AT WATER KENT RADIO

Service Data, Parts List, and Price List for MODEL 60-C [3RD TYPE

Serial No. $5,670,001$ to $5,684,000$

Model $60-\mathrm{C}$ is a chassis-type, screen -grid, electrodynamic radio receiver, designed for $110-120$ volt, $50-60$ cycle, A. C. operation

As a result of the adoption of numerous laboratory developments which have been rigorously checked by extensive preliminary trials, the ard type of Model $60-\mathrm{C}$ possesses many electrical and mechanical refinements which give to this model a number of very desirable improvements.

Electrically, the principal difference is in the arrangement of the R. F. amplifying circuit. Mechanically, the principal difference is in the design of the variable-condenser unit. These differences are tabulated on Page 202.

The improvements resulting from these changes are summarized below. It is important to remember that the following list gives only the improvements; in addition to these improvements, the ard type of Model $60-\mathrm{C}$ has all the features of superiority which are described on Page 115 of this manual.
I. EXACT SYNCHRONISM. This is due to the exact mechanical construction of the variable-condenser unit.
2. UNIFORM SENSITIVITY.
3. UNIFORM SELECTIVITY.
4. UNIFORM DIAL SETTINGS. The same station is tuned in at almost identically the same dial number on all 3rd-type Model $60-\mathrm{C}$ receivers. This feature is secured by strict uniformity of R. F. transformers and by the great accuracy in condenser construction.
5. EASILY ACCESSIBLE PARTS. The simple mechanital construction, quickly removable plugin'type R.F. coil shields, one-bolt R. F. transformer-mounting brackets, air-cooled power transformer, separate tube sockets, direct wiring, complete service information with "picture drawings"-all these help to make servicing easy, quick and certain.

Fig. 201. Top View of 3rd Type of Model 60-C.

Comparison of the Three Types of Model 60-C

Like the two preceding types of Model $60-\mathrm{C}$, the 3 rd type has three stages of screengrid radiofrequency amplif. cation, a detector, one stage of resistance-coupled audio-frequency amplification, and a "double-audio" output stage.

The principal differences between the three types are as follows:-

	IN THE FIRST TYPE	IN THE SECOND TYPE
VOLUME CONTROL	A single volume control regu lates the screen-voltage.	A dual-type volume control- I. Regulates the amount of R.F. energy transferred from the ist- to the 2nd-R.F. tube. 2. Regulates the screen-voltage.
LOCAL	The local-distance switch is con nected to the primary of No. 2 R.F.T. (between the 1 st and 2nd R.F. tubes). In the distance position, the switch cuts in the entire primary of No. 2 R.F.T., thus giving three straight stages of R.F. amplification.	The local-distance switch is connected to the and stopping condenser (between the 2nd- and 3rd-R.F. tubes). In the distance position, the switch connects the 2nd stop. ping condenser to the plate of the and-R.F. tube, thus giving three straight stages of R.F. amplification.
DISTANCE SWITCH	In the local position, the switch cuts out a part of the primary of No. 2 R.F.T., thus reducing the total R.F. amplification.	In the local position, the switch connects the 2 nd stopping condenser to the $+B$ side of the plate-circuit of the 2 nd-R.F. tube, thus reducing the total R.F. amplification.
R.F. TRANSFORMERS	The R.F. transformers are inductively coupled.	The R.F. transformers are autotransformer coupled.
VARIABLE CONDENSERS	Both the ist and 2nd types densers controlled by pulleys and	have four separate variable conbelts.

IN THE THIRD TYPE

A dual-type volume control-
I. Regulates the amount of R.F. energy transferred from the antenna circuit to the Ist-R.F. tube.
2. Regulates the R.F. controlgrid voltage.

The local-distance switch is connected to the secondary of No. I R.F.T. (ahead of the 1st. R.F. tube).

In the distance position, the switch connects the grid-return lead of the ist-R.F. tube to the chassis, thus giving three straight stages of R.F. amplification.

In the local position,* the switch connests the grid-return lead of the ist-R.F. tube to a coupling coil (on the and-R.F. transformer) and then to the bias circuit of the 2nd-A.F. tubes. The coupling coil provides coupling between the ist and 2nd tuned circuits, and the high negative grid bias makes the rst-R.F. tube inoperative, thus reducing the total R.F. amplification.

The R.F. transformers are autotransformer coupled.

The variable condensers are of the "multiple" type, with the four rotors mounted on a common shaft.

[^0]

Fig. 202. Schematic Diagram of 3rd Type of Model 60-C.
In later types of this model, the leads fron the filament winding are covered with light gray "Subber or black stopping condenser.
In a few of these the flame the quaity 0 , In a few of these models, the quaity condenser is connected acrose the primary of the output transformer, the connections being made inaide the unit:
In these sets, the output transformer has five leada instead of teven.

3rd Type Model 60-C

(Serial No. 5,670,001 to $5,684,000$)

Condensers in R.F. By. Pass No. 1
L—Line by-pass.
L-Line by-pass.
C-2nd-A.F. bias by-pass.
E-Ist-R.F. screen by-pass.

Condensers in R.F. By.

Pass No. 2

A-rst-R.F. bias by'pass.
B-R.F. bias by-pass.
U-rst-A.F. filter condenser.

Condensers in R.F. By
Pass No. 3
D-Detector bias by-pass. H-R.F. plate-circuit by-pass. T-Detector grid-circuit by-pass.

Condensers in Detector By-Pass.

 $\mathrm{F}-2$ nd-3rd R.F. screen by-pass. M -Detector-1st A.F. coupling condenser. P-Phone condenser.P-Phone condenser

POWER TRMMFORMER

A. . . inniriconmen

Fig. 203. Connections of Units in 3rd Type of Model 60-C
In later types of this Model, the red-with-black tracer lead on the volume control is replaced by a brown-with-white-diagonal-tracer lead which is the R.F. bias resistor. The bottom wiring connections for thit later-type Model 60l-C are shown on Page 207. Connections of the R.F. coil group are given on Page 212 .

[^1]

Fig. 204. Bottom Wiring of 3rd Type of Model 60-C (Eariy Type).
The R.F. bias resistor is mounted under the lst-A.F. bias resistor with a sheet of insulating fibre between the two resistors. In later types of this model, the ist-A.F. grid leak is blue and red instead of blue. The blue-with-white tracer lead from the local-distance switch is connected to the black lead from the rotor of No. 1 V. C.

VOLTAGE TESTS

Operating voltage tests provide a quick and accurate method of checking circuit continuity and finding the general location of any defect. Then, if necessary, continuity tests may be used to narrow down the search to the specific part or connection that is causing trouble.

Procedure: Connect the set for operation, with all tubes and the speaker-plug in their sockets, and measure the voltages at the tube sockets as outlined on Page 208.

The voltage table on Page 208 lists the parts that may possibly be "open" if there is a lack of voltage on any circuit. HOWEVER, IT IS IMPORTANT TO REA. LIZE THAT LOW VOLTAGE, OR NO VOLTAGE, MAY BE CAUSED BY A SHORTED FILTER, BY-PASS, COUPLING, OR STOPPING CONDENSER, OR BY A GROUNDED CIRCUIT.

The voltage values given in the table on Page 208 were
taken with the volume control turned to the position of minimum volume (anticlockwise). Turning the volume control to the maximum-volume position reduces the R.F. control-grid voltage, and this reduces the R.F. plate and screen voltages. The voltages for maximum volume are approximately as follows (for a 120 -volt line):

tube	CONTROL-GRID voltage	$\begin{aligned} & \text { PLATE } \\ & \text { VOLTAGE } \end{aligned}$	SCRERN voltage
Ist-R.F.	8	145	110
2nd-R.F.	5	145	110
3rd-R.F.	5	145	110
Detector	0.8	95	
Ist-A.F.	1	60	

The voltages on the other tubes remain practically the same as the values given in the table on Page 208.

CONTINUITY TESTS

After making operating-voltage tests, continuity tests may be used if necessary to locate the exact cause of trouble in a set.

The continuity tests given in the table on Page 209 were made with the testing circuit shown in Figure 209. The readings given in the table will be somewhat different if a meter is used having a resistance other than that specified.

BEFORE MAKING ANY CONTINUITY TESTS, IT IS ADVISABLE TO CHECK EACH CONDENSER IN THE SET FOR SHORT CIRCUITS.

When lead " Y " is unsoldered from lug " Z," the $+B$ circuit is isolated from the chassis. Therefore, by testing
from the filament of the rectifier tube (Fr), to the chassis, there should be no reading on the continuity meter. If there is any reading, either some part of the +B circuit is grounded, or one or more of the following condensers is shorted: Filter condenser No. I, 2, or 3, R.F. plate-circuit by-pass, ist or 2 nd stopping condensers, ist-R.F. screen by-pass, 2 nd - 3 rd-R.F. screen by-pass, detector filter condenser, "phone"" condenser, detector-Ist-A.F. coupling condenser, or Ist-A.F. filter condenser.

The other condensers in the set may be checked, if necessary, by unsoldering all leads to their terminals and testing across each condenser separately.

TABLE OF CONDENSERS, WHICH, IF SHORTED, MAY CAUSE LOW PLATE, SCREEN, OR GRID VOLTAGE IN 3rd TYPE MODEL 60-C.

	LOW VOLTAGE, OR NO VOLTAGE ON-	MAY BE CAUSED BY A SHORTED-	OR BY A GROUNDED-
ALL TUBES	Plates, screens, and grids of ALL tubes.	Filter condenser No. 1, No. 2, or No. 3, R.F. plate-circuit bypass, ist stopping condenser, or 2nd stopping condenser.	Filter choke, 2nd-A.F. plate cir cuit, or R.F. plate circuit.
R.F.TUBES ONLY	R.F. screens and grid.	Ist-R.F. screen by-pass, or 2nd-3rd-R.F. screen by-pass.	R.F.C. No. 2, or screen circuit.
	Ist-R.F. grid.	Ist-R.F. bias by-pass.**	Ist-R.F. cathode circuit.
	2nd- and 3rd-R.F. grids.	R.F. bias by ${ }^{\text {¢pass. }}$	2nd-3rd-R.F. cathode circuit.
DET. TUBE ONLY	Detector plate and grid.	Detector filter condenser, or "phone" condenser.	R.F.C No. I, or detector plate circuit.
	Detector grid.	Detector grid-circuit by-pass, or detector bias by-pass.**	Detector cathode circuit.
$\begin{aligned} & \text { A.F. } \\ & \text { TUBES } \end{aligned}$	1st-A.F. plate.	ist-A.F. filter condenser.***	Ist-A.F. plate circuit.
	rst-A.F. grid.	(If the ist-A.F. grid is positive, the detector-Ist-A.F. coupling condenser may be shorted.)	rst-A.F. cathode circuit.
	2nd-A.F. grids.	2nd-A.F. bias by-pass.	2nd-A.F. grid circuit.

[^2]

Fig. 205. Bottom Wiring of the 3rd Type of Model 60-C (Later Style).

 No. 15820 is brown-with-white-straight-ttripes; it hail one chassio-l

VOLTAGE TABLE FOR 3rd TYPE MODEL 60-C

 Set in operation. Volume control at MINIMUM. Test in order listed. (See Page 206.)Use 1000 -ohm-per-volt D. C. Voltmeter (about 0-50-250) to Measure Plate and Grid Voltages. Use A. C. Voltmeter to Measure Filament Voltages.

CIRCUIT	MEASURE ACROSS	APPROX. VOLTAGE*		NO READING INDICATES
		110 V. Line	$\begin{aligned} & 120 \mathrm{~V} . \\ & \text { Line } \end{aligned}$	
FILAMENT	-F to +F on each socket. F_{1} to F_{2} on rectifier socket.	$\begin{array}{r} 2.3 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & 2.4 \\ & 4.7 \end{aligned}$	Open flament winding or connection. Open rectifier filament winding.
PLATE	CI_{I} to PI_{I}. $\mathrm{C}_{1} R$ to $\mathrm{P}_{2} R, \mathrm{P}_{3} \mathrm{R}$. CD to PD. $\mathrm{C}_{\mathrm{I}} \mathrm{A}$ to $\mathrm{P}_{\mathrm{I}} \mathrm{A}$. $-\mathrm{F}_{2} \mathrm{~A}$ to $\mathrm{P}_{2} \mathrm{~A}, \mathrm{P}_{2} \mathrm{Aa}$.	$\begin{array}{r} 170 \\ \\ 170 \\ 119 \\ 73 \\ 224 \\ \hline \end{array}$	$\begin{array}{r} 185 \\ 185 \\ 130 \\ 80 \\ 250 \\ \hline \end{array}$	Open high voltage winding, filter choke, R.F.C. No. 3, Ist-R.F. bias resis., volume control resis. No. 2, R.F. bias resis., or speaker magnet coil. hen R.F.C. No. 4, or R.F.C. No. 5. Upen detector filter resis., coupling resis., R.F.C. No. 1, or det. bias resis. Open ist-A.F. filter resis., primary of A.F. input transformer, or ist-A.F. bias resis. Open primary of output transformer.
GRID	$\mathrm{CI}_{\mathrm{I}} \mathrm{R}$ to GIR^{2} (switch at distance). $\mathrm{C}_{2} \mathrm{R}$ to $\mathrm{G}_{2} \mathrm{R}, \mathrm{G}_{3} \mathrm{R}$. CD to GD. $\mathrm{C}_{\mathrm{I}} \mathrm{A}$ to $\mathrm{Gi} A$. $-\mathrm{F}_{2} \mathrm{~A}$ to $\mathrm{G}_{2} \mathrm{~A}, \mathrm{G}_{2} \mathrm{~A}$. $\mathrm{CiR}^{\mathrm{R}}$ to GIR (switch at local).	$\begin{aligned} & 16.5 \\ & 16.5 \\ & 1.5 \\ & 1.9 \\ & 36^{* *} \\ & 45 \end{aligned}$	$\begin{gathered} 18 \\ 18 \\ 1.8 \\ 1.9 \\ 40^{* *} \\ 50 \\ \hline \end{gathered}$	Open secondary No. i, R.F.T. or defective L-D sw. Open secondary No. 2, No. 3 R.F.T. Open secondary No. 4 R.F.T., or det. grid resis. Open ist-A.F. grid leak. Open 2nd-A.F. bias No. 2, or sec. of input trans. Open coupling coil, or defective L-D switch.
SCREEN	- $\mathrm{CI}_{2} \mathrm{R}$ to $\mathrm{S}_{3} \mathrm{R}, \mathrm{S}_{2} \mathrm{R}, \mathrm{SIR}^{\text {r }}$.	142	155	Open bleeder resis. No. 1, or R.F.C. No. 2.

Fig. 206. Diagram of 3 Thd Type of Model 60-C. "S.C." Means Stopping Condenser.

CONTINUITY TEST TABLE FOR 3rd TYPE MODEL 60-C
Unsolder leads " M " and " Y." Remove speaker and 110.V. plugs. Set polume control at minimum. Make tests in order listed. (See Page 206.)

Fig. 207. Test Chart for 3rd Type of Model 60-C.
The 1st-R.F. bias resistor, the R.F. bias resistor, and the 1st.A.F. bias resistor are of a different style in later types of this model. See Page 207 . May, 1930

DESCRIPTION OF THE VARIABLE-CONDENSER UNIT

The condenser group in the 3 rd type of Model $60 \cdot \mathrm{C}$ consists of four variable condensers and four adjustable "trimmer" condensers. One trimmer condenser is connected in parallel to each variable condenser.

The four stators, or groups of stationary plates, are insulated from each other and from the chassis. A blue lead is soldered to each stator.

The four rotors, or groups of rotary plates, are mounted on a common shaft. Each rotor is held in the correct position on the shaft by two set-screws. The adjustment of the rotors on the shaft is made at the factory and must not be disturbed under any condition. Also, do not disturb the adjustment of the bearing screw at the rear end of the shaft.

Four rotor-connection means provide electrical connection to the four rotors. A black lead is soldered to each rotor-connection.

A counter-weight is used to balance the weight of the rotors. The counter-weight does three things:
I. It balances the condenser shaft and thus eliminates any tendency that might otherwise exist for the shaft to turn away from a given dial setting.
2. By its balancing action, the counter-weight makes possible an extremely light and smooth adjustment of the control knob.
3. The counter-weight is limited in its motion by the

Fig. 208. View of Variable Condenser Unit
pilot-light mounting bracket. This limits movement of the shaft between the positions of maximum and minimum capacity value, corresponding respectively to 100 and to zero on the dial.
If the counter-weight should require resetting, proceed as follows:-
r. Loosen the set-screws on the counter-weight.
2. Turn the shaft so the rotors are at maximum, with the straight edge of the rotor plates exactly even with the straight edge of the stator plates.
3. Hold the shaft in this position and turn the counterweight so that it hits against the right-hand edge of the pilot-light bracket.
The counter-weight should be about I-16 inch away from the front edge of the condenser frame so that it will not scrape against the frame.
4. Tighten the counter-weight set-screws.
5. Turn the shaft in order to see that the counter-weight does not touch the frame of the condenser.
The dial and dial gear is arranged with the front side of the scale exactly flush with the front end of the shaft.

When the rotors are set at maximum, with the straight edge of the rotor plates exactly even with the straight edge of the stator plates, the dial should be set exactly at 100 with reference to the indicating point on the escutcheon.

The front and rear bearings of the condenser shaft may be lubricated with "Nujol," and a light film of Nujol may be spread on the rotor connections.

When handling the set, ALWAYS KEEP THE ROTOR PLATES TURNED INSIDE THE STATOR PLATES in order to prevent accidental bending of the rotor plates.

In order to synchronize the four R. F. circuits accurately at the high-frequency end of the broadcast range (below io on the dial) an independently. adjustable trimmer condenser of low value is connected in parallel to each of the four variable condensers.

Each trimmer conden. ser consists of two plates separated by a piece of mica. The value of each trimmer is regulated by the pressure of a screw which governs the distance between the two plates. The location of these screws is shown in Figure 208.

The adjusting screw on each trimmer condenser is sealed with wax at the factory, but this wax may beeasily broken away from the screws when adjustment of the trimmer condensers is necessary.

Checking Sensitivity of Set

After inspecting, testing, and repairing a set, connect it for operation and measure the plate, grid, screen and filament voltages. If these voltages check satisfactorily, test the receiver on broadcast reception for sensitivity and output volume at different points on the dial.
Lack of sensitivity or volume at certain sections of the Funing dial may be a result of damage to one of the R.F. transformers, or to the variable-condenser unit. Damage to these parts will throw the tuned R. F. circuits out of synchronism.

The initial synchronism of the R. F. circuits is built into the set by rigid uniformity of the R. F. transformers, and by the extremely accurate design of the variable-condenser unit. Owing to the rugged construction of these parts, the

Fig. 209. Diagram of Continuity Testing Circuit.
The voltage control is part No. 13320.

Equipment Required

When checking the sensitivity of the set, it is necessary to use an oscillator, and a meter to indicate maximum output volume.

A local oscillator is necessary to ensure constancy of signal strength; signals from broadcast stations are not sufficiently constant for this work.

An output meter is necessary to ensure a reliable indication of output volume; the ear is not reliable enough for this purpose.

The oscillator feeds a weak signal into the receiver. The signal is amplified in the receiver and produces a reading on a meter which is connected to the output of the set. This meter indicates the strength of output volume. The reading on the output meter is greatest when all the tuned circuits
in the set are adjusted to the same frequency as the oscillator signal.

1. Oscillator.

The oscillator must provide modulated R. F. signals at four different frequencies in the broadcast range. These four frequencies should correspond to dial settings of 5, 45 , 65 and 95 on the dial of a 3rd type Model $60-\mathrm{C}$ which has the original factory synchronism.

Each of the four R. F. oscillators should have an adjustable pick-up so that the strength of each oscillator may be controlled independently of the other three.
2. Output Measuring Circuit.

The output measuring circuit is shown and described in Figure 210.

Adjusting Trimmer Condensers

I. Connect the common pick-up lead from the four R. F. oscillators to one end of a No. 8112 condenser. Connect the other end of this condenser to the Long-Antenna post. Connect the oscillator container to the Ground post.
2. Put plug " A " of the output measuring circuit in the speaker-plug socket on the set. Plug an F-4 type speaker in socket " B ." Throw switch " D " to the right.
3. Put all tubes in the set; power switch on; volume control at maximum; local-distance switch at distance. Break away the sealing wax on the trimmer-condenser screws
4. Tune set exactly to 5 on dial. Reduce or increase the
amount of pick-up from the ist oscillator to secure a reading of about 20 on the output meter.
5. With a screw-driver, turn the pressure screw of the 4th trimmer condenser one way or the other, as necessary, to the point where the reading on the output meter is greatest. Repeat this process on the 3 rd trimmer, then on the 2nd, and finally on the ist. Reduce the pick-up from the ist oscillator if necessary in order to keep the needle of the galvanometer near the centre of its scale.

This adjustment of the trimmercondenser screws is termed the CORRECT POSITION.

Fig. 210. Output Measuring Circuit for ElectroDyramic Receivers.
A-Plugand-cord No. 14537. This is to be inserted in the speaker-plug socket of set that is being tested.
B-Speaker-plug socket No. 17512. Insert plug of correct type of electro-dynamic speaker in this socket.
C-Thermo-coupled galvanometer (115 milliamperes). This meter gives an indication of the amount of A. F. current that is flowing through the voice-coil circuit.
D-Single-pole-double-throw toggle switch No. 13678. With this switch, either the voice coil or the galvanometer may be shorted out of the circuit.
May, $103 e$.

The Connections Shown in Heavy Lines Must Be Short and of Low Resistance.

Fig. 211. (Above) View of Variable-Condenser (See Pages 210 and 211 for further information.)

IMPORTANT-Do not disturb the adjustment of the rotor set-screws, nor the bearing-screw at the rear end of the shaft.

If any section of this unit is seriously damaged, the entire unit should be replaced.

Fig. 212. (Below) Coil Group, Showing Location of Parts and Connections of Leads.
If one R. F. coil, or R. F. C. No. 3. No. 4. or No. 5 is defective, the entire coil group must be replaced. is defective, the entire coil group must be replaced. ping condensers is defective, it may be replaced without changing anything else.

No. 1 R.F.T.
Brown, with cap, to control-grid of 1 R.
Green to S .
Black-white-tr. to chass
Connect white-black tr. lead from local-Jistance switch to lug lA. Connect blue lead from stator No.

$$
\text { V.C. to lug } 1
$$ V.C. to blue-white-tr. lead from local-distance switch.

No. 2 R.F.T.
Brown, with cap, to control-grid of 2R.
Green to PlR.
Whise to by-pass H.
Black-white-tr. to lead from bypass C.
Red to lead of same color from local distance switch.
Connect blue lead from stator No. 2 V.C., and black lead from rotor No. 2 V.C. to lugs 2 and $2 A$ respec tively.

No. 3 R.F.T.
Brown, with cap, to control grid of 3 R. Green to P2R.
Whire to by pass II
Connect blue lead from stator No. 3 V.C., and black lead from rotor No. 3 V.C. to lugs 3 and 3 A . respectively,

No. 4 R.F.T.

Blue, short, to GD.
Green to P3R.
White to left-hand end of detector filter resistor.
Yellow or yellow-black-tr. to left hand end of detector grid-ci:cuit resistor.
Connect bl
Connect blue lead from stator No 4 V.C., to lug 4.
Connect black lead from rotor No 4 V.C. to by-pass D.

PARTS AND PRICE LIST

MODEL $60-\mathrm{C}$, No. 15100 , RECEIVING SET (SERIAL No. $5,670,001$ to $5,684,000$)

Fig. 213. Top View.

FRONT PANEL ASSEMBLY

Part No.

15380 Front panel only Price
17224 Front-panel brace (2 used) \$1.50
17679 Rivets for panel braces 10
16236 Escutcheon 01
8272 Rivet for escutcheon 50
02
17244 Volume-cont. or on-off switch knob. 30
15562 Set-screw 50/c
15550 On-off switch complete 1.10
15620 Local-distance switch complete 90
17736 Volume-control (less bracket) 3.70
17219 Volume-control bracket 20
16576 Volume-control cover 05
15679 Dial-knob assembly 30
15678 Dial knob only 25
15681 Dial-knob rubber
02
02
15682 Dial-knob screw 06
POWER UNITS
Part No. Price
15450 Filter-choke assembly $\$ 5.75$
Filter-choke lid 20
15650 Power-transformer assembly 7.50
17268 Power-transformer cover 50
17563 Power-trans. insulating sheet 02
15480 Filter-condenser assembly 7.95
Filter-condenser cover 40
17534 Filter-condenser spacing pad 25/c
17602 Red lead for filament circuit 08
17603 Red-green-tracer lead for fil. circuit 08
AUDIO-FREQUENCY TRANSFORMERS
Part No. Price
15520 Input A. F. transformer \$3.75
15530 Output A. F. transformer 3.25
Part No.
17739 VARIABLE - CONDENSER ASSEM- BLY COMPLETE \$10.95
17738 VARIABLE-CONDENSER STATOR, (With leads) 9.25
17209 Dial assembly. 35
17107 Rotor-connection (long) 10
17291 Rotor-connection (short) 10
15404 Pilot light 25
17206 Pilot-light socket 30
17299 Pilot-light resistor (blue) 15
17205 Dial-knob bracket 15
No separate parts, except those listed above, will be supplied for the variable-condenser unit.
COIL GROUP
Part No. Price
15540 Stopping condenser (3 used) 10
17295 R.F. coil shield (4 used) 50
is defective, the ENTIRE coil group must be replaced

PARTS AND PRICE LIST (Cont'd)

MODEL $60-\mathrm{C}$, No. 15100, RECEIVING SET (SERIAL No. 5,670,001 to 5,684,000)

Fig. 214. Bottom View. (See Page 207.)

TUBULAR RESISTORS TWO-RESISTOR GROUP
Part No.
15592 2nd-A.F. bias res. No. 1 (black) \$. 25
16724 2nd-A.F. bias res. No. 2 (white) .. . 25
17341 Mounting bracket 05
17344 Fiber resistor pad25/c
17343 Metal clamping strip 02

THREE-RESISTOR GROUP

Part No. Price
16282 1st-A.F. grid leak (blue, or blue and red)\$. 25
16724 Detector bias resistor (white) 25
15592 Detector coupling res. (black) 25
17341 Mounting bracket 05
17342 Fibre resistor pad $25 / \mathrm{c}$
17345 Metal clamping strip 02

FIVE-RESISTOR GROUP

Part No. Price
15545 Bleeder resistor No. 1 (maroon) \$. 25
17558 Bleeder res. No. 2 (black and green). 25
15285 1st-A.F. filter resistor (gray) 50
16724 Detector filter resistor (white) 25
15892 Detector grid resistor (green) 25
17118 Mounting bracket 05
17117 Fibre pad 25/c
17119 Metal clamping strip 02

WIRE-WOUND RESISTORS

Part No. Price		
15720	R. F. bias res. (superseded by No. 1583	
15670	1st-A.F. bias res. (superseded by No.	15820)
15660	1st-R.F. bias res. (superseded by No.	15810)
15830	R. F. bias res.....	\$ 15
15820	1st-A.F. bias res.	. 15
15810	1st-R.F. bias res	. 15
17077	Filament-shunt res. (black-white-tr.).	. 15
17299	Pilot-light resistor (blue).	. 15
13306	Sheet-fiber insulator $11 / 2^{\prime \prime} \times 3^{\prime \prime}$.25/c
17232	Sheet-fiber insulator $3 / 4^{\prime \prime} \times 3^{\prime \prime}$.25/c
15271-A R. F. CHOKE, No. 1, No. 2 (2 used).\$. 25		
	BY-PASS CONDENSERS	
Part No.		Price
15790	R.F. by-pass No. 1 (H-18)	\$1.00
15770	R.F. by-pass No. 2 (H-15)	1.00
15780	R.F. by-pass No. 3 (H-17)	1.10
15640	Detector by-pass (H-16)	1.00
	SOCKETS	
Part No. . Price		
17518	R.F. socket (3 used)	. 30
17519	Detector or 1st-A.F. socket	. 30
17511	2Aa socket	. 25
17509	2A socket	. 25
17508	Rectifier socket	. 25
17512	Speaker-plug socket	. 25
17377	Socket insulator (fibre-sheet)	.25/c
8249	Socket-fastening eyelet	. $50 / \mathrm{c}$

15720 R. F. bias res. (superseded by No. 15830)....
15670 1st-A.F. bias res. (superseded by No. 15820)
15660 1st-R.F. bias res. (superseded by No. 15810)
15830 R. F. bias res. $\$$. . 15
15820 1st-A.F. bias res. 15
15810 1st-R.F. bias res........................ . . . 15
17077 Filament-shunt res. (black-white-tr.). . 15
17299 .Pilot-light resistor (blue)............. . . 15
13306 Sheet-fiber insulator $11 / 2^{\prime \prime} \times 3^{\prime \prime} \ldots .$. . . . $25 / \mathrm{c}$
17232 Sheet-fiber insulator $3 / 4^{\prime \prime} \times 3^{\prime \prime} \ldots . .$. . . . $25 / \mathrm{c}$
15271-A R. F. CHOKE, No. 1, No. 2 (2 used). \$. 25

BY-PASS CONDENSERS

Part No. Price
15790 R.F. by-pass No. 1 (H-18) $\$ 1.00$
15770 R.F. by-pass No. 2 (H-15) 1.00
15780 R.F. by-pass No. 3 (H-17) 1.10
15640 Detector by-pass (H-16) 1.00
SOCKETS
17518 R.F. socket (3 used) \$. 30
17519 Detector or 1st-A.F. socket. 30
17511 2Aa socket. 25
17509 2A socket. 25
17508 Rectifier socket. 25
17512 Speaker-plug socket.................... . . . 25
$\begin{aligned} & 17377 \text { Socket insulator (fibre-sheet) } \\ & 8249 \text { Socket-fastening eyelet.............. } \\ & \text {.50/c }\end{aligned}$
PARTS AND PRICE LIST (Cont'd)MODEL 60-C, No. 15100, RECEIVING SET (SERIAL No. 5,670,001 to 5,684,000)MISCELLANEOUS PARTS

Part No.			
17524	110-volt cable, with plug		Price
:---:			
8956	110-volt plug only30		

Part No.Price
15213 Tube-shield (3 used) \$0.15
15214 Tube-shield base (3 used) 03
17326 Detector cap 30
15410 Literature assembly 35 net
17332 Instruction book. 10 "
17527 Shipping container. 65 ،
17223 Cross piece ($10^{\prime \prime} \times 7 / 8^{\prime \prime}-2$ used). 25
17632 Detector-cap lead (brown) 10
Trimmer-condenser sealing wax 50 lb .

Fig. 215.

MODEL F-4-C, No. 14410, POWER SPEAKER (AFTER SERIAL No. 6,155,001)

Part No		Price
17547	Cone-housing assembly	\$2.60
17546	Terminal-card assembly.	. 20
7637	Mounting eyelets...... . .	. $40 / \mathrm{c}$
17392	Name plate.	. 25
9206	Mounting eyelets	.20/c
17551	Field coil only	8.00
17515	Field-coil insulator	. 02
17552	Field-coil spacer	. 09
17553	Top pole piece.	2.75
17557	Diaphragm assembly	3.25
17556	Cable and plug assembly	1.65
15079	Plug. 65
13499	Cable clamp	. 05
14382	Steel ring (3 segments)	1.00
15604	Instruction sheet. 02 net
15578	Shipping container	. 35 "
14622	Voice-coil centering gauge	. 10 set

Fig. 216.

Fig. 217.

[^0]: *If, in the "local" position, the volume is not sufficiently reduced, the lst-R.F. tube should be changed.

[^1]: . . "~

[^2]: ** If the detector arid is posifire, the 3rd atopping condenser midias is low, the compensatiag condenser may be shorted.
 *** If the lst-A.F. filter con:

