{e_{i}}=\frac{t}{R C}
$$

In terms of input voltage, this equation becomes

$$
e_{i}=\frac{l}{t}\left(-e_{0} R C\right)
$$

If the integrating capacitor, C is instantaneously discharged each time the output voltage, e_{o}, reaches some fixed value, the resulting circuit is a ramp generator having a frequency ($1 / t$) directly proportional to

When e_{j} is a ramp that crosses through zero volts, the generator frequency will also go to zero. The circuit shown will work only for negative e_{i} because of the type of capacitor discharge circuit chosen. A one-shot circuit, biased to trigger at the desired e_{o}, provides the discharge and the output pulse.

Many integrated-circuit operational amplifiers are ideally suited to this circuit because of their wide frequency response and because drift and gain requirements will not, as a rule, be demanding.

One-shot multivibrator, in trigger generator circuit, provides pulses which discharge capacitor in feedback circuit of operational amplifier. Output frequency is swept linearly by the input voltage.

Seesaw Circuit Gives Sine-Wave Power

Using only one active device, an SCR, this circuit provides an efficient way to generate sine-wave power. It is triggered by an external pulse generator which can be a simple multivibrator or UJT oscillator. One interesting application for the circuit is an ultrasonic generator. The circuit can be powered by $60-\mathrm{Hz}$ line voltage instead of de, to give bursts of ultrasonic power.

The operation of the circuit is analogous to a seesaw, where C_{1} is the pivot and the resonant circuit L_{i}, C_{z}, is the board. The repetition frequency of the trigger pulses is chosen to coincide with the resonant frequency of L_{1}, C_{2}. The output voltage is developed across L_{i}, A secondary winding can
be added to this inductor to match the load.

When supply voltage is applied, capacitor C_{t} charges and points A, B and C approach the potential of the supply. If the SCR is triggered by an external pulse, it conducts and point C moves toward ground potential. Capacitor C_{t} is made large so that current will flow out of it through the right half of L_{1}, without appreciably changing the the voltage at B. This current induces a voltage at point A which is higher than the supply voltage. Diode D_{1} is therefore reverse-biased and the circuit is cut off from the supply voltage. The current stored in L_{1} also induces a negative voltage at point C

The SCR is the only active device in this circuit. Efficiency is better than $\mathbf{9 0 \%}$.
and starts charging C_{2}. The SCR cuts off due to the negative anode voltage, and when C_{z} is fully charged, current through L_{1} ceases and the potential at points C starts to move upward.

At the same time, the potential at A moves downward and when it drops below the supply voltage, current flows
into the circuit to start a new cycle. The next pulse then arrives at the gate of the SCR to trigger it again.

Using this circuit, sine waves in the frequency range 1-20 KHz have been generated at powers up to 100 W. Harmonic distortion was approximately 20%, and efficiency was better than 90%.

Crystal controls rep rate of simple IC pulse

generator

ally employ circuits like blocking oscillators, or sine oscillators followed by clipping or shaping circuits. Fig. 1 shows a much simpler approach that needs only one TTL IC, a quartz crystal, and an RC netTo generate continuous pulse work. The crystal controls the trains, circuit designers gener- repetition rate and the RC net-
work determines the pulse width.

But the RC network can't be chosen arbitrarily to give any required pulse width. Because of the higher switching speeds of TTL ICs, the RC network must also act as a filter to prevent high-frequency in-
stability. Also, the resistor must limit the drive current to the crystal.

The lower limits for the values of R and C depend on the speed of the IC. The lowpass filter combination suppresses the closed-loop natural frequency of the IC. The upper

Fig. 1. Basic circuit of simple crystal-controlled pulse generator.

Fig. 2. Section of complete circuit shows how resistor R affects the input circuit of the IC gate.
limit of resistance for R is determined by the input circuit and threshold voltage of the IC.

For practical circuits, we replace the lumped amplifier of Fig. 1 with additional gates as shown in Fig. 3. This reduces the physical size of the circuitry, because we can use a multi-gate IC instead of separate gates and amplifiers.

Figure 2 shows the KC network and the input circuit of the second gate. To ensure that this gate switches properly, the maximum value of resistor \mathbf{R} must satisfy the following equation:
$R=\left(\frac{V_{T}}{V_{c \mathrm{c}}-V_{b e}-V_{\delta}-V_{r}}\right) \times R_{t}$

After finding an allowable value for R, we can select a suitable value for C. The value of C should be low enough to allow sufficient gain and feedback for oscillation. This sets an upper limit to the value. Provided the value is below the upper limit, C can be selected to give the required pulse width.
The practical circuit, shown in Fig. 3, uses a single Transitron TNG 3442, quad 2 -input, gate. Crystal frequency is 4 MHz . In this circuit the fourth gate provides output isolation. Depending on the required output polarity, the fourth gate can either be connected as shown, or it can precede the third gate to reverse the pulse. Fig. 4 shows the output waveform for this circuit. The spare input of the first gate can be used as a stop/start switch.

Fig. 3. Practical circuit for $4-\mathrm{MHz}$ pulse generator, using quad 2-input gate. Spare input to the first gate can be used for stop/start control.

Fig. 4. Output waveform for the circuit shown in Fig. 3. Vertical scale is $1 \mathrm{~V} / \mathrm{cm}$ and horizontal scale is $50 \mathrm{~ns} / \mathrm{cm}$.

With suitable component crystal. The circuit is insensivalues, the basic circuit can tive to variations in crystal accommodate a wide range of series impedance. Within the crystal frequencies from 10 temperature range of the kHz to around 10 MHz . Fre- IC , the circuit shown in Fig. quency stability depends pri- 3 has better than 0.02% stamarily on the stability of the bility.

Unijunction transistor simplifies trigger
 Sweep amplitude is almost

sweep generator

This solid-state sweep circuit delivers a linear ramp voltage whose amplitude is unaffected by variations in sweep duration. The circuit also provides positive and negative blanking pulses that are synchronized with the sawtooth output. Reliable triggering is achieved for sweep durations ranging from $2 \mu \mathrm{~s}$ to 10 s .

6 V pk-pk. This amplitude will vary slightly from circuit to circuit due to variations in the peak-point voltage of unijunction transistor Q_{r}. Sweep linearity is better than 1 percent (i.e. sweep voltage departs from a straight line by less than 1 percent of maximum sweep amplitude).

Maximum repetition rate is about 500 kHz , with a $7-\mathrm{V}$ trigger pulse required at C_{s}. With suitable adjustment of the coarse-speed capacitor C_{1}, available sweep frequencies range from 0.1 Hz to 500 Hz .

Fig. 2. Typlcal waveforms for the circult of Fig. 1. The amplitude of the linear ramp output is unaffected by variations in sweep duration.

The basic sweep-generating circuit (see Fig. 1) consists of transistors Q_{1} and Q_{y}, and unijunction transistor Q_{z}. At the start of a sweep cycle, Q_{1} acts as a current source to charge the timing capacitor C_{1} at a constant rate. Transistor Q, buffers the timing capacitor and provides the linear output voltage.

When the voltage across $C_{\text {, }}$ becomes equal to the peakpoint voltage of Q_{2}, it forward biases the emitter-to-base-1 junction of Q_{ε}. The unijunction then rapidly discharges C_{1}. With C_{1} discharged, a new sweep cycle can be initiated.

Triggered sweep is achieved by using an R-S flip-flop (Q_{4} and Q_{s}) in conjunction with the basic sweep circuit. The flip-flop allows a single sweep to occur for each input trigger.

When a trigger pulse is applied to C_{3}, transistor Q_{4} turns off and C_{1} is allowed to charge via Q_{i}. Upon completion of the sweep cycle, conduction of unijunction Q, causes a negativegoing pulse at base-2. This resets Q_{5}. With Q_{5} turned off, Q_{6} clamps Q_{1}, thus preventing further sweep action until receipt of the next trigger pulse.

Fig. 1. Flip-flop (Q_{4}, Q_{5}) in this sweep generator allows a single sweep output for each trig. ger pulse. Positive and negative blanking pulses are generated at points A and B respectively.

If free-running operation is be obtained from base-2 of Q.. justment of sweep rate. Transisneeded, point B can be ground- Coarse sweep speed is deter- tor parameters aren't too critied, thus removing the clamp mined by selection of timing cal, but Q_{1} should be selected provided by Q_{4}. Blanking for capacitor C_{1}, while potentiom- to withstand a reverse base-free-running operation can then eter R_{2} provides a vernier ad- emitter bias of nearly 12 volts.

IC one shot generates short-duration pulses and eliminates

 switch noiseA Previously-published circuit ("One-Shot Multivibrator Kills Switch Bounce," EEE, June 1967, pp. 137-8), satisfactorily eliminates the effects of switch bounce on logic-system command signals. But the circuit has two disadvantages: - It has an inherent $10-\mathrm{ms}$ delay.

- It cannot generate noise-free pulses of less than $5-\mathrm{ms}$ duration.

An improved circuit, shown in Fig. 1, overcomes the disadvantages of the earlier circuit. With the component values shown, the new circuit generates a noise-free output pulse of $1-\mu_{\mathrm{s}}$ duration. Rise

Fig. 1. Because swtich S_{i} is shunted by C_{1} and has one side grounded, noise generated by the switch is normally below the threshold of the IC. The circuit generates output pulses from $1 \mu^{\mathbf{s}}$ to 80 ms , wide depending on the value of C_{2}.
and fall times are around 30 ns.

The circuit is built around a single RTL IC 4-gate NOR unit. It consists of a $1-\mu \mathrm{s}$ oneshot multivibrator driven by an inverter.

Before the switch is depressed, the inverter input (pin 1) is high, giving a low inverter output (pin 3). The one-shot output (pin 8) is normally low.

When the switch is momentarily closed, capacitor C_{1} dis-
charges, pulling the inverter output (pin 3) high. This signal then triggers the one-shot which generates a $1-\mu$ s output pulse.
Switch noise is below the noise threshold of the IC, so the one-shot sees a clean fast trigger signal. The switch is shunted by capacitor C_{1} and one side of the combination is grounded. Therefore the switch noise is near ground level, instead of near $V_{E E}$ as with the earlier circuit. The
output pulse cannot be made IC will be current starved. narrower than about $0.5 \mu \mathrm{~s}$ because, during this period, switch noise will be above the threshold level of the IC.

The upper limit of outputpulse duration depends on the time constant of the RC network, C_{z}, R_{3}. Pulse widths from $1 \mu \mathrm{~s}$ to 80 ms can be obtained with capacitors ranging from 330 pF to $47 \mu \mathrm{~F}$, with R, held constant. The value of R, cannot be increased much, above the value shown, otherwise the

Fig. 2. Switch bounce at pin 1 has no effect on the inverted signal at pin 3. This signal then triggers the one-shot circuit to give a 1 - μ s output pulse at pin 8 .

Trigger-diode simplifies efficient generation of sawtooths

 and pulsesUse of a low-voltage regenerative trigger device in a relaxation oscillator allows the use of relatively low supply voltages. This reduces the circuit dissipation and required voltage rating for the capacitor.

The circuit can be very efficient because as much as 70 percent of the stored energy is available to the load. This contrasts with circuits using threelayer triggers and neon glow tubes, which typically deliver only 2 to 15 percent of the stored energy.

Figure 1 shows how the trigger diode, in conjunction with a low-current SCR, forms a simple relaxation oscillation. Pulse repetition frequency, obtainable with this circuit, extends from less than one pulse per minute to beyond 100 kHz . With the component values shown, operating frequency is approximately 10 kHz .

The circuit works as follows. When a supply voltage $V_{A A}$ is applied, capacitor C_{1} commences charging via R_{1}. When the capacitor voltage reaches the breakover voltage of the trigger diode, the diode switches and presents a low-impedance discharge path for the capacitor. The discharge current flows via the SCR gate and R_{s}, thus turning on the SCR.

When the voltage across the

Fig. 1. Simple waveform generator for high efficiency. (Inset shows equivalent circuit of the regenerative trigger diode).

Fig. 2. Voltage waveform across capacitor C_{1} while charging.
capacitor has decayed to a sufficiently low value, the saturation voltage of the SCR causes the trigger diode to cease conducting. The capacitor then continues discharging via the SCR until the SCR current falls below the holding current level. At this point, the combined current from C_{1} and from $V_{A A}$ via R_{1} is insufficient to maintain conduction of the SCR. The SCR turns off and the cycle is repeated, creating a repetitive function.

From the above description, we can see that operation of the oscillator requires an SCR holding current greater than the current available from the supply through R_{1}. If we shunt the SCR,

Fig. 3. Voltage waveform across capacitor during discharge.
between gate and cathode, with a resistor R_{2}, we can increase the effective value of the holding current, thus allowing the use of low values for R_{1}. This enhances high-frequency operation of the circuit.

One disadvantage of shunting the gate to boost holding current is that this technique limits the minimum possible value for C_{1}, and therefore the maximum possible frequency. However, using an SCR with sensitive gate characteristics, frequencies up to 250 kHz are possible at room temperature.

Maximum operating frequency is determined by the gate sensitivity of the SCR, while the
low-frequency limit is set by the switching current of the trigger diode.

The oscillator frequency can be synchronized with an external reference frequency. This is done by feeding positive synchronizing pulses directly to the gate of the trigger diode. Note that the external reference frequency must be slightly higher than the natural frequency of the circuit, otherwise synchronization won't occur.

We can calculate the natural frequency by taking the reciprocal of the sum of the calculated charge and discharge times for the capacitor. To calculate the respective charge and discharge times, we first need the following device and component characteristics:

- SCR data

$I_{F X}$ - Rated blocking current (with gate-cathode resistor connected).
$I_{H X}$ - Holding current (with gate-cathode resistor connected).
$V_{F H}$ - Forward "on" voltage at selected holding current.

- Trigger-diode data

$V_{s w}$ - Forward switching voltage.
$I_{s w}$ - Forward switching current.

- Capacitor data

$I_{L C}-$ Leakage current.
Figure 2 shows the capacitor voltage during the charging portion of the cycle. Expressed mathematically, this voltage is,
$\left(V_{A A}-V_{1}-V_{2}\right)\left(1-e^{-t} / R_{1} C_{1}\right)$

$$
\begin{equation*}
+V_{2} \tag{1}
\end{equation*}
$$

This is a simple exponentiallyrising voltage, starting at V_{2} and aiming towards the value $V_{A A}$ V_{1}. Voltage V_{2} is the potential across the capacitor after it has discharged. It is the sum of SCR forward drop and voltage across R_{s} when the SCR anode current is equal to the holding current.

That is,

$$
V_{2}=V_{F H}+I_{\mathrm{HX}} \times R_{3}
$$

Also, in Eq. 1, voltage V_{1} is the drop across charging resistor R_{1} due to the combination of switching current required by
the trigger diode, leakage current through the SCR, and leakage current through the capacitor. That is,

$$
\begin{gather*}
V_{1}= \tag{6}\\
R_{1}\left(I_{S W}+I_{F X}+I_{L C}\right)
\end{gather*}
$$

Rearranging Eq. 1 to solve for time t, we get,

$$
\begin{gather*}
t=R_{1} C_{1} \times \tag{7}\\
\ln \left(\frac{V_{A A}-V_{1}-V_{2}}{V_{A A}-V_{1}-v_{C}}\right) \tag{4}
\end{gather*}
$$

Rearranging Eq. 4 and solving for time t, we get

$$
\begin{gathered}
t= \\
R_{s} C_{1} \ln \left(\frac{V_{s w}}{v_{\mathrm{c}}}\right)
\end{gathered}
$$

When the SCR stops conducting, the capacitor voltage has fallen to the previously defined
(3) value of V_{2}. occurs when the capacitor po- is, tential reaches the breakover voltage of the trigger diode. Fig. 3 shows the capacitor-voltage waveform after the trigger diode has switched. This voltage is given by the equation,

$$
V_{c}=V_{s w} e^{-t} / R_{s} C_{1}
$$

Now, the charging time is the time required for the capacitor voltage to reach the breakover voltage $V_{s w}$ of the trigger diode. Therefore,

$$
\begin{gather*}
T_{C}=R_{1} C_{1} \times \\
\ln \left(\frac{V_{A A}-V_{1}-V_{2}}{V_{A A}-V_{1}-V_{S W}}\right) \tag{8}
\end{gather*}
$$

Discharge of the capacitor Therefore the discharge time

$$
\begin{gathered}
T_{\mathrm{p}}= \\
R_{3} C_{1} \ln \left(\frac{V_{s W}}{V_{2}}\right)
\end{gathered}
$$

The frequency of oscillation is simply,

$$
f=\frac{1}{T_{c}+T_{D}}
$$

This leads to the complete expression for oscillation frequency, given in Eq. 8.

$$
\begin{gather*}
1 / f= \tag{5}\\
C_{t}\left[R_{1} \ln \left(\frac{V_{A, 4}-V_{1}-V_{z}}{V_{A A}-V_{1}-V_{S W}}\right)+\right. \\
\left.R_{s} \ln \left(\frac{V_{S W}}{V_{1}}\right)\right]
\end{gather*}
$$

Sequential

bipolar multivibrator

A single circuit can replace cascaded one-shot multivibrators that are often employed to generate a delayed pulse or a pair of sequential pulses. The circuit, shown in Fig. 1, provides two sequential pulses of opposite polarities, with the duration of each pulse independently adjustable over a wide range.

Other versions of the circuit can provide two short pulses separated by a long pulse of the opposite polarity, or allow independent triggering of the positive and negative pulses (i.e., with the pulses not auto-
matically sequential but mutually exclusive in time).
The basic circuit of Fig. 1 works as follows: Initially, I_{1} and I_{2} are both zero. When a positive trigger pulse is applied, the output swings negative. The negative pulse is coupled through capacitor C_{1} causing D_{1} to conduct. We choose $R_{1}<R_{f}$ so that, at first, I_{2} is greater than I_{1}. Then, as C_{1} charges, $\left|I_{2}\right|$ decreases until it is equal to $\left|I_{I}\right|$ and the circuit switches back to the quiescent zero state. This switching transient is coupled by the capacitance of diode D_{2} and
causes the output to swing positive, which turns on diode D_{2}. The same process is then repeated for the positive pulse.

If the first time-constant is short compared to the second, capacitor C_{1} charges to the output voltage during time $\tau_{2 A}$. Therefore, when the output returns to zero, the voltage across C_{1} is sufficient to turn on diode D_{1}. Thus a second negative pulse is generated. This pulse is longer than τ_{i} because of the higher initial charge across C_{1}. Capacitor C_{z} does not fully discharge during τ_{s} and, when the output returns to zero, diode D_{2}
remains sufficiently back-biased to keep the circuit from switching positive.

If a negative trigger pulse is applied (situation (B) in the diagram), the sequence starts with the positive pulse. Subsequent operation is then the same as described for a positive input. The diode, of course, can be reversed to give opposite-polarity pulses.
Figure 2 shows a practical circuit that generates a $2-\mu \mathrm{s}$ negative pulse followed by a 16 ms positive pulse. The diode across the $200-\mathrm{pF}$ capacitor prevents reverse charging of the capacitor during the posi-

Fig. 1. Bipolar multivibrator is similar to a one-shot, but it generates a sequential pair of pulses of opposing polarities.

Fig. 2. This practical version of the bipolar multivibrator gives a $2-\mu \mathrm{s}$ negative pulse and a 16 ms positive pulse.

Fig. 3. The circuit can be modified, as shown here, to suppress the sequential action. Output is either a positive or a negative pulse, depending on the polarity of the input pulse.
tive portion of the cycle. Note that the triggering point has been relocated to allow negative triggering. The $10-\mathrm{pF}$ coupling capacitor couples the trigger pulse and suppresses the transient during turnoff of the positive cycle. With this circuit there is no second nega-
tive pulse generated after the positive pulse.

The $1 \mathrm{k} \Omega$ resistor, in series with the diode connected to the $1.5-\mu \mathrm{F}$ capacitor, provides a fast discharge path for the capacitor after the positive cycle. This gives the longest possible time-constant during
the positive cycle (when the diode is reverse-biased) and the shortest possible recovery time. The circuit can be triggered as often as once every 20 ms . Amplitude of the output pulse is -7 and +7 V .

Figure 3 shows how the circuit can be modified to supress
the sequential action. With the trigger applied to the negative input of the operational amplifier, a positive trigger will yield a negative pulse and a negative trigger a positive pulse, with both pulse durations independently adjustable and mutually exclusive in time.

Single IC forms wide-range triangle/

square-wave

generator

The circuit in the figure takes advantage of a dual 1709 opamp package MC1437P, with one amplifier serving as a level detecting switch to produce a square wave and the other amplifier as an integrator to produce a triangular wave of excellent linearity. The output signal is constant in amplitude to over 50 kHz , with a 5% increase over 100 kHz depending on the individual amplifier used.

The lower frequencies are limited only by the observer's Circuit diagram of a wide-range triangle/square-wave generator.
patience. Capacitor $C_{\text {, }}$ determines the frequency range available. The range is approximately 8 kHz to 120 kHz with the value of C_{1} at 500 $\mathrm{pF}, 400 \mathrm{~Hz}$ to 10 kHz with $C_{\text {, }}$ at $0.01 \mu \mathrm{~F}$, and 20 Hz with a $0.2-\mu \mathrm{F}$ capacitor. A value of $250 \mu \mathrm{~F}$ will permit 1 cycle per minute. All measurments were made with $\mathrm{B}+$ at 24 volts and with a 20,000 -ohm load.
The switching amplifier, A_{1},
requires a $10-\mathrm{pF}$ capacitor on pin 3 for transient suppression and 100 pF on pin 6 to prevent false triggering at high frequencies. The integrating amplifier, A_{ξ}, requires a standard compensation network of 100 pF and 2000 ohms. A $200-\mathrm{pF}$ capacitor from pin 13 to pin 9 suppresses ringing. R_{s} and R_{b}, with filter capacitors, provide minpoint-reference voltage and determine symmetry of waveform.

Assuming the output signal of A_{i} is negative, resistor R_{i} with a $10-\mathrm{pF}$ speed-up capacitor, C_{i}, provides positive feedback to latch the amplifier. This voltage is applied to A through frequency-trim resistor, R_{2}, which allows a $20: 1$ variation in frequency. The integrator output then begins its positive-going ramp. When the ramp reaches 6.8 V above the reference voltage on the inverting input of A_{1}, zener
$C R_{1}$ will conduct, overcoming the positive feedback and causing A_{1} to switch to its positive state. A_{2} will integrate, going negative until zener $C R$, conducts, completing the cycle. If desired a 12 volt zener may be placed on the output pin of A_{2} to make the frequency and the squarewave amplitude immune to $B+$ variations.

Keyed multivibrator produces

symmetrical ac output

Sometimes, the circuit designer needs to generate a keyed tone or pulse train using a compact low-cost circuit. Conventional keyed multivibrators are suitable, bett they have the disadvantage that their output contains a dc level shift which causes severe distortion in an ac-coupled load. Fig. 1 shows a typical output waveform for a conventional circuit.

The improved circuit of Fig. 2, however, has an added transistor $Q_{\text {, }}$ which removes the level shift from the output. Also, this circuit starts instantly with a full-width first pulse.

In the circuit, transistors $Q_{\text {, }}$ and Q_{z} are connected as a conventional astable multivibrator.

This is keyed by switching the charging voltage for Q_{i} 's base coupling capacitor. With values shown, the multivibrator oscillates at about 3 KHz when the gate input is +4 volts, and is turned off when the gate input is below 1 volt.

When the circuit is free running, the collector of Q_{2} alternates between 0.1 volt and 4.8 volts. The junction of R, and

Fig. 1. Level shift at the output of conventional keyed multivibrators causes distortion when the load is ac coupled.
R_{g} alternates between about $2.4 \quad R_{1 i}$ in parallel with $R_{;}$, so that volts and 4.8 volts, producing the junction of R_{7} and R_{y} is an open-circuit output of 2.4 pulled up to about 3.6 volts. volts peak-to-peak.

When the gate pulse returns to less than 1 volt, Q_{2} is held off and Q_{z} is held on by current through R_{5}. Normally, of course, the junction of R_{F}, and R_{g} would fall to 2.4 volts. But with this modified circuit, Q_{3} is also turned on. This places

With the improved circuit, the positive and negative excursions of the output pulses are symmetrical about the mean level of 3.6 volts. Therefore the output can be ac coupled without introducing low-frequency level-shift distortion.

Fig. 2. This improved keyed multivibrator overcomes the level-shift problem. Added transistor Q, restores the output dc level to the mean value when the gate signal is low.

FET converts a triangle generator to a sawtooth generator

Two operational amplifiers are often interconnected to create a triangular wave source. This circuit can be converted to a sawtooth generator by the
addition of a general purpose junction FET, two diodes, and a resistor as shown within the dotted lines on the accompanying figure.

FET Q_{i} is used as a switch to short the large integrating resistor which sets the long time constant. The large control signal required by the FET
is derived directly from the saturating output of the Schmitt trigger, A_{2}. When the output of A_{2} is negative, -15 volts is coupled via diodes D_{1} and

D_{z} to the gate of the FET, pinching off the source-gate junction. The time constant during this part of the cycle is $\left(R_{1}+R_{2}\right) C_{1} . C_{1}$ charges until the output of A_{i} reaches the positive trip level of the Schmitt trigger. When this
occurs, A_{2} saturates positive, and D_{1} and D_{2} become reverse biased. The FET is turned on and shorts resistor R_{i}. The time constant during this part of the cycle is ($R_{z}+R_{D N}$) C_{i} where $R_{D S}$ equals on the "on" resistance of the FET.

Two diodes, a resistor and a FET convert a triangle-wave generator to a sawtooth generator with symmetrical output.

A digital boxcar generator

MOS TECHNOLOGY HAS made possible monolithic A / D and D/A converters and serial or dynamic memories. These LSI type ICs with their small size and low power, are used here in a precision digital boxcar generator. The conversion time of this circuit is in the medium to slow speed range but its accuracy is much greater than corresponding analog types.

The schematic shows a digital sampler using a Fairchild 3751 A/D, A Fairchild 3750 D/A, and a Fairchild 332064 bit circulating shift register. In addition to the shift register, the 3320 contains logic for loading, recirculating or erasing its information. A parallel stack of eight 3320 s is used to store 64×8 bits in the memory mode. Any one of the 8 bit levels may be selected for readout by proper clock domain selection. In the same manner,

the recirculating loop can be opened momentarily for erasure of some or all of the information.

The $3751 \mathrm{~A} / \mathrm{D}$ samples the
analog input continuously and delayed end of conversion pulse feeds a digitized output to the of the $3751 \mathrm{~A} / \mathrm{D}$. By extend3320 serial memory.

The holding registers of the $3750 \mathrm{D} / \mathrm{A}$ are gated by the
ing this delay, storage capabilities can be increased by adding additional serial registers. -

generator

Ramp generators are usually designed by controlling charging rate on a timing capacitor. The capacitor has a large value and leaks charge under temperature extremes. All these difficulties are eliminated by using the digital approach of Fig. 1.
This ramp generator is based on digital-to-analog techniques. The circuit of Fig. 1 uses a single RCA COS/MOS device. The IC (CD4004T) is internally connected as a ripple counter. The respective flip-
flop outputs indicate the number of binary bits loaded into the single rail input. The counter operates from dc to 2.5 MHz , therefore it is ideal for low-frequency operation. If a R-2R ladder is connected to the flip-flop outputs and a fixed-frequency square wave is fed into pin 1 , a digitally stepped ramp will appear on the ladder output.

In actual operation, the symmetry of the input squarewave is immaterial. If the input frequency is F, the output ramp frequency will be $F / 128$. The output impedance of the ramp generator is $51 \mathrm{k} \pm 5 \%$. $R 7$ compensates for flip-flop output impedance.

Fig. 1. This digital ramp generator eliminates the normal chars. ing capacitor. Output frequency is $1 / 128$ of input frequency.

Long duration variable linearity

ramp

generator

The circuit is an inexpensive and stable means of generating a ramp function. The shape of the ramp may be a changed to meet different requirements, from concave up through linear, to concave down. With different values of R_{i} and C_{1}, ramp durations of $0.1 \mu \mathrm{~S}$ to several hours may be obtained.

With C_{t} shorted by means of a relay, the source of buffer amplifier Q_{1}, is at 1.5 to 2 voltṡ. Inverter amplifier $Q_{\text {s }}$ is biased almost off and Q_{s} is conducting.

Speaking in general, when the short is removed from C_{i}, the voltage at the source of Q_{1} rises with the charge on the capacitor and turns on Q_{2}. Transistor Q_{3} in turn conducts less, holding the drop across R_{1} constant. This is the way the current through C_{1} is held
constant and the capacitor charges at a linear rate.

More specifically, potentiometer R_{2} controls the shape of the ramp. Placing the wiper of potentiometer R_{z} in the concave down position, at V_{1}, transistor Q, has little control over either Q_{s} or the charge rate of C_{1}. At this setting the output resembles that of a simple RC circuit.
With the wiper of R_{z} in the concave down position, V_{2}, Q_{2} overcontrols Q_{3} and causes an increasing charge rate for $C_{\text {, }}$ over the ramp duration, resulting in a concave up output with an initially lower slope. The linear position is simply the midpoint between V_{t} and V_{2}.

Calibration of the device is achieved by using small increments for R_{1} or C_{1} and observing the output on an oscilloscope.
Once the desired linearity is set, the output is perfectly reproducible within the tolerance limits of R_{I} and C_{i}. Increasing temperature will cause the

The relay contacts shown may be replaced by a transistor to make an all solid-state variable linearity ramp generator.
starting point to rise slightly. should be larger than $160 \mathrm{k} \Omega$.
Both large value electrolytics The time duration of the ramp, and small value mica capaci- D, may be approximated by tors may be used for $C_{2} . R_{1} D=5.9 R_{i} C_{1}$.

Step-servo motor

slew

generator

The variable ujt oscillator shown in this schematic, operates a step-servo motor in either a slow or fast mode. The motor requires a pulse generator capable of providing a train of pulses at a slow rate, a fast (slew) rate and a variable rate providing a smooth transition between the two extremes. The smooth transition is required to prevent motor stall. This circuit meets all three requirements and has a transition time of 1.5 seconds. The input is compatible with standard-digital logic levels.
Q_{1} and Q_{2} are constant-current sources with Q_{1} having twice the capacity of $Q_{2} . Q$. a JFET, acts as a voltage-controlled variable resistor in parallel with R_{10}. The FET's resistance varies inversely with the charge on $C_{1} . R_{11}, R_{9}, C_{2}$ and the equivalent parallel resistance of Q_{3} and R_{10} determine the repetition rate of

UJT oscillator Q_{4}.
In the steady state condition with a 1 at the input, Q_{1} passes all the current generated by Q_{2}, C_{1} is discharged and Q_{3} is off. These factors cause Q_{4} to generate its low frequency pulse rate (1000 pps).

When the 1 at the input is changed to $0, Q_{1}$ cuts off. This
causes Q_{2} to charge C_{1} at a uniform rate, which gradually reduces the source to drain resistance of Q_{3}. This in turn increases the pulse rate of Q_{4}.

With a steady state 0 at the input, Q_{1} is off and Q_{2} maintains the charge on C_{1}. Therefore, Q_{3} is full on and oscillator Q_{4} generates its highest
rate (4400 pps).
When the " 0 " at the input is changed to a " 1, " Q_{1} passes all of Q_{2} 's current plus the discharge current of C_{1}, C_{1} discharges at a uniform rate thus increasing the equivalent resistance of Q_{3}. This causes Q_{4} to gradually decrease its pulse rate.

Wide range square-wave

generator

uses one IC

Here is an inexpensive square-wave generator potentially useful for digital work. A three-inverter oscillator, a two-inverter R-S flip-flop, and an inverter used as a wave shaper-buffer, make up the circuit. The schematic shown, uses a Fairchild F9935 hex in-
verter (without input diodes).
The 10 kilohm potentiometer provides a frequency adjustment for the oscillator. The RS flip-flop changes state with each oscillator pulse and gives a square-wave output. The

$C \mu^{F}$	Freq lower	Freq upper	
.01	$7.4 \mu^{\mathrm{s}}$	$1.5 \mu \mathrm{~s}$	
.1	$660 \mu^{\mathrm{s}}$	$54 \mu^{\mathrm{s}}$	
1	0.9 ms	13 ms	
30	340 ms	19 ms	
150	960 ms	70 ms	
500	4.7 sec	330 ms	
$\mathrm{Vec}=+5.0 \mathrm{~V}$			

Table of capacitance versus upper and lower frequeucy values.

A single IC is used to form a wide range, buffered, square-wave geuerator.
final inverter is necessary for \mid and the lower limit is dependgood output buffering capability.

The upper frequency limit is about $660 \mathrm{kHz}(C=0.01 \mu \mathrm{~F})$
ent on C. The chart of Fig. 2 tabulates approximate frequency ranges versus different capacitor values.

Simple, wideband

a-m noise

generator

A diode and an unijunction transistor provide a source of amplitude-modulated rf noise at frequencies extending from audio through uhf. The frequencies over which the noise power is useful depend on the type of diode and its bias.
The base-to-emitter diode of a 2 N 918 provides noise power over a broad range of frequencies from 0.5 to 500 MHz . A 2 N 3483 unijunction, used as a relaxation oscillator, provides a modulating frequency that depends on the choice of R_{I} and C_{1} in the equation

$$
f=\frac{1}{R_{i} C_{l} \ln \left(\frac{1}{1-n}\right)}
$$

where n is the intrinsic standoff ratio of the UJT.

The emitter voltage, V_{e}, of the UJT T_{1} varies between the
saturation voltage, V_{g}, and the peak-point voltage, V_{p}, which is typically 4 to 22 V . When V_{ρ} reaches the diode breakdown voltage, V_{R}, about 6 V for D_{p}, the diode begins to conduct. When V_{e} reaches V_{p} the peak diode current is

$$
I_{D p}=\frac{V_{p}-V_{R}}{R_{z}}
$$

As shown in Fig. 2, the noise power from the diode increases monotonically with increasing bias current up to $I_{D D}$, which is about $20 \mu \mathrm{~A}$ in the 2N918.

By choosing R_{2} to make $I_{D p}$ equal $I_{D D}$, we can vary I_{D} from 0 to $20 \mu \mathrm{~A}$ at the audio rate of the relaxation oscillator. The noise from the diode thus varies from minimum to maximum output, producing amplitude-modulated rf noise.
Amplitude is sufficeit in the hf and vhf bands to check the operation of an a-m receiver on any channel, without bandswitching or tuning, simply by connecting the generator output to the recciver's input. -

Fig. 1. This amplitude-modulated rf noise generator serves as a handy receiver tester.

Fig. 2. Noise power is a function of diode bias current.

Low-cost

60-Hz sync

Many circuits are available for generating a reliable pulse or square wave derived from the $60-\mathrm{Hz}$ line. But most are too expensive for production runs or subject to false triggering due to line transients. The circuit here, based on GE's programmable unijunction transistor, offers complete reliability and a total cost of less than 70 cents.
In the circuit, R_{i} biases the PUT gate to +5 V and sets the valley current to approximately $100 \quad \mu \mathrm{~A}$. The anode voltage must now exceed the gate voltage by a
small amount (typically 0.3 V) before the PUT will turn. on. R_{3} and R_{b} serve as a voltage divider with R_{s} set to supply a minimum of $100 \mu \mathrm{~A}$ with approximately 3 V applied at its input. The time constant of R_{3} and C_{1} is about 4 ms , thus eliminating the possibility of false triggering due to transients.
The applied voltage must reach approximately +12 V before the anode voltage exceeds the gate voltage. At this time, Q_{1} goes into conduction, discharging C_{i} across R_{2}, thus generating a $+5-V$ pulse with a rise time of about 80 ns . Q, continues to conduct until the anode supply drops below 2 V , then assumes a reset state until the next positive excursion of the $60-\mathrm{Hz}$ line

This simple and inexpensive circuit provides a reliable syuc pulse from the $\mathbf{6 0 - H z}$ power line.

Section 13 CONVERTOR \& INVERTER CIRCUITS

Mag-Amp Regulates Static Converter

Practical situations facing the engineer very often call for conversion of dc power from one voltage level to another or to ac with as little loss of power as possible.

Best approach to the problem is obtained by utilization of the transistorized-magnetic coupled multivibrator. The basic circuitry of this type of converter has been covered extensively. However, the converter is not inherently regulated and any change of input voltage is reflected in the output. Aircraft, missile and industrial dc sources fluctuate
over a wide range. Variation of ± 20 per cent (a band of 40 per cent) is to be expected in missilery. If failure of the primary regulator occurs even wider fluctuations may be expected. Thus, a regulated converter becomes mandatory to assure continuous safe operation of the equipment.

In many cases cost and weight advantage are gained by making the primary regulator simple and designing it to more relaxed specifications which are sufficient for the bulk of the power equipment. The sensitive portion of the equipment, which in most cases forms just part of the demand, is then connected to the regulated converter with all the advantages of matching the voltages in the most desirable form possible.

Reliability and ruggedness are enhanced by util-

FIG. 1-Regulation of $\pm I$ per cent is provided by mag-amp control of output of transistor oscillator.
ization of magnetic amplifiers in the regulating portion. The oscillator section is operated at a frequency which is high enough to allow the mag-amp to be small and lightweight, consistent with good efficiency. In this case 1000 cps nominal frequency is used. Fig. 1 shows the simplicity of circuitry and low number of components required for obtaining a tight regulation of ± 1 per cent, when the input changes about ± 20 per cent and the temperature goes from -28 C to +71 C . The circuit shown is designed for 30 -watt output at 71 C , under the most severe of the combinations called for in the specifications.

Transistors Q_{1} and Q_{2} operate in the switching mode. Diode $C R_{1}$ and resistor R_{3} insure the start of oscillations under all conditions. Square wave ac output appears at the T_{1} terminals. Any number of voltages, stepped up or stepped down, may now be obtained from one secondary winding provided they all have common ground. If floating ground is desired, another isolated winding is possible.

Rectifiers $C R_{2} A-D$ convert ac to dc while performing the dual function of self saturation in the magnetic amplifier L_{1}. Reference voltage is obtained from zener diode CR_{3}, which forms one leg of a detecting bridge made of R_{4}, R_{5}, R_{6} and P_{1}. For pot P_{1}, a Bourns Trimpot 224L-1-50 (Milliseal) allows adjustment of the outputs to the desired precise level. The circuit shown is representative of many. Negative outputs can be obtained by reversal of rectifiers $C R_{2 A-D}$ and insuring the proper magnetic amplifier winding polarity.

60-Cycle Inverter

The engineer has many occasions wherein an ac power supply is needed and only a 12 -volt battery is available. If the frequency and waveform of this supply is not critical, the circuit shown can supply up to 100 watts output.

When power is initially switched on, a slight unbalance in transistor Q_{1} and Q_{2} will allow a voltage to be induced into secondary T_{1}. To trace this operation, assume Q_{1} is slightly more conductive than Q2. In this case, the polarity of voltage induced at terminals $7-1$ of transformer T_{1} will be negative. This polarity will tend to bias Q_{2} in a reverse direction and also will bias Q_{1} to become progressively more conductive until it is fully saturated. This process requires only a fraction of a millisecond at which time the dc supply voltage is effectively applied to terminals 8-9 of the transformer primary.

Approximately 120 volts then exists at the secondary terminals. Secondary current will flow through the base emitter junction of transistor Q_{1} since it is forward biased. However, the base emitter junction of Q_{2} presents a high impedance to cur-
rent flow and forces current to take the shunt path afforded by diode D_{2}. Current flow returns to the secondary through the parallel combination of R_{1} and the external load.
The primary sustains the applied voltage for a period of time which is governed by the transformer

Complete circuit of simple 60 -cycle inverter.
parameters. At the end of this time, the saturation flux level is reached and the primary can no longer sustain the applied voltage. The induced voltage rapidly decreases and reduces the base drive current to Q_{1}. The transistor is then forced to come out of saturation. The subsequent rapid decrease of current flow into the primary causes the transformer flux to decay which then induces a voltage of the opposite pclarity in the secondary winding of the transformer. This polarity of voltage causes transistor Q_{2} to be forward biased. In a similar manner, Q_{2} proceeds to full conduction while Q_{1} becomes cut off. The cycle of operation repeats in an alternating fashion yielding a square-wave output voltage whose frequency is governed by the following relation:

$$
f=\frac{E_{b b} \times 10^{8}}{4 \times B_{S} \times A \times N}
$$

where: $E_{b b}$ is the de supply voltage; N is one-half the number of primary turns of $T_{2} ; B_{S}$ is the saturation flux density in lines per square inch; and A is the effective core area in inches.

Resistor R_{1} permits sufficient current flow to

Performance characteristics of simple inverter.
allow oscillation at light loads. The diode rectifiers are required to provide a shunt path for load current to flow. They also perform the function of limiting the amount of reverse voltage applied to each transistor its non-conducting half cycle.

This inverter circuit has the advantage of pro-
viding base drive current in proportion to the load power output. This causes the efficiency curve to be fairly uniform over the range of output power as shown in the performance characteristics. This variation in base drive indirectly causes a wider excursion of the frequency of oscillation than is observed in a more conventional circuit. For many applications, this variation in frequency is of little importance.

The transistors are Delco 2N442 types mounted on a finned aluminum heat sink of 80 sq. in. The thermal resistance of the sink should be better than $2.1 \mathrm{deg} \mathrm{C} /$ watt. This will permit operation in ambient temperatures up to 71 C . The diodes are Sarkes Tarzian type M500 and T_{1} can be a Stancor RT204 or a Thordarson 24V62. The resistor is a 10 K ohm, 1 watt.

Positive Square Wave to Negative Spike Converter

Capacitive-differentiation systems employing a series RC circuit can be used to convert a positive square wave to a positive spike. However, if a negative spike is desired with zero volts as a starting and ending point for the negative spike, a transistor must be used with precision resistors and precision power supply.
The accompanying schematic diagram shows a positive square wave to negative spike converter with zero volts as a starting and ending point for the negative spike. Five-percent resistors may be used throughout the circuit.

When the input voltage is zero volts, transistor Q_{1} does not conduct, however transistor Q_{2} does conduct. The conduction path through $Q_{2}, C R_{2}, C_{1}$ and R_{f} charges capacitor C_{1} to about 24 volts.
When the input voltage changes to six volts the following sequence of events takes place. Transistor Q_{1} conducts and transistor Q_{2} cuts off. When transistor Q_{1} conducts, the junction point between $C R_{1}$ and C_{1} is approximately zero volts and capacitor C_{1} discharges around two paths exponentially.
The path of capacitor discharge which gives the negative voltage output spike is through $C R_{3}, R_{7}$, transistor Q_{1} and $C R_{1}$. When the capacitor has discharged to the extent that the junction of CR2, $C R_{3}$ and R_{6} is zero volts, diodes $C R_{3}$ ceases to conduct and the output voltage wave form is as shown.
The negative pulse width is 73.4 microseconds and the time required for capacitor charge is 406 microseconds. The maximum usable frequency for symmetrical square wave input is 1.23 kc .
At first glance it appears that the peak output voltage of the negative spike should be 24 volts. However, the peak voltage obtained with the actual circuit was 14 volts. A possible explanation is that the capacitor used had an internal series resistance which dropped some of the output voltage.

Circuit is noncritical and requires no precision power supply yet it converts square waves to negative spikes.

DC to Frequency Converter

Tie checut shown in Fig. 1 converts a de voltage

DC-TO-FREQUENCY CONVERTER
Fig. 1. DC-to-Frequency Converter.

WAVE FORMS: DC-TO-FREQUENCY CONVERTER

Fig. 2. Waveforms for DC-to-Frequency converter.
input to an audio frequency output. The operation of the circuit is most easily explained with reference to the waveforms shown in Fig. 2.

Before time t_{1}, transistors Q_{1}, and Q_{2}, are off and transistor Q_{3}, is on. At time t_{1}, point A reaches 1 v . Q_{1} and Q_{2} go into conduction and Q_{3} goes off. A positive step appears at point E. The $0.01 \mu f$ capacitor charges through the 160 resistor, Q_{2}, and the emitter of Q_{1}. The $0.1 \mu \mathrm{f}$ capacitor discharges via the 75 K and the collector resistor of Q_{3}. At time t_{2}, point C becomes more positive than point D and Q_{2} turns off, while Q_{3} turns on, and a negative step through the small capacitor turns off Q_{1}; the smaller capacitor discharges through the diode into the larger one. The large capacitor slowly charges up via the 75 K resistor, and the cycle is repeated. The period between pulses at point F is variable, depending upon the voltage at the input. The frequency response of the de to frequency converter is given in the table.

Frequency Response Data

Input Voltage (volts)	Frequency (cps)
1.70	100
1.90	200
2.25	400
3.30	800
6.20	1600
10.0	2000

Converts Sine Waves to Sawtooth or Square Waves

The need for this design arose when a square wave or sawtooth wave was required for test purposes, and it was discovered that generators giving these waveforms were very scarce and in great demand. However, sine wave audio oscillators were literally "a dime

Converter changes $50-17000 \mathrm{cps}$ sine waves to sawtooth or square waves.
a dozen." The problem was to make a "little black box" using no power, only the signal itself, and come out with square or sawtooth waves. The gadget shown in this article does just that. A number are now in use.

The sawtooth wave is obtained from the sine wave by the linear charging of the capacitors. This action continues into the reverse cycle until the initiating voltage is equal to the capacitor charge voltage. At this point the output drops to zero and then repeats the cycle. The peak to peak voltage of the sawtooth is equal to the peak to peak voltage of the sine wave. The variable resistance R_{1}, shapes the linearity of the sawtooth upslope.

$$
\begin{aligned}
C R_{3} C R_{4} & =\text { Zen Diodes, IRC \#69-1505 (8.0v-.1v) } \\
\text { SW-1 } & =\text { SPDT Slide Switch }
\end{aligned}
$$

SW-2, SW-3 = DPDT Slide Switch
$R_{1}=$ Centralab-Type B-88 (5 meg. $-C_{2}$ Taper)
$R_{2}=270 \mathrm{~K}-5$ per cent, $\frac{12}{} \mathrm{w}$ resistor
$R_{3}=15 \mathrm{~K}-5$ per cent, 2 w resistor
Frequency Range
SW-3
Pos. 1- 50 to 2000 cps .
Pos. $2-1800$ to 17.000 cps.

High Power, Variable Frequency Inverter

Power outruts up to 100 watts at frequencies ranging from $\% \mathrm{cps}$ to 1 mc can be obtained with the circuit shown. The circuit is composed of two basic transistor circuits-an astable multivibrator and an inverter. The multivibrator sets the output frequency with its time constants $R_{2} C_{1}$ and $R_{8} C_{2}$, which can be made variable. If the two time constants are made equal, symmetrical output waves will be obtained.

The period of the output wave can be determined from:

$$
f_{o}=\frac{R_{3} C_{2}+R_{2} C_{1}}{2 R_{2} R_{3} C_{1} C_{2}}
$$

The complementary outputs of the multivibrator are connected to the bases of the inverter transistors. The output wave shape, determined mainly by the transformer reactances, can be made to closely approximate a sine wave.

Multivibrator sets frequency for high-power inverter.
The values shown result in a $600-\mathrm{v}, 125-\mathrm{ma}$ ac, $400-\mathrm{cps}$ output. The device will operate equally well from rectified ac as from a battery. The circuit has found a use in powering electro-luminescent panels and may also be used as a frequency source to produce a high-frequency wave at a higher power level than is normally available from standard oscillators.

DC-DC Converter Diode-Starting Network

Solid-state dc-dc converters that must deliver 300 to 500 W of output power at currents of 5 to 20 A have difficulty starting under full-load conditions due to insufficient feedback voltage. This difficulty increases as the ambient temperature is reduced and transistor power is decreased. Several methods of starting heavy-current dc-dc converters are available: starting resistors, extra power-transformer

Fig. 1. Wide-temperature range starting network.

Fig. 2. Threshold voltages for germanium and silicon diodes.
windings, feedback resistors for forward bias current to the power-transistor bases, extra transistors in the base circuit for increased current gain, and many more, all of which add to circuit complexity and decrease over-all converter efficiency.

In the application that led to the design described here, maximum circuit reliability was the governing factor. All the above starting methods were ruled out because of complexity and questionable reliability.

This circuit uses a diode-starting network that electrically accomplishes the equivalent of the simplest starting technique: switching the load out for starting. It operates as if a manually operated switch were placed in series with the power transformer primary to tem;orary disconnect the load when turning the power on. After the converter has started, the load can be applied without affecting the converter operation.

A pair of silicon power diodes connected in parallel (back-to-back) is used in series with the primary of the power transformer to perform the switching function (Fig. 1). This connection allows each diode to operate on one half of the ac cycle. The threshold voltage at the knee of the forward-current vs forward-voltage curve, as shown in Fig. 2, occurs for germanium and silicon at about 0.3 and 0.6 V , respectively, and is the minimum required voltage to cause conduction or turn-on.

This small difference of 0.3 V permits the germanium power transistors to begin oscillation while the silicon power diodes are nonconducting. Therefore, the converter is started while the load is effectively out of the circuit. Under this condition, oscillations start and gradually build up until the diode threshold voltage is exceeded. At this time, the power-transformer primary is switched in as the diodes begin to conduct.

Environmental tests were performed on a $400-\mathrm{Hz}, 400-\mathrm{W}$, 15-A bridge-type power converter that was fully loaded. Without the diode network, the converter operated from 60° to $120^{\circ} \mathrm{F}$. With the diode network, this converter started consistently from -20° to $120^{\circ} \mathrm{F}$. Note that the circuit also dissipates a relatively small amount of power under normal operating conditions.

Unbalanced to Balanced Lever-Shifter

This level-shifting circuit converts unbalanced (0 to +4 V) pulses to balanced (-6 to +6 V) pulses. In the "high" state, a $0.12 \mathrm{~mA}, 3.5 \mathrm{~V}$ (minimum) source at the input is needed to insure a +6 V output. In the "low" state, a 1 $\mathrm{mA}, 0.6 \mathrm{~V}$ (maximum) sink at the input gives a -6 V output. With the component values shown, the output impedance of the circuit is 90 ohms.

If the "inhibit" terminal is grounded, the output is held at -6 V regardless of the input
voltage. In the original application for this circuit, fast rise time pulses were converted to slow rise time pulses, for transmission over long lines. Capacitor C was adjusted to give the required pulse shape.

Assuming the circuit is not inhibited, a "high" input will turn on Q_{z} and hold Q_{3} off. R_{z} and R_{z} control the current through Q_{2}. This current holds Q_{4} in saturation and the +12 V supply appears across R_{3} and R_{4}. Because Q_{s} is not conducting, Q_{5} is held off.

A "low" input gives the op-

Positive pulses at input give $\pm 6 \mathrm{~V}$ balanced pulses at output. If inhibit terminal is grounded, output is held at -6 V.
posite effect; Q_{2} and Q_{4} are turned off, while Q_{s} and Q_{5} are turned on. Thus -12 V appears across R_{5} and R_{4}.

The values of R_{3}, R_{4} and R_{5} may of course be changed to give different output voltages and impedances.

Linear period-to-voltage converter

with low
 ripple

In applications where instantaneous voltages proportional to a signal frequency must be derived at rates comparable to the signal frequency, conventional averaging techniques usually prove inadequate. The circuit shown in Fig. 1 can give accurate and linear period-to-voltage conversion under such conditions.

The circuit consists of a an monostable multivibrator (Q, one-shot recycles it discharges and Q_{2}), a linear ramp gen- C_{5}.
erator $\left(Q_{3}\right.$ and Q_{5}) and a An input pulse causes the

Fig. 1. This period-to-voltage converter allows sampling at rates approaching the input frequency, but without iutroducing excessive ripple.
sample-and-hold circuit (Q_{4} and A_{j}). The sample/hold circuit at the output allows accurate tracking of rapid changes in period, because each step is independent of its predecessor.

The voltage across C_{5} must be sampled before the capacitor is discharged; therefore a delay must be included in the circuit. In the circuit of Fig. 1, the monostable multivibrator (Q_{1} and Q_{2}) provides the necessary delay. This oneshot activates the sample/hold circuit when it is triggered by
an incoming pulse. When the
collector of Q_{2} to go positive, thus turning on Q_{4} and allowing C_{5} to charge C_{6}. Note that the capacitance of C_{6} is small compared to C_{5}. Thus the loading of C_{6} on C_{5} is not a serious problem. This loading affects circuit performance only when the input period slews rapidly; and the effect can be corrected with a unitygain buffer.

When the multivibrator recycles, Q_{4} is turned off and C_{6} remains charged to a voltage proportional to the period of the input signal. Amplifier A_{1} acts as a buffer and, because A_{1} has unity gain, the voltage on capacitor C_{6} ap-

Fig. 2. Timing diagram for the circuit of Fig. 1.
pears at the output.
Also, when the multivibrator recycles, a positive-going pulse is produced at the base of Q_{5}. This transistor then discharges C_{5}. The capacitor then starts to recharge until another input pulse is received and the cycle begins again.

Figure 2 shows typical waveforms at various points in the circuit, illustrating the sequence of events. In the graph of Fig. 3, output voltage is plotted against input period. The scales are logarithmic and a range of two decades is shown. Note that the response is essentially linear and that the slope is unity.

Fig. 3. Measured response shows that output voltage is directly proportional to imput period over a range of two decades. The line has a slope of one.

Starting network for

transistor inverters

Now that plastic-encapsulated silicon controlled rectifiers and unijunction transistors are widely available at relatively low cost, these devices can be used in many circuits for which they were formerly too expensive.

One example is in the starting circuit for a transistorized power inverter.

The SCR and UJT circuit described here has the advantage that it consumes negligible power after the inverter has started. Thus the starting circuit doesn't detract from the operating efficiency of the inverter.

Though the schematic shows a common-emitter voltage feedback inverter using pnp transistors. the basic starting circuit
can be easily adapted for use with other inverter circuits. Components $R_{1}, C_{1}, Q_{s}, R_{2}, Q_{4}$ and R_{3}, constitute the starting circuit.

The UJT is connected as a relaxation oscillator. Components R_{1} and C_{1} form the timeconstant for this oscillator, and this time-constant should be long compared with the inverter's oscillation period at maximum supply voltage. Resistor R_{ε} shunts the output from base-1 of the UJT, to prevent
overdriving the gate of the SCR.

Resistor R, limits the drive to Q_{r}. This resistor should be small enough to supply sufficient base current to fully saturate Q, during starting; but it should be large enough to avoid exceeding Q_{4} 's surge rating. The required value can be calculated from the following equation:

$$
\begin{align*}
R_{s} & =\frac{V_{c c}-V_{t}}{I_{c} / \beta_{f}} \\
& =\frac{\beta_{i}\left(V_{c c}-V_{t}\right)}{1} \tag{1}
\end{align*}
$$

The starting circuit (Q_{3} and Q_{i}) for this +00 -Itert\% inverter (Irans negligible quiescent current - thus it doesn't detract from the inverter's efficiency.
where,
β, is the forced gain of the inverter transistors under starting conditions,
$V_{c c}$ is power-supply voltage,
I_{c} is collector current of the transistors under starting con-
ditions,
\boldsymbol{V}, is forward voltage drop of the SCR while conducting.

The value of R_{1} should be less than 1 megohm. With the values shown, time-constant $R_{t} C_{t}$ is 3.75×10^{-3} seconds.

This assumes that Q_{s} has an intrinsic standoff ratio of 0.6 or greater. The $R_{1} C_{i}$ time-constant should be greater than 2.5 milliseconds.

The starting circuit works as follows: Initially, $V_{c c}$ is turned on and capacitor C_{1} charges toward the supply voltage through resistor R_{r}. At this time, the anode of Q_{6} is at the positive supply voltage, and the SCR's cathode is connected through the output winding to the negative side of the supply. When the ratio $V_{c i} / V_{c c}$ exceeds the intrinsic standoff ratio of Q_{3}, the UJT fires and discharges $C_{\text {}}$ into the gate of the SCR. Base-drive current for outputtransistor Q_{1} then flows via R, and Q_{b}, until Q_{1} turns on.

Regenerative voltage feedback in the inverter circuit then fully saturates Q_{1}, and its base
becomes negative with respect to its collector. This reversebiases the SCR, causing it to commutate off. At this point the inverter is free-running.

The starting circuit stays turned off while the inverter is operating normally. Because the time-constant $R_{1} C_{1}$ is relatively long compared with the inverter's half-period of oscillation, the UJT cannot fire the SCR again - not even during the period when Q, is conducting and, thus, placing approximately half the supply voltage across the starting circuit.

With the component values shown, the inverter circuit operates at 400 hertz, with an output power of 200 watts at 115 volts. The starting network gives reliable starting over the temperature range -40 to +100 degrees C.

New line-operated inverter offers fast switching

and high efficiency

With the availability of improved power transistors (for example, the Fairchild 2 N 5264) that can switch inductive loads at high currents and voltages, engineers can now design efficient high-frequency inverters that don't need saturable reactors. The low weight and easy filterability of highfrequency inverters make them a logical replacement for bulky $60-\mathrm{Hz}$ power transformers in power supplies.

For line inverters, the output transistors should have low saturation voltages and fasi switching times to allow high efficiency at high frequencies. Gain is relatively unimportant except that, of course, highgain output transitors can operate with simpler drive circuits, and with less power loss. If the transistors can dissipate inductive energy, at voltages near breakdown, then the cir-

Fig. 1. The simple Jensen inverter has the disadvantage that it uses a saturable core. The core limits the switching speed, so the circuit is inefficient at high frequencies.
cuitry can be further simplified because voltage clamping isn't necessary.

The 2 N 5264 , used in the circuit of Fig. 2, has a voltage rating of 180 volts and a current rating of 10 amps . Rise and fall times are typically 250 ns at 7 amps , and typical collector saturation voltage is 0.25 volts at 5 amps.

Before discussing the im. proved inverter circuit, let's look first at some of the disadvantages of the simple Jensen push-pull inverter shown in Fig. 1. The circuit uses a saturable-core transformer in a
grounded-emitter push-pull ar- The circuit of Fig. 2, the IC rangement. When the core satu- gates are cross-coupled to form rates, the drive to one tran- a $20-\mathrm{kHz}$ free-running multisistor falls off and the device vibrator. After two stages of is turned off. This reverses the amplification, the output from transformer voltages, turning the multivibrator drives the on the other transistor.

In a later modification to the coupling eliminates a base Jensen circuit, there is a satu- transformer. This arrangement rable reactor in the base-drive is more efficient than direct circuit only. Both circuits have drive, because low collector the disadvantage that their up- voltage can be used for the per working frequency is limit- driver stages.
ed by the speed at which the The output transistors are core can saturate. Core-domi- connected to voltage-sharing nated switching times cause capacitors that are connected losses in the transformer and in series across the rectified in the output transistors. Hence line voltage. With this type of efficiency of these circuits is circuit the breakdown voltages poor, especially at high fre- of the transistors can be half quencies.
that usually needed for an in-
A more sophisticated class verter circuit. Because operatof inverter circuit uses a buf- ing frequency is fixed, simple fered oscillator to drive the RC networks across the transoutput devices. This arrange- former primaries provide effecment has the advantage that tive clamping with a wide drive current and output fre- range of loads.
quency are independent of The low-level drive circuitry loading. Thus operation is receives its operating voltage stable over a wide range of from an eight-turn secondary load conditions. The output de- winding on the output transvices can be driven directly, or former. This type of low-level via transformers, or via capaci- drive configuration needs a tors. starting circuit. The 2N5264

pass element and a 2 N 3273 SCR ensure full-power starting. If there is an overload of sufficient magnitude to cause a drop in secondary voltage, then drive may be temporarily interrupted until the starting circuit can supply a fresh starting pulse. Thus the arrangement provides temporary short-circuit protection.

Output depends, of course, on the transformer ratio. The output stage give $20-\mathrm{kHz}$ square-wave of 148 -volts peak across each primary winding. Maximum collector current is 7 amps. Thus the inverter can provide up to 1 kW of output,
with power-to-weight ratio of greater than 100 W per pound. Full-load efficiency is at least 90 percent. The total change in collector voltage is only 8 volts for a load change from no-load to full-load.

The cost of this type of inverter is obviously much higher than for a simple line transformer. But the relatively low cost of semiconductors makes the circuit quite competitive with many saturablereactor designs. Also, for many applications, the advantages of low weight and good regulation will out-weigh any possible cost disadvantage.

Simple circuit converts pulse duty cycle

into analog

This simple digital-analog converter uses only four semiconductor devices - three single transistors and a dual transistor. It gives linear conversion from pulse width to output voltage, for duty cycles ranging from 5 to 95 percent. With suitable component values, the circuit can be used with input repetition frequencies from 1 kHz to 1 MHz .

In the circuit of Fig. 1, a linear ramp voltage is generated at point B. Amplitude of the ramp depends on input pulse width at point A. Peak voltage of the ramp then determines the dc output level at point C.

Transistor Q_{1} provides a con-stant-current source that charges capacitor C_{2}, thus generating a linear ramp at point B. Input transistor Q_{g} discharges C_{2} at the end of each input pulse. Thus pulse width determines ramp duration and,

Fig. 1. In this simple D/A converter, $Q 1$ generates a ramp voltage across C_{2}. Duration and height of the ramp are controlled by the input signal which turns on Q_{3} to discharge the capacitor.

Fig. 2. Typical waveforms show how the output volt. age at point C is determined by the peak voltage of the ramp at point B.
hence, amplitude.
The ramp voltage is applied to one input of the differentialamplifier stage, $Q_{4 A}$ and $Q_{4 B}$. The other input of the differ-
ential amplifier sees the inverted output from amplifier Q_{2}. A large output capacitor C_{3}, holds the voltage almost constant at the base of $Q_{\angle B}$. Feed-
back through the differential amplifier tends to maintain the output voltage across C_{3}. As C_{3} starts to discharge through the load, a positive voltage is applied to the base of Q_{ℓ} thus maintaining the voltage across the capacitor.
An rf choke, L_{1}, filters spikes from the output voltage. A prototype version of this circuit has been built with output ripple of 0.4 mV . To obtain low ripple, care must be taken to minimize lead length and decouple supply lines.

Operating frequency is determined by C_{2} and R_{t}. The upper limit of repetition rate is about 1 MHz . The lower limit is determined by the physical size of C_{2}. Good linearity has been achieved at frequencies as low as 1 kHz , using a suitably large value for C_{2}.

One disadvantage of the circuit is its relatively poor response time with negative-going signals. This is because the load provides the only discharge path for C_{3}. For fast response to negative signals, additional circuitry would be required to provide rapid discharge.

Passive Dc Converterfor

Geiger Counter

Here's a simple and safe way to generate high-voltage dc from low-voltage batteries. In the Geiger - counter circuit shown in Fig. 1, ten capacitors are charged in parallel to about 27 V . They are then switched in series, together with the batteries, to give the 300 Vdc required for the Geiger tube.

Though this is an old idea, it has previously been impractical for miniature circuits because of the complicated wiring and switching needed. But

Fig. 2. Front of printed-circuit switch.

Fig. 1. The switched capacitors in this Geiger-counter circuit provide the high voltage for the Geiger tube.

Fig. 3. Rear of printed-circuit switch.
a printed-circuit switch as shown in Figs. 2 and 3, needs only two external connections. These connections are for the input and output voltages. All other wiring is contained on the PC board.

The ten capacitors are mounted on the front of the switch, shown in Fig. 2, in the first ten horizontal positions counting from the top. The eleventh position contains R_{2}. To understand the switching remember that, except for the input and output voltages, all connections are made by the switch contacts from one edge of the PC board to the other.

The switch has two positions and is spring loaded. In Fig. 1 switch S_{z} is shown in the normal óperating position. Depressing S_{z} with S_{i} closed, removes the amplifier from the circuit and places all capacitors in parallel across the three $9-V$ batteries which are
in series. This charges the capacitors.

When S_{z} is released, it returns to the normal position shown in the diagram. This connects the amplifier to B_{z} and also connects in series the capacitors, R_{z} and the batteries. Thus the Geiger tube receives normal operating voltage. Resistor R_{z} provides quenching.

The amplifier can be any suitable audio amplifier. The original version of this circuit used the audio portion of a low-cost transistor radio. Components R_{1} and S_{1} are the ganged volume control and onoff switch of the amplifier.

Current drawn by the Geiger tube is negligible and the operating time, after charging the capacitors, is limited only by leakage. With the components shown in Fig. 1, the counter runs for over 30 minutes on a single charge.

Signal-powered sine-to- square wave converter

Figure 1 illustrates a sine-to-square-wave converter that is designed to plug into a 600 Ω audio oscillator. As it is signal powered, no external power source is required.

The $600-\Omega$ oscillator output Fig. 2a, is peak rectified in both directions by D_{1} and D_{2} in order to derive positive and negative supply voltages. Q_{t} and D_{6} form a differential
amplifier referenced to ground that symmetrically clips the sine wave as illustrated in Fig. $2 \mathrm{~b} . R_{1}$ is used to limit satura- ping. C_{5} and C_{6} are speed-up tion and D_{s} balances the input capacitors.
loading.
As illustrated in Fig. 2c the

signal at this point has sufficiently small rise time so that the rise time of the output stage, Q_{s}, is only limited by its device characteristics. The output waveform is illustrated in Fig. 2d and is essentially independent of frequency.

This circuit is capable of providing an ac square-wave output from 5 Hz to 600 kHz . The input level adjusts the ouput for 2 to 16 V pk-pk with $\pm 1 \%$ symmetry. The output waveform has a 20 -ns rise time and a $30-\mathrm{ns}$ fall time.

Fig. 1. Signal powered sine-to-square-wave converter schematic.

Fig. 2 Typical waveforms at various points in circuit shown in Fig. 1.

Differential to absolute value converter

A CIRCUIT FOR converting a differential-analog voltage to a single-ended absolute value voltage is shown in the figure. The circuit maintains a high input impedance in order not to load the differential input. A typical use of this circuit is in comparing a differential level to a threshold level with a
high measure of common-mode rejection.

The converter operates in the emitter-follower mode with one pair of transistor emitters developing the differential-input voltage between them. For example with the input polarity shown, the emitter of $Q_{1 A}$ assumes a voltage according to
the equation:

$$
\begin{gathered}
V_{e}\left(Q_{I A}\right)=V_{b}\left(Q_{1 A}\right)+ \\
V_{b e}\left(Q_{I A}\right)
\end{gathered}
$$

The emitter of $Q_{1 B}$ assumes the value:

$$
\begin{gathered}
V_{e}\left(Q_{I B}\right)=V_{b}\left(Q_{I B}\right)+ \\
V_{b e}\left(Q_{I B}\right)
\end{gathered}
$$

The voltage difference between the emitters of Q_{1} is:

$$
\begin{gathered}
V_{e}\left(Q_{1 A}\right)-V_{e}\left(Q_{1 B}\right)= \\
V_{b}\left(Q_{1 A}\right)+V_{b e}\left(Q_{1 A}\right)- \\
V_{b}\left(Q_{1 B}\right)+V_{b e}\left(Q_{1 B}\right)
\end{gathered}
$$

But since the 2 N 2803 is a matched-dual transistor

$$
V_{b e}\left(Q_{1 A}\right)=V_{b e}\left(Q_{1 B}\right)
$$

Therefore $V_{e}\left(Q_{1 A}\right)-V_{e}\left(Q_{1 B}\right)$
$=V_{b}\left(Q_{1 A}\right)-V_{b}\left(Q_{1 B}\right)$. But
$V_{b}\left(Q_{1 A}\right)-V_{b}\left(Q_{1 B}\right)$ is the differential input voltage. This voltage appears across R_{i} which sets i_{1}.

Since the minimum hfe of the 2 N3803 is 300 , the emitter current in $Q_{1 B}$ essentially matches the collector current. Therefore $i_{1}=i_{s}$. By making R_{s} equal to R_{i}, the voltage at the single-ended output is then
equal to the differential input.
$Q_{2 B}$ emitter does not contribute any current since it is in the cutoff state due to its base being at a higher potential than the emitter of $Q_{2 A}$. When the input polarity is reversed, $Q_{2 A}$ and $Q_{2 B}$ conduct and $Q_{1 B}$ is cutoff. It is apparent that the output voltage is also positive in this case.

Two dual transistors are used to form a differential to absolutevalue converter. The example shown compares a differential level to a threshold level.

High voltage dc-to-dc converter

This CIRCUIT CONVERTS a rectified line voltage (about 160 Vdc) to $\pm 15 \cdot \mathrm{Vdc}$. A conventional converter uses transistors with collector ratings of 400 V but this converter by a clever design technique, uses $135-\mathrm{V}$ transistors.

A cascade of three dc-to-dcconverters is constructed on a single tape-wound core. There are three input windings con-
nected in series and one output winding. Since all input windings are on the same core and are magnetically coupled, all three converters share the input voltage equally. The single output winding eliminates load hogging. This unit delivered +15 V at 50 mA and -15 V at 50 mA . Package size is 2.5 in. ${ }^{3}$ including line rectifiers.

A novel cascade scheme eliminates high-voltage transistors in this dc-to-dc converter.

Section 14

POWER SUPPLY CIRCUITS

Full-Wave Control with One Trigger and One Control Rectifier

0nly one control rectifier and one single-ended trigger, as shown in Fig. 1, are necessary to obtain continuously variable ac or dc full-wave output. Conventional circuitry requires more than one control rectifier and usually double-ended triggers.
The circuit offers increased reliability, simplicity and reduces substantially the components cost.

The voltage of the supply will be determined only by choice of components. Any voltage within the standard service power voltages may be designed into the circuit. In the trigger portion only R_{1} will have to be changed with change of input voltage. In the scr circuit, the semiconductors $C R_{2 A-\mathrm{d}}$ and the control rectifier scr will be picked out with the proper rating. Size and weight will not be affected. Thus a unit handling 2 kw will be capable of handling 4 kw with components rated for twice the voltage and twice the input voltage without much change of size and weight.

The semiconductor bridge consists of four rectifiers $C R_{2-A D}$ and one scr. Two rectifiers would be sufficient if a center tap transformer were used. However the weight and size will increase appreciably making center tap in most cases undesirable.

The scr is biased forward every half cycle of supply frequency due to the configuration of the bridge. Load current has always to pass through the scr, and, thus, the amount of load current will depend on the firing angle of the scr, which is in turn dependent on the firing of the unijunction transistor Q_{1}. Following the instantaneous polarities of the input, when terminal 1 is positive the path for cur-

FIC. l-Full-wave output is provided with one unijunction trigger and one controlled rectifier.
rent flow is through CR2A, the scr, and CR2D, to the load. When terminal 2 is positive, the path for current flow is through the load, CR2C, the scr, and CR2B to terminal 1, and load will be furnished controlled current at every half cyele.

The input to the trigger is connected across points 5 and 6. Point 5 is always positive with respect to point 6 and thus the supply between 5 and 6 is a suitable source of energy for the trigger. No separate rectifier bridge is needed. Resistor R_{1} acts as a limiting resistor for the zener diode $C R_{1}$ and the trigger circuitry. Zener diode $C R_{1}$ acts as a clipper to truncate the input wave and limit it to the proper level. Capacitor C_{1} and resistor string P_{1} and R_{2} make up the RC network which determines at which instant in the cycle unijunction transistor Q_{1} will fire.

Transistor Q_{1} fires into T_{1}, which transmits the pulse to the gate of the scr. A pulse will be generated every half cycle at an instant dependent on the setting of P_{1}. The latter may be remotely connected with light hook up wire or it may be driven by a miniature servo motor or replaced by a tube, tran-
sistor or other means of control when automatic or closed loop operation is desired. It may be eliminated by shorting terminals 7 and 8 and a transistor connected across C_{1} for purposes of automatic operation.
The trigger is always synchronized with the power bridge because both obtain power from the same source.

Resistor R_{s} provides the ability of the controller to work into highly ac inductive and ac motor loads. It dissipates not more than 3% of the load volt ampere.
Tests were conducted and the unit was used to adjust the speed and drive a single-phase ac induction motor, driving a centrifugal pump and fan, to adjust the speed and drive a uiversal motor of the type used in machine tools, and to adjust the light output of an incandescent high power bulb.

A control of this type, for 2-kw output, will weigh not more than 4 pounds.

Regulated Low Voltage Power Supply

Ability to produce positive and negative potentials with an impressive overall regulation derived $\mathrm{fr} \sim \mathrm{m}$ one the use of low cost diodes is the feature of the circuit shown in Fig. 1.

It was designed to supply well regulated low dual voltage potentials to transistorized time-controlled circuits. These transistor time-controlled circuits in turn would be used in test equipment that is concerned with the repair of Bell System 28 type (Automatic Sending and Receiving) data processing equipment.

Present commercially manufactured circuits do not provide a low dual voltage with accurate regulation for voltage input variation.

This simple single-phase regulated power supply requires the minimum diodes for rectification and regulation as well as electrolytic capacitors. Since the rertifier in this circuit conducts only when the unver ac input terminal is positive the first filter canacitor C_{3} is charged only once during each cycle of the supply voltage, likewise for filter capacitor C_{5} charging with regard to the negative portion of the cycle. The ripple frequency therefore is equal to the sunoly voltage frequency. When rectifier diode D_{1} is conducting during the half cycle the unper an terminal is positive, filter capacitor C_{3} will become charged instantaneously to the peak of the ac input voltage (less the conducting voltage drop through the diode) and maintain the dc voltage during the negative cycle.
The function of R_{1} (Fig. 1) is to minimize the large surge currents prevalent in half-wave circuits. Current flowing through R_{1} causes a voltage drop
which is greatest when the surge current reaches its peak and assumes a steady value when, after the first few cycles, the capacitor becomes fully charged. Resistor R_{1} also acts as a fuse in the circuit and protects relatively expensive components in the event of a short circuit across the load.

The functions of diode D_{2}, resistor and capacitors C_{4} and C_{6} in the negative section of the rectifier are the same as those of the positive section.

Voltage regulation is provided by diodes (zener) D_{5} and D_{6}. These diodes are connected across the power supplies load. This combination is fed from the unregulated supply voltage, V_{1}, through series chopping resistor, R_{3} and R_{4}. The flat voltage characteristic of the diode holds the load voltage essentially constant on the load current and/or supply voltage changes. A change in load current results in a corresponding change in diode current. Therefore, the voltage drop across resistors R_{3} and R_{4} remains unchanged with variations in load current. A change in input voltage, V_{1} produces a corresponding change in diode current which causes the change in voltage drop across resistor R_{3} and R_{4} necessary to cancel the change in input voltage, thus holding the load voltage constant.

Input voltage range is from 80 to 120 ac. Output of ± 22 volts can be increased or decreased with

FIG. 1—Regulated low-voltage power supply.
selection of zener diodes per required voltage. Regulation is ± 5 per cent.

Max current range is 100 ma , and can be increased with selection of high current capacity diodes. Diodes D_{1}, D_{2}, D_{3} and D_{4} are General Electric 1692. Diodes D_{5} and D_{5} are Western Electric type 1420.

Zener Diode Bias Clamp

Providing a stable bias voltage for electronic circuit without complex regulated power supplies has long presented a problem to the design engineer.
The problems involved with bias systems employing the raised common return for the unit power supply are numerous. In particular in those circuits where the bias is used to cut-off control tubes in vacuum tube relay devices, the overall sensitivity of the system is impaired by the bias voltage sliding up as the tube begins to conduct. To overcome this

FIG. 1-Zener diode provides ground return for bios supply.
effect, an International Rectifier MEZ-10 zener diode was used as a ground return for the power transformer as shown in Fig. 1.
An additional bonus was derived from the fact that with no filter devices the negative voltage generated exhibited very low ripple and was clean enough to be used as the power source for a twostage transistor pre-amp.
This system is suggested as an ideal source of both bias and transistor power in hybrid circuitry of this type.

Reference Voltage Polarity Reversing Circuits

T may be desired to obtain a reference voltage similar to one already existing in a circuit but of opposite polarity, or to obtain voltages of both polarities from a single zener diode. The circuits shown offer several ways of accomplishing this, if an ac supply larger than the reference voltage is available. In each case an ac voltage is developed with a peak to peak amplitude determined by the reference voltage and is then rectified with the desired polarity.

The circuit of Fig. 1 supplies a reference voltage of reverse polarity from an existing voltage E. During the ac input positive half cycle, \boldsymbol{C}_{1} is charged up to voltage E, since the drop across D_{2} is cancelled by the drop across D_{3}. On the negative half

FIG. 1-Voltoge of E is reversed in polority.
cycle, this voltage appears at the output, with the voltage drops across D_{1} and D_{4} cancelling. Filter capacitor C_{2} must be large enough to hold the output relatively constant during the input positive half cycle.

The second and third circuits show two ways of obtaining voltages of both polarities from a single

FIC. 2-Zener diode reploces two diodes of Fig. 1.

FIC 3-Addition of diode D_{a} permits odjustment of current.
zener diode. In Fig. 2, the zener diode performs the same function as D_{1}, D_{2} and E of Fig. 1, and the negative output is achieved in the same manner as in that circuit. A positive output voltage is readily obtained by rectifying and filtering the square wave across the zener diode with D_{1} and C_{3}.

A diode bridge is used in the circuit of Fig. 3. During the positive half cycle of the input, current flows through D_{1}, the zener diode, and D_{3}. Output capacitor C_{1} is charged up to the zener diode voltage, since the drop across D_{3} and D_{5} cancels. On the negative half cycle, D_{4}, the zener diode, and D_{2} conduct, with negative output across C_{4}. If needed, diode D_{A} shown connected with dashed lines in the ac input in Fig. 2 and 3 and its shunt resistor R_{2}, allow current adjustment for differing positive and negative output currents. The diode polarity is chosen to by-pass the extra resistor R_{2} during the half cycle supplying the greater current. All capacitors shown should be large enough so that only a negligible amount of ac appears across them.

High-Efficiency Power Supply Regulation

APOWER SUPPLY capable of regulating the dc output voltage with changes in load and/or input voltage is required for many applications. Most methods of achieving regulation require that the regulating device (transistor, vacuum tube, etc.) absorb the difference in power between extremes in load and/or line excursion. The efficiency of this type of regulator is poor, often as low as 20 to 30 percent.
Figure 1 is a schematic of a regulated power supply where the efficiency is in the order of 80

FIG. I-High-efficiency power supply for low-voltage applications.
per cent. By controlling the firing angle of a pair of silicon controlled rectifiers connected in the primary circuit of the transformer, the voltage delivered to the transformer may be controlled. The high efficiencies achieved are due to the fact that the rectifiers function as near-perfect switches, dissipating little power. The dc output voltage of the supply is referenced against a zener diode voltage and the resultant error signal E_{r} appears across the control windings of a full-wave magnetic amplifier. The magnetic amplifier provides the necessary gain and gate voltages for controlling the rectifiers. The loop has thus been closed between output and input of the power supply. An increase in the dc output results in a retarded firing angle which brings the output voltage back down. A drop in the dc voltage results in the firing angle being advanced, thus raising the output to its previous level.

Figure 2 iliustrates the ability of this arrangement to adapt to almost any output voltage as

FIG. 2-High-efficiency circuit for 150 -volt output and one per cent regulation.
required. A higher order of regulation has been achieved in this circuit by providing additional gain through the use of transistor Q_{1}.

Overload and short circuit protection are accomplished through the use of a relay circuit operated from current transformer T_{2}. Trimpot R_{5} is
adjusted so that relay K_{1} closes at the desired overload current, causing large reset voltage to be applied to the magnetic amplifier.

Gate voltage to the silicon controlled rectifiers is removed when the magnetic amplifier is fully reset, thus the primary voltage to the power supply is interrupted. Capacitor C_{4} determines the rate at which relay K_{1} is recycled and hence the quiescent output current during overload conditions. Upon subsequent removal of the short or overload, the output voltage will automatically return to its normal setting. Because of the high efficiency possible with this type of supply, operation at elevated temperatures becomes practical.

Variable High Current

Remote Power Supply

When silicon controlled rectifiers are used as the rectifying elements in power supplies, the output dc voltage can be varied without changing the ac input voltage. The conduction time of the scr's during each half cycle determines the average power that is delivered to the load. The conduction time is controlled with a pulse gating circuit synchronized with the line, and phase variable. The complete circuit is shown.

The filter choke is comected between the center tap of the transformer and ground. This allows the cathodes and gates of the scr's to remain at the output dc voltage at all times and makes scr firing easier and more reliable. The choke serves to limit ser surge currents and filters the output voltage. A filter capacitor is also

Power supply uses an scr thus enabling the output dc voltage to be varied without changing the input ac voltage.
used for additional smoothing. The rectifier, connected betwcen the center tap of the transformer, and the output, allows the choke to transfer its stored energy to the load when the scr's are not conducting. The transfer of stored energy is in effect a current transformation; it increases the output current capability of the power supply above the current ratings of the power transformer and the scr's.

The two scr's receive gate signals after their respective anodes have gone positive. Once turned on, the scr's conduct the remainder of the half cycle and are
turned off when the line voltage reverses itself. If the scr's are fired earlier in the cycle, the output dc voltage will increase as a result of longer conduction time.

Scr's receive their gating pulses from a pulse generator synchronized with the line and phase variable. The pulse generator consists of an RC charging network and a breakdown diode. The $0.1 \mu \mathrm{fd}$ capacitor charges at a rate determined by the series $R C$ circuit. Once the capacitor has reached the firing potential of the TI-42 breakdown diode, it fires and dumps the stored energy of the capacitor through the primary of the Thordarson RT-101 pulse transformer. This action generates a current pulse which is transformer coupled to the gate of the scr. The diodes connected across the $0.1 \mu \mathrm{fd}$ capacitors prevent them from charging in the negative direction, and insures that positive charging will start at the beginning of each positive half cycle, thus preventing erratic firing. Decreasing the resistance in the variable resistor will decrease the charging time of the $0.1 \mu \mathrm{fd}$ capacitor and cause the breakdown diode to fire earlier in the cycle. An increase of resistance will cause a corresponding delay.

A separate pulse generating circuit is provided for each scr. The variable resistors of each are ganged together to give simultaneous control. In order to utilize the fast rising wave front of the current pulse, the pulse generating elements should be located near the scr's. The variable resistors need only carry 60 cps ac and may be located a great distance from the power supply. It, therefore, lends itself to easy remote control.

The power output of this type power supply is limited only by the voltage and current ratings of power transformer, choke, scr's and rectifier. The components shown in the circuit provide a maximum output of 20 v and 60 a .

Automatic Chassis Ground Circuit

Line-operated, transformer-less equipment is often used with the chassis connected to one side of the line. If, in such a case, the chassis happens to be plugged into the power hi side, it is connected at line potential with respect to ground. This is a dangerous situation and often leads to electrocution of people operating a home TV set under such conditions.
Various tricks have been devised to minimize this possibility. For instance, polarized receptacles and relays have been designed to shut the circuit off if the plug is incorrectly inserted.
The device described here uses the Underwriters Laboratories plug with ground lug and establishes a true ground which automatically reverses polarity if the chassis is at line potential. If such a receptable is not available, the wire marked with an asterisk may be separately grounded to a water pipe, for example, to achieve the same result.
The only equipment required is a DPDT relay, break-before-make type, with contact capacity sufficient to operate the load. If the plug is inserted with the white blade side at ground, no potential is applied
to the relay coil and power goes to the load as shown. If, however, the side marked white is at line potential with respect to ground, the relay operates reversing the polarity of the power before transmitting it to the load, thus properly polarizing the output power.
If, for some reason, both lines are at high potential with respect to ground, a loud relay chatter will be heard and the operator may wish to resort to an isolation transformer.

Automatic chassis grounding polarity selector. Wire marked with asterisk may be grounded to water pipe if plug and receptacle lack ground lug.

VHF Balanced Parametric Doubler

The requirement for a moderate power solid-state source near the upper limit of vhf may be met by using active circuits to about 125 mc , followed by a low-loss passive multiplier. The circuit in Fig. 1 is a balanced configuration with several advantages: 1) It can handle twice as much power as a single-ended circuit using the same varactor diode. 2) The diodes are less expensive than comparable high-power units. 3) The drive current at $I_{1} \sin \omega_{0} t$ is cancelled in the output arm of the balanced bridge, thus simplifying the filter requirements. 4) Greater than 20 db of ω_{0} rejection is easily realized over the single-ended scheme when the bridge is balanced.

Fig. 1. Balanced parametric doubler for vhf operation. The two varactors are PSI type PC-116. The primary winding of T_{1} has two turns of \#18 enameled wire, centered and bifilar to the secondary which uses six turns of the same wire on a $1 / 4 \mathrm{in}$. diam. core. (See Fig. 2.) L_{1} has three turns of \#16 enameled wire, spaced one wire diameter apart, on a $1 / 4 \mathrm{in}$. core. L_{2} is the same as L_{1} except for a double tap one turn from the cold end. Capacitors should have mica, glass, or air dielectric.

The bridge trimmers alleviate the necessity of match-- ing diode pairs. At 25 C up to 4 watts at 125 mc may
be applied if the diode cathodes are thermally secured to a heat sink. An efficiency of 70 percent is achieved and the spurious content is about 40 db below $2 \omega_{0}$ with the filtering shown. Separate bias resistors allow the diodes independently to forward conduct a few degrees each cycle. A self-bias voltage of about -30 vdc is common. A fixed $-E_{b}$ of about $1 / 2$ that voltage is applied, since a zero $-E_{b}$ "cold start" would present a load that would be over an octave off resonance, a severe chore for the driver stage.

The filter inductors are $1 / 4 \mathrm{in}$. I.D. air core and spacing is one wire diameter. T_{1} is tight wound on a $1 / 4 \mathrm{in}$. nylon rod having the primary bifilar and in the center of the secondary for greatest mutual coupling as shown in Fig. 2. Physical symmetry is important for electrical balance. The series input network, and the bridge trimmers are first adjusted for minimum vswr between the driver and the doubler input. The filters at $2 \omega_{0}$ are next tuned for maximum output at 250 mc , and the bridge finally touched up to minimize ω_{0} in the output. Bias adjustments should be varied with input power and varactors to yield maximum efficiency. The output transducer taps may also be adjusted to match the diode bridge to the load.
collector circuit, one can obtain extremely high voltage gain. This is because the constant-current source simulates a very high load resistance though it permits the amplifier to operate at a reasonably high current level.

High-gain, single-transistor amplifier uses constantcurrent source in collector circuit.

400-Volt SCR Constant-Current Source

An scr will function as a linear amplifier if it is biased with the polarities shown in Fig. 1. High breakdown voltage, linear gain characteristics, and low cost combined with a TO-5 package make the SCR ideal for high-voltage applications. Present small-signal silicon transistors are seldom able to approach the 400 -volt capabilities of the 2N1599 SCR.

The anode is biased as a pnp transistor while the gate is biased as an npn device. The disadvantage of low current gain is easily overcome by using a high-gain driver, making possible full utilization of the high-voltage capabilities.

A 400 -volt constant current source was designed making use of the high-voltage and linear characteristics
of a 2N1599 SCR. Figure 2 shows the schematic of a 1 -ma constant current source with a compliance of from 10 v to 400 v . The differential amplifier (Q_{1}, Q_{2}) com-

Fig. 1. SCR bias for linear amplification.

Fig. 2. Constant-current supply using SCR as load-control.
pares the sampled output current with the voltage across a reference zener diode. The output signal from the differential amplifier is fed to a current amplifier ($Q_{\text {a }}$, Q_{4}) that controls the gate current (and thus the load current) in the SCR (Q_{5}).

Regulation, at $I_{L}=1 \mathrm{ma}$, is typically 0.25 percent with a variation in voltage from 10 v to 400 v . The output current can be adjusted approximately ± 10 percent.

Low-Loss Biasing Circuit

The inherently low base-to-emitter drop in germanium power transistors, coupled with the high leakage current, often makes it necessary to reverse-bias the base by returning it to a more positive source than the emitter to obtain stable operation at elevated temperatures. 'In applications where the emitter is connected to the most positive source, the reverse base biasing often is accomplished with a silicon rectifier in the emitter circuit. A typical example for this is the chopper-stabilized power supply in Fig. 1.

However, in applications where power consumption is critical, the emitter-rectifier type biasing decreases efficiency since the entire load current must flow through the rectifier. Reverse biasing can be better done by winding a small secondary on the filter choke, rectifying it and floating it on top of the de input as shown in Fig. 2.

This method improves efficiency by eliminating the load current from the biasing circuit while providing sufficient leakage current to insure stable operation to temperatures as high as $80^{\circ} \mathrm{C}$. The actual turns ratio and capacitor size are not critical, since R may be selected to provide propes biasing. For the circuit shown, a bias voltage of 6 volts was chosen with $C=0.56 \mu \mathrm{f}$ and $R=510$ ohms. Measurements show that, with $18-w$ output and $22-\mathrm{x}$ input, the emitter-rectifier biasing gives

Fig. 1. Emitter-rectifier biasing.

Fig. 2. Low-loss biasing.
an efficiency of 77.9 percent while the low-loss circuit's efficiency is 83.3 percent.

Constant-Voltage

Current Sink

Whenever clamped logic circuits are used, the need arises for a power supply with "negative" output current, or, in other words, a constant-voltage sink. Many methods are commonly used to get that current sink, namely:

- The use of a bleed resistor R_{B} (Fig. 1a) calculated to take, at $V_{c L}$, the maximum clamp cunrent plus the holding current of the power supply. When the clamp current goes to a minimum the power supply must provide $I_{\text {cLmax }}-$ $I_{c L m i n}+I_{\text {no id }}$. The disadvantages here are: the high power dissipated in $R_{l s}$ and the need of a separate power supply for the clamp. The regulation is as good as that of the power supply.
- The clamp supply is replaced by a zener diode (Fig. 1b) that will develop $V_{C L}$ when $I_{C L}$ flows through it. Capacitor C helps to filter the transients that might appear. The disadvantage is that the regulation is poor. The impedance is that of the zener.

Constant-voltage current sinks: bleed resistor, 1a; zener diode, 1b; two supplies, 1c; and recommended dc-amplifier, emitter-follower circuit, 1d.

- Two power supplies are connected in series (Fig. 1c). $P S_{2}$ provides for $V_{c L}$, and $P S_{1}+P S_{2}$ give $V_{c c,} I_{b 2}=$ $I_{C G}-I_{C L}$. The main disadvantage is the need for two power supplies, one of them ($P S_{1}$) being floating.

The new method proposed here (Fig. 1d) consists of a dc amplifier driving an emitter-follower power transistor of the proper polarity (pnp for positive clamping voltage). The input of the dc amplifier is the comparison between the clamping voltage being controlled and a regulated voltage of opposite polarity (the base-bias voltage of the system would do). With some simplifications, the output impedance Z_{6} is

$$
Z_{0}=\frac{h_{\mathrm{i}}}{\beta_{1} \beta_{2}} \frac{R_{1}}{R_{1}+R_{2}}
$$

where the parameters apply, of course, to the operating point, determined by R_{3} (h_{4} o is the most nonlinear in this case).

AC Power Interlock

If you start your day turning on a lot of lab equipment, or if you would like to control many ac powered units from a central point, this circuit will make things easy.

Any unit plugged in receptacle 1 , drawing anywhere from 5 w to the amount allowed by the $D_{2}-D_{3}$ rating, will produce a 60 cps square wave at the base of Q_{1} when the unit is turned on, Q_{1} and D_{4} will energize $R Y_{1}$ on the negative cycles of the ac line, and C_{2} will hold $R Y_{1}$ in on positive cycles. Closure of $R Y_{1}$ applies power to receptacle 2. Thus, the power switches of units in receptacle 1 control the power to units in receptacle 2 with no re-wiring. D_{1}, C_{1} and R_{1} produce positive bias across D_{2}, which holds Q_{1} off when units in receptacle 1 are all off. The $\mathrm{x}-\mathrm{x}$ and \mathbf{y}-y points indicate additional receptacles, if needed.

AC power interlock.
In the circuit shown, the diodes have the following ratings:

$$
\begin{aligned}
& D_{1}, D_{4}: 0.5 \mathrm{amp}, 200 \mathrm{v} \\
& D_{2}, D_{3}: I=\frac{\mathrm{P}_{\max }(\operatorname{Recep} 1)}{130}, 50 \mathrm{v}
\end{aligned}
$$

Combined Battery ConverterRegulator Power Source

IN BATTERY-POWERED INSTRUMENTS, regulators frequently are needed to allow for a wide range of battery voltages while converters are also needed to permit isolation of the equipment from the supply, and to provide the required operating voltages. This circuit combines both functions in
one stage, saving space and components. In the circuit shown, excess power is dissipated in two transistors instead of one series transistor, and operation at lower input voltages is possible due to the reduced voltage drop of only one transistor, $V_{\text {sat }}$.

The converter transformer is conventional except for the addition of the control winding. The dc voltage from this winding is compared with a reference voltage from a zener and the difference used to bias the converter transistors.

One such arrangement tolerated an input voltage of 11.5

Battery converter-regulator uses extra control winding to bias converter transistors.
to 19 V and gave an output of 15.5 to 16.5 V at an efficiency of 73 percent at the low input voltage.

Better regulation can be obtained by increasing the voltage of control winding and that of reference diode.

Backward-Diode Power-Supply Reference Elements

In many applications a power supply is required which operates from a single unregulated supply of 6 v or less. Temperature-compensated zener diodes cannot be used as voltage reference elements since they are not available with

Fig. 1. Characteristic curves of backward diode with series and parallel resistors.
voltages below 6 v. Forward-biased diodes (e.g. stabistors) can be used for reference at low voltages, but their temperature coefficient (about $-0.3 \% /{ }^{\circ} \mathrm{C}$) is too large for many applications. A combination backward-diode, resistor network can, however, be an efficient solution to the problem.

The V-I characteristic of a typical backward diode is
shown in Fig. 1a. If a resistor, R_{1}, of the proper value is paralleled with the backward diode, the combination will approximate a constant-current characteristic over a range of about 100 mv (Fig. 1b). If another resistor, R_{2}, is connected in series, the voltage at which the constant-current region occurs can be increased (Fig. 1c).
A simple series-regulated power supply using the backward diode-resistance network as a reference is shown in Fig. 2. Transistor Q_{1} serves as the series regulator and Q_{2} serves as the error voltage amplifier in a manner similar to conventional supplies. Series resistor R_{2} is selected so that the voltage at which the constant-current region occurs corresponds to the base-emitter voltage, $V_{B E}$, required by Q_{2} at its nominal operating point. Resistor R_{3} determines the output voltage according to the equation:

$$
V_{o u t}=V_{B E}+I_{r e t} R_{3}
$$

Hence $V_{\text {out }}$ can be adjusted to any desired value between $V_{B E}$ and a value slightly below the minimum $V_{i n}$ simply by selecting the proper value of R_{3}.
Since the backward-diode, series-resistor network presents a very large impedance at the base of Q_{2}, any out-

Fig. 2. Series regulated power supply with backward-diode reference.
put voltage changes are transmitted to Q_{2} 's base without attenuation, as in a conventional supply where a voltage divider is used between the output and base of Q_{2}. This gives higher loop gain with a consequent improvement in voltage regulation, output impedance, and power efficiency. The use of a current reference rather than a voltage reference also results in improved flexibility since a wide range of current reference values is available.
The operating temperature range of the circuit is restricted since the base-emitter voltage of Q_{2} must stay within the constant-current range for the regulation to be effective. The operating temperature range could be increased by using a resistor with a negative temperature coefficient for R_{2}. This would permit the voltage at which the constant current characteristic occurred to track the base-emitter voltage of Q_{2}.

In an actual power supply, as shown in Fig. 2, a germanium backward diode having a peak-point current of 100μ a was used in parallel with a resistor of 1.3 K . This combination exhibited a constant-current characteristic of 180μ a over a voltage range of 100 mv to 180 mv . Test results on the supply are shown below compared with a twotransistor supply using three series-connected silicon diodes as a reference.

	Tunnel Reference	Silicon Reference
Input Voltage	$6 \mathrm{v} \pm 10 \%$	$6 \mathrm{v} \pm 10 \%$
Output Voltage	3 v	3 v
Input Regulation	$100: 1$	$60: 1$
$\left(\Delta V\right.$ in $\left./ \Delta_{\text {out }}\right)$		
Output Impedance	0.4 ohm	20 ohms
Temperature Coefficient	$0.04 \% /{ }^{\circ} \mathrm{C}$	$-0.33 \% /{ }^{\circ} \mathrm{C}$

Second Breakdown Gives Fast Pulses

Whenever clamped logic circuits are used, the need arises for a power supply with "negative" output current, or, in other words, a constant-voltage sink. This is because, when several logic circuits are clamped simultaneously, the load actually becomes a generator.

The circuit shown here, gives any constant voltage from 5-15 Vdc and will sink up to 3 A of reverse current The configuration is similar to a conventional shunt-regulated power supply except for the reversed load. Regulation is better than 2% for all voltages.

In the diagram, the sink is connected to +33 V via 8 ohms resistance. This simulates the maximum load condition. Diode $C R_{z}$ prevents current from being supplied in the event of an external short. It also prevents damage due to accidental reversal of the external connections.
The shunt-regulator transistors Q_{3}, Q_{4} and Q_{3}, are derated to prevent loss of gain at high current levels. They are mounted on a common heat sink to distribute the temperature rise. Kesistors R_{9} thru $R_{t h}$ equalize the collector currents. Capacitors C_{1} and C_{2} prevent fast current changes from affecting the clamp voltage.

Resistor R, limits the drive

Current sink absorbs 3 -A reverse current. Clamping voltage is adjustable over the range 5-15 V.
current to the shunt transistors. Because Q_{2} bypasses this drive current, the shunt transistors turn on when Q_{z} is cut off. At this time the clamp voltage is low and the clamp current is high. As Q_{z} is turned on, base drive to the shunt transistors decreases, thus increasing the clamp voltage and decreasing the clamp current.

Resistor R_{6} supplies drive current to Q_{i}. Transistor Q_{t} controls this drive current. Thus when Q_{t} is off (R_{z} wiper at bottom), Q_{z} is fully on. As the arm of R_{z} moves toward the positive line, Q, starts to turn on and Q_{2} starts to turn off.

Resistor R_{\star} keeps the shuntregulator transistors alive in the absence of load current.

Diode $C R_{t}$ turns on the transistors if a short occurs across C_{2}.

Feedback from the load to the reference amplifier is via resistors R_{4} and R_{5}. Feedback control R_{b}, is preset during alignment to give $16-\mathrm{V}$ output with the load disconnected. This adjustment is made with R_{2} in the extreme clockwise position.

Universal Transformers

Here is a novel way to obtain a wide variety of output voltages from a single transformer, using a minimum number of windings. The trick is to use a number of secondary windings giving output voltages in ratios of powers of three. Every voltage step from zero to the sum of the secondary voltages can then be obtained by switching the winding connections. The voltage increments will be determined by the smallest winding voltage.

The example shown in the figure bas three secondaries of $1 \mathrm{~V}, 3 \mathrm{~V}$, and 9 V . In this case, the smallest voltage obtainable is 1 V and the largest is 13 V . But it is also possible to obtain all the intermediate voltages in steps of 1 V . For example: 2 V is obtained by connecting the $3-V$ winding and
the 1-V winding in series opposition; 3 V is obtained by using the $3-V$ winding alone; 4 V is obtained by connecting

OUTPUT VOLTS	I-VOLT WINDING	3-VOLT WINDING	9-VOLT WINDING
1	+	0	0
2	-	+	0
3	0	+	0
4	+	+	0
5	-	-	+
6	0	-	+
7	+	-	+
8	-	0	+
9	0	0	+
10	+	0	+
11	-	+	+
12	0	+	+
13	+	+	+

Connections for Transformer with Three Secondaries.

Windings required for transformer giving 1 to 13 V in 1 V steps.
the $3-\mathrm{V}$ winding and the $1-\mathrm{V}$ winding in series aiding; etc.
The table shows the possible connections for the transformer described in the example. " + " denotes a winding in phase with the required output, "-" denotes a winding in antiphase with the output, and " 0 " denotes a winding not used. Note that redundant windings, denoted by " 0 " in the table, are simultaneously available for driving a separate load if

equired.

There is a considerable difference in regulation for different output voltages. Winding impedances are always additive, regardless of phase. Thus a $13-!$ and a $5-\mathrm{V}$ connection will both give the same secondary impedance, as both connections use all three windings. Note however that the percentage regulation will be different due to the different total voltages.

The technique described can be extended to any number of windings. Thus adding a fourth winding with a voltage of 3^{3} or 27 V will give all voltages up to 40 V in steps of 1 V . The relationship is given by the equation

$$
\begin{aligned}
& S= \sum_{\Sigma}^{(n-1)} 3 x \\
&=0
\end{aligned}
$$

where S-number of steps, and n-number of secondary windings.

Precision full-wave rectifier uses

only one

op amp

Operational amplifiers are now widely used in precision linear rectifiers to overcome the limitations of simple diode rectifiers. But, for a full-wave rectifier, most conventional circuits need at least two op amps. The circuit shown in Fig. 1 provides full-wave rectification with only one IC op amp, which is used simultaneously in two modes - as a linear amplifier and as a switch driver. Another feature of the circuit is that it uses only two precision resistors instead of the six normally required. ${ }^{1}$

The circuit operates as follows: Because $R_{t}=R_{z}$, the voltage at point B is always equal in magnitude but 180 degrees out of phase with $e_{i n}$, the input voltage. When $e_{\text {in }}$ is positive, transistor switch Q_{1} is closed and Q_{z} is open. Under these conditions $e_{i n}$ is coupled directly to the output. When $e_{i n}$ is negative, switch Q_{1} is open and Q_{z} is closed, coupling the voltage at point B to the output. Since this voltage is an inverted version of the negative input, the output is again positive and full-wave rectification has been achieved.

To see the functions of the individual components, let's look at the circuit operation in more detail: Consider the case when $e_{i n}$ is positive. The current into R_{t} will all flow into R_{z}, assuming an ideal op amp. Since $R_{i}=R_{z}$, the voltage at point B will be $-e_{i n}$, and the voltage V_{A} at point A will be $-\left(e_{i n}+V_{C R}+\right.$ $\left.V_{C R 4}\right)$, where $V_{C R J}$ and $V_{C R G}$ are the voltage drops across zener diodes $C R_{\text {s }}$, and $C R_{\text {b }}$. Because one diode is biased in the reverse or zener direction and the other is biased in the forward direction, the potential at point A, using 1N4734 diodes (with a nominal 5.6 -volt zener voltage), is:

$$
\begin{gathered}
V_{A}=-\left(e_{i n}+6.1\right) \\
=-\left(e_{\mathrm{in}}+0.5+5.6\right)
\end{gathered}
$$

Though $e_{i n}$ may be very small, it is sufficient to turn off transistor Q_{2} via forward-biased diode $C R_{p}$, leaving a high-im. pedance path between point B and the output.

Transistor Q_{1} is connected to point A through $C R_{b}$, but no voltage is transferred to the gate of Q_{1} since $C R_{1}$ is biased off. The gate and source of Q_{i} are therefore at the same potential. This is the condition for minimum source-to-drain channel resistance in a FET. The input voltage $e_{i n}$ is therefore coupled directly to the output.

Fig. 1. Unusual Iinear full-wave rectifier uses fewer expensive components than other circuits hav. ing equal performance.

When $e_{i n}$ is negative, similar conditions apply, but with opposite polarities so that Q_{1} is off and Q_{z} is on.

So, the voltage at point B is always linearly related to that at the input. Also, a nonlinear switching voltage, having the desired polarity at the correct time, is available at point A.

The diodes merely switch noncritical voltages; the only requirement is that the zener voltage must exceed the pinchoff voltage of the FET. The FET switches, in the signal paths, act as low value pure resistances, with no offsets.

The circuit gives excellent results up to a few kilohertz. Fig. 2 shows a typical error plot. For higher frequency operation, the FETs could be replaced with MOSFETs to take advantage of their superior high-speed switching characteristics, Also, the LM201 could

Fig. 2. Maximum error over a $\pm 3 \mathrm{~V}$ input range is less than $\pm 2 \mathrm{mV}$ ($\pm 0.066 \%$ of full scale).
be replaced by a higher bandwidth op amp.

Reference

1. "Full Wave Rectifier," Handbook of Operational Amplifier Applications, Burr-Brown Research Corp.,
p. 73 .

Section 15

In-Phase, Out-Of-Phase Sensor

HERE is a circuit that I wish I could have developed many years ago. This in-phase, out-ofphase sensor is extremely useful. One application is the determination of the phase of an output signal that has gone through several transformers. Many transformers do not have phase markings and one can not be sure whether the output signal, using these transformers, is in phase or 180 degrees out of phase. This phase sensor will determine phase relationships of this nature.

The circuit operation is as follows. Transistors Q_{1}, Q_{2}, Q_{3} and Q_{4} are connected to the secondaries of reference transformer T_{2} so that, during one haif
cycle of the reference signal, they are all biased to pass current and during the remaining half cycle of the reference signal they are all biased to cut off. Notice the dots on the primary and the secondaries of transformer T_{2}.

Assume that, during the half cycle of the reference signal when the transistors are biased to pass current, an in-phase input signal is polarized to cause conventional current flow in the primary of transformer T_{1} as shown in the diagram. If, then, the phase relationship of transformer T_{1} is arranged as indicated by the dots in the diagram, conventional current flow in the remainder of the circuit will be as indicated by the dotted lines.

Notice that diode $C R_{1}$ is forward biased, while diode $C R_{2}$ is reverse biased. This is the key to the

circuit operation. Since diode $C R_{1}$ is forward biased, the half-wave rectified signal that passes through transistors Q_{1} and Q_{21} is filtered and mostly dropped across the load $R L_{1}$.
On the other hand, since diode $C R_{2}$ is reverse biased, the half-wave rectified signal that passes through transistors Q_{33} and Q_{4} is dropped mostly across diode $C R_{2}$ before it is filtered. The slight amount that remains is barely detectable across the load $R L_{2}$.

In the circuit that was constructed in the lab, the loads were 1000 -ohm resistors and the input and reference signals were 20 -volt peak to peak sine wave signals at a frequency of 6.4 kilocycles. The output signal developed across the in phase load, $R L_{1}$, was 4.4 volts peak. The output signal developed across the out of phase load, $R L_{2}$, was barely detectable.

When the input signal is 180 degrees out of phase with the reference signal, the larger half-wave rectified filtered signal will be developed across the out of phase load $R L_{2}$.

High-Speed Threshold Device

FIG. I-The three transistors are type 2N384 and tunnel diode TD is a IN2939 (1-ma peak).

FIG. 2-Output when input is always above the threshold. The horizontàl scaie is $1 \mu \mathrm{sec} /$ div.

Atunnel diode, biased in its switching mode, is being used as a current threshold device. It is fast ($0.02 \mu \mathrm{sec}$ rise time) and puts out a constant amplitude pulse when the threshold value is exceeded. The signal current is analog video information and is sampled every microsecond. If the signal is above the threshold when it is sampled,
a $0.5-\mu \mathrm{sec}$ pulse is generated.
In Fig. 1, transistors Q_{1} and Q_{2} are used in a circuit that has characteristics of both a current mode logic switch and of a Schmitt trigger circuit. If the 390 -ohm resistor in the collector circuit of Q_{1} were shorted out, the base of Q_{2} would be at fixed potential and a 1 -volt rms sine waveform at the base of Q_{1} would cause the 2 -ma emitter current to be switched back and forth into the two collector circuits. With the resistor in the circuit, the potential at the base of Q_{2} varies with the collector current of Q_{1} in a manner to speed the switching action.

FIG. 3-Output lat top) for the input shown at bottom Scale is $2 \mu \mathrm{sec} / \mathrm{div}$.

The circuit is now in the configuration of a Schmitt trigger in which saturation is prevented by using the small collector resistor. Thus, drift transistors may be used and biased properly to achieve highspeed operation.

When the emitter current is switched into the collector circuit of Q_{2}, a small positive voltage appears at the negative terminal of the diode (holding Q_{3} off) and current flows into that terminal. When the emitter current is switched back to the other transistor a current flows out of the negative terminal of the diode whose magnitude is

$$
E_{\text {bias }} / 20 \mathrm{~K}+I_{\text {in }}
$$

If this current exceeds 1 ma , the tunnel diode switches to its high-voltage state and turns transistor Q_{3} on. If the current is less than 1 ma the tunnel diode stays in its low-voltage state and holds Q_{3} off. The potentiometer is used to set the discrimination level of the Schmitt trigger and hence the fraction of the $1 \mu \mathrm{sec}$ period in which the tunnel diode is reset.

Figure 2 shows the output that results when no signal current is present and the bias current is greater than the threshold current of the tunnel diode. If the bias current were less than the threshold current, there would be no pulse output.

The upper waveform in Fig. 3 is the output that results from an input shown in the lower portion of the figure. The bias current is set so that the circuit triggers at some fraction of the signal current maximum amplitude. A reliable threshold is obtained because the value of the peak current of the tunnel diode is considerably more stable than most semiconductor parameters.
The threshold may be varied electrically by controlling $E_{\text {bias }}$, possibly with some feedback function.

Large Slope Frequency Discriminator for Low Frequencies

Ability of a frequency discriminator to perform in a satisfactory manner can be thought of as a function of the overall Q of the circuit. For high Q 's the discrimination would also be of a high degree. One of the problems in low-frequency discrimination is obtaining a Q high enough to yield the desired response characteristic, such as that shown in Fig. 1. The circuit used to obtain this response is shown in Fig. 2.

This problem is approached here from the standpoint of utilizing high Q coils and capacitors in conjunction with amplifiers for the purpose of gaining the benefit of the gain-bandwith product. The idea in many cases is to obtain a large de output for a small shift away from the center frequency of the discriminator. The intuitive conclusion is to obtain as much attenuation rate as is required from each amplifier to produce the degree of discrimination desired. (Individual slopes contribute in direction proportional to the final output slope). This effect can be readily achieved by the use of high Q amplifiers. A brief explanation of the operation of the circuit is as follows: consider a frequency below that of f_{c} entering the discriminator; the amplifier tuned to a frequency f_{1} below f_{c} will exhibit an output much greater than the output of the amplifier tuned to some frequency f_{2} above f_{c}; hence, the outputs of the reversed diodes will differ by an

FiG. 2-Circuit of low frequency discriminator.
amount equally as great. These voltages are smoothed and added resistively thereby producing a dc output that is directly proportional to the difference in the input frequency and f_{c}. The maximum slope that has been obtained to date is 0.15 volt per cycle at 1.5 kc . This is by no means an upper limit. Such a limit would exist only in the ability of the designer to obtain higher Q's by means of higher μ tubes and proper design of the amplifiers with higher Q coils and capacitors; it might be added

FIG. I-Discriminator response characteristic.
that the separation of f_{1} and f_{2} is limited by the individual Q's.
The detailed mathematical treatment of this circuit would be of considerable interest but for practical applications all that is needed is a knowledge of the band of frequencies of interest, the desired output slope and a design equation.
The method of deriving a useful design equation was to approximate the response curves of the amplifiers by two isosceles triangles. The region of interest lies between f_{1} and f_{2} so that we have the simplest of problems with which to work-two straight lines. The resulting equation is

$$
e_{o}=K K^{\prime} e_{\Delta_{f}} 2\left(f-f_{c}\right) \text { where } f_{c}=\frac{f_{1}+f_{2}}{2}
$$

where
$K=$ attenuation rate of amplifier (assuming $K_{1}=K_{2}$ for both)
$K^{\prime}=$ loss factor encountered from the amplifier's ac output to the dc output
If the loss through the diode is about $1 / 2$ and the loss due to resistive addition is $1 / 3$, then $K^{\prime}=1 / 6$, which was the case here.

The slope of the discriminator curve varies in

FIG. 3-Analysis of discriminator circuit.
direct proportion to the level of the input voltage, $e_{\Delta f \text {. This could prove to be detrimental in some }}$ cases but at the same time this fact may be put to use for the purpose of increasing the slope without having to make any actual circuit changes.

The following is a simple treatment of the circuit response. The design equations are provided.

Consider the generalized diagram of discaim-

FiG. 4 - Approximation of response curves.
inator given in Fig. 3. Assuming equal gains and attenuation rates in the interval $f_{1} \leqslant f_{c} \leqslant f_{2}$, a close approximation to the response curves, as shown in Fig. 4, can be obtained.
If only the area under the two response curves bounded by f_{1} and f_{2} is considered the following treatment may be applied with the introduction of little error:

Substituting the following

$$
\begin{aligned}
& y_{(1)}=G_{1} \quad y_{(2)}=G_{2} ; \quad G_{\max }=y_{4}=y_{2} ; \quad G_{\min }=y_{1}=y_{3} \\
& f_{1}=x_{1}=x_{4} \quad f_{2}=x_{3}=x_{2} \quad x_{(1)}=f=x_{(2)} \\
& G_{1}=\frac{G_{\max }-G_{\min }}{f_{2}-f_{1}}\left(f-f_{1}\right)+G_{\text {min }} \\
& G_{2}=\frac{G_{\max }-G_{\min }}{f_{1}-f_{2}}\left(f-f_{2}\right)+G_{\text {min }}
\end{aligned}
$$

Subtracting

$$
\begin{aligned}
G_{1}-G_{2} & =\frac{G_{\text {max }}-G_{m i n}}{f_{2}-f_{1}}\left(f-f_{1}\right)-\left(f_{2}-f\right) \\
& =K \quad 2 f-\left(f_{1}+f_{2}\right) \\
G_{1}= & \frac{e_{1}}{e_{\Delta f}} \quad G_{2}=\frac{e_{2}}{e_{\Delta f}} \quad G_{1}-G_{2}=\frac{e_{1}-e_{2}}{e_{\Delta f}}
\end{aligned}
$$

which yields

$$
e_{o}=K K^{\prime} e_{\Delta f} 2\left(f-f_{c}\right)
$$

Photo Diode Pickoff

Gives Accurate

Angular Reference

The measurement of servo system lag often delineates a requirement for an accurate angular reference. The system described has an accuracy of 0.17 degree in either cw or cew rotation.

A slot ($0.005 \times 0.1875 \mathrm{in}$.) is milled near the periphery of a $5 \frac{1}{2} \mathrm{in}$. diameter disc. A synchro control transmitter B_{1} and the disc are rotated by motor B_{2}. The disc (Fig. 1) rotates between the photo diode
$C R_{1}$ and the light source DS_{1} while the light beam is restricted by a shield in which is milled a $0.005 \times$ 0.1875 in. slot.

The photo diode senses the change in light and produces a positive pulse (Fig. 2). This pulse is then fed to an emitter follower Q_{1} which transfers the pulse to the Schmitt Trigger circuit Q_{2} and Q_{3}. By adjusting the threshold control R, the trip point of the Schmitt Trigger may be set near the peak of the input pulse and the optical response error becomes insignificant (less than 0.02%).
Accuracy is primarily dependent upon the rotational radius of the slot in the disc and the backlash of the gears. A $2-\frac{1}{2}$ in. rotation slot radius has a circumference of 15.7 in . Thus, the combination of a 0.005 in . light beam and the 0.005 in . slot in the disc represents a maximum response error of 0.115 degrees. Using Precision 1 gears and maintaining a 0.001 in . center distance difference between mountings, the backlash is held at 0.17 degrees or less. Therefore, the maximum total error is the backlash, 0.17 degrees, plus $0.115 / 2$ degrees, (maximum optical response error) either direction of rotation, or 0.222 degrees.

Fig. 1-Photo-Diode Pickoff.

Fig. 2-Circuit Incorporating Photo-Diode Pickoff

Video Switch for Radar

The overall function of a video switch is to either pass or blank out video signals going to a ppi visual display.

After the video pulses have gone through examinations in other system equipment, a blanking gate input pulse is applied to the switch if the video fails to identify itself as the signal from the associated radar set. If the blanking gate is present, no video output appears on the visual display. The switch is transient free, hence, no false video indications appear on the display.

Resistors R_{1} and R_{2} form a voltage divider, which
sets the operating point for Q_{1}. The video pulse is coupled to an adder circuit formed by R_{5} and R_{6} through emitter follower Q_{1}. When the video output pulse of the adder circuit is applied to the base of Q_{5} with no input gate applied to Q_{2} and Q_{3} the video output is coupled through emitter follower Q_{5} and R_{18} to the video output terminals.

With no gate input to the junction of R_{10} and R_{11}, Q_{3} remains in a nonconducting state, while Q_{2} conducts. The voltage divider formed by R_{15}, R_{16} and R_{17} is such that the voltage at the junction of R_{16} and R_{17} keeps Q_{4} in a nonconducting state. The collector of Q_{3} is at approximately 10 v , thereby maintaining the dc level of the output of the adder high enough to keep Q_{5} in a conducting state. The video output is developed across emitter resistor R_{18}.

A positive gate input pulse rising from approximately 2 to 7 v at the junction of R_{10} and R_{11} will change the operating states of Q_{3} and Q_{2} and, by the same

Video switch passes or blanks out video signals going to a ppi visual display.
voltage divider technique, keep Q_{5} in a nonconducting state for the duration of the gate input. Under these conditions no video output pulse will exist.

The input video pulse used was 5 v in amplitude, and the attenuation ratio between input and the video output is $2: 1$.

Sampling Circuit

The sampling circuit shown in Fig. 1 and in block diagram form in Fig. 2 was designed to pick out desired periodic information and to eliminate noise and other unwanted voltages which appeared.

By combining two cathode coupled monostable multivibrators which generate pulses whose widths are approximately equal to $R C \quad\left(R_{1} C_{1}\right.$ in the first monostable multivibrator and $R_{2} C_{2}$ in the second monostable multivibrator) and which are also linear functions of the dc bias voltage at the grids of the normally cut off tubes (tube V_{1} of the first monostable multivibrator and V_{3} of the second monostable multivibrator), a very versatile circuit can be designed simply by picking $T=R C$ approximately equal to the width of desired pulse and then adjusting their size using potentiometers P_{1} and P_{2} to fit each particular case. In this way, the control

FiG. I-Sampling circuit using two cathode-coupled multivibrators.

FIG. 2—Block diagram of sampiing circuit.

FIG. 3-A narrow-width signal appearing at the beginning of the cycle is shown at (A). A medium-width signal appearing near the end of the cycle is shown at (B) and a very wide signal appearing near center of the cycle is shown at (C).
pulse at the output of tube V_{4} can be made any desired width and placed at any point within the cycle. (Fig. 3.)

With this circuit and a dual trace scope, it is a simple matter to position the control pulse so that only the information of interest is allowed to pass through the sampling circuit.

In Fig. 3, one application is shown where this circuit was used to pick out a sine shaped curve which appeared periodically at random positions amid various other voltages which completely obscured it.

The circuit shown in Fig. 1 was used with pulses whose frequencies were low enough so that it was possible to use a relay. At higher frequencies, a diode gate was used.

Pulse Coincidence Detector

This circuit will show coincidence of any two pulses that are 100 microamperes in amplitude and that coincide for at least 1 microsecond.

Coincident pulses applied to Q_{1} and Q_{2} will trigger
the silicon controlled rectifier. Its anode current gives a visual indication of pulse coincidence (turn on L_{1}). The normally closed switch (SW_{1}), returns the scr to a non-conducting state and turns the light off.
The circuit shown was used to show the occurence

Pulse coincidence detector.
of coincident outputs from the last stages of two mag-netic-core/diode-type counters. Q_{1} and Q_{2} were driven by windings on the cores of the last stages of the counters.

Pulse Absence Detector

This circuir not only detects the presence or absence of a pulse train, but it is able to indicate whether the level remains positive or negative after cessation of pulsing.

When a pulsed signal which has dc levels of $\pm 3 \mathrm{v}$ is received, the signal is rectified by the voltage doubler and filter arrangement consisting of $C_{1}, C_{2}, C r_{1}$, and $C r_{2}$. This voltage is more negative than -4.5 v and serves to cut off transistor Q_{1}. Transistor Q_{2} then saturates, with base current being supplied by R_{2}. On negative half cycles, Q_{3} is pulsed with base current through R_{3}. The pulse of Q_{3} collector current is absorbed by Q_{2}, and the collectors of Q_{2} and Q_{3} remain at near-ground potential. On positive half cycles, Q_{3} is cut off, which tends to cause its collector to go more negative. Under these conditions, the collector and emitter of Q_{2} interchange functions, and it becomes an emitter follower. This tends to cause the collector of Q_{3} to go positive, which, in turn, causes Q_{2} to function in its original manner. The collector of Q_{3} is thereby clamped to ground for the duration of the input signal.

If the signal stops (and remains) at its positive $(+3 v)$ level, Q_{1} saturates with base current through R_{1}, causing the base of Q_{2} to drop toward -4.5 v , cutting off Q_{2}. The positive level also cuts off Q_{3}, and the collector of Q_{3} becomes negative. Q_{4} and Q_{6} conduct under these conditions, allowing M, the permanent magnet dc motor, to run.

If the signal stops in its negative state, Q_{1} is again turned on, and Q_{2} is turned off. Q_{3} is turned on, causing the collector voltage of Q_{3} to go positive. This allows conduction of Q_{5} and Q_{7}, making the motor run in the opposite direction.

Transistors Q_{6} and Q_{7} have limit switches $L S_{1}$ and $L S_{2}$ in their respective base circuits to limit travel when the motor is arranged to drive an actuator over a limited distance.

Fig. 1. Pulse absence detector and actuator amplifier.

FM and PDM information can be derived from the signal in other detectors, but this information is not available when the signal stops in one of its dc states.

Pulse and DC Monitor Circuit

Described is a circuit to perform the three de-tection-monitoring functions shown in Fig. 1. These functions might arise when it is desired to indicate presence of a continuous train of pulses, absence of one or more pulses in a train, or to monitor a dc voltage.

The circuit to perform these functions is the controlled monostable multivibrator shown in Fig. 2. For every pulse at the input, Q_{3} turns on, bringing point (A) to -30 v . This holds Q_{1} off, so output 1 is high, and output 2 is low. When the elapsed time since the last pulse arrived exceeds the preset limit T determined by $R_{1} C_{1}, C_{1}$ charges through R_{1} until (A) is at about +1 v , turning Q_{1} on and Q_{2} off. Output 1 is now low, and output 2 is high. Thus, functions (a) and (b) of Fig. 1 have been accomplished.

FIG. 3-Circuit that performs functions of FiG. I.
With dc inputs, C_{2} is by-passed. When the input is high, Q_{3} is on, Q_{1} is off, Q_{2} is on, and output 2 is low. If the input drops to a low value for a time greater than the limit T set by $R_{1} C_{1}, Q_{1}$ turns on, Q_{2} off, and output 2 is high. Thus, function (c) of Fig. 1 is accomplished.
Diode $C R_{3}$ permits rapid charging of C_{1} when (A) is brought to $-30 \mathrm{v} . C R_{1}$ and $C R_{2}$ prevent the reverse base-emitter voltage of Q_{1} and Q_{2} from being exceeded.
A working set of component values is included in Fig. 2. The value of T is given approximately by $0.69 R_{1} C_{1}$, or 1.07 msec .

Absolute-Value Phase Comparator

A reliable, inexpensive circuit was required that would indicate, with a dc output voltage, the phase relationship of two equal-frequency sine waves, with-. out regard to the polarity of the phase relationship. The dc output voltage was to be maximum when the sine waves were in phase, zero at 180 -degree phase difference, and vary linearly with phase for intermediate phase angles.

Fig. 1. Phase comparator circuit.
The circuit is shown in Fig. I. Waveforms at various points are shown in Fig. 2.
Amplitude fluctuations in the input signals are removed by the diode limiters, resulting in equal-amplitude square waves at points 1 and 2 . The sum of these waveforms, appearing at point 3 , is a series of positive and negative pulses whose width depends on the phase relationship of the square waves. Transistors

Q1 and Q2 form an amplifier biased at cutoff. The negative pulses at point 3 drive this amplifier from cut-off to saturation, resulting in positive-going pulses, with a -7.5 -volt baseline, at point 4. Q3 is a nor-mally-on switch, grounding point 5 . The positivegoing pulses at point 4 turn Q3 off. This switches the full power-supply voltage into an output filter composed of R_{9} and C_{1}. The filter will have an output dc voltage proportional to the average voltage at point 5. This, in turn, is equal to the duty cycle of the waveform at point 5 , multiplied by the peak amplitude of the pulses at that point. The duty cycle will be onehalf if the inputs are in-phase, and zero if they are 180 degrees out of phase. A plot of the measured output voltage versus the input relationship is shown in Fig. 3.

The circuit operates from 20 cps to at least 200 kc , and is insensitive to amplitude fluctuations of the iuput signals as long as they are above a level of 0.75 volts rms.

Fig. 2. Waveforms in phase comparator.

Fig. 3. Output characteristic of phase comparator.
The circuit has a very stable single-ended output. Neither the transistor types nor the component values are critical. No adjustments are required. The circuit is particularly useful if the inputs are corrupted by noise. In this case, the ouput depends only on the phase relationship and the signal-to-noise ratio. It is independent of the absolute levels of signal and noise.

Pulse Detection Circuit

The circuit described here provides an output at one voltage level when there are no pulses at the input, and at another level when pulses are present. The presence and absence of pulses is thus converted into bistable or on-off information. This information can be used to operate a relay, light, or initiate action in other circuitry upon arrival or departure of pulses.

The circuits will work well with narrow pulse inputs and wide pulse separations are readily accommodated. The output will change state when the first pulse arrives, and will go back to its first state as soon as one pulse is missed. This suggests that the circuit could be used as a missing pulse detector. The circuit is also relatively insensitive to pulse amplitudes.

As shown in the circuit diagram, transistors Q_{3} and Q_{4} are in a bistable multivibrator circuit, Q_{2} is a unijunction transistor in a relaxation oscillator circuit. Circuit operation is as follows. With no pulses at the input, Q_{1} will be off, allowing capacitor C_{1} to charge through R_{3} and R_{4}. When the voltage on C_{1} reaches V_{P} (the peak emitter voltage of Q_{2}), the emitter-to-base-1 resistance of Q_{2} becomes negative, and C_{1} rapidly discharges. This causes a large pulse of current to flow in the base-1
lead of Q_{2}, which turns on Q_{3}. This, in turn, turns off Q_{4}. When C_{1} is discharged, the characteristic of Q_{2} is such that it turns off. This means that C_{1} can again charge through R_{3} and R_{4}. If no pulses arrive at the input, C_{1} will charge to V_{P}, and Q_{2} will again send a pulse of current to the base of Q_{3}. However, there will not be a change of the multivibrator state, since Q_{3} is already on. Therefore, with no pulses at the input, Q_{4} will be off, and the output will be at a high voltage level.

A pulse arriving at the input will turn on Q_{4}, which forces Q_{3} to be off. Transistor Q_{1} will also be turned on by the pulse, and C_{1} will discharge through $C R_{2}$ and Q_{1}. Later pulses will again turn on Q_{1}, so that the voltage on C_{1} will not reach V_{P}. Therefore Q_{2} will not turn on, which means that Q_{3} will remain off and Q_{4} will be on. Thus, with pulses present, the output will be at a low voltage level.

If a pulse is now missed, C_{1} will charge to V_{P}, Q_{2} will turn on, and the output will return to its high voltage level.

Current in base 1 of Q_{2} when it is "off" must be taken into account when setting up the bias for Q_{3}. The value of this current can be found from the static interbase characteristic of the unijunction transistor, and will be about 3 ma for the 2 N 492. The following condition must be satisfied: $3 \mathrm{~K} \leqslant$ $R_{3}+R_{t} \leqslant 500 \mathrm{~K} .{ }^{1}$ These limits insure that the

Pulse detection uses unijunction transistor as relaxation oscillator.
emitter load line for Q_{2} will intersect the emitter characteristic in the negative resistance region. If the input pulses are narrow, C_{1} should be small and Q_{1} should be a high-speed transistor with low saturation resistance, in order that the narrow pulses can discharge C_{1}. At the same time, the time constant $\left(R_{3}+R_{4}\right) C_{1}$ must be large enough so that the voltage on C_{1} does not reach V_{P} between pulses, Diodes $C R_{1}, C R_{3}$ and $C R_{4}$ keep the reverse baseemitter voltage rating of Q_{1}, Q_{3} and Q_{4} from being exceed. $C R_{2}$ permits rapid discharge of C_{1}.

Speed-up capacitors across R_{1}, R_{8}, R_{10} and R_{11} may be used if required.

A set of component values that were used to detect pulses with a period of $5000 \mu \mathrm{sec}$ is shown in the figure. Shown also are the waveforms at several points in the circuit.

Peak Follower

The peak follower to be described accepts an ac input with a dc component and it provides two outputs proportional to the positive and negative peak amplitudes of the ac component. It features extremely long time constants while maintaining fast response to both increasing and decreasing peak amplitudes. Although the circuit shown accepts only signals which are positive with respect to the zero axis, it can be simply modified for positive and negative inputs, with or without a dc component.
The circuit provides very small droop between cycles (except for a small reset pulse at the beginning of each cycle). Its fast response enables it to follow cycle by cycle variations. When the input is removed, the output will fall to zero after a few cycles. Good linearity is obtained from low inputs to full scale.

The peak following action is obtained by Q_{2}, Q_{3}, which has Q_{1} as an output stage and the feedback network R_{1}, R_{2} and R_{3} to stabilize and adjust the gain. The amplifier has a zero adjustment incorporated.

The peak following action is obtained by Q_{2}, Q_{3}, and associated components. The pnp transistor Q_{2} follows the negative peaks while the npn Q_{3} follows the positive peaks. The operation of both is similar so only the Q_{2} stage will be described.

Peak follower circuit provides positive and negative peaks of a composite input.

When a signal is applied to the base of Q_{2} in the negative direction, both the base to emitter and base to collector junctions conduct and charge capacitors C_{1} and C_{2} until the negative peak is reached. As the peak is passed both the junctions become reversed biased and, as the transistor is a low leakage type, the capacitors are left to their own devices
The following then takes place:
Capacitor C_{1} starts to discharge through R_{7}. Capacitor C_{2} holds its charge as it looks into the high input impedance of the feedback pair Q_{4} and Q_{5} which also provides useful output current. As the next negative peak is approached, C_{1} has discharged a certain amount through R_{7} so that the base to emitter junction of Q_{2} becomes forward biased before the peak is reached and Q_{2} now operates as a normal transistor discharging C_{2} into C_{1} very rapidly until the voltages are equal and the transistor saturates. Now both C_{1} and C_{2} charge up to the new peak value and the whole cycle repeats itself.
It can be seen that peaks can be followed cycle by cycle provided that the next peak exceeds the voltage to which C_{1} has discharged. If the next peak does not exceed this voltage, then C_{1} continues to discharge until the voltage across it is less than the peak signal amplitude. The feedback pair Q_{4} and Q_{5} provides a high input impedance and good linearity. The output voltage differs from the voltage at C_{2} and C_{4} only by the base emitter voltage drop of Q_{4}. As Q_{5} supplies the output current while Q_{4} only supplies the base current to Q_{5} the change in $V_{o e}$ of Q_{4} from zero to full scale is only small and linearity is maintained.

Resistor R_{9} supplies the quiescent base current to $Q_{4} . C R_{1}$ and $C R_{2}$ provide an approximately equal and opposite voltage drop to the sum of the base to collector drops of Q_{2} and Q_{3} which would otherwise introduce an offset between the positive and negative peak readings. $C R_{3}$ and $C R_{4}$ stop C_{1} and C_{3} from becoming reverse biased. SW W_{1} connects either peak follower to the output stage and R_{x} provides a small adjustment to the voltage across $C R_{1}$ and $C R_{2}$.

Transient Spike

Pulse Detector

The problem: How to determine the occurence of a single spike pulse? The spike will have a maximum amplitude of about 50 volts, 2 ma , and a duration of 1 msec .

The solution: The circuit shown, which has its own "self-test" feature.
S1 = Push button switch, momentary, dpdt. ("selftest").
S2 = Push button switch, momentary, normally
DS1 $=28$-volt lamp.
$T 1=$ Triad JO-23 or any audio transformer with a turns ratio (stepdown) of 10:1. (With an equivalent transformer, if SCR does not fire

Transient spike pulse detector circuit.
cuts off. This signal is amplified and inverted by Q_{4}, which in turn cuts off Q_{3} which, as above, causes the relay to de-energize.

This circuit does not reset simply by having the voltage return to the preset range. After the voltage has been cut off, it is necessary to re-establish the proper voltage and then interrupt it to reset the cut-off circuit. This allows the on-off switch to function as a reset switch. Thus, no additional pushbutton is needed to reset the circuit.

Missing-Pulse Detector

for Narrow Pulses

The missing-pulse detector shown in Fig. 1 senses the presence of very narrow pulses of low duty cycle, and lights a lamp if the pulses are absent. A continuous pulse waveform, as shown in Fig. 2a, is applied at the input. Transistors Q_{1} and Q_{2} form a pulse stretcher whose period is between 30 and 40 msec . The pulse stretcher is necessary because the trigger pulses, only $4 \mu \mathrm{sec}$ wide, have a period of 50 msec . The pulse stretcher is triggered each time a pulse is received at the input.

The Q_{2} collector waveform consists of positive pulses,

Fig. 1. Missing-pulse detector responds to narrow pulses.

Fig. 2. Waveforms at various points of missing-pulse detector.
rising from -12 v to ground, as shown in Fig. 2b. Diode $C R_{1}$ and capacitor C_{1} form a dc restorer or negative clamp, clamping the negative portion of the waveform to ground (Fig. 2c).
The positive pulses are peak-detected by $C R_{2}$ and C_{5}, biasing transistor Q_{3} off. Thus, as shown in Fig. 2d, the net detected voltage at the Q_{3} base is positive, and essentially constant.

High-low voltage cutoff circuit. Tunnel diode D_{1} senses high voltage and thyristor Q_{s} senses low voltage.

This circuit senses the excursion ${ }^{\varepsilon}$ a dc voltage our of a preset range. The upper voltage and lower voltage cut-off limits can be independently set with two potentiometers (R_{1} and R_{11}).

The high-voltage sensing element is a tunnel diode D_{1}. The current through the diode depends on the series resistance R_{1} and the voltage to be sensed. As the voltage increases, the current through D_{1} increases until it reaches over the point where the tunnel diode switches to its high-voltage state (about 1 ma). This causes Q_{1} to saturate, Q_{2} then cuts off and the relay $R L Y_{1}$ deenergizes.

As a low-voltage sensing element, an RCA thyristor Q_{5} is used. When the voltage to be sensed is applied, the negative transient formed by R_{15}, C_{2}, and D_{3} causes the thyristor to saturate. As the voltage decreases, the current through the thyristor (adjusted by R_{11}) decreases until the point is reached where the thyristor

In the absence of input pulses, transistor Q_{3} will lose its bias and be turned on by the current through R_{6}, lighting the PULSE MISSING lamp. This circuit is truly fail-safe, for the failure of any component in the circuit will cause the lamp to light.

Square-Wave Symmetry Detector

This circuit produces a zero-volt output when a perfectly symmetrical square wave is applied to its input, and positive or negative output voltages for an unsymmetrical wave input, depending on the type of wave.

Fig. 1. Square-wave symmetry detector.
Fig. 2. Typical rectangular waveforms.
When wave a in Fig. 2 enters the circuit in Fig. 1, a negative output voltage is produced. When wave b enters the circuit, a positive dc voltage is produced at the output

The signal's dc component is first removed with the $R_{1} C_{1}$ combination. With wave a the negative peak will be larger than the positive peak when the dc component is removed. In wave b, the positive peak will be larger than the negative peak after removing the dc component. In wave c the positive and negative peaks will be of equal magnitude after the dc component is removed.

Capacitor $C_{2 \mathrm{a}}$ charges to the positive peaks, while $C_{2 \mathrm{~b}}$ charges to the negative peaks. These two dc voltages are then summed through resistors R_{2}, and the result applied across the output resistor. One application for this circuit might be as a symmetry détector at the output of a Schmitt trigger which is driven by a sine wave.

Current Amplitude Detector

Pulsed drive currents into a memory array often must be monitored as part of a self-detection or self-correcting system, indicating when a current goes out of tolerance. A current detection circuit that senses excess current is shown in Fig. 1.

The current that is monitored is coupled into the circuit through transformer T_{1}. Diode D_{1} clips the reverse voltage

Fig. 1. Current amplitude detection circuit.

Fig. 2. Operating points for quiescent and alarm conditions.
spike that is developed across the secondary of T_{1} when the current pulse terminates. Current is always flowing in quiescent periods between pulses, Q_{1} is in deep saturation, its emitter and base current being approximately equal. Collector current is very small, in the microampere range. The collector voltage is equal to the voltage drop across diodes D_{2} and D_{3}. Figure 2 shows the operating points on the $V_{o}-I_{o}$ characteristic curve. Quiescent condition is at point A on the curve.
When a current pulse is applied to the primary of T_{1}, current starts to rise in the secondary circuit. The collector of Q_{1} initially absorbs this current. As this current continues to increase, the operating point moves up from point A on the bulk resistance slope until the transformer's secondary current approaches the value of Q_{1} 's emitter current at point B on the characteristic curve. At this point, Q_{1} starts to come out of saturation and its collector voltage rises. When this voltage reaches the turn-on voltage for Q_{2} at point C, a signal pulse appears at the collector of Q_{2}.
The circuit shown in Fig. 1 is capable of detecting a current pulse over a $1.2-\mathrm{amp}$ current level within $\pm 10 \mathrm{ma}$. When tested at a temperature variation of 25° to $65^{\circ} \mathrm{C}$, the detection level increased by 20 ma . This circuit can also be used at other current levels by proper adjustment of R_{B}, which varies the current clamping level.

Boxcar Envelope Detector

Envelope detection with the conventional rectifier circuit produces negative-peak clipping or diagonal distortion on rapidly downward changing envelopes due to the action of the PRF bypass capacitor. More faithful recovery of the modulation envelope can be achieved with "boxcar" generation, as is done in radar systems, which approximates the envelope in level steps between successive peaks in the wavetrain.

The wavetrain whose envelope is to be recovered must

Boxcar envelope detector.
be of one polarity, as from a diode detector. The pulses are applied to a single-stage amplifier having a dual-polarity output, the inverted polarity output being made much the larger.

The amplifier non-inverted output charges the storage capacitor through the series diode; the negative output (whose wave base line is clamped to a positive level higher than that to which the capacitor will ever be charged)
simultaneously tends to discharge the capacitor through a diode and resistor. The voltage level to which the capacitor is charged is thus "corrected," upward or downward, at the time of each input pulse.

The charge-circuit short-circuit current must be substantially greater than the discharging-circuit short circuit current. For a wavetrain with peaks of decreasing amplitude, the discharging circuit gain must be sufficient to afford a discharging voltage at least large enough to decrease the capacitor voltage to that of the charging voltage.

The various R -C time constants in the circuit shown would be rather large for any applications; the application in which it was used was envelope recovery of a 5 -pps wavetrain. Smaller time constants would, of course, be more appropriate for a wavetrain of shorter period.

Automatic Search

 and Control Circuit for Servo LoopThis circuit is applicable to servo control systems where automatic acquisition with a linear search is desired. Applications include afc and phase-lock controls where the wide bandwidths of current solid-state operational amplifiers can be exploited. This basic circuit has been used in a phase-locked microwave system with a bandwidth of 300 kc .

An active integrator is used in a dual role as a linear search generator as well as an integrator in the control system.

In the circuit, the bias applied to the negative summing point of the operational amplifier is set so that in the absence of an error signal input, the integrator output builds up towards positive saturation. V_{f}, the unijunction firing potential, is set just below the operational amplifier saturation. When the UJT fires, it triggers the SCR, which in turn discharges the integrating condenser C_{1}. Control-loop acquisition occurs when the error voltage bucks out the bias on the summing point. If acquisition does not occur during one search sweep, the discharge circuit resets the integrator and another sweep is initiated.

Servo automatic search and control circuit.

The values of R_{1}, R_{2}, R_{3} and C_{2} determine the characteristics of the control system and must be chosen accordingly. $C R_{1}$ is necessary to permit a low impedance discharge path for C_{1}.

Since the summing point is a virtual ground, it does not affect normal operation. The sweep rate is a function of R_{1}, C_{1} and the bias into the negative summing point. This bias is set such that the voltage drop across R_{1} is about
equal to 20 percent of the maximum discriminator output. C_{3} should be at least ten times larger than C_{1} to insure adequate charge transfer. R_{4} must be large to prevent the operational amplifier from supplying SCR hold-in current.
An important feature of this circuit is the positive reset action of the UJT-SCR circuit. Lock-up due to power supply transients, etc., is prevented. The UJT circuit will continue to trigger the SCR as long as the operational amplifier output is above the preset UJT firing potential (V_{f}). The UJT oscillator should have a time constant sufficient to permit C_{3} to discharge appreciably through $\boldsymbol{R}_{\mathbf{4}}$.

PRF Discriminator

This circuit needs a pulse-train burst of only 2 successive pulses to determine its PRF above or below a given limit, and two such circuits and a NAND gate can indicate the presence of a given PRF within 0.1 percent or $1 \mathrm{kHz} \pm 1$ Hz .

The input pulses are first given standard width and amplitude by a one-shot monostable circuit. Then they are applied to isolation diode $C R_{1}$. Through $C R_{1}$ the pulses charge capacitor C_{1}, which discharges through resistors R_{1} and R_{2}. The time constant is such that the voltage on C_{1} either will or will not reach ground before the next pulse arrives, depending on the PRF rate (see Fig. 2).

The charge on C_{1} will charge C_{2} through R_{3}. If the voltage on C_{1} goes below ground (Fig. 2a) transistor Q_{1} will conduct and bias Q_{2} into conduction. Q_{2} will quickly discharge capacitor C_{2}. However, if the next pulse arrives soon enough (Fig. 2b), Q_{1} and Q_{2} will stay non-conducting, and the second pulse will deliver its charge to C_{2}, adding to the previous charge. A level detector at the output will now signal the presence of the higher PRF.

The sensitivity of the discriminator depends on the falltime of the pulse on C_{2}, which is about $1 \mu \mathrm{sec}$. For a PRF of 1 kHz there is about 1 msec between pulses, and a difference in period of only $1 \mu \mathrm{sec}$ will determine whether the charge on C_{2} will build up or not. Hence the 0.1 -percent accuracy.
Two such circuits with time constants different by 2

Fig. 1. PRF discriminator.

Fig. 2. Capacitor charging waveforms.
μ sec will or will not generate an output level change signal. If for a particular PRF the circuit with the lower time constant generates a signal and the other does not, a NAND circuit will indicate the presence of a pulse train with a period within $1 \mu \mathrm{sec}$ of the desired PRF. (For continuous pulse trains $R_{;}$, should be as large as possible so that built-up charge on $C:$ will not affect the circuit time constant.)

Tunnel-Diode Pulse-Height

Discriminator

If a tunnel diode is biased with a current greater than I_{p} and loaded with a resistance large enough to yield two stable points of operation, the diode will "latch" in its high-voltage state when pulsed with a current that exceeds I_{p}. The current can be controlled by series input resistor R_{1} and a predetermined range of pulse heights can be detected. When the bias current is interrupted, the tunnel diode returns to its low-voltage state and is ready to be triggered again. A reset pulse width greater than $1 \mu \mathrm{sec}$ to Q_{2} provides this operation.

With several tunnel diodes, each set to detect a given pulse height, transistor Q_{1} delivers a fixed current to the operational amplifier when the tunnel diode is triggered. As the input pulse height increases, more and more of the tunnel diodes are triggered and the input current to the operational amplifier increases linearly. The output voltage steps of the amplifier are controlled by the ratio of R_{2} to R_{3}.

This circuit was used to analyze 30 -nsec pulses varying.

Tunnel-diode pulse-height discriminator.
in height from 0 to 6.0 v peak and over a temperature range of -20° to $+60^{\circ} \mathrm{C}$. The trigger points varied nomore than ± 2 percent of the selected point and the operational amplifier output changed by only $\pm 50 \mathrm{mv}$ using standard 5 -percent resistors. In the schematic shown, ten stages were connected in parallel and 0.5 v steps were used for a 0 -to- 5 v output range.

Accurate DC-Level Detector

The circuit shown in Fig. 1 fills a need for an accurate dc level detector with extremely small hysteresis. Input can be either a varying dc voltage or, as in the original application, a variable resistance such as a thermistor.

The dual complementary transistor Q_{1} is a high-stability dc amplifier with nearly zero offset voltage. Zener diode $C R_{1}$ provides a threshold level which is reflected back to the input base. As the input voltage is increased, no current will flow in the pnp transistor until the threshold voltage of $C R_{1}$ is reached, at which point current increases very rapidly. As the current reaches the peak-point current of the tunnel diode $C R_{: 2}$, the diode switches to its high voltage state, turning on $Q:$. The tunnel diode-transistor combina-

DC Ievel detector with small hysteresis.
tion provides discrete switching action.
The input level at which switching occurs is dependent primarily on the zener voltage, but lower levels can be switched by varying R_{1}. Hysteresis is controlled by the knee of the zener diode characteristic. Using a sharp-breaking diode, a hysteresis of less than 10 mv has been achieved.

Phase-Locked Frequency Discriminator

This circuit may be used to phase lock a low frequency oscillator to some desired frequency. It employs a flip-flop, a filter, and a dc level shift to provide the required center frequency voltage control to the oscillator.

In the circuit, a trigger generated from the master frequency enters at B, while a trigger from the phase locked frequency enters at A. Operation depends on the fact that when the frequency at A is higher than the frequency at B, the average Q_{2} collector voltage is positive, while for B frequency higher than A frequency, the average Q_{2} collector voltage is negative. In either case, an error-voltage sensing circuit corrects the frequency at A, thus tending to maintain Q_{2} collector at 0 V average.

In operation, the trigger at B causes Q_{2} collector to become negative. A trigger at A causes Q_{2} collector to become positive. Thus, if more B triggers are received than A triggers, (B frequency greater than A frequency) Q_{2} collector will be negative more often than it is positive, as shown in Fig. 2a.

The pulse signal appearing at the Q_{2} collector is filtered by a resistor in series with a large capacitor, and the resulting dc is applied to Q_{3} base. Q_{3} acts as a dc shift and

Fig. 1. Frequency detector phase-locks signals at A and B.

Fig. 2. Waveforms at \mathbf{Q}_{2} collector for: \mathbf{B} frequency greater than A (Fig. 2a) and equal, phase-locked frequencies (Fig. 2b).
emitter follower. The error voltage at Q_{3} output is used to correct the oscillator frequency. When correction is complete, Q_{2} collector voltage appears as in Fig. 2b, and both frequency and phase lock are achieved.

The oscillator used in conjunction with this circuit may be a voltage-tuned multivibrator or a unijunction sawtooth generator. As shown, the circuit was used to sync a unijunction sawtooth generator to operate at 10 X the frequency at B. B frequency had a center value of 16 Hz and varied about this value by ± 25 percent. A $1 / 10$ counter followed the unijunction and its output was used to generate the trigger input to A.

Sine-Wave Zero Crossing-Detector

The zero-crossings detector with adjustable output intervai furnishes a $10-\mathrm{v}$ pulse that coincides with the zero-crossings of a sine-wave input at frequencies throughout most of the audio range. Transformer T_{1} and matched diodes $C R_{1}$ and $C R_{2}$ form a full-wave rectifier with an average value equal to the voltage selected by adjusting $R_{2} . Q_{1}$ is an emitter follower that has its output referenced to ground by $C R_{3}$, clipping the portion of the signal that tends to go below ground. The small positive pulse remaining is ac coupled into amplifier Q_{2} which, because of its high gain, is easily driven into saturation. The output of Q_{2} is fed into Q_{3},
which operates as a NOR circuit.
$A+10 \mathrm{v}$ level applied to the second input of the NOR will inhibit its operation, while a ground potential there will allow positive pulses to appear at the output.

The portion of a cycle about the zero-crossing during which a positive pulse is available at the output can be adjusted by varying R_{2}. By shifting the average value of the rectified sine wave upward, a larger portion of it is amplified and a subsequent earlier rise and later fall of the output pulse takes place.

Zero-crossing detector with adjustable output interval.

Product Detector Uses FET Tetrode

The characteristics of the dual-gate FET makes it ideal for use in a solid-state version of the common pentagrid product-detector circuit. Since
wach gate has independent control of the drain current, the beat frequency oscillator voltage can be injected into one gate and the signal into

Fig. 1. Pentagrid-type operation of dual gate FET makes it suitable for product-detector circuit.

Fig. 2. Output of product detector is linear over a wide dynamic range.
the other. As in the pentagrid the proper bias to G_{2}. circuit, the output current is then the product of the two voltages.

In the circuit of Fig. 1, an emitter-follower is used to isolate the BFO , and provide

The dynamic range of the detector, shown in Fig. 2, is greater than that found in most typical tube-type productdetectors used in modern single-sideband receivers.

Pulse-Train Detector and Counter

ihis case 50 mV), enabling the current source Q_{2} to charge the capacitor C. The discharge time constant of C is much larger than the input repetition rate, so V_{c} changes from -5 V to +2 V , thus turning on Q_{3}. With the given values, the circuit will operate for duty cycles greater than 0.2%. Turn-on delay for a 10% dutycycle pulse train is given approximately by

$$
\begin{gathered}
T_{d}=n T=0.06 /(10,000 \\
w / T-17) \\
\simeq 0.06 \mathrm{msec}
\end{gathered}
$$

where T_{d} is the turn-on delay, n the number of high frequency pulses, T the pulse-train period, and w the pulse width.

With a minor modification, the circuit can be used as a pulse counter. If the cathode of diode D_{1} is returned to point " A " instead of +5 V supply as shown, the circuil "locks up" after a specified number of pulses have arrived. Capacitor C must be given time to discharge, or must be discharged manually, before the input is reapplied.

The circuit shown in Fig. 1 detects the envelope of bursts of high-frequency pulses or, with a small modification, will give an output after a specified number of pulses have appeared at the input. A built-in threshold excludes noise and pulses of low amplitude.

This circuit can be used over a range of input frequencies from 1 kHz to 1 MHz with suit-
able component values. With the values shown, the upper limit on the input prf is 1 kHz . The input can of course be R-C coupled if desired.

Transistor Q_{1} amplifies the signal from a magnetic pickup. This stage has built-in noise threshold provided by the clamp diode D_{1}. The collector of Q_{1} goes below +5 V only after the input exceeds V_{t} (in

Fig. 1. Basic circuit is a pulse-train detector. If D_{1} is returned to point "A", circuit will give an outpnt after counting specified number of pulses.

Fig. 2. Input and output waveforms for detector (2) and counter (B).

Adjustable Level-Detector

This circuit is a differential amplifier with positive feedback, which can be used as a level detector. Like a conventional flip-flop it has two stable states and will switch states when the dc input level goes above or below a preset-reference level. The output can be taken from either collector depending on the polarity required. An advantage of this circuit is its inherent dc-stability due to the balanced configuration.

With component values shown, the circuit will change state for an input-voltage differential of 100 mV with respect to the reference. The hysteresis depends on the amount of positive feedback. The reference level may be above or below ground. Output voltage swing at the collector and the range over which the reference may be changed, are determined by the values of the collector and emitter resistors.

Stable state of this circuit changes when input level crosses the reference level. Output is taken from either collector.

Time-Delayed Schmitt Sensor

The schmitt trigger circuit is widely used for industrial control sensing because the differential can be designed to be any suitable amount. However, industrial sensing circuits also often require a delay in the sensor control at start-up, until
such time as the system and process are in normal operating mode.

In the example shown here, a photocell sensor command is nullified until certain fluid lines have been filled, to prevent the

Time-delayed Schmitt trigger with photocell as sensor.
sensor's construing lack of fluid to be a lack of concentration.

The circuit shows a way of incorporating time delay in the Schmitt circuit itself through the use of another transistor as a switch, one that closes the bias circuit of the Schmitt. The delay is obtained with an $R C$ network in the base of this transistor, which is designed so that the saturation current of the transistor is equal to the required bias current of the Schmitt. The output transistor is thus held inactive for the time required to charge the timing capacitor to approximately design voltage for its base.

The circuit uses economyline transistors in a Schmitt configuration giving $0.3-\mathrm{V}$ differential. With a photocell sensor, the value of R_{1} will depend on the signal level when at the level for control. This
sensor is connected as shown, or is interchanged with R_{1} depending on the polarity of control required from the output.

For a $22-\mu \mathrm{f}$ tantalum as C_{T}, the time delay is about 15 sec . The value of R_{T} must be small enough to allow a saturation current equal to the required bias current for the Schmitt. If less delay is wanted, then R_{T} should be made smaller, but for more delay the capacitor should be increased, not R_{T}.

The time-delay scheme can be incorporated in any existent Schmitt circuit. However, the saturation current of Q_{3} must equal the existent bias current of the Schmitt, and R_{X} should be reduced according to what the saturation voltage drop actually is. The maximum R_{T} is set by the saturation current required, and so is proportional to the current gain of Q_{s}.

Noise-Rejecting SCR Trigger Circuit

IT IS ofTEN difficult to obtain reliable SCR triggering when inductive switching transients are present. The circuit described here, however, can discriminate between data pulses and random transients.

An integrator is combined with

 a voltage comparator to detect the difference in voltage-timeareas in the two types of pulses (random transients have a smaller $V \times t$ area than data pulses, which have a fixed V $\times t$ area).
An approximate integration of the input pulses is performed by $C_{1} R_{1}$. The complementary pair Q_{1}, Q_{2} functions as a voltage comparator, delivering an output whenever V_{c} is
greater than $V_{\text {ref }}$.
Without an input, the voltage of C_{1} will be zero, and thus Q_{1} and Q_{2} will be cut off. When an input $V(t)$ is applied, the emitter voltage of $Q_{2}\left(V_{c}\right)$ will rise. If the (voltage) \times (time) area is sufficiently high, Q_{1} and Q_{2} will turn on when V_{c} is slightly greater than $V_{\text {ref }}$. Since both Q_{1} and Q_{2} are saturated and R_{B} is shunted by R_{3}, C_{1} will discharge rapidly, producing a $10-\mu \mathrm{sec}$

Locus of possible firing points

Data-pulse discriminating trigger circuit.
pulse across R_{3} and firing the SCR.

If the applied pulse is too narrow to fire Q_{1} and Q_{2}, C_{1} will discharge through D_{1}, preventing an accumulation of noise pulses from firing the circuit. However, note that if the pulse at the input is too wide, multiple outputs may occur.

In the circuit shown, data pulses are 8 V high and 0.5 msec wide. The reference voltage is chosen to cause firing
before the exponential slope becomes too flat.

Thus, with $V_{c}=5 \mathrm{~V}$ at 0.5 msec,
$5=8\left(1-\mathrm{e}^{T / r}\right)$
Or τ should be about one time constant.
$\tau=R C=T=0.5 \times$ $10^{-3} \mathrm{sec}$
$C=0.05 \mu \mathrm{~F}$
Note that R_{B} must be much greater than R_{3} to obtain a large change in $V_{r e f}$ when the transistors switch on.

Buffered Detector

Many designers have suggested modifications to the popular Schmitt trigger, but so far no one has significantly reduced the interdependence of the circuit components.

The modified circuit ${ }^{1}$ shown here. preserves the emitter coupling of the basic Schmitt, but replaces the divider of that circuit with a buffer network. This simplifies the design of the zircuit, by removing the loading effect of Q_{3} at the collector of Q_{1}. The full voltage swing at Q, collector is applied to the base of Q_{3} via R_{i}.

When the input is above the threshold level, cutoff of Q_{3} is defined by the difference between the collector-emitter saturation voltage of Q_{i}, and the base-emitter saturation voltage of Q_{2}. This difference is about 200 mV for most silicon transistors. Thus hysteresis remains low for a wide range of reference voltages.

Resistor R_{t} is made large enough to saturate Q_{s} when the input is below threshold. Resistor R : keeps Q : in the active region, preventing this transistor from introducing propagation delay. The value of R_{3} is calculated to establish the reference voltage and guarantee regeneration.

Good results are obtained with resistance values in the range 2 to 10 ohms. Therefore a zener diode, with dynamic impedance in this range, can be substituted for R_{3} to establish various threshold levels. Diode $C R$, compensates for the effects of temperature on the V_{k} : of Q_{3}.

The reader is cautioned against attempting to minimize hysteresis, by using tricks such as adding a separate resistor between $Q_{\text {, }}$ or Q_{3} emitter and $R_{3} .{ }^{.}$As with the Schmitt circuit, total elimination of hys-

This detector circuit is similar to a Schmitt trigger but buffer amplifier Q_{2} is included in the feedback path.
teresis is accompanied by loss of regeneration and the circuit becomes an operational amplifier.

With the component values shown, the circuit fires with as little as $1-\mathrm{mV}$ pk-pk signal. Output rise and fall times are about 40 ns . Performance is satisfactory with supply volt-
ages ranging from 3 V to 28 V.

Complementary outputs are available because Q, collector is buffered from the base of Q

References

1. Patent pending.
2. J. Millman and H. Taub. Pulse and Digital Circuits, McGrawHill Book Co., 1956, pp 171-2.

Boxcar Circuit Uses FETs

Use of FETs simplifies the design of sample-and-hold circuits. The circuit shown here samples either dc or ac signals. Storage quality is excellent due to the high input impedance of Q_{3}. The circuit
works at high sampling rates, needs no temperature stabilization and handles large input amplitudes. Switching transients at the input are suppressed by at least 30 dB .

Transistors $Q_{\text {, }}$ and $Q_{\text {z }}$ are
cross-coupled from drain to source in a series-switch configuration. The analog input is connected to one drainsource pair and the storage capacitor is connected to the other pair. This circuit con-
ducts in both directions. Thus the switch transfers either increasing or decreasing input signals to the storage capacitor during conduction.

A switching pulse, -12 V in amplitude and 0.5 to 20

Sample-and-hold circuit with FETs gives improved performance.
μ sec in duration, controls the FET gates. The series resistance of the switch circuit changes from approximately 250 meg to 100 ohms during switching.

Source-follower $Q_{\text {, }}$ acts as a buffer between the output and the glass storage capacitor. This combination gives negligible leakage of the stored signal.

With the component values shown. repetition rate is from 200 to 250 kHz . The circuit will store sample voltages having a width of only 0.5 $\mu \mathrm{sec}$.

Threshold Detector Uses IC

the effects of switch bounce. Instead of using the analog input, connect the switch, S_{z}, to the input as shown. This gives a manual input for digital systems.

A false (high) level at point C resets the latch. A suitable pulse is generated manually by switch S_{1}, or automatically by the system logic.

The temperature coefficient
is the same as for a silicon transistor (approximately 2.2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$). This technique has been used with conventional DCTL as well as the RTL shown.

Here is a simple latch circuit which provides a low-cost replacement for conventional threshold circuits in digital systems. The only component used is a dual-gate logic element, connected to give positive feedback.

An analog input signal triggers the circuit at a predetermined threshold level, to give a change in dc output level. Because of the feedback configuration, the output has a fast rise time. Output levels are inherently compatible with microcircuit logic.

Depending on the application, the basic circuit can be used in many different ways. If you need a variable threshold, connect the input, A, to the wiper of a potentiometer as shown in the figure.

This versatile latch circuit has many threshold-sensing applications. Alternative connections are shown inside the dashed boxes.

Sample-and-hold circuit is fast yet accurate

Various designers have re- sponse speed.
cently described simple circuits The circuit shown here is to sample and hold the peak relatively simple and is acvalues of pulse signals. Some curate even for submicrosecond of these circuits emphasize ac- sampling periods. The output curacy but give limited re- responds to a step input level
in 300 ns with 0.1 -percent accuracy. Input-to-output offset is low (typically 1 or 2 mV) because of the characteristics of the matched pair of PNP transistors $\left(Q_{1}, Q_{2}\right)$.

A logic input, applied to the cathode of D_{1}, controls the state of the circuit. When the control signal is high, D_{1} is back-biased. Transistor $Q_{\text {b }}$ then supplies current to the
emitters of Q_{1} and Q_{2}, thus enabling the input matched pair. If, during this time, the data signal at Q, base is at lower voltage than the output signal, then Q_{1} conducts more
heavily than Q_{z}. This increases the current through R_{1} and decreases the current through R_{i}. So Q_{5} turns on while Q_{3}, and therefore Q_{b}, turns off.

Conversely, if the input data signal is at a higher voltage than the output, transistors Q_{3} and Q_{5} conduct while Q_{5} is disabled. Thus, in the presence of sampling pulses, capacitor C_{1} is either charged or discharged with fairly large currents until the output-voltage
feedback to Q_{z} base equals the input voltage at Q_{1} base. Resistor R_{s} prevents overdrive and insures monotonic changes in output voltage. The low value chosen for this resistor speeds circuit operation.

A low control-logic level, at D_{1} cathode, diverts current from the Q_{6} collector through D_{1}. Simultaneously, transistors Q_{1} and Q_{2} are turned off. Under this condition, transistors Q_{4} and Q_{5} are also turned off, thus preventing discharge of $C_{\text {, during the "hold" period. }}$ In this state the circuit maintains the last value of the input signal that occurred during the previous sampling period.

Fast and accurate sample-hold circuit. Matched transistors $\left(Q_{1}, Q_{2}\right)$ give low offset between the sampled input and held output.

An improved FET Sample-

and-hold
 circuit

One source of error, in FET sample-and-hold circuits, can be minimized by adding a few extra components. Other errors can be reduced by careful selection of a suitable op amp and low-leakage FETs.

The conventional FET circuit, shown in Fig. 1, has one serious disadvantage. If the sampled waveform is changing, at the instant of a "hold" command, the capacitor voltage V_{c} will be diminished by the voltage drop caused by current, i_{c}, flowing through the finite "on" resistance of the FET. In many applications this loss is significant.

The improved circuit of Fig. 2 largely overcomes the problem. During the "sample" in-
terval, both FETs are on and the bipolar transistor is cut off. During the "hold" interval, the situation is reversed. Because the FETs are inside the loop of a high-gain amplifier, their "on" resistance (as seen by the capacitor) is reduced by the open-loop gain. Thus, charging speed is essentially limited only by the output-current capability of the voltage follower. The resistance seen by the capacitor is given by the following equation:

$$
\begin{equation*}
Z_{o u t} \simeq \frac{R_{o}+R_{o n}}{I+A} \tag{1}
\end{equation*}
$$

Where $R_{0}=$ output impedance of amplifier, and $R_{o n}=$ "on" resistance of the FET.

When the FETs are off, the capacitor is almost perfectly isolated. During this interval Q_{1} saturates, thus holding the amplifier loop closed and preventing it from going into saturation.

Diode D_{1}, serves to limit the base-emitter voltage of Q, to approximately 0.6 V . Thus it
protects the transistor from terval when the FETs are on. possible damage during the "sample" interval when Q_{1} is cut off.

Diode D_{2} prevents gate current from flowing in Q_{2} and $Q_{\text {s }}$ during the "sample" inWithout the diode, gate current would cause errors in the capacitor voltage.

Resistor $R_{\text {, }}$ discharges the FET interelectrode capacitances so that the FETs can turn on

Fig. 1. Conventional FET sample-and-hold circuit has errors caused by drop across the FET during the sample period.

Fig. 2. Modified circuit overcomes the problem of FET "on" resistance, by placing FETs inside feedback loop. Capacitor then sees a much lower source resistance.
after D_{Q} has been cut off.
Though the modification described here reduces errors caused by FET "on" resistance, other sources of error still remain. The circuit has been tested using a $\mu \mathrm{A} 709 \mathrm{C}$ IC op amp, but, because of its poor transient response, this amplifier is not the best choice for
sample-and-hold. circuits. However, satisfactory performance can be achieved when tracking at rates well below the limited slew rate of the amplifier.

The following factors all cause errors and should be considered in the design of accurate sample-and-holds.

- Finite amplifier open-loop gain causes finite input and
output impedance and less than unity gain for the closed loop. - Amplifier offset-voltage temperature drift is indistinguishable from desired input signals. - Finite amplifier slew rate limits the rate of input-voltage change that can be tracked.
- FET drain-source leakage allows partial discharge of the
stored capacitor voltage.
Remember, also, that another amplifier is usually required to buffer the output from the capacitor. (This amplifier is not shown in Figure 2). The input impedance and bias current of the second amplifier will provide additional unwanted discharge paths for the stored voltage.

Thermistor circuit senses air temperature

and velocity

A thermistor circuit can be used, not only to sense temperature changes, but also to sense changes in air velocity. Thermistor temperature depends on ambient temperature and also on heating caused by electrical power dissipated within the thermistor. Temperature rise from the latter source is governed by air flow past the thermistor.
The type of circuit described is useful for power-supply protection. Normally, forced-aircooled supplies are protected by a pressure-actuated switch in the air duct and by temperature sensing devices at critical points in the circuit. But satisfactory protection can be achieved by a single solid-state circuit - thus eliminating electro-mechanical components which may be unreliable.

With careful design of the circuit, and of the thermistor enclosure, this approach can be used to sense any desired linear range of air velocity and temperature. A typical performance curve is shown in Fig. 1, where two set points of air velocity and temperature ($v_{1}, T_{A F_{1}}$) and ($\nu_{0}, T_{a f o}$) are chosen as firing points for a control circuit. For best linearity, the thermal resistance of the thermistor should vary linearly with air velocity in the given enclosure.
Figure 2 shows the basic sens-

Fig. 1. Thermistor circuit triggers at two different preset points. With zerd air velocity it fires at $T_{A F O}$ and with normal air velocity it fires at a higher temperature $T_{\Delta p r}$.
ing circuit. In general, a resistance element R_{2} is placed in series with a thermistor and a constant-voltage source V_{T}. We sense the voltage V_{2} across resistor R_{2}. The thermistor produces the firing voltage $V_{2 F}$ when its resistance reaches some value R_{F} corresponding to a thermistor temperature of T_{F}.
In a practical circuit, element R_{2} may be a relay which fires at a constant current I_{F}, or it may be a resistor across a semiconductor device whose input current is much less than 1_{F}. Of course, the thermistor's voltage, current or resistance can be considered constant depending upon whether $R_{q} » R_{F}, R_{q} \approx R_{F}$, or R_{2} 《 R_{F}, respectively.
Referring again to Fig. 1, the difference in temperature between the two set points depends on the difference in thermal resistance $\left(\theta_{0}-\theta_{1}\right)$ of the thermistor at the two different air velocities. The change of temperature also depends on the constant electrical dissipation W_{F} in the thermistor.

Fig. 2. Basic thermistor sensing circuit. Output V_{i} can be used to trigger a breakdown diode, or R_{z} can be replaced by a relay.
we should make W_{F} as high as possible. We can decrease the lower operating temperature $T_{\text {afo }}$ by insulating the enclosure on the outside (while allowing forced air inside to cool the thermistor). To decrease the higher temperature $T_{\text {AF1 }}$, we can impede the flow of forced air

Fig. 3. One of EAI's power supplies uses a temperaturevelocity circuit for protection. The SCR fires, blowing the fuse, if ambient temperature becomes excessive or if the forced-air supply fails.
(while keeping the still-air insulation unchanged).
Figure 3 shows how this type of temperature-velocity sensor is used to protect an EAI power supply. The circuit interrupts the ac line if the fan fails, if the air flow is obstructed, or if the in-
coming temperature is higher is always somewhere in the range than 50 degrees C at full load.

Because, in this supply, the transformer connections are adjustable for 115 or 230 volts, it was found convenient to operate the sensor circuit on an unregulated output $V_{L N 1}$ whose voltage

38 to 50 volts dc . When the sensor fires, the breakdown diode conducts and triggers the SCR. The resulting overload then blows the fuse in the ac line circuit.

The sensor monitors exhaust
air, and it triggers the SCR when the thermistor temperature at rated velocity ν_{1} is above $T_{\text {AFt }}=$ $65^{\circ} \mathrm{C}$, or when its temperature at zero velocity v is around $T_{A F_{0}}=30^{\circ} \mathrm{C}$.

Fail-safe temperature

sensor

Many industrial control systems require a temperaturesensing circuit that must be fail safe. The circuit must not only give an output pulse when the temperature reaches a predetermined critical value, but must also give an output pulse if the sensor element opens or shorts. This output pulse then shuts down the system.

The circuit shown here, meets all the above specifications. It was designed for use with a PTC thermistor having a resistance of 30Ω from $32^{\circ} \mathrm{F}$ to $160^{\circ} \mathrm{F}$ and 800Ω at the critical temperature of $200^{\circ} \mathrm{F}$. At $200^{\circ} \mathrm{F}$ the circuit gives a negative output pulse. The circuit distinguishes between a shorted thermistor and a normal òne with 30- Ω resistance.

A wide range of different operating temperatures can be obtained by choosing a suitable temperature sensor and selecting the appropriate values for R_{2}, R_{3} and R_{4}.

The $\mu A 710 \mathrm{C}$ IC operates as a differential comparator. When the thermistor resistance increases to a value such that the voltage across it is greater than the voltage across R_{4}, the IC produces a pulse at pin 7. Transistors Q_{1} and Q_{2} condition this pulse, to give an output with correct amplitude, impedance and

Temperature-sensing circuit gives an output pulse if the thermistor is shorted or open circuited.
phase. Components R_{5} and C_{2}, filter out spurious pulses triggered by input noise.

Normally, transistor Q_{3} is biased off. This stage initiates an output pulse if the thermistor is either open circuited or shorted.

If the thermistor opens, the emitter-base reverse-breakdown voltage of Q_{3} is exceeded. The transistor then clamps pin 3 of the IC to around 7.5 V . This protects the IC from damage and also generates a pulse at the output.

If the thermistor resistance is less than 30Ω, the base-emitter junction of Q_{3} is forward biased
and the transistor conducts. This turns off Q_{1}, causing a pulse at the output.

With the components specified, the circuit has an operat-ing-point stability of $\pm 0.5^{\circ} \mathrm{F}$ for ambient temperatures in the range $0-60^{\circ} \mathrm{C}$. This is achieved by using 1% resistors for R_{2}, R_{3} and R_{4}. These resistors should have a temperature coefficient better than ± 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Resistors R_{13} and R_{14} should also be low-tempco types to minimize temperature drift of the base voltage of Q_{3}. This ensures that the fail-safe circuit
works reliably with the specified thermistor variation of 30Ω. Component values are selected as follows:

Resistor R_{4} is dictated by the resistance curve of the thermistor. Resistor R_{3} should be as low as possible to minimize variations of IC leakage current with temperature. But the minimum value of R_{s} is determined by the maximum-allowable input voltage for the IC. Of course, R_{2} must be equal to R_{g}. The values for the voltage divider R_{13}, R_{14}, are selected to ensure that Q_{3} turns on when the thermistor resistance is less than 30Ω.

Pulse-width discriminator

The Circuit described here that a pulse will appear at provides an output pulse when- point F if T is greater than ever the input pulse width is either less than a minimum value, or greater than a maximum value. The circuit will also function as a pulse-width error detector by providing error pulses of width equal to the amount that the input pulse width deviates from the allowable limits.
In the block diagram of Fig. 1, a pulse width T is applied to point A. The leading edge of the pulse is delayed by a delay gate ($1 / 2 \mathrm{SG} 83$) to avoid racing problems with the leading edge of the pulse generated by the Maximum-Pulse-Width One-Shot. This non-critical delay is usually 10 or 20% of the nominal input pulse width. The triggering pulse which drives the two one-shots is derived from the leading edge of the input pulse. The left half of Fig. 2 shows the maximum-pulse-width waveforms. Note
$T_{m a x,}$ the maximum allowable pulse width. The width of this pulse at point F will equal T $-T_{m a x}$.

The minimum-pulse-width waveforms are shown at the right in Fig. 2. The second delay gate ($1 / 2 \mathrm{SG} 83$) is used to avoid leading-edge racing problems at points D and E. Note that if T is less than $T_{m i n}$, the minimum allowable pulse width, then a pulse will appear at point G. The width of this pulse will equal $T_{m i n}-T$.
The last NOR-gate provides a general indication any time the input pulse width is outside the test window.

An example of a circuit developed for measuring 2-ms pulse widths within a test window of $\pm 10 \%$ is illustrated in Fig. 3. The maximum allowable pulse width is calibrated simply by applying $2.2-\mathrm{ms}$ pulses at point A using a pre-

Fig. I. Pulse-width discriminator lin block-diagram form.

Fig. 2 Waveforms for maximum (left) and minimum (right) pulse widths.

cision pulse generator and trimming R_{z} to adjust the Maximum - Pulse - Width One - Shot until a pulse just appears at point H. The minimum allowable pulse width is similarly calibrated by applying $1.8-\mathrm{ms}$ pulses at point A and trimming $R_{\text {s }}$ to adjust the Minimum-Pulse-Width One-Shot until a pulse appears at point H.

Fig. 3. Circuit for measuring 2 -ms pulses with a $\pm 10 \%$ window.

Change-ofslope detector

An operational amplifier with a lag network can be used to detect a change in slope of most periodic waveforms. Any dc component present will not

High and low output levels indicate changes in slope of an input signal, regardless of input level over a wide range.
affect the operation of the Detector, providing the de level remains within the voltage limits of the op amp. A distorted signal can be detected provided that the irregularities in the distorted signal do not reverse slope at too high an amplitude. If this does occur, then additional filtering in the input line is required to make use of the fundamental frequency of the signal.

During the time interval between B and C, the voltage at the non-inverting input will be slightly higher than that at the inverting input because of the phase lag of the signal to the non-inverting input. Therefore, the output of the op amp will be driven into positive saturation, approximately +12 Vdc .

When the slope of the signal changes to the time interval between C and D, the voltage at the non-inverting input will become slightly lower than that at the inverting input. The output will then be driven into negative saturation, or approximately - 12 V .

The output signal now indi-
cates the change in slope in a form useful to drive a FET or MOS switch or it can be converted to a 5 -volt signal.

The lag network has a time constant of 50 ms and is useful over a frequency range of 0.1 to 10 Hz with approximately a
ten percent time shift in the output signal. For any one frequency, the lag network can be tuned to the exact time of occurrence of the change in slope. For lower frequencies the time constant must be increased and for higher frequencies the time constant must be reduced.

Peak detector

for very

narrow

pulses

The circuit here will deliver a dc voltage that's proportional to the peak amplitude of very narrow pulses with duration down to about 10 nanoseconds.

The amplitude of a negativegoing input pulse is compared to an arbitrary reference voltage applied to the inverting input of a differential-input gate, the MC 1035. If the pulse amplitude is more negative than the reference, a positive-going pulse appears at the inverting output.

This positive pulse is applied through an MC 1023 line driver to the reset input of the MC 1027, a J-K flip-flop wired as an astable multi whose output width is determined by the value of $C_{1} R_{1}$. The values shown in Fig. 1 give a width of about 500 ns .

This relatively long pulse is amplified, level translated and inverted by Q_{1}, whose output turns on Q_{Q}, whose collector current charges C_{q}.

The collector voltage of Q_{2} will have a negative value that does not exceed $V_{E E}$. It should remain essentially constant when there is no input pulse. Therefore, $R_{q} C_{2}$ should be greater than the period of the input pulse. The voltage across C_{2} is isolated from the outputcurrent amplifier by a JFET used as a source follower.

The output, a negative voltage proportional to the voltage across C_{2}, is fed back to the inverting input of the first gate to become the arbitrary reference. This output rises with

Fig. 1. This circuit responds to the peak amplitude of narrow pulses and is insensitive to their widths.

Fig. 2. When an input pulse lasts longer than about 10 ns , the output dc is proportional only to pulse-peak amplitude.
each input pulse until equilibrium is reached when C_{2} stops charging.

As shown in Fig. 2, the output amplitude is a function of input peak only, not input width. The lowest input-pulse amplitude determines the short-
est usable pulse. The work done was performed with a pulse rep rate of 6.25 kHz .

A regulated $\pm 5.2-\mathrm{V}$ power supply is used. The negative supply must be able to deliver up to 100 mA , while the positive supply must deliver up

to 10 mA .

The ICs used in the circuit are part of Motorola's MECL II family. The 1035 and 1027 have maximum prop delays of 8 ns while the fastest member of the family, the 1023 , has a maximum prop delay of 3.5 ns .

Tunnel diode minimum

pulse-width detector

Minimum pulse-width detectors have often been designed around IC monostables, UJT oscillators and discrete monostables. The circuit illustrated uses tunnel diodes for this purpose and has the advantage of being extremely simple, pulsepowered, predictable and fast.

Referring to the schematic, the input pulse current thru R will switch the tunnel diode $\left(\mathrm{TD}_{1}\right)$ to a high voltage state. In this state TD_{1}, becomes a a relatively constant charging voltage source for the inductor. The constant voltage across the inductor (TD_{2}) in its low voltage state) causes an inductor current that increases linearly
with time. If the input pulse is shorter than the selected minimum width, the inductor current will not reach the level necessary to switch TD_{2}. If the pulse is longer than the selected minimum width, the inductor current will increase and switch TD_{2} to the high voltage state. At the termination of the pulse, TD_{1} will return to its low voltage state but TD_{2} will remain in the high voltage state until the inductor current decays below the TD_{2} valley current. The tunnel diode switching characteristic provides precise resolution (estimated at one nanisecond) while the charged inductor forces a minimum output pulse width. The circuit will not generate a partial output for a borderline pulse width.

The input pulse amplitude must provide a current through R greater than the sum of the

This pulse-width detector uses a minimum of components but operates at high speed.
valley and peak currents of the tunnel diodes. The minimum pulse width is a linear function of the inductance and is approximately the product of the inductance and TD_{2} peak cur-
rent divided by TD_{1} peak volttage. For the circuit shown, this reduces to

$$
\mathrm{t} \approx 2 \mathrm{~L} \text { or } 60^{\circ} \mathrm{ns}
$$

where t is in nanoseconds and L is in microhenries.

Optical tapemarker
 detector

Detecting beginning and end markers on digital magnetic recording tape is often difficult because of varying ambient light conditions and blank tape reflections. Manually adjusting the sensitivity of the light detector is not a practical solution. This self-compensating sensor does the job automatically by comparing shortterm light variations (the sig-
nal pulse) against long-term variations (ambient light) in order to detect the presence of the desired signal.
In the diagram B_{1} is a light source which illuminates the moving tape. Q_{I} is a phototransistor which detects the light reflected from the tape marker. $R_{3} C_{t}$ is a low-pass filter having a time constant of about 5 times the expected incoming pulse width (10 ms). The filter stores the long-term light level without reacting to the short signal pulse. $R_{\swarrow} C_{z}$ is a low-pass filter with $1 / 20$ the time constant of the incoming pulse width. This filter reduces spurious noise without deterior-

A phototransistor, op amp and DTL gate are used to construct an optical end-of-tape sensor.
ating the incoming pulse. R_{s} provides a slight positive bias to hold the output of A_{1} in
negative saturation. R, and D_{i} provide a level conversion for DTL-gate G_{r}.

High-speed synchronous detector

FET or bipolar-transistor choppers cause problems in most synchronous detectors be-
cause of gate-to-drain or base-to-collector capacitance. In the FET chopper, for example, the capacitance allows the gatedrive sync signal to enter the drain circuit. This is particularly troublesome at high frequencies and low-input-voltage levels.

A simple solution lies in producing a signal of opposite polarity to the sync signal and feeding it to the drain (in the FET case) through a capacitance that's exactly equal to the gate-to-drain capacitance. This cancels sync feedthrough from gate to drain.

In the circuit shown, the signals at the $D_{1} R_{1}$ and $D_{s} R_{3}$ junctions are equal in magnitude to and 180° out of phase with the sync signals at the gates of Q_{i} and Q_{z} respectively. If C_{i} is made exactly equal to the gate-to-drain capacitance of Q_{1}, the signals passing
through $C_{\text {, }}$ and $C_{G D_{1}}$ will can- for zero output with the sync cel and eliminate feedthrough. A similar situation holds for Q_{2}.

These adjustments are best made by adjusting C_{1} and C_{2}.
signal present and the input voltage absent. The circuit shown has a dynamic range of 80 dB at 100 kHz . \quad

Capacitive feetback of gate signals elinimates forward syncsignal feedthrough, boosting synchronous-detector frequency capabllity.

Section 16 DISPLAY \& READOUT CIRCUITS

Photo Reader for Perforated Tape

The heart of this photo reader is the photo sensiive diode CR1. This makes use of the fact that the back resistance of a diode changes with light intensity. In this circuit a standard silicon junction diode 1 N 676 was used. It was necessary to remove the paint covering the glass case to allow the light to reach the junction. Commercially available photo diodes would have been used, but none were on hand at the time. The circuit was developed for reading perforated tape. A photo memory circuit was used to drive loads in order to keep the signal applied to the load until it is required to erase the memory.
When the photo diode is dark, the back resistance is greater than 10 megohms, and therefore, has little effect on the biasing of transistor Q_{1}. In the dark condition, the sensitivity potentiometer R_{1} is adjusted to give a positive bias such that Q_{1} is conducting to a point where the collector voltage is approximately -10 volts with respect to ground. The Shockley diode $C R_{2}$ is in the nonconducting condition and is therefore high resistant. The - 10 volts on the collector of Q_{1} passes through R_{4} and sees the high resistance of $C R_{2}$ and the high back resistance of CR_{3}. Diode CR_{2} requires approximately 40 volts drop across its terminals to cause it to conduct. In the dark condition, there are -10 volts on the cathode and +28 volts on the anode. A potential drop of 38 volts across $C R_{2}$ is not enough to cause it to breakdown.

When light is applied to $C R_{1}$, its back resistance drops from greater than 10 megohms to approximately 200 K ohms. With the total resistance in the base circuit less than 200 K , transistor Q_{1} will conduct more and its collector voltage will drop to
less than -12 volts. Thus the voltage on the cathode of $C R_{2}$ will drop below - 12 volts and cause it to break down since the drop across it exceeds 40 volts. When CR_{2} breaks down, the current path will be from the +28 vde supply through the load, $C R_{2}, C R_{3}, Q_{2}$, and on to ground return. Diode $C R_{2}$ will remain in the conducting condition and thus act as a memory as long as the current does not drop below the required holding current (5 to 10 ma on the 4D40 diode used).
Transistor Q_{2} is biased on from the +28 vdc supply through R_{5}. It will stop conducting when ground is applied to its base and therefore acts as a memory erase. Diode $C R_{2}$ will go back to the high resistance condition and no current will be supplied to the load. The purpose of R_{4} is to apply enough resistance such that less than minimum holding current (5 ma) required to keep $C R_{2}$ broken down would be allowed to flow through R_{4} and Q_{1} when Q_{2} breaks the current path.
The requirements on Q_{2} are that it be low resistance (approximately 1 ohm saturation resistance for STC 1004) such that the activation of a photo memory circuit will not activate or deactivate other photo memory circuits using the same memory erase circuit. As many as twenty-four photo memory circuits were erased with the memory erase circuit with good results.

The three loads shown were used depending on the application required. Using the lamp as a load could have application in verifying punch tape. The relay load could be used to control a circuit where it is necessary to handle large currents. The relay used draws more current than $C R_{2}$ is capable of handling for continuous operation, therefore, once $C R_{2}$ allows enough current to pass to activate the relay, one set of relay contacts is used to keep the relay latched.
The resistive load is applicable where it is desired
to drive logic circuits with a " 1 " or " 0 " using 0 to 28 vdc , respectively.

Various junction and point contact diodes of the glass case type are painted black, and it was required to remove the paint to get light to the junction. All of the diodes tested showed extremely noticeable changes in the back resistance with light

Diode CR_{1} is a conventional silicon type with paint removed to allow light to reach junction.
intensity. For more sensitivity, a lens was used to focus the light in the junction area. There are commercially available photodiodes, such as TI 1N2175, with small focusing lens built in.

Inversion Technique for Incandescent Lamp Readouts

|n s witching circuits, incandescent lamps are frequently used for indication of the various circuit outputs. When only a single-pole single-throw switching output is available (e.g. an spst switch, a single relay contact, an scr, or a transistor), a problem arises if a lamp output is required with the switch open or if two lamp outputs are required (one lamp lights for the switch open and one lamp lights for the switch closed). The usual approach to the problem is to add an in-
verting element such as a transistor switch or a relay.
A solution to this problem, which has proved superior to other possible solutions in several applications, is shown in Fig. 1. The circuit uses an scr, but other switching devices can be used in a similar manner. In this circuit, all lamps are the same type. With the. scr off, the two upper lamps in parallel supply current to the lower lamp. Since the resistance of a lamp is much higher when operated at rated current and voltage than it is at lower current or voltage, the resistances of the two upper lamps, L_{1} and L_{2}, will be much less than the resistance of the lower lamp, L_{3}, and, consequently, a large fraction of the supply voltage will appear across L, causing it to light. When the scr is on, the major part of the supply voltage will appear across L_{1} and L_{2} and consequently they will light. If indication with L_{3} only is desired, the two upper lamps, L_{1} and L_{2}, can be shielded.
This circuit was tested with type 39 lamps rated at 6.3 v and 0.36 a . With the scr off, the voltage across L_{1} and L_{2} was 0.8 v with 6.3 v across L_{3}. There was no visible light output from L_{1} and L_{2} under this condition. With the scr on, there were about 6.3 v across L_{1} and L_{2}, and there was no visible output from L_{3}. The chart shows the advantages of this method compared with the resistor in series with the lamp from the standpoint of power efficiency.

	Power	
Circuit	SCR off	SCR On
Circuit of Fig. 1	2.5 w	5.1 w
Circuit with Series	4.5 w	8.5 w

Considering the lower power required, together with the more effective dispersion of heat by a lamp, the superiority of the circuit of Fig. 1 is evident.

Fig. 1. Basic inversion circuit for incandescent lamp readout.

An alternate approach to this problem would be to use a single lamp in place of L_{1} and L_{2} in Fig. 1. This lamp, if it is twice the current rating and the same voltage rating as L_{3}, should produce equivalent results.

Low-Voltage Transistors Drive Neon Readout

This simple, neon-readout system does not require high-voltage transistors. In fact, it can be driven directly from register flip flops. It requires small currents for the neon and it needs very few components.

In operation, the neon's supply voltage is adjusted to lie between the striking and extinguishing potential of the neon. When one transistor of the flip flop turns on, we can assume that a positive-going pulse must be directed by the neon tube's turning on. As shown in the figure, capacitor C couples the pulse to the tube in such a way that the sum of the pulse height and the supply voltage is sufficient to fire the neon. Consequently, a pulse height of only 6 to 12 v is necessary to drive the neon.

Small voltage changes are adequate to drive this neon readout.

As the flip flop turns off, a negative pulse reduces the tube voltage below the extinguishing point and turns it off. (It should be noted that, unless the flip flop has made at least one transition, this readout, being ac coupled, will not necessarily indicate the correct state. But this is generally no problem.)

Multitrace Display Device

To permit the measurement of certain pulse parameters between fixed voltage levels in the presence of oscilloscope gain instability, shifting baseline levels, and random line voltage fluctuations, the circuit of Fig. 1 may be used. The circuit allows simultaneous presentation of the pulse under consideration, and of the limit voltage levels, without requiring frequent laborious checking and calibration of the display instrument.

Fig. 1-Multitrace display.

Two A-175 60 cycle, 6.3 v choppers operated approximately 45 degrees out of phase are employed. The first chopper switches alternately between the two set voltage levels; the output of this chopper is then combined, through the second chopper, with the pulse signal. Ideally, the two choppers should operate precisely 90 degrees apart to ensure equal brightness of all the elements of the composite display. The simple phase shifting circuit used here provides approximately 45 degrees phase difference, but the resultant intensity variation is not objectionable.

A requirement for the proper operation of this device is that a pulse repetition rate or an oscilloscope sweep speed be high enough to prevent the appearance of the 60 cycle switching pattern.

Transistor Matrix for BCD-to-Decimal Indicator

Abstract

Incandescent-lamp decimal indicators that operate from a binary-coded-decimal ($B C D$) source require some means of BCD-to-decimal conversion. This is usually done with a diode decoder matrix and with transistor drivers for the lamps. For 8-4-2-1 weighted code, a minimum of 30 diodes and 10 transistors would be required with this technique. An alternative circuit that uses only one diode and 18 transistors is shown in Fig. 2. This circuit is similar to the relay switching tree shown in Fig. 1.

Fig. 1. Relay BCD-to-decimal converter.

Fig. 2. Transistor BCD-to-decimal converter.
The 1 N645 silicon diode provides a common bias for the transistor tree. A given transistor tends to be turned on when a logic $l^{\prime}(-6 v)$ is supplied to its base input circuit from the BCD source, which is assumed to be a counter or shift-register stage. A logic 0 is represented by approximately ground potential (saturated collector-
to-emitter drop), and holds a given transistor off.
The use of a common base resistor for each $B C D$ input provides economy in the number of components, but is a disadvantage at higher temperatures since it must handle the combined $I_{c o}$ of the bases. Separate base resistors would have to be used for reliable operation at temperatures above $40^{\circ} \mathrm{C}$.

For any possible decimal combination for the 8-4-2-1 weighted BCD input, only one closed gate path is possible through the transistors from ground to the correct light. Approximately 2 ma of current drain is required from each logic I input (it should be noted that base
current is drawn only by those transistors forming the closed gate path).

Inputs from both collectors of each stage must be utilized. If the stage of weight four is in a "set" (logic 1) condition, for example, then the 4_{1} input would be $-6 \mathrm{v}_{\text {, }}$ while the 4_{0} input would be at ground potential.

Lamps rated at $28 \mathrm{v}, 40 \mathrm{ma}$ were used in a projectiontype decimal indicator. The lamp supply voltage may be slightly higher than 28 v to compensate for the small voltage drop across the combined biasing diode and transistors, which amounts to less than 1 v .

Multi-Aperture Solar Cell Amplifier

This circuit is presently being used as a source of strobe pulses in a high speed commercial card reader. The input is connected to a long solar cell which is masked by an aperture plate having equally spaced windows to allow light to shine on the cell at the required strobe times. With a long, 10 -aperture cell and one circuit, this scheme will generate 10 strobe pulses. Eight circuits and eight solar cells are required to generate the 80 strobe pulses needed when reading a conventional punched card.

A common-base input circuit is used so that the solar
cell operates in its linear region. The base of Q_{1} is biased at $-V_{i}$ of D_{1} so that the emitter of Q_{1} is essentially at 0 V , thereby minimizing cell leakage current. The maximum input current which the circuit can accept is determined by

$$
I_{L M A X}+N I_{A}+\frac{V}{R_{1}} \leq \frac{V}{R_{3}}+I_{B 2}
$$

where $I_{L \text { max }}$ equals the cell leakage current, N equals the number of apertures uncovered and I_{A} equals the cell cur-

Fig. 1. Solar-cell amplifier for reading punched cards.

Fig. 2. Waveforms at critical points in the circuit.
rent generated each time an aperture is uncovered.
Figure 2 shows waveforms at various points of the circuit. The waveform of the signal at the base of Q_{3} consists of a series of voltage steps, where the changing portion is a linear voltage which changes by $I_{4} R_{3}$ in the time required to uncover an aperture. The flat part of the waveform between steps represents the time that it takes the card to travel between apertures.

In the remainder of the circuit, Q_{3} is an emitter follower which has a high input impedance and is capable of driving the $R_{5} C_{2}$ differentiator. Q_{4} is an inverter which amplifies the differentiated analog signal and drives the digital pulse shaping output stage, Q_{5}.

The purpose of C_{1} and C_{2} is to limit the frequency response of the amplifier so that noise, ever present in most electro-mechanical systems, will not generate-digital output strobe pulses.

Readout Circuit for Digital ICs

Using SCR circuits, as shown here, you can indicate the state of binary circuits without using bulky power supplies. One $60-\mathrm{Hz}$ transformer will supply many lamp-driver circuits. The circuit is controlled by standard logic levels.

A high input of 3 V (logical 1) supplies sufficient power to the gate of Q_{z} through R_{z} to cause the SCR to conduct on each posit ve cycle of the 60 Hz anode voltage. The lamp stays lit with half-wave rectified power as long as the input is at the high level.

A low input of $0.1 \dot{\mathrm{~V}}$ (logical 0) will not trigger the SCR and the lamp will not light. Current-amplifier Q_{1} provides gate current to the SCR while drawing only about 0.2 mA at the input.

Because of its low inputcurrent requirement, this circuit is an excellent readout for integrated circuits. No additional supply voltages are required. With the transformer specified here, as many as 14 stages can be driven simultaneously, with little reduction in lamp intensity.

Simple and efficient readout circult is compatible with digital ICs. For clarity, only one stage is shown.

Three-State Indicator

With both switches open, this indicator circuit is a free-running multivibrator.

Sometimes it's desirable to indicate more than two circuit conditions using a conventional lamp. This indicator circuit gives three modes; on, off and blinking.

If switches S, and S_{2} are both open, transistors Q_{1} and Q_{z} form part of an astable multivibrator. With the component values shown, the lamp blinks once every second.

If S_{t} is open and S_{z} is closed, Q_{2} turns off allowing $Q_{\text {, }}$ to conduct. Thus the lamp stays on.

With S_{1} closed and S, open, Q_{2} conducts cutting off $Q_{\text {. }}$. Thus the lamp is extinguished.

The switches can be replaced by transistors or relays, depending on the application.

Lamp driver minimizes lines to remote display unit

When it is necessary to locate multiple lamp displays at some distance from their drivers, this circuit can minimize the number lines to the remote lamp displays. For n display circuits, $\mathrm{n} / 2+1$ lines are required, that is one line for common line.
The inputs are compatible with Motorola MRTL logic, and draw one loading unit current from their source. The SCRs and transistor are lowcost plastic devices. Using the

Astrodyne \#TR-118 spring cooler, each SCR will drive up to five \#1818 lamps.
Current for L_{I} is supplied by the 24 -Vac source through $S C R_{1}$ and D_{I}. Half wave rectified power is supplied to the lamp. Current for L_{z} from
the 24 -Vac source is supplied through $S C R_{q}$ and D_{q}. Therefore, at point X, positive halfcycles turn L_{i} on, negative half-cycles turn L_{R} on, and ac will operate both.

When input B is more positive than 0.8 V and the $S C R$.

anode is positive, it fires. R : limits the gate sensitivity to the minimum MRTL "on" voltage. Gate current for $S C R_{1}$ is supplied via D_{3} and Q_{i}. When the $S C R_{1}$ cathode is negative, and the gate more positive than the cathode, it will fire. If Q_{s} is on when the $S C R_{1}$, cathode and gate are negative, gate current will be supplied through $D_{3} . Q_{1}$ is biased on when input A is more positive than 0.8 V . Q_{t} is a grounded-base level shifter. D_{3} protects the gate of $S C R_{1}$ from large reverse voltages when the cathode goes positive.

Despite the fact that only half-cycles from a 24 Vrms source are supplied to the lamps, a 24 V lamp is used. When 14.4 lamps (\#1813) were tried, life was unacceptably short due to excessive filament heating on the halfwave peaks, even though the average power supplied was the same as for 12 Vrms full wave. The 24-V lamps provide adequate brilliance for a translucent readout display and long life is assured.

Low-cost plastic semiconductors are used in circuit that minimizes the number of drive lines required for remote lamp display.

Section 17 GATING \& LOGIC CIRCUITS

Gating With Varicaps

A$100-\mathrm{db}$ "on-off" ratio of a $5.5-\mathrm{mc}$ signal can be obtained using a small amplitude positive pulse gate with the circuit of Fig. 1. This ratio is accomplished by using two dual triodes with four tuned circuits with a varicap in each.
Figure 2 shows the gated $5.5-\mathrm{mc}$ with the gate pulse superimposed. The time scale for both signals is $5 \mu \mathrm{sec} / \mathrm{cm}$. The $.5 .5-\mathrm{mc}$ is shown $0.1 \mathrm{v} / \mathrm{cm}$ and the gate pulse $1.0 \mathrm{v} / \mathrm{cm}$.
The stages are initially tuned for a signal frequency of $5.5-\mathrm{mc}$. When a gating signal is applied at J_{4}, the parallel tuned circuit in each stage is shifted
to series resonance since the gating voltage changes the bias on the varicaps and hence the capacitances C_{3}, C_{9}, C_{14}, and C_{19}.

The unique idea here is the performance of a gating function by detuning parallel resonant stages by switching to series resonant stages for the "on" and "off" conditions respectively. The gating signal for the "off" condition can be a relatively small amplitude (4 v) signal whose width can be anywhere from $20 \mu \mathrm{sec}$ to dc. A negative pulse could be used by reversing polarity of the varicaps.

The gate input circuit must protect against the $5.5-\mathrm{mc}$ feedback. For proper decoupling the capacitors in the pi network must be large. Good rise

FIG. I-Tuned circuits are shifted from paraliel to series resonance by gating signal.
time and delay time of the gate pulse requires that these same capacitors be small and one capacitor is common to the four pi networks. $C R_{2}$, an International Rectifier zener diode, is used to protect the varicaps against a high bias condition and also to reduce the effects of voltage variations of the gate source during the "on" condition. The amplitude of the gating pulse must be greater than the zener voltage of $C R_{2}$. If a large gate pulse is available, $C R_{2}$ may be chosen with a higher zener voltage and the bias conditions made to agree. The zener voltage must not exceed 25 v . A 1N281 diode is used to speed up the gating action and to clean up the gated $5.5-\mathrm{mc}$ signal output.

With a $500-\mathrm{kc}$ bandwidth and a $5.5-\mathrm{mc}$ signal the capacitance required for resonance (for L_{2}, L_{6}, L_{10}, L_{14} at $11 \mu \mathrm{~h}$) would be $75 \mu \mu \mathrm{f}$. Assuming that the capacitance of the varicaps will be changed 50 per cent by varying the bias voltage across them, the new capacitance would be $37.5 \mu \mu$.

The new tuned frequency would then be 2.48 mc and for one tuned stage attenuation to 5.5 mc would be about 25 db .

The total amount of attenuation obtained ($>100 \mathrm{db}$) was accomplished by using four stages and by creating the series resonance during the

FIG. 2-Gated 5.5mc signal with gate pulse.
off time. This series resonance condition gives the effect of infinite capacitance or a great degree of detuning of the tuned circuit.

Capacitors C_{4}, C_{10}, C_{15}, and C_{20} were shunted across the varicaps to eliminate the rectifying action of the semiconductor.
Over $100-\mathrm{db}$ attenuation during the "off" time was achieved using only two low current tube types.
The temperature effects should be less than other standard circuits since fewer tubes are used and the varicaps, as used here, are very stable and nonaging. Thus greater reliability is achieved.

A small gate signal (approximately 4 volts) is sufficient to operate the circuit. With a slight modification an opposite polarity gate could be used instead of the positive gate used here.

There are no balance problems, no pedestals are created by the gate on the signal, and no loss of gain is incurred.

Power Control by Digital Pulses

Acricuit was designed to control input and output units (card reader and card punch) of a

data processing system. A 50 -volt relay (internally connected to ground) of this unit was to be operated by logic levels of -3.5 volts and 0 volt.

Specifications called for no modification of the card machine used. The circuit shown in the diagram also had to be impervious to noise and voltage fluctuations within limitations.

The control of the load by pulses and the signal conversion to a different operating level make this solid state switch unique: In standby, Q_{1} is on and draws approximately 1 ma (assuming $R_{L} \ll$ R_{5}) shunting R_{3} and staying at a slightly positive voltage level. A pulse arriving at the on-input will produce a positive spike at the gate of the silicon controlled rectifier whereby R_{2} is limiting the gate current.

The scr will go into conduction and will remain in this state. The output now will rise to a voltage somewhat less than E_{B}, while the full load current flows through the scr and the saturated transistor $Q_{1} . R_{6}$ will provide sufficient base current to hold Q_{1} on.

The leading edge of a pulse appearing at the turn-off input will produce a positive trigger at the base of Q_{1}, thus turning Q_{1} off for a duration of $40 \mu \mathrm{sec}$ at a specified load current of 250 ma . Since Q_{1} turns off, the load current is forced to flow through R_{s} and will, therefore, be reduced to less than 2.5 ma . Since the holding current of the scr is 25 ma , it will go out of conduction. The output voltage will drop immediately to almost ground level. Q_{1} will turn back on and will establish the standby state of the circuit again.
$C R_{4}$ clamps the off-input to ground to protect the driver from positive voltages. R_{7} damps peak voltages at C_{1}, occurring when scr turns on and thereby back biasing the emitter-base junction of Q_{1} for a short instant of time. Observe low ac impedance path through scr, Q_{1}, R_{7}, C_{1}, and $C R_{4} . C R_{2}, L_{1}$ and $T R_{1}$ reduce noise and transients from the load (probable source) to the logic circuits.

Turn-on time of this switch is around $3 \mu \mathrm{sec}$, turnoff plus recovery time amounts to $2 \mu \mathrm{sec}$ (at $I_{L}=250$ ma)

Exclusive OR Uses

One Transistor

When the need for comparing two logic levels exists in a digital system, the "exclusive or". function in generally adopted. The circuits shown have the advantage over other types of circuits in that relatively few components are needed to perform this type of logic. These particular circuits are intended to be used with a 0 volt (ground) and - 6 volt logic system. Most other logic levels can be readily adapted with only minor component value changes.

A pnp transistor is used in the basic circuit, Fig. 1 , which produces logic " 1 " whenever the two inputs disagree. When one input is at logic " 1 " while the other is at logic " 0 ", the logic " 1 " level is

TRUTH TABLE		
A	B	C
0	0	0
0	1	1
I	0	1
1	1	0

FIG. 1-Transistor conducts when inputs are different leveis.

FIG. 2-Logic circuit for use with an npn transistor.

FIG. 3-Neon lamp glows when inputs are at same level. in all three circuits, logic $1=0$ volts (ground) and logic $0=-6$ volts.
applied through the two diode gate to the emitter. The two diodes act as a conventional "or" gate with the transistor and its collector supply voltage.

With a logic " 1 " level at the emitter and a logic " 0 " level at one of the two base inputs, the transistor will conduct and produce the logic " 1 " output level. If both inputs are at the same logic levels,
the transistor will not conduct since the emitterbase junction is reversed biased. The output at this time will be the clamp voltage which is logic " 0 ".
When an npn transistor is used and the two diodes are reversed, as shown in Fig. 2, the circuit produces the complemented output logic. In this circuit the two diodes act as a conventional "and" gate with the transistor and its collector supply. Note the different supply voltages required for the npn transistor.

A variation of the basic circuit is shown in Fig. 3. When used as an Exclusive Or indicator, the neon lamp will glow whenever input A and input B are in agreement. This action takes place since at this time the transistor which shunts the NE-2 neon lamp is nonconducting, representing a very high impedance. When the two input logic levels are at opposite states, the transistor conducts, extinguishing the neon lamp due to the drop in the lamp's applied voltage.

If it is desired to have the indicator follow only one control level, the other input can be placed at a fixed voltage. If the fixed voltage is made logic " 0 ", then the lamp will turn off whenever the control input is at logic " 1 ". Similarly, if the fixed voltage is logic " 1 " the lamp will turn off whenever the control is at logic " 0 ".

Non-Stalling Flip-Flop for Capacitive Load

When designing digital systems, the necessity of transferring data into a storage which has a heavy capacitive load, such as long lead wires, is frequently encountered. This capacitive load can slow the response time of the storage to the point where data transfer is unreliable. Buffer amplifiers are an inefficient, and not always effective, approach to the solution of this problem.

The circuit shown has the useful characteristic that the triggering between stable states is not de-

Capacitive load in emitter circuit increases gain.
graded by any amount of capacitive load on the output. Even though the load may be so heavy that milliseconds are required for the output to change state, the stage will trigger reliably in a fraction of a microsecond. In fact, the capacitive load actually assists the flip-flop in triggering. This characteristic is obtained by using a complementary configuration and placing the load in the emitter circuit of one transistor. In this configuration, any capacitive load decreases the emitter degeneration and increases the stage gain available for switching.
The circuit shown has a response time of about 0.3 microsecond. The circuit values are typical and may be altered depending on the application.

Binary Flip-Flop Turns On

The circuit of Fig. 1 shows a binary operated flip-flop in which triggering is accomplished by turning the transistors on. Most similar circuits turn the transistors off.

FIG. 1-Trigger turns transistors on in this binary flipflop.
a

OUT

FIG. 2-Waveform at various points in circuit of Fig. I.
Trigger current is designed into the circuit. The trigger impulse only has to lower point a below ground for a small period. (0.05 to 0.3 microsecond depending on transistors). Triggering operation and steering is very efficient, because the "off" transistor turns on.
Virtually any diode and transistor can be used.

Speed capability is very high. (10 mc with highspeed transistors).
Output fall time does not have typical slow long fall time.

Phase Locked, Gated

Oscillator With Amplitude Regulation

CIRCUITS presented in available literature for gated oscillators work well as long as the duration of the gated sine wave, or tone burst, is short. For longer gate times, say 10 msec . or more, the envelopes tend to expand or decay, conditions which are further aggravated by temperature change. A single zener diode, connected as shown in Fig. 1, provides a means of regulating the feedback to prevent this action. Even though only a

FIG. I-Amplitude-regulated gated oscillator.
single zener is used, rather than two used back-toback, the sine wave output is symmetrically regulated, and tone bursts of any length may be obtained. The feedback resistance (R_{f}) will permit clipping if resistance is too low, and decay if too large. If the blocking capacitor (C_{b}) is too small, it too will cause envelope decay, but there is no upper limit to this value.
The zener rating can be from 3 to 10 v for the circuit values shown, and the peak-to-peak output voltage will be about twice that. The output will begin at average, and the first half cycle will be negative. If the opposite polarity is desired, a small resistor (35 K or less, depending on the amplitude required) may be placed in the plate circuit as shown. Reversing the zener connections will still produce regulation, but not until after the first half cycle.

The diode placed on the gate grid stops the tone burst sharply at the end of the gate. The gate load resistors, R_{L}, should be selected to obtain a gate cathode current $i_{k}=e_{g} / 2_{f L}$ in order to obtain immediate, full amplitude oscillations. e_{g} is the peak amplitude at the oscillator grid, and depends on the circuit parameters. It was 10 v for the circuit shown.

The oscillator inductor (L) used was a U.T.C. series HVC, which has a temperature coefficient that approximately compensates characteristic F
mica capacitors. The resulting oscillator is relatively insensitive to voltage variations as well as temperature change, both in amplitude and frequency.

XY Code Converter

The code converter illustrated in Fig. 1 was developed as part of a data-selection system now in use with analog computers. General operation is as follows: Normally, all tens and units low-power input transistors are cut off; during selection, one tens transistor and one units transistor are saturated and this energizes the relay having that particular decimal designation.

The actual circuit design proceeded along the following lines: Since the input transistor could only draw 6 ma to ground, while the relays required 90 ma to -12 v , amplification would be required along each relay drive line. This suggested that for each relay, a power transistor be supplied which could be either saturated or cut-off, depending on whether or not

Fig. 1. Basic form of XY code converter.
that relay was to be energized.
Since each relay required its own transistor and since a transistor, to be saturated, required an "and" re-

Fig. 2. Matrix form of XY code converter.
lationship between emitter and base, it was decided to use this "and" requirement as the code-converting mechanism.
By tying the emitters of all transistor drivers having a common units designation toge:her, and the bases of all with a common tens designation together, the code conversion was accomplished in simple $X Y$ matrix form.
One problem remained, the different drive requirements of a string of emitters as opposed to a string of bases. To drive an emitter string, it was necessary to clamp the emitters to ground via a saturated power transistor whenever its units designation signal was present. To drive the base string, it was merely necessary to lower the base voltage far enough below ground to saturate the conducting matrix transistor.
The final code converter circuit is shown in Fig. 2, where D designates relay drivers, E, emitter string drivers, and B, base string drivers.

Anti-Coincidence Detector

A circuit, designed out of necessity, which gives an indication when two input pulses are not coincident is presented here. The logic performed by such a circuit is shown in Fig. 1. For this purpese solid state circuit powered by a 25 v source was developed.

The block diagram of the anti-coincidence detector is shown in Fig. 2. When either pulse is received the respective input silicon controlled rectifier is turned on. This action applies the supply voltage to the bridge rectifier and, thereby, to the cathode of $S_{C R}$. A short time later, a positive voltage is applied by the delay circuit to the gate of $S C R_{3}$ turning on both the gate and lamp.

Coincidence of pulse " A " and " B " turns on both input SCR's, thus applying the supply voltage again to the $S C R_{3}$. However, since both $S C R_{1}$ and $S C R_{2}$ are on, the bridge rectifier inhibits the positive voltage which is applied to the gate of $S C R_{3}$ only when one input pulse is received. For this input condition the indicator lamp remains off.

Fig. 1-Logic Performed.
The complete anti-coincidence detector is shown in Fig. 3. Here, a unique utilization of the bridge rectifier enables it to perform a relatively complex operation. Input pulses are fed into the circuit through pulse transformers, T_{1} and T_{2}. The occurrence of pulse "A" turns on $S C R_{1}$ which applies -25 v to R_{1}, and to the cathode of $S C R_{3}$ through D_{1}. Current also starts flowing through C_{1}, R_{3}, D_{4}, and R_{4}. The time constant determined by $R_{3} C_{1}$ and $R_{4} C_{1}$ causes a delay in the
voltage across the gate of $S C R_{3}$. The lamp will be turned on by SCR_{3} if pulse " B " does not occur within the delay.

Fig. 2-Block Diagram.
If pulse " B " occurs within the delay, the $S C R 2$ is turned on thus applying - 25 v to the junction of D_{3}, D_{4}, and R_{4}. A balanced condition now exists and current ceases to flow through the arms of the bridge. The voltage across the gate of SCR_{3} no longer increases and C_{1} is discharged through R_{2}. As a result, the lamp is not turned on.

Action similar to that just described takes place if pulse " B " occurs first and pulse " A " does or does not occur within the delay.

The delay circuit feeding the gate of SCR_{3} is used to select the degree of anti-coincidence which the circuit will detect. The limit on the smallest degree of anti-coincidence which the circuit can detect (C_{1} removed) is determined by the turn-on time of SCR's and is about 0.3 usec for the type 2 N 1595 rectifier. The upper limit on the length of delay is set by the value of C_{1}. With a value of several hundred microfarads for C_{1}, the delay is several tenths of a second. The circuit is reset after each input condition by interrupting the -25 v supply.

Fig. 3-Anti-Coincidence Detector.

Positive Transmission Gate

Descriptions and circuits of digital gates can be found readily in present literature on computers. If, however, information on the transmission gate (i.e., digitally controlled analog switch) is desired, only a general description without a circuit is available. The attached circuit was designed when a transmission gate was needed. Some of the advantages are:

- There is a minimum of components;
- All components are inexpensive and readily available;
- Only two, easily obtained, voltages are required.
Advantages which are not obvious include:
- The output signal never passes through an active device and hence is not attenuated, distorted, or delayed;
- An ac signal with zero average value can be passed;
- There is almost negligible attenuation in the switch.
The circuit is merely a shunt switch. When the digital control voltage is 0 v , the transistor is biased in the cutoff region and the signal passes unattenuated. When the digital control voltage is -6 v , the transistor is biased into saturation. The collector potential rises to very near ground, and the signal is shunted through the transistor to ground potential.

The switch has a useable frequency range of 8 to 650 Kc .

The midband region is from 100 to 100 Kc . At Midband, the ratio of on voltage to off voltage is 4.2 v pp to 10 mv pp , or $420: 1$ which is an isolation of 54.5 db .

All of the above values were otained by using an 18 K simulated load.

The following is a partial list of suggested improvements:

- The isolation could be improved by a transistor with a lower $\mathrm{V}_{\text {ce (Sat) }}$;

POSITIVE TRANSMISSION GATE

Fig. 1-Positive transmission gate.

- The frequency response can be improved by a transistor with lower shunt capacitance to ground;
- Higher signal voltages can be used if a higher V_{bb} is chosen;
- Almost any logic level can be used for control by changing the 30 K and 470 ohms bias resistors.

Logic-Level Converter

When connecting digital test equipment to data-recording equipment it often is necessary to convert to different logic levels. The circuit shown will convert from $+18 /-8 \mathrm{v}$ logic levels (which are used, for example, in the Hewlett-Packard 5245L Frequency Counter) to the commonly used 0/-6 v logic levels of a data-logging system.

Logic 1 from the counter causes Q_{1} to be turned off, thus causing Q_{2} to conduct. With a -8 v input signal, Q_{1} will turn on and cause $V_{C E}$ to approach -50 mv , which in turn will cause Q_{2} to turn off. Base current to transistor Q_{1} is limited by an internal $100-\mathrm{K}$ resistor in the counter output circuitry. Diode D_{1} clamps the output voltage excursion at -6 v . With the circuit values shown, the output current capability is 12 ma in the output O state. Reliable operation can be expected over a temperature range of 0 to $55^{\circ} \mathrm{C}$.

Logical-level couverter with two input circuits for common commercial equipment.

With R_{B} connected in series with the input transistor base and reverse-bias resistor R_{A}, the same base circuit can be used to connect $0 /-12 \mathrm{v}$ levels (Non-Linear Systems' digital equipment) to an external data-logging system.

Added Transistor Reduces One-Shot Recovery Time

The repetition rate of a transistor one-shot is limited by its recovery time, which is almost entirely determined by the charging of the timing capacitor. In a conventional oneshot the capacitor is charged through R_{1} and discharged through R_{3} (see figure). The relative magnitudes of these two resistors therefore limit the duty cycle and consequently the repetition rate for a given pulse width. The addition of a transistor, resistor, and capacitor, as shown in the figure, reduces the timing capacitor's charging time to a very small fraction of the one-shot pulse width.

During the output pulse, Q_{8} is held off by R_{6} and the circuit behaves like a conventional one-shot. When the pulse ends, Q_{2} turns on and C_{1} transmits a negative impulse to the base of Q_{8}, Q_{8} saturates, providing a low impedance charging path for $C_{7} . C_{1}$ is chosen large enough to keep Q_{3} saturated until C_{T} is fully charged. Then Q_{3} cuts off, leaving the circuit ready for the next pulse.

Using the values shown in the figure, the circuit provides $10-\mu \mathrm{sec}$ pulses with a recovery time of $0.25 \mu \mathrm{sec}$. This corresponds to a repetition rate of almost $10^{5} \mathrm{pps}$ and a duty cycle of 97.5 percent.

Transistor \mathbf{Q}_{3} reduces timing capacitor's charging time, increasing the duty cycle.

Temperature-Compensated

One-Shot

A negative-temperature coefficient thermistor is used to keep the pulse width of a multivibrator constant to within 0.6 percent over a temperature range of $25^{\circ} \mathrm{C}$. The basic period of the circuit shown is $357 \mu \mathrm{sec}$. The period increases to $359 \mu \mathrm{sec}$ at the temperature extremes.

The thermistor is placed in the pulse-width determining network as shown. The proper compensating network is best found experimentally. The circuit is placed in an oven and a resistance decade box is used for the $R_{2}-R_{3}$ combination. The proper resistance at each temperature is determined and the compensating network then designed to match this temperature characteristic. In the circuit shown, the thermistor has too large a variation over the temperature range, so a fixed resistor R_{3} is placed in parallel to obtain the best curve fit. The thermistor used in this example had a resistance of 100 ohms at $25^{\circ} \mathrm{C}$.
The potentiometer can be used for small adjustments in pulse width, while the capacitors can be changed for large

Temperature-compensated one-shot.
pulse-width variations.
Diode $C R_{1}$ and two collector load resistors R_{8} and R_{9} decrease the turn-off time of Q_{3} at the end of the pulse by
decoupling the collector from the pulse-width determining network. The 3-v power supply is used for very low power consumption and to make the circuit compatible with integrated circuits elsewhere in the system. Power supply fluctuations greâter than ± 5 percent can be tolerated.

Analog-Voltage

Selection Switch

Conventional diode logic gates also can be used to switch analog voltages. To choose one analog signal out of several such inputs, a negative control voltage is applied to the proper gate and positive, inhibiting voltages

Fig. 1. Analog selection switch. The only gate that switches is the one with -V applied.
are applied to the gates for the undesired analog voltages. In Fig. $1, e_{n}$ will equal e_{i} if $-V$ is applied to the i th gate and if $e_{i}<V$ (V positive).

A typical 2-input switch is shown in Fig. 2. If r_{f} and r_{b} are the diode's forward and backward bias resistances, and if $r_{f} \ll R \ll r_{b}$, then the level shift through the switch will nominally be, for zero source resistances, $\left(r_{f}{ }^{2 / 2 R^{2}}\right) E+\left(r_{f} / R\right) e$ where e is the voltage across the diode just as it becomes forward-biased.

If the source resistances are not zero (but still much less than R), then the legs of the AND gate should be augmented with series resistors, each equal to the resistance of the source whose signal passes through that leg. The level shift will be as before, but with the value of r_{f} increased by an amount equal to the source resistance.

The crosstalk from the switching signal inputs yields a level shift which will nominally be $\left(r_{f} / r_{b}\right) V$, a level considerably smaller than the level shift from biasing. The crosstalk from the "off" input signal will be that signal attenuated by approximately ($2 r_{b}{ }^{2} / r_{r}{ }^{2}$).

The gain of the switch for the "on" input signal will be less than unity by about $\left(2 r_{f} / R\right)$. The gain will be down 3 db at a frequency of about $\left(1 / 5 \pi r_{f} c\right)$, where c
is the backward bias capacitance of the diodes. In practice this $3-\mathrm{db}$ cut-off frequency is not realizable because of non-zero source resistances and capacitive loading of the switch output by the following stage. At this frequency the "off" input signal will be attenuated by better than 20 db up to a frequency of approximately ($1 / 8 \pi r_{f} c$).

If the switching signal is a square wave, so as to provide alternate sampling of the two input signals, then -
the crosstalk from the switching signal inputs will be a signal 20 db down from the square-wave amplitude for a square-wave period greater than ($80 \pi r_{f} c$).

The inset in Fig. 2 shows typical parameter values for

Fig. 2. Common 2 -input diode gate.
the circuit as it was built in the laboratory.
Note that the same switching property can be obtained with the diode OR and AND gates interchanged and with polarity reversal of V.

High Duty-Cycle One-Shot

The maximum duty-cycle at which a one-shot may be operated is limited by the recovery time (the time to recharge the timing capacitor). This recovery time is a particular obstacle when the timing capacitor is made large for pulse widths on the order of one second.
Approaches to this problem have produced various methods for reducing the recovery time, but none for eliminating it. The approach described here eliminates the problem and enables the individual designer to use existing digital logic modules. Thus, the reliability of the system incorporating the high duty-cycle one. shot will not suffer from the use of non-standard circuits or components.
The technique, Fig. 1, is to alternately trigger two identical one-shots. To do this, the trigger pulse is alternately steered from the first one-shot to the second by a toggle-connected flip-llop and a pair of pulse steering gates. The flip-flop changes state at the completion of the output pulse, thus delaying the next pulse to be formed only by the transition time of the Hip-flop. This means that the trigger pulses may be us close as $T+S$, where T is the output pulse width and S is the flip-flop transition time.
The circuit shown in Fig. 2 is the way the author implemented the logic diagran of Fig. 1. The circuit produces 700 msec pulses and is triggered every 705 msec, a ratio difficult, if not impossible, to attain using the conventional one-shot. A 6 v positive transition with a $1 \mu \mathrm{sec}$ rise time will trigger the circuit.

This technique was carried one step further as shown in the alternate diagram in Fig. 1. By triggering the toggle flip-flop from a shorter delay one-shot, the output pulses can be made to overlap if the interval between trigger pulses is shor'er than the pulse width.

This circuit has variations which are valuable in pulse rate measurements. For example, it can be used to give an output transition when there is a missing pulse; or, it can indicate when a pulse frequency has exceeded or diminished from a preset value.

Fig. 1. Logic diagram. With circuit modified as shom dotted, and by breaking connections at $x-x$, output pulse overlap is obtained.

Fig. 2. High duty cycle 700 msec one-shot.

Crystal Controlled Multivibrator

This oscillator is useful as a system clock. It combines simplicity with crystal stability and uses no inductors or capacitors. The circuit can be built up from logic NOR gates with the only frequency controlling element the crystal itself.

Each transistor operates as a feedback amplifier. The Q_{2} stage has unity gain. The gain of Q_{1} is a function of the resonant impedance of the crystal. But since most crystals have a resonant impedance less than the $22-\mathrm{K}$ feedback resistance, the gain of the Q_{1} stage is considerably greater than unity.
The output at the collector of Q_{1} is a rounded square wave with a peak-to-peak voltage dependent on the $B+$. The circuit oscillates at 1 mc from 2 v to 30 v . A wide range of frequencies from 3 kc to 10 mc can be accommodated without changing any elements in the circuit because of the sole use of resistance for both biasing and loop gain.

Crystal-controlled multivibrator.

Fig 1. Variable-hysteresis Schmitt trigger.

Fig. 2. Trigger-level and hysteresis variations.
The circuit operates over a temperature range of 0° to $60^{\circ} \mathrm{C}$ with less than 0.05 percent drift. The output can be loaded with a $15-\mathrm{K}$ resistance without seriously affecting the waveshape or frequency.

Variable-Hysteresis
 Schmitt Trigger

There are many cases where the hysteresis offered by a Schmitt trigger could be useful if its range could be widened without destroying circuit operation (output pulse amplitudes, etc.). The circuit presented here is quite simple and straightforward and can be easily designed to fit individual needs.
Transistors Q_{1} and Q_{2} are in a typical Schmitt configuration. Q_{3} acts as a buffer so as not to load the driving circuitry.
In the normal state, Q_{1} off and Q_{2} on (saturated for this analysis), the voltage V_{A} is approximately

$$
\begin{equation*}
V_{A}=\frac{R_{8} V_{t \prime \prime}}{R_{6}+R_{5}} \tag{1}
\end{equation*}
$$

This assumes that there is no loading on $R_{:}$by zener D_{3} or Q_{3}, and that Q_{2} is at ground potential. R_{7} is not in the circuit since Q_{4} is off, thus back-biasing D_{1} and removing R_{T} from the circuit.
When V_{A} nears the inherent upper trigger level (UT) of the circuit, X, Q_{1} starts conducting until Q_{2} turns off, which in turn turns $Q_{ \pm}$on. Now D_{2} is back-biased, thus removing R_{8} from the circuit. D_{1} becomes forward biased, thus putting R_{7} in operation. Now

$$
\begin{equation*}
V_{A}=\frac{V_{i n} R_{7}}{R_{6}+R_{7}} \tag{2}
\end{equation*}
$$

Thus the Lower Trigger point ($L T$) can be controlled by R_{-}. The esener diode is used to limit the maximum voltage acros; R_{e} and to prevent Q_{1} from becoming for-ward-biased.

At first glance it appears that Q_{1} could be used in place of Q_{1} (since their states are essentially the same). The problem is that Q_{1} is a linear amplifier for a short period before Q_{\because} switches. also it is hard to get $V_{\text {. close to ground }}$ potential.

The inherent UT for the Schmitt, including $Q_{: ;}$, is X and the LT. Y. From the Eqs. 1 and 2:

Upper Trigger

$$
\begin{equation*}
V_{i,} \simeq \frac{V\left(R_{6}+R_{8}\right)}{R_{x}} \tag{3}
\end{equation*}
$$

Lower Trigger

$$
\begin{equation*}
V_{i n} \simeq \frac{V\left(R_{6}+R_{7}\right)}{R_{7}} \tag{4}
\end{equation*}
$$

The Hysteresis (H) is

$$
\frac{V\left(R_{6}+R_{8}\right)}{R_{8}}-\frac{V^{V}\left(R_{6}+R_{7}\right)}{R_{7}}=I I
$$

Fig. 2 shows the effects of $R_{\overline{7}}$ and R_{k} on the upper and lower trigger levels and the zero-hysteresis as a function of small changes in R_{7} and R_{s}.

Power One-Shot

This complementary symmetry one-shot is one solution to the problem of how to supply 1.4 w for 0.1 sec to a relay coil on a very low duty cycle basis, without giving away any power in standby.

Power one-shot.
One particular application required a contact closure for 0.1 sec to discharge a $1000-\mathrm{pf}$ capacitor that was charged previously to 10 kv . Two reed switches in series, mounted in a common coil, provided the contact closure but the coil required 20 v at 70 ma to operate.

The complementary symmetry one-shot is triggered on once every 8 sec for 0.1 sec . Prior to an input trigger pulse, Q_{1} and Q_{2} are in the off state. The input pulse is first differentiated by C_{1} and R_{1}, and diode D_{1} passes the negative-going portion, causing base current, causing the collector of Q_{2} to fall. C_{2} couples the 20 vdc swing to the base of Q_{1}, regeneratively turning both junctions on hard. C_{2} then begins to charge through the base emitter junction of Q_{1} in series with R_{5}. As the base of Q_{1} approaches 17 v , Q_{1} turns off, turning off Q_{2}, causing Q_{2} 's collector to rise. This positive $20-\mathrm{v}$ swing is coupled through C_{2} to the base of Q_{1}, regeneratively turning both junctions off.

The device on-time is essentially determined by the charging time of C_{2} through R_{i}, but $h_{f_{e}}$ of both junctions enters into the picture, causing $T_{\text {on }}$ to be temperature sensitive. $\mathrm{A} \pm 20$ percent drift from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is evident. Temperature compensation might be possible, but often is not required.

Phantastran Delayed Gate

Thi addition of Four parts to a Phantastran (a solidstate Phantastron) produces a circuit that generates a gate at the end of a sweep which can be used as a delayed signal. The Phantastran itself is made up of $Q_{1} . Q_{2}$. and $Q_{2 .}$. $Q_{\text {. }}$ is a combination emitter follower and ramp linearizer. The four parts which make up the delayed gate generator are C_{6}, R_{6}, R_{7}, and Q_{4}.

Phantastran delayed gate.

Phantastran waveshapes. Time is read from right to left. Upper trace: input ($10 \mathrm{v} / \mathrm{cm}$); center trace: $\operatorname{ramp}(5 \mathrm{v} / \mathrm{cm})$; lower trace: gate ($10 \mathrm{v} / \mathrm{cm}$).
Q_{2}, and Q_{4} are normally on. $Q_{:}$is off. C_{f} has been discharged by the saturated impedance of Q_{2} and $D_{-,}$. A positive trigger through C_{5}, turns off Q_{2}. Constant current source Q_{1} turns on Q_{3} and charges C_{4} linearly to a maximum of 13 v . As soon as C_{4} charges to the point where D_{1} conducts, the constant current generated by Q_{1} is diverted through $D_{1} . Q_{3}$ turns off, and Q_{2} turns on. C_{4} rapidly discharges to ground. This positive step is transmitted through C_{6}, which turns off Q_{4}. After a period equal to $0.7 \times R_{6} C_{6}$. Q_{4} turns on again.

The width of the delayed gate is a function of the maximum amplitude of the sweep, whose slope was designed to be approximately $1 \mathrm{v} / \mu \mathrm{sec}$ in the circuit. The maximum width of the gate is $1 \mu \mathrm{sec}$. Potentiometer P_{1} sets the maximum amplitude of the sweep. The sweep is linearized by feeding back a signal through the output of an emitter follower back to the current source, Q_{1}.

Flip Flop Operated by Input Signal NOR

The usual flip flop, with resistive inputs (RS type), is set (reset) when one of the input signals on the SET (RESET) side goes to its high level. The modified flip flop described here is set (reset) when all the input signals $x_{1,1}, \ldots x_{* /}\left(x_{k 1}, \ldots x_{k m}\right)$ are low. From a logical standpoint, it is set (reset) by the NOR-function of its input
signals instead of the OR function. To implement the same function with the usual flip flop, two extra transistors would be required.

When Q_{s} is on, the current I_{s} flows through $D_{s 2}$ into the base of Q_{n}, while I_{r}. fows through $D_{R_{1}}$ into the collector of the same transistor. To drive Q_{*} OFF, i.e to change the state of the flip flop, the current I_{s} must be at least temporarily zero. The same considerations apply to the other side of the flip flop since the circuit is symmetrical.

We can add the usual SET or RESET inputs (dotted in figure) by coupling the signals to the base through resistors.

Modified flip flop is set or reset when all input signals are low.

Sample-Hold Circuit

Most sample-and-hold circuits are quite complex. Some simpler ones have been published in the last year. However, in these circuits because charge and discharge of the hold capacitor can occur simultane-
ously, a resistor is placed in one of these paths to limit the current. The resistor drastically limits the speed with which the output responds to new input levels. For short sampling periods, in the order
of $1 \mu \mathrm{sec}$, the slow speed pre- There are two inputs (see cludes the use of these circuits. figure); the signal whose am-

The circuit shown here does plitude is being sampled, and not have this limitation. Charge a positive sampling-pulse train. and discharge do not occur Between pulses the sampling simultaneously, and no current train is at ground potential, limiting resistor is needed. holding Q_{z} in saturation. Its
collector voltage approaches +12 V , cutting off Q_{3}, whose emitter is then at +12 V . This reverse-biases low-leakage diode D_{r}, preventing any discharge of C_{t} between pulses. At this time, Q_{1} is also turned off, since there is no positive signal. Its emitter is at -6 V , reverse-biasing low leakage diode D_{z}. This prevents charging of the hold capacitor between pulses.

During sampling periods, if the new signal pulse is more positive than the previous one. C_{t} is charged rapidly to the new level through emitter follower Q_{1} and diode D_{2}. The collector voltage of Q_{1} drops below +12 V because of the

Sample-and-hold circuit in which a new signal level is sensed only when a sampling pulse arrives at the other input.
charging current. This drop, applied through diode D_{j}, drives Q_{z} into saturation. As before, $Q_{:}$in saturation cuts off Q_{3}, and back-biases D_{1} so that discharge cannot occur during the charging period.

If the new signal pulse is less than the previous one. Q_{1} remains cut off. Also Q_{z} remains cut off, and emitter follower Q, conducts heavily, providing a low - impedance discharge path for $C_{\text {, through }}$ D. . This discharge continues 2 until C_{1} has discharged to the amplitude of the new pulse. less the diode drops in $Q_{\text {, }}$ and n_{2}. At this time $Q_{\text {, turns }}$ on. stopping the discharge.

Flip-Flop Has Improved Rise Time And Stability

The basic flip-flop of Fig. half-period on the value of 1, has an inherently slow rise E_{0} mar, which in turn depends time due to the charging of on the load. If the load is C_{2} through R_{2}. This is particularly true if the flip-flop is to have a relatively long period and yet draw little power. This requires large values for C_{1} and C_{2}. A second drawback is the dependence of the

Fig. 2. Modified output circuit isolates output pulse from RC time constant.

Fig. 1. Basic flip flop rise time is limited by time constants of $R_{2,} C_{2}$.
it is isolated from the $R C V_{1} \max$ so that the switching time constant by D_{1}. The fall of E_{0} occurs only along the time of V_{2} is slow until D_{1}^{\prime} fast slopes of V_{2}. Using a becomes forward biased, at C of $22 \mu \mathrm{f}$ and a frequency which time the regenerative of less than 15 cps , rise and switching action takes place. fall times on the order of (The larger the value of R_{r}, tenths of microseconds are the faster will be the initial easily obtained. Since the rate of fall; otherwise the timing components of the flipvalue of R_{γ} is not critical.) flop are well isolated from the The zener diode is chosen output, the frequency will resuch that $E_{o m a x}$ is less than main constant for any load.

Emitter-Coupled Astable with Saturated Output

BECAUSE OF ITS OUTPUT CHARaCTERISTICS, the emitter-coupled astable is not easily applied as a drive for logic circuitry that requires a low impedance-to-ground output (TTL for example). The modified version of the circuit shown here, however, accomplishes this. It also provides the advantages of being self-starting, has no recov-ery-time phenomena, and provides the good frequency stability found in emittercoupled oscillators. In addition, high-speed saturated positive and/or negative polarity outputs or a current-mode logic output can be obtained.
Q_{1} and Q_{2} operate as an emitter-coupled oscillator. When Q_{1} turns off, diode D_{1} is reversed-biased and Q_{3} is saturated. When Q_{1} turns on, the base current of Q_{3} is switched into the collector of Q_{1}.

Diode D_{1} clamps the collector of Q_{1} to about -0.7 V so that Q_{1} is not heavily saturated.

Diode D_{1} may be removed and a pnp transistor Q_{4} added as indicated to obtain either positive or negative or both polarity outputs. The baseemitter diode Q_{4} now performs he function of diode D_{1}.

All circuitry in the dashed box may be replaced by Q_{5} and its associated circuitry. The output at Q_{5} swings from -0.75 to -1.55 V which is compatible with the present-day integrated-circuit current-mode logic.

Operating frequency may be varied from 50 Hz to 8.5 MHz by varying C_{1}. Symmetry may be adjusted by varying the ratio of $\dot{R}_{E 1}$ and $R_{E 2}$. Rise and fall times are 10 and 12 nsec respectively and vary little with operating frequency.

Emitter coupled astable; the circuitry in the dashed box may be replaced by Q_{5} as shown.

One-Shot Has Improved Temperature Stability

In TRANSISTOR one-shots using low-leakage silicon devices, one of the primary causes of variations in output pulse width is the temperature dependent base-emitter voltage of the normally-on transistor. By using a differential amplifier (Q. and Q_{3}) as shown, the turn-on voltage of Q_{s} is controlled and hence the output pulse width is stabilized.
When a negative pulse is applied to the input. Q_{2} is turned off and Q_{1} is turned on. Also, Q_{s} turns on causing the output of Q_{b} to be turned off. The time Q_{2} remains off is determined by C_{2}, R_{2} and the turn-on point of Q_{2}. This turn-on point is established by R_{3} and R_{4} and is about 3 V for the values shown. Since the $V_{B E}$ drops of Q_{2} and Q_{3} track, with temperature, the voltage at the base of Q_{2} is only a function of R_{3} and R_{4}.

With the values shown, the pulse width is approximately $300 \mu \mathrm{sec}$, with rise and fall times of 50 and 100 nsec.

One-shot circuit has differential amplifier which improves temperature stability.

Long-Duration One-Shot Uses Integrated Circuit

IC/Transistor circuit gives long time-constant without using large capacitors.

Adding a transistor is a solution to the problem of designing a long-duration one-shot multivibrator with integrated circuits. The low impedances of ICs usually dictate the use of large and expensive capacitors to obtain long time-constants. The circuit shown, here, however, uses a small tantalum capacitor and a commercialgrade transistor. For this circuit the total component cost is less than $\$ 3.50$ in small quantities.

With the component values shown. the circuit provides pulses of up to $75-\mathrm{sec}$ duration, and will operate with supply voltages as low as 2.6 Vdc . Input and output levels are com-
patible with standard micrologic.

The time constant is determined by $R_{,}$and C_{1}. Resistor R_{z} should be low enough to avoid current-starving the IC. For the $\mu \mathrm{L} 914$ dual-gate circuit, resistor values in the range 1 k to 10 K are acceptable. R_{4} provides a return path for reverse leakage current in the IC. This resistor can be bypassed with a suitable capacitor if necessary, to prevent false triggering due to ripple on the $\mathrm{B}+$ line. A series resistor may be added in the feedback path between pins 5 and 7. The value of this resistor will depend on the output loading.

Low-cost manual pulser

This simple low-cost circuit provides manually-initiated sel/ reset voltages and clock pulses. It is useful for testing many types of digital circuits such as flip-flops, counters and adders. The circuit eliminates the effects of switch bounce that could cause false triggering of circuits under test. Total cost (excluding the optional monostable) can be less than $\$ 3.00$.

The basic circuit gives complementary set/reset voltages at the collectors of Q_{1} and Q_{2}. If a monostable circuit is connected to one of the collectors as shown, the complete circuit also provides manual clock pulses. The monostable is triggered by changes of state of the collector voltage. In the circuit shown, the monostable
gives a single positive-going pulse each time the Q_{2} collector voltage changes from "low" to "high."

The circuit works as follows: With the switch in the position shown, Q, base is clamped to ground. So Q_{1} is cut off. Base current from the $\mathrm{V}_{\text {c. }}$ line flows through R_{3}, to turn on Q_{2}. The collector of Q_{2} then approaches ground potential thus latching off Q_{r}.

When the switch is moved to the other position, Q_{2} turns off and Q, turns on. With 2N706 transistors, total latching time is less than 200 ns. This is much shorter than the duration of contact bounce for a typical toggle switch. Spurious input pulses, caused by contact bounce after initial switch closure, have no further effect

Manual no-bounce pulse generator for testing digital circuits. on the circuit. This is because ates a short pulse each time all input pulses are of the same the switch is pushed. Rise time polarity (positive-going for the of Q, determines rise time of circuit shown).
Another possible circuit modification is to use a momentary pushbutton switch, instead of the toggle switch shown. Then the circuit gener- be substituted for the 2 N 706 .

High-Speed Pulse Transmission Gate

IT's DIFFICULT to design a transmission gate to give good rejection of fast pulses in the "off" state. Stray capacitances integrate the pulse in the "on" state and bypass the gate element in the "off" state.

The circuit shown uses current switching. This overcomes the above problems because the low impedance levels minimize the effects of stray capacitance.

Transistors Q_{2} and Q_{3} form
the gate element, and Q_{1} is the input amplifier. In the absence of a gate pulse, Q_{z} is biased into conduction. Incoming signals are thus shorted to ground. The signal voltage at the emitters is less
than 0.5 Vpk for signal currents up to 100 mA . Any increase in signal level merely turns Q, on harder. Transistor Q_{3} is back-biased by about 0.75 V . Thus it isolates signal current from the output. Capaci-
tance of the reverse-biased junction of this transistor is around 1 or 2 pf , so negligible signal appears at the output collector.

When a positive gate signal appears at Q_{z} base, it cuts off this transistor and switches the bias current into Q_{3}. Thus, the gate circuit transmits the signal pulse to the output. The bias current causes a pedestal voltage e_{p} beneath the output pulse. The amplitude of this pedestal can be controlled by varying the emitter resistor of Q_{1}, Q_{2}. In practice, however,
the pedestal current cannot be reduced below about 0.5 mA , since further reduction will affect r_{e} and hence the linearity of small-signal transmission. The source for the gate should be a high impedance ($>5 \mathrm{k} \Omega$) otherwise bias current will be switched back into the source instead of thru Q_{2}.

This transmission gate for fast pulses operates in a current-switching mode. The pedestal e_{p} on the output pulse is caused by bias current in \mathbf{Q}_{3}.

Amplifier Q_{1} gives suitable isolation between the input source and the gate circuit. The output impedance of Q_{1} is primarily determined by its load resistor. This resistor can be high because the signal voltage at this point is small.

Diode D_{2} ensures that Q_{3} is completely turned off. It can be any fast silicon diode. Resistor R_{1} determines the input signal current when the circuit is driven from a low-impedance source.

The circuit was originally
designed for use with a photomultiplier tube. The gate rejection is as high as $100: 1$ for $1.5-\mathrm{ns}$ pulses. With this input, the output rise time is 3.5 ns . Of course the circuit should be wired with all signal leads as short as possible.

TTL/DTL interface to FET

 analog switchIt's usually difficult to control different types of analogswitch FETs, with their differing cutoff voltages and input levels (up to $\pm 10 \mathrm{~V}$), from the 0 and $+5-V$ logic levels of DTL and TTL circuitry. The circuits shown here make it easy and economical to switch different MOS and junction FETs from DTL, TTL or RTL logic.

We can see the problems if we look at either circuit shown here and consider an n-channel JFET like the 2N5459/MPF105, whose maximum gatesource cutoff is -8 Vdc . This dictates a $-V$ supply of $-V_{i n}-8-\left|V_{s a t Q q}\right|-\left|V_{D s}\right|$. The positive supply must be high enough (about $+V_{i n}$) to back bias $D_{s}\left(V_{g s}=0\right)$ at the maximum positive peak of the input waveform.

We see that the required magnitudes of $\pm \mathrm{V}$ can vary widely. So we need a constantcurrent base drive to insure full
saturation or cutoff of Q_{2}, regardless of the value of $-V$, since Q_{i} 's $V_{c o}$ variations must not alter the value of I_{c} that drives Q_{2} via the voltage developed across R_{2}.

In the circuits, Q_{1} is a grounded-base level shifter that converts the " 1 " level emitter drive to a constant-current drive for the base of Q_{2}, independent of $-V$, which must equal or be less than $V_{o f f}$ of the FET (assuming an enhancementmode device). Q, is a simple inverter with positive and negative supplies of sufficient amplitude to control the gating FET.

The drive to Q_{1} can take either of two forms. For cur-rent-sinking logic (Fig. 1), a dual-diode gate and a resistor to +5 V are used. $\mathrm{A}+5 . \mathrm{V}$ " 1 " level back biasis D_{1} which turns on Q_{1} through $R_{i}-D_{z}$. A "O" level at D_{1} deprives Q_{1} of emitter current which, in turn, gates the FET on.

For current-sourcing logic (Fig. 2), a $2.4-\mathrm{k} \Omega$ resistor from a 3.6-V "1" level turns Q_{2} on, gating the FET off. This circuit can be built for about 60 cents at single-piece pricing.

Fig. 1. TTL, DTL current-sinking control. A dual-diode gate is used at the input.

Fig. 2. RTL current-sourcing control uses a simple 2.4-k Ω resistor at the input.

IC NOR gate detects

zero-axis

crossing

This simple circuit gives an output pulse when an ac input waveform crosses the zerovoltage axis. The circuit uses just a single IC, a center-tapped transformer and two biasing potentiometers.

In the original application, the circuit was used to gate pulses and thus eliminate spurious transients that could occur during periods of zero pulse amplitude. Other possible applications include phase-control circuits, counting circuits, rectangular pulse shapers and some types of A/D converters.

As shown in Fig. 1, the input signal is transformercoupled to the IC. The transformer serves two purposes: It steps down the input voltage, if necessary, to avoid exceeding the rating of the $\mathrm{IC}(\pm 4$ V for the $\mu \mathrm{L} 914$). Also, it provides signals of equal amplitude and opposite. phase, at the two inputs of the NOR gate.
The two potentiometers provide a forward bias of about +0.8 V to the inputs of the gate. This bias offsets the zero logic level needed for the IC. (Measured value for the $\mu \mathrm{L} 914$ is 0.815 V at $25^{\circ} \mathrm{C}$.). Initially, the bias pots are set to give 0.8 V and they are later readjusted for optimum circuit performance.

Since the NOR gate gives
a logic-1 output only when the two inputs are simultaneously at logic-0, the complete circuit gives an output only when the input wave is at 0,180 or 360 degrees. Typical waveforms are shown in Fig. 2.

Figure 2D shows the output waveform before final adjustment of the potentiometers. The pots can be readjusted to give a very sharp spike, as shown in Fig. 2E. After suitable bias adjustment, it's possible to obtain a spike narrow enough to define the zerocrossing point within $\pm 2 \%$ of the wave period.

Of course, for noncritical applications, the pots can be replaced by fixed resistors. It should be remembered, though, that the trigger level of the IC is temperature sensitive, so the circuit won't hold its accuracy over a wide temperature range.
With the component values shown in Fig. 1, the circuit has a frequency response of 200 Hz to 10 kHz . Typical input voltage is 1 Vrms, though the basic circuit can be used with higher or lower voltages with a suitable transformer. Output amplitude is 1.2 V pk .

By readjusting the bias voltage below 0.8 Vdc , the circuit can be used to produce rectangular pulses (see Fig. 2D). The width of the pulse depends on the bias setting.

Frequency response of the circuit has been experimentally extended to 200 kHz using a different input transformer.

Fig. 1. Simple circuit gives a short-duration output pulse whenever the ac input waveform crosses the zero-voltage axis.

Fig 2. Timing diagram shows how the output pulse coincides with the zero-axis crossing. Width of the output pulse depends on the initial bias voltage.

IC functions as sampling amplifier or

tone-burst

gate

A Low cost IC amplifier can be gated by applying digital pulses to its AGC line. Depending on the relative frequencies of the signal and the gate pulses, the circuit can be used either as a sampling amplifier or as a tone-burst gate.

Only one IC gate and a few resistors are needed in addition to the basic IC amplifier.

With the components specified in the schematic, the circuit can provide up to 500 ,000 samples of the input signal per second. The minimum width for the sample pulse is $0.8 \mu \mathrm{~s}$. If the load is reduced from $56 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$, then the minimum usable samplingpulse width increases to $2 \mu \mathrm{~s}$.

A type CA3001 amplifier (70- Ω output impedance)

Depending on the signal frequency and on the width of the gate pulse, this simple circuit is either a sampling amplifier or a toneburst gate.
could probably be used instead of the indicated CA3000 ($7-\mathrm{k} \Omega$ output impedance) to provide improved load driving capability. In the original application, however, the CA3000 was chosen because it has a larger AGC range ($90-\mathrm{dB}$ typical, compared with $60-\mathrm{dB}$ for
the CA3001).
The possible sampling frequency of 500,000 per second allows the circuit to be used for sampling signal frequencies up to 250 kHz . Alternatively, the width of the gating pulse can be increased so that t is wide compared with the
period of the signal frequency. The output will then consist of a tone burst with duration equal to the length of the gate pulse.

The IC amplifier gives an output of +5 Vdc when full AGC is applied. In the amplifying mode, dc output doesn't
exceed +4 V with a signal level of 2 V pk-pk. Thus the outputs of several amplifiers can be combined, using diodes biased to clip signals at a level of 4.3 V . This type of circuit would lend itself to multiplexers or tone-burst sequencers.

Fast logic circuits with

high noiseimmunity

The logic elements described here all use diode feedback to prevent the transistors from reaching cutoff or saturation. Because the transistors are operated in the active region, switching is very fast. In effect the circuits are amplifiers having much less than unity gain for inputs above and below a narrow threshold region. Thus they tolerate input noise almost equal to the required input signal, with little or no change in output.

Figure 1 shows a basic inverter circuit. The inverter stage Q_{2} is buffered by an emitter follower Q_{2}. Diode feedback from Q_{z} collector to Q_{1} base keeps Q_{2} in the active portion of its load line, appreciably reducing the saturation
and cutoff delays, t_{s} and t_{d}.
For the specified transistors, Motorola gives the following switching-time figures:

$$
\begin{aligned}
& t_{s}=110 \mathrm{~ns} \\
& t_{t_{d}}=20 \mathrm{~ns} \\
& t_{r}=17 \mathrm{~ns} \\
& t_{f}=50 \mathrm{~ns}
\end{aligned}
$$

Using diode feedback, however, saturation and cutoff delays are reduced to around 2 to 3 ns. These residual delays seem to be related to diode switching time rather than to the transistor characteristics. The inverter switching times, t_{r} and t_{f}, are both much less than 4 ns , though it is difficult to measure these parameters accurately. Measurements were made on a Tektronix Type 585 oscilloscope with a Type 82 plug-in. The rise time of this combination is listed as 4.3 ns in the $\times 10$ mode. Displayed rise time of the circuit was approximately 4.5 ns .

Propagation delay for each logic circuit is approximately 4.5 ns. This was measured by connecting three of the circuits in

Fig. 3. With extra diodes, as shown here, the noise fimmunity is improved.

Fig. 1. Diode feedback in this Inverter circuit keeps the transistors in the active region (avoiding saturation and cutoff).
a ring-oscillator configuration. Oscillation frequency was 37 MHz . Propagation delay was calculated from the measured frequency using the following equation:

$$
\begin{equation*}
t_{\mathrm{pd}}=\frac{1}{\sigma_{\mathrm{fo}}} \tag{1}
\end{equation*}
$$

The circuit of Fig. 1 works as follows. Because transistors Q_{1} and Q_{2} have base-emitter voltages $V_{\text {be(on) }}$ of 0.7 V each, and the diodes have a forward drop of $0.6 \mathrm{~V}, Q$, and Q, will conduct when an input voltage of +1.9 V is applied. And, as the collector of Q_{2} drops to $+0.8 \mathrm{~V}, D_{1}$, will conduct. This reduces the base drive to Q, and Q_{ψ} and prevents further voltage drop at the collector. The base-collector junction of Q_{2} then has a reverse bias of 0.1 V .

When the input drops to $+0.8 \mathrm{~V}, Q_{1}$ begins to drop out of conduction. Then, as the collector of Q_{z} rises to +1.9 V, D_{2} conducts, thus restoring sufficient base drive to Q_{i} and Q_{2} to prevent further cutoff.

Since the output voltageswing centers about +1.4 V , noise immunity at the input to an identical stage will be approximately half of the $1.2-\mathrm{V}$ output swing, as shown in the transfer characteristic of Fig

Fig. 2. Input-output transfer characteristic for the circuit of Fig. 1.
2. Noise immunity can be further improved by adding extra diodes, D_{g}, D_{4} and D_{5}, as shown in Fig. 3. In this circuit, the output voltages are +0.8 V (input +3.2 V) and +3.2 V (input +0.8 V) with a noise immunity of about 1 V .

Fig. 4 shows how extra diodes can be added at the input of a basic inverter circuit to form an AND-gate. Fig. 5 shows the resulting transfer characteristic. Many other gate configurations are possible.

With these circuits, baseemitter and base-collector capacitances have very little effect on switching speed. This is because of the emitter-follower connection of Q, and the minimal voltage change oc-

curring at Q_{1} base. Capacitance of the feedback diodes does introduce Miller effect, though. So, to insure maximum speed of operation, the diodes should be bast-switching, low-capacitance types.

Yet another advantage of
these logic circuits is that the transistors needn't be optimized for $V_{\text {ce sat }}$. High-frequencyamplifier transistors can be used with their typically low output and feedback capacitances.

Split serial adder is fast

yet simple

Now that IC manufacturers are offering dual digital circuits in single packages, it is possible to build a split serial adder which uses the same number of IC packages as a conventional circuit, yet which offers twice the speed.

Before looking at an improved circuit, let's look first at the conventional serial adder shown in block-diagram form in Fig. 1. This circuit needs two shift registers of length N (where N is the length of the input words). These registers temporarily store and shift the two binary words that are to be added. Serial outputs of the two registers are added, and the sum is fed back to the serial input of one of the registers. At the end of the add cycle, the register having the serial feedback holds the sum $A+B$.

A carry-store flip-flop stores the CARRY OUT of the preceding sum $A i+B i$. The output of this flip-flop provides the CARRY IN to form the next sum $A i+1+B i+1$. Also needed for a conventional serial adder are a bit counter (to determine when N bits have been added) and miscellaneous gating (to gate the adder clock) .

Additional time for the circuit of Fig. 1 is $N T c$, where $T c$ is the clock period.

A split adder, however, allows us to achieve an add time
of only ($N / 2$) Tc, without using any extra IC packages. Fig. 2 shows a practical circuit for an 8 -bit adder. In this circuit we split the input words into two portions, with one portion containing the odd bits and with the other containing even bits. The sums of the odd bits and even bits are formed separately but simultaneously. The CARRY OUT of the odd sum is used directly as the CARRY IN for the even sum. The CARRY OUT of the even sum is stored in a flip-flop whose output provides the CARRY IN for the odd sum. A bit counter divides by $N / 2$ to determine when the last bits have been added.

Suggested IC type numbers are indicated in Fig. 2. Though four registers are needed (as compared with two for the

Fig. 1. Block diagram of a conventional serial adder.
conventional circuit), each register has a length of only N/2. Circuit operation can be easily understood if one compares the timing diagram of Fig. 3 with the schematic.

If we wish to add words
havirg odd bit lengths, then we must modify the timing circuit. The odd bit registers will be one bit longer than the even registers. So the bit counter must be modified to count to $(N / 2)+l$ instead of to

Fig. 2. Practical circuit for an K-bit split serial adder.

Fis. 3. Timing diagram for the 8-bit split adder.

Fig. 5. Timing diagram for the 7 -bit split adder.
$N / 2$. Gating must be provided disabled after state $N / 2+1$, to disable the even-register Fig. 4 shows the modified tim: clock after state $N / 2$, while ing circuit for a 7 -bit adder. the odd-register clock must be and Fig. 5 is a timing diagram for the modified circuit.

Figg. 4. Modified timing circuit for a 7 -bit split adder.

A broadband low-noise gate using

> hot-carrier diodes

signal voltages up to 4 -volts pk-pk. On-off ratios of 60 dB are possible at frequencies up to 20 MHz . Response is down 5 dB at 40 MHz .

Note that in this circuit the corners of the diode bridge are This wideband gate circuit switched simultaneously by a combines the advantages of low-impedance source. This Schottky-barrier diodes and minimizes the transients appearFETs, to overcome many of ing at the output. the disadvantages of other gate circuits. Signals are switched by trasts with that used in other a fast-response hot-carrier-diode gate circuits with diode-quad bridge which is turned on and bridges. In most other circuits, off by a low $R_{d s}$ FET. Two the bridge is turned on by two solar cells, illuminated by a pair pulses which are applied in antiof lamps, supply 1.6 volts of phase to opposite corners of the isolated power for bridge turn- bridge. The 180 -degree phase on. shift is usually derived either
Resistors R_{t} through R_{0} bias from an inverter followed by an the bridge so that it is normal- amplifier, or from a center-taply non-conducting. When a ped transformer. In either case positive clamp pulse occurs, the it is difficult to achieve accuFET applies a reverse bias volt- rately the required phase shift. age to the bridge which then Even a small error in the phase starts to conduct between the of the switching signals will input and output corners. Turn- cause unwanted transients at the on time is about 10 ns . Re- bridge output.
moval of the clamp pulse With ac coupling of the causes turn-off within 100 ns . clamp pulses, such as with a

The diode bridge will accept transformer, there is the added

In this unusual gate circuit, a Schottky-diode bridge is switclocd by a FET. Two illuminated solar-cells provide a floating lowimpedance bias source.
disadvantage that the bridge cannot be gated on for long time periods. With the circuit described here, however, the gating period can be any required value from a few nanoseconds to several hours.

In this circuit, bridge bias voltages are relatively noncritical. Variable resistor \boldsymbol{R}_{6}
allows adjustment for exact zero offset. The lamps are operated at reduced voltage, for long life. When operated at 20 volts, the specified lamps have a life of over 10,000 hours. Small reflectors can be placed behind each lamp to increase the efficiency of the lamp/ solar-cell combination.

The circuir in Fig. 1 converts binary numbers to $B C D$ without additional control circuitry. The conversion time is determined only by the propagation time through gates. While the number of individual gates is large, the conversion time is much faster than that available with the common serial methods.
The basis for this circuit is a BCD adder, Fig. 2, which adds two $B C D$ numbers (each with a value between 0 and 9) to give the sum (in BCD) and a carry output if the sum is 10 or greater.
One can usually convert the binary contents of a scaler or the binary value of toggle switches to BCD by adding the decimal weights of each lit binary lamp or of each set switch. A binary sequence such as 100011101 is converted to decimal as the sum of $128+$

Fig. 1. This circuit converts binary numbers to BCD numbers without additional circuitry.

$16+8+4+1$. This approach can be used with the adder in Fig. 2.

The binary values are broken down to their decimal components and added as shown in Fig. 1 where an 8-bit converter has been implemented. Not all inputs to each decimal adder can be used since this would have a possible sum of $31(15+15+$ carry) while a decimal adder, by definition, can only sum $9+9+$ a carry input.

In some applications, an additional adder can be eliminated by presenting a decimal number to the adder as two addends. This hảs been done to the middle adder in the units column. In this instance, a " 2 " is presented to the adder as a " 1 " and also as an input carry ($=$ " 1 "). This is not necessary in this case because this " 2 " could have been ap-
plied to the unused " 2 " input on the last adder in the units column where the largest number presented to this adder is " 9 " (from the adder above it) plus an " 8. ."

It takes about 300 ns for an 8-bit adder to change from " 199 " to " 200 " by the application of a pulse to the carry input of the top adder in the units column. A 27 -bit converter using this method requires about $1.8 \mu \mathrm{~s}$. However, these may not be worst-case times.

A 12-bit converter uses 13 adders and in one implementation, a 27 -bit converter required 23 boards. Others may discover a more direct method of determining the interconnections for minimum board count.

Reference

TI Network News \#127, Texas Instruments, May 15, 1967.

Fig. 2. This BCD adder will add two BCD numbers to give the sum in BCD and a carry output if the sum is greater than 9.

Inexpensive video distribution amplifier converts logic signals for TV displays

This circuit provides a simple and inexpensive method of converting logic signals to EIA standard for video in com-puter-generated digital television displays. The circuit accepts video and inverted sync signals from the display computer (logic " 1 " $=5$ volts, logic " 0 " $=0$ volts) and generates +1 volt for video, -0.1 volt for blanking, and 0.4 volt for sync. The amplifier is designed to work with a $75-\Omega$ load (EIA standard load) and is capable of driving several monitors using the "loop through" technique (i.e., connecting several monitors in parallel with a $75-\Omega$ termination attached at the last monitor to terminate the cable). The frequency response is flat within 1 dB from dc to 20 MHz

The circuit consists of three resistors connected in series to form a voltage divider between the plus and minus supplies. The transistors are used as
switches to select the proper since the load is part of the combinations of resistors to voltage divider network, care give the desired output voltage. must be taken to insure that Five-percent resistors can be it also is held at 75Ω within used throughout the circuit, but 5 percent.

Low-cost video amplifier is compatible with IC logic and EIA standard displays. Frequency response is flat within 1 dB over $\mathbf{2 0 - M H z}$ bandwidth.

The transistors specified are intended as examples of types that can be used. The 2 N 2222 can be replaced by a less expensive switching type, such as the 2 N 914 , as long as the beta is approximately 50 or greater at the video frequency used. Transistor Q_{2} switches only at the sync frequency and therefore can be almost any low-frequency type.

The 120 pF speed-up capacitor is adjusted to give a slight overshoot with $10-\mathrm{MHz}$ video. This was found to be helpful when using inexpensive monitors with low-bandwidth video circuits. Other values can be substituted depending on the application.

The input impedance of the circuit is $50 \mathrm{k} \Omega$ for the video input and $10 \mathrm{k} \Omega$ for the inverted sync input. This allows operation with most integratedcircuit logic modules without the use of separate drivers. Input terminations can be added as desired.

Simple circuit for

division by
 8, 9, 10

Gateless circuits for division by 9 or 10 require at least four flip-flops. By adding only four gates (a single quad

NAND) we can divide by 8 , 9 or 10. The 8-9-10 divider in Fig. 1 uses J-K connected Fairchild 9040 flip-flops and a 9046 quad NAND.

The divisor is selected by the logic levels on control lines A and B as follows:

Control Line	Divide By	
	B	8
0	0	9
0	1	10
1	0	

I-ig. I. (irsuit for divide-hy -8 or -10 and for unambiguous divide-by- 9 if the dashed-line gate is added.

Clock Pulse	FF1	FF2	FF3	FF4	Divide By
0	0	0	0	0	
1	1	0	0	0	
2	0	1	0	0	
3	1	1	0	0	
4	0	0	1	0	
5	1	0	1	1	
6	0	1	1	0	
7	1	1	1	1	
8	0	0	0	0	
8	0	0	0	1	
9	0	0	0	0	
6	0	1	1	1	
7	0	1	1	0	10
9	1	1	1	1	
10	0	0	0	0	

Fig. 2. Truth table for the \mathbf{Q} outputs. The flip-flop states for clock pulses 0 to 5 do not depend on the division (determined by the levels on the control lines).

But the 11 combination on the control lines causes the circuit to lock up (at 0111) unless the NAND, shown in dashed lines in Fig. 1, is used for reset.

To begin, the flip-flops must be preset so that $Q_{1} Q_{2} Q_{3} Q_{4}$ are at 0000 . Presetting is accomplished by pulsing the preset line once with logic 0 or
by having logic 1 on each control line.

Presetting is not essential when the circuit is to divide by only 8 or 10 . But without preset, for certain starting combinations (like 1010,0101 or 0111 at $Q_{1} Q_{2} Q_{3} Q_{4}$), when the circuit must divide by 9 it may lock up.

The maximum allowable time of the circuit is thrice clock frequency depends on the prop delay of one flipthe propagation delay of the flop, assuming equal delay for flip-flops. The maximum carry each flip-flop, so the clock
pulses must be spaced at Q or Q of FF3. The truth greater intervals than the carry time.

The output is taken from
table in Fig. 2 shows that the output mark-space ratio is $1: 1$ for division by 8 or 10 , and $4: 5$ for division by 9 .

Three-state logic circuit

The simple and reliable logic low output from the RTL gate circuit shown in Fig. 1 can " c ". Thus the steering inputs generate one "off" state and of flip-flop "a" are low. two discrete "on" states. A The first trigger pulse apsuitable decoding circuit is plied to both flip-flops changes shown in Fig. 2. The com- their states $\left(t_{n+1}\right)$. Note that plete circuit, including both the the output of gate "c" still recounter and decoder, uses just mains low, allowing flip-flop one Motorola MC790P dual "a" to toggle on the next trig-J-K flip-flop and one quadru- ger pulse. But the high level of ple dual-input gate type MC- A inhibits the flip-flop "b" 724P.

Circuit operation relies on an important property of MC790P J-K flip-flops. They will toggle on a negative transition at the trigger input when both steering inputs are low; yet they will maintain their states when both steering inputs are high.

The table in Fig. 1 shows the various output states for successive input pulses. At time t_{n}, the steering inputs of flipflop "b" are tied to A and are low. B is high at t_{n}, forcing a
from changing state. The second trigger pulse therefore generates the states shown in the table under t_{n+2}.

At time t_{n+2}, outputs A and B are both low. These logic levels generate a high at the output of gate "c", thus inhibiting flip-flop "a". The steering gates of flip-flop "b" are both low and the next trigger pulse toggles only flipflop " b ", restoring both flipflops to their respective states exhibited at t_{n}.

When power is initially ap-

Fig. 1. This simple counter has three discrete stable states. Output states for successive input pulses are shown in the table.

Fig. 2. A decoder circuit can use the remaining three gates of a quadruple dual-input IC. With the transistors shown here, the circuit will drive loads of up to 250 mA .
plied to the circuit, one may encounter an illegal state with A high and B low. However the first trigger pulse will restore the condition indicated under. t_{n}.

The remaining three gates of the MC724P can be connected as shown in Fig. 2. Each gate will drive a buffer transistor. With 2 N 3704 transistors, connected as shown, the circuit will drive loads of up to 250 mA . The loads can be relays, lamps or other suitable devices, depending on the application.

The circuit was originally developed for use in a dualslope integrating DVM. The first logic state was used to charge the integrating capacitor and the second and third
states were used for the discharge cycle. A ripple-type counter had been considered for this application but the circuit described here was found to be preferable. With a conventional ripple-type counter, an extra count was generated intermittently because of delays caused by rippling through the counter and by the reset time of a one-shot circuit.

The decoding circuit of Fig. 2 was developed for an application that required a threeposition scanner. The scanner was driven from RTL logic at a rate of three steps per second. The load for the decoder consisted of two mercurywetted relays and an indicator lamp.

Universal digital interface

There are many different forms of digital logic. For example, logic " l " can be represented by zero voltage or by

Fig. 1. Universal interface circuit gives +3 volts output with zero input and zero output with positive or negative nonzero inputs.
some positive or negative voltage level, with logic " O " being represented by the complementary state. The diversity of logic levels causes com-
patibility problems in the design of peripheral equipment for digital systems. Ideally, one piece of equipment should be capable of interfacing with any digital system.

The circuit shown in Fig. 1 will interface with many different types of logic, both positive and negative. The only

Fig. 2. Input-output transfer characteristics show that positive output occurs only with near-zero inputs.
limitation is that one of the
two logic states must be zero 1 of the upper gate is biased volts. Total parts cost is positive by the resistive dividaround one dollar. Of course, er, thus causing a logic " O " at for complete equipment com- its output. The lower gate has patibility, code converters may both of its inputs at " O," be required in addition to the causing logic " l " at its ouput. logic-level converter described here.

Basically the circuit is a digital inverter. It works as follows:

When the input is negative, pin 1 of the upper gate is biased negative and hence the upper gate has a logic " l " output. Pin 5 of the lower gate is also negative, but the logic " I " at pin 3 causes the lower gate output to be at logic " 0 ."

When the input is positive, at some voltage above +1.5 volts, pin 1 of the upper gate is posit positive and hence the out- logic. For non-inversion, an put from the upper gate is inverting buffer such as the 900 logic " 0 ." Pin 5 of the lower can be placed in series with the gate is positive and this gener- output (pin 6 of the 914). Of ates a logic " 0 " output.

When the input is zero, pin gates are equally suitable.

Fast BCD-to-binary converter

Both binary and binary-coded decimal number forms occur in digital systems. Because decimal coding is simpler and more familiar, BCD is widely used for manual input devices like thumbwheel switches. But most logical and arithmetic operations are performed in binary code. Therefore, a method of BCD-to-binary conversion is often needed with computer input devices.

Various methods of conversion have previously been described. These basically fall into three categories: direct-conversion logic matrix, simultaneous BCD-and-binary counters and BCD division using shift registers and additional control logic. The first method suffers from the requirement for ex-

Fig. 1. Simple BCD-to-binary converter uses IC quadruple binary adders to sum the binary equivalents of the parallel $B C D$ inputs.

Fig. 2. Typical manual-i n put circuit using thumbwheel switches.
tensive hardware, the second bers, and adding together these from a relative lack of speed. numbers in quadruple binary The third method requires only adders, like Texas 'Instruments' one clock pulse per bit; but SN7483N. For example, the it also needs a moderate input line with weight 200 is amount of hardware. equivalent to $(8+64+$

The method described here 128); so it is applied as an combines the advantage of input to binary adders with high conversion speed, mini- weights of 8,64 , and 128.
mum hardware, and no require- As illustrated, conversion of ment for additional control a three-digit decimal number logic. As shown in Fig. 1, the to its equivalent 10 -bit binary method simply consists of rep- representation requires only resenting each input line of the five ICs. Conversion speed is BCD coded number by its limited only by the propagaequivalent sum of binary num- tion time of the adders. With
the specified ICs it is approximately 250 nanoseconds.

The technique can be extended to numbers with more BCD digits, and can also be used for code weights other than 8421. For example, a four-digit to 14 -bit conversion can be done with eleven ICs.

Of course, interface between the manual input device and the converter circuit depends on the application. Fig. 2 shows one suitable arrangement, using thumbwheel switches.

Section 18 RELAY \& SWITCHING CIRCUITS

Precision-Timed Short-Interval Relay Swirch

THERE EXISTS need in ordnance testing to apply specific potentials to pairs of terminals for precise time intervals, also to pass a definite quantity of electrical energy through a conducting path for a short but definite time. In other fields, it is necessary to pass a known current across the contact junction of two metals for a minute but accurate instant. In electrical therapy, need exists for applying a fixed potential for an accurately known but short increment of time to a patient's body. These applications generally require the closure of a metallic switching element during the required interval of voltage or current application.
The relay switch to be described was devised to meet the requirements outlined. It is relatively low in cost, trouble free, and has excellent accuracy. The basic circuit can be used to either open or close an electric circuit for any reasonably short metered instant.

Figure 1 outlines the arrangement of components. $R L_{1}, R L_{2}$ and $R L_{3}$ are contacts operated by relay RL. Capacitors C_{1} and C_{2} are paper types.

The cycle time of the relay is defined as the interval during which $R L$ contacts are first opposite to the shown positions until $R L$ contacts are again as shown. Arc extinction voltage is that voltage across C_{2} which is present near the start of cycle time at the instant contact arc on $R L_{1}$ is extinguished.

Switch 1 transfers a definite quantity of electrical charge to coil of relay $R L$. Contacts $R L_{1}, R L_{2}$ and $R L_{3}$ operate with closing of the relay. At that instant the polarity across $R L$ is reversed, due to the collapsing magnetic field; and the potentials across
$R L$ and C_{1} add in series to drive current across the opening $R L_{1}$ contacts.

If C_{2} were shorted out, then $R L$ would remain operated for a relatively long interval, or until the electrical energy stored in $R L$ and C_{1} was insufficient to maintain the required magnetic flux.

With the circuit shown, however, $R L_{2}$ in opening unshorts capacitor C_{2}. At that instant the charging current I into C_{2} is large. It should be carefully noted that the potential appearing across C_{2} is opposed to, or bucking the combined voltage of $R L$ and C_{1}.

The combined voltage across $R L$ and C_{1} is decreasing while the bucking voltage across C_{2} is increasing. The situation will exist until the difference of the opposed potentials is too small to maintain the arc across the opening $R L_{1}$ contacts. At the time of arc extinction, the collapse of the flux field in the $R L$ magnetic circuit is necessarily essentially complete.

If we consider Q to be the quantity of electricity stored in C_{2} at arc extenction, we may write: $Q=$ It where I is the average current flowing into C_{2}, during its charging time t, prior to are extinction. But the quantity stored in C_{2} is given by $Q=C E$. We may then write $I t=C E$, and by inspection it can be seen that the smaller the value of C_{2}, the higher E will become in time t. The E limit is set by arc extinction which terminates the charging of C_{2}. Additionally, it can be shown that the smaller the value of C_{2}, the shorter the time t required to build arc extinction voltage across C_{2}.
For good repeatability of cycle time, the original charge in C_{1} should be appreciable. The faster the operate time becomes, the greater the velocity with which the armature of R_{1} will strike its pole piece If C_{2} has been chosen small enough, the rebound velocity of the armature at the time contacts $R L_{1}$, $R L_{2}$ and $R L_{3}$ again operate will be nearly as great

Accurate cycle time of 12 msec is provided by values shown for the short-interval relay switch.
as the velocity with which the armature struck the pole piece in closing. By these means, a relatively slow relay may be made to exhibit a very short cycle time characterized by high repeatability.
Siugged relays are not suitable for this circuit, and no spark suppression circuits should be used across the coil of $R L$. Arc erosion of $R L_{1}$ contacts is negligible, since the circuit action is such as to cause contact arc life time to closely approach zero as a limit.
Contacts $R L_{1}$ must discharge the residual energy in C_{1} through R_{1} during the cycle time. Resistor R_{1} is, therefore, a vital part of this circuit. Certainly the value of R_{1} must be so chosen that $5 \times$ time constant is equal to, or less than the cycle time. It is very desirable to choose R_{1} as low as possible consistent with contact current rating, so as to assure timing accuracy. Contact $R L_{2}$ is protected by resistor R_{2}. The discharge time required for C_{2} is also important, and must be kept to a minimum. It is suggested that the discharge time for C_{2} be as short as possible consistent with contact current rating capabilities.

Values for C_{2} may be determined by experiment. A decade box may be employed in a jury rigged circuit to select C_{2} size for a specific cycle time. Proper selection of component values and voltage will result in an extremely accurate short interval cycle time. The switched circuit is handled by contacts $R L_{3}$.

Using a Potter-Brumfield MH-5576 65 volt relay with C_{1} of $2 \mu f, C_{2}$ of $2 \mu f$, and a start potential of 300 volts, a cycle time of 12 miliseconds plus or minus 1 per cent was obtained. The circuit is being used in test instrumentation on a contract with Diamond Ordnance Fuse Laboratories.

SCR Switch Eliminates Amplifier for Photoelectric Readers

Simplified circuitry, reduction of components, and increased available output power (more than 20 watts) are a few of the advantages of using
a silicon-controlled switch instead of a multi-stage amplifier for photoelectric readers. Storage capability is also an asset of the controlled switch. Its thyratron-like characteristics maintain an output after the photoelectric stimulus subsides, until cutoff by control circuitry. The controlled switch, like the amplifier, isolates the stimulus from the operational circuitry.

The circuit to the right of the broken line in Fig. 1 is the storage amplifier, consisting of a siliconcontrolled switch and associated circuitry. A storage

FIG. I-Complete circuit of silicon controlled switch for photoelectric reader.

FIG. 2-Equivalent circuit of amplifier before firing.
amplifier is required for each photoelectric stimulus or bit. The bit is represented by the $40-\mathrm{v}$ supply and the 1 N 2175 , photo-duo-diode.

The circuit is for a two-mode operation, which doubles the switching capability of the reader. When using the two-mode operation, all the relays to be energized by the first mode must be the latching type, similar to relay K of Fig. 1. The relays energized by the second mode may be the conventional single-coil type. Latching relays are not required in the single-mode operation.

The asterisk pole of relay K in Fig. 1 is to remind the reader that a similar pole is required for each bit in the two-mode operation. The anode supply requires only one pole and capacitor, regardless of the number of control switches used. The pole removes the anode supply for appapximately $3 \mu \mathrm{sec}$, the travel time of the relay wiper, when switching from one mode to another. This action, with the assistance of the -4 v dc negative bias, cuts off the controlled switch. The function of the capacitor is to prevent the controlled switch from being re-
fired by the application of a step anode supply voltage.

The circuit of Fig. 2 is equivalent to that of the amplifier prior to being fired. The maximum gate voltage at point B required to fire the controlled switch is 0.8 v dc, with a maximum gate current I_{g} of 0.2 ma . $I_{\text {cutoff }}$ may be calculated to be

$$
\begin{equation*}
I_{\text {cutoff }}=\frac{4}{19,000} \cong 0.2 \mathrm{ma} \tag{1}
\end{equation*}
$$

since point A can be considered to be open circuited because the impedance of the 1 N 2175 approaches 100 megohms in the dark state. E_{A} required to obtain an I_{g} of 0.2 ma is

$$
\begin{equation*}
\frac{E_{A}}{4,000} \times \frac{15}{19}=0.4 \mathrm{ma}=I_{B O} \tag{2}
\end{equation*}
$$

where $I_{B C}=I_{g}-I_{\text {cutoff }}=0.2-(0.2)=0.4 \mathrm{ma}$

$$
\begin{gather*}
E_{A}=4 \times 10^{-4} \times 4 \times 10^{3} \times \frac{19}{15}=2.02 \mathrm{v} \mathrm{dc}(4) \tag{3}\\
I_{A B}=\frac{2.02}{4,000}=0.505 \mathrm{ma} \tag{5}
\end{gather*}
$$

Therefore, the maximum gate power required to fire the controlled switch is
$E_{A} \times I_{A B}=2.02 \times 0.505 \times 10^{-3}=1.02 \mathrm{mw}$. (6)
The 1 N 2175 , a photo-duo-diode, output gates the controlled switch. This output varies depending upon the load and the illumination intensity striking its focal lens. With an illumination intensity of 800 foot-candles, and loaded as shown in Fig. 1, the average output is 35 mw . Comparison of this output with that of Eq. 6 indicates the capability of the 1N2175 to cause the controlled switch to fire.

Step Switch Pulser

A circuit to advance automatically a step switch at a relatively constant predetermined rate is given here. This circuit lends itself to automatic test equipment featuring go-no-go evaluations. The output wave form is referenced to the common and normally-open contacts of the output lines.
$R_{1} C_{1}$ form a conventional charging circuit. The voltage to which capacitor C_{1} charges is equal to

$$
\begin{gathered}
e_{\text {tn }}\left(R_{3}+\beta R_{5} R_{4}\right) \\
R_{1}+R_{3}+\beta R_{5}+R_{4}
\end{gathered}+e_{C R 1} .
$$

Resistor R_{z}, provides the discharge path of capacitor C_{1} which controls the output pulse width t_{p}. Resistor R_{5}, provides the path for the pulse off time. Resistor R_{4} and diode $C R_{1}$ furnish a negative bias which prevents false relay actuation at high temperatures.

A 20 vdc voltage applied to R_{1} causes C_{1} to charge. The relay energizes when the voltage at the junction of R_{1}, C_{1}, R_{2}, and R_{3} is of sufficient magnitude to produce ample relay current. This time period is denoted as t_{o} as indicated on the wayeform diagram. The off time t_{0} is controlled by resistor R_{5}. The range of R_{5} adjustment is t_{o} and lies between 20 msec to 7 sec .

Fig. 1. Circuit for step switch pulsing.
When the relay is energized, C_{1} discharges through resistor R_{2}. The relay remains energized until the voltage across C_{1} stops supplying the required driving current to maintain relay current. This actuation period is indicated on the waveform schematic at t_{p}. For the circuit shown t_{p} is a fixed time at 80 msec . In most instances a pulse width of 10 to 20 msec is required for

$t=0$
Fig. 2. Output waveshape shows on and off times.
positive operation of a step switch. Therefore, 80 msec is a good and reasonable time for reliable operation.

The circuit was operated at an ambient temperature of -40 to 55 C with an overall repeatability of 10 per cent of initial conditions. The power requirements are 20 vdc at 4 ma maximum, and -20 vdc at 1 ma maximum. Both supplies should be regulated to at least 1 per cent.

Relay Circuit

Compares Successive Binary Numbers

This circuit was designed for use in a punched-tape controlled positioning machine to determine work-table drive direction. The circuit determines which of two successive binary numbers is the larger and then sets up either of two control conditions.

The comparison is based on the fact that as two binary numbers are compared bit by bit from left to right, the number that is larger will be the first to have a 1 unbalanced by a 1 in the same channel of the other number. As an example, compare the binary

Corresponding bits of the two binary numbers are compared in the relay circuit. The larger number is the one with the highest order 1 that is not matched by the other number.
numbers 5 and 6 . They would appear like this:

$$
\begin{aligned}
& 0101=5 \\
& 0110=6
\end{aligned}
$$

Channels 4 and 3 are balanced, but in channel 2 the lower number has a 1 that is not balanced by a 1 in the upper number. Thus the lower number must be the larger.

A relay circuit that compares 4-bit numbers is shown. The Comparator section is connected to make the comparison progress from left to right. Two zeros or two ones in the same channel cause the two relays in that channel to be both unenergized or both energized. In either case the common return circuit is closed for the next lower-order channel.

The double relay closures continue toward the right until an unbalanced channel is found, at which point only one of the two relays in that channel is energized and the return circuit is held open, stopping the comparison. The unbalanced energized relay determines which output line will be energized. If it is the "New Number" relay the "Larger" output is closed. If it is the "Old Number" relay the "Smaller" output is closed.
Let us assume that the last number read into the Register was a 6 and that the comparison and control functions have been completed. The 6 is now held in Old Number Storage with relays K22 and K23 locked up. K43 is held energized by K23. All other relays are unenergized.

If the next number of the series is a 5 , it will cause register relays K11 and K13 to pick up and lock. K13 causes operation of $K 33$ which balances channel 3, since K43 is already energized, and the return circuit is
thus closed to channel 2. The contacts of $K 22$ are still closed so K42 immediately picks up. However, since K12 is not energized K32 does not pick up. Thus an unbalance exists with the Old Number relay energized and the return circuit open to channel 1 , stopping the comparison.
With the output contacts of $K 42$ transferred, the circuit to the "Smaller" output is closed. This is correct because the 5 in the Register is smaller than the 6 in Storage. K54 is now pulsed to energize the output function. Immediately thereafter K53 is pulsed to clear the Storage section, K52 is pulsed to transfer the 5 from Register to Storage and K51 is pulsed to clear the Register. This sequence leaves K21, K23, and K43 energized and the circuit is ready to receive the next number and compare it with the one in Storage.

This circuit has been in successful operation comparing six-digit binary numbers in a production machine for more than a year.

Frequency Selective Transistor Switch

This circuit provides a means by which a transistor may be switched from a cutoff condition to a saturated condition by means of narrow pre-selected band of frequencies. Essentially this is a frequency selective transistor switch.

The circuit consists of a resonant circuit, as shown in Fig. 1, tuned to a predetermined frequency by means of capacitor, C, in parallel with inductance L. The inductance consists of two inductors in series, L_{1} and L_{2}, and they are not necessarily mutually coupled. The ratio of L_{1} to L_{2} is about 5.

A detector circuit consisting of a 1 N1561 germanium diode, D_{1}, and a parallel resistor-capacitor combination, R_{L} and C_{L}, is connected across the smaller of the tuned circuit inductors, L_{2}. A dc voltage is developed across the $R_{L}-C_{L}$ combination, the magnitude of which is proportional to the input frequency.

The voltage output as a function of frequency is shown in Fig. 2. The voltage output of the detector circuit is fed into a voltage sensitive transistor circuit.

The voltage sensitive transistor switch consists of

FiG. I-Resonant circuit and detector for feeding to transisłor.

FIG. 2-Output voltage of detector versus frequency.
a common-emitter amplifier circuit held in the cutoff condition by means of a forward-biased diode, D_{2}, in the emitter circuit, as shown in Fig. 3. This circuit is fed by a regenerative type switching circuit the output of which is always at one of two de levels, depending on the condition of the input.

When the input signal moves above the predetermined value, the output of the regenerative circuit will switch from one voltage extreme to the other providing enough drive to switch the output transistor from the cutoff to the saturated condition.
Previously it has been difficult to obtain a voltage sensitive transistor switch that would move from the cutoff condition to the saturated condition, or viceversa, without moving slowly or hesitating in the high power dissipation or linear region, thereby burning out the transistor. This circuit is designed to overcome this and switch rapidly from one condition to the other upon receipt of the proper low level de signal.

When $E_{I N}=0, Q_{1}$ is not conducting and $V_{O 1}$ is determined by the voltage divider ratio formed by $R_{L 1}, R_{\mathrm{L}}$ and R_{2} and $V_{o 0 .} V_{B 2}$ is at some negative potential determined by the same divider network. Transistor Q_{2} is turned on. Assuming $R_{L_{1}}$ and R_{1} cause Q_{2} to saturate, the load current will be determined primarily by $R_{L 2}$ and $V_{c c}$, since $R_{E} \ll R_{L 2}$. This will cause $V_{c z}$ to be at some small negative potential, say $V_{C Z L} . V_{B}$ is then determined by the maximum collector current of Q_{2} and $R_{E} . V_{E \max }=$ $I_{C 2 \max } R_{E}$.

If $E_{I N}$ now decreases slightly below the value of $V_{\text {max }}, V_{B E}$ becomes negative and Q_{1} begins to conduct, this causes $V_{B 2}$ to become more positive tending to turn Q_{2} off. This, in turn, causes $I_{c 2}$ to decrease, causing V_{E} to become more positive which turns Q_{1} on still further. The regeneration in the circuit causes this to occur very rapidly with the result that $V_{c 2}$ decreases rapidly to a higher negative value, say $V_{o 2 H}$. Now, consider the effects of $V_{C 2 L}$ and $V_{C 2 H}$ on the common emitter output circuit.

To prevent $V_{c 2 L}$ from turning on Q_{3}, a diode is placed in the emitter circuit of Q_{3} and biased in the forward direction with a current determined by R_{D} and $V_{C C}$. The diode voltage drop V_{D}, is of
such a polarity as to keep Q_{3} turned off. Transistor Q_{3} will be turned off as long as the following condition is met.

$$
\frac{R_{4}}{R_{3}+R_{4}} V_{o 2}<V_{D}
$$

This condition is easily met when $V_{o 2}=V_{C 2 L}$.

FIG. 3-Basic circuit of transistor switch.
However, the circuit is designed such that when $V_{c 2}=V_{O 2 H}$

$$
\frac{R_{4}}{R_{3}+R_{4}} V_{C 2 H} \gg V_{D}
$$

Q_{3} is driven instantly into saturation from the cutoff condition. This completes the operation of the circuit as far as turning on Q_{3}.
When Q_{1} is conducting the voltage, V_{E} assumes some negative potential less than $V_{E m a x}$, say $V_{E m i n}$. When $E_{I N}$ decreases below the value $V_{\text {Emin }}, Q_{1}$ turns off and because of the circuit regeneration the circuit returns to the initial condition when $E_{I N}=0$. This returns Q_{3} to the cutoff condition.

When the signal frequency moves above the lower frequency cutoff point, f_{L}, the output voltage increases in the negative direction causing the voltage sensitive circuit to turn on the transistor switch with a regenerative-type action. As the frequency is increased above the resonant frequency to the upper cutoff frequency point, f_{v}, the output voltage drops below the value necessary to keep the transistor switch turned on and the transistor switch then turns off with a regenerative-type action.

This circuit is designed to switch rapidly from one condition to the other upon receipt of a signal of frequency within the narrow predetermined range without hesitating in the high power dissipation region of the transistor.

The complete circuit gave excellent performance; turning on and off within 0.5 kc as the frequency was gradually increased through the resonant frequency of 20 kc .

Solid State Latching Relay

USE of a new type of magnetic firing circuit for silicon controlled rectifiers permits the construction of simple, compact ac solid-state relays of both the latching and non-latching type. The re-
lay is activated by a dc or ac control current in a single electrically isolated control winding and switches load power up to 1.7 kilowatts.
The basic magnetic firing circuit which is used is shown in Fig. 1. Transformer T_{1} is made with a small core of square loop material such as Orthonol. If the core of T_{1} is unsaturated, winding 1-2 will present a high impedance and the current through R_{1} and D_{1} will charge C_{1} during the initial part of the positive half cycle. Transformer T_{1} will saturate after a few degrees of the positive half cycle and permit a rapid discharge of C_{1} into the gate of $S C R_{1}$ thus causing $S C R_{1}$ to fire. If, however, the core of T_{1} is initially saturated at the beginning of the positive half cycle, winding 1-2 will present a low impedance thus diverting the current from C_{1} and preventing C_{1} from being charged. Resistor R_{2} is chosen to have a sufficiently low value so that the voltage produced by the current through R_{1} will not exceed the minimum gate firing voltage.
Owing to the presence of the diode D_{1} the current through winding 1-2 of T_{1} will be unidirectional, thus causing the core of T_{1} to be normally in the saturated state. Consequently the scr will not be fired, and the circuit will function as a normally open half-wave relay.
A positive signal on the control winding 3-4 of T_{1} will cause the core to be reset during the neg-

FIG. I - Basic magnetic firing circuit.
ative half cycle of the ac line so that the scr will be fired on the following positive half cycle.
This firing circuit is unique in that the saturable core is not required to sustain the gate voltage for a full half cycle as is the case in conventional magnetic firing circuits. Consequently the magnetic core can be much smaller and less expensive than those which would ordinarily be required.

Two of the simple half-wave circuits of Fig. 1 can be combined to give a full-wave ac latching relay as shown in Fig. 2. Here the reset signal for the core of T_{1} is obtained from a five turn winding in the anode circuit of $S C R_{2}$ and the reset signal for the core of T_{2} is obtained from an identical winding in the anode circuit of $S C R_{1}$. If neither scr is conducting there will be no reset signal furnished to either core and the scr's will remain in the nonconducting state. If the core of T_{2} is reset by a momentary positive signal at the control input,

FiG. 2-Solid state ac latching relay.
$S C R_{2}$ will fire and its anode current will reset the core of T_{1} which in turn will cause $S C R_{1}$ to fire. -This action will continue with the result that both scr's will remain in the conducting state even after the control signal is removed. To turn off the circuit a negative voltage at the control input will saturate the core of T_{2} and thus prevent $S C R_{2}$ from firing. The circuit has memory in that when the line voltage is reapplied after an interruption the circuit will remain in the same state (either conducting or nonconducting) as before the interruption occurred.
The circuit of Fig. 2 requires the load current to be above a minimum value (about one ampere for the circuit shown) for conduction to be maintained. Operation at lower values of load current can be obtained by increasing the number of turns on windings $3-4$ of T_{1} and T_{2}. In some cases it may be desirable to add a simple series RC line filter across the relay to prevent false triggering due to line transients.

Magnetic Latching Relay Flip-Flop

There is a wide variety of flip-flop circuits available to circuit designers. The flip-flop described here uses a magnetic latching relay as the memory element and has several advantages over the standard relay flip-flop. These advantages include simplicity, reliability and ruggedness suitable for missile application.

The unit has an isolated output through single pole, double throw, relay contacts capable of handling $2 \mathrm{amps}, 30 \mathrm{v}$ dc or $1 \mathrm{amp}, 115 \mathrm{vac}$. No standby
power is required to maintain state of flip-flop. Up to 100 transfers per second are passible and the unit has a wide signal tolerance of 20 to 30 volts.

The magnetic latching relay flip-flop circuit as shown in Figure 1, uses a Potter \& Brumfield, 24V magnetic latching relay and two tantalum capacitors, C_{1} polarized, C_{2} nonpolarized.

The operation of flip-flop proceeds as follows. A signal of 20 to 30 volts is applied to the input of the device through C_{1}. This signal may be a pulse of 5 msec or longer. At the instant the voltage appears, current flows into both coils through C_{1} and C_{2} resulting in a exponential increase in current and then a decay as shown in Fig. 2, (initial phase).

FIG. I-Magnetic latching relay flip-flop.
After a short time the current in the latch-down coil (i_{2}) overpowers the effect in the latch-up coil (i_{1}) and the relay starts to transfer.

At the instant the relay arm leaves contact 1 , (transition phase) current stored in the relay coils will discharge through each other by way of C_{2}. Since the current in the latch-down coil is the larger of the two it will continue to flow in the forward direction while causing the current in the latch-up coil to reverse. The particular relay specified for this application is polarized so that the reverse current in the latch-up coil will also assist in latching the relay down.

When the relay transfers (final phase) current will continue to flow into both coils until C_{1} charges. However, C_{2} acquired a charge during the initial phase which is opposite to the current flow into the latch-down coil. Therefore, by virtue of C_{2} discharging into the latch-down coil, its current will be effectively larger than that in the latch-up coil. This effect is shown in Fig. 2.

It is evident from the circuit diagram that no holding power is required. Another feature of the magnetic latching relay flip-flop is that each phase of the relay operation (initial, transition and final) aids in the relay transfer. Also, a removal of the signal voltage after 5 msec will assist in maintaining the transfer. Since C_{1} has acquired a significant

FIG. 2-Current in latching relay coils with 30v input. charge within 5 msec , it will discharge through the relay in the reverse direction through the signal source impedance thereby aiding the transfer.

The latch-up position and the latch-down position are symmetrical. Therefore, another incoming pulse will transfer the relay to the latch-up position in the same manner as described for the latch-down operation. The tolerance allowable for C_{1} and C_{2} are ± 20 per cent. However, with a tighter control on signal voltage the tolerances can be widened considerably. The components used in Fig. 1 resulted in the following characteristics:
Signal Voltage Max Source Current Transfer Time

20 V	$40 \mathrm{ma}(2.5 \mathrm{msec})$	5 msec
30 V	$60 \mathrm{ma}(4.2 \mathrm{msec})$	3 msec

Because of its advantages, this flip-flop has found application in satellite vehicles for logic switching of power circuits.

Simple Servo Follow-up System

AnUmber of positions or channels required in a servo follow-up system can in many cases be broken down in combinations of two components, ($y=x z$). The combination of two components which, when added together, yields the smallest sum ($x+z$), forms the basis for a follow-up system with fewer interconnected leads, less volume and inexpensive components.

In Fig. 1 is shown a common zero seeking followup system. The physical size of the switch wafers in this system is a function of the number of positions required. The number of interconnecting leads between the remote position or channel selector switch S_{1} and the follow-up mechanism equals the number of positions or channels plus 1.
The contact on S_{2}, (Fig. 1), which represents the position selected with Switch S_{1}, lines up with an opening on the contact ring when the follow-up procedure has been accomplished. By increasing the number of openings X on the contact ring, the original number of positions can be increased in direct ratio with x. ($\mathrm{X}=2$ in Fig. 2)

The additional openings on the contact ring have

FIG. 1-Zero-seeking follow-up system.

FIG. 2-Contact ring assembly.

FIG. 3-Top and bottom conductors are connected with evelets.
been achieved with the aid of a switch as shown in Fig. 3. The outer ring is called the contact ring; the inner rings are called the auxiliary rings. The zuxiliary rings make it possible to connect either segment $a a$ or $b b$, (See Fig. 3), with the outer ring by means of sliding contacts (A, B, C_{1} and C_{2}) and remote Switch $S_{1 B}$. (See Fig. 2).

By connecting contact a with remote switch $S_{1 B}$ (Fig. 2), segment $a a$ on S_{2} is made an integral part of the contact ring of S_{2} and $b b$ represents the opening. The supply voltage $\mathrm{B}+$ is connected to the wiper arm of remote switch $S_{1 A}$ which can select one of Y positions. If switch S_{14} selects a position which does not face discontinuity on the contact ring, in other words, does not fall on $b b$, current will flow through the contact ring and into the de motor to ground. The motor is energized and turns switch S_{2} until the current through the motor is interrupted because of discontinuity on the contact ring. The contact facing, segment $b b$, correlates the position selected with remote switch S_{1}.
By connecting contact b with remote switch $S_{1 B}$ (Fig. 2), segment $b b$ is made an integral part of the contact ring of S_{2} and aa represents the opening. In this case the contact facing segment aa correlates the position selected with remote switch S_{1}.
One advantage of the system is reduction in physical size of the follow-up wafer switch, which can be a printed circuit switch. There is less contact wear on wafers because of decreased number of contacts. A 42-position system with one opening in the contact ring requires 43 contacts, with two openings 25 contacts are required, and with three openings only 19 contacts are necessary.

Integrated Pulses Control DC Output

The amplifier shown in Fig. 1 integrates the input pulses, and gives a 28 -volt de output when a specified number of pulses are applied to the

FIG. I-Circuit of integrating amplifier.
input. Since the 28 -volt output is through relay
contacts, relatively high current is available for control purposes.

The input signal source is isolated from the amplifier by transformer T_{1}. Rectifier $C R_{1}$ is a double anode Zener diode whose Zener level is below the input signal level, but the Zener level is high enough to prevent inadvertent noise from being amplified by transistor Q_{1} and actuating the relay.

Transistor Q_{1} is a common emitter amplifier that is coupled to transformer T_{2} by capacitors C_{2} and C_{3}. The transformer is a four to one step-up type; its output is rectified by $C R_{3}$ and stored by C_{1}. When the voltage on C_{1} reaches the breakover point of the Shockley diode CR_{4}, C_{1} discharges through $C R_{4}$ and actuates relay K_{1}. The relay is latched in the activated position by \boldsymbol{R}_{4}.

The circuit has a fail-safe feature that is mandatory in some military applications. A failure of any one of the electronic components, excluding the relay contacts, will not cause a premature output signal.

Starter Circuit for Flip-Flop

Afree-running flip-flop circuit had several desired features. It uses -12 -volt and +2 -volt supplies. It has an output impedance of less than 1800 ohms and a period of one millisecond. The

Starter circuit for stalied free-running flip-flop.
circuit is quite stable in operation and we like its characteristics once it is in oscillation. However, the circuit will not commence oscillation of its own accord.

Although many methods might be used to start the multivibrator operation, the novel approach shown in heavy lines was selected. A relay, resistor, and capacitor have been added.

With the power off, $150-\mu \mathrm{f}$ capacitor is shunting capacitor C_{1}. The relay will energize at
about 9 volts so that C_{3} is out of the circuit before normal operation is reached. More significantly, \boldsymbol{C}_{3} is in the circuit for the time period during which the power supply increases from zero to 9 volts. This allows C_{3} to start the multivibrator operation and then drop out of the picture, much the same as the starter on an automobile functions.

High-Impedance Diode Chopper System

APRoblem frequently encountered in semiconductor circuitry is that of chopping a de signal at a high impedance level. Probably the best known of the conventional methods is the Ring Bridge Modulator ${ }^{1}$, using a set of four matched diodes, but although the sensitivity may be of the order of 1 millivolt, the impedance level is seldom above 10,000 ohms, which is too low for many applications.

A 5 -megohm impedance level was obtained by the circuit of Fig. 1. It was devised as a method for determing when the voltage across an integrating capacitor reached a predetermined level. The heart of the system is the use of a short sampling pulse and the two diodes D_{1} and D_{2} to produce a signal whose peak amplitude is equal to the required voltage.

Experiment showed that it was not sufficient (in this case) to ignore the fact that the sampling pulse tended to charge capacitor C_{1}, and a dc supply was added to neutralize the effect. For design purposes it is convenient to look at an equivalent circuit during the sampling pulse, with R_{3} disconnected. In Fig. 2, the pulse height has been transformed to the open-circuit voltage which would appear across R_{2} in the absence of any capacitor-charging current and the impedance of the charging resistance R_{1} has been transformed into the equivalent resistance of R_{1} and R_{2} in parallel ${ }^{2}$. (R_{1} includes the output impedance of the multivibrator, R_{2} includes the ac input resistance of the amplifier and C_{2} is ignored in this operation).

The duty cycle of the sampling pulse is t / T (waveform, Fig. 1), typically 0.001 . The charging resistor for the neutralizing circuit must therefore be T / t times the value of the equivalent charging resistor of the sampling network, and of course the polarity of the two voltages V_{1} and V_{2} must be opposite.

Approximate design formulas are given in Fig. 1. If there is a charging resistor or some external circuitry which amounts to a resistance R_{4} across the input (in parallel with C_{1}) then the values of R_{3} and V_{2} are changed slightly, as below. For improved accuracy, R_{3} should also be taken into account as a leakage across the capacitor during the sampling
pulse, and the design formulas can be written more accurately as $\quad R_{3}=[T-t / t] /$

$$
\begin{gathered}
{\left[1 / R_{1}+1 / R_{\text {in }}+1 / R_{2 A}-t /(T-t) R_{4}\right]} \\
V_{2}=-V_{1}\left[1+R_{3} / R_{4}\right] / \\
{\left[1+R_{1}\left(1 / R_{i n}+1 / R_{2 A}+1 / R_{3}+1 / R_{4}\right)\right]}
\end{gathered}
$$

where $R_{i n}$ is the ac input resistance of the amplifier and R_{24} is the value of resistor wired into the R_{2} position in Fig. 1.
The dc impedance of the measuring circuit is

FIG. 1-A de impedance level of 5 megohms is achieved with values shown. Design formulas shown for \mathbf{R}_{3} and \mathbf{V}_{2} can be improved upon, for greater accuracy.

FIC. 2-Equivalent circuit during the sampling pulse.

approximately one half of R_{3}, or more accurately the parallel combination of R_{3}, R_{4}, and the transformed impedance of the sampling pulse. Since \boldsymbol{R}_{3} may be 10 meghoms or more, a dc impedance level of 5 megohms is quite easily obtained.
The diodes used for D_{1} and D_{2} were type 1N300 (Raytheon), with leakage current quoted as 0.001 $\mu \mathrm{a}$. Minor "tweaking" adjustments were made to the calculated values by setting a charge on C_{1} by a battery, and adjusting R_{3} and V_{2} so that the voltage remained at this level for a minute or so after the battery was removed. The circuit was developed for an integrator ${ }^{3}$, but not used in the final design.

Variable-Speed Stepping Switch Control

TThe circuit shown in Fig. 1 was developed to provide a variable speed stepping switch function. Requirements dictated a stepping speed of from 1 to 3 steps per second, and that the switch be able to be stopped at any position, as governed by a selector switch.
Prior approaches using a transistor multivibrator driving a relay to control the stepper switch re-
quired 15 parts. The present circuit uses only 7 components, thereby reducing wiring time and space and increasing reliability.
Holding S_{1} closed, momentarily, allows C_{1} to charge through R_{1} and R_{2} until sufficient gate voltage is present to turn on the controlled rectifier, energizing the stepper switch coil. The interrupter springs transfer at this time, to discharge C_{1} through R_{3} and open the anode circuit to allow the controlled rectifier to reset. The coil is thus de-energized, the stepper contacts advance one position, and the interrupter springs return to their original position. Now the ofr normal contacts close and

FIG. 1-Stepping switch control requires only seven components.
they remain closed until the stepper arrives back at its home position. The oircuit continues stepping with the speed being governed by the setting of R_{1}, until the home position is reached.
The stepper may be stopped at any position by the action of S_{2}, which grounds the gate of the controlled rectifier and prevents any buildup of voltage on $C_{1} . C R_{2}$ reduces the inductive spike generated by the stepper switch coil.
All parts are operated within their ratings and no heat sink is required for the controlled rectifier, due to its low duty cycle, hence packaging problems are minimized without sacrificing reliability.

Solid State Variable Time Delay Relay

Ground support equipment and other missile applications often need a reliable time delay relay capable of handling several watts of power. The circuit described here is a reliable solid state unit which has good repeatability.

The input circuit is designed to accept full-wave rectified dc, such as the output of a magnetic amplifier, or a continuous dc signal. The amplitude need only be large enough to turn Q_{1} on (approximately 10 to 100 v dc). With Q_{1} conducting the collector of Q_{2} goes to +15 v , the zener voltage of the SV815. This allows C_{1} to charge up through R_{1} from the +15 v regulated source. Capacitor C_{1} charges up to the peak point voltage of the unijunction transistor, Q_{3} and discharges through emitter to B_{1} junction and R_{9}. The rise in voltage at R_{9}

\boldsymbol{R}_{1}	1K - 10 MEG	C_{1} - High Range	$100 \mu \mathrm{f}$
$R_{2}, R_{7} \& R_{13}$	10K	Low Range	$0.047 \mu \mathrm{f}$
$R_{3} \& R_{4}$	27 K	C_{2}, C_{4}, C_{5}	$0.1 \mu \mathrm{f}$
R_{5}	2.7 K	C_{3}	$0.001 \mu \mathrm{f}$
R_{6}, R_{12}	470	C_{6}	$60 \mu \mathrm{f}$
R_{8}	47	$C R_{1}, C R_{4}$	IN645
$R_{9}, R_{11} \& R_{15}$	5100	CR_{2}	SV812
R_{10}	56	$C R_{3}$	SV815
$R_{14} \quad 1$	120K	CR_{5}	6F20
R_{16}	270	$Q_{1}, Q_{2} \& Q_{4}$	GT229
R_{17}	5K	Q3	2N489
R_{18}	1K	Q_{5}	2N242

turns Q_{4} on through the coupling capacitor C_{3}. Transistor Q_{5} is turned on through the Schmitt trigger (C_{5}, R_{16}), and is held on by the positive feedback through R_{17} from collector of Q_{5} to base of Q_{4}. This feediback current is sufficient to hold Q_{4} and Q_{5} on for output currents in excess of one ampere.

Upon removal of the input signal, Q_{1} no longer conducts and Q_{2} is turned on by current flow through R_{5} and zener diode $C R_{2}$. Capacitor C_{4} discharges through Q_{2}, R_{8}, R_{13} and $C R_{4}$ turning Q_{4} off. When the input signal is first removed B_{2} of Q_{3} is lowered to approximately the same potential as B_{1}. Since the peak point voltage $\left(V_{p}\right)$ of Q_{3} is proportional to B_{2} voltage, C_{1} will discharge through the emitter to B_{1} junction. This prepares the R_{1}, C_{1}, Q_{3} timing circuit for the next input signal.

Due to the method of discharging of C_{1} and regulation of base two voltage of Q_{3} good repeatability of time delay can be achieved over a wide temperature and supply voltage range without the use of contacts.

The three transistors Q_{1}, Q_{2} and Q_{4} used were chosen on the basis of availability and use of a 2N358A or similar high gain, high current switching transistor will improve the reliability. The 2 N 242 was chosen as the output transistor because it requires very little positive voltage on the base, with respect to the emitter, to turn it off at high temperature. The $C R_{5}$ forward voltage drop and R_{11} furnish the necessary bias voltage for cut off.

By changing C_{1} to $0.047 \mu \mathrm{f}$ and removing C_{2} from the circuit a lower range of time delays may be utilized, (approximately $100 \mu \mathrm{sec}$ to 200 msec). The range of time delays for the circuit shown is approximately 100 msec to 16 minutes.

FIG. I-Circuit of solid state variable time delay relay.

Relay Control Circuit

NEED often arises for a simple relay control amplifier which is stable over the temperature range of -55 to 85 C . The usual approach is to design a high-gain transistor amplifier and incorporate plenty of feedback for stability.
An approach found very rewarding is the use of a reset type magnetic amplifier together with a silicon transistor. Figure 1 is a schematic of a temperature controller using this approach. Resistor R_{1} is the temperature sensitive element comprising one leg of a balanced bridge, when its resistance changes from nominal a dc voltage appears across points A and B, this is the signal input to transistor Q_{1}. A change in collector current as a function of input signal alters the reset current through the control winding of the magnetic amplifier T_{1}. The gate winding of T_{1} behaves as a variable impedance between the supply voltage and the load, relay K_{1}.

Variable resistor R_{4} sets the control current to just trip the relay when the voltage between A and B equal zero volts (as determined by the setting of bridge resistance R_{3}). Resistance R_{5} is wound from positive temperature co-efficient wire (Balco) and provides compensation over the temperature range of -55 to +85 C . Transformer T_{2} provides

FIG. I-Relay control amplifier is stable over range from - 55 to 85 C.
the necessary voltages for operation of the amplifier. This circuit configuration may be used for either ac or de signal inputs.

Germanium transistors may be utilized by reversing the polarity on diodes $C R_{1}$ and $C R_{2}$; however changes in $I_{c o}$ with temperature represent changes in reset current and it becomes very difficult to compensate over the required range.

The unit shown maintained a temperature setting to 1 degree F over the prescribed ambient range and with line voltage changes of ± 10 per cent.

Phototransistor Operated Relay

MANY USES of photocell instrumentation call for a compact unit that can be bolted or clamped in position and be able to operate switching directly from its own relay. It must be compact, self-contained without the use of external amplifiers, and sensitive yet rugged.

Such a circuit is shown in Fig. 1. It uses a silicon controlled rectifier and a phototransistor. Light normally falling on the phototransistor, Q, maintains it conducting so that the gate of the SCR remains at ground potential. When the light beam is broken, the phototransistor is cut off, passing a positive step to the SCR, which fires and operates the relay.

Practically any relay can be used, since the SCR can handle up to 1 ampere, and its fired resistance and volt drop are very low. The circuit is reset by pushbutton or microswitch as shown, or by interrupting the supply to the unit. Capacitor C prevents operation due to spurious noise or light vibration. Diode D and capacitor C prevent re-firing of the SCR due to back-emf coupled to the gate from the relay when resetting.

All the parts, excluding the light source and supply voltage, can be arranged on the relay with hardly any increase in space over the relay itself and, more important, with no extra wiring to the assembly other than is normally required for the relay only. The assembly can then be fixed anywhere by the normal relay mounting screws. Sensi-

FIG. I-Phototransistor controls silicon controlled rectifier operated relay.
tivity can be adjusted by varying the value of resistance R.

An interesting adjunct to this circuit is that if a relay can be chosen which has an operating current below that of the holding current of the SCR, no resetting is required although, of course, the light pulse must be long enough to operate the relay. For the normal latching use, however, rise times down to 1 microsecond or less will operate the relay.

Thyratron Actuated Relay Multivibrator

The circurt was devised for use as a control element whose on and off times could be conveniently and independently varied over a wide range (from approximately 50 milliseconds to upwards of 5 minutes).
The neon bulbs coupling the timing section to the flip-flop section serve to isolate the charging capacitor from any possible shunting effects thus eliminating the timing error in conventional circuits caused by grid current.
Circuit action is as follows; Assume that when the circuit is first turned on neon $\# 2$ conducts. This locks out neon \#1 with the result that the thyratron grid is effectively at ground potential. Thus, the thyratron will conduct and energize the relay. The relay contacts keep C_{1} discharged and allow C_{2} to charge up to the point where neon \#4 conducts discharging C_{2} through R_{2} until neon \#4 extinguishes. The extra potential across R_{2} caused by this discharge extinguishes neon \#2. This allows neon \#1 to conduct, locking out \#2. A negative potential is thereby applied to the thyratron grid which stops it conducting thus causing the relay to

FIG. 1-Thyratron multivibrator off time is controlled by $R_{1} C_{1}$ and on time is controlled by $C_{2} R_{2}$. Values of R_{1} and R_{2} should be I megohm or greater.
fall out. The relay contacts keep C_{2} discharged and allows C_{1} to charge up to the point where neon \#3 conducts discharging C_{1} through R_{1} until neon \#3 extinguishes. The extra potential across R_{1} caused by this discharge extinguishes neon \#1. Neon \#2 will now conduct recommencing the cycle.

Voltage Controlled High Voltage Switch

Avacuum tube with low plate resistance makes a useful switch to control the charging of a line or capacitor used in pulse generation. By turning off the tube at the proper time destruction of a thyratron switch and load can be prevented without sacrificing the pulse rate. To operate the vacuum tube, however, a large $d-c$ voltage swing must be applied to the grid. This can be obtained from the starved operation of another thyratron.

In Fig. 1, capacitor C_{1} is to be charged to some value up to 400 volts and subsequently discharged by a gas tube, represented by S_{1}, into the load R_{5}. Tube V_{2} acts as a cathode follower and charges the capacitor through its plate resistance as long as V_{1} does not conduct. When the time arrives for operation of S_{1}, V_{2} is turned off by turning on V_{1} for whatever period of time is required for S_{1} to operate and recover. Simultaneous conduction of S_{1} and V_{1} is possible where the discharge time of C_{1} exceeds the ionization time of V_{1} (the order of a microsecond).

The plate load of V_{1}, consisting primarily of R_{2}, will not pass sufficient current to keep V_{1} ionized under the conditions imposed in Fig. 1. Therefore its plate swing can be controlled by creating a plasma at the first grid and assisting conduction to the plate. About 0.7 ma at the grid is sufficient to establish the plasma. This current is obtained through R_{1} from the input signal.
The negative transition at the plate of V_{1} is very fast. (R_{3}, located close to the plate, limits the peak current produced by stray capacitance.) The positive transition, however, is much slower since stray

FIG. I-Circuit of voltage controlled high voltage switch.
capacitance must recharge through R_{2}. This is not a disadvantage at a 2 kc rate, however, where the circuit has been used. During the time V_{1} is conducting, the grid of V_{2} is held at about -37 v , which prevents V_{2} from conducting regardless of the potential on $C_{1} . R_{4}$ provides a convenient means of varying the charge on C_{1}.
Separate filament transformers must be provided
for the two tubes with center taps returned to the respective cathodes.

Solid-State DPDT Relay

Eight diodes and four transistors can be connected to act as a double-pole double-throw relay. By continuing the basic pattern, this scheme can render a multi-pole multi-throw relay of any magnitude within. the capability of the drive circuit for "coil" terminals X and \bar{X}.

The $A+B$ output is clamped to A OR B as a function of \bar{X} and X respectively. The $C+D$ output is clamped to C OR D as a function of \bar{X} and X respectively.

Any output A, B, C, or D will equal, almost exactly, its corresponding input. For example, assume $X=$ +20 v ; therefore $\bar{X} \cong 0 \mathrm{v}$. Then the bases of $Q 2$ and Q4 will be clamped to $0 \mathrm{v}+0.2 \mathrm{v}$ which is not enough to turn on Q2 or Q4, since both are silicon junctions. The bases of Q1 and Q3 would be pulled to +20 v through R_{1} and R_{3} but are clamped to A and C respectively. Since the emitters will follow the base, -0.7 v , and the base is clamped to A or $C,+0.7 \mathrm{v}$ (CR1 and CR5), the emitters of Q1 and Q2 will be held $=A$ while Q3 and Q4 emitters are held $=C$.
When $\bar{X}=20 \mathrm{v}$ and $X \cong 0 \mathrm{v}$, the same condition will prevail for $Q 2$ and $Q 4$ and now Q_{1} and $Q 3$ will be shut off.
For zero offset, CRI, CR4, CR5 and CR8 must be silicon as must Q1, Q2, Q3, and Q4. To assure that the off transistors are off, CR2, CR3, CR6, CR7 must be germanium. The maximum voltage that can be switched is limited by $V_{\text {ebo }}$. In the case of the 2 N 708 , it is five volts. Output impedance is R_{1} / β_{1} or R_{2} / β_{2} for $A+B$ and R_{3} / β_{3} or R_{4} / β_{4}. In the case shown, $R_{1}=R_{2}=R_{3}$ $=R_{4}=20 \mathrm{~K}$ while typical β for the 2 N 708 is 40 , leaving Z_{o} approximately 500 ohms. Signals in A, B, C or D must be capable of driving 20 K , as must the gates, X, \vec{X} be capable of currents greater than or equal to 1 ma .
The high state of X and \bar{X} must be greater than the

Solid-state dpdt relay.
largest signal to be switched while the low level must be less than 0.7 v minus 0.2 v or less than 0.5 v .

The 0.7 v being the turn on for the silicon transistors and the 0.2 v being the increase in base clamping voltage across CR2, CR3, CR6 or CR7, the germanium clamping diodes. This circuit operates independent of temperature from $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ and $E_{i n}$, $(A, B$, C or D) from 0.1 v to 4.5 v .

Relay Lock-Release Circuit

The circuit of Fig. 1 was devised for use where a number of relays are wired into a register controlled by pushbuttons.
The circuit action is such that only one relay can be locked in and holding at any time. When a relay is selected by its corresponding pushbutton, any relay previously locked in will be released. Even if several buttons are depressed and released simultaneously only one relay will remain locked in.
Referring to the diagram, the diodes shown typically by A enable the lower set of form C contacts (double throw) to be used in the unenergized position as part of the "one and one only" (i.e., a ground at point X when only one relay is energized)

FIG. I-Diodes permit clearing other relays when one pushbutton is pressed.
and in the energized position as the locking contact for the relay. The diodes shown typically by B prevent the ground supplied by a pushbutton from feeding into the locking circuits.

The circuit was developed for applications where only two sets of form C contacts are available. If a third set is available it. can be used for a separate locking circuit thereby eliminating the need for the A diodes (actual contacts required where nonstandard configurations are available are 1A1B1C).

Relay or Switch Driven Pulse Generator

The following circuit was designed to generate a voltage step function resulting from the transfer of a switch or relay contact. The width of the pulse is determined by the transfer time of the contacts and is usually two to four milliseconds. The amplitude of the pulse for this circuit is from a -3.5 volt level to +1 volt for repetition rates up to about 10 cps . Due to capacitance filtering, the signal

$\tau_{1} \cong \tau_{2}=$ CONTACT
transfer time

FIG. I-Pulse generator is driven by switch transient.
is virtually free of contact bounce.
The diode and the $3 \mu \mathrm{f}$ capacitor are used to clamp the initial pulse from - 3.5 volts to +1.0 volt maximum. On the return swing of the contact the capacitor is charged to -3.5 volts and holds the output pulse to about a half volt pulse that gets up to about - 3.0 volts. The $0.047 \mu \mathrm{f}$ capacitor is used to reduce the effects of contact bounce.

Output impedance is determined by forward characteristics of the diode and 100 -ohm resistor.

AC Operation of a DC Relay

AdC relay can be controlled by an ac input signal in a manner such that the relay is energized when the input signal is present and is de-energized when the input is removed. The circuit is shown in the diagram.

The coil of the de relay L_{1} is energized by transistor Q_{1}, which is used as a common-emitter class-C amplifier to obtain maximum power gain; hence, the input must have sufficient swing to saturate Q_{1} as well as cut it off. If the input does not have sufficient swing, it must be amplified. During the "on"
portion of the input cycle, current flows through the relay coil, and C is charged through R. During the "off" portion of the input cycle, C maintains the current flow through the coil by discharging through the diode.

Capacitor C performs two functions. It maintains the current through the relay and by so doing, eliminates the inductive kick. The value of C is primarily a function of input frequency and coil resistance, and the discharge time constant is:

$$
\tau_{d}=R_{c o l l} \mathrm{C}
$$

τ_{d} must be large with respect to the input period

Basic relay drive configuration.
($10 \times T_{i n}$). The value of C can then be calculated, because $R_{\text {coil }}$ and $T_{\text {in }}$ are known.

The value of R, the resistor charging C, is made as small as possible without exceeding the power ratings of the transistor. This value should not be lower than 100 ohms when used with a 2 N 657 transistor. A low impedance source ($R_{g}<2 \mathrm{~K}$) is used to drive the 2N657 transistor.

Stepping Switch Synchronizer

Severe noise generated on a segment of a stepper switch, caused by the wiping arm, makes it exceedingly difficult to utilize such a signal to trigger high-speed circuits which may be feeding information to the stepper for distribution. The circuit shown provides a satisfactory remedy for this problem.

A spare bank of the stepper is used. Alternate segments are tied together. Each set of segments is connected to one side of a set-reset flip-flop. The flip-flop senses the very first time the wiper makes contact with a segment, and thereafter is immune to all noise on that segment.

The flip-flop reverses state when the wiper arrives at the next segment. Therefore, a flip-flop transition occurs each time the wiper arrives at a new segment.

The two outputs of the flip-flop are differentiated and added, such that a pulse appears at the output point for each step of the switch.

Obviously, a non-bridging bank of the stepper -must be used.

FIG. I-Synchronizer eliminates noise problems in highspeed switching.

Low Voltage, Fast Current Rise Inductive Load Driver

This circuit may be used to advantage when switching an inductive load requiring faster current rise and fall than could be obtained with low voltage using more conventional circuitry, a problem in transistorized equipments with their inherently low supply voltages.

The problem solved by the circuit shown was obtaining a current waveform with improved rise and fall through a relatively large inductive load from equipment whose collector supply voltage was -30 volts. This was accomplished by charging a capacitor to the supply voltage potential during the interval when no current was supplied to the load, and then placing the charged capacitor in series aiding with the supply voltage when the load was switched on. At the current rise transition this doubled the applied voltage, and for a quarter cycle the circuit exhibited an oscillatory response, at which time the current was stabilized at its steady state value. This approach improved the current rise time over that of the simple transient case with an L / R time constant.

Voltage doubling technique provides fast current rise to drive inductive load.

The circuit as shown is for the condition when no current flows in the inductive load L_{1}. Since Q_{2} is cut-off and Q_{3} is in saturation, C_{1} is charged to $V_{C C}$ through R_{7}. When Q_{1} is switched to the off condition, Q_{2} is turned on, Q_{3} is now off, and Q_{4} is on. This action connects the voltage on C_{1} in series aiding with the supply voltage, $V_{c c}$, through Q_{2}, Q_{4}, and R_{11}, thus at the transition placing $2 V_{C C}$ across the inductive load.

Since $C R_{1}$ ' is reverse biased by the capacitor voltage, momentarily the circuit is a series RLC network which produces a damped sine wave current response. The current rises to a peak value at the quarter cycle point at which time C_{1} has discharged and diode $C R_{1}$ is forward biased. $C R_{1}$ now conducts the load current until such time as the circuit is switched to the no current condition, the steady state current being limited by R_{11} in series with the resistance of the inductor. \boldsymbol{R}_{10} and $C R_{3}$ are used to reduce the fall time of the load current without a high transient voltage appearing at the collector of Q_{4}.

The circuit has the reliability feature that should capacitor C_{1} open, the circuit will continue to function with a current rise time that would normally be obtained in a conventional $R L$ circuit using the available supply voltage. The same would also be true should either or both $C R_{1}$ and C_{1} fail as a short circuit. The current fall time would of course remain unchanged.

When driving a solenoid whose inductance was 500 mhy, without the corrective network in the circuit the measured current rise time for a $60-\mathrm{ma}$ load using a 30 -volt supply was 9 msec . With the circuit as shown the current rise time was reduced to 1.6 msec , an improvement of 5.6 times. The current fall time was $400 \mu \mathrm{sec}$.

The concept is not restricted to the range of values shown, but may be applied to numerous problems involving switching inductive loads requiring better current transient response than could be obtained conventionally using available supply voltages.

One-Step Function on Switch Closure

This circuit was designed to cause a stepping relay to step once on closure of digital-voltmeter contact. The stepping relay is the type that steps when the coil current (over 1 amp) is removed. Such contacts pass very little current; they remain closed till the input voltage is changed.

In operation, the scr does not conduct when S_{1} is open. When S_{1} closes, capacitor C_{1} charges and causes the scr gate to go sufficiently positive to fire the scr. It conducts and actuates the stepping relay which is then open-circuited by its own interrupter contacts.

The scr will not fire again till S_{1} has opened and closed again. When S_{1} opens, C_{1}, discharges through

Circuit converts a switch closure to a one-shot step for a stepping relay.
$C R_{2}$ and $R_{2} . C R_{2}$ clamps the negative voltage at the gate of the scr during discharge.

UJT-Relay Circuit Gives

Delayed Release

This curcurr was developed to give an output for a fixed time interval of up to five minutes after receiving an instantaneous input. An additional requirement was to provide instant reset with a full repeat of the fixed time interval if the circuit was retriggered immediately after a cycle ended. No damage was to be caused if the input trigger was applied continuously.

Operation of the circuit is initiated by closing S1 momentarily and then releasing it. Trigger duration needs to be only long enough to pull in K1 (approximately 7 msec).

A ground is applied to the unijunction transistor timing circuit through contacts 1 and 3 of K1. K1 is held in after the trigger is past by a ground through K2 contac.s 4 and 5 . The timing circuit receives positive voltage through contacts 1 and 2 of K2. During a time determined by $R_{T} C_{T}, C_{T}$ charges to the peak-point voltage of the unijunction causing emitter current to flow and pull in K2. With sufficient cmitter current to pull in K 2 the emitter-to-base 1 resistance of the unijunction will be quite low and discharge C_{T} sufficiently to give a full delay on the next cycle. K2 has its own holding contacts to maintain it closed long enough for K1 to drop out.

When K2 pulls in, contacts 4 and 5 break the self holding circuit for K1, allowing it to drop out. When $K 1$ drops out, $K 1$ contacts 1 and 3 break the ground to K2 and the circuit returns to its original state. The timing circuit is de-energized when $K 2$ pulls in so that no recharge of the timing capacitor can take place until another trigger arrives. If S 1 is lield closed, $K 1$ is held in permanently as will be $K 2$ after the delay time; thus, an extended time period is available if desired. The delayed release output is a ground at $K 1$ contact 3 and separate contacts 4, 5, and 6 of K1. K2 contacts close

The time interval is determined by the $\mathrm{R}_{\mathrm{T}}-\mathrm{C}_{\mathrm{T}}$ charging circuit, which fires the unijunction transistor.
momentarily for each timed cycle and can be used for counting elapsed cycles.

By adjusting R_{T} only, time periods of less than one second to over 5 minutes can be obtained with the nominal 1.50 of capacitor. Duc to the iuherent characteristics of the unijunction, timed periods are quite stable with variations in both supply voltage and temperature.

The energizing device (S1) used in the author's application is a frequency sensitive device. Several of the circuits are used with various tone frequencies to give timed remote operation of test equipment.

Transistor Driven AC Relay

Thes design drives a 12 v ac relay with transistors which were triggered by a low do current pair of switch contacts. The relay characteristics had a pull in voltage $=9.8 V_{\text {rms }} ;$ dc resistance $=8.0$ ohms; and a current at pull in voltage $=1.2 \mathrm{amps}$. A circuit which accomplishes this function with two pnp germanium transistors, 1 npn germanium bilateral transistor, and two diodes is shown in Fig. 1.

When the switch is closed and point A is positive with respect to point B, Q_{1} conducts and drives the base of Q_{2}. In this case the top emitter of Q_{1} acts as a collector of this npn transistor. Base current for Q_{2} flows through the 75 ohm transistor, Q_{1}, the other 75 ohm resistor, and the 30 ohm resistor to the other side of the ac line. Relay current flows through Q_{1}; the relay coil, and the lower diode. When the polarity reverses, Q_{1} supplies base current for Q_{3} and the lower emitter of Q_{1} now acts as an npn collector. Relay current then flows through Q_{3}, the relay coil, and the upper diode. The switch driving the base of Q_{1} can be any mechanical or electrical switch as long as its drop is not a significant portion of the supply voltage. It should, however, be on or off.

The circuit of Fig. 1 can be used to drive any ac relay rated in voltage up to the breakdown of the transistors. Ordinarily the breakdown on the bilateral transistor will be the limiting voltage. For higher voltages, the circuit of Fig. 2 can be applied. This circuit requires an addtional transistor but will work as well

Fig. l. Circuit drives a 12 v ac relay. (left)
Fig. 2. Circuit drives any voltage ac relay. (right)
as the bilateral circuit of Fig. 1. If extra gain is not needed, $Q_{1}, Q_{2}, R_{4}, R_{5}, R_{6}$ and R_{7} can be eliminated and the points connecting to bases of Q_{1} and Q_{2} can go directly to the bases of Q_{3} and Q_{4} respectively.

In Fig. $2, R_{1}=R_{3}, R_{4}=R_{5}, R_{6}=R_{7}$. Resistors R_{4} and R_{5} are used primarily for stability for Q_{3} and Q_{4}. Resistors R_{1} and R_{3} are used for the same purpose for Q_{1} and Q_{2}, but in addition, base current for these transistors also flows through \boldsymbol{R}_{1} and \boldsymbol{R}_{3}.
Therefore, $R_{1}+R_{2}=\frac{\text { applied volts }(\mathrm{rms})}{I_{G 1}}\left(h_{f e}\right)$
where $h_{f e}=$ dc current gain, and $I_{C 1}=I_{B s}=\frac{I \text { (relay) }}{h_{f e 3}}$
When the collector current of Q_{1} and Q_{2} is known, the size of their collector resistances, R_{6} and R_{7} can be calculated. In both circuits the value of C should be selected for the particular relay to produce good switching of the transistor and reduce unnecessary dissipation. Also note that one transistor is saturated when the switch is closed and the other has a forward biased diode across it. This provides inherently good protection for the transistors when the relay is energized; only when turned off do the transistors see onehalf of the peak sine wave voltage.

Simple, Drift-Free

Voltage Comparator

This circuit indicates whether an input voltage V_{1} is positive or negative with respect to a reference voltage V_{2}. Both voitages vary independently over a wide range ($50-150$ volts) and then stop for comparison. When the comparison is made, the two voltages might be a hundred volts or only a few millivolts apart. Since, in the intended application, the circuit must perform for many months without adjustment, difference amplifiers must be ruled out because of drift problems in extreme temperatures.

The final circuit (Fig. 1) uses only two relays, three resistors, and a capacitor. K_{1} is a fast-make, fast-release mercury-contact type. K_{2} is a fast-make, slow-release mercury-contact type. R_{1} and R_{2} are chosen to make the source impedances of V_{1} and V_{2} appear equal at the comparator input and to prevent the two sources from being excessively loaded by the comparator.

Fig. 1. Voltage comparator circuit.

The output is normally grounded through the contacts of K_{1} to prevent the appearance of variations in V_{2} at the output. When S_{1} is closed, K_{1} operates, ungrounding the output (time t_{0}) (Fig. 2), and energizing $K_{2}\left(t_{1}\right)$. The contacts of K_{2} connect V_{1} to V_{2}, which produces a positive step at the input to C_{1}. If V_{1} is negative with respect to V_{2}, a negative step is produced at the input to C_{1}. The amplitude of the step is $V_{1}-V_{2} / 2$. The step is differentiated, producing an output pulse whose polarity is the same as that of V_{1} with respect to V_{2}. This pulse is then easily amplified, and its amplitude may be used to determine the actual difference between V_{1} and V_{2}, although that was not needed in the present application.

The only requirement on the differentiating circuit is that it be fully discharged (t_{2}) before K_{1} releases (t_{3}) or else a spurious step will be produced at the output

Fig. 2. Timing diagram.
when the output is grounded. When K_{1} releases $\left(t_{3}\right)$, the output is grounded before slow-release K_{2} can let go (t_{4}). Therefore, only one pulse appears at the output. This pulse has the fast rise-time needed to trigger following circuits.

High-Power

One-Shot Multi

This' circuit, operating from an input of a random amplitude ($10-28 \mathrm{v}$) square wave with 1 to 6.5 sec random duration, switches a 20 -watt load for an adjustable period
of 5 to 200 msec .
When the supply voltage is applied to the circuit shown, $S C R_{1}$ will be turned on by an output pulse from Q_{1} after a preset time, determined by $R_{t} C_{t}$. The voltage across Q_{1} and its associated timing circuit ($R_{t} C_{t}$) will drop to 0.75 v , which is the "on" voltage until an input pulse is applied.
A pulse applied to the input will be amplitude-limited by the zener diode and differentiated by $C_{1} R_{1}$ and will turn on $S C R_{2}$. This turns off $S C R_{1}$ by the action of the commutating capacitor C_{2}. When $S C R_{1}$ has been turned off, C_{t} will begin to charge through R_{t} until the peakpoint emitter voltage of Q_{1} is reached, at which time an

High-power ac static switch.
output pulse from Q_{1} will turn on $S C R_{1} . S C R_{2}$ will then be turned off by the action of the commutating capacitor and power will be removed from the load.

The circuit may easily be adapted for transient detection, pulse-width adjustment and time delays by modifying $R_{t} C_{t}$ and the input circuitry.

Latching-Relay Driver Requires No Standby Power

 A Latching relay, by itself, consumes no standby power-so, ideally, neither should its control circuitry. Figure 1 illustrates a 24 -volt latching-relay driver circuit that requires no standby power. When triggered by a negative-going change (or pulse) of 3 volts or greater, the circuit will provide a $5-\mathrm{msec}$ driving voltage to the latching-relay coil.

Latching-relay driver requires no standby power.

The circuit can easily be modified to trigger from positive-going sources and to operate with 12 - or 6 -volt latching relays. The time constant of the circuit can be increased by increasing C_{4} and R_{5}, but most latching relays will operate reliably on as little as a 3 msec duration driving voltage.

Clamping diodes $C R_{3}$ and $C R_{4}$ are essential to prevent back emf's in the energized relay coil from false-triggering the off circuit. $C R_{1}$ and C_{1} are not essential if the supply voltage is not subjected to large current surges but with C_{1} and $C R_{1}$ in the circuit, the supply voltage may even drop to zero during the driving cycle of one driver without interfering with its duty cycle or false triggering the off circuit.

Rate Circuit

This circuir was developed to satisfy a need for a sensitive and stable dc amplifier which would operate a relay only on fairly rapid changes in input voltage, yet be immune to drift.

The emitter of Q_{1} follows a change in input voltage (negative-going or positive-going), while the emitter of Q_{2} remains at the voltage across the $1000 \mu \mathrm{f}$ capacitor. A state of unbalance results during the time required for the capacitor to charge or discharge to the new voltage level, causing the meter relay to operate. The circuit returns to a balanced state as the capacitor charge stabilizes, de-energizing the meter relay. The charge on the capacitor varies along with a slowly changing base voltage, such as that produced by drift in circuit values, with no unbalance sufficient to operate the relay. This rate of change, required to operate the relay, is inversely proportional to capacitor size.
In the original application, stable and reliable operation was obtained with base voltage ranging from -. 5 to -3.0 v . Since an ac signal may be considered as a rapidly changing de signal, it also operates the relay, thus producing a relay operation for a very small ac input.

Rate circuit triggers relay on rapid input voltage changes.

Fast-Rise Current Switch

This circuit demonstrates the use of the law of conservation of electrokinetic momentum (i.e., constant flux linkages) in driving highly inductive loads which require fast-
rise currents. Using this principle, the current is not limited to the slow L / R risetime constant. Instead, the current will rise as fast as it can be switched into the load.

The law of conservation of electrokinetic momentum states that the product ($L \cdot i$) of an electromagnetic system cannot change except as the system is operated on by an external voltage; in which case the change of ($L \cdot i$) is equal to the product $(v \cdot t)$ of time and voltage.

Fig. 1. Fast-riso current switching circuit.

Fig. 2. Load current traces.
The law and its refinement are reduced to practice in the circuit of Fig. 1.

The circuit is in its stand-by condition with Q_{1} on and Q_{2} off. The standby current I_{1} is flowing through L_{1}, R_{1} and Q_{1}. When a negative input pulse is applied at t_{0}, Q_{1} turns off, and Q_{2} turns on. A current i_{2} now flows through $L_{1}, R_{1}, Q_{2}, L_{2}$ and R_{2}. At this time ($t>t_{0}$), the equation for $i_{2}(t)$ is:

$$
i_{2}(t)=\frac{V}{R_{T}}\left[1-e^{-\frac{R_{T}}{L_{T}} t}\right]+\frac{L_{1}}{L_{T}} I_{1} e^{-\frac{R_{T}}{L_{T}} t}
$$

where $\quad R_{r}=R_{1}+R_{2}$

$$
L_{T}=L_{1}+L_{2}
$$

It can be seen that at $t_{0}+$, the current (i_{2}) immediately jumps to:

$$
I_{2}\left(t_{0}+\right)=\left(\frac{L_{1}}{L_{1}+L_{2}}\right) I_{1}
$$

where $I_{1}=$ steady state standby current $=+V / R_{1}$.
Three conditions are available at $t_{0}+$:
(a) $I_{2_{0+}}>I_{2_{\infty}}$,
where $I_{2_{\infty}}$ is the steady state value of i_{2} as t approaches infinity

$$
\begin{aligned}
& \\
& \\
& \text { (b) } I_{2}=V / R_{1} t R_{2} \\
& \text { (c) } I_{20+}>I_{2_{\infty}} \\
& \text { (1) } I_{2_{\infty}}
\end{aligned}
$$

Condition (c) is the refinement of the law. If this condition is fulfilled, the load current (i_{2}) will rise as fast as the transistors can switch, and it immediately assumes its steady
state value without any L / R transient. This condition can be fulfilled if:

$$
L_{1}=L_{2}\left(R_{1} / R_{2}\right)
$$

This analysis neglects the voltage drops across the "on" transistor. The only limitation to the circuit is the high voltage which appears across Q_{1} when Q_{1} goes off. This is a function of the switching time of the transistors. In order to protect Q_{1}, it must be turned "off" so that the maximum collector voltage of Q_{1} is not exceeded. Therefore,

$$
L_{2} d i_{2} / d t<V_{\sigma E X X}{ }_{Q 1}
$$

Figure 2 shows oscilloscope traces of the actual load currents in the circuit. When L_{1} is out of the circuit, the time constant $=L_{2} / R_{1}+R_{2}$, and risetime $=840$ nsec. With L_{1} in the circuit, the law of constant flux linkages now applies; current risetime improves remarkably (time constant is effectively 0 ; rise time $=100 \mathrm{nsec}$).

This circuit is applicable as a current driver for digital computer memory arrays, or it may be used for driving relay coils for faster operation.

High Power AC

Static Switch

High-power ac static switch.
Mechanical switch or relay contacts, which might be burned when switching power to an inductive load, are used in this circuit to control an SCR static switch. The contacts, $S W_{1}$, might also be remotely controlled. The output power can be varied with the $R_{1} C_{1}$ time constant, controlling the SCR firing angle.

Diodes D_{1} and D_{2} provide reverse-bias protection for the SCR gate, while $S P_{1}$ provides limiting effects to transient voltages of either polarity. The break-over voltage of $S P_{1}$ is chosen as about 30 -percent less than the SCR maximum.

The circuit has been used to switch the primary of a high wattage and inductance transformer operating a 4200 vac secondary.

Forced-Switching
 Emitter Follower

If an emitter follower is bypassed with an inductor, switching time can be decreased as the load current in-
creases. When Q_{1} is turned off, a sudden change if steady-stage current induces a voltage $v(s)$ across L, and the load current removed through R_{2} is approximately $\beta \nu(s) / L s=\beta i(s)$. Thus the transient drive of the emitter follower increases corresponding to the steady-state load current. This is a desirable characteristic for switching circuit design.

With a $1-\mu \mathrm{h}$ inductor, the circuit had a fall time of 38 nsec. Without the inductor, the fall time was 70 nsec .

Forced-switching emitter follower. Indnctor L_{1} increases the drive for the emitter follower.

Diode D improves rise time without affecting the fall time.

Fast Recycling

Time-Delay Relay

The rate at which this circuit can be recycled exceeds the recycle rating of most time delay relays. The circuit uses a conventional 28 -volt relay to give a $5 \mathrm{sec}, \pm 1$ sec , delay with a recycle time of 200 msec .
The timing circuit basically consists of R_{3} and C_{1}. A considerable reduction in size is gained by reducing the maximum working voltage across C_{1} to only 10 volts with voltage divider R_{1} and R_{2}. Transistor Q_{1} operates as a switch controlling the current through relay $K_{1} . Q_{2}$ controls Q_{1} by amplifying the current through zener diode $C R_{3}$, which in turn is determined by the voltage across capacitor C_{1}. The current through $C R_{3}$ is too small to cause the relay to energize until C_{1} approaches

Fast recycling time-delay relay. Time constant $\mathbf{R}_{3} \mathbf{C}_{1}$ determines timing.
the zener voltage. When S_{1} is released, C_{1} discharges rapidly through diode $C R_{2}$, to make ready for the next cycle. Diodes $C R_{1}$ and $C R_{4}$ are surge suppressors. Resistor R_{4} is selected to limit the relay current to the proper value.

Single-SCS Flip-Flop

This circuit uses only one silicon controlied switch, a 3N58, to perform a flip-flop function over a wide temperature range.
In the circuit, differentiated positive pulses are applied to the cathode gate and anode gate alternately to turn the SCS on and off. When the SCS is off, the steering diode D_{3} and rectifying diode D_{2} are reverse-biased so that the pulse is applied only to the cathode gate to turn the SCS on. When the SCS is turned on, D_{1} is reverse-biased while the reverse bias on D_{2} is removed by D_{3} and therefore the pulse is applied to anode gate to turn the SCS off.

Single-SCS flip-flop.
The diode D_{4} is inserted so that the 470 -ohm resistor does not load the positive pulse applied to the anode gate. The diode D_{6} is placed so that the turn-off pulse will not appear at output. Diode D_{5} prevents the differentiated negative pulse from appearing through D_{3} at the output while the SCS is off.

If the anode gate and cathode gate are brought out separately, the circuit can be used as set-reset flip-flop with appropriate signal.
The circuit operates satisfactorily over the temperature range of $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

High-Current

Switch Has High

ON/OFF Z Ratio

In a certain application, a threshold device was required to discharge a capacitor which was being charged from a constant-current source. Since the charging current was about $10-15 \mu$ a, the discharging device was required to have ,an extremely high impedance until breakdown, after which it discharged the capacitor down to a fraction of a volt.
A standard resistively biased SCR could not be used because the bias resistors would bleed off the small charging current and the capacitor would never become charged. A zener or avalanche diode might have been used to hold off and then fire the SCR, but the charging circuit still would be required to supply an appreciable triggering current to the SCR gate.

Neon lamp provides high resistance in off state, fast switching to low-resistance state, and offers low cost.

The substitution of a neon bulb (NE-2) for a zener diode gives several advantages. The voltage step of approximately 10 volts when the NE-2 breaks down will give a good pulse of current into the SCR to ensure its rapid firing. The impedance of the NE-2 before firing approaches 100 meghoms, and certainly not least in attractiveness is the almost 100 -to-1 price advantage of the NE-2 over a silicon zener diode.

Normal and Calibrate

Mode Switching Circuit

In A Device having separate "normal" and "calibrate" modes of operation, it is often necessary to initiate an electrical change when transferring to the "calibrate" mode and to assure that several calibration sub-modes are utilized in sequence, and that they are all employed and then rechecked before the device is returned to the "normal" state. The circuit shown accomplishes these functions.

The relay is a magnetically latching bistable type. The switch is a section of the Normal-Calibrate rotary switch, having several calibrate sub-modes and a "reset" mode.

With the switch in "normal" and the relay in the "reset" mode, a ground is connected via the switch rotor and relay contacts 1 and 7 to the external circuit. Upon switching to the first "calibrate" mode, ground is removed from the external circuit and applied through the strapped calibrate mode switch positions to terminal 3 of the "calibrate" relay coil. Current from the previously charged capacitor operates the relay to the calibrate position. Continued application of the ground to relay terminal 3 prevents recharging of the capacitor.

After turning the switch through all "calibrate" position;

Normal-calibrate mode switching circuit.
advancing it to "reset" applies a ground through the diode to relay coil terminal 8, causing the relay to transfer to the "reset" position. As soon as transfer is made, contacts 2 and 5 re-apply the ground to the "hot" side of the capacitor, preventing its potential from rising, and as the switch is turned back through the calibrate modes, near-zero potential is maintained across the capacitor by the low resistance shunting of the relay's calibrate coil.
Upon operation of the relay to the reset position, connection is again made from the switch's "normal" position via contacts 1 and 7 to the external circuit. Thus when the switch is returned to its "normal" position, the ground is re-applied.

Note that oaly when the switch is fully advanced to the reset position can the ground to the external circuit be reapplied. Also, the switch must be rotated back through all the calibrate positions to "normal" before the normal mode is reestablished. As soon as the switch reaches "normal," the impulse capacitor is recharged from the $+150-v$ supply. The charging resistor is made large so that recharging during the switch transfers is not enough to operate the relay.

Simplified 120 VAC Latching Circuit

With its special trigger and conduction characteristics, the bidirectional controlled rectifier (G.E. Triac) allows simplified static switching of ac power circuits, thereby replacing more complicated circuit arrays of SCRs or power transistors. Figure 1 illustrates how a single BCR, combined with only two other components, a resistor and a capacitor, provides latching action for full wave a-c power at commercial line voltages.

Fig. 1
Fig. 2
Fig. 1. AC latching switch.
Fig. 2. AC motor starter.
In its non-triggered mode, the BCR blocks the application of line voltage to the load. When triggered on by a pulse at its gate, the BCR switches into conduction, applying line voltage to the load. Since the gate is essentially at the same potential as anode 1 of the $B C R$, capacitor C charges to the load voltage through R. When the line voltage reverses at the end of a half cycle, capacitor C discharges through the BCR gate and the load, thereby triggering the $B C R$ for the next half cycle.

Because of the BCR's bilateral trigger characteristics, this action continues on succeeding half cycles, providing latching action without any further external gate signals. The BCR can be turned off by momentarily shunting the discharge current of C around the gate through the reset "OFF" contact or by momentarily opening the main power line.

Figure 2 illustrates how the basic circuit can be adapted to simulate the action of an ac motor magnetic starter. Momentary closing of the "START" button latches the $B C R$ on and starts the motor. The motor is shut down by loss of line voltage, momentary actuation of the "STOP" button, or closing of the thermal overload contact.

Versatile Tunnel-Diode Discriminator

There are two characteristics of a tunnel diode which limit its operation: as a germanium device, it can directly switch only a germanium transistor; and, because it is inherently a latching device, its use is limited to a one-shot operation where the diode is biased to its peak current. A low-level signal then trips it into a high-voltage state and a decaying current due to an inductor in series with the diode resets it to its low-voltage state. To solve the first difficulty, the diode should be connected to a dc amplifier; the second is ideally solved by operating the dynamic load line as in Fig. 2.

In the circuit of Fig. $1, T D_{1}$ is biased close to its peak current, A in Fig. 2. Q_{1} is biased by $C R_{1}$ so that its collector is at 4.7 V . This is because the voltage gain of Q_{1} is 10 and the tunnel diode is in its low-voltage state. The voltage at the emitter of $Q_{2}, 4 \mathrm{~V}$, back-biases $C R_{2}$. The load line of the tunnel diode is then set by $P_{1}, A B$ in Fig. 2.

As soon as the input voltage causes the current through R_{3} to exceed the diode peak current, the diode switches to its high-voltage state, $0.5 \mathrm{~V} . Q_{1}$ amplifies this change by a factor of 10 . The emitter of Q_{2} drops to $0.7 \mathrm{~V} . C R_{2}$ becomes forward-biased and now P_{2} absorbs current from P_{1}, causing the load line to shift to $A C$ in Fig. 2. The input current now has only to drop to I_{v} to revert the diode to its original state. Rise and fall times are about 10 nsec .

Fig. 1. Tunnel-diode discriminator using de amplifier.

Fig. 2. Tunnel-diode characteristic with operating load lines.

Audio On-Off, PhaseReversing Switch

The circuit shown enclosed in dotted lines in Fig. 1 electronically switches an audio signal on and off. In addition, with the potentiometer connected at the output as shown, a reversible phase signal can be obtained.

Transformer T_{1} is a miniature audio isolation transformer that has its secondary referenced to ground through the transistors, the impedance of one side being established through Q_{1} and the impedance of the other through Q_{2}. If the flip-flop A output is at 10 V and the A output is at ground, Q_{1} will be forward-biased and will conduct, establishing a low impedance to ground. At the same time, Q_{2} will be reverse-biased and the other side of the transformer will see essentially an open circuit to ground. Opposite impedance conditions exist for the opposite state of the flipflop.

By taking the output from point B or C to ground, the audio on-off function is achieved as the flip-flop changes state. A signal is on at B and off at C for one condition of the flip-flop, and on at C and off at B for the other state.

The potentiometer connected from B to C in Fig. 1 produces a signal from the wiper to ground that reverses its phase each time the flip-flop changes state. The relative amplitudes of the two phases depend on the setting of the pot, and a $10-\mathrm{K}$ pot will drive a $10-\mathrm{K}$ load with no detectable phase error for any setting of the wiper.

If two of the electronic switches are connected to a flip-

Fig. 1. Electronic audio switch.

Fig. 2. Two-channel audio Switch.
flop as shown in Fig. 2 and each is excited by a different audio signal, then a pot connected across two B or two C outputs as shown will provide a signal from the wiper to
ground that alternates from one audio signal to the other as the flip-flop changes state. Here the pot setting determines the relative amplitudes of the two signals. If the audio inputs are pure sinusoids, the arrangement is a convenient generator of audio FSK signals. If the audio signals are voice channels, the circuit functions as an efficient electronic intercom switch.

Minimizing Inductive Kick and Fall Time

A circuit using a zener diode can very effectively be used to reduce the kickback voltage of an inductive load and simultaneously minimize the time to reach a low level of current.
Considering a relay where drop-out time depends upon quickly reaching a low level of current, the circuit arrangement for fastest current fall is as shown in Fig. 1a. However, this arrangement does not provide any voltage protection for the transistor from the inductive kick when the transistor is shut off. The usual method of providing voltage protection is shown in Fig. 1b. The undesirable feature of this circuit is the increased time for the current to decay. In a relay this means increased drop-out time. Also, it involves a trial and error procedure to establish the value of R_{s}.

The circuit using a zener diode and conventional diode as shown in Fig. 2 provides the fast current fall of Fig. 1a while controlling the kickback voltage as in Fig. 1b. The ordinary diode prevents the inductive load from being shorted in the "ON" state. The kickback voltage in Fig. 2 cannot exceed the zener breakdown voltage. The response for the current i from time $t=0$ (transistor shutoff) to $t=T$ is shown in Fig. 2 and represented by

$$
i=\left(\frac{E}{R}+\frac{V_{z}}{R}\right) \mathrm{e}^{-\frac{R}{L} t}-\frac{V_{z}}{R}
$$

Setting this current equal to zero and solving for time T :

$$
T=\frac{L}{R} \ln \left(1+\frac{E}{V_{z}}\right)
$$

To minimize T, E should approach zero or V : should approach infinity. In practice E is usually fixed and V, can-

Fig. 1. Inductive load switching circuit (1a) and kickback protection circuit (1ī).
not exceed the breakdown voltage of the transistor.
The circuit in Fig 2 was tried with several relays and other electromagnetic devices while using a Continental CD3168 51-v zener and a GI 1N3938 diode. In all cases the time for drop-out was not more than 10 percent greater than the time taken for the circuit in Fig. 1a. In Fig. 1a a switch was used in place of the transistor because of the

Fig. 2. Voltage protection with diode and zeuer with current decay curve.
high kickback voltages. The resistance R_{s} in the circuit of Fig. 1b was adjusted so the kickback voltage was just less than 51 v . At this value of resistance the drop-out time increased from 250 percent to 700 percent. The equation for T also can be used for measuring inductance by measuring the value of T on a current trace.

DC to DC One-Shot Starting Circuit

In this circuit, components $R_{1}, C_{1}, D_{1}, R_{2}$ and Q_{1} function as a one-shot turn-on circuit connected to a typical Royer circuit. Turn-on is independent of the rate of application of the supply voltage, V_{s}.
At time t_{θ}, D_{1} is cut off, and Q_{1} supplies turn on current to the base of Q_{2}. 'This current is limited by R_{1}. Note that excessive starting current will inhibit oscillations since it divides between the transistor base and the feedback winding, and as such, represents bucking amp-turns.

Fig. 1. DC to de one-shot starting circuit.

Fig. 2. Waveforms.
When Q_{2} turns on, D_{1} clamps the base of Q_{1} to 0.8 v . while the base of Q_{2} clamps the emitter of Q_{1} to 0.7 v . Thus Q_{1} is cut off. During the alternate half cycle, C_{1} charges toward $+V_{*}$ via R_{1}. If the $C_{1} R_{1}$ time constant is
long compared with a half-cycle, C_{1} cannot charge to +0.7 v and Q_{1} does not conduct. The function of C_{1} is to force the base of Q_{1} to follow the emitter of Q_{1}, which goes to $-V_{n}$ durıng the alternate half cycle. (See Fig. 2.) This same scheme is applicable to initializing digital circuits where the frequency of operation is high compared with $R_{1} C_{1}$.

Integrator Clearing Circuit

This simple circuit meets the requirement of "clearing" the integrator (R_{2}, C_{1}) in approximately $50 \mu \mathrm{sec}$ while providing isolation between the integrator and the switching network.

During the presence of the trigger pulses, Q_{1} is turned on, placing point A at ground. The energy stored in C_{1} is then shunted to ground through D_{1}. Capacitor C_{1} discharges to a minimum of approximately 0.3 v , the contact potential of diode D_{1} (germanium). Between trigger pulses, diode D_{1} isolates the supply voltage from the integrator capacitor.

Clearing circuit for $\mathbf{R}_{2}-\mathbf{C}_{1}$ integrator network.

Diode D_{2} is a steering diode. The output is connected to a differential amplifier for voltage level detection.

Motor Transient Anticipator

This circuit is used to turn off a battery of sensitive counters for a preset interval during the switching period of a nearby air conditioner, so as to avoid extraneous counts from the compressor and control switching transients.

Motor transient anticipator.
Transistor Q_{1} delays the air conditioner thermostat ON signal by its input time constant, after which it pulls in $R Y_{1}$, turning on the compressor. The thermostat signal also triggers univibrator $Q_{2} Q_{3}$ which rapidly energizes $R Y_{2}$, thus dijabling all critical counters via control relays. The univibrator time constant is chosen about twice the length of Q_{1} delay, typically 2 sec . During this period all air conditioner switching transients occur, after which Q_{3} returns to cut-off, dropping out $R Y_{2}$ and re-energizing the protected counters.

The same sequence occurs for the air conditioner turnoff cycle with the exception that the turn-off delay is made approximately equal to the turn-on delay by disctarge resistor \boldsymbol{R}_{2}.

Light-Activated Latching Relay

The photo sensitive FET, like other junction field-effect transistors, is a normally "on" device. In the relay configuration shown, the device is biased off by $-V_{G G}$ via R_{g}. When light is applied, gate current flows, causing a positive voltage across R_{g} in opposition to that of $-V_{G G}$, placing the device in an "on" condition. This energizes the relay, closing the contacts at the gate.

With the closing of the gate
contacts, a zero-bias condition is maintained and the relay becomes latched. The circuit will remain in this condition until $B+$ is interrupted by S_{1}. The circuit sensitivity is proportional to the value of R_{g}, and by adjusting its value, a sensitivity range as high as $10^{6}: 1$ can be realized. This configuration can be used in light activated alarms such as smoke detectors, tape recorders for end of tape sensing, and other similar applications.

Photosensitive FET gives light-activated latching relay.

Low-Cost Bistable Relay Circuits

Bistable circuits using ordinary relays are cheap, and are quite adequate for many lowspeed applications in binary registers etc. They may also be used as a substitute for latching relays. Here are two circuits, using capacitor trans-

Fig. 1. Bistable relay circuit with capacitor transfer. When used for binary register applications, the "set" contacts shown are part of the bistable relay for the preceeding stage.
fer (Fig. 1) and relay transfer (Fig. 2).

In the circuit shown in Fig. 1, capacitor C is initially charged to the supply voltage. When the "set" contacts are activated, capacitor C will discharge through relay coil R_{k} and the relay will be energized
if the time constant $R_{k} C$ is large. Before the capacitor is completely discharged, the "hold" contact will close and the relay will continue to be energized by the current flowing through resistor R. The "set" contacts may now be deactivated, whereupon the capacitor will discharge rapidly through the grounded relay contact. When the "set" contacts are again activated, the capacitor will provide an effective short across the relay coil, and the relay will be deenergized. After the "set" contacts are returned to the deactivated position, the capacitor will be recharged to the supply voltage and the circuit is ready to repeat the cycle.

The circuit of Fig. 2 is similar to that of Fig. 1 with the exception that the capacitor has been replaced by a relay to perform the transfer-storage function. This transfer relay is initially energized through the "set" contacts and the contacts of the bistable relay, making the supply voltage available to energize the bistable relay when the "set" contacts are activated. After activation, the current through the coil of the transfer relay is

Fig. 2. Circuit similar to that shown in Fig. 1 except that a second relay is used instead of the capacitor for transfer storage.
maintained through a limiting transfer relay contacts will now resistor and through the trans- be grounded and the coil of fer relay contacts. Upon de- the bistable relay will thus be activation of the "set" contacts, deenergized when the "set" the coil of the transfer relay contacts are again activated. will be shorted to ground When the "set" contacts are through the contacts of the deactivated, the transfer relay bistable relay, thus deenergiz- is energized and the circuit is ing the transfer relay. The ready to repeat the cycle.

Solid-State Relay

This ChOPPER-DRIVER circuit switches at rates from dc to 10 kHz . Its switched output is completely isolated from the input control signal. The circuit has many of the qualities of a conventional relay. but is much more reliable because it is totally solid state.

The left-hand part of the circuit shown, is a commonbase oscillator. Frequency of oscillation is about 10 MHz . Input logic signals bias the base of Q_{1}, turning the oscillator on and off. Output from the oscillator is transformer coupled, to provide de isola-

Solid-state switch driver replaces conventional relays.
tion. After rectification and filtering, the oscillator output controls the bipolar switch Q_{2}, Q_{3}. The transistor switch shown has an "on" resistance of about 20 ohms, plus a few millivolts offset. "Off" leakage current is less than $1 \mu \mathrm{~A}$.
The transformer is wound on an Arnold A4-134P toroidal core. Number of turns for each winding is shown in
the schematic.
Input logic levels are -3 and -11 V , which are standard for the EECO T-series and similar logic modules.

The basic driver circuit can control other circuits instead of the simple bipolar switch shown here. For example, it can drive a dual-emitter chopper such as the 3 N74.
Also a dc load can be con-
trolled via a Darlington-connected switch. For an ac load, the rectified output from the driver can control an SCR circuit ${ }^{1}$, which in turn will control the load.

In all the above applications. the basic driver circuit remains the same. Thus it can be encapsulated to form a versatile module. Only the switching transistors are left
outside the module (shown dotted) as these may need to be changed for different applications, or replaced if they get damaged by overload.

Reference

1. "150-W Voltage Controller," SCR Manual, 2nd Edition, General Electric Co., 1961, p. 116.

Added transistors reduce capacitor size for

relay pull-in

delay

Pull-in time of relays can easily be slowed, merely by shunting the relay coil with a capacitor. But, for long time delays and with low-resistance coils, several thousand microfarads of capacitance may be needed. However, by adding a simple transistor amplifier, much smaller capacitors can be used to achieve the same time delay.

Figure 1 shows the basic circuit. When switch S_{1} is closed, the charging current of C_{1} biases Q_{i} into saturation. The transistor then shunts the relay coil, preventing pull-in, and the supply voltage appears across R_{2}. During the charge period, resistor R_{3} protects the transistor's base-emitter junction from excessive current. Similarly, series resistor R_{s} protects the emitter-collector junction.

The relay can not pull in until Q, ceases to shunt the coil. This occurs when the
voltage across C_{t} approaches the supply voltage, thus removing the forward bias from the transistor.

To reset the relay, we reopen the switch. Diode D_{1} protects the transistor from inductive kickback from the relay coil when the current is interrupted.

But the simple circuit of Fig. 1 has a disadvantage. When S_{t} is opened, the capacitor charge bleeds off slowly through resistors R_{1}, R_{z} and R_{3}, and through the relay coil. Thus the circuit has a slow reset time.

To speed reset time, we can use a spare set of relay contacts to rapidly discharge the capacitor through a resistor as shown in Fig. 2. If resistor R_{4} is around 100 ohms , reset will be almost inntantaneous.

Fig. 2 shows, also, how we can obtain additional gain by connecting two transistors in the Darlington configuration. In a practical 28 -volt circuit, the Darlington connection allows a one-second delay for each microfarad of capacitance. Without the transistor amplifier, one would need approximately 5000 microfarads to achieve a one-second delay.

Also in Fig. 2, we see how a bridge rectifier can be added ahead of the time-delay cir-

Fig. 1. In this simple time-delay circuit, transistor Q_{1} reduces the size of capacitor C_{i} needed for a given time delay. But this circuit has slow reset hecause C_{I} must discharge through the resistors and the relay coil.

Fig. 2. In an improved circuit, C_{1} is rapidly discharged through $R_{\text {, }}$ Darlington connection gives increased gain and further reduces the size of C_{i}. A bridge rectifier allows ac operation.
cuit for operation directly from an ac power line.
In general, high-resistance-_ or high sensitivity - relays
are preferable in time-delay circuits because they need smaller capacitors for a given time delay.

Improved tunnel-diode threshold circuit has

adjustable

hysteresis

It's well known that a tunnel diode $T D_{I}$ can be connected between the base and emitter of a transistor $Q_{\text {, }}$ to form a simple and stable threshold circuit, as shown in Fig. 1. A major disadvantage of this simple circuit is the large hysteresis of the switching
characteristic, shown in Fig. 2.
Figure 2 shows that the tunnel diode switches to its highvoltage state when input current i_{1} is greater than the diode's peak current I_{p}. But the diode doesn't switch back to the low-voltage state until i_{1} is less than the sum of the diode's valley current I_{v} and the transistor's base current I_{b}.

Figure 3 shows an improved circuit in which the hysteresis can be varied over a wide range from positive values to zero. The circuit can also be
adjusted to give negative hysteresis though, of course, this is an unstable state.

When the diode $T D_{l}$ is in the low-voltage state, Q_{1} is nonconducting and bias current i_{2} flows through resistors R_{L}, R_{ζ} and R_{s} into the diode. This continues until the inpul current i_{1} reaches the value $I_{p}-i_{q}$. The diode then switches to the high-voltage state and Q_{i} saturates. The saturation voltage of Q_{t} is only a few hundred millivolts, therefore no bias current i_{2} can flow into the diode. Before $T D_{1}$ can
switch back to the low-voltage state, i_{1} must be less than I_{v} $+I_{b}$.

If we increase i_{8}, by adjusting R_{4}, we can reduce the value of i_{1} required for the diode to switch to its highvoltage state. The value of i_{1} for back-switching remains unchanged. So we can reduce the hysteresis of the circuit. This is shown dotted in Fig. 2.

The current values for the three possible hysteresis modes are given by the following expressions:

For positive hysteresis,

$$
\begin{equation*}
i_{2}<I_{p}-I_{v}-I_{b} \tag{1}
\end{equation*}
$$

For zero hysteresis,

$$
\begin{equation*}
i_{2}=I_{p}-I_{v}-I_{b} \tag{2}
\end{equation*}
$$

For negative hysteresis,
$I_{p}-I_{v}-I_{b}<i_{g}<I_{p}$
If the circuit has negative hysteresis, it will oscillate when the input current i_{f} is greater than $I_{p}-I_{q}$ but less than I_{b}. The period of oscillation is determined by the switching time constants of Q_{1} and by external capacitance C_{1} (see Fig. 3).

For normal operation with positive hysteresis, temperature stability of the lower threshold is determined by currents I_{p} and I_{b}. Tempco can be greatly improved by first choosing a tunnel diode having a high I_{p}) I_{v} ratio and then adding a parallel resistor R_{q}. The value of R_{q} should be selected so that the resulting I_{p} / I_{v} ratio is only $3 / 5$, for R_{z} and $T D_{1}$ together. This technique reduces the temperature coefficient more than four times without appreciably reducing the switching speed of Q_{1}. Complete compensation can be achieved by using a negative tempco resistor in place of R_{g}.

The semiconductors used in the original version of the Fig. 3 circuit were of European origin. The tunnel diode was a GaAs type with an I_{p} of 10 mA (similar to RCA 40060). Q_{1} was a high-speed switching transistor type BSY62 (similar to 2 N 706 A).

The circuit was developed for interfacing within a digital computer. Output levels are compatible with TTL or DTL ICs.

An improved rotary-switch

interlocking

circuit

Some sort of interlock circuit is often needed for use with rotary switches. For example, if a switch selects voltage inputs to a multi-range measuring instrument, it would be desirable to prevent switch rotation until the measuring instrument has been set to the correct range - otherwise the instrument could be damaged by excessive voltage.

There are various ways of interlocking switches, but many of them have serious disadvantages. For example, one widelyused method is to interlock a relay-coil voltage through its own contacts, and through the switch as shown in Fig. 1. When S_{1} is depressed, K_{1} is energized, allowing the interlocked signals to pass through the remaining contacts. When S, is rotated K_{1} de-energizes
momentarily, thus interrupting the interlocked function until K_{1} is again energized.

But this method can be unreliable because of relay switching time. Most relays take about 10 ms to de-energize (and longer if arc suppressing components such as diode $C R$, are used), and the travel time of most rotary switches ranges from 1 to 15 ms .
Another possible interlock method is to use a special mechanically interlocked rotary switch. The problem with these switches is they're often expensive and clumsy to use.
Fig. 2 shows an improved interlock technique that could overcome the disadvantages cited above. The circuit uses a silicon controlled switch (SCS) Q_{1}. When S_{2} is depressed, voltage divider R_{1} and R_{2} supplies 1.2 Vde to turn on Q_{1}. This provides a ground return for K_{p}, energizing it and thus allowing signal current to flow through the relay contacts to the monitoring instrument.
When the switch is rotated to another position, point 2

Fig. 1. Commonly-used circuit for sensing the rotation of rotary switch.
provide balanced drive voltages, $\pm V_{2}= \pm\left(V_{7}+V_{D}\right)$, to the integrator. The resulting sawtooth waveform is symmetrical with a peak amplitude of

$$
V_{\mathrm{I}}=\frac{R_{3}}{R_{\mathrm{L}}}\left(V_{z}+V_{D}\right)
$$

The duration of the rise of the sawtooth is

$$
\tau_{t}=2 \frac{R_{3}}{R_{t}}\left(R_{t}+R_{z}\right) C_{t}
$$

and the fall time is
$\tau_{z}=2 \frac{R y}{R_{i}}\left(R_{z}+\left(R_{z}+R_{D s}\right) C_{t}\right.$

Rise and fall time of the output waveform can be made variable by replacing the appropriate resistors with potentiometers. The waveform parameters are:

$$
\begin{aligned}
\tau_{1} & =13.2 \text { seconds } \\
\tau_{2} & =1.2 \text { seconds } \\
V_{1} & =V_{2}=7 \text { volts }
\end{aligned}
$$

The circuit, with the values shown, is used to sweep a voltage controlled oscillator in a phase-locked loop as part of an automatic acquisition system.

Remote-controlled solid-state switch

Some logic systems require remote circuits which can turn on heavy loads, yet which can be battery powered with low current drain. The duty cycle of such a system may be as low as 1 percent. With most conventional switching circuits, low stand-by current drain usually implies high impedances and slow rise and fall times. If a detector is capacitively coupled directly to an SCR, the detector impedances must be made low enough to couple a pulse of sufficient energy to turn on the SCR. This, necessarily, increases the quiescent current drain.

The circuit shown, however, uses a silicon bilateral switch (SBS) which provides a high input impedance. Thus the switch can easily be driven from a simple detector circuit -for example, a Schmitt trigger. Yet turn-on and turn-off are completely reliable.

Simple switching circult uses a bilateral trigger device which provides a high input impedance and draws negligible standby current.

The circuit works as follows: charged at battery voltage. In the "off" condition, the Capacitor C_{1} charges to ($V_{\text {bout }}$ high side of the load is at $-V_{i n}$). When $V_{i n}$ falls to a ground potential and C_{1} is voltage that exceeds the SBS charged to the lower Schmitt firing voltage, in the reverse potential, $V_{i n}$ (lower). When direction, C_{ξ} is effectively $V_{i n}$ rises above the SBS trigger placed in series with C_{1} and voltage, the output pulse across R_{1} couples a turn-on signal to the power controlling SCR. The SCR then back-biases the SBS, returning it to a nonconducting state.

To turn off the circuit, we rely on capacitor C_{z} remaining
both capacitors dump their charges into the load. This reduces the SCR anode current to zero, turning it off.

Note that in this circuit the switching voltage of the SBS must be greater than $V_{i n}$ (lower) but less than the dif-
ference between $V_{\text {bait }}$ and $V_{i n}$ (lower).
Bilateral-trigger devices are available from several manufacturers, in a wide range of trigger voltages. Also available are unilateral triggers. These, when connected in a parallelopposing configuration, act much like the bilateral devices.

General Electric has a bilateral device, D13E, which is available with a trigger range of 6 - 10 volts. Motorola's MPT 28 and MPT 32 range from 24 to 32 and from 28 to 36 volts respectively. These companies also have unilateral devices with ratings up to 50 volts. A smaller firm, Energy Conversion Devices, "has delivered units which trigger in the range of 5 to 7 volts. But these are more expensive.

Resistor R_{1} must be large enough to couple a substantial pulse to the gate of the SCR, but small enough to allow a quick discharge of C_{1} and C_{2}
for turn-off. A suitable compromise would be around 1 kilohm, in most applications.

Because, in this application, the SBS is primarily a pulseproducing device, one should take care not to exceed the rated product of peak current and pulse duration. At low frequencies, the impedance of the device is less than 5 ohms and it is capable of peak cur-
rents of 1 to 2 amps. These ratings allow the switching of fairly large SCRs.

Maximum load currents, therefore, are primarily determined by the current handling capabilities of the SCR. Of course, the SCR should have sufficient gate sensitivity for turn-on by the SBS. Minimum load currents must be at least as large as the

SCR holding current. In determining the maximum current for the SCR, one should take into account turn-on time, especially with reactive loads. Capacitor C_{t} helps to ensure that short-duration line transients don't prematurely trigger the unit.

Normally the switching circuit will be driven by some sort of detector circuit. This
can be any circuit which provides a charging voltage level that exceeds the SBS trigger level. The detector's output impedance must be able to supply the SBS trigger current; usually around 100 microamps.
Thus, $Z_{o}<\frac{V_{c r}}{I(B R)}$
Leakage currents of SBS devices are usually in the range of 50 to 500 nanoamps.

Slowed solenoid driver circuit eliminates noise spikes

To eliminate transient noise problems, networks $\mathbf{R}_{i}, \mathbf{R}_{2}, \mathbf{C}_{1}, \mathbf{R}_{s}, \mathbf{R}_{6}$, and $\mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{C}_{2}, \mathbf{R}_{7}$ control the switching speed of high-current drivers T_{1}, T_{2} and T_{3}.

Driver transistors can switch trolled rise and fall times to large currents so rapidly that minimize noise problems and they can cause severe noise eliminate system disturbances. transients. The solenoid-driver The principle employed is circuit shown here has con- to slow down the transistors
so that noise spikes introduced by fast switching are reduced to an acceptable level. The "pick" and "hold" driver transistors are made into
amplifiers during their turnon and turn-off transitions by the addition of smallvalued resistors in their emitters $\left(R_{j}, R_{6}, R_{7}\right)$. The rise and fall times of the inputs to these driver transistors are slow and controlled by RC networks R_{i}, R_{i}, C_{i} and R_{s}, R_{k}, C .

Receiving a slow input transition and amplifying it at its output, each driver transistor turns on and off gradually. The turn-on and turn-off times are relatively independent of the type of transistor.

This circuit produces turnon times of $20 \mu \mathrm{~s}$ for the "pick" and "hold" drivers and turn-off transition times of 40 $\mu \mathrm{s}$. The transition times can be adjusted by changing R_{i}, R_{2}, C_{1} and/or R_{s}, R_{4}, C_{2}. The "hold" driver conducts 250 mA . The "pick" driver conducts 1 A .

Simple zero-crossing

 solid-state switchMinimum rfi is generated when ac power is switched on and off to a load at the zerovoltage crossover point. This switching can be accomplished by a simple circuit consisting of four diodes, an SCR, a transistor and three resistors connected as shown in Fig. 1A.

The positive output of the bridge (Fig. 1B) drives Q_{1}
on during each half cycle of the supply voltage except when the voltage is at or near zero. The SCR can be triggered on only when Q_{1} is off. Closing of switch S_{1} provides continuous voltage to the collector of Q_{1} but a trigger pulse to the SCR gate is provided only at the zero-crossing point as shown in Fig. 1C. When switch S_{1} is open, the SCR will commutate off at the zero-voltage point. The values of resistance for R_{I} and R_{g} are selected to provide the required pulse width for the SCR being used.

Fig. 1. Schematic and waveforms of zero-crossing solid-state switch.

Section 19

 MISCELLANEOUS CIRCUITS
Impedance Matcher for Magnetic Amplifiers

IT is sometimes necessary to drive a magnetic amplifier control winding from a relatively high impedance source, where much more voltage is available than the required IR drop of the control winding, such as the output of another magnetic amplifier, and RC time delay circuit or certain transducers. If power loss can be tolerated, a series resistor can be used, giving the advantage of faster response. However, if maximum power gain is required, or if the control winding is to be driven from a low power source, and speed of response is not too critical, the impedance matching device shown may be useful.
The input dc is given a low ac source impedance by bypass capacitor C_{1}. It is chopped by a diode bridge modulator driven from the main ac supply into the primary of T_{1}, which is tuned for maximum impedance. The chópper could also be a transistor or other suitable switching device. A full-wave synchronous demodulator is shown, which is suitable for demodulating voltages of less than 1 volt, p-p. Demodulation could also be accomplished by a diode bridge or transistor. Equal capacitors C_{3} and C_{4} provide a path for the ac demodulator drive current, for which they should be a low impedance, keeping it out of the following magnetic amplifier. In many cases a center-tapped control winding on the following amplifier could be used instead.
With the type of input chopper shown, driving voltage must be at least twice the maximum signal input voltage, to allow the voltage across the primary of T_{1} to reverse when the chopper becomes an open circuit. If square-wave chopper drive is used,

FIG I-Impedance-matching circuit uses diode chopper and synchronous demodulator.
bypassing R_{1} with a suitable capacitor will halve voltage requirements. The driving voltage for the full-wave demodulator shown need be only about one volt, or enough to overcome the diode drop. The size of R_{1} and R_{2} is determined by providing a diode current greater than the largest signal current. In some cases where signal current is very small, a diode drive current much larger than that of the signal must be used to make the diode impedance low enough. This is easily determined experimentally by decreasing the drive resistor until no further increase in output signal is obtained.

The device as shown provides a fully isolated input and output due to separate drive of the chopper and demodulator provided by T_{2}. It could be simplified somewhat where these are not needed. Also, if signals of several volts are being handled simpler modulators or choppers could be used.

If the signal source is a low-impedance device compared to readily available control windings, the device could be reversed to step up the impedance,
both power gain and speed of response. Finally, it may find use as a dc impedance matching device in applications unrelated to magnetic amplifiers.

Point-Contact Transistor Multiplier

Apoint-contact transistor and a minimum of additional circuitry can be used to solve the equation $x y=z$. The multiplication is implemented by making the variable x proportional to the em:tter

FIG. 1-Collector resistance change for various values of emitter current.
current of the transistor and the variable y proportional to the collector current. In this equation z is proportional to collector voltage V_{c}.
Resistance of the collector-base diode in a pointcontact transistor is a linear function of emitter current-collector voltage characteristic curves of a wide range. This fact is illustrated in collector-current-collector-voltage characteristic curves of Fig. 1. The slope of the lines between the origin and the knee of the curves are determined by emitter current and are independent of collector current.
The collector current I_{c} flowing through the col-lector-base resistance R_{c} creates a collector-to-base voltage drop V_{c}, or simply,

$$
I_{c} \times R_{o}=V_{o}
$$

This equation is analogus to the opening equation. I_{c} must be made proportional to the y variable and R_{c} which is proportional to emitter current is in turn made proportional to the variable x. The $x y$ product or z is then proportional to collector voltage, V_{0}.

FIG. 2-Multiplier schematic diagram.

The circuit which is used to accomplish the multiplication is shown in Fig. 2. Emitter current and hence the collector resistance R_{c} is controlled by a voltage V_{p} fed to the grid of T_{1}. Collector current I_{c} is supplied from the constant current generator T_{2}. A pentode is used as the constant current generator so that I_{c} is independent or collector resistance, R_{c}.

Proper bias is established in the emitter circuit by controlling the cathode current of T_{1} by means of R_{1}. R_{2} is chosen as 100 ohms to maintain sufficient gain between the x-input voltage and the emitter input current. Since this creates too much positive bias on the emitter, a battery B_{1} is used to reduce the bias to the proper level.
Frequency response of the multiplier is very good. Since multiplication is a function of the intrinsic properties of the point-contact transistor, frequency response is only limited by $f_{c o}$ characteristics of the transistor and by wiring and tube interelectrode capacities. The point-contact transistor found best suited for the unique application of multiplication is the WE 1729.

Accuracy of multiplication was determined experimentally as being five per cent of full scale output. This accuracy was maintained for variations in V_{ν} from 0 to 25 volts and variations in V_{Δ} from -2 to -15 volts. Maximum output is -10 volts.

Eliminating Peak Clipping from Diode A-M Detectors

AdDItion of one 10 -cent resistor improves diode a m detectors. Proper application of this resistor will eliminate peak clipping effects allowing the detector to accept 100 -percent modulation.
Figure 1a shows a rather poorly designed a-m detector in which $R_{1}=R_{2}$. The rectified carrier, $E_{\text {carrier, }}$ produces 10 volts dc across R_{1} and C_{2}. At modulation frequencies, where C_{2} is a good coupling capacitor, this detector will start clipping at about 50 percent downward modulation as shown in Fig. 1 c .

This coupling can be understood if conditions are observed at the time of removal of the rf carrier. Capacitor C_{2} will divide the 10 -volt charge between R_{1} and R_{2} with 5 volts appearing on each resistor, since the resistors are equal. This 5 volts is reverse bias for the diode. The diode will not conduct until the instantaneous value of rf on its cathode is more negative than 5 volts.

According to Terman, the maximum downward modulation that this detector will accept without peak clipping is $R_{1} /\left(R_{1}+R_{2}\right) \times 100$ percent or $Z_{L} / R_{L} \times 100$ percent, where R_{L} is the dc resistance and Z_{L} is the mid-frequency impedance presented to the diode at points X, X^{\prime} in Fig. 1a.

The detector of Fig. 1a can be made to accept 100 percent modulation without peak clipping by the addition of a constant current to the detector load which exceds the maximum current expected from C_{1} during downward modulation and is in opposition to the current from C_{2}. This constant current will maintain the diode in conduction at 100 percent modulation following the downward mod-

FIG. I--Diode a-m detector and inherent clipping effect.
ulation of the rf envelope to zero.
The constant current added to the detector does not reduce the demodulated audio level. It causes only a slight shift of the rectified dc level employed for avc. In fact, ave shift due to modulation is greatly reduced when peak clipping is eliminated.
The constant current can be supplied from the plate supply :by connecting a high resistance, R_{3}, as shown in Fig. 2a. To accept 100 percent modulation without peak clipping:

$$
R_{3} \equiv \frac{E_{b b} Z_{L}}{E_{\text {carrier }}\left(1-\frac{Z_{L}}{R_{L}}\right)}
$$

A further simplification can be had by removing R_{1} and adding R_{4} as shown in Fig. 2b. To accept 100-percent modulation without peak clipping $R_{4} \overline{ } \overline{ }\left(E_{b b} Z_{L}\right) / E_{\text {carrler }}$.

The modification is rewarding, from the lowliest $\mathrm{ac} / \mathrm{dc}$ set to the most sophisticated navigation re-

FIG. 2-Modified circuits avoid peak clipping.
ceiver. Normally the more complex the load, the worse the peak clipping. Just add one resistor if the load includes squelch, audio as well as rf ave, and more than one audio output.

A word of caution, this modification will not cure
a diagonal clipping problem. It will improve it to a degree related to circuit parameters.

Relay-Operated Energy Restoring Mechanism

The circuit to be described is concerned with restoring energy losses in oscillating electromechanical instruments.

Since operation is essentially due to photoelectric actuation of relays in proper combination, the apparatus is free from springs, escapements and other mechanical means of restoring energy losses.

Pendulums are subject to damping due to air friction and other losses. The circuit disclosed here serves the purpose of bringing a pendulum back to the same reléase point. This provides an dentical

FIG. I-Basic energy restoring mechanism.
potential energy input at its start.
In Fig. 1 the pendulum A has an adjustable, pointed ferrous shoe at its end B. When moving it intercepts a beam of light near its return point.

This latter originates in the illuminating source C which produces a pencil of light. It is limited by the iris O, is collimated through the condenser lens D and falls on the photocell E. Upon illumination of said photocell E, a flow of electric current takes place which operates a sensitive relay.
As shown in Fig 2, a Weston contact galvanometer relay F closes a circuit consisting of photocell G, the resistance of which is lowered upon illumination, and the battery H.

FIG. 2-Solenoid drive circuit for pendulum.
Upon deflection of the galvanometer relay F, the power relay I is actuated. Relay I energizes the solenoid K. The length of time during which current remains flowing through the solenoid K is controlled by a time delay such as an Amperite 6 C 5 , the actuation of which is adjusted by an adjustable rheostat L operating its heater coil. A ratchet relay M is inserted in the circuit and mounted in such a manner that only every other pulse produces actuation of the solenoid K.
Therefore, when the pendulum's ferrous shoe B moves backwards upon release from the solenoid K and thus intercepts the beam of light the second time, the core is not pulled back into the solenoid K but continues on its path.

Restoring circuits of this type for pendulums and similar bodies make possible the design of timing circuits and other devices of extreme precision. In addition, by using non-rigid pendulums, such as strips of elastic materials, bending wires and the like, accurate studies of elasticity, recovery characteristics and certain rheological phenomena in said materials can be made.
This pendulum can also be made to swing in viscous fluids, air, rare gases and the like and the precise timing of its motion as well as the recording of its decay curve, permit investigations of thebehavior of the medium in which the pendulum swings.

Pushbutton Decade Box

FIour pushbuttons and four resistors allow selection of ten values from a decade box. The as-
sembly consists of four latching push buttons, each one being a spdt switch, with a fifth button being used to release any of the four latched buttons. The normally closed contacts are used along with the common contacts of each switch.
Each resistor is shorted out until a button is pushed. Pushing the one button puts one unit in the circuit, pushing the two button puts the two unit

RESISTANCE DECADE USE N-C SWITCH CONTACTS

SWITCH CONTACTS

CAPACITANCE DECADE USE N-O SWITCH CONTACTS

Switch connections for two types of decade boxes.
in the circuit, likewise the three and four buttons. To get six units, buttons two and four are pushed. To get seven units, buttons three and four are pushed. To get eight units, buttons, one, three and four are pushed. To get nine units, button's two, three, and four are pushed. To get ten units simply push all buttons and all the resistors add together. Binding posts are mounted on the other end. This allows connecting the boxes end to end which will put the resistors in series, and allows adding together any number of decade boxes.

The capacitor decade circuit uses the normally no contact and the common contact of the switch. Without any button depressed, there is no capacitance in the circuit. By pushing button one, a capacitor is put into the circuit. Pushing the remaining buttons connects additional capacitors.

The buttons are numbered one through four and the fifth button is labeled "Release". The multiplier factor will indicate the actual value that each box will supply.

Passive Frequency Doubler

The circuit shown was used to double the frequency range of a Tektronix type 190 sine wave generator, although it may be used with other generators that have a maximum output frequency

Circuit for doubling frequency from 25 to 50 mc .
of 50 mc or less.
The transformer is double-tuned and the circuit operates with greatest efficiency for input frequencies between 25 and 50 mc , producing output frequencies from 50 mc to 100 mc . For this range of frequencies, the attenuation will be less than 12 db , and the rectifying action of the diodes will be smoothed out sufficiently so that distortion will be negligible for most applications.
The $\mathbf{0 - 1 0 0}$ ohm potentiometer is used to compensate for any diode mismatch, and the $10 \mu \mathrm{~h}$ choke prevents any dc level buildup at the output. The entire circuit can be packed in a small shielded box with BNC connectors for the input and output, and may conveniently be inserted in series with 90 -ohm coaxial line when needed.

Phase Shift Network with Third Harmonic Suppression

Asimple, active network is described here which gives an accurate 90 deg phase shift at the carrier frequency. Moreover, it provides third harmonic rejection in excess of 20 db with ± 2 per cent inductors, and ± 5 per cent capacitors.
The complete network uses only one transistor (or vacuum tube). Some of the advantages of this circuit, by comparison with the double lag, or double lag-lead networks and their associated amplifiers include fewer components, greater gain,

FIG. I-Basic feedback circuit.
greater third harmonic rejection, precise 90 deg phase shift always maintained, and reduction of space and cost.
The circuit of Fig. 1, where A is negative and large, has a transfer function:

$$
\frac{e_{c}}{e_{i}}=\frac{1}{j \omega C R}=\frac{1}{\omega C R}<-90^{\circ}
$$

The magnitude of the gain is unity when:

$$
\omega=\frac{1}{R C}, \frac{e_{o}}{e_{i}}=1 \angle-90^{\circ}
$$

The phase angle of the output voltage is always 90 deg, lagging the input voltage. For' a good 90 deg phase-shift network, the amplifier gain should be 20 db , or greater.

To eliminate $1,200 \mathrm{cps}$ components, the circuit can be modified by addition of a series inductance in the feedback loop.

If this $L C$ combination is made series resonant at 1200 cps , the output voltage will tend to zero at this frequency, giving 3rd harmonic suppression.

Below $1,200 \mathrm{cps}$ the impedance of the LC network is capacitive, while above 1200 cps it is inductive. Thus, there is still an equivalent capacitance at 400 cps , and the 90° phase shift is obtained.

Above 1200 cps , the output voltage will rise with frequency, and all harmonics above the third will be amplified. To avoid this, a second capacitor is placed across the inductor resulting in a "Foster type" network shown in Fig. 2.

Having set the first zero to occur at 1200 cps , the second pole can be placed anywhere above 1200 cps . If this pole is set to occur below 1600 cps , the fourth, and all higher harmonics can be attenuated.

There is one more parameter to choose, the value

FIG. 2—Foster type feedback network.

FIG 3-Modified circuit has antiresonant circuit C_{1}, L_{1}
of the reactance at any frequency. It is convenient to choose the capacitive reactance at 400 cps to be equal to R, thus getting unity gain.

Since variation in frequency is usually between 360 and 420 cps , the frequency limits for the zero and pole locations must be selected judiciously.

The zero can be made to occur at 1200 cps . The variation in reactance between 1140 and 1260 cps is small, (Fig. 4) and hence a large attenuation is
maintained.
The pole should not occur above about 1400 cps . With these pole and zero locations all the harmonics
will be attenuated.
The values of C_{6}, C_{2} and L_{2} are as follows: $C_{6}=385.13 / R \mu \mathrm{f}, C_{2}=1066.54 / R \mu \mathrm{f}$ and $L_{2}=$ (12.12) $R \mu \mathrm{~h}$.

The circuit is resonant at 1200 cps and antiresonant at 1400 cps .

The circuit in Fig. 2 can be modified as shown in Fig. 3 by the addition of an antiresonant circuit. Its pole can be chosen to occur at any frequency. For example, it can occur at 1200 cps to give more

FIG. 4-Network reactance plotted against frequency.

FIG. 5-Theoretical and actual circuit gain.
third harmonic rejection, or it can occur at 1400 cps to eliminate possible amplification of frequencies in the range between 1300 to 1500 cps.

At 400 cps the magnitude of the reactance is made ${ }^{*}$ small, so that the phase angle of the impedance formed by R and the reactance of the $L_{1} C_{1}$ combination is small. Otherwise, the phase shift will not be exactly 90 deg.

A single stage transistor amplifier provides adequate gain. Open loop gain varies between 34 db (50 times), using a 2 N 332 with a beta of 9 , to 43.5 db (150 times), using a 2 N 338 with a beta of 90 . A 2N333 is used as a compromise.

The stabilization factor, S, is less than two for this
'circuit. If only a single supply voltage is available, a voltage divider can be used at the base, returning the emitter resistor to ground. Feedback from the collector should not be used, as it will decrease the open loop gain of the circuit, and the Q of the network.
It should be noted that the output impedance is very low. Since the overall gain at 400 cps is unity, and the open loop gain is fifty or greater, the output impedance is reduced by a factor of 50 or more. Thus, at 400 cps the output impedance is of the order of 300 ohms or less.
The output impedance rises when the network is antiresonant. This is advantageous since frequencies in the 1300 to 1500 cps range will be attenuated by the voltage divider action between the output impedance, and the input impedance of the next stage.
Fig. 5 shows the theoretical amplitude vs. frequency response of the circuit, as well as the actual response.
It is of interest to note that the circuit does not necessarily have to operate with unity gain at 400 cps. If a high beta transistor is used to obtain a large open loop gain, the circuit can provide up to 20 db of voltage gain. The input impedance can be reduced, or the network impedance can be increased as required.

Emitter Follower

Transmission Matching

This circuit has several desirable features when used as a matching network for transmission lines carrying information in digital form. It is often necessary to connect lines at a junction in such a way that each line is capable of communication with every other line. It may also be desired to mix signal inputs at some distances from their sources to perform an OR operation. Either or both of the above functions can be easily accomplished by the circuit shown.

The basic problem encountered in trying not to impair the signal quality is that the circuitry terminates every line in its characteristic impedance, and has sufficient power gain to drive the input impedance of the remaining lines which appear in shunt.

A circuit which eliminates both of these problems and supplies proper matching of three mutually connected transmission lines without serious amplitude attenuation is shown. The operation of the circuit is as follows: Assume a signal, for example a step function of amplitude -5 v , appears on line 1 . The base of transistor Q_{1} and the emitter transistor of Q_{2} are then -5 v . The emitter of Q_{1} and the base of Q_{3} are raised to $-5+V_{b e 1}=-4.7 \mathrm{v}$ for germanium. Since the base transistor of Q_{3} is connected directly to line 3 the output amplitude of line 3 is -4.7 v . The signal impressed across line 2 is that at the emitter of Q_{3} which is equal to $-5+V_{b c 1}+V_{b e 3}=-5+2 V_{b c}=-4.4 \mathrm{v}$. The extension to more imputs is iterative, the maximum num-
ber N, being given by:

Three transmission lines are matched using emitter follower circuits.

The terminating impedance of line 1 is the emitter resistor of Q_{2} in parallel with the input impedance of Q_{1}. Since the transistors are all operating as emitter followers their input impedances are high ($\beta_{x} R_{e}$) and can be neglected when considered in parallel with \boldsymbol{R}_{e} (the emitter resistors). Thus, each line can be properly terminated by choosing the emitter resistors of the adjacent transistor equal the corresponding line impedance i.e., $R_{1}=Z_{3}, R_{3}=Z_{2}, R_{2}=Z_{1}$.

Since a signal on any input line produces outputs on all others, the lines are effectively ORed together. Isolation diodes can be inserted at the terminal ends of the lines to prevent received signals from being loaded by driving circuitry if operation in this mode is desired.

The novelty of the circuitry lies in its extreme simplicity. A large number of lines can be mutually connected and properly terminated with a total part count of one transistor and one resistor per line.

Averaging Circuit Has Equal Charge and Discharge Time Constants

|t is often required to obtain a voltage which is proportional to the mean value of a fluctuating signal averaged over some finite period. If, as is often the case, the absolute value of the input signal is to be averaged, either half or full-wave rectification is necessary since positive and negative excursions would otherwise tend to cancel [Ed. note: This is only true when the input signal is symmetrical about the zero axis]. A common application for such signal processing is in an AGC system where an amplitude-modulated sinusoidal carrier is rectified and averaged for use in circuits which vary gain to maintain a fixed average signal level.

A simple circuit which will perform the desired operation is shown in Fig. $\mathbf{l}(\mathrm{a})$. The signal, E_{8}, from a source having internal impedance R_{8}, is clipped and
averaged by the passive integrator composed of $\boldsymbol{R}_{\boldsymbol{1}}$ and C. During a positive input excursion, the capacitor charges through $C R_{1}$ with a time constant $T_{c}=\left(R_{8} R_{2} /\left[R_{8}+R_{2}\right]+R_{1}\right) C$. When E_{s} goes negative, the diode stops conducting and C discharges with a time constant $T_{d}=\left(R_{1}+R_{2}\right) C$. With $T_{c}<T_{a}$ charge is built up, and the output is made unduly sensitive to large signal peaks. The desired condition of equal charge and discharge time constants occurs when $R_{2} \ll R_{1}$. If, as is often the case, it is unfeasible and/ or uneconomical to make R_{s} small, considerable signal will be lost due to loading. The alternate circuit of Fig. 1(b) exhibits similar time constant inequity.

(A)

(B)

Fig. 1-AGC System

A circuit which provides equal time constants and minimal loading is shown in Fig. 2(a). When E_{s} is positive, both $C R_{1}$ and $C R_{2}$ conduct. A drop across R_{1} is established which forces E_{b} to be less than E_{a}, thus cutting off $C R_{3}$ and effectively isolating the capacitor from R_{2}. The charge time constant is therefore $T_{c}=\left(R_{8}+R_{1}\right) C$. If E_{8} drops to the point where $E_{a}<E_{b}$, both $C R_{1}$ and $C R_{2}$ stop conducting and R_{2} is connected across the output through $C R_{3}$ which now conducts to provide a discharge time constant, $T_{d}=$ $R_{2} C$. The only restrictions on this circuit are that $R_{8} \ll R_{2}$ and E_{8} be large enough to drive the appropriate diodes out of the high resistance portion of their forward characteristic. If $R_{1}=R_{2}$, the circuit to the right of the generator terminals, neglecting its rectify-

Fig. 2-Circuit with Equal Time Constants

Fig. 3-Output voltage vs Time
ing properties, behaves as the simple $R C$ integrator shown in Fig. 2b.
Fig. 3 shows the response when E_{s} is a $1 \mathrm{kc}, 14 \mathrm{v}$ rms signal turned on at $t=0$ and off at $t \cong 11$ seconds. The circuit constants are $R_{1}=R_{2}=22 \mathrm{~K}$ and $\mathrm{C}=60 \mu \mathrm{f}$.

Combination DC Amplifier, Pulse Operated Relay and Pulse Stretcher

The transistor amplifier shown in Fig 1 is surprisingly adaptable to a variety of applications. It can be used as a dc amplifier having a current gain of 1000, as an on-off relay or clutch control amplifier, or can be turned on by a $1 \mu \mathrm{sec}$. 0.3 ma pulse for either self latching (thryatron like) switching or to produce pulse outputs of predetermined length.

FIG. I-Universal dc amplifier, pulsed relay, pulse stretcher schematic.

The output can supply 10 v to loads requiring up to 0.5 a. With no signal input the current in the load is only 1 ma. Full output is delivered with 0.3 ma input to the amplifier so that the current gain is nearly 2000 times and the power gain is about 40 db .

The circuit uses a 2 N 1418 silicon transistor direct coupled to a germanium 2 N1501 power transistor. The silicon transistor is used so that the residual load current is less than 10 ma up to 55 C. As an amplifier switch S is left open.

Latching operation is obtained by closing switch S , whereupon the output is triggered by an 0.5 ma $1 \mu s e c$. pulse. A pulse output can be secured for each pulse in by connecting a capacitor in series with \mathbf{R}_{1}. The duration of the output pulse is approximately the time constant of R_{1} and the associated capacitor, \mathbf{C}.

This circuit has proved to be a very useful laboratory tool and a versatile building block in circuit design.

Linear Limiter

A simple means for reducing impulsive type noise in communications receivers is to use shunt back-to-back diodes as shown in Fig. 1. The standoff voltage of the diodes ($1 \mathrm{vpp} \mathrm{Si}, 0.3 \mathrm{vpp} \mathrm{Ge}$) determines the clipping level. Since the clipping level is fixed, the amount of
clipping, relative to the desired signal, is a function of the signal input level. This may be undesirable if the input signal varies. At low signal levels impulsive noise below the gating level is present in the output. At high signal levels (i.e., above gate threshold) the desired signal, as well as the impulsive noise, will be hard clipped. To alleviate this problem the circuit shown in Fig. 2 was designed.

Fig. 1. Common limiter using back-to-back diodes.
Fig. 2. Linear limiter alleviates clipping of the desired signal and impulsive noise.

The input signal is rectified by CR1. The resultant negative voltage is then applied to the cathodes of gating diodes CR2 and CR3. This negative voltage varies with signal input level and supplies variable forward bias to the diodes. The forward bias controls the diodes gate threshold level. As the signal input level varies the gate threshold follows accordingly. Thus the clipping level is now a constant, independent of signal input amplitude. A change in signal amplitude is followed by a corresponding change in gate threshold.

The circuit attack time is $\mathrm{R}_{\mathbf{D}_{1}} \mathrm{C}$, where $\mathrm{R}_{\mathrm{D}_{1}}$ (dynamic Diode resistance of CR1), varies as a function of signal input voltage. The attack time should be adjusted such that the rectifier cannot follow the impulsive noise spikes. R_{4} is a low impedance shunt and can be left out if the circuit is driven from a direct coupled voltage source.

The currents in CR3 and CR2 should be made equal. This ensures symmetrical clipping on both positive and negative half cycles of the input. (i.e., $R_{3}=R_{1}+R_{4}$). To prevent a'tenuation of the signal entering CR3, R_{2} should be $\gg R_{1}$, The circuit decay time is;

$$
T_{D}=\frac{\left[R_{2}+R_{D 3}+R_{3}\right]\left[R_{D 2}+R_{1}+R_{4}\right]}{\left[R_{D 2}+R_{1}+R_{41}+1 R_{2}+R_{D 3}+R_{3}\right]}[C]
$$

If we assume that the receiver front-end noise is sufficient to provide diode conduction, then

$$
\left(R_{D 2}+R_{1}+R_{4}\right) \|\left(R_{D 3}+R_{3}\right) \ll R_{2}
$$

and the circuit decay time reduces to approximately, $T_{\mathrm{D}}=R_{2} C$
Note that the circuit overall decay time would be extremely long if the diodes were not conducting, since the capacitor would have to discharge through the diodes back impedance. The desired amount of limiting is acquired by adjusting R_{2} (i.e., controlling the currents in CR2 and CR1).

This circuit can be incorporated within the age loop of a receiver, since its output is a linear function of its input. Since this circuit has a built in delay, agc time constants are altered accordingly. The circuit as shown in Fig. 2 will limit the input signal -18 ± 2 db from threshold independent of input variations. The circuit was used at 35 Kc but could conceivably be
used at higher frequencies consistent with other design considerations.

Hybrid Balanced
 Modulator for 100 Kc

The balanced modulator shown in Fig. 1 is essentially a balanced bridge with the carrier injected by Q_{1}. Balance is maintained by the bias adjustment on V_{1} and the balance control. The output is taken across the secondary of the transformer. Modulation is accomplished by unbalancing the bridge in accord with the low frequency input signal. A phase inverter, Q_{2}, is required so that both V_{1} and V_{2} will unbalance the bridge in the same direction. The initial balance is the limiting factor in this design since it determines the amount of carrier suppression which can be obtained.

The 6CW4 Nuvistor by RCA was used in the circuit rather than a miniature dual triode because of its ex-

Fig. 1. Hybrid Balanced Modulator for 100 Kc. ceptional uniformity and ruggedness. It is possible to maintain a carrier null in excess of 60 db below full signal output.

DC Input Trigger Circuit

This circuir operates without regard to an input pulse shape (rise time). The input is dc coupled instead of having the usual differentiation circuit. Because of this dc coupling, the circuit can be triggered by sine waves or pulses.

Normally Q_{1} and Q_{2} are conducting with Q_{3} cut off. As the input signal goes negative, Q_{1} starts to
decrease conduction and regeneration occurs. Output must be taken from Q_{3} as shown.

Fig. 1-Circuit for triggering from any-shaped input signal.

Dynamic Range

Compressor

The circuit of Fig. 1 is a transistorized version of the vacuum tube drawdown limiter or compressor amplifier. It limits the dynamic range of any negative input signal without a threshold or saturation level. The output is approximately proportional to the cube root of the input signal; thus, giving effective dynamic range compression.

The cubic function is generated by a silicon carbide varistor whose output voltage is expressed as $\mathbf{E}=$ $K I^{1 / 3}$. This varistor is the collector load of a transistor amplifier stage that drives the varistor with essentially constant current proportional to the input signal. The varistor voltage in turn, with a large series resistance, appears as a constant current source to the second transistor used as an isolation amplifier. Isolation is required to insure very light loading of the varistor output, for any significant loading would linearize the output.

The circuit as designed is good over the audio range, and is capable of operation in the megacycle region, if used with suitable high frequency transistors and a series inductance to the varistor. Maximum input signal is 200 mv which provides around 3 v of output. Thus the gain at maximum permissible compression is approximately 15. The transfer characteristics $E_{o u t} / E_{i n}$

Fig. 1. Dynamic range compressor limits on any negatime imput signal without a saturation level. (left) Fig. 2. The transfer characteristics $\mathrm{E}_{\text {out }} / \mathrm{E}_{\text {in }}$ illustrate cube root proportionality. (right)
are shown in Fig. 2. All positive signals are rejected; those of considerable magnitude are clipped by the base diode to a safe value. All negative signals are amplified in proportion to the cube root of their absolute magnitude. A second limiting action occurs with collector bottoming of the first stage, but this is beyond the intended range of input variation. Input via a voltage divider provides a "drain" path should capacitive input coupling be employed.

Plate-Cathode Follower Wien-Bridge Oscillator

A plate-cathode follower has low output impedance, good gain stability, wideband response, and low distortion. These characteristics make it useful as a bridge driver for a Wien-bridge oscillator.
The basic arrangement of this oscillator is shown in Fig. 1(A). The frequency determining network, shown in the dotted line, is driven by a pair of plate-cathode followers. If a gain of 2 is given in the second platecathode follower, and $C_{1}=C_{2}=C,{ }^{\prime} R_{1}=R_{2}=R$, the over-all gain of the multiple feedback loop amplifier can be calculated from the flow diagram as shown in Fig. 1 (B).

$$
\begin{equation*}
G=\frac{\frac{2 A}{1-A \beta_{1}}}{1-\frac{2 A \beta_{2}}{1-A \beta_{1}}} \tag{1}
\end{equation*}
$$

Fig. 1. (A) Basic oscillator arrangement; (B) flow diagram of oscillator in (A).

Fig. 2. One of the two identical plate-cathode followers used to drive the Wien-Bridge.
where $\beta_{1}=73$, and $\beta_{2}=1 / 3$ with no phase shift at fre-' quency $\omega=1 / R C$.

$$
\text { If } \mathrm{A} \beta_{1} \gg 1 \text {, Eq. (1.) becomes }
$$

$$
\begin{equation*}
G=\frac{3}{1-3 \times \frac{1}{3}}=\frac{3}{0} \tag{2}
\end{equation*}
$$

From Eq. (2), the gain is infinite; the amplifier becomes an oscillator at a frequency given by $f=$ $1 / 2 \pi \mathrm{RC}$.
A simple, easy-to-build, and low cost plate-ca hode follower, having a relatively large forward loop gain, is shown in Fig. 2.

The chief advantages of this oscillator are that the amplitude and frequency stabilities are insensitive to power-supply variations, and tube aging and replacement.

A Chatter Jammer Circuit

Sooner or later, an engineer learns to live with the sounds of machinery and typewriters in the shop and in the office, but trying to concentrate on a problem while others are conducting a conversation nearby, creates an almost impossible situation. There is a solution.

A transistorized audio oscillator, connected to a pair of crystal earplugs, 'helps 'you to concentrate. Simply adjust the oscillator to deliver a tone pleasing to your ear and set the gain or output control to a llevel that drowns out'the ambient noises.

Chatter jammer circuit.

Complementary Emitter Follower Offers High Isolation

The appearance of very high gain complementary planar transistors now makes possible a dc-to-several-mc emitter follower with no offset voltage, good accuracy, and exceptional isolation. The close tracking of $V_{b e}$ with temperature and the low leakage current provide excellent temperature stability.

High-isolation complementary emitter follower.

In the figure, if $\boldsymbol{R}_{\mathbf{3}}$ is 10 K and $\boldsymbol{R}_{\mathbf{1}}$ about 1 meg , then the dc input impedance is (for $\beta_{1}=100, \beta_{2}=200$) about 66 meg . As long as the output voltage is not limited by the current available (through R_{3}) the output impedance is $Z_{o}=R_{g} \beta_{1} \beta_{2}$. For example, if $R_{s}=50$ meg , then $Z_{o}=2 \mathrm{~K}$. If much lower output impedances are needed, R_{3} can be made 1 K and R_{1} about 100 K . With $Z_{\text {in }}$ about 6.6 meg , the output impedance, until limiting, will still be $R_{s} / \beta_{1} \beta_{2}$. However, more current is available to drive the load, and the values of β_{1} and β_{2} are higher.

Laboratory measurements for accuracy and stability are:

\[

\]

The npn is used as the input stage since the leakage current is an order of magnitude lower than the pnp. The change in leakage current through R_{g} produces most of the error in output voltage due to changes in temperature.

FM Limiter

The limiter circuit described has markedly improved noise (a.m.) rejection over conventional limiters used in fm broadcast receivers. Conventional limiters require careful compromises in the grid circuit time constants and resonant circuits. The impulse noise rejection, except in extravagant designs with four i.f. stages and three limiters, is less than perfect and very sensitive to mistuning of the discriminator and i.f. transformers. Many otherwise satisfactory receivers evidence this by the putt-putt of auto ignition, even when tuned to stations of sufficient signal strength to saturate the limiters.

FIG. 1 - Conventional limiter.

FIG. 2 - Conventional limiter $E_{c,} I_{p}$ relationship demonstrates degradation of limiting action caused by grid circuit time constant.

The conventional type of limiter is shown in Fig. 1, and Fig. 2 is a simplified explanation of its behavior under a sudden decrease in carrier voltage. Note that there is a complete drop-out of plate current for a period determined by the grid circuit time constant $R C$, that the fundamental component of the plate current has probably decreased in amplitude, and that the effective damping on the grid tank circuit has undoubtedly changed. The net effect more nearly resembles that of an age circuit with its unavoidable recovery time than that of a dynamic, or instantaneous limiter. A good procedure for optimizing this circuit is given in the Radiotron Designer's Handbook, but what is obviously needed is a different circuit.

The improved limiter circuit, Fig. 3, does not
remove all of the difficulties, but represents a significant improvement at little added cost. The pentode is a conventional short time-constant first limiter. The second limiter operates in the same fashion as the familiar vtvm circuit, that is by cutting off one triode or the other. Since limiting is not dependent on grid current and there is no coupling capacitor, recovery from rapid changes in carrier level or noise spikes is virtually instantaneous. The $20 \mu \mathrm{~h}$ coil resonates the interstage capacity at 10.7 mc and the 12 K resistor provides damping as well as a dc return for the right-hand grid.

FIG. 3-Improved limiter.
An a.m. rejection test disclosed results startling to those familiar with fm broadcast receivers. A 10 mv signal modulated 40% at 400 cps applied to the input produced no measurable 400 cps output from the detector. The author's customary i.f. alignment technique, using an a.m. signal with the discriminator slightly mistuned, failed completely because of the sharp threshold and near complete removal of a.m.

Low Frequency Switching Circuit

This practical design was conceived to test the regulation of manufactured power supplies with factory checkout equipment. It is now used in several equipments for various purposes.

The original requirement was to supply dc power to the input of a power supply under test which

Change of de input to power supply is accomplished by this low-frequency switching circuit. Adjust R_{4} for best' symmetrical waveform at relay contacts (time on-time off).
would abruptly change in amplitude level (square wave) approximately 10 volts (adjustable) periodically at a rate of 0.5 to 1 cycle per second.

The de input to the power supply under test is connected in series with the relay contacts (output terminals) with a rheostat connected across the relay contacts. When the relay contacts close, the rheostat is shorted out, which increases the voltage and then the relay contacts open and drop the voltage.

The circuit shown consists of a relaxation oscillator using a unijunction transistor driving a pnp power transistor which actuates a power relay.

The timing circuit R_{1} and C_{1} periodically fires the unijunction transistor Q_{1} which causes Q_{2} to conduct and charge C_{2} and actuate the 600 -ohm relay. The relay coil requires about 12 volts to pull in but will release at about 6 volts. As the actuating voltage is almost a spike, the capacitor tends to keep the relay holding for a longer period which equalizes the on-off time. Q_{2} is at cut off at off time. $C R_{1}$ minimizes $I_{C B o}$ which could cause thermal runaway at a higher temperature. $C R_{1}$ should be mounted on a heat sink. The pushbutton switch allows the relay to be actuated and held for external circuit adjustments.

Simple Wailing Siren Circuit

Most schemes for transistorized sirens employ three subcircuits: a voltage-controlled oscillator, a low-frequency oscillator for modulation, and a power amplifier to drive the loudspeaker. The circuit may be simplified, however, by allowing the controlled oscillator to double as the power amplifier, thereby saving the cost of the amplifier components.

Fig. 1. Basic astable multivibrator circuit.

The basic circuit is an astable multivibrator (Fig. 1). The frequency of the oscillator is varied by controlling the voltage to which the timing capacitors discharge during the timing rundown. The base-drive resistors (R_{3}, R_{5}) charge the capacitor C_{1} and thus vary the control voltage exponentially. C_{1} is discharged periodically by the unijunction Q_{1}, which resets the oscillator to the beginning of its frequency sweep.

The only precaution to be observed in this design is that the base-drive resistors must be small enough to saturate the transistors when the control voltage is at its maximum value (${ }_{\eta} E_{c c}$), and that they are not so small that they supply a current to the emitter of Q_{1} greater than valley current.

To u:e the oscillator as the power driver, the collector luad resistors are replaced by a center-tapped driver transfermer (Fig. 2). The additional resistors R_{4} and R_{6} and the diodes D_{1} and D_{2} are used to decouple the undriven side of the tran-former from the timing capacitors during the capacitor recovery. Note that the transformer is being driven push-pull by the alternately saturated transistors.

The circuit as shown in Fig. 2 can be mounted in a minibox. With the circuit values shown, the circuit draws 10 mA from a $9-\mathrm{V}$ battery. The base- 2 resistor R_{2} is incorporated in the circuit to decrease the peak power surges during the unijunction firing time; this greatly increases battery life.

The addition of a single transistor or Darlington equivalent Q_{4}, as shown in Fig. 2b, allows the power capabilities to be increased by approximately the beta of Q_{4}.

Fig. 2. Oscillator doubles as power driver with extra driver transformer. Power capabilities can be increased by adding transistor as shown in $\mathbf{2 b}$.

Modified Emitter Follower Has No Offset

FOR MOST emitter-follower applications, such as impedance matching of ac signals, dc offset is unimportant, so the conventional circuit is adequate. The simple modification shown here gives a more versatile emitter follower, suitable for dc as well as ac applications. This modification eliminates the inherent difference between output and input dc levels caused by $V_{R E}$ of the transistor. A further advantage of the modified circuit is that it's less sensitive to temperature variations.

Diode D, is selected to match the $V_{R E}$ of the transistor. Thus a silicon diode is used with a silicon transistor,
and germanium with germanium. In order to achieve a high input impedance and to correct for errors due to base current and leakage current, the base of the transistor is biased by a resistive divider. (For low input impedances, a simple resistor to ground may be adequate.) The ratio of the divider network is adjusted to give zero volts at the base.

Making the value of R_{3} equal to the parallel combination of R_{1} and R_{z}, i.e.
$R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
minimizes drift due to variations in power-supply voltage.

Modified emitter follower has equal dc levels at input and output. Offset due to $V_{B E}$ is eliminated by diode D_{r}.

Radiation Meter Uses MOS FET

This circuit uses a MOS FET to replace the electrometer tube normally used in radia-tion-survey meters. The MOS device achieves the minimum input-impedance of 10^{13} ohms needed in this application.

The all solid-state circuit has several advantages compared with the tube approach. There is no warm-up time, weight and cost are reduced, and battery life is extended.

In the circuit shown here, radiation strikes the ion chamber, forming ions. Current flows in R_{p}, and the voltage across this resistor drives the gate voltage of Q_{t} less negative. This reduces the drain voltage and causes a change in collector voltage of junction transistor Q_{2}.

As the collectors of the differential - amplifier transistors Q_{2} and Q_{3} are initially at the
same voltage, the difference in collector voltages is proportional to the rate of incident radiation striking the ion chamber.

The selector switch has three positions: "off," "zero set," and "read." Initially this switch is in the "off" position, the gate of the MOS transistor is grounded and all batteries are disconnected. Note that though S_{1} and S_{2} have

Solid-state radiation-survey meter uses MOS FET to give high input impedance.
been shown as separate switches for clarity, in practice they can be ganged in one assembly.

When S_{i} is switched to the "zero set" position, this removes the gate ground, shorts R_{t} and switches the batteries into the circuit. Also the meter is switched to the " $\times 10$ " scale. The "zero set" position allows the instrument to be zeroed in an external radiation field.

When $S_{\text {, }}$ is switched to the "read" position, this removes the short across R_{t}, and leaves the ammeter on the " $\times 10$ " scale. (If the switches are ganged, a second "read" position is provided for " $\times 1$.")

The preset potentiometer R_{2} serves two purposes. First, it adjusts the gate bias to give maximum range of linearity on
the transfer characteristic of Q_{1}. Secondly, it adjusts the gate bias for any gross variations in transistor parameters.

With the component values shown and the ion chamber used, the two full-scale ranges were 500 milliroentgens $/ \mathrm{hr}$ $(\times 10)$ and $50 \mathrm{mR} / \mathrm{hr}(\times 1)$.

Combined Tach(sneter and Dwell Meter

Using only one IC, plus a 1-mA meter and a few discrete components. you can build a compact portable instrument that measures both engine speed and distributor dwell angle of automobiles.

In the circuit shown, the top two gates of the IC are connected as a one-shot trigger circuit. The $20-\mathrm{k} \Omega$ resistor and the $0.5 \mu \mathrm{~F}$ capacitor are the timing elements. The output of the oneshot (pins 1 and 14) goes to position 2 of the selector switch. This position is used for tachometer measurements. With the switch in this position the oneshot output connects to pins 9 and 10 of the IC. This IC gate functions as an amplifier and its output (pin 8) goes to the meter. The large capacitor across the meter. integrates the pulses to give a steady reading. Because the pulses are of fixed amplitude and duration determined by the characteristics of the IC oneshot, the metér reading is proportional to pulse frequency and therefore engine speed. For dwell-angle measurements, the remaining gate of the IC is used as an inverter. With the switch in position 3 , the inverter output (pin 5) connects to the output gate (pins 9 and 10) to give a second inversion. The output pulses (pin 8) are then integrated, as before, to give a steady meter reading.

Note that the one-shot is not used for dwell-angle measurements. Therefore, though the pulse amplitude is fixed by the characteristics of the IC gate.

Simple meter circuit measures both engine speed and distributor dwell angle of automobiles.
the pulse duration varies with the dwell angle of the distributor cam. The meter actually reads the ratio of the time the points are closed, compared to the time they are open. The full scale reading of the meter represents the angular distance between lobes on the distributor cam shaft. This angle is 45° for an eight-cylinder engine, 60° for a six, and 90° for a four. So the meter can be calibrated in degrees of dwell, for any type of
engine.
Resistors R_{1} and R_{2} determine the full scale indication of the meter. To calibrate the dwell scale, set the selector to position 3 and adjust R_{2} for a full-scale meter indication with the input leads shorted.

To adjust the tach calibration select a suitable value for R_{l}, to give full-scale indication with the selector switch in position 2 and with an input pulse-repetition frequency of 66.67 Hz . This R_{1}.
frequency corresponds to speed of 1000 rpm for an eight-cylinder engine. For other engines, the oscillator frequency can be determined from: $F=$
$\frac{(\text { RPM } \times(\text { No. of cylinders })}{120}$ hertz.
For other full-scale calibrations or for different engine types, the $20-\mathrm{k} \Omega$ timing resistor must be changed together with

Fig. 1. Dual SCR delay flop drives print-hammer and punch actuator coils. This circuit is faster than a single SCR "ringoff" circuit and much cheaper than transistor circuits.
inductance and resistance, the minimum impedance $t h$ at could be placed between the power supply and storage capacitor would be $4 \mathrm{k} \Omega$. This impedance would limit the repetition rate to a maximum of 4 pulses/second.

The dual-SCR delay flop of Fig. 1 works as follows. When power is initially applied, the energy-storage capacitor $C_{\text {, }}$ charges to $B+$ through resistor R_{i}. Application of a positivegoing trigger pulse turns on Q_{1}. This causes C_{1} to discharge through the actuator coil, thus energizing the coil.

Due to the Q of the load circuit (L_{1}, C_{1}) the voltage at the cathode of Q_{z} "rings" in a negative-going direction. This causes gate current to be supplied to Q_{2} through R_{s}, thus turning on Q_{2}. As Q_{2} turns on it commutates a negative pulse to Q_{1} anode, thus turning off Q_{1}. Energy-storage capacitor C_{i} now starts to charge toward $B+$ with a time constant determined by the values of R_{4} and C_{1}.

When the capacitor has charged to the full $B+$ voltage, Q_{2} may or may not turn off, depending on the value of

Fig. 2. Typical waveforms for the delay-flop circuit of Fig. 1.
its hold current and the leakage through C_{1}. But. when another input pulse occurs. Q_{1} will turn on as before and will commutate a negative pulse to the anode of Q_{2}, turning it off. When Q_{z} is turned off, the load circuit is isolated from the $B+$ by the resistance R_{1}.

Resistor R, limits the instantaneous current flowing into the gate of Q_{2}. Resistor R_{5} may not be required in all applications. Its function is to overdamp the tank circuit (C_{b}, L_{1}), thus preventing Q_{2} from ringing itself off. Diode D_{1}
shunts the effect of R_{5} during Q_{1} turnoff. D_{2} prevents cath-ode-to-gate breakdown when the cathode of Q_{2} is at $B+$. The values used for $B+$ and
C, depend on the application. As previously described, the capacitance of the energy-storage capacitor is determined by the inductance and Q of the print-hammer coil. The $B+$
voltage is then chosen to supply the correct amount of energy ($1 / 2 C V^{2}$) to L_{1}, for proper operation of the print hammer.

Double-Balanced Diode Mixer

Tinis diode mixer gives fine performance in the frequency range 2 MHz to 500 MHz , with low conversion loss over the entire bandwidth. Ferrite-bead transformers in the two input ports, ensure good mixer balance at the operating frequencies.

The circuit works as follows: Voltages appearing at points 1 and 2 of transformer T_{1}, cause diode pairs $D_{1} D_{2}$ or $D_{3} D_{4}$ to conduct, depending on signal polarity. Alternate conduction of these diode pairs causes the ends (3 and 4) of T_{2} to switch to ground potential at a rate equal to the frequency at the $L O$ port. Output voltage at the IF port is determined by the instantaneous voltage appearing across T_{2} secondary (3 to 4). I-f output also depends on which end of
the secondary is at ground potential at a given instant. Thus the output frequencies appearing at the IF port are the frequencies applied to the R and $L O$ ports, plus their sum and difference.

The mixer should be constructed, using good rf layout techniques. Excessive lead length, from transformers to diodes and input connectors, will increase conversion loss by as much as 3 dB at 500 MHz . All ground return leads should be short.

Transformers T_{1} and T_{z} are identical, except that the center top of T_{z} secondary is connected to the IF port, instead of to ground as for T_{1}. The transformers are wound on a common ferrite bead using $50-\Omega$ bifilar wire, with a third wire

Double-balanced mixer uses hot-carrier diodes. Inductors \mathbf{L}_{1} and L_{z} balance the transformers primaries with respect to ground.
twisted around the bifilar pair. wire are brought together and This third wire is two wound on a separate ferrite bead to three times longer than to form coils L_{1} and L_{2}. These the bifilar winding. Thus the inductors keep the ends of T_{1} three wires form a trifilar wind- and T_{2} balanced with respect to ing. The two ends of the long ground, thus improving mixer
balance. The coils have two turns each and the transformers both have four turns. All windings are $36-\mathrm{AWG}$ wire.
The best way to align the circuit is to adjust the positions of the secondary windings of T_{1} and T_{2} while measuring conversion loss. In this way you can
find the condition of maximum coupling between primary and secondary. The mixer derives its operating power from the local oscillator, so the LO power must be around $3-5 \mathrm{~mW}$ for best performance. This level can be optimized during alignment to give the best compromise between
conversion loss and noise tigure. - Mixer Balance: -35 dB to
Typical performance figures 500 MHz (LO power at R) and for an experimental mixer using -30 dB to 500 MHz (LO powthis circuit, are as follows: er at i-f).

- Frequency Range: 2 MHz to 500 MHz (R and LO), and dc to 500 MHz (i-f).
- Single-Side-Band Noise Figure: 8 dB to 500 MHz .

All measurements made with

Improved absolute-value circuit

Other circuit designers have described ${ }^{1,2,3}$ simple circuits whose output is equal to the absolute value of the input voltage. But all these circuits have the disadvantage that they need several pairs of resistors that are matched to close tolerances. Fortunately, it is possible to design improved absolute-value circuits that achieve high accuracy, yet which need only a single pair of matched resistors.

Let's look first at the conventional circuit shown in Fig. 1. Both operational amplifiers function as inverters. With a negative input voltage, the right-hand amplifier multiplies e by -1 , while the left-hand amplifier contributes nothing to the output. With a positive input voltage, both amplifiers invert the signal and the output is $2 e_{x}-e_{x}=e_{x}$. The output is therefore positive for either positive or negative input signals - thus realizing the required absolute value $\left|e_{x}\right|$. For proper circuit operation, the following must be true:

$$
\begin{aligned}
& R_{b} / R_{s}=1.000 \\
& R_{t} / R_{o}=1.000 \\
& R_{z} / R_{o}=0.500
\end{aligned}
$$

The accuracy of these ratios determines the accuracy of the absolute value $\left|e_{x}\right|$. But, for a precision circuit, it is difficult and expensive to match resistors to the required close tolerances.

Figure 2 shows an improved circuit which requires only one pair of matched resistors (R_{t} and R_{s}). With positive input signals, the output of A_{i} at-
tempts to go negative while the output of A_{z} goes positive. Diode D_{z} is therefore backbiased. Diode D_{1} prevents A_{1} from saturating in the negative direction; thus it speeds circuit operation when the polarity of the input signal changes.
With negative input signals, the output of A, attempts to go negative while the output of A_{1} goes positive. Diode D_{4} therefore becomes back-biased. Diode D, serves the same purpose for negative inputs as D_{1} serves for positive inputs. Though type 1N914 diodes are indicated in the schematic, any general-purpose silicon type is suitable.
Note that, in the improved circuit, A_{1} acts as an inverter while A_{2} is a voltage follower. This contrasts with the conventional circuit in which both amplifiers are inverters.
The circuit of Fig. 2 has been tested using 709 -style op amps. With these amplifiers compensated so that their upper $3-\mathrm{dB}$ frequency is 10 kilohertz, the absolute-value circuit works well with input frequencies up to 1 kilohertz. This bandwidth was adequate for the original application (an A/D converter system).

Bandwidth of the amplifiers should be several times greater than the highest sinusoidal frequency of interest - this is necessary because high-frequency components generated within the absolute-value circuit must be accommodated to pre-

Fig. 1. This widely used absolute-value circuit has the disadvantage that many of the resistors must be accurately matched.

Fig. 2. In this improved circuit only one pair of resistors (\mathbf{R}_{1} and R_{s}) is critical.

```
May have typo error: References to
R1, R8 and Rs probably should be
R1 and R5 (as Fig 2)
```

serve the circuit's accuracy. Ideally, the bandwidth of the op amps should be at least ten times greater than the bandwidth of the input signal.

References

1. "Handbook of Operational Amplifier Applications," Burr-Brown Research Corp, 1963, p. 73.
2. J. N. Giles, "Linear Integrated Circuits Applications Handbook,' Fairchild Semiconductor, 1967,
3. P. 150 .
"Applications Manual for Operational Amplifiers," Philbrick/ Nexus Research, 2nd edition 1966 , p.59.

Phase indicator for ac

The output of an ac tachometer is a two-phase voltage with either a 90-degree lead or a 90 -degree lag between phases as shown in Fig 1. Phase relationship of the output signals depends on rotation direction of the tacho. The circuit shown in Fig. 2 detects signal phase and can therefore indicate the direction of rotation.
The circuit works as follows: Capacitor C_{I} together with input impedance $Z_{i n}$ shifts phase ϕ_{R} by 90 degrees. Transistor Q_{1} amplifies the ac signal so that voltages at points 1 and 2 are approximately equal. The quiescent voltage for point 2 is set at zero. This results in points 1 and 2 having voltages that are either in phase or 180 degrees out of phase, depending on the tachometer's direction of rotation.
Point 3 always assumes the

Fig. 2. Simple circuit to detect direction of rotation with ac tacho.
lowest possible potential so that when 1 and 2 are 180 degrees out of phase and 1 is positive, point 3 will follow point 2 for a half cycle, and follow point 1 for the remaining half cycle. Because the output of D_{1} is negative, diode D_{2} does not conduct and there is no output.
When the tacho rotation is such that points 1 and 2 are
in phase, D_{1}, will conduct and point 3 will follow point 2 for the entire cycle. So the unfiltered output voltage from D_{2} consists of half-wave rectified ac.
Thus the circuit can be used with a peak detoctor and suitable threshold circuit to provide a pair of discrete logic levels that indicate rotation direction of the tachometer. a

Linear modulator has excellent

temperature stability

This circuit provides a precise degree of linear amplitude modulation. With the specified transistors, and with low tempco resistors, modulation errors due to temperature variation
can be neglected.
In the schematic, components have been chosen for audio-frequency operation. Carrier frequency f_{c} is 400 Hz and modulation frequency f_{m} is 1 Hz . However, the same basic circuit can be used. for frequencies from zero up to several megahertz. Note that there are no capacitors. Bandwidth is determined primarily
by the characteristics of the ICs. Use of closed-loop op amps and chopper transistors gives stable gain, unaffected by temperature.

The modulation signal, at the output of op amp A_{1}, rides on a positive de potential as shown in the schematic. Potentiometer R_{1} adjusts the dc level. At A_{1} output, the signal never goes below ground potential except

Circuit provides accurate amplitude modulation thiat isn't temperature dependent. Pot R_{1} adjusts quiescent level of the modulating signal.
when over modulation occurs. Chopper transistors Q_{1} and Q_{2} alternately sample A_{1} 's output waveform at the carrier-frequency rate f_{c}.

Op amp A_{z} inverts the incoming signal, and A_{s} provides a noninverted signal. The output signals of both amplifiers are summed at one input terminal of A_{4}. When A_{2} conducts, A_{s} is off, and vice versa. Thus the modulated-carrier wave at the output of A_{4} is a series of alternating positive and negative pulses, with amplitude determined by the modulating signal. Full 100 -percent modulation occurs when the peak of the modulating wave is equal to the dc quiescent level at the output of A_{1}.

Any temperature drift is likely to be caused by the resistors rather than by the op amps and transistors. Op-amp gains are stabilized by feedback, and $V_{\text {sat }}$ for the switching transistors changes less than 0.2 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$. So, low-tempco resistors should be used for optimum temperature performance.

Pulse-height modulator multiplies voltage by frequency

With a few extra components, control voltages from 0.1 to a single op-amp one-shot 15 V . Multiplication accuracy multivibrator can be used as is around 0.1% (referred to a pulse-height modulator. The maximum input frequency and modulator is useful as an analog multiplier in process-control circuits. If we trigger the one-shot with a continuous train of input pulses, and if we simultaneously control the out-put-pulse height with a dc input voltage, then the mean voltage of the output pulses will be proportional to the product of input frequency and dc control voltage.

In Fig. 1, we can see more clearly how the proportionality occurs. The input pulse train, with repetition frequency f and period T, triggers the one-shot to give output pulses that have the same period T. Pulse height is exactly equal to the control voltage V_{c}. Because V_{m} is the mean output voltage,

$$
\begin{equation*}
V_{c} T_{1}=T V_{m} \tag{1}
\end{equation*}
$$

(Where T_{1} is the output, pulse width).
But $T=1 / f$, therefore, $V_{m}=T_{1} V_{c} f$
(2)

Also, in a well-designed oneshot, we can ensure that T_{1} is determined solely by the RC time constant and is unaffected by variations in input amplitude or frequency. Then,

$$
\begin{equation*}
V_{m}=k V_{c} f \tag{3}
\end{equation*}
$$

Figure 2 shows a practical schematic for a complete pulse-height modulator. The circuit handles input frequencies from 1 Hz to 1 kHz , and
control voltage).

The circuit works as follows: The leading edge of a positivegoing input pulse triggers the one-shot into its astable state. Point A is driven to a morepositive potential than point B. So the output voltage of A_{1} drops to its extreme negative value, thus turning off Q_{t} With Q_{I} cut off, the voltage at point M approaches V_{c}, giving a voltage $V_{c} / 2$ at point A. The voltage at point B then starts to change exponentially at a rate determined by time-constant $R_{s} C_{1}$. As soon as the voltages at A and B are again equal, the circuit switches back to its stable state.

Note that the time taken for point B to change to the level of point A doesn't depend on V_{c}. This is because elements R_{1}, R_{2}, R_{s} and C_{1} constitute a bridge network, the balance conditions of which are independent of V_{c}. Time-constant $R_{s} C_{1}$ alone determines the recovery time of the one-shot. For this circuit T_{t} is 0.4 ms . Capacitor C_{1} discharges through the parallel combination of D_{1} and R_{3}, and through Q_{1}. In practice, the accuracy of the one-shot's recovery time depends partly on the minimum voltage to which C_{1} can be discharged. So, Q_{1} must

See added appendix for better image

have a low saturation voltage $V_{C E}$. Magnitude of $V_{C E}$ directly influences the multiplier accuracy, as shown in the following equation:
$V_{m} \mid=T_{1} V_{c} f+V_{C E}$ (4)
The European transistor, specified for Q_{1}, can be replaced by any suitable switching type with low $V_{C E}$. As shown in Eq 4, $V_{C E}$ determines
the minimum practical value for the control voltage V_{c}.

Obviously, for best performance, the source impedance for V_{c} should be low. Also, to obtain a smoothed mean-output voltage, a low-pass filter will be needed at the output of the multiplier. This is not shown in the schematic.

Delayed-action

data receiver

This circuit gives an adjustable delay of the leading edge of an input pulse. Thus it can inhibit digital signals to eliminate unwanted noise such as line reflections and switch bounce.

The specific application for the circuit shown in Fig. 1 is to receive the control line ("Carrier Detect") from a Dataphone
per EIA Std. RS-232B. Entry of information, from control line to system, can be delayed by up to 9 milliseconds. This is sufficient delay to avoid the noise (caused by line reflections) which normally appears for the first 3 to 4 milliseconds after the Dataphone's "Carrier-Detect", line comes on.

Of course, the basic circuit can be used in many other applications where signal delay is required. The first stage merely provides a suitable interface for
a Dataphone. So, for other applications, Q_{1}, R_{1}, R_{2} and $C R_{1}$ can usually be omitted.

The following circuit description assumes use with a Data. phone - though readers should easily be able to see what modifications will be needed for operation from other signal sources.
Let's assume that, initially, the input to Q_{1} is low. The output from inverter Z_{1} will also be low, thus clamping the emitter of unijunction transistor Q_{z} to near-zero volts ($\left.V_{\text {fd(CR2 }}\right)+V_{C k}$
$s_{\text {at(Z1) }}$). This prevents C_{1} from accumulating a significant charge. Note that the output of Z_{1} is also connected to the "Clear" input of edge-triggered flip-flop Z_{2}. The low "Clear" input holds the Q side of Z_{2} in the low state.

When the "Carrier-Detect" line (from the Dataphone) is activated, the input to Q_{1} bounces between low and high for 3 or 4 milliseconds, as also does inverter output Z_{1}. However, because of the random cycling, C_{1} never
manages to charge to the necessary UJT firing level (V_{p}) nor does the cycling affect the "Clear" input of Z_{2}. When the input ringing finally dampens out, the input remains at a high state. This removes the clamp from C_{1}, thus allowing a charge current through R_{4} and R_{5}.

When Q_{2} finally fires, C_{1} discharges through R_{7} and develops a positive-going transition at the clock input of Z_{2}. Amplitude of this transition is approximately (0.4) E_{s}. The Q output of Z_{2} is triggered to the high state.

When the "Carrier-Detect" input returns to the low state, Z_{1} output again goes low, thus clearing Z_{2} output to the low state and removing any excess charge on C_{1}.

Figure 2 shows typical input and output waveforms for the circuit. Note that a pulse generator was used for this test, so the input waveform is clean, whereas in practice it would be noisy. Because of the unijunction characteristics, data rates for this circuit should be held to frequencies below 500 kHz .

Delay time is determined by the RC time constant. $C\left(R_{1}+\right.$ R_{2}), and by the intrinsic firing level V_{p} for Q_{2}.

$$
V_{p}=\eta E_{s}+V_{D(q z)}
$$

where,
η is the intrinsic level of Q_{2}, V_{D} is the emitter-base-1 drop of Q_{2},
and, $\quad V_{c}=E_{s}$

$$
\begin{equation*}
+V_{D(C R 2)}\left(1-e \frac{-t}{R C}\right) \tag{2}
\end{equation*}
$$

If we assume that $V_{D(Q 2)}=$ $V_{\text {d(CR2), }}$ then, substituting and transposing, the diode drops and E_{s} cancel, leaving,

$$
\begin{equation*}
\frac{t}{R C}=\log _{e} \eta-I \tag{3}
\end{equation*}
$$

(Note that E_{s} is eliminated from the expression, indicating that delay time is not sensitive to power-supply variations.)

With the component values shown in Fig. 1, the circuit gives a guaranteed minimum delay of 5 milliseconds and a maximum delay of 9 milliseconds for all production spreads of component tolerance. If required, delays of several seconds could easily be achieved by selecting suitable values for R_{5} and C_{1}.

Resistor R_{6} helps maintain a low TC for Q_{2} (typically 0.01% / ${ }^{\circ} \mathrm{C}$); while R_{8} provides pull-up for the "D" and "Preset" inputs of Z_{2}, thus reducing the possibility of false triggering.

The circuit described has several advantages compared with circuits using ICs throughout. Its major advantages are low cost, noise immunity, powersupply rejection and long-delay capability. Cost should not exceed $\$ 5$ in small quantities. Long accurate delays are possible without the need for large capacitors.

Fig. 1. Delayed-action data receiver inhibits noise in logic systems. Input stage Q_{1} is designed to interface with a Dataphone.

Fig. 2. Inpnt (top) and output (bottom) waveforms for data receiver. Vertical scale is 5 volts/division and horizontal scale is 2 milliseconds/division.

FETs program op-amp gain

TTL or DTL logic levels can be used to program gains for the amplifier A_{1} in the figure over a range of 1 to more than 1200. With the values shown, the amplifier has programmable gains of 33 and 330 .
The amplifier is the chopperstabilized Analog Devices 230L op amp, but any amplifier with low noise, low tempco and dcmillivolt analog interfacing can be used. Gain of the amplifier depends on the feedback resistor (R_{2} or R_{s}) selected by an n-channel junction FET (Q_{1} or Q_{2}).

The FETs used are TI 2N3824s. They have low on resistance $(<250 \Omega)$ and low I_{d} (off) $\quad(<0.1 \mathrm{nA}$ with
$\mathrm{V}_{\mathrm{gs}}=-5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{ds}}=$
+15 V at $25^{\circ} \mathrm{C}$). Off resistances exceed several megohms.
The FETs are controlled by a dual-voltage translator, the National Sémiconductor DM8800. One end of an internal $16-\mathrm{k} \Omega$ resistor (pin 4), is connected to the amplifier's output. The gate of each FET is connected to a different output of the DM8800.
A logic low ($\leq 0.8 \mathrm{~V}$) into pin 2 of the DM8800 places output pin 5 at the same potential as the 230 L output, which turns on Q_{1}. A logic high ($\geqslant 2 \mathrm{~V}, \leq 5 \mathrm{~V}$) into pin 8 places the gate of Q_{2} at -14 V , which turns it off. Amplifier gain is equal to the ratio of feedback resistance (R_{2} or R_{s}) to input resistance (R_{1}).

A dual-voltage translator, controlled by DTL or TTN levels, controls the FETs which select the feedback resistance that determines the gain of the op amp. Applied to pin 8 or 2 of the translator, logic low turns on and logic high inhibits a FET.

Triggered sweep features

low dc

offset

This triggered sweep combines the features available in the $\mu \mathrm{A} 709$ with those of a low-saturation-resistance FET to provide a $10-\mathrm{V}$ linear sweep with very low dc offset.

In the circuit shown, Q_{1} and Q_{z} form a Schmitt-trigger input circuit. Transistors Q_{3} and Q_{4} provide the unblanking output and unclamp the FET Q_{5} to initiate the sweep. Q_{s} and Q_{4} are complementary to provide protection for the base-emitter junctions. Transistor Q_{6} allows the circuit to drive a low-impedance or capacitive load with little effect on the sweep timing.

Diode $C R_{z}$ and the $10-\mathrm{k} \Omega$ resistor from source to gate effectively isolate the FET

Triggered sweep circuit provides blanking as well as sweep output.
from its driving circuit, thus providing the low dc offset voltage.
Sweep speed is determined by the $C\left(R+R^{\prime}\right)$ value. The value of $R+R^{\prime}$ should be high with respect to the on resistance of the FET since
small values of resistance produce a proportionally greater dc offset.

This circuit has been tried for sweep speeds from 1 Hz to 100 kHz . Dc offset voltages of 1 to 5 mV were obtained for these sweep speeds. Higher
sweep speeds are limited by the slew rate of the $\mu \mathrm{A} 709$. The slow speeds are limited by the input resistance.
The dc coupling used throughout provides a circuit for use with hybrid microcircuit techniques.

Pulse generator-to-CCSL

interface

A simple circuit matches the negative output of a pulse generator to the positive-input requirement of an IC in the compatible current-sinking-logic family. It maintains a constant current of at least -1.6 mA for the " O " input to the CCSL and its offers wide latitude in choice of component values.

In the basic circuit of Fig. 1 , the base of npn transistor Q_{1} is grounded through R and the collector ($\operatorname{pin} A$) is connected (at pin 1) to the CCSL component through a constant-
current regulator diode. The generator delivers an output that varies between ground ("O" state) and an adjustable negative voltage (" 1 " state).

Ideally, the generator output and the required CCSL input are as shown in Fig. 2. To see the various voltagecurrent relationships, one can apply a negative-going voltage ramp in place of the generator output. In place of the CCSL component, one can use a milliammeter to +5 V (typical for CCSL) as shown in Fig. 1 if A is connected to 2.

When the ramp starts at ground, Q_{t} is biased off and no current flows through D_{i}. As the ramp voltage increases and reaches about -0.7 V , the diode and transistor begin to conduct. Initially the diode
has a low resistance so the current through it is governed by the transistor. When the regulating-current level of the diode is reached, the diode resistance rises rapidly, keeping diode current fairly constant. As the ramp continues to rise, the transistor saturates. Fig. 3 shows the voltage-current relationships of this test circuit.

It's convenient to use $1 \mathrm{k} \Omega$ for R so the base current in milliamperes will have the same numerical value as V_{2} in volts. But this can lead to heating because, though the collector current saturates at 2 mA , the base current continues to rise as the ramp voltage increases. If we reduce the base current in the test circuit by using 10 $\mathrm{k} \Omega$ for R, we modify the collector current as shown by the
dashed line in Fig. 3.
Better yet, we can limit the base current to a maximum of 0.2 mA by using a regulator diode (pin B to pin 5) in place of the base resistor in Fig. 1.
The maximum voltage we apply to this circuit depends on the diode used for D_{i}. The V-I relationship for the 1N5305 is shown in Fig. 4. Constant-current operation occurs at the plateau between 3 V and the peak operating voltage which, in this series, is 100 V . The lower limit of the plateau depends on the diode, being lower for lower-current diodes. Above POV, the current increases sharply. Since the voltage across D_{1} is always larger than that across D_{z}, the voltage applied to the

Fig. 1. Basic circuit for interconnecting a negative-going pulse generator to CCSL ICs. Many variations provide flexibility.

Fig. 2. The gencrator output must be shifted above the zero anis to provide a suitable C'SI. input.
circuit must not produce a drop across D_{1} greater than POV.
The 1N5303 regulates at 1.6 mA , which is the current required for a single CCSL input. Additional inputs must be
connected (as in Fig. 1 with $\operatorname{pin} A$ to pin 3) by using a separate diode for each input. Since all input current must pass through the pulse generator, the generator must be able

Fig. 3. Voltage-current relationships for a test circuit in which a negative-going ramp replaces the pulse generator and a meter and power supply replace the IC.

Fig. 4. V-I relationship for the 1 N5305. The diode must never be operated beyond its peak operating voltage.
to sink at least the combined currents.

If it's desirable to set the constant current at different levels, instead of using one regulator diode for each input
we can use a potentiometer and FET (pin A to pin 4 in Fig. 1) to provide a constant current that's variable.

Fixed bias extends zener range

Adding a single constant-current diode to a conventional zener regulator allows the zener to serve as a reference over a very wide range of input voltage. The constantcurrent diode fixes the zener's bias current, eliminating the
usual problem that stems from the fact that the zener's bias current is a function of input voltage.

If a series-pass transistor is used with the zener circuit, the regulator becomes an unsophisticated de supply for inputs
of varying dc or rectified ac with large ripple.

In the circuit shown, a 1 N 5302 constant-current diode provides the small bias necessary to sustain V_{Z}. Other diodes are available for con-
stant currents in the 4 - or $5-\mathrm{mA}$ range. With a power transistor, these allow the design of hefty supplies for dc into the ampere range without a Darlington arrangement. They offer great ripple reduction.

For a particular supply, one while the transistor is chosen selects the zener according to for the required dissipation and $V_{\text {out }}$ and the no-load dissipa- high beta. The constañt-curtion. The constant-current di- rent diodes require about a ode must supply $3-V$ drop to stabilize. This
fixes $V_{i n} \min$ to $V_{z}+3$,

This simple zener regulator covers a very wide range of input $I=\frac{I_{\text {out }}}{\beta}+I_{z e n e r b i a s}$
which is the only real restraint on the circuit.

- 40 mA at a nominal 6 V .

Automatic telephone

This simple circuit automatically turns on a tape recorder when a telephone receiver is lifted. Normally, there's 48 Vdc across $L_{1}-L_{2}$, the input wires to the telephone. That's enough to energize relay K_{1}, whose contacts (which go to the tape recorder's remote-switch input) are held open.

The dc resistance of K_{i} 's coil
plus the series resistor should be high enough to avoid producing an "off-hook" indication, which requires less than $2 \mathrm{k} \Omega$. The ringing voltage, 90 V 20 Hz , doesn't get to the recorder's audio input because of the 1 N 914 diode pair, and it doesn't affect the relay coil because of the $30-\mu \mathrm{F}$ capacitor.

When the receiver is lifted, the phone's varistor produces about 6 Vdc across $L_{1}-L_{2}$. That's low enough to allow K_{1} to drop out; it's contacts close and start the recorder. The audio voltage across $L_{1}-L_{z}$ is low enough so the diode pair doesn't introduce distortion. -

The circuit starts a tape recorder when a telephone receiver is lifted to make a call or receive one. The relay is a Sigma 65F1A - 24 Vdc or equivalent.

Constant-amplitude phase

The circuit shown produces an output voltage equal in magnitude to the input voltage but shifted in phase. Voltage gain is:
$\frac{G=j \omega C R_{1}-I}{j \omega C R_{1}+I}$
where $|G|=1$ and phase -
lead angle $\phi=$
$2 \tan ^{-1}\left(1 / \omega C R_{1}\right)$
As $\omega C R_{1}$ is varied (by changing R_{1}) from zero to much greater than unity, the phase shift varies from 180° lead to 90° lead (at $\omega C R_{1}=1$). As $\omega C R_{1}$ becomes large, phase shift approaches 0°. Interchanging C and R_{I} converts phase angle to lag rather than lead.
This circuit was used to vary phase shift of a 2.5 -Vrms, 5kHz sine wave from 180° to 30° lead. The component val-

This IC-phase shifter produces 0 to 180° with a constantamplitude output.
ues are: R_{q} equal to $10 \mathrm{k}, R_{i}$ source generator, amplitude is a $20-\mathrm{k}$ pot and C is a 6800 - variation was less than 100 pF capacitor. With a 600 -ohm mV .

Adjustable, low-impedance

zener

The circuit in Fig. 1 performs the functions of a zener

This circuit is particularly useful in the 1 - to $3-V$ range, where conventional zeners have much higher impedance.
diode and is adjustable so that the voltage across its terminals is defined by

$$
E_{z}=\frac{0.5 R_{t}+0.5 R_{z}}{R_{t}}
$$

The circuit operates at any voltage above approximately 0.8 V and it has a zener impedance of 3Ω max below $E_{z}=$ 5 V . It's particularly useful in the 1 - to $3-V$ region where normal zeners are not generally available and have considerably higher impedances.

The operating point is established by the voltage divider R_{q} / R_{1}, such that when the base-to-emitter voltage of Q_{1} is greater than approximately 0.5 V , it causes Q_{i} to pour current into R_{s}. When the voltage across R_{s} becomes greater than approximately $0.5 \mathrm{~V}, Q_{z}$ turns on quickly.

Fig. 2. Zener curves for various settings of R_{2} from 0 to $10 \mathrm{k} \Omega$. Vertical scale is $2 \mathrm{~mA} / \mathrm{div}$, horizontal is $0.5 \mathrm{~V} / \mathrm{div}$.

The high voltage gain of Q_{1} provided by R_{3} make the zener and the low drive impedance knee sharp, as in Fig. 2.
 put voltage forward biases D_{i} and D_{2}. The output is then clamped to the sum of the zener and diode voltages, which is below the amplifier's saturation level.

Resistor R_{2} bypasses the diode leakage current to the summing junction when D_{2} is reverse biased. The adjustable threshold voltage and the input

Two diodes and two zeners clamp this integrator's output to below the op amp's saturation voltage, making for fast recovery. All resistors are $5 \%, 1 / 4-W$ carbon comps.
signal are summed at the inverting input.

Diode D_{3} rectifies and D_{4} decouples the amplifier output to provide a circuit output that is always positive. Resistor R_{9} provides gain compensation to
prevent amplifier oscillation. The polarity of E_{o} may be made negative by reversing all diodes, the reference input and the zener supply.
With the component values
shown and using $+25-\mathrm{V}$ and
: $15-\mathrm{V}$ supplies, the integration time constant $\left(C_{1} R_{g}\right)$ is 35.6 ms and the output is clamped at +23 V . The output linearity is $\pm 1 \%$ and the threshold range of this circuit is -3 to -10 V .

Bipolar analog/digital

 interface for
servos

Velocity servos often require a positive input voltage for drive in one direction and a negative input for motion in the opposite direction. When a system must provide bidirectional motion for both analog and digital inputs, some sort of interface must be provided.

The configuration in the figure accepts both bipolar manual input (from a speed control, for example) and input logic levels (+ for forward, - for reverse) from digital circuits to provide a bipolar output compatible with

This circuit interfaces between digital or bipolar analog signals and a bi-directional servo.
the servo input. Resistors R_{I} input can be continuously vari- voltage at A will be +2 V to R_{4} provide means for inde- able from -15 V to +15 V . or +8 V , respectively, for pendently adjusting the gain of The other four inputs take $5-\mathrm{V}$ "-Slow" or "-Fast" inputs of each channel.
logic.
+5 V (adjustable to suit the
At point A, the voltage will motor being driven). The outfor fast or slow motion in be zero when the "-Slow" or put can vary between -10 V either direction. The "Manual" "-Fast" input is at 0 V . The and +10 V .

Transformerless ring

modulator

A ring modulator is very useful for phase detection and modulation, but it requires transformers to operate the diode ring. This severely limits its use at low frequencies and requires a transformer change whenever the operating frequency is changed more than two decades from the transformer's design center.

A satisfactory alternative to transformer operation is provided by inexpensive monolithic operational amplifiers. The circuit shown is usable at frequencies from 10 Hz to 1 MHz with no component changes. Amplifiers A_{j} and A_{2} gate the hot-carrier diodes and condition the signal.

Gating is done with the signal applied to the positive inputs of two amplifiers. This signal is a 0.6 V pk -pk square wave which also appears at the negative input of each amplifier and hence, across the diode ring through a $1-\mathrm{k} \Omega$ resistor.

IC op amps obviate transformers and extend the frequency range of this ring modulator.

Since the positive inputs are operated from both outputs of the transistor inverter T_{1}, the drives are out of phase with each other and cause a ± 0.6 V signal to be applied across the diode ring at alternate half cycles. This level signal is ade-
quate to switch the diodes.
The incoming signal is passed into each amplifier with a gain of one during one half of the reference cycle and disconnected during the second half. The output of both amplifiers is summed into a
third amplifier A_{s}. The output of A_{3} is ground during one half of the reference cycle and equal to twice the input signal during the second half. Potentiometer P_{1} adjusts the output of A_{s} for best ac zero with no signal input.

A FIELD-EFFECT transistor, connected as a constant-current diode, allows portable equipment to interface with standard DTL and with EIA tele-phone-company level shifts from -6 to +6 V .

The input signal goes to a DTL circuit through the FET which clamps the input to ground through diode D_{1} in the circuit shown. The FET
used has a typical drain current of 9 mA with gate connected to source, thus protecting the driving circuit from current overload in the negative direction.

When standard DTL levels are used with a false level on the interface input, the gate voltage (with one sample lot of FETs) ranges from 0.3 to 0.47 V . If the equipment must work in a high-noise environment, it may be necessary to select FETs to insure optimum performance.

Tests run on the circuit with and without the interface show no change in rise time, fall time or propagation delay.

Diode-connected FET interfaces DTL and EIA telephone levels.

Simple gyrator for

L from C

The advent of low-cost IC amplifiers has made it practical to use the gyrator circuit to provide inductive effects without the usual limitations of coils. The gyrator is a circuit whose input impedance is pro-
portional to the reciprocal of its load impedance. So the input to a gyrator loaded with a capacitor looks like an inductor with higher Q than available in the usual commercial inductor.

Figure 1 shows a simple gyrator with a capacitive load. The gyrator (in dashed lines) includes two amplifiers with gain A, one inverting and one noninverting. Each amplifier has a Z_{1}, Z_{2} and R_{L} represent-

Fig. 1. This is a generalized gyrator circuit with a capacitive load.

Fig. 2. This specific gyrator, with a $10-\mu \mathbf{F}$ load, effectively forms a $12-\mu \mathrm{H}$ inductor.
ing, respectively, its input impedance, output impedance and load resistance.

The input impedance of a gyrator loaded with capacitor C is
$\mathbf{Z}_{\text {in }}=$

$$
\frac{P\left(P^{2}+G^{2}+\omega^{2} C^{2}\right)+j \omega G^{2} C}{\left(P^{2}+G^{2}\right)^{2}+P^{2} \omega^{2} C^{2}}
$$

where $P=\frac{1}{R_{L}}+\frac{1}{Z_{1}}+\frac{1}{Z_{2}}$
and $G=A / Z_{2}$.
The Q of the loaded circuit is

$$
\mathrm{Q}=\frac{\omega \mathrm{G}^{2} \mathrm{C}}{\mathrm{P}\left(\mathrm{P}^{2}+\mathrm{G}^{2}+\omega^{2} \mathrm{C}^{2}\right)}
$$

which has an approximate
maximum of G/2P at an angular frequency

$$
\omega=\sqrt{\frac{\mathrm{p}^{2}+\mathrm{G}^{2}}{\mathrm{C}^{2}}}
$$

Figure 2 shows two RCA CA3028A ICs in a gyrator loaded with a $10-\mu \mathrm{F}$ capacitor. In this circuit, the amplifiers had $A=1000, Z_{1}=2 \mathrm{k} \Omega$, $Z_{2}=12 \mathrm{k} \Omega$ and $R_{L}=5 \mathrm{k} \Omega$.

These values give an effective $12-\mu \mathrm{H}$ inductor which is quite constant over a range from 10 Hz to almost 1 MHz . The Q varies from 1 at 10 Hz to a maximum of 500 at 10 kHz .

An error-stabilized analog divider

Figure 1 illustrates a circuit for analog division. In this method an analog multiplier is placed in the feedback loop of an operational amplifier. However, this method is limited by the drift of the multiplier. Fig. 2 shows a circuit for cancelling error due to multiplier drift.

In the new circuit, the multiplier output (XY/10) is sampled at $t=0$. This signal is inverted and fed into the op-amp's summing point, effectively cancelling the error at $t=0$. Fig. 2 illustrates this method for a wide-band error-stabilized analog divider.

The system generates a waveform of the form $e=Z / k t$ where Z varies $40: 1$ and K is variable from $1.7 \mathrm{~V} / \mu$ s to 0.2 $\mathrm{V} / \mu \mathrm{s}$. System waveshapes are illustrated in Fig. 3 for a prf of 15 kHz . The multiplier selected, a Hybrid System 105, has an inverted output which is used to simplify the error-cancellation circuit. In order to maintain loop stability at the high speed desired, the op-amp unity-gain frequency must be equal to or less than the $3-\mathrm{dB}$ frequency of the multiplier. A limiter loop was also included to prevent overdrive of the op amp and multiplier.

Fig. 1. This is the usual method of analog division.

Fig. 2. This circuit shows a method of eliminating multiplier drift.

Fig. 3. The waveshapes illustrated are for a hyperbolic broadband generator.

$60 \cdot \mathrm{~Hz}$
 frequency discriminator

This circuit delivers a dc output voltage proportional to the frequency deviation of the input voltage from a nominal center frequency. With the values shown, the center frequency is 60 Hz . This circuit is useful for frequency measurement or motor speed control. In addition, the phase shifter and multiplier portion of the circuit can be used for second harmonic generation without producing a dc output.

An input signal is fed directly to the Y input of the multiplier and also through a 90° phase shifter A_{1} to the X input of the multiplier. The output of the multiplier is the second

Two IC op-amps and a multiplier form a frequency discriminator circuit.
harmonic of the input and a_{i} voltage is proportional to fredc component. This signal is filtered and amplified by buffer: A_{2}, A_{2} 's dc gain is 10 . Output
the dc output is 500 mV per percent of center frequency change. R_{t} is adjusted for 0 quency deviation from the frequency at which A_{1} has 90° phase shift. At 7 Vrms input, Vdc at the center frequency. -
ence voltages. These are chosen by the minimuin requirements for commutation of each SCR. A single reference can be used if maximum speed is not critical. Ref., determines minimum commutation voltage available for turning off $S C R_{z}$, while Ref.g determines the minimum commutation voltage available for $S C R$, Steering and timing are done by biasing D_{1} and D_{z} off until the anode voltage of $S C R_{t}$ and $S C R_{z}$ respectively, have risen high enough to forward bias the steering diodes. Trigger pulses will then be re-
jected until adequate energy. is stored in commutation capacitor $C . C_{2}$ and C_{2} prevent power transients from triggering the SCRs.

This circuit does exhibit start-up problems since the gates are tied to +V . This problem is alleviated by providing a turn-on switch to provide power to one load resistorSCR combination as well as the reference supplies. After charging transients subside, power can be applied to the other load-SCR combination without latch-up.

Steering diodes insure SCR commutation
 proper commutation. Often un-

 wanted or transient conditions cause trigger pulses to appear in rapid succession. This can result in both SCR's turning on (lock-up).Addition of steering diodes provides automatic rejection of premature triggers, insures commutation when triggered by properly spaced pulses and prevents lock-up. Figure 2 shows the modified switch. Diodes D_{t} and D_{2} are returned to referbasic problem. Trige pulses for turn on and turn off must be spaced so that there is adequate time for the commutation capacitor to charge sufficiently to insure

Fig. 2. An improved dc static switch with steering diodes eliminates the latch-up problem.

Fig. 1. A conventional SCR flip-flop which has latch-inp problems.

voltage rises, the current in Q_{1} input impedance of about 33
increases and the current in Q_{2} megohms and requires a bias voltage rises, the current in Q_{1} input impedance of about 33
increases and the current in Q_{2} megohms and requires a bias
falls a like amount, since the current source Q_{s} insures a constant total current thru the pair. The falling current in Q_{2} causes the collector voltage of Q_{2} to rise which in turn causes the emitter voltages of Q_{s} and Q_{4} to rise, thus following the input voltage. Since the eurrents in Q_{1} and Q_{2} change, their base-emitter voltages change also and the circuit has less than unity gain as a consequence.

The unmodified circuit has a

The ideal voltage follower

With a couple of minor changes, a simple voltage follower circuit can be made to have unity gain, zero bias current and infinite input impedance. In the basic circuit of Fig. I (without the dashed components) when the input

Fig. 1. R_{4} and R_{s} give the basic follower circuit unity gain, infinite input Z and/or zero input current. Actual gain is $\mathbf{0 . 9 9 9 7}$ V/V.

Fig. 2. Offset voltage versus input voltage as a function of supply voltage and temperature.
current of about 0.7 microamps. The addition of \boldsymbol{R}_{6} (dashed), which is half the value of R_{2}, causes the current from the current source to change twice as much as the current in R_{2} (or Q_{2}). Thus the current in Q_{1} is made to change just as much as the current in Q_{2} and in the same direction!

This results in exactly unity gain; but also in a negative impedance (-33 megohms). The addition of R_{z} (dashed) from the input to $V_{c c}$, supplies
most of the bias current and cancels the negative input impedance. If R_{7} were connected to $\mathrm{a}+21 \mathrm{~V}$ supply, the bias current would be completely supplied. The temperature sensitivity of the transistor betas causes a departure from the ideal, limiting the benefits of the latter properties to narrow temperature range applications. The effects of temperature and supply voltage on offset voltage can be seen in Fig. 2. The measured gain is 0.9997 V / V with an error of $\pm 0.1 \%$ over a $\pm 1.5 \mathrm{~V}$ swing.

Hectronic Cirenit Dosign : ianibook

by the Editors of EEE Magazine

In the quality and quantity of its contents this book is outstanding, probably unique. Containing well over 600 effective and well-tried circuits, it is a gold-mine of basic designs that could trigger off ideas for a multitude of further projects.

The circuits are mostly of the solid-state type, employing transistors, FET's, SCR's, zener diodes, UJT's and other semiconductors; some of the projects incorporate IC's (integrated circuit modules).

The book is in nineteen sections, covering circuits for electronic control, regulation, protection, filtering, suppression, pulse generation, comparison, amplification, oscillation, counting, timing, signal generation, simulation, conversion, inversion, detection, sensing, gating, logic, testing, switching, relays, alarms and miscellaneous applications.

An exceptionally well balanced choice of circuits has led to a useful, varied and versatile selection of arrangements that will meet a multiplicity of needs.

These basic circuits will enable the experimenter to devise variations and modifications to suit his own individual requirements. The schematic diagrams show details of each circuit and component values, while the accompanying text gives concise data on the essential features of each project.

FOULSHAM-TAB LIMITED

[^0]: A commonly overlooked phenomenon in transistor monostable multivibrators is the excessive transient base-to-emitter voltage caused by the discharging coupling capacitor. This voltage often surpasses the maximum specified V_{Br} of the device. This is particularly troublesome with high-speed transistors, where the V_{BE} ratings are generally low.

 The source of trouble is capacitor C, which commences to discharge when the triggering pulse turns Q_{1} off, (see

[^1]: The basic multivibrator shown has a square wave output across the collector resistor and a triangular wave output across the capacitor. (See Circuit Design No. 56, EEE, Oct., 1964 by Peter Lefferts.) When this circuit is biased from a constant-current source, the tops of the square wave

