
The Bell System Technical Journal 

Vol. XXVII July, 194S No. 3 

A Mathematical Theory of Communication 

By C. E. SHANNON 

Introduction 

THE recent development of various methods of modulation such as PCM 
and PPM which exchange bandwidth for signal-to-noise ratio has in- 

tensified the interest in a general theory of communication. A basis for 
such a theory is contained in the important papers of Nyquist1 and Hartley2 

on this subject. In the present paper we will extend the theory to include a 
number of new factors, in particular the effect of noise in the channel, and 
the savings possible due to the statistical structure of the original message 
and due to the nature of the final destination of the information. 

The fundamental problem of communication is that of reproducing at 
one point either exactly or approximately a message selected at another 
point. Frequently the messages have meaning; that is they refer to or are 
correlated according to some system with certain physical or conceptual 
entities. These semantic aspects of communication are irrelevant to the 
engineering problem. The significant aspect is that the actual message is 
one selected from a set of possible messages. The system must be designed 
to operate for each possible selection, not just the one which will actually 
be chosen since this is unknown at the time of design. 

If the number of messages in the set is finite then this number or any 
monotonic function of this number can be regarded as a measure of the in- 
formation produced when one message is chosen from the set, all choices 
being equally likely. As was pointed out by Hartley the most natural 
choice is the logarithmic function. Although this definition must be gen- 
eralized considerably when we consider the influence of the statistics of the 
message and when we have a continuous range of messages, we will in all 
cases use an essentially logarithmic measure. 

The logarithmic measure is more convenient for various reasons: 
1. It is practically more useful. Parameters of engineering importance 
1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Technical Jour- 

nal, April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," .4.1. E. E. 
Tians., v. 47, April 1928, p. 617. 2 Hartley, R. V. L., "Transmission of Information," Bell Svslein Technical Journal. Julv 
1928, p. 535. 
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such as time, bandwidth, number of relays, etc., tend to vary linearly with 
the logarithm of the number of possibilities. For example, adding one relay 
to a group doubles the number of possible states of the relays. It adds 1 
to the base 2 logarithm of this number. Doubling the time roughly squares 
the number of possible messages, or doubles the logarithm, etc. 

2. It is nearer to our intuitive feeling as to the proper measure. This is 
closely related to (1) since we intuitively measure entities by linear com- 
parison with common standards. One feels, for example, that two punched 
cards should have twice the capacity of one for information storage, and two 
identical channels twice the capacity of one for transmitting information. 

3. It is mathematically more suitable. Many of the limiting operations 
are simple in terms of the logarithm but would require clumsy restatement in 
terms of the number of possibilities. 

The choice of a logarithmic base corresponds to the choice of a unit for 
measuring information. If the base 2 is used the resulting units may be 
called binary digits, or more briefly hits, a word suggested by J. W. Tukey. 
A device with two stable positions, such as a relay or a flip-flop circuit, can 
store one bit of information. N such devices can store N bits, since the 
total number of possible states is 2N and = N. If the base 10 is 
used the units may be called decimal digits. Since 

logo M = logio M/logio2 

= 3.32 lo^o M, 

a decimal digit is about 3| bits. A digit wheel on a desk computing machine 
has ten stable positions and therefore has a storage capacity of one decimal 
digit. In analytical work where integration and differentiation are involved 
the base e is sometimes useful. The resulting units of information will be 
called natural units. Change from the base a to base b merely requires 
multiplication by log6 a- 

By a communication system we will mean a system of the type indicated 
schematically in Fig. 1. It consists of essentially five parts: 

1. An information source which produces a message or sequence of mes- 
sages to be communicated to the receiving terminal. The message may be 
of various types: e.g. (a) A sequence of letters as in a telegraph or teletype 
system; (b) A single function of time fit) as in radio or telephony; (c) A 
function of time and other variables as in black and white television—here 
the message may be thought of as a function f{x, y, t) of two space coordi- 
nates and time, the light intensity at point (x, y) and time / on a pickup tube 
plate; (d) Two or more functions of time, say fit), g{l), h(f)—this is the 
case in "three dimensional" sound transmission or if the system is intended 
to service several individual channels in multiplex; (e) Several functions of 
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several variables—in color television the message consists of three functions 
f{x, y, i), g(x, y, I), h{x, y, l) defined in a three-dimensional continuum— 
we may also think of these three functions as components of a vector field 
defined in the region—similarly, several black and white television sources 
would produce "messages" consisting of a number of functions of three 
variables; (f) Various combinations also occur, for example in television 
with an associated audio channel. 

2. A Iransmiller which operates on the message in some way to produce a 
signal suitable for transmission over the channel. In telephony this opera- 
lion consists merely of changing sound pressure into a proportional electrical 
current. In telegraphy we have an encoding operation which produces a 
sequence of dots, dashes and spaces on the channel corresponding to the 
message. In a multiplex PCM system the different speech functions must 
be sampled, compressed, quantized and encoded, and finally interleaved 

INFORMATION 
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5- 
SIGNAL ' 

RECEIVER DESTINATION 
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NOISE 
SOURCE 

Fig. 1—Schematic diagram of a general communication system. 

properly to construct the signal. Vocoder systems, television, and fre- 
quency modulation are other examples of complex operations applied to the 
message to obtain the signal. 

3. The channel is merely the medium used to transmit the signal from 
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of 
radio frequencies, a beam of light, etc. 

4. The receiver ordinarily performs the inverse operation of that done by 
the transmitter, reconstructing the message from the signal. 

5. The destinalion is the person (or thing) for whom the message is in- 
tended. 

We wish to consider certain general problems involving communication 
systems. To do this it is first necessary to represent the various elements 
involved as mathematical entities, suitably idealized from their physical 
counterparts. We may roughly classify communication systems into three 
main categories: discrete, continuous and mixed. By a discrete system we 
will mean one in which both the message and the signal are a sequence of 
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discrete symbols. A typical case is telegraphy where the message is a 
sequence of letters and the signal a sequence of dots, dashes and spaces. 
A continuous system is one in which the message and signal are both treated 
as continuous functions, e.g. radio or television. A mixed system is one in 
which both discrete and continuous variables appear, e.g., PCM transmis- 
sion of speech. 

We first consider the discrete case. This case has applications not only 
in communication theory, but also in the theory of computing machines, 
the design of telephone exchanges and other fields. In addition the discrete 
case forms a foundation for the continuous and mixed cases which will be 
treated in the second half of the paper. 

PART I: DISCRETE NOISELESS SYSTEMS 

1. The Discrete Noiseless Channel 

Teletype and telegraphy are two simple examples of a discrete channel 
for transmitting information. Generally, a discrete channel will mean a 
system whereby a sequence of choices from a finite set of elementary sym- 
bols Si • • ■ Sn can be transmitted from one point to another. Each of the 
symbols Si is assumed to have a certain duration in time /,• seconds (not 
necessarily the same for different Si, for example the dots and dashes in 
telegraphy). It is not required that all possible sequences of the Si be cap- 
able of transmission on the system; certain sequences only may be allowed. 
These will be possible signals for the channel. Thus in telegraphy suppose 
the symbols are: (1) A dot, consisting of line closure for a unit of time and 
then line open for a unit of time; (2) A dash, consisting of three time units 
of closure and one unit open; (3) A letter space consisting of, say, three units 
of line open; (4) A word space of six units of line open. We might place 
the restriction on allowable sequences that no spaces follow each other (for 
if two letter spaces are adjacent, it is identical with a word space). The 
question we now consider is how one can measure the capacity of such a 
channel to transmit information. 

In the teletype case where all symbols are of the same duration, and any 
sequence of the 32 symbols is allowed the answer is easy. Each symbol 
represents five bits of information. If the system transmits n symbols 
per second it is natural to say that the channel has a capacity of Sn bits per 
second. This does not mean that the teletype channel will always be trans- 
mitting information at this rate—this is the maximum possible rate and 
whether or not the actual rate reaches this maximum depends on the source 
of information which feeds the channel, as will appear later. 
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In the more general case with different lengths of symbols and constraints 
on the allowed sequences, we make the following definition: 
Definition: The capacity C of a discrete channel is given by 

r: = Lim 
T — x 1 

where N{T) is the number of allowed signals of duration T. 
It is easily seen that in the teletype case this reduces to the previous 

result. It can be shown that the limit in question will exist as a finite num- 
ber in most cases of interest. Suppose all sequences of the symbols Si, ■ • • , 
S„ are allowed and these symbols have durations /1, • ■ ■ , . What is the 
channel capacity? If Nit) represents the number of sequences of duration 
/ we have 

N{l) = N{l - /,) + N{t - /2) + • • • + iV(/ - tn) 

The total number is equal to the sum of the numbers of sequences ending in 
Si, S*, ,S„ and these are Nil - h), N{t - k), , N{l - /„), respec- 
tively. According to a well known result in finite differences, N{l) is then 
asymptotic for large / to Arn where Aro is the largest real solution of the 
characteristic equation: 

X~l 1 + AT"'2 + • • ■ + AT-'" = 1 

and therefore 

C = log A'o 

In case there are restrictions on allowed sequences we may still often ob- 
tain a difference equation of this type and find C from the characteristic 
equation. In the telegraphy case mentioned above 

N(l) = N{1 - 2) + Nil - 4) + N{1 - 5) + N{i - 7) + N{l - 8) 

+ Nil - 10) 

as we see by counting sequences of symbols according to the last or next to 
the last symbol occurring. Hence C is — log go where go is the positive 
root of 1 = g2 + g4 + g5 + g7 + gs + g10- Solving this we find C = 0.539. 

A very general type of restriction which may be placed on allowed se- 
quences is the following: We imagine a number of possible states flj, 02, • • • , 
am . For each state only certain symbols from the set , • • • , Sn can be 
transmitted (different subsets for the different states). When one of these 
has been transmitted the state changes to a new state depending both on 
the old state and the particular symbol transmitted. The telegraph case is 
a simple example of this. There are two states depending on whether or not 
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a space was the last symbol transmitted. If so then only a dot or a dash 
can be sent next and the state always changes. If not, any symbol can be 
transmitted and the state changes if a space is sent, otherwise it remains 
the same. The conditions can be indicated in a linear graph as shown in 
Fig. 2. The junction points correspond to the states and the lines indicate 
the symbols possible in a state and the resulting state. In Appendix I it is 
shown that if the conditions on allowed sequences can be described in this 
form C will exist and can be calculated in accordance with the following 
result: 
Theorem 1: Let be the duration of the s11' symbol which is allowable in 
state i and leads to state j. Then the channel capacity C is equal to log 
W where W is the largest real root of the determinant equation: 

| E W-W - 5 o-l = 0. 

where 8 a = 1 if i = j and is zero otherwise. 

DASH 

/ DOT /P D0T 

fe^^Cy^DASH 

WORD SPACE 
Fig. 2—Graphical representation of the constraints on telegraph symbols. 

For example, in the telegraph case (Fig. 2) the determinant is: 

-1 (IF-2 + IF"4) 

(IF-3 + IF-6) (IF-2 + IF-4 - 1) 

On expansion this leads to the equation given above for this case. 

2. The Discrete Source of Information 

We have seen that under very general conditions the logarithm of the 
number of possible signals in a discrete channel increases linearly with time. 
The capacity to transmit information can be specified by giving this rate of 
increase, the number of bits per second required to specify the particular 
signal used. 

We now consider the information source. How is an information source 
to be described mathematically, and how much information in bits per sec- 
ond is produced in a given source? The main point at issue is the effect of 
statistical knowledge about the source in reducing the required capacity 
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of the channel, by the use of proper encoding of the information. In teleg- 
raphy, for example, the messages to be transmitted consist of sequences 
of letters. These sequences, however, are not completely random. In 
general, they form sentences and have the statistical structure of, say, Eng- 
lish. The letter E occurs more frequently than Q, the sequence TH more 
frequently than XP, etc. The existence of this structure allows one to 
make a saving in time (or channel capacity) by properly encoding the mes- 
sage sequences into signal sequences. This is already done to a limited ex- 
tent in telegraphy by using the shortest channel symbol, a dot, for the most 
common English letter E; while the infrequent letters, Q, X, Z are repre- 
sented by longer sequences of dots and dashes. This idea is carried still 
further in certain commercial codes where common words and phrases are 
represented by four- or live-letter code groups with a considerable saving in 
average time. The standardized greeting and anniversary telegrams now 
in use extend this to the point of encoding a sentence or two into a relatively 
short sequence of numbers. 

We can think of a discrete source as generating the message, symbol by 
symbol. It will choose successive symbols according to certain probabilities 
depending, in general, on preceding choices as well as the particular symbols 
in question. A physical system, or a mathematical model of a system which 
produces such a sequence of symbols governed by a set of probabilities is 
known as a stochastic process.8 We may consider a discrete source, there- 
fore, to be represented by a stochastic process. Conversely, any stochastic 
process which produces a discrete sequence of symbols chosen from a finite 
set may be considered a discrete source. This will include such cases as: 
1. Natural written languages such as English, German, Chinese. 
2. Continuous information sources that have been rendered discrete by some 

quantizing process. For example, the quantized speech from a PCM 
transmitter, or a quantized television signal. 

3. Mathematical cases where we merely define abstractly a stochastic 
process which generates a sequence of symbols. The following are ex- 
amples of this last type of source. 
(A) Suppose we have five letters A, B, C, D, E which are chosen each 

with probability .2, successive choices being independent. This 
would lead to a sequence of which the following is a typical example. 
BDCBCECCCADCBDDA A E C E EA 
ABBDAEECACEEBAEECBCEAD 
This was constructed with the use of a table of random numbers.4 

3 See, for example, S. Chandrasekhar, "Stochastic Problems in Physics and Astronomy," 
Reviews of Modern Physics, v. 15. No. 1, January 1943. p. 1. 1 Kendall and Smith, "Tables of Random Sampling Numbers," Cambridge, 1939. 
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(B) Using the same five letters let the probabilities be .4, .1, .2, .2, .1 
respectively, with successive choices independent. A typical 
message from this source is then: 
AAACDCBDCEAADADACEDA 
EADCABEDADDCECAAAAAD 

(C) A more complicated structure is obtained if successive symbols are 
not chosen independently but their probabilities depend on preced- 
ing letters. In the simplest case of this type a choice depends only 
on the preceding letter and not on ones before that. The statistical 
structure can then be described by a set of transition probabilities 
piij), the probability that letter i is followed by letter j. The in- 
dices i and j range over all the possible symbols. A second equiv- 
alent way of specifying the structure is to give the "digram" prob- 
abilities p(i, j), i.e., the relative frequency of the digram i j. The 
letter frequencies p(i), (the probability of letter i), the transition 
probabilities pi{j) and the digram probabilities p{i, j) are related by 
the following formulas. 

Pit) = Z Pi', j) = Z Pij, i) = Z pij)Piii) 
i i i 

Piuj) = pii)piij) 

Z piij) = Z pit) = Z pit, i) = i- 
j i i.i 

As a specific example suppose there are three letters A, B, C with the prob- 
ability tables: 

piij) 
A 

j 
B c 

i Pit) Pit, j) 
A 

j 
B c 

A 0 4 5 1 5 A "2T A 0 4 TS" 1 T5 

i B 1 2 
1 2 0 B 1 6 UT i B 8 27 8 2T 0 

C 1 2 2 5 1 10 C 2 T7 C 1 4 T3"J) 1 T5S 

A typical message from this source is the following: 
ABBABABABABABABBBABBBBBAB 
ABABABABBBACACABBABBBBABB 
ABACBBBABA 
The next increase in complexity would involve trigram frequencies 
but no more. The choice of a letter would depend on the preceding 
two letters but not on the message before that point. A set of tri- 
gram frequencies p(i, j, k) or equivalently a set of transition prob- 
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abilities pij{k) would be required. Continuing in this way one ob- 
tains successively more complicated stochastic processes. In the 
general «-gram case a set of «-gram probabilities p(ii, iz, • • • , in) 
or of transition probabilities />,, , t-2.... , is required to 
specify the statistical structure. 

(D) Stochastic processes can also be defined which produce a text con- 
sisting of a sequence of "words." Suppose there are five letters 
A, B, C, D, E and 16 "words" in the language with associated 
probabilities: 

Suppose successive "words" are chosen 'independently and are 
separated by a space. A typical message might be: 
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE 
BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED 
DEED BEBE CABED BEBE BED DAB DEED ADEB 
If all the words are of finite length this process is equivalent to one 
of the preceding type, but the description may be simpler in terms 
of the word structure and probabilities. We may also generalize 
here and introduce transition probabilities between words, etc. 

These artificial languages are useful in constructing simple problems and 
examples to illustrate various possibilities. We can also approximate to a 
natural language by means of a series of simple artificial languages. The 
zero-order approximation is obtained by choosing all letters with the same 
probability and independently. The first-order approximation is obtained 
by choosing successive letters independently but each letter having the 
same probability that it does in the natural language.6 Thus, in the first- 
order approximation to English, E is chosen with probability .12 (its fre- 
quency in normal English) and W with probability .02, but there is no in- 
fluence between adjacent letters and no tendency to form the preferred 
digrams such as TH, ED, etc. In the second-order approximation, digram 
structure is introduced. After a letter is chosen, the next one is chosen in 
accordance with the frequencies with which the various letters follow the 
first one. This requires a table of digram frequencies Pi(j). In the third- 
order approximation, trigram structure is introduced. Each letter is chosen 
with probabilities which depend on the preceding two letters. 

^ Letter, digram and trigram frequencies are given in "Secret and Urgent" by l-'letchcr 
Pratt, Blue Ribbon Books 1939. Word frequencies are tabulated in "Relative Frequency 
of English Speech Sounds," G. Dewey, Harvard University Press, 1923. 

.04 ADEB 

.05 ADEE 

.01 BADD 

.10 A .16 BEBE .11 CABED .04 DEB 
.04 BED .05 CEED .15 DEED 
.02 BEED .08 DAB .01 EAB 
.05 CA .04 DAD .05 EE 
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3. The Series of Approximations to English 

To give a visual idea of how this series of processes approaches a language, 
typical sequences in the approximations to English have been constructed 
and are given below. In all cases we have assumed a 27-symbol "alphabet," 
the 26 letters and a space. 

1. Zero-order approximation (symbols independent and equi-probable). 
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ 
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD 

2. First-order approximation (symbols independent but with frequencies 
of English text). 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI 
ALHENHTTPA OOBTTVA NAH BRL 

3. Second-order approximation (digram structure as in English). 
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY 
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO 
TIZIN ANDY TOBE SEACE CTISBE 

4. Third-order approximation (trigram structure as in English). 
IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID 
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS 
REGO ACTION A OF CRE 

5. First-Order Word Approximation. Rather than continue with tetra- 
gram, • • • , «-gram structure it is easier and better to jump at this 
point to word units. Here words are chosen independently but with 
their appropriate frequencies. 

REPRESENTING AND SPEEDILY IS AN GOOD APT OR 
COME CAN DIFFERENT NATURAL HERE HE TILE A IN 
CAME THE TO OF TO EXPERT GRAY COME TO FUR- 
NISHES THE LINE MESSAGE HAD BE THESE. 

6. Second-Order Word Approximation. The word transition probabil- 
ities are correct but no further structure is included. 

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH 
WRITER THAT THE CHARACTER OF THIS POINT IS 
THEREFORE ANOTHER METHOD FOR THE LETTERS 
THAT THE TIME OF WHO EVER TOLD THE PROBLEM 
FOR AN UNEXPECTED 

The resemblance to ordinary English text increases quite noticeably at 
each of the above steps. Note that these samples have reasonably good 
structure out to about twice the range that is taken into account in their 
construction. Thus in (3) the statistical process insures reasonable text 
for two-letter sequence, but four-letter sequences from the sample can 
usually be fitted into good sentences. In (6) sequences of four or more 
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words can easily be placed in sentences without unusual or strained con- 
structions. The particular sequence of ten words "attack on an English 
writer that the character of this" is not at all unreasonable. It appears 
then that a sufficiently complex stochastic process will give a satisfactory 
representation of a discrete source. 

The first two samples were constructed by the use of a book of random 
numbers in conjunction with (for example 2) a table of letter frequencies. 
This method might have been continued for (3), (4), and (5), since digram, 
trigram, and word frequency tables are available, but a simpler equivalent 
method was used. To construct (3) for example, one opens a book at ran- 
dom and selects a letter at random on the page. This letter is recorded. 
The book is then opened to another page and one reads until this letter is 
encountered. The succeeding letter is then recorded. Turning to another 
page this second letter is searched for and the succeeding letter recorded, 
etc. A similar process was used for (4), (5), and (6). It would be interest- 
ing if further approximations could be constructed, but the labor involved 
becomes enormous at the next stage. 

4. Graphical Representation of a Markoff Process 

Stochastic processes of the type described above are known mathe- 
matically as discrete Markoff processes and have been extensively studied in 
the literature.6 The general case can be described as follows: There exist a 
finite number of possible "states" of a system; Si , S*, ■ ■ • , Sn . In addi- 
tion there is a set of transition probabilities; piij) the probability that if the 
system is in state Si it will next go to state Sj. To make this Markoff 
process into an information source we need only assume that a letter is pro- 
duced for each transition from one slate to another. The states will corre- 
spond to the "residue of influence" from preceding letters. 

The situation can be represented graphically as shown in Figs. 3, 4 and 5. 
The "states" are the junction points in the graph and the probabilities and 
letters produced for a transition arc given beside the corresponding line. 
Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the 
example G. In Fig. 3 there is only one state since successive letters are 
independent. In Fig. 4 there are as many slates as letters. If a trigram 
example were constructed there would be at most «2 states corresponding 
to the possible pairs of letters preceding the one being chosen. Figure 5 
is a graph for the case of word structure in example D. Here S corresponds 
to the "space" symbol. 

11 For a detailed treatment see M. Frechct, "Methods des fonctions arbitraires. Theorie 
dcs 6n<;nemcntsen chaine dans le cas d'un nomhre fmi d'etats possibles." Paris, Gauthier- 
Vi liars, 1938. 
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5. Ergodic and Mixed Sources 

As we have indicated above a discrete source for our purposes can be con- 
sidered to be represented by a Markoff process. Among the possible discrete 
Markoff processes there is a group with special properties of significance in 

D .2 
Fig. 3—A graph corresponding to the source in example B. 

Fig. 4—A graph corresponding to the source in example C. 

D^_     L 

.0 

Fig. 5—A graph corresponding to the source in example D. 

communication theory. This special class consists of the ''ergodic proc- 
esses and we shall call the corresponding sources ergodic sources. Although 
a rigorous definition of an ergodic process is somewhat involved, the general 
idea is simple. In an ergodic process every sequence produced by the proc- 
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ess is the same in statistical properties. Thus the letter frequencies, 
digram frequencies, etc., obtained from particular sequences will, as the 
lengths of the sequences increase, approach definite limits independent of 
the particular sequence. Actually this is not true of every sequence but the 
set for which it is false has probability zero. Roughly the ergodic property 
means statistical homogeneity. 

All the examples of artificial languages given above are ergodic. This 
property is related to the structure of the corresponding graph. If the graph 
has the following two properties7 the corresponding process will be ergodic: 

1. The graph does not consist of two isolated parts A and B such that it is 
impossible to go from junction points in part A to junction points in 
part B along lines of the graph in the direction of arrows and also im- 
possible to go from junctions in part B to junctions in part A. 

2. A closed series of lines in the graph with all arrows on the lines pointing 
in the same orientation will be called a "circuit." The "length" of a 
circuit is the number of lines in it. Thus in Fig. 5 the series BEBES 
is a circuit of length 5. The second property required is that the 
greatest common divisor of the lengths of all circuits in the graph be 
one. 

If the first condition is satisfied but the second one violated by having the 
greatest common divisor equal to rf > 1, the sequences have a certain type 
of periodic structure. The various sequences fall into d different classes 
which are statistically the same apart from a shift of the origin (i.e., which 
letter in the sequence is called letter 1). By a shift of from 0 up to </ — 1 
any sequence can be made statistically equivalent to any other. A simple 
example with </ = 2 is the following: There are three possible letters a, b, c. 
Letter a is followed with either b ox c with probabilities ^ and | respec- 
tively. Either 6 or c is always followed by letter a. Thus a typical sequence 
is 

abacacacabacababacac 

This type of situation is not of much importance for our work. 
If the first condition is violated the graph may be separated into a set of 

subgraphs each of which satisfies the first condition. We will assume that 
the second condition is also satisfied for each subgraph. We have in this 
case what may be called a "mixed" source made up of a number of pure 
components. The components correspond to the various subgraphs. 
If Li , Lj, L- , • • • are the component sources we may write 

L = p\Li T piLi + pzLz + • • • 

where pi is the probability of the component source L,. 
7 These arc restatements in terms of the graph of conditions given in Frechet. 
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Physically the situation represented is this: There are several different 
sources Li, L*, L3 , • • ■ which are each of homogeneous statistical structure 
(i.e., they are ergodic). We do not know a priori which is to be used, but 
once the sequence starts in a given pure component Li it continues indefi- 
nitely according to the statistical structure of that component. 

As an example one may take two of the processes defined above and 
assume p\ = .2 and pi = .8. A sequence from the mixed source 

L = .2 L1 + .8 Lo 

would be obtained by choosing first Li or Li with probabilities .2 and .8 
and after this choice generating a sequence from whichever was chosen. 

Except when the contrary is stated we shall assume a source to be ergodic. 
This assumption enables one to identify averages along a sequence with 
averages over the ensemble of possible sequences (the probability of a dis- 
crepancy being zero). For example the relative frequency of the letter A 
in a particular infinite sequence will be, with probability one, equal to its 
relative frequency in the ensemble of sequences. 

If Pi is the probability of state i and pi{j) the transition probability to 
state j, then for the process to be stationary it is clear that the Pi must 
satisfy equilibrium conditions: 

Pj = HPipiij)- i 

In the ergodic case it can be shown that with any starting conditions the 
probabilities Pj{N) of being in state j after N symbols, approach the equi- 
librium values as A —> oo . 

6. Choice, Uncertainty and Entropy 

We have represented a discrete information source as a Markoff process. 
Can we define a quantity which will measure, in some sense, how much in- 
formation is "produced" by such a process, or better, at what rate informa- 
tion is produced? 

Suppose we have a set of possible events whose probabilities of occurrence 
are Pi, pi ■ , pn ■ These probabilities are known but that is all we know 
concerning which event will occur. Can we find a measure of how much 
"choice" is involved in the selection of the event or of how uncertain we are 
of the outcome? 

If there is such a measure, say H{pi, pi, • • ■ ,/>„), it is reasonable to re- 
quire of it the following properties: 

1. H should be continuous in the pi. 

2. If all the pi are equal, /», = -, then H should be a monotonic increasing 
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function of n. With equally likely events there is more choice, or un- 
certainty, when there are more possible events. 

3. If a choice be broken down into two successive choices, the original 
H should be the weighted sum of the individual values of H. The 
meaning of this is illustrated, in Fig. 6. At the left we have three 
possibilities p\ = \, pi = \, p% = On the right we first choose be- 
tween two possibilities each with probability and if the second occurs 
make another choice with probabilities f, The final results have 
the same probabilities as before. We require, in this special case, 
that 

H(h, I i) = //(i h) + §) 

The coefficient ] is because this second choice only occurs half the time. 

^•1/2 
1/2/^ 

4/2 2/3^.1/3 

\s!/3 
^1/6 

Fig. 6—Decomposition of ii choice from three possibilities. 

In Appendix II, the following result is established: 
Theorem 2: The only H satisfying the three above assumptions is of the 
form: 

II = - K it, Pi log Pi 
i—i 

where K is a positive constant. 
This theorem, and the assumptions required for its proof, are in no way 

necessary for the present theory. It is given chiefly to lend a certain plausi- 
bility to some of our later definitions. The real justification of these defi- 
nitions, however, will reside in their implications. 

Quantities of the form H = —Z />, log />, (the constant K merely amounts 
to a choice of a unit of measure) play a central role in information theory as 
measures of information, choice and uncertainty. The form of H will be 
recognized as that of entropy as defined in certain formulations of statistical 
mechanics8 where pi is the probability of a system being in cell i of its phase 
space. II is then, for example, the H in Boltzmann's famous H theorem. 
We shall call H = — Z pi log pi the entropy of the set of probabilities 

''See, for example, R. C. Tolman, "Principles of Statistical Mechanics," Oxford, 
Clarendon, 1938. 

1/6" 
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pi, • ■ • , pn • If x is a chance variable we will write H(x) for its entropy; 
thus x is not an argument of a function but a label for a number, to differen- 
tiate it from H(y) say, the entropy of the chance variable y. 

The entropy in the case of two possibilities with probabilities p and q = 
I — p, namely 

11 = - (/»log -f g log q) 

is plotted in Fig. 7 as a function of p. 
The quantity H has a number of interesting properties which further sub- 

stantiate it as a reasonable measure of choice or information. 

i.o 

.9 

.a 

.7 

H .6 
BITS 

.5 

.4 

.3 

.2 

,1 

Fig. 7—Entropy in the case of two possibilities with probabilities p and (1 — p). 

1. 77 = 0 if and only if all the p, but one are zero, this one having the 
value unity. Thus only when we are certain of the outcome does H vanish. 
Otherwise H is positive. 

2. For a given n, i? is a maximum and equal to log n when all the p, are 

equal i.e., - ). This is also intuitively the most uncertain situation. 
Hj 

3. Suppose there are two events, .-v and y, in question with m possibilities 
for the first and n for the second. Let p{i, j) be the probability of the joint 
occurrence of i for the first and j for the second. The entropy of the joint 
event is 

11 (x, y) = - S P(h j) log P(', j) 
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while 

Hix) = -Yj P(i, j) log Y Pd, j) 
i.J j 

u(.y) = - m pa, j) log y pa, j). 
»•; • 

It is easily shown that 

H(x, y) < H(x) + H{y) 

with equality only if the events are independent (i.e., p{i, j) = p{i) p(j)). 
The uncertainty of a joint event is less than or equal to the sum of the 
individual uncertainties. 

4. Any change toward equalization of the probabilities p\ , pi, • • • , pn 

increases II. Thus if pi < p* and we increase pi, decreasing pz an equal 
amount so that pi and p* are more nearly equal, then U increases. More 
generally, if we perform any "averaging" operation on the pi of the form 

Pi = £ Oijpj 
i 

where Y an = Yj an = 1, and all 0,7 > 0, then II increases (except in the 
» i 

special case where this transformation amounts to no more than a permuta- 
tion of the pj with H of course remaining the same). 

5. Suppose there are two chance events x and y as in 3, not necessarily 
independent. For any particular value i that x can assume there is a con- 
ditional probability />,(/) that y has the value j. This is given by 

. / .x pa,j) 
P'(3) Zpaj)' 

i 

We define the condilional entropy of y, Uz{y) as the average of the entropy 
of y for each value of .v, weighted according to the probability of getting 
that particular x. That is 

Ilx(y) = -Y pa,./) log pi(j). 

This quantity measures how uncertain we are of y on the average when we 
know x. Substituting the value of pi(j) we obtain 

ihiy) = -Y pa, j) log pa, j) + Y pa, j) log y pa, j) 
>J ij j 

= H(x, y) - Hix) 

or 

H(x, y) = II(x) + II x(y) 
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The uncertainty (or entropy) of the joint event x, y is the uncertainty of x 
plus the uncertainty of y when x is known. 

6. From 3 and 5 we have 

H(x) + H{y) > H(x, y) = H(x) + Hs(y) 

Hence 

H(y) > II x{y) 

The uncertainty of y is never increased by knowledge of .r. It will be de- 
creased unless .r and y are independent events, in which case it is not changed. 

7. The Entropy of an Information Source 

Consider a discrete source of the finite slate type considered above. 
For each possible state i there will be a set of probabilities pi(j) of pro- 
ducing the various possible symbols j. Thus there is an entropy II, for 
each state. The entropy of the source will be defined as the average of 
these Hi weighted in accordance with the probability of occurrence of the 
states in question: 

• = E PiHi 

= - E Pi pAj) log Mi) 
i.i 

This is the entropy of the source per symbol of text. If the Markoff proc- 
ess is proceeding at a definite time rale there is also an entropy per second 

II' = Z fiHi 
i 

where fi is the average frequency (occurrences per second) of state i. Clearly 

H' = mH 

where m is the average number of symbols produced per second. H or H' 
measures the amount of information generated by the source per symbol 
or per second. If the logarithmic base is 2, they will represent bits per 
symbol or per second. 

If successive symbols are independent then H is simply -2 /». log pi 
where pi is the probability of symbol i. Suppose in this case we consider a 
long message of N symbols. It will contain with high probability about 
pxN occurrences of the first symbol, piN occurrences of the second, etc. 
Hence the probability of this particular message will be roughly 

P = pvN ir-N ■' ■ pznS 

or 
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log p = NYL Pi log pi 
i 

log p = —Nil 

U = log 

N 

II is thus approximately the logarithm of the reciprocal probability of a 
typical long sequence divided by the number of symbols in the sequence. 
The same result holds for any source. Staled more precisely we have (see 
Appendix III): 
Theorem 3: Given any e > 0 and 6 > 0, we can find an N0 such that the se- 
quences of any length N > N0 fall into two classes: 
1. A set whose total probability is less than e. 
2. The remainder, all of whose members have probabilities satisfying the 
inequality 

Jog /> ' „ 
nr H < 5 

log p~l 

In other words we are almost certain to have ^ - very close to H when N 

is large. 
A closely related result deals with the number of sequences of various 

probabilities. Consider again the sequences of length N and let them be 
arranged in order of decreasing probability. We define n{q) to be the 
number we must take from this set starting with the most probable one in 
order to accumulate a total probability </ for those taken. 
Theorem 4: 

Lim l2L^) = H 
.V—=0 A 

when q does not equal 0 or 1. 
We may interpret log ii{q) as the number of bits required to specify the 

sequence when we consider only the most probable sequences with a total 

probability q. Then ^ y ^ Is t'16 number of bits per symbol for the 

specification. The theorem says that for large N this will be independent of 
q and equal to II. The rate of growth of the logarithm of the number of 
reasonably probable sequences is given by II, regardless of our interpreta- 
tion of "reasonably probable." Due to these results, which are proved in 
appendix 111, it is possible for most purposes to treat the long sequences as 
though there were just 2" N of them, each with a probability 2 "N. 
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The next two theorems show that U and H' can be determined by limit- 
ing operations directly from the statistics of the message sequences, without 
reference to the states and transition probabilities between states. 
Theorem 5: Let p{Bi) be the probability of a sequence /i,- of symbols from 
the source. Let 

(yN = ? P^Bi) log P(Bi) 

where the sum is over all sequences Bi containing N symbols. Then G.v 
is a monotonic decreasing function of N and 

Lim Gn = II. 
AT—»oo 

Theorem 6: Let p{Bi, Sj) be the probability of sequence Bi followed by 
symbol Sj and pBi{Si) = p{Bi, Sj)/p{Bx) be the conditional probability of 
Sj after B ,•. Let 

FN = -^2 p{Bi, Sj) log pBiiSj) 
i.i 

where the sum is over all blocks Bi oi N — 1 symbols and over all symbols 
Sj. Then Fn is a monotonic decreasing function of N, 

Fn = NGN -{N - \) Gm-X , 

1 " 
Gat = -^ Z l's , 

FN < GN , 

and Lim FN = H. 
N—co 

These results are derived in appendix III. They show that a series of 
approximations to 11 can be obtained by considering only the statistical 
structure of the sequences extending over 1, 2, • • • N symbols. Fn is the 
better approximation. In fact Fn is the entropy of the Nl' order approxi- 
mation to the source of the type discussed above. If there are no statistical 
influences extending over more than N symbols, that is if the conditional 
probability of the next symbol knowing the preceding (N — 1) is not 
changed by a knowledge of any before that, then Fn = H. Fn of course is 
the conditional entropy of the next symbol when the (iV — 1) preceding 
ones are known, while Gn is the entropy per symbol of blocks of N symbols. 

The ratio of the entropy of a source to the maximum value it could have 
while still restricted to the same symbols will be called its relative entropy. 
This is the maximum compression possible when we encode into the same 
alphabet. One minus the relative entropy is the redundancy. The redun- 
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dancy of ordinary English, not considering statistical structure over greater 
distances than about eight letters is roughly 50%. This means that when 
we write English half of what we write is determined by the structure of the 
language and half is chosen freely. The figure 50% was found by several 
independent methods which all gave results in this neighborhood. One is 
by calculation of the entropy of the approximations to English. A second 
method is to delete a certain fraction of the letters from a sample of English 
text and then let someone attempt to restore them. If they can be re- 
stored when 50% are deleted the redundancy must be greater than 50%. 
A third method depends on certain known results in cryptography. 

Two extremes of redundancy in English prose are represented by Basic 
English and by James Joyces' book "Finigans Wake." The Basic English 
vocabulary is limited to 850 words and the redundancy is very high. This 
is reflected in the expansion that occurs when a passage is translated into 
Basic English. Joyce on the other hand enlarges the vocabulary and is 
alleged to achieve a compression of semantic content. 

The redundancy of a language is related to the existence of crossword 
puzzles. If the redundancy is zero any sequence of letters is a reasonable 
text in the language and any two dimensional array of letters forms a cross- 
word puzzle. If the redundancy is too high the language imposes too 
many constraints for large crossword puzzles to be possible. A more de- 
tailed analysis shows that if we assume the constraints imposed by the 
language are of a rather chaotic and random nature, large crossword puzzles 
are just possible when the redundancy is 50%. If the redundancy is 33%, 
three dimensional crossword puzzles should be possible, etc. 

8. Representation of the Encoding and Decoding Operations 

We have yet to represent mathematically the operations performed by 
the transmitter and receiver in encoding and decoding the information. 
Either of these will be called a discrete transducer. The input to the 
transducer is a sequence of input symbols and its output a sequence of out- 
put symbols. The transducer may have an internal memory so that its 
output depends not only on the present input symbol but also on the past 
history. We assume that the internal memory is finite, i.e. there exists 
a finite number m of possible states of the transducer and that its output is 
a function of the present state and the present input symbol. The next 
state will be a second function of these two quantities. Thus a transducer 
can be described by two functions: 

yn = /(.v„ , an) 

«,.+! = g{Xn , an) 
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where: .r„ is the nth input symbol, 
an is the state of the transducer when the input symbol is introduced, 
yn is the output symbol (or sequence of output symbols) produced when 

Xn is introduced if the state is a,,. 
If the output symbols of one transducer can be identified with the input 

symbols of a second, they can be connected in tandem and the result is also 
a transducer. If there exists a second transducer which operates on the out- 
put of the first and recovers the original input, the first transducer will be 
called non-singular and the second will be called its inverse. 
Theorem 7: The output of a finite state transducer driven by a finite state 
statistical source is a finite state statistical source, with entropy (per unit 
time) less than or equal to that of the input. If the transducer is non- 
singular they are equal. 

Let a represent the state of the source, which produces a sequence of 
symbols Xi ; and let 13 be the state of the transducer, which produces, in its 
output, blocks of symbols yj . The combined system can be represented 
by the "product state space" of pairs {a, 13). Two points in the space, 
(ai, (3i) and (c^^), are connected by a line if ai can produce an .-r which 
changes /3i to fin, and this line is given the probability of that a- in this case. 
The line is labeled with the block of yj symbols produced by the transducer. 
The entropy of the output can be calculated as the weighted sum over the 
states. If we sum first on each resulting term is less than or equal to the 
corresponding term for a, hence the entropy is not increased. If the trans- 
ducer is non-singular let its output be connected to the inverse transducer. 
If H'i , Ho and Il'a are the output entropies of the source, the first and 
second transducers respectively, then > H'i > II3 = H[ and therefore 
H[ = 112. 

Suppose we have a system of constraints on possible sequences of the type 
which can be represented by a linear graph as in Fig. 2. If probabilities 
pYj were assigned to the various lines connecting state i to statethis would 
become a source. There is one particular assignment which maximizes the 
resulting entropy (see Appendix IV). 
Theorem 8: Let the system of constraints considered as a channel have a 
capacity C. If we assign 

where €[]■ is the duration of the s"' symbol leading from state i to state j 
and the Bi satisfy 

Bi = E HjCr"'!' 

then H is maximized and equal to C. 
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By proper assignment of the transition probabilities the entropy of sym- 
bols on a channel can be maximized at the channel capacity- 

9. The Fundamental Theorem for a Noiseless Channel 

We will now justify our interpretation of H as the rate of generating 
information by proving that II determines the channel capacity required 
with most efficient coding. 
Theorem 9: Let a source have entropy H (bits per symbol) and a channel 
have a capacity C (bits per second). Then it is possible to encode the output 

C of the source in such a way as to transmit at the average rate e symbols 

per second over the channel where e is arbitrarily small. It is not possible 
C to transmit at an average rate greater than — . 

The converse part of the theorem, that cannot be exceeded, may be 
H 

proved by noting that the entropy of the channel input per second is equal 
to that of the source, since the transmitter must be non-singular, and also 
this entropy cannot exceed the channel capacity. Hence H' < C and the 
number of symbols per second = H'/H < C/IJ. 

The first part of the theorem will be proved in two different ways. The 
first method is to consider the set of all sequences of N symbols produced by 
the source. For N large we can divide these into two groups, one containing 
less than 2*"' ^ N members and the second containing less than 2BA members 
(where R is the logarithm of the number of different symbols) and having a 
total probability less than /r. As N increases 77 and /x approach zero. The 
number of signals of duration T in the channel is greater than 2<c_9)r with 
d small when T is large. If we choose 

then there will be a sufficient number of sequences of channel symbols for 
the high probability group when N and T are sufficiently large (however 
small X) and also some additional ones. The high probability group is 
coded in an arbitrary one to one way into this set. The remaining sequences 
are represented by larger sequences, starring and ending with one of the 
sequences not used for the high probability group. This special sequence 
acts as a start and stop signal for a different code. In between a sufficient 
time is allowed to give enough different sequences for all the low probability 
messages. This will require 
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where (p is small. The mean rate of transmission in message symbols per 
second will then be greater than 

{i-s)l+sT' a -«(§ +x) +5 d+d 

c 
As N increases 5, X and approach zero and the rate approaches — . 

Another method of performing this coding and proving the theorem can 
be described as follows: Arrange the messages of length N in order of decreas- 
ing probability and suppose their probabilities are pi > pz > ps • • • > pn • 

s-l 
Let Ps = Pi \ that is Fs is the cumulative probability up to, but not 

i 
mclading, p,, . We first encode into a binary system. The binary code for 
message 5 is obtained by expanding Ps as a binary number. The expansion 
is carried out to ms places, where ms is the integer satisfying: 

log2 < ws < 1 + loga 
Pa pa 

Thus the messages of high probability are represented by short codes and 
those of low probability by long codes. From these inequalities we have 

JL < < — 
2ms - V 2ma 

The code for Ps will differ from all succeeding ones in one or more of its 

m8 places, since all the remaining Pi are at least larger and their binary 

expansions therefore differ in the first ms places. Consequently all the codes 
are different and it is possible to recover the message from its code. If the 
channel sequences are not already sequences of binary digits, they can be 
ascribed binary numbers in an arbitrary fashion and the binary code thus 
translated into signals suitable for the channel. 

The average number H' of binary digits used per symbol of original mes- 
sage is easily estimated. We have 

H' =Lsm.p. 

But, 

N 

and therefore, 

i S (log, ~ Sm.p. < ^ S (l + log2 P) P. 
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— Ip, log />,<#'< 4 - -p* log p, 
1\ 

As N increases — 2/>s log ps approaches H, the entropy of the source and W 
approaches H. 

We see from this that the inefficiency in coding, when only a finite delay of 

N symbols is used, need not be greater than ^ plus the difference between 

the true entropy U and the entropy GN calculated for sequences of length N. 
The per cent excess lime needed over the ideal is therefore less than 

^ - 1. 
H UN 

This method of encoding is substantially the same as one found inde- 
pendently by R. M. Fano.9 His method is to arrange the messages of length 
N in order of decreasing probability. Divide this series into two groups of 
as nearly equal probability as possible. If the message is in the first group 
its first binary digit will be 0, otherwise 1. The groups are similarly divided 
into subsets of nearly equal probability and the particular subset determines 
the second binary digit. This process is continued until each subset contains 
only one message. It is easily seen that apart from minor differences (gen- 
erally in the last digit) this amounts to the same thing as the arithmetic 
process described above. 

10. Discussion 

In order to obtain the maximum power transfer from a generator to a load 
a transfonner must in general be introduced so that the generator as seen 
from the load has the load resistance. The situation here is roughly anal- 
ogous. The transducer which does the encoding should match the source 
to the channel in a statistical sense. The source as seen from the channel 
through the transducer should have the same statistical structure as the 
source which maximizes the entropy in the channel. The content of 
Theorem 9 is that, although an exact match is not in general possible, we can 
approximate it as closely as desired. The ratio of the actual rate of trans- 
mission to the capacity C may be called the efficiency of the coding system. 
This is of course equal to the ratio of the actual entropy of the channel 
symbols to the maximum possible entropy. 

In general, ideal or nearly ideal encoding requires a long delay in the 
transmitter and receiver. In the noiseless case which we have been 
considering, the main function of this delay is to allow reasonably good 

9 Technical Report No. 65. The Research Laboratory of Electronics, M. I. T. 
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matching of probabilities to corresponding lengths of sequences. With a 
good code the logarithm of the reciprocal probability of a long message 
must be proportional to the duration of the corresponding signal, in fact 

| log /T1 ! 
T | 

must be small for all but a small fraction of the long messages. 
If a source can produce only one particular message its entropy is zero, 

and no channel is required. For example, a computing machine set up to 
calculate the successive digits of ir produces a definite sequence with no 
chance element. No channel is required to "transmit" this to another 
point. One could construct a second machine to compute the same sequence 
at the point. However, this may be impractical. In such a case we can 
choose to ignore some or all of the statistical knowledge we have of the 
source. We might consider the digits of x to be a random sequence in that 
we construct a system capable of sending any sequence of digits. In a 
similar way we may choose to use some of our statistical knowledge of Eng- 
lish in constructing a code, but not all of it. In such a case we consider the 
source with the maximum entropy subject to the statistical conditions we 
wish to retain. The entropy of this source determines the channel capacity 
which is necessary and sufficient. In the x example the only information 
retained is that all the digits are chosen from the set 0, 1, . . 9. In the 
case of English one might wish to use the statistical saving possible due to 
letter frequencies, but nothing else. The maximum entropy source is then 
the first approximation to English and its entropy determines the required 
channel capacity. 

11. Examples 

As a simple example of some of these results consider a source which 
produces a sequence of letters chosen from among A, B, C, D with prob- 
abilities 5, |, successive symbols being chosen independently. We 
have 

// = - (I log | + i log £ + |- log i) 

= bits per symbol. 

Thus we can approximate a coding system to encode messages from this 
source into binary digits with an average of I binary digit per symbol. 
In this case we can actually achieve the limiting value by the following code 
(obtained by the method of the second proof of Theorem 9): 



MATHEMATICAL THEORY OF COMMONICATION 405 

A 0 
B 10 
C 110 
D 111 

The average number of binary digits used in encoding a sequence of N sym- 
bols will be 

N{\ X I + 1 X 2 + t X 3) = iiV 

It is easily seen that the binary digits 0, 1 have probabilities 5, \ so the H for 
the coded sequences is one bit per symbol. Since, on the average, we have I 
binary symbols per original letter, the entropies on a time basis are the 
same. The maximum possible entropy for the original set is log 4=2, 
occurring when A, B, C, D have probabilities fj, Hence the relative 
entropy is We can translate the binary sequences into the original set of 
symbols on a two-to-one basis by the following table: 

00 A' 
01 B' 
10 C 
11 D' 

This double process then encodes the original message into the same symbols 
but with an average compression ratio | . 

As a second example consider a source which produces a sequence of .4's 
and h's with probability p for A and q for B. li p < < q we have 

//= -log/(I - p)1-" 

= - P \og p {\ - pY'-*" 

- P log ^ 

In such a case one can construct a fairly good coding of the message on a 
0, 1 channel by sending a special sequence, say 0000, for the infrequent 
symbol A and then a sequence indicating the number of B's following it. 
This could be indicated by the binary representation with all numbers con- 
taining the special sequence deleted. All numbers up to 16 are represented 
as usual; 16 is represented by the next binary number after 16 which does 
not contain four zeros, namely 17 = 10001, etc. 

It can be shown that as /> —> 0 the coding approaches ideal provided the 
length of the special sequence is properly adjusted. 
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PART II: THE DISCRETE CHANNEL WITH NOISE 

11. Representation of a Noisy Discrete Channel 

We now consider the case where the signal is perturbed by noise during 
transmission or at one or the other of the terminals. This means that the 
received signal is not necessarily the same as that sent out by the trans- 
mitter. Two cases may be distinguished. If a particular transmitted signal 
always produces the same received signal, i.e. the received signal is a definite 
function of the transmitted signal, then the effect may be called distortion. 
If this function has an inverse—no two transmitted signals producing the 
same received signal—distortion may be corrected, at least in principle, by 
merely performing the inverse functional operation on the received signal. 

The case of interest here is that in which the signal does not always undergo 
the same change in transmission. In this case we may assume the received 
signal E to be a function of the transmitted signal S and a second variable, 
the noise N. 

E = f(S, N) 

The noise is considered to be a chance variable just as the message was 
above. In general it may be represented by a suitable stochastic process. 
The most general type of noisy discrete channel we shall consider is a general- 
ization of the finite state noise free channel described previously. We 
assume a finite number of states and a set of probabilities 

Pa.iiPJ)- 

This is the probability, if the channel is in state a and symbol i is trans- 
mitted, that symbol j will be received and the channel left in state /3. Thus 
a and 13 range over the possible states, i over the possible transmitted signals 
and j over the possible received signals. In the case where successive sym- 
bols are independently perturbed by the noise there is only one state, and 
the channel is described by the set of transition probabilities pi(j), the prob- 
ability of transmitted symbol i being received as j. 

If a noisy channel is fed by a source there are two statistical processes at 
work: the source and the noise. Thus there are a number of entropies that 
can be calculated. First there is the entropy H{x) of the source or of the 
input to the channel (these will be equal if the transmitter is non-singular). 
The entropy of the output of the channel, i.e. the received signal, will be 
denoted by H(y). In the noiseless case H(y) = H(x). The joint entropy of 
input and output will be H(xy). Finally there are two conditional entro- 
pies Hx(y) and Hy(x), the entropy of the output when the input is known 
and conversely. Among these quantities we have the relations 

H(x, y) = H{x) + Hx{y) = H{y) + Hy{x) 
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All of these entropies can be measured on a per-second or a per-symbol 
basis. 

12. Equivocation and Channel Capacity 

If the channel is noisy it is not in general possible to reconstruct the orig- 
inal message or the transmitted signal with certainty by any operation on the 
received signal E. There are, however, ways of transmitting the information 
which are optimal in combating noise. This is the problem which we now 
consider. 

Suppose there are two possible symbols 0 and 1, and we are transmitting 
at a rate of 1000 symbols per second with probabilities po = pi = h ■ Thus 
our source is producing information at the rate of 1000 bits per second. Dur- 
ing transmission the noise introduces errors so that, on the average, 1 in 100 
is received incorrectly (a 0 as 1, or 1 as 0). What is the rate of transmission 
of information? Certainly less than 1000 bits per second since about 1% 
of the received symbols are incorrect. Our first impulse might be to say the 
rate is 990 bits per second, merely subtracting the expected number of errors. 
This is not satisfactory since it fails to take into account the recipient's 
lack of knowledge of where the errors occur. We may carry it to an extreme 
case and suppose the noise so great that the received symbols are entirely 
independent of the transmitted symbols. The probability of receiving 1 is 
^ whatever was transmitted and similarly for 0. Then about half of the 
received syntbols are correct due to chance alone, and we would be giving 
the system credit for transmitting 500 bits per second while actually no 
information is being transmitted at all. Equally "good" transmission 
would be obtained by dispensing with the channel entirely and flipping a 
coin at the receiving point. 

Evidently the proper correction to apply to the amount of information 
transmitted is the amount of this information which is missing in the re- 
ceived signal, or alternatively the uncertainty when we have received a 
signal of what was actually sent. From our previous discussion of entropy 
as a measure of uncertainty it seems reasonable to use the conditional 
entropy of the message, knowing the received signal, as a ipeasure of this 
missing information. This is indeed the proper definition, as we shall see 
later. Following this idea the rate of actual transmission, R, would be ob- 
tained by subtracting from the rate of production (i.e., the entropy of the 
source) the average rate of conditional entropy. 

R = H{x) - Hy{x) 

The conditional entropy //V(.v) will, for convenience, be called the equi- 
vocation. It measures the average ambiguity of the received signal. 
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In the example considered above, if a 0 is received the a posteriori prob- 
ability that a 0 was transmitted is .99, and that a 1 was transmitted is 
.01. These figures are reversed if a 1 is received. Hence 

IIv{x) = - f.99 log .99 + 0.01 log 0.01] 

= .081 bits/symbol 

or 81 bits per second. We may say that the system is transmitting at a rate 
1000 — 81 = 919 bits per second. In the extreme case where a 0 is equally 
likely to be received as a 0 or 1 and similarly for 1, the a posteriori proba- 
bilities are |, | and 

Hy{x) = - [§ log ^ ^ log 

= 1 bit per symbol 

or 1000 bits per second. The rate of transmission is then 0 as it should 
be. 

The following theorem gives a direct intuitive interpretation of the 
equivocation and also serves to justify it as the unique appropriate measure. 
We consider a communication system and an observer (or auxiliary device) 
who can see both what is sent and what is recovered (with errors 
due to noise). This observer notes the errors in the recovered message and 
transmits data to the receiving point over a "correction channel" to enable 
the receiver to correct the errors. The situation is indicated schematically 
in Fig. 8. 
Theorem 10: If the correction channel has a capacity equal to Hy{x) it is 
possible to so encode the correction data as to send it over this channel 
and correct all but an arbitrarily small fraction e of the errors. This is not 
possible if the channel capacity is less than Hy{x). 

Roughly then, Hv{x) is the amount of additional information that must be 
supplied per second at the receiving point to correct the received message. 

To prove the first part, consider long sequences of received message M' 
and corresponding original message M. There will be logarithmically 
THy(x) of the M's which could reasonably have produced each M'. Thus 
we have TIIv{x) binary digits to send each T seconds. This can be done 
with e frequency of errors on a channel of capacity Hy{x). 

The second part can be proved by noting, first, that for any discrete chance 
variables x, y, z 

Uyix, z) > Uyix) 

The left-hand side can be expanded to give 

Hy{z) + IIy2{x) > Hyix) 

Hyz{x) > Hy{x) — Hy{z) > Hyix) — //(:) 
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If we identify x as the output of the source, y as the received signal and z 
as the signal sent over the correction channel, then the right-hand side is the 
equivocation less the rate of transmission over the correction channel. If 
the capacity of this channel is less than the equivocation the right-hand side 
will be greater than zero and Htz{x) > 0. But this is the uncertainty of 
what was sent, knowing both the received signal and the correction signal. 
If this is greater than zero the frequency of errors cannot be arbitrarily 
small. 
Example: 

Suppose the errors occur at random in a sequence of binary digits: proba- 
bility p that a digit is wrong and q = \ — p that it is right. These errors 
can be corrected if their position is known. Thus the correction channel 
need only send information as to these positions. This amounts to trans- 

CORRECTION DATA 

OBSERVER 

M M'' 

SOURCE TRANSMITTER RECEIVER 

Fig. 8—Schematic diagram of a correction system. 

CORRECTING 
DEVICE 

milling from a source which produces binary digits with probability p for 
1 (correct) and q for 0 (incorrect). This requires a channel of capacity 

- \p log p-\- q log </] 

which is the equivocation of the original system. 
The rate of transmission R can be written in two other forms due to the 

identities noted above. We have 

R = H{x) - Hy{x) 

= H (y) - Hx{y) 

= U{x) + H{y) - H(.v, y). 

The first defining expression has already been interpreted as the amount of 
information sent less the uncertainty of what was sent. The second meas- 
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ures the amount received less the part of this which is due to noise. The 
third is the sum of the two amounts less the joint entropy and therefore in a 
sense is the number of bits per second common to the two. Thus all three 
expressions have a certain intuitive significance. 

The capacity C of a noisy channel should be the maximum possible rate 
of transmission, i.e., the rate when the source is properly matched to the 
channel. We therefore define the channel capacity by 

C = Max {H{x) - Ily{x)) 

where the maximum is with respect to all possible information sources used 
as input to the channel. If the channel is noiseless, Hy{x) = 0. The defini- 
tion is then equivalent to that already given for a noiseless channel since the 
maximum entropy for the channel is its capacity. 

13. The Fundamental Theorem tor a Discrete Channel with 
Noise 

It may seem surprising that we should define a definite capacity C for 
a noisy channel since we can never send certain information in such a case. 
It is clear, however, that by sending the information in a redundant form the 
probability of errors can be reduced. For example, by repeating the 
message many times and by a statistical study of the different received 
versions of the message the probability of errors could be made very small. 
One would expect, however, that to make this probability of errors approach 
zero, the redundancy of the encoding must increase indefinitely, and the rate 
of transmission therefore approach zero. This is by no means true. If it 
were, there would not be a very well defined capacity, but only a capacity 
for a given frequency of errors, or a given equivocation; the capacity going 
down as the error requirements are made more stringent. Actually the 
capacity C defined above has a very definite significance. It is possible 
to send information at the rate C through the channel with as small a fre- 
quency of errors or equivocation as desired by proper encoding. This state- 
ment is not true for any rate greater than C. If an attempt is made to 
transmit at a higher rate than C, say C Ry, then there will necessarily 
be an equivocation equal to a greater than the excess R\ . Nature takes 
payment by requiring just that much uncertainty, so that we are not 
actually getting any more than C through correctly. 

The situation is indicated in Fig. 9. The rate of information into the 
channel is plotted horizontally and the equivocation vertically. Any point 
above the heavy line in the shaded region can be attained and those below 
cannot. The points on the line cannot in general be attained, but there will 
usually be two points on the line that can. 
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These results are the main justification for the definition of C and will 
now be proved. 
Theorem II. Let a discrete channel have the capacity C and a discrete 
source the entropy per second H. \[ H < C there exists a coding system 
such that the output of the source can be transmitted over the channel with 
an arbitrarily small frequency of errors (or an arbitrarily small equivocation). 
\i H > C it is possible to encode the source so that the equivocation is less 
than H — C + e where e is arbitrarily small. There is no method of encod- 
ing which gives an equivocation less than II — C. 

The method of proving the first part of this theorem is not by exhibiting 
a coding method having the desired properties, but by showing that such a 
code must exist in a certain group of codes. In fact we will average the 
frequency of errors over this group and show that this average can be made 
less than e. If the average of a set of numbers is less than e there must 
exist at least one in the set which is less than t. This will establish the 
desired result. 

ATTAINABLE 
REG ION 

H„(X) 

C H(X) 

Fig. 9—The equivocation possible for a given input entropy to a channel. 

The capacity C of a noisy channel has been defined as 

C = Max (II(x) - Ily(x)) 

where x is the input and y the output. The maximization is over all sources 
which might be used as input to the channel. 

Let Su be a source which achieves the maximum capacity C. If this 
maximum is not actually achieved by any source let So be a source which 
approximates to giving the maximum rate. Suppose So is used as input to 
the channel. We consider the possible transmitted and received sequences 
of a long duration T. The following will be true: 
1. The transmitted sequences fall into two classes, a high probability group 
with about 2ri"x) members and the remaining sequences of small total 
probability. 
2. Similarly the received sequences have a high probability set of about 
\TH 0/) members and a low probability set of remaining sequences. 

3. Each high probability output could be produced by about 2TH",xl inputs. 
The probability of all other cases has a small total probability. 
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All the c's and 5's implied by the words "small" and "about" in these 
statements approach zero as we allow T to increase and So to approach the 
maximizing source. 

The situation is summarized in Fig. 10 where the input sequences are 
points on the left and output sequences points on the right. The fan of 
cross lines represents the range of possible causes for a typical output. 

Now suppose we have another source producing information at rate R 
with R < C. In the period T this source will have 27" high probability 
outputs. We wish to associate these with a selection of the possible channe 

^hMT 
HIGH PROBABILITY 

MESSAGES 
Hy(x) 

REASONABLE CAUSES 
FOR EACH E 

2 H(y )T 
HIGH PROBABILITY 
RECEIVED SIGNAL! 

Hv(y)T 
REASONABLE EFFECTS 

FROM EACH M 

Fig. 10—Schematic representation of the relations between inputs and outputs in a 
channel. 

inputs in such a way as to get a small frequency of errors. We will set up 
this association in all possible ways (using, however, only the high proba- 
bility group of inputs as determined by the source So) and average the fre- 
quency of errors for this large class of possible coding systems. This is the 
same as calculating the frequency of errors for a random association of the 
messages and channel inputs of duration T. Suppose a particular output 
yi is observed. What is the probability of more than one message in the set 
of possible causes of yi? There are 2™ messages distributed at random in 
2r"(z) points. The probability of a particular point being a message is 
thus 

2T(.K-H(X)) 
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The probability that none of the points in the fan is a message (apart from 
the actual originating message) is 

y, _ _ ^r(R-//(x))j2r//1,(i) 

Now R < H{x) — Hy(x) so R — H(x) = —Hu(x) — -q with q positive- 
Consequently 

yj _ J j   2— 

approaches (as 7 —» cc) 

1 - 2~r\ 

Hence the probability of an error aj^proaches zero and the first part of the 
theorem is proved. 

The second part of the theorem is easily shown by noting that we could 
merely send C bits per second from the source, completely neglecting the 
remainder of the information generated. At the receiver the neglected part 
gives an equivocation Z/(.v) — C and the part transmitted need only add e. 
This limit can also be attained in many other ways, as will be shown when we 
consider the continuous case. 

The last statement of the theorem is a simple consequence of our definition 
of C. Suppose we can encode a source with R — C a in such a way as to 
obtain an equivocation Unix) = a — e with e positive. Then R = H(x) = 
C + a and 

H{x) - Hyix) = C + 6 

with e positive. This contradicts the definition of C as the maximum of 
//(.v) - Hu(x). 

Actually more has been proved than was stated in the theorem. If the 
average of a set of numbers is within e of their maximum, a fraction of at 
most \/Tcan be more than \/e below the maximum. Since e is arbitrarily 
small we can say that almost all the systems are arbitrarily close to the ideal. 

14. Discussion 

The demonstration of theorem 11, while not a pure existence proof, has 
some of the deficiencies of such proofs. An attempt to obtain a good 
approximation to ideal coding by following the method of the proof is gen- 
erally impractical. In fact, apart from some rather trivial cases and 
certain limiting situations, no explicit description of a series of approxima- 
tion to the ideal has been found. Probably this is no accident but is related 
to the difficulty of giving an explicit construction for a good approximation 
to a random sequence. 
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An approximation to the ideal would have the property that if the signal 
is altered in a reasonable way by the noise, the original can still be recovered. 
In other words the alteration will not in general bring it closer to another 
reasonable signal than the original. This is accomplished at the cost of a 
certain amount of redundancy in the coding. The redundancy must be 
introduced in the proper way to combat the particular noise structure 
involved. However, any redundancy in the source will usually help if it is 
utilized at the receiving point. In particular, if the source already has a 
certain redundancy and no attempt is made to eliminate it in matching to the 
channel, this redundancy will help combat noise. For example, in a noiseless 
telegraph channel one could save about 50% in time by proper encoding of 
the messages. This is not done and most of the redundnacy of English 
remains in the channel symbols. This has the advantage, however, of 
allowing considerable noise in the channel. A sizable fraction of the letters 
can be received incorrectly and still reconstructed by the context. In 
fact this is probably not a bad approximation to the ideal in many cases, 
since the statistical structure of English is rather involved and the reasonable 
English sequences are not too far (in the sense required for theorem) from a 
random selection. 

As in the noiseless case a delay is generally required to approach the ideal 
encoding. It now has the additional function of allowing a large sample of 
noise to affect the signal before any judgment is made at the receiving point 
as to the original message. Increasing the sample size always sharpens the 
possible statistical assertions. 

The content of theorem 11 and its proof can be formulated in a somewhat 
different way which exhibits the connection with the noiseless case more 
clearly. Consider the possible signals of duration T and suppose a subset 
of them is selected to be used. Let those in the subset all be used with equal 
probability, and suppose the receiver is constructed to select, as the original 
signal, the most probable cause from the subset, when a perturbed signal 
is received. We define N{T, q) to be the maximum number of signals we 
can choose for the subset such that the probability of an incorrect inter- 
pretation is less than or equal to q. 

Theorem 12: Lim = C, where C is the channel capacity, pro- 
T 1 

vided that q does not equal 0 or 1. 
In other words, no matter how we set our limits of reliability, we can 

distinguish reliably in time T enough messages to correspond to about 67' 
bits, when T is sufficiently large. Theorem 12 can be compared with the 
definition of the capacity of a noiseless channel given in section 1. 
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15. Example of a Discrete Channel and Its Capacity 

A simple example of a discrete channel is indicated in Fig. 11. There 
are three possible symbols. The first is never affected by noise. The second 
and third each have probability p of coming through undisturbed, and q 
of being changed into the other of the pair. We have (letting a = — \p log 

P 
Fig. II—Example of a discrete channel. 

/> + </ log </] and P and Q be the probabilities of using the first or second 
symbols) 

We wish to choose P and Q in such a way as to maximize H{x) — Hu(x), 
subject to the constraint P + 2Q = \. Hence we consider 

C = -P log P - 20 log Q - 2Qa + X(P + 20 

P 

H(x) = -PlogP- 20 log 0 

//,/(.v) = 2Qa 

aN = -i - log e + x = o 

— = - 2 - 2 log O - 2q: + 2X = 0. 
dQ s v 

Eliminating X 

log P = log 0 + a 

P = Qe" = ()/3 

The channel capacity is then 
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Note how this checks the obvious values in the cases ^ = 1 and p = ? • 
In the first, = 1 and C = log 3, which is correct since the channel is then 
noiseless with three possible symbols, li p = h P = 2 and C = log 2. 
Here the second and third symbols cannot be distinguished at all and act 
together like one symbol. The first symbol is used with probability P = 
5 and the second and third together with probability 5 . This may be 
distributed in any desired way and still achieve the maximum capacity. 

For intermediate values of p the channel capacity will lie between log 
2 and log 3. The distinction between the second and third symbols conveys 
some information but not as much as in the noiseless case. The first symbol 
is used somewhat more frequently than the other two because of its freedom 
from noise. 

16. The Channel Capacity in Certain Special Cases 

If the noise affects successive channel symbols independently it can be 
described by a set of transition probabilities pij. This is the probability, 
if symbol i is sent, that j will be received. The maximum channel rate is 
then given by the maximum of 

X Pi Pa log Z P'Pc - Z PiPu log Pa 
i.j i iS 

where we vary the P, subject to SP, = 1. This leads by the method of 
Lagrange to the equations, 

Z P*i log Y^Pipa = M 5 = 1, 2, • • • . 
i 

Multiplying by P„ and summing on s shows that n = —C. Let the inverse 
of psj (if it exists) be h,, so that Z KtPsj = 8,j. Then: 

8 

Z h'l psj log psj - log Z Pipit = -CZl'st.- 
s.i « 8 

Hence: 

.Z Pipit = exp [C z Ihi + Z h't psj log psj] 
i S s.j 

or, 

Pi = z hit exp [C Z h,t + z h,i psj log paj\- 
l s s.j 

This is the system of equations for determining the maximizing values of 
P,, with C to be determined so that S P, = 1. When this is done C will be 
the channel capacity, and the P, the proper probabilities for the channel 
symbols to achieve this capacity. 
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If each input symbol has the same set of probabilities on the lines emerging 
from it, and the same is true of each output symbol, the capacity can be 
easily calculated. Examples are shown in Fig. 12. In such a case Hx{y) 
is independent of the distribution of probabilities on the input symbols, and 
is given by — S /), log />, where the pi are the values of the transition proba- 
bilities from any input symbol. The channel capacity is 

Max \Il{y) - nx{y)\ 

= Max Uiy) + 2 pi log pi. 

The maximum of H{y) is clearly log m where m is the number of output 

1/2 

J/2 
1/2 

1/2, 

J/2 

1/3 

1/6 

1/6 

1/3 

l/6 
.1/3 

1/6 '/e. 

J/6 
1/3 

1/3 1/3, 

1/2 

1/3 

1/2 

1/6 

Fig. 12—Examples of discrete channels with the same transition prohaliilities for each 
input and for each output. 

symbols, since it is possible to make them all equally probable by making 
the input symbols equally probable. The channel capacity is therefore 

C = log m + 2 pi log pi. 

In Fig. 12a it would be 

C = log 4 — log 2 = log 2. 

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b 

C = log 4 - | log 3 - i log 6 

= log 4 - log 3 - i log 2 

= log J 2s, 

In Fig. 12c we have 

C = log 3 — £ log 2 — ^ log 3 - i log 6 

= l0g 2'3^ 6'' - 
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Suppose the symbols fall into several groups such that the noise never 
causes a symbol in one group to be mistaken for a symbol in another group. 
Let the capacity for the nth group be C„ when we use only the symbols 
in this group. Then it is easily shown that, for best use of the entire set, 
the total probability Pn of all symbols in the nth group should be 

p„ = ^. X2Cn 

Within a group the probability is distributed just as it would be if these 
were the only symbols being used. The channel capacity is 

C = log 22''". 

17. An Example of Efficient Coding 

The following example, although somewhat unrealistic, is a case in which 
exact matching to a noisy channel is possible. There are two channel 
symbols, 0 and 1, and the noise affects them in blocks of seven symbols. A 
block of seven is either transmitted without error, or exactly one symbol of 
the seven is incorrect. These eight possibilities are equally likely. We have 

C = Max [H(y) — Ilx{y)\ 

= Y |7 + | log g] 

= y bits/symbol. 

An efficient code, allowing complete correction of errors and transmitting at 
the rate C, is the following (found by a method due to R. Hamming): 

Let a block of seven symbols be ,\i, X», ... A't- Of these A3, A5, Ae and 
X7 are message symbols and chosen arbitrarily by the source. The other 
three are redundant and calculated as follows: 

Aii is chosen to make a — A.i + Ag + Ae + X7 even 

As " " " " d = As + As + A8 + A, " 

Xi11 " " " y = A, + A3 + Ab + A- " 

When a block of seven is received a,l5 and 7 are calculated and if even called 
zero, if odd called one. The binary number a 0 y then gives the subscript 
of the A; that is incorrect (if 0 there was no error). 

APPENDIX 1 

The Growth of the Number of Blocks of Symbols With A 
Finite State Condition 

Let Ni{L) be the number of blocks of symbols of length L ending in state 
i. Then we have 

Ni(L) " Z Ni(L - 6S:') 
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where b\j, b%,... b™, are the length of the symbols which may be chosen 
in state i and lead to state j. These are linear difference equations and the 
behavior as L —^ must be of the type 

Nj = Aj WL 

Substituting in the difference equation 

Aj WL = E 
i.S 

or 

Aj = Z.Tir-6;/' 
iS 

E (E n-'-u' - 5,7)d, = o. i a 

For this to be possible the determinant 

D{W) = | (lij | = |E n"-6' ;-' - 8ij | 
s 

must vanish and this determines If, which is, of course, the largest real root 
of Z) = 0. 

The quantity C is then given by 

, . log ^.4, \VL , Iir C = Lim —  = log If 
i,—x E 

and we also note that the same growth properties result if we require that all 
blocks start in the same (arbitrarily chosen) state. 

APPENDIX 2 

Derivation of H = — - log p, 

Let = .1 (//). From condition (3) we can decompose 

a choice from s'" equally likely possibilities into a series of m choices each 
from s equally likely possibilities and obtain 

.4 {sm) = m A (s) 

Similarly 

-!(/") = n .4(/) 

We can choose ;/ arbitrarily large and tind an m to satisfy 

5m < r < 5(m+1) 
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Thus, taking logarithms and dividing by n log s, 

m ^ log / ^ w 1 
n ~ log s ~ 11 n 

or log t 
log 5 

< € 

where e is arbitrarily small. 
Now from the monotonic property of A in) 

A{sm) < A{n < ^(sm+I) 

mA{s) < nA{t) < {in + 1) A{s) 

Hence, dividing by «^4(5), 

1 _ ^ 
A{s) 

m ^ A{l) ^ m 1 
n ~ ^4(5) — 11 n 

or < e 

Ajt) 
A{s) 

log t 
log 5 

< 2e A{l) = —K log / 

where K must be positive to satisfy (2). 
Now suppose we have a choice from n possibilities with commeasurable prob- 

abilities pi = — where the m are integers. We can break down a choice 

from S»i possibilities into a choice from n possibilities with probabilities 
pi. . . pn and then, if the ith was chosen, a choice from m with equal prob- 
abilities. Using condition 3 again, we equate the total choice from 2;/, 
as computed by two methods 

K log 2«t- = H{pi pn) A- A'2 Pi log Hi 

Hence 

// = [2 pi log 2 Hi — 2 pi log nil 

iu 
= -K 2 P. log = — K pi log pi • 

If the pi are incommeasurable, they may be approximated by rationals and 
the same expression must hold by our continuity assumption. Thus the 
expression holds in general. The choice of coefficient K is a matter of con- 
venience and amounts to the choice of a unit of measure. 

APPENDIX 3 

Theorems on Ergodic Sources 

If it is possible to go from any state with P > 0 to any other along a path 
of probability ^ > 0, the system is ergodic and the strong law of large num- 
bers can be applied. Thus the number of times a given path pa in the net- 
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work is traversed in a long sequence of length N is about proportional to the 
probability of being at i and then choosing this path, PipijN. If N is large 
enough the probability of percentage error ± 5 in this is less than e so that 
for all but a set of small probability the actual numbers lie within the limits 

(PiPiS ± 8)N 

Hence nearly all sequences have a probability p given by 

P = n/^y'Piy±i)iV 

log p 
and is limited by 

N J 

= -z(pipil±s)\ogpii 

or 
log/? 

N 
- 2 Pi pij log pij < V- 

This proves theorem 3. 
Theorem 4 follows immediately from this on calculating upper and lower 

bounds for ii(q) based on the possible range of values of p in Theorem 3. 
In the mixed (not ergodic) case if 

L = 2 pi Li 

and the entropies of the components are Hi > H* > . . . > IJn we have the 

Theorem: Lim ^ = fiq) is a decreasing step function, 
.V —•oo N 

8-1 
ip(q) = Hs in the interval a,- < q < ^ a,. 

i i 
To prove theorems'5 and 6 first note that F\ is monotonic decreasing be- 

cause increasing N adds a subscript to a conditional entropy. A simple 
substitution for />B, (Sj) in the definition of FN shows that 

Fn = N Cry - (iV - 1) G.v-i 

and summing this for all N gives Gy = 2 FN . Hence Gy > Fy and Gy 

monotonic decreasing. Also they must approach the same limit. By using 
theorem 3 we see that Lim Gy = II. 

JV-»oo 

APPENDIX 4 

Maximizing the Rate for a System of Constraints 

Suppose we have a set of constraints on sequences of symbols that is of 
the finite state type and can be represented therefore by a linear graph. 
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Let l\'i be the lengths of the various symbols that can occur in passing from 
state i to state j. What distribution of probabilities Pi for the different 
states and p*,]- for choosing symbol s in state i and going to state j maximizes 
the rate of generating information under these constraints? The constraints 
define a discrete channel and the maximum rate must be less than or equal 
to the capacity C of this channel, since if all blocks of large length were 
equally likely, this rate would result, and if possible this would be best. We 
will show that this rate can be achieved by proper choice of the Pi and pi) . 

The rate in question is 

-VPipil log p(ij = N 

ZPoPi'i ti'i m' 

Let fij = fi'i- Evidently for a maximum p\)- = k exp ([)-. The con- 

straints on maximization are hP, — 1, XI Pa — h Piipa ' ^u) = 0- 
i 

Hence we maximize 

U = ~Sp'pi' p" + X Z I'i + Zf.pii + ZnPiiPa - K) 
zPiPij'ij ' 

dT = MPijl + logP'j) + NPitq + x + M( + Pi = o. 
dpi, M"- 

Solving for pa 

Pa = AtBjD-'". 

Since 

E f.i = I, A7'=EBiD-'" 
i i 

BjD-Ia 
Pij ~ Z * 

s 

The correct value of D is the capacity C and the Bj are solutions of 

Bi = S BjC^' 

for then 

> = C~(i i 

xpi^cr''1 = P, 

or 
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P. _ P, 
"Bi ~ B, 

So that if X, satisfy 

27 .C^" = 7j 

P, = ^.7. 

Both of the sets of equations for B, and 7, can be satisfied since C is such that 

1 C^" - 5,7 1 = 0 

In this case the rate is 

sp.?„iogf cr'" 

- v 

2P,- pa log --J 

= C -* 

but 

SP. /'iAlog P, - log P,-) = S Pi log Pi - 2P, log Bi = 0 
i 

Hence the rate is C" and as this could never be exceeded this is the maximum, 
justifying the assumed solution. 

< To he con I in lied) 



An Aspect of the Dialing Behavior of Subscribers and Its Effect 
on the Trunk Plant 

By CHARLES CLOS 
Introduction 

TOURING the war it became necessary for the Bell System Companies 
to lower many sendee standards. Among these was the standard for 

the provision of trunks for handling subscriber-dialed calls. In the interest 
of economy the number of trunks for a given volume of traffic was lowered. 
It is evident that for any given case there is a lower limit to the number 
of trunks that should be provided for handling subscriber-dialed calls. 
Below this limit congestion of calls gets beyond control. The control of 
congestion is important. In the case of operator-handled calls it is possible 
to control congestion by tiling tickets and placing calls in an orderly fashion. 
In the case of subscriber-dialed calls the subscriber may with impunity 
make many, indeed very many, successive dialing attempts to complete a 
call that is blocked due to a shortage of trunks. If, in a particular office 
enough subscribers do this simultaneously, a sender shortage may develop 
with its resulting reaction on the whole office, 

From the foregoing it is evident that the standard of sendee for providing 
trunks in trunk groups handling subscriber-dialed calls is of importance. 
During the war years, the New York Telephone Company undertook a 
study to determine the limits below which it would be undesirable to degrade 
the service. This study was designed to test the reasonableness of the 
reduction in the inter-office trunk standard from the pre-war basis of pro- 
viding enough trunks to delay only one out of a hundred calls in the busy 
hour to a wartime basis of providing enough trunks to delay two calls in 
every hundred during the busy hour. The conclusion from this study was 
that it was safe to use wartime standards. 

The study reported herein is an analysis of the effect of repeated attempts 
when subscriber-dialed calls are blocked due to trunk shortages. The data 
upon which the results are based indicate that dial subscribers after en- 
countering a busy condition make new attempts sooner and much more 
often than has been generally believed. The results indicate that one can 
reconstruct what happens when trunk groups carrying subscriber-dialed 
calls encounter serious overloads and that trunk capacity tables for such 
situations can be developed. 

The study is based on extensive service observations taken at the New 
424 
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York City Service Observing Bureaus during the winter of 1943-44. These 
observations dealt with the behavior of subscribers who encounter a busy 
on a dialed call. This behavior is assumed to apply to the situation when 
subscribers encounter an all-lrunks-husy condition. 

Inadequacy of the Poisson and Erlang B Formulae To Express 
the Situation when Shortages Occur in Trunk Groups 

Handling Subscriber Dialed Calls 

In connection with the provision of trunks in the exchange plant, two sets 
of trunk-call-carrying-capacity tables are currently in use. One set of these 
tables is computed from the Poisson Formula and the other from the Erlang 
B Formula. The Poisson tables are used for trunk groups carrying non- 
alternate route traffic, whereas the Erlang B tables are used for trunk 
groups carrying traffic subject to alternate routing. 

The assumption underlying the Poisson Formula, when a shortage of 
trunks occurs, is that of a partial delay. A call which encounters all trunks 
busy waits but not longer than a holding time interval for a trunk to become 
available. 

The corresponding assumption underlying the Erlang B Formula is that of 
no delay. A call which encounters all trunks busy is cleared out. The call 
may be abandoned by the subscriber or advanced to an alternate route. 

With respect to non-alternate route trunk groups handling subscriber 
dialed calls neither of the above two assumptions is realized in practice. 
When all trunks are busy, the dial equipment is arranged to return an all- 
Irunks-busy signal to the subscriber rather than hold the call pending the 
outcome of a subsequent test for an idle trunk. The subscriber upon 
encountering an all-lrunks-busy signal does not necessarily abandon the call. 
In most cases he redials the call. 

The degree by which the assumptions are not realized depends upon the 
relative number of trunks that are provided for a given volume of traffic. 
For instance if, during an hour. 150 calls having an average holding time of 
100 seconds are submitted to ten trunks and an equivalent volume of traffic 
is submitted to live trunks, the following theoretical results follow from the 
Poisson and Erlang B Formulae:— 

Table I 
Theoretical Results from Poisson and Erlang B Formulae 

150 Calls of 100 Seconds Average 
Holding Time Submitted 

during an hour to 
Number of Calls that Are ' Number of Calls that Are 
Delayed on the Basis of Cleared Out on the Basis 

the Poisson Formula of the Erlang B Formula 

10 Irunks 
5 trunks 

1.6 1.0 
60.6 | 32.0 
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The values in Table I indicate that, when a liberal number of trunks, i.e., 
ten trunks, is provided, the numerical difference between the results of the 
two formulae is small and the results of either formula can be used as an 
approximation of the number of calls affected by an all-trunks-busy con- 
dition. There are undoubtedly repetitious attempts, but because the 
number is small their effect can be neglected. 

When, however, there is a serious shortage of trunks, as when only five 
trunks are provided, the numerical difference between the theoretical results 
of the two formulae is large. In addition, the repetitious attempts will be 
too numerous to ignore. Some of the repetitious attempts will encounter 
all trunks busy again and again. Other repetitious attempts will seize idle 
trunks thereby causing new calls to encounter all trunks busy. The effect is 
cumulative. Neither the Poisson nor the Erlang B Formula indicates to 
what extent the repetitious attempts take place nor their effect. A pre- 
liminary glimpse at the results of this study indicates that 150 calls of 100 
seconds average holding time when submitted during an hour to five trunks 
become inflated by 99 repetitious attempts and appear as 249 calls being 
submitted to the trunks. Of these 249 calls, 108 encounter all trunks busy. 
Of the 108 calls, 99 become the aforementioned repetitious attempts and 
nine are abandoned. It is evident that neither formula presents this 
picture. For studies considering the effect of overloads due to trunk short- 
ages, this is the type of information needed. A new approach is required to 
obtain such data. To do this, it is desirable to examine the habits of dial 
subscribers who have encountered busies. 

The Diai.ing Behavior or Subscribers upon Encountering a Busy 

In order to investigate the grade of service given to dial subscribers when 
trunk shortages occur it is desirable to know something about their behavior 
when they encounter all-trunks-busy signals. Specifically there are four 
items that need investigation; these are:— 

1. How soon after encountering an all-trunks-busy signal does the sub- 
scriber redial his call? 

2. What percentage of the subscribers make subsequent attempts? 
3. How do the time intervals between successive subsequent attempts 

compare with each other; that is, are they about the same or do they 
differ widely? 

4. What differences, if any, exist between classes of subscribers? 
The first three items are answered from the results of service observations. 
The fourth item is answered indirectly. 

The service observations consisted of 1,107 cases where line busies were 
observed (except for 35 cases of all-trunks-busy signals). Observations on 
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line busies were used instead of all-trimks-busy signals because it would have 
taken too long to obtain sufficient observations, because it is undesirable to 
artificially degrade the service in order to obtain sufficient observations and 
because it is assumed that the average subscriber does not recognize the 
difference between a busy and overflow signal. It is considered that the 
data, while collected for busy signals, accurately represent the situation 
with regard to overflow signals. 

Beginning on December 22, 1943 and ending on February 29, 1944, a 
special record of 1,107 subscriber-dialed calls, where line busies were ob- 
served, was taken at the three New York City service observation bureaus. 
Up to a point, regular sendee observation practices were followed and the 
regular service observing data concerning the calls were entered on the 
service-observing records. The data concerning the line busies were entered 
on a special form. This form is shown below. Instructions for the observers 
accompanied these forms; these instructions follow the form. 

Form S.O. 171 
Special Records—Busy Calls 

Calling No  Date  
Enter in space under attempt number, the cumulative seconds from the start of the 

original attempt to the start of the attempt indicated. In addition for the last attempt 
show disposition. 

Attempt Number 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

1 1 ' i 
Disposition of the call    

Data for at tempts <»ver 20 should be entered on the reverse side. 

Special service observing form used to collect data concerning the dialing behavior of 
subscribers upon encountering a busy. 

Instructions A pplying to the L se of Form S.O. UI 

These instructions apply to the use of Form S.O. 171 which has been de- 
veloped in connection with a study of the behavior of customers upon en- 
countering a busy signal. 

This study will not include observations originating on P.B.X. trunks or 
on coin lines. On all other calls encountering a busy signal or an overflow 
signal (he observer will hold the line in the observing position until one of 
the following conditions occurs: 

(1) Call is disposed of by reaching the desired number. Code OK 
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(2) 10 minutes have elapsed since the last attempt for the desired num- 
ber.—Code AB 

(3) Call is disposed of by being given to the operator.—Code PR 
(4) Call is disposed of by receiving a "Don't answer" on an attempt to 

reach the desired number—Code DA 
All attempts made during the period that an observation is ordinarily 

held will be entered on the service observing detail sheets in the regular way. 
In addition, these entries and entries showing any other attemps to reach the 
desired number together with the proper code listed above to show the final 
disposition of the call will be recorded on Form S.O. 171. 

In order to minimize the number of cases not completed at the end of an 
observer's trick, no cases will be recorded on the special record on which the 
original busy signal is received after \ hour prior to the finish of any trick. 

From the instructions it may be noted that observations originating on 
P.B.X. trunks or on coin lines were not included. The reason for this is, 
when a busy is observed on a call originating on a P.B.X. trunk the subse- 
quent attempt might be made on one of the other P.B.X. trunks, thus the 
subsequent attempt would be missed. Also, at a P.B.X. two extensions 
may place calls, within a few seconds of each other, to the same busy line. 
The service observations on any one trunk might therefore be a mixture of 
attempts involving two or more calls. When a busy is observed on a call 
made from a coin line, the calling party will in many instances vacate the 
coin box in favor of someone else, and the subsequent attempt may then 
be made from another coin line. For these reasons the observations were 
restricted to business and residential individual lines and to two-parly lines 
(12 observations were on two-party lines). 

It may also be noted that the observers were instructed to hold the line in 
the observing position until ten minutes have elapsed since the last attempt 
for the desired number. This was a departure from regular service observing 
practices when a line is held until 1 minute has elapsed. 

Table II is a tabulation of the data observed at the Manhattan Service 
Observing Bureau on Manhattan dial subscriber lines. The observations 
are arranged in the order of increasing magnitude of the time intervals 
between the start of the first attempt and the start of the second attempt. 
Of interest is observation number 197 where a subscriber made 25 attempts 
in about an hour. 

Data similar to that obsen-ed on Manhattan dial subscriber lines were 
likewise observed on Bronx-Westchester and on Brooklyn-Queens dial 
subscriber lines. 

Figure 1(a) shows graphically the data listed in Table II. This graph 
shows, by dots, the cumulative percentage of the 451 Manhattan observa- 
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TABLK 11 
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Table II {Cont'd) 

Obser- 
vation 

No. 

Attempt No. Total 
Seconds 

Disposition 
of the Call 

1 2 3 4 5 6 7 8 9 10 

52 0 40 20 574 634 O.K. 
53 0 40* 16 200 432 688 O.K. 
54 0 40 409 449 O.K. 
55 0 40 40 O.K. 
56 0 41 45 55 52 27 25 245 AB. 
57 0 41 45 84 170 O.K. 
58 0 42 122 . 68 232 AB. 
59 0 43 40 52 38 259 432 AB. 
60 0 44 44 O.K. 
61 0 46 46 O.K. 
62 0 47 32 47 34 40 69 269 O.K. 
63 0 47 47 O.K. 
64 0 47 179 251 477 O.K. 
65 0 48 64 112 AB. 
66 0 49 49 AB. 
67 0 49 51 57 62 71 60 350 O.K. 
68 0 49 96 191 336 O.K. 
69 0 50 50 O.K. 
70 0 50 50 O.K. 
71 0 50 85 151 286 O.K. 
72 0 50 50 AB. 
73 0 50 50 AB. 
74 0 51 51 O.K. 
75 0 51 51 AB. 
76 0 52 52 O.K. 
77 0 52 85 209 346 O.K. 
78 0 53 195 248 O.K. 
79 0 53 53 AB. 
80 0 53 53 O.K. 
81 0 55 43 98 AB. 
82 0 55 43 27 170* 295 AB. 
83 0 56 20 61 36 103 276 AB. 
84 0 56 117 57 230 O.K. 
85 0 56 56 O.K. 
86 0 56 84 140 O.K. 
87 0 57 74 81 212 O.K. 
88 0 58 58 O.K. 
89 0 58 139 84 163 62 127 633 O.K. 
90 0 60 60 O.K. 
91 0 60 139 199 O.K. 
92 0 60 60 O.K. 
93 0 60 60 AB. 
94 0 61 61 O.K. 
95 0 61 61 AB. 
96 0 63 63 AB. 
97 0 63 31 95 28 20 237 AB. 
98 0 64 126 470 85 167 1 912 O.K. 
99 0 64 61 67 84 67 | 343 O.K. 

100 0 64 45 63 63 161 396 O.K. 
101 0 65 482 547 O.K. 
102 0 66 173 172 411 O.K. 
103 0 66t 66 72 204 O.K. 
104 0 66 j 66 AB. 

*Overflow signal, 
t Don't answer. 
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Table II (Cont'd) 

Obser- 
vation 

No. 
Attempt No. Total 

Seconds 
Disposition 
of the Call 

1 2 3 4 5 6 7 8 9 10 

105 0 68 66 134 O.K. 
106 0 68 330 380 778 O.K. 
107 0 69 69 AB. 
108 0 70 70 O.K. 
109 0 71 71 AB. 
110 0 71 95 166 O.K. 
111 0 72 112 184 AB. 
112 0 72 72 O.K. 
113 0 74 74 O.K. 
114 0 74 184 93 351 AB. 
115 0 75 75 O.K. 
116 0 75 75 O.K. 
117 0 75 67 203 345 O.K. 
118 0 76 76 O.K. 
119 0 76 76 AB. 
120 0* 77 77 O.K. 
121 0 78 78 O.K. 
122 0 78 78 O.K. 
123 0 78 253 107 38 476 AB. 
124 0 79 53 132 O.K. 
125 0 80 80 O.K. 
126 0 80 50 130 O.K. 
127 0 80 80 AB. 
128 0 80 117 197 O.K. 
129 0 81 81 AB. 
130 0 81 81 O.K. 
131 0 83 83 O.K. 
132 0 84 84 O.K. 
133 0 85 85 O.K. 
134 0 85 33 294 115 527 O.K. 
135 0 88 88 AB. 
136 0 88 88 O.K. 
137 0* 89 89 O.K. 
138 0 90 50 120 260 AB. 
139 0 90 90 O.K. 
140 0 90 90 AB. 
141 0 90 51 39 46 226 AB. 
142 0 91 78 169 O.K. 
143 0 91 91 O.K. 
144 0 91* 48 139 O.K. 
145 0 91 116 207 O.K. 
146 0* 91 91 O.K. 
147 0* 92 92 O.K. 
148 0* 92 92 O.K. 
149 0 93 93 AB. 
150 0 93 34 228 117 472 O.K. 
151 0 94 94 75 91 354 AB. 
152 0 95 95 AB. 
153 0 95 95 O.K. 
154 0 97 86 175 358 O.K. 
155 0 97 143 240 O.K. 
156 0 100 100 O.K. 
157 0 100 100 O.K. 
158 0 100 100 AB. 
159 0 100 100 O.K. 
160 0 102 115 198 415 O.K. 

*Overflow signal. 
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Table II {Cont'd) 

Obser- 
vation 
No. 

Attempt No. Total 
Seconds 

Disposition of the Call 
1 2 3 4 5 6 7 8 9 10 

161 0 102 80 96 152 430 O.K. 
162 0 103 103 O.K. 
163 0 104 17 • 121 O.K. 
164 0 105 105 O.K. 
165 0 105 105 O.K. 
166 0 106 340 446 O.K. 
167 0 108 98 140 346 O.K. 
168 0 111 111 O.K. 
169 0 111 111 AB. 
170 0 111 94 125 330 O.K. 
171 0 113 113 O.K. 
172 0 114 114 O.K. 
173 0 116 116 O.K. 
174 0 116 116 O.K. 
175 0 117 117 O.K. 
176 0 120 120 O.K. 
177 0 122 122 O.K. 
178 0 124 131 209 464 O.K. 
179 0 124 124 O.K. 
180 0 125 354 479 O.K. 
181 0 130 130 O.K. 
182 0 130 130 O.K. 
183 0 130 125 255 O.K. 
184 0 130 56 101 287 O.K. 
185 0 131 309 440 O.K. 
186 0 134 134 O.K. 
187 0 137 147 134 146 564 O.K. 
188 0 139 125 264 AB. 
189 0 139 139 AB. 
190 0 139 139 O.K. 
191 0 140 172 60 372 O.K. 
192 0 140 400 540 A.B. 
193 0 141 141 O.K. 
194 0 143 143 O.K. 
195 0 143 157 300 O.K. 
196 0 144 144 O.K. 
197 0 144 187 194 308 115 310 104 165 45 

69 90 69 88 87 59 239 277 69 94 
90 159 193 71 237 3,463 AB. 

198 0 146 146 O.K. 
199 0 146 146 O.K. 
200 0 146 184 217 547 AB. 
201 0 148 148 O.K. 
202 0 149 149 O.K. 
203 0 149 28 38 42 46 303 O.K. „ 
204 0 149 121 84 354 A.B. 
205 0 150 150 A.B. 
206 0 150 26 142 119 437 A.B. 
207 0 151 272 423 O.K. 
208 0 152 90 95 89 79 505 O.K. 
209 0* 155 155 O.K. 
210 0 156 156 O.K. 
211 0 156 156 O.K. 
212 0 156 47 52 217 472 A.B. 
213 0 160 160 A.B. 
214 0 160 160 O.K. 

""Overflow signal. 
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Table II {Could) 

433 

1 2 3 4 5 6 7 8 9 10 
Seconds of the Call 

0 160 160 O.K. 
0 160 160 O.K. 
0 161 161 A.B. 
0 164 164 O.K. 
0 164 164 O.K. 
0 165 165 A.B. 
0 168 168 O.K. 
0 169 169 O.K. 
0 170 170 O.K. 
0* 170 170 O.K. 
0 171 171 O.K. 
0 175 175 O.K. 
0 179 179 O.K. 
0 180 180 O.K. 
0 181 181 O.K. 
0 181 360 541 A.B. 
0 182 182 O.K. 
0 183 183 O.K. 
0 183 312 33 528 P.R. 
0 185 185 O.K. 
0 186 251 437 A.B. 
0 192 238 430 A.B. 
0 195 477 672 O.K. 
0 198 198 A.B. 
0 202 202 O.K. 
0 205 80 285 O.K. 
0 208 208 O.K. 
0 209 209 O.K. 
0 209 209 O.K. 
0 210 210 O.K. 
0 214 50 33 29 34 79 439 O.K. 
0 215 520 735 O.K. 
0 215 215 A.B. 
0 217 217 O.K. 
0* 219 219 D.A. 
0 219 219 O.K. 
0 220 163 263 186 123 99 59 105 1.218 AB. 
0 220 162 382 O.K. 
0 222 222 O.K. 
0 226 226 O.K. 
0 228 228 O.K. 
0 230 230 AB. 
0 231 27 258 P.R. 
0 232 232 O.K. 
0 235 235 O.K. 
0* 235 235 O.K. 
0 238 238 O.K. 
0 242 242 O.K. 
0 245 245 O.K. 
0 246 246 O.K. 
0 252 252 AB. 
0 252 252 AB. 
0 258 258 O.K. 
0 260 333 593 O.K. 
0 267 193 460 AB. 
0 272 219 88* 579 AB. 
0 278 278 O.K. 

signal. 
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Table II {Confd) 

Attempt No. Total Disposition 
Seconds of the Call 

I 2 3 4 5 6 7 8 9 10 

0 281 281 O.K. 
0 287 287 O.K. 
0 288 288 O.K. 
0 289 256 545 O.K. 
0 290 290 O.K. 
0 296 296 O.K. 
0 306 306 O.K. 
0 319 319 O.K. 
0 320 320 O.K. 
0 320 320 AB. 
0* 322 322 O.K. 
0 331 331 O.K. 
0 332 332 DA. 
0 338 338 AB. 
0 339 339 AB. 
0 347 347 O.K. 
0 351 454 805 O.K. 
0 351 351 O.K. 
0 363 363 O.K. 
0 365 365 O.K. 
0 369 369 DA. 
0 376 376 O.K. 
0 378 378 O.K. 
0 382 382 O.K. 
0 395 395 O.K. 
0 398 398 O.K. 
0 398 398 AB. 
0 400 400 O.K. 
0 402 402 O.K. 
0 409 409 O.K. 
0 416 416 O.K. 
0 448 448 O.K. 
0 449 449 O.K. 
0 455 455 O.K. 
0 473 473 O.K. 
0 484 484 O.K. 
0 484 484 A.B. 
0 498 498 O.K. 
0 505 505 O.K. 
0 509 509 O.K. 
0 510 510 A.B. 
0 513 513 O.K. 
0 526 526 O.K. 
0 535 456 541 1,532 O.K. 
0 543 543 O.K. 
0 556 249 805 O.K. 
0 561 389 950 O.K. 
0 568 568 O.K. 
0 569 569 O.K. 
0 570 570 O.K. 
0 586 586 O.K. 
0 605 (over 600 seconds) 605 A.B. 
0 624 (over 600 seconds) 624 A.B. 
0 (At 30 seconds received on incoming call from the party A.B. 

desired) 
A.B. 0* (9 observations) 

0 (117 observations) A.B. 

*Overflo\v signal. 
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tions that equalled or exceeded particular time intervals between the starts 
of the first and second attempts. Figure 1(b) shows similar graphical data 
for 211 Bronx-Westchester observations and Fig. 1(c) shows similar graphi- 
cal data for -445 Brooklyn-Queens observations. Each of these three graphs 
is compared with a composite curve for 1107 observations. This composite 
curve is developed from the data on Fig. 2(a). 

Figure 2(a) shows, by dots, the cumulative percentage for 1107 observa- 
tions, which are comprised of the 451 Manhattan, 211 Bronx-Westchester 
and 445 Brooklyn-Queens observations, that equalled or exceeded particular 
time intervals between the starts of the first and second attempts. A smooth 
curve was drawn through these plotted data. This curve is also shown on 
other figures, for the purpose of visual comparison of the various plots of 
data with the overall results. 

Figure 2(b) shows a graph concerning 465 observations of the total 1107 
observations. These are the cases where a busy was observed on a second 
attempt. (Of the 1107 total observations, 817 resulted in a second attempt 
within ten minutes and 290 were classified as abandoned. Of the 817 
second attempts, 327 cases were able to complete their calls, 16 resulted in a 
don't answer, 9 were referred to an operator and 465 encountered a busy.) 
Figure 2(b) shows, by dots, the cumulative percentage of the 465 second 
attempts that equalled or exceeded particular time intervals between the 
starts of the second and third attempts. The graph of Fig. 2(b) does not 
differ significantly from the composite curve for 1107 observations. This 
feature indicates that, when observations concerning subscriber busies are 
made, it is not necessary to have the first observed attempts coincide with 
the first actual attempts. The observations can begin with any attempt. 

Figures 3 and 4 are graphs similar to that shown on Fig. 2(a), the dif- 
ference being in the graphical ordinates used in order to present additional 
pictorial representations of the data and to project the curve beyond the 
observed limits. 

The percentage of subscribers who dial their calls again after encountering 
busies is estimated from Figs. 3 and 4 to be 90%. The data on Fig. 3 are 
projected to a time interval of 1,500 seconds (25 minutes). Judging by eye, 
beyond this point, it appears that the curve is asymptotic to the 10% 
horizontal line. This means that 10% of the subscribers abandon their 
calls and 90% try again. The part of the curve on Fig. 4 that projects 
beyond the limit of the observed data crosses the 10% line at 6,400 seconds, 
an interval of If hours. This seems to be a very long time for a subscriber 
to wait before redialing his call. It is unlikely that many attempts are made 
beyond this period. 

Table III was prepared to determine the disposition of the calls on second 
attempts and to see if a correlation exists between certain time intervals, 
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namely, between the lirst and second attempts and between the second and 
third attempts. This table was developed by allocating the 817 observa- 
tions where a second attempt occurred into 5 ranges of time intervals be- 
tween the first and second attempts of about 163 observations each. For 
each range of time interval the number of calls that were respectively 
O.K., DA, PR and AB is listed. Where a third attempt occurred, the 
numbers of calls are tabulated by ranges of time intervals between the 
second and third attempts. The ranges of time intervals are the same as 

Table III 
Disposition of Second Attempts and Correlation of Time Intervals Between 

Data Concerning 817 Observations Having a Second Attempt 

Range of 
Time 

Intervals 
in Seconds 

Between 
the First 

and Second 
Attempts 

Total 
Number of 
Observed 

Second 
Attempts 

Disposition of the Second 
Attempt: Number of Second 

Attempts that 

Correlation of Time Intervals Between 
Attempts: Number of Second Attempts 
Each of Which Resulted in a Busy and 

which was Followed by a Third Attempt 
Within the Range of Seconds Listed in 

the Column Headings Below 

Were 
OR 

Were 
DA 

Were 
PR 

Were 
AB 0-45 46-78 79-130 131-226 227-600 

0- 45 
46- 78 
79-130 

131-226 
227-600 

164 
164 
164 4 
162 
163 

36 
44 
71 
83 
93 

7 
1 
2 
2 
4 

5 
2 
2 
0 
0 

26 
24 
21 
27 
28 

43* 
14 
6 
5 
6 

17 
26* 
14 
9 
0 

12 
28 
24* 

5 
4 

8 
13 
11 
15* 
5 

10 
12 
13 
16 
23* 

817 327 16 9 126 74 66 73 52 74 

* The asterisk marks the items that had the same range of lime intervals between the 
first and second attempts and between the second and third attempts. 

those used between the first and second attempts in order to see if a correla- 
tion exists. The significant facts concerning these data are:— 

1. The degree of success in obtaining an O.K. call was better for those subscribers who 
waited longer before making a subsequent attempt. Only 22% of the subscribers 
who waited from 0 to 45 seconds were successful as against 57% who waited from 
227 to 600 seconds. 

2. The number of calls referred to the operator or where don't answers occurred are not 
significant to the problem in hand. 

3. The incidence of abandoned calls appears to be uniform for the five ranges of time 
intervals. This means that the 90% figure estimated from Fig. 3 can be con- 
sidered to apply with equal effect to ail subscribers without regard to the previous 
time interval between dialing attempts. 

4. The correlation data indicate a tendency for subscribers to establish a tempo or pace 
which they follow when redialing their calls. If this tempo did not exist the items 
on Table III that are marked with asterisks would not be larger than the surrounding 
items. 

It was previously indicated that no observations were taken on P.B.X. 
and coin lines. An earlier attempt to collect data concerning the behavior 
of subscribers when encountering busies produced data that showed fewer 
subsequent attempts than was believed to be the case. The differences 
between the earlier data, which included a high proportion of observations on 
P.B.X. and coin lines, and the data developed herein are believed to be fully 
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accounted for and it is believed that the P.B.X. and coin lines have the same 
basic characteristics regarding dialing behavior upon encountering busies 
as have the subscribers who were observed. No significant differences 
between the results for residential and business offices were noted. From 
these indirect facts, it is concluded that no significant differences exist be- 
tween classes of subscribers. 

Effect ox the Trunk Plant 

As explained earlier, neither -the Poisson nor the Erlang B formula gives 
an accurate picture of the facts when trunk shortages occur on trunk groups 
handling subscriber-dialed calls. In both formulae it is assumed that only 
one attempt is made per call. In the case of the Poisson formula, the call is 
assumed to be held by the dial equipment until a trunk becomes available or 
until the subscriber hangs up, and in the case of the Erlang B formula, the 
call is assumed to clear out. The data developed from the service observa- 
tions, concerning the dialing behavior of subscribers when encountering 
busies, indicate that subscribers usually make many subsequent attempts 
when a busy is encountered. Also the dial equipment with which we are 
familiar clears out the calls by giving an aU-irunks-busy signal. In order to 
determine what a trunk capacity table might be like that takes into account 
the habits of subscribers and the limitations of the dial equipment a study 
based on simulated traffic was made. This study consisted of 150 CCS 
(hundred call seconds per hour) of traffic offered to a trunk group varying 
from 5 to 12 trunks. This study utilized the data developed from the 
service observations. 

A study based on simulated traffic is a method used to study the capacities 
of trunking arrangements where a formula is not available. This type of 
study is based on the idea that calls are placed at random, that holding times 
of the calls follow an exponential law, and that these characteristics can be 
simulated by random numbers drawn from an appropriate source. 

The study of 150 CCS of simulated traffic was based on 1,000 calls offered 
to a trunk group during a ten-hour period. The average holding time per 
call was 150 seconds, with the total holding time being 150,000 seconds or 
41.66667 hours. Sub-divisions of an hour were expressed in decimal terms, 
the smallest division being a hundred-thousandth part. Three sets of 
random numbers were used for the following purposes: 

1. To determine at what time in the ten-hour period a particular call is 
offered to the trunk group. 

2. To furnish the holding time of a particular call. 
3. To define for each call the pattern of resubmission of the call to the 

trunk group should an all-lnniks-busy be encountered by the call. 
In each instance the numbers were taken from the tail-end portions of 
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successive entries of 19 significant figures of ex (Tables of the Exponential 
Function—WPA—1939). The numbers drawn and their functions in the 
study are as follows: 

A set of 1,000 six-digit numbers was taken from the last six digits of 
entries of ex from x = 0.4000 to x = 0.4999. These 1,000 six-digit numbers 
were arranged in numerical order to give the placing time of 1,000 simulated 
calls. The first digit in every number was used to represent the hour and 
the last five digits the hundred-thousands part of the hour when a particular 
call was placed. The randomness of this particular draw was checked by 
determining the differences between successive placement times and then 
arranging the differences in numerical order. The results were plotted on 
a cumulative basis on Fig. 5, where a visual comparison can be made with 
theoretical results. 

A set of 1,000 seven-digit random numbers between 0,000,000 to 4,166,667 
inclusive were taken from the last seven digits of entries of ex from x = 0.5000 
to x = 0.7344. Numbers above 4,166,667 were disregarded. These seven- 
digit numbers when arranged in numerical order accounted for the total 
holding time of all the calls. The difference between successive numbers 
arranged in numerical order, furnished 1,000 individual holding times. 

A third set of 1,000 random numbers were taken from two sources in 
the ex tables. These 1,000 numbers contained a variable number of digits. 
These numbers were for use when calls encountered all trunks busies m order 
to determine which calls were to be resubmitted and to determine the time 
interval for resubmitting a call. Previously, it was estimated from Fig. 3, 
that 90% of the subscribers after encountering a busy redial their call. 
This estimate was used by assigning to the numerals 1 to 9 in the third set of 
random numbers the characteristic that a call may make a subsequent 
attempt if it encounters an all trunks busy and by assigning to the numeral 0 
the characteristic that the call drops out if it encounters an all trunks busy. 
About 10% of the 1,000 numbers show a numeral 0 in the first place and 
hence no further digits are needed because the call drops out. The remain- 
ing 90% of the numbers show numerals from I to 9 in the first place and 
hence may make a second attempt. If an all trunks busy is encountered on 
the second attempt, a numeral from 1 to 9 in the second place determines 
that a third attempt may be made while the numeral 0 determines that the 
call drops out. This process is repeated for each place of each number in 
the third set of 1,000 random numbers until the numeral 0 appears. The 
number of consecutive places showing only numerals from 1 to 9, indicates 
the total number of attempts that a particular call might make before it 
drops out. Thus for a particular number the numerals might be 4720. 
In this case, three subsequent attempts can be made. Another number 
might be 834650. In this case, five subsequent attempts can be made. 
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The effect of using numerals in this way is that 90% of the calls encountering 
all trunks busies appear as subsequent attempts. 

The numeral in the first place of each of the third set of random numbers 
was used to establish the time interval for resubmitting each call. The time 
intervals were developed from the data on Fig. 4 by dividing the vertical 
scale into 10% bands. The time interval corresponding to the midpoint of 
each band was used as applicable to the 10% of the calls that fell within that 
band. The midpoint values, the corresponding time intervals, and the 
random numerals used are as follows: 

Table No. IV 

Midpoint Values of the 
10% Bands of figure 4 

Corresponding Time 
Intervals in Seconds 

Equivalent Hundred- 
Thousandth Part 

of an Hour 
Assignment of Random 

Numerals 

a b c = 6 + .036 d 

95 
85 
75 
65 
55 
45 
35 
25 
15 
5 

25 
46 
67 
93 

132 
195 
320 
665 

2,250 
Infinite 

700 
1,300 
1,900 
2,600 
3,700 
5,400 
8,900 

18,500 
62,500 

Call drops out 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Based on the results indicated by Table III, that subscribers tend to make 
repetitious attempts at a uniform pace or tempo, the time interval de- 
termined by the numeral in the first place of a particular number of the 
third set of random numbers was repeated each time that a particular call 
was resubmitted. 

The results of the study of simulated traffic are as follows: 

Table V 

Trunks 
Provided 

Attempts 
(Calls Offered 

Plus All 
Subsequent 
Attempts) 

Overflows (Calls 
Encountering 
All Trunks 

Busies) 

Ratios of 
Overflows to 

Attempts 
Calls 

Handled 
Calls 

Abandoned 
Approx. 

CCS 
Handled 

a b c d = c -i- b e = b — c / = 1000 - e g - .ISOxe 

5 
6 
7 
8 
9 

10 
11 
12 

1,658 
1,287 
1,147 
1,071 
1,027 
1,011 
1,005 
1,000 

720 
319 
155 

75 
28 
12 

5 
0 

.4343 

.2479 

. 1351 

.0700 

.0273 

.0119 

.0050 

.0000 

938 
968 
992 
996 
999 
999 

1,000 
1,000 

62 
32 

8 
4 
1 
1 
0 
0 

141 
145 
149 
149 
150 
150 
150 
150 
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The ratios of overflows to attempts compared with theoretical results for 
the Poisson and Erlang B formulae for 153 CCS of offered traffic are as 
follows: 

Table VI 

Study of Simulated Theoretical Results 
Trunks Provided Traffic: Ratios of Over- 

flows to Attempts Erlang B; Ratio of Calls Poisson: Ratio of Calls 
Lost to Calls Offered Delayed to Calls Offered 

5 .4343 .2139 .4037 
6 .2479 .1293 .2414 
7 . 1351 .0715 .1288 
8 .0700 .0359 .0617 
9 .0273 .0163 .0268 

10 .0119 .0068 .0106 
11 .0050 .0026 .0038 
12 .0000 .0009 .0013 

The ratios of overflows to attempts are apparently very close to the 
Poisson results. No further conclusion should be drawn from this, at this 
time, without further study. 

Summary 

Data concerning the dialing behavior of subscribers who encounter busies 
have been obtained for New York City subscribers. These data indicate 
quantitatively: (1) how soon after obtaining a busy, a subscriber redials his 
call; (2) what percentage of subscribers make subsequent attempts; and 
(3) the pattern of time intervals between successive subsequent attempts. 
These data appear to have direct application in the development of trunk 
capacity tables for trunks handling subscriber-dialed traffic when trunk 
shortages occur. , 
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Spectra of Quantized Signals 

By W. R. BENNETT 

1. Discussion of Problem and Results Presented 

SIGNALS which are quantized both in time of occurrence and in magni- 
tude are in fact quite old in the communications art. Printing tele- 

graph is an outstanding example. Here, time is divided into equal divisions, 
and the number of magnitudes to be distinguished in any one interval is 
usually no more than two, corresponding to the closed or open positions of a 
sending switch. It is only in recent years, however, that the development 
of high speed electronic devices has progressed sufficiently to enable quan- 
tizing techniques to be applied to rapidly changing signals such as pro- 
duced by speech, music, or television. Quantizing of time, or time division, 
has found application as a means of multiplexing telephone channels.1 

The method consists of connecting the different channels to the line in se- 
quence by fast moving switches synchronized at the transmitting and re- 
ceiving ends. In this way a transmission medium capable of handling a 
much wider band of frequencies than required for one telephone channel can 
be used simultaneously by a group of channels without mutual interference. 
The plan is the same as that used in multiplex telegraphy. The difference 
is that ordinary rotating machinery suffices at the relatively low speeds cm- 
ployed by the latter, while the high speeds needed for time division multi- 
plex telephony can be realized only by practically inertialess electron 
streams. Also the widths of frequency band required for multiplex tele- 
phony are enormously greater than needed for the telegraph, and in fact 
have become technically feasible only with the development of wide-band 
radio and cable transmission systems. As far as any one channel is con- 
cerned the result is the same as in telegraphy, namely that signals are re- 
ceived at discrete or quantized times. In the limiting case when many 
channels are sent the speech voltage from one channel is practically con- 
stant during the brief switch closure and, in effect, we can send only one mag- 
nitude for each contact or quantum of time. The more familiar word 
"sampling" will be used here interchangeably with the rather formidable 
term "quantizing of time". 

Quantizing the magnitude of speech signals is a fairly recent innovation. 
Here we do not permit a selection from a continuous range of magnitudes 
but only certain discrete ones. This means that the original speech signal 

446 
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is to be replaced by a wave constructed of quantized values selected on a 
minimum error basis from the discrete set available. Clearly if we assign 
the quantum values with sufficiently close spacing we may make the quan- 
tized wave indistinguishable by the ear from the original. The purpose of 
quantization of magnitudes is to suppress the effects of interference in the 
transmission medium. By the use of precise receiving instruments we can 
restore the received quanta without any effect from superposed interference 
provided the interference does not exceed half the difference between ad- 
jacent steps. 

By combining quantization of magnitude and time, we make it possible 
to code the speech signals, since transmission now consists of sending one of 
a discrete set of magnitudes for each distinct time interval.2 ^ ^ 6 7 The 
maximum advantage over interference is obtained by expressing each dis- 
crete signal magnitude in binary notation in which the only symbols used 
are 0 and 1. The number which is written as 4 in decimal notation is then 
represented by 100, 8 by 1000, 16 by 10,000; etc. In general, if we have N 
digit positions in the binary system, we can construct 2s different numbers. 
If we need no more than 2s different discrete magnitudes for speech trans- 
mission, complete information can be sent by a sequence of N on-of-off 
pulses during each sampling interval. Actually a total of 2N\ different 
coding plans (sets of one-to-one correspondences between signal magnitudes 
and on-or-off sequences) is possible. The straightforward binary number 
system is taken as a representative example convenient for either theoretical 
discussion or practical instrumentation. We assume that absence of a pulse 
represents the symbol 0 and presence of a pulse represents the symbol 1. 
The receiver then need only distinguish between two conditions: no trans- 
mitted signal and full strength transmitted signal. By spacing the re- 
peaters at intervals such that interference does not reach half the full 
strength signal at the receiver, we can transmit the signal an indefinitely 
great distance without any increment in distortion over that -originally 
introduced by the quantizing itself. The latter can be made negligible by 
using a sufficient number of steps. 

To determine the number of quantized steps required to transmit specific 
signals, we require a knowledge of the relation between distortion and step 
size. This problem is the subject of the present paper.* We divide the 
problem into two parts: (1) quantizing the magnitude only and (2) combined 
quantizing of magnitude and time. The first part can be treated by a simple 
model: the "staircase transducer", which is a device having the instantane- 
ous ouput vs. input curve shown by Fig. 1. Signals impressed on the stair- 

* Other features of the quantizing and coding theory are discussed in forthcoming 
papers by Messrs. C. E. Shannon, J. R. Pierce, and B. M. Oliver. 
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case transducer are sorted into voltage slices (the treads of the staircase), 
and all signals within plus or minus half a step of the midvalue of a slice are 
replaced in the output by the midvalue. The corresponding output when 
the input is a smoothly varying function of time is illustrated in Fig. 2. 
The output remains constant while the input signal remains within the 
boundaries of a tread and changes abruptly by one full step when the signal 
crosses the boundary. It is not within the scope of the present paper to 
discuss the internal mechanism of a staircase transducer, which may have 
many different physical embodiments. We are concerned rather with the 
distortion produced by such a device when operating perfectly. 

E0x 
4 

o 0 

I- 

t- =3 0 - 2 

-3 

-4 
XE0 

F X-i- -J- o 1 — 2 2 ^ ** 
3 1 
2 2 " 2 2 

INPUT VOLTAGE, E, 
Fig. 1—Quantizing characteristic. 

5 I 2 * E 2 2 2 XEC 

The distortion or error consists of the difference between the input and 
output signals. The maximum instantaneous value of distortion is half of 
one step, and the total range of variation is from minus half a step to plus 
half a step. The error as a function of input signal voltage is plotted in 
Fig. 3 and a typical variation with time is indicated in Fig. 2. If there is a 
large number of small steps, the error signal resembles a series of straight 
lines with varying slopes, but nearly always extending over the vertical 
interval between minus and plus half a step. The exceptional cases occur 
when the signal goes through a maximum or minimum within a step. The 
limiting condition of closely spaced steps enables us to derive quite simply 
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an approximate value for the mean square error, which will later be shown to 
be sufficiently accurate in most cases of practical importance. This ap- 
proximation consists of calculating the mean square value of a straight line 
going from minus half a step to plus half a step with arbitrary slope. If 

I. SIGNAL INPUT 

2,STEPPED TRANSDUCER 
OUTPUT 

o r\j 
Z 

•A rERROR o z < LU 0 

Fig. 2—A quantized signal wave and the corresponding error wave. 
Eqx 

o -i 

A y] A A /\ A /\ A /\ A] y 
-'I/ 1/1/1/1/ 

i i i i i 

1/1/1/1/1/ 

i i i i i 
3 S 7 9 „ p 
2 2 2 2 XEC 1 i 2 2 " 2 

INPUT VOLTAGE, Ej 
Fig. 3—Characteristic of the errors in quantizing. 

En is the voltage corresponding to one step, and 5 is the slope, the equation 
of the typical line is: 

fit. CT 
(1.0) 

. En En 
' = "20 < ' < 2s 

where e is the error voltage and ( is the time referred to the midpoint as 
origin. Then the mean square error is 

e0/2i 
= - r En l. >0 V-Ko/S. 

or one twelfth the square of the step size. 

2 j. £o 
ed/= 12' 

(1.1) 
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Not all the distortion falls within the signal band. The distortion may 
be considered to result from a modulation process consisting of the appli- 
cation of the component frequencies of the original signal to the non-linear 
staircase characteristic. High order modulation products may have fre- 
quencies quite remote from those in the original signal and these can be ex- 
cluded by a filter passing only the signal band. It becomes of importance, 
therefore, to calculate the spectrum of the error wave. This we shall do in 
the next section for a generalized signal using the method of correlation, 
which is based on the fact that the power spectrum of a wave is the Fourier 
cosine transform of the correlation function. The result is then applied to a 
particular kind of signal, namely one having energy uniformly distributed 
throughout a definite frequency band and with the phases of the components 
randomly distributed. This is a particularly convenient type of signal 
because it in effect averages over a large number of possible discrete fre- 
quency components within the band. Single or double-frequency signal 
waves are awkward for analytical purposes because of the ragged nature of 
the spectra produced. The amplitudes of particular harmonics or cross- 
products of discrete frequency components are found to oscillate violently 
with magnitude of input. The use of a large number of input components 
smooths out the irregularities. 

The type of spectra obtained is shown in Fig. 4. Anticipating binary 
coding, we have shown results in terms of the number of binary digits used. 
The number of different magnitudes available are 16, 32, 64, 128, and 256 
for N = 4, 5, 6, 7 and 8 digits, respectively. Here a word of explanation is 
needed with respect to the placing of the scale of quantized voltages. A 
signal with a continuous distribution of components along the frequency 
scale is theoretically capable of assuming indefinitely great values of instan- 
taneous voltage at infrequent instants of time. An actual quantizer (stair- 
case transducer) has a finite overload value which must not be exceeded and 
hence can have only a finite number of steps. This difficulty is resolved 
here by the experimentally observed fact that thermal noise, which has the 
type of spectrum we have assumed for our signal, has never been observed 
to exceed appreciably a voltage four times its root-mean-square value. 
Hence we have placed the root-mean-square value of the input signal at 
one-fourth the overload input to the staircase. This fixes the relation be- 
tween step size and the total number of steps. In the actual calculation 
the number of steps is taken as infinite; the effect of the assumed additional 
steps beyond 2N is negligible because of the rarity of excursion into this range. 

The curves of Fig. 4 are drawn for the case in which the signal band starts 
at zero frequency. The original signal band width is represented by one 
unit on the horizontal scale. The relatively wide spread of the distortion 
spectrum is clearly shown. As the number of digits (or steps) is increased 
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the spectrum becomes flatter over a wider range, but with a smaller maxi- 
mum density. The area under each curve represents the total mean power 
in the corresponding error wave and is found to agree quite accurately 
with the approximate result of Eq. (1.1). The distortion power falling in 
the signal band is represented by the area included under the curve from 
zero to unit abscissa. 

Quantizing the magnitude only is not a technically attractive method of 
transmission because of the wide frequency band required to preserve the 
discrete values of the quanta. Thus in a 128-step system, a full load sinus- 
oidal signal passes through 64 different steps each quarter cycle and hence 
would require transmitting 256 successively different magnitudes during 
each period of the signal frequency. We therefore consider the second prob- 
lem—that of sampling the quantized magnitudes. 

The theory of periodic sampling of signals is a limiting case of com- 
mutator modulation theory as previously shown by the author.1 We may 
think of a periodically closed switch in series with the line and source as 
producing a multiplication of the signal by a switching function. The 
switching function has a finite value during the time of switch closure and is 
zero at other times. It may be expanded in a Fourier series containing a 
term of zero frequency, the repetition frequency of switch closure, and all 
harmonics of the latter. Multiplication of the signal by the Fourier series 
representing the constant component of the switching function gives a term 
proportional to the signal itself. Multiplication of the signal by the funda- 
mental component of the switching function gives upper and lower side- 
bands on the repetition frequency. Likewise multiplication by the har- 
monics gives sidebands on each harmonic. The signal is separable from the 
sidebands on a frequency basis if the signal band does not overlap the lower 
sideband on the repetition frequency. This leads to the condition for no 
distortion in time division: the highest signal frequency must be less than 
one-half the repetition frequency. 

To apply the above theory to instantaneous sampling we let the duration 
of switch closure in one period approach zero. We then approach the con- 
dition of one signal value in each period, so that the repetition frequency 
now becomes the sampling frequency. Clearly the sampling frequency 
must slightly exceed twice the highest signal frequency. We also note that 
as the contact time tends toward zero, the switching function approaches a 
periodically repeated impulse. The important terms of the Fourier series 
representing the switching function accordingly become a set of harmonics 
of equal amplitude with a constant component equal to half the amplitude 
of the typical harmonic. On multiplication of this series by the signal, we 
get a set of sidebands of equal amplitude including the one corresponding to 
the original signal itself, the sideband on zero frequency. 
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These results may be applied to the staircase transducer. The output 
may be resolved into the input signal plus the error. The sampling fre- 
quency is assumed to exceed its minimum required value of twice the top 
signal frequency. The component of the output that is equal to the origi- 
nal signal can therefore be separated at the receiver by a filter passing the 
original signal band. A similar statement cannot be made for the error 
component, for it has been found to extend over a vastly greater range than 
the original signal. To calculate the total distortion received in the signal 
band, we can multiply the distortion spectrum by the switching function and 
sum up all sideband contributions to the original signal band. Each har- 
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Fig. 5—Total distortion in signal hand from quantizing and sampling a random noise 

wave. Full load on the quantizer is 12 db above the r.m.s. value of input. 

monic of the switching function makes such contributions by beating with 
a band of the error spectrum above and below the frequency of the har- 
monic. These contributions add as power when the sampling frequency is 
independent of the individual frequencies contained in the signal. The 
total error power accepted by the signal band filter decreases as the sampling 
frequency is increased because each harmonic of the sampling frequency is 
thereby pushed upward into a less dense portion of the error spectrum. In 
the limit as the sampling frequency is made indefinitely large, we return to 
the non-sampled case, that of the staircase transducer only. 

Figure 5 shows the calculated curves of distortion in the signal band 
plotted as a function of ratio of sampling frequency to signal band width. 
The curves have downward slopes approaching asymptotes corresponding 
to the area from zero to unity under the corresponding curves of Fig. 4. 
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The initial points at the minimum sampling rate are determined on the other 
hand by the total area under the curves of Fig. 4, since the accepted side- 
bands on the harmonics in this case exactly fill out the entire error spectrum. 
These initial points are therefore given quite accurately by Eq. (1.1), which, 
as pointed out before, is a good approximation for the total areas. We can 
also give a direct demonstration of the applicability of Eq. (1.1) to the 
initial points of the curves of Fig. 5 by means of the following theorem: 

Theorem I. The mean square value of the response of an ideal low-pass 
filter to a train of unit impulses multiplied by instantaneous samples occur- 
ring at double the cutoff frequency is equal to the mean square value of the 
samples provided no harmonic of the sampling frequency is equal to twice 
the frequency of one component or equal to the sum or difference of two 
component frequencies of the sampled signal. Proof of the theorem is given 
in Appendix I. To apply it here we resolve the input into two components: 
the true signal and the error. The former is reproduced with fidelity in the 
output because it contains only frequencies below half the sampling rate. 
The error component in the output represents the response of the low-pass 
filter to the error samples. Except for very special types of signals, the error 
samples are uniformly distributed throughout the range from minus half a 
step to plus half a step. Calculation of the mean square value of such a 
distribution gives Eq. (1.1). 

We have tacitly assumed above that the sampled values applied to the 
filter in the output of the system are infinitesimally narrow pulses of height 
proportional to the samples. In actual systems it is found advantageous to 
hold the sampled values constant in the individual receiving channels until 
the next sample is received. This means that the input to the channel filter 
is a succession of rectangular pulses of heights proportional to the samples. 
The resulting magnitude of recovered signal is much larger than would be 
obtained if very short pulses of the same heights were used; stretching the 
pulses in time produces in effect an amplification. The amplification is 
obtained, however, at the expense of a variation of channel transmission 
with signal frequency. Infinitesimally short pulses have a flat frequency 
spectrum, while pulses of finite duration do not. The frequency character- 
istic introduced by lengthening the pulses is easily calculated by determining 
the steady state admittance function of a network which converts impulses 
to the actual pulses used. The general formula for this admittance when a 
unit impulse input is converted into an output pulse g{l) is easily shown to 
be: 

F(ito) = /„ f" g(0e~iul dt (1.2) 
J— oo 

where/, is the repetition frequency and oj is the angular signal frequency. 
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We shall call this Theorem II and give the proof in Appendix II. This 
relation is similar to that found in television and telephotography for the 
"aperture effect", or variation of transmission with frequency caused by the 
finite size of the scanning aperture. The pulse shape g{l) is analogous to a 
variation in aperture height g(x), where x is distance along the line of scan- 
ning. Hence it has become customary to use the term "aperture effect" in 
the theory of restoring signals from samples. The aperture effect asso- 
ciated with rectangular pulses lasting from one sample to the next amounts 
to an amplitude reduction of t/2 or 3.9 db at the top signal frequency (one 
half the sampling rate) compared to a signal of zero frequency. There is 
also a constant delay introduced equal to half the sampling period. The 
latter does not cause any distortion and the amplitude effect can be corrected 
by properly designed equalizing networks. 

The fact that many pulse spectra can be simply expressed in terms of a 
flat spectrum associated with sharp pulses and an aperture effect caused by 
the particular shape of pulse used does not appear to have been recognized 
in the recent literature, although applications were made by Nyquist in a 
fundamental paper8 of 1928. Premature introduction of a specific finite 
pulse not only complicates the work, but also restricts the generality of the 
results. 

Distortion caused by quantizing errors produces much the same sort of 
effects as an independent source of noise. The reason for this is that the 
spectrum of the distortion in the receiving filter output is practically inde- 
pendent of that of the signal over a wide range of signal magnitudes. Even 
when the signal is weak so that only a few quantizing steps are operated, 
there is usually enough residual noise on actual systems to determine the 
quantizing noise and mask the relation between it and the signal. Eq. 
(1.1) yields a simple rule enabling one to estimate the magnitude of the 
quantizing noise with respect to a full load sine wave test tone. Let the full 
load test tone have peak voltage £; its mean square value is then E1/!. 
The total rahge of the quantizer must be 2E because the test signal swings 
between —E and +£. The ratio 2E/Eo = r is a convenient one to use in 
specifying the quantizing; it is the ratio of the total voltage range to the 
range occupied by one step. The ratio of mean square signal to mean square 
quantizing noise voltage is 

£V2 _ fiE2 _ 3/2 
£o/12 " 4£2/r2 _ 2 

Actual systems fail to reproduce the full band fs/2 because of the finite 
frequency range needed for transition from pass-band to cutoff. If we in- 
troduce a factor k to represent the ratio of equivalent rectangular noise band 
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to/,/2, the actual received noise power is multiplied by k. Then the signal- 
to-noise ratio in db for a full load test tone is 

Z) = 10 login ^ db (1.4) 
Ik 

In practical applications the value of k is about 3/4 which gives the con- 
venient rule: 

D = 20 login r + 3 db (1.5) 

In other words, we add 3 db to the ratio expressed in db of peak-to-peak 
quantizing range to the range occupied by one step. For various numbers 
of binary digits the values of D are: 

Table I 

Number of Digits D 

3 21 
4 27 
5 33 
6 39 
7 45 
8 51 

From Table I we can make a quick estimate of the number of digits re- 
quired for a particular signal transmission system provided that we have 
some idea of the required signal-to-noise ratio for a full load test tone. The 
latter ratio may be expressed in terms of the full load test tone which the 
system is required to handle and the maximum permissible unweighted 
noise power at the same level point. Since quantizing noise is uniformly 
distributed throughout the signal band, its interfering effect on speech or 
other program material is probably similar to that of thermal noise with the 
same mean power. Requirements given in terms of noise meter readings 
must be corrected by the proper weighting factor before applying the table. 
If the signal transmitted is itself a multiplex signal with channels allotted 
on a frequency division basis, the noise power falling in each channel is the 
same fraction of the total noise power as the band width occupied by the 
signal is of the total band width of the system. 

We have thus far considered only the case in which the quantized steps are 
equal. In actual systems designed for transmission of speech it is found ad- 
vantageous to taper the steps in such a way that liner divisions are available 
for weak signals. For a given number of total steps this means that coarser 
quantization applies near the peaks of large signals, but the larger absolute 
errors are tolerable here because they are small relative to the bigger signal 
values. Tapered quantizing is equivalent to inserting complementary non- 
linear transducers in the signal branch before and after the quantizer. In 
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the usual case, the transducer ahead of the quantizer is of the "compressing" 
type in which the loss increases as the signal increases. If the full load sig- 
nal just covers all the linear quantizing steps, a weak signal gets a bigger 
share of the steps than it would if the transducer were linear. The trans- 
ducer after the quantizer must be of the "expanding" type which gives de- 
creased loss to the large signals to make the overall combination linear. 

On the basis of the theory so far discussed, we can say that the error spec- 
trum out of the linear quantizer is virtually the same whether or not the sig- 
nal input is compressed. The operation of the expander then magnifies the 
errors produced when the signal is large. When weak signals are applied, 
the mean square error is given by Eq. (1.1), as before, but when the signal 
is increased an increment in noise occurs. The mean square value of noise 
voltage under load may be computed from the probability density of the 
signal values and the output-vs-input characteristic of the expander, or its 
inverse, the compressor. A first order approximation, valid when the steps 
are not too far apart, replaces (1.1) by: 

where (}i and Q* are the minimum and maximum values of the input signal 
voltage Ei, pi {EQ is the probability density function of the input voltage, 
and l'"{Ei) is the slope of F{Ei), the compression characteristic. 

Some experimental results obtained with a laboratory model of a quan- 
tizer are given in Figs. 6-9. Figs. 6-7 show measurements on the third 
harmonic associated with 6-digit quantizing. As mentioned before, the 
amplitude of any one harmonic oscillates with load. The calculated curves 
shown were obtained by straightforward Fourier analysis. In the measure- 
ments it was convenient to spot only the successive nulls and peaks. 

In Fig. 6 the bias was set to correspond to the stair-case curve of Fig. 1, 
while in Fig. 7 the origin is moved to the point (jEo/2, Eo/2), i.e., to the mid- 
dle of a riser instead of a tread. The peaks of ratio of harmonic to funda- 
mental decrease steadily as the amplitude of the signal is increased to full 
load, which is just opposite to the usual behavior of a communication sys- 
tem. It is difficult to extrapolate experience with other systems to specify 
quality in terms of this type of harmonic distortion. 

Figure 8 shows measurements of the total distortion power falling in the 
signal band when the signal is itself a fiat band of thermal noise. The 
technique of making such measurements has been described in earlier ar- 
ticles.9 111 Measurements are shown for quantizing with both equal and 
tapered steps. The particular taper used is indicated by the expandor 
characteristic of Fig. 9. The compression curve is found by interchanging 
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horizontal and vertical scales. The measurements were made on a quan- 
tizer with 32, 64, and 128 steps, and a sampling rate of 8,000 cycles per sec- 
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The 

ond. The applied signal was confined to a range below 4,000 cycles per 
second. With equal steps the distortion power is practically independent 
of load as shown by the db-for-db straight lines. With tapered steps, the 
distortion is less for weak signals, and only slightly greater for large signals. 
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The vertical line designated "full load random noise input" represents the 
value of noise signal power at which peaks begin to exceed the quantizing 
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range. This occurs when the rms value of input is 9 db below the rms value 
of the sine wave which fully loads the quantizer. 
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Flatness of the distortion spectrum with frequency within the signal band 
is demonstrated by Fig. 10. Two kinds of input were used here—a flat 
band of thermal noise and a set of 16 sine waves with frequencies distributed 
throughout the band. Results in the two cases were practically the same. 
The theoretical levels of distortion power for the band widths of the measur- 
ing filters (95 cps) are shown by the horizontal lines. 

In the experimental results given here use has been made of laboratory 
studies by Messrs. A. E. Johanson, W. A. Klute, and L. A. Meacham. 
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Fig. 10—Spectral density of distortion in signal band from quantizing and sampling. 
The quantizing steps were equal and the quantizer was fully loaded by a random noise 
or 16-tone input signal with mean power = —2.5 dbm. 

2. Theoretical Analysis 

The correlation theorem discovered by N. Wiener11 may be stated as 
follows: Let i/q- represent the average value of the product + r), 
where I{t) is the value of a variable such as current or voltage at time t, 
and I{t + r) is the value at a time r seconds later. Mathematically; 

\pr = + r) = Lim ^ f /(/)/(* + r) dl (2.0) T —*oo i •'0 

From analogy with statistical theory, is called the correlation of /(/) 
with itself, or the autocorrelation function of the signal. Since we shall not 
deal here with the correlation of two signals, we shall shorten our terms and 
call simply the correlation of /(/). Let w/ df represent the mean power in 
the output of an ideal bandpass filter of width df centered at/. We assume 
that the ideal filter is designed to work between resistances of one ohm each 
and that the input signal /(/) is delivered to the filter from a source with 
internal resistance of one ohm. (The use of unit resistances does not re- 
strict the generality of the results, since equivalent transmission performance 
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of any linear electrical circuit is obtained by multiplying all impedances by 
a constant factor. All voltages are multiplied and all currents divided by 
the same factor. By assuming unit values of resistance we are able to use 

10"5 

e 

- 7^ 

/ 
/ 

/ 
/ 

/ 

- 
/ 

/ 

- 
/ 

7^ 

/ 

7^ 
0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 

CORRELATION FUNCTION OF SIGNAL = a 
Fig. 11—Correlation function of 7-digit quantizing errors. 

squared values of voltages and currents to represent power.) The theorem 
states that Wf and are related by the equation: 

W/ = 4 / 
Jo 

tpT cos lirfr dr (2.1) 

Proof may be found in the references cited. When the signal contains peri- 
odic components, the integral in (2.1) becomes divergent in the ordinary or 
Riemann sense, but this difficulty may be overcome by either applying the 
theory of divergent integrals or replacing Riemann by Stieltjes integration. 
We shall not require these modifications here because we shall base our analy- 
sis on signals with a continuous spectrum. We note that \po is the mean 
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square value of the signal itself. We also point out that the inversion for- 
mula for the Fourier integral enables us to express \pT in terms of w/ , thus: 

Jr" 
' Wf cos lirrf df (2.2) 
o 

It also may be shown that the ratio r/v^o cannot have values outside the 
interval from —1 to +1. 

The correlation theorem furnishes a powerful analytical tool for the 
solution of modulation problems because the calculation of the average 
is often a straightforward process, while direct calculation of w/ may be a 
very devious one. Once i/v has been obtained, Eq. (2.1) brings the highly 
developed theory of Fourier integrals to bear on the computation of Wf . 

We shall give the derivation of w/ for quantizing noise making use of the 
correlation function. In the analysis we shall apply a number of other 
needed theorems with appropriate references given for proof. 

Our first problem is that of calculating the spectrum of the output of the 
staircase transducer, Fig. 1, when the spectrum of the input signal is given. 
Let w/ represent the power spectrum of the input signal and ypT the auto- 
correlation function. The two quantities are related by (2.1) and it is 
sufficient to express our results in terms of either one. If the instantaneous 
value of the input signal is represented by Ei, and that of the output by 
£2, the staircase function may be defined mathematically by: 

„ 2 m — 1 „ ^ , 2 m + 1 77 
Ei = viEo,  ^— Eo < Ei < —-— Eo, ^ ^ 

vi = 0, ±1, ±2, • • • 

The error is the difference between Ei and £2 and may be written as 

e(0 = £,-&=£.- mEa , Eo<El< £. (2.4) 

The error characteristic is plotted in Fig. 3. 
One approach depends on a knowledge of the probability density function 

p{Vi, Vi) of the variables Vi = £1 at time t and Vi = Ei at time / + r. 
The definition of this function is that^Fi,!^) dV^Vi is the probability that 
Vi and F2 lie in a rectangle of dimensions dV 1 and dVi centered on the 
point Vi, Vi oi the FilVplane. The function piV^Vi) has been calculated 
for certain types of signals and in theory could be computed for any signal 
by standard methods. If it is assumed known, we may determine the 
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correlation function of the error. Let 

F{\\, W) = e(/M/ + r) = (T'i - mE0)(V2 - nEo), 

2m " 1 ^ ^ T/ / 2m + 1 p 2n - 1 F ^ y ^ 2n + 1 p (1 CN —  iio < l i < —2— Fo, —^  0 1 2 < —^— ■^0' ^-5) 

777, 77 = 0, ± 1, ±2, • • • 

Eq. (2.5) defines F{Vi, V*) as a definite constant value in each square of 
width Eq in the Fj Fa-plane. By elementary statistical theory, the correla- 
tion function of the error wave is now 

/oO i% QO 

, Lf^ ' v^Vi' t'2) dVi dV2 (2-6) 

The correlation may therefore be calculated since F and p are known 
functions. The power spectrum V.j of the error wave is then equal to the 
right-hand member of (2.1) with £r substituted for ^r. 

We are interested in the case in which the signal voltage has a smoothly 
varying spectrum over a specified band. This is a property of a random 
noise function which has a normal distribution of instantaneous voltages. 
The two-dimensional probability density function of such a wave is known12. 
It is 

^F2) = w^T?
exp 

>oO i + F;) - 2\pT Vi F21 
2(^-^) J- ^ ; 

By inserting this value and that of F{Vi, Fo) from (2.5) in (2.6), making the 
change of variable: 

Fi — mEo = Eox/l] 
(2.8) 

Fa - nE0 = E0y/2) 

and adopting the notation, 

k = El/ypo, a = pr/to, G{a) = £r/\po, (2.9) 

we obtain the following integral determining & , 

A-2 

G(q:) 327r(l - a2)1'2 

f' f' n( \ —k(x + y2 — 2<xxy) , 
■ L Lxymx'y) exp _—8(r- ^5—dx iy 

n{x, 3.) = E E 

(2.10) 

r|=—CO n =—00 
2 . , . .   (2-11) 

— Af;;;" + vi(x — av) + 77 + n(y — ax) — 2anin] 
• exp 2(1 - «2)  
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The power density spectrum of the errors is, from (2.1), 

12/ = 4 / cos It/t dr 
Jo 

= -itpo [ G(a) cos Itt/t dr (2.12) 
Jo 

If the signal band is flat from / = 0 to / = /o, with no energy outside this 
band, 

1 r/o r. f ,f sin 27r/o r . 
a = T cos ItttJ df = ——  (2.13) 

Jo Jo ■IlTJo T 
Letting y = ///o, 

aW = - f G (—) cos dz, (2.14) 
l^o T -'o \ z / 

To complete the calculation, we must evaluate the integral (2.10). The 
first step is to transform the double summation (2.11) into products of single 
sums by the change of indices: 

/ _ m' + n'\ 
m + n = m'\ I™ 2 

or (2.15) 
vi — n — n / \ in — n 

n =     

The rearrangement is permissible because the double series is absolutely 
convergent. The new indices in' and n' also run from minus to plus infinity, 
but must be either both even or both odd because in' ± n' is even. On 
dropping the primes after the substitution is completed, we find 

N —k[2m{x + y) + 4m2] 
H{x, y)= exp     2^ 

4(1 a) n=—00 

— ffizn(x — y) -t *> 2 

• exp 
(2.16) 

—k[2n(x — y) + 4»21 ^ 
4(1 - «) mf'oo 

— ^[(2m + l)(a- + y) + (2m + I)2] 
■exp WT^) nk 

— &[2ii + 1)(x - y) + (2n + I)2] 
•eXp 40^  . 

A further simplification results from a change of the variables of integration 
to eliminate the terms in .ry. This is done by setting 

/x = a + A or /u = (*+y)/l\ (217) 

\y = u - v) \v = {x—y)/2j 
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By calculating the Jacobian of the transformation, we find dx dy — 2 du dv. 
The region of integration in the m^-plane is a rhombus bounded by the lines 
u ± v = ±1. We then have: 

- bAW II'■+f '■ "] 

^ exn ~2nk(2v + 2» , V r,:n -
(-2m + ^)k(2n + 2m + 1) 

n =—co P 4(1 - a) + 1 4(1 + a) 

n=—co 
rap-(2" + i)K:» + 2,+ i) (218) 

4(1 - a) 

If we substitute u = —x in the first double integral, ;« = —m' in the first 
series, and m = —in' — 1 in the third series, we see that the two double 
integrals are equal. We therefore drop the first double integral and multiply 
the second by two. The inner integral may then be split into parts with 
limits from v = 0 to f = 1 — u and v — it — I to v = 0. Substituting v = —y 
in the second part and treating the series as before, we find that the two parts 
give equal contributions, so that the bracketed integral terms become 

pi pl—u 
4 / du / dv 

Jo Jo 

applied to the integrand. 
The series in (2.18) may be written as Theta Functions, and the imaginary 

transformation of Jacobi then used as an aid in reduction. We may 
proceed in a more direct manner, however, by applying Poisson's Summation 
Formula:13 

£ tpilirn) = ^ 22 f <p(T)e ,mT dr (2.19) 
n =—co LTV m=—x x 

We thereby show that 
X 

22 exp [—am{x + 2m)\ = 
m=—x 

. / TT Qx2/8 1 _m2;r22a imrx~\ 
ViP L co3 ~2~J (2-20) 

22 exp [ — a(2m + l)(.v-f 2m + 1)] 

1 /TT ax2/4 
2 A/ ~e [1 + 2 1: {-)me -m2*2lia cos ^1 (2.21) 

L '"=1 2 J 
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When the series in (2.18) of type corresponding to the left-hand members of 
(2.20) and (2.21) are replaced by the equivalent righthand members, positive 
exponents containing the squared variables of integration are introduced 
which cancel the negative exponents already present in the integrand. The 
resulting integral may be written: 

G{ci) = j f du [ (u - v2)l/i(l + a, — a, v) 
4 Jo Jo 

+ .Ml + a, «)/2(l - *01 dv, (2.22) 

where 

Ma, .) = 1 + 2 E exp cos ^ (2.23) 

Ma, x) = 1 + 2 t(-r exp cos (2.24) 

The integrations may now be performed without difficulty. The complete 
result, which as we shall immediately show is hardly ever necessary to use 
in full is: 

^ N k i. ( 4«2fl-2N\ . ; 4;i27r2Q: 
r'(a)^S^expr ~~r) ~k~ 

, k ^ , 1 — 4(w2 + nV 
+ ^ S S('" ^n) exp —*— 

. , 4(w2 — n^a k x^ x^ f ^ 1 
Sln//     ^ E E (- ^ «) (W _ .)2 _ _ i)2 

c:T ~i[(m ~ + (" ~ i)V cin^r 4[(fe ~ ^ " (" ~ ^" (2.25) k k 

An alternative derivation of (2.25), subsequently suggested by Mr. S. 0. 
Rice, is based on the fact that e(t) as defined by (2.4) or Fig. 3 is a periodic 
function of £i which can be expanded in a Fourier series with period Eq. 
Substituting the series in (2.5) leads to an expression for c(/) e (^ + r) as the 
product of two Fourier series. After proof that it is permissible to write 
this product as a double series and to calculate the average sum as the sum 
of the averages of the individual terms the problem is reduced to a double 
series in which the typical term is proportional to the average value of exp 
i{uVi + vVz) where u and v are constants depending on the position of the 
term in the series. Rice has shown12 that the average value of such a term 
is exp [—(«2 + f2)i/'o/2 — uvf/j]. Summation of these terms leads again 
to (2.25). 
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From the defining equation (2.9) we note that ^ is a small quantity when 
more than a very few steps are used in the quantizer so that exponentials 
with exponent containing the factor —\/k are very small except when the 
factor is multiplied by a number near zero. It will be seen that this can 
only happen in the first series and then only when a approaches the value 
unity. We recall that a lies in the range — 1 to +1 and it is apparent from 
(2.25) that G{ol) is an odd function of a. We thus need consider only posi- 
tive values of a very slightly less than unity. Only the component of the 
sin//, with positive exponent is then significant, and we write the very 
accurate approximation for G{a): 

r( \ ^ k V 1 _ -4;/27r2(l - a) ( G{a) = r-; 2^ e-xp    (2.26) 
27r- n=i n- k 

A typical curve of G{a) vs. a for a fixed value of k is shown in Fig. 11. The 
rapidity with which it falls away at the left of the point a = 1 is such that 
the curve can only be plotted by greatly expanding the scale of a in this 
region. The physical significance of the spike-shaped curve is that G(a) 
is a measure of the correlation of the errors as a function of the correlation 
of the applied signal. When there are many steps there is virtually no 
correlation between errors in successive samples except when there is com- 
plete correlation of successive signal values. 

Use of the approximation (2.26) enables us to derive a convenient formula 
for the spectral density of the errors in a flat band input signal. Sub- 
stituting (2.26) in (2.14) we obtain: 

o / \ . ^ v i r r—4«v/1 sm A" 
"•w = ^ I L i1 - =) cos yz dz (2.27) 

The integrand is negligible except when z is near zero, and in this region we 
may replace (sin z)/z by the first two terms of its power series expansion. 
We then find 

o / t ^ v 1 f f-2n\2z2\ . aw = 7, S ^ i exp ( j cos TS dz 

JL .1 (-My\ (2'28) 

2ir n3 eXp \Sii- ir~ J 

Only one set of calculations from the infinite series need be made since we 
may define a function of one variable 

B(.z) = E A- (2-29) 
n =1 "3 

Then 

aW-^^O' (2.30) 
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The curves of Fig. (4) were obtained in this way. The relation between k 
and the number of digits N is based on the assumption of the rms value of 
signal reaching one-fourth the instantaneous overload voltage of the 
quantizer. Since zero signal voltage is in the middle of the quantizing 
range 2nEq , the overload signal measured from zero is 2A '£0. The mean 
square signal input is yf/o. Therefore 

2x~lEo = Wto (2-31) 

or from (2.9) 

k = 1/4a'-3 (2.32) 

We thus have obtained the spectrum of the quantizing errors without 
sampling. To apply our results to the sampling case we sum up all con- 
tributions from each harmonic of the sampling rate beating with the noise 
spectrum from quantizing only. The resulting power spectrum is given by 

^4/ = 0/ + Xrf "F ^n/a+/)> ^ ^ ^ /s/2. (2.33) 
n=l 

If y is the ratio of sampling frequency to signal band width and a4o(y) is the 
ratio of quantizing power received in the signal band to the applied signal 
power, 

Ao(y) = 12o(l) + [fio(wy + 1) + fio(wy — 1)]. (2.34) 
n=i 

This is the equation used in calculating the curves of Fig. (5). 

APPENDIX I 

Relation Between Mean Squares of Signal and Its Samples 

We have already shown that there is a unique relationship between a 
signal occupying the band of all frequencies less than fc, and the sampled 
values of the signal taken at a rate f8 = 2fc. If we are given the signal wave, 
we can obviously determine the samples; and if we are given the samples, 
we can determine the signal wave since it is the response of an ideal low-pass 
filter of cutoff frequency /c to unit impulses multiplied by the samples. If 
we apply samples of a signal containing components of frequency greater 
than/c, the output of the filter is a new signal with frequencies confined to 
the band from zero to/c and yielding the same sampled values as the original 
wideband signal. 

We now consider the problem of determining the mean square value of the 
samples of an arbitrary function /(/). Let the samples be taken at / = 
nT, w = 0, ± 1, ± 2, • ■ ■ , where T = 1/2/,. = \/f, . 
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We may write an expression for the squared samples as a limit of the 
product of the squared signal and a periodic switching function of infinitesi- 
mal contact time, thus 

/2(»/„) = Lim/2(/)5(r, /) (1-1) 
T—0 

where: 
/I, — t/2 < I < T/2 \ 

S{r, /) = 11-2) 
\0, t/2 < I < T — r/2/ 

S{r, l+T)= S{t, I), n = 0, ± 1, ± 2, • ■ • (1-3) 

By straightforward Fourier series expansion: 

Sir, /)=;+£ 25in""rT/7' cos 2 W. '• (1-4) 
1 m-1 WTT 

The mean square value of the samples is the limit of the average value of 
f2S taken over the contact intervals of duration r. The average value of 
f2S taken over all time, including the blank intervals, is in the limit a fraction 
t/T of the average over the contact intervals only. Therefore 

T 
f'(nln) = Lim - f t) 

t—o r 

= Lim /"(/) + WTT/" /2(/) cos ItmrjJ (I—5) 

r-fi\ i i ■ A1 wxr/1 ,2/A 0 r . = /(/) + Lim 2-,  / v) cos 2mirfsl. 
t-»0 m=l WITT 

Now the long time average value otp(t) cos 2nnrfst must vanish unless pit) 
contains a component of frequency mfa . This could not happen except 
where/(/) itself contains a component of frequency mfj2 or two components 
/i and /o such that 

|/i±/o| = w;/s (1—6) 

When no such relation of dependency exists: 

/2(h/o) =/2(/). (1—7) 

As pointed out before if /(/) contains no frequencies above/c, the response 
of the ideal low-pass filter to the samples is/(/), and/(»/o) represents the 
samples of/(/)■ If/(/) does contain frequencies exceeding/,,, the response of 
the filter is ^>(/), where </>(/) is wholly confined to the band 0 to/c and yields 
the same samples as/(/), i.e., 

0(»./o) = /(h/o), n = 0, ±1, ±2, • • • (I—8) 
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Eq. (I—7) applied to </>(/) gives the result: 

TCaJ = 7W. (1-9) 

By combining (I—8) and (I—9), we obtain 

f{nh)= TW- (1-10) 

APPENDIX II 

Fundamental Theorem on Aperture Effect in Sampling 

If we sample the wave Q cos ql at a rate/,, and multiply each sample by 
a short rectangular pulse of unit height and duration r centered at the 
sampling instants, we obtain by reference to Eq. (1-4) replacing lirfs by 
oj, , 

F(l) = Q cos ql S{t, t) = cos ql 
(11-1) 

+ (3S £in W7r7"/r [c03 (WcJs _)_ qjt q- Co3 (moi, — q)l]. m=i tnir 

The fact that pulse modulation is similar to the more familiar carrier 
modulation processes is brought out by this equation; the sampling frequency 
is in fact the carrier. The writer has found that the method of calculation 
he published in 1933,14 in which the signal and carrier frequencies are taken 
as independent variables, is ideally suited for calculations of pulse-modulated 
spectra. Artificial and cumbersome devices such as assuming the signal 
and sampling frequencies to be harmonics of a common frequency are thereby 
avoided. 

A unit impulse 8{l) has zero duration and unit area; hence we may write; 

. sit) = Lim . (II—2) 
T —*0 T 

A train of samples in which each sample is multiplied by a unit impulse 
may therefore be written as 

" r o 
22 Q cos ql 8(1 - /„) = Lim j, cos ql 

T—'0 L (II—3) 

q- <2^ 5111 mirT/T [Co3 (mus + ql) + cos (mu, - ^)/]l. 
m=i mirr J 

Suppose we apply the train of waves (II-3) to a linear electrical network 
which delivers the response g{t) when the input is a unit impulse 5(/). The 
steady state admittance of the network is given by 

Y0{iu) = ^ i{t)e-iutdl (II—1) 
J— CO 
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and the response of the network to (II-3) is therefore; 

/(/) = ^ 1 Y0{iq) | cos \qt + ph Yo(iq)] 

+ S S (1 Y0{imus + iq) 1 cos [(ww, + q)t (11—5) 
1 m=l 

+ ph Yoiimus + iq)] + 1 Yo{imus - iq) \ cos [(;«a.a - q)l 

+ ph I'o(/wcos — iq)]). 

But /(/) evidently represents a train of pulses in which the pulse occurring 
at I = nT is equal to the nlh sample multiplied by g{t — nT). We have thus 
obtained the spectrum of a set of samples in which the pulse representing a 
unit sample is the generalized wave form g{l). Furthermore if the signal 
frequency q is less than us/2, an ideal low-pass filter with cutoff at cos/2 
responds only to the first component of (II—5). 

The "aperture effect" or variation of transfer admittance with signal 
frequency is thus given by 

Y{iq) = j, Yo(iq) = fa Y0(iq). (II—6) 

This is Theorem II. Since the system is linear when the signal frequency 
does not exceed half the sampling frequency, the principle of superposition 
may be applied to composite signals. In the case of distortion from quantiz- 
ing errors the aperture effect applies to the error component delivered by the 
low-pass output filter. For an imperfect low-pass filter in the output we 
multiply the aperture admittance function by the actual transfer admittance 
of the filter. 

A theorem equivalent to the above has been derived by a different method 
in a recent paper16 published after completion of the above work. 
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Analysis and Performance of Waveguide-Hybrid Rings 
for Microwaves 

By H. T. BUDENBOM 

This paper presents an analytical treatment of waveguide hybrid rings for 
microwaves, considered as re-entrant transmission lines. The resulting lines 
are transformed into equivalent "T" or "lattice" network sections, and deter- 
minantal methods are applied in analyzing these equivalent network assemblies 
for their transmission properties. Some experimental results obtained from a 
carefully constructed sample of each of two specific types are given. A satis- 
factorj' agreement is obtained between the values predicted by theory and 
experimental results. 

Introduction 

TN A recent paper1, Mr. W. A. Tyrrell has described two general types of 
waveguide or waveguide/coaxial structures whose properties include 

bridge or null balance characteristics analogous to those of the hybrid coil 
common in voice-frequency communication practice. One type, the hy- 
brid junction, is a particular orthogonal junction of four rectangular wave- 
guides. Certain properties of the hybrid junction, notably its impedance 
characteristics, have been the subject of a British publication2. The present 
paper presents a method for detailed analysis of the other general struc- 
ture described by Tyrrell, the hybrid ring. This latter structure is essen- 
tially an annular ring or annulus of waveguide, at present usually an in- 
tegral number of quarter wavelengths in circumference, and fitted with an 
appropriate number of series or shunt branch taps. In this article, phrases 
such as "quarter wavelength," etc., describing tap spacing or mean annulus 
perimeter, refer to wavelength in the guide, not to free space wavelength. 

The method of analysis employed herein is essentially to treat the tapped 
annulus as a re-entrant transmission line. Certain circuit equivalences and 
quarter wave impedance transformations were used by Tyrrell in his paper 
to develop, with the aid of the reciprocity theorem, many basic properties 
of hybrid circles and hybrid junctions. In the present paper "T" or "lat- 
tice" equivalents (neglecting dissipation) are developed for each section of 
the annulus, and the method of determinants is applied. 

The hybrid junction (known also as the "magic tee") came into use in the 
newer radars in the latter part of the war. One of its uses, that of providing 

1 "Hybrid Circuits for Microwaves," W. A. Tyrrell, Proc. I. R. E., November 1947. 2 "The Theory and Experimental Behaviour of Right-Anglcd Junctions in Rectangular- 
Section Wave Guides," I. E. E. Jour., September 1946, p. 177. 
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as outputs the sum and the difference of two input voltages*, is shown on 
Fig. 1. Matching stubs at the crossing, as indicated, are required to re- 
duce standing waves to a reasonable value. The corresponding type of 
hybrid ring for providing sum and difference outputs is likewise shown, to- 

OUTPUT E|-E2 

INPUT E2 

INPUT E | OUTPUT E| + E2 

HYBRID JUNCTION 

INPUT E| 

0\V OUTPUT E1-E2 

INPUT E2 SECTION VIEW 

OUTPUT E| + Eg HYBRID CIRCLE OR RING 

Fig. 1—Hybrid junction and hybrid circle or ring. 

gether with a diagram dimensioned in terms of wavelength. Since the path 
lengths from each input to the output between them are equal, this output 
gives their sum; the path lengths to the remaining outputs differ by one half 
wavelength, consequently this output feeds out the difference of the two in- 

* More exactly, of two input powers. 
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puts. No matching stubs are required to achieve a fairly good standing 
wave ratio; however, the bandwidth over which the ring operates differen- 
tially is inherently narrower than that of the junction. The rings have con- 
siderably higher power capacity. 

The use of hybrids, both junctions and circles, has been noted, as applied 
to both duplexer and mixer design3. 

There follows a circuit analysis of hybrid rings, primarily of the series 
type. The method used is to consider the annulus as a continuous line 
closed on itself. The sections between series taps are then treated as being 
made up of integral single or multiple quarter wave line sections. Equiv- 
alent T or lattice sections are derived for 1, 2, 3, and 4 quarter-wavelength 
sections, ignoring line dissipation. These equivalences are used to draw 
equivalent mesh networks. The mesh networks are then solved by deter- 
minantal methods. To study some effects of frequency shift off the design 
center, where the mean periphery of the ring departs from an exact integral 
number of quarter-wavelengths, the increments in the element values for a 
quarter-wave equivalent T section are calculated and utilized. The ex- 
ample studied is a ring of H X mean perimeter with 3 and 4 taps. 

The general procedure neglects possible fringing effects at the junctions. 
It also neglects the fact that each tap embraces a length of ring which is dis- 
tinctly more than a small fraction of a wavelength. Nevertheless, the re- 
sults appear in every case to give a good first approximation. The writer is 
indebted to Messrs. J. T. Caulfield and J. F. P. Martin for checking the cal- 
culations. 

Throughout the analysis Zo represents guide impedance and Z represents 
annulus impedance. It will be noted that the analytical match condition 
listed is \/2 Z = Zo for the U X rings. 

The variation of the method necessary to treat the case of shunt taps is 
indicated. 

I. Circuit Analysis 

The rings studied herein are of the series type. This type is the one which 
results when waveguide is bent in the 11 plane, into a circle, and tap connec- 
tions are made to the broad outer face. This type of ring is used, for ex- 
ample, in the ''rat race" plumbing. 

Such rings may be considered on the basis that the annular slot is a trans- 
mission line, whose characteristic impedance will here be called Z and propa- 

3 E. G. Schneider, I'roc. I. R. E.,—August 1946, p. 528 ct seq.—see page 550 ct seq. 
and Figs. 40, 42 and 47. 
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gation constant P. The transmission line is closed upon itself. Series con- 
nections are made by the waveguide connections. The waveguide outlets 
are assumed, by virtue of their lengths and/or terminations, to present wave- 

zo Zo Zo Zo 
—vvv— 

Z.-PI, Z:Pl2 
wv 

ZiPia 
^vw 

z;Ptn 

Fig. 2a—Series type hybrid ring as re-entrant transmission line. 

Z tank ^ 
o—wv-1- 

p 1 Z TANH ^ 
—W\r^ 0 

+ j Z TAN 
  wv— 

Bi 
AAAr-^—0 

SINH PI 
WHICH FOR A 

LOSS-FREE 
LINE IS: 

_z  -JZ 
• j SINBI ~SIN Bl 

Fig. 2b—T Network equivalent to a line section. 

LENGTH = ^ 
o— 1 Wv—0 

+ jZ > +jZ 
<-jz 

o 1 o 

LENGTH:^ 
  WV 1 'WV 0 LENGTH 

-jz > -jz   0 

f+jZ 
o 1 o o o 

* DERIVED FROM EQUIVALENT LATTICE 

Fig. 2c—Networks equivalent to particular lengths of loss—free line. 

* For this case the T becomes indeterminate. However, the needed equivalence can be 
proved by using the equivalent lattice. If we call Za and Zb the respective series and 
shunt arms of the T, then the equivalent lattice has scries arms = Za and diagonal arms 
Za T 1Z D • 

guide characteristic impedance to the ring; this will herein be called Zq. 
Diagrammatically, the situation is as in Fig. 2a. In the course of the fol- 
lowing, the line sections will be replaced by equivalent networks, assumed 
non-dissipative. 

3 * LENGTH = 

XZ 
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II. Equivalent Line Sections 

The first method following evaluates the line sections between outlets. 
The second views each line section as made up of the necessary number of 
quarter-wave sections, each represented by its equivalent T. 

Method I—The equivalent T for a recurrent structure4 of constants Z 
(characteristic impedance) and P ( = .-1 + jB) propagation constant per 
unit length is as shown in Fig. 2b. 

There result the equivalences sketched in Fig. 2c. 
Once the circuit is diagrammed using the above equivalences, it can be 

reduced to simpler form by successive combinations of Ts, by well known 
formulae. 

Method 1—Determinants. We now consider the line to be made up of the 
appropriate number of quarter-wave sections, with series taps. Thus we 
will have Fig. 3. 

The shunt impedances are identical; call each 1". The series impedances 
are made identical by first assuming a tap at each quarter-wave junction; 

1 n _ n-i 

Fig. 3—Re-entrant line as succession of equivalent (quarter wave) T networks and 
series taps. 

call each series leg S. Then the (skew symmetrical) circuit determinant 
for the case where N = 10, (or a 2k wavelength ring) is 

(5+2F) -F 0 0 0 0 0 0 0 -F 
-F (5+2F) -F 0 0 0 0 0 0 0 

0 -F (5+2F) -F 0 0 0 0 0 0 
0 0 -F (5+2F) -F 0 0 0 0 0 

Dio = 0 0 0 -F (5+2F) -F 0 0 0 0 II— 
0 0 0 0 -I" (5+2F) -1' 0 0 0 2.1 
0 0 0 0 0 -F (5+2F) -F 0 0 
0 0 0 0 0 0 -F (5+2F) -F 0 
0 0 0 0 0 0 0 -F (5+2F) -F 

-F 0 0 0 0 0 0 0 -F (5+2F) 

Now, for the case of an exact integral number of quarter wavelengths 
around the ring, all l'i_„ = —jZ and all Si-n = /o + 2jZ, so all 5' + 21 = 
Zq. 

^ K. S. Johnson, "Transmission Circuits for Telephone Communication" Uook 
published by I) Van Noslrand Co., New York, N, Y. 
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The determinant then becomes 

D \n — 

Z0 + jZ 0 0 0 0 0 0 0 
+JZ Zo + jZ 0 0 0 0 0 0 

0 + iz Zo + jZ 0 0 0 0 0 
0 0 + jZ Zo + jZ 0 0 0 0 
0 0 0 + jz Zo + iz 0 0 0 
0 0 0 0 yz Zo +yz 0 0 
0 0 0 0 0 + yz Zo +yz 0 
0 0 0 0 0 0 + iz Zo ■YjZ 
0 0 0 0 0 0 0 +yz Zo 

+ jZ 0 0 0 0 0 0 0 +yz 

+ jZ Ei 
0 £■• 
0 
0 
0 
0 
0 
0 

For a X ring, « = 6 and the system shrinks to 

D, = 

Zo +jZ 0 
+jZ Zo +jZ 

0 +yz Zo 
0 0 +jZ 
0 0 0 

+jZ 0 0 

0 
0 

+jZ 
Zo 

+jZ 
0 

0 
0 
0 

+jZ 
Zo 

+jZ 

Zo 

+JZ 
0 
0 
0 

+JZ 
Zn 

Ei 
E, 
Eh 
E6 
Ei 
Es 
E* 
E\o 

II— 
2.2 

II—2.3 

For the study of the effects occurring if we move off the design center, 

we can modify the individual Ts to a length /" = - ± —. Each series arm, 

assuming no line dissipation, and N large so-^ « X, is: 

= jZ tan | j ± — 
jZ tan [t GO]= tan [I G ± ^)] = Jz tan fi 

11—2.4 

Similarly, each shunt arm is: 

z z 

j sin 
A j sin 

'2* (I 
.x \4 

1 1 
1 

41 

-rz -jz . -jz . 
— TT 27r COS A 1 - A2/2 

Z 

II—2.5 

Sm 2 C03 N 

So the shunt arm is, to a first approximation, not affected by a small shift 
off design center. Our shunts Y thus remain -jZ and 

5 + 2F = Zo + 2jZ ± 2jAZ - 2jZ = Zo ± 2jAZ. 
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Therefore, determinants IT—2.2 and TI—2.3 can be used by merely consider- 
ing Zq + j2NZ as a special value of /o. 

As is well known,5 G the current solutions are obtained by writing in an 
external column the driving voltages, opposite their associated meshes, 
as is done at the right of II—2.2. In the present case the number of driving 
voltages is usually one, never more than two; so the column will be zeros, 
save for one (or two) meshes. The current in any mesh is a fraction having 
D as denominator, and as numerator the minor formed from D by substitut- 

o 
N 

■W
V

 

API, 
 1  

<:Zo Z;Pl2 
^Z0 

z;Pi3 
^Z0 ZTLn 

ing. 4a—Re-entrant line with shunt taps. 

A/VrWV JM-m 

^Z0 

A—0 

:4)2 14 i. 
Fig. 4b—Re-entrant line with shunt taps—T networks as line equivalents. 

2 Z 2 Z 

Fig. 4c—Element typical single shunt tapped section. 

ing the e.m.f. column in the column corresponding to the mesh where the 
current is desired, i.e., column n if /„ is desired. 

Since D is common to all mesh current expressions, questions of relative 
power division between branches or of null balance can be handled by 
operations performed entirely with the numerator minors. 

Some slight advantage in evaluating the numerator minors is gained by 
proceeding where possible so as to make A or /„ the desired current. 

5 E. A. Guillcmin, "Communication Networks," Vols. I and II. Hooks published by 
John Wile}' and Sons Inc., New York. N. V. 0 L. Silberstein, "Synopsis of Applicable Mathematics." Book published by D. 
Van Nostrand Co., New York, N. Y. 
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Alternatively, meshes where Zo = 0 can be chosen. Another needed 

quantity is driving point impedance. Since /„ = ^ , then — ^ = 

^-n and Zdp = — • The resulting impedance will include an extra Zo , the 
D dn 

generator impedance, to which we must match. 
It may be of interest to show how the reentrant transmission line analysis 

can be extended to the case of hybrid rings involving shunt taps. For the 
reiterative shunt case we have the conditions illustrated in Fig. 4a. With 
substitution of quarter-wave equivalences Fig. 4a becomes Fig. 4b. Clearly 
determinants analogous to II—2.1 et seq. can be written for this structure. 
Alternatively we can split each Zo into two parallel impedances, each 2Zo, 
yielding a typical symmetrical section which can be reduced to a simple 
T or tt by well known transformation methods1 as shown in Fig. 4c. 

jz jz 

+ Z 

(s) (e i) 
Fig. 5—114 ^ ring—3 arm—equivalent mesh circuit. 

III. Detailed Analysis of Specific Cases of Series Type Rings 

Case A. lh X Ring—3 Arm—As Power Divider—Two Way 
This is most simply analyzed using equivalents from Method 1. The 

equivalent circuit is shown in Fig. 5. It is immediately clear that: 

a. Power fed in at S will divide equally between Ei and . 
b. Although Ei and £2 are in proper wavelength relationship for isolation 

relative to each other, they are effectively in series and there will 
not be cancellation. The particular wavelength spacing is thus a 
necessary but not sufficient condition. 

c. With a voltage E at (5) we will have 

E = hZo - h{—2jZ) 

0 = —Ii{—2jZ) + /2(2Zo) 

E +2jZ 

III—1 

0 + 2jZ 2Z 0 
* loc. cit. page 282. 
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so 

/, 
E '' 

and the mesh impedance at S is 

Zl + 2Z' 
Zn 

2Zo _ 

2Zo + 422 

= z.+ f. 
^0 

Therefore an impedance match is secured if 

V2 Z = Zo. Ill—2 

d. For a voltage e at Ei, the current at E* may be obtained from 

2Zo — 2iZ 

— 2jZ Zo 

and is 

cZn 
2Z5 + 4Z-" 

III—3 

Under the impedance match condition -x/^Z = Zo, this is e/4Zo which is 
just half the current which could be drawn through a load Zo connected to a 
source Zo with internal voltage e. Therefore, the "loss" from Ei to Ei 
is 6 db. 

Case B. lh X Ring—/ Arms—-15 Bower Divider and Null Device 

.45 power divider—Two Way (Fig. 6). Using the determinantal method, 
let Ei be in mesh 1. Then D is in mesh 4, E* in mesh 5 and S in mesh 6. 
Zo = 0 for meshes 2 and 3. Then the determinant of II—2.3 and its minor 
for mesh 5 {Ei in Fig. 6) with voltage applied at Ei, are respectively, from 
II—2.3: 

Zo +JZ 0 0 0 jz 
+>z 0 +jz 0 0 0 

0 +jz 0 +jz 0 0 
0 0 +JZ Zo +jz 0 
0 0 0 +jz Zo +jz 

+jz 0 0 0 +jz Zo 

+jz 0 +jz 0 0 
0 +jz 0 +jz 0 
0 0 +JZ Zo 0 
0 0 u +jz +jz 

+jz 0 0 +jz Zo 

Upon expansion d[ is found to be 0. Therefore, by adding outlet D, we 
have isolated branch Ei from branch Ei . (Compare with case A.) Since 
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it is well known for this structure that D is isolated from input at S, it must 
follow that an input at .S will still divide equally betwemfii and E*. 

,4s Null Device {l\k—4 Arms). We now associate S with mesh 1, Ei 
with mesh 2, D with mesh 5, Ei with mesh 6 (see Fig. 7) which leads to; 

D, = 

Zo +iz 0 0 0 +jz 
+jz Zo NjZ 0 0 0 

0 +jz 0 +JZ 0 0 
0 0 +jz 0 +jz 0 
0 0 0 +jz Zo +JZ 

+jZ 0 0 0 +JZ /o 

3 J) D 4 , D 
C-2 4 \ \ / 3 sV . 

.lA j A 
A .lA A 

4 
Vl bl ! 6 / J 

6    ^2 E," 1 E 
4 -- 4 --- Jia--'A 

III—3.5 

s s 
Fig .6 Fig. 7 

Fig. 6—VA X ring—4 arm—tap spacing and identification for power division analysis 
by determinants. 

Fig. 7—X ring—4 arm—tap spacing and identification for determinantal analysis 
as null device. 

With voltage applied at S, mesh 1, the minor for current at D, mesh 5 is: 

+jz Z0 +jz 0 0 
0 +jz 0 +jZ 0 
0 u +jz 0 0 
0 0 0 +JZ +JZ 

+JZ 0 0 0 Zo 

III—5.1 

where the 5(6") indicates that the voltage is at S and the current is sought at 
mesh 5. Corresponding minors for the current in mesh 5(Z)), due to volt- 
ages at Ei and Ei are: 

(hiE\) — 

dbiED — 

Zo +jz_ 0 0 +jZ 
0 +jz 0 +jz 0 

— _ 0 0 +JZ 0 0 
0 0 0 +jz +jz 

+JZ 0 0 0 Zo 

Zo +jz 0 0 +JZ 
+jz Zo +jz 0 0 

=   0 +jz 0 +jz 0 
0 0 +JZ 0 0 
0 0 0 +jz +jZ 

III—5.2 

III—5.3 
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Evaluating, we find d^) = 0, showing D is isolated from S. The other 
two expansions give 

rfsuv = {+jz)\l? - Z'zSl 

and 

db-R2) = {+jZ)\Z2Zl - 2Z4]. Ill—5.4 

So the difference between the voltages at Ei and £2 is transmitted to D. 
Hereafter we will operate on a single voltage at S. Note, incidentally, 
that if the S arm were not terminated the Zo in column 1, row 1 of d^^ 
and db(E„) would be zero, in which case 

dtCKu = - (+iZ) f2Z4) and dME^ = + (+/Z) (2Z4) III—5.5 

To study frequency shift on current from S1 at /) we can write III—5.1 
as 

dh{S) - 

+jZ 
0 
0 
0 

+jz 

Zv+IJAZ 
+jz 

0 
0 
0 

+jZ. 
2jAZ 
+jz 

0 
0 

0 0 
+jz 0 
2jAZ 0 

+JZ +jZ . 
0 Z0+2jAZ 

III—6 

= 2Z-(-Z2jAZ + 2ZoAZ2 + -ijAZ3) = -2Z4-AZ. Ill—7.1 

Match Condition. The impedance match condition is readily shown to be 
V2Z = Zo as for the three-arm UX ring. 

Construction of Test Samples 

From the drawing of the hybrid circle (Fig. 1), it will be seen that the 
multiple soldering of guides into the ring can present difficulty in fabrica- 
tion, especially where numerous branches are required. In addition, early 
measurements indicated the necessity of accurate dimensions, both linear 
and angular. As a consequence, the experimental hybrid circles which were 
used in the measurements reported herein were milled from brass cylinders. 
Figure 8 shows a 4-branch ring opened so that interior detail can be seen. 
This form of experimental construction enables dimensions to be held to 
average values of about half a thousandth of an inch and ten minutes of arc. 
The mating surfaces are flat to within this tolerance. However, no currents 
resulting from the held tend to flow in the direction crossing the gap and no 
loss ensues from this source. These mechanical tolerances are essential 
only to a basic experiment of the nature here described; larger tolerances 
could undoubtedly be specified in practice. 



484 BELL SYSTEM TECHNICAL JOURNAL 

Experimental Results 

There follows a tabulation of some experimental data on samples of the 
specific series types analyzed. The attenuation figures are probably good 
to ± .25 db up to 10 db, to ± .5 db up to 50 db. The SWR figures may not 
be better than ± .2 db. 

Fig. 8—1}A X ring—4 arm—photogra])h of machined test sample. 

,--A—•- 

--- 4 
I OR S 

a 

--"4 
1 OR 5 

Fig. 9a.—X ring—3 arm—as power divider. 
Fig. 9h—liA X ring—4 arm—as power divider and null device. 

The data are for structures built in terms of .900 inch by .400 inch rec- 
angular guide size (inside) and the test wavelengths* are in the 3-centimeter 
egion. The design wavelength* is Xo, the test wavelength X*. 
:ase A: 14X; Three Arms; Impedance Match V2Z = Zo ; Reference 
rig. 9a: 

* These are space wavelengths. 
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Experimental values at % (N — Xo)/Xo 

-6% -3% 0 +3% +6% 

Power Division. Input, at I. Relative 
power output at Oi or Oj in db (approx, 
constant over band) 

-3.7(0,) 
—3.5 (Oa) 

Transmission Loss (Isolation) between ()i 
and Oi in db (approx. constant over band). 
I terminated. 

Standing Wave Ratio (SWR) in db at /. 
Outlets 0, and Oi terminated. 

6.0 

.84 1.10 2.32 1.50 1.20 

Case B: UX; Four Arms; Impedance Match y/lZ = Zo; Reference Fig. 9b: 

Experimental values at 100(X — Xol/Xo 

-r.% -3% 0 +3% +0% 

Power Division. Input at /. Relative 
power output at Oi or O-j in db (approx. 
constant over band). 

-3.5(0,) 
-3.5 (Oil 

Transmission Loss (Isojation) between Oi 
and Oi in db / and D terminated. 

20.3 48.5 19.7 

Transmission Loss (Isolation) between 5"and 
D in db 0\ and Oi terminated. 

24.0 47.7 22.2 

Standing Wave Ratio (SWR) in db at I (5). 
Outlets at 0{, Oi and D terminated. 

3.50 1.20 .66 .77 2.20 

Comparison Between Theory and Experiment 

From the experimental results, we can now cite in support of the theory 
the following areas of agreement between theory and experiment, at the 
design wavelength: 

Ring Type and Property Theory Experiment 

Case A: Ig X; Three Arms 
Relative power at O, and Oa for input at I. — 3 db -3.6 db 
Impedance match (SWR) 0 db .84 db 
Observed center wavelength versus mean annulus Agreement to about 1% 

perimeter guide wavelength 
Transmission loss (Isolation) from 0, to Oj. / ter- 6.0 db 6.0 db 

minated. 

Case B: If X; Four Anns 
Relative power at 0, and Oo for input at / -3 db — 3.5 db 
Impedance Match (SWR) Odb .66 db 
Transmission Loss (Isolation) S to D. 0, and Oa Conjugacy 47.7 db 

terminated 
Transmission Loss (Isolation) 0, to 0a. D and 1 Conjugacy 48.5 db 

terminated 
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Conclusion 

It is concluded that the theory developed provides calculated results in 
satisfactory accord with experiment. 

It will be recalled that the approximation was initially made that the line 
sections were loss free. The theory could doubtless be extended to include 
dissipation by retaining a small real component in the propagation constant 
F of Fig. 2b. No doubt this real component could, in turn, be included to 
adequate accuracy in the equivalences of Fig. 2c by the addition of real 
components in the series arms only. That is, the series arm for a X/4 sec- 
tion would beZ (r jl) = rZ + jZ where r « 1. Since such terms appear 
as part of the (5 + 2 ]')'s in the basic determinant II—1, which is the same 
as in series with the Zo's in determinant II—2, the inclusion of dissipation 
would appear to be formally straightforward. 



Methods of Electromagnetic Field Analysis* 

By S. A. SCHELKUNOFF 

This paper presents a discussion of ideas involved in various mathematical 
methods of electromagnetic field analysis and of the inter-relations between 
these ideas. It stresses the points of contact between circuit and field theories 
and their mutually complementary character. While the field theory focuses our 
attention on the electromagnetic state as a function of position in space, the 
generalized circuit theory is preoccupied with the electromagnetic state as a 
function of time. The points of contact between the field and circuit theories are 
many. Thus, Maxwell's equations are identical with Kirchhoff's equations 
(really Lagrange-Maxwell equations) of certain three-dimensional networks in 
which only the adjacent meshes are coupled. The integral equations for the 
electrical current in conductors embedded in dielectric media are also Kirchhoff 
equations of certain networks containing infinitely many meshes with a coupling 
between every two meshes. 

From the point of view of electrical performance the difference between a 
physical network of lumped elements and a continuous network, such as a 
resonator, is due to a certain difference in the distribution of the zeros and poles 
of associated impedance functions in the complex impedance plane. Similarly, 
the difference between ordinary transmission lines and wave guides is due to a 
difference in the distribution of natural propagation constants. 

The paper ends with a general discussion of the discontinuities in wave guides, 
idealized boundary conditions for simplification of electromagnetic problems, 
and the analytical character of field vectors regarded as functions of the complex 
oscillation constant. 

IN THE last few years engineering applications of electromagnetic field 
theory have been greatly expanded. Field theory has become essential 

for the solution of many practical problems and in planning engineering 
experiments. New applications have influenced the theory itself and have 
led to new conceptions. The chasm between the circuit theory of low 
frequency electrical phenomena and the field theory of high-frequency 
phenomena has disappeared. The two theories have met in wave guides 
and their merger has become essential. This paper is a discussion of the 
essential ideas underlying various mathematical methods of analysis of 
electromagnetic oscillations and waves in the light of new applications and of 
the merger of the originally distinct circuit and field theories. 

Circuit Theory 

Circuit theory is a mathematical method and it should not be confused 
with circuits. Empty space is neither a circuit nor a network; but as we 
shall soon see, for the purposes of analysis the empty space can be treated as 
a network. It is perfectly true that until recently circuit theory was con- 

* This paper was originally delivered as a lecture at a meeting sponsored by the Basic 
Science Group of the American Institute of Electrical Engineers, April 12, 1945. 
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cerned almost exclusively with aggregates of "circuit elements" inter- 
connected in various ways. It is also true that the most familiar form of 
circuit equations is that which is similar to Kirchhoff's equations for the 
steady current flow in networks of conducting rods, published1 in April 1845. 

This form is applicable only to circuits. However, the application of 
these "Kirchhoff equations" to alternating currents, natural as it may seem 
to us now, was not obvious one hundred years ago. The first equation for a 
simple circuit consisting of a capacitor, an inductor, and a resistor in series 
was published in 1853 by Lord Kelvin.2 Interestingly enough his approach 
is based on the ideas applicable both to conventional circuits and to high- 
frequency resonators. If q is the electric charge on one plate of the ca- 
pacitor, the energy stored in the capacitor is q2/2C, where the coefficient C 
depends on the geometry of the capacitor. The magnetic energy of the 
circuit is \ Lq', where q is the time rate of change of the charge, that is, the 
current in the circuit, and Z is a coefficient depending on the geometry of the 
circuit. The rate of energy transformation into heat is Rq', where 7? is a 
coefficient depending on the geometry of the conductors (and of course on 
their resistivity). The law of conservation of energy demands that 

i [q/2C + ii(fj = ~Rcf. (1) at 

When the differentiation is performed and q is cancelled, the usual form of 
the equation is obtained. The coefficients of proportionality, that is, the 
inductance L, the capacitance C, and the resistance R sum up and stress the 
really important electrical characteristics of the circuit; the details of the 
construction of the circuit are suppressed. 

It was Maxwell who formulated the general equations for electric net- 
works by extending the application of a method developed by Lagrange for 
mechanical systems. This Maxwell did in his last two lectures. In the 
words of his student, J. H. Fleming:3 "Maxwell, by a process of extra- 
ordinary ingenuity, extended this reasoning (the method of Lagrange) from 
materio-motive forces, masses, velocities and kinetic energies of gross matter 
to the electromotive forces, quantities, currents, and electrokinetic energies 
of electrical matter, and in so doing obtained a similar equation of great 
generality for attacking electrical problems." 

Before discussing the Lagrange-Maxwell method more completely, let us 
see if we can construct a network whose electrical properties would be the 
same as those of a continuous medium. 

1 Annalen der Physik. 2 Philosophical Magazine. 
3 Philosophical Magazine, 1885. 
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Natural Network Models of Continuous Media and 
Maxwell's Differential Equations 

Transmission line theory represents a well known example of the applica- 
tion of circuit theory to continuous systems. Two-wire transmission lines 
are subdivided into infinitesimal sections by planes perpendicular to the 
lines. Each section is replaced by a capacitor whose capacitance is so 
chosen that, for a given voltage across the transmission line, the electric 
charges on the plates of the capacitor are correspondingly equal to the 
charges on the sections of the wires constituting the line. The leads con- 
necting the terminals of these capacitors are then assumed to possess an 
inductance and a resistance but no capacitance. Thus the electric flux or 
displacement is "swept" into tiny capacitors, and the magnetic flux or 
displacement into tiny inductors. 

This representation is good only at low frequencies because it depends on 
the assumption that the electric displacement is only in one direction, 
namely at right angles to the transmission line. In effect, this representa- 
tion neglects the capacitance between different parts of the same conductor 
and includes only the capacitance between the opposite segments of different 
conductors. That is, while we have recognized that the inductance and 
capacitance are distributed in the direction parallel to the transmission line, 
we have ignored the fact that they are also distributed at right angles to the 
line. In the general representation we should subdivide the medium into 
infinitesimal blocks and devise a three-dimensional network lattice of 
infinitely small meshes, Fig. 1. The displacement current can be swept 
equally into tiny capacitors. If the medium is dissipative, the resistors 
may be inserted in parallel with the capacitors to take care of the con- 
duction currents in the medium. The magnetic flux is swept equally into 
tiny coils in the corners of each mesh. However, the resulting network is 
not homogeneous. Besides meshes of type A consisting of four capacitors 
and four inductors, it contains meshes of type B consisting of inductors only; 
and yet we started with a homogeneous medium. Gabriel Kron solved the 
difficulty by introducing ideal transformers (with one-to-one turn ratio) with 
their windings in series with the coils at the opposite corners of each A-mesh. 
These transformers do not affect the electrical performance of the A-meshes 
but introduce infinite impedance into B-meshes and thus effectively elimi- 
nate them. 

As a matter of fact, such transformers should properly be included in the 
network representations of two-wire lines. In fact, by implication they arc 
included as soon as we state that the direct and return currents in the line 
are equal and opposite. Without an infinite impedance to currents flowing 
in the same direction we cannot have the balance. Pursuing the matter 
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further, we should say that all this is in accord with physical facts. The 
inductance per unit length of an infinitely long isolated wire is infinite. 
The mutual inductance between two parallel wires is also infinite. The two 
wires are the "windings" of an ideal transformer and a finite impedance is 
presented only to equal and opposite currents. In the case of wires of finite 
length the essentially three-dimensional character of the structure manifests 
itself, and other modes of propagation have to be considered. 

Fig. 1—Typical equivalent meshes in a circuit representation of continuous media. 

It is evident that the homogeneity of the medium is not a prerequisite for 
the existence of its network model. Having the values of L and C at our 
disposal, we can choose them to reflect the dependence of the permeability 
n and the dielectric constant e on position. 

If we divide the medium into small blocks of volume Ax Ay As, the capaci- 
tance Cx of the typical capacitor in those branches of the network which are 
parallel to the x-axis is Cx = t Ay As/Ax, where c is the dielectric constant. 
The conductance in parallel with this is Gx = gAyAz/Ax. The inductance 
of the typical coil in the xy-plane is Lxv — m AxAy/4As. The voltages across 
the capacitors are EzAx, £vAy, EzAz, where Ex, Ev, Ez are the electric 
intensities, that is, the voltages per unit length in the respective directions. 
The currents in the coils situated in the xy-plane are equal to /7zAs; simi- 

iz 

y 
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larly the currents in the other coils arc //x A.v and II., Ay. It is to be noted 
that the capacitors are associated with the corresponding longitudinal com- 
ponents of the electric field while the inductors go with the transverse com- 
ponents of the magnetic field. Applying Kirchhoff's laws to the network in 
Fig. 1, we should and do obtain Maxwell's field equations. Similarly, we 
can construct network lattices in the patterns of other coordinate systems, 
cylindrical and spherical, for example. 

Among the obvious conclusions to be drawn from this analysis of the 
network structure of the medium supporting the electromagnetic field is the 
validity of certain general network theorems such as the Reciprocity 
Theorem and Thevenin's Theorem. 

Reduced Network Models and Integral Equations of 
Lorentz Type 

So far we have been concerned with the electromagnetic field in its en- 
tirety. In order to visualize the medium as a three-dimensional network we 
have selected the most direct course: We have subdivided the medium into 
blocks of displacement current, compressed them into capacitors, and 
eliminated displacement currents from the rest of space; similarly, we have 

(] ) 1 1 1 2 1 3 1 4 1 5 1 1 c N 1 C 1 n 1 

Fig. 2—Subdivision of a straight antenna for its representation by 
a reduced network with n meshes. 

swept the magnetic flux into neat little packages. But this is not the only 
course open to us. We can suppress the medium just as completely as we 
normally do in the analysis of elementary networks. In order to illustrate 
this method let us consider a doublet antenna, Fig. 2. We shall divide it 
into ii sections. The current and charge in any one section exert forces on 
the charge in any other section. We can regard each section of the antenna 
as a mesh of a network in which every mesh is coupled to every other mesh. 
In each mesh the voltage which is necessary to compensate for the electro- 
motive force of self-induction of the mesh itself, for the resistance of the 
mesh (or rather for the internal impedance of the wire), and for the voltages 
induced from all the other meshes, is the impressed voltage. The equations 
assume the following form: 

Zull + Zlih + ^13/3 + * * * + 7-lnIn — 1 i> 

Z21/l + /,*!, + 723/3 + • • • + Zlnln = To , (2) 

Znlh + Zn^I" + 7,^/3 + • * • + ZnnIn = Vn, 
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where the /'s are the currents in the various sections of the antenna and the 
V's are the impressed voltages. The Z's are the self-impedances and the 
mutual impedances, and are calculated from the law of force between two 
charged particles. In a transmitting antenna the impressed voltage is zero 
everywhere except in a restricted region. In the receiving antenna the 
voltage is impressed on all sections; but one section, the "load," has a very 
different self-impedance from the remaining sections. 

When n is finite, our equations are approximate. If we make n infinite 
and introduce the impressed electric intensity, that is, the impressed voltage 
per unit length, we convert equations (2) into a single integral equation. 
More generally we may have to consider the transverse dimensions of the 
antenna and divide the entire surface of the antenna into elementary surface 
elements, each of which will represent two meshes in our network. \\ e have 
to have two meshes for each surface element because the current may in 
general change its direction from point to point and in order to specify it 
completely we must consider two components of the current. These may 
be taken as tangential to some Gaussian coordinate lines drawn on the 
surface of the antenna. The exact network equations will appear as a 
system of two integral equations involving double integrals. 

In this discussion, we have assumed that the medium outside the antenna 
is homogeneous. No difficulty is presented by the simultaneous inclusion 
of a transmitting and a receiving antenna. The two form just one network 
and the voltages impressed on the various meshes of the receiving antenna 
represent simply the coupling between these meshes and the meshes of the 
transmitting antenna. All the mutual impedances are calculable from the 
general equation, 

E = — M ITT — grad F, (3) 
at 

representing the force per unit charge due to a given moving charge. If we 
so desire, we can take equation (3) with the explicit expressions for A and V 
in terms of electric current and charge as the fundamental equations of 
electromagnetic theory and dispense with Maxwell's differential equations 
altogether. This course is feasible but inexpedient. Actual applications of 
this equation turn out to be much too complicated in the great majority of 
practical problems. It is only when we already know the current and charge 
distribution that (3) becomes really useful. Thus in the accepted develop- 
ment of electromagnetic theory (3) is subordinated to Maxwell's equations 
and derived from them. 
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Normalized Network Model and Lagrange-Maxwell 
E LECTRODVNAMICAL EQUATIONS 

Let us now return to the ideas of Lagrange as applied to electromagnetics.. 
In dynamics the Lagrange equations are formulated in terms of the kinetic 
energy T expressed as a function of velocities, potential energy U expressed 
as a function of coordinates, and a dissipation function F expressed as a 
function of velocities. In network theory T is the magnetic energy ex- 
pressed as a function of currents, L is the electric energy expressed in terms 
of charges, and F is the dissipation function in terms of currents. Lagrange- 
Maxwell equations are then written in the following form 

s[a4/r-r0-^(r-")+I = F"' (4) 

where /„ is the typical mesh current, </,, is its time integral, and Vn is the 
impressed electromotive force, that is, the electromotive force not accounted 
for by the magnetic induction and the charges in the network. The various, 
functions in the equation are 

_ V V 1/ If /■ _ v V */'" 9" 1 —"i ii 21' n j i — -'m — n — , 
2Cmn (5) 

F = 

where L,„„ is the mutual inductance between two typical meshes (the self- 
inductance if m = u), Cmn is the mutual capacitance and R,lin is the mutual 
resistance. The mesh currents are introduced in order to insure that the 
total current either entering or leaving a typical junction of the network 
elements is zero. If we perform the differentiations indicated in equation 
(4), we shall obtain the network equations in their usual form. 

Let us now suppose that F = 0 and Vn = 0. In higher algebra it is 
shown that by a linear transformation two quadratic functions, T and U for 
example, can be reduced to normal forms in which there are no mutual 
terms 

r = Un /;, r = zn q\/2cn. (6) 

In this case equal ions (4) will assume the following simple form 

^ w+rr0- m 

It is as if we had a certain number of isolated single-mesh circuits. Equa- 
tions (7) represent the normal modes of oscillalion of the network. 
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Take the simple case of two identical coupled circuits, Fig. 3. The 
network equations are 

r d2h . h Md2h ' _l/2 -i. r d'h - n 
= 0' -M^ + c + jL^"0' 

(8) 

It is evident by inspection that there are two possible modes of oscillation. 
In one mode /i = /j and in the other /i = —/a ■ The natural frequency of 
the first mode is wi = l/-\/{L - M)C and that of the second mode W2 = 
l/\/(T + M)C. The magnetic energy function is 

T = hLl\ - Mhh + \Lll 

(9) 

Thus the sum and the difference of the currents in the two meshes oscillate 
independently. 

.4= ^ 0 % do r % 

I|=l2 Il=-l2 
Fig. 3—Two possible modes of oscillation in a symmetric two-mesh circuit. 

More generally a network with n meshes possesses n independent modes of 
oscillation. In each mode the ratios of the mesh currents Iu I*, ■ • • /„ are 
prescribed by the network parameters and the connections of the network 
elements, but the relative strength of the oscillation remains arbitrary. 
When we pass to networks with distributed parameters such as sections of 
transmission lines and cavity resonators, we find merely that the number of 
independent modes of oscillation is infinite. In the case of a nondissipative 
uniform transmission line with both ends shorted, the natural frequencies of 
the various oscillation modes are proportional to the sequence of integers: 
1, 2, 3, .. ..The current distribution for the ;/-th mode is given by sin {nirx/f), 
where f is the length of the section; but the actual amplitude remains arbi- 
trary. For the gravest mode (« = 1) the middle part of the line section 
behaves as a capacitor and the ends as inductors. For the higher modes the 
line is subdivided into sections, some of which act primarily as capacitors 
and others as inductors. 

In the case of cavity resonators of some simple shapes, such as paral- 
lelopipedal, cylindrical and spherical, the determination of the oscillation 
modes is a fairly simple problem. The dynamical equations of the resonator 
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(Maxwell's field equations) are partial differential equations. Their solu- 
tions would normally involve arbitrary functions; but since the tangential 
electric intensity vanishes at the conducting boundary of the resonator, the 
solutions assume a much less arbitrary form involving only an infinite set of 
arbitrary constants. Particular solutions are sought in the form of products 
of three functions, each depending on only one coordinate. For paral- 
lelopipedal cavity resonators the various components of electric and mag- 
netic intensity are assumed in the form X(.r) F(y) Z(z). By substituting in 
Maxwell's equations it is found—very fortunately indeed—that X, V, Z 
may be obtained as solutions of ordinary differential equations. The 
boundary conditions at the boundaries of the box x = 0,0; y = 0,6; s = o,c 
are easy to satisfy because we have to work with only one of these three 
functions at a time. 

In general, however, the problem of calculating oscillation modes is by no 
means simple; but once these modes have been determined, the problem of 
forced oscillations as well as free oscillations is practically solved. For 
instance, a small loop inside a resonator is coupled to the various modes and 
the coupling coeflicients can be determined by evaluating the flux linkages. 

Every physical circuit possesses an infinite number of degrees of freedom 
and circuits with a finite number of degrees of freedom are abstractions. 
If we take special measures to concentrate magnetic energy as much as 
possible in a few regions of the medium and electric energy in a few other 
regions, we shall have a physical network in which a finite number of oscilla- 
tion modes will be well separated on the frequency scale from all the rest. 
If we are concerned only with the frequencies comparable to the natural 
frequencies of this cluster of modes, we can ignore all the higher modes and 
for our purposes we may regard the network as a finite network. At these 
frequencies the infinitely small meshes into which we could subdivide the 
individual "inductors" (regions of magnetic energy concentration) and 
"capacitors" (regions of electric energy concentration) will oscillate in 
unison in groups. 

Briefly we can summarize the above methods of analysis as follows: 
The medium supporting the electromagnetic field may be regarded as a 
three-dimensional network of infinitely small meshes in which every mesh is 
coupled only to the adjacent mesh. Circuit equations applied to this 
network lead to Maxwell's differential equations. In contrast with this 
"nalural network model of the medium^ we can construct a reduced network 
model in which only the conductors of the medium are subdivided into 
meshes. The medium surrounding the conductors is concealed in the 
mutual impedances of the constituent meshes. Every mesh is coupled to 
every other mesh and the mutual impedance (or the coupling factor) is 
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determined from the law of force exerted by a moving charge on a sta- 
tionary charge. This approach leads to one or two integral equations which 
can be approximated by a system of linear algebraic equations. While the 
latter may seem much simpler than the differential equations obtained 
from the natural network model, in reality their solution would often consti- 
tute a much more difficult analytical problem. The natural network model 
in which each mesh is coupled only to the adjacent meshes is in harmony 
with the idea of continuous propagation of electromagnetic disturbances; 
while the reduced network model conforms to the action at a distance 
philosophy. The difference is merely in the language and ideas and not in 
substance. 

Fig. 4—Two possible modes of propagation in a symmetrically shielded parallel pair.* 

Finally, the third method is based on the idea that at certain frequencies, 
called the natural frequencies, various parts of a closed system oscillate in 
phase or 180° out of phase, that the most general natural oscillation is the 
sum of such oscillations, and that the most general forced oscillation can be 
expressed in terms of fields associated with the natural modes of oscillation. 
We may call this the normalized network model of the electromagnetic field. 
Thus far we have described it with reference to closed systems or cavity 
resonators. In effect we have assumed that the amounts of magnetic and 
electric energy are finite or else we could not talk about T and U functions. 
The method can be extended to open systems of wave guides. 

Let us begin with a coaxial transmission line. Everyone is familiar with 
the particular mode of transmission in which equal and opposite currents 
flow in the two conductors. The circuit is completed through the dielectric 
where the displacement current flows from one conductor to the other. 
Next, consider a shielded parallel pair. If the structure is symmetric, we 
shall recognize at once two modes of transmission, Fig. 4. In one mode, the 
balanced mode, the currents in the wires are equal and opposite; there are 

* In the upper part of this figure one of the directional arrows should be reversed. 

Modes of Transmission 
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also equal and opposite currents in the shield which, however, are not equal 
to the corresponding currents in the wires. In the other mode, the currents 
in the wires are equal and similarly directed, the return path being through 
the shield; this mode is similar to the coaxial mode since the wires act in 
parallel, effectively as one conductor. In the case of n wires there are n 
distinct modes of transmission. Each mode is characterized by the ratio 
of currents in the wires and by the held pattern that goes with it. 

In all these modes the longitudinal current paths are conductive; but 
there is no reason whatsoever why the circuit closure should not take place 
through the dielectric. Even in those modes of transmission in which all 
longitudinal current paths are conductive, we have to depend on the dielectric 
for completion of the circuit; this should prepare us for the idea that con- 
ductors are not essential for wave transmission. If we include the dielectric, 
the number of possible longitudinal tubes of flow becomes infinite and so 
does the number of possible transmission modes; but as the cross-section 
of each individual tube decreases the longitudinal capacitance also de- 
creases, and these modes will participate in the transfer of power over 
substantial distances only at correspondingly higher frequencies. It is 
not merely that at low frequencies the longitudinal impedance becomes 
very high; it is capacitive and causes high attenuation. The effect is 
analogous to the attenuation in high-pass filters below the cutoff. 

The mathematical analysis which lends quantitative substance to these 
ideas is similar to that involved in the cavity resonator problem. Once all 
the modes of transmission have been found, the next problem is that of 
the excitation of these modes by a given source, that is, of coupling of the 
source to various modes. 

To summarize: A physical transmission line or a wave guide has always 
an infinite number of transmission modes either independent or substan- 
tially independent of each other. It is as if we had a system of single-mode 
transmission lines without couplers. For each transmission mode the 
structure behaves as a high-pass filter. If n is the number of conductors, 
there are n — 1 transmission modes with the cutoff frequency equal to 
zero. Since the lowest non-zero cutoff frequency corresponds to a wave- 
length comparable to the transverse dimensions of the guide, it is clear that 
in systems with two or more conductors we have a certain finite number of 
transmission modes which are well separated on the frecjuency scale from 
all the rest. For this reason we may ignore all the higher modes when we 
are concerned with transmission of low frequencies only, by "low" meaning 
the frequencies well below the frequency equal to the velocity of light 
divided by the largest transverse dimension of the transmission line. 

Analysis of waves in free space proceeds along similar lines. An electric 
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"dipole" is the source of the simplest spherical electromagnetic wave. We 
may picture this dipole as a pair of small spheres connected by a thin rod. 
Under the influence of an impressed force the charge is made to surge back 
and forth between the spheres. We cannot have a simple source like a 
uniformly expanding and contracting sphere as in the case of sound waves. 
The electric charge is conserved, and the only way we can alter the charge 
in one place is to transfer it to some other place. A more symmetrical 
dipole would be a single sphere on the surface of which the charge is made 
to move back and forth between two hemispheres. Let us call these 
hemispheres respectively the "northern" and the "southern". When the 
positive charge accumulates on the northern hemisphere, the radial dis- 
placement current flows outwards from it. At the same time an equal 
radial displacement current flows toward the southern hemisphere. The 
situation is analogous to the balanced mode of transmission along parallel 
wires, with the two half spaces acting as "the wires". The distance along 
the line is the distance from the dipole. The radial transmission line is 
capacitively loaded but the series capacitance increases as the square of 
the radius and therefore the capacitive series admittance decreases as the 
reciprocal of the square of the radius. Hence, at some distance from the 
dipole, the wave propagation will be quite unimpeded just as in ordinary 
transmission lines free from loading. Near the dipole the series capacitance 
is high, and the power carried by the wave in comparison with the energy 
stored is small. 

In the next spherical mode of transmission the polar regions of the spher- 
ical generator are similarly charged while the opposite charge is concen- 
trated in the equatorial zone. The zonal character of the radial current 
distribution persists at all distances from the generator. As might be 
expected the reactive field in the vicinity of a small "tripole" generator is 
even stronger than in the case of the dipole source. 

The sequence of zonal modes of transmission can be continued indefinitely. 
Next we could imagine tubular modes in which the space surrounding the 
generator is subdivided into conical tubes with the radial current in adjacent 
tubes flowing in opposite directions. This picture is essentially physical; 
but it corresponds very closely to the mathematical expansion of the general 
solution of Maxwell's equations in spherical harmonics. 

Field Representation in Terms of Fields of Special Types 

From the mathematical point of view the method which we have just 
been considering is based on the idea of representation of the general field 
in terms of particular fields having certain relatively simple properties. 
The method is analogous to that employed in circuit theory when the 
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response to the general electromotive force is expressed in terms of responses 
to the unit step function, or the unit impulse function, or the steady state 
responses at various frequencies. 

There are numerous variations of the same general idea, some of which 
are more suitable to one class of problems and others to another class. 
If the distribution of electric charge and current is known, then in many 
cases (but not in all) it is best to subdivide it into small volume elements. 
Except for a possible static electric charge distribution, the elements will 
be dipoles. The entire field can thus be regarded as the resultant of spherical 
waves generated by dipoles of given moment and position. To simplify 
the integration involved in this method certain auxiliary functions, called 
the retarded potentials, are introduced. One should not try to ascribe 
(o these auxiliary mathematical functions any physical significance and one 
should always remember that on certain occasions potential functions, 
other than the retarded potentials, turn out to be more useful. We should 
also keep in mind that, in order to apply this method, we have to know the 
complete distribution of electric conduction currents and as a general rule 
we do not have this information. Consider, for instance, the problem of 
electromagnetic shielding. The current in the coil is given; but that in 
the shield has to be determined. There are methods for calculating the 
induced current; but these methods give at the same time the shielding 
effectiveness, and that without employing retarded potentials. It is in 
approximate studies of radiation patterns of antennas and antenna arrays 
that the retarded potential method is displayed to the best advantage. 

The retarded potentials are based on representation of fields in terms of 
spherical coordinates; that is, in terms of fields associated with hypothetical 
point sources at the origin of the coordinate system. General fields can 
also be expressed in terms of cylindrical coordinates and, consequently, in 
terms of fields associated with hypothetical line sources situated along the 
axis of the coordinate system. Likewise, fields can be expressed in cartesian 
coordinates; that is, in terms of "plane waves": All such representations 
have useful applications. The current in the coil is given. 

Discontinuities 

In the analysis of the various transmission modes for a given wave guide 
it is assumed at first that the boundaries of the wave guide are analytic 
functions of the coordinates. Any discontinuity or irregularity has to be 
treated separately, simply because there is nothing in the analytic part 
of the wave guide to suggest that a discontinuity might occur, or to prescribe 
the properties of this discontinuity. Discontinuities may be accidental, 
unavoidable or intentional. A kink in a wire is an example of an accidental 
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discontinuity. Open air wire lines have to be supported on poles which, 
together with the insulators, constitute unavoidable discontinuities. The 
beginning and the end of a line are always present. Usually these latter 
discontinuities are simply unavoidable; but, in radio, at least one dis- 
continuity, the antenna, is made to serve a useful purpose. It is clear 
that the generator and the load connected by a two-wire line, Fig. 5, are 
dipoles which will generate spherical waves as well as the wave guided by 
the transmission line. At low frequencies the length of the dipoles is so 
small compared with the wavelength that the field does not reach out into 

Fig. 5—Formation of spherical waves at the ends of a long pair of parallel wires. 

the region where the radial capacitance becomes negligible and where the 
spherical wave starts carrying off all the energy that gets there. Spherical 
waves generated at the beginning and the end of the transmission line are 
practically stationary waves and constitute merely local reactive reservoirs 
of energy. The energy is withdrawn from the generator or the transmission 
line during one half of the cycle only to be returned during the other half. 
At low frequencies the energy thus exchanged back and forth is so small 
that normally we don't even think about it. The antenna, Fig. 6, is designed 
to be a more efficient transformer of the plane wave guided by the parallel 
pair into the spherical wave which will carry off power to distant points. 

Quite frequently discontinuities are introduced intentionally in order to 

Fig. 6—An antenna. 
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discriminate against some frequencies. A capacitor in parallel with the 
wave guide or an inductor in series with it will favor transmission of low 
frequencies at the expense of high frequencies. These discontinuities are 
deliberately designed to be sufficiently large to produce noticeable effect. 
A frequency filter is a more elaborate structure made up of capacitors and 
inductors designed to achieve desired frequency discrimination. 

Discontinuities in high-frequency wave guides are also either accidental, 
unavoidable or intentional. The principal difference is in the order of 
magnitude—any irregularity of apparently small physical dimensions may 
represent a large virtual reservoir of energy. Among the simplest types 
of intentional discontinuities in wave guides are "irises"., Fig. 7. Local 
fields are created in the vicinity of the irises. Under the influence of a 
wave traveling along the guide, electric charge and current are induced in 
the metal partition. On either side of the partition the complete field is 
the result of the superposition of fields representing various transmission 
modes. The cutoff frequencies of these modes may be arranged in an 

(b) (c) 
Fig. 7—Inductive, capacitive, and resonant irises. 

increasing sequence. If the operating frequency is between the lowest 
cutoff frequency and the next higher, the propagation constants of all 
modes except the dominant are real and the corresponding fields will not 
extend very far from the iris. During one-half cycle the local field with- 
draws energy from the dominant wave—this being the only source of energy 
—and during the remaining half this energy is returned. The local field 
acts as a virtual source of power—"virtual" since it operates on borrowed 
power. On account of symmetry the dominant waves generated by this 
virtual source and traveling in opposite directions will be of equal intensities. 
The scattered wave traveling toward the source of the incident wave is 
called the wave reflected from the iris; on the other side the scattered and 
incident waves merge into the transmitted wave. The storage of energy 
in the local field depends on the frequency—hence, the frequency selec- 
tivity. 

In the case shown in Fig. (7a) the flow of current in the partition is un- 
impeded and there is no tendency for any local concentration of charge in 
the partition; the local field is largely magnetic and the iris represents an 
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inductive reactance. Since any variation of the magnetic held with time 
always creates an electric held, there will be some capacitance in parallel 
with the inductance. The same idea may be expressed by saying that the 
inductance of the iris is not quite independent of the frequency. This 
lack of constancy is not peculiar to ultra-high frequencies; it is true of 
coils at low frequencies. Likewise, even at very low frequencies the in- 
ductance varies with the frequency because of skin effect. 

In the iris shown in Fig. (7b) there are alternating charge concentrations 
on the upper and lower partitions. The local held is largely electric and 
the iris is capacitive. A feeble magnetic held associated with charging 
current is unavoidable, of course; this is also true of capacitors at low 
frequencies but this time the effect is greater. Finally, an iris of the type 
shown in Fig. (7c) may be designed to behave as an antiresonant circuit. 

In that frequency range in which only the dominant wave is an effective 
carrier of power to great distances, any discontinuity will behave as a 
reactive T or Il-network—assuming that observations are made at some 
distance from the iris where the local held is too feeble to count. This 
could not be otherwise since there are three parameters at our disposal: 
two reflection coefficients for waves traveling in opposite directions and 
one transmission coefficient across the discontinuity. The Reciprocity 
Theorem requires that the transmission coefficients in the two directions 
be equal. These three parameters determine the ratios of the reactance 
elements of the equivalent T or IT-network to the characteristic impedance 
of the guide. 

If the operating frequency exceeds the second cutoff frequency, other 
waves besides the dominant become effective carriers of power and the 
equivalent network for the iris becomes more complicated. The iris behaves 
not only as a dissipative impedance to the dominant wave but also as a 
negative resistance, to one or more higher order waves. 

Boundaries 

So far we have paid little attention to the boundaries of the electro- 
magnetic field. Strictly speaking, in any actual situation the field always 
extends to infinity; the only boundaries there are, are the geometric bound- 
aries between media with different electromagnetic properties. This 
means that we should solve electromagnetic equations for each homogeneous 
region, or region with analytically varying properties, and then match 
the solutions at the boundaries. In many cases, however, this procedure 
would be very complicated and quite unnecessary. In the case of a cylin- 
drical metal tube with a dipole as a source of power the exact solution may 
be represented as a particularly formidable integral; but experimentally 
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we would not he able to detect any difference between the "exact" solution 
and a much simpler approximate solution. 

In the case of rectangular tubes we don't even know how to obtain the 
"exact" solution in any form; but good approximate solutions are exceed- 
ingly simple. The word "exact" is in quotation marks because there can 
be no really exact solutions of actual physical problems. In the first place 
the properties of materials are not known exactly; the boundaries between 
media do not exist in the exact sense of the term; and we just don't know 
the exact laws of nature. All we really want of any solution is to be ac- 
curate enough for some particular purpose. And here is where the idea 
of idealized boundaries helps in the formulation of simplified, clear-cut 
mathematical problems. The idea lends flesh and blood to idealized 
mathematical boundary conditions. Perfect conduclors have long been 
mentioned in literature as idealizations of good conductors; but other 
types of boundaries are of much more recent origin. Perfect conductors 
are boundaries of zero surface impedance', they support electric currents of 
finite strength when the tangential electric intensity is zero. At these 
boundaries the tangential magnetic intensity is different from zero. The 
natural counterpart is a boundary of infinite impedance at which the tan- 
gential magnetic intensity vanishes but the tangential electric intensity 
does not. The further generalization is a boundary with a given finite 
surface impedance which is defined as the ratio of two mutually perpendic- 
ular tangential components of the electric and magnetic intensity. The 
boundary may be isotropic, with its surface impedance the same in all 
directions; likewise, the boundary may be aelotropic. The surface imped- 
ance is defined as the ratio of the tangential components of E and II. Since 
it is necessary to adopt a convention regarding "positive directions" of 
E and //, these are so chosen that a right-handed screw will advance into 
the boundary if its handle is turned through 90° from the positive direction 
of E to coincide with the positive direction of II. In accordance with this 
convention the positive real part of the surface impedance is associated 
with an average flow of power into the boundary—that is, with a passive 
boundary. An active boundary is a boundary with a negative surface re- 
sistance; such boundaries may be used to represent idealized generators of 
electromagnetic waves and to eliminate from explicit consideration the 
internal mechanisms of these generators. 

Field Equations 

Thus far I have tried to present the ideas behind the physical and mathe- 
matical analysis of electromagnetic transmission phenomena. These are 
broader than the electromagnetic laws themselves and, with some super- 
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licial modifications, would apply to sound waves, for instance. There are 
two fundamental equations of transmission of an electromagnetic state, 
expressing Faraday's law of induction of an electromotive force by a mag- 
netic displacement current and Ampere-Maxwell's law of induction of a 
magnetomotive force by an electric current. In their most general mathe- 
matical form the equations are 

where the subscript s indicates components tangential to a closed path of 
integration and the subscript n designates components normal to any 
surface bounded by this closed path. Thus on the left we have "sums" of 
infinitesimal emf's and mmf's as we travel round some closed curve either 
on the surface of a wire or just in free space, and on the right we have total 
magnetic and electric currents linked with this curve. According to our 
present physical conceptions the magnetic current is always a displacement 
current defined as the time rate of change of magnetic flux or "displacement". 
Not that there is anything inconceivable about an actual flow of magnetic 
charge; it is simply that so far there has been no satisfactory evidence of 
its existence. In the mathematical analysis it has long been a custom to 
consider magnetic charges of opposite signs as if they existed; but this is 
merely for convenience. 

The electric current, on the other hand, consists of three components: 
the convection current whose density is the product of the electric charge 
density p and the velocity v, the conduction current whose density is pro- 
portional to the electric intensity (the gE term in the above equation) and 
the displacement current defined as the time rate of change of the electric 
displacement. Strictly speaking, the conduction current is a convection 
current but of such a kind that it would be extremely awkward to think of 
it in terms of charged particles and their velocities. 

At the same time the statistical result of the irregular movements of 
these particles can be expressed, for purposes of transmission of an electro- 
magnetic state, as a continuous movement of charge encountering some 
resistance. There are, of course, such phenomena as resistance noise which 
are thus automatically excluded from consideration. 

In general to these electromagnetic transmission equations we should 
add the dynamical equations of motion of electric charge; this is essential 
when dealing with vacuum tubes. But, in considering passive transmission 
systems, we either omit the convection current altogether, or else assume 

(10) 

j>H.ds=jf p'-'n dS 4- J j gEn dS ^ Qf J J 



ELECTROMAGNETIC FIELD ANALYSIS 505 

that the velocities of the charged particles are specified, and that the forces 
which they exert on each other are completely neutralized by the forces 
external to the field, in which case the convection current appears merely 
as an "impressed current". 

Except for the above restrictions, equations (10) form a complete set; 
but for mathematical convenience two other equations are usually ad- 
joined. These are 

// . E.. dS = 

(ID 
f f nHn dS = 0, 

where the double integration is extended over a closed surface. The first 
of these equations states that the total electric displacement through a 
closed surface is equal to the net enclosed electric charge; the second denies 
the physical existence of magnetic charge. These equations can be derived 
from (10) and for this reason are not quite on the same footing with them. 

B VBD " 0 D 

T 
VABI 1 

VAB0 * VACD [vco 
(1 !  ■) 

A vAC=o c 
Fig. 8—A pair of parallel wires. 

Equation (10) tells us that, except when the field is static, we cannot 
speak of the electromotive force or the voltage between two points without 
specifying the path along which we add up the elementary voltages. In 
fact, equation (10) gives us the difference between the voltages along two 
different paths connecting the same pair of points. To illustrate, consider 
a wave along a pair of perfectly conducting wires, Fig. 8. Voltages VAc 
and Vbd along the wires are equal to zero; transverse voltages VAH and Vcd 
are usually unequal; hence \'abh ^ l ico . 

If two points are infinitely close, then we can define the voltage un- 
ambiguously as the product E,ds of the electric intensity and the distance 
between the points. The difference between this voltage and the voltage 
along any other infinitesimal path is an infinitesimal of the second order, 
being dependent on the area enclosed by the two paths. In practice two 
points are sufficiently close if the distance between them is small compared 
with one quarter wavelength. 

Since, except in electrostatics, we cannot speak of the voltage between 
two points without specifying the path, we cannot speak of the potential 
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diference. In mathematical terms we should say that the differential 
voltage in a varying electromagnetic field is not an exact differential. To 
illustrate: 2x dx + 2y dy is an exact differential equal to d{xi + y1) and 
for this reason its integral depends only on the difference between the values 
of (.v2 + y-) at the end points of the path of integration; but 2x dx + 2x dy 
is not an exact differential and cannot be integrated except when y is given 
in terms of .v so that the path of integration is prescribed. 

If equations (10) are applied to infinitesimal closed curves, the following 
differential equations are obtained: 

curl E = — n , curl H = gE + e — . (12) 
dl ol 

The expressions curl E and curl H are merely the symbols for the maximum 
emf's and mmf's per unit area. These equations are not as general as (10) 
because they assume that E and H are continuous and at least once differ- 
entiable. The equations do not hold across the boundary between different 
media, where they have to be supplemented by the so-called boundary 
conditions which are obtained from (10). Equations (12) do not hold at a 
wavefront where E and II are discontinuous; there also we have to supple- 
ment them by appropriate boundary conditions, which connect the solutions 
on the two sides of the wavefront. 

Analytic Functions 

An advance of fundamental importance is made when the field intensities 
are represented by complex quantities E e3wt and II cJwt where w is the fre- 
quency in radians. The equations become 

curl E = - jufi H, curl H = {g + jue)E, (13) 

and are thus freed from one independent variable, the time I. This does 
not mean that we have restricted our analysis to steady state fields; Fourier 
analysis supplies a general rule for passing from steady states to any state 
whatsoever. Computational difficulties are great but no greater than they 
would be in any other method. 

A still more important advance is made when the field intensities are 
represented by E e'", H epl, where the oscillation constant p = % + jo> \s a 
complex number. The equations become 

curl E = — pnH, curl H = {g + p e)E. (14) 

The solutions of these equations are analytic functions of the complex 
variable p and a way is open for application of the theory of functions of a 
complex variable. 
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Thus if We write 

E='tenP", H = t.Kpn, (15) 
;i=ll n=0 

and substitute in (14), we obtain 

curl eo = 0, curl en+i = — n //„, 
(16) 

curl ho = geo, curl //„+1 = gen+l + ec 

If these equations are solved subject to the prescribed boundary conditions, 
E and H will be expressed as power series in the oscillation constant p- 

The function theory has already been used successfully in the restricted 
circuit theory, that is, in the theory of finite networks composed of ideal 
(independent of the frequency) resistances, inductances and capacitances. 
Likewise, some very general theorems have been established concerning 
any physical input impedance. W hereas the poles and zeros of a function 
can be anywhere in the complex /»-pIane, the poles and zeros of the input 
impedance of a passive system never lie to the right of the imaginary axis. 
This leads to a theorem to the effect that all poles and zeros on the imaginary 
axis are simple. The resistance components of the input impedance on 
the imaginary axis determine the reactance component and hence the 
complete impedance function except for a purely reactive impedance. The 
zeros and poles of an impedance occur always in conjugate pairs. These 
are some of the general theorems of impedance analysis. Not very long 
ago I came across an expression for the input impedance of a spherical 
antenna which was obtained by what appeared superficially as a straight- 
forward conventional method; but as soon as I observed that some poles 
were situated to the right of the imaginary axis, I knew that the expression 
had to be false. The existence of poles in this region meant a possibility 
of oscillations which would increase indefinitely of their own accord. 

The difference between finite and infinite networks consists in that the 
former possess a finite number of zeros and poles. All physical structures 
always possess an infinite number of such singularities; but a finite number 
of them may form a cluster in the vicinity of the origin, far removed from 
all other zeros and poles. When this happens we have a physical finite 
network. In a reactive network all zeros and poles lie on the imaginary 
axis. In a slightly dissipative system these zeros and poles move a little 
to the left of the imaginary axis. This happens, for instance, in the case 
of a thin antenna. The field in the vicinity of a thin wire is large and the 
radiated power is only a small fraction of the stored energy. The distribu- 
tion of poles (the solid circles) and zeros (the hollow circles) is illustrated 
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in Fig. 9. The zero frequency is always a pole for an open type antenna 
and a zero for a perfectly conducting loop antenna. As the frequency 
passes through a zero, the antenna impedance passes through a minimum. 
As the frequency goes through a pole, the antenna impedance passes through 
a maximum. The disposition of zeros and poles gives us a qualitative idea 
of the behavior of the impedance as the frequency varies. 

As the radius of the antenna increases, the zeros and poles move farther 
to the left of the imaginary axis. At the same time some zeros and poles, 
which for a thin antenna are so far to the left that they have very little 
effect on the impedance, move nearer the origin. For spherical antennas 
the number of zeros and poles around the origin is considerably larger than 
for thin doublets. 

Fig. 9—Distribution of zeros and poles in a dipole antenna: solid circles 
represent poles; hollow circles zeros. 

Circuit and Field Equations 

In conclusion I should like to make a few remarks on the relationship 
between Kirchhoff's circuit equations and Maxwell's field equations. Are 
the former approximations; and, if so, in what sense? The answer depends 
on what is meant by Kirchhoff's equations, for their meaning has changed 
with passing years. It was exactly a hundred years ago that Kirchhoff 
stated his equations in a kind of postscript to his paper in Poggendorf 
Annalen; but he contemplated only the d-c networks. Yet nowadays 
we interpret these equations in such a way that they are applicable to a-c 
circuits. Some thirty years went by before Maxwell thus generalized the 
original Kirchhoff equations with the aid of Lagrange's concepts. Maxwell 
wrote his circuit equations (not the field equations) in a form applicable 
only to networks with a finite number of degrees of freedom; but nowadays 
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we interpret these equations in such a way that we can apply them to one- 
dimensional transmission lines. In so doing we refrain from making ap- 
proximations which we normally make when applying Kirchhoff laws to 
networks of lumped elements. In the latter case it is usual to ignore the 
inductance of the connecting leads or rather the inductance associated 
with the loop formed by the leads; but in the case of two-wire transmission 
lines the "connecting leads" constitute the entire network and the loop 
inductance is no longer ignored. In the case of lumped networks the 
capacitance between the connecting leads is normally neglected; but this 
capacitance is scrupulously included in the analysis of two-wire lines since 
in this case the "lead capacitance" is all the capacitance there is. And I 
have already referred to a recent contribution of Kron's who presented a 
three-dimensional network such that if we apply Kirchhoff's laws to it, we 
shall obtain Maxwell's field equations. The merger between the two points 
of view is now complete. In its growth, each theory has developed concepts 
peculiar to itself. The net result is that we are now in a position to under- 
stand electromagnetic phenomena better than ever. 



The Evolution of the Quartz Crystal Clock* 

By WARREN A. MARRISON 

SOME of the earliest documents in human history relate to man's interest 
in timekeeping. This interest arose partly because of his curiosity about 

the visible world around him, and partly because the art of time measure- 
ment became an increasingly important part of living as the need for cooper- 
ation between the members of expanding groups increased. There are still in 
existence devices believed to have been made by the Egyptians six thousand 
years ago for the purpose of telling time from the stars, and there is good 
reason to believe that they were in quite general use by the better educated 
people of that period.1 Since that period there has been a continuous use 
and improvement of timekeeping methods and devices, following sometimes 
quite independent lines, but developing through a long series of new ideas 
and refinements into the very precise means at our disposal today. 

The art of timekeeping and time measurement is of very great value, both 
from its direct social use in permitting time tables and schedules to be made, 
and in its relation to other arts and the sciences in which the measurement 
of rate and duration assume ever increasing importance. The early history 
of timekeeping was concerned almost entirely with the first of these and for 
many centuries the chief purpose of timekeeping devices was to provide 
means for the approximate subdivision of the day, particularly of the day- 
light hours. 

The most obvious events marking the passage of time were the rising and 
setting of the sun and its continuous apparent motion from east to west 
through the sky. The first practical measure of the position of the sun of 
which any record is known was the position or the length of shadows of 
fixed objects, resulting through a long period of development in the well- 
known sundial in its many forms. But the sundial was in no sense an 
instrument of precision and in no sense could be considered as a time keeping 
device. Even after the development which resulted in mounting the 
gnomon parallel with the axis of the earth, the largest, most elaborate, and 
most carefully made instruments could at best indicate local solar time. 
Furthermore, the sundial has value only in daylight hours and then only on 

* The subject matter of this paper was given before the British Horologicai Institute in 
London on the occasion of the presentation of the Horologicai Institute's Gold Metal for 
1947 to Mr. Marrison in consideration of his contribution toward the development of the 
quartz crystal clock. The present text is substantially as published in the Horologicai 
j ournal. 

510 



EVOLUTION OF QUARTZ CRYSTAL CLOCK 511 

days when the sun shines clearly enough to cast a shadow. These short- 
comings became more and more important with advances in society and, 
for measuring duration, man soon began inventing timekeeping means that 
would work without benefit of the sun. 

The evolution of timekeeping devices may be divided into three main 
periods, each employing a specific type of method, although overlapping to 
some degree in their applications, and characterized by increasing orders of 
accuracy. 

A graphical representation of this evolution, indicating these three periods 
of development, and showing the relation between some of the major contri- 
butions to time keeping and the resulting accuracy of time measurement, is 
shown in Fig. 1. The methods employed chiefly during these three periods 
may be classified broadly as CONTINUOUS FLOW from the beginning up 
until about 1000 A.D., as APERIODIC CONTROL from then until about 
1675 A.D. and as RESONANCE CONTROL from that time up to the 
present. Keeping in mind the logarithmic nature of the time and accuracy 
scales used in this graph, it can be seen readily that most of the advance- 
ment has been made in a very small part of the total time, corresponding to 
(he resonance control epoch. 

The Epoch of Continuous Flow 

Perhaps due to a feeling that the passage of time was like the flow of some 
medium, the first time measuring devices were those depending on the flow 
of water into or out of suitable basins. It was recognized that, with an 
orifice properly chosen, the time required to till or empty a given basin should 
be about the same on repetition, and hence was born the first reliable means 
for measuring time at night or on overcast days. A great variety of devices 
operating on this principle were constructed and used, some of the earliest 
having been made by the Babylonians and the Egyptians 5500 years ago. 

Some of these water clocks, or clepsydra as they were called, had floats 
or other indicators which were intended to subdivide a unit of time into 
substantially uniform divisions. Others were constructed so that successive 
fillings of the basin would be counted or would operate a stepping device, 
associated with a dial or other indicator. Through the centuries great 
numbers of such devices were constructed, with some of the later ones having 
elaborate mechanisms for striking the hours or for animating figures of 
people or animals. 

For use in places where water was not readily available and where sand 
was plentiful, clepsydra were developed that would operate with the flow 
of sand in much the same way as with the flow of water. The basic ideas 
were not greatly different, the substitution being merely one of expedience. 



512 BELL SYSTEM TECHNICAL JOURNAL 

ACCURACY IN SECONDS PER DAY 

o o 

-r U 

< Z iT U UJ 
> D CL _ o 
< Q < — O Q E D 0 O UJ 

03 < 
o < a 01 

(/) ID 

is- < V) 
a. x < ^ 
'5 a id O. 
ID ' Q 3 t 
z , o < 5 

cn ■£ a. u 
< E 

0 I < 
U bb 
CD £ 



EVOLUTION OF QUARTZ CRYSTAL CLOCK 513 

The hour glass, and its smaller counterparts, is one of the most convenient 
forms of this device and until quite recent times served a useful purpose 
where accuracy was of no great importance. The hour glass shown in Fig. 2 
was used by a pastor in the early eighteen hundreds to determine the length 
of his sermons. The average variation among a set of ten one-hour de- 
terminations made recently with this glass was 3 minutes, or about 5 per cent. 

The clepsydra that were designed to repeat and totalize an endless succes- 
sion of cycles were especially adaptable to the measurement of extended 
intervals of time, although with very poor accuracy as we now think of it. 

. ^ 
Ut 

•it 

Fig. 2—Hour glass. 

By suitable design any desired number of cycles could be made equal to the 
natural large unit, the day, so that any fraction of a day within the accuracy 
of a given instrument could be determined simply by counting off the 
number of cycles from a particular starting point such as sunrise, sunset, or 
high noon. It was possible with these devices to operate without calibra- 
tion over periods of several days, although the cumulative error inevitably 
was very large. 

An error of a few hours was of small importance in the days when the 
speed of communication and travel alike depended on pack animals or the 
caprices of the wind. And so, in spite of the inaccuracies of the water clocks 
and sand clocks, they served their purpose well through many centuries. 



514 BELL SYSTEM TECHNICAL JOURNAL 

In fact, it was not until the tenth century A.D. that any really novel effort 
was made to improve upon them as timekeepers. The first efforts to 
improve upon them, making use of falling weights for motive power and 
various frictional devices to control the rate of fall, were not very successful 
because no satisfactory means were known to keep a friction-controlled 
device sufficiently constant for the job. Clocks so constructed were no 
better timekeepers on the whole than the traditional clepsydra. They had, 
however, the hope of compactness, and much ingenuity was exercised in 
their design over several centuries. 

Also in the category of continuous flow devices should be mentioned the 
methods depending on the rate of burning, such as in time candles, time 
lamps and their numerous variations. Such timekeepers are not very 
accurate but are thoroughly reliable in dry, quiet places, even providing 
their own illumination at night. Such timekeepers are known to have been 
used before the tenth century A.D. and certain variations still are used by a 
few isolated tribes, especially in the tropics. 

The Epoch of Aperiodic Control 

In or about the year 1360 the invention of an escapement mechanism for 
controlling an alternating motion from a steady motive power, such as a 
suspended weight, was the first really important step in the history of pre- 
cision clock development, and marks the beginning of the second major 
epoch in timekeeping evolution. The escapement in one form or another 
was soon applied in practically all timekeepers, the most outstanding example 
of an early application being a clock constructed by Henry De Vick for 
Charles V of France in or about the year 1360 A.D. and still in use—with 
extensive modifications—in the Palais de Justice in Paris. 

This invention was important, not because De Vick's clock, or any of its 
immediate successors, were good timekeepers, but because this was the 
first time that vibratory motion in a mechanism was used deliberately to 
control the rate of a time-measuring device. All precision clocks depend in 
one way or another on using energy to produce vibratory motion, and on 
using the rate of that motion to regulate suitable dials and other mechanisms. 

No simple improvement on De Vick's clock could ever have produced a 
precision clock in the modern sense, however, because the essential rale- 
controlling feature was still lacking. His invention consisted of the use of 
a verge escapement which produced oscillatory motion in a dynamically 
balanced member, known as a foliot balance, having essentially only mo- 
ment of inertia and friction. The rate of oscillation, therefore, depended to 
a large extent on the applied force exerted by the falling weight through a 
train of wheels, and upon the friction of the escapement parts and of the 
oscillating member itself. 



EVOLUTION OF QUARTZ CRYSTAL CLOCK Sl5 

This sort of operation is known sometimes as relaxation oscillation and 
appears in many forms. In the clock, the rate-controlling feature depends 
upon the length of time it takes a member having a given moment of inertia 
to move from one angular position to another under a given applied torque. 
Thus, the rate depends to first order on the applied torque. 

Although De Vick's clock was one of the most famous in all history, it was 
not because of its good record of timekeeping. In its original form, it is 
said that it often varied as much as two hours a day from true time. Out- 
wardly, this clock on the Palais de Justice appears about the same as it 
did originally, but the "works" have been modernized and it keeps much 
better time now. 

The history of timekeeping during the next three hundred years consisted 
mainly in improvements and in a great variety of applications of the prin- 
ciples contained in De Vick's clock. During this period great numbers of 
clocks of all sizes, from tower clocks to portable table clocks were made, 
controlled by various forms of the crown wheel, verge and foliot balance. 
All of these timekeepers belong to the class that we have just called aperiodic. 
Their accuracy, in general, was still poor and the indicator on their dials 
consisted of but one hand—the hour hand. It was not until the invention 
and application of the pendulum that the next major improvement was 
born in timekeeping. 

Thf. Epoch of Rf.sonamt Control 

All that has been said so far is a prelude to the shortest but by far the most 
productive epoch in timekeeping, that of resonant control. The heart of 
every precision clock is an oscillatory device which depends upon resonance 
for its constancy of rate. The history of precision clock development con- 
sists largely of the choice and design of stable resonant elements and of 
devising means for using them so that as far as possible their inherent 
properties alone control their rates of oscillation. Once in stable oscilla- 
tion, it is only necessary to control the indicating of dials and other suitable 
mechanisms in order to constitute a complete clock* Presumably this 
can always be done, but in some cases it is more convenient to do than in 
others, as will appear. 

The resonant element may be any of a wide variety of forms, mechanical 
or electrical, all characterized by the single property that, if deformed from 
a rest condition and released, the stored energy is transformed back and 
forth from potential to kinetic at a rate depending chiefly on the effective 
mass and the effective stiffness, or other like properties, a small proportion 

* Encycl. Brit. 14lli lid. "A clock consists of a train of wheels, actuated by a spring or 
weight or other means, and provided with an oscillating governing device which so regulates 
the speed as to render it uniform." 
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of the energy being lost in internal friction at each oscillation. Some 
resonant elements which have been used in timekeepers are illustrated in 
Fig. 3. 

The simplest appearing of all these is that of a mass, M, supported by a 
spring with stiffness, S. From the equation of motion 

r d x 
Sx = Mif 
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fig. 3—Typical resonant elements used in timekeeping, 

the period of oscillation may be derived simply and is found to be 

T = 1-K 

Similarly for the simple electrical resonant circuit where current flowing 
in an inductance, L, behaves like a mass, and current flowing in a condenser, 
C, behaves like the reciprocal of a stiffness, the period may be written. 

T = IttVLC 

Similar expressions are derivable for the periods of oscillation of all simple 
oscillating systems, including the pendulum for which the period (for 
small amplitudes) is given by 

/I 
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where { and g are respectively the length and gravity expressed in the same 
system of units, for example, the c.g.s. system. 

When any such resonant element is strained from its rest condition, and 
released, it will oscillate with gradually decreasing amplitude until all of 
the stored energy has been dissipated in internal friction or resistance, and 
in the friction or resistance of the coupling with the supports. In general, 
the resulting amplitude of free oscillation may be given as 

A = Aoe~u sin pi 

the graph of which is a damped sine wave. The rate of free oscillation, p, 
is dependent chiefly on the effective mass and stiffness and to a small degree 
on the effective resistance of the element, while the rate of loss of amplitude, 
that is, the logarithmic decrement, k, is dependent on the ratio of effective 
resistance to effective mass. 

If the resistance could be made exactly zero, such a motion once started 
would continue forever and its rate would be controlled wholly by the 
effective mass and stiffness of the resonant element. Actually, of course, 
such a condition cannot be realized in practice but, by the selection of 
suitable materials and environment, and by special control means, it is 
possible to approach very closely to the ideal condition by causing the 
oscillation to be maintained almost as though there were no damping. 

The evolution of precision timekeeping, whether consciously or not, has 
centered around the study and development of these two ideas: to discover 
resonant elements whose rate-determining properties are inherently stable, 
and to discover means for sustaining them in oscillation as though they had 
no effective resistance; or in employing means to circumvent or to com- 
pensate for any such resistance. The high precision of rate control that 
can now be obtained has been the result largely of developments in these 
two categories. 
The Pendulum 

The gravity pendulum was the first truly resonant element to be used to 
regulate the rate of a clock and for nearly three centuries maintained the 
supremacy for precision measurements of time. The pendulum was more 
a discovery than an invention, the popular story of its origin being that, 
while still a youth of seventeen years, Gallileo Galilei chanced to notice 
that a hanging lamp in the Cathedral of Pisa seemed to swing at the same 
rate regardless of amplitude. This he confirmed approximately by com- 
parison with his pulse, and later made an extensive study of the isochronism 
of swinging bodies. These studies were in progress as early as 1583. Near- 
ly sixty years later Gallileo described to his son Vincenzio how a pendulum 
could be used to control a clock, but no concrete result of this advice is 
known to have been made at that time. A working model of this clock, 
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made subsequently from the original drawings, is on exhibition in the South 
Kensington Science Museum, London. The first authentic record of the 
actual use of a pendulum in a clock is attributed to the great Dutch scientist, 
Christian Huygens, who produced his first pendulum clock in 1657. This 
was described by him in the Horologium in 1658.- 

The performance of pendulum clocks was so good that almost immedi- 
ately clocks of all other types were modified to include a pendulum. So 
complete was this transformation that very few unmodified clocks are now 
in existence which antedate the first application of the pendulum to time- 
keeping. This, as a matter of fact, is one of the major reasons that so 
little is known about the actual mechanisms used in mechanical clocks 
that were made before the introduction of the pendulum. 

The subsequent history of pendulum clock development is well described 
in numerous books and papers and covers a wide field. Only those factors 
that relate the pendulum to other means of rate control will be discussed in 
the following. 

The properties of a pendulum which make it such a good timekeeper are 
easily seen from a study of the forces on the bob as illustrated in Fig. 3. 
Since these forces must be in equilibrium at all times we may write (as- 
suming no friction) 

.fin 
Mg sin 0 = Mt — 

The nearly isochronous property of the pendulum is contained in this 
relationship since the period, on solution, is 

T=i*\/\^+\^\+y™62+-) 

where 0 is the maximum semi-amplitude of swing expressed in radians" 
When this arc is small the period approaches a minimum. For smal1 

angles the natural period depends almost wholly on the ratio of f to g and 
the stability of T depends chiefly upon the constancy of ( and g. Figure 4 
shows the relation between period and the arc of swing, expressed as seconds 
per day departure from the theoretical rate for zero arc. 

The sum of all the terms that depend upon powers of sin 0/2 is known as 
the circular error, relating to the fact that the bob is constrained to move 
on the arc of a circle. It was shown theoretically by Christian Huygens3 

that if the bob could be constrained to move on the arc of an epicycloid it 
would be truly isochronous, that is, the period would be completely in- 
dependent of its amplitude of motion. It is of interest to note at this 
point that in no other resonator used for precision timekeeping is there 
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the direct counterpart of circular error, for in all other cases the restoring 
force varies linearly with displacement in the region of operation and not as 
a sine function of it. 

In the early stages of pendulum clock development it was not necessary 
to consider the arc error because other errors were of greater magnitude. 
But it is by no means a negligible factor, and in all precision timing by 
pendulums it must be accounted for, either by allowing for an arc correction, 
as is done commonly in geodetic survey work, or by keeping the arc small 
and precisely controlling it. According to F. Hope-Jones4, referring to the 
master pendulum in the famous Synchronome free-pendulum clock: "A 
variation of only 0.01 mm. in the excursion of the bob or 2 sees, of arc will 
by circular error alter the rate by 0.00145 sec. per day,—and if it arose un- 
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perceived and was steadily maintained, it would produce an accumulated 
error of half a second in a year, so the necessity for this close observation 
is obvious." 

The control of arc has almost invariably been accomplished by keeping 
constant the amount of energy applied per swing so that the actual ampli- 
tude obtained is that value for which all of the applied energy is dissipated 
in the pendulum system. In a sense this method of control of arc puts a 
penalty on improvements in design that would reduce the friction, because 
the better a pendulum becomes in this respect the less stable becomes the 
arc control. Since even the best pendulums develop unexplainable small 
changes in arc, it has been common practice in some observatories to record 
the arc frequently and to make allowance for changes in it when making 
the most precise time determinations. 

The inherent constancy of rate of a pendulum, with small or constant 
amplitude of swing, depends to the one-half power on the stability of (/g. 

0 0.5 1.0 1.5 2.0 2.5 3. 
LARGEST ANGLE FROM VERTICAL IN DEGREES 

Fig. 4—Relation between arc and rate of pendulum. 
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The changes in C and g are quite independent of each other and so can be 
treated separately. Other factors that will be described also affect the 
rate, and it is the object in every precision clock design to reduce such 
variable effects to the absolute minimum. 

Some control can be exercised over every factor except g, which remains 
a property of space and is dependent only on the proximity of matter and 
on acceleration. As is well known, the value of g varies over the surface of 
the earth due chiefly to its deviation from spherical shape, and because of 
the uneven distribution of matter. It also varies with vertical displacement 
or tides at any location to such an extent that a gravity clock that keeps 
accurate time at ground level will lose a second a day or more in a tall 
building. Actually, it is now possible to chart variations in g with high 
precision through measurement of the rate of a pendulum clock against a 
standard whose rate does not depend upon gravity. 

Most of the factors that can affect I have been studied critically and 
means have been found to reduce them to very small effects. The chief 
source of variation was at first the temperature coefficient of the pendulum 
rod. With ordinary metals the rod expands from 10 to 16 parts in a million 
per degree C, causing a proportionate change in rate of half this amount, 
corresponding to from one-half to two-thirds of a second per day. Many 
ingenious means were developed to reduce this effect, starting with George 
Graham's mercury-filled bob in 1721, followed by John Harrison's grid-iron 
pendulum in 1726, and a great number of variations on these ideas, all de- 
pending on the differential coeflkient of expansion of dissimilar materials. 

About the year 1895, Charles Edouard Guillaume of Paris developed an 
alloy, consisting chiefly of nickel and iron, which he called Invar, because 
it had a very small temperature coefficient of expansion, from which pen- 
dulum rods could be made. The use of this material made it unnecessary 
to resort to complex compensated pendulums with their own inherent insta- 
bilities, and the accuracy of timekeeping was increased another step. The 
residual temperature effects could be measured readily, and compensated 
if desired, by the use of a small bar of aluminum attached to the bob. 

Some other important factors that affect the working length of a pendu- 
lum are the aging of the supporting rod, the "knife edge" or spring used 
for the suspension, the nature of the main supporting column or frame, 
and some atmospheric effects caused by changing temperature and pressure. 
In the most accurate pendulum clocks, the atmospheric effects are greatly 
reduced by mounting the pendulum in partially evacuated, hermetically 
sealed enclosures which can be temperature controlled. All of these factors 
and many others are discussed in every good treatise on accurate pendulum 
clocks. They are mentioned here chiefly for the purpose of comparison 
with like factors in the quartz crystal clock and to show how in many 
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cases the difficulties introduced by such factors may be more easily and 
more positively controlled. 

In every primary clock mechanism the resonant governing device must 
be sustained in oscillation, and the manner in which this is done has a strong 
bearing on its rate regardless of the quality of the governing element. The 
basic requirements are the same for any kind of oscillator, whether a pen- 
dulum, an electrically resonant circuit comprising inductance and capaci- 
tance, a steel tuning fork, or a quartz crystal resonator. The requirements 
were first stated for the case of the pendulum by Sir George Airy in 1827 and 
it has always been the aim in the design of every good pendulum driving 
means to satisfy Airy's condition. 

This condition is conveniently illustrated by the diagram of Fig. 5 which 
shows the two most familiar representations of damped sinusoidal motion. 
In order to provide a convenient scale in the drawing an impractically 
large damping is represented, corresponding to a Q of 20. The ^ of a 
resonant circuit is related to the logarithmic decrement, 5, by the relation 
(2^ = tt. The factor 5 is the logarithm, to base e = 2.718 • • •, of the ratio 
of the amplitudes at any two successive periods. It should be noted that 
the (2 of a good electrically resonant circuit is in the order of 200, that of a 
good pendulum from 10,000 to 100,000 and that of a good quartz resonator 
from 100,000 to 5,000,000. The significance of these higher values of Q 
will be evident from the following discussion. 

In Fig. 5 the damped sine wave shown corresponds, point by point, to 
the phase diagram, which is simply a logarithmic spiral. By suitable choice 
of scale the spiral can be interpreted to represent either the amplitude or 
the velocity—in which case the real amplitude is vertical and the real 
velocity horizontal. In this representation the velocity is shown maximum 
when the amplitude is zero, which is a very close approximation to fact 
for all practicable values of Q. The discussion will center on the velocity 
spiral. 

REAL VELOCITY 
Fig. 5—Amplitude-phase diagram for resonant element. 
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Let us assume that the pendulum is sustained in oscillation by a succession 
of short impulses, one for each swing applied at some phase angle ^i. If 
the impulse is really short, the velocity will be increased to the value that 
the pendulum had when it occupied the same position during the last swing. 
This change of condition is represented by the short horizontal path on the 
velocity-phase diagram and, as indicated, is accompanied by an advance in 
phase A^i. This can be interpreted as meaning that the period of a pendu- 
lum sustained in oscillation in this way is reduced from its natural period in 

the ratio of  —1. It is obvious from the diagram that Atfu becomes 
27r 

smaller and that this ratio approaches unity as the phase of the applied 
impulse approaches that of the maximum velocity—that is, when the 
pendulum is in the center of its swing; and this is Airy's condition. It is 
clear also that if the impulse is applied after (instead of before) the instant 
of maximum velocity, the period will be correspondingly increased. From 
the geometry of the figure, it can be seen that, in the neighborhood of the 
optimum condition, the deviation from natural period is very closely pro- 
portional to the amount of the phase departure. 

The closeness of spacing of the turns of the spiral depends directly on the 
Q of the resonant element. For a Q of 200, the turns will be packed ten 
times closer than shown, and the corresponding A^ will be only one tenth 
as great, other conditions being comparable. For a () of a million or more, 
A^ becomes very small indeed, especially when v? is properly chosen—and 
the variation in A^, which is a measure of the variation in rate due to the 
driving means, may be made vanishingly small. 

The importance of the above properties to timekeeping depends upon 
how well conditions can be set up to realize them. At first wholly mechani- 
cal means were employed and, with the advent of the dead-beat and detached 
escapements and by careful design and operation, quite remarkable perform- 
ance was obtained. 

A new approach in timekeeping methods was introduced by Alexander 
Bain5 in 1840 when he first used electrical means for sustaining a pendulum 
in oscillation. The importance of Bain's invention of the electric clock is 
indicated by a long controversy over the priority of the invention with 
Charles Wheatstone, who was working along similar lines at the same time 
as a by-product of his extensive researches on the electrical telegraph. 
A brief story of this controversy entitled "The First Electric Clock" was 
written for the one-hundredth anniversary of Bain's invention6. The first 
electric pendulum clocks could not compare in accuracy with the best 
mechanically driven pendulums of the period but, in spite of a great deal 
of initial skepticism on the part of those brought up in the mechanical 
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tradition, electrical maintenance and control has been applied in the most 
accurate pendulums in the world. 

The free-pendulum clock makes use of the idea, lirst proposed by Rudd, 
of allowing a master pendulum to swing free of all sustaining or other 
mechanism for a considerable number of periods and of imparting to it, 
after each group of free swings, a single impulse large enough to maintain 
the next equal number. The advantage is that no friction effects of driving 
mechanism are coupled to the pendulum except during that minimum time 
required to impart energy to it. Actually, in theory, the phase error 
introduced by one large impulse after free swings is exactly the same as 
the sum of the phase errors for n small impulses. That can be deduced 
from the phase diagram of Fig. 5. But experience has shown that a pen- 
dulum is actually more stable when the sustaining mechanism is detached 
from it the greater part of the time. 

The Synchronome free-pendulum clock includes also the basic idea of 
the gravity remontoir first applied by Lord Grimthorp (then Sir Edmund 
Beckett Denison) in the design of the mechanism of Big Ben, London, 
constructed in 1854—and still in continuous operation. The ingenious 
application of these principles and the electrical means devised by F. Hope- 
Jones and W. H. Shortt for its accomplishment have resulted in the con- 
struction of the most accurate pendulum clocks in the world by the Syn- 
chronome Clock Company of London. The history and development of 
the free-pendulum clock is elegantly described by F. Hope-Jones in his book 
on Electric Clocks7. 

The predominant characteristics of a pendulum resonator, as used in a 
clock, have just been discussed in order to show the parallel between them 
and the properties of other resonant systems. It will be shown how some 
of the factors that have been troublesome in the development of pendulums 
have been rather easily taken account of in other types of control devices 
and in particular in the quartz crystal clock. 

The Evolution of Electric Oscillator Clocks 

It almost never happens that a result of any considerable value is obtained 
at a single stroke or comes through the efforts of a single person. More 
often even the most important advances come as the climax of a long series 
of ideas which have accumulated over a period of years until the next step 
becomes almost self-evident and is accomplished either through the necessity 
for a new result or as a logical next step. 

This was preeminently the case in the crystal clock development and 
involved the putting together of a considerable number of ideas that had 
been accumulating through a century or more of related activity. The 
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chain of events which led eventually to the crystal clock followed a course 
quite independent of pendulum clock development, although parallel with 
it, and meeting it from time to time on the way. From the start, it in- 
volved the use of resonant elements whose frequencies do not depend upon 
gravity for controlling the frequency of oscillations in a positive feedback 
amplifier. From a rather simple beginning, taking advantage of a series of 
discoveries and inventions through about a century of progress, there has 
evolved a clock whose stability is comparable with that of astronomical 
time itself, as heretofore defined in terms of the earth's rotation, and having 
a versatility far exceeding all other existing means for the precision measure- 
ment of time. 

Electric Oscillators 

The first recorded experiments that relate directly to this development 
were those of Jules Lissajous8 who, in 1857, showed that a tuning fork can 
be sustained in vibration indefinitely by electrical means, using an electro- 
magnet and an interrupter supported by one of the prongs. The idea of 
using an interrupter to sustain vibration was not new with Lissajous, but 
had been invented by C. G. Page9 and described by him as early as April 
1837, to obtain a regularly interrupted electric current. Credit for this 
important invention is often given to Golding Bird10 or Neeff11 who evidently 
were working along similar lines concurrently although quite independently 
of each other. Page, Golding Bird and Neeff were all medical doctors and 
evidently were interested in their devices more for their therapeutic interest 
than for the general scientific value, since "galvanic" electricity was at- 
tributed at that time with marvelous healing powers. 

Lissajous was probably the first to make use of the idea for accurate 
measurements of rate, being a prolific experimenter in mechanics and 
acoustics, and the originator of the famous method bearing his name for 
the study of periodic motions. Indeed, the electrically operated fork was 
developed especially for use as a standard to be used in studying the rates 
of other vibrators. In principle, the electrically operated fork is like the 
pendulum drive of Alexander Bain, except that the rate of vibration in this 
case is not a function of gravity but for the most part is controlled by the 
effective mass and elastic stiffness of the vibrating member. 

The tuning fork itself was invented in 1711 by John Shore, a trumpeter in 
Handel's orchestra12, and was developed to a high state of perfection by 
the great instrument maker and physicist of Paris, Rudolph Konig. To 
establish an accurate standard of pitch for calibrating these forks Konig 
developed what he termed an "absolute" method for the determination of 
frequency. This consisted of a tuning fork having a frequency of 64 vibra- 
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lions per second, with delicate mechanical means, similar to a clock escape- 
ment, for sustaining the fork in vibration and for counting the number of 
vibrations over any desired interval of time. For this purpose, the escape- 
ment mechanism was geared to the hands of a clock, so that when the fork 
had its nominal frequency the clock would keep correct time. Dr. Konig 
credits the invention of the fork-clock to N. Niaudet13 in these words: 

"Cctle disposition avail 6l6 realis6c pour la premiere fois dans 1'horloge a diapason 
que N. Niaudet fit presenter a I'Academie des Sciences le 10 deccmhre 1866, et quc a figure 
aux expositions universelles dc Paris 1867 et de Vienne 187.?."* 

Thus, as early as 1866, the essential elements had been developed sepa- 
rately from which a clock of the electric oscillator type could have been 
constructed. But it was not until more than half a century later, when 
there was more apparent need for such a clock, that it was actually realized. 
It was chiefly for the purpose of studying temperature coefficients and like 
properties of tuning forks that Kdnig constructed and used his famous 
mechanical fork-clock. There is no evidence that there was at that time 
any idea of using a fork-clock as a timekeeper. 

It was for the purpose of making still more precise studies of the properties 
of tuning forks that H. M. Dadourian14 in 1919 made use of the phonic 
wheel motor for the first time for counting the number of cycles executed by 
a fork over an extended period of time to measure its rate. By means of a 
chronograph the time interval corresponding to the total of a very large 
number of periods could be measured precisely in terms of a standard clock, 
thus providing a direct "absolute" measure of fork rate. For this he found 
already invented for him all of the essential component parts, including 
the fork with electromagnetic drive, and the phonic wheel motor. 

The phonic wheel motor, which in some modified form is an essential 
part of nearly all oscillator clocks, was invented by two investigators, 
apparently quite independently and for entirely different purposes. The 
first published reports of each appeared in 1878. 

The first of these is an American patent that was granted on May 7, 
1878 to Poul La Cour15, a Danish telegraph engineer. The application was 
filed in Washington on April 9 of the same year, and described a fork- 
controlled impulse motor similar to those still used in many modern syn- 
chronous clocks. The other publication was a report in Nature for May 23 
of the March 30 Physical Society Meeting. In this, Lord Rayleigh de- 
scribed a motor which he developed to measure the frequency of sound by a 
stroboscopic method.16 Both of these original disclosures indicated a 

* "This apparatus was realized for ihe first time in the fork-clock which N. Niaudet 
described at the Academy of Sciences on December 10, 1866, and which was shown at the 
expositions of the University of Paris in 1867 and the University of Vienna in 1873." 
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considerable amount of previous study, even including the fluid-filled 
flywheel to reduce hunting. It may be impossible at this time to know who 
actually put in motion the first phonic wheel motor. 

Difficulties inherent to contact-controlled devices prevented the develop- 
ment of highly accurate fork standards of this type, and there is no evidence 
so far that any thought had been given to the use of a tuning fork as a 
timekeeper. 

The method of using a microphone instead of a contact was proposed by 
A. and V. Guillet 17, in 1900 and has been used considerably in frequency 
standards of moderate accuracy, but that too had limitations which made 
it impossible to utilize fully the inherent stability of a good tuning fork. 

The Use of Vacuum Tubes 

The first opportunity for really precise control of the frequency of a 
mechanical vibrating system, and the next step in the oscillator clock 
evolution, came with the invention of the thermionic vacuum tube at the 
turn of the century. The development of the vacuum tube has been a more 
or less continuous process18 starting with the studies of electrical conduction 
in the neighborhood of hot bodies by Elster and Geitel, Edison, and Fleming, 
and later developed into the first practical devices by Fleming19 and 
DeForest20 in England and America respectively. The first patent for 
such a device, a two-element tube, was issued to J. A. Fleming in 1904.21 

The first patent on a tube containing three elements and suitable for use as 
an amplifier was issued to Lee DeForest in 1907.22 

The vacuum tube as an amplifier found almost immediate and widespread 
application in telephony and, next to the basic telephone elements, was the 
most important single factor contributing to long distance communication. 
For this purpose large amounts of amplification were required. Very 
often in the operation of early amplifiers, enough signal from the output 
would somehow get coupled into the input circuit to make the entire circuit 
break into oscillation on its own account at some frequency for which the 
amplifier and feedback circuit were particularly efficient. 

Although this was very annoying in an amplifier, it led naturally in 1912 
to the invention of the vacuum tube oscillator, consisting essentially of an 
amplifier with coupling between the output and the input and some definite 
means for regulating the frequency of oscillation. The first to seek patent 
protection in vacuum tube oscillators were Siegmund Strauss23 in Austria, 
Marconi Company in England24, A. Meissner in Germany, and Irving 
Langmuir, E. H. Armstrong and Lee DeForest25 in America. Many specific 
forms have since been invented and widely used, some of the more familiar 
types being associated with the names of Colpitts, Hartley and Meissner. 
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With the vacuum tube oscillator controlled by electric circuit elements, 
it would have been possible immediately to operate a clock by means of a 
phonic wheel motor. Even if this had been done, however, the accuracy 
would not have compared very favorably with that of good mechanical 
clocks of the period. This is because the rate-controlling element of such 
oscillators was subject to large changes due to temperature and aging, and 
because means were not yet known for avoiding (he effects of tube and other 
variables on the resulting frequency. 

The next important step in our evolution was the use of the vacuum 
tube to sustain the vibration of a tuning fork. This may be considered 
either as an improvement on the contact-driven fork by the substitution of 
a vacuum tube relay device instead of the contact, or as an improvement on 
the vacuum tube oscillator by the substitution of a mechanical resonator 
for the electrical resonant element. This achievement was first announced 
by Professor W. H. Eccles26 in April or May, 1919, and was followed on 
June 20 by a note by Eccles and Jordan27 in the London Electrician. Mean- 
while, on June 16 of the same year, a similar announcement appeared in 
Comptes Rendus by Henri Abraham and Eugene Block28, showing that 
parallel developments were in progress in both England and France. How- 
ever, Eccles and Jordan in discussing their work at the National Physical 
Laboratory stated: "Several instruments of this kind have been set up and 
used during the past 18 months." From this, we may imply that they had 
vacuum tube driven forks in operation early in 1918. 

One of the chief advantages of the use of the vacuum tube to sustain 
oscillations in a mechanical system is that the variable friction of the contact 
mechanism is avoided. Previously this had been one of the main causes of 
instability. With the new method it became possible to operate in a wide 
frequency range, continuously, and at small amplitude, and to deliver 
alternating currents of approximately sine wave form and having more 
constant frequency than heretofore had been possible. The judicious use 
of a vacuum tube in delivering power to sustain the vibration of a resonator 
is analogous to the ideal of the so-called free pendulum but may be utilized 
more effectively in freeing the resonator from disturbing influences associated 
with the driving means. 

Another important advantage, which, however, was not realized im- 
mediately, is the ease with which the phase of the driving force applied to 
a mechanical vibrator can be adjusted for greatest frequency stability. 
In a manner analogous to the pendulum, in which it was shown that the 
rate is least affected when the driving impulse is applied at the instant of 
maximum velocity, the current delivered to the driving electromagnet and 
hence the force applied to the vibrating element, should be in phase with 
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the velocity of that element. In the vacuum tube oscillator, it is a relatively 
simple matter to design the feedback circuits to meet this condition very 
accurately. 

In 1921 and 1922 Eckhardt, Karcher and Keiser29-30 described the 
development of a precise fork and vacuum tube driving means, pointing 
out the following uses: "As a sound source; as a small scale time standard; 
as a current interrupter; as a synchronizer." The chief emphasis seems to 
have been on the second item because in the same year Eckhardt described 
a high-speed oscillograph camera using the same fork as a precise timing 
device. The study and improvement of the tuning fork oscillator were 
carried on continuously and soon such oscillators were used in several 
national physical laboratories and commercial research institutions as stand- 
ards of frequency and time interval. 

The next two reports of progress appeared in 1923, one by D. W. Dye 
of the National Physical Laboratory in Teddington, and the other by J. W. 
Horton, N. H. Ricker and W. A. Marrison of Bell Telephone Laboratories, 
New York City. Both of these papers disclosed work done over a period 
of two or three years and described apparatus that had been in operation 
for a considerable period. Dr. Dye employed a 1000-cycle steel tuning 
fork and a phonic wheel motor operating synchronously from it with a 
gear reduction and cam to produce periodic electrical signals which he 
compared with a clock by means of a chronograph31. Horton, Ricker, and 
Marrison used a 100-cycle steel fork, a synchronous motor with a gear 
reduction to produce electrical impulses at one-second intervals, and a 
clock mechanism operating directly from these signals32. This appears to 
be the first time that a vacuum tube-controlled oscillator was ever used to 
operate a complete clock mechanism. Shortly thereafter, a clock was built 
in which the 100-cycle motor was geared directly to the clock mechanism 
instead of operating through a stepping device. A contacting device was 
retained, however, for the purpose of making precise time measurements. 

For precise measurements of rate over long time intervals, means were 
provided to compare the seconds pulses controlled by the synchronous 
motor directly with time signals received by radio from the Naval Observa- 
tory. To facilitate these comparisons, a two-pen siphon recorder was built 
by means of which the time marks were laid down side by side on a moving 
strip of paper in such a way that accurate subdivisions of a second could be 
made on any part of the record. 

This same two-pen recorder and 100-cycle fork time standard was used 
during the total solar eclipse of January 24, 1925 to time the progress of 
the moon's shadow as observed at a number of stations in the path which 
were all connected by a round-robin telegraph circuit, through the Bell 
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Telephone Laboratories' headquarters in New York City 33'34. A photo- 
graph of the original records is reproduced in Fig. 6. This is believed to he 
the first time that a vacuum tube oscillator type of time standard was ever 
used in the service of astronomy. 

During the following ten years a great number of improvements were 
made in tuning fork oscillators and they became widely used as precise 
frequency standards. The Bell Laboratories' 100-cycle fork standard was 
mounted in a container which could be sealed at constant pressure or vac- 
uum. It was carefully temperature controlled and provision was made to 
keep the amplitude within prescribed limits. In describing this improved 
standard35, comprising a synchronous motor geared directly to a clock 
mechanism, the authors Horton and Marrison made the following statement: 

"During tests on this frequency standard, it was found that it constituted a far more 
reliable timekeeper than the electrically maintained pendulum clock which was used to 
obtain the data already published. The pendulum clock was, therefore, dispensed with 
and all measurements of the rate of the fork are now made by direct comparison with the 
mean solar day as defined by the radio time signals sent out by the U. S. Naval 
Observatory." 

In all fairness to the pendulum clock in question, it should he stated that 
the laboratory was situated on the seventh floor of a building adjoining a 
busy street and so was continually subject to vibration from traffic, wind, 
and other changing conditions. Disturbances of this sort have little or no 
effect on standards of the electric oscillator type but seriously impair the 
performance of most high precision pendulum clocks. The relative im- 
munity of the oscillator standard to change of position and shock has an 
important bearing on its value in many applications. 

Probably the most precise tuning fork controlled time and frequency 
standards ever constructed were those developed in the National Physical 
Laboratory at Teddington, as a continuation of the work begun there by 
Professor Eccles and carried forward by Dr. Dye and his staff. A report 
by D. W. Dye and L. Essen in the Royal Society Proceedings in 193436 

described a number of refinements in the fork and method of use some of 
which had been suggested by Dr. Dye as a result of his studies ten years 
earlier. Among these was the use of elinvar in the construction of the forks 
in order to reduce the effect of variable temperature on the frequency. 
Elinvar is a nickel steel containing about twelve per cent of chromium, 
which on proper treatment has a small or zero temperature coefficient of 
elasticity. It was invented by Charles Edouard Guillaume37'38 and was 
further studied by P. Chevenard39' 10. The excellence of the N.P.L. fork 
standard can be appreciated readily from the conclusion of the 1934 report 
which states in part: 
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"The frequency of the fork in comparison with the N.P.L. Shortt clock can he measured 
at any time with an accuracy of 5 parts in 108. It is necessary to apply a correction for 
the rate of the Shortt clock, and the ultimate accuracy with which the absolute value of 
frequency is known depends on the accuracy of the time signals which are used to determine 
the rate of the clock. The final frequency can. however, usually be ascertained with an 
accuracy of ±1.5 parts in 107. In its present condition the tuning fork maintains a 
frequency stability of the order of 3 parts in 107 over periods of a week or more." 

A considerable amount of effort has been devoted to the improvement of 
tuning forks, directed mostly toward stabilizing the fork itself. Patents 
issued to H. H. Hagland", August Karolus4- and Bert Eisenhour" have been 
concerned with the reduction of temperature coefficient by various methods 
of compensation in the alloy or in the mechanical structure of the fork. In 
recent years, alloys have been produced from which forks with a zero coeffi- 
cient of frequency can be machined. These alloys have neither a zero ex- 
pansion coefficient nor a zero elastic coefficient, but the two coefficients are 
so balanced that their effects cancel as they concern the frequency of a 
tuning fork. 

One of the largest residual sources of error in a good fork is that caused by 
the coupling through the mounting. A fork which is efficient as a producer 
of sound by coupling through the base would be quite useless as a precise 
standard of rate due to the losses introduced in this manner. It has been 
shown by S. E. Michaels44 that the tines of a well-balanced fork can be so 
shaped that practically no energy at fundamental frequency is transmitted 
through the base. 

By making use of all that is known about materials, shapes and mountings 
for tuning forks, and all that is known about stabilized vacuum tube cir- 
cuits for driving them, it is quite possible that considerable further improve- 
ment could now be obtained in such a standard. But another line of 
development has shown greater promise in this field and the ultimate 
accuracy of tuning fork oscillators has never been pursued. 

The Quart : Resonator 

During the same ten years that the greatest advances were being made 
in the tuning fork art, the striking properties of the quartz crystal resonator 
were reviewed and first applied in the construction of frequency and time 
standards. Its use in primary standards for the most exacting measure- 
ments of frequency and time is now almost universal in national and indus- 
trial laboratories throughout the world. 

Quartz crystal is the most abundant crystalline form of silicon dioxide, 
occurring, in some parts of the world, in large single crystals from which 
mechanical resonators of useful dimensions can readily be formed. The 
physical properties that make it eminently suitable for use in a standard of 
rate or lime are its great mechanical and chemical stability. Having a 
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hardness nearly equal to that of ruby and sapphire, and a rigidity of structure 
such that it cannot be deformed beyond its elastic limit without fracture, 
it might be expected to remain in a given shape indefinitely under ordinary 
conditions of use. Because of its great chemical stability, its composition 
is not easily modified by any ordinary environment. 

In addition to its inherent physical and chemical stability, the elastic 
hysteresis in quartz is extremely small. For this reason, it requires only a 
very small amount of energy to sustain oscillation and the period is only 
very slightly affected by variable external conditions in the means for 
driving it. 

A striking illustration of the importance of this property is indicated by 
the number of periods that a resonant element will execute freely, that is, 
without any sustaining forces whatever, during the time required for the 
amplitude to decrease to one-half of some prescribed value. For a good 
electrical circuit consisting of an air core inductance and an air condenser, 
this number is about 100; for a good tuning fork in vacuum, it is about 20C0. 
For a good cavity resonator under standard conditions of temperature and 
pressure, the number may be as high as 10,000. The best gravity pendu- 
lums will swing freely from 2,000 to 20,000 times before they reach half 
amplitude. The effect is most striking of all in quartz crystal, in which the 
internal losses are extremely low. Professor Van Dyke has measured the 
rate of decay of oscillations under a wide range of conditions45 and has found 
that, as ordinarily mounted, nearly all of the losses are in the mounting or 
in the surrounding atmosphere, if any, or in surface effects. Extremely small 
amounts of surface contamination will more than double the decrement. 
Recently46 Maynard Waltz and K. S. Van Dyke have measured the decre- 
ment of one out of the first set of four zero coefficient ring crystals ever made47 

and found that, vibrating freely in vacuum and favorably mounted, it would 
execute more than a million vibrations before falling to half amplitude. 

The advantage of this property is immediately obvious because of the 
relatively small amount of energy that must be supplied at each oscillation 
to keep the resonator in motion. As already discussed in relation to the 
pendulum, the amount that the rate of oscillation may be disturbed in a 
given structure is proportional to this energy and, to first order, on the 
departure from the ideal phase condition of the applied driving force. 

The properties just enumerated are sufficient to assure the superiority of 
quartz crystal for the control element in a rate standard; no other vibrating 
system known at the present time is so sharply resonant or so stable. How- 
ever, one more property, its piezoelectric activity, has added greatly to the 
convenience of its use in vacuum tube devices. 

The piezoelectric effect was discovered by the Curie brothers in 1880,48 
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and in the years following was studied extensively by them49 50. They 
found that when quartz and certain other crystals are stressed, an electric 
potential is induced in nearby conductors and, conversely, that when such 
crystals are placed in an electric field, they are deformed a small amount 
proportional to the strength and polarity of that field. The first of these 
effects is known as the direct piezoelectric effect and the latter as the inverse 
effect. The amount of such deformation in quartz is extremely minute, a 
static potential gradient of 1 esu (300 volts) per centimeter causing a 
maximum extension or contraction, depending on the polarity, of only 
6.8 X 10-8 cm per cm. If a crystal resonator is subjected to an alternating 
electric field having the frequency for which the crystal is resonant, the 
amplitude of motion will, of course, be multiplied many times. In prac- 
tice, however, the actual amplitudes of motion are kept so small, by limiting 
the applied electric field, that even with the largest crystals used they can 
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Fig. 7—Equivalent electrical circuits for typical quartz crystal resonators. 

be observed only under a high powered microscope. This, in conjunction 
with means for precise amplitude control, is one of the reasons for the 
remarkable frequency stability of quartz crystal oscillators. 

In practice, a quartz resonator is mounted between conducting electrodes 
which now most often consist of thin metallic coatings deposited on the 
surface of the crystal by evaporation, chemical deposition or other suitable 
means. Electrical connection is made to these coatings through leads 
which also support the crystal mechanically. The resonators with which 
we are chiefly concerned in this discussion have only two electrodes. 

If such a two-terminal resonator is connected into any circuit, it will 
behave there as though it consisted of wholly electrical circuit elements, 
usually of such low loss as can not be realized by other means. The equiv- 
alent electric circuit for a quartz crystal resonator was first described51 by 
K. S. Van Dyke in 1925 and, for some significant cases, is illustrated in 
Fig. 7. The part of such an equivalent circuit which in many cases cannot 
be duplicated by any ordinary means is the inductance element containing 
so little resistance. It is as though an electric resonator could be made and 
utilized constructed of some supra-conducting material. 
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Among the first serious efforts to utilize the piezoelectric effect in electrical 
circuits were those of Alexander McLean Nicolson who used rochelle salt 
crystal in the construction of devices for the conversion of electrical energy 
into sound and vice versa. He constructed loudspeakers and microphones 
during several years of study prior to the publication of his work52 in 
1919—ideas now being used extensively in phonograph pickups, micro- 
phones and sound producers. Nicolson also was the first to use a piezo- 
active crystal to control the frequency of an oscillator. His patent53, 
applied for in 1918, shows a circuit which he operated successfully in 1917. 
The first actual use of resonators of quartz is attributed to P. Langevin54 •55, 
who drove large crystals in resonance in order to generate high-frequency 
sound waves in water for submarine signaling and depth sounding. 

The Quartz Crystal Controlled Oscillator 

The first comprehensive study of the use of quartz crystal resonators 
to control the frequency of vacuum tube oscillators was made by Walter G. 
Cady in 1921 and published by him in April, 192256. This was the step 
which initiated a most extensive and intensive research of the properties of 
quartz crystal and into methods for its use in numerous fields requiring a 
stable frequency characteristic. 

The extent and importance of this research are well indicated by the 
number of investigators and published contributions to the art. Among 
these, a paper by A. Scheibe57 in 1926 lists 28 articles on the subject, along 
with a description of his own extensive studies. Two years later Cady 
published a bibliography58 on the subject, including 229 separate references 
to papers and books and 84 patents in various countries. R. Bechmann in 
1936 published a review of the quartz oscillator59 including 26 references to 
other original contributions in that field alone. More recently there comes 
at the end of Cady's 1946 book60 on "Piezoelectricity", a bibliography of 
57 books and 602 separate published articles on this subject. By any 
measure this represents a great amount of detailed effort for a single subject 
in so short a time—just about a quarter of a century. Of this great amount 
of material, it is feasible to review only a small number of the outstanding 
ideas relative to the evolution of the quartz crystal clock. 

The first published quartz-controlled oscillator circuit is reproduced in 
Fig. 8A from Cady's 1922 article. In this oscillator the "direct" and 
"inverse" piezoelectric effects were employed separately, making use of 
two separate pairs of electrodes. The output of a three-stage amplifier 
was used to drive a rod-shaped crystal at its natural frequency through 
one pair of electrodes making use of the "inverse" effect, while the input to 
the amplifier was provided through the "direct" effect from the other pair. 
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The feedback to sustain oscillations in the electrical circuit could he obtained 
only through the vibration of the quartz rod and hence was precisely con- 
trolled by it. Cady's results were received with widespread interest and 
were duplicated and continued in many laboratories, which soon resulted 
in many new discoveries and inventions. 

(3) EARLIEST QUARTZ OSCILLATOR, B V/ALTER G. CADY, 1921 
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Fig. 8—Typical quartz oscillator circuits. 

Important contributions were made by G. W. Pierce, who, showed in the 
following year that plates of quartz cut in a certain way could be made to 
vibrate so as to control frequencies proportional to their thickness61. He 
also proposed somewhat simplified circuits for their use which soon found 
very general application in the construction of wavemeter standards and 
later for oscillators used to control the frequency of broadcasting stations 
and for many other purposes. In 1924, the General Radio Company of 
Cambridge, Massachusetts, produced a commercial instrument based on 
these studies. 
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The significance of the unusually stable properties of quartz crystal— 
which at times were viewed with a sort of awe and a tendency at first to 
expect too much®2'—was soon recognized in relation to precise standards 
of frequency and time, and many laboratories made experiments directed 
toward these applications. 

For some years these efforts usually took one of two forms: either that of 
a quartz-controlled oscillator used as a comparison standard by various 
means03, or that of using the quartz resonator itself as a portable standard, 
the high-frequency counterpart of an isolated tuning fork. Probably the 
most convenient standards of the latter sort were the luminous resonators 
first described in 1925 by Giebe and Scheibe64. The following year they 
proposed the use of such luminous resonators as frequency standards65 and, 
shortly following, portable frequency indicators of this sort were made 
available for general use. The use of such a luminous resonator for the 
international comparison of frequency standards was reported by S. Jimbo 
in 1930.06 The first international comparison of frequency standards 
making use of piezo resonators as isolated standards was carried out by 
Walter G. Cady in 1923, who by means of a set of early type resonators com- 
pared the existing standards at Rome, Livorno, Paris, Teddington, Farn- 
borough, Washington, and Cruft Laboratory at Harvard University67. 
In the following year the U. S. Bureau of Standards carried out a similar 
international frequency comparison, but of greater accuracy,* employing 
portable quartz crystal oscillators. This comparison and other important 
related studies were described by J- H. Dellinger in 1928—"The Status of 
Frequency Standardization"68. 

It was soon recognized that quartz oscillators could be built with a 
stability far greater than that of any other known type and that they possess 
qualities very desirable for a combined time and frequency standard. 
However, all early quartz oscillators had frequencies far too high to operate 
any synchronous motor and it was not immediately obvious how a clock 
could be operated thereby. 

The Frequency Divider 

The illustration in Fig. 9 from the author's notebook for November, 1924 
is believed to be among the earliest means proposed to accomplish this. 
In brief, the proposal was to control the speed of a motor driving a high- 
frequency generator so that a harmonic of the generator output, say the 

* In 1929, M. G. Siadbei wrote "Nous pensons que 1c quartz pi6co61cctrique pent 
Irouver un nouvel emploi dans la chronomclrie, 6lanl donn6e la conservation rigoureuse- 
ment constant de ses oscillations." 

"La seul cause de variation de la periode d'oscillation rfeulte en ellect du changement de 
la temperature. . . .' 
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tenth, would have a frequency of the same order as that of the crystal but 
differing from it by a relatively low frequency, /i. This low frequency, 
derived from the modulator was to be used to drive the synchronous motor. 
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Fig. 9—Early suggestion of means to control a rotating device such as a clock from a 
high frequency. 

The shaft speed of the motor-generator would, therefore, be integrally 
related to the crystal frequency and hence any mechanism geared to the 
shaft, such as a clock, would indicate time as dictated by the crystal. This 
method could have been carried through readily by a combination of means 
already developed for other purposes, and the construction of an apparatus 
based on this suggestion was soon begun. However, a simpler method69, 
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not involving a rotating machine in the control system, was suggested and 
the first quartz crystal clock was constructed using the simpler means. 
This apparatus was described by Horton and Marrison70 before the Interna- 
tional Union of Scientific Radio Telegraphy in October, 1927. The reso- 

Fig. 10—50,000-Cycle quartz resonator, in original mounting, used in first quartz 
clock—1927. 

1 
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INPUT -T i CONTROLLED 
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OUTPUT 
Fig. 11—Submultiple controlled frequency generator used in first quartz clock. 

nator in its mounting that was used in this first model is shown in Fig. 10. 
It consisted of a rectangular block of crystal, cut in the manner usually 
called X-cut, and of such size as to oscillate at a frequency of 50,000 cycles 
per second in the direction of its length. The temperature coefficient of 
this resonator was approximately 4 parts in a million per degree C at the 
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temperature of operation, which was controlled at a value in the neighbor- 
hood of 40 degrees ('. 

The method for frequency subdivision used in this first quartz crystal 
clock is illustrated in Fig. 11. The inductance element of an electric circuit 
oscillator, designed to operate at the desired low frequency, has a core of 
variable permeability so that the frequency can be adjusted over a narrow 
range through the control of direct current in an auxiliary winding. A 
harmonic of this low frequency, generated in the tube following the oscil- 
lator, is compared with the incoming high frequency in the vacuum tube 
modulator. The harmonic chosen has nominally the same frequency as 
that of the control, or crystal oscillator, so that one output of the modulator 
is a direct current whose magnitude and sign vary with the phase relation 
between the inputs to the modulator. The use of this method to regulate 
the low-frequency oscillator insures that the low frequency is some exact 
simple fraction of the high frequency. If, therefore, a synchronous motor 
is operated from the low frequency thus produced, its rate represents ac- 
curately that of the high-frequency source as though it had been possible to 
use that source directly. 

Several other electrical circuits were proposed around 1927 for the sub- 
division of high frequencies. The method in most general use at present is 
an adaptation of the "multivibrator" first used by Henri Abraham and 
Eugene Block in 1919 for the measurement of high frequencies71. They 
used their circuit to produce a wave rich in harmonics and having a funda- 
mental that could be compared directly with that of a tuning fork standard. 
By various means now well known the high frequency could be compared 
with one of the harmonics of this special oscillator. 

This procedure was reversed by Hull and Clapp7-, who discovered that 
the fundamental frequency could be con/rolled by coupling the high-fre- 
quency source directly into the circuit of the multivibrator. This, in fact, 
is a general property of any oscillator in which the operating cycle involves 
a non-linear current-voltage characteristic, being most pronounced in (hose 
of the relaxation type. Van der Pol and Van der Mark in 1927 reported on 
some experiments on "frequency demultiplication" using gas tube relaxation 
oscillators73. The multivibrator is, in effect, a relatively stable relaxation 
oscillator74, and with slight modification has been used extensively as the 
frequency-reducing element in quartz-controlled time and frequency stand- 
ards throughout the world. 

One serious difficulty with the multivibrator type of submultiple generator 
has been that, if the input fails or falls below a critical level, it will continue 
to deliver an output which, of course, will not then have the expected fre- 
quency. Certain variables in the circuit, such as tube aging, may cause a 
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similar result. With this in view, a general method for frequency conversion 
has been developed by R. L. Miller75, in which the existence of an output 
depends directly on the presence of the control input. The basic idea in- 
volved in this, now known as regenerative modulation, was anticipated by 
J. W. Horton in 191976 but had not been developed prior to Miller's in- 
vestigations. The circuit of a regenerative modulator in its simplest form 
as a frequency divider of ratio "two" is shown in Fig. 12. 

Soon after the announcement in 1927 of the first quartz crystal controlled 
clock,70 the idea was studied and applied in many places notably in America 
and Germany, and at the present time it forms the basis for precise measure- 
ments of time and frequency in many government physical laboratories 
as well as in many astronomical observatories and industrial and university 
laboratories throughout the world. 

INPUT, 2f OUTPUT,f 

I 
—vj)ifb— 

I-'ig. 12—Frequency divider for ratio TWO employing regenerative modulation. 

Although the first results were quite satisfying, it was the immediate 
interest of all concerned to find out what improvements could be made, 
and these were not long in coming. As in the case of the pendulum already 
discussed, or with any other oscillator, the constancy of rate obtainable 
depends on two kinds of properties: those which concern the inherent 
stability of the governing device itself, and those concerned with the means 
for sustaining it in oscillation. Some of the factors in the two groups are 
interrelated and must be considered together. 

The improvements in quartz oscillator stability therefore have been 
concerned with two main endeavors, namely that of cutting and mounting 
the resonator so as to realize effectively the unusually stable properties of 
quartz crystal itself, and that of coupling it to the electrical circuit in such 
a way as to avoid the effects of such variables as power voltage variation, 
aging of vacuum tubes, and the like, on the controlled frequency. The 
latter effects were not obvious at first because the temperature coefficient 
and the effects of friction and change of position in the mounting caused 
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variations of considerably larger magnitude. Tt was natural, then, to 
see what could he done about these effects. 

Zero Temperature Coefficient of Frequency 

With the knowledge that X-cut resonators had negative coefficients, 
frequently as large as thirty parts in a million per degree C, and that Y-cut 
resonators in general had positive coefficients, often in excess of a hundred 
parts in a million per degree, the author undertook to make resonators of 
such shape that the oscillations would occur in both modes simultaneously, 
and so combine the coefficients, in the hope that the resultant could be 
made zero.77 

The first experiments, made on two series of resonators both yielded 
encouraging results. The first was a series of rectangular X-cut plates of 
varying thickness shown in Fig. 13. The second was a series of three circular 
discs of different diameters, all being cut with the large surfaces in the plane 
of the Y and Z axes. The three discs were made from the same material, 
each smaller one being trepanned from the previous one after complete 
measurements had been made upon it. The set of circular crystals remain- 
ing after these tests were completed is shown in Fig. 14 and the slab from 
which they were cut is shown assembled with the original large crystal in 
Fig. 15. 

Subsequent tests showed that the annular pieces could be designed for a 
low or zero coefficient and such a shape shown in Fig. 16 was employed for 
a number of years in the Bell System Frequency Standard in New York 
City78. As described in this reference, the reason for using the ring in 
preference to the solid disc or rectangular plate was in the convenience of 
mounting. The rings were formed with a ridge in the central plane of the 
hole so that they could be supported on a horizontal pin thus providing a 
one-point support at a position where the vibration is very small. The rings 
used in this first application of zero coefficient quartz resonators have been 
called "doughnut" crystals for obvious reasons. In Fig. 17, George Hecht 
is shown making a final adjustment, by "lapping" with fine abrasive, on one 
of the four original zero-coefficient ring crystals. Mr. Hecht made all four 
of these resonators, as well as many others of various shapes and sizes used 
in the early experiments in this work. 

Supported as described, the rings hang in a vertical plane and, as first 
used, they were supported freely between solid electrodes rather closely 
spaced to the flat surfaces. The small amount of free motion relative to the 
electrodes, inherent in this sort of mounting, caused occasional changes in 
frequency if the support were disturbed, which at times would be as large 
as one part in ten million. To avoid this difficulty, other ring crystals were 
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constructed with a sort of narrow shelf at the central plane that could be 
mounted in a horizontal plane on pin supports. The two methods of sup- 
porting the ring resonators are illustrated in big. 18. Such resonators were 

Pig 13—Set of rectangular quartz resonators made for zero temperature coefficient stud}'. 

Fig. 14—Circular pieces remaining after temperature coefficient 
rings. 

study of quartz discs 

•- 

Fig. 15—Large crystal and slab from which low coefficient studies were made. 

used in the Bell System Frequency Standard until 1937 when they were 
replaced by an entirely different type that will be described later. 

The rings were adjusted to oscillate at 100,000 vibrations per second, 
the frequency which has been adopted in nearly all oscillators of extremely 
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Fig. 16—100-Kilocyclc quartz ring resonator with zero temperature coefficient. 
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Fig. 17—George Hecht finishing the first set of zero-coefficient quartz rings. 

constant rate. All of these rings were constructed to have a zero frequency- 
temperature coefficient at a temperature in the neighborhood of 40 degrees 
C, the frequency being a maximum at that point on an approximately para- 
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bolic characteristic. The zero temperature coefficient makes it possible to 
practically eliminate frequency changes caused by ambient temperature 
changes since, by relatively simple means, it is possible to control the resona- 
tor within ± 0.01 degree C, at the temperature for which the effect is sub- 
stantially nil. The reduction of the effect of temperature, and the stabiliza- 
tion of the mounting, increased the stability of frequency control and oscil- 
lator-clock rate beyond anything that had ever been obtained before. 
Subsequent improvements that will be described later produced even greater 
stability. 

The Crystal Clock 

The striking stability of the crystal oscillator clock led the author to pro- 
pose the general use of this type of clock for precision timekeeping, the chief 
emphasis having been previously on the derivation of constant frequency. 
A paper entitled "The Crystal Clock,"79 presented before the National 
Academy of Sciences in April, 1930, described such a clock and pointed out 
some of its properties and likely uses. 

Chief among these properties, of course, is its inherent stability and rela- 
tive freedom from extraneous effects. The quartz crystal clock is not 
dependent on gravity and, without any compensating adjustment, will 
operate at the same rate in any latitude and at any altitude. This property 
already has been useful in the measurement of gravity and gravity gradient 
by measuring the rates of pendulums on land and at sea.80'81 

The crystal clock is practically immune to variations in level and shock 
and can be used as an instrument of precision under conditions entirely 
unsuitable to pendulum clocks. For this reason it performs satisfactorily 
in practically any location, including earthquake zones, and may be used in 
transit as in a submarine, in an airplane or on the railroad. 

ELECTRODES 

Fig. 18—Methods of mounting quartz ring resonators. 
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Some of the outstanding properties of the quartz oscillator clock were dis- 
cussed in 1932 by A. L. Loomis and W. A. Marrison82, in relation to a series of 
experiments comparing the performance of quartz clocks at Bell Telephone 
Laboratories in New York and a set of synchronome free-pendulum clocks 
operating in The Loomis Laboratory in Tuxedo Park, about fifty miles away. 
The comparison was effected through a circuit maintained between the two 
laboratories over which a 1,000-cycle current controlled by a crystal in New 
York was used to drive the Loomis Chronograph83 in Tuxedo Park. During 
part of the time, signals from the clocks were sent back over the same circuit 
and recorded on the Bell Laboratories' Spark Chronograph81. 

The quartz oscillator assembly at the Bell Telephone Laboratories at the 
lime of these experiments is shown in Fig. 19. The four ring crystals in their 
individual temperature-controlled "ovens' are mounted under hermetically 
sealed bell jars to avoid the effects of ambient temperature and atmospheric 
pressure changes. The vacuum tube oscillator circuits are immediately 
below the bell jars; and the control, monitoring and power supply equipment 
in the remainder of the space. 

One of the most interesting results of these cooperative experiments was 
the measurement of a periodic variation in the rate of the pendulum clocks 
in phase with the lunar daily cycle. The amount of this daily variation is 
very small, being only a few tenths of a millisecond, but readily observable 
in comparison with a stable rate standard that does not vary with gravity. 

Furlher Refinemcnls in Quartz Clocks 

The spectacular results from the use of the quartz crystal clock up to this 
time, about 1932, were due in part to its novelty and in part to the fact that 
it is quite independent of some of the variable factors that affect conventional 
precision clocks, including gravity itself upon which the rate of all pendulum 
clocks depends. The remarkable stability of present day quartz oscillators 
and clocks is the result of a series of developments and refinements extending 
over a number of years. 

As mentioned previously, the factors that cause departure from constant 
rate in the completed operating device fall into two distinct classes, namely 
those which concern the inherent or natural frequency of the resonator itself, 
and those which concern the means for driving it at that inherent rate. 

The first class comprises all those properties of the mounted resonator 
which tend to relate its inherent rate to ambient conditions such as tempera- 
ture, atmospheric pressure, change of position and vibration, and to the 
passage of time—that is, aging. Since the final stability cannot exceed the 
inherent stability of the mounted resonator itself, its study is of prime 
importance. 
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The second class comprises properties of the means for sustaining oscilla- 
tions in such a resonator which relate the resulting actual rate to variations 
in the electrical circuits, in the power voltages, in vacuum tubes and other 
like effects. In the limit, it is the hope that the net result of all such effects 
can be eliminated so that the stability of the cjuartz crystal alone will remain 
the sole governing factor. This is the goal, and the inherent stability of the 
substance, quartz crystal, is the limit toward which the stability of the 
quartz crystal clock will approach but cannot exceed. 

The development of the quartz resonator and its mounting for numerous 
applications is described in some detail by Raymond A. Heising and his 
collaborators85 in their recent book, "Quartz Crystals for Electrical Circuits". 
Of all the types of resonator described in this work the one having the most 
extensive use at the present time, for quartz clock installations and for 
other applications of comparable accuracy, is the GT crystal resonator 
developed by W. P. Mason8". This resonator is cut from quartz crystal in 
such a way that the positive and negative coefficients are effectively neutral- 
ized over a range of about 100 degrees C, so that in any part of this range the 
resulting temperature coefficient of frequency is not more than one part in a 
million per degree C. With suitable precautions in manufacture, the 
tangent at the point of inflection in the frequency-temperature curve may be 
made horizontal, which means that the temperature coefficient may be made 
substantially zero over a considerable range of temperature. 

The GT crystal resonator therefore introduces two significant advantages 
in timekeeping, namely that greater accuracy of rate may be obtained with a 
given accuracy of temperature control and that the value at which the 
temperature is controlled may be chosen in a considerable range. In fact, 
without any temperature control at all, the rate of a clock regulated by 
such a crystal may be accurate to a tenth of a second a day over an ambient 
range of 100 degrees C. Among the many quartz clock installations now 
using the GT resonator, all or in part, are the Royal Observatory at Green- 
wich, the British Post Office, the V. S. Naval Observatory and the U. S. 
Bureau of Standards. 

One of the chief sources of variation in rale of quartz oscillators, in the 
early stages of their development, was in the means for mounting and in the 
electrical circuit connections. As mentioned previously, any variation in the 
effective resistance or in the effective mass or stiffness of a resonator has a 
direct effect upon its rate of oscillation. The problem reduces to that of 
supporting the resonator so that the frictional losses are small and constant 
and so that the coupling to the electrical circuit is as nearly as possible 
invariable. 

The mounting of quartz crystal units is discussed at length by R. M. C. 
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Greenidge in Chapter XIII of Mr. Heising's book referred to above.8' The 
most satisfactory means by far that has been found for mounting crystals of 
the GT type is that of actually soldering them to thin supporting wires by 
means of small discs of silver deposited on the crystal at its nodes. This 
method serves the double role of supporting the crystal and of providing 
electrical connection to metal electrodes plated on the crystal. Resonators 
so supported may be made almost immune to mechanical shock and will con- 
tinue in satisfactory operation through accelerations of several times g. 
Nearly all crystals which vibrate in a long dimension are now mounted in 
this way. One manufacturer produced about 10,000,000 crystals of a single 

>r. 
'Mif. 

Fig. 20—Pressure-mounted GT crystal for sealing in a metal envelope. 

type so mounted in a three-year period during World War II. Prior to the 
use of wire supports, such crystals were "pressure mounted" by means of 
small metal jaws which clamped from opposite sides at the nodes. A GT 
crystal mounted in this way is shown in Fig. 20. Crystals so mounted are 
still in use in the Bell System Frequency Standard, being the first of the GT 
crystals to go into actual service. This type of mounting is not quite so 
stable as the wire mounting and is somewhat more difficult to manufacture. 
One of the wire-mounted crystals such as developed for LORAN and other 
oscillators of comparable accuracy is shown in Fig. 21. 

The plating of electrodes on the crystal surface has led to increased 
stability of frequency control, chiefly because the coupling to the electrical 
circuit may be kept more nearly constant thereby. When separate elec- 
trodes were employed, the variation in spacing was always found to be a 
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source of instability, as mentioned previously in relation to the use of the 
first ring crystals. Plating of crystals is not a new idea but the application 
to quartz resonators of high () requires a great amount of technical skill in 
order to obtain coatings which are mechanically and chemically stable and 
which utilize the minimum of added material. The use of too much metal 

will, of course, impair the resonator by increasing its rate of energy dissipa- 
tion and probably its aging rate. The metal most often used for electrodes 
is silver, although gold and aluminum have been used in special cases. Evap- 
oration in vacuum has been found to be the most satisfactory method for 
the actual plating, giving very adherent coatings and being subject to 
precise manufacturing control. The art of plating quartz resonators is 
discussed in detail by H. \V. Weinhart and H. G. Wehe in Mr. Heising's 
book. 

Fig. 21—Wire-supported GT crystal sealed in a glass envelope. 
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Several other factors have had an important bearing on the final stability 
of quartz resonators. One of the most important of these is the care that 
must be exercised during fabrication in order to avoid setting up stresses in 
the material that subsequently can be relieved only slowly. By slow grind- 
ing with adequately fine abrasive such effects can be kept very small. 
Etching with hydrofluoric acid has resulted in much further improvement 
through the removal of stressed surface material and all potentially loose 
material which, formerly, often caused anomalous aging effects. Artificial 
aging by heating, and thorough cleaning before and after plating, have also 
contributed greatly to the final stability of the crystal unit. The resonator 
finally is mounted in high vacuum in a glass envelope in order to eliminate 
losses due to sound radiation and friction, and to protect it from surface 
contamination and chemical action. 

CL 10 
z _z 
UJO n U)_1 0 

2-1 

1 ORDINARY 
X-CUT 

GT 

' DOUC HNUT s 

0 (0 20 30 40 50 60 70 80 90 IUU no 
TEMPERATURE IN DEGREES CENTIGRADE 

Fig. 22—Frequency-temperature characteristics for three types of quartz resonators. 

Even the most perfect quartz resonator, in an ideal mounting, is unable 
to keep time unless it is maintained in oscillation; and, like a pendulum, its 
rate will depend in large part on the manner in which it is driven. The same 
general principles apply to both cases, except that usually a pendulum is 
driven by impulses which should be applied when the velocity is maximum, 
while a quartz resonator is usually driven by a sinusoidal force arising 
through the piezoelectric coupling, and so phased that the maximum force 
occurs when the velocity is maximum. This, in fact, is a required condition 
for maximum rate stability. The graphical analysis of Fig. 5 applies equally 
for the case of sine wave drive, since the sine wave can be considered as the 
summation of an impulse at its peak and of sets of pairs of impulses sym- 
metrically disposed with respect to it. Obviously, the phase errors for each 
such pair of impulses cancel, bringing us back to Airy's condition, but with 
the broader view that, for the feedback or driving wave to have minimum 
effect on the rate of an oscillator, the force wave must be in phase with the 
velocity of the resonator. 
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Numerous vacuum tube circuits have been proposed and used for main- 
taining quartz resonators in oscillation, some of which are illustrated in Fig. 
8. The one among these which at present most nearly approaches the ideal 
is that developed by L. A. Meacham, known as the Bridge Stabilized Oscil- 
lator.87 This oscillator, in its original form or with slight modifications, 
is now used almost universally in England and America where the maximum 
stability of rate control is required. 

In the bridge stabilized oscillator, the feedback path is through a Wheat- 
stone bridge with the crystal in one arm and with resistances in the other 
three. The frequency of oscillation becomes that for which the reactance 
of the crystal approaches zero; the bridge can only be balanced when the 
crystal behaves electrically like a resistance. The unbalance voltage from 
the bridge is fed back into the amplifier, which should provide a relatively 
high gain, as will appear. The great frequency stability of this oscillator 
depends upon the fact that, in the neighborhood of balance, a small phase 
shift in the resonant elements causes an enormously larger phase shift in 
the unbalance voltage. But the actual amount of this unbalance phase 
shift is limited by the fact that it must be equal and opposite to that in the 
amplifier in order for oscillations to be sustained. This insures that at all 
times the phase shift in the crystal is much smaller than that occurring in the 
amplifier which itself can be made small by suitable design. The ratio of the 
phase shift of the bridge output to that of its input increases as balance is 
approached, making it possible to practically eliminate the effect of phase 
shift in the amplifier simply by increasing the amplifier gain. Most of the 
variable factors in the amplifier of an oscillator circuit affect the controlled 
frequency through the phase shifts caused by them. It is evident, then, 
that the bridge circuit, which permits only a small fraction of such phase 
shifts to become effective at the resonant element, will substantially free the 
resonator from variable effects in the amplifier and allow it to control a rate 
determined almost wholly by its own properties. 

When the above condition is attained and the crystal resonator, when 
oscillating, acts in the circuit like an electrical resistance, it acts that way 
because the velocity is in phase with the applied mechanical force, which, as 
has been stated, is the condition for most stable rate control. In the crystal 
oscillator, this ideal condition is obtained simply by the automatic balancing 
of a bridge circuit, accomplishing in a most elegant manner the equivalent, 
in the case of a pendulum, of applying driving pulses at the exact center of 
swing. 

The bridge-stabilized oscillator includes also an automatic control of 
amplitude. The variation of frequency with amplitude is very small and 
in no way comparable with the "circular error" of an ordinary pendulum, but 
in the quest for the highest attainable stability it must be taken into account. 
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The control of amplitude is obtained by the use of a resistance with positive 
temperature coefficient in the bridge arm conjugate to the crystal, chosen so 
as to have exactly the right value to balance the resistance of the crystal when 
a specified current is flowing in the bridge. If larger than normal current 
flows momentarily the resistance is increased, which decreases the feedback, 
thus stabilizing the amplitude at some predetermined value. For the 
highest stability it has been found advantageous to operate the crystal at a 
very small fraction of the amplitude that normally would be used in a power 
oscillator. In power oscillators the crystal sometimes is subjected to strains 
near the fracture point, which is not a favorable condition for precision 
control. The actual amplitude of motion of the crystal is of course extremely 
small. In the GT crystal, as currently used, the maximum change of 
dimensions during oscillation amounts to only about ±0.0006 per cent. 

The improvements in quartz resonators, and in their driving circuits, have 
resulted in the construction of quartz crystal clocks that will keep time with 
an accuracy better than 0.001 second a day, so that measurements of time 
of great interest and value to astronomers and geophysicists can now be made 
with an accuracy hitherto unattainable. 

Facility o f Precise Time Measuremetil 

In making such precise measurements of time it is of importance, second 
only to the inherent accuracy of the standards themselves, to have available 
means whereby they can be carried out with facility and within a reasonable 
time interval. The ease with which precise time measurements, and precise 
rate comparisons, can be made is an outstanding feature of the quartz 
crystal clock and already has an important bearing on the use of this type of 
clock in astronomical observatories. This facility depends chiefly on two 
properties of the oscillator clock: first, that continuous rotation of controlling 
and measuring devices can be produced having the stability of the primary 
control element; and, second, that the period of the control element, and 
therefore of alternating current Controlled by it, is of very short duration. 

The first of these, through simple devices controlled directly from the 
electrical output of the crystal oscillator, with suitable frequency reducing 
equipment, permits of ready comparison between any time phenomena in 
the form of electric or light signals, and of the derivation of precisely con- 
trolled time signals for radio transmission and for laboratory experiments. 

Of prime importance among these comes the means for rating crystal clocks 
in terms of stellar observations using meridian transits or the photographic 
zenith tubeHS. It is possible to control a mechanism in the time-star observ- 
ing equipment so that the difference between a star position predicted from 
the clock rate, and the actual star position, can be observed directly or re- 
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corded photographically with great accuracy. The difference thus observed, 
after allowing as well as possible for known systematic errors, is the best 
known single check on the time indication of a clock. A series of such 
observations constitutes the best known measure of the rate of a clock. 
The great value of the method is that the comparisons are made directly 
without the need of any intermediate mechanism thus eliminating a large 
part of the "personal error" of observation. The probable error of observa- 
tion as derived from a number of such measurements on a good night may be 
as small as one or two milliseconds89. The average rate of a clock thus 
determined depends on the number of days over which the rate is computed 
and in a two-week period may be compared with the rate of the earth, that 
is, with astronomical time, with an accuracy of one part in one hundred 
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Fig. 23—The use of an eleclrical phase shifter to adjust the timing of a signal. (From 
'The Crystal Clock". 19301 

million or about a third of a second a year. All this, of course, is contingent 
on the stability of the quartz clock, which, except for long-time effects, may 
be demonstrated independently. 

A rotating mechanism controlled directly from a crystal clock is admirably 
adaptable to the transmission of precise time signals. Rhythmic signals of 
any desired structure can be produced readily by means of cams, special 
generators, or interrupted light beams, and the timing of those signals can 
be adjusted as precisely as the clock lime is known by simply advancing or 
retarding the signal generators. Such adjustment is attained readily by 
means of differential gearing in the mechanical system, or by means of con- 
tinuous phase shifters in the electrical driving circuit. The use of electrical 
phase shifters for this purpose was first proposed in "The Crystal Clock" 
paper79 previously mentioned. Figure 23, taken from that paper, illus- 
trates the manner of using the phase shifter with one type of time signal 
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generator. Extremely fine control of timing is possible by means of the 
electrical phase shifter since it can be included in the circuit at any stage of 
frequency subdivision. If, for example, it is used at the lowest frequency, 
assumed to be 1,000 cycles, one complete turn of the phase shifter dial will 
cause a progressive time adjustment of one millisecond. When used at a 
higher frequency, the precision of adjustment is increased correspondingly. 
Continuous phase shifters suitable for such purposes were proposed as early 
as 1925.90 The idea of utilizing continuous phase shifters for the purpose 
of making controllable changes in the frequency or indicated time in a 
standard time and frequency system91 was first disclosed in a comprehensive 
patent filed in 1934 and issued to Warren A. Harrison in 1937. The most 
elegant type of phase shifting element suitable for such purposes was de- 
veloped by Lamed A. Meacham.92 This has been used in many transmis- 
sion systems requiring continuous variation of phase such as in variable 
direction radio beam systems 93 and LORAN. 

The conversion between mean solar time and sidereal time, or for that 
matter between any time systems, may be accomplished very easily with the 
quartz clock. Having a rotating device, such as a dial or commutator, 
whose rate corresponds to mean solar time, it is only necessary to apply a 
gearing or the equivalent to obtain another rate corresponding to sidereal 
time. It has been shown by F. Hope-Jones94, Ernest Esclangon93 and 
others how any desired ratio, such as the ratio of the rates of mean solar 
and sidereal clocks, can be obtained with any required accuracy by gearing. 
A combined mechanical and electrical method was proposed in the "C rystal 
Clock" paper by means of which this ratio can be realized with an accuracy 
of one part in 10" using simple gearing and a continuous phase shifter. 

The potential value of the factors just discussed in precision time studies 
was realized early in the crystal clock development. I his was indicated in 
the "Crystal Clock" paper written in 1930 which closed with the following 
paragraph: 

"It would thus be possible to combine, in a single system mean solar and sidereal lime- 
indicating mechanisms, means for rating the clocks in terms of time star observations and 
means for transmitting time and frequency signals with the absolute accuracy of the time 
determinations." 

It is of some interest to compare this prediction with the present trend of 
development. In describing the quartz clock installation at the Royal 
Observatory in Greenwich, Sir Harold Spencer Jones stated89 in 1945: 

"The quartz clocks being installed at the Royal Observatory are all adjusted to give a 
frequency of approximately 100,000 per mean lime second. By suitable gearing, the syn- 
chronous motor can give impulses every sidereal second and tenths of seconds. Thus, the 
same clock can be made to serve both as a mean time and as a sidereal time standard. 
All time signals are, of course, sent out according to mean time; the sidereal time is re- 
quired only for the actual time determination so that it is not necessary for all the clocks 
to have the gearing to give sidereal seconds." 
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The importance of the convenient methods for measuring time and time 
interval inherent to the crystal clock is emphasized by the fact that some 
observatories employed crystal clock mechanisms in connection with stellar 
observations and in the transmission of time signals before they were used in 
the actual time keeping department88. 

The second property contributing greatly to the convenience of precise 
time measurements is the relatively very short period of the quartz clock 
control element. The chief advantage lies in the extreme accuracy with 
which the rates and indicated times can be compared by electrical methods. 
An example will suffice to illustrate this point. 
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Fig. 24—Device lor comparison of oscillator rales accurate to 1 part in 10,000,000,000 
(From "High Precision Standard of Frequency", 1929.) 

Since the rale of a crystal clock is the rate of oscillation of the crystal or of 
the current driving it, it is only necessary, in comparing clock rates, to 
measure the relative frequencies of the oscillators concerned. This can be 
done by any of the standard methods for frequency comparison96 but, in the 
case of quartz clocks, since in general the primary frequencies are high and 
are nominally the same, special methods of extreme accuracy can be em- 
ployed. The apparatus first designed for the ultra-precise comparison of 
quartz oscillators and capable of an accuracy of one part in 1010 was de- 
scribed by Marrison in 1929.78'97'98 The principle of its operation is 
shown in Fig. 24, reproduced from the paper "High Precision Standard of 
Frequency". 

Two oscillators to be compared were adjusted so as to differ by about one 
cycle in ten seconds. The problem reduces to that of measuring the beat 
frequency, nominally 0.1 cycle per second, with as great accuracy as possible. 
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This was done by measuring the duration of each beat by a photographic 
method. By means of a modulator, a relay, and induction coil, a spark was 
produced at the spark gap at a definite phase of each beat period. The 
spark illuminated the edge of a transparent scale rotating 10 revolutions per 
second under control of one of the oscillators, Oi. The transparent scale 
contained 100 numbered divisions, which therefore represented milliseconds 
in any time interval so measured. Each time a spark occurred, the portion 
of scale illuminated was registered on photographic film. Thus, the dura- 
tion of each beat was registered photographically with an accuracy of one 
part in ten thousand. Since the beat frequency is one millionth of the high 
frequency, the resulting comparison of high frequencies is precise to one part 
in ten thousand million, or 1 in 1010. Actually, it was possible to estimate 
fractions of a scale division which gave greater precision of measurement 
than was required in the study of oscillators of that date. 

L. A. Meacham in 1940 improved upon this method of frequency com- 
parison by substituting an electronic relay for the mechanical relay, and by 
using a discharge lamp instead of a spark for illumination. He used the 
improved apparatus" for studying the behavior of the then new and highly 
stable bridge stabilized oscillators. 

Still further improvements in the general method have been reported by 
H. B. Law using a "phase discriminator" to trigger off a special chronometer, 
consisting of a decimal scaling counter, and thus avoiding the photographic 
process100. The scaling counter as used here counts the number of cycles 
of a 100,000-cycle input timing wave that occur during any one beat between 
the two frequencies being compared, and registers that number, in scale of 
ten, on a system of dials that can be read directly. In comparing frequencies 
that are free from interference, the accuracy of comparison by this means is 
limited chiefly by the precision with which the "phase discriminator" can 
mark the beginning of successive beats. An accuracy of one part in 1011 is 
claimed. This is one of the rate comparison means employed in the fre- 
quency and time standards of the British Post Office and in measurements 
involving the quartz docks of Greenwich Observatory and the National 
Physical Laboratory. 

The scaling counter is a particularly useful device for the precise measure- 
ment of any time or rate phenomena that can be reduced to the measure- 
ment of short time intervals. The counter idea originated some years ago as 
a means for counting alpha-particles and other phenomena associated with 
radioactivity studies, one of the original devices being the well known 
Geiger-Muller counter. The basic scaling circuit, used in many counters, 
was proposed in 1919 by W. H. Eccles and F. W. Jordan. An interesting 
history of counting circuits as applied primarily to the counting of electron 
and nuclear particles has been written by Serge A. Korff in his book on that 
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subject published in 1946."" The early scaling circuits operated on the 
binary system, but recently various circuits have been developed that give 
the count in scale-of-ten notation with certain advantages, chiefly that of 
convenience, associated with the common decimal system of notation. 
A discussion of some modern binary and decade electronic counters"12 was 
published by I. E. Grosdoff in September, 1946. 

Methods of measurement such as this, and the stable properties of the 
quartz clock which make them desirable, are of importance in the precise 
measurement of time because the nature of variations in rate, so small that, 
if continued unchanged they would accumulate to only one second in a 
thousand years, may be studied under controlled conditions in the labora- 
tory, and with such facility that a comparison with this precision can be 
made every ten seconds. 

In a simpler manner, the short period of one oscillation of the quartz 
oscillator is of direct interest to the astronomer in connection with means for 
the intercomparison of his clocks in time. This reduces simply to counting 
the number of cycles gained or lost by one oscillator, referred to another, 
and may be accomplished in a great number of ways, yielding, on the basis 
of whole numbers of cycles, an absolute accuracy of time comparison of 
O.OOOOl second. 

An elegant method for accomplishing this"", which also indicates auto- 
matically which clock is fast or slow, employs a special vacuum tube circuit 
to produce a polyphase current having the frequency however small of the 
difference between any two oscillators nominally the same. This polyphase 
current is used to operate a special synchronous motor whose angular posi- 
tion corresponds at all times to the phase angle of the vector representing the 
polyphase current. This relation holds all the way to zero frequency differ- 
ence, in which condition the angular position of the motor, now at rest, 
indicates the phase relation between the two high frequencies. If the beat 
frequency goes through zero, the motor reverses. By this means, it is 
possible with very simple equipment to set up dial indicators showing con- 
tinuously the time comparisons between any group of quartz clocks, taken 
in pairs, with an absolute accuracy of O.OOOOl second. Of course, to operate 
other indicators, contacts, etc. from this device is a simple mechanical 
problem. 

The principle of operation of the polyphase modulator is illustrated in 
Fig. 25, which shows one of the many possible forms of this device. Other 
modulator elements than vacuum tubes are used in some applications. In 
the form shown here it is necessary only to assume that the vacuum tubes 
produce second-order modulation, the lowest-frequency component of which 
is employed. If inputs at the two frequencies/i and/*, which are nearly 
the same, are delivered into the two balanced modulators .4 and B in such a 
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Fig. 25—Polyphase modulator for the absolute comparison of two oscillators of nearly 
the same frequency. 
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way thai there is a 90-degree phase shift between the two input voltages for 
one of the frequencies, the lowest-frequency component appears as a sinusoidal 
current in the output circuits 1, 2, 3 and 4 separated in phase by 90 electrical 
degrees in cyclic rotation. The principal output, therefore, is a 4-phase 
current having the frequency of the difference between the two inputs. If 
the magnetic circuits are arranged geometrically as shown, the resulting 

O 

♦ 

Fig, 27—Spark chronograph—close view of mechanism. 

magnetic vector will rotate clockwise or counterclockwise depending on 
which frequency is high, or will remain stationary, indicating the phase 
relation, if the two frequencies are exactly equal. 

Motors have been designed and are commercially available suitable for 
operating synchronously from such polyphase modulators, and form an 
excellent basis for the intercomparison of quartz oscillators and clocks with 
ultra-high precision. 

For making records of time comparisons the spark chronograph8-1 shown 
in Figs. 26 and 27 has served a very useful purpose, combining in a single 
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convenient instrument the means for comparing recurrent time phenomena 
with an accuracy of a millisecond or two on a continuous chart which shows 
the records for an entire week. Electrical impulses, related to the time 
phenomena to be recorded, operate trigger tubes which discharge condensers 
through the primary of an induction coil and cause sparks to jump from 
a rotating spiral through a special chart paper having a dark colored backing 

Fig. 28—Photomicrograph of single spark record showing nature of recording on wax- 
coated chart paper. X 100 

and coated with a very thin layer of white wax. As the chart paper moves 
slowly under the spiral, corresponding to the time abscissa, the succession 
of sparks produces readily visible traces consisting of rows of tiny holes with 
small areas around them where the wax is melted revealing the dark back- 
ground. The holes are so small as to be scarcely visible, the darkened areas 
constituting the visible trace. Figure 28 shows an enlargement of the 
record of a single spark illustrating the nature of the marking. A recorder104 

very much like the Bell Laboratories' spark chronograph is used currently 
as part of the standard frequency and time broadcast equipment of the U. S. 
Bureau of Standards. 
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Applications of Quartz Clocks 

The many useful properties of the quartz crystal clock have been the 
reason for its wide and expanding application for the precise measurement 
of time and rate. 

First in historical order was the application to the measurement and con- 
trol of frequency in communication. In this, the clock, through comparisons 
with astronomical time, served as the means for determining the frequency 
controlling it, the stability from the outset being great enough over intervals 
of a day or more so that the average rate, as determined by daily checks with 
time signals, was a very close approximation to the instantaneous rate at 
any time intervening. The first of these clocks, already referred to7", was 
constructed in 1927 at the Bell Telephone Laboratories, in New York City, 
primarily for use as an accurate standard of frequency. Since that first 
experiment, three subsequent installations have been built in replacement 
with progressively improved performance. The standard now in operation 
(1947) was installed in 1937, using the first laboratory model GT crystals 
and the first set of four bridge-stabilized oscillators, and has been in opera- 
tion continuously since that time. Two of the four oscillators, mounted in a 
temperature controlled booth, are shown in Fig. 29, and part of the auxiliary 
equipment, including a clock dial, a spark chronograph and some monitoring 
equipment, is shown in Fig. 30. This apparatus serves as the standard for 
precise measurements of frequency and time throughout the Bell System and 
is used to regulate the telephone Time of Day Service in New York City. 
It is the standard of reference for the electric light and power services in 
Metropolitan New York1"5, and is used for a number of other similar services, 
distributed through the medium of a submaster installation1"6 maintained 
by the Long Lines Department of the American Telephone and Telegraph 
Company. The original oscillators in this submaster installation were 
controlled by electrostatically-coupled 4000-cycle steel tuning forks in vacua 
but recently have been replaced by improved oscillators controlled by 4000- 
cycle bi-morph quartz resonators. 

A clock shown in Fig. 31, which is on display in a window of the American 
Telephone and Telegraph Company at 195 Broadway, is controlled from 
this source. It is sometimes called "The World's Most Accurate Public 
Clock". 

The facility with which standard frequency and time services can be 
provided and distributed is an outstanding feature of the quartz clock 
development. Such services, having the accuracy of the primary controlling 
standard, may be provided anywhere that can be reached through a suitable 
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communication channel. As an example of this, a new primary standard 
equipment is being constructed for installation at the Murray Hill, New 
Jersey location of Bell Telephone Laboratories, the services of which will be 
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Fig. 29—Two of the four quartz oscillators of the Bell System Frequency Standard, 
1937 to date. 

made available through permananet wiring to all departments concerned. 
A number of frequencies in the range from 60 to 10,000,000 cycles, all con- 
trolled from the same crystal source, will be made available at some thirty 
locations at the Murray Hill Laboratories, as well as to other laboratories 
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of the Hell System and, through the Long Lines Department, to outside 
agencies. 

A considerable number of quartz clocks have been built and used in 
laboratories and observatories all over the world, some as standards of 

Fig. 30—Clock dial and monitoring equipment associated with the Bell System Fre- 
quency Standard, 1937 to date. 

frequency, some as precise clocks, and others for general use in all measure- 
ments of rate and time. It would be impossible to mention all of these, for 
already there are many of them. But certain installations are of especial 
interest and will be discussed briefly. 
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When the Crystal Clock was first described as such in April 1930, the idea 
was discussed quite widely in Europe and America, and it was not long 
before the work was duplicated and extended in other places. The first 
outstanding application of the quartz clock to astronomy was made in 
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Fig 31—Display clock at 195 Broadway, New York. This clock, controlled by the 
Bell System Frequency Standard, shows the same time as that of the New York Telephone 
Time Service. 

Germany with the installation at the Physikalisch-Technische Reichsanstalt 
This was described by Scheibe and Adelsberger in 1932107 and ^T08, and 
reports of its splendid performance continued periodically. It was with 
this installation that it was possible for the first time to observe and measure 
variations in the earth's rate occurring over intervals as short as a few weeks. 
Previous measurements of such variations, involving studies of motion of the 
moon, the planets, and Jupiter's satellites, had required years to obtain 
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comparable information which, of course, by nature, could never reveal 
short-term factors. 

Soon after the inauguration of the quartz clocks at the Physikalisch- 
Technische Reichsanstalt, somewhat similar installations were made at the 
Prussian Geodetic Institute at Potsdam109, and at the Deutsche Seewarte in 
Hamburg110. The latter has been moved because of war conditions and is now 
the Deutsche Hydrographische Institut. The quartz resonators used in these 
installations are believed to be similar to those in Clocks III and IV in the 
Physikalisch -Technische Reichsanstalt installation except that some of them 
were made for 100 kilocycles instead of the original 60 kilocycles. They 
were made by the firm Rohde and Schwarz where also is maintained a quartz 
clock installation of extremely high precision 111. 

For a number of years the U. S. Bureau of Standards at Washington, D. C. 
has maintained a quartz clock installation for their extensive constant 
frequency and time services. The early history of this installation was 
described in some detail by E. L. Hall, V. E. Heaton and E. G. Clapham i i 
19.15.112 As is now well known, the Bureau broadcasts a number of precisely 
controlled carrier frequencies at all limes, all of which carry standard time 
and frequency modulations, including audible pitch standards and time 
signals. The audible pitch standards are 4000 cycles and 440 cycles, while 
the time signals consist of a succession of seconds pulses, continuous except 
for certain omissions for the purpose of identifying longer time intervals. 
All of these rates, including the carrier frequencies, are derived directly from 
crystal oscillators and are known so well that their accuracy as transmitted 
is estimated as one part in 50,000,000 at all times. Tim relative rates of the 
standard oscillators are compared and recorded continuously at the Bureau 
of Standards with an accuracy of one part in 10°. The time signals involved 
in these transmissions are so precise, and so convenient to use, that they 
may be employed for the high-precision intercomparison of quartz clocks 
across the Atlantic and for studies in astronomical time, heretofore difficult 
or impossible to accomplish by any other means. 

The present standard frequency and time service facilities at the U. S. 
Bureau of Standards, which have been instituted under the general direction 
of J. H. Dellinger, are described in recent separate articles113, 114 by Vincent 
E. Heaton and W. D. George respectively of the Bureau, both of whom have 
made very substantial contributions to this development. The transmitting 
station for the standard frequency broadcasts, which comprises a complete 
set of quartz oscillators and control and measuring equipment, is shown in 
Fig. 32. 

The absolute rates for the crystal oscillators at the Bureau of Standards 
are determined through cooperation with the U. S. Naval Observatory, also 
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at Washington, where time determinations of great accuracy arc made by 
means of a Photographic Zenith Tube and a set of quartz clocks. A con- 
tinuous precise check is maintained between these organizations by radio 
communication so that the Naval Observatory time signals sent out from 
NSS at Annapolis and other Xavy stations, and from WWW the Bureau 
of Standards radio transmitting station at Beltsville, Md., as well as all the 
carrier frequencies from Beltsville, are very accurately determined and 
maintained in agreement throughout. 

The time studies of the U. S. Naval Observatory up to 1937 are described 
in two important articles by J. F. Hellweg, then Superintendent of the 
Observatory. The first of these"5 in 1932 describes the state of the art just 
before the quartz clock entered the scene, and the second88 in 1937, already 
referred to, tells of some of the first improvements brought about by its use 
including the elegant method for making direct photographic time-star 
checks of the crystal clock rate by means of the Photographic Zenith Tube. 
Many of the advances involving the use of quartz clocks at the Naval 
Observatory have not as yet been published. 

The British Post Office and the National Physical Laboratory with labora- 
tories at Dollis Hill and Teddington respectively, in cooperation with the 
Royal Observatory at Greenwich, have done much the same sort of 
thing in England in relation to time and frequency measurements and broad- 
cast services as has just been described. Considering the number of crystal 
units among these organizations and the precise nature of the intercompari- 
sons maintained between them, this is probably the most extensive and 
elaborate quartz clock system in the world. In connection with Greenwich 
Observatory alone, the complete installation includes eighteen or more such 
clocks used in deriving the best possible mean rate from steller observations 
at Greenwich and from studies of other time observatories throughout the 
world. 

An outline description of the quartz clocks of Greenwich Observatory, and 
of their function there, has been discussed by Humphry M. Smith in Elec- 
trical Times116 (London) in March 1946. These clocks employ for the most 
part the GT cut crystal, first described by W. P. Mason, the bridge stabilized 
oscillator circuit developed by L. A. Meacham, and the regenerative modula- 
tor type of frequency dividers similar to those first developed by R. L. 
Miller. 

The accuracy of the quartz clocks exceeds that of the best pendulum 
clocks with the result that quartz clocks are now used exclusively in the most 
precise measurements of time. Some of the considerations"7 leading up to 
the adoption of quartz clocks at Greenwich were discussed in 1937 by H. 
Spencer Jones, Astronomer Royal. Since then, reports have appeared from 
time to lime by the Astronomer Royal89 "8 and others"9 concerning the 
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adoption and use of quartz clocks there. Some interesting sidelights on this 
"Precision Timekeeping Revolution" were written by 1'. Hope-Jones in two 
articles12" for the Horological Journal during the same year. The quartz 
clock itself, as developed by the British Post Office for Greenwich Observa- 
tory, was described121 in some detail by C. F. Booth in the P.O.E.E. Journal 
for July 1946. A more general treatment involving some of the same 
apparatus was presented122 by C. F. Booth and F. J. M. Laver in the I. E. E. 
Journal of the same month. 

■u. 

Fig. 33—Crystal chronometer for geophysical studies, consisting of 100 KC. GT-cul 
crystal, bridge oscillator, and frequency converters to derive precision 500-Cycle output 
to operate timing devices. 

An outstanding example of the versatility of the quartz clock has been its 
application to the measurement of gravity at sea. Knowing of its stable 
properties and its independence of gravity, Dr. Maurice Ewing in December 
1935, asked the Bell Telephone Laboratories whether a portable quartz 
clock could be made available for use during a proposed gravity measuring 
expedition by submarine in the West Indies. Since this was in line with 
experimental work already in progress at the time, the first portable "crystal 
chronometer", shown in Fig. 33, was assembled for this occasion, and was 
taken by Ewing and his colleagues in the U. S. Submarine Barracuda on the 
trip80,81 which began at Coco Solo on November 30, 1936. This was the 
first application of the GT crystal and the bridge stabilized oscillator in 



EVOLUTION OF QUARTZ CRYSTAL CLOCK 569 

portable equipment. This original crystal chronometer has been on several 
gravity-measuring expeditions and is still in active service, having been used 
again under Dr. Ewing's direction during the summer of 1947. 

Gravity determinations at sea are made by measuring the rate of a special 
triple pendulum that was invented by F. A. Vening Meinesz especially for use 
in unsteady environments123. Previously, the standard of rate had been 
the usual ship's chronometers, but Ewing found the crystal chronometer to 
be an improvement for his purposes, saying in part: ''This chronometer is not 
thermostatted, and temperatures in a submarine change greatly during a 
dive. No elaborate control over battery voltages was used. The cruise 
started in the tropics and ended in Philadelphia in mid-winter. It is highly 
significant that the interval between NAA-time and the chronometer-time 
never exceeded 0.6 second during the six-week's cruise and that the 
variation in this interval is very regular. The crystal chronometer has 
reduced errors in gravity-measurements at sea, due to the rate of the chro- 
nometer, to the point where they are negligible." 

Some years previous to the construction of the crystal chronometer, a self- 
contained quartz clock was made to illustrate the possibility of a compact 
assembly, but it was not sufficiently portable for the submarine expedition. 
This earlier clock was regulated by a quartz sphere such as used by 'crystal 
gazers'. The frequency of the sphere was not adjusted, but its natural 
frequency, which happened to be .1.1212, was adopted to operate a mean-time 
dial by the choice of a suitable gear train. Since that time much more 
compact assemblies have been built using more suitable crystals for control. 

The stable properties of the quartz clock have been useful in a number of 
cases requiring precise synchronization. Perhaps the most noteworthy 
among these is the application to Long Range Navigation known as LORAN. 
In this application, pairs of transmitting stations, usually on shore and sep- 
arated by accurately known distances, send out distinctive signals in syn- 
chronism. The time interval between these signals, as received by a ship, 
identifies the locus of all the points corresponding to that time interval. 
The set of curves corresponding to all feasible time intervals defines one of 
the coordinates in a two-coordinate system. The other coordinate is pro- 
vided in identical manner by another pair of shore transmitters (which 
may have one station in common with the first pair). The resulting coor- 
dinate system consists of two families of intersecting hyperbolas. From the 
geometry of these curves, and the constants of the signals, the complete 
figure bounded by the ship and the transmitters can be determined readily. 

The need for stability is evident from the fact that the relation between 
time error and location error is roughly 5 microseconds per mile. In some 
cases, location within a mile is highly desirable even at considerable dis- 
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tances. Sometimes the two shore stations, operating as quartz clock lime 
transmitters, must operate for hours without intersynchronization, which 
calls for very great constancy of rate. One microsecond per hour corre- 
sponds to one part in 3.6 X lO51. 

The precise synchronization of mechanical parts in remotely situated 
stations can be accomplished readily. For a number of years, the 5-band 
privacy system of the transatlantic radio telephone service has been thus 
synchronized, the apparatus at the American terminal being controlled by 
the Bell System Frequency Standard while that at the English terminal 
is controlled independently by similar equipment in the British Post 
Office. The accuracy requirement for this particular purpose is not 
very great. However, it has been found possible to maintain two or more 
rotating shafts at remote and independent stations so precisely controlled by 
independent quartz oscillators that they never depart, during hours of opera- 
tion, by more than one fifth of one degree of arc. 

A major project in which the quartz clock is destined to take an important 
part is that of making world-wide land and water surveys in order to locate 
more accurately boundaries and other features of the earth's surface. There 
would be applications to sea and air navigation and it would be of great 
value to geophysicists in studying the figure of, and changes in, the earth's 
surface. By the combination of a widely dispersed set of Photographic 
Zenith Tubes associated with quartz clocks and time signal means for com- 
munication, and with the powerful ranging techniques growing out of 
LORAN and RADAR, it should be possible to obtain a new order of ac- 
curacy in long distance surveying. 

The new order of accuracy of time measurement has made it possible for 
the first time to study directly the variations in longitude caused by the 
irregular wandering of the poles. These are small effects and heretofore 
could only be determined by inference from observations of apparent 
latitude variations at remote stations. With the added new techniques 
it should be possible to learn a great deal about these and other phenomena 
related to real or apparent variations in longitude. 

Two other possible applications, involving the precise control of angular 
movement so readily obtainable with synchronous motors operated from 
quartz crystal controlled alternating current, are of considerable interest. 
The first is that of operating the right ascension control of a telescope 
directly from the amplified output of a crystal-controlled low frequency. 
Vacuum tube amplifiers and synchronous motors are commercially available 
with which this could be accomplished by suitable gearing. In addition, of 
course, it would be necessary to include auxiliary controls to allow for 
atmospheric and other transient effects, and for obtaining rates of motion 
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other than sidereal. For small and slowly changing effects this could be taken 
care of very simply by means of electrical circuits now well known for adding 
or subtracting small changes in the control frequency. 

The other application refers to a suggestion made by the author a few 
years ago12-1 for the measurement of gravity, and changes in gravity, by 
comparison of the forces Mg and Mu-R. The proposal was based on the 
idea that oj can be measured or produced with an accuracy two or more 
orders greater than required, and that the problem reduces to that of balanc- 
ing two forces and of measuring a linear displacement. The physical set-up 
would be some form of conical pendulum driven at constant angular velocity 
about the vertical axis under control of a crystal. Some such arrangements 
are shown in the reference. 

Future Possibilities 

It is part of the nature of a scientist to extrapolate ahead of any current 
development and to wonder what lies beyond. That feeling is certainly 
justified in the field of lime measurement, for the major advances have 
taken place in so short a period and so recently, as compared with the 
thousands of years during which Man has been time-conscious in some 
degree, that it is reasonable to expect continued advancement for many years 
to come. Such advancement may come as improvements and refinements 
in existing techniques, or radically new methods may be developed with 
inherently more stable potentialities. 
Accuracy of Rale 

In the first place, it is not reasonable to suppose that the final accuracy 
that can be attained with the quartz crystal clock has been reached; in view 
of the rapid current progress indicated in the chart of Fig. 1, it is much too 
soon to assume this, and there is considerable evidence that improvements 
could be made by making fuller use of some of the stable properties of quartz 
crystal and of refinements in the mounting and sustaining circuits. The 
quartz oscillator assemblies in most general use at the present time embody 
some compromises which it would not be necessary to make if an all-out 
effort were being made to construct a few clocks having the highest attain- 
able stability under the most favorable conditions of operation. 

The first of these concerns the shape and size of the resonator itself and is 
related to the frequency of oscillation. From the standpoint of stability of 
operation, the actual frequency that is used in the oscillator is of little con- 
cern because it is now a very simple matter to obtain low frequencies, suitable 
for the operation of mechanisms, starting with any frequency that can be 
controlled by a crystal resonator. The choice of 100,000 cycles for the first 
zero-coefficient resonator was made because, as a standard of frequency, 
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that value was a good median for the range of frequencies then used in 
electrical communication. For use in a clock any other frequency would 
answer just as well, so the inherent stability of the resonator should be given 
first consideration. 

One of the inhibitions imposed on the design of quartz resonators has 
grown out of the dwindling available supply of large pieces of perfect crystal 
quartz. Where large quantity production is involved this is an important 
consideration, but for the small numbers required in a few observatories 
and national laboratories it should not be a limiting factor. 

Except for whatever added difficulties might be entailed in the mounting, 
it seems reasonable that a large resonator should be more stable than a very 
small one. The most fundamental reason for this is the proportionate 
change in effective size that would result from the transfer of any surface 
material including even the quartz itself. 

Every substance is supposed to have some vapor pressure although in some 
cases it is very minute. However, we are concerned with very minute 
effects, and it is worthwhile to consider what would happen if there were any 
evaporation or condensation of material. The possibility of this being an 
important effect is evident when we realize that the removal of a single layer 
of molecules from the end of a resonator one centimeter long would increase 
its frequency by about five parts in a hundred million. The effect on 
frequency would vary about inversely as the effective length, which favors 
a large crystal. Such a transfer of material could be inhibited to some 
extent by operating at a low temperature and by seeking equilibrium between 
the quartz material of the resonator and other quartz material within the 
same envelope. Of ourse, other materials than quartz may be involved in 
similar surface phenomena and should be thoroughly studied and controlled. 
This has a strong bearing, of course, on the use of conductive materials 
deposited on a resonator for the purpose of electrical coupling to it. 

The slightest trace of surface contamination has a deleterious effect on the 
damping coefficient. Professor K. S. Van Dyke in 1935 made a series of 
measurements on resonators of uniform shape and size but constructed with 
a considerable range of surface treatments43. In the construction of different 
resonators used in these tests he used different grades of abrasive and 
various amounts of etching with hydrofluoric acid. In these experiments he 
operated them under varying degrees of refinement with regard to 
contamination of the surfaces and found that the highest () was obtain- 
able only after the utmost care was exercised in keeping the surfaces 
free from foreign material. The effect is so striking, in fact, that it leads 
one to wonder whether there is any actual elastic hysteresis in the material 
of quartz crystal, or whether the minute energy losses observed are entirely 



EVOLUTION OF QUARTZ CRYSTAL CLOCK 573 

surface and coupled effects. Since, for a given shape, the volume increases 
with linear dimension in greater porportion than the surface area, it can be 
inferred that surface phenomena would affect a large resonator less than a 
smaller one. 

This is also a reason for employing a stubby shape, in order that the volume 
of crystal may bear as large a ratio as possible to its surface area. From 
this standpoint alone a sphere would be ideal but for other reasons, chiefly 
concerned with the temperature coefficient, it would be unsuitable. It is 
probable that a polished prolate spheroid, properly oriented with respect to 
the crystal axes, would satisfy both conditions. Such a resonator could 
be supported by a pair of wires, serving also as electrical leads from metal- 
plated electrodes, using techniques already well established. 

Crystal resonators as now used in many of the most stable oscillators have 
been constructed to withstand severe mechanical shock while in operation. 
Jt is likely that a slight improvement in frequency stability might be ob- 
tained by relaxing a little on the mechanical stability of the present support. 
Where the greatest accuracy of rale is desired, such as in national standards 
laboratories and in astronomical observatories, it should be possible to 
provide suitable mountings for crystal resonators having more delicate 
supports than those required in mobile equipment. The GT crystal illus- 
trated in Fig. 21 is mounted on eight supporting wires for applications 
requiring great mechanical stability, and at the same time remains one of the 
most stable frequency controlling resonators ever produced. It would be 
reasonable to expect a little improvement in frequency stability at the 
expense of some mechanical stability if four supports were used instead of 
eight. 

There is a good possibility also that some improvement could be obtained 
by reducing the electrical coupling to the crystal. At present, the plates 
arc usually provided with plated metal electrodes which cover the entire 
large surface areas. Some increased stability in frequency might be expected 
by the use of relatively smaller electrodes covering only the central part of 
the resonator where the amplitude of vibration is small. At least two 
advantages might be expected from such a modification. One is that the 
loading effect is least near the node for vibration, another is that any loose- 
ness of material, or elastic hysteresis, would be least troublesome where the 
motion is least. Of course, it is chiefly the variations in such effects that 
concern us. One would expect, however, that if such effects exist at all they 
might be minimized by the use of smaller electrodes. 

These particular effects may be eliminated completely, of course, by the 
use of isolated electrodes spaced from the crystal—but at the expense of 
other possible variations related to changes in electrode spacing. There is 
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considerable promise in such means, the end result depending upon how 
precisely the resonator may be held in a fixed position by means that will 
not change its resonance characteristics. Such means have, in fact, been 
used successfully in a number of German quartz clocks such as at the 
Physikalisch-Technische Reichsanstalt"18, and with the Dye ring resonator 
developed by D. W. Dye and L. Essen at the National Physical Labora- 
tory125- 126, England. 

For any given resonator and circuit a careful study would probably reveal 
an optimum amplitude of oscillation that would yield a maximum stability 
against residual uncontrollable variables. With the GT crystal, as used 
currently, the maximum amplitude of motion is about 0.00006 mm. It 
would be possible to limit the motion to a tenth or a hundredth of this value 
if it should be found desirable. 

Further studies of the factors contributing to aging of the quartz material 
also should produce valuable improvements. Since resonators, which ap- 
pear to be alike in all other respects, often age at greatly different rates, some 
being very small or substantially zero, it would seem that some reason should 
be discoverable for such variations and some effective control established. 

There are other relatively massive shapes that should be investigated 
further such as the ring crystal, mentioned earlier in this paper, and as 
developed and studied by Dye and Essen125 -l2fi. The ring may be excited 
in various modes of vibration some of which are more favorable than others 
from the standpoint of mounting. Ky choice of orientation relative to the 
crystal axes, and of dimensions, certain of these can be designed to have zero 
temperature coefficients in a restricted temperature region. 

Another shape that holds great promise because of its convenience of 
mounting, along with the other desirable properties, is the rectangular rod 
vibrating longitudinally in its second or higher overtone such as first de- 
scribed by Scheibe and Adelsberger108. Still another possible massive 
shape is a much thicker version of the GT crystal which would combine the 
very favorable temperature-frequency characteristic with that of reducing 
the ratio of surface area to volume. 

In seeking the highest possible accuracy a precise temperature control is 
essential in all cases, even with the GT type of resonator with its wide region 
of low-temperature coefficient. The reason for this is that the frequency of 
oscillation depends not only on the mean temperature of the resonator but 
also upon the temperature gradient throughout its volume. Thus, even if a 
resonator has the same frequency exactly at different mean temperatures, 
its frequency will vary a little while the temperature is varying from one 
value to another. The effect of this can be reduced by enclosing the crystal 
unit in an envelope with thermal lagging so that such variations as do exist 
at the temperature control layer are prevented from reaching the crystal. 
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This is no longer a serious problem for there are various electronic means 
such as described by C. F. Booth and E. J. C. DLxon127 for continuous tem- 
perature control, by means of which the variations may be kept very small, 
and very effective thermal lagging methods128 are well known. 

The bridge method for temperature control has been applied in many 
forms. One of the simplest and most effective procedures has been to 
utilize a bridge-stabilized oscillator of the type developed by L. A. Meacham 
for frequency control, and to use it instead for temperature control. For this 
purpose, all four arms of the bridge are noninductive resistances wound as 
heaters on the oven to be controlled. In the feedback circuit of the oscillator, 
a rough frequency control is included simply for the purpose of setting up an 
oscillation in the circuit which includes the bridge. The conjugate pairs of 
bridge arms are made of resistance wire with different temperature coefficients 
and so proportioned that the bridge balances at the desired temperature. 
The amplitude at which this bridge oscillator oscillates depends upon the 
temperature departure from the balance value. Since the alternating cur- 
rent output of the oscillator flows in the bridge arms, the amount of heating 
is proportional to the temperature error, and hence the control is automatic. 

Continuity of Operation 

An astronomical clock, in addition to having as nearly constant a rate as 
can be attained, should also be able to operate over long periods of time with- 
out change or interruption. The reason for this is that many of the phe- 
nomena that are of interest in time measurement occur in continuous succes- 
sion and the greatest amount of information can be obtained only by the use 
of clocks with which measurements can be made in unbroken sequence. 
Quartz clocks that have been used for astronomical purposes to date have 
not had a very commendable record in this respect and already a good deal 
has been said in the clock literature about this aspect—as though it were an 
inherent property of the quartz clock. 

However, it is only a matter of simple engineering, making use of tech- 
niques and apparatus already well known and available, to design a quartz 
clock which should operate continuously for many years. A chain is only 
as strong as its weakest link—and the clock comprises a chain of apparatus 
parts every link of which must function perfectly and continuously. This 
chain consists of (1) the crystal-controlled oscillator, (2) a frequency de- 
multiplier to obtain a low frequency to operate a motor, (3) a power amplifier 
to obtain sufficient current to drive the motor and (4) the motor itself, associ- 
ated with any of a wide assortment of time signal-producing or measuring 
equipment. In addition to the links in this chain, a power supply must be 
maintained, and the temperature of the crystal must be controlled, both 
continuously. 
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The crystal itself is no problem as far as continuity of operation is con- 
cerned. Its motion is so very small there is no likelihood at all of failure on 
that account. Mountings are very stable and in all likelihood will be 
improved. The oscillator circuit, the frequency demultiplier, the power 
amplifier and the temperature-control circuit are all vacuum-tube devices 
and deserve special consideration. In all of these circuits, vacuum tubes 
have been used in some installations which do not have a very long life, 
some even becoming defective within a year of operation. On the other 
hand, there are tubes which have been developed for use in continuous 
telephone circuits where failures would be troublesome and costly. Some of 
these tubes in current production have an expected life of more than ten 
years. There is good reason to believe that a quartz clock installation 
equipped with such vacuum tubes throughout, and engineered so as to make 
effective use of their special properties, would operate continuously for ten 
years or more. 

The remaining "link" in the chain is the synchronous mechanism operated 
from the crystal-controlled circuits and used for totalizing continuously the 
oscillations of the crystal and for producing suitable time signals at specified 
intervals of time thus measured off in terms of the crystal rate. This 
mechanism usually consists of a small synchronous (phonic wheel) motor 
operated from a submultiple of the crystal frequency and geared to com- 
mutators or cams or other means for producing the electrical signals used 
in making time measurements. Many of the troubles in quartz clock in- 
stallations have occurred in this 'link'. There is every reason to believe, 
however, that suitable synchronous motors geared to cam-controlled elec- 
trical contacts can be built that will operate continuously through many 
years. To insure long operation it would be desirable to employ motors 
with low rotation speed in order to reduce bearing wear. With the present 
knowledge of bearing materials and lubricants, it should be a simple matter 
to design such a motor that would operate without failure for ten years or 
more. 

A relatively trouble-free electrical time signal producer, suitable for 
operating under the control of a quartz oscillator, with frequency demulti- 
pliers to 100 cycles, could be constructed as indicated schematically in Fig. 
34. This is not intended to be an actual design, but is intended to indicate 
how an apparatus could be designed that would circumvent some of the 
troubles now experienced which prevent long continuous operation. 

The basic apparatus consists of a crystal oscillator, presumably 100,000 
cycles, with a frequency divider to obtain controlled 100-cycle current to 
drive the 100-pole phonic wheel motor at one revolution per second. Ob- 
viously, other crystal frequencies and step-down ratios could be used, the 
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important thing being to obtain a rotation speed of 1 rps. This is a very 
low speed for a phonic wheel motor but has the obvious advantage of great 
simplicity since it permits of controlling seconds devices without the use of 
gearing. Only one shaft is involved and the bearing problem is reduced 
to the simplest possible terms. A hardened steel cam, integrally mounted 
with the phonic wheel rotor, is used to operate a single electrical contact, so 
connected into the circuits controlled by it that the inslanl of break is the sole 
time-determining operation. A break signal is preferable to a make signal 
chiefly because it is easier to avoid irregular effects, such as result from 
contact chatter, when a circuit is being opened than when it is being closed. 
If a pallet of sapphire or ruby is used for the mechanical contact on the cam) 
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Fig. 34—Suggestion of elements for a quartz clock for long time continuous operation. 

and if small currents are used through the contacts, made preferably of 
platinum-iridium or similar alloy, it would be reasonable to expect trouble- 
free performance through several hundred million operations. 

Ordinarily, the "hunting" of a phonic wheel motor operating on a fre- 
quency as low as 100 cycles would cause time errors too large to neglect in a 
device such as just described. However, by the use of feedback in the 
motor amplifier circuit, such as indicated schematically in Fig. 34, the 
effective hunting can be reduced to the point where the time errors caused 
by it would become negligible for most purposes. 

Various circuits could be suggested for making use of the break signal for 
timing purposes, the one shown in Fig. 34 being typical and suitable for 
various methods of precise measurement and control. It is capable of 
providing an electrical impulse with a steep wave front and of adjustable 
duration. The grid of the vacuum tube is normally biased to cutoff by the 
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E Ro 
negative voltage, 1 „ . While the contact is closed, the battery Ez, with 

Aid-iCo 
resistance R-i in series, is short-circuited. But at the instant of opening the 
contact, current flows momentarily in the circuit including £2, Rs, C and Ro. 
By making Eo positive, and equal to or larger than Ei numerically, the plate 
circuit of the tube becomes conducting for a short interval, the duration of 
which is determined by the time-constant of the condenser circuit, each time 
the contact is opened. At all other times, the plate circuit is nonconducting. 
The sharply defined electrical signal thus produced in the plate circuit can 
be used by well-known means for direct time comparison with signals from 
other sources. 

Making use of the duration of the impulse thus produced, it is possible to 
use it as a selecting means to isolate a single more precise signal from a 
continuous chain. For example, the 100-cycIe wave controlled by the 
crystal can be modified by a simple vacuum tube circuit to consist of a con- 
tinuous sequence of very sharply defined impulses. By using the pulse 
circuit just described as a bias control on an amplifier, it would be readily 
possible to select one out of every hundred of these impulses and thus provide 
an extremely precise seconds signal, the accuracy of which is determined 
wholly by electronic means. 

It would be readily possible to vary the time relation of the seconds signal 
while in operation, by the use of electrical phase shifters in the driving 
circuits, or by rotating the stator of the phonic wheel motor, but for long 
continuous operation it would be desirable to keep the number of apparatus 
parts comprising the clock at a minimum. 

It is not necessary, of course, to employ a complete frequency divider and 
phonic wheel apparatus for each quartz crystal oscillator. As mentioned 
previously, the relative time rates of quartz oscillators can be measured with 
very high precision and be very simple means through a direct comparison of 
the high frequencies. 

Other Means for Precise Rate Control 

In addition to making improvements on the quartz crystal resonator, and 
on methods for sustaining it in vibration, there are two other avenues of in- 
vestigation which may yield comparable result's, with possibly some addi- 
tional advantages. Not much can be said about them at this time except to 
point out their possibilities because no appreciable work has been done so 
far to explore their merits as timekeepers. 

The first is in the field of very low temperatures where some quite re- 
markable properties are obtained. Chief of these for our purpose is the 
supraconductivity of some metals, and the constancy of shape of most 
materials, at temperatures in the neighborhood of absolute zero. It seems 
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reasonable to suppose that an electrically-resonant circuit maintained at a 
temperature in this region could be made to have a very high Q, and very 
stable dimensions, and so have the chief desirable properties for rate control 
that obtain in a quartz resonator. Resonant cavities used at high fre- 
quencies have many of the properties of other electrical resonant circuits, 
and in particular their energy dissipation for electric oscillations can be very 
substantially reduced when cooled to superconducting temperatures. In 
some experiments made recently at Massachusetts Institute of Technology1-9 

it has been shown that a cavity resonator made of lead, which for 3-cm. 
waves has a Q of about 2,000 at room temperatures, is so much improved at a 
temperature of 4 degrees absolute that the Q approaches a million. Such a 
resonator could be used as the stabilizing element in an oscillator and hence 
in a clock. The relative stability over long periods could, of course, be 
determined only by experiment. 

Maintenance of the required low temperature would add considerably to 
the complexity of such a system, but if the advantages were such as to pro- 
duce a new order of stability, and particularly if it should make possible a 
clock system with small or zero aging, it certainly should be justified for 
future time measurement studies. 

The other avenue of approach is through the application of certain 
resonance phenomena in atoms and molecules that do not depend upon 
aggregates of matter as is the case with all mechanical systems used hereto- 
fore in time measuring means. The extreme fineness of structure and the 
constancy of atomic and molecular resonance phenomena have long been 
recognized through studies of line spectra, and in the field of spectroscopy 
these properties have been used as standards of wavelength ever since the 
early studies of Joseph von Fraunhofer, reported in ISLS.'30 Wavelength, X, 

and frequency,/, are associated by the simple relation / = - where c is equal 
X 

to the velocity of light. For visible radiations / turns out to be extremely 
large, for the red light, 65()()A, it is 462 million million vibrations per second. 
So far, such high frequencies have not been observable or measurable di- 
rectly but can only be deduced from wavelength measurements as just 
stated—which inevitably involve the use of man-made standards of 
length and the combined errors of two quite different sorts of physical 
measurements. 

It has long been the dream of physicists to find some way to tie in directly 
with the natural frequencies of atoms and molecules and to derive from them 
a direct measure of rate, and, of course, of time interval. It has been 
thought, for example, that the red radiation from cadmium vapor, whose 
wavelength was measured by C. Fabry and A. Perot in terms of the standard 
meter as accurately as that standard could be defined, would also make a 
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good standard for time measurements. A step in the right direction was 
made later by A. A. Michelson whose precise determination of the wave- 
length of this radiation made possible the redefinition of the International 
Meter as a definite number of such wavelengths, measured in vacuo. From 
this definition, it is now possible to duplicate the primary standard of 
length with great accuracy, and to check such secular changes as may occur 
in the original standard,.the distance between two marks on a metal bar. 
The constancy of the standard, as defined by Michelson, depends upon 
properties of primary particles of matter, and upon properties of space, 
which, as far as human beings are concerned directly, appear to be quite 
independent of time or location. A similar definition of rate, or time inter- 
val, is very desirable. 

A ray of hope came out of the important work of Nichols and Tear131 who 
proved that electric waves which could be produced electrically were of the 
same stuff as radiation from hot bodies. They were able to detect radiation 
of either sort by the same receiving device and showed that they both had 
the same properties of refraction, polarization, etc. Later, Cleeton and 
Williams132 were able to produce continuous electric waves at very high 
frequencies—corresponding to about 1 cm. wavelength—and to show that 
they also had the important properties of light waves. Now the range has 
been extended somewhat more and there are reports133 of experimental 
generators that can produce continuous waves of a few millimeters wave- 
length. This is an active development and, of course, the end is not in 
sight, from continuous waves of any frequency it is believed possible by 
general techniques now well known to control lower frequencies, and from 
them eventually all softs of time measuring and indicating devices as pre- 
viously described. 

Within the last few years, the missing link has been discovered which, with 
Suitable instrumentation, may make it possible to construct a clock con- 
trolled by atomic- or molecular-resonance phenomena. There are a great 
number of resonance phenomena associated with the molecules in a gas, or in 
molecular beams, which are responsive to electric waves that can be pro- 
duced continuously by modern vacuum tube means. In some cases, the 
sharpness of resonance is such that changes of frequency of one part in 108 or 
less can be detected, leading to the idea that such resonance phenomena may 
be utilized in some way to control the frequency of a suitable oscillator and 
hence, through frequency conversion circuits, to control frequencies low 
enough to operate clocks and other mechanisms. Some of the resonance 
phenomena in point are in the one-centimeter region, a field that is rapidly 
being exploited in radar and communication applications. It is to be 
expected, therefore, that techniques for dealing with such high frequencies 
will be developed in the near future thus facilitating a study of this new 
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approach to timekeeping. The idea of utilizing such resonance phenomena 
for the measurement of lime was suggested in January, 19J5 by Professor 
1.1. Rabi of Columbia University at an address before the American Physical 
Society and the American Association of Physics Teachers. 

These resonance phenomena, involving the interaction of microwave 
electromagnetic radiation with atoms or molecules of matter, have been dis- 
covered only quite recently and it is likely that a great deal more will be 
learned about them in the next few years. The results already obtained are 
very promising and investigations already under way may well lead to the 
means for creating an entirely new type of standard of time interval and 
rate—both of prime importance in Physics. 

The studies of greatest significance for such purposes now in progress fall 
in two main branches involving quite different techniques. The actual 
means for regulating a clock would be quite different in the two methods, 
but would be possible in either. With what is known up to the present time, 
however, the construction of such a clock would be a considerable under- 
taking, especially to make one that would operate over long periods. The 
two chief phenomena involving atomic or molecular resonances are: (1) the 
absorption of high-frequency energy in certain materials, particularly in 
gases, exhibiting ultra-fine absorption spectra; and (2) the deflection of 
beams of atoms or molecules under special conditions of magnetic and 
electric fields. The earliest reported work on the absorption of microwaves 
in gases was done by C. E. Clcelon and N. H. Williams134 in 1934. With 
the development of improved high-frequency generators and measuring 
techniques the work has been extended considerably during the last few 
years by ('. If. Townes135, W. E. (iood136 and others. It is believed that 
with modifications of methods, such as used by them, it would be possible to 
control the frequency of the short-wave generators such as used in making 
these studies; and, if this can be done, the adaptation for use in time-measur- 
ing devices would follow naturally as in the case of any other stable 
oscillator. 

The general method using molecular beams has been a gradual develop- 
ment over some years, but the first published suggestion of the applications 
which relates closely to this work was made in 1938 when I. I. Rabi, J. R. 
Zacharias, S. Millman and P. Kusch first used the beam deflection method for 
measuring nuclear magnetic moments.137 Two articles138•139 in Reviews of 
Modern Physics in July 1946 give a good description of the molecular beam 
method and the results of some studies of fine structure resonance phe- 
nomena. The resonance curve shown in Fig. 35 obtained recently by P. 
Kusch and H. Taub of Columbia University, and hitherto unpublished, 
illustrates the resolution obtainable by molecular beam methods. According 
to theory, the actual uidlh of the resonance should be substantially inde- 
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pendent of the applied frequency and they expect to be able, when employing 
frequencies corresponding to centimeter waves, to obtain a hundred or more 
times this resolution. If this should be realized, it suggests the possibility of 
a clock with an accuracy of better than one part in 108. 

Perhaps the greatest advantage that might be expected from such a 
method lies in the possible long-time stability or freedom from aging. 
Every existing means for timekeeping involves in some manner the motion of 
large aggregates of matter which, when they rearrange themselves in anyway, 
vary their rates of rotation, or of oscillation, as the case may be, in ways 
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Fig. 35—Typical resonance curve for a line in the radio frequency spectrum of atomic 
K39 observed by the method of molecular beams. Experimental data supplied by P. 
Kusch and H. Taub, Columbia University Physics Department. 

that are not wholly predictable. It may well develop that a method based 
on the behavior of single particles of matter will be ageless and, with proper 
instrumentation, that it will permit of setting up an absolute standard of rate 
and time interval. The actual value of this rate would be indeterminate by 
a small amount depending on the sharpness of resonance and the precision of 
control that could be effected from it, in addition to any uncontrollable 
effects of the actual resonance frequencies such as result from temperature, 
pressure, and electromagnetic and gravitational force fields. In the case of 
some of the resonance phenomena all the latter effects are believed to be 
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vanishingly small. In any case, one would not expect to experience a pro- 
gressive change in rate as in the case of the rotation of the earth which now 
is the measure and definition of astronomical time. On the average the 
earth is said to be slowing down at the rate of a thousandth of a second per 
day per century140 and, according to the astronomersS9, the day will continue 
to lengthen until finally, at some time in the distant future, the earth will 
always face one side toward the moon and the length of the day will become 
about 47 times as long as it is at the present time. 

Meanwhile, if an absolute standard could be established, such as now 
appears feasible through atomic- or molecular-resonance phenomena, it 
would be possible to record these changes through the centuries and to 
establish a relatively stable ''second" that could be used for all time in 
physical measurements in place of the elastic second of the cgs system which, 
as now defined, must stretch with the inevitable variations in the mean 
solar day. 

Whether or not such an "absolute" clock becomes a reality at some lime 
in the future, the quartz crystal clock, because of its accuracy, compactness, 
great convenience and versatility is likely to continue to be a most useful 
instrument in all precision measurements of time. 
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Experimental Delerminalioii of Helical-Wave Properties} C. C. Cutler. 
The properties of the wave propagated along a helix used in the traveling- 
wave amplifier are discussed. A description is given of measurements of 
field strength on the axis, field distribution around the helix, and the velocity 
of propagation. It is concluded that the actual field in the helix described 
is slightly weaker than would be predicted from the relations presented by 
J. R. Pierce for a hypothetical helical surface. 

Results of Microwave Propagation Tests on a -KJ-MHe Overland Path.- A. L. 
Dukkee. This paper gives the results of a series of microwave radio prop- 
agation tests over an unobstructed 40-mile overland path. The purpose of 
the tests was to investigate the transmission characteristics of such a path 
at centimeter wavelengths over a long period of time. Statistics on the 
transmission results at wavelengths ranging from 1.25 to 42 cm. are given. 
The tests extended over a period of about two years. 

A Tunable Vaciinm-Conlained Triode Oscillator for Pulse Service} O.K. 
Fay* and J. E. Wolfe. A tunable push-pull triode oscillator is described 
in which the vacuum-tube components and the entire r.f. portion of the 
oscillator circuit are contained in an evacuated metallic envelope. A 
terminal is provided for coaxial output into a 50-ohm transmission line. 
The oscillator was developed for the frequency range of 390 to 435 Mc. 
and is tunable by mechanical means continuously through this range. Pulse 
power of above 4 megawatt is obtained with pulse voltages of 15 to 17 
kilovolts applied. 

A Proposed Londness-Etjlcicncy Rating for Loudspeakers and the Deler- 
minalion of System Power Requirements for Enclosures} H. F. Hopkins and 
N. R. Stryker. Experimental and computed data relating to the loudness 
contribution of various ranges of the frequency spectra of speech and music 
are correlated with the corresponding energy distribution. A relatively 
simple measurement of sound pressure and a knowledge of certain acoustic 
radiation phenomena are applied to this correlation to form the basis of a 

1 Proc. I. R. E., February 1948. 2 Proc. I. K. E., February 1948. 
* Proc. I. K. E., February 1948. 
♦ Of Bell Tel. Labs. 4 Proc. 1. K. E., March 1948. 
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method for predicting the loudness established by loudspeakers in enclosures. 
A loudness-efficiency rating for loudspeakers is suggested, and its application 
to sound-system engineering problems is described. 

.1 Sheet of Air Bubbles as an Acoustic Screen for Underwater Noise.5 

Donald P. Loye* and Wm. Fred Arndt. In Pearl Harbor, where there 
often were eight hundred ships of all kinds, the underwater noise level was 
high. No place was found where noise measurements could be made satis- 
factorily, and therefore it was decided that the best arrangement would be to 
insulate Auxiliary Repair Docks and measure the noise of submarines while 
they were in the docks. This was done by the development of a suitable air 
bubble screen across the open end of the dock. Such an acoustic barrier was 
comparatively easy to install, did not interfere with submarines entering 
and leaving, kept ocean surface oil out of the dock, insulated against low- 
as well as high-frequency noises as was required and, after extensive experi- 
mentation, the noise of the screen was reduced to a level that did not interfere 
with the noise measurements. The insulation of the screen upon the noise 
of a nearby submarine charging batteries is illustrated by a phonograph 
recording. 

.1 Method of Determining and Monitoring Power and Impedance at High 
Frequencies5 J. F. Morrison and E. L. Younker. A method and newly 
developed devices for determining and monitoring power and impedance 
levels in transmission lines at high frequencies are explained. Practical 
considerations influencing accurate determination of power and impedance 
levels are analyzed, and the previous and newly developed methods of 
monitoring these important quantities under changing conditions of load 
are compared. 

Automatic Volume Control as a Feedback Problem.1 B. M. Oliver. 
Feedback amplifier theory is shown to be applicable to the usual a.v.c. 
system. Expressions are derived for the loop gain in terms of the design 
requirements and the gain-control characteristic of the controlled amplifier. 
Using these expressions, the design of an a.v.c, system is quite straightfor- 
ward and its characteristics, such as regulation and effect on desired modula- 
tion, are readily predictable. 

'•Jour. A co us. Soc. A nier., March 1948. 
* Of Western Electric Co. 8 Eroc. I. R. E., February 1948. 7 Proc. /. R. E., April 1948. 
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