Electronics Today 祬

COMPETITION! WHEN YOU’RE FASTER, BETTER AND LESS EXPENSIVE... THERE IS NO COMPETITION!

Cellular Mobile or Two-way Radio Testing...

 the 2955/57 leaves the others in the dust.For speed, ease of handling, performance and economy ... nothing on the market comes close. Touch a single key and it instantly sets-up for transmitter, receiver, or duplex testing; repeaters in 10 seconds ... times that leave other test sets in the dust. A unique menu driven, high resolution CRT displays test sequences and results in both text and graphic format. There's even a built-in digital storage scope and 37 user

defined non-volatile memories to store your test routines. This AMPS Cellular Radio Test System is a cell site simulator that generates 10 kBit AMPS digital overhead message while controlling the RF/AF parameters presented to the radio under test, automatically or manually.
The pace setting 2955/57 comes with these and other "extras" at a sticker price well below competition. For literature or a demo contact: Marconi Instruments,
2 Giffnock Avenue, North Ryde, NSW 2113 Australia Telephone: (02) 8876117 . Telex: AA26080 Fax: (02) 8883447 G2/G3

The Japanese made storage a fine art.

Our disk drives continue the tradition.

At Fujitsu the Japanese tradition of attention to fine detail has enabled us to produce disk drives with astounding performance and reliability.

Our disk drives range from 3.5 inch to 10.5 inch. They're fast, they're cost-competitive and enjoy the best MTBF of at least 30,000 hours.

Our disk drives are compatible with just about every computer system worldwide.

At Fujitsu, information storage is indeed a fine art.
Phone now for the name and location of
\square your nearest supplier. Fujitsu Australia Limited Sydney (02) 9596544, Melbourne (03) 5297633.

Philips SMD s offer a lot of room for improvement

Philips Surface Mounted Devices give you plenty of room to improve the design, manufacture and performance of your products.

Because they not only take miniaturisation a major step forward, but also make circuit boards less costly and dramatically more reliable.

Smaller boards, closer placement, and because the devices are mounted on, not through the board, the designer can use both sides of the PCB.

Philips SMDs are designed for automation, and Philips is a leader in the specialised automation equipment to accurately site the SMDs. Your products are assembled faster, and more efficiently. And because these components are so
highly reliable, the failure rate - during manufacture and in the field - is significantly reduced.

So, before you begin a new design using conventional components, talk to Philips about SMDs.

We can give you exciting information about SMD applications by calling one of our offices below:
Sydney (02) 4393322 Melbourne (03) 5423333
Adelaide (08) 2430155
Perth (09) 2774199 Brisbane (07) 440191
or write to Philips Electronic
Components and Materials
11 Waltham Street,
Artarmon NSW 2064.

Electronic Components and Materials

Electronics Today

MICROELECTRONICS	
Australian Silicon Technology	MICROL 12
Who's Who In Microelectronics	17
TEST AND MEASURING	
New Instruments	19
Who's Who In Test And Measuring	26
	CAD
CAE In Australia	28
CAD Reviews	31
CAD Products	38
Who's Who In CADs	42
PC BOARDS	
Injected Moulded PC Boards	44
SMD Resistors	48
Who's Who In PC Boards	52
COMPUTERS	
Epson Contest	54
Computer Products	55
Computer Reviews	60
SPACE	
Australian VTOL	86
Australian Space Industry	90
DATA COMMUNICATIONS	
Mobile Satellite Communications	94
Electronic Directories	98
Standards For Computer Transfer	102
Digitalker	106
Who's Who in Data Communications	109
HOBBIES	
Feed Forward	112
Project Index 1971-87	132
DEPARTMENTS	
Editorial	(6
Ad Index	140
Dregs	140
SOUND INSIGHTS	
Sight And Sound News	Si 2
Japan Audio	Si 6
The Year In Review	Si 12
Adcom Amps Review	Si 15
CD And Video Reviews	Si 22

Page 28

Page 54

Page 102

Welcome to our second yearbook. As befits the beginning of a bicentennial year, we've tried to give you a glimpse of where state of the art electronics is heading in Australia today.
For instance, there is a look at plans for the future of digital communications, as well as a few articles on the current state of play in this industry, possibly the most important part of the electronics scene in Australia.
There are a couple of articles on the aerospace industry. With Government funding getting more difficult. this area is in for lean times in the immediate future. Nevertheless it is a fascinating part of electronics and one which. when it really gets going, will have immense ramifications for us all.

Another area that is rapidly assuming prominence is microelectronics, especially with the advent of Application Specific Integrated Circuits, (ASICs). ASICs have the potential to make Australian industry extremely competitive by eliminating labour costs as an advantage for our Asian competitors. The problem with microelectronics in the past has always been the entry price: with the new arrangements in Adelaide that has dropped almost to insignificance.

Computer Aided Design is important in Australia for much the same reasons; it will make our industries more competitive. We have included several articles that cover this important industry, as well as short news items on new products available.

Meanwhile, we havent forgotten our hobby readers. We have updated the project index from 1987. and this year added a list of erratta. This should be reasonably comprehensive back to 1979, but gets a bit woolly before then. There is also a selection of cunning circuits and practical programmes for your edification and delight.

Finally, best wishes to our readers for 1988 from all the staff at ETI.

EDITOR

Jon Fairall B.A.
ASSISTANT EDITOR
Simon O'Brien B.A. (Hons), M.A.
EDITORIAL STAFF
Terry Kee B.Sc. (Hons.). M. Phil.
draughting
Karen Rowlands
designer
Clive Davis
ART STAFF
Ray Eirth
production
Mal Burgess
ADVERTISING MANAGER
Peter Hayes B.SC.
ADVERTISING PRODUCTION
Brett Baker
acoustical consultants
Louis Challis and Associates
PUBLISHER
Michael Hannan
MANAGING Editor
Brad Boxall

HEAD OFFICE

180 Bourke Road,
Alexandria, NSW 2015
PO Box 227. Waterloo, NSW 2017.
Phone: (02) 693-6666.
Telex: AA74488, FEDPUB.
Federal Facsimile: (02) 693-2842.

ADVERTISING

New South Wales \& Queensland: Peter Hayes, Mark Lewis, The Federal Publishing Company, 180 Bourke Road, Alexandria, NSW 2015. Phone: (02) 693-6666. Telex AA74488 FEDPUB.
Victoria and Tasmania: Valerie Newton, The Federal Publishing Company, 221a Bay Street, Port Melbourne, Vic 3207. Phone (03) 646-3111. Facsimile: (03) 646-5494 Telex: AA34340 FEDPUB.
South Australia and Northern Territory: Michael Mullins, C/-John Fairfax \& Sons, 101-105 Waymouth Street, Adelaide 5000. Phone: (08) 212-1210. Telex: AA82930 Facsimile: (08) 212-1210.
Western Australia: Des McDonald, 48 Cleivden Street. North Perth 6006. Phone (091) 444-4426.

New Zealand: Rugby Press, 3rd Floor, Communications House. 12 Heather Street, Parnell, Auckland, New Zealand. Phone: 79-6648. Telex: NZ63112.
Britaln: Peter Holloway, C/- John Fairfax \& Sons, 12 Norwich Street, London EC4A IBH. Phone: 353-9321.
USA: Frank Crook, Sydney Morning Herald, 21st Floor, 1500 Broadway, New York, NY 10036. Phone: 398-9494.

Japan: Bancho Media Services, Dai Ichi Nisawa Building, 3-1 Kanda Tacho 2-Chrome, Chiyoda-Ku Tokyo 101. Phone: Tokyo (03) 252-2721.

ELECTRONICS TODAY INTERNATIONAL is published and distributed monthly by The Federal Publishing Company Pty Limited, 180 Bourke Road, Alexandria, NSW 2015 under licence from Double Bay Newspapers Pty Limited, General Newspapers Piy Limited and Fairfax Community Newspapers Pry Limited. Printed by Hannanprint. Sydney. Distributed by Newsagents Direct Distribution, Alexandra, NSW 2015.

- Maximum and recommended Australian retail price only. Registered by Australia Post, Publication No NBP0407. ISSN No 0013 -5216. COPYAIGHT 1985, Double Bay Newspapers Ply Limited, General Newspapers Ply Limited and Fairfax Community Newspapers Pty Limited (trading as "Eastern Suburbs Newspapers")

DEFINTMELY NOT YOUR AVERAGE COMPUYER the Applix 1616 power, price and fiexibility

ALL AUSTRALIAN DESIGN, MANUFACTURE AND SUPPORT

"The highest performance computer design ever published"

ETI Magazine December 1986

MOV UP TO THE 68000

If you take your computing seriously Applix is for you!
The Applix 1616 microcomputer. The 1616 gives you the power of the Motorola 68000 processor, supported by a hardware design that lends itself to all purposes - industrial control, educational applications or serious programming.
The 1616 is available fully assembled or in "kit" form; the 1616 can be tailored to suit your level of computing needs. Just build up partly for programmable controllers, or all the way for a powerful, flexible personal computer. After building your system, you have total control using the powerful ROM Resident Operatirg System, abundant I/0 and unlimited expansion capabilities.

POWER AND FUN TION

- Motorola 68000 (16/32 bit) processor.
- 512 K bytes RAM as standard.
- 64 K R0M expandable.
- On board high speed cassette interface.
- Optional disk/co-processor card.
- Four 80 pin expansion slots.
- Dual serial ports.
- Centronics compatible parallel printer port.
- General purpose digital to analogue I/O port.
- Analogue two button joystick port.
- Graphics: $320 \mathrm{H} \times 200 \mathrm{~V} 16$ colours, $640 \mathrm{H} \times 200 \mathrm{~V}$ any four of 16 colours.
- Standard RGBI interface or composite video.

THE OPERATING SYSTEM

16161 OS offers features such as

- 10 redirection
- File management.
- Text editing.
- 68010 support.
- Over 100 documented internal system calls.
- Monitor functions.
- Installable drivers.
- ROM resident.
- Windows and graphics and more $1616 /$ OS is a very powerful and flexible operating system and takes full advantage of the 1616 hardware.

ASSEMBLY LANGUAGE

Each 1616 kit is supplied with a copy of SSASM - a 68000 macro assembler. Full documentation and system macro library supplied.

Bi= BIT FORTH

SSFORTH is a complete implementation of the FORTH language. SSFORTH runs under 1616/OS, rather than the normal FORTH screen system. It is fast, has full access to 1616/OS (including EDIT) supports 32 bit integers, float and interrupt driven words. Full source code supplied!

BASICINTKRPRFTER

SSBASIC features 32 bit integer numbers, floating point, variables, multi-dimensional arrays and character strings. Access to 1616/OS, graphics and assembler from within BASIC.
A

All Australian. The Hi-Tech "C" Compiler running under 1616/OS comes with macro assembler, linker and librarian.
A cross-compiler running under MS-DOS and producing code for the 68000 is also available.

D)ISK COPROCDSSOR ARD

Truly a computer in its own right the 1616 Disk Controller Card adds another dimension to the 1616 system.
Using an 8 Mhz Z 80 H as a co-processor, tasks such as getting data to and from the disk can be off-loaded from the 68000 , leaving it to do what it does best! SSDCC Technical Features:

- On board 280 H CPU (running at 8 Mhz).
- 8 K to 32 K of ROM.
- 8 K to 64 K of static RAM
- WD1772 disk controller chip.
- Supports both 3.5" and 5.25" DS 80 track floppy drives.
Options:
- SCSI hard disk interface using the NCR5380.
- Two additional serial ports (under 280 control) using the 28530 SCC.
- CP/M support coming!

JOIN THE HLNDREDS OF 1616 ISERS

Mini kits start at $\$ 239$, basic kit from $\$ 449$ keyboard $\$ 139$, power supplies from $\$ 69$, disk controller kit from \$249.
If you require further information, pricing and updates, user groups information.

CONTACT APPLX TVIDAY

Applix Pty Limited
324 King Georges Road, Beverly Hills P.0. Box 103, Beverly Hills N.S.W. 2209, Australia Telephone: (02) 7582688

QUALITY AUSTRALIAN MODEMS AT LOWER PRICES

We also stock a large range of RS232 cables and software. Please phone for further details.

PO BOX 651 LANE COVE NSW 2066

Data acquisition and analysis to output and control...

The 7000 MDAS is capable of making direct measurements of strain, temperature, pressure, voltage, etc, and accommodates virtually any physical parameters, when the appropriate transducer is added to the system - no additional signal conditioning is required.
The equipment can be used in the field and provides analog, digital, frequency I/O, relay and stepper motor controls.

MDAS can be battery powered for remote operation and also has an internal battery back-up system.
Key features include: stand alone operation, high level transfer to any computer's data base.
Considering the cost and performance together, no other product comes close.

NTranJEra

MAKE THE RIGHT CONNECTIONS WITH SESCOM FROM REBEL

MIC-SPLITTERS

ACTIVE DIRECT BOXES

GENERAL PURPOSE AUDIO TRANSFORMERS

Available in $2,3 \& 4$ split models, these specially designed audio transformers have separate, isolated electro-static shields to prevent common ground loop problems.

Please send me details of
osource
or the full Sescom catalogue with prices.
Name:
Address: \qquad
P/C:
Post today to:
Rebel Audio, 66 Cowles Road, Mosman, NSW 2088

Sierra have the products to design
high technology telecommunica-
tions; ACD Itronics has the complete
range of quality components for you!
SC1P006 240bps analog peripheral
Compatible with CCITT V22, BiSV22/21, and Bell 212A/103 standards, integrated DTMF/Guard tone generator, call progress monitor contains an on-chip hybrid. Also analog, digital and remote digita. loopback, plus programmable audio outputport, many other features
SC11008 Stand-alone interface controller.
Complete AT corrand set in firmware for intelligent modems. direct interface to single chip SC1104 x SC11014. Built in uart for RS-232C interface including 38 pin-dip or PLCC package. Compatible with Industry Standard Software, reduces component count and boardspace.

AVAILABLE

SC2200/2202
Serial interface, erasable program memories.
CMOS EE technology in 8 pin packages. 10.000 erase/write cycles and 10 year-data retention. Single $5 v$ supply, very low power dissipation and no external high voltage for programming. Simple microprocessor interface, ask for details

PREMIUM QUALITY COMPONENTS WITH SUPERIOR SERVICE PLUS LOWER PRICESCONTACT US FOR FULL DETAILS ON OUR EXTENSIVE RANGE!

MELBOURNE: f.27 Levton Rd, Rox Hill फic 3128. th 8989 458, tax 8990373 SYDNEY: 106 Relmore Rd, Kiverwond NSW 2210. Ph 5316200 . Fax 5344910 BRISBANE: 5. Noren St. ChavelHill Qld to69. I'h 878 1488, Fax 878 1.4.0 READER INFO No. 8

Representation of the range of high quality Melcher power supplies. SWITCHING POWER SUPPLIES AND THE SELECTION RANGE:

THE STANDARD RANGE FOR A THOUSAND APPLICATIONS

our range of switching power supplies is enormous. It is the result of long experience, close collaboration with customers and a constant pursuit of innovative, yet practical designs.

And this range is steadily growing. Manufacturers and application engineers from industry, transport, communications, defence technology, power utilities, medicine and even entertainment electronics contact us with ever changing requirements. With requests that can only be met by a flexible specialist having inhouse development and manufacture.

However, a great many requirements are already fulfilled with our standard power supply models or with their optional features. With switching regulators up to 300 W , DC/DC converters and chopper supplies up to 50 W ; with single and multi-voltage devices, fixed or adjustable; for extreme temperature ranges or quality requirements; with different mounting or connection possibilities etc.

Out of this, thousands of variations can be produced at short notice. For a copy of our short-form catalogue, just give us a call.

MELCHER

Micro

Fectronics

AUSTRALIAN SILICON TECHNOLOGY

Abstract

Australian Silicon Technology is a semi-custom service for industry that is unique in Australia. It utilises software written locally and local facilities to fabricate the integrated circuits. The service allows industry to design their own gate array chips on a personal computer with minimum knowledge of the technology. It is low cost and can accommodate small volumes.

M.R. Haskard,
B. Inwood
M.A. Macdonald, G. Pouferis

For Australian industry to be competitive, increasing use must be made of modern semiconductor technology. This includes application specific integrated circuits (ASIC) and in particular, semi-custom integrated circuits. The difficulties experienced by many companies are, (1) they have no training or experience with this new technology. (2) the up front costs are normally tens of thousands of dollars, (3) the quantitites of integrated circuits required are by most foundry standards very small and so the foundry operators are not interested and (4) many of the semi-custom facilities available in Australia employ overseas design services. To overcome these problems the Microelectronics Centre at the South Australian Institute of Technology in conjunction with Philips, Hendon, and the Defence Research Centre Salisbury, have established a low cost semi-custom service, which can accommodate very small volumes. It is called Australian Silicon Technology (AST).

Philosophy

The approach employed to minimise costs of the service was by:

1. using gate array technology where there is cost sharing between customers of the silicon processing. The initial masks and fabrication steps for all designs are identical with only the upper layer characterising the design to a particular customer's requirements;
2. employing a personal computer as a low cost designer's workstation. Monochrome or colour computers of the IBM type or similar may be used.
3. giving customers the option to undertake their own design and testing.
To assist industry to come to grips with
this new technology, maximum use has been made of computer-aided design. The software contains all the technology information, so that to design a chip the customer needs only the ability to draw a schematic diagram. The software performs simulation to verify the design and then

Integrated Injection Logic ($\mathbf{I}^{2} \mathrm{~L}$)

Since the simultaneous publication in 1972 of papers by H. H. Berger and S. K. Wiedmann from the IBM Laboratories in Germany and C. M. Hart and A. Slob of the Philips laboratories in the Netherlands, we have had avallable a technlque whereby an Inverse, upward NPN transistor could be made to operate Into loads formed by PNP transistors in a configuration and small size. This new "Merged Transistor Logic" (MTL) or "Integrated Injection Loglc" has provided a bipolar digital circult technique with high packing density. a low power delay product and the abllity to operate over a wide range of operating power level.
Being a bipolar circuit approach it is compatible with normal existing analogue and digital IC processes with the exception of gold-doped TTL. An important feature of $I^{2} L$ is the fact that it is possible to combine on the one chip analogue functions in normal bipolar designs with digital functions in injection logic.
James E. Smith in the introduction to the I.E.E.E. publication Integrated injection Logic says "In a few exceptional cases $1^{2} L$ was properly recognised at an early stage as an immedlate means of drastically reducing the TTL parts count in high
reliablity systems where bipolar technology was required, and adding a digital mask programmable gate array. In such applications, $1^{2} L$ has enjoyed significant (although unpublicised) success which began soon after its introduction."
$11^{2} L$ processing has been found to be compatible with a standard 12 volt bipolar diffusion process which uses collector wall diffusion. The deep N type collector wall diffusion is normally used to allow a lower resistance contact from the shallow N collector contact on the surface and the burled N layer which runs undemeath the normal NPN translstor structure. In Figure 1 the diffusion configuration is shown.

Using seven masks figure 1A shows the injection logic gate structure right provides the current source to the base inputs of the two inversely connected NPN transistors shown. The buried N region below the N-type epitaxial layer comblnes with the deep N diffusion to enclose the $I^{2} L$ structure. Figure 1 B shows a normal NPN transistor structure using the same diffusion steps. In bipolar design the deep N diffusion is usually only used where there is a need to ensure an adequately low series collector resistance, and in normal bipolar design may not be needed.
generates test vectors and a net list.
The flow diagram of the service is shown in Figure 1. Using the AST Designer's Kit, customers assemble their system on the computer workstation, verify it and then send off the design to AST. Here, automatic routing lays out the interconnection of the chip, extracts parasitics and then performs a details simulation. After confirmation with the customer that the design still performs correctly, the layout is converted to a format for mask manufacture. Masks are then forwarded to Philips for chip fabrication with packaging carried either at Philips or AST. Five samples are delivered to the customer for testing using the test vectors previously generated. If correct, details for delivery of quantities required are then finalised.

Gate array concepts

A gate array is a chip that contains a prediffused but unconnected matrix of gates or gate elements surrounded by an area reserved for interconnection wiring. This accounts for approximately 90% of the chip's processing. Interconnection of the gates is made by one or more customised masks (usually metal). which uniquely defines the chip's function. This concept is illustrated in Figure 2.

Figure 2 (a) shows an uncustomised gate array as a regular matrix of gats and

Figure 2. Schematic Representations of a Gate Array.
routing channels surrounded by buffers configurable as either input or output. Figure 2 (b) illustrates a completed gate array customised by a single metal interconnection layer defining its function as a simple latch. In a gate array the percentage of active area is typieally 25 per cent, with the remaining silicon allocated to wiring space.

Since the uniqueness of a gate array's logic function is programmed into the chip
during the final stages of the wafer's processing, the uncustomised gate array wafer is common to all customers of the base wafer. hence the volume of uncommitted gate array wafers manufactured will be much larger than in the case of an individual gate array design. This means that the design, development, tooling and learning curve for the uncommitted gate array wafer is shared by many customers, even though each obtains their unique chip

integrated injection logic in seven mask technology. The region enclosed by N^{+}regions comprises the injection logic gate structure.

Conventional NPN transistor using seven mask technology.

MASKLIST

-	$=\triangle \square$	SILICON P-TYPE SUBSTRATE
BN	$x \times$	BURIED N DIFFUSION
-	$=\square 00$	N-TYPE EPIT AXIAL LAYER
DP	= 12	DEEP P DIFFUSION
DN	[1]lilil	DEEP N DIFFUSION
SP	\square	SHALLOW P DIFFUSION
SN	$=\square$	SHALLOW N DIFFUSION
CO	$=$	CONTACT WINDOWS
IN	$=$	ALUMINIUM INTERCONNECTION

or may only be applled to one or two critical transistors.

Probe testing of the diffused slilicon slice ensures that only good devices are processed beyond the sawing and breaking stage. From this point there are a variety of different options available. For example, if the pretested circuit is required in chip form, the sawn and broken slice can either be supplied on plastic film or submitted for visual inspection to an agreed standard and the chips placed individually in waffle packs.
Assembly and testing to provide a finished useable product can continue either in a standard moulded plastic package or in a normal chip carrier. These can be hermetic if desired with nitrogen back filling before sealing. A further possibility which has been found to provide distinct advantages is to assemble the Australian Silicon Technology chip on a hybrid sustrate and in this way integrate the semi-custom gate circult with other components to gain from both techniques of custom assembly. On a hybrid circuit, built in input and output conditioning can be included with minimum lead lengths, and circuit confidentially can be further protected; where necessary components which operate outside the normal limitations of
the semi-custom and $I^{2} L$ process can be combined to give higher voltage, higher current and other analogue capabilities.
Normal quality control is carried out within the framework defined in AS1822 (Suppliers Quality Systems for Production and Installation). This covers the production process from Incoming material control to the definition of the necessary management structures to ensure the independence and authority needed to carry out an effective quallity role.

Where needed Military Release procedures are available to Mil. Std. 883 C as also are bum-in, life and endurance testing procedures to agreed methods.

Quality Control also requires access to suitable measurement and diagnostic equipment such as a Scanning Electron Microscope, adequate optical microscope and photographic as well as X-ray facilities. This commitment to quality assures the proven maintenance of standards and procedures in offering the diffusion and production service to customers.

John Crawiord
function. Because of this sharing small volume runs are practical.
As the base pattern of transistors/gates is already implemented, the remaining design effort is greatly reduced and simplified to specifying the connectivity of the gates to implement the required function. This ensures rapid design, quick tooling and fast wafer processing, which are traded for optimum transistor design, flexibility and packing density.
The basic advantages of the gate array concept are:

- Minimised chip engincering
- Fast design turn-around
- Fast tooling turn-around
- Fast production turn-around
- Simplified CAD software
- Inexpensive tooling
- Low design risk
- High circuit reliability
- Predictable yields
- Predictable performance
- Design security

AST's Gate Array's

Integrated Injection Logic (IIL), also known as Merged Transistor Logic (MTL), was selected in preference to the other bipolar logic families. (RTL. TTL and ECL), because IIL offers the best compromise between speed of operation, and power dissipation and high packing density.
Input and output buffers placed around the periphery of the gate array have been specially designed to translate the 0 to 0.7 V swings of IIL to CMOS and TTL compatible levels.

Prototype chips are usually packaged in 40 pin DIL packages where as production parts, may be mounted in the package type selected by the customer. The chips may be manufactured to commercial, professional or military standards.
Turnaround time is typically six to cight weeks but is expected to reduce to three weeks once stocks of uncommitted wafers
are built up. The cost of the customer used software is $\$ 500$ and processing prototype quantities is under $\$ 6000$ for which the customer receives five packaged and five unpackaged dic for evaluation. Each wafer is probed to ensure that the process parameters are within specification.

Software

The software programs for AST fall into two categories: the first is that used by the customer on personal computer, and the second set of software is that used by AST itself to process the design and requires a mainframe computer. An IBM personal computer or equivalent is an ideal lowcost workstation; whilst not mandatory. AST do recommend one with enhanced graphics and a hard disk.
The software used by the customer is called the Designer's Kit and consists of several tools. The first is the geometrical

MASKMAKING

The Advanced Engineering Laboratory at Salisbury has capability in maskmaking that pivots around an early model DW MANN photorepeater. This machine is used to produce an array of pattems from a single mask as depicted in Figure 1 The input to the maskmaking system is in the form of magnetic tape containing the geometric data defining each layer of the circuit.

For the AST project, this tape is used to drive the photoplotter to produce original artworks of 50.8 X final size. These artworks are reduced by 5.08 X to produce the reticles (or intermediate masters) for the photorepeater. Each mask also contains the layer description for process control modules which allow Philips to verify their processing on each water. Artwork, reticles and masks are inspected at each state to ensure that dimensions remain within tolerances. Following labelling and final inspection the completed masters are passed to Philips Microelectronics.
To keep development costs low AEL has been providing Philips with emulsion masters, which are generally not sufficiently robust to withstand the rigours of the production environment. The development circuits have been fabricated in small numbers so this lack of robustness has not been a problem. When production of the Gate Array begins, AEL will supply Philips with chrome on glass masters that are significantly less susceptible to damage. Microengineering Section has the capability to produce antireflective
chrome masters and has already done so for use in other projects. The custom masks for defining the metallisation layer on the production Gate Arrays will consist of a single mask which can be delivered within two days of recelpt of the magnetic tapes.

As indicated above, maskmaking represents only a minor element of the overall capabilities of the Microengineering Section of AEL. Because the Section is fundamentally an experimental and prototyping facility, it is not subject to the constraints binding other production facilities. The following projects are presented as examples of the unusual nature of some of the Section's work.

The first example is a Surface Acoustic Wave device which is illus-
trated in Figure 2. The device consisted of input and output transducers separated by $40.04 \pm 0.005 \mathrm{~mm}$. The transducers were a mirror image pair and consisted of 14 interdigitated line pairs of $5.5 \mu \mathrm{~m}$ width separated by $5.5 \mu \mathrm{~m}$. Because of the physical limitations of the photoplotter, it was impossible to plot the antwork for this device. However, the pattem was generated by exploiting the capabilities of the DW MANN photorepeater
A single transducer which was plotted at 100X final size was reduced to 10 X final size. A mirror image of this reticle was obtained photographically to produce the reticle for the other transducer. An emulsion master was produced on the photorepeater by firstly exposing the image of one transducer onto a

Fig. 1 Producing the mask. Dark chips are Process Control Modules.
editor which uses a Microsoft Mouse or compatible pointing device to make selections from various menus, to place components such as gates, flipflops and pads within the circuit, and to interconnect them with wires. Points in the circuit, or nodes, can be named by the designer for reference later by the simulator programs. Comprehensive help facilities are offered. The circuit schematic can be sent to a printer.

An important objective of the editor program is that it be very simple to use. A circuit can be designed by simply interconnecting the appropriate logic symbols and there is no need to know anything about IIL technology. Further, using the editor is easy in that the rules are, in general, point with the mouse and press the left button to place a component, point and press the right button to remove a component.

The remaining tools in the Designer's Kit are concerned with verifying the func-
tion of the circuit. Firstly a validation process is carried out to check the design; for example, that outputs from two or more gates are not connected together (hardwired OR logic is not allowed), and that the customer is warned if an input to a gate is not connected. Errors and warnings are reported with co-ordinates which pinpoint the location of the problem in the schematic layout so that it may be readily found. If there are no serious errors an expansion process then expands flipflops and other marcocells into their IIL gate implementation, and actually configures the circuit in terms of IIL gates. This expansion process is the only component of the Designer's Kit that knows about the fabrication technology. AST also has a TTL and will have ECL and CMOS versions of the expansion program in the near future which will allow alternative technologies to be used.

From the expanded circuit description, a simulation program is used to predict

Fig 2. Surface Acoustic Wave Device showing transducer detall.
photographic plate, replacing the reticle with its accurately registered mirror image, stepping the photorepeater across by the appropriate distance and then exposing the image of the other transducer. The resulting master was used to successfully fabricate the SAW.

Following the successful fabrication of thin film thermocouples on neoprene rubber which recorded temperature transients of $1000^{\circ} \mathrm{C}$ in a few milliseconds, the section was

Fig 3. Thin Film Thermocouple for Propellant Studies.
asked to fabricate thin film thermocouples of extremely low thermal mass. They were fabricated by evaporating the thermocouples materials through metal stencil onto a tensioned 2 micrometre Mylar film. Although the minimum detailed size of 0.1 mm (see Figure 3) is large by microelectronic standards, this project presented some novel challenges.

A final example is a thick film hybrid EPROM module. It has a storage capacity of 512 kbits and has a footprint of $50 \times 25 \mathrm{~mm}$.
The circuit employs multilayer technology and contains five conductor layers. The unusual aspect of the example if that suitable unpackaged EPROM dies could not be obtained, even though the device was available in packaged form. A number of packages were purchased and "reverse engineered" to remove the ICs from the packages.

Henry Kutek
the behaviour of the original circuit; points, or nodes in the circuit can be observed and can be driven with predefined values. The validation, expansion and simulation programs are packaged in a convenient way so that they may be invoked one after another by typing only one command. Subsequent simulation runs can be executed immediately since there is no need to validate and expand the circuit again unless changes have been made to it.

The simulator in the Designer's Kit sees devices simply as switches with three possible values: high, low and unknown. Since the actual wiring paths of the gate array structure are still unknown, this simulator uses gate propagation delays as its time step. This is adequate to detect the majority of timing problems in a circuit.

Nodes in the circuit are referred to by the names given when designing the circuit with the editor. Nodes can be driven with test vectors which can be captured together with the circuit response, for use later in the more detailed simulation, and for testing prototype chips.

Once a design has been completed the information is transferred to AST via floppy disk or dialup facilities at the South Australian Institute of Technology for subsequent processing. First an automatic routing program places the gates and macrocells onto the gate array structure and wires them appropriately. Standard cells have also been catered for. Since the circuit path lengths are now known, a more detailed simulation of the circxuit is then undertaken by AST and the results of this simulation are reported to the designer for confirmation that the circuit performs according to specification. Finally, the data geometrically describing the layout is converted in a CIF-to-Gerber program to that required to drive the photoplotter to generate the masks for chip fabrication.

All of the programs described have been developd by AST specifically for this semi-custom service. AST also has other software programs available which may be more suitable for different custom and semi-custom requirements.

A case study

The circuit under consideration is best described as a state variable control system. The controller monitors the input states and switches selected outputs on for a preprogrammed amount of time depending on the value of the inputs.

An expected production requirement of 2500 units per year means that implementation of this circuit on a gate array would be the most cost effective approach.
The existing design employs the follow-

Australian Silicon Technology

ing MSI chips: $4077,4043,4081$, and 4520 which are surface mounted on a hybrid. In this case the whole circuit may be incorporated on a single gate array. However, for larger designs where more than one ASIC is required the circuit must be partitioned

AsT Designere Kit: Schematic entry Simulation Tost Vectors Not List	Customer or AST
\downarrow	
Automatic Gate Array Layout	AST
\downarrow	
Detalied Simulation Confirmation by Customer Design Correct	Cust
\downarrow	
Ceneration Mask Tape Mask Manufacture	$\begin{aligned} & \text { AST } \\ & \text { DRCS } \end{aligned}$
\downarrow	
Chip Manufacture Packaging	Philips Philips or AST
Testing Chips	Customer Philips or AST

Figure 1. Steps in the production of an AST gate array.

512 k EPROM Thick Film Hybrid.
in a way that minimises the ASIC count. Factors to be considered are:

- the number of pins required for both signals and poewr must be able to be incorporated by the ASIC selected;
- critical timing paths should, as far as possible, be placed on chip; and
- the I/O requirements of the ASIC used must be compatible with the external circuitry.
Once the system has been defined and a block diagram drawn, AST will provide a
detailed quotation on prototyping and production costs for the ASIC's. This allows the customer to evaluate the best approach of implementing their design.
M. R. Haskard, B. Inwood, M.A.

Macdonald and G. Pouferis work at the Microelectronics centre, SAIT, Adelaide. Henry Kutek is at the Advanced
Engineering Laboratory, Salisbury, SA. John Crawford is with Philips Microelectronics, Hendon, SA

LABORATORY POWER SUPPLIES

APLAB offer a complete range of regulated DC bench rack power supplies combining high precision and regulation capabilities with continuously adjustable outputs.
Designed with single. dual and multiple outputs, these power supplies can be used in either constant voltage or constant current mode of operation.

Standard models include:

SINGLE OUTPUT
OUTPUT: Output VOLTAGE: Current $0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 30 A $0-70 \mathrm{~V} 0-2 \mathrm{~A}$ to 10A

DUAL OUTPUT MULTIPLE OUTPUT
$0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 2A

SCIENTIFIC DEVICES AUSTRALIA PTY. LTD.
VIC 2 JACKS RD. SOUTH OAKLEIGH. 3167 PHONE (03) 5793622 TELEX: AA32742
NSW 559A WILLOUGHBY RD, WILLOUGHBY 2068
PHONE: :(02) 958-8064 TELEX AA22978
S.A. 31 HALSEY RD. ELIZABETH EAST 5112

PHONE: (08) 2556575 TELEX AA88125

WHO'S WHO IN SEMI CONDUCTORS

This list covers all the main players in the field of semi conductors in Australia. While we have tried to be reasonably comprehensive, note that omission from our list merely implies our data base was incomplete at the time of going 10 press.

AACl
18 Cleeland Road.
Oakleigh South 3167
(03) 5433444

ACD ITRONICS
106 Belmore Road.
Riverwood 2210
(02) 5346200

ACE ELECTRONICS
14 Primrose Avenue,
Rosebery 2018
(02) 6930382

ADILAM ELECTRONICS
Suite 7, 145 Parker Street,
Templestowe 3105
(03) 8462511

AIR \& NOISE ENGINEERING (VIC)
34 Clarice Road.
Box Hill South 3128
(03) 8900316

AJ DISTRIBUTORS
44 Prospect Road.
Prospect 5082
(08) 2691244

ALL - SYSTEMS ELECTRONICS
16 Hope Street,
Seven Hills 2147
(02) 6244644

ALL ELECTRONIC
COMPONENTS
118-122 Londsdale Street,
Melbourne 3(KK)
(03) 6623506

ALLIED CAPACITORS
6/25 Chard Road.
Brookvale 210)
(02) 9382041

ALTRONIC DISTRIBUTORS
174 Roe Strect.
Perth 6000
(19) 3282199

AMPEC ELECTRONICS
Unit 8, 142 James Ruse Drive
Rosehill 2142
(02) 6893522

AMTEX ELECTRONICS
36 Lisbon Strect.
Fairficld 2165
(02) 7282121

AP IMPORTS
41 Box Road.
Crossroads 2170
(02) 6019722

APPLIEID COMMUNICATIONS
389 Si Georges Road.
North Fitzroy 31688
(03) 4862299

APPLIED MEASUREMENT
27 Dalgetly Street.
Oakleigh 3166
(03) 5680.588

AVISUN
PO Box 1340.
Crows Nest 2065
(02) $43839(0)$

AWA MICRO ELECTRONIC
422 Lane Cove Road,
North Ryde 2113
(02) 8877355

BALTEC SYSTEMS
26 Mayneview Strect,
Milton 4 (K4
(07) 369 590

BJE ENTERPRISES
35 West Parade,
Eastwood 2122
(02) 8585611

BRYAN CATT INDUSTRIES
10/59 Gymea Bay Road
Gymea 2227
(02) 5262222

CENTRE FOR INDUSTRIAL
MICROELECTRONICS
3rd Floor,
449 Swanston Street, 3000
(03) 6605111

COLTRONICS
6 Stanley Street,
Silverwater 2141
(02) 6471566

DELSOUND
1 Wickham Street
Brisbane 4000
(07) 8396155

DICK SMITH ELECTRONICS
Cnr Lane Cove \& Waterloo Roads
North Ryde 2113
(02) 888.3200

DYNAMIC COMPONENT SALES PO Box 476 .
Ringwood 3134
(03) 8734755

ELECTRONIC DEVELOPMENT

SALES

92 Chandos Street.
St. Leonards 2065
(02) 4382500

ELECTRONIC DISCOUNTERS
305 Morphett Street.
Adelaide 5000
(08) 2121799

ELECTRONIC WORLD
30 Lacey Street
Croydon 3136
(03) 7233860

ELECRONICS \&

SEMICONDUCTOR
Unit 4. Cnr. Barrie Road - Adina
Court. Tullamarine 3043
(03) 3705522

ENERGY CONTROL
INTERNATIONAL
26 Boron Street.
Sumner 4074
(07) 3762955

FAIRMONT MARKETING
Suite 3. 208 Whitchorse Road.
Blackburn 3130
(03) 8775444

FASTRON PTY LTD
1 Kembla Street
Cheltenham 3192
(03) 5848988

FERRANTI COMPUTER SYSTEMS
2A Mavis Strect,
Revesby 2212
(02) 7086655

FORCE ELECTRONICS
203 Wright Street
Adelaide 8000
(08) 2125400

FUJITSU AUST P/L
41 McLaren Street,
North Sydney 2060
(02) 9596555

GEOFF WOOD ELECTRONICS
229 Burns Bay Road,
Lane Cove West 2066
(02) 4271676

GEORGE BROWN ELECTRONICS
GROUP
174 Parramatta Road,
Camperdown 2050
(02) 5195855

HI-COM UNITRONICS
7 President Lane
Caringbah 2229
(02) 5247878

HITACHI AUSTRALIA
18th floor, 111 Pacific Highway.
Nth Sydney 2060
(02) 9298799

INTEL
Level 6, 200 Pacific Highway
Crows Nest NSW 2065
(02) 9572744

IRH COMPONENTS
92 Parramatta Road,
Lidcombe 2141
(02) 6485455

JAYCAR ELECTRONICS
115-I17 Parramatta Road,
Concord 2137
(02) 7472022

JED Microprocessors
7/5-7 Chandler Road
Boronia 3155
(03) 7623588

MACRO DYNAMICS
80 Lewis Road
Wantirna South 3153
(03) 2207260

MAGRATHS
202 Bell Street.
Preston 3072
(03) 4873335

MIMAKA
57 Tyron Road.
Lindfield 2070
(02) 4672629

MOTOROLA SEMICONDUCTOR
250 Pacific Highway,
Crows Nest 2065
(02) 4381955

NSD AUSTRALIA
205 Middleborough Road.
Box Hill 3128
(03) 8990819

NATIONAL SEMICONDUCTOR
11 Khartoum Road.
North Ryde 2113
(02) 8874455

NEXUS ELECTRONICS
Unit 8. James Ruse Drive.
Rosehill 2142
(02) 891144

NOVOCASTRIAN ELECTRONIC SUPPLIES
24 Broadmeadow Road.
Broadmeadow 2292
(049) 621358

PARAMETERS
25-27 Paul Street North.
North Ryde 2113
(02) 8888777

PHILIPS
11 Waltham Street.
Artarmon 2064
(12) 439-3322

PLESSEY COMPONENTS
Christina Road
Villawood 2163
(02) 720133

PRESTON ELECTRONIC
COMPONENTS
217 High Strect,
Preston
(03) 4840191

PROMARK ELECTRONICS
6 Clarke Street,
Crows Nest 2065
(02) 4396477

R \& D ELECTRONICS
4 Florence Street,
Burwood 3125
(03) 2888911

RADIOSPARES COMPONENTS
28-30 Northwood Street
West Leederville 6007
(09) 3814799

RAE INDUSTRIAL
ELECTRONICS
178 Pacific Highway
St Leonards 2065
(02) 4397599

RESERVE ELECTRONICS
24 Brisbane Street,
East Perth 6014
(09) 3289755

RIFA
202 Bell Strect
Preston 3072
(03) 4801211

ROD IRVING ELECTRONICS
48 A Beckett Street.
Melbourne 3000
(03) 6636151

RVB PRODUCTS
242 Huntingdale Road.
Huntingdale.
(03) 5683588

SGS THOMSON
MICROELECTRONICS
Suite 211, Edgecliff Centre.
203-233 New South Head Road,
Edgecliff 2027
(02) 3273922

SIEMENS INDUSTRIES
544 Church Street.
Richmond 3161
(03) 4207111

SINGAPORE TRADE
DEVELOPMENT BOARD
1 Alfred Street,
Sydney 2000
(02) 233-7015

SKANDIA ELECTRONICS
I83 Burwood Road
Hawthorn 3122
(03) 8192466

SOANAR
30)-32 Lexton Road

Box Hill 3128
(03) 895-0222

ST LUCIA ELECTRONICS
24 Campbell Street.
Bowen Hills $4(0) 6$
(07) 5274666

TEXAS INSTRUMENTS
6-10 Talavera Road,
North Ryde 2113
(02) $887-1122$

THE COMPONENT SPECIALISTS
11 Manston Street.
Elizabeth South 5112
(08) 252-2292

TOTAL ELECTRONICS
9 Harker Street.
Burwood 3125
(03) 2884044

VSI ELECTRONICS
16 Dickson Avenue.
Artarmon 2064
(02) 4394655

WESTINGHOUSE BRAKE \&
SIGNAL CO.
80) Douglas Parade.

Williamstown 3016
(03) 3971033

What's the greatest threat facing the computer today?

Australian and American experts agree on what it is, although their estimates of how much it costs you in downtume varies. Americans believe it accounts for more than 30% of all computer failures. Yet some Australians say their practical experience leads them to believe 70\% would be a far more accurate figure
Surprisingly enough, the greatest threat to your computer is the very power it runs on.

The way to control the power to your computer and avoid these cosily breakdowns is with Clean Line Systems. Their power conditioners, uninterruptible power supplies and other products and services can eliminate all disruptive power line disturbances. They provide stable, clean elecirical energy. They can combat the damaging effects of lightning and even have inbult safety systems to ensure the power to your computer is never cut off unexpectedly

Clean Line Systems is a wholly Australian-owned company that designs and manufactures its own equipment They are the people more computer companies choose to protect thear corporate computers
All Clean Line Systems equip ment conform with the most stringent specificatoons here in Australia. America and Europe It is so advanced that it is half the physical size and weight of most comparable competitive systems And it outperforms them 1001

Clean Line Systems equipment is not noisy, it runs cool and does not emit any damaging magnetic fields Best of alt, it can grow with your computer needs Plus, if you ever need it, full service back-up is available 24 hours a day, seven days a week

Clean Line Systems can elimın ate the greatest threat to your computer today You can purchase, lease or rent immediately

Call us on the number below. or else take your chances with the power threat

The ultimate power support systems
Head oin, 33 : Ixdedse Sireer

Philips Oscilloscopes

The new Philips PM 3296A and PM 3286A VHF oscillosopes feature a memory for 75 complete front-panel settings. These settings are stored in non-volatile memo$r y$, and can be recalled instantly whenever required using a unique infra-red remote control unit.

As well as economy in production environments, where it can eliminate the need for an external computer, this re-mote-control facility is also valuable for operation in hazardous environments or inaccessible
locations, where normal manual control would be impossible.

READER INFO No. 175

HP 5371A Frequency and Time-interval Analyzer

Hewlett-Packard's new frequency and timeinterval analyzer provides statistical analysis and timeprofiling of such parameters as frequency, phase, timeinterval and jitter on dynamic conditions on the HP 5371A is made possible by new continuous-measurement technology, which makes measurements at rates up to 10×106 results/ second.
The HP 5371A's measurement rate makes possible analysis as a function of time. This is sometimes referred to
as time-sampling. Just as a voltage digitizer adds the time dimension to voltmeter measurements, the HP 5371A displays frequency or timeinterval variation with time. just as a conventional sampling oscilloscope displays voltage variation with time.

The HP 5371A offers a wide selection of basic measurements, resulting in increased flexibility for the analysis of complex signals. This versatile analyzer can measure, store, analyze and display blocks of up to 1000 singleresult or 500 dual-result

Digital Temperature Indicator

Kent Instruments have released a new pocket-sized digital temperature indicator for temperature measurement in the range -50 to $750^{\circ} \mathrm{C}$.

Designated the Kent Model 3200 K Hand-Held Digital Temperature Indicator, it utilises a blend of proven circuitry and the latest high performance, low power technology. The instrument is suitable for use with all Type K thermo-couple probes, connection being by means of a miniature thermocouple plug.
The Kent Model 3200K is packaged in an extremely robust, waterproof, moulded case which is ergonomically designed to allow for singlehanded operation. A large $31 / 2$ digit display provides a clear indication of temperature even under the poorest ambient lighting conditions.

READER INFO No. 176

measurements for the following types and ranges:

- Frequency from 0.125 Hz to 500 MHz ;
- Phase;
- Period from 2 ns to 8 seconds;
- Time interval;
- Pulse rise and fall times from 1 ns to 100 microsecond transitions;
To achieve this performance, HP uses a new instrument architecture. Signals to be analyzed are connected to a proprietary two-channel, counter-like measurement unit with wide bandwidth input, triggering circuitry, and continuous-counting registers. A high-speed, 1000-measurement memory samples and stores input-signal timing information contained in the continuous-counting registers. Signal-processing firmware then reduces the stored data based on the measurment type selected.
An external triggering and arming input combined with multilevel triggering criteria allows the user to choose conditions that start the measurement block as well as define the conditions to trigger the individual measurements in the block.

For example, the start of a measurement block can be set up to occur at an arming edge or after a specified number of events or time. Then the individual measurements in the block can be set to occur on edges, at time intervals or on cycles of the input signal. In addition, automatic and default modes are provided to aid in initial setup.

HP has a special design that permits count totals to be sampled at rates to 10 MHz for input signals to 500 MHz , without interrupting the counting process. In continuous mode, the HP 5371A's count registers are never reset from one measurement to the next. Three, 32-bitcount chains operate simultaneously for arming or measurements.
In addition to sampling data at high speed, the HP 5371A custom IC interpolates time for each measurement to a 200ps least-significant digit, sends the results to memory, and rearms for the next measurement in less than 100 ns .
For more information contact H-P on (03) 8952895.

READER INFO NO. 177

Marconi Sweep Generator

Marconi Instruments has released the new 6311 Programmable Sweep Generator. With applications in scalar network analysis, active device measurements and ATE testing, the 6311 now
covers 0.01 to 20 GHz in a single sweep. This extended range means the instrument now covers IF, HF, VHF and UHF frequencies under 1 GHz as well as military and civilian satellite links.

READER INFO No. 178

Model 37

The FLUKE model 37 has just been released through a new distribution company, Obiat. It features full annunciation of function and range. It is also claimed to have high accuracy and excellent resolution from the 3200 count combined analogue/ digital display. The unit is equipped with full shielding
against electromagnetic interference and electrical overload. It has minimum, maximum, relative reading and touch hold modes, and a diode test and continuity beeper function.
For further details on the 37 contact OBIAT on (02) 6984776.

READER INFO No. 179

Do computers play any part in your life?

If they do - or if you just want to find out about them - don't miss each month's issue of

A magazine for all computer users and enthusiasts, Your Computer has something for everyone - topical features on all aspects of the computing world, expert reviews of the latest software and hardware, up-to-the-minute information for business people and
 even games and advice for hobbyists.

TEST AND MEASURING

YOKOGAWA 3655E and 3656 WAVEFORM ANAL YZING RECORDERS

Recently released from Parameters Pty Ltd is the Yokogawa 3655E/3656 Analyzing Recorder Range. The instruments provide simultaneous measurement, computation, display and plotting on two input channels. A choice of 8 K or 32 K words/channel is available. Ranges include ($\pm 60 \mathrm{mV}$ to $60 \pm \mathrm{V}$) AC and DC volts and five types of cold junction compensated thermocouple inputs. Larger voltages and currents can also be accommodated. The Yokogawa 3656 may be used as a digital data logger, continuous pen recorder, transient recorder, temperature recorder, FFT analyzer, oscilloscope and oscillograph recorder. The $3655 \mathrm{E} / 3656$ consolidates all of these features into a simple all-in-one instrument which provides convenient measurement and quick accurate analysis.

Both instruments have 32 K words/channel and the 3656 can digitise signals at a rate of up to 5 MHz with 10 bit resoIution. The Yokogawa 3655E and 3656 utilize simple menu programming with soft key
control, have a $7^{\prime \prime}$ CRT waveform display in addition to zooming and scroll features which provide increased waveform detail. Furthermore, the instrument comes with a built-in high speed 4 colour digital plotter. A flexible plotting mode allows information to be plotted in real time and money.

In memory mode both instruments provide numerous display formats. On the 3656 input signals are sampled at a rate of up to $0.20 \mu \mathrm{~S} /$ word and the waveform is displayed on the CRT screen. Once the waveform has been varified the operator can plot the displayed signals out. Waveform ranging from DC to fast changing signals can then be accurately analyzed.

In the basic two channel format these instruments cost around $\$ 10,000.00$. Additionally a data memory module, GPIB or RS-232C interface and an FFT module may all be optionally fitted. The 3655 and 3656 instruments will also trigger off an external event capturing a single shot transient in a similar fashion
to a UV recorder. This feature coupled with the unit's frequency analysis capability (FFT) will also allow the instrument to measure, analyze, compute and plot for example, on-line load regulation characteristics, 50 Hz harmonics fluctuations or bearing vibration.

READER INFO No. 171

Highest
 Resolution

Image Analysising Services (IAS) has installed CADAM sottware sourced from the Lockheed company in the US. The company claims this gives it the highest resolution of any CAD bureau in the country, with 1024×1024 pixels.

CADAM (Computer Augmented Design and Manufacture) was produced by CADAM Inc, a subsidiary of Lockheed in 1985. The product runs on an IBM 4361 M5 mainframe, and customers can either make use of this system at the IAS premises, or altematively, use a remote control terminal in their own office.

To maximise the value of the system, IAS run an extensive variety of training courses to familiarize draughtsmen and engineers with the facilities available
on the equipment. Alternatively, they can provide a complete service themselves.

CADAM was designed to a requirement from Lockheed for extensive CAD facilities. It is composed of number of modules centres on a CADAM interactive base. These include an I/O module for numerical control, 3D modelling, printed circuit board design, a design/build/manage module and so on.

The interactive solids modeler, for instance, comes with an extensive set of geometric primitives, from which comprehensive 3D models can be built up. There is a choice of how the model is displayed. It can be a wireframe, have hidden lines removed, or have different colour specified for different bits. Finally, almost photographic quality images can be displayed on the screen, with realistic shading and definable light sources. More importantly, fourteen mass properties can be specified for each solid, and then it can be assigned a part in a large shape. When dealing with a number of solids on the screen, it can look for interference between the two solids, or tell the operator the smallest distance between them.
For more information, contact IAS on (03) 584-8088.

READER INFO No. 172

TOTAL SOLUTION TO YOUR POWER SUPPLY REQUIREMENTS

RSIA-PRIIFIC LIMITED
Incorporating: • Boschert Inc • Stevens - Arnold Inc - Power Products Inc

Models Available: • Linear Power Supplies • Switching Power Supplies • DC/DC Convertors • Uninterruptible Power Systems • Commercial/Industrial/Mil-Spec.

A DIVISION OF METAL MANUFACTURES LTD.

36 Lisbon Street, Fairfield, NSW 2165. Australia
Telephone: (02) 728 2121, 7275444
Telex: AA27922 ATTN AMTEX
Telex: AA27922 ATTN AMTEX
Facsimile: (02) 728 6908, 7282837

UPA Driver Software

The UPA audio analyser from Rohde and Schwarz is an extremely powerful and versatile instrument capable of operating in three modes:

- Manual
- Manual plus talk only, ie, direct transter of measured values by IEEE-488 bus to printer without the need of a controller.
- Automatic, controlled by a computer with IEEE-488 interface.
For normal applications an IBM Compatible XT-PC is suitable if fitted with a GPIB interface card. For test item control it is usually desirable to also include an interface card with TTL or relay contacts for test item control.

Comprehensive UPA software for the PC is theoretically possible for general purpose testing. However, since the introduction of the UPA to the Australian market the only apparent common feature in client test requirments is that they are all different. Therefore any software would need to be extremely lengthy, with very extended dialogue facilities to allow selection of the required tests. This would make it both tedious to use and complex to modify to individual requirements.

Instead Rhode \& Schwarz are offering a driver software package which will allow them to:

- operate the UPA automatically
- readily exiend the programme from the building blocks provided, to suit their requirements.
The driver software, in dialogue form, allows the user to select some, any or all of the following:
- frequency response
- level compression
- distortion
- signal to noise ratio
- Sinad
- wow and flutter
and for stereo systems:
- cross talk
- phase angle

In each case the user can nominate the required frequency and measurement
range plus instrument settings, eg, which filters are to be used, RMS or quasi peak detetection, etc. Measured results are displayed in tabular form on the VDU and can be printed out as hard copy. The software is supplied on 5 $1 / 4^{\prime \prime}$ floppy disk with operating instructions. The language is GW-BASIC.

READER INFO No. 173

Mass storage For LeCroy

Two new packages for LeCroy's 9400 digital storage oscilloscope are you available through ETP Oxford. They allow full, partial or segmented waveforms to be stored and retrieved. Partial waveform storage allows the user to record only that section of the waveform that is of interest, ensuring efficient storage and allowing storage of hundreds of waveforms on a floppy disc. Frontpanel setups can also be stored so that the conditions under which waveforms were recorded are always known, so exactly the same measurement can be repeated in the future. Date and time stamps complete the waveform documentation.

For further information contact ETP Oxford (02) 858-5122

READER INFO NO. 174

JAPANESE SEMICONDUCTORS

A comprehensive range of Japanese transistors and IC's to suit television, VCR and audio products.
Brands stocked include SANYO, HITACHI, TOSHIBA, NEC. MATSUSHITA, SANKEN RHOM. etc. We are catering for the repair industry Phone for a comprehensive stock list.

TRADE AND WHOLESALE ENQUIRIES

Phone or send your business details to:
WES Components.
P.O. Box 451

Ashfield 2131
PH: 7979866 FAX: 7997051

TEST AND MEASURING

The 6060B
 From
 Elmeasco

Elmeasco have released the 6060B from Fluke. This high quality general purpose signal generator can handle a wide range of assignments in the 10 kHz to 1 GHz range, testing a variety of RF instruments and components Whether your application is land mobile, tactical communication, if components, or pagers, the 6060B delivers the performance of much more expensive generators.
The 6060B is programmable from -147 dBm to above +13 dBm with 0.1 dB resolution, for sensitivity and dy namic range testing. It offers extensive modulation versatility; for example, simultaneous combinations of itnemal and external $A M$ and $F M$. And accuracy is $\pm 1.0 \mathrm{~dB}$ from
an amplitude range from -127 to $+13 \mathrm{dBm}(0.1 \mu \mathrm{~V}$ to 1 V$)$. A number of amplitude features, including Relative Amplitude, RF On/Off, and Flxed Range add operating convenience and save testing time. The Fixed Range mode, used for squelch testing in radios, inhibits the switching of the attenuator sections, forcing the 6060B to use its electronic amplitude control for monotonic amplitude control.

Laser Loss Set

Sclentific Devices are distributing a paired optical power meter and stable laser source in a single unit. Its
called the Intelco 160A. The paired transmitter and receiver enable highly accu rate readings of losses in a fibre or optical component.

The unit is available at $1300 / 1500,1300$ or 1500 nm output. The $1300 / 1500$ mode is multiplexed together. There are two separate laser source to provide the different outputs and they can be electronically switched. It has a LCD display on the front panel that shows lass, power and wavelength. The unit is advertised as accurate to within 0.5 dB with a 0.001 dB resolution. Dynamic range is from +0.5 to -70 dBm .
For more information con tact Scientific Devices on (03) 579-3622

READER INFO No. 183

Brïel \& Kjæp printer

The instrument company B \& K has just released a hard copy generator that can plug into its instruments. The graphic documentation printer type 2318 is a small. lightweight, battery-operated printer for graphic and atphanumeric printouts from instruments with a serial interface. When it is used with Brüel \& Kjœr's Modular Precision Sound Level Meter Type 2231, all information necessary for an accurate analysls of the measurement data le.g. bandwidth, range, weighting factor, and mod-

READER INFO No. 15

The Tek 2710 10k Hz to 1.8 GHz Spectrum Analyzer from Tektron. READER INFO No. 180

SMART FORTH

 EC-IF12 CONTROLLER

FEATURES Advanced R65F12AO processor * 2 MHz clock * RS-232C 3 wire serial link * RAM $2 \mathrm{~K}, 8 \mathrm{~K}$ * Watchdog timer

* ROM 2K, 4K, 8K. 4K Forth kernal in ROM
* Battery backup of processor, and CMOS RAM * 38 Digital $1 / 0$ lines
- Direct access to all Ports
* Two 16 bit counter/timer/6 Int.
* Compatible with EC-1F11 Forth Dev System
* + ve, and - ve edge latching of data
* Direct access to all bus signals for interfacing

P.O. Box 6502, Goodna, Q. 4300, 26 Boron St Sumner Pk, Q. 4074. Phone (07) 3762955 Telex AA43778 ENECON Fax (07) 3763286

The Intelco 160A single mode Laser Loss Set.
ule in use) is recorded on the printout. A space is left for the operator to record any extra information. The presentation of data from the Type 2231 can be in the form of fully annotated graphs, tables or multi-component bar charts, a brand new feature.
Many different characters are available. Apart from the ISO 7-bit character set equivalent to US ASCII - the characters from Japanese (Kana), as well as most European languages including Greek and Russian are available. There are two special character sets: a user-definable character-set in which you can make use of a 7×7 matrix to define all the 96 characters to suit your own needs; and a graphic set known as Picture Description Instruction which is used for the production of histograms, graphs, and lines.

When connected to B \& K sound level meters, the printer ensures that printing noise does not affect the validity of measurements. While the data is being printed out it temporarily prevents measurement from taking place. Hold-ups are generally prevented by the unusually large character buffer capacity which can contain approximately 500 lines of text.

For more information contact B \& K on (03) 370-7666.

READER INFO No. 181

New Swedish Measurement Probe

A new high performance measurement probe intended for surtace mounted semiconductor components has been launched by AMCO of Sweden.
Designated the SMOCC (Signal Measurement On Chip Carrier) it works by the use of vacuum and individual resilient pins, one for each pad connected to the carrier.
The SMOCC does not need any manual power after it is placed on the component. This makes hands free measurement possible of all signals coming into and out from the carrier at the same time.

Used with a digital analyzer, the SMOCC makes it easy to make signal groups that suit the different signal functions on the carrier. A typical example is that addresses into a RAM may have their own group as well as data WE and CS signals.

For further information contact Mr Ron Parker at Fairmont Marketing, Suite 3, 208 Whitehorse Road, Blackburn, Vic. Telephone (03) 8775444 .

READER INFO No. 182

WHO'S WHO IN TEST AND MEASURING INSTRUMENTS

This list covers all the main plavers in the field of manufacturing or distributing test and measuring instruments in Australia. While we have tried to be reasonably comprehensive, note that omission from our list merely implies our duta base was incomplete at the time of going to press.

A \& I ELECTRONICS
640 Warrandytc Road.
North Ringwood 3134
(03) 8761159

ACET
PO Box 67.
Mt Hawthorn 6016
(09) $4469(990$

ACME ELECTRONICS
205 Middlesborough Road.
Box Hill 3128
(03) 8900900

AEGIS
141 Christmas Strect.
Fairfield 3078
(03) $48!1422$

AJ DISTRIBUTORS
44 Prospect Road.
Prospect 5082
(08) 269 1244

ALFATRON
1761 Ferntrec Gully Road,
Ferntree Gully 3156
(03) 75890000

ALL ELECTRONIC
COMPONENTS
118-122 Londsdale Street,
Melbourne 3000
(03) 6623506

ALTEST ELECTRONICS
37 Benwerrin Drive
Burwood East 3151
(03) 2335744

ALTRONIC DISTRIBUTORS
174 Roe Strect.
Perth (0)0 0
(09) 3282199

AMALGAMATED INSTRUMENT
$7 / 12$ Tepko Road.
Terrey Hills 2084
(02) 4502661

AMPEC ELECTRONICS
Unit 8, 142 James Ruse Drive,
Roschill 2142
(02) 6893522

AMS TECHNICAL SERVICES
PO Box 87
Camberwell Vic 3124
(03) 254515

AMTEX ELECTRONICS
36 Lishon Street.
Fairfield 2165
(02) 7282121

ANITECH INSTRUMENTS
DIVISION
I Carter Street.
Liccombe NSW 2141
(02) 6484088

ANSETI TECHNOLOGIES
Parer Road.
Airport West $30{ }^{(H 2}$
(03) 6681122

AP IMPORTS
41 Box Road.
Crossroads 2170
(02) 6009722

APPLLIEI) MEASUREMENT
27 Dalgetty Street.
Oakleigh 3166
(03) 5680588

ARLEC
30-32 \& 42-46 Lexton Road.
Box Hill 3128
(03) 8950222

ARLIN ELECTRONICS
85 Chadstone Road.
Chadstone 3148
(03) 5696984

ASSOCIATED CALIBRATION
LABORATORIES
27 Rosella Street.
Doncaster East 3109
(0.3) $8+28822$

ASSOCIATED CONTROLS
342 Kent Street.
Sydney 2000)
(02) 296731

AUSTRALIA MEASUREMENT \& CONTROL
222 Bay Street.
Port Melbourne 3207
(03) 6465255

AWA INSTRUMENTATION
Cnr Talavera \& Lane Cove Roads
Macquarie Park North Ryde 2113
(02) 8877111

BALTEC SYSTEMS
26 Mavneview Street.
Milton Qld 4064
(07) $36959 \% 0$

BASSTECH
Unit 3, 12 Gordon Sercet.
Bairnsdale 3875
(051) 525500

BELL INSTRUMENTS
74 Raglan Strect.
Preston 3072
(03) +45021

BELLCO CONTROLS
15 Hume Street.
Huntingdaie 31 66
(03) 8742677

BENELEC
581 Gardeners Road.
Mascot 2020
(02) 6935111

BRANDNER AUST
20 Shasta Avenue.
Brighton 3186
5924298
BRIAN GRIFIIN
8 Hargrave Strect.
East Sydncy 2010
(02) 3574978

BRUEL \& KJAER
24 Tepko Road.
Terrey Hills 2084
(02) 4502066

CILIFF ELECTRONICS
PO Box 732.
Fortitude Valley Qld 4006
(07) 341-4655

COLTRONICS
6 Stanlcy Street.
Silverwater 2141
(02) 6471566

COMBUSTION ENGINEERING
AUSTRALIA
275 Middlehorough Road.
Box Hill 3128
(03) 8400201

CROMPTON INSTRUMENTS
Unit 19, 380) 392 Airds Road,
Minto $25(6)$
(02) $6032(1666$

CRUSADER ELIECTRONICS
81 Princes 1 fighway.
St Peters NSW 2044
(02) 5195030

DATA ELECTRONICS
46 Wadhurst Drive.
Knoxfield 3180
(03) 22i 1277

DATAMATIC
9 Byfield Street.
North Ryde NSW 211,3
(02) 8881788

DGE SYSTEMS
103 Broadncadow Road.
Broadmcadow NSW 2292
(0.49) 691625

DOBBIE INSTRUMENTS
18-20 George Street.
Sandringham 3191
(03) 598824

EAGl.IE ELECTRONICS
24 Unley Road
Unley 5061
(18) 2712885

ECOTECH
Factory 6. 22 Bridge Street.
Elthani 3095
(03) 43956.39

ECO ELI:CTRONICS
16 Staple Street.
Jindalee 4074
(07) 3765677

EDI. AUSTRAI.IA
223B East Boundary Road
East Bentleigh 3165
(03) 5792722

ELECIRICAL EOUIPMENT
Unit C. SI.yon Park Road.
North Ryde, 2113
(02) $88 s^{\circ} 9(\mathrm{KK})$

ELECTRONIC COMPONENTS
AND EQUIPMENT
64 Stuart Street.
Adelaide $5(\mathrm{KK})$
(08) 232 (OMO1

EIECTRONIC IDEVELOIMENT

SAl.ES

92 Chandos Street.
St Leonards 2065
(02) $43825(\mathrm{~m})$

ELECTRONIC DEVIEOPMENT
ANI) SER VICES
27 Buckley Stree.
Marrickiolle 2204
5197007
El.ECTRONIC DISCOUNTERS
305 Morphetr Street.
Adelaide $5(\mathrm{MK})$
(08) 212 1799

ELECTRONIC SERVICE
COMPANY
1/25 Garema Circuit
Kingugrove 2208
(02) 7599055

ELLISTRONICS
2K9 Ia Trobe Street.
Melbourne $3(x)$
(0.3) 6023.349

ELMIEASCO INSTKUMENTS
12 Maroondah Highway.
Kingwood 3134
(03) 870 22(6)

I:I M1-AS(O) INSTRUMENTS
1.5 McDonald Strect

Mortlake NSW 2137
(12) 7362888

I:MAIL
15-17 Hume Street.
Huntingdale 316\%
(03) 544×244

EMONA INSTRUMENTS
so Parramatla Road.
Camperdown NSW $2(150$
(02) 5193933

ESTEC ELIECTRONICS
1 Brewer Strect.

East Perth
(19) 2279455

ETP OXFORD
31 Hope Street
Ermington NSW 2115
(02) 8585122

EVEREIT INTERNATIONAL
17 North Wood Strect.
Leederville WA 6 (K) 7
(09) 381 5509

AIRMONT MARKETING
Suite 3. 20s Whitchorse Road.
Blackburn 3130
(03) 8775444

FIBERNET
1/54 Malvern Street.
Bayswater 3153
(03) $7297(000$

FISHER, K. D. \& CO
14 Benjamin Street.
St Marys 5042
(08) 27732×8

FORCE ELECTRONICS
203 Wright Street.
Adelaide $50(\mathrm{~K})$
(08) 2125505

GALAXY ELECTRONICS
777 Punchbowl Road.
Punchlow 2196
(02) 708.5888

GEOR(IE BROWN EIECTRONICS

GROUP

174 Parramatta Road.
Camperdown 2050
(02) 5195855

HASLIER PACIFIC
2 Patyal Close.
Epping 2121
(02) 868 1131

HEWLETTI PACKARD
31 Joseph Street.
Blackburn 3130
(03) 8952895

HEYDEN-SPIKE
Unit I. 91-93 Old Pittwater Road.
Brookvale NSW 2100
(02) $938 \quad 1566$

KENELEC
38 Henderson Road
Clavton 3168
(03) $5(x) 1011$

KENT INSTRUMENTS
70-78 Box Road.
Carringbah 2229
(12) 5252811

KINGFISHIER INTERNATIONAI
14 Excatibur denue.
Glen Waverley 3150
(03) 23.3599 K

LABTAM INTERNATIONAI.
43 Malcolm Road.
Bracide 3195
(03) 587144.44

LAWRENCE \& HANSEN
142 Dorcas Street.
South Melhourne 3205
(03) 69716×5
I.EATHAM ELIECTRONICS

8 Brodic Street.
Rvdalmere 2116
(02) 6842477

IINBROOK INTERNATIONAI.
96 Reverve Road.
Artarmon 20) c 4
(1)2) $43 \times+322$
bacey's Eldectrical
Suite R. 9 Foamerest Avenue
Newport 210 K
(02) $94785+4$

AARCONI INSTRUMENTS
2 (iiffnock Avenue.
North Ryde NSW 2113
(02) 8876222

MASTATEK
12.18 I.eighton Place.

Hornsbe 2077
477 6120
MASTER INSTRUMENTS
Corner Sloane \& Sarwell Streets. Marrickville 2214
$51912(0)$
MEASUREMENT CONTROL
EQUIPMENT
16 Bridge Street.
Rydalmere 2116,
(02638 5166)
MULTICORP
69 Boronia Street.
Redfern 2016.
(02) 695.5238

NATIONAL PANASONIC
INDUSTRIAL. PROIUUCTS
95 Eppilg Road.
North Ryde 2113
(02) $88602(4)$

NEI PAKLOG
112 Christine Road.
Villawood 2163
(02) 727 (0)55

NILSEN INSTRUMENTS
200 Berkley Street.
Carlon 3053
34791 (6)
NOVATECH CONTROIS
429 Grahtam Sirce.
Port Melbourne Vic 3207
(03) $6+52377$

NOVOC ASTRIAN EI.ECTRONIC
SUPPLIES
24 Broadmeadow Road.
Broadmeadow 2292
(0.49) 521.358

OBIAT
129 Qucen Road
Beaconsfield 2015
(02) 6984776

O'DONNEIL GRIFFIN
37 Hargreanes Streen.
Belmont 6104
(09) 2771922

PACIFIC ELECTRONICS
54 1)ow Strect.
South Melthourne 3205
(03) 6962522

PARAMETEKS
25.27 Paul Street North.

North Ride 2113
(02) 885 777

PIIIIIPS SCIENTIFIC \&
NDUSTRIAL
25-27 Paul Strect North,
North Ryde NSW 2113

PRE-PAK ELECTRONICS
A A West Street.
Lewinhan 2049
(02) 5699797

PRECISION INSTRUMENTS
5.6 Dunlop Road.

Mulgrave 3170
(02) 5612888

PRESTON ELECTRONIC
COMPONENTS
217 ligh Strict.
Preston
(03) 4840191

RACAI EILECTRONICS
4 Talatera Road
North Kyde 2113
$58564+4$
RADIOSIARES COMPONENTS
28-30 Northwood Strect.
West Leaderville frat 7
(K$)$) 3814799
RF DEVICES
Suite 2. P^{\times}ek A.
9 I.ッn Panade lurnea 2170
(02) 2672622

ROHDE \& SCIIWAR\%
13-15 Wentworth Avenue
Darlinghurs 2010
(02) 6715588

SAM TECHNOLOGY
36 Binney Street.
Marayong 2148
(02) 671558

SCHLLMBERGER TESI
SY'STEMS
382 W'ellington Road.
Mulgrate 3170
(03) 5601166

SCIENCE \& COMPUTING
APPLICATIONS
1st Floor. 117-119 Anzac Parade.
Kensingion 2033
(02) 6624255

SCIENTIFIC ATLANTA
Unit 2. 2 Aquatic Drive.
Frenchs Forest 2086
(02) 4523388

SCIENTIFIC DEVICES
2 Jacks Road.
South Oakicigh Vic 3167
(03) 579-3622

SCIENTIFIC INSTRUMENT \&
OPTICAL SALES
70 Kelvin Grove Road.
Normanby 4059
(07) 83I 7672

SIEMENS INDUSTRIES
4.4 Church Street.

Richmond 3161
(03) 4207111

ECONOMIC ELECTRONICS
$2+$ Campbell Strect.
Bowen Hills $4(\mathrm{KK}$,
(07) 527 4666

STANDARD COMMUNICATIONS
6 Frank Street.
Gladesville 2111
8164755
STC MEASURING INST'RUMENTS
5s Queensbridge Street.
South Melhourne 3205
(03) 6156677

TECH-RENTALS
18 Hilly Sirect.
Mortlake 2137
(02) 73620666

TECH-SALES
12 Maroondah Highway.
Ringwood Vic 3134
(03) 8792266

TECNICO ELECTRONICS

1) Waltham Strect.

Artarmon 2064
439 22(A)
TEKTRONIX
so Waterloo Road
North Ryde NSW 2113
(02) $88 \mathrm{~K}-70 \mathrm{H6}$

TESTRONIC
3 Montana Sirect.
North Rocks 2151
(02) 630 752s

THE COMPONENT SPECIALISTS
1! Manston Strect.
Elizabeth South SA 5112
(08) 252-2242

THE DINDIMA GROUP
PO box low
Vermont 3133
(03) 8734.55

TPS PTY ITID
$\$$ Jackeroo Street.
Springwood 4127
(07) 2088.447

UNIDATA AUST
3 Whyalla Strect.
Willeton 6102
(19) $4.57 \quad 1490$

UNIVERSITY PATON
INSTRLIMENTS
IOK Belmore Road North.
Riverwod NSW 2210
(02) 530644

VDO INSTRUMENTS
115 Northern Road.
Heidelherg West 3081
(1)3) 4503209

WANDEL \& GOI.TERMANN
Suite 13. 20 Commercial Road.
Melbourne 3(1) 4
(03) 2678699

WARSASH
PO Box 217
Double Bay 2028
(12) 306815

CAE
 IN AUSTRALIA

Computer Assisted Engineering is becoming a valuable tool in Australian Manufacturing

Glen Jones

There are many changes currently taking place in the electronics industry that are stimulating CAE purchasing. One of the most significant of these changes is the increasing complexity of design.

The trend towards more complex designs is seen not only at the system and board levels, but also in application specific integrated circuits (ASICs) like: gate arrays, standard cells. and full custom ICs. This complexity is shown most dramatically by examining the number of gates per IC, which is growing by a factor of around 250 every decade; from approximately 250 gates per IC in 1970 to 64 thousand in 1980, to an estimated $16 \mathrm{mil}-$ lion in 1990, This increase in chip density directly translates into an increase in board density and thus overall design complexity.
Design complexity is not only due to an increase in chip complexity. but is also due to the transition from board-level designs to ASIC designs. ASICs allow engineers to design in a more proprictary manner. The primary reason for this is to increase profit margin by using custom, as opposed to off-the-shelf parts. A secondary reason is to avoid industry piracy and reverse engineering. It is harder to reverse engineer an ASIC than a board
From an estimated $\$ 0.5$ billion in 1982 . the ASIC market is expected to grow to over $\$ 7$ billion by 1991. In order to utilize the attributes of ASICs. designers are required to use capabilities that can only be found in CAE tools.
The increase in design complexity, particularly in the area of ASICs, is resulting in a significant increase in time-to-market. The number of man-months for development of an IC has gone from an average of 50 in 1970. 10200 in 1980. and 10 an expected 400 in 1990. This increase is not surprising given the significantly larger increase in the number of gates per

IC.
Compounding the problem of a longer design cycle is a shorter product life cycle. This decrease in the product life cycle is due primarily to technological obsolescence. Some good examples of these changes are the power of a three-year-old mini computer that is available as a micro today, the change from Schottky to ECL to CMOS and now to gallium arsenide, and the change in IC fabrication from VLSI to VHSIC and waferscale. Should these shorter product life cycles continue to accelerate without decreasing the time-to-market. an electronics manufacturer could be in a fairly dangerous situation. A new set of engineering tools is required.
The tools that the engineet uses must integrate the entire design process: from concept through design capture, simulation, fault grading. place and toute, mask generation and board design, to IC and board test. These tools require that each phase of the process is well integrated with previous and following phases. In fact, it is desirable to use the output from one phase directly as the input to the next phase.
In a growing number of cases, the role of the engineer involved in the design phase is changing. Engineers are being forced to cross traditional boundaries. The most prevalent of these changes is the design enginecr's involvement with test engineering. As designs become more complex, testability is becoming more of a consideration. To ensure that the design is testable without having to run numerous. time consuming fault simulations, the test engineer and design engineer must work very closely. In many cases, the same simulation vectors used by the design engineer for logic simulation should be used by the test engineer to perform fault simulation. This can be accomplished by coupling a logic simulator with a fault simulator in a common CAE system.

The need to integrate the engineer's tools goes beyond the engineering and test departments. In addition to testability, manufacturability is becoming a major consideration in the design process. Engineers must be able to determine if their design can, in fact, be built. i.e: will the board require too many layers or will the gate array be routable. A tightly integrated set of tools will minimize "roundtrip" time. i.e: the time it takes to enter a design, simulate it. create and grade test vectors, and then route a gate array or board. By minimizing this round-trip time, the design team can optimize the design for manufacturability as well as testability.

CAE also has implications beyond the design process. A typical engineer spends 35 percent of time actually designing and testing. The remainder of this time is spent planning. gathering information, and documenting results. By using computers to integrate these functions, an engineer can realize a dramatic increase in productivity and. since there is an ever increasing shortage of electrical engineers, an increase in productivity will be the only means of maintaining a sufficient engineering work force.

As computers become more prevalent in all departments of the company, there exists a need to ensure that engineering ties into the other areas. For example, the bill of materials generated by a CAE or CAD system can easily be used for inventory control and accounting purposes.
The factors given above are just some of the changes that are taking place in the eletronics industry that are forcing engineering departments to change the methods with which they design. The key to implementing new methods is the use of CAE equipment.

Purchasing

The primary reason a company purchases CAE equipment is to reduce the total cost

of getting a product to market. The costs associated with product life cycle include designing, manufacturing, testing, marketing, and then redesigning the product to extend it's life.

Prior to the advent of CAE, engineers created schematics using paper and pencil. The design was then given to a draftsman to create production schematics. The schematics were then used to input a netlist by hand for use by a wire-wrap machine. The wire-wrap machine would create a prototype, which woukd be tested to find bugs. Once this phase was completed, changes would be made in the original schematics, and the process would start again. This would involve multiple iterations.

CAE has changed that entire process. Now engineers can create a fully documented schematic while they design by taking advantage of an advanced graphics editor. This process results in designs that can be created faster with less errors and with higher quality documentation.

Once the schematics are created, the engineer avoids the prototype phase by using the schematic as a virtual breadboard and a logic simulator as a virtual logic analyizer. When an error is found the engineer goes back into the graphics editor, makes a change, and then resimulates the circuit (all in a matter of minutes as opposed to days). Once the design is verified, the engineer can automatically create a netlist that can be accepted by a layout system or by a gate array vendor.

During a product's life, changes must be made due to either a new innovation in the market place (e.g. a faster IC) or a new feature that a customer might want. When a change is required, the original drawing can be modified, the design quickly verified, and an updated netlist generated. This revision process can be completed in a matter of days as opposed to weeks using the old method.

CAE allows the engineer to design using
a hierarchical approach. Hierarchical methodology allows complex systems to be developed much more easily. During the conceptual phase of a top-down design strategy, behavioural modelling supports quick creation of alternative architectures. Once the high level architecture is optimized, each sub-section of the design is simulated at the gate level based on the function specifications developed in the behavourial models.

As each building block checks out against its function specification, it can be integrated with the overall behavioural models developed in the conceptual phase. This ensures that the specifications were correctly written. A by-product of this approach is that the database used for one design can be reused in another design. This is another example of the reduction in redundant work that can be realized using CAE equipment. A common database is also a means of maintaining design consistency, good communications, and better management through better team communications.

By using CAE equipment, users can also take adrantage of ASIC devices. ASICs offer lower costs, hetter reliability, added functions, better performance and more compact designs. These characteristics are not only of importance to designers, but are also desired by the customers who buy the end products.

Impacts

The largest impact of CAE equipmemt is on engineering productivity. This increase in engineering productivity can best be measured by looking at each phase of the design process. A study by Drexal, Burnham, Lambert has shown a productivity improvements of 140 percent when CAE is used for all phases of the design cycle.

By increasing productivity, the product can also get to market quicker. Based on
a 140 percent increase in productivity, a product that took 55 weeks to get to layout will take only 23 weeks using CAE equipment. And given a $\$ 4,(000,000)$ first year revenue at 55 percent gross margin, profit can be increased $\$ 1,354$, () $)$: $(32 / 52$ $\mathrm{X} \$ 4.000,000 \mathrm{X}(0.55)$.

CAE allows engineers to design in a more proprictary manner, which increases the market worth of the product. CAE also enables engineers to use ASICs, which lowers the overall cost of goods sold. In either case, gross margin can be increased two percent to seven percent. Assuming a five percent increase in gross margin, profits can be increased by $\$ 200.000$: $0.05 \times \$ 4,000,(\mu \mu)$.
The resulting increase in first years profits alone is phenomenal:
Increase in engineers productivity:
$\$ 390.000$
Quicker realization of profit: $\quad \$ 1,354,010$ Increase due to proprietary added:
$\$ 200$,(0人)
Total: $\$ 1,944,(0) 0$
table 1

TASK	Percent of Development Cycle	Productivity Improvements
Schematic Entry	20\%	75\%
Schematic Editing		
and Revisions	22\%	300\%
Timing Verification	18\%	200\%
Simulation	17\%	50\%
Test Development	15\%	50\%
Documentation	8\%	75\%
	100\%	

Productivity Increase =

Time Required Without CAE ${ }_{-1}$ Time Required With CAE
i.e., $\mathbf{1 0 0 \%}$ productivity increase cuts time in half

Other Issues

A financial justification is not the end of the story, however.

After a financial justification, engineer-

CAE in Australia

ing management might want to have some benchmarks performed. Since benchmarks are very manpower intensive, they should only be requested after the list of potential systems is narrowed down to two or three.
The benchmark should include total turnaround time. Turnaround time includes schematic capture, compilation, simulation, and post-processing. Due to the complexity of systems that perform these tasks, evaluators should be aware of some potential pitfallls of the benchmark.
Schematic capture is a crucial area since designers spend a great deal of time in the schematic capture process. In addition to speed, ease of use should also be considered. An experienced applications engineer can demonstrate the speed with which an experienced user can enter a schematic, but this is not always a good indication that the system is easy to use. The evaluator should always try to enter a simple schematic personally.

After capturing the schematic, the design must be compiled. Compilation can be a time consuming bottleneck. It is particularly time consuming for systems that require the total design to be recompiled when ever a change is made in the circuit topology. Incremental compilation requires that only the section of the design that was modified be recompiled.

When evaluating simulators, benchmarking two circuits is best. The small circuit can be used for testing the interactive capabilities for controlling the simulation. To test the sped of the simulator, a large circuit of about 50,(0)0 gates should be used.

Other issues worth considering are:

- Substantiation of the vendor's service and support capabilities. Not only should the equipment be reliable, but when it does need repair, the customer requires a fast response from the vendor's field service. Strong applications supports is also mandatory to ensure that the customer can make best use of the system. And to educate the user, the vendor should be able to supply clear and concise documentation, as well as a full array of training classes.
- Management will also want to evaluate the vendor's long-term product development plans. A system that increases productivity this year may be the botlleneck in the design process a few years in the future.
- Obsolescence is also a key factor. The hardware platforms that provide an adequate cost/performance ratio change rapidly, and there is an ever increasing demand by engineering management for standard platforms. Contingent on hav-
ing the ability to port to these new platforms is portable software. Only software that is written in standard languages and for standard operating systems can be considered portable
- Libraries can be the weakest link in the CAE system. Evaluators should look at all aspects of the vendor's library support tools. Does the vendor offer libraries from most of the major technologies (LSTTL, ECL, FAST, CMOS, etc), for most of the major gate arrays and standard cell foundries, and physical models for VLSI devices. Since many users might want to create their own libraries, library development tools should also be considered.
- Finally, the system must be easy to use. Engineers cannot spend months learning new procedures to take advantage of the systems capabilities. For instance, software packages with icons, menus, user prompts, and "help" screens can greatly assist getting an engineer up the learning curve.
Glen Jones is with Valid Logic Systems, San Jose USA. This article is an edited version of a paper delivered in October at the IREE convention in Sydney. Enquiries should be directed to Valid's Australian agent, Coltronics, Silverwater, NSW (02) 647-1566.

GHARP

 ELECTRO LUMINESCENT \&LOUID CRYSTAL DISPLAYS

Flat Packaged, low power EL Display LJ 640U26. Featuring 640×200 dot.

* Dot Matrix LCD, 40 characters $\times 2$ lines. Positive or negative transflective display LM 402X01. With built in backlight.

CAD Bureau since 1981

We have just installed the VISULA/APOLLO

interactive design system which offers a 75% reduction in cycle time schematic netlist parts list and auto routing.

Board layout is consistent with the captured schematic

ELECTRI-BORRD DESIENS P/L PCB DESIEN SINCE 1972 15/31 שATERLOO RORD, 02-8886925 NORTH RYDE NSU 2113
 02-888 3929

SCHEMATIC CAPTURE UNDER REVIEW

OrCAD, Protel and HiWIRE are three new CAD packages for creating circuit schematics.

Tony Pugatchew

Electronic engineers have at their disposal very powerful software tools that simplify the drawing of schematic diagrams and the design of printed circuit boards. These packages range from very simple computer assisted drafting pro-

Figure 1: HiWIRE menu options.
grammes that simply substitute the computer for pen and ink. all the way thorough to packages that assist in every aspect of the design and drafting environment. They provide a plethora of extra utilities that perform tasks such as extraction of bills of materials. conversion of formats to permit the use of other systems and production of hardcopy on a variety of devices.

ETI has reviewed several low cost pc board design packages such as smARTWORK and Protet-PCB. We also looked at AutoCAD with the specific aim in mind of performing the entry of schematic diagrams. It was concluded that specific electronic functions are best handled by tools that are designed for these tasks. Accordingly, in this review we look at a trio of products that do just that: Protel-schematic. HiWIRES and OrCAD/SDT. These were chosen because the first two are companion systems to Protel-PCB and smARTWORK. OrCAD/SDT is a very popular and innovative system with a completely different mode of operation.

As before, these systems are used with IBM PC machines or clones.

CAD Tasks

The main task of the schematic capture package is to assist the user in the rapid and accurate entry of electronic components and their subsequent interlinking with wires. Group of wires such as address. data and control lines are joined into a bus and each bus member and wire is usually given a netname.

Most packages contain a library where components are available. It is often possi-
ble to modify the library to permit the design of new components in either a graphic or textual mode.

Many complex circuits run the risk of being entirely incomprehensible if drawn on one sheet because too much detail is squashed together. One strategy to solve this problem is to break the circuit down with a tree-structure. The fundamental functions of the circuit are initially drawn as a set of labelled boxes. The new lower level of this hierarchy expands this further into another set of boxes and so on until we reach the basic circuit level. For example, a modern microprocessor schematic call be broken into CPU, memory and input-output. Thus. the whole schematic can be dissected into small manageable chunks. This strategy is called heirarchial structure.

Another approach is based on the use of multiple sheets. This is called a flat file and is a traditional technique where single sheets connect each other through named module ports that share common names.

Several other important tasks may be required when the schematic is finished. A netlist extraction will produce a file that contains all the connections between the components. Usually, the connection will be given a netname such as ADDRESS to make it easy to check the focation of the wire. This file will be the entry to the pe board design phase. The system may produce a wirelist where each section deseribes the netname and it subsequent connection. A nefoheck utility may detail circuit errors such as joined output pins. multiple labels on nets or uncomnected line segments.

Now it's easy to design

 schematics with your computer ©imply use OrCAD/SDT, the easy to N use, totally flexible and affordable schematic design tool (software) - for use with IBM PC/XT/AT or compatible computers.$\mathbf{E}_{\text {asy schematic design }}$
Lorcad /SDT makes hhe pacecmen of ofaphic symbols, interconnections, components, and text both fast and easy. directory (and moved or rotated to where you a pop-up
$\boldsymbol{F}_{\text {With powerful editing commands, single objects or }}^{\text {ast gral }}$ groups of objects are easily moved, replicated or deleted. And if an object is accidentally removed, it can be immediately recovered with an "undo" command

OrCAD/SDT Features:

- Unique parts library • Rubberbands wires/buses
- Automatic pan - Levels of hierarchy - Graphics options - Zoom levels - Design check - Back annotation - DeMorgan equivalents • String searching \bullet Part rotation \& mirroring \bullet Keyboard macros \bullet Color graphics \bullet On-line part browsing - Net list translations - List of materials

Systems Corporation

Cut out and mail today

Please send me a FREE demo disk and literature.
Name

TTitle Company Address P/C
Telephone
Prometheus Software Developments Pty Ltd. 191 Riversdale Road Hawthorn Vic. 3122. Telephone: 8196088 Fax: 8196085

READER INFO No. 19

CAD Review

MC6809 TEST SCMEMATIC ET! !987
Figure 2: A small schematic drawn on Hi-WIRE showing labelling functions.

Several other utilities may be provided to plot and print on a dot-matrix printer, or for format conversion of the netlist to other commercial systems. A bill of materials is very useful.

Of these, the most useful package is the conversion utility. It may happen that the schematic package is not tied to any particular PCB package. The use of comprehensive conversion options means that the netlist can be imported into other systems that have been designed by companies with more experience in these areas.

HiWIRE Version 1.1

HiWIRE is a schematic package designed by the American company Wintek, who may be familiar as the designers of the layout system called smARTWORK. Its relatively easy to get started since the command choice is from a set of nested Menus. Continuous panning across the screen means that components and their interconnections can be placed quickly and with minimum fuss. Netlist extraction can be performed and the net can be imported into smARTWORK or other packages which can now auto-route the board (Version 1.3 revision 4). Netlist and checking against smARTWORK layouts can be accomplished.

HiWIRE uses a set of menus that perform all the required operations. The cursor, which is moved by the mouse or with the direction keys. assumes various formats to indicate the status of specific functions. For example, the idle cursor is a tick. the drawing cursor is a cross. the are cursor is an X and the select cursor is an arrow. The system requires no keyboard input apart from text entry for net names, bus names or free text on the schematic for documentation purposes.

An interesting feature is the use of user selected windows where several different views may be stored. It is very easy to jump from one view to another where, for example, one window may be an overall picture of the schematic and the other window may be successive zoomed up selections.

A diagram can only be started after a library is specified. A set of libraries can be typed in provided these are separated with a semi-colon. Symbols or components are placed with the SYM command and the typing the name of the component. The library contents can be seen by going to the STATUS option in the secondary menu. After the component is selected an outline is shown on the screen which can be moved around with the mouse. The final placement is determined by pressing the mouse key. The dashed representation is then filled in with the final symbol which includes text such as the reference designator and pin number and names.

In order to change this two options are available. The symbol can be made FREE which means that any of the information can be modified. This mode is indicated by changing the colour of the symbol from the green bound state to the red unbound state. There is no way to change these colours or to manipulate the screen background and foreground colours. If you suffer from redgreen colour blindness ... too bad!

A label within a symbol can be changed with the Pin command. This is useful for changing component values, pinouts and site or component names.

Wires are used to connect the pins of the placed components. Buses are used to group wires and dots or junctions are used to connect wires and buses together. The placement of these links can only can be
performed in a horizontal or vertical fashion. It is not possible to perform 45 degree connection of wires to buses which is a standard aesthetic technique. It is important to make the distinction between wires and lines. A line is a graphical entry but a wire is in fact a physical connection between two component pins. There is no visual distinction made in HiWIRES. As before, the wires, bus and dot options are selected from the primary menu. Other objects such as borders. ares and circles can be drawn and these play an important role in symbol creation.

Labels are very important because subsequent steps such as netlist extraction produce intelligent output if signals and buses are named. The label function is selected with the Lab command from the primary menu which is easy but the size is selected in a roundabout fashion by typing in some directives for size, width, height and rotation. Inverted labels are created by preceding the label with the ! letter. When naming nets it is important to be aware of the labels "hotspot" in the lower left corner which must be placed over the desired wire to nominate it as the named net.

Symbol Creation

It is worth discussing symbol creation in a special section since this function will make or break the schematic package. HiWIRE provides a set of nearly 7010 components and uses a graphical method to enter a symbol. A box is drawn and wires. pin functions and pin number are added according to the designers preference. This symbol is then bound into a symbol file. Symbol creation is therefore similar to a miniature schematic diagram. The BIND command groups existing symbols into a new set. This function is

PCBreeze

Create Single \& Double sided PCB's quickly and easily. Features include

* 50 mil grid. up to 20×20 inches.
* Autorouting (with net list input).
* Block operations: Copy, Move, Delete, Save \& Load (with rotation)
* Trace operations: Copy. Move, Delete all or part of a trace.
* Text and Silkscreen layers
* High quality output on a plotter
* Prototype quality on a dot matrix printer

Requirements

256K IBM-PC or compatible. CGA or HGC graphics adapter, output from HPGL or DMPL compatible plotters \& Epson FX type dot matrix printers
"EGA support now available"
READER INFO No. 20

AutoSketch \$160*. Now price is no excuse not to go CAD.

At only $\$ 160$, AutoSketch is an inexpensive introduction to the world of computer-aided design.

If you've a PC, in less than an hour you can be automatically drawing lines, arcs, circles, points, polygons, spine curves and much

Figure 3: A Protel schematic with report, netlist and wiring file. These files were inserted into predetermined text.
very useful since many existing symbols can be easily changed into the desired format.

Editing

Selection and modification are part and parcel of editing steps. Without these CAD would be no better than an unaded draftsperson. HiWIRE provides the usual operations. An object can be deleted with the Del function and replaced and restored if bungled with the UDel command. (Why aren't these paired commands on the same menu?) Objects can be moved. copied, rotated or mirrored. These latter two steps produce problems since the system does not take account of the text that that is associated with the symbol. For example, a rotated microprocessor would have the label reversed.

When a symbol is moved. HiWIRES will attempt to maintain connections with "rubberbands". The rubber-band is not displayed as the component is noved but is drawn when the final placement is decided. The wires. which are often at strange angles. are casily cleaned up with the MOV command.

Windows

Although HiWIRES quickly pan across the screen the use of a window to display a certain area while we work on another section is very useful. Several viewpoints can be opened and both the size and position of the windows can be chosen. Each window is independent of others and may be serolled or panned. It is only possible to manipulate objects in the active window. This working section is chosen from the ChgW or change window command

Expansion

The NETCVT or net convert utility supplied in the smARTWORK PCB package
permits OrCAD and Tango (Protel-schematic) schematics to be eonverted into a Hi WIRE format. The system can auto-route a sehematic from this stage. A reverse type of operation permits a smARTWORK board to be checked against the HiWIRE drawing. This is not very efficient since several utilities have to be used. A grid file is produced with smARTWORK GRID.EXE which is a HiWIRE drawing file containing many one-pixel wires each corresponding to a pad on the circuit board. Furthermore, we have to create a pictorial file showing the component overlay and a netlist. The HiWIRE program CHECK.EVE will compare the connections in the layout with those specified in the schematic

Summary

HiWIRE is very quick and casy to get started in the production of high guality schematics. The menus provided all the commands and the rapid panning and window support mean that large complex diagrams can be casily maintained. The hierarchical design is covered in 3 pages in the manual under the heading of Netlist extraction. A simple example is presented but should be expanded into a large section. The only netlist format is EDIF and no information is provided on the format (Please write to the EDIF users group!). The creation of new library components is very easy due to the facilities of changing existing schematios.

Protel-schematic version 1.0

HST of Hobart. Tasmania has enjoved considerable success with the Protel-PCB package I reviewed previously (ETI September. 198(). I have made sure that the version number of their latest schematic package is clearly displayed since some of the shortcomings that 1 presented in my carlier re-
view had been rectified in the new release. (MORAL - these reviews have a thresmonth time lag so please check with the supplier for new features.)

Protel-PCB and Protel-Schematic has been released in USA as Tango. together with an auto router. This review will concentrate on the schematic entry - Protelschematic.

The manual is very comprehensive and follows a well tried formula of using some tutorial chapters to give some practice. The commands follow the Protel-PCB format so most experienced users will have no trouble in getting good results immediately. Conmands are selected with combinations of function. CTRL, and ALT keys. The diagram size (up to A size) is selected with CTRL S and the colours of various drawing features such as wires, buses may be selected. Protel-Schematic supports the flat-sheet organisation by appending up the file name a number to show that the sheets are part of one large diagram. For example. DRAW/ and DRAW 2 will produce files called DRAW.SOI and DRAW.SO2. All nets on these drawings must have the same name.

Component libraries are selected by existing from the schematic and changing the library from the main menu. Components are selected from a comprehensive set: Zilog. Western digital. Vohage Regulators. Synertek.TTL. CMOS. NEC. Operational Amplifiers. Memory. Motorola, Intel. Linear and Discrete. Nearly 3000 components are supplied in what must be the most comprehensive library ever.

A drawing can only be begun once the starting conditions are initilised. The library is specified from the starting directory and once the main blank sheet is presented entry of parts is specified with the the ALTFl combination. The component type, component name and comments are required. Multiple gates on chips such as inverters and gates are specified by giving a label as Ut/t or Ut:t. The appropriate pins of the fourth gate in the chip will be shown. The component is not placed in final position until the RETURN key is pressed.

Once the components are placed on the sheet the wires and buses can be casily placed. The tedious entry of repetive wires and net names is removed with the REPEAT key. The repeat step in the x and y direction is specified in the OPTIONS menu. CTRLR key will repeat the previous drawing function att this spacing. If a net name has been entered as say $A 0$. on this wire then the next wire will automatically be designated A1. A wise time saver.

A bus is drawn by changing the wires to BUS with the CTRL-L command but the interconnection of specific wires must take place by allocating corresponding netnames on entry and exist from this bus. Forty-five degree connection of wires to buses is sup-

Figure 4: OrCAD's primary menu and the next level down.

ported

The system does not support panning so the user must move the cursor towards the region of interest and then do a display recentre.

A further automatic feature is seen in the allocation of component labels. The user need only enter the beginning of the label such as U followed by a guestion mark. The system will replace the ? with the lowest number and extension which it can find. Multi-gate packages will be shown in Ut:t. U 4 : B, etc.

Components can be deleted and moved. rotated or mirror imaged. In this case the component labels are not messed up but are neatly presented. When these operations are performed the option of dragging wires or buses is presented. If the user desires connectivity to be preserved the wires will cross and the track editing functions will clean up the mess. Fortunately, the movewholeline function (ALT-F7) is quick to use in conjunction with the break command (F7).

Symbol creation

Although the library is exceptionally comprehensive there will be a continuing need to create specific symbols such as new connectors, interface chips, etc. Protel uses a text based system to create symbols. I was a little unsure of the effectiveness as compared with HiWIREs but the system offers considerable advantages. Protel has two types of component elements called Blocks and Bitmaps. These can be used together or alone. The block mode is used for symbols such as IC"s with straight elements and the bitmap is used for curved sections as is seen in gates. etc.

The format of the component description
is as follows: Device name; Package type; X axis width; Y axis width: number of devices; pin location, pin number: pin name and pin function. Nine pin functions can be specified - clock, inversion symbol, input and outpur. high impedance, and open collector. Power and ground are also indicated but are not displayed if the word hidden is used. The great advantage of this scheme is that an existing component specification can be casily copied with a word processor and subsequently modified. The decompile utility will produce an ASCII text file which can be expanded and modified. The resultant file then must be compiled with the compile utility to produce a library file.

Editing Functions

Components and tracks can easily be moved with the edit defined keys. The components can also be renamed and renumbered if necessary. Advanced editing features permit some special functions to be performed rapidly.

Block commands

Protel-schematic shares with its PC layout relation comprehensive block definition and block move operators. A well supported use of these features is the saving and reuse of common repetitive blocks such as memory arrays.

A novel feature of Protel-schematic is the use of free-text blocks on the schematic. These text blocks can indicate certain points to the reader. Normal text editing functions such as moving text. marking. deleting and inserting blocks of text are performed with relative case. The commands are based on the Wordstar format which is useful. Furthermore, text files can be imported into the schematic.

Netlist extraction

Protel-schematic processes schematic files to produce four output files: a netlist, a wirelist, a net check report and a bill of materials. One utility program called post generates these files. The netlist is in standard Protel-PBC format which does not comply with EDIF standards.

The neffeck utility compares schematics with the Protel-PCB net file name. The two systems work well together. The netist is imported into Protel-PCB als a rats nest connection on the solder layer. That is, the tracks are joined from destination to source pins. It is difficult to lay the tracks in this conliguration. It would be an improvement if the rats nest wats on a virtual laver. Hence, if a pin was designated as the start then the destination should be indicated and as the connection is made on the appropriate real layers the number of rats-nest connections is reduced. Perhaps this will be a feature in future releases.

If you are a consistent user of Protel-PCB then this schematic system is very easy to
use. The provision of help keys is welcomed. Ease of component creation and the provision of a huge number of components in the library are also excellent features.

I feel that some rationalisation should be performed on the way various functions are grouped. For example, the zoom in and out are located on keys F5 and F6 while the Redraw and recentre are on F^{9} and F 10 . It would be useful to have variable zooms since at one zoom level the text is too small and at the next level too big. Extra recentring is required.

OrCAD/SDT

OrCAD schematic design tools (SDT) from OrCAD systems is the final system to be reviewed. The designers have incorporated some very novel and useful ideas into this system. Extensive part libraries and utility programmes to generate bill of materials, netlistings and design checking show a great deal of awareness of engineers reguirements. The system is completely menu driven and supports the widest selection of screen, printer and plotter options of the reviewed systems.

OrCAD/SDT system supports colour and monochrome graphics. sheet sizes from "A" 10 " E ". unlimited levels of hierarchy. design of keyboard macros, part rotation and mirroring, and automatic panning which can be disabled. A novel feature is the definition of certain TAGGED regions which can be referred to quickly, and the most comprehensive netist interchange options in the review.

Getting started

The documentation is divided into chapters that present all the important commands. The learning period is very short. On first use the hardware configuration and required tiles are set up and the user is presented with an emply workshect. The primary or root menu. on the left side of the screen. is shown by pressing a mouse key figure 5. The primary menu is displayed after pressing the appropriate mouse key or the keyboard ENTER key. The first step is to select the set option in order to specify the size of drawing sheet, cte. Components are placed by selecting get. The user is shown a small window with the name of the pre-loaded library files. The component name can be entered from the keyboard by selecting the appropriate family. Now, all the library components are shown in a small scrolled window and the user can move to the required part. If the user wishes to see the library component then the library option will present a directory of the chosen libraty or the user can scroll forwards or backwards through the library. In this case the component is shown fully on the screen. The place command will place the selected component at the cursor position. An op-
tion is presented in order to select the appropriate. An option is presented in order to select the appropriate orientation, etc. Wires, buses, labels and entry to junctions (45 degree lines are drawn) are all invoked with the place command. A further option is to present certain parts with their DeMorgan equivalents.

Block commands are straightforward. The user is prompted for the lower and upper points of the block and then the command is performed. The conditions menu displays free RAM and other important sys-

tem facts.

Repetitive tasks such a creating memory arrays, connecting wires to bus entry lines or labelling items on the worksheet are made less tedious with the Macro command. OrCAD/SDT can record over 100 macros which can be assigned to function keys, CONTROL, SHIFT or ALT keys or the middle of the mouse keys. For example suppose the user wishes to work entirely in the TTL library since the circuit is full of "glue chips". The function key Fl can be assigned to display the TTL parts directory by typing MACRO, CAPTURE subcommand, $F 1$ at the CAPTURE MACRO? prompt and then performing the steps that would get one into the TTL library. (ie. GET - GEt? - TTL. LIB). The ENTER key is pressed twice followed by M to leave the macro capture mode.

This feature means that all the function
keys can be assigned to the selected libraries and a small cardboard overlay can remind the user which key is required. The macros can be displayed, saved to disk or read from the disc. The macro format is in a simple ASCII format which can be edited and enhanced outside the OrCAD environment. MACROS can also be nested.

Utilities

Six utilities assist the designer in maintaining these schematics. For example, The treelist utility would produce a text file that would show the Root file and the subsequent different level schematios.

Annotate automatically updates all reference designators that are placed on the sheet. Cleamup removes duplicate or overlapping wires, buses and junctions. Ercheck performs a basic electrical rules check. Netlist is self-explantory but has options to produce formats for nearly 18 subsequent PCB packages.
OrcAD supports an extensive family of components: TTL, CMOS. ECL, Analog. Intel, Motorola, Ladder. Spice. Pspice. Synertek and discrete and electromechanical parts. The creation of new libraries or addition of components to existing libraries is done with a text based system similar to PROTEL. The composer utility takes a library source file and produces an ASCll library file. Decomp performs the opposite function. Pins can be numbered and the
functions defined from a comprehensive list such as inputs, outputs, tristate, etc. The format of these component definitions are similar to that of PROTEL but the order of the functions and pin labels is reversed

Conclusion

All the packages produce good sehematics. Once particular quirks are resolved it is casy to extract the most benefit from each. The easiest package to use in terms of the screen functions. documentation and provision of nearly every possible option in the utilities area was definitely OrCAD/SDT. Future packages that perform system simulation and PCB layout make this a very powerful combination. However, many improvements are on the way for both PROTEL and HiWIRE so the best method of making a choice is to obtain a demonstration diskette from your local supplier. Talk to other users and get a feel for other designers opinions. Above all, remember that this review was completed in mid-November so some systems may undergo changes.

Since the copy for this article was received we have been advised that new versions of Protel will be available shortly with a number of important additions. We hope to have a review within the next few months - Ed. The author is at the South Austratian Instiute of Technology (08) 236-2211.

Autodesk to sell No. 9 . . .

Autodesk Australia have announced the pending release of an AutoCAD upgrade. To be called AutoCAD 9 (this is the ninth major enhancement of AutoCAD). the new product features an advanced user interface with pull-down menus, icon menus, and dialogue boxes that supplements the keyboard, screen menu, and digitiser template as a means of entering commands. The pull-down and icon menus programmable, so that designers and drafters can customise their working environment.
The major new feature is file portability. It now doesn't matter under which of the Au-toCAD-supported operating systems - PC-DOS/MS-DOS, Apollo's AEGIS, Digital Equipment's VMS, Sun Microsystems; UNIX - drawings are created. Any computer running AutoCAD will recognise those drawings. There will no longer be a need to convert them first to an immediate format like DXF or IGES.
Other new features include
improved curve generation using B-splines; 20 new text fonts; several enhancements to Autolisp, the high-level programming language embedded in AutoCAD; support for a faster Autodesk Device interface (ADI) driver for displays; and a drawing slide utility program that arranges AutoCAD drawing slides in libraries as an aid in creating icon menus.

Autodesk has in the past used an intemal product version numbering system with the last current product being labelled AutoCAD version 2.6. However, Autodesk will now switch their product version numbering system to reflect major releases so that customers can easily identify current product and can keep abreast of Autodesk's continued efforts to enhance the program.
AutoCAD Release 9 will be distributed only thorugh authorised AutoCAD dealers and has a suggested retail price of $\$ 4,800$ excluding sales tax.

READER INFO No. 157

. . . and handout a freebee

Autodesk Australia will award in excess of \$1 million worth of CAD software products during 1987-88 as part of their Autodesk grant programme
Autodesk products that will be included in a grant program are AutoCAD, the most widely used PC-based computer aided design package; AutoShade, a rendering package which provides 3D graphic visualisation of wirefram models; and AutoSketch, a low-cost drawing package.

The GRANTS will not be lim. ited to govemment funded groups. Private individuals, students, teachers, institutions, research and development groups, libraries, technology awareness groups etc, will be eligible for participation in the program.
In order to be considered for a grant, registration of interest (in writing) must first be
lodged with Autodesk Australia. Autodesk will then forward an application form and conditions of the program. Applicants will be asked to provide an outline of their current and projected CAD needs and skills, and a brief summary of how and when they would put the software to use.
Autodesk Australia, the fitth international subsidiary of Autodesk, Inc. (USA). was formed in June 1987 to meet the growing needs of the Australian AutoCAD community, now numbering more than 2600. (AutoCAD was previously distributed by Entercom Computer Company, the staff and assets of wheih now make up Autodesk Australia).

For further information please contact: Julie Volpe, Autodesk Australia, PO BOX 458, Richmond, Vic 3121.

CAD at the AT

Both CSIRO and consulting engineering firm, Macdonald Wagner, used Intergraph computer aided design systems on the Australia Telescope (AT), currently being built at Culgoora, NSW.

The AT consists of seven fully steerable parabolic antennas each with a diameter of 22 metres together with the well known 64-metre Parkes Radiotelescope. Six of the antennas - the "compact array" - will be at Culgoora Five will be movable along a three-kilometre rail track with the sixth one another three kilometres away. The seventh antenna will be near Coonabarrabran, a futher 100 ki tometres away. The eighth antenna, at Parkes, is 320 km to the south.

This spacing of the antennas gives the AT the capabitity of very high resolution. Because a range of solutions is possible, it could be said the telescope has a zoom ratio of 10,000 to 1 .

Because the accuracy of the dish surface must be better than one tenth of the wave length of the received radio signals, deflection and sagging in the structures had to kept within an absolute range of a few millimetres. More impotant, the relative deflection had to be within a few tenths of a millimetre of a best-fit paraboloid.
The design has fumed out to be so successful, a modified form has been used for OTC's new satellite antennas. At the recent Engineering Awards, the Institution of Engineers, Australia gave the design its "Highly Commended" award.
Macdonald Wagner uses
an Intergraph 751, two Intergraph InterAct workstations and four LSI workstations on the design.
The firm bought its equip ment in 1982 - being one of the first Intergraph customers in Australia.

Once the structural analysis of the design was carried out, the data was transterred to the Intergraph system. The system generated various views of the structure to find the one most useful for all the final drawings. "We had to have a powerful CAD system to carry out the specialised number crunching in this kind of manipulation," said David Ireland, Macdonald Wagner's national CAD manager.

The Division of Radiophysics also uses an Intergraph 751 and has Intergraph's InterAct and InterPro workstations. The Division used its CAD system to design the four layer circuit boards for the digital correlator - the "brains of the AT.

Data from the telescopes come into the correlator at the rate of 2 gigabits per second from each of the six antennas in the compact array. Twelve gigabits per second is well into the "supercomputer" range and the design of the correlator was a major project in itself.
It is the most powerful processing system of its kind designed and built entirely in Australia. CSIRO's Intergraph system was used for almost a year to design the correlator circuit boards. More than 3000 Australian-made CSIRO/Austek chips were used on the boards with each chip containing the equivalent of 46,000 transistors.

Graphtime 2.7

A new version of Graphtime-II (2.7) has been released with major new features and enhancements

First released in 1985, Graphtime-II has enjoyed considerable success both in Australia and overseas. The demonstration version of the package was the first piece of Australian software to be included in the US PC-SIG Iibrary (which is now available on CD-ROM).
The main new features are full support for EGAVCGA or Hercules graphics modes and drivers for all HPGL graph plotters. Fourteen graph types can be generated and enchanced with the built-in graphics screen
editor.
Ease-of-use has been enhanced with menu selection by command letter, mouse pointer or arrow keys. Data points per graph now extend to 730 with unlimited points per screen. Each screen can have mulitiple windows. Any mathematical or trionometrical function can now be displayed or plotted. Printout to standard dot-matrix printers now available in two resolutions. Data can be entered from Loftus, dBASE II and III, Multiplan or any ASCII file.
The recommended retail price is only $\$ 147$. It's available from Technical Imports Australia on (02) 9226833.

READER INFO No. 158

CAD

APPLICATIONS

Ray Smith

Having just seen the end of the 1987 World Drivers Championship run in Adelaide, one ponders the level and pace of technological development. The formula one racing car is not (and has not been for some time) merely a mechanical masterpiece, but an electronic one as well. With on board computers controlling and monitoring just about every critical function, sophisticated radio communication and telemetry back to the pits, the typical modern racing car is a work of technological art.
All these developments and those in the material sciences have been made possible by the development of micro computers in general and computer aided design and documentation in particular.

Utilizing the power of the current generation of CAD systems, thousands of man hours have been knocked off the
typical research and development cycle of a new product, whether it be a racing car, a road or a building. In most cases whole systems can be designed and dynamically simulated before a single turn of a lathe or a yard of concrete is poured. Loads and stress can be calculated and tested, circuits simulated, timing diagrams printed, heat dissapation demonstrated and so on.
What is even more exciting is that all of this is not restricted to the multi million dollar operations of a formula one race team or aerospace development lab.
Within reasonable limits these systems for design, simulation and documentation are available to the masses. In fact, it is now possible to purchase a basic drafting software package for less than $\$ 200.1$ am not suggesting for a minute that it will contain all the features described above but it will certainly contain some of them. In any event, it is a big step from what was available only a few short years ago.

The really significant thing about all this is that Australian business has ready access to the technology. In fact some of the best low to medium cost CAD software is written in Australia and exported to all corners of the globe. Nevertheless, the manufacturing sector has been relatively slow to take up the use of CAD, and when they have it has been without sufficient thought being given to the specific requirements of the environment.
So how should one buy a CAD system? A thorough examination of the requirements for CAD, and a comparison with what is available in the market, will usually result in a short list of two or three systems. To evaluate effectively beyond this point the only conclusive method is to sit down with the system and be trained on it.

In this way a potential purchaser (who should also be the user) soon comes to grips with the good and bad points of a system. One of the most important aspects is the user friendliness of the software, and this will be reflected in the time it takes to become proficient. Another important aspect is how "complete" the software is. By this I mean that the user should be able to do most, if not all, of a design on the system without having to customise it, or write additional programs and interfaces.
Finally the CAD system should be purchased from a vendor that can support it locally, knows the product and his business.
Implementing CAD in the manufacturing environment is essential if Australian industry is to compete in the global arena. It is important that it be implemented properly, that an appropriate company infrastructure be set up to take full advantage of the benefits and that initially, your expectations are not too high. Be advised by your vendor and don't be afraid to ask difficult questions.
Extensive use can be made of CAD techniques and it will result in higher quality documentation, less errors, less rework, improved turnaround and of course, improved profitability. It is important to realize that CAD doesn't always result in improved productivity. Productivity gains vary with the type of application and the number of standard components used in your engineering discipline. An experienced vendor will be the best guide.
Ray Smith is managing director of RCS Design, "CAD bureau in Melbourne. They are distributors for a mumber of CAD packages including Qikdraw. Protel and Racal's Cadstar and Redcad. Phone (03) 496404.

MICRO CADAM CORNERSTONE: Real mainframe-based PC CAD software that beats them all.

Now you can get real mainframe CAD power for your $\operatorname{BB} \mathrm{I}^{\beta} \mathrm{PS} / 2^{\sim}$ $\mathrm{PC} / \mathrm{AT}^{\text {h }}$ and compatibles at a PC pricejust \$4821

MICRO CADAM CORXERSTONE beat the competition at the recent "PC CAI) Shootout"-a benchmark evaluation of the best PC CAD software, sponsored by the National Computer Graphics Association (NCGA), and witnessed by $170 \mathrm{CAI} / \mathrm{CAM}$ professionals and editors.

We not only finished first-we were the only system to completely: finish the benchmark exercise in the allotted time.

And when the audience voted. MICRO CADAM CORVERSTONE outpolled
the closest competitor by a 6-to-1 margin.

MICRO CADAM CORYERSTONE isn't just fast. it's also incredibly powerful. It emplors the friendly CADAM ${ }^{\circ}$ user interface famous throughout the industry for being easy to learn and use-even if you've never worked with a C:AD sistem before.

MICRO CADAM CORYERSTONE is upwardly compatible with the whole CADAM family of $\mathrm{CA} / \mathrm{CAD} / \mathrm{CAE}$ solutions. working toxay on more than 25.000 CADAII terminals and used by over 100,000 design and manufacturing professionals worldwide. And it features DAF: neutral files. so you can exchange drawings with other PC-Hrised sistems
and interface to other applications like desktop publishing.

So if you re looking for real mainframe CAD power at a PC price. then ask for the one that beat the best MICRO CADAM CORUERSTONE
Call I.A.S. today and ask for Tonio Borg on (03) 5848088 or Fax (03) 5845905
The Ultimate PC CAD Production Tool

CADAM InC
A SUBSIDIARY OF LOCKMEED CORPORATION

TENNYSON

GRAPHICS

Tennyson Graphics can do your photoplotting with the speed of light.

Tennyson Graphics are Australia's only company with state of the art laser photoplotting and computer graphics.

So we can photoplot artwork masters of your printed circuit boards with higher speed, higher resolution and higher accuracy than anywhere else in the country.

You can even choose your own non standard apertures on our Scitex Response 280 System. It can also do step-and-repeat and nesting up to 1000 mm $\times 1850 \mathrm{~mm}$.
And of course we can accept data on tape or floppy disk in industry standard Gerber format.
Tennyson Graphics will be happy to give you the full story if you phone on (03) 5790424.

TENNYSON GRAPHICS A DIVISION OF REPROCART PTY LTD 993 NORTH ROAD MURRUMBEENA VIC 3163 TELEPHONE (03) 5790424
TELEX 34457

WHO'S WHO IN COMPUTER AIDED DESIGN

This list covers all the main players in the construction of computer aided design sysfems in Australia. While we have tried to be reasonably comprehensive, note that omission from our list merely implies our data base was incomplete at the time of going to press.

ADVANCE PERIPHERALS
38 Burraga Avenuc.
Terrey Hills 2084
(02) 4502177

ALL ELECTRONIC
COMPONENTS
118-122 Londsdale Street.
Melbourne 3000
(03) 6623516

ANITECH INSTRUMENTS
DIVISION
1 Carter Street.
Lidcombe 2141
(02) 6484088

AP IMPORTS
41 Box Road
Crossroads 2170
(02) 6009722

APPLE COMPUTERS
37 Waterloo Road.
North Ryde 2113
(02) 8885888

ASSCO
17 Heatherdale Road.
Ringwoód 3134
(03) 8732266

ASSOCIATION FOR COMPUTER
AIDED DESIGN
576 St Kilda Road.
Melbourne 3 (H) 4
(03) 519153 telex 37174

AU'TODESK AUSTRALIA
132 Bridge Road.
Richmond 3121
(03) 4299888

AWA M \& CDIVISION
Unit C. 8 Lyon Park Road,
North Kyde, 2113
(02) $88891(00)$

BALTEC SYSTEMS
26 Miyneview Street.
Milton Old t(K)
(07) $36959(0)$

BAYSIDE COMPUTER SYSTEMS
Cnr Sky Road \& Fanell Street.
Frankston 3199
(03) 7852922

BELL ELECTRONIC INDUSTRIES
157 Abernethy Koad.
Belmont WA G104
(09) 277-2111

CAD SYSTEMS AUSTRALIA
17 Hayling Street.
Salisburs: Old 4107
(07) 2771011

CADCOM
Suite 10. Giecenwich Square
130-1.34 Pacific !lighway.
Greenwich 2065
(02) 4384788

CEANET
4th Floor, 56 Berry Street
North Sydnev 2 (hat
(02) 9226311

CENTRE INDUSTRIES
187 Allambic Road.
Allambic lleights
(02) $45!5555$

CIRCUIT COMPONENTS
383 Forest Road.
Bexley 2207
596550

COMPAK COMPUTER CENTRE
156 Martin Street.
Gardenvale 3185
(03) 5967222

COMPLETE TECHNOLOG
170A Riley Street.
Darlinghurst 2010
(02) 3317474

COMPRRADOR BUSINESS
SYSTEMS
90-9+ Warren Road
Smithfield 2164
6814000
COMPUMOD
10th Floor. 20 Martin Place.
Sydncy 2000
(02) $277+05$

COMPUTER \& ELECTIR()NIC

SERVICES

42 Anclia Avenue.
Wheelers Hill 3150
(03) 5618947

COMPUTEER \& PERIPHERAI

SALES

2-18 Salisbury Road.
Asquith 2078
(02) 4766400

COMPUTER MANAGEMENT

CENTRE

Adelade House.
55 Waymouth Street. Adelaide $5(x)$
(08) 2127577

COMPUTERVISION
55-57 Falcon Street.
Crows Nest 2065
(02) $92226+4$

DATAMATIC
9) Byfietd Streer.

North Ryde 2113
(02) 8881788

DIAMOND SYSTEMS
7 Barrenong Road.
Cotlesbridge 30\%
(03) 7148269

DIMIENSION GRAPIIICS
210 Miller Street.
North Sudney 2(606)
(02) 924585

DISC WARE:
150 Broadway,
Broatway 2(1)7
(12) 2126933

D(OMAIN COMPUTER
50 Berry Street.
North Sydney 2160
(02) 9.573382

DYNAMIC GRAPHICS
36 Parramatta Road.
Glebe 2037
(02) $68(0) 0211$
[EASINET
7-9 Merriwa Street.
Gordon 2072
(12) $49821+4$

EIECTRI BOARI) DESI(iNS
Unit 15 , Eden Parh Entate.
31 Waterloo Road.
North Ryde 2113
(02) 8886925

-

ELECTRONICS COMPONENTS
AND EOUIPMENT
64 Sturi Sireet.
Adelaide 5000)
(08) 232 ()N)I

EMONA INSTRUMENTS
86 Parramatta Road.
Camperdown NSW 2050
(02) 5193933

ENTERTAINMENT AUDIO
59 King William Street.
Kent Town 0567
(08) 363 (0454

HEWIETT PACKARD
31 Joseph Street.
Blackburn 3130
(03) 8952895

IST TECHNOLOGY
45 Macquaric Strect.
Hobart Tas 7(00)1
(002) $348+99$

HYPEC ELECTRONICS
21 Rvedale Road.
West Ryde 2114
(02) 808 3666

IMAGE ANAI.YSING SERVICE
3 Shearson Crescent.
Mentone 3194
(0.3) 5848088

ICL AUSTRALIA
14 Rodborough Road
Frenchs Forest 2086
(02) 4529910

INTERTAN AUSTRAI.IA
91 Kurrajong Avenue.
Mount Druitt 2770
(02) 6751222
J. B. DAVIES SOMPUTER

SYSTEMS
43 West Colebard Street.
Archerfield 4108
(07) 2778922

JASCAD
Cur Victoria Road \& Anzac Avenue
West Ryde 2114
(02) 8071887

JEMAL PRODUCTS
5 Forge Sireet.
Welshpool 61106
(09) 3505555

KENELEC
48 Henderson Road.
Clayton 3168
(03) $5(4) 1011$

KINGDOM
5 Devin Street.
Ride 2112
(i2) $807+822$
MAGNA TECHTRONICS
7 George Patce.
Artarmon $2 \mathrm{NHO}_{6} \mathrm{t}$
(12) 4270 (666

MARCONI INSTRUMENTS
2 Giffnock Atenuc.
North Ryde 211.3
(02) 8876222

MENTOR GRAPIICS
Suite 4 (H, 77 Berry Street
North Sydrey 2(160)
(12) 959.548 K

MICROPROCESSOR
APPLICATIONS
101-107 Whitehorse Road.
Blackburn Vic 3130
(03) $89+15(4)$

MINICOMI
1(14-108 Mount Strect.
North Sydney $20(6)^{0}$
NATIONAL INFORMATION
TE(HNOLOGY COUN(II

P() Box 65

Belconnen ACT 2616
(062) 64t 4764

PAN゙TEK ALISTRAI.JA
757 Reneradale Road.
Camberwell 3124
PRECISION GRAPHICS
Unit 15, 31 Waterloo Road.
North Ryde 2113
(112) 8872648
(1)2) 8872648

PRINTRONICS
33 College Sireet.
Gladesville NSW 2111
(02) 81650566

PROMETHEUS SOITWARE
DEVELOPMENTS
Suite 3. 191 Riversdale Road,
Hawthorn 3192
(03) 8196088

OPSX COMMUNICATIONS
10) Stirling Highway,

Nedlands 6(HK)
(09) 3891666

OUEST INTERNATIONAI
COMPUTERS
1 Hamilton Place.
Mt Waserley 3149
(03) 2777444

RACAL ELECTRONICS
47 Talavera Road.
North Kvde 2113
(02) 8886444

RANK XEROX
970 Pacific Highway.
Pymble 2073
(02) 449 () 499

RCS DESIGN
728 Heidetberg Road.
Alphington Vic 3078
(03) $4964(4$

RIIIL, ENGINEERING
Unit 6, 516 Sydncy Road.
Seaforth 2092
(02) 9443688

ROBOCOM AUSTRALASIA
693 Whitehorse Road.
Balwyn 3127
(03) 890) 1699

ROBS COMPUTER CENTRE
295 Thomas Street.
Dandenong 3175
(03) 7912900

ROLAND CORP (AUST)
50 Garden Street.
South Yarra Vic 3141
(03) 2411254

SCHLUMBIERGER SYSTEMS
382 Wellington Road
Mulgrave 3170
(03) 5601166

SOFTWARE CORPORATION OF: AUSTRALIA
1.38 Buchhurst Street.

South Melbourne 3205
(03) 6997255

SOF゙TWARE SUPPIIERS
7 Aron Road.
North Ryde 2113
(02) 8881955

SYMBIOTIC COMPUTE:R
SYSTEMS
PO Box +12 .
Camberwell 3124
(03) 8822248

TECH-RENTALS
12 Maroondah Highway
Ringwood $313+$
(03) 8792264

TECINICAL IMPORTS
ALISTRALIA
220 Pacific llighwas
Crows Nent 2065
(112) 9226833

TEKTRONIX AUST
so waterioo Road.
North Ryde 2113
(12) 8887060

THE (ADIDSMAN BUREAU
$\mathrm{P}^{2}()$ Box 25
kilkenn s(Mk)
(08) $2(x) 8274$

THE (OMPUMI:R HOUUS:
161 Park Street.
South Melbourne
161 Park Street.
South Melbourne 320.
(03) 6492000
TRITEK SYSTEMS
(03) 6492000
TRITEK SYSTEMS

320 "oorak Road.
South Yarra 31+1
(03) 2413352
?

INJECTION MOULDED PC BOARDS

> Enormous changes to the humbie pc board will take place over the next few years. One of these will be the advent of plastics to replace the glass epoxy substrate in use at present.

Ian Johnston

History

In the late sixties, researchers at A.T. \& T's Bell Laboratories, began experimenting with injection moulded printed circuit board substrates as a means of producing low-cost. high volume, high quality parts requiring limited finishing steps. The efforts of Bell Laboratory's researchers were stymied by the lack of suitable high temperature thermoplastics and the lack of a suitable plating process to satisfactorily plate the copper tracks.

The temperatures reached in the soldering stage meant that the parts either warped badly or degraded to a point where they were useless. The chemicals used in the plating process were far 100 aggressive for the candidate materials available at that time.

In the late 70 s and, ever more so in the 80 s. there have been sufficient developments in high temperature and chemical resistant grades of thermoplastics to make injection moulded printed circuit board substrates a reality.

Problems

At present. printed circuit board substrates are composites of glass cloth, glass fibres. or cellulose paper fabric bonded with a thermoset resin system under heat and pressure to form a wo dimensional board. These boards are produced in sheets and are then guillotined into the desired flat configuration. The most commonly used material is an epoxy-glass combination usually referred to as FR-4

Moulded board substrate showing detalled standups, tracks of insulation and strengthening ribs.
by the electronics industry.
If we examine the existing FR-4 substrates we find several shortcomings which, over the years have been adapted to and accepted. One of these is the phenomena of conductive anodic filamemt (CAF) growth. This is an electrochemical migration characteristic of a conductive copper compound along the interface of the resin and glass filaments in a reinforced laminate. This is quite common in FR-4 laminates exposed to humid conditions and leads to corrosion, short circuits and subsequent reduction in service life of the board.

If conventional FR- 4 board is required to be 'flame retardant' it is often achieved using halogenated additives. These addi-
tives commonly give off corrosive by-products which can damage other components on the board.
The electrical properties of FR-4 boards are not as good as the industry would like in a lot of applications. Many of the new materials used in moulded circuit boards have much lower dielectric constants and up to 10 times lower dissipation factors than standard FR-4.

Being a laminated material the FR-4 boards have a much higher thermal expansion coefficient in the Z direction than they do in the X or Y direction. The glass reinforcement usually controls the expansion in the X and Y direction but the base resin (usually epoxy) controls the expansion in the thickness or Z direction. This
can lead to warping during soldering.
In an industry constantly trving to reduce the size and weight of various components, the substrate material used for a standard FR-4 board is some 23 per cent heavier than materials recommended for moulded printed circuit boards.

One additional factor which has caused concern to designers of traditional FR-4 based circuit boards is that the FR-4 material is supplied in flat two dimensional blanks. These blanks must then be guillotined into the desired shape. This step can. and almost always does, lead to scrap product which is not re-usable. FR-4 blanks are not manufactured locally in Australia and must be imported from overseas.

Injection Moulded pc Boards

Solutions

As mentioned earlier, injection moulded printed circuit boards offer a solution to many of the problems associated with standard FR-4 substrates.

The most important of these is the design freedom to go three dimensional with printed circuit boards and do away with many of the traditional "add-on" bits. Connector bodies and mounting bosses. can be moulded onto the board. Standups can support elevated LEDs or locate batteries or large capacitors. Really, the freedom of design if offers printed circuit board users is limited only to their own imagination limits.
Many skeptics of moulded printed circuit boards quite rightly point out that injection moulders seldom have an understanding of the requirements of the electronics industry, and that electronics designers seldom have any feel for the process of injection moulding. Indeed. there is a great deal of education to be done in both camps, but the overriding factor is that there are real savings to be made by the manufacturers of printed circuit boards and, in no way are they to be made at the expense of product quality. In fact many of the properties of moulded circuit
boards are superior to those of conventional FR-4 boards.

Materials

The necessary properties for a printed circuit board substrate are as follows:
a) Flatness
b) Close dimensional tolerances
c) Heat stability at wave soldering temperatures
d) Plateability with copper tracks
e) Low dielectric constant
f) Low dissipation factor
g) Absolutely reproducible
h) Cost effectiveness

To achieve all of the above properties in one material has. up until recently been very difficult. The materials developed for use as moulded printed circuit board substrates are:

- Glass and/or glass mineral reinforced polyether sulphone.
- Glass reinforced polyetherimide.
- Glass reinforced polyetheretherketone.

These materials range in price from $\$ 20 /$ kilogram to over $\$ 10(\% /$ kilogram so they are certainly not in the commodity classification of plastics.

It can be seen that the FR- + material is excellent in mechanical properties when compared to its rivals but these properties
are over and above those required for a printed circuit board. In the electrical and thermal properties, the thermoplastic moulding materials excel over the FR-4 material.
The specifications for printed circuit board substrates are, for the most part written around epoxy/glass boards and, as such the mechanical properties are higher on the specifications than those achieveable from the thermoplastics. The properties of the thermoplastics are certainly adequate for the circuit board application.

Performance in this area is primarily defined by Tg (glass transition temperature). This translates to the board's dimensional stability during processing and end-use. Thermal stability at elevated temperatures is one of the major advantages of materials such as polyethersulphone, polyetherimide and polyetheretherketone. Epoxy's TG is typically $100^{\circ} \mathrm{C}$ whilst those of the above thermoplastics is around $2000^{\circ} \mathrm{C}$. This adds up to less warpage during wave soldering processes.

Plating

There remains the question of how to deposit a printed circuit accurately on the surface of an injection moulded board and ensure that it stays there. Traditional addi-

Intricate surface mount circuitry for a wrist watch back.
Right angle moulding of a double sided board for a simple switching device.

tive plating methods used for FR-4 boards can be used for thermoplastic moulded boards provided they are flat 2-D configurations. The injection moulding materials are all able to give the required $\&$ to $10 \mathrm{lbs} / \mathrm{inch}$ adhesion requirements for conventional boards.
Obviously the main attraction of injection moulding circuit boards is to make them 3 -dimensional and this also means plating three dimensional shapes. Resistless imaging or photoselective plating does not use the standard 'resist' layer common to normal additive plating to prevent conductor deposits forming where they are not needed. This system uses a special compound sensitive to ultraviolet light to create the pattern for circuit printing. The properties of the compound are such that copper is deposited (in a plating bath) only on those areas that have been exposed to ultra-violet light. The correct exposure is ensured through the use of a photomask or photo-tool which fits over the plastic blank to cover those areas where a conductive surface is not required.

The dip plating process is a much casier one than electroplating because there is no requirement for electrical continuity of the plated surface, while the copper is built up
to even thickness wherever it is deposited. Plating is also highly efficient, in that the treated blanks can be tightly packed (up to 2 square feet of surface per gallon of copper bearing solution).
The rapidly growing importance of this process has also encouraged the development of plating baths with much higher rates of deposition and excellent metallic structure within the copper. Just as important. circuits laid down on these thermoplastic surfaces in this way should achieve good peel strength. As a further advantage, independant areas of platings can be plated at the same time as the circuits themselves are plated, to act as selective screens against electromagnetic interference - yet another type of component which the plain board designers have to install and locate in some other less convenient manner.

Summary

Development of this technology has shown that there are a few rules to which designers of moulded circuit boards must conform. Copper circuits. like stress itself. abhor sharp edges and corners, so the designer must allow for modest radii. Good injection moulding practice sets limits to such things as rib thickness and boss di-
mensions, but these are hardly likely to worry a designer whose previous preoccupation was how to add such features separately to something absolutely flat. The designer is more likely to speculate on the may possibilities previously considered impossible in 2-D circuitry.
Economically, the picture depends on the intended production volume. Anyone talking in tens of thousands of boards will probably find that a moulded board will be some 30% cheaper than an equivalent stock of bare, drilled and/or routed uprinted laminated boards. You would never consider tooling up for 10 boards.
The ultimate future of moulded circuit boards will depend upon the electronics industry but it is not difficult to conceive that all aspects of the industry could be touched by this new trend.

Ian D. Johnston is the Account Manager, Plastics Group, ICI Australia Operations, Parramatta NSW.

International Precision Products Pty Ltd

(formerly Chemical Treatments \&
Coatings Pty Ltd)
32 Windsor Road Croydon Vic. 3136 Australia
TIX: 139664
Ph: (03) 7259666
Fax: (03) 7257549
Agents and importers of sophisticated equipment and manufacturers of fine chemicals for the printed circuit industry.

SURFACE MOUNT RESISTORS

Developing components for surface mount applications is driving technology to the limits. High standards are required in a package as small as possible.

H. Flunkert and H. Horstmann

Even in modern high density circuits, there is a continuing need for discrete resistors. In an age of silicon integration, there are still many functions that require extremely high accuracy, better than can be secured within an integrated circuit. Some of these applications include precise amplification in circuits based on op-amps, precision digital to analogue converters, shunt applications, RC filters and impedance matching.
In the last ten years this increased requirement for accuracy has led to a change from carbon-film to metal-film construction because the temperature coefficient can be made very low in the latter type. This leads to better long term stability and smaller tolerances.
However, at almost the same time, the move from conventional pe board type wired device technology to surface mounting on ceramic substrates has led to a requirement for extremely small resistors with the same characteristics. Historically. the first answer to this problem was the chip resistor. This is a rectangular block in which the resist is laid down using thick film technology.
This satisfied a number of requirements but a thick film solution is by no means perfect. The temperature coefficient can be as high as 200 parts per million for every degree. Tolerance is normally 5 per cent, and can be taken up to 1 per cent. but this drives the price up, considerably. Its pulse loading is poor, its current noise higher than normal and its long term stability is questionable.

Comparison

If this introduction is correct, then resistors suitable for surface mounting are necessary with metal film type characteristics. The answer is the Metal ELectrode Face bonding (MELF) type. Essentially, this is
just a metal film resistor without leads. Instead, caps are fitted to the resistor body for direct soldering to the substrate.
Table 1 shows a direct comparison of rectangular chip to cylindrical MELF type resistors. This data has been selected from manufacturers handbooks, and demonstrates the superiority of the metal film type even in this small format. For a comparison, it is helpful to look at the damage threshold for single pulse loading when an SMD resistor is loaded step by step with pulses of increasing energy. Figure 1 shows the results of four different constructions.

Construction

A cross section of a MELF-resistor is shown in Figure 2.
A cylindrical carrier 1 is filmed by a sputtering process with a metal alloy (2), mounted with nickel finished steel caps (3). The metal-film is spiralled by a YAGlaser to the final value (5). Between the caps an isolation finish (6) protects the film against humidity and aggressive environments. Finally the outside of the caps are finished for an incontastable solder process (4).

The requirements of substrates for thin film resistors may be summarized as follows:

- good electrical insulation properties,
- low and consistent surface roughness characteristics;
- high thermal conductivity for power dissipation, especially for pulse load requirements;
- chemically and physically compatible with resistor films, so that a strong bond between thin film and substrate is formed;
- reproducible in manufacture to ensure that thin films are not affected by differences in substrate composition and surface finish;
- minimal alkali impurities (sodium and potassium) to prevent migration effects, important for long term stability and reliability.
High alumina ceramics with alumina contents in the range 80-99.7 per cent have been found to meet most of these requirements for thin film resistors.
Some properties, such as dielectric constant, thermal conductivity and tensile strength vary with alumina content. However, the variables listed are not the only

Style	Rertangular $(3,2 \times 1,6 \times 0,7)$		Cylindrical ($3,4 \times 1,4 \mathrm{f})$	
film type	thick	thin	carbon	metal
resistance range tolerance : ternp. coefficient rated dassapation	$1 R=104$ $10 ; 5: 2 ;(1)$ $: 200 ; 1015$ 0.25 w	$\begin{array}{lll} 100 R ; & 100 \mathrm{~K} & \\ 1 ; \quad 5 ; .25 ; & 1 \\ 511 ; 25 ; 15 ; & (5) \\ 0.05 \mathrm{~W} & & \end{array}$	$10 R$ i 1014 $10: 5 ; 2 ; 1$ $-200 \div-1000$ 0.25 w	$\begin{array}{lll} 0.22 R ; & 10 M \\ 5 ; 0.1 & \\ 50 ; 25 ; & 15 \\ 0.25 \mathrm{~W} & \end{array}$
```current noise drift (10.000 h) pulse load rating HF```	```1 }\because>10\mu\textrm{V}/\textrm{V #1.5% inferior excellent```	$\begin{aligned} & \text { : } \mu v / V \\ & \text { n. d. } \\ & \text { dubios } \\ & \text { different } \end{aligned}$	```1 %>10 \muV/V < 3% good useful```	$\begin{aligned} & 0.05 \div 2 \mu \mathrm{~V} / \mathrm{V} \\ & \leq 0.5 \% \\ & \text { good. } \\ & \text { useful } \ldots \end{aligned}$
robustn. of termin.   rap. change of temp.   res. to solder. heat   solderability	$\begin{aligned} & \text { useful } \\ & \leq 1.5: \\ & =1: \% \\ & \text { different } \end{aligned}$	irritable   ก. 1 .   ก. $)^{\text {. }}$   irritable	$\begin{aligned} & \text { good } \\ & \leq 1: \\ & \approx 1: \\ & \text { different } \end{aligned}$	$\begin{aligned} & \text { excellent } \\ & \leq 0.25 \% \\ & \leq 0.25: \\ & \text { excellent } \end{aligned}$
price situation	favourable	expensive	moderate	favourable
dependent from ceramic carrier *excellent for special finish				



Figure 1: Deviation of resistance from nominal as a functlon of pulse power.


Figure 3. Thermal conductivity versus Alumina content.


Figure 4. Thermal resistance versus Thermal conductivity.
important ones. The density, average grain size and type of minority phase present are also important. Figure 3 shows the thermal conductivity versus the alumina content.
The bulk of thin film requirements can be satisfied by debased alumina bodies containing 80-90 per cent alumina. Figure 4 shows the thermal resistance (hot spot as a function of applied power) versus thermal conductivity for such a composition.
The metal film - an alloy of chromium, nickel and a third component - is sputtered in a vacuum-process on the ceramic surface. In the same process a laver of metal-oxide is applied to protect the thin metal film against hostile environments. Resistance value, long term stability. reliability, current noise, third harmonic index and last but not least the
temperature coefficient, are determined in this process.
Figure 5 shows the temperature coefficient. It is always less than 50 parts per million per degree Kelvin. Temperature coefficient is defined so that the actual deviation is inside the straight lines. The real deviation is always smaller. In this diagram. the resistance deviation between $-55^{\circ} \mathrm{C}$ and $+155^{\circ} \mathrm{C}$ has to be inside the TC-straightlines. If a smaller temperature range is defined (eg: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ) the same resistor accomplishes more stringent specifications.

After filming metal caps are pressed over the body-ends. A special steel with wide elastic limits is used, finished inside (and outside) with a nickel-phosphorusalloy to give excellent ohmic contact to the metal film. It provides low thermo-
electricity, high adhesion against steel, and is a perfect carrier for solder finish.

For SMT it is extremely important to find a construction to withstand the different thermal expansions of the SMD on the one hand and the pc-board on the other. Flat screened contacts on thick-film-chip resistors sometimes produce tremendous cracks between the solder contact and the ceramic carricr. The MELF-construction is an excellent solution to this problem.

The same arguments protect MELFconstruction against destruction by bending or distortion of the pe-board. This is vitally important in some hostile environments, especially where vibration and heat are combined, as in the automotive and aviation industries.

The most important influence on long term stability and current-noise is the pro-

## Surface Mount Resistors




Figure 7．Cross section through the solder contact．

Figure 5：Change of resistance with surface temperature．The temperature co－efficient is given by the straight lines．


Figure 6．Possible shape of characteristic for a given thermal conductivity．
cess used to trim the resistor to its final value．Stone grinding，sand－blast and laser－helixing are applicable．For laser－ trimming the $\mathrm{CO}_{2}$－laser is casy to handle， but deep melting in the ceramic produces cracks and thus instabilities and current noise．
The best results are obtained by trim－ ming with a YAG－laser in pulse mode

## Encapsulation

The process of manufacturing is completed by the outer sheath or encapsulation．It needs to do a number of things

## ミ゙いいに ミCEC シハい

## ＂MINIATURE SOLID TANTALUM CAPACITORS＂

## KEMET ULTRADIP II

The new gold colour epoxy series with laser marking to MIL－1－46058．Conforms to Telecom spec．
CE－65050（RJEP451 ．．．／．．）
This series has many features of the Kemet military approved types，but at prices allowing design into commercial－industrial equipment．
Available－exstock．

## FREE SPECIFICATIONS AND DATA FROM：



## CRUSADER ELECTRONIC COMPONENTS PTY．LTD．

81 PRINCES HWY，ST PETERS，NSW 2044 Phone 519503051638555196685 Telex 23993 or 123993

## APPOINTED DISTRIBUTORS：

SYDNE GEORGE BROWN \＆CO PTY．LTD．PHONE 5195855 GEOFF WOOD ELECTRONICS PTY．LTD．PHONE 8106845 WOLLONGONG MACELEC PTY．LTD．PHONE 291455 CANBERRA GEORGE BROWN \＆CO PTY．LTD．PHONE 804355 NEWCASTLE NOVOCASTRIAN ELECTRONIC SUPPLIES PHONE 616055 MELBOURNE R．PG．AGENCIES PTY．LTD．PHONE 4395834 JESEC COMPONENTS PTY．LTD．PHONE 5982333 GEORGE BROWN \＆CO PTY．LTD．PHONE 4193355 BRISBANE L．E BOUGHEN \＆CO PHONE 3691277 COLOURVIEW WHOLESALE PTY．LTD．PHONE 2753188 ST LUCIA ELECTRONICS PHONE 527466 ADELAIDE PROTRONICS PTY．LTD．PHONE 2123111 D．C．ELECTRONICS PTY．LTD．PHONE 2336946 PERTH SIMON HOLMAN \＆CO PHONE 3814155 PROTRONICS PTY LTD．PHONE 3621044


Figure 8. Example of various printed circuit patterns for MINI-MELF resistors.


Figure 9. Section of figure 8.

- Form a perfect cylinder between the caps because a shape like a "dog-bone" is difficult to fix on the peb-surface; a form like a barrel generates a gap between the caps and solder pads.
- to withstand the thermal shock from solder heat (e.g. dipping in liquid tinlead at $2600^{\circ} \mathrm{C}$ for 10 seconds).
- to protect the metal-film against humidity and other environmental attacks
(tested by exposure in a pressurecooker followed by full power load).
- No deterioration from long term exposure to high power heat-up (e.g. 10.000$)$ hours with hot spot temperature of $155^{\circ} \mathrm{C}$ ).
- No damage from cleaning solvents.
- must allow for colour-code-bands or markings.
All these will be provided by a filled
polymer-encapsulation and the selection of pure fillers with very low alkali-content and small thermal-length-expansion.

The authors are with Beyschlag GMBH, Heide, West Germany. This article is based on a paper presented at the 1987 IREE convention in Sydncy. Enquirics should be directed to the local Beyschlag agents, Crusader Electronics (02) 5195030.

at your service 15 hrs. a day

## PCB CAD DESIGN



EFFICIENT ARTWORK DESIGN
PEN PLOT - PHOTO PLOT
CNC DRILL OUTPUT D. SIDED AND MULTILAYER
S.M. DEVICES LOW COST EDITING M Muraca 8/31 Park Street St Kilda, 3182
Tel. (03) 5372102
READER INFO No. 37

MICRO-EDUCATIONAL P/
8/ 235 Darby St NEWCASTLE 2300
Austalua's lagest computor matior dor compary.


OUR LATEST IIIBRARY DISK FOR YOUR APPLE, IBM, or MACINTOSH (Add $\$ 10$ for Mac 3.5" disks) These disks contain the best in public domain software. Send $\$ 2.00$ Cheque/Money Order for $P$ \& $P$.

## Ask for your FREE CATALOG Dear Gcorge, <br> Please rush me a frec library disk for my IBM/ APPLE MACINTOSH (Add $\$ 10$ for Mac disks) <br> Enclosed Please find Cheque Money Order for $\$ 2.00 \mathrm{P} \& \mathrm{P}$.

NAME:
ADDRESS:
P/CODE:


READER INFO No. 36

# WHO'S WHO IN PC BOARD 

ACETRONICS PCBs
112 Robertson Road,
Bass Hill 2197
(02) 6451241

AERODATA HOLDINGS
1029 Wellington Street.
West Perth 60005
(09) 3221799

AJ DISTRIBUTORS
44 Prospect Road.
Prospect 5082
(08) 2691244

ALFATRON
1761 Ferntree Gully Road.
Ferntree Gully 3156
(03) 7589000

ALL ELECTRONIC
COMPONENTS
118-122 Londsdale Street.
Melbourne 3000
(03) 662 35 (k

ALLIED CAPACITORS
PO Box 56
Mona Vile 2103
(02) $938+6 \%$

ANITECH
1 Carter Street.
Lidcombe 2141
(02) 6484088

AP IMPORTS
41 Box Road.
Crossroads 2170
(02) 6009722

ARTRONIC PRODUCTIONS
48-54 Fitzroy Strect.
Marrick ville 2204
(02) 517 I233

AUSTRALIAN AMP
Hudson Avenue.
Castle Hill 2154
(02) 6803377

AVISUN
PO Box 1340
Crows Nest 21065
(02) $4383 \%(0)$

BASSTECH
Unit 3. 12 Gordon Street.
Bairnsdale 3875
(051) 52 550)

BELL ELECTRONIC INDUSTRIES
157 Abernethy Road.
Belmont 6104
(09) 2772111

BINARY ENGINEERING
15 Pertaka Place.
Cromer 2099
(02) 9824383

BISHOP GRAPHICS
4 Stafford Street
Huntingdale 3166
(03) 5441204

BRANDNER
20 Shasta Avenue.
Brighton 3186
$592+298$
CENTRE INDUSTRIES
187 Allambic Road.
Allambic Heights
(02) 4515555

CHEMICAL TREATMENTS \&
COATINGS
32 Windsor Road.
Croydon 3136
(03) 7259666

CIBA-GEIGY
140) Bungarra Road

Pendle Hill 2145
(02) $6880+44$

CIRCUITMAKER ELECTRONICS
7 Graham Road.
Highett 3190
(03) $55517(0)$

COOPER TOOLS (WELLER)
PO Box 366
Albury 2640
(060) 215511

CRUSADER ELECTRONICS
81 Princes Highway,
St Peters 2044
(02) 5195030

CUTLER BRANDS
45-49 Cavendish Avenue,
Devon Park 5(0)8
(08) 464846

DIAMOND SYSTEMS
7 Barrenong Road.
Cottlesbridge 3 (1)99
(03) 7148269

DUET ELECTRONICS
H1+St Georges Road,
Thornbury 3071
(03) 4805803

DUPONT
168 Walker Street.
North Sydney 2160
(02) 9236111 . (018) 226314

## DURONICS

Unit 34. 2 Hoyle Avenue,
Castle Hill 2154
(02) 634.5864

EAST COAST PRINTED

## CIRCUITS

5/191 Victoria Road.
Gladesville 2111
(02) 8164733

ELE(TRI BOARI DESIGNS
3) Waterloo Road.

North Ryde 2113
(02) $88: 6925$

ELECTRONIC RESEARCHERS
22 Finsbury Street,
Newmarket 4051
(07) 356 ! 608

ERACOM
26 Greg Chappell Drive.
Burleigh Heads 4220
(075) 560911

ERNI
12 Monneath Drive.
Mitcham 3132
(03) 8748566

EUP SYSTEMS
33 Winfield Street.
Condell Park 2000
(02) 70 ) 1567

EVERETY INTERNATIONAL
17 North Wood Street.
Leederville (n)07
(09) $381550 \%$

EVERSHIARP
1104 Victorist Road.
Drummoync 2047
(02) 8197442

FRED HOE \& SONS
246 Evans Road.
Salisbury +107
(07) $277+311$

GALAXY ELECTRONICS
777 Punchbowl Road.
Punchbowl 2196
(02) 708588

GEORGE BROWN
174 Parramatta Road.
Cimperdown 2050
(02) 5195855

HEYDEN-SPIKE
Unit I. 41-93 Old Pittwater Road. Brookvale 21(0)
(02) 9381566

IMP ENGINEERING
16 Pattinson Road.
Newton 5(174
(08) 3305020

JEMAL PRODUCTS
5 Forge Street.
Welshpool 6106
(09) 3505555

KALEX
40 Wallis Avenue.
East Ivanhoe 3079
(03) 4973422

KELLERGRAPHICS
493-495 Kent Street.
Sydney 20(0)
(02) 2675388

KINGDOM
5 Devin Street.
Ryde 2112
(02) 8074822
L. M. ERICSSON

61 Rigall Street.
Broadmeadows 3047
(03) 3092244

LINSEN TYPETRONICS
35 Guinevere Parade,
Glen Waverley 3150
(03) 2320862

MACH SYSTEMS
70 Keys Road.
Moorabbin 3189
03) 5550133

MARCONI INSTRUMENTS
2 Giffnock Avenue.
North Ryde 2113
(02) 8876222

MELBOURNE PRINTED
CIRCUITS
6 Bulli Street
Moorabbin Vic 3189
(03) 5531744

MELTEC DISTRIBUTORS
Beresford Avenue.
Greenacre 2190
(02) $708+300$

MORRIS PRODUCTIONS
12 Harp Street.
Campsic 2194
(02) 783436

MULTICORE SOLDERS
43 Birmingham Street.
Alexandria 2015
(02) 6672750

PANELPRINT
34 Taylors Road.
Croydon 3136
(03) 725 (1444

PENINSULA CIRCUITS
6/1140 Nepean Highway.
Mornington 3931
(059) 755568

PENN CENTRAI.
56 Silverwater Road
Auburn 2144
(02) 6481661

PHILIPS
1! Walthan Street
Artarmon 2064t
(02) 4393322

PRECISION CIRCUITS
Suite 2. 366 Whitehorse Road.
Nunawading 3131
(03) 8773422

PRECISION GRAPHIICS
Unit 15, 31 Waterloo Road,
North Ryde 2113
(02) $88726+8$

PRINTEI) CIRCUITS
7 Walter Crescent.
Wivlie 4500
(07) 2053344

PRINTRONICS
33 College Street.
Gladesville 2111
(02) 8165066

PROC「EI MANUFACTURING
$3-5$ Rosella Street.
Frankston 3199
(03) 783 8977

OUASAR ELECTRONICS
17 Stanton Road.
Seven Hills 2147
(112) 6248488

RAE INDUSTRIAL
ELECTRONICS
178 Pacific Highway.
St Leonards 2065
(02) 4397599

RAYCHEM
14 Pike Street,
Rydalmere 2116
(02) 6841055

RCS DESIGN
728 Heidelberg Road,
Alphington 3078
(03) 496404

REAL TIME DESIGN
Suite 2. 366 Maroondah Highway,
Nunawading 3131
(03) 8773055

ROYSTON ELECTRONICS
Unit 15, 59 Moxton Road,
Punchbowl 2196
(02) 7095099

ROYSTON ELECTRONICS
27 Normanby Road.
Notting Hill 3168
(03) 5435122

SCIENTIFIC INSTRUMENT \&
OPTICAL SALES
70 Kelvin Grove Road,
Normanby 4059
(07) 8317672

SCOPE LABORATORIES
PO Box 63
Niddric 3042
(03) 3381566

SDK INDUSTRIES
83 Camberwell Road,
Camberwell East 3126
(03) 8361922

SHELNIK CIRCUIT DESIGN

+ Riley Street.
Murrumbeena 3163
(03) 5685072

SKANDIA ELECTRONICS
183 Burwood Road.
Hawthorn 3122
(03) 8192466

SOFTWARE CORPORATION OF
AUSTRALIA
138 Buckhurst Street.
South Melbourne 3205
(03) 6997255

STC
252 Botany Road,
Alexandria 2015
(12) 9257272

SUNBURY PRINTED CIRCUITS
Factory 6. McDougall Road.
Sunbury 3429
(03) 7442714

## TEKNIS

Philips Crescent,
Hendon 5014
(08) 2686122

TENNYSON GRAPHICS
993 North Road.
Murrumbeena Vic 3163
(03) 579 (0424

THE CADDSMAN BUREAU
PO Box 258 .
Kilkenny 50k99
(08) 260 8274

THE COMPUTER COPORATION OF AUSTRAIIA
Unit 3. Airport Industrial Park,
370 Nedgee Road. Hendrat 4011
(07) 2687555

VEMA
Suite 6. 118 Church Street.
Hawthorn.
(03) $819+166$

WILLIS COMMUNICATIONS
40 Finsbury Street.
Newmarket 4051
(07) 3568515

XENITEK
2/10 Wattle Road.
Brookvale NSW 21(0)
(02) $938+311$

Finsbury Street.
-


> an Epson PCe
> Monochrome Dual
> Floppy System Including 2 x 260kB floppy disk drives

- Epson PCe/2FDD main unit
- Epson PCe/PCAX keyboard
- Epson PCe deskstand
- Epson PCe MS Dos V3.2
- Monochrome monitor $12^{\prime \prime}$
- Hercules compatible monolgraphics video board
- Total value for the System:

Recommend Retail Price including Sales Tax \$2880
Just cut the panel below and send it to ETI.
The draw will take place in April and the winners
will be announced in the May edition.


## 2 Wire LANs

Standard Microsystems Corporation have announced a new family of ARCNET products for PC Local Area Networks (LANs) utilizing twisted pair cabling.

The primary advantages of this type of transmission media are cost, availability and ease of installation. All of the components - cables, modular plugs and T connectors - are less expensive and take less time to install than any other transmission media. The possibility of using existing wiring can also significantly reduce total system cost.

CSMA-type twisted pair LANs, such as StarLAN, require two pairs of wires, one for transmit functions and another for receive functions. ARCNET, on the other hand, needs only a single pair of wires to support its tokenpassing access method, which allows only a single node to communicate at any one time.
This new product line features an ARCNET Network Controller Board that fits in an expansion slot in any IBM PC or compatible system. Multiple PCs are connected to a single twisted pair segment in a daisy-chain or multidrop
configuration. Network expansion is achleved by connecting twisted pair segments with a two-port Twisted Pair Repeater, and a twisted pair network can be connected to a coax network with a two-port Twisted Pair Link.

ARCNET is a baseband, token-passing LAN technology that permits individual computers, such as IBM PCs or compatibles, to communicate with each other. Since its introduction in 1977, ARCNET has grown to become an industry-wide, de factor standard with an in stalled base of over a halfmillion nodes. ARCNET also has a significant share of the PC LAN market. ARCNET boards represent $15 \%$ of the installed base, and one out of every four boards being installed today is ARCNET. In addition, ARCNET operates with today's most popular network operating systems, such as Novell's NetWare, Banyan's Vines, Torus Tapestry and Westem Digital's ViaNet.

For further information, please contact: Total Electronics, 9 Harker Street, Burwood, Victoria 3125. Ph: (03) 288-4044.READER INFO No. 165

## New Graphtec Data Analyzer

The MS5100 is an all-in-one measurement system which enables input, display, calculation, recording and transfer of data. It features 1 through 4 -channel input, a 32 K word memory, and 14-bit AD converters.
Six measurement modes direct $Y-T$ and $X-Y$, memory $Y-T$ and $X-Y$, direct logging and memory event - cover a variety of measurement needs. Analogue waveforms can be measured by direct recording in the DC to 80 Hz range and by memory recording in the DC to 20 kHz range.

The $217 \times 98 \mathrm{~mm}$ ( 640 by 200 dots) backlighted LCD enables clear waveform and information presentation, and interactive displays, cursors and pushbutton controls
make the MS5100 easy to operate. Hardcopy of the display screen can be generated in only 20 seconds by pressing the display code key.
The MS5100 has a built-in ability to calculate required physical parameters from measurement data and scale data from transducers in an arbitrary system of units (labelled by four characters from a 96-character set).

A thermal dot-array head ( 8 dots $/ \mathrm{mm}$ ) and a proprietary heat control system print high-quality records at high speed with very little noise. A standard GPIB or RS-232C in terface transfers data to external devices.
For more information contact AWA on (02) 9973433.

READER INFO No. 166


## Venus Risen

The Webster computer Corporation has announced the release of its Venus supermini system. It's AT\&T 3B-series compatible VMEbus based computer which runs the UNIX System $V$ operating system. Featuring discs to 1.5 Gb , CPU performance to 2 MIPS, and memory to 96 Mb , Venus comfortably supports simultaneous timesharing access by up to 66 users.

The Venus central processor is a full 32-bit word, 32-bit linear address machine with both demand paged and demand segmented virtual memory support, allowing arbitrarily large programs to efficiently use limited physical memory.

Two speed ranges of CPU are available: the model VS14 is clocked af 14 MHz and has an average execution throughput of 1.5 Million Instructions Per Second (MIPS), while the 18 MHz VS18 is rated at 2.0 MIPS .

Contained within the Venus CPU board is 1 MByte of memory with byte parity, representing the minimum memory available with the

Venus architecture.
This local memory is supplemented with additonal VME memory boards of 2,4 8 or 16 MByte with the byte parity; to a total practical limit of 97 MByte using the standard Venus 9 -slot VME backplane.
However, program size is not limited by physical memory, as the CPU, operating system and disc together simulate a virtual memory space of up to 4 Gigabyte.
A choice of three high performance fixed Winchester disc drives is offered, as well as RS-232C serial interface ports with DB25 connectors. Additional serial lines are provided in banks of 16 using multiplexer boards. Up to six 16 -line multiplexers may be installed in a fully configured Venus system, permitting an upper limit of 98 serially connected terminals, printers, modems etc.

Floppy discs are the $51 / 4$ inch double sided high density standard providing formatted capacity of 720 kilobyte.

READER INFO No. 167

## Colour-Graphics Printer

The Hewlett-Packard Company recently announced the HP PaintJet colour-graphics printer. This printer produces colour graphics for overhead transparencies and reports and has near let-ter-quality (NLQ), high-speed text. It is priced for personal computer users.
it produces text and graphics with $180 \times 180$ dots-perinch resolution and NLQ text at a speed of 167 characters per second. The device can product a typical text page in about 40 seconds and a full page of colour graphics in about four minutes.
The printer holds four inks - black, yellow, magenta and cyan. it mixes these co-
lours to produce red, blue and green. With appropriate software, the primary colours can be mixed to provide 330 different shades and hues.
Sixty nozzles transfer the ink to the media. Two disposable catridges - black and colour - contain the nozzles, inks and electrical-printing elements. Cartridge life is approximately 1.1 million characters and can produce about 1,000 pages of black text and 180 pages of colour graphics.

READER INFO No. 159


## PC Terminals

Sydney-based Datamix has gone into initial production of a low-cost expansion unit to convert PC-AT's into a powerful multi-user system supporting up to 10 terminals, all capable of running standard MS-DOS programs.

Through use of a customised version of the Digital Research Corporation's Con-current-DOS operating system, DECATASK users would get the full benefit of concurrency - the ability to run two tasks at once - and still be fully compatible with MS. DOS.
According to Datamax, Decatask will be priced at $50 \%$ of the price of a second

AT, and allows another 10 terminals to be plugged in for the cost of just the terminal and cabling."
A DECATASK-based 10 -user system would cost at least $\$ 30,000$ less than a 10 workstation network, he added.
DECATASK comprises a single, multi-layered expansion card containing 2 Megabytes of RAM; a compact 10 serial-port distribution box and bundled with it, the MS DOS-compatible Concurrent DOS XM operating system. The board can run on any processor up to 12.5 MHz .
For further information contact Datamax at (02) 977. 6522. READER INFO NO. 160


## High Speed Ricoh Laser from Mitsui

Mitsui Computer have released a compact desktop 15 page per minute (ppm) laser printer. The Ricoh LP4450 laser printer is the top end of the Ricoh 6, 8 and 15 ppm laser printer range distributed by Mitsul Computer.
Configured with a standard 1.5 Mb of RAM, expandable to 2 Mb , it is designed to be
a powerful desktop unit, suitable for word processing, spreadsheet, database, CAD/CAM, barcode and desktop publishing applications.
HP LaserJet Plus, Diablo 630, Epson FX, IBM Graphics and full HPGL 7470/75 plotter emulations are all available with the Ricoh LP415.

READER INFO No. 161

## ICM F/IM

The NF 5020 is a general-purpose frequency response analyzer covering the range 10 mHz to 20 kHz . It features a built-in CRT display and extremely simple operation.
The 5020's 5 -inch green CRT screen provides displays of setting conditions and measured results. A video output is provided to enable generation of hard copies of the CRT display and for use with a larger extemally connected video monitor or VCR.
Measurement results can be displayed as a Bode, Nyquist or Nichols plot. A cursor readout function is provided to simplify accurate read. ings.

A dedicated video-printer output is provided to enable quick and accurate hard copies of setting conditions and measurement results. This output includes a clock signal to ensure reliable synchronization.

In addition to 10 memory locations for setting values,
the 5020 has two data memories - A and B - enabling the comparison of two measurement results (A-B output: equalization function). This can be used to cancel out the premeasured sensor characteristics by subtracting them from the overall measured results, leaving only the frequency response of interest.

Both of the input channels can be floated to achieve a common-mode rejection ratio (CMRR) of 60 dB (at 1 kHz ), thereby enhancing common-mode noise rejection performance.
Applications such as loop characteristic analysis of servos require a floating signal source. To facilitate the use of the 5055 Signal Injector/Probe in such applications, the 5020 provides a dedicated 5055 power supply output.
For further information ring Electrical Equipment on (02) 227-3433.

READER INFO NO. 162

## NEC and Standard Join Forces . . .

NEC Corporation (NEC) of Tokyo, Japan and Standard Microsystems Corporation (SMC) of Hauppauge, New York, jointly announced that the two companies have signed a technology agreement that provides for SMC's second-sourcing two of NEC's important microcomputerrelated complex peripheral devices. The two NEC peripheral devices which will be second-sourced by SMC under this worldwide agreement are the uPD 7260 Hard/ Floppy Disk Controller and the UPD 7262 Enhanced Small Device Interface (ESDI) Controller.
The products covered by this agreement between NEC and SMC will also be marketed, distributed and sold by Toyo Microsystems Corporation of Tokyo, Japan, the joint venture between Sumitomo Metal Industries Ltd and Standard Microsystems Corporation, which began operations in April of this year.
The agreement is part of a continuing drive by Japanese companies to move manufacturing offshore to avoid trade embargoes,
particularly in Europe and the US.
For further information, please contact: Total Electronics, 9 Harker Street, Burwood, Victoria 3125. Ph: (03) 288-4044

READER INFO No. 164

## . . . and so to <br> Ericsson and IBM

two of the world's major communication companies Ericsson and IBM - will jointly explore a wide array of new telephone communications networking services.

The non-exclusive agreement provides for IBM to use its expertise in database and data network management with Ericsson's technology in AXE telephone switching, similar to that in Australia's Public Telephone Network.

The object of the study is to develop technical solutions for the intelligent network concept, specifically for advanced network functions also known as features. These solutions will be based on standard IBM and Ericsson systems and specialised IBM and Ericsson software to implement the intelligent network concept.

## RRD on CD

An optical disc archival document storage system is currently under development in Australia by Tower Technology. The company was set up last year to handle the development and manufacture of the system, receiving a $\$ 1.25$ million $R \& D$ grant from the Industry Research \& Development Board with further funding coming from Advent Westem Pacific.

Tower Technology's aim is to implement a multiuser optical disk-based source document management systems. It will be designed and built in Australia to international standards, by integration of modular system components and purpose de-
veloped software
The system will allow organisations to randomly capture all their documents electronically, automatically index them, store them onto optical disk and provide multiple users with fast access to images of their documents via high resolution terminals or printouts via laser printers.

Each optical disk can store at least 40,000 documents. Multiple disks are located in a "juke-box" which automatically selects the correct disk when document access is required.

For further information contact Tower Technology on (02) 4272999.

READER INFO NO. 163

## One Meg Module

A new 1 Meg electricallyerasable programmable read-only memory (EEPROM) module in the JEDEC Standard DIP pin-out, has been announced by SEEQ Technology in the US.

According to SEEQ director of military programs David Sweetman, the model MM28C1024/B CMOS EEPROM Module, configured $128 \mathrm{~K} \times 8$, utilizes four of SEEQ's 28C256 EEPROMs in LCC packages mounted on a ceramic co-
fired substrate along with a decoder chip and decoupling capacitor. The 28C256, the world's first 256 K CMOS EEPROM, has been in production for over one year and contains all the JEDEC EEPROM standards, in addition to the features of low CMOS operating and standby current, instant powerup, flexible and extended page load, and false write protection.

READER INFO No. 168


## Keycorp and Mitsui

Mitsui Computer is to be the exclusive Australian and New Zealand distributor for Keycorp's Keymaster products.

Sydney based Keycorp invented, manutactures and markets the Keymaster Keyboard and Keypad, featuring
patented, "intelligent" liquid crystal display (LCD) keycaps. (See News Digest, Nov 87.) Keymaster is designed to simplify the use of computers for inexperienced people by guiding and prompting the user through a given software application.

READER INFO NO. 169

## 10MHz TURBO PLUS MOTHERBOARD

This 10 MHz , no-wait-state board is a drop-in replacement for the sluggish 4.7MHz PC motherboard.

- 8088-3 running at $10 \mathrm{MHz} /$ no wait states - Turbo/normal selectable
- 4 channel DMA -8 expansion slots
- Keyboard port - 640K RAM fitted
 8 MHz Turbo Motherboard still available at new low price. Was $\$ 450.00$.


## NOW ONLY \$425

### 1.2MB/360KB

FLOPPY CONTROLLER
The perfect answer for backing up hard disks, archiving etc.

- Supports both 1.2 MB and 360 KB drives - Fully PC/XT, PC/AT compatible - For suitable drive see below



## 150W SWITCHING POWER SUPPLY

Drop-in replacement for IBM PC's puny 63 W supply.

- Boosts PC to PC/XT specs. Essential to run hard discs and other ad-ons on PC .
- Outputs $+5 \mathrm{~V} / 15 \mathrm{~A},-5 \mathrm{~V} / 1 \mathrm{~A},+12 \mathrm{~V} / 5 \mathrm{~A}$,
- $12 \mathrm{~V} / 1 \mathrm{~A}$
- All cables to disk drives, motherboard etc.
\$148



## AUSTRALIA'S BEST SPEEDUP CARD

Speed up your PC over 7 times with our superb new speed-up card.

- 80286 CPU plus 8088 for complete software compatibility
- Clock rate $6 / 8 \mathrm{MHz}$ (selectable)
-RAM on-board for disk cache
- DMA support

■ Socket for 80287 co-processor


READER INFO NO. 83

## You'll always get a better deal at Electronic Solutions

1. Everything we sell comes with our 14 day moneyback guarantee.
2. We only sell top quality products. Brands like NEC and Mitsubishi. With Electronic Solutions you know you're getting the best!
3. Massive buying power means our prices are the lowest in Australia for the same quality goods.
4. Our buying team get the latest products sooner. Whether you want an 80386 card, a turbo graphics card or the latest EGA card, we've often got it in stock when our competitors are just thinking about it.


## PEGA EGA card unmatched resolution

Get all the standards with this superb short slot EGA card.

- Supports Monochrome, Hercules, CGA,

EGA and Plantronics modes. Fully Auto switchable.

- Supports 132 columns in Symphony, Lotus and WordPerfect - Automatic monitor detection - 256K of video memory standard - Flicker free scrolling $\$ 495$ READER INFO No


## DISK DRIVES

40 Track Mitsubishi.
Very fast track-to-track. 360KB DSDD. Lowest price in Australia. \$245

### 1.2MB NEC

Super high density. Superb construction and reliability. Works with 1.2MB floppy contriler $\$ 275$

## 20MB NEC Hard Disk.

Very fast and super reliable. Best price in town. \$695 Complete with controller. \$895

## XT Style Case with Hinged Lid

Perfect for building your own PC.

## \$95

READER INFO No. 89
MEMORY

## 512K Ram Card

 Short Slot- 512K RAM installed (41256 chips)
- DIP switches to start address
\$195
READER INFO No. 90


## 640K Ram Card -

 Short Slot- 640K memory installed
- User selectable from 64 K to 640 K
- DIP switches to start address \$225


## Colour Graphics/Mono - Short Slot

This amazing new card drives RGB colour, composite colour or a TLL monochrome monitor. And it fits in a short slot. Full CGA support. Can be used as a colour graphics card with a monochrome display and still run all the colour programs.
The card even cures the dread colour graphics "flicker and snow"
\$195
READER INFO No. 92

## Colour Graphics Video Card

- Suits RGB and composite colour monitors
- Light pen interface
- Fully CGA compatible
- $40 \times 25 \& 80 \times 25$ (text), $640 \times 200$
(mono) and $320 \times 200$ (colour) $\$ 115$


## Colour Graphics/ <br> Printer Adaptor

Attaches to IBM-compatible RGB monitor; provides complete compatibility with IBM Colour Graphics Adaptor. Equivalent to the IBM colour/graphics adaptor with additional printer port to replace the video port originally supplied by IBM.
\$145
READER INFO No. 94


## Parallel Printer Card

- Standard TTL level - Centronics printer port, full IBM, EPSON compatible \$44


## Turbo Mono Graphics/ Printer - Short Slot

If you want fast, flicker free scrolling and full Hercules compatability, this is it! Perfect enhancement for slow scrolling programs like Microsoft Word etc. The ultimate monochrome graphics card. $\$ 175$
 -READER INFO No. 99

## Serial RS-232 Card

- Independent receive clock input
- 2nd serial port option
- Full buffering eliminates need
for precise synchronisation
READER INFO No. $\$ 50$


## NEW PC/XT PRODUCTS the power you're searching for!

### 2.5MB Multifunction card for PC/AT

Give your AT a big boost with this superb quality, low cost expansion card. - One RS232C serial port

- One parallel printer port - Memory expansion to 2.5 MB ( 0 K fitted) - Fully PC/AT compatible
$\$ 495.00$ READER INFO No. 95


## 10 MHz

Baby AT Motherboard
Ultra high
performance PC/AT motherboard outperforms all the others. Drop it into your existing $P C / X T$ !
Up to 1MByte of
RAM on-board ( 640 K fitted)

- $80286-8$ running at $6 / 10 \mathrm{MHz}$ switchable
- Speed test 11.7 on Norton Utilities
- 7 channel DMA for disk and special I/O
- 8 expansions slots ( 6 full AT standard)
- On-board battery backup, real time clock - Phoenix ROM BIOS


## $\$ 945$

## Baby AT Case

 $\$ 135.00$

Overload protection - Short circuit protection - Cooling fan stops when voltage output falls to zero

- Top quality components used throughout READER INFO No. 96
Enhanced Keyboard suit both PC/AT and XT


The finest keyboard on the market - Suits both IBM PCAT and AT (switchable)

- Full 101 keys with separate cursor and numeric pad
- Superb key action
- Lights for caps, num and scroll lock
$\$ 145$ READER INFO No. 97 .
$+145$

Suits all IBM PC/AT compatibles

User selectable 115/230V AC input - Outputs: +5V/17A $-5 \mathrm{~V} / 0.5 \mathrm{~A},+12 \mathrm{~V} 7 \mathrm{~A}$, $-12 \mathrm{~V} / 0.5 \mathrm{~A}$

## 2MB EMS Memory Card for PC/XT or AT

An affordable "Above Board" memory card. Fit up to 2 MB of high speed RAM (OK fitted). At a low introductory price: \$495


## Multi I/O Card

- Floppy disk adaptor, 2 drives DS/DD
- 1 serial port, 1 parallel port, 1 joystick port ■ Clock/calendar with battery backup
\$175

- READER INFO No. 78


## I/O Plus Card

- Clock calendar with battery backup - 1 serial port, 1 parallel port, 1 joystick port


READER INFO No. 77

## SUPER SPECIALS

V20 chips .................... $\$ 29.00$
V30 chips ................ $\$ 49.00$
NEC Multisync monitor .... $\$ 1150.00$
TLL Amber Monitor ...... $\$ 275.00$
TLL Green Monitor ...... $\$ 280.00$
256K RAM chips .......... $\$ 7.00$

## ELECTRONIC SOLUTIONS

## Electronic Solutions

PO Box 426 Gladesville 2111 Phone (02) 4274422 We accept Bankcard, Mastercard and VISA. Mail orders our specialty. All prices include sales tax

- All products carry a 14 day money back guarantee
- All products carry a full 3 months warranty
- All cards come with full documentation
- Ring for quantity discounts and tax free prices.
- Freight $\$ 7.50$ for first item, then $\$ 2.50$ for each extra item.


# Computer reviews 


#### Abstract

Allan Sugar's much maligned Amstrad company has done it again, producing a technologically credible product at a price that will knock your socks off. The new PC 1640 comes in three versions, a single 360 K floppy, twin floppies, or a single floppy with a 20M hard disc. Most stunning of all, it comes with EGA, Hercules, MDA and CGA graphics on board, making it one of the most versatile machines on the market.


## Amstrad Shows How

The processor is an 8086 running at 8 MHz , and it's surrounded by 640 K of RAM Like its predecessor, the 1512 , the 1640 comes with MSDOS (ver 3.2), GEM, Digital Research's GEM Paint and Locomotive Basic all bundled together to give you a usable tool straight out of the box. Much of the hardware configuration is also the same: three expansion slots, the mouse as standard, real time clock, serial and parallel I/O ports and a socket for an 8087 co processor just in case it's not fast enough for you.

The move towards the three graphics standards has been driven by a proliferation of standards as other manufacturers drive towards more resolution and more colour availability. The three most popular standards to have emerged over the last eighteen months are Enhanced Graphics, Colour graphics and the high resolution, monochrome Hercules format. The 1640 can be toggled between the three with a software switch.

This is all done on one chip, the Intemal Graphics Adaptor (IGA). It will generate a display with $320 \times 200$ lines in four colours, or $640 \times$ 200 in monochrome or $640 \times$ 350 in any 16 out of 64 possible colours.

The review model was an HD (hard disc) version of the 1640. This has a single floppy in addition to the hard disc, and is without doubt the most convenient of the three to use. I loaded all the usual
programmes I use: Wordstar, two CAD packages and a data base, together with some proprietary stuff l've accumulated over the years. It's lovely not to have to load discs all the time. Although before one throws the floppys away there are questions about backups and copy programmes to be considered. Another favourite of mine, the flight simulator, refused to load.

At the other extreme, and representing a considerable cost saving, is the single disc version. It is possible to configure part of the 640 k of RAM as a RAM disc to service the 360 k Floppy, still leaving you considerable memory to run programmes.

One thing I still do not like is the organisation of the manual. As with the 1512, this is a huge 700 page best that is almost impossible to assimilate. Remembering where information is located, going back to where you were before, these things are almost impossible. It would be much better broken into a number of different books, and I would like to see a better exposition on BASIC, instead of instructions to buy yet another book from Amstrad.

It's available for $\$ 2500$ (single disc), $\$ 3000$ (twin disc) or $\$ 3700$ for the hard disc version.

## ... and Tandy stays with a winner

The world's first lap top computer, the Tandy T100 was introduced in 1983 and
replaced by the 102 in 1985 According to Lyall Jones of Tandy, if's still an extremely strong seller.
In fact, it's not all that surprising. The 102 compares well in many respects with other laptop devices, although sadly lacking in others. It runs an 80C85 with 24 k of memory on board, and facilities for an extra 8 K of RAM if required. With this kind of memory it obviously can't compete with the big IBM compatible machines like the Amstrad, but it doesn't really try.

The 102 is tailored to do certain simple functions, and it does them rather well. There is a simple word processor. It doesn't have all the fancy attributes of the real thing, but on the other hand, most people don't need more than the ability to delete and do a few simple block moves. Tied to the word processor is a simple mailmerge-like program that will record address and schedules.

One of the most impressive things about it is its communi-
cations facilities, which include an auto dial modem. It has a terminal mode tht allows one to access bulletin boards very conveniently.

Finally, if you don't have all the applications you need, there is BASIC on board that will allow you to write your own. All these programmes are held in ROM on board, and you can save up to 19 files in RAM. If you need more storage space, Tandy supply a disc drive to do with the unit. It is also portable, and contains a single $51 / 4$ inch floppy.

There is no doubt that it's all undeniably primitive. However, it does have some advantages that make it worth thinking about. For a start it's very small and very light. It will run for 16 hours from four penlight batteries, or from mains. It sell for $\$ 999$. by far the cheapest laptop on the market. However, one must ask how much longer it can go on for, given that fully IBM compatible machines are now available for much the same money.
READER INFO No. 135



# Sight and Sound News 



## Professional Speaker System

All the latest releases seem to be speakers. Another new series, the SR, comes from Celestion. These, however, are a professional speaker system, comprised of three units, the SR1 loudspeaker, SR2 coupled-cavity bass bin, and SRC1 controller.

The key selling point of the SR1 is a strongly reinforced hemispheric dome radiator. This is directly coupled to a reinforced Kapton former which supports a 16 mm
voice coil. These elements compose the 8 -inch cone driver. Manufacturer's specs are 500 watt power rating, 97 dB sensitivity and 50 Hz to 20 kHz frequency response.
The SR2 employs an 18 -inch driver, capable of handling 1000 watts. Sensitivity is 98 dB , frequency response 40 Hz to 150 Hz .
The SRC1 offers line and feed level monitoring. Both mixer and power amp feed pass through it.

READER INFO No. 151

## EDITOR

Jon Fairall B.A.
ASSISTANT EDITOR
Simon O'Brien B.A. (Hons), M.A.
JOURNALIST
Mary Rennie
designer
Clive Davis
ART STAFF
Ray Eirth
PRODUCTION
Mal Burgess
ADVERTISING MANAGER
Peter Hayes B.Sc.
ADVERTISING PRODUCTION
Brett Baker
ACOUSTICAL CONSULTANTS
Louis Challis and Associates
PUBLISHER
Michael Hannan
MANAGING EDITOR
Brad Boxall

## HEAD OFFICE

180 Bourke Road.
Alexandria, NSW 2015.
(PO Box 227, Watertoo. NSW 2017 Phone: (02) 693-6666.
Telex: AA74488, FEDPUB.
Federal Facsimile: (02) 693-2842.

## ADVERTISING

Now South Wales \&
Queensland: Peter Hayes, Mark Lewis, The Federal Publishing Company, 180 Bourke Road. Alexandria, NSW 2015. Phone (02) 693-6666. Telex: AA74488 FEDPUB.
Victoria and Tasmania: Valerie Newton. The Federal Publishing Company. 221a Bay Street. Por Melbourne, Vic. 3207. Phone (03) 646-3111. Facsimile: (03) 646-5494. Telex: AA34340. FEDPUB.

## Infinity Automotive Speakers

A new range of infinity automotive loudspeakers is now available which incorporates the recently developed Kappa drivers.

Using polypropylene/ graphite fibre cones, neodymium magnets, computerdesigned crossovers, top quality components, and specially-designed cabinets, Kappa technology has managed to eam the esteem of audio reviewers particularly in Europe. Priced between $\$ 2500$ and $\$ 6500$ they are out of the range of most of us, however, the new automotive range is a lot more accessible, ranging from $\$ 199$ for 2-way 4 -inch speakers (the RS Kappa 42) to $\$ 799$ for separate 3 -way 6 -inch by 9 -inch woofers, two midranges and two emit tweeters (the CS 1 Kappa). In between are the RS 522 -way $51 / 4$-inch, RS 62 6 $1 / 2$-inch, RS 63 3-way $61 / 2$-inch with emit tweeter, RS692 2 -way 6 -inch by 9 -inch and RS 693 3-way 6 -inch by 9 -inch with emit tweeter.

Other claimed design fea-

tures of these Kappa speakers are a new 'pod' mounting for the midrange and tweeter (3-way units) for a more linear performance, heavier duty frames for proper alignment of the magnet structure, and a more appealing overall appearance. Heavier duty frames also mean less resonance in the cabinet.
The improved emit tweeter has a thinner diaphragm and the neodymium magnets are claimed to extend frequency response to 45 kHz , however, this is not quoted in the specs. The top-
of-the-range CS1 quotes 34 Hz to 32 kHz frequency response, 110 watts power, 87 dB sensitivity 1 watt, 1 metre. At the bottom the RS 42 quotes 98 Hz to $16 \mathrm{kHz}, 30$ watts power and 87 dB . In between the RS 52 (\$299) quotes 63 Hz to $22 \mathrm{kHz}, 55$ watts, 88 dB ; the 62 ( $\$ 349$ ) 58 Hz to $22 \mathrm{kHz}, 55$ watts, 88 dB ; RS 63 ( $\$ 449$ ) 58 Hz to $32 \mathrm{kHz}, 55$ watts, 88 dB ; RS 692 ( $\$ 399$ ) 38 Hz to $22 \mathrm{kHz}, 75$ watts, 90 dB ; and the RS 693 (\$499) 38 Hz to $32 \mathrm{kHz}, 75$ watts, 90 dB .

READER INFO No. 152

## 'Problems?

## ...and you

 don't have our 112 page catalogue...
## Boston Acoustics Speakers



Speakers are flavour of the month and among the varied Boston range are two floor standing units and a suspension speaker.

At $\$ 799$, the A150 Series III 3 -way floor-standing is the cheapest. It is an update of the Series II with new drivers, a 10 -inch copolymyer cone woofer, a $31 / 2$-inch copolymer midrange set in its own intemal sub-enclosure and the Boston Acoustics CFT 5 1-inch ferrofluid cooled tweeter. Tweeter and midrange are mounted asymmetrically, at ear level, and cabinet height is 81 cm . Frequency response is reported at 38 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{~dB}, 15$ to 125 watts power handling and 90 dB sensitivity.

A jump up in price at $\$ 1299$ is the 1830, a 3-way tower system, with similar cabinet height, position of tweeter and midrange, and similar driver materials. Drivers are the same size except for the woofer which is 8 -inch. The speaker occupies $25 \times 24 \mathrm{~cm}$ floor space and specs are 45 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{~dB}$ frequency response, 15 to 100 watts power handling and 88 dB sensitivity at 1 watt, 1 metre.
The A70 Series II 2-way speaker is the most expensive at $\$ 1499$. This speaker uses an 8 -inch woofer with copolymer diaphragm and CFT 5 1-inch ferrofluid cooled dome tweeter, asymmetrically placed on the baffle and mounted flush. Specs are 45 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{~dB}, 15$ to 150 watts power handling, and 90 dB sensitivity.

READER INFO No. 150

If you would like any further information on any of the products referred to here, circle the relevant Reader Info No. on the insert and post it to ETI.

## you've got real problems!

ARISTA ... your one-stop problem solver. Audio leads .. Batteries ... Chargers ... Battery holders ... Cables Car accessories ... CD accessories ... Converters .. "Cutec" ... Earphones ...
Fuses ... Headphones ... Intercoms ... Knobs ... Microphones and accessories . Mixers ... Multimeters ...
Plugs/Sockets, etc ... Plug adaptors ... Power packs and leads ... PA ... Disc and Tape care ... Security equipment ... Signal modifiers ... Solderless terminals ... Storage boxes ...
Switches ... Telephone and
TV accessories ... Tools and Technical aids ...
Video accessories ... Wiring accessories ... You name it and we're bound to have it ...Try us ... NOW!

Get your catalogue...it'll solve a whole lot of your problems! Just send $\$ 2+50 \mathrm{c} p \& \mathrm{~h}$ and your return address to:

ELECTRONICS PTY LTD
PO BOX 191, LIDCOMBE, NSW 2141

## TAKE YOUR PERSONAL COMPUTER OUT INTO THE BIG WIDE WORLD. WITH TELECOM VIATEL.



UIntil now, your personal computer was generally limited to your information input. Or to the software available. Now Telecom Viatel opens up a whole new world for PC owners.

Utilizing the existing telephone network, Viatel distributes a wide range of information and services via a central computer. Direct to your home or office.

Become an identity on the bulletin boards. Send electronic mail clear across Australia. Join clubs and user groups. Get the latest news on the computer industry, as well as advice from the experts. There's teleshopping for hardware, software and peripherals-24 hours a day. Even download new computer programs onto disk or cassette for your own use.

Your personal computer can be adapted to emulate a Viatel terminal. All you need are a Telecom approved 1200/75 baud modem and the appropriate software. These are now readily available for most PC's.

Your dealer will know what is best for your particular PC. Talk to him first about your needs.

To get more information on Viatel phone 008033342 (for the cost of a local call).


## Briefs

## Sonata Turntable

New from Alphason is the update of the Sonata Transcription fumtable with solid hardwood plinth and heavy platter. The one-piece platter is shrunk on to the spindle for absolute rigidity. A oneplece sub-chassis armboard is hung on three springs adjustable from the top. Two diametrically opposed synchronous motors are driven by a quartz-locked synthesised pure sine wave. The turntable is designed to accept any arm but the Alphason HR-100S-MCS is recommended. It comes in black finish at $\$ 2990$ and gold and wood of $\$ 3190$.

READER INFO No. 170

## Onkyo Tuner and

 CassetteOnkyo has released a new top range tuner, the T-9090 MKII. It features an anti-microphonic current (AMIC) intended to eliminate distortion from microphony, a 31-key remote control which sounds like hard work. It retails for \$1499.
The other release from Onkyo is the TA-RW490 autoreverse cassette deck. The deck is equipped with Dolby HX-Pro as well as B and C noise reduction systems. The computer-controlled synchro dubbing facility automatically cues songs for editing and the real time counter gives independent readings for A and B cassettes. Full integration with a remote control system can be achieved through a serial port at the rear. Retail price is $\$ 1199$.

READER INFO No. 155

## Bose 401 Speaker

Using 'direct/reflecting speaker technology', Bose has produced the 401 system with qualities like "full stereo", "even sound distribution" and "lifelike spaciousness". Each speaker has two long excursion $61 / 2$-inch woofers that operate in a computer-designed ported enclosure and a 2-inch tweeter. They retail at $\$ 1200$.

READER INFO No. 156



NEW MARINE HI FI SPEAKERS (MS505W) ...what makes them so special?

Aluminium die-cast cabinet, superb sound for the size. Carbon fibre reinforced polypropylene cone wooter, moisture-proof soft dome tweeter, completely tropicalised and moisture proofed. Ideal for boats, under the eaves, etc. Complete with mounting brackets and cables for quick location changes. At last...true Hi Fi quality - outside! Other features include:- a power input of 30 watts RMS.... a frequency response of $70 \mathrm{~Hz}-20 \mathrm{kHz}$ ...a $4^{4}$ woofer ( 1002 magnet), $1^{\prime \prime}$ dome tweeter (5.3 oz magnet)...each brilliantiy housed in a neat $186 \mathrm{~mm} \times 116 \mathrm{~mm} \times 120 \mathrm{~mm}$ 2 kg package, finished in neutral beige.

For full details of these products and the Arista range, send $\$ 2+50 c \mathrm{p} \& \mathrm{~h}$ and your return address and we'll rush you a copy of the Arista 112 page catalogue to solve a whole lot of your problems. Send to:

# 19 <br> 8 7 Audion Fciir 



Above: Panasonic car audio system.
Top Right: Inside a Japanese CD store. Bottom Right: The giant Mitsubishi speaker.



AS I ARRIVED at the Japan Audio Fair Ground in Tokyo last October, the headlines on the papers were screaming "Consumer Prices in Tokyo Rise for Sixth Straight Month." With that forewarning. I was not surprised to find that the price in yen for the vast range of equipment that I subsequently saw was generally much higher than expected.

The Harumi Fair Ground in Tokyo was crowded by excited Japanese, and much to my surprise quite a few foreign visitors. most of whom happened to be reviewers judging by the photos that they were taking.

## DAT Commotion

Of all the exciting components released at the Fair DATs were obviously the biggest talking point. There were more than 20 different manufacturers offering DATI machines including Onkyo, Sony. Technics, Sanyo, Mitsubishi, Yamaha, Kenwood. Sansui, Denon, Aiwa, Toshiba, Luxman. JVC, NEC. TEAC, Marantz. Philips and Pioneer. Most of these manufacturers had working units on display using pre-re-
corded DAT tapes. On most of the stands you could listen to their performance at monitoring points using large numbers of quality headphones. Two of the manufacturers. Sony with their TCDIO portable battery operated DAT selling at A\$2500. National with their RP-MDI selling at A $\$ 30100$ took everybody by surprise.

Both of these units are comparable in size to the Sony TCDSPRO cassette recorder which has until now been the most popular lightweight professional stereo recorder for TV stations and Radio journalists working in the fied.

The TCD 5 has a frequency response of 30 Hz to $16 \mathrm{kHz} \pm 1 \mathrm{~dB}$ (with the right tape). However. it only has a 55 dB dynamic range. By contrast both of the new Sony and Technies DAT recorders have frequency responses of 5 Hz to 22 kHz $\pm 1 \mathrm{~dB}$ and which type of tape you use is no longer an issue. With dynamic ranges of greater than 90 dB and no need to use Dolby, amateur (and professional) field recording now enters a new era

## Technics DAT

The Sony TCDIO recorder utilises the same type drive system as the recently released 1000 ES recorder. I learnt that the Sony professional recorder (which is about to be released in Japan) will also use the same tape drive but obviously with more advanced and improved electronics. As great as the $\mathrm{T}(\mathrm{D}) 10$ is however, the big surprise was the Technies model RPMBI portable (battery operated) DAT. This unit is the most adranced machine of its type yet developed and was one of the talking points of the show. It milises a brand new 15 mm diameter rotary head which is almost half the size of their mains operated unit.

This is a brave step for a company which has not yet seen worthwhile sales from their mains operated DATs. The word at the show was that top management gave the order "Produce a machine that will be well in advance of any of our competition."

These two exciting portable battery operated machines offer a performance

## Louis examines the latest offerings from the land of cherry blossom

## Louis Challis



Above CD juke box.
Above right cut away speaker box.
Left Sasaki "Creative Crystal Sound" speakers.
which in all respects is superior to that provided by a Nagra $4 S J$. More significantly they weight almost the same as the existing TCD5 portable operated cassette recorder.

With the capability to record with a flat frequency response that is better than most professional microphones and a 90 dB dynamic range, these machines are currently the hottest electronic component to be released in Japan. Although both Sony and National have received many enquiries from the public (and the trade) to purchase these machines. they were not scheduled for general release until at least carly Nowember.

## Soffware shortage

Other exciting DAT releases were the Alpine 9700 car DAT player at $A \$ 1380$ and the Mitsubishi DAT player with no stated selling price. I heard the Alpine unit working and was impressed by one salient factor. Nobody can use its dynamic range with the engine working (or even idling). I asked a number of the marketing and tectmical engineers on other stands
whether they were working on car DAT players and many indicated that they too were in the process of evaluating or developing them. Based on the response I received. we can expect at least another five or six to be released either by the winter CES in Las Vegas or at the latest before the Chicago (ES next year.

The availability of software to back up the market for DATs was very disappointing. Only four commercial pre-recorded DAT cartridges were available at the show. logether with the Japan Audio's Society audio check DAT tape selling at approximately $\$ 40$.

## Loudspeakers

Whilst DAT recorders. car DAT players and even battery operated DAT recorders were of interest. I must admit that I found the wide range of new and unusual loudspeakers at the Fair far more exciting.

The first speaker system to really catch my eye was the bOSE Model ASCS 1 acoustic cannon` system. This particular model looks more like a Bazooka than a loudspeaker and provides the critical

25 Hz to 125 Hz low end response to complement Bose's conventional speakers, like their Model 403's and their BOSE Pole sound system. both of which were also on display. This loudspeaker system aparently uses a conventional long throw driver placed at the beart of the cannon'. The rear end of the driver is coupled to a short equivalent 'LC' cireuit which provides the loading capabilities for the high pass end ( 125 Hz cut off). The much longer section of the unit is attached to the face of the driver providing the low frequency coupling and loading for the 25 Hz cut off frequency

By providing appropriate acoustical coupling. the ASCS l is able to convert a small cone movement into a much larger air movement. The system provides only moderate electro acoustical efficiencies of 90 dB for 1 watt input at 1 metre (at 30 Hz ). The ASCSI is capable of handling 150 watts of input power. which means that it can produce about 112 dB of sound pressure level at the bottom end of the audible frequency range. I saw other exciting


## Cut away view of a CD player.

sub-woofers on display at the Show, all of which were smatler, squatter and some of which were considerably cheaper. Even so, this particular sub-woofer still appears to be one of the most unusual speakers to be released at the Show.
One particularly novel display was the 'Alpine Super Lincoln Coupe' with a mind (and ear) blowing built-in power capability of 1.500 watts. The boot of the car not only contains 14 amplifiers, but also contains a 'tapered' sub-woofer with two 375 mm drivers. The unusual speaker lineup also included two 250 mm woofers, two 160 mm mid-range drivers and 12 other speakers cunningly positioned around the doors, panels and bulkheads of the car.

The electronics used included the new top line Model 5930 Alpine CD player feeding into the massive amplifier system. My impressions were of an exceptional degree of enveloping sound rarely matched in my many years of reviewing. Needless to say there was a long queue of Japanese enthusiasts waiting to get into the car to have their turn at listening to the sound environment.
Some of the cars parameters are worthy of note. Notably the frequency response of the system which was effectively flat $( \pm 2 \mathrm{~dB})$ from below 10 Hz to beyond 20) kHz . Not surprisingly the system could develop internal sound pressure levels in excess of 130 dB . That's what I call mind blowing! When they turned up the level I moved on!

## Mitsubishi Offerings

Another very unusual speaker system which caught my cye was the Mitsubishi Diatone PW1600 loudspeaker. This gigantic speaker has an external diameter of, 1600 mm and is the biggest woofer (subwoofer) that I have ever seen.

The speaker can handle 5 kilowatts of power and is capable of producing sound
pressure levels in excess of 140 dB at 1 metre. Properly mounted the low frequency response extends from frequencies below 10 Hz up to a high of approximately 100 Hz . Regrettably the speaker was not demonstrated at the Show, but apparently there are some practical uses for it and Mitsubishi do intend to use it.
Mitsubishi also displayed two other large speakers, the D80S and the D 80 E selling at the staggering prices of $\$ 20,000$ and $\$ 15,000$ respectively. These professional speakers are designed to operated from 10 Hz to 500 Hz and 15 Hz to 500 Hz respectively producing a phenomenal 100 dB per watt at 1 metre. These have impressive power handling capacities of 2000 watts peak and 700 watts peak continuous and 1000 watts and 300 watts continuous, respectively.
The D80S and D80E are somewhat smaller than the PW1600, but are nonetheless capable of producing unusually high peak levels of 136 dB at 1 metre and 130 dB at 1 metre. Quite frankly I wouldn't want to be around when they're playing at those sort of levels.
On the National/Technics stand they were showing the newly released AFT1000, AFT100 and AFT10 loudspeaker systems which are sonically amongst the most outstanding speakers to be released at the Japan Audio Fair. Their design is based on the concept of large area, flat pancl diaphragm drivers with exceptionally large and very efficient radiation areas.

The three different models designated as AFT10\%, AFT100 and AFT10 are basically very similar. with AFT100 having four equivalent AFT10 units and the AFP10) having two equivalent AFT10 units stacked vertically.

With Japanese prices of $\$ 25,000$, $\$ 15,(0) 0$ and $\$ 5000$ one would think that there would not be too many buyers for these speakers, particularly as the face dimensions of each AFP1000 is 2.2 metres $x$ 2.25 metres with a depth of 1 metre. Even the AFTIO has dimensions of 1 metre $x$ 1.2 metres and a depth of 52 centimetres so it would take up a lot of space in your living room.

However. don't be fooled by the dimensions, as these speakers really are something out of the box." They have frequency responses that are just about ruler flat from below 20 Hz to 25 Hz . They also have the capability to produce sound pressure levels well in excess of 130 dB with remarkably low distortion. I listened to a set of the AFT1000s in Osaka and was extremely impressed by their reproduction. Were it not for their size. I might have considered placing an order for a pair.

The quality of the sound that they produce is absolutely brilliant.
A very different speaker system released at the Show were the Sasaki Acoustics 'creative crystal sound' speakers. There were four different models of spherical blow glass 'speaker cabinets' that you can see right through. The two way speakers driver mounted in the faces were rather conventional looking and the speakers were resting on tubular glass support structures with rubber rings to provide structural decoupling at the interface.
These speakers, although very simple in appearance, were selling at $\$ 5000$ for a pair of CD500S's, $\$ 2000$ the CD500R's, $\$ 700$ for the CP300M's and $\$ 1,100$ for the CP300M's. The Sasaki speakers are also available in coloured glass, as well as clear, and in spite of their gimmickry, produce a reasonable quality sound. The Japanese are most probably naive enough to buy them in spite of their inflated price.

## Diano Speakers

On a more practical note. Yamaha with their NSX10,000 natural sound speaker system with their giant crystal Berylium mid-range and tweeter domes and their well proven carbon fibre laminate base drivers, Sony with their SSG777Es speakers systems and Kenwood with their LSP9000X speakers systems are now all espousing the benefits of woven carbon filament diaphragms in low frequency or woofer drivers. A number of other manufacturers have either jumped or are currently in the process of jumping onto the same bandwagon and these include such well known manufacturers as Mistubishi. Foster, Sansui, Denon and rather surprisingly, Audio Technica who have only just entered the speaker field.

Another strange speaker that caught my eye was the Kraft Alpha 'wood diaphragm' speaker system. These sell for $\$ 7000$ a pair and utilise a fairly shallow wooden panel structure that's somehow meant to duplicate the characteristics of a


The AFT 1000 Technics speakers; "most outstanding".

## Todays communication is tomorrows competitive edge.

violin or a piano (or at least that is what their literature would have you believe). Although to the uninitiated the idea might sound great, in more prosaic terms, a loud speaker is not meant to behave like a violin shell (or even like a piano casing) and consequently the fidelity is not quite what the designers may have expected. Anyway at $\$ 7000$ a pair the number of takers could not be comparable with the better speakers like the Yamaha NSX1000).
There were other exciting speaker systems for cars on show including the Carrozzeria Pioneer 'extra car' component system which featured an exciting looking Italian car on the literature and a Japanese car on the display stand.
Pionecr were demonstrating the frequency linearity that these speaker systems can achieve and I believe that they really have mastered the necessary P's and Q's to achieve a superlative system. More significantly they were producing graphs of the one-third octave band frequency responses produced in the car to demonstrate how well they had overcome the problems.

## CD Juke Boxes

Pioneer also had lots of exciting new car components including CD players, cassette players and even a DAT player designed for the next generation of cars. It was intriguing to note that quite a few of the other $C D$ manufacturers have now accepted Yamahas concept of specialised cartridge holders for car CD's.

In a similar vein there were at least five manufacturers offering either six or 10 cassette cartridges and matching CD players for home use. These players have obvious attributes for use in restaurants. hotels and other public places and I believe that they will capture a significant segment of the market. There were at least two CD Juke Boxes on display. Seeburg intend to market them in America and most probably in Australia as well.
Apart from Pioneer, JVC were showing their XLM700BK and the M500BK, CD players both of which take six CD magazine cartridges. Hitachi were displaying their LOD compact dise player type DA30N that takes two discs side by side. This concept is new and offers a degree of flexibility which will see obvious market potential for mobile disc jockeys providing entertainment at parties.
The most significant advance in CD technology of course was from Yamaha and National who were both offering 18 bit technology with their high bit' $C D$ players providing an effective 100 dB plus, dynamic range. I heard some of the latest high bit players on demonstration at

Yamaha and subsequently at Osaka with National and was very impressed by what these players can produce.

There were many other interesting things on show at the Audio Fair which caught my eye. One of these was an exciting range of multi-directivity microphone systems from National. These were primarily designed for use with portable VCRs, but have obvious applications for other professional users including sound recorders and acoustical engineers.

## CDV

Another major talking (and viewing) point at the Audio Fair was CDV. A consortium of more than 30 hardware and software companies had launched another new technology, CD-V (or CD-Video) with gold coloured discs measuring 125 mm in diameter which provide 5 minutes of analogue video and 20 minutes of digital audio. These were supplemented by the new CD-Single discs which are the up-market replacement for the 45 RPM singles. Longer playing CD-V discs were also on show. Two types of CD-V players were observed. One, a so-called dedicated CD-V player, handles standard CD's and the CDV-Single; the other, which the industry is describing as a combi-player. accommodates standard CD's. all CD-V discs. and $2(1) \mathrm{mm}$ and 300 mm diameter laser video-dises. Most of the large manufacturers including Sony, Denon, Hitachi, Magnavox, Pioncer. National, Mitsubishi. Sansui. JVC and Yamaha were showing both types of players.
Despite the launch of CD-V and the united front of its supporters, many people questioned the thrust of this product, which appears to be squarely targeted to the teenage market.
The prices of these combi-players was far more reasonable than I would have expected, at around \$A1500. The quality of the video signal displayed on the monitors at Harumi is of course not comparable with the quality that we have grown used to seeing in Australia. This is because of the Japanese video systems are using the NTSC system with only 525 line resolution, rather than the PAL-D video system that we have adopted here with its 625 lines resolution. The software on display was predominantly Japanese oriented. and thus of little interest to Australians. However I did notice that both Sony CBS and Philips had also released a range of titles with American and European musicians that would be of real interest if available in Australia.
I questioned the design and marketing people at both Sony and at Matshushta about their intentions in relation to


New Audio-Technical components.
producing a PAL version of the system. They politely answered that this is unlikely to occur for at least a year and it may be as much as two or more years before we see CDV discs and material in Australia.

## Laser Disc Players

The laser disc players and appropriate software that I saw being displayed was exciting and would undoubtedly create a demand in Australia. It's questionable however whether too many people would buy a player suitable for just CD singles or just for any one of the four formats (other than CD). Now that there are players that can replay all four formats and at a price that is not much more than a good CD player costs today, I think the market should readily re-assess its attitude. I believe we will find that all of the four formats would gain increased sales volumes and that the market would grow appreciably.
One major Japanese manufacturer who has really been forced to change direction in the last two years is Audio Technica. Having visited their plant and research centre only four years ago. I was accutely aware of their marketing problems. For the last six years they have been the world's largest manufacturer of record player cartridges, a field that is undergoing a form of forced atrophy, whilst nominally still in the 'prime of life'. They have been forced to find other avenues in which to use their renowned technical and manufacturing resources. This has not been an casy task.

Audio-Technicais new product range included exciting peripheral units like solar powered battery supplies for radios and an innovative range of new headphone. microphones and amplifiers for home recordists. Some of their equipment was directed to the "would be professionals" and were. to say the least, avante garde. Their semiprofessional and amateur recording equipment included very small disco mixers.
preamplifiers, amplifiers and miniature loud speakers which were the tiniest loudspeakers on display at the show.

## Conclusion

The Japan Audio Fair catered primarily for Japanese domestic requirements, and not for the international market as do the CES (Consumer Electronic Shows) in the USA. This may seem strange to us, but they have a huge captive market which they understand far better than we do. Peculiarly Japanese items which were being marketed in a big way included modular sound absorbing units for reducing the reverberation time of small listening rooms in apartments. These were relatively inexpensive and, it would appear, quite effective from an acoustical standpoint.
Daiken were displaying composite room absorption systems including isolated floors and special wall treatments to reduce noise transmission from one room to the next (as well as from one apartment to the next). These were quite effective as I subsequently observed at their research laboratory in Okayama.
The release of DATs closely following the release of the Video- 8 format has of course helped the tape manufacturers. There were a wide range of new DAT tapes as well as advanced conventional cassette and video tapes from the major manufacturers including TDK, Sony, Matshushta, JVC, THATS Maxwell, Philips, 3 M and BASF.
It appears that the Japanese high fidelity industry is alive and well, and although its prices may be too high by our standards, the technical advances that were visible leave me with the firm impression that Japan is still leading the field, and will continue to dominate Hi Fi for the foresecable future.


1	26	51	76	101	126	151	176	201	226	251	276	301	326
2	27	52	77	102	127	152	177	202	227	252	277	302	327
3	28	53	78	103	128	153	178	203	228	253	278	303	328
4	29	54	79	104	129	154	179	204	229	254	279	304	329
5	30	55	80	105	130	155	180	205	230	255	280	305	330
6	31	56	81	106	131	156	181	206	231	256	281	306	331
7	32	57	82	107	132	157	182	207	232	257	282	307	332
8	33	58	83	108	133	158	183	208	233	258	283	308	333
9	34	59	84	109	134	159	184	209	234	259	284	309	334
10	35	60	85	110	135	160	185	210	235	260	285	310	335
11	36	61	86	119	136	161	186	211	236	261	286	311	336
12	37	62	87	112	137	162	187	212	237	262	287	312	337
13	38	63	88	113	138	163	188	213	238	263	288	313	338
14	39	64	89	114	139	164	189	214	239	264	289	314	339
15	40	65	90	115	140	165	190	215	240	265	290	315	340
16	41	66	91	116	141	166	191	216	241	266	291	316	341
7	42	67	92	117	142	167	192	217	242	267	292	317	342
18	43	68	93	118	143	168	193	218	243	268	293	318	343
19	44	69	94	119	144	169	194	219	244	269	294	319	344
20	45	70	95	120	145	170	195	220	245	270	295	320	345
21	46	71	96	121	146	171	196	221	246	271	296	321	346
72	47	72	97	122	147	172	197	222	247	272	297	322	347
73	48	73	98	123	148	173	198	223	248	273	298	323	348
24	49	74	99	124	149	174	199	224	249	274	299	324	349
25	50	75	100	125	150	175	200	225	250	275	300	325	350

To find out more about the products and services in this issue, circle the READER INFORMATION SERVICE numbers from the advertisements and articles and send today! Send to: FREE POST No. 4 The Federal Publishing Company P.O. Box 227
WATERLOO, NSW 2017

A. Engineer/Designer	Please circle
B. Technical Officer	the category
C. Technician	that best
D. Programmer/Analyst	fits you.
E. Manager	
F. Teacher/Lecturer	
G. Student	
H. Other (please state)	

Name .............................................................................................
Company ...............................................................................................
$\qquad$
rcle
that best
fits you.

## All the music equipment reviews of 1987

## A year in review



Digital TV
ITT have released the first digital TV in Australia. The new set is said to destroy such interference as 'snow and speckle' and climinate ghosts.
In order to push the technology ITT have packed the set full of features such
as the PIP (Picture In Picture) facility which permits viewers to monitor their video cameras whilst still watching TV. A small picture simply appears in the corner of the larger screen.

- Jon Fairali


Micro Seiki CD
The Miero Seiki CDM2 weighs no less than 22 kg and is the most expensive unit to hit the Australian market so far. It produces a sound superior "to anything else I have previously heard"
The channel separation was the best yet
seen from any CD player. The worst resonant frequency detectable on a real time analyses was 90 dB down, even at 115 dB sound pressure level. It's worth hearing. even if you can't afford it.

- Louis Challis


Orpheus Apollo Speakers
The Apollo speakers are made by Orpheus, another Australian hifi firm hoping to make it big.

They have a frequency response between 130 Hz and 15 kHz "with a number of intriguing peaks and dips" but "can casily handle high level inputs with a general aplomb that belies their size". With a few improvements these units should provide stiff competition to imported hifi equipment.

- Louls Challis


Gallon Performance In A Pint Pot The Technics SB-R100 speakers measure only $300 \times 480 \mathrm{~mm}$ and weigh 16.5 kg yet produce a sophisticated response.

The overall results of this review were inspiring, for although the low frequency performance of the speakers measured under anechoic conditions is plainly between $6-10 \mathrm{~dB}$ down over the range 30 Hz to 150 Hz the subjective appraisal of their output belies the figures.

- Louls Challis

Richter Oracle Loudspeakers
These are the latest offering from the Australian Richter company. The Oracles stand 480 mm high $\times 216$ wide and 412 deep.

One of their most pleasing aspects is their flat tweeter response up to 12 kHz . The woofer response is "relatively smooth" from 75 Hz to 2 kHz . They also produce relatively uniform frequency response over the 30 Hz to 16 kHz range.
The Oracles appear to offer the most cost effective performance in their price range.

- Louis Challis


Roland D50 Synthesiser
The sounds produced by Rolands new D50 synthesiser unit have a warm analogue feel with a distinctive digital touch.

Apparently this effect is achieved by
Linear Arithmetic Synthesis developed in a custom VLSI chip. The DSO could set a new standard in digital synthezisers.

- Terry Kee


The NAD 6300 Cassette Deck
Does the 6300's performance justify its reputation and cost? The makers have included three new features into this unit: the Compensated Automobile Reproduction circuit which provides both conventional dynamic compression characteristics and supplements these by a low level loudness boost. the play trim circuit which provides a simple matans of adjusting fre-
quency response to compensate for variations in record head azimuth and high frequency losses due to tape saturation. and finally the HX pro-head room extension circuit which eliminates the need to have fixed levels of bias.

The NAD 6.300 is the hest cassette recorder NAD has yet produced.

- Louis Challis


The Kiwi That Roared
The latest tuner from the Perreaux company of New Zealand. is the 1EUI FM steres tuner. It is avaitable here through Eurovox.
After testing it seems that the tuner is able to deliver smooth. uncoloured sounci on the better stations. However, one is able to miss-tune stations by as much as 100 kHz in the mono muted mode. It also lacks an AM stereo tuner syatem.

- Louis Challis


Kef Reference Series 107 Speakers
Among the classiest units on the market the new Kefs 107 Speakers use pairs of 250 mm diameter woofers operating in a push pull unit. These drivers have a common rod interconnecting the two magnet systems so that the non linear forces are effectively cancelled. The Kefs also feature an active low level equaliser known as a KUBE.

The Kefs have a remarkably smooth frequency response from 120 Hz to 20 kHz . They are one of the most outstanding speaker systems available in Australia.

- Louis Challis


Pioncer D 1000
The first-DAT player to be reviewed in ETI caused much excitement. It features superb sound of $C D$ equivalent frequency response and dynamic range, without the noise or wow and flutter. In addition, it has full recording features and will outper-
form the microphone used to drive it.
The big questions are when will DAT be released, and how much will it cost? The answer lies in the hands of the US recording industry.

- Jon Fairall


The Pioneer PS-M40 MultiDisc CD Pioneer's new multidise player features a magazine that can hold six CDs at a time.
The frequency response of the new player is remarkably flat from 5 Hz to 2 kHz . Channel separation is better than
-73 dB and linearity is perfect all the way to -60 dB .
Its a well designed unit carefully configured to cater for a somewhat unusual market.

- Louis Challis


## Video Camera Comparison

The JVC GR-C7 is pitched against the Sony CCD-V30E. The JVC camera uses small VHS cassette. It comes with an adaptor to use in a video replay unit. The Sony unit uses the new video 8 format which Sony hopes will become the standard in video recording.
Both cameras are top of the range and our reviewer claims that they are of near broadcast quality with the Sony having a slight edge.

- Phil Witchett

Award Winning Sound Processor
The Yamaha DSP-I breaks new ground in Sound Technology. This device is designed to transform the audio qualities of your loungeroom into those of everything from the old Frankfurt Opera House to Munster Cathedral.
A series of different (standardized) carly
echo and reverberation characteristics for several performance spaces and auditoria have been encoded in read only memory. When the type of environment the user wants has been selected, the DSP-1 uses the encoded information to process the incoming sound signal so as to simulate the characteristics of the space. Audio Magic.

- Louis Challis

Sennheiser Infra Red Headphones
Freedom from extension cords is provided by these new headphones from Sennheiser. The new headphones operate by means of an infra red radio link. The transmitter section of the unit has a frequency response from 50 Hz to $80(0) \mathrm{kHz}$. This makes them ideal for TV use but limits them for hifi.

- Jon Fairall

Whoever heard of a serious tuner-preamplifier? Well, I hadn't until I received the Adcom GTP-500. Its execution appears to be 'just right' for the most descriminating audiophiles.

# Adcom GTP 500 tuner/preamplifier 

THE IDEA OF packaging a tuner and a high quality preamplifier into a neat single box without the amplifier has some real merits. Amplifiers generate considerable heat that often gives rise to variability of performance in both the preamplifier and tuner section. especially if it's in a powerful receiver. Adcom's idea has even more merit given the tuner's above average sensitivity and selectivity. The preamplifier has exceptionally good linearity, low distortion and a matching high signal to noise performance.

The designer's may have intended that
this unit be used with one of the 3 matching Adcom amplifiers, but as $I$ found, it could readily be used with any quality amplifier to achieve exceptional results.

## Appecirance

The frontal appearance of the GTP- $5(\%)$ is particularly neat. with the primary preamplifier controls set out in a row at the bottom of the front panel, and the tuner controls and display set out in a row at the top. A large rectangular power On-Off switch is at the left hand end of the panel with the remote control sensor and standard head phone sockets adjacent.

Below the frequency display are 3 rotary controls with centre indents for BALANCE, BASS and TREBLE. In the centre of the panel are 5 circular push buttons for TONE-IN, to activate the tone controls, CONTOUR, for adding a loudness bass boost, a LO and a HI cut filter and a MONO switch. On the right hand side of the panel are two buttons labelled RECORDING and LISTENING which flank pairs of bright light emitting diodes (LED's) which light up sequentially when PHONO, CD, TUNER, TAPE 1. or TAPE 2/VIDEO are selected. This is a

## REDISCOVER HANDCRAFTED LOUDSPEAKERS

RPHEUS LOUDSPEAKERS, are handcrafted Australian designed 2-way loudspeakers offering 3 model sizes ranging from $8^{\prime \prime}-40$ litre Dolomites, $6^{\prime \prime}-20$ litre Apollo \& $5^{\prime \prime}-12$ litre Minotaurs.

Orpheus Loudspeaker Stands are optional (Metal Frames Spiked). Dealer Enquiries are welcome on this fine Australian product, contact Orpheus Loudspeakers (02) 5 (6) 9352.

Orpheus Loudspeakers utilise the very latest polypropylene bass drivers and ferrofluid tweeters. All crossover components are high quality low loss (air cored inductors and metallized polyester capacitors).

Orpheus Loudspeaker's cabinets are rigidly constructed, braced and use bitumous panel damping to reduce cabinet colouration.
$\square$ his culminates in a sound quality that offers audiophiles and music enthusiasts all the attributes (accuracy, dynamics and imaging) of the well known imported products without the inherent price penalty.
All Orpheus Loudspeakers are handsomely finished in your Achoice of real timber veneers. Queensland or American walnut, teak, English ash and cedar are but a few of the veneers available.
rpheus Loudspeakers can be auditioned at these quality Audio dealers:
Audio Genesis
Shop 1, 2 Beattie St.,
Balmain. Ph: (02) 8185054
Music By Design
65 Oxford St., Bondi
Junction. Ph: (02) 387-7106
Pirimai Hifi \& Video
54 Westfield Shoppingtown,
Burwood. Ph: (02) 7472533 Len Wallis Audio
Shop 9, "The Village" 43 Burns Bay Rd.,
Lane Cove. Ph: (02) 4276755

Leisure Sound HiFi \& Video
Cinr. Military Rd. \& Glover Sts.,
Cremorne. Ph: (02) 9083611
The HiFi Shop
127 Forest Rd.,
Hustville. Ph: (02) 570-8163
(
good waly of avoiding either two rotary controls or 10 buttons.
As the extreme right hand end of the pancl is a reasonably large sized rotary volume control which has a bright LED to show where it set. As nice ats this feature is, the addition of a remotely controlled motorised rotator makes it even better.
The top row of controls from left to right are two TUNING buttons next to the bright blue plasma display. This indicates FM or AM (as selected) and station frequency in kHz or MHz . At the left of the display is a 5 bar red LED signal strength meter, whilst at the right is another small red LED display bar to show if the received signal is in stereo. In the centre of the panel are ten self illuminating push buttons. cach of which hals a small LED at its centre. The first button is labelled FM SCAN. When selected and used with either the upward of downward tuning buttons, the tuner will search out and find the next FM station which it will lock onto. In the AM mode, this control doesn't work, which is rather a shame. With the FM SCAN switch inoperative the tuning controls can be used manually to set the tuner frequency wherever desired in $5(0) \mathrm{kHz}$ steps for FM or in pre-use 9 kHz steps for AM tuning. This means that you are always correctly tuned 10 your AM station but you could be out in manually tuning to an FM station. The adjacent control is labelled ENTER and together with one of the adjacent 8 tuning buttons allows you to menorise the selected station frequency. Eight AM and cight FM stations can be memorised and generally speaking that's about enough to satisfy most tastes.

At the extreme right hand end are two control buttons. One being for AM/FM selection and the last labelled MUTE/HIBLEND. This switch disconnects the interstation muting circuit which protects you from being assailed by noise when manually tuning between stations. By activating the controls a weak station can be received (in spite of the noise).

On the back of the receiver are 300 ohm balanced terminals and 75 ohm unbalanced socket AM terminals and a mounted AM loop antenna. Gold plated coaxial sockets are provided for phono, CD. Tape I. Tape $2 / V i d e o$ as well as two sets of output sockets labelled LAB and NORMAL. The LAB sockets are directly coupled without capacitors for very wide band amplifiers, whilst the NORMAL sockets use coupling capacitors and are intended for connecting "normal" amplifiers. Two other 5 pin DIN sockets are provided for optional remote control units. which allow this unit to be remotely

controlled from anywhere in the house (if you purchase the plug-in receiver units).

The measured performance of the preamplifier is far better than indicated by the manufacturer's data sheets and is amongst the best of the preamplifiers that 1 have recently tested.

## Objective Performance

The frequency response at the NORMAL output for an input on the CD terminals is 3 dB down at 1.8 Hz and 240 kHz . This is well within the -0.1 dB quoted for 20 Hz and 20 kHz in the manufacturer's literature.

The sensitivity for 1 volt output on CD. tape 1 , tape $2 /$ video is 76 mV and for the phono input is 9.8 mV . The input over-

load signals are 10 volts for $C D$ and a healthy 110 mV for the phono input.
The noise and hum levels (re I volt output) are extremely good with $-95 \mathrm{~dB}(\mathrm{~A})$ levels for $C D$ and an excellent $-92 \mathrm{~dB}(A)$ for the phono input. The harmonic distortion figures are equally good with total harmonic distortion figures of less than $-I(K) d B$ at each of the test frequencies. Because of the voltage output capabilities of the preamplifier section. I decided to evaluate the IEC High Frequency Total Difference Frequency Distortion characteristics for peak signals between 1 Volt and 24 volts. As the graph shows, over the range I to 7 volts peak to peak. the distortion is less than $0.002 \%$, which is particularly good.
The lo cut and hi cut filters are not as sharp as I would like and should be reconfigured to provide at least -20 dB attentuation at 10 Hz and far better attenuation at supersonic frequencies. The contour circuit provides effective bass boost to duplicate the low frequency equal loudness contours, but not the rising high frequency characteristics that 1 would have liked. The tone controls provide $\pm 10 \mathrm{~dB}$ effec-

MEASURED PERFORMANCE OF			ADCOM GTP 900		
SERIAL NO		-34239			
HARMONIC DISTOR TION:					
AT AN OUTPUT OF IV IN TO 100k OHMS					
INPUT $=0.5 \mathrm{~V}$					
100 Hz		1 kHz			6.3 kHzActual
Read.	Actua!	Read.	Actual	Read.	
2nd - 116.7	107.0	-114.0	104.1	113.5	102.9
3 rd -115.6	109.8	-115.2	109.3	112.0	105.6
4th -123.6	119.6	-	-	-	-
Sth	-	-	-	-	-
T.H.D.	0.0005		0.0007		0.0009
$=d B$	105.1		102.9		101.0
IEC HIGHFREQUENCY TOTAL DIFFERENCE FREQUENCY DISTORTIUN					
8 kHz and 11.95 kHz mixed 1.1					
At iV r.ils Output 0.0012 \%					

(GAIN AT WID POSITION)
IAXIIUII CUTPUT VOLTACE AT CLIPPING POINT = 12V R.AS


Signal to noise ratio with a one third octave band noise generator. At top reference to a 5 mV input. At bottom, a 500 mV input.


FRECUENCYRESPONSE (-3dB) (NOR iA OUTPUT)

		ne Controls	D	cated
Input to CD $=0.5 \mathrm{~V}$	Left	1.8 Hz	to	240 kHz
	Right	1.9 Hz	to	240 kHiz
SENSITIVITY (for 1 volt output):				
		Left		Rıht:
	CD	76 mV		76 mV
	Tape	76 mV		76 mV
	Video/lape 2	76 mV		76 mV
	Phono	0.8 mV		0.8 mv
OVERLOAD	Phono	110 mv		110 mV
OVERLOAD	CD	10 V		10 v
1.VPUT IUPEDANCE ( 0 / kHz )				
		Left		Rught
	$C D$	21 k ohins		22k ohms
	Tape	21 k ohms		22k ohms
	Tape 2	21k ohms		22k ohms
	Phono	48 k ohms		48k ohms

OUTPUT IMPEDANCE (O 1 kHz ):
470 ohns

NOISE \& HUY LEVELS (re I volt out):

Input 0.5 V	$\mathrm{C} 1)$	$-92.5 \mathrm{~dB}(\mathrm{Lin})$	$-95.0 \mathrm{~dB}(\mathrm{~A})$
Input 5 mV	phono	$-87.0 \mathrm{~dB}(\mathrm{Lin})$	$-92.0 \mathrm{~dB}(\mathrm{~A})$



GPT-500


SIGNAL INPUT POWER dBf (OdBf $=1 \times 10^{-6}$ WATTS)
Relative amplitude against signal input power in $d B F\left(0 d B F=10^{16} \mathrm{~W}\right)$.

tive bass boost and cut at 20 Hz and $\pm 10 \mathrm{~dB}$ treble boost and cut at 20 kHz .
I have extended these contour results down to 2 Hz and up to 200 kHz , because of the wide dynamic range of the preamplifier current

The graph of one third octave band noise for the $C D$ and phono inputs reveal what a great job the designers have done. This preamplifier really is capable of extracting the best noise performance from most quality amplifiers.

The FM tuner provides a frequency response that is almost ruler flat from 10 Hz to $13 \mathrm{kHz}( \pm 0.5(\mathrm{~B})$ and is only 3 dB at 15 kHz . The measured channel separation is 28.5 dH at 1 kHz and although reasonably good. is not quite as high as clamed The sensitivity is however good at 15 dBF for -50 dB of quieting (mono) and is equally good with 35 dB on stereo. By contrast the AM bandwidth is poor with -6 dB points of 4.5 Hz and 2.2 kHz with useful. but not outstanding sensitivity provided by the loop stick

## Subjective Performance

The subjective performance of the GTP. 500 is however far better than indicated by the measured good to outstanding objec-


The response of the tuner. Above: the FM section; below: the $A M$ section. The lower trace in the FM graph is channel separation


## Sonic purity embodied



The Eidetic GB1b power amplifier, designed by international consultant designer, physicist Greg M. Ball will, arguably, drive ANY loudspeaker (from 1 to 80 hms ) sonically more accurately than ANY other amplifier, REGARDLESS OF PRICE, and will continue to do so for many years

With 200 + dynamic watts per channel of effortless MOSFET power, a vivid expansive soundstage and absolute tonal neutrality, this innovative design has addressed all the major limitations of contemporary designs reducing all aberrations to well below known psychoacoustic thresholds.

# AUDIO RESEARCH PTY. LTD. 

5 Joy Street, Aspley Old 4034 BRISBANE, AUSTRALIA

Ph.: (07) 2632636

The Adcom's output can be conditioned with a number of input controls. At top: the effect of tone control max boost and cut between 2 Hz and 200 Hz . Above is the same thing but shown between 200 Hz and 200 kHz . Below is shown the effect of low and hi cut filters. At bottom is the effect of the contour control. In all cases the vertical axis covers 50 dB .


tive performance figures
When connected to both a good CD player and a first class record player and cartridge, the results were exhilarating. One feature I liked was the provision of a remote volume control, as this feature is not provided by other tuners or preamplifiers, and is a real winner. The motorised control is a trifle quick in its action and a 2 dB step is about the smallest increment that I could achieve through a momentary jab' of the buttons. The remote control provides an enhanced flexibility with the tuner, that I enjoyed right from the outset. Whilst the ability to select 16 stations 8 AM and 8 FM is useful, unquestionably the best feature is the remote volume control, which is a real winner. Even without the station tuning capability the volume control capability endeared itself to me while I had the preamplifier.
I enjoyed the sound quality provided by the GTP-500 and the matching GFA 555 amplifier, which I used to feed a pair of B \& W 801 F speakers. The sound was absolutely scintilating, Indeed, I started to wonder how long I would be able to resist the temptation to keep the preamplifier, especially as 1 had some brilliant new discs from Denon.
These included Knud Vad playing J.S. Bach's Organ Concert (33CO-1590) Eliahu Inbal conducting Frankfurt Radio's Symphony orchestra in Mahler's Symphony No. 7 (60CO-1553-54) and the Suk Trio in Beethoven's Archduke Trio (33CO-1586) each of which is a real gem. I listened to some discs using the excellent phono circuit and although the better noise figures didn't show up, the quality of the sound did and I regretted that I had no new discs to extract the real advantage.
When I switched to the tuner I was greeted by a useful signal without any antenna, and a superlative one with the addition of some rabbits ears. On FM the signal was sharp and clean. On AM the signal was clear but lifeless and only highlighted the magnitude of the difference between AM and FM.

After two weeks of exciting listening and lots of good music. I decided that this unit has more attributes than vices and provides a quality of reproduction which you will just have to experience. This is an outstanding unit that has the attributes I've been looking for. It will make the other manufacturers reassess their design philosophies as to what the public is likely to want and how to package it. At a recommended RRP of $\$ 1500$ this is not a cheap unit, but good things seldom are.

IEC HIGH FREQUENCY TOTAL DIFFERENCE FREQUENCY DISTORTION FOR ADCOM GTP 500


Intertronics assembly offers very COMPETITIVE pricing on assembly and manufacture due to our LOW OVERHEAD costs, labor saving semi-automated equipment, and COMPUTERISED management information systems. Intertronics also provides $100 \%$ QUALITY INSPECTION, thus assuring customers of perfect assemblies, everytime.

## INTERTRONICS

Provides customers with: $\star$ circuit board assembly * wire harness assembly $\star$ flow and hand soldering $\star$ mechanical assembly $\star$ automatic wire cutting and stripping
$\star$ wire termination and related services INTERTRONICS
Unit C1, 23-25 Windsor Rd, Northmead (02) 683-5959

## THE ONLY WIRELESS THAT TAKES COMPLETE ADVANTAGE OF SHURE MICROPHONES



Sounds like a mic with a cable
Superb audio because advanced microphone technology is precisely matched with unique electronics. Truly a major step beyond conventional wireless systems. Genuine Shure microphone for unvarying uniformity and accuracy of sound reproduction. Plus-legendary Shure reliability and durability throughout.

## Overcomes problems

Exclusive Diversiphase '" dualantenna system eliminates dropout. Provides strongest possible signal. Corrects reflected or direct signals that are out of phasewon't cancel each other. Rejects V and radio signals.


Computer selected frequency
Finds frequency best suited to the area. or a special frequen. cy for touring needs. Tuned linear phase filters screen out unwanted singals, without distortion.


## Many options

Diversiphase or single-antenna receiver. Compact. reliable transmitter. Can be used with specially-designed WL83 or WL84 Electret condenser microphones, or a variety of other Shure microphones.


AUDIO ENGINEERS PTY. LTD.
342 Kent St, Sydney, NSW. 2000 Ph: (02) 29-6731

MARKETEC PTY. LTD.
51 Scarborough Beach Rd, North Perth, WA. 6000 Ph: (09) 242-1119

AUDIO ENGINEERS (VIC) Ph: (03) 879-0320

## DISCS



## Artist - Bruce Springsteen <br> Title - Tunnel of Love <br> Producers - Bruce Springstreen, Jon <br> Landau, Chuck Plotkin <br> Label - CBS <br> Cat no. CDCBS 4602702

Tunnel Of Love represents a radical departure in musical structure from Springsteen's last album Born In The U.S.A.
Where Born In The U.S.A. was an often misunderstood shout to the wilderness of the American psyche, this release is a more introspective and personal statement

All the songs are quieter in feel but Springsteen's acute and often brilliant observationary prowess is utilised to the full. His considerable ability on the acoustic guitar, which is the most dominant instrument, is also much in evidence.

Best songs are: All That Heaven Will Allow, a bright upbeat catchy tune with a positive lyric, Spare Parts, a more
electric tune with harmonicas, is a typical Springstcen poem of love and it's ramifications; Cautious Man, a poignant slower song with acoustic guitar and vocals; Turnel Of Love, the biggest production number with classic bittersweet lyrics.

All tracks deal with the many aspects of love and relationships and Springstcen, as you would expect, handles them with a maturity and poise that befits his status as a serious contemporary rock artist.

This release will probably not be as successful as his last, but for insights into Springsteen the man it is certainly more rewarding.

Recommended
Mark Lewis

## Artist - Bryan Ferry Title - Bête Noire Producers - Byran Ferry, Patrick Leonard, Chester Kamen Label - Virgin CAT No. CDV 2474

Bryan Ferry, the smooth as silk purveyer of musical 'cool' is in fine form on this marvellously produced CD
Although two years has elapsed since his last solo offering, Boys and Girls, and five years since Roxy Music's Avalon, Ferry continues in their tradition with his seductive vocal style and hypnotic use of rhythm.

Best tracks are Limbo, a rhythmically percussive tune with haunting choral vocals; Kiss And Tell, a classic Ferry song with solid drumming, strong vocals and complex

rhythm guitar; Newtown, a slower, darker synth dominated number with excellent swirling lead guitar; The Right Stuff, an upbeat big production song with terrific bass and drums and great vocal harmonies.

Over the years Ferry has consistently produced excellent inspiring original music, this release is more of the same.

Recommended. Mark Lewls


Title - Dancing With Strangers Artist - Chris Rea Producer Chris Rea Label - Magnet Through Polygram CAT. No. 833 504-2
Dancing With Strangers is Chris Rea's ninth album and is one of the most interesting releases of this year. On this one dise Rea includes about four popular styles including folk, blues. pop rock and slow love ballads.
This is not to say that he is a master of every style. Some tracks such as Gonna Buy a

Hat are distinctly tedious. However. if Dancing With Strangers contains some failures it also contains a large number of successes among which are Que Sera, Let's Dance and Windy Town. The two instrumental tracks included at the end of the disc Domalue's Broken Wheel and Danielle's Breakfast are very pleasing tracks done in the Irish style featuring the now ubiquitous uilean pipes.

Rea has waited some time for international success. Dancing With Strangers might well be the album which brings it to him.

Simon O'Brien

## Title - My Fair Lady <br> Artists - Various <br> Producer - <br> Paul Myers <br> Label - Decca CAT. No. 421 200-2

My Fair Lady marks another excursion by Dame Kiri Te Kanawa into the field of popular musicals. She is supported by a group of well known actors including Jeremy Irons who sings the part of Professor Higgins, Warren Mitchell in the role of Alfred Doolittle and the 83 -year-old John Gielgud who sings the part of Colonel Pickering.

It would be nice to say that this unusual collaboration works well but frankly it never quite comes off. There are several reasons for this, not the least of which being the performance of Dame Kiri who sings the role of Eliza Doolittle like the primadonna she is. The problem here is that one never quite gets the merry singalong feel that this and almost every other role in My Fair Lady requires. On the other hand however we have Jeremy Irons. Irons is a great actor but has a long way to go in his singing career. His voice is not up to the task of giving life to the austere professor Higgins. In fact by far the best singing on the album comes from Warren Mitchell who delivers his tracks with exactly the right amount
of hale heartiness
For those who have never heard My Fair Lady and want a good recording of it, this album should fit the bill. However, those familiar with the Lerner and Loewe classic will probably be disappointed.

Simon O'Brien

## VIDEOS

## Title: Miss Mary <br> Distributor: Crystal Length: 96 minutes Rating: M <br> Standard: $\star \star$

Julic Christie plays an Eng lish nanny employed in the privileged surrounds of Agrentina in the 1930s. When something eventually happens in the movie, the viewer has either fallen asleep or given up on the whole game in desperation. Julic falls foul of her family by (pant pant) falling prey to her previously hidden passions, but she certainly takes a hell of a long time to do it. Too long, if the bald and naked truth be known. This is certainly a good looking film, but the plentitude of good looking films with little or no story whatsoever, makes one wonder about the direction of the modern movie industry.

Peter Brown

Title: Heavenly Pursuits Distributor: Crystal Length: 82 minutes Rating: $\mathbf{M}$

## Standard: $\star \star$

Now normally I am a sucker for anything even faintly smacking of the supernatural. the divine or the inexplicable. So, when this movic about miracles occuring in a Scottish town flopped onto the desk, I was agog. Not for long. Tom Conti mumbles his way through the lead role of the sceptical teacher who refuses to believe in the intervention of the supernatural. A few allegedly miraculous events have the townspeople wanting to register their very own saint, but our Tom is still unconvinced. I suppose he comes to some sort of conclusion at the end of this turgid piece, but certainly not the same conclusion as your 'umble reviewer. Give this dog a wide berth.

Peter Brown

## Title: Curse of the Black Widow Distributor: Crystal Length: 97 minutes Rating: M Standard: $\star \star \star \star$

Holy arachnids Batman Here we have the spectre of former Miss Goody Goody, Patty Duke Astin, transforming herself into a two-storey high black widow spider. Perhaps
the strangest thing about this offering is that even though it is ridiculous, there are actually some scenes which are chilling. I started off rubbishing this film, but half-way through, was forced to turn off the video because of my admittedly low terror level. Evidently made for television, this has to be one role Patty would rather forget. Other stars include Donna Mills, Tony Franciosa, June Allyson, Vic Morrow, June Lockhart and Sid Caesar.

Peter Brown

## Title: The Haunting

## Passion

Distributor: Crysfal
Length: 92 minutes
Rating: M
Standard: $\star \star \star$
At last, I can deliver a decent review. Here we have a ghost story with a difference. Jane Seymour and her husband move into a new house, unaware it is haunted. However, the ghost does not want to hurt Jane, it has simply fallen in love with her. Superb special effects. a more than decent story (at last), great photography and an ending with a difference render this offering one of the better to haunt the shelves this month. Certainly not in the class of "Trooper", but this modern offering can hold its head high as good entertainment and a film to remember.

Pefer Brown


## Itll change the way you watch videos forever:

With Yamahas new AVC-30 Video Integrated Amplifier, you'll be watching videos with your ears. As much as you do with your eyes. Now that may sound strange. But with the AVC-30, that's the only thing that will sound strange. Because once you plug your video cassette recorder and speakers into the AVC-30, the room will be filled with incredibly lifelike sound. And when you plug in your graphic equaliser, compact disc player, stereo tuner and turntable, the AVC-30 becomes the control console of your own surround sound video centre. When you hear your next video you'll see exactly what we mean. The AVC-30 Video Integrated Amplifier. For just \$899.* From Yamaha.


5 YEAR WARRANTY.


Spuce
rocnoloy


## Simon O'Brien

0
ne of the most obvious drawbacks of modern aircraft is their need for runways. In the military sphere this failing is especially acute. In the decades following the Second World War the problem was supposedly
overcome by the development of helicopters.
In the Vietnam war the American armed forces used helicopters extensively in the close support role. In fact the sight and sound of these craft remain one of the
most enduring images of the conflict.

## Background

Unfortunately however, helicopters were found to suffer from a number of problems of their own, one of the most obvi-

ous being their slow speed. This is limited because as the vehicle moves forward, the rotor tip on one side must move considerably faster than the helicopter itself. In fact, modern military machines find their rotor tips limited by the specd of sound. Speed is also hampered by the fact that helicopters cannot be aerodynamically efficient because of the rotor and hub assembly. In fact the maximum speed of most helicopters is only about 180 knots. This makes them casy targets - another lesson gained from the Vietnam war.

A final drawback is the fact that helicopters are inefficient flying machines. A typical helicopter engine needs to develop four times more power than the engine of an equivalent acroplane. This also means that helicopters have a very restricted range as they use four times as much fuel.
The inherent problems of helicopters have inspired designers to search for an effective Vertical Take Off and Landing (VTOL) craft. Such a machine would be able to take off from sinall launching pads but fly like an acroplane once in the air. Many weird and wonderful VTOL’s have been designed. Some have involved a tilting wing system where the propellers on the wing are turned upward to raise the craft into the air and are then turned horizontal. Others have combined both worlds with a helicopter rotor on top and horizontally mounted engine units on the wing or fuselage. The latest X wing design from Bell is an example of this type of aircraft.
To date however all these inventions have suffered from either all or some of the following problems: insufficient power. insufficient control. complicated mechanics, noise hostility. minimal efficiency and utility. The most successful VTOL cur-

## Projected Performance DIMENSIONS

span	9.0 m
length	9.0 mm
wing area	$30.0 \mathrm{~m}^{2}$
aspect ratio	2.7
PERFDRMANCE	800.0 kW
installed engine power	630.0 kW
fan power at lift off	240.0 kts
max. speed	55.0 kts
transition speed	1700.0 kg
max. VTOL weight	350.0 kg
payload	
range using VTOL at max. weight	200.0 nm
FAN DATA	
diameter	3.5 m
no. of blades	7.0
fan speed	600.0 rpm

rently in existence is the famous Harrier jump jet which distinguished itself in the Falklands' campaign. Even this VTOL however suffers from a lack of load capacity, and its rotating jets, which create the necessary lift off power, make it incredibly noisy, totally precluding its use as
a civilian aircraft.
Recently however in Australia the Sadlier Aircraft Company has come up with a design that may make VTOL aircraft a far more viable alternative. Responsibility of the invention rests with the head of the company Kim Sadleir and his


consultants Don Devenish and Graham Swannell.

## Problems

The Sadlier design involves using a fan to raise the craft into the air where it would then be powered by a conventional propellor mounted on the back of the machine. The use of a fan to raise an aircraft into the sky is not new, in fact it is basically the same way a helicopter achieves flight. However the Sadlier aircraft posseses a number of other interesting ideas. The fan itself is located inside the large delta wing of the plane. A series of latitudinal vents placed above and below the fan allow the rate of lift to be controlled. The vents directly above the fan are intended to provide a measure of cen-

control. The vents below the fan provide fore and aft thrust reactions. The vents are an important aspect of the Sadlier design since one of the most enduring problems of VTOL planes is their relative lack of control whilst taking off.
As interesting as these features are, however, the truly revolutionary aspect of the Sadlier design lies in the nature of the
fan itself. It is joined at the tips like a spoked wheel and is driven from the rim rather than from the centre as with most similar propulsion units. Friction is avoided by pumping compressed air around the ring before flight so the tips are carried on a bed of air. The engine which drives the fan also powers the conventionally mounted propeller on the rear of the craft. The use of one engine to do
both tasks adds to the lightness of the aeroplane.
The joining together of the fan blades at the tips gives the Sadlier craft a number of advantages. First off it means that the blades will not cone. or droop, as happens to helicopter rotors. This in turn means that the housing in the wing does not have to be very thick. Consequently the wing
can be made quite light. Furthermore the fan blades themselves can be made extremely light which increases the efficiency of the fan as a propulsion unit. Since the fan is driven from the rim, weight is also saved by the fact that there needs to be no heavy rotating axle in the hub.

## Markets

Two markets for the craft are envisaged. One, fairly obviously is the military. Any aircraft with the flexibility of this one would be a tremendous asset to an air defence system. Unfortunately the response of the defence department to the Sadlier concept has not been a happy one. Defence minister Kim Beazley wrote in May last year that the development of VTOL was "not a priority". The second market is thought to lie in the commercial world. A four seater version of the aircraft would cost about $\$ 250,(0)$ ) well within the range of most top businessmen and executives. The vast increase in the number of heliports in the world's major cities would also point to a strong commercial market.

To date Sadlier's company has already spent more than $\$ 350,000$ on VTOL research. Full development of the project however has been hampered by an increasing lack of funds available for $R$ and D. However Sadlier is approaching several overseas interests with an eye to overcoming this difficulty. By January next year it is hoped to test the load bearing capacity of the fan by building a fifteen bladed device powered by a 69 kilowatt engine. The fan has already been tested as regards manouverability and control. If all goes well a scale model of the machine will be built by July. Sadlier stressed that if sufficient interest is shown in the project by his overseas contacts then this rough schedule could be considerably shortened. His company does not intend to actually make the VTOL's but simply licence the design to some other manufacturer.


Various hopeful designs of the past from left to right: the Bell XV-3 the first tilt rotor VTOL, the Vercol 76 the first tilt wing VTOL, the Sikorsky ABC compound hellcopter and lastly the Harrier Jump Jet.

# SPACE TECHNOLOG 

## Ken McCracken

THE space industry will always be relatively small compared with many of the other industries of Australia. or the worde.
With a projected annual Australian expenditure of $\$ 370$ million - $\$ 5(0)$ million by the mid 1990s - the space industry is much smader that the information or entertainment industries, and has an anmat turnover that is also much smaller than those of many individual commodities in the mining or agricultural sectors.
However, this doesnit mean a space industry is not worth having, or that it won't have important implications for the Australian economy.

## Aims And Policies

In the Policy Statement On Space Industry' released by a Federal Cabinet decision of 1986 the stated aims of Australia's space industry were to:

- create the opportunity for spin-offs from space activities to extend to the manafacturing and services sectors as a whole through intersectoral transfers of technology: and
- provide a focus for innovation to take place in a number of industries including acrospace, information. telecommunications and scientific equipment.
Furthermore the goternment has charged the Australian space Board with the section of projects likely to have significant spin-off bencfits for other industries

The government identified several other aims. It is important for as to recognise that these were not "either/or" goals. Our Australian resources are too precious to allow that. Our activities in space must be chosen to meet simultancously all of the strategic goals set by Cabinet.
The govermments strategies apply equally well to individual companies and individual research laboratories. A careful choice must be made at all orgamisational levels. Relevance will mean different things to different organisations however. In each case, relevance will be determined by the existing competence, the organisational goals for the future, and the oecurrence of opportunties to make an appropriate contribution to the national program.
Spin-off to other non-space activitios will be vital. We must ask what organisational arrangements maximise spin-off?

The right choices by the Australian Space Board, or the board of a private company. will have far-reaching consequences on the non-space industries well into the new milIcnium.

## Choices

Against the background of the Australian Space Policy, the relevance of a space activity or technology could the determined by the following criteria:

- the space technology should provide know-how and market advantage to non-space activities and industry;
- a significant fraction of the nanpower and capital items should be capable of being utilised efficiently in the nonspace activities of the company concerned:
- rescarch into applied space technologies must be central to Australia's own operational space needs and must be suitable as contributions to international spacecraft:
- in those cases where new technologies are being developed in a fundamental or applied space program, world markets should be a prospect, and Australia must have a comparative adaantage in the development and commercialisation of the technology: and
- there should be a symbiotic relationship between the chosen space technologies and other technologies that are on a long-term growth curve.


## Spins

This is absolutely vital. The word used in the joint statement by Senator Button and Mr Jones was leaven. and it is an excellent choice that describes the task.
Spin-off is not someone elsces responsibility - all organisations involved in space must see that it Icavens their non-space activites. The prospects for commercial spin-off must be vital components of all proposals and all decisions. The identification of commercial spin-off must not - as has sometimes been the case in the past be an afterthought once the decision has been taken. Nor can it be someone else's problen.
Let me emphasise the role of fundamental science in this scheme of things. Fundamental space science - astronomy. solar physics. plasma studies - can meet this spin-off criterion.

In fact. fundamental science often demands a technical perfomance that has never been attained before In so doing, it provides enormous spin-off to inclustry.


One of the more significant Australian space experiments will ride on ERS1.
provided that such competence already exists in a viable and competitive form in the country. A cold start, with a requirement of international competitiveness within five years, say, woukd not be an acceptable decision.

Let us not forget that all of the other countries in the space business focus on spin-off benefits.

It will not be enough for just one of the various participants in Austratian space business to concentrate on spin-off. The latoratories must provide spin-off concepts: the ASB must pursate consistent and supportive space programs: government must make tactical and purchasing deeisions consistent with its decision that space is a componem of a much greater industrial whole: and industry must assiduously seek the fastest form of spin-off, namely. that which occurs within their own company.

The commercial space market is eyclical. A company must anticipate that it will experience periods in which no space contracts will be available.
We must develop the ethos in which the management, engincering. and technical resources of a company would be capable of transter to non-space projects. In my

## $\mathbf{Y}$ AND <br> AUSTRALIA

opinion. this should be by design. as a means of generating the spin-off that I mentioned carlies
Such versatility is well known in overseas industry. For example, space activities are used as the training and retraining grounds for engineering staff. Only $10 \%$ of the activities of the French company Matra are in space, but 50 \%/ of its engineering staff has been in its space division at some time. That is spin-off in action.
Furthermore, it is important that we all recognise what the Australian space program is to do. as well as what it is not to do. It is not a safety net to generate work between other space contracts. It is an upfront industry stimulus program. designed to extend, qualify and demonstrate the capability of Australian industry.

## Technologies

Clearly, our activities should be directed towards applications in which our own needs provide us with a distinct comparative advantage in the international market. Applications that we ourselves would not take through to (at least), the demonstration stage are not appropriate.
The exploitation of our comparative advantages cannot be stressed too highly. Consider. for example, remote sensing. We have many opportunties to excel in renote sensing in the tropics and in deserts. Already we have used the Great barrier Reef as an enormous laboratory for the development of the low-cost, userfriendly remote sensing system. MicroBRIAN, which is now widely used in Australia and the Asian-Pacific region. This further enhances its value to the user.
By directing our space R\&D to such applications. in which a wide range of experience is available in Australia, we can aspire to excel, and we will also have an extensive shop window in which to show our wares to overseas buyer.
Finally, it is importam that, having developed the techmologies we need, we should then use them. Tioo often in the past. Australia has failed to have the courage to exploit its own technology. Too often government and industry have taken the seemingly soft option to purchase new or experimental technology from overseas. leaving local R\&D to go to waste.

I ampleased to saly I see evidence that recent government and private sector decisions show that this reluctance this technological cringe, may be diminishing with time. Let me cite three examples

- the purchase of a locally designed and
manufactured metcorological satellite reception systen by the Bureau of Meterology, and also by members of the Australian research community:
- the purchase of locally designed and manufactured antennae by OTC for use in the provision of our international communications via INTELSAT; and
- the purchase of the locally designed and manufactured Micro-BRIAN by many public and private users throughout Australia.
It is crucial that. having leavened the mix. government should than taste and eat the resulting bread. This will involve risks - but that is what is implicit in all forms of industry stimulation


## Stimulations

It is instructive to look back over the past 20 vears. Satellites gave us a million-fold increase in communications band width. The integrated circuit, the computer, television. etc.. provided the market for that band width. Each technology stimulated and fed the other
The countries and companies that prospered the most were those that anticipated the symbiotic relationship between these several technologies.
So it will be in the future. Our space activities must anticipate major changes in non-space activities and benefit from them - not fight them

Thus we must, for example, recognise

- the complementary nature of the optical cable and satellite communications systems in the future - each technology will play its part, one on the thick routes, the other on the thin routes we must regard them. from both an industrial and an operational point of view. as part of a total communications system - deregulation will force these attitudes upon us in the short term:
- that satellite to satellite, and saltelliteground communications will develop using optical lasers. instad of microwase transmitters - this will have substantial organisational, and technical implications. fuelled, once again, by deregulation:
- that sweeping changes in computing and solid-state hardware will continue to drive the market for both communications band width and primary data -high-resolution telerision. the real-time fast-fourier-transform chip, and gigabyte memories:
- the enormous changes in national management that will be introduced by re-
more sensing - remote sensing of the oceans provides a million times more data than did the pre-space technologies - this will hare a profound effect. and drive a rapidly evolving ground sector technology:
- the profound changes that the wedding of the navigation satellite and the video disk will have in a country such as Australia.


## Conclusion

The changes in the space business in the next two decades will be very substantial. and that gives Australia its chance.
If the space technologies were mature. we would have left our runt too late. We would get neither the technologies. nor the spin-off we seek. But the space technologies are not mature. The enormous contemporary changes in other technologies. plus the new space technologies themselves, guarantee that.
Moreover. the world is still learning how to use the new technologies such as remote sensing. New attitudes and management techniques will develop based upon the new forms of data. Change will be the norm for several decades to come.
A relevant national program would exhibit the following characteristics
(i) target a window of opportunity for commercial involvement that will open some 10 years ahead;
(ii) make maximum use of Australia's comparative advantages (size, location. environmental conditions) to develop its technology and to secure its position in international consortia;
(iii) recognise that the greatest benefits will derive, ultimately from the spinoff from management and technical skills to the non-space industries.
These, I submit, are the characteristics that will determine reletance.

Finally, what companies are relevant to the Australian space program? The govermment has made its view clear. Technologe spin-off to the non-space industries is vital. Companies with a good mix of space and non-space activities are therefore relevant.

Clearly we are building the future indusfry of Australia. The companies that are relevant are those that have a long-term commitment to being good corporate citizens of Australia, prepared to take risks and to work towards long-term goals.

Dr ken WeCracken is chairman of the CSIRO's Office of Space Sctences and Applications

# BOOKS BO <br> <br> Buy at least 2 Babani Best Sellers and receive <br> <br> Buy at least 2 Babani Best Sellers and receive "Fun and Games with Your Electronic "Fun and Games with Your Electronic Calculator" ABSOLUTELY FREE! 

 Calculator" ABSOLUTELY FREE!}

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS
R. A. Penfold

Provides BP0179 Protric computer control of electric motors (including stepper types), plus a range of useful sensors including visible light, infra-red, and ultrasonic types. 96 pages. $\$ 11.00$

## HOW TO DESIGN ELECTRONIC PROJECTS

R. A. Pentola

BPO127
The aim of this book is to help the reader to put together projects from standard circuit books with a minimum of trial and error. but without resorting to any advanced mathematics Hints on designing circuit blocks to meet your specia requirements where no "stock" design is available are also provided. 128 pages $\$ 9.00$

## COIL DESIGN AND CONSTRUCTION MANUAL

 B. B. BabaniA complete BPok ber the RF IF AF. IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and calculations necessary are given and explained in detail. All mathematical data is simplified for use by everyone. 96 pages $\quad \$ 9.50$

CHART OF RADIO, ELECTRONIC. SEMICONDUCTOR AND LOGIC SYMBOLS
M.H. BabaniB.Sc (Eng) BP0027
illusirates the common, and many of the non-so-common. radio. electronic, semiconductor and logic symbols that are used in books, magazines and instruction manuals, etc, in most countries throughout the world. $\$ 4.00$ Chart

## IC 555 PROJECTS

E. A. Parr

Every so often a device appears that is so useful BP0044 wonders how life went on belore without ii such a device. Included in this book are basic and general circuits. motorcar and model railway circuits, alarms and noice-makers as weli as a section on 566.568 and 569 timers. $\quad 176$ pages $\quad \$ 9.50$

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babani BP0007 Covers many colour codes in use throughout the world, for most radio and electronic, components. Includes resistors, capacitors. Iransformers, field costs, fuses, battery leads, speakers, etc. Chart $\$ 4.00$

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING R. A. Penfold

BP0110 The aim of this book is to help the reader overcome problems by indicating how and when to start looking for many of the common faults that can occur when building up projects Chapter 1 deals with mechanical faults such as tracing dry joints, short-circuits. broken P.C.B. tracks, etc. The construction and use of a tnstate continuity tester etc. The the above, is also covered. Chapter 2 deals with linear analogue circuits and also covers the use and construction of a signal injector/tracer which can be used to locate and isolate the fauty areas in a project. Chapter 3 considers ways of lesting the more common components such as resistors. capacitors, op amps, diodes, transistors, SCRs, uni functions. etc, with the aid of only a limited amount of test equipment. Chapter 4 deals with both TTL and CMOS and logıc circuits and includes the use and construction of a pulse generator to help fault-finding. 96 pages $\quad \$ 8.50$

ELECTRONIC SECURITY DEVICES
R. A. Peniolo

Many people associate the term "security device" with only burglar alarms of various types, but in fact, any piece of equipment which helps to protect people and property against any form of danger could be termed a "security device" Therefore this book, besides including both simple and more sophisticated burglar alarm circuits using light infra-red and ultrasonics, also inciudes many other types of as well such as gas and smoke detectors, flood alarms, dorphone and haty alarms, etc 112 pages $\$ 950$

HOW TO DESIGN AND MAKE YOUR OWN PCB's R. A. Pentola

BP0121
R. A. Pentold
Chapter 1 deals with the simple methods of copying printed Chapter 1 deals with the simple methods of copying printed all aspects of simple P. C.B. construction as comprehensively all aspects of simple P.C.B. construction as comprehensively producing P.C.B s, and Chavers pholographic methods of designing your own printed circuit board layouts.

80 pages
58.50

ELECTRONIC TEST EQUIPMENT CONSTRUCTION
F. G. Rayer
G. Rayer BP00 This book covers in detail, the construction of a wide range of est equipment for both the electronics hobbyist and radio amaleur. Included are projects ranging from a FET amplified oitmeter and resistance bridge to a field-strength indicator constructor enioy frequency meter, Not onty can the home product can also be usefully utilised in the furtherance of his hobby. $\quad 96$ pages $\quad \$ 8.00$

## HURRY! OFFER AVAILABLE OMLY WHILE STOCKS LAST

$\square$ Please send me the following Babani books
$\square I$ have ordered at least 2 books, so rush me "Fun and Games with Your Electronic Calculator" FREE!
Name:
Address:
$\qquad$
$\qquad$

## Postcode:

## Telephone:

Payment to accompany order.
I enclosed my cheque/money order for \$
Charge my $\square$ Bankcard $\square$ Mastercard $\square$ Amex
$\square$ Visa with \$
Card No.
Expiry Date:
$\square$
Signature:

TITLE	CODE	QUANTITY	PRICE

## SEND TO: FREEPOST No. 4 <br> FEDERAL PUBLISHING PO BOX 227

WATERLOO, NSW 2017 No stamp required.



Figure 1: System Configuration

## AUSTRALIAN MOBILE SATELLITE COMMUNICATIONS

In the face of intense competition for optical fibres, satellite operators are tailoring their systems to applications where they have some comparative advantage. One of these is communications between mobile or temporary stations. AUSSAT's second generation satellite will have extensive mobile capabilities.

## Michael Wagg

TThe recent decision by AUSSAT to proceed with the inclusion of an L Band transponder on board the second generation or B series satellites has opened the door to the introduction of a domestic mobile communications system for Australia. Depending on the implementation time frame for the second generation system, this may well be the first
domestic mobile satellite system in the world.

The current market requirements have been identified as predominantly the replacement of the remote HF radio voice services but with a range of other requirements such as remote monitoring, mobile data collection, remote mobile public telephony, etc. This paper provides an over-
view of the proposed AUSSAT system and outlines the technology areas that are being addressed to meet the service and market needs.

## Today

Mobile communications throughout Australia are currently serviced by a range of technological options. Within the urban
areas VHF and UHF radio currently caters for requirements of police, taxi networks, etc, with more than 250,000 radios in use. The Telecom Mobile Radio and the recently introduced cellular mobile system provides public switched mobile telephony services within the major cities with a planned expansion to 42 centres and over 150,000 users by the mid 1990 s.

Once outside the major population centres the current options for mobile communication services rapidly diminish. VHF radio systems are utilised along major routes by linking together individual base stations, which have a 30 to 50 km range, by fixed communications means. However. outside the corridors provided by VHF repeaters the only available low cost system currently available is HF radio.
HF radio provides for the complete spectrum of mobile requirements including land, air and sea services. HF radio can provide an Australia-wide coverage capability, depending on the transmitter power, but suffers in the quality and reliability of the service it can provide.
The AUSSAT Mobile Satellite System (MSS) has been designed to cater for those users of mobile communications who:
(a) are required to be involved in field
operations away from major urban areas;
(b) have a need to communicate with a fleet of field vehicles or remote monitoring stations;
(c) are involved in field operations outside the range of the terrestrial communications infrastructure.
The MSS will provide voice and low speed data communication services between low cost mobile terminals and base communications stations. The voice communication is to be either a radio or telephony link with quality similar to or better than current telephony services. The mobile voice terminals will be similar in features to existing cellular mobile telephones. while transportable and semi fixed services will incorporate separate higher capacity antennas.

The data services will range from conventional low speed synchronous or asynchronous links, typically up to $9(6) \mathrm{hps}$. to a variety of services not readily available on the terrestrial communications network. These will include data broadcast and data collection services which both exploit the features of a satellite network. The mobile network will also be able to provide messaging and paging services.

Table 1 summarises the current mobile communications usage throughout Austra-
lia and provides an assessment of the impact that the MSS will have on the different applications.

## The new system

The AUSSAT mobile satellite system will comprise an L Band package on-board each of the AUSSAT-B satellites and ground segment communications equipment comprising L Band mobile terminals, Ku Band base stations, and a Ku Band control and monitoring centre. The basic components of the system are illustrated in Figure 1 which shows the L Band mo-bile-to-satellite links and Ku Band satel-lite-to-base station links. No provision is made in the system design for direct sin-gle-hop L. Band to L links in order to avoid unauthorised and uncontrolled communications will therefore operate with a double satellite hop via an intermediate base station.
Figure 1 also illustrates a closer user group consisting of a base station and several mobile terminals. Additionally, the mobile system could provide thin route technology services. accessing the public switched telephone network (PSTN). in which case, a suitable gateway station. possibly operated by Telecom, would be used to provide PSTN interconnection.

TABLE 1: AUSTRALIAN MOBILE SERVICES

	TEXEOM MABILE RADIO	Crlullar "MOBLIPRET"	HP RADIO	VHP/MHF RADIO
APPLICATION	Urban UHF Mobile Telephone service	High capacity UHF	Land, marine and air mobile voice communications networks requiring wide area coverage	Voice cammuications, predominantly with base stations over limited coverage areas.
PRESENT CUSTOMER BASE	6,000	150,000+ by 1995	15,000 land mobiles in 1987, growth at approx 1,000 per year	- 100,000 UHF radios in 1985   - 145,000 VHF radios in 1985
COVERAGE	Metropolitan in Sydney/ Melbourne	. All capitals + 42 centres   . No coverage outside centres	- Depends on frequency and power   . Several hundred km to all of Australia	. Limited to 30-50 km from base station   Dead spots in rugged terrain
00515	. $\$ 4 \mathrm{~K}$ teminal   . $\$ 720$ annual fee   . 40 cents/min	. $\$ 3-5 \mathrm{~K}$ terminals . $\$ 720$ annual fee - up to 60 cents/min	. $\$ 3.5-5 K$ typical radio cost   . No usage charge	- Radio cost <\$lK   - Base station/repeater costs depend on network size   - Some networks include interconnecting microwave links between VHF/UHF cells
IMPACT OP MSS SERVICE	NO. System being replaced by Cellular Radio	No, but MSS could provide nation-wide mobile PSTN overlay on Cellular system.	YES. HF replacement market is the Key opportunity for MSS. Penetration dependent primarily on MSS teminal costs. Key benefits of MSS over HF are reliability, security extended coverage and availability of service.	YES. Partial Penetration by MSS where coverage range \& service reliability limitations exist, or where businesses decide to rationalise operations.

## Satellite Communications

Under the ground concept, control of the total network would be performed by AUSSAT from its main tracking and control centre at Belrose. The network control system would dynamically assign channels in order to optimise the utilisation of the system capacity. control access to the system to limit jamming and unauthorised use, monitor the whole network and permit optimisation of the system performance, and perform service billing.

The mobile terminals would in general. provide voice and low speed data communications capability and would be similar in configuration and concept to either a cellular mobile unit for telephony applications for a push-to-talk $\mathrm{HF} / \mathrm{CB}$ radio for radio applications. The fixed and transportable terminals would provide for a broad range of applications including data collection for which a streamlined unit will most likely be developed.

## Space Segment

The L Band payload is planned to be provided as an "add-on" package on the AUSSAT-B satellites. The mass and power requirements for the payload are anticipated to be around $10 \%$ of the satellite's payload power and mass resources. The L Band service area will be the whole of Australia and the surrounding coastal waters with specific coverage of the North West Shelf. the Great Barrier Reef and the Great Australian Bight areas. Circular polarisation will be used for the L Band links.

For operation at L Band with Australian coverage and minimum spill-over into adjacent areas, a spacecraft antenna about 2.5 metres in diameter will be required. This is about the maximum size solid reflector that can be accommodated in current launch vehicle envelopes for spacecraft envisaged for the AUSSAT-B de-
signs. Alternate antenna configurations could employ a phased array antennat for both L. Band transmit and receive functions.
The multicarrier edge-of-coverage effective isotopic radiated power (EIRP) required is 46 dBW which is consistent with the power and mass limitations of an addon package. Figure 2 shows the coverage of Australia provided by a simple circular beam. On the receive side, a dish of 2.5 m in diameter should be able to provide a satellite $\mathrm{G} / \mathrm{T}$ of $-1 \mathrm{~dB} / \mathrm{K}$ at edge-of-coverage.

## Ground Segment

A variety of terminal designs will be required to provide for the range of applications expected including fixed installations. transportable terminals and mobile terminals. The terminal will probably be equipped with a microprocessor to handle protocols for system access as well as control of the frequency agile receiver and transmitter for channel assignments. To permit the ready use of more than one encoding or modulation technique it is expected that digital signal processing will be incorporated into the terminal unit.
The antenna design for the terminal unit will have a significant effect on performance. For simple omni-directional antennas. gains of around 5 dBi will be relatively straightforward but will require significant satellite EIRP to achicve acceptable downlink performance. Further, the transmitter power required by the terminal will be substantial to produce the required uplink EIRP.
A more desirable situation will be to have a mobile antenna gain of around $8-10 \mathrm{dBi}$ with the consequent increase in system capacity and reduction in required uplink and downlink transmit powers per


Figure 2: Proposed L band Coveage of Australia
carrier. However such a gain can only be achieved at the expense of having to include a tracking capability as the beam would have some directivity in both elevation and azimuth.

Extensive overseas research and development effort has already been directed towards the design of both mechanically and electronically steerable mobile antennas that can be produced at an affordable cost. Fixed terminals would employ high gain antennas around 20 dBi or more which could take the form of dishes or arrays of helicies.

## Opportunities for Australia

As Australia is likely to be the first country to implement a domestic satellite system with a number of countries, particularly the US and Canada, implementing services with one or two years of the Australian system, the opportunity exists for Australian industry to develop an expertise in mobile terminal equipment which will provide a major export potential to a growing worldwide market. Planned initiatives for the development of control and monitoring equipment and mobile terminals in the period prior to the commencement of the service will provide a major thrust and focus for local industry and should enable Australian industry to develop both expertise the world superiority in a number of key areas in the mobile terminal world.
However, it is important that the significant levels of research and development that have been carried out by various overseas organisations are carefully reviewed and. where applicable, incorporated into the development of the Australian MSS. This will avoid reinventing the wheel and will ensure that the Australian system is carefully aligned to the system used elsewhere in the world.
The mobile terminal is considered to be the major development area. Tasks that need completing include:

- the development of low cost steerable high gain antennas:
- the choice of optimum modulation and access methods;
- the choice of optimum voice and data encoding schemes;
- the development of a cost effective terminal unit.
The successful development of Australian mobile satellite terminals and the commercial availability in time for the Australian MSS will both provide for a major export opportunity and will enhance the growth capability of the domestic system.

Dr Wagg is service development manager with AUSSAT, Carrington Si, Sydney, NSW

## KALEX 1

## UV MATERIALS

3M Scotchcal Photosensitive
Pock Price $250 \times 300 \mathrm{~mm} \quad 300 \times 600 \mathrm{~mm}$

8001	Red/Aluminium	$\$ 79.00$	$\$ 90.00$
8005	Black/Aluminlum	$\$ 79.00$	$\$ 90.00$
8007	Reversal Film	$\$ 43.00$	$\$ 58.00$
8009	Blue/Aluminium	$\$ 79.00$	$\$ 98.00$
8011	Red/White	$\$ 71.00$	$\$ 81.00$
8013	Black/Yellow	$\$ 71.00$	$\$ 81.00$
8015	Black/White	$\$ 71.00$	$\$ 81.00$
8016	Blue/White	$\$ 71.00$	$\$ 81.00$
8018	Green/White	$\$ 71.00$	$\$ 81.00$
8030	Black/Gold	$\$ 100.00$	$\$ 121.00$
8060	Blue/Aluminium	$\$ 71.00$	$\$ 81.00$

## UV PROCESSING EQUIPMENT <br> KALEX LIGHT BOX

- Autoresef Timer
- 2 Level Exposure
- Timing Light
- Instant Light Up
- Satety Micro Switch
- Exposure to $22 \mathrm{in} \times 1$ lin
$\rightarrow 850.00+5 T$
KALEX "PORTU-VEE"
- UV Light Box
- Fully Portable
- Exposure to $10 \mathrm{in} \times 6 \mathrm{in}$
$\$ 225.00$ +
PCB PROCESSING
KALEX ETCH TANK
- Two Compartment
- Heater
- Recirculation (by Magnetic Pump)
- Two Level Rack - Lid $\$ 650.00$ $+\mathbf{S T}$


## RISTON 3400 PCB MATERIAL

SIZE	SINGLE	DOUBLE
INCHES	SIDED	SIDED
$36 \times 24$	$\$ 96.00$	$\$ 124.00$
$24 \times 18$	$\$ 48.00$	$\$ 62.00$
$18 \times 12$	$\$ 24.00$	$\$ 31.00$
$12 \times 12$	$\$ 16.00$	$\$ 20.80$
$12 \times 6$	$\$ 8.00$	$\$ 11.00$

Enquire about our PC based 4800 series
crossassembler that will assemble a 20 K source file in 10 seconds.

The end of manual directory enquiries is in sight.

# ELECTRONIC DIRECTORIES 

J. P. Nakulski, P. C. Craig, R. Exner

There is currently a major collaborative effort underway between the International Telegraph and Telephone Consultative Committee (CCITT) and the International Organisation for Standardisation (ISO) to develop a single standard for Electronic Directory Systems (EDS). This will make possible the automation of one of the last manual aspects of telecommunications - directory enquiries.

The intention of the standardisation work is to develop a distributed directory system. composed of interworking autonomous local directories. Users need not be aware of which local directory contains the information that they require: every local system is equipped to resolve the query by "navigating" to the correct system automatically. The total system is referred to as the Directory.

The evolving standard will allow Electronic Directory Systems to provide a high degree of functionality. Each of the directory entries in the EDS database may hold
arbitrary information about a person, organisation, a computer process or a group. These entries may be located from a description, allowing a single system to support both traditional "white pages" and "yellow pages" queries. Also supported are aliases (alternative names). local access control mechanisms (to restrict access to sensitive information). and operations on sets of objects (allowing the retrieval of the entries of all Psychotherapists in East Melbourne, for example).

## Standards

Since 1984. CCITT has been actively developing a standard for Electronic Directory Systems. The need for such a standard first became apparent during the Message Handling work of the 1981-84 study period. when it was realised that a global. distributed directory of message handling users was need to provide an adequate messaging service. Such was the importance of the need for electronic


Figure 1: The structure of an entry in the proposed electronic directory.
directory systems that three interint meetings on directories were held before the official 1985-88 plenary period. Since then, the planned applications of Electronic Directory Systems have increased substantially and a great deal of work has been done by the CCITT Study Group VII.
In parallel with the CCITT activity, ISO perceived a need for electronic directory systems as a component of its own work on Open Systems Interconnection (OSI) and began their own standardisation activities.

In April 1986. CCITT and ISO began to hold joint meetings to develop a common international standard for electronic directory systems by 1988 . The first of these mectings was held in Melbourne, and was hosted by Telecom Australia. The two groups have different, but overlapping requirements. The CCITT perspective is a directory service which will provide directory information about customers for a range of telephony-based and telematic services that the PTTs each provide. This may be used either as a reference source of directory information or offered to customers as a value added service to support both white pages and yellow pages style scarches. The viewpoint of the ISO experts is somewhat different. Their interest is in providing a directory function to support both name-to-address mapping and network management in OSI networks and also to support the manufacturing automation protocol (MAP) and technical office protocol (TOP). Thus the ISO requirenent is for simpler functionality.
The plan for completing the standard by 1988 meant that ISO needed to develop a draft proposal by early 1987. The first draft proposal was produced at the September 1986 meeting in Egham. UK. A second was developed at the Munich meeting in February and completed at the Tokyo meeting in June 1987.
After the Tokyo meeting, the standard was considered to be technically stable although it will not be officially published as
an International Standard until 1988. There will be opportunity to further enhance the standard during CCITT's next study period, lasting until 1992.
The CCITT/ISO directory system offers a wide range of service features to the end user. The user may read and verify directory entries, or search for a partiuclar set of entries across a number of different indexes (for example, the user may request to read all names and telephone numbers of all Pscychotherapists in Eist Mclbourne). The user has the option of restricting the search by using a number of constraints or service controls, for example, the amount of information returned on a request may be limited. Subject to local access controls, the user may modify a Directory entry.
The Directory is capable of holding any type of information about a person, an organisation, a computer, or in fact any real world object.
For example, it would be possible to store business, name address. telephone number, telex, teletex and telememo numbers, as well as business-specific information such as a description of the business type, its daily opening hours, product catalogues and service of advertising details. The general structure of an entry is illustrated in figure one.
To allow for different names for the same object. an alien mechanism is provided. Each object has a distinct, unambiguous name (its distinguished name) but users may know objects by alternative names called aliases. An alias may be considered a pointer to another within the directory.

Users may protect directory information using an access control mechanism. This mechanism is supported by an authentication framework which allows the Directory to verify the identity of the originator of a request.

## The Model And Information Framework

Basically, the directory system operates as follows. Each local directory within the system is known as a Directory System Agent (DSA). Users interact with the Directory via a Directory User Agent (DUA). The DUA helps the user to formulate a directory query and sends this query in an appropriate form to a DSA. The DSA then tries to answer this query if it can: otherwise it communicates with other DSAs to find the requested information before replying to the initiator of the query with either a result (and answer to the query), or an error accompanied by ant explanation of why the query could not he satisfied.

The information contained in the directory. consists of a number arranged in a directery information tree (DIT). The DIT can be viewed as a hierachy of entries


Figure 2: The relationship between the various parts of the directory organisation.
with the root entry at the apex of the tree. An entry may contain information about an object (such as a person. an organisation or a computer process). Alternatively. an entry may represent an clius of another entry, in which case it simply contains the name of the entry which it represents.

Each entry may have only one unique name, called the distinguished name. The distinguished name. as the term implies. distinguishes the entry from all other entries in the DIT. An entrys distinguished name is composed of its superior entry (its parent in the hierarchy) plas it own relative distinguished name.

Each entry contains an arbitary number of attributes. which may represent any useful information such as names, telephone numbers or telex numbers. An attribute consists of a type (e.g: telephone number) and one or more values for that type (in this case. several telephone numbers).
The current version of the standard does not specif a standardised mechanism for controlling access to entries. The specification of access control mechanisms would provide a uniform method of controlling access to the directory for the purposes of reading and modifying directory informa-
tion
In a large. distributed directory system. it is advantageous to keep local copies of certain directory entries in order to efficiently answer queries relating to entries held by remote DSAs. Two DSAs may establish a bilateral agreement to manage the initialisation and subsequent update of such copies. The standardisation of these agreements would permit different directory implimentations to establish such agreenents quickly and automatically.

## Distributed Operations

In order for the directory syste $n$ to successfully answer a query, individual directory system agents (DSAS) must co-operate. Each DSA is responsible not only for answering queries relating to entries that it holds, but also for correctly and usefully handling all other queries that it may receive. Therefore. the standard specifies the complex procedure that a DSA must use in handling queries.

When a DSA receives a query relating to an entry which it does not hold, it must either chain (pass on) the query to a DSA which is in some sense closer to the desired entry. or else return a referral to the initiator. This referral directs the initiator


For: Musicians,
Road Crews,
Recording Engineers,
Lighting People,
Managers, Promoters
and anybody
interested in what
goes into
today's music-making.



## OUT NOW

## Electronic directories

of the query to one or more DSAs that are in a better position to answer the query. Thus, it is ensured that all queries will eventually reach the DSA holding the desired entry by this process of Directory marigation.

In order to guarantee the success of navigation. cach DSA must hold a certain amount of information relating to the portion of the Directory Intormation Tree (DIT) that it does not hold. This information is called khowledge and guarantees that a DSA holding ant entry be able to navigate to the DSA holding that entrys immediate stuperior (parent) and immerdiate subordinate (children) entries. This entails holding references to the entry's immediate superior and immediate subordinates

A reference to an entry consists of at least the name and address of the DSA holding that entry. or aternatively the name and address of a DSA that is able to direct the query to the IDSA holding the desired entry. Through these references. each DSA holds knowledge about directory entries. This knowledge represents a DSA: vicw of the world and enables the directory a a whole to navigate to any entry within the directory information trec.

A set of rules. the navigation procedure, describes the method for navigating 10 an entry using knowledge in order to satisty a directory request. There are two steps involved in this procedure. The first step requires navigation to a DSA holding some superior of the targe entry. Khowledge is used to navigate up the directory information tree to reach a superior of the target entry (this may be an entry between the root entry and the target entry).
The second step involves the use of knowledge to navigate down through the Directory foformation Tree to reach the DSA holding the target entry. In navigating from an entry 10 its subordinate. a DSA may multicast the query to several DSAs 10 which it holds references.

For some reason, a DSA may choose not to chain or multicast during navigation. In this case, the DSA uses its knowledge to return a referral. The retertal consists of the set of information neeessary for the intiator or some ISSA to continue the navigation procedure from where it stopped. Thus. knowledge guarantees successful navigation to ant entrs in the directory information tree.

## Application

The emerging directory standard is likels to be implemented first as a support function in a message handling system such as Telecom Australia's Telememo product This is the role for which the directory standard was originatly intended. The next likely application is in the support of OSI
networks. Such applications will start to appear within the next few years. As more services are provided with an associated electronic directory, there will be increasing pressure to integrate these service-specific directories into a single directory system. The emerging directory standard provides an ideal framework for this to oceur in the future

The French PTI has had an electronic directory system running for several vears. The system is based on a videotex services and grants users on-line access to telephone numbers via a Yellow Pages style search. While they report that this has supplanted paper telephone directories. this has only been possible because of their strategy to provide the videotex terminals (Minitel) free of charge and to provide a range of other non-directory information services accessible by the same terminals

It is intended by the French Prl that the French Minitel ststem will be modified to be compatible with the CCIIT/ISO Directory standard. For this reason, reptesentatives from the French Plo have recently become involved in the interatfonal standardisation activities.
There ate also several experimental implementations of the directory standard under investigation in a mumber of organisations. One such implementation is the THORN project, which implements an carly intercept of the directory standard. This is a co-operative effort by a number of institutions in Europe

The GMD, a research institute associated with the West German Bundespost, are currently working on an experimental implementation of some aspects of the Directory. Televekert (Sweden) ate currently designing an experimental directory and we expect to have a demonstration sistem available by the end of 1987 without full OSI support. Dialcom. a US company owned by British Telecom. have been working on diectory ststems for several vears and are likely to have one of the first CCITT-like implementations which will be used in conjunction with their messaging system.

The Telecom Australia Rescarch Lab oratorics are currently implementing an experimental electronic ditectory system. This intoles examining both the definilion of the service provided to the end user and issues related to the performance of DSAs and their operation in a distributed directory environment. There are a number of issues, presently under insestigation. in the software architecture of such a system.

The athors are al Telecomis Researd labormories, Charon, Vic.

## Emona Instruments.

## Test and Measuring Instrumentation.



At Emona we specialise in electronic test and measuring instrumentation, from the low cost, affordable models to the latest high-technology instruments.

Our range of instrumentation includes:

- KIKUSUI high quality instruments, oscilloscopes from 20 MHz to 200 MHz with digital storage, high power IDC supplies, electronic loads, signal generators and synthesisers and analysers.
- GW economy range of oscilloscopes, laboratory power supplies, signal generators, function generators, withstanding voltage testers, frequency/ universal counters, millivolt and distortion meters.
- TIME Nato suppliers of voltage and current calibrators. Programmable calibrators, ATE equipment, resistance and capacitance decade boxes.
- ASAHI DPM's, meter relay units, super slim DPM's, intelligent meters with inbuilt 8 bit micro.
- POLAR workshop fault finding instruments, including in-circuit faults and shorts locators.
This list is by no means exhaustive, so fill-in the accompanying coupon or for more information on any of our products, call Emona at (02) 519 3933, 86 Parramatta Rd Camperdown 2050. Or write: Emona Instruments, P.O. Box K720, Haymarket, 2000. Fax (02) 5501378.

Please photocopy the below coupon..

$\square$ Free Emona Catalogue Please call me

Name $\qquad$

Title $\qquad$

Company $\qquad$

Address $\qquad$
$\qquad$ Tel $\qquad$
Send to: Emona Instruments, P.O. Box K720 Haymarket, 2000.

READER INFO No. 56

# INTERNATIONAL STANDARDS FOR COMPUTER COMMUNICATIONS 


#### Abstract

The information processing industry is in the midst of an accelerated evolution. Guided by the forces of natural selection (ie, the market place) a new species of information processing system is developing. Emerging from the present diversity of incompatible, isolated cells, whole communities of computer systems will be interconnected using standardised forms of communiction to create more competitive systems.


G. J. Dickson

As computers proliferate, the ability to inter-connect models from different manufacturers has become essential to improve the flow of information within an organisation and between different organisations. This has become critical as com-puter-based information systems have been accepted in many organisations as invaluable tools for the improvement of business effiency.
Incompatibilities between different types of computers place barriers to the electronic exchange of information between organisations and fragment the market for computer products. Standards to overcome this have been proposed for some time and have emerged in the Open Systems Interconnection (OSI) model. Standards are also being formulated within that model for specific applications such as electronic messaging, document interchange, electronic funds transfer and manufacturing.

While these standards are emerging in the computer industry, there have been major advances in telephone systems which will mean eventually all telecommunications activities, including voice. image and data transmission, may be handled over one network as a series of digital data streams. Standards for these Integrated Services Digital Networks (ISDN) are being implemented internationally.

The combination of OSI and ISDN holds the hope of new business opportunties through improved productivity, the creation of new services and the integration and expansion of local and export markets for systems and services. To the horror of those who are unable to adapt and innovate, the industry will be profoundly changed by the evolution away from single vendor solutions towards a multi-vendor computer environment. The nature of the
cultural change to the information industry wrought by the introduction of OSI is the subject of this paper.

## International Standards and Cultural Change

The driving force behind the creation of the OSI standards at the start of this decade, came from a small group of users and the communications industry. They were users who had the foresight to realise that standards for communications protocols were essential to give them freedom of choice between different types of computer systems. The communications industry has long recognised that standards were crucial to the successful merger of computer and communications systems in the so-called "Information Age".
Now that the implementation of the OSI standards is a reality, the computer vendors are actively promoting OSI. Vendor acceptance of OSI is so strong that industry rivals have formed collaborative organisations to promote OSI and to reduce the costs involved in implementing and testing the complex software required for the OSI protocols. The formation of the Corporation for Open Systems (COS)(USA), the Standards Application and Promotion Group (SPAG)(Europe), the Promoting conference for OSI (POSI) (Japan) and the OSI Community (OSICOM) (Australia) are unprecedented examples of co-operation between computer vendors.

This acknowledgement that multi-vendor distributed networks are a formal part of present and future computer systems sales represents a significant change in the corporate culture and marketing approach of the vendors.

## Benefits to Users

In the long term, OSI offers greater freedom of choice and lower costs for users.
The need to conform to a proprictary communications architecture unique to an individual vendor will be of much lower importance than in current networks. The flexibility to tailor hardware and software systems from multiple vendors to solve business needs will ease the growth of innovative applications and services.
Adoption of the standards will eventually lead to lower costs because of the associated economies of scale and increased competition between vendors.

## Benefits to Vendors

Vendors will gain from the integration and expansion of local and export markets for systems and services. It will also be easier for new companies to enter the market.
An indirect benefit is the gradual alleviation of the present acute shortage of skilled staff. In the long term, the need for specialist knowledge of proprictary communications systems will be replaced by a wider pool of knowledge about the standard communications protocol

## Opportunities for Industry

When adopted, the international standards would benefit the information industry through improved productivity and creation of new value-added services. The benefits will flow to many sectors of the nation, as the standards are concerned with activities where the interests of many sectors converge.

The business opportunities opened up by the standards are behind the intense effort now directed at the development of distributed applications based on OSI, eg:

- X.400/MOTIS - standards for a store and forward system for interpersonal electronic mail (text and image) and other business documentation.
- ODA/IF - Office Document Architecture and Interchange Format - for interaction between word processing systems and exchange of business forms (eg. orders. invoices, shipping doucments. financial papers). These systems will decrease the cost of and delay of processing business transactions between different organisations.
- MAP aqnd TOP - Manufacturing Automation Protocol and Technical Office Protocol - for productivity gains on the factory floor and in the engineering office.
- Directory Services - a distributed database to facilitate the identification and location of information and services.


## Horror

The period of innovation and change accompanying the introduction of OSI systems may be a time of challenge and difficulty for many organisations. The long term benefits of OSI are offset by short term cost penalties during the transition away from proprictary systems.

Data processing departments with large investments in existing systems will naturally be reluctant to change. Typically, it will be the smaller organisations, unecumbered by existing systems, which will seize the opportunities that a period of basic innovation

Build yourself a MODEM from our new range of kits in just an afternoon and be talking via computer to your BBS across town, or across the world. All kits have been designed to meet stringent Telecom specifications and come complete with every component down to the last nut and bolt.

## Check these features:

$\star$ Double sided plated-through fibreglass PCB $\star$ Soldermask on both sides $\star$ Screen printed component legend $\star$ Pre drilled and painted metal box $\star$ Slimline designed case $\star$ Screen printed front panel $\star$ Seven status leds on front panel $\star$ MIZOO has constant speed converter for computers that don't run split speeds $\star$ Kit includes Power Pak worth over $\$ 20.00 \star$ Assembly and test manual

```
M300 $129.00 TAX INC.
300 BPS
```

M1200 \$189.00 TAX INC.
300/1200/75 BPS ANS/ORIG
CCITT/BELL
LOOPBACK TEST BAUDRATE CONVERTER
ADAPTIVE EQUALISER
PH/DATA RELAY
POWER PAK

```
M1212 \$169.00 TAX INC.
1200/1200 BPS
ANS/ORIG
CCITT/BELL
LOOPBACK TEST
PH/DATA RELAY
POWER PAK
```

* ALL KITS COME WITH FULL MONEY BACK GUARANTEE *

Please deliver $\qquad$ M $\qquad$ Data Modem/s at \$ $\qquad$ each, plus $\$ 7.50$ for courier delivery or $\$ 3.00$ for Parcel Post. Add
$\$ 50.00$ per modem for full assembled and tested unit/s. I enclose $\$$ $\qquad$ for total payment by, Cheque/Money Order/Credit Card:
Bankcard/Mastercard. (Cross out what is not applicable.)

CARD NUMBER:
SIGNATURE
NAME
ADDRESS
POSTCODE

Mail Coupon to:
DATACOM COMPUTERS
Private Bag 39, BAYSWATER
VICTORIA 3153
Telephone orders:
ring (03) 2217119
1 p.m. - 8 p.m. Mon - Fri

## Computer Communications

creates. thereby increasing competitive pressures on established organisations.

Corporate strategies to meet these challenges and avoid uncertainty should address the following issues:

- A change in corporate culture toward further integration of information systems into the mainstream business system.
- Increased co-operation between different organisations eg, between trading partners to improve communications or between vendors to ensure that different products interwork.
Technical staff. including those with expert knowledge of proprictary systems, will need education and training to equip them with the skills for work with the standard protocols.


## The Role of the NPSC

It is critical that Australian systems and communciations products are fully compatible with overseas development for us to benefit from the rapid expansion of the computer communications market place

The NPSC intends to serve as a catalyst for evolutionary change in the information and communication industry. Its activities are directed towards:

- raising awareness of the issues. opportunities and challenges associated with the international standards for OSI and ISDN;
- disseminating and interpreting information about the latest developments in the application of protocol standards;
- the provision of training and educational services targeted at OSI and ISDN. and;


The key to transferring images and data between computers efficiently is the establishment of standards $\| k$ MAP, TOP and ODA.

## Ton hobby intor

Turn your hobby into a profitable career in computers.


You're obviously interested in electronics. Why else would you be reading this magazine?

But have you ever considered turning your interest into a rewarding career as a computer maintenance engineer?

The Control Data Institute can help you fulfil your goal in the shortest possible time by teaching you such subjects as basic electronics, microprocessors, data communication, disk drives and machine language programming.

We then help you further by helping more than
$90 \%$ of our graduates get their first jobs in this exciting, expanding industry.

Don't delay, contact Control Data now. Sydney 4381300 , Melbourne 2689666.

## ©D CONTROL DATA INSTITUTE A computer career starts here.



- tranferring expertise to system implementers and product developers through the provision of consulting services. protocol conformance testing and the participation in trials and joint projects.
The NPSC is now in operation with seven permanent staff. The currently available services are an informative newsletter and professional consulting. In house training on a variety of data communications topics can also be provided. An OSI training course is being developed with the assistance of advisors from industry and academia, and further services. including protocol testing, will be introduced after a period of market research and development.

The NPSC is funded by grants from a number of public and private sector bodies and will derive revenue from subseriptions and fees for the various products and services. It will operate as an efficient, independent, innovative flexible and commercially oriented organisation. self funding to the maximum extent possible

## Conclusion

The OSI standards have evolved to fill a new environmental niche - multi-vendor, distributed. peer-to-peer networks and for eletronic communication, between different organisations. In this respect it is not a a direct competitor to established proprictary communications architectures.

The success of OSI shall be measured in terms of the numbers of innovative applications and services which would not have been created otherwise. The success of the NPSC shall be measured in terms of the adoption of OSI in products, systems and services developed in Australia.

The author is with the national Protocol Support Centre Lid. 2/28 Albert Road, South Melbourne. The Centre has been established to help the industry keep pace with rapid overseas imnovation and to avoid the creation of evolutionary carriosities for which this comtinent is well known.

## Sierra have the products to design high technology telecommunications; ACD Itronics has the complete range of quality components for you!

SC11006 240bps analog peripheral.
Compatible with CCITT $\sqrt{22}$. B1S $22 / 21$, and Bell 212A/103 standards. integrated DTMF/Guard tone generator, call progress monitor. contains an on-chip hybrid. Also analog, digital and remote digital loopback, plus programmable audio outputpor, many other features.
SC11008 Stand-alone interface controller.
Complete AT corrand set in firmware for intelligent modems, direct interface to single chip SC1104 $\times$ SCliO14. Built in uart for RS-232C interface including 38 pin-dip or PLCC package. Compatible with industry Standard Software. reduces component count and boardspace.


AVAILABLE


## SC2200/2202

Serial interface, erasable program memories.
CMOS EE technology in 8 pin packages. 10.000 erase/write cycles and 10 year-data retention. Single 5 v supply. very low power dissipation and no external high voltage for programming. Simple microprocessor interface, ask for details.

PREMIUM QUALITY COMPONENTS WITH SUPERIOR SERVICE PLUS LOWER PRICESCONTACT US FOR FULL DETAILS ON OUR EXTENSIVERANGE!

READER INFO No. 59

 SY'DNEY': lot Belmore Rd. Rwerwood NSu"2210. Ph 53.16200. Fax , 3441910 BRISBANE: 5.j voreen St, Chapd Hill QId to69. Ph 878 1488, Fax 8781490

# buILDING A VOICE sECURITY SYSTEM 

> There are many applications for scrambling voice communications traffic so that the unwelcome cannot eavesdrop, as a local politican or two has found to his cost. So a Victorian company spent two years developing a product that would beat the bugger, and wound up with a winner on its hands.

## A. J. Anderson



Figure 1: Basic block diagram of a digital processing system

As interception tools becone more sophisticated, or at least. more readily available. the need to secure wireless conversations, and even conversations within waveguides, has grown in proportion. In 1985, the Melbourne based radio importer. Imark identified this market and began research into a new product that would take advantage of the demand.

The project commenced in mid 1986. The first several months were spent researching various scrambling techniques and addressing the relative cost and performance of each system. The main design goals were as follows -

- Low cost (less \$5(0)).
- Medium to high security (more than 10.O(1) codes avaitable).
- Single +12 V supply,
- Good performance in situations where large amounts of mobile flutter exists.
- Little or no degradation of the range or audio quality of the two-way system.
- Simple instaltation.

The first design decision to be made was to choose between analogue or digital processing. As the Digiscram had to work down an existing 3 kHz communications channel an entirely digital system was not considered practical because the data rate required would exceed the channel band-
width. On the other hand. if completely analogue techniques were used, the complexity of the system would be enormous because many codes are required on any one channel. Obviously some compromise had to be struck between the analogue and digital approaches. The approach adopted is as used in digital signal processing systems. The basic block diagran is shown in figure 1.

The idea was to have the best of both worlds incorporated into the one system. It is possible to perform complex analogue functions while having the ability to generate code combinations by digital processing, all on one circuit board.

The next basic design decision was to decide between time domain scrambling or frequency domain scrambling or a combination of both. Time domain scrambling involves re-arranging parts of the audio signal making them occur in a different sequence on the scramblers output. Frequency domain scrambling involves rearranging parts of the frequency spectrum of an audio signal to make input and output frequencies different. It is also possible to use both systems at the one time or in a predetermined sequence to improve the overall security. Frequency domain systems are most casily achieved using analogue techniques while time domain systems are most easily realised using digital processing. The system chosen was a time domain system which can be enhanced in the future by modifying the microprocessors software to accommodate a greater level of security.

Now that the major system decisions had been made it was time to design the hardware to implement it. The microprocessor chosen was the $\mathrm{Z80}$.

It's not modern, but it is adequate, with


Figure 2: The block diagram of the mark one version of the voice security system.


Figure 3:
Top: the prototype board of the mark one. Below is the reverse of the same board. it was constructed using wire wrap. An invitation for rats to set up shop, perhaps!
a powerful instruction set and large addressing range. Selection of the ADC and DAC was somewhat of a problem as most devices required a negative supply which would mean adding a DC/DC converter to the circuit to maintain the design goal of a single +12 V supply. When the Mark 1 model was built, unfortunately, a negative supply was included as the chips used required it. They were the AD573 ADC and AD1408 DAC, both from Analogue Devices. The basic block diagram of the Mark I model is shown in figure 2.

The prototype Mark 1 board was built using wire wrap. The actual board is shown in figure 3.

As only one board existed at this stage all testing was done with the aid of a tape recorder. To test the system, audio from a microphone was fed through the system and the scrambled audio was recorded on tape. When this was completed the scrambler was switched to the receive mode and the recorded audio was played back through to a speaker and the results were recorded. Many different versions of the software were written and a practical working system was soon in use. The results were quite impressive and it seemed it would be possible to meet all the design goals easily. During the several months of testing of the Mark 1 board more advanced ADC's and DAC's became available at reasonable cost. These were the AD670 ADC and AD558 DAC, again both Analogue Devices chips. Best of all they both only required a positive supply and were actually faster than the previous chips used in the Mark 1 model. It was decided to use these new chips in a second

wire wrap prototype system with an enhanced micro architecture so the system could be evaluated in real time. The Mark 2 board was built and was soon operational. It had all the features of the Mark 1 board but also included ports for text transmission and sub audible tone signalling (C.T.C.S.S.). All these features were exercised during the following months and both units (Mark 1 and 2) were interfaced to transceivers and tested on air. The results were excellent, over fixed stable conditions, but during mobile operation performance was poor due to Raleigh fading (mobile flutter).

This poor performance was due to the fact that a small burst of FSK (frequency shift keying) data was transmitted with every block of encoded audio to allow the receiver to lock or synchronize itself to the transmitter. As this occurred several times per second the receiver relied very heavily on having a continuous channel. Mobile flutter causes very sharp and narrow losses of signal on a channel so it was almost impossible for the receiver to remain locked in sync.

The decoding software was entirely rewritten to overcome this problem by locking sync only once and relying on the

## Voice Security System




The author with the computer alded design system used to produce the final board.

Figure 4: The first production version of the digitalker
microprocessors crystal to maintain syncronism between transmitter and receiver. During this re-write the added feature of Q/B (Quiet Base) was included in the form of selective calling to enhance the systems overall performance.

A practical design was very close and design of the circuit-board was started. As a very limited amount of space was available for the board it had to be multilayer. It took three revisions of the artwork to get to a production model which is shown in figure 4. All artwork was prepared using the "Smartwork" software package run on an IBM PC. The boards were manufactured in Sydney by Printronics.

During final software development a major problem was encountered. The microprocessor was not fast enough to perform the complex decoding algorithms required by the decoder. The microprocessor was upgraded to 4 MHz and later to CMOS 4 MHz to increase speed and lower power consumption. The final prototypes were completed in February 1986. The first production run was completed in March 1986. Production was, and still is, carried out in house, at IMARK in West Melbourne and is increasing each month. All the software for the scrambler was written on a custom built real time emulator controlled by an IBM PC (also at Imark). The software was written in $\mathrm{Z80}$ mnemonics and then compiled by the emulator. The completed machine code program is just under 2 k long.

The story however, does not finish here. A completely new hardware design is currently on the drawing board using a custom hybrid integrated circuit to reduce


Figure 5: The second generation product
size and power consumption and make the system more suitable for inclusion in other types of radio equipment. A photo of the first prototype of the new model is shown in figure 5.
All the original design goals for the Digiscram were achieved with the production versions. In fact, the Digiscram board proved to be so powerful it has found its way into other areas and is also manufac-
tured with modified software as a morse code identifier for use on two-way radio repeaters and as the Digilert remote alarm system. New uses for the board are also being investigated.

Andrew Anderson is chief engineer at Imark in Melbourne.

## WHO'S WHO IN DATA

 COMMUNICATIONSThis list covers all the main players in the construction or disuribution of data communications equipment. While we have tried to be reusonably comprehensive, note that omission from our list merely implies our data base was incomplete at the time of going to press.

ABE COMPUTERS
24 Burwood Highway.
Burwood 3125
(03) 2882144

AJ DISTRIBUTORS
44 Prospect Road.
Prospect 5082
(08) 269 1244

ALL-SYSTEMS ELECTRONICS
16 Hope Strect.
Seven Hills 2147
(02) $624+644$

ALLAW SALES
10/1 Short Street.
Chatswood 2067
(02) 4069111

AMTEX ELECTRONICS
36 Lisbon Strect.
Fairficld 2165
(02) 7282121

AUGAT
27 Worrell Street.
Nunnawading 3131
(03) $89+1666$

AUS'TRAL STANDARI) CABLES
PO Box 50. Moorehank Avenue.
Liverpool 2170
(02) 82: 9777

AUSTRALIAN GENERAL
ELECTRIC
Cnr Lane Cove \& Epping Roads.
North Ryde 2113
(02) $\times 888111$

AUTOMATIC ICE CO
10 Snith Street.
Charlestown 22 (
(049) 633188

AVTEK ELECTRONICS
PO Box 651
Lane Cove 2060
(02) 7123733

AWA REGENTS PARK DIVISION
33 Bellona Avenue.
Regents Park 2143
(02) 645 2777

BALTEC SYSTEMS
26 Mayneview Street.

## Milton 4064

(07) 3695910

BOB McKNIGITT (rRADING)
$230^{\prime}$ Connell Terrace.

Bowen Hills 4 (0)
(07) 25276010

BROADBAND NETWORK
COMMUNICATIONS
Suite 4 (H. 781 Pacific Highway,
Chatswood 2067
(02) 4116535

CABLECON SERVICES
19 Bournvale Drive.
Berwick 380K
(03) 7071346

CASE COMMUNICATION
SYSTEMS
10-12 Rodborough Road.
Frenchs Forest 2086
(02) 4516655

CLEANI_INE SYSTEMS
3. Maddox Street.

Alexandria 2015
(02) 6982277

COMMODORE BUSINESS
MACIINES
67 Mars Road.
Lane Cove 2066
(12) $+27+888$

COMPLETE TECHNOLOGY
170A Riley Street.
Darlinghurst 2010
(02) 3317474

COMPUCARE
35 Archer Strect.
Chatswood 2067
(02) 4111499

COMPUTER ENGINEERING

## SALES

88 Wollongong Strect.
1.yshwick 2619
( 062 ) 80 ) 5954
COMPUTER HAVEN
183 Maroubra Road.
Maroubra 2035
(02) 3492366

COMPUIER NETWORK SYSTEMS
4/569 Pacific Highway.
Chatswood 2167
(02) 4197177

COMPUTER SHARK
52 Claremont Strect.
South Yarra 3141
(03) 2419111

CSIRONET
PO Box 1800 .
Canberra 2601
( 662 ) $+3 \quad 3299$
CUNNINGHAM CONSOLIDATED

## LIMITED

15A Anderson Road,
Thronbury 3071
(03) 4840791

CYBERSOFT CORP
PO Box 149.
Hurst ville 2220
(02) 2813040

CYPHER RESEARCH
LABORATORIES
PO Box 4 ,
Machans Beach 4871
(070) 559138

DACOS PTY LTD
538 Mountain Highway.
Bayswater 3153
(03) 729 (O) 44

DATA BRIDGE ELECTR(ONIC
(0) 4 North Road.

Ormond 3204
(03) 5780814

DATA SAT MODEMS
8 Lachlan Strect.
Liverpool 2170
(02) 8211622

DATACRAFT
Maroondah Highway.
Croydon 3136
(03) 7269911

DATAMATIC P'TY L'TD
9 Byfield Street
North Ryde 2113
(02) $888 \quad 1788$

DATAPLEX
PO Box 541 .
I ilvatale 3140
(03) 7353333

DELAIRCO INDUSTRIES
90)-100 Sussex Street.

Sydney 2000)
(02) 2901666

DICK SMITH EIECTRONICS
Cnr Lanc Cove \& Waterloo Roads
North Ryde 2113
(02) $88832(\mathrm{H})$

DISCWARE
150) Broadwaty.

Broadway 2(0)7
(02) 2126933

ELPRO TECHINOLOGIES
PO Box 383.
Alderley 4051
(17) 3575344

ERACOM
26 Greg Chapplell Drive.
Burleigh Heads 4220
(075) 560911

ESIS PIY
15 Pleasant Avenue.
Lindficld 2069
(02) 4672032

ESTEC EIECTRONICS
1 Brewer Street.
East Perth
(09) 2279455

FUTURETECH
56 Regent Road.
Oakleight 3166
(03) $56 \% 1944$

GANDALFPACHIC
Chatswood Village.
Unit +. 27 Neridah Street.
Chatswood 2067
(02) 4195977

GAS TECH
Unit 6. 158 South Creek Road.
Dee Why $2(199$
(02) 9814933

GSA TIECINOLOGY'
511 Keilor Road.
Niddrie
(03) 3791828

HALES \& ROGERS
5 Mobbs Lane.
Carlingford 21 is
(02) 8585322

HASLER PACIFIC
2 Patya Close.
Epping 2121
(02) 8681131

HI-COM UNITRONICS
7 President Lane
Caringbath 2229
(02) 5247878

HIGH TECHNOLOGY
COMMUNICATIONS
500 Oxford Street.
Bondi Junction 2022
(02) 3875222

HONEYWELL
863 Bourke Street.
Waterloo 2017
(02) 6990155

HY-SPEK
TELECOMMUNICATIONS
828 Pacific Highway
Gordon 2072
(02) 8751180

HYPEC ELECTRONICS
21 Ryedalc Road.
West Ryde 2114
(02) 808 3666

INNOVAK COMPUTING
$31+$ Milier Street.
North Sydney 2060
(12) 9575325

INTEGRAL FIBRE SYSTEMS
6/19 Rodhorough Road.
Frenchs Forest NSW 2086
(02) 4517033

INTEL AUSTRALIA
Level 6, 200 Pacific Highway,
Crows Nest NSW $2(165$
(02) 9572744

INTERLINK ELECTRONICS
171 Dorcas Strect.
South Melbournc 32105
(03) $699+177$
J. N. ALMGREN

16 Snith Street.
Chatswood 2067
(02) 4066177

JACQUES ELECTRONICS
193 Given Terrace.
Paddington Old 40 ont
(07) 3698766

JAYCAR ELECTRONICS
115-117 Parramatta Road.
Concord 2137
(02) 7472022

JEI) MICROPROCESSORS
7/5-7 Chandler Road.
Boronia 3155
(03) 7623588
L. M. ERICSON

61 Kiggall Street.
Broadmeadows 3047
(03) 3 (1) 2244

LAOCON CONTROL
TECHNOI.OGY
72 Melville Parade.
South Perth 6151
(09) 3679111

MAGRATHIS
202 Bell Street.
Preston 3072
(03) 4873335

MC-P APPLICATIONS
2nd Floor. 156 Pacific Highway
St Leonards 20065
(02) $43975(\mathrm{k})$

MICRO HE1.P COMPUTERS
361 St Gcorges Road.
North Fitzroy Vic 3068
(03) 4861555

MICRO-EDUCATIONAL
8/235 Darby Strect.
Neweastle NSW 2300
(049) $26+122$

MICROBEE SYSTEMS
Koala Crescent
West Gosford
(043) 242711
(008) $02+1010$

MI'TSUBISHI ELECTRIC
73-75 Epping Road.
North Kyde NSW 2113
(02) 888.5777

MITSUI COMPUTER
1-3 Rodborough Road.
Frenchs Forest 2086
(02) 4517711

NEC AUSTRALIA
II Queens Road
Melbourne 3004
(02) 2676355

NEC INFORMATION \&
CONTR()L
99 Nicholson Street.
St Leonards 2065
(03) 438 .3544

NETCOMM (AUST)
25 Paul Street North.
North Ryde 2113
(02) 8885533

OTC
32 Martin Street.
Sydney 20(H)
(02) 2305435

ODYL COMMUNICATIONS
112 James Street.
Templestowe 3106
(03) 8463022

OFFCOM
28 Chandos Street.
St Leonards NSW 2065
(02) $+38+199$

OLIEX CABLES
207 Sunshine Road
Tottenham Vie 3012
(03) 3162222

OPTICAL NETWORKS
1/54 Malvern Street.
Bayswater 3153
(03) $720+766$

OPTICAI. SYSTEMS DESIGN
5 Jvy Street.
Chatswood 2067
(02) 4115834

PACIFIC COMMUNICATIONS
PO Box 248.
Rydalmere 2116
(02) 638 64(\%)

PAUL BUDDE
COMMUNICATIONS
PO Box 372.
Roseville 2069
(02) $411+666$

PERIPIIERAI. COMPUTER
NDUSTRIES
2/6 Redfern Street.
Wetherill Park 2164. (02) 81485.54

PERSONAL COMPUTER
SOFTWARE 1103/68 Alfred Strect.
Milsons Point NSW 2 $\mathrm{Kkl}_{1}$
(02) 923-2899

PHILIPS COMMUNICATION
SYSTEMS
1 (ireenhill Avenue.
Moorelank 2!70
(02) 602 2(н)

PRE-PAK ELECTRONICS
1A West Street.
I.ewisham 2049
(02) 5699797

PULSAR ELECTRONICS
19-21 Catlina Drive.
Tullamarine Vic 3043
(03) 3302555

OPSX COMMUNICATIONS
IO Stirling Highway.
Nedlands gryy
(09) 389 I 666

RACAI MILGO
47 Talavera Road.
North Ryde 2113
(02) $8886+44$

RANDATA
12 Victoria Avenue
Perth 6000
(09) $32524(\mathrm{~K})$

REMINGTON
175 Liverpool Street.
Sudney 2000)
(02) 269092.5

ROCKWELL ELECTRONICS
Maroondah Highway,
Lilydale Vic 3140
(03) 7265920

ROLAND CORP
50 Garden Street.
South Yarra Vic 3141
(03) $2+11254$

ROSSER COMMUNICATIONS
Suite 4. 1051 Pacific Highway.
Pymble 2073
(02) 4498233

SAM TECHNOLOGY
36 Binney Street.
Marayong $21+8$
(02) 6715588

SCITEC CORPORATION
3 Apollo Place.
Lane Cove 206
(02) +289555

SENDATA
1I Stamford Road.
Oakleigh Vic 3166
(03) 5686299

STC
252 Botany Road.
Alexandria 2015
(12) 699 (0)44

SUMMIT AUSTRALIA
95 Hunter Street.
Hornsby 2077
(02) 4765233

SYSTEMS TECHNOLOGY
154-156 Clarence Street.
Sydney 20 (\%)
(02) 2933834

TANDY
91 Kurrajong Avenue.
Mt Druitt 2770
(02) 6751222

TECHWAY
61 Lavender Street.
Milsons Point $24 \mathrm{k}, \mathrm{l}$
(02) 9294988

TELECOM AUSTRALIA
2/191 Queens Street.
Melbourne 3090
(03) frot 8538

TELECORP
821 Tepko Road.
Terrey llills 20s4
(02) 4502522

TESTRONIC
3 Montana Sirect.
North Rocks 2151
(02) 6307528

THE COMPONENT SPECIALISTS
11 Manston Street.
Elizabeth South SA 5112
(08) 2522292

THE COMPUTER ADVANTAGE Level 16. St Martins Tower.
31 Market Street. Sydney 2000
(02) 292000

THE NICE COMPUTER COM PANY
Suite 3. 41 Rawson Street
Epping 2121
(02) 8898777

UNIX SYSTEMS AUSTRALIA
21 Young Street.
Concord 2137
(02) 7644566

VISIONHIRE
144 Pacific Highway.
Nortis Svincy 2060
(02) 9.595610

WILLIS COMMUNICATIONS
4) Finsbury Street.

Newmarket 4051
(07) 3568515

## At last, the ordinary microprocessor can take its rightful place in history.



It had to happen--the conventional microprocessor has had its day. Regulated to the ranks of yesterday's devices by the new transputer family from INMOS. It's history in the making.

The IMS T414 transputer is a fast, casy-to-use VLSI component, integrating a 32-bit processor four intertransputer communication links, 2 K bytes static RAM, 32-bit memory interface and DRAM controller. All on a single CMOS chipoffering execution rates up to 10 MIPs.

While transputers excel in single-processor systems, their real power can be unleashed by connccting any number of transputers together via the high-speed serial links. Multitransputer systems can deliver the performance you necd today and can be casily expanded in the future as your processing requirements increase.

And there's more. Programming multiprocessor systems has never been casier. The Transputer Development System (TDS) supports C, Fortran, Pascal and OCCAM, providing a complete software development environment, and is available for a number of popular hosts. Software developed on the TDS can be executed on one or more transputers, enabling cost - performance tradeoffs to be made.

INMOS transputers are available now and have already found their way into companies who are evaluating, prototyping and manufacturing transputer based systems. Applications include supercomputers, DSP, graphics, robotics, Al, distributed control systems, PC's, enginecring workstations and many others.

##  <br> PARALLEL PROCESSING. UNPARALLELED POTENTIAL. <br> 

For more information on the transputer family call Trevor Evans: [02] 325530 and start making history yourself.
HAWK ELECTRONICS PTY. LTD.
203-233 New South Head Road, Edgecliff. P.O. Box 474. Sydney, NSW 2027.

Australia
Telephone: (02) 32 5530
TLX: 70041. Fax: (02) 3274908



## $12 \mathrm{~V}-9,7.5$, or 6 V <br> Converter <br> (automobile)

Many transistorised items such as radio, cassettes and other electrical items oper-
ate on batteries. usually these are in the 6-12 volt range and sockets are provided for extemal power supply.
This circult enables these devices to be operated from a car's electrical supply.

The table gives values for resistors and specified diode types for different voltages. Should more than one voltage be required a switching arrangement could be incorporated. For high currents the transistor should be mounted on a heatsink.

OUTPUT VOLTAGE	9	7.5	6
$\begin{aligned} & \text { R1 ( } 1 / 2 \text { WATT) }\left(\begin{array}{l} 250 \\ \text { ZENER DIODE } \\ \mathrm{mW} \end{array}\right) \end{aligned}$	$180 \Omega$	$270 \Omega$	$330 \Omega$
	10 V	8Vt	6V6



## Reduced ripple at low current

In the normal circuit (Fig. 1) the ripple at 1 amp is at least 2 volts. Cheap power amps use this circuit (with low supply ripple rejection) and produce annoying amounts of hum at low signal levels.

In the circuit in Fig. 2 the ripple is considerably reduced at low levels and at high currents the supply volt-
age is only minimally affected.
Maximmum low ripple current $(1 \mathrm{~m})=\mathrm{V} / / \mathrm{R}$ where Ptot $R$ must be more than $\mathrm{Vz}^{2} / \mathrm{R}=$ im Vz. 1M ${ }^{\circ}$ maximum total current so $\mathrm{P}_{\text {tot }}=1 \mathrm{M}-1 \mathrm{~m} \mathrm{Vz}$. A typical set of values for $1 \mathrm{~m}=$ $1 / 2 \mathrm{Amp}$ is $\mathrm{Vz}=3 \mathrm{~V}, \mathrm{R}=11 / 2$ ohms.


## FM modulated TIL crystal oscillator

This TTL crystal oscillator is useful for checking FM receivers or to drive multipliersamplifiers for an FM transmitter. It will accept crystals between 1 and 18 MHz . Output
level is quite high and rich in harmonics. Audlo can be provided at a low level from an audio oscillator or a microphone amplifier.


## Low frequency strobe

The circuit will flash the bulb at a rate between 0 and 10 Hz . Points to note are:
(i) Because all components are connected directly to the mains, do not touch whilst the unit is on.
(ii) Use a television type 25 k pot with insulated spindle. (iii) Mount in an insulated box with ventilation holes.
(iv) The 5 k resistor gets hot, hence the wattage rating.
to obtain a full range of control by the pot.

There is a risk of inducing convulslve seizures in people suffering from epilepsy if this unit is operated in their presence. Such people should avoid areas where strobe lights are used. A rate of nine flashes per second is considered the most dangerous and most people will find this unpleasant. (v) The 27 k may be altered


## Tape hiss reduction circuit

The circuit is used to either boost or cut frequencies. When making a recording, point $X$ is wired to point $R$ so that treble signals are boosted by 10 dB , and then during playback, point $X$ is wired to point $P$ so that the signal from the tape, including the hiss, has the treble cut by an equivalent amount. The circuif values are such that the overall frequency response, from record through playback, is flat over the range $20 \mathrm{~Hz}-20 \mathrm{kHz}$. Thus the output signal after playback is identical with the input signal before recording, but the hiss is cut by 10 dB .

RV1 sets the gain of the cir-
cuit to be unity at low frequencies ( $<500 \mathrm{~Hz}$ ); RV2 is adjusted so that the collector voltage of Q3 is half the positive rail voltage. When this is set, the circult will function without distortion with an input voltage of up to 1.5 V rms.
If monitoring during recording is not required, the same circuit may be used for record and playback, with $X$ switched between P and R as necessary. If monitoring during record is required, two circuits are needed, one with $X$ wired to $R$ and the other with $X$ wired to $P$.
For stereo, two circuits are required.


## 5000 second astable

An astable multivibrator with RC network values as high as $200 \mathrm{M} \Omega$ and $25 \mu \mathrm{~F}$ may be constructed using CMOS logic gates. A simple modification makes it possible to vary the mark-space ratio between wide limits. Markspace ratios higher than 5000: 1 can be achieved.

Such high values of RC frequency determining components are made possible by the almost infinite input impedance of the basic CMOS gate. This high impedance places negligible loading on the RC network, a factor that normally limits the lowest frequency attainable.

As the time constant of $200 \mathrm{M} \Omega$ and $25 \mu \mathrm{~F}$ is 5000 seconds, it can be seen that the circuit can be used to provide long time delays or an ultra low frequency pulse generator.

The gates in the astable multivibrator, shown in Fig. 1a are used as simple inverters with the second inputs being employed to provide an inhibit function. Normally these inputs, pins 2,6,8 and 13, are connected to the positive supply line through two resistors and are at logical 1.
Three gates form the astable $G_{1}, G_{2}$ and $G_{3}$, and the fourth gate, $G_{4}$, performs the function of output buffer.
Gate $G$, monitors the potential at the junction of the timing capacitor ( $C$ ) and resistor ( R ). When this potential is below the threshold of $G_{1}$, gate 2 connects one end of $C$ to ground and $G_{3}$ connects one end of $R$ to $V_{D D}$.
The capacitor charges
through $R$ until the potential at the input of $G_{1}$ exceeds the gate's threshold. When this occurs, the output of gate 1 falls to $0, G_{2}$ rises to 1 and $\mathrm{G}_{3}$ falls to 0 . The gates have now connected the resistor to ground and the capacitor to $V_{D D}$. The capacitor discharges through the resistor until $G_{1}$ again switches off. The circuit therefore oscillates at a frequency determined by $C$ and $R$ with $a$ mark-space ratio close to unity.
If the circuit shown in Fig. 1 b is connected between A and $B$ in place of $R$, the two diodes isolate the capacitor charge and discharge paths. Variable resistors in the two paths, or the potentiometer shown, allow the mark-space ratio to be varied over a very wide range.

Grounding the inhibit inputs stops the astable from oscillating and puts the output at either 1 or 0 depending upon which inhibit input is used.

Feed Forward needs your minds. If you have ideas for circuits that you would like to enter in our idea of the month contest, programs for the computing columns or just want a word with the editor, send your thoughts to:

## Feed Forward

ETI, Federal Publishing,
PO Box 227.
Waterloo, NSW 2017
Contributors can look forward to $\$ 20$ for each published idea/program which should be submitted with the declaration coupon below.
Programs MUST be in the form of a listing from a printer. You should indicate which computer the program is for. Letters should be typewritten or from a printer, preferably with lines double spaced. Circuits can be drawn roughly, because we have a draughtsman who redraws them anyway, but make sure they are clear enough for us to understand.

## RULES

The winning entry will be judged by the Editor of ETI Magazine, whose decision will be final. No correspondence can be entered into regarding the decision.
The winner will be advised by telegram. The name of the winner, logether with the winning idea, will be published in the next possible issue of ETI Magazine.
Contestants must enter their names and addresses where indicated on each coupon. Photostats or clearly written copies will be accepted. You may send as many entries as your wish.
This contest is invalid in states where local laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions.

## 'Idea of the month' contest

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the 'Ideas for Experimenters' column - one of the most consistently popular features in ETI Magazine. Each month, we will be giving away a Scope Soldering Station (model ETC60L) worth approximately $\$ 191$.
Selections will be made at the sole discretion of the editoria! staff of ETI Magazine.


## COUPON

Cut and send to: Scope-ETI 'Idea of the Month' Contest/ Computing Column, ETI Magazine, PO 8ox 227, Waterloo NSW 2017.
'I agree to the above terms and grant Electronics Today International all rights 10 publish my idea/program in ETI Magazine or other publications produced by it. I deciare that the attached idea/program is my own original material, that it has not previously been published and that its publication does not violate any other copyright."•

- Breach of copyright is now a criminal offence.

Title of Idea/program
Slgnature ........................................................... Date
$\square$
Address

During 1987 Texas Instruments sponsored various final year electrical enginecring projects in the fields of Digital Signal Processing, Local Area Networks, and Parallel Processing. Throughout 1988, we will be highlighting the work of some of these projects and we believe that you will be both impressed and encouraged by the high standard of work that these students have carried out.
Project: A Digital Baseband Echo Cancellation Test Set
Student: C. E. Chew
Supervisor: Dr K. K. Pang

## Overview

Throughout the Australian telecommunications network, both two wire and four wire lines are widely used as tranmission channels for voice and digital data. Because of the cost of laying cable to customer premises, many short haul lines are only two wires, however, for long haul tranmissions, four wire systems are used. A hybrid, which is essentially a bridge network, is used to couple the two wire and four wire channels. In
order to operate properly, the bridge must be perfectly balanced with two wire channel, however, due to the multitude of types of two wire circuits, it is not possible to ensure that the hybrid is balanced with all two wire circuits. Any imbalance causes coupling between the tranmission and reception signal paths, resulting in a leakage of transmitter power into the receiver circuit. This forms an echo which is classified as near end or far end, depending upon which hybrid causes the leakage. In this project a TMS32020 Digital Signal Processor was used to review and simulate some schemes for adaptively identifying the parameters of a leakage path through a hybrid and then cancelling the echo signal.

IN order to develop the test set a TMS32020 card which plugs into an 1MB PC was used. The echol cancelling software was developed on the PC and loaded into the processor for execution. An interface between the
processor and the external world was then constructed in order to complete the test set.
Various algorithms for echo cancellation were examined, however, the 'Least Mean Square' LMS algorithm was considered to provide the greatest throughout for a given amount of computing power. The canceller has tranversal (tapped delay line) filter structure, and a stochastic cost function. The convergence time is typically in the order of several thousand interations.
The test set generates an AMI line coded signal from an external Pseudo Random Binary Sequence (PRBS) generator. A resistive 120 ohm hybrid connects the test set to an external tranmission line. A receiver circuit with a bandpass filter detects signals from the hybrid and feeds them to a 12 bit ADC circuit. A TMS32020 DSP samples both the received and transmitted signal with the output observable after passing the signal through a DAC.

A working system has been constructed and tested.


# Texas Instruments Australia <br> Phone (02) 887-7222 

## A TRULY PORTABLE BATTERY POWERED LAPTOP IS HERE!

## SPECIFICATIONS

CPU
$-8028610.10 \mathrm{MHz}$

- 32KB ROM expandable to 64KB - 640KB RAM expandable to 2640 KB Disk Drives One $3.5^{\circ}$ micro-floppy disk drive - Optional second $3.5^{\circ}$ micro floppy disk drive Video
- Super-twist LCO $(640 \times 200)$, with contras:
adjustment
Conncior for external RGB/mono monito Keyboard
Expensy low profile keyboard
Expension
One parallel 232 port
- Optional $300 / 1200$ baud modem (Hayes compatble)
- One 16 bit expansion bus Indicators
. Power-Low, Caps-Lock, Num-Lock, Oisk-In-Use
- 12VI3An sealed lead-acid battery - External AC to DC adapter
R.R.P. \$4,800

LOW POWER 20MB HARD DISK AVAILABLE SOON

## HARD DISK SPECIAL

Full 12 months warranty plus repair warranty after 12 months


NEW MULTI VIDEO DISPLAY CARDS
Video output incl. CGA, EGA, PGA \& MONOGRAPHICS
NEW SHORT MONOGRAPHIC CARD WITH CGA
CAPABILITY
Software incl. to convert CGA into HR Monographics
12 BITS 16 CHANNEL AD/DA CARD
$\$ 260$
A/D 16 CHANNEL INPUT \& D/A 1 CHANNEL OUTPUT, $0-9 \mathrm{~V}$, uni/bipolar. Suits industrial applications incl. software \& manual
4 SERIAL PORTS CARD
\$220
SLOT EXTENSION CARDS \$95
Incl. internal plug-in card for AT/XI, internal slot, extension, external sockets/slots \& cable


## EPROM WRITER CARDS

Fast burning - 2716 to 27512, 27c64, 128 \& one time Prom. Incl. a plug-in eprom card, ext. metal housing to hold 4 ZIF sockets \& software.

CX0646 - 640K Turbo XTV20 CPU $4.77 \& 10 \mathrm{MHz} .2$ drives. CGA paralle serial/game/clock
$\$ 1290$
CX0650 - Turbo AT 512k system with 2 floppy drives $360 \times 2$ CGA $\$ 1950$
$\begin{aligned} & \text { CX0652 - Turbo AT system } w / 1.2 \mathrm{M} \text { drive \& } 20 \mathrm{MB} \text { miniscribe hard disk } 6 \& \\ & 12 \mathrm{MHz} \text { 1024k RAM }\end{aligned}$
Dealer Enquiries Welcome

> EPROM WRITER CARD CA3001-Oiract read wertecogy 2716 -27512 Eproms with rariable roltages to sult difterent sproms. One extemal 2 IF sockel bul expandable
104 CA3004 - Same as CA3001 but can copy 4 eproms sumutaneoush

> SUPER SIMPLE MODEM $\$ 125.00$ AEM4605. 300FDX, 120075. RS232 intertace to any computer

> MULTISERIAL-4 IJO CARD FOR PC/XT \& PC/AT Contans four standard RS232 ports Convert yout PC info a tume-shating computer. All port addresses are lactory set but can be changed by user. IRO3 \&

> 4 interrupl request levels user setectable. Programmable baud rate 50.500 bps S. 6 . O or party. Use two bourds for 8 ports!
> pantly. Use two boards 1088 po

## COMPONENTS



Elektor Serial Digitiser
For your computer PCB $86090-1.2$ AEM 1086
175.00 .8 channels with $8 V$ max UP. serial .00 .8 thannets with 8 V max LP . setial 10
comm. ( 150 . 9600 taud)

Main PCB with 2 channels only $\$ 10500$ Each additional 2 channels $\$ 30.00$

## 

## POLYPROPYLENE CAPACITORS

KP Range Polypropylene capacitors 2.5\% 63V 5 mm spacing

100pF-470pF $\$ 0.70$ 560pF-1500pF $\$ 0.75$
1800pF-12pF $\$ 0.85$ Other values 15 pF -18pF $\$ 0.90$ on MKP, MKC MKP 1uF/250V $\$ 3.90$ available. MKC Y $5 \mathrm{uF} / 100 \mathrm{~V}$ audio $\$ 2.50$
Suzuki 2uF/440V
modem $\$ 12.50$
MKT capacitors Full range
Electrolytic RB \& Axial type trom luF to 4700uF, 16V. 25V, 50 V

## Special electrolytics

100uF/100V axial EYMA
100uF/100V RB type
$\$ 1.80$
$220 \mathrm{uF} / 100 \mathrm{~V}$ RB type
$\$ 1.50$
$470 \mathrm{uF} / 100 \mathrm{~V}$ RB
$\$ 2.00$
470uF/100V RE typ $\$ 2.50$
$4700 \mathrm{uF} / 100 \mathrm{~V}$ CAN $\$ 13.50$ 10,000uF/100V CAN EYNA $\$ 59.00$
Filter capacitors for computers Miniature size monolithic ceramic blue caps
$0.033 / 50 \mathrm{~V}$
$\$ 0.35$
$0.1 \mathrm{~F} / 50 \mathrm{~V}$ monotithic ceramic
$\$ 0.35$
AC Power Line Filler Capacitors
0.01uFi/250VAC
$0.1 \mathrm{uF} / 250 \mathrm{VAC}$
$\$ 1.20$
$\$ 1.60$
AEM 4505 Text to Speech card


ILP TOROIDAL TRANSFORMER (Made in UK) va price dual secondary voltage


HI-COM UNITRONICS INT PIL
7 PRESIDENT LANE. CARINGBAH. N.S.W. 2229
P.O. BOX 626 CARINGBAH. 2229 PH: (02) 5247878 Mail Order Postage Mail Order Postage Less than S50 S3.50 S100-S250 $\quad$ S7.00 S50-\$99 $\quad \$ 4.50 \quad$ Above $\$ 250 \quad \$ 10.00$ Heavy items adds extra.


## Remote temperature sensor

The circuit shows a temperature sensing device which can be used to indicate at a remote point when the temperature passes through a certain value or to give an alarm when this occurs.

The sensing unit itself contains a 2 N 930 transistor. The base-emitter voltage of this device appears across R1 and (as the base current is
far less than the collector current) the voltage at the upper end of R2 will be the emitter-base volume multiplied by ( $R 2+R 1$ )/R1. The base-emitter voltage changes with a temperature coefficient of $-2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and this change is multiplied by the same factor before being applied to the LM339 circuit.

The potential at point $A$ is
set by the resistors R3 and R4. As the temperature of the sensor transistor rises, the voltage at point $B$ falls. At the time this voltage falls below that at point $A$, the output of the LM339 voltage comparator will go 'high'. If, however, the input connections to the LM339 are reversed, the output will go 'low' when the temperature of the sensor falls below the preset point.

The LM339 contains four separate voltage comparators in one package; only one of these comparators is used in the circuit shown. The other three comparators could be used with another three temperature sensing transistors so that an indication is given when the temperature passes through three other preset values.

The value of R 5 should be chosen so that the current passing through the remote sensor unit is about $10 \mu \mathrm{~A}$. If the temperature range over
which operation is required is narrow, the ratio R2/R1 may be large so that the system is very sensitive to small temperature variations. A potentiometer may be substituted for R3 and R4 so that the temperature at which the comparator switches is variable. The voltage at point $B$ is highly linear over a very wide temperature range (about $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ) and therefore the potentiometer which replaces R3 and R4 can be given a linear calibration.

A feedback resistor may be connected from the output to the non-inverting input to provide a small amount of hysteresis (so that the temperture at which the output changes when the temperature is rising is different from that when it is falling): one then has the basis of a thermostat.

The output current has a maximum value of about 15 mA .

## Voltage regulator and electronic fuse

This circuit offers several useful features compared to more basic designs. Among them are the facts that current cut-off is achieved, it is self-resetting once that overload is removed and it is an efficient voltage regulator. Choose $V_{z}$ to be about $2 / 3$ $V_{\text {out }}$ and $R_{1}$ to supply enough current for stabilization of the Zener voltage. Choose $\mathrm{R}_{2}$, which determines the cut-off current, $I_{\text {max }}$ such that $I_{\text {max }} R_{2}$ $=\left(V_{Z}-0.5\right) \times(\beta Q 1+Q 2)$ and the values of $R_{3}, R V_{1}$. Choose
$R_{4}$ so that the base of $Q 4$ is at the same voltage as the base of Q3 and a large current (100 times) passes down the resistor chain compared to the base current of $Q 4$ which is $\left(V_{z}-0.5\right) / R_{2} \beta Q 4$. Altering RV1 gives fine control over $V_{\text {out }} R 5$ (200 ohms to $2 k 2$ ) allows switch-on under no load conditions. Component values are given for a 5 V supply with a 2 A cut-out. For low current applications, Q1 can be a BFY50 with Q2 omitted.




## Increasing power rating of zener diodes

There are occasions when a higher power Zener diode is required and one is not readily available. Here is a circuit which with the aid of a power transistor can increase the power rating of any Zener diode.
By simply shunting the base-collector junction of the transistor by a low power Zener and if the gain of the transistor at the operating current exceeds 30, then across the collector-emitter terminals the device will behave as a Zener diode.
If the original diode is a 250 mW device then the power dissipation of the system will be $30 \times 250 \mathrm{~mW}=$ 7.5 watts. It should be noted that the Zener voltage thus obtained will be 0.7 V higher than the diode rating

Thus if originally a 6.8 V diode was used then the new voltage will be $6.8 \mathrm{~V}+0.7 \mathrm{~V}$ $=7.5 \mathrm{~V}$. Thus for a power of 7.5 W , the maximum permissible current willb e $7.5 \mathrm{~W} / 7.5 \mathrm{~V}$ $=1 \mathrm{~A}$.


## Noise generator

In this circuit the Zener diode, as well as providing a source of noise, stabilizes the amplifier transistor collector operating point. The gain of the transistor is about 75 and the noise output of the circuit is about 15 volts. Capacitor C2 may be added to filter out high frequency noise in which case the output drops. For example with C2 $=0.1 \mu \mathrm{~F}$, the output falls to 0.5 volt.


## Noise rejecting scr trigger

When switching inductive loads, unreliable triggering is sometimes encountered due to feedback of switching transients.
The circuit shown overcomes this problem by using an integrator together with a voltage comparator to elimi nate transients. Data pulses
should be of 8 volt amplitude and 0.5 millisecond duration. Discrimination against noise pulses will depend on their energy content. For example a 70 volt 10 microsecond wide pulse will not cause triggering, but a 100 microsecond pulse must not exceed 20 volts amplitude.


## TL-mains interface

Here is a useful circuit for driven mains operated devices direct from TIL logic circuits. Although it works well, it has the inconvenience that the neutral line is connected to circuit ground
For inputs other than TTL levels a 10k series resitor may need to be connected between Q1 base and ground to reduce leakage.

Approximately 1 mA at 1.4 volts is required to switch Q1 on. If driving from a low impedance, some means of current limiting will also be required.


Wideband amplifiers
It is not commonly known that some digital ICs can be used in the linear mode to obtain performance equal, or superior, to some more conventional components.
A typical example is the use of a MECL logic gate as a wideband amplifier. Such an amplifier based on the Motorola MC 1023 of the MECL 2 family provides a gain of 5.2 over a frequency range from zero to 125 MHz (at the 3 dB points). A still wider bandwidth of zero to 350 MHz may be obtained by using the MC 1660 from the MECL 3 family.
The method used to bias MECL gates for linear operation is shown in the inset of Fig. 1. The NOR output is connected back to the input. This

## Figure 1

can be done over one, or over several, gates. The external 'self-biasing' network feeds back only the dc component of the output signal. Therefore the dc input current is furnished by the output of the same gate. Assuming that the voltage drop across the biasing resistors is small, the input and output voltages are identical. This is only possible in the centre of the gates' transition region. The main advantage of this very simple biasing method is that the circuit automatically compensates for all offset and bias voltage variations. In addition, the method is very economical, especially when a cascade arrangement of gates is needed.
The response depends on
how many inputs are connected in parallel, there is a disadvantage however in connecting several inputs together to increase gains. The offset voltage between input and output increases with the number of inputs that are paralleled. It therefore depends on the individual application, if a slightly higher offset voltage can be tolerated then a higher gain can be achieved.

Fig. 2 shows the phase shift curves for the two gates and Fig. 3 is a plot of distortion against input voltage.

## DESOLDERING

 SYSTEMS FOR WORKSHOPS \& PRODUCTIONDESOLDER TOOLS
 Width 15 mm Length i 5 M GREEN - Code TW2.0 Width 2.0 mm Length 15 M blue - Code Tw3. 0 Width 3.0 mm Length 155 M BROWN - Code TW3.5 Width 3.5 mm Length 15 M
READER INFO No. 101


## SOLDER BLOTTER

Full 2 metre length ( $30 \%$ more than most brands)
Avoid Burnt Fingers with Wind Back Dispenser.

## TIME EFFICIENT WORK-AIDS FOR PRODUCTION \& WORKSHOP

## PCB ASSEMBLY JIG

Four sizes available. Standard type with one sliding rail.
PCSS1 $270 \times 220 \mathrm{~mm}$ PCSS2 $500 \times 220 \mathrm{~mm}$ PCSS $3750 \times 220 \mathrm{~mm}$ PCSS $4500 \times 350 \mathrm{~mm}$ Additional sliding rails available.


CODE PCSS2 READER INFO No. 103

## PANAPRESS IDC BENCH ASSEMBLY PRESS

The quarter ton manual IDC Bench Assembly Press is a rugged, practical installation tool designed for low volume, mass termination of varsous IDC connectors on flat (ribbon) cable. Interchangeable base plates accomodate a broad range of IDC connectors.


## INSERTERS FLUSH CUTTERS HEAT SINKS

READER INFO No. 106


## DIP-DISPENSER/ STRAIGHTENERS

CODE DS 1440-5
(5 CHANNEL)
2 \& 10 CHANNEL
ALSO AVAILABLE

FLUSHCUTTERS


FORCEPS-HEAT SINKS


## WANT MORE INFORMATION THEN CONTACT

VICTORIA: (03) 3381566 NEW SOUTH WALES: (02) 5466144 QUEENSLAND: BRISBANE: (07) 525231 TOWNSVILLE: (077) 793855 SOUTH AUSTRALIA: (08) 3521166 WESTERN AUSTRALIA: (09) 3625011 TASMANIA: LAUNCESTON: (003) 315545 HOBART: (002) $34.2811_{1}$ s.

FOR A FREE CATALOGUE
SEND YOUR NAME AND ADDRESS TO: FREEPOST No. 2
SCOPE LABORATORIES
P.O. BOX 63, NIDDRIE, VICTORIA, 3042

No Stamp Required

(03) 3381566 TLX AA38318

# All ELECTRONIC COMPONENTS <br> 118-122 LONSDALE STREET, MELBOURNE, VIC. 3000. TEL: 662-3506 <br> Division of DOTHAIN Ptv. Ltd. FAX (03) 663-3822 

## TALK ABOUT A HUGE RANGE OF KITS!

StEREO UNITS
S2 ET1 48250 watt per crannet Amplitier
S3 ETI 4824 Preamo Board

56 EII 48050 wam Ampititel
S9 ETI 403 Expander Compressor
S9

S10 E11 34 Fre wall stereo
S12 $\frac{11}{} 138$ audwo Level Meler
S18 ©1 1268 Rumble Fitter
S35 ETI 47060 war avoro ampither mocuie
536 हI 4000 Series 60 wath stereo amplitier
537 EI $\mathbf{4 5 1}$ Hum Filter lor Mi-FI systems
S38 E A Stereo inflared Remole Smich
539 TI a 45 Stereo Louospeaker Protector
Su0 E A Super. Bass finter
SA2 E A Struus limer
S63 Kl 3000 Series Amplitier 25 wch
S44 71477 Mostet Dower amp module inc brackels
S45 ETl 157 Scraten Rumbie Finter
S66 EI 588 VU Level Meter
SA7 EII 479 Brodgina Adaptor
548 EII 5000 Series Power Ampulter
S49 EII 194 Lovespeeder Protector
SSO EA intared TV Sound Contro
S51 HE 121 Scraten o Hiss futer
SS2 E 100 W Sub Wooter Module
SS3 EA Site eec Simulator
SS4 EA He adohone Amp
SSS AEM 65500 SOW Unilty Amp Moduie
SS6 AEM 6500100 W Utility Amp Modute
SS7 ETI 1405 Slereo Enhancet
SS8 7142 Master Play Siereo
SSS EA Led Bal Graph Display (Stereo)
S6 EA AM Sb ren Decoder
S61 EA I Wat Ulity Amo
562 E1 453 Genera Purpose Amp
SE3 EA Bndge Adapion
SEA AEM 6503 Active Cioss.Over
STAGE
S51 E71 592 Ligh Show Controler (3 (A) ) 11000 * (ch) S12 \&T1 593 Colour Sequence" (lor use with ETI 5921
STA $\{$ A Lxht Craser 3 channel
STS \& A Twn Tremoot lor Orpans Slage Amps
SI7 EtI 499150 w Mostet P A Mooule
S78 ET1 498499 150w Pubic Aodress Amp'tier
ST9 \& A Musccolor IV
ST10 Ea Musico our III
PRE-AMPISFER AMO MIXER
P1 ETI 45 Stereo Pre-Jmp ther
P2 ETI 449 Batance Mic Pre.ampimies
P6 EIT 19 Muer Preampliter - 4 Ch or 2 Ch
P11 ET1 446 Avoio Limiter
P12 511471 H igh Periormance Stereo Pre-amp hites
P13 ETI 473 Mowno Coll Cartunge Pre-Amp
P14 Eti 474 High to tow imgeedence interlace
P15 ETI 467 a indut Gutar Mc Pre-amp suis ETid 466 P16 E A Moving Cal Pre-Ampither (Batrey)
P17 E A Movng Coil Pre-Ampititer (Plug pack)
P18 EII 478 Mm Mowng Magnel Pre-amp ISe: es 5000 I P19 ETI 478mC Movng Cor Pre-amp (Series 5000 )
PPO ETI 478 Senes 5000 Pre.Ampitei
P1IE A Vocal Cancellor
P22 ET1 4618 sanced Preamorther
P23 KE 112 Mcromuse
PPA EA frects Unit
P75 ETI 140 :3 4 Chameel Muxer
P26 EII SB8 Thear cal Lightana Criticoller
guitar units
61 EII dis Audio Phaser
614 [tI 452 Guilar Pracice Anghtrei
G15 ETI 166300 wat Amp module
G16 ET! 454 Fue Sustain
G17 He 102 Guita Phasel
G18 ETI 450 A Buckel Bripace
619 ETI 4508 Miner for abov
G20 1 A quilat Pre-amphiter
G21 Sonics ME 2 Soncs ME2 Wan Wan Peoal less deota 23 EII 110 Bass
G23 E11 1410 Bass Gutar Amp (150w)
QuDH TEST UAITS
AII ET1 441 Aucio Norse Generator
AI2 $£ 11128$ Audio Millwolr Meter
alf Ell 137 Auco Oscrialor
AI9 HE 105 Bench Ampliter
AT10 E A Audio iest Unit
AT11 E A Funcion Generator
atiz ETI 464 Auvio Test Unil
TMERS
11 ETI 650 STAC Time
T2 1915640 .8.alal Wall Clock
If EII 540 Unversal Timer
TS EII 265 Pomet 00 m n

T6 EA 4 Opor L C O Clock or Contiol Timer

## communication equipment

CEI EITIIR Remote Control Transmilter Swich CE2 EI 711 R Remole Control Recemer
CE3 EI 7 T10 Remole Control Decoder
CES ETI 7118 Single Control
CES Ooubte Control
CE6 ETI 711 P Power Suody
CE9 ET: 7 CO Active Antenna
CE11 EII 780 Novice Transminter
CE12 EII 703 Aniemne maiching Unit
CE33 EII 718 Shortwave Radio CE34 ETI 990 Alan Compresso
CE35 ETI 721 Arcrat Band Converter leess XTALS)
CEE37 E11 475 Wide Band A M Tuner
CE38 E A Masthead Pre.amporther
CE39 ETI 731 R T TY Mosulator
CE40 ETI 729 UKF TV Masthead Preamo
CE41 EII 735 UHF to VHF TV Converlei
CE42 HE 104 AM Tuner
CEd3 HE 106 Radro MkIophone
CE44 EA RTTY Oemodutio
CE4S E A voce Operator Relay
CE 46 ETi 733 RTTY Convertes for Mcrodee
CE47 EII 1517 Vroeo Oistinoution Amp
CE4S EA Video Ennancet
CE50 ETI 1518 vioeo Enmancel
CEST EA VCR Sound Processor
CE 52 EA Moloryde inercom
CE 53 ET 1405 EI Sereo Ennancer
CE 56 ET 755 Compuler Orven RTTY Iranscever
metal oetectors
moi Eti St9 induction ba ance Metal Oetector M02 ETI 561 Metal Localor
m03 ETI 1500 o scrimnasing Meta Locsior lunor eo
MDS ET1 562 Geget Counter with ZP 1310 Tube mot ETI 566 Pape ano Cabe locator
mOZ E A Prospector Metal Locitor inc uding neadophenes

## TEST EQUIPMEMT

EE2 ETI 133 Pnase Meter
re9 Eil 124 Tone Burst Generator
IE 16 EII 120 Loge Prose
TE17 ETI 121 loge Puse
TE 34 ETI 487 Real Time Audo Anayser
TE 35 EII 483 Sound Leve Meter
TE36 Etl 189 Real Trme Audo And yser
Te37 ETI 71 Cross Hatch Generators
TE 38 E A 3 Mnz Frequency Counter
TE39 Ea a chn wo lage insuation Tester
TE 42 E A Trans stor Tester mol 8 Pourar \& P ETS TE43 ET1 591 ud Dom Preselabe Counter TE 44 EII 5500 Q tal oal lless casel ncludes ETI 591 TE 46 ETI 1 ad versanic logic Probe TEA 7 ETI 724 M Clowave Oren Leak Derector
Tf48 4 fti 150 Sumple Analiog Frequency Meter
IESIEA Oghal Capacitance Meter
TE 52 ETl 5890 gital Temo Meier
TE53EA TV CRO Acaptor
TE54 E A XTAL Lockec Paptern Generatol
Te5s e a Decaue Resistance Sub Box
TE56 E A Capacitance Sud Bor
TE57 E A Decade Capacitance Srib Box
TESE E A Tamaum Capaciance Sud Box
TE60 171572 PH Meter
TE61 ETI 135 Panel Weter
TE64 ME 103 TIIns sloo Tes
TE64 ME 111 Onm meter
TE66 ETI : 6510 :91tal Panel Meler
IE67 £1 2 2SS Ansioq Thermometer
TE68 EA Trans slor Tester
TE69 6II 17520 MHz 0.0 Frequency Meler thando nedr 1E70 fli: 166 function Pu se Generator
TE 72 AEM SSOS Hash Hatrrer
TE 73 EA Event Counter
TE 74 EII 183 OP.Amp Iester
TETS ETIS 52 Og gas pH Misher
mOOEL TRAIN UNitS Isee also SOUMO Effects')
Mill Eli 541 Mode fian Conso
MT3 EA Ralmaster - Incuuta Remo

## soumo effects

SEI E A Sound Ethects Generator
SE3E A Gron Voce
SEA E A Steam Whisve
SES ETI 607 Sound Emects
SE6 E A 992 Audio Sounc Bender
SETE A Electronc Sed Sheil Sound EHecls
SE8 ETH 669A Percuss on Synthesiser
SE9 ETI 1698 Sequencel for Synnes seet
SE 10 ea eneers Un
set as for Steam Irain and Proo Plane noise

VILAGECUREEMT COMTROLS
VI ETI 48112 vor $10 \pm 40$ OC 100 war Inverer VZ ET1 5250 nul Speed Contiotite
VIO EA Lero wota Control
VIO EA Zero. vothage smich ing heat controller
VII EA Inverfer I2vOC ingut 230050 mz 300 Va outpol
enl Lxit tiverier
Vi3 EA Electric Fence
VII ETI 1506 Xeron Push Buxe Flasher
15 ET 1512 Lictic fencer
Tester

V19 Heler micad Chuper
$V 20$ ETI 578 Simple nimad Crarget
21 EA Heas Controder

vas Ea hiph Varape insurtason Tester
255 घा 1532 Tema Contol for

## WAR HiAG SYSTEMS

WSI ETI 583 Gas Aarm
WS3 EII 528 Home Burgat Alarm
WSA ETI 702 Radar intudee Alarm
WST ETI 313 Cat Narm
WS 12 ETI 587 House Alurm
WSILEA 1976 Car Alarm
WSis Ea 10 Ghz Racar A arm
WSI6 E A Light Beam Relay
WSI7 E11 247 Sol: Mo.sture thatcalor
wsis Ell 250 Simple house Narm
wsig Eli 570 intrated Trio Relay
WS20 ETI 585 IBR Ultrasonce Swich
WS21 EII 330 Car Alarm
ws22 Ell 322 Over rev Car Alarm inct case
W524 EII 1506 Xenon Bike Flasher
WS25 Ell 3.30 Cat Alarm
WS2r EA Delure Car Alarm
WS27 EA Ulirs Sonc Movement Oetector
WS28 ET1 278 Drectional 0001 Minder
WS 29 EA Mulisectior Home Secunty System
wsse fa intia-Red Lyant Beam Reliay
WS31 EA Defure Car Alam
WS32 EA Doorway Minder
WS33 EA "Screecher" Car Alumm
WS3 ET1 1527 \& Sector Burgiar Alarm

## рноTOGRAPHIC

PHI ETI 586 Stuter Speed Yimer PH3 EII 51 AB Sound Light hash Trigget PH4 Ell 532 Pholo timer
Ph7 E 11513 Tape Side Synchromizet PH12 EA Syrc-d.S.Side
PH15 EII 553 Tape Side Synchronzzet
PH16 E A Orgital Pnoto Trmer
PH17 EII 594 Develooment Timer
PHi9 F A Sound Irkgered Pholotlash
PH20 HE 109 Enta Fidas Iniqget
PH2SE A PDolograptic fimei
PM22 ETI 182 Lur Muter
PM23 ETI 1521 Donal End Exoosure meter
PH24 ETI 279 Excosure Meter
POWER SUPPLIES
PSI Ell 132 Expentrenters Power Supply
PS2 [11 581 Oual Power Supdy
PS3 $\{1712$ CB Power Sudory
PSA ETI 131 Power Suody
PSS \& A 1976 Requated Powel Suppory
PS 11 E A C C P Powte Suppiy
PS 12 EII 142 Powel Suppiy 0
PS 12 Et1 is 14 Powel Supopy 0 30 v 0 is Alluly psiolecled)
PS13 [11 772 Power Supoly
PS15 Ell 577 Dual 12V supp
PSI6 \& A Powet Saver
PS 17 Ell s80 PS Ponti Suppiy fot 1114801100 walt PS 18 :
PS18 \& a bench Male Utiny Amplter Power Supply
PS20 EII 1630 50 V 05 A
PS21 EA Dus' Traching Powel Supp'y
PS22 EII 16213.30 vol

COMPUTER ANO OIGITAL UMITS
CI fill 633 voeo Synch Boara
C2 3 II 632 M Par 1 Memory Boara v O U C3 ETI 632 Par 1 Power Supdy $\vee$ OU Ct fit 632 A Par 2 Coniro logic V OU CS ETI 6328 Pan 2 Control loge V D U C6 6 ti $63 \times \mathrm{C}$ Pan 2 Character Generator vou C8ETI 632 UARI Board.
C9 fil $631-2$ Kerooard Encoder C10 ETi 631 A SCl Keybora encoder C14 Eli 638 Eprom Programmer C15 EII 637 Cuis Cassene interace C16 Ell 6518 nady 10 Hea Rumber Converter CI7 ET17 730 Gelling Going on Racoo Tele Type C24 ETI 760 vioeo Rr moduitior

C25 EA ExTom Programme
C26 EtI 668 Mcrooee Errom Programmer
C27 $\mathrm{E1} 733$ RTVY Computer Decoorer
28 EA viseo Amp lar Compuitert
20 日l 569 Microse 1 mit pen
ca
C30 El 675 Microbee Serial - Parale Inleriace
C31 Ell 688 Proprammer tor Fusable - Lunk Bpoiar
C32 1 E1 676 RS232 for Mritobe

- Il V 0 U prozects proced less connectors C33 11678 Rom Resder for Microbee 34 ni 659 va 20 Casselw intertice Ca3 ETl 683 Mindmasser - Humin Compoter Link C36 EA Eprom Coowiftoprammer C37 EI 699300 Band Orrect-Connect Mosem
C3O NEM 3500 Lastening Post


## 

C4O ETI 1601 RS 232 for Commosore
CAI AEM 4500 Spoech Smblesirer
C.2 2 ETI 181 Bredout Box

## Feeduck

BFI EII S46GSR Montior (leess probes) BF 2 Ell 544 Hean Rate Montior BF3 EII 576 Eectromyooram

## automotive units

AI ETI 317 Rer monitor
22 ET1 081 Tachometer
A3 E11 316 Transistor Assisied tonition A4 EII 240 Kxoh Power Emergency Fiasher a6 ETI 312 Electronc lontion System
alt 301 van. Wiper
a 22 EII 318 Ovoital Cas Tachomeler
A23 ETI 3194 varimper Mx 2 (no oynamic Braung) N24 Ell 3198 variw der Mk 2 (for oynamic braking) N25 Ell 555 L Lem Activated lacho
az6 E11 320 bamery Conotion indicato
A27 EA ransistor Assisted lomition
N 29 ETI 328 Led O १ Temp Meler less $\vee 00$ probe A30 ET 1321 Auto Fuet Level Alarm A31 EII 332 Stethoscone
A32 ETI 3225 Auto Probe Iesis Venicte Electricurs A33 ह11 333 Reversing AuIT

## A33 E11 333 Revers ing Abiar

A3S Efi 326 Led fopanced Vormeter
A36 ETI 329 Ammeter rexpandeo scale!
A38 ET1 159 E eane 5 sai e volmeter

A 49 EA Optoe ectronct inn tion
ald fa 3 S wioer conirover
AAZ EA LCO Car Clock
asz ea lco car ciock
A4s ETI 337 Aulomatic Cas Aeral Contro et ATS EI 280 Low Battery Votl Incicator M.7 ITI 365 Der Rever Tarm
electronic games
EGI Ell OU3 Keads and Tais
EG2 ET1 068 LE 0 O.ce Circur
EG3E A Electronic Roultene Wheel
EGA EII 557 Reaction Time
GGS ET1 814 O.nky 0
EGT/ ME 107 flectronic Once
IG8 E A Photon Tarpeoc
EG9 He 123 Alien Invodels
EG9 HE 123 Alien invodees
EGIO EA Rowlent Wheel
EGIIEA Chaye N Chomp
mISCELUAEOUS KITS
M1 ETI GOA Acceriluated Best Metionom
MA ETI 54 IT Ielegnone Bell Exiender
MA E1I 547 Ielephone Bell Exiender
M10 EII 539 Touch $S$ wich
M to \& 11539 louch Swich
M 37 ET1 249 Combination lock (less lock)
M+6 \& A Power Saver lor incuction motors
M\&8 E A Lissious Pantern Gereatior
M53 FII 247 SolNo sture Alarm
M5s \& A Pools Lomo Selectior
MS6 ETI 256 Humian Melet
M57 ETI 257 Universal Relay Dirvel Bosio

M 59 \& II isol Neg Ion Generator
M60 \& II 1516 Sure Slan lor Mooel Aeropanes
M61 E11 412 Peale Level Oisplay
M62 tII 1515 Molor Speed Controlier
M63 ffi 1520 W debonad Amplitiet
M64 \& A Prone Mnoer
neg ea smpel co clock
N67 (a Uirasonic Rule
M68 AEM 1500 Smole Merronome
M69 AEM 5501 Negative lon Gencerato
m70 AEM 45018 -Chanmel Relyy Interiace
M71 EA Pess OH
Ma72 ET1 506 Electronic Tuning Fork
-a73 ETI 18s in Circui Oiginalic lest

PLUS MANY, MANY MORE KITS WHICH WE CANNOT LIST HERE!!!


## FEGD FORWARD



PEFACI

## Low res drawing (with printer dump)

This is a low resolution drawing program with a printer dump. Drawings can be done in three shades of black by using a joystick in port two or the cursor keys and F7 or the firebutton to plot a point.
At the top of the screen there is a status line which indicates the current mode and shade. To clear your drawing press F2, and to print it out use F4. The pro-
gram was designed for an MPS-803 printer but others may be used with a bit of adaption. To select a shade of black, use one of the following keys:

## F1 - Dark,

F3 - Medium
or, F5 - Light, which is also used to erase.
J. Avis

Frenchs Forest
NSW



on3serven




eOSOC REM .....
COSACH IF A NTHEM CLS:SYSIEM ****




dowa CIOEE OPEN.
00460 CLOFE O:OPEN - $1 \cdot$. 0 , BLIDGET.
coste thime ON: OUTME:OUTMS OF


gesia next a

ars30 INme: OUTME:CLOSE


RMSKG 2G*25EIRI:PLAY O:RETURH


rasod outmo
OROOS PRINT R
ceois FOR i=e roo




-0.an play o: Refurn

086Be CLS
Ergo CURS24: JNVERSE:PRITHT Drpozit to account •: hormal


cora wle


denoen hot:p-R=1: rinsub 2250








derod ETUP
pere is Tupl cm



eno ? 15 T1-C: A-C:R R-1:RETUPH


aroo CL




1020 IF V FWCMR(2*) TMEN REIURH


OIGOA CURSTA': INVERSE:PRINT. EnEP期 :IIIRMAL
0:909 CURSU3H: PRINTIAOE 32J
01003 x02

01:0e IF T1=e : A=B:R-R-1:RETLIRN
11120 OOSUB $1990:$ RETURH


tion amounts : : Normal




1180 cosel 10 eo
1100 PRINTSFIO. 2 DRI. - TOTAL Deduction.
1200 K *o.
N1230 TE KTEGMR (2?) TOEN REIURN

Mizse velf:coro :フog


an eng imput nowni


131 REM
13sa mesur zasa; unstar Routur. .....



```
#|J`\mp@code{IF PESMPIzP TMEM RETUSN}
```




```
M1HMQ AH1:R=R,1:G0SLH 2210:GOSUB 2250
0142M K>0.
```





```
EsAMM PRINT\!.'Translet
```




```
0150e gosua 1870
015:% PRINT\
01538 IF TH=0
01540 goSUs 100g:R-S:REIURM
```



```
N1SOO CLS:CURSI2:INUERSE:PRIMIT PRESERIT PALANCE OF ACCOURIS ':NORMAL:PKINT
```




```
R1588
%11
```



```
glulO CLS:REM * Nod mor* hele at "equbled
M10z% OUTL":
```



```
0:650 LPPINGT CHP:IEI
M,
```






```
W1 ONGNECT I
```



```
A172& PEM *## Dote Doutuce....
```



```
ल1フa, Print
```



```
aiman brut
```



```
Gs82f PEM **** An N*, CDEJor.".."
cigme ppimt-piesis anv bey to return to menu.*I
01040 rT*=."
```




```
OIBGM AEM0 IVNERSE IEMME.....
A1800 IT **1 TMEN PRIHT YI*I
cloge :F V=2 H|EH PF:HP X201
G1015 IF :- THEH PRIMT XTE:
01O2N IF VEA THEN PHINT VIOI
O!OVM IF VES TMEN PRINT XS*;
0104% IF %OO TMEYI PRINT \OE:
```



```
0190C IF S=G TMEN PH:
WIO`a NORMAL:RETURN
```





```
02nze 1F z-3: CJIR)-G3(R).T
0203R :F Z*A: CA(R)CN(R)-T1
M201a IF z.5:CS/R)-CSIR)-T1
M2ase 1F Z*0: CO(R)-CB(R)+T1
N2060 if E"* : CM(R)EC(R)-T1
CZMES PETURN
gzeop REM ##..t Add ROUting
0こLeg IF Ne : COIR)=CN(R).TI
evile ir v=1: C!(AI|CI(R).t!
m?128 If x=2: C2(R)=C2(R)-T1
N2130 3F K=3: CJ(R)=CJ(R)PT)
02118 if vas: CA(R)=CA(R),11
02150 If -55:CSIRI-CSIR).11
$2100 1F v=6:CB(R)-COIR),T\
```



```
C2180 IF VEB
```



```
4(R-1)
```



```
2230 PETUP!
2240 DEH +4+** Screen Optsons ****
```





```
,ysu.0.pope.
```



```
zaz..T pe 60
```



```
33OQ CLS:CURS2S:INUERSE:PRIMT. UARNING.....:HORMAL
F2310 PRINT, You now bave So pecords in this "itm, You have two Optionm:
```





```
2350 00!+!\
02370 MTENKEY:IF N".... TMEN 23>0
sz3Pe valNTival (T-B1):If X:1 OR XI2 TMEN 23GP
a?=00 if X=1 TMEN gosub 1010
```




```
a AMA A－1：RRR 1：COSUB 2210：GOSUB 2250
```








```
01510 PRINTI
```






``` 101
0150
c159 GOSUP 193e：RETURN
AltNe REM＊．tit Primit Stalematil＊＊．．．
O1630 CLS：PR
```





```
W1 P．NQ NE CT
```



```
लिय日 PDIHT－
```



```
aiman urup
```





```
CI日解 MHERSE：IF TOQ TMEN PRIMT VOE
```



```
G1015 IF ：r？THEH PRIHT XTS：
```




```
O190C IF E＝G TMEN PK：
Routine ．．．．．．
```






```
czage PETURN
g2cop REM \＃\＃\＃．t Add ROURIR
```





```
02150 if vis ：Co（R）COIR）．T1
C2180 if roe ：St（R）＝SI（R）．T）
g2ice PFIURN
```



``` tr－1
－2230 PETUP：
```





```
ysu．0．ppe
```





```
0．330 CLS：CURS2S：INUERSE：PRIMT WARNING．．．．．＊：HORMAL
```





```
2350 MTEKEY：IF N．
ar－90 If \(\mathrm{X}=1\) TMEN GOSUB 1610
```


（R）：CS（F）－CS（P）


－273a Cosplen


## Budget savings account

This program is a complete rewrite of the＂Buadget savings account＂program in April 1987 of ETI．This program has been written for a disk Micro－ bee，and prints a statement of your last 50 transactions automatically，every 50 transactions（line 2290）．The Transfer function has been upgraded（line 1320），you are now asked to enter ITEM FROM and then ITEM TO，fol－ lowed by the amount being transferred．Escapes from ac－ cidental key selections are provided，and a program exit trap，after data has alt－ ered．
called＂BUDGET．ACT＂．When running the program for the first time，select option 5， change deduction amounts to the total amounts of each item you have saved for each budget item．Enter the grand total of your account， by selecting option 3 and then option＂$P$＂to distribute the total amounts into each budget item．Once this has been done select option 5 and change the deduction amounts to your weekly or fortnightly，etc，deduction amounts．

D．R．Barney
Edmonton

The program creates a file

[^0]
## Data De－Bugger

How many times have you typed in a program with endless lines of data that are incredibly hard to de－bug？I created this program with that problem in mind．it shows you the data as the computer＇sees＇it，showing you where the errors are．
It requires that lines of data are numbered in steps of 10 ．
per line．It will give you the option of a delay to give you time to refer to the book and any key being pressed will halt execution until another key is pressed．It will also stop when the screen is full until a key is pressed．

S．Carter

Heathmont
Vic

## Win a partatioc Microbee 128K Compułer

## Worth over \$2,200

The Microbee 128 K Premium computer is the electronics persons answer to their home computer problems. Included in the package is: Keyboard, twin 3.5 inch floppy discs, RGB colour monitor with tilt stand, EPSOM LX800 printer with cable and Microbee's Auto dial modem. Also, sottware such as the Wordstar Professional Pack provides the flexibility of use for business or pleasure.

## Subscribe now and receive 12 issues of Electronics Today <br> for just \$42.00

AND automatically enter the draw for the Microbee Computer

Electronics Today is THE broad range magazine for everyone from industry professionals to students and hobbyists. It is jam-packed with information and reviews on hi-fi, videos, test equipment and computers!

## Plus Receive Absolutely Free:

This portable blue cooler bag. Great for those moments when you need a "Personal Surival Kit" valued at over $\$ 13$.

Simply fill out the details on the enclosed self-sealing postage paid envelope, or if missing send your cheque/money order with name, address and telephone number to:
Microbee Computer Offer Freepost No. 4 P.O. Box 227, Waterloo, N.S.W. 2017 (No Stamp Required). Any enquiries Ph: (02) 693-9515 or (02) 693-9517.

CONDITIONS OF ENTRY

1. The competibon is open only to Australian Rosidents authonsing a new renowal subscrotion to Electronics Today
 oramng. subscnplion must be signed aganst a nornenated valud crecit card. or, it pard by cheque, cleargod lor payment 2 South Australian ressdents need not purchase a subscroption to enter, bert may onter only once by subrniting ther name. address. and a hand-draw lacsomile of the subsconption coupon to The Federal Pubushing Company, PO Box 227. Watertoo, NSW 2017
2. Prizes are not transterable or exchangeable and may not be corverted lo cash

The judges decision is inal and no correspondence will be entered nito
The compeltion commeltion and instuctions on how to enter lorm a part of the compethion conditions
Syoney on Aon commences on January 1. 1988 and closes with last mati on March 31. 1988 The draw will tane place in Australan on Aprii 6. 1988, and a tater issue of Elecromics Today Intemational
The prize is a Microbee $128 K$ Piermum Computer mith Koytoard ind itional 35 int ant stand. Epsom LX800 Pnnter whit cable and auto dal modem Sotmare inchodes the Wordstar Protessional Pack valuing $\$ 2.274$
8 The promoter is The Federal Pubishnng Company. 180 Bourke Road. Alaxandna, NSW 2015 Permit No TC 87.3251






```
130) REM LHTE: 15,8/1987
14!. REM ********************
```




```
170 PFINT" SN:FNM
```



```
19! トだI!!"
2GO FFINT*
こ1! FN゙\!"
2O\mp@code{FFINT"}
こざFF゙INI"
440, FRINT"
50 FFIHN!
20% FFINT"
270) FRINT" YOU MUST STOF THE EOME FFOM ELOWINGG U
&B}\mathrm{ FRI|, &, NISWERIIHG SUME MrIHS WUESIIONS.
2Qi, FFINT" IF YOU GET A QUESTION WFONG A EIT MOFE
ZOH. FHINI" OF IHE FUSE WILL BUFN AND IF YOU GEI
ZOH. FFIHI" OF THE FUSE WILL GUFN AND IF YOU GEI
32い FKINI" If YOU GET IEN QUESIIONS FIGH{ THE
3ZO FRINT" FUSE WILL GU OUT.|(mI|m|"
3+4 FR\\l" FRESS NETUFH TO FLRIY"
350) GETA$: IFA% CHF`(12)THENZ50
#00 FFIMI ":F'": FOFA=1TOIO
#70 FFFINT
```







```
 13:!
I":NEXTA
m:1
```












```
530N1=1NT ((1Z-1)*FND(1))+1
54! N2=1NT((1:-1)*FND(1))+1
550 s={NT, (5-1) *FND(1))+1
560) IF S=1THENS }=\mp@subsup{=}{}{\prime\prime}+":A=N1+N
570 IFS=2THENS$="-":GOIDO1%
580 IFS=\SigmaTHENS &=".":A=N1*N2
```



```
600 GOTO690
o19) IFN1-N2,THENA=N1-N2: GOTOGOG
620}N1=1NT((13-1)*FIND(1))+
630 N2=1NT((1こ-1)*FND(1))+1
64O GOTO61%
050 IFINT (N1/N2)=N1/N2THENA=N1,N2:GOTO600)
000 N1=1NT((13-1)*FND(1))+1
o60 N1=INT((13-1) *RND (1)) +1
680 GOT0650
```








```
7EO INFUIN
73, 1FP=AIHENX= x+1:FRINI"组ORFECT ":GOTOS25
7S5 FRINT"MINCORFECT"
740 FOIE1043+40%Y,32
750}Y=Y+
76U IF Y=10THEN86O
770 FOUE10,43+40*:.86
780 GUTUS=5
790 F'KINT "Datmammam"
```



```
800 FFIITT" WELL DONE!'mIMIM"
810 FFINT" YOU STOFFFED THE BOME FFOM EXFLODING...IRININJMNJ"
82O FRINT" YOU MADE"Y"MISTAIES. (mIn{n)"
820 FFINNT" YOU MADE"Y"MIISTAIES.InIntn"
840 GETA&: IFA* CHR* (1こ.THEN84!,
BG!, FIUH
```



```
8.GトF゙1N1"Zanmmm!
```




```
GO. FRIMI"
```




```
* FRINI
4.1 FRINT"
```



```
 N."
 10
```



900 FFINT＂ABLE TO STOF THE BOMB FFOM EXFLODING．Indalmanaman 910 FFINT＂FFESS FETUFN TO FLAY AGAIN 9 ご GEJH＊：1FA（CHFS（1ごTHEN920 9.0 GEIH
930 FUUN

FEMD ，．

## Maths Practice

Maths Practice is educa－ tional for children who know and want to practice their times tables．You must an－ swer the maths question that appears in the top right of the screen．If you get a ques－ and if you get 10 wrong，the bomb will explode and the screen will shudder．If you get 10 right，the fuse will go out．

J．Avis bomb will burn a bit away Frenchs Forest
NSW

NSW


OOOOSEDIT S：O

OMIOH FEM program wratten for eemacrobee＊＊
فO110 FORE 141，1：FOHE 141，1：FORE 220，20
OOIこU CLS
Will CURS 2lo：PFINT＂What would you late the volume of：
0017．CURS 210：PFINT＂What would you lite the volume of：
0141 CURS $530:$ PRINT＂ $5=\cdots$ cone
OOISO CURS $274:$ FFINT＂ $1=\mathrm{m}$ cube

onlou CURS ：a：FRINT＂こ＝A rectang
10180 CUKS 466：PRINT＂4＊a squere
190180 CUFS 466：PRINT＂4＂．a square based pyramid
OK190 CURS 594：FRINT＂ $6=$ Cylinder
wolye，CUFS 72I：FFINT＂FFlPaBe place commas between number
OHLOW CURS SEB：FRIPNTALL MEASUKEMENTS ARE IN CENTIMETFES＇
以进い A1I＝EVI
OO2R IF AIs＝．．．THEN 210
OHIZOU U＝INT（VAL（A1 ：））
00.40 IF $U$ O OK $U$ I THEN 210

orriol LLS


40.90 GOTO 494
－○jon Cls



10こA4 Cl！
Missu CURS 1 IO：INFUT＂please state radilus＂；Fio

（xi7）GOIO 49．1
＂OTE：CLS


U1410 LUTO 4


1，24：0，GOTU asia
1024 Cl ClS


6044，HRITH：FKIHAT．．．




## Volume Calculator

The following program listing is just a short routine I wrote one night to assist me in checking my homework． Some of your readers may find it useful．The program is fairly self explanatory but es－
sentially it assists you to find volumes of several different shaped objects．

S．Ashdown<br>Year 8<br>Ipswich，Qld

HI FI SPEAKERS matched apposiances apeaker all $w$ thin square shlver gray trame and bleck conge－I doail for building up low cost spenkor superb．

$11 / 2^{n}$ TWERETER
SPEIFCAMONS： Sensitivity： 900 B
req．Renponse： $1.2 \cdot 20 \mathrm{kHz}$ Power RMS： 10 watts Megnet Waight： 202 Cat C10200


VIFAAEM 3 WAV SPEAKER KIT！ compotes with syatems that cont which may evon be using VIFA drivers orc．）Nover belorg has it boen possible 10 got zuch Call in personnally and compare for yoursel！ The aystem comprises．
$2 \times 019$ dome tweyters $2 \times 019$ come twaeters $2 \times$ P25 woolers
$2 \times$ pre－bult qually crossovers The cabinet kit conssis sol $2 \mathrm{kn} \alpha \mathrm{k}$ ．
down boxes in beautitu lisck grain book wilh siver batiles，speaker doith，innerbond．grill cips．speak D19 DOME TWEETER SPEAKER SPECIFCATONS Nominal Impedance： 8 onms
Frequency
ange： 25 ． 2 kHz Free Alr Resonance： 1700 Hz Sensitivtly i W at 1 m ： 89 dB Nominul Power： 80 Wats
（Io 5.000 Hz 120810 ch ） （ 10 O $5.000 \mathrm{~Hz}, 120 \mathrm{Broct}$ ohce Coill Resistance： 6 2ohms Woving Mass：0 2 grams
O75 DOME MIDRANGE SPECIFICATONS： Nominal Impedance： 8 ohms
Frequency fange： $350 \cdot 5.500 \mathrm{~Hz}$ reo Air rosonance： 300 Hz
 （ $10500 \mathrm{~Hz}, 120 \mathrm{~B}$ oct Voice Coil Dismeter： 75 mm Volce Coil Resistance： 7 2ohms
Moving Mass（incl．alr）： 36 grams Moving Mass（incl．alr）： 36 grams 25 WOOFER SPECIFICATIONS Nominal tmpedance： 8 ohms
Frequency
Range： $25 \cdot 3.000 \mathrm{~Hz}$ requency hange： $25 \cdot 3.000$ reenting Powerc： 5 math Senaltivity（ 1 W at 1 m ）： 890 B Nominal Power： 60 Wans Music Power： 100 Watts Votce Coll Diameter： 40 mm Moving Mass（incl．atin）： 44 grams Thiele⿸厂⿱土土卜⿴⿱冂一⿰丨丨丁口 Om 315
0
0 vas 1801
val 18
Weight： 195 kg
Complete XIt Cat K16030 \＄1，199 $\begin{array}{ll}\text { Speaker Kil Cat K16031 } & \mathbf{\$ 9 4 9}\end{array}$


OMNI－DIRECTIONAL WIRELESS MICROPHONE Tunesble： 92 ． 104 Mhz
Freq．Response： 50 ． 15 Range：Over 300 leet in cpen lieta Modulation：FM Powor Source： 9 BV Batery Dimentions： $185 \times 27 \times$
Woight： 160 grams Cat A10450 $\$ 19.95$


CRYSTAL LOCKED WIRELESS MICROPHONE AND RECIEVER MICROPHONE SPECIFICATIONS： Tranamirting System：crystal oscillation
Microphone：Electret condense Range： 300 leel in open fiehd Dimenstons： $185 \times 27 \times 38 \mathrm{~mm}$ Weight： 160 grams RECIEVER SPECIIICATONS： Recieving Freq： 371 MHz Receioving System：Supet
neteroorne me crstal oscallato neterocome crystal oscillaton
power Supoly： 9 B Batry or 9 oc Power Suphly： 9 g
power adapiet Volume contro
Tuning LED
Dimenaions： $115 \times 32 \times 44 \mathrm{~mm}$ Weight： 220 grams Cat A10452

Our price，$\$ 99$


SPEAKER CONTROLLER （TAA801） speakers to be swiched on or ott in any combination channel
－Stereo headphone sockel －avallable for privale histening protects amplifer regardless of how many speakers are connected Cat．A16054 ．．．．．．．．$\$ 59.95$

SPEAKER CONTROLLER （TAA803） －Rated at 50 watts continuous per channel
－Headphone outpul can be ulilized －Mithout intertening with the speaker －Constant minimum ioad circurt how many speakers are connected －Each channel is protected Cat．A16058 $\$ 59.95$

## SUPERB VIFAEA

 50． 10 GPEAKKERKIT！ has boen dessigned to completioly Out porform any similarty priced incorporating divers which give a deeper，more natural bass respons and 19 mm soth－dome terro fluid cooted tweeters which provide cle a Theso Via diers aridental tout These Vila dnvers are identical to the Mission，Rogers．Bang of Oulsen． Monitor Audio and Hayprook just to name a tew．Some ol which cost we over $\$ 1,000$ a pallThe dividing network is of the hughes： quality and produce no inherent sound charactenstics of their own； which accurately distribute the trequency range between bot
The fuity encrosed acoustic suspension cabmets are easily household tools and a couple of hours and you ve bult ycursell the D19 TWEETER SPECIFICATONS Nominallmpedance： 8 ohms Frequency fange： 25.20 KHz Fret Air Resonance： $9,700 \mathrm{~Hz}$ Sensilivity 1 W at $1 \mathrm{~m}: 890 \mathrm{~B}$
Nominal Power： 80 Wans （ $10.5,000 \mathrm{~Hz}, 1208 \mathrm{oct}$ ） voice Coll Diameter： 19 mm Voice Coll Resistance： 62 ohms
Moving Mass： 02 grams Moving Mass： 02 grams
Werght： 028 kg Weight： 0 28kg
C2O WOOFER SPECIFICATIONS Nominal impedance： 8 ohms Frequency Aange： $35 \cdot 6.000 \mathrm{~Hz}$ Sensitivity 1 W at 1 m ： 90 dB Nominal Power：So Wans （12dB oct）
voice Coll Dia
Voice Coll Diameter： 25 mm
Volce Coll Resistane： 55 Moving Mass： 15 grams Cat C10322 38 Cat k86092（speakers only）\＄379 Cat k88091（complete krt）$\$ 449$


SUPER HORN
－Wide dispersion tweeter
－Sensitratry 105 dB 05 m
－Frequency Response $3 \mathrm{kHz} \cdot 30 \mathrm{kHz}$ －impedance 8 OHMS
 SPECIAL，ONLY $\$ 9.95$


VIFNAEM 2 WAY YHENKFR RIT！ dosigned by David Tlllibrock ia ame synonymous with brillian design and performance）uses rom Denmark．You witl save around 5800 when you hat what you got from this sy stom when off the shelf with similat you buy characteristics．Call In pertonally and compare for yourself！
The syatem comprises．．． $2 \times$ P21 Polycone 8 woolers
$2 \times$ O25T Ferrotuud $\times \mathrm{O} 25 \mathrm{FT}$ Ferrohur woied dome 2 pre built quality crossovers the cabinet kit consists of 2 knock dook with silver battles，speaker cloth，innerbond，gnll clips．speaker
lerminals，screws and ports O25T SPEAKER SPECIFICATIONS Nominal impedance： 6 chms Frequancy Range： 2.24 kHz Pereting Power： 32 want Sentitivity（ 1 W ont 1 m ）： 90 dB Nominal Power： 90 Waths Voice Coil diameter： 25 mm Al Gap Height： 2 mm Moving Mass：0 3 grams 7 hm Woight： 0.53 kg gram
P21 WOOFER SPECIFICATIONS： Nominal tmpedance： 8 ohms
Frequency Aange： $26 \cdot 4,000 \mathrm{~Hz}$ Free Alr Resonance： 33 Hz Operating Power： 2.5 watts Senalitity（iW at 1 m ）： 92 dB
Nominal Power： $60 \mathrm{~W}, ~$ Nominal Power： 60 Watts
Vore Coil Diameter： 40 mm Votce Coil Resistance： 5 8ohms Moving Mass： 20 grams

Om 24
Ce 044
01
0.
Weight： 1.65 kg
Complete Kit Cat K16020 $\$ 799$ $\begin{array}{ll}\text { Spenker KII Cat K16021 } & \mathbf{\$ 6 4 9} \\ \mathbf{\$ 2 0 9}\end{array}$

COMPACT DISC CLEANER Even compact discsneed tobekep clean otherwise the listening or skips
－Cabinet incorporates working
－Solt 50 place disc
cleaning brush）
－Spray which wil contaminenls and not coosen
－Wiscs disc cloth for nanding discs
－Replacement cleanung pad and
 A10025

MIDRANGE HORNS Use these quality．all melal．Piezo yeur band spakers ensco sound system eic Rated at 30 watts RMS in a system they will handele ove 100 watts RMS
Two sixes to choose from Slee： $4^{\prime \prime} \times 10^{1 / 2}$ Rating： 30 waths AMS Response： $15 \mathrm{kHz}=14 \mathrm{kHz}$
Dimensions： $102 \times 267 \times 177 \mathrm{~mm}$ Cat C92082 Normally $\$ 49.9$ This month only $\$ 39.95$
PIEZO DIREC RADIATING TWEETER 10 100 watts

## Sensitivity： 9808

Msximum imput： 24 volts
Freq．Response： $32 \cdot 30 \mathrm{kHz}$
Dim．
Dim
$\$ 19.95$
 nandles up lossover and －Sensitruty 1000 B 05 m Frequency Response $3 \mathrm{kHz} \cdot 30 \mathrm{kHz}$ sipedance 8 OHMS Cat C92102 Normally $\$ 12.95$ SPECIAL．ONLY $\$ 9.95$

$\qquad$
$\qquad$ Size： 3
Size： $3^{\circ} \times 7^{-}$
Ampedance： 8 ohms
Response： $2 \mathrm{kHz} \cdot 15 \mathrm{kHz}$
Dtmenslons： $76 \times 177 \times 145 \mathrm{~mm}$ Cat C92084 Normally $\$ 29.95$

This month only $\$ 24.95$ Doalers．OEM s，otc．，phone

PNMLIPS STPEAKERS Untortunareiy we cannot atways guaranioe Phips spoakers to be in ock duo to availabilty problems． models listed However．Phalips equivalent or better will be suppled－ Description Cat．No．Pricy
AD01610T8（C12030） ADO80652W8（C12042） AD070620M8（C12045）


COMPACT DISC STORAGE UNITS otds 10 ：20 compact discs in their cases
interbcking modular design interiocking
Discs slide into place horizontally making tities easy to read
A10031（10 discs）$\$ 12.95$ A10032（20 discs）$\$ 19.95$


Rod Irving Electronics 48 A Becken SI．MELBOURNE 425 High Si NOPTHCOTE Mall Order and Corraspondence
PO Box $620 . \mathrm{CLAHTON} 3168$



MAL ORDERHOTUNE 008335757 （TOLI FREE）
CTLYORDERS ONLY） LOCAL ORDERS \＆INQUIRIES 10315437877
postage rates
$\$ 1$ \＄9 99
$\begin{array}{ll}\$ 10 & \$ 2499 \\ \$ 25 & \$ 4999 \\ \$ 50 & \$ 9999 \\ \$ 100 & \$ 199 \\ \$ 200 & \$ 499\end{array}$
$\$ 1000$
$\quad \$ 1250$
The above postage rases are for
basic posiege only bulky and fragite herns will be cherged at different rates
All salces can exempt orders and Whatesate inquifies to．
RITROMCS WMOLESALE． S5 Renver Rd，Clayton
Ph（03） 5432166 （ 3 lines）

VISA

## CPM <br> M

CPIM PROGRAMMER'S EECYCLOPEDIA Tre CP M Programmer Encyclopedia is a time saving
comprenenswe reterence tor senous CPM users Covenng all the Commands and syntaxes tor encycoppedia gives you the information yoc need in an easy.to - use format especially
dessigned op programmers the is the only malor compotation of CPM commands and syntaxes You use CP M extensively. rou
should not be winout this imporani reterence gude

## $111 \times 1111$ <br> 

HANOS ON programe for IBM PC: sirom in editors of PC World A cotiection of the best iups.
programs, and roulines 10 is programs. and roulines scasiem compuiers "rom the popular
"Hands on and
and columns Covering boith haroware and sotwere, the book 15 organised so inat you can quickly fing information 820100
$\$ 34.95$

## 2

BASIC
COMONTSORE 64 BASIC Jamers. Coan
Here's the keylo using and enjoyng A last reading quide to computer operatorn and GASIC poompramming that is sutable tor use at home or in
the classioom The apporoach is the classioom
Cat.B
$\$ 29.50$

TURBO PASCAL FOR BEISIC PROGRAMMERS Most computer programmers begin
by learning $\operatorname{BASIC}$ But as BASIC is slow and cumbersome many perode are takng advantaged the atiordable and more ethrent Tuibo pascal
sotiware in this book Paul Gart solwate in ihis book Pau Gartison
draws trom your knoweege o BASC
programming lundammentis to show
 BASIC programs are compared scon
Oy side with ther Pascal equvalents so that you can see clearly the similarties and ditferencess of the
two languages The comparisons two languages The comparisons write redd test and deoug Whiter red
Within this book you will hind

- Cigar and simple extanation
- Ciear and simple explanations of the specticcs of the structured - Allograny of useful programs tor personal and business uses There are, tor example dutabase programs. a tinancaal pro,ection program a currency conversion program and many more ASCII Character cooles a Turto Pascal dictionary, a phossary of compure terms and abs Cat. 320890
$\$ 37.95$


UNDERSTAND/NG UHIX The excloding populanty of the The exploding popsulanty ot the
UNix Operating syslem is one ot the most importanit tends in computing nundreds of diterent compulers. rangng trom personal computers 10 manirames and supercomputer overall perspective on UNIX. including a disccussion of where UNIX Biss in the wortas of computing business, and education Individual ite system, multuser capabatity speatic apolications toops. and Areor that balances scope mith degh. comprenensive Cat B 21240
\$44.95

## The <br> 

THE C PROGRAMMER'S HANDBOOK Thom rogen
White other books will tell you how to ioarn C, thus one shows you how to itormation youll need to get It to work tor you. ethcienty and frecivery Handy and well rganized. 1 gives you quick access eed inem, plus a dear definnition of Clanguage min examples and explanations ol restructions and ela furs You urentitind an apporoach inis understandain 20120


PASCAL PRIMER you are learnino programm you are eaerting programmnng or anguage BASIC and wish to learn The capabal hes of Pascal this book is detinitly wntren ior you Writte
humour. the intormative text desccribes Pascal program structure Pascal vanables. pascal proceoures atures there are tatements. numeric tunctions. strnng 'unctions, arrays and sets. and
much more The erght appendices present lacts about ine advantages and disadvantages of Pascal. interacing assembly language rovithes, an
information
Cat.B21120

APPLE II ASSEMBLEY LANGUAGE - Teaches asscmby language
 assembly language needed Drects you in hands-on-compuler
execcises and experiments with both sottware and hardware Enables you 10 inlertace the Apple ll to Ou ssde devces. eg ad and $d$ a converters. tumers. erc programs that can be used on ine Apple II mithoul modilication Entances your pover as a Programmet in your use of the
Apple II Apple
Gives you a more general under.
standing of how mucrocompulets work than can be botalaned by programming in BASIC or an Cat. B20940


INSTDE THE IBM PC (Revised and expanded edtrion) The widoly accla med gurde to the
IBM PC. 5 inner workings The latest BM PC's inner workings The latest oditon now covers evary modet on even vertion of DOS trom 111030 $820080 \quad \$ 44.95$


INTRODUCTION TO BASIC this book is lucadly willen, and is in two parts The first leaches BASIC and the second conssists of a dozer These are mode-ranging and set in anguage into the context of sominng eal.word probiems Each proyect ard out with a set ol verables togive appications of the language Any version of BASIC can be used to solve the protects anat the other inceughont examples scant
Cat.B21245
$\$ 16.95$

"C" SELF STUDY GUIDE Learn at rour own pace as this sell directed study guide takes you through the bascrs and mio advan
areas of the C programming areas ol the C programming
language The unque format you to advance quickly of proceed showly The book is divided into two pant Questions: ol varnncg degrees of diticulty to gurde beginners cover the more expenenced $C$ programmets
mond Answers: that ncuice many complete programs tor testing new funclions and tor illustrating lips. traps Cat.B20690


IBMPC
TROUBLESHOOTING \& REPAIR GUIDE Rober C. Bromnc Koep your IEM PC in 100 operating Dook In suco you will find paterence schematces. protos and block diagrams to help you dientity problems Simple instructions tell you whal's wrong and how to tix it

- Mak
tools Ourckly zero-in on a maltunctioning component
- Reduces downtime
- Eeparir savings 10 understand arcurt diagrams
The IEM PC Trouble Shooting s comeuter novice teel contortable with the complex worta of electionic trouble shoobing Tims tuly illustrated
book is recommended lot anyone Tho uses an IBM PC Cat.B


THE PLAIN ENGLISH MAINTENANCE \& REPAIR GUIDE FOR IBMPC -Meny F. $\begin{aligned} & \text { Eerchnold } \\ & \text { Event you ve never held a soldering }\end{aligned}$ gun in your hand yourla appreciate explanations of computy electronics With its werd line dramngs and diacrams this book gives you experd instructions on Ocy your 18 M PC and its components

- DOS. peripherals. disk drve and the rest
B20060
$\$ 53.95$


APPLEII
CIRCUITDESCRIPTION - Winston O. Gayier

- avers all Apple Il motherboard
- Melps you leam about microcompurter hardware in general and Apple 11 hardware in - Provil
- Provides you with accurate
schematcs and ventud wave To rely on lor servining and repar - Expolans the advanced concepis of dalsy chans, interyupls, direct
memory access. and ine ready


## Gives you many valuable hinis io

successtul intertacing
stgraits memory IIS sand the full explanalions of advanced concepts
Each chaplet contians an ovemen
tor the beginnee and a detaled
section lor the more
section tor the more adventurous
ideal lor students. Iechnci:ans.
hobbyists, engineers, and othe rs who need Apple II lechnical inlormation


HOW TO READ SCHE日LATICS
-Don Herringion
Interpreting schematics is essential for understanaing electronc circuits A schematic is a symbol diagram showng the components of a cricul and their interconnections To the is an invaluable guded to the oper ation of a corcunt it's also crucial in undicating the lest pornts for a technician
service equipment

Ths book is your key to uniocking the mysteries of schematics Beginning diagrams, including block diagrams and flowcharts. which are not true schematics but also important in understanding electroncs, he book components that componse a circuit resistors. capactors. cols and iranstormers, electron lubes. sem. conductors. prontec oruts. integrate You llf find this handy relerence - Expl

Eplanns logic symbols and their - Interphels sample schematics reciever - Provides review questions al the end of each chapter and an How to Read Schematics" is wniter also contans information valuabit to the expenenced and technician
B10730


THE 555 TIMER APPLICATIONS SOUFCEBOOK

## (With Experiments)

his book will show you how to use ine 555 by itsell. and with other solid With this book you will learn anization and electrical characteristics
How to connect the 555 Timer as a monostable multivibrator or One-shot puster
 conventers. and smitching regulators

- Specialised appications inclucing music and automotrve circuits 17 simple expenments that will allow you to gan a dasic practical
knowiedge in using the 555 time Cat.B10522 .......... S14.95

ADVANCED
PROGRAMMING EECHNIQUES FOR COAMODORE 64 - David Lawrence to begin real prog anyone who wants commodore 64 hisets $\alpha$ with the sorne of the techneques required ior the winting of successful applications programs Packed with advice and programming examples, this book will allow you to whte programs that
are better. faster. dearer more ecure and more memory efficien han ever belore Cat.B20370
$\$ 19.95$


PRESENTATION GRAPHICS ON THE BMM PC \& COMPATIBLES create dazzuling graphics for protessional and corporate apptications.
With Microson Chart (version 2). your IBM PC or compauble, and your printer, you have what it takes o produce clear, colourful Dusiness Aurtor Steve Lambert hows how you can eastly select. create. and modity the chart column, bar. Ine pie. high-tow, area. scater. or
combunation char, that best cormmunicales your message And with more than 60 state-0 th: he:ant outpuldevces 10 choose irom From ploners to siffe makers to colour quality chants that will opre all your presentations dramatic and Cat. B20000
$\$ 39.95$

## USNK PCDX

USING PC DOS Using PC OOS" is the only advanced gurde, and lasting reference that gives you uthmate
 Beginnes will leam now to Manage Dos diskenteries - Erase, rename, and cooy Hiles - Avini whita aspears on your screen Advanced users mill leam Manter path names Cusiomise óos - Use RAM disk cuican use tre Command Relerence. ection to
Gain quick access to 63 most
Trequently used 005 command Recognize valid $00 S$ command phrashng

Cat.B20200
$\$ 49.95$
POCKET GUIDE TO PASCAL
This pocket size reference guide prondes you with conase referencices and reliable desctiptorns of the main
lanouage leatures You can use language leatures You can
them as memory poggers or elerence tools Cat.B21155

Z80 MICROCOMPUTER HANDBCOK
Organizatonatly ine book is
arranged in itree sections Section 1 disclussees $2-80$ haroware tignals, timming adotressing modes. instrucions, the elfect of artrmetic peeratons, operabons on CPU Hags e powertul interrup sequences of he 2.80 and interiacing examples ol Section 2 presents the sothware A cok at representative assembler program, macmine language. momng oata anting operations ist and tadie proceduras. subroutine use, I/O Iunctions relatrve to

# At these crazy low prices, NOW is the time to buy! 



PANEL METERS GALORE!
melers at great prices ${ }^{\prime}$ Cat. No. Ooncription 010500
010502
MU45
0.150 .0 .50 010504 MU450-100uA 01510 MU450.5A 010518 MU450.1A
 010530 MU52E 0.1 A
0.10533
MU52 010535
MU45 VUPMe
010538
MU65
$0.504 A$ $\begin{array}{ll}010538 & \text { MU65 } \\ 0105504 \mathrm{~A} \\ 010540 & \text { MU55 } \\ 010550 & \text { MU5 } \\ 0.1200 \mathrm{~A}\end{array}$ O10550 MUS 0.100
010560
MU65 0.20 V

TEXTOOL SOCKETS P17016 16 an Price
12.50
1250
1250
1250
1250
1250
1250
1450
14.50
1495
1695
1695
1695
1695
 TS P1702820 $\$ 14.50$ P17028 28 pm $\$ 14.50$
$\$ 19.50$
$\$ 2.50$ P1704040 pon $\$ 22.50$


UTILITY BOXES
Pastic Doxes mith alumunum tops. and avaliabip in four sizes ven pocular tor pil
H10101 $150 \times 90 \times 50 \mathrm{~mm}$ S 3.25 H10102 $195 \times 113 \times 60 \mathrm{~mm}$ S $\mathbf{4 . 5 0}$ M10103 $130 \times 68 \times 41 \mathrm{~mm}$ S 2.75 $H 1010583 \times 54 \times 28 \mathrm{~mm}$
H
H 1.95 $\begin{array}{ll}\mathrm{H} 10105 \\ \mathrm{H} 10110 & 83 \times 50 \times 65 \times 38 \mathrm{~mm} \\ \text { S } & \text { S } 2.95\end{array}$ $\begin{array}{lll}\mathrm{H} 10110 \\ \mathrm{H} 10112 & 120 \times 65 \times 5 \times 38 \mathrm{~mm} & \mathbf{S} 2.95 \\ & \$ 2.95\end{array}$ H10192 120
(Metal too)

K\&W METAL INSTRUMENT CASES Used in many pojeft's. the se cases have hammertone limish and aio Doin versallie and ecconomical

$H 10478125 \times 40 \times 55 \mathrm{~mm}$ \$ 5. | $H 10479150 \times 55 \times 95 \mathrm{~mm}$ |  |
| :--- | :--- |
|  | 5.95 | | $H 10480100 \times 92 \times 130 \mathrm{~mm}$ | $\mathbf{S}$ |
| :--- | :--- |
| H |  |
| H 10481.95 |  | $H 10441150 \times 555 \times 100 \mathrm{~mm}$

$H 10482000 \times 80 \times 130 \mathrm{~mm}$
 ${ }_{H} 10487255 \times 165 \times 155 \mathrm{~mm} \mathbf{~} \mathbf{\$ 1 6 . 9 5}$


RS232 WIRING ADAPTOR BOX

- Male 10 temale
: 25 Duta achable plug on leads
: 2 man jumpers
- iceal for expermenting or
- Iteal for experturenting or

Cat X15665 Normally 549.95 Only $\$ 44.95$

Unick
MEATSINK COMPOUND MEATSINK COMPOUND Healsink compound is appoled to the
base and mounting studs of transistors and dodeses it mantains a positive heatsimk seal that mproves heat transter from th device to the heatsnn, thus Cat H11800 (109) $\$ 295$ $\begin{array}{lr}\text { Cat } & \$ 1800(109) \\ \text { Cal H181)(1509) } & \$ 1750\end{array}$


ARLEC "DISCO LITE" CONTROLLER
Gre your parties a pooles sona! louch with ite ariec "Disco Lite-
Simply plug your ightis int ithe Simply plug your ightis) into the 3 Differ Music mode: Place the "Disco Lite n range of the speakers and Strobe Mode: Simply aduust to dessied speed Great tor mime o advertising'

lights to create moods. ellects etc
Cat M22003
$\$ 49.50$



EXTERNAL SIREN \& FLASHING LIGHT Housed in a walerproot, melal Specifications DC 12 V 450 mA Impedance 8 onm SPL (dBWW) 110
Oimensions $135 \times 150 \mathrm{~mm}$ Flasning Light:
100 lla shes per murute
$\$ 89.50$


HOOK UP WIRE | Cat. No. Dexcription |
| :--- |
| Wi 1251 |
| Win |
| 12 TNO BLK | W11252 1312 TLO BROWN

W11253 1312 TLO ORANGE
 W1125 1312 TLD BLUE W1257 13 P12 TLO WHITE
PRICES PER 100 METRE ROLL $\$ 5.95$

W1 1260 1d/ 20 RED
W $126114 / 20$ BLACK
W 112651420 BLUE
W 112614
PRICES PER 100 METRE ROLL $\begin{array}{ll}\mathbf{~} \$ 12.00 & \$ 10.00\end{array}$
W11270 2420 REO
W127224
W127224 2 BLACK
PRICES PER 100 METRE ROLL
$\begin{array}{ll}1.9 \\ \$ 14.00 & \$ 12.00\end{array}$
W11280 32 2 BROWN
W12823228RLUE METRE RDLL
$\$ 20.00$
"NO BRAND" DISKS!! How you can buy absolute top quaity Austealia' They even come mit a 5 year guaraniee' So why pay 2.3 tumes the price for the same
quality? Packs
Packs of 10. D S D D mithout boxes
or brand name. just their white paper jacket and index labels
$15 \% / 4$ disks includes wnte protect5)
59/9"."NO ERNND"DISKS $0 \cdot 01$ SKS (ALL PRICES PER 10 DISKS)

31/2" "NO BRAND" DISKS! $\$ 29$ \$28 \$27.50 (ALL PRICES PER 10 DISKS)


51/4" DISK STORAGE Emicient and practical Protect your
disks from being damaged or bost Fontures.... 70 disk cap

- Smoked plastic cor
- Lockable (2 keys supplied) Cat C16025



SCOPE GOW SOLDERING SYSTEM

- Intinitely adus abible lemp. 200 C to 470 C Suding conitrol selacis osdout momiors tip temp.) - Satery holder features ceramic bum-proof bush and can be converted to lett-hand-swo
- Sot and cool hand gip in phable
- Screw ype connector prevents accidental plug removal and guaranters sond contacts production supervisors to control soldening temperatures
Antisarze tip ietention dosign reduces nsk of thread serzure by barrel - Optonal JoW solderi
avallable Ior finer work Cat T12900 Normally $\$ 229$ SPECIAL, \$199
 DIALLERS Tired of old fashion dialling and
re-dialling engaged numbers? These converient push buition dathers inchude lasi number redial (up to 16 digts) and in
an easy Changeover Cat A12030 Normally $\$ 19.95$ SPECIAL, ONLY S 14.95 (Note: Not Telecom approved)


RELAY AND BASE Can carry 10A at 28 V OC or 5 A at
240 AC Supolies min Chassis Mounting Socket with screw lerminals Great tor school profects and demonstrations, switching $D C$
power supphes. central circults and with contacts paraliel up to 20 A can be switched
Cal S 14074
$\$ 8.95$


POCKET SIZE BATTERYTESTER - Tests all 9V 1015 V batrenes including button cells

- Arns exiend to vanous battery sizes
- Requis read meter
- Requires no powe


ECOWOMY
TRANSFORMERS 2155240 V -15V $1.9 \mathrm{~A} \quad 10$. $\begin{array}{lll}\mathbf{C a t} \text { M } 212155 & \$ 9.95 & \$ 8.95\end{array}$ $\begin{array}{lll}2156 \\ \text { Cat M12156 6-15V 2A } & \$ 14.95 & \$ 13.95\end{array}$ 2840240 V 9 V CT Car M12840 $\$ 5.95 \quad \$ 4.95$
 2860240 V 15V CT 250 mA Cal Ni2eb \$5.95 54.95


PASSIVE INFRA.RED DETECTOR

FEATURES:

- Walk tes! $E$ ED ind
- Wall cornericeling mount
protection
- 24 delection beams in 3 cilterent
- rances slent
- contact output
- Alarm auto resel approximatery

3 seconds after triggered

- Supenor RFF immuntry protection
- Extremely tow power consump
- Easy installation, easy acjustmen
- Dual etement, kw noise. high
signal to noise ratio pyroelectr
- Datection degree indicator

S15079 …........... $\$ 89.95$


SPRING RETURN
TOGGLE SWITCHES
WAS NOW $\begin{array}{lllll}\text { SPD T Cat } \mathbf{S 1 1 0 1 2} & \$ 2 & 25 & \$ 1.95 \\ \text { DPOT Cal } \mathbf{S 1 1 0 2 2} & \$ 2 & 50 & \$ 2.25\end{array}$


CODE KEY PAD

- Telephone trpe digital keypad - Four digit. changeable code - Over 5000 possible combinations - Pomer consumpion 5ma standb
- Two sector LED and 1 arm LEO
- Wrong number lockout
- 12V OC operation
- Relay output
- Normally open lamper switch - ACP3 compatible Cat A13014 R.R.P. 579.95
SPECIAL, ONLY $\$ 69.95$


ULTRASONIC TRANSDUCERS (L19990) and reccerve at 40 kHz (t.19991) with up to 20V IPP on the transmither These unts cant be theard and so are ideal for TVremin
controls. water level detectors burgalar alarms, motion detectors and information carners as they ca be etther pulsed or used in the continuous wave mode
Full specitications below for desion
purposes
Maximum input voltage: 20 V rms Centre Frequency (kHz): 40 * Sound pressure Level toV RMS Sensitivity (dB 65 min
Bandwidih (kHz): Transmat 40 (at 100 dB ) Recerver 50 (al -73 dB
 Recemer 5000

Rod irving Electronics 44 a Beckert St. MEL BOURME 425 High S! NORTHCOT Phone (03) 409 cess Mall Order and Correapondence
P.O. Box 620 . CLAYTON 3168 Tolox. AA 151936


MAL ORDER HOTLINE 008335757 (TOLI FREE)
(STRICTLY ORDERS ONLY) LOCAL ORDER - INOUIRIES 03|5437977
POSTAGE

GE		
	99	\$2
\$10	\$24.99	\$3.
525	819.99	S
\$50	\$50.99	\$5.
1100	\$199	$\$ 7$.
8200	4	510
8500	plus	
The above poslage rales are for basce postage only. Road freight. bulley and fragite thame will be charged at diforent rates		
All aetal lex exempt orders and wholesest inquirles io RITROMCS WHOLESALE.   56 Asenver Ad, Claylon.   Pn (03) 5432186 (3 11 nes )		
Errors anc orv sspone expepted FTAA PC. मTV AT Bercogeno       $\qquad$		


- Polyester-Polycarbonate-Polypropylene   - World leaders in miniaturisation   - Outstanding elecirical characteristics   - Approved mains suppressors   - Fully supported stock lines	RECTIFIERS   - Extensive Range Bridge Rectifiers   - Silicon Rectitier Diodes   - Fast Recovery Rectifiers   - Schottly Barrier Rectifiers   - Fully supported stock lines   READER INFO No. 118
VITOHM   RESISTORS   - Wirewound incl. Precision and Lo Onm   - Metal and Carbon Film   - Networks and Hybrids   - taped Zero Ohm and Jumper Wires	TRIACS AND SCR   - Packages include T092, T039, T0202, T0220, RD101   - Advanced technology   - ITrms to 40 amp V ORM to 800 volt   - Fully supported stock lines
	  LED LAMPS AND DISPLAYS   - Round, Reciangular Lamps   - Single, Dual Displays   - Clock, Muitidigit Displays
	DELTA   EMI FILTERS   - Over 200 Standard Types   - Rated Top quality supplier by IBM, DEC, WANG, RCA, ItT, etc.   - Superior design features   - Competitively priced   READER INFO No. 121
haiting   CONNECTORS   - European Leader DiN41612   - Extensive Range Heavy Duty Types   - Miniature D Series   - Mass Termination - Flat Cable   READER INFO NO. 117	FANS AND BLOWERS   - AC Fans 115, 240 VAC   - DC Fans, electronically commutated   - Proven reliability and long life   - Very low noise types   - Also extensive range of motors   READER INFO No. 122

## 80



## Titanic

Titanic is a sea adventure game, where you pit your wits against the computer's ship/s. As the computer cannot 'see' the icebergs, you must try to lure the ships into
icebergs. You can have either one or two enemies, and full instructions are included. S. Carter Heathmont Vic

```
\(c\)
```

EU FEEM VO: JOMT AVIS
SU REM DATE: 23 AUGUST, 1987
150 FODEOSO, 128:FRINTCMK ( 8 )
100 FONESSBM.1tror ESS-8!.
170 DIMSE(521.C(52).D(4)
BU FRINTM.

320 PRINTTAB(12): "B LA C K J A C K.
325 PFINTTAE(13): "EJOHN AVIS, 1987
330 FORA- 1 TOI 500 : NEXTA
350 FORAITO25:PRINTI NEXTA

370 IFJ=1TMENSE $(1 \cdot\} \cdot 13)=$ "雨
390 IFJ=3THENSE $(1 * J \& 13)=-$

00
NEXTI.J
FORYEI

410 FFINT"28LACKJACK"
420 PFINT
90 FRINT" $\qquad$ ! $\quad 1!$


``` !"•
```


## 95 IFY=2TMEN

```
\(10 \mathrm{~S}=\mathrm{S}+1\)
20 Gosusion
330 TFS=OTMENW=1
340 IFS=1THENWEB
350 IFS=2THENW=15
30 IFS-3TMENW-22
370 IFS-4THENW-29
S80 PRINT"
S90 PRINT"
OCO PRINT:
90 PRINT
\(610 \mathrm{~T}=\mathrm{T}+\mathrm{DIS}\)
020 PRINT"
```





```
040 PRINT"FI-SIT. FS MORE
O50 GETAE:IFASE" THENOEI
SSO IFAE="- THENSIO
O70 IFAES, "ETHENESO
```



```
880 IFT, ZITHENFL (V)=0
700 FOKA=1 TO1000: NEXTA.Y
310 1FPL (1)-GANDPL (2) -UTMENFEIHT ". NNO RESULT....", GOTO730
715 IFPL (1) PFL (2) ORPL (1)-PL (2) THENFFINT"TFLAVEK 1 WINS.
330 FRINT"
740 GETAE: 1FA8 = "- THEN74O
T4S IFAE CHRE (13)TMENTHU
50 gotosos
```



```
1010 IFC(P) \#, JHENLOMO
OEU N*F
信
```





```
REGDY.
```


## Blackjack

This program is a two player version of the popular card game, Blackjack. To play just press the first function key to 'sit' and the second function key to receive more cards. If your card total is over 21 you
'bust', and if you have five cards and less than 21 then you win.
J. Avis Frenchs Forest NSW

## ETI PROJECTS 198 months of projects June 1971-December 1987

## SIMPLE PROJECTS



205 Doorbell | Dime indicator | Aug 71 |
| :--- | :--- |
|  | Sep 71 |

KEY TO KIT SUPPLIERS   AEC All Elecirula ל.umbuner's   Alt A frurics   App Acrix      EC      ED Evecirarnc Discentions $-22^{\prime} / \mathrm{y}^{\prime}$,   FE   HIC   Jay   LE   RIE   SYM      atvise   max   ficur   (B)



First of all. werap liable 1 and the associated copy above it. Secondly, have faith in the How it Works: for it is correct.
The connections to SWl
The connections to SW1 and SW2 on the circuit and incorrect. Pin 8 of SW1 goes to $\mathrm{C}(\mathrm{R} 8)$ Pin 1 of SW2 goes to D(D2). Pin 4 of SW2 goes to E (C8. R9 and gate of SCR3). Pin 11 of SW? goe to F ( C . K and gate of SC (R2). Note that H on the overlay is point K on the circuit.
Overalf. dalling the sequential code on SWI and SW2 should connect. in sequence. B-D. then A-F. then C.E. Work out your code appropriately.

250	House alarm   Incorrectly labled ErI-262	Aug 80	
251	Op-amp power supply   The overlay is reversed. Sce Sept 85 p9	Aug 85	AEC
252	Passionmeter		
253	Grenade/hot potato game	Apr 85	
254	Egg timer	May 79	
255	Temperature meter	Jun 79	
TeC			

The meter in the circuit diagram on page 39 wan shown the wrong way round. The negative terminal of M1 goes to pin 2 of the 1,13941 .

## PROJECT INDEX

No.	Name	Date	SUppliers
256	Humidity metre/controller	May 81	RIE, AEC
257	Universal relay board	May 81	RIE, AEC
258	Mini-drill sped controller	Jul 81	
259	Low-cost timer	Jan 82	
260	CMOS flasher	Dec 79	Jay, ED
261	Fog hom	Dec 79	
262	Intercom	Dec 79	
263	Egg timer	Dec 79	
264	Siren	Mar 80	
265	Mains appliance timer	Jul 83	RIE, AEC
266	Crystal set	Dec 79	
267	Voltage multiplying crystal set	Dec 79	
268	Nicad float charger	Nov 83	RIE, Jay,
			ED

The curve for 'Typical charging characteristics of NiCad eells' (on page 31) is for onc particu lar type and may not be indicalive of most currently on the market. While the shape is generally similar, the maximum terminal voltage reached is generally between 1.4 V and 1.5 V not 1.7 V as shown.

270	Solar-powered radio	Dec 79	
271	Solar intensity meter	Dec 79	
272	LED amp output indicator	Nov 83	RIE
273	Let caller for tennis	Jan 84	
274	Fast Nicad charger	Feb 84	

274 Fast Nicad charger
Feb 84
Figure 2 shows the battery negative connected to the heatsink. It should be insulated from it The BYX/200L diode cathede connects to the eollector of OH/OS and R1/LED via the heat sink, not the wires shown.

275	Bathroom heater timer	Jun 84	
277	Ready-set-go timer	Oct 84	
.278	Door minder	Nov 84	RIE

The overlay and wiring diagram on page 70 contains an error in the caption at the top left corner. The sentence "makes wure the green (neutral) mains lead is the longest" should read as follows: "make sure the green/yellow striped earth wire is the longest.

279	Darkroom exposure meter	Jan 85	AEC
280	Low battery voltage indicator	Mar 85	RIE, Alt, FE, AEC, ED
281	Power supply	Dec 86	
282	Telephone screamer	Sep 86	Jay, ED
283	Lotto selector	Dec 86	
284	VCR Alarm	Nov 86	
285	Oscillators and Ampfliers	Mar 87	
286	Mutt Minder	Mar 87	SYM
287	LED Light Chaser	Oct 87	AEC
Two links left off overlay diagram, see 1)ecember $87 . \mathrm{p} 20$.			
288	Ring Tone Customizer	Jun 87	
The pe board artwork is the wrong way around and also the wrong size. Write correct version.			

## TEST EQUIPMENT

109	Logic power supply	Jun 71	
102	Audio signal gen	Jun 71	
103	Logic probe	Jul 71	
104	Soldering iron control	Aug 71	
105	Dual power supply	Nov 71	
106	CRO calibrator	Feb 72	
107	Voltmeter	Feb 72	
108	Decade resistance box	Sep 72	
109	Digital frequency meter	Sep 72	
110	FET vollmeter	Oct 72	
111	IC power supply	Nov 72	
112	Audio attenuator	Mar 73	
113	Thermocouple meter	Sep 73	
114	Dual beam adaptor	Jul 74	
115	Linear IC tester	Aug 74	
116	Impedance meter	Mar 75	
117	Digital voilmeter	Aug 75	
118	Frequency meter	Sep 75	
119	Switching regulator	Dec 75	
120	Logic probe	Sep 75	AEC
121	Logic pulsar	Sep 75	AEC
122	Logic tester	Oct 75	
123	CMOS tester	Nov 75	
124	tone burst gen	Nov 75	AEC


No.	Name	Date	Suppliers	
125	Oscillator	Jun 75		
126	If power control	Jan 75		
127	TL super test	Feb 75		
128	Audio mV meter	Jan 76		
129	fi signal generator	Jan 76		
130	Temp meter	Feb 76	AEC	
The photo on page 45 is not that of the temperature meter. The correct photo may be found on page 55.				
131	Power supply	Apr 76	AEC	
Several references are made throughout the text to R14 and R15. Wherever R14 appears rea R12. and wherever R15 appears read R13. In the How it Works section wherever R7 appear				
132	Power supply	Feb 77	AEC	
133	Phase meter	Apr 77	AEC	
134	RMS voltmeter	Aug 77		
135	Intersil panel meter	Oct 77	AEC	
136	Linear scale panel meter	Mar 78		
137	Audio oscillator	May 78		
128	Audio wattmeter	Nov 78		
139	SWR meter	May 78		
140	1 GHz frequency counter	Mar/Apr		
141	Logic trigger	Jan 79		
142	Power supply	Feb 79	AEC	

The wrong gauge wire was shown for coil L.2. The correet gauge is 1.6 mm
The eircuit and wiring diagrams for this project contain a mistake that all builders should be aware of - even at this late stage. Wires from the transformer T1 (PFF244240V/32V 300 VA) are incorrectly labelled orange and white on the cireuit. They should the transposed so that 'orange' should connect to the rectifier rather than 'white' as is shown. and 'white' should connect to the cireuit board instead of orange

143	Curve tracer	Jan 79	
144	True RMS volmeter	Jun 79	
145	Test board	Jul 82	AEC
146	mains master	Nov 79	
147	Electronic load	Oct 80	RIE
148	Logic probe	Jul 79	AEC

Some readers have reported trouble with this project, apparently caused by the large spread in parancters of wome 4049 [Cs. Try chips of a different manufacture is the advice we have eceived. Also, buffered $4\left(49\right.$ s or even $4109 y_{\text {, }}$ nay be used, but to get correct operation over the range of supply voltage from 5 V to 15 V . resistors R2 and R3 should be changed to a value of 1 M cach.

149	Two tone tester	Jul 80	RIE
150	Frequency meter	Dec 79	AEC
151	Ohm meter	Jan 80	

If you find your speed potentiometer has a considerable "dead band" at the 'top' (towards full peed) end this indicates your drill has lower bach-emf than that designed for the cure is to pervase R3. If atl the speed control is crowded over about 60 of rotation, inereaye R3 to 330 L If you gut or 100 of rotation for zero to full speed change R 3 to 2201 or 1801.
 OU may need to increase Rt from 27 k , Soh or osk, a DISCONNFCT THE UNIT FROM TIE MAINS BEFORE MAKING ANY MOIDIFICATIONS.
152 Capacitance meter Feb 80
The instrument will not function properly on the $1 \mu \times 10$ sale (i.e. $10 \mu$ full seale) as the in cgraton time is not tvp. Change R1 to IM2, Add a l(r) ohm resistor switched across R7 by the extra pole of

153 Temperature probe Jan 83 RIE, Jay,

Note at the end of the parts list says that a $5 \mathrm{VG}, 1 \mathrm{~W}$ fener can be substituted for the original. This should actually read $5 \mathrm{~V} 1,1 \mathrm{~W}$.

154	Digital logic pulsar	Jul 81	
155	4/8146 ohm audio dummy load	Jun 81	
156	100 MHz hi impedance probe	Jun 81	
157	Crystal marker	Oct 81	AEC
158	Low ohm meter	Nov 81	RIE
159	$10-15 \mathrm{~V}$ expanded scale meter	Dec 81	AEC, RIE

On page 37, the text mention Profer ETY 316, where we mean the E'Tl-326, publshed in the September "80 swle

160	13.8 V/10 A power supply	Jul 82	Alt, FE, ED
161	Digital panel meter	Aug 82	AEC
162	$30 \mathrm{~V} / 1$ A power supply	Dec 82	AEC, RIE, DSE
163	40 V/5 A power supply	May/Jun 83	AEC, RIE
164	Zener tester	May 83	$\begin{aligned} & \text { RIE, Alt, FE, } \\ & \text { ED } \end{aligned}$
165	Tacho calibrator	Nov 82	
166	Function generator	Jul/Aug/	
		Sept/Oct 83	AEC
The following errors crept into the parts list: C17 should be deleted. C18 - 22p ceramic, C19 - 470p ceramic. C19 - 470p ceramic. C20 - 4n7 greencap, C21 - 47n greeneap. C22 -			

## PROJECT INDEX

No.	Name	Date	Suppliers	No.	Name	Dote	Suppliers	
14 of ICt There the Re board. the overlay. the one next to RSt is actually R58. Some relays may not match the board and it will be necessary to drill extra holes and wire them in with link				337	Auto car antenna driver	Sep 84		
				340	Car alarm	Apr 84	Jay, ED,	
				344	Electronic jumper leads	Aug 85	AEC	
168	Continuity tester	Sep 85		. 342	Pulse-shaped CDI	Feb/Mar 85	Jay, ED	
169	Low distorion oscillator	OctiNov		The circuit diagram should have shown R 8 as 220 k not 220 R . ${ }^{\text {Feb/Mar }} 85$ Jay, ED				
Resistors R38-R.19. are labelled incorrectly on the overlay. Also on the overlay. the pe board Irack from pin 2 IC3 is shown leading to pin 16 IC5. Rather it should lead to pin IS IC5. To correct this, cut the track from pin 2 IC 3 at pin 16 ICS, and atach fy wire between the cut track and pin 15 of ICS				343 345	Optical car alarm switch Demister timer	Sept/Oct 85 Jun 86	$\begin{aligned} & \mathrm{HiC} \\ & \text { AEC } \end{aligned}$	
In order to make the sitcenuators contorn to the front panel artwork, use the follow ing resis.    R34 $=22 \mathrm{R}$. $\mathrm{R} 35=33 \mathrm{R}$.				AUDIO				
				400	Speaker   FET 4 channel mixer	Jun 75		
171	Arbitrary waveform generator	Feb 86	AEC			Sep 71		
172	Bit pattem detector	Apr 86	RIE	401	Simple channel sound	Apr/Aug 71		
173	Electro static hazard detector	Jun 86	RIE	403	Guitar sound box	Apr 71		
174	Timebase standard	Jui 86	RIE	404	FM conversion unit	Apr 71		
175	20 MHz DFM	Sept/Oct	AEC		Magna ray 8-30	Jul 72		
177	O1 and O2 do not exist			406				
178	Analogue Capacitance Meter	Ju187		407	Bass booster	Dec 71		
179	Analogue Breadboard	Aug 87	AEC	408	Reverb unit	Mar 72		
181	RS232 Breakout Box	Nov 87	AEC	409	TV sound	Mar 72		
182	Digital luxmeter	Mar 85	AEC	410	Super stereo	May 72		
183	Op amp tester	Apr 85	AEC, RIE	411	Small speakers	Aug 72		
The hattery polarity was thoun reversed in the original circuit diagram. The correct polarity is shown herewith				412	LED peak program meter	Oct 83	RIE, Alt, FE, AEC, ED	
184	in-Circuit IC tester	Aug 87	AEC					
AUTOMOTIVE				The linking for dotbar mode is shown incorrectly on the eireuit and component overlay. For a dot mode display, link pins 9 and II (as per the photograph of the board); for the bar mode. link pin 9 to the prositive suppiy.				
301	Variwiper	May 71	AEC	413	100 W guitar amp	Sept 75		
302	Tacho/dwell	Jul 71		414		Dec 72		
303	Brake light indicator	Oct 71			Stage mixer	Feb/Apr 73		
304	Light-operated switch	Nov 71			Quadraflex speakers	Mar 75		
305	Car alarm	Jan 72		415		Jan 73		
307	Headlight reminder	Oct 72		416 447	25 Wamp	Jan/Jul 73		
		Oct 74		417418	Over LED	Aug 73		
308	Tum indicator	Feb 73			Music synth	Oct		
309	Battery charger	Aug 73		419	Preamp	Sept 73   Jan/Feb 75	AEC	
310	Ignition timing light	Jun 74		420	4 channel amp			
311	Tacho - timing light	Sep 74				Sept 83		
312	CDI	Dec 74		421	Low-cost stereo speaker system May/Jun 74			
		Jan 75 Nov 74	$\begin{aligned} & \text { AEC } \\ & A E C \end{aligned}$	On the pe board overlay on page 86 the labels on the two capacitors are reversed - Cl is the $2 \mu \mathrm{~F}$ capacitor, C 2 the $8 \mu \mathrm{~F}$ capacitor. The values shown are in the correct position. The Parts List and circuit diagram are correct.				
314	Auto amp	Feb 75		422	50 W stereo			
315	Solid state flasher	Feb 75						
316	Transistor ignition	May 77	AEC	423				
317	Tacho waming light	Jul 77	AEC		Add-on 4-channel amp spring reverb	$\text { Apr } 74$		
318	Tacho digital	Jul 78	AEC	425	integrated amp	Jun-Sep.		
319	Variwiper Mk2	Sep 78	AEC					
320	Battery indicator	Apr 79	AEC	426	Rumble filier Graphic equalizer	Oct 74	AEC	
321	Fuel level waming	Jan 80	AEC			Oct 74		
322	Over-rev alarm	Mar 80	AEC	427	Graphic equalizer Amplifier			
323	LED tacho	May 83	RIE	428 429		Dec 74		
324		Aug 80	RIE, DSE,	429 430	Line amplifier FM antenna	Nov 74		
			Alt,	431		Apr 75		
			${ }^{\mathrm{FE}, \mathrm{A}} \mathrm{AEC}$,	432433	FM antenna Ceramic preamp Active crossover	Jun 75		
			ED			Sep 75		
325	Auto probe Expanded LED voltmeter	May 80 Sep 80	RIE, AEC	433 434	Active crossover Two tape facility			
326			RIE, Alt, FE,	435436	Crossover amplifier Dynamic noise amplifier	Oct 75		
327			AEC, ED			Sep 75		
328	Oil temp meter	Oct 80	RIE, AEC	436 437	Dynamic noise amplifier Simple speaker	Nov 75		
329	Expanded scale car ammeter		RIE, AEC	438	Audio level meter 3 -way speakers	Dec 75	AEC	
330	Car alarm	Feb 81Jul 81	AEC	$\begin{aligned} & 439 \\ & 440 \end{aligned}$		$\begin{aligned} & \text { Dec } 75 \\ & \text { Jul } 75 \end{aligned}$		
			RIE, DSE.		25 W amplifier Noise generator			
332	Engine stethoscope	Aug 81	AEC	441		Jan 76	AEC	
333	Vehicle reversing alarm	Jan 82	RIE, AEC	442443	Noise generator Masterplay stereo	Sep 84Adr 76	AEC	
334	Auto tester	Jan 83	RE, AEC		Expander compresser5 W amp		AEC	
335	Programmable wiper controller	Mar $83 \quad$ RIE, AEC		444		Jun 76	AEC	
336	Dwell meter	Aug 83	RE, AEC	On page 44 in the spectification table the frequency response should be 4 HZ to 200 kHz within +1 and -3 JB .				


No.	Name	Date	Suppiiers
445	Stereo preamp	Jul 76	RIE, DSE,
			Alt, AEC, FE, ED
446	Audio limiter	Aug 76	AEC

The integrated circuit ICI should not be a Philips type as these versions of the IC have buffered outputs. These devices cannot therefore the connected to give a FET for use in the linear mode as required in the audio limiter
447 Audio phaser Sept 76 AEC
The integrated circuit IC9 should nor be a Philips type. These have buffured outputs and therefore cannot be connccted to obtain a FET as required in the Audio Phaser.
On the circuit diagram RV1 is shown connected between +9 volts and the junction of R5 and R6. On the printed circuit board it is connected between +9 volls and the zero-volt line. This variation in connection does not affect operation of the phaser
The phaser is sensitive to supply-voltage variations especially when using small batterics. Use a large battery, or use a 12 volt battery to feed a 9 volt zener regulator via a 220 ohm resis-
tor.
448
449
450
$451 \quad 50 \mathrm{~Hz} / 100 \mathrm{~Hz}$ hum filter
Disco mixer
Nov 76
Balanced mic Nov 76
Nov 76 RIE, AEC

452 Guitar practice amp
453 Class B amp
$454 \quad$ Fuzz board
455 Loudspeaker protection unit
(N914: D5, D6 ar ans list shows the correctiype.
. 456 140 W amp May 80
The power transfornter..." In the parts list on page 35. D1-D10 and DI1-1)15 are listed in. correctly. D1-D10 arc A14P's and D11-D15 are INdi)th as shown on the circuit diagram.

457	Scratch and rumble filter	Sept 80	AEC
458	Peak/average LED level meter	Jun 81	RIE, AEC
459	Third octave graphic equalizer	Nov 82	RIE

In the circuit diagram on page 32. power nupply action, desden D2 and D? atre whon bach th fromt. The pe beard oserlay is correct. In the parts hat. R5 and R6 are themen an lish. hut 10 h on the circuit. 10 h is the correct valve, thengh not critual

460	Third octave analyzer	Nov 82	
461	Balanced input preamp	Dec 82	RIE, AIt, FE,
			AEC, ED
462	Headphone monitor/splifter	Apr 84	
463	Master play 2-way speakers	Oct 84	
464	IC audio amp	Jul 83	RIE, AEC
465	Loudhailer using the 464	Jul 83	
466	300 W amp	Feb 80	RIE, AEC
467	Guitar/mic preamp for 466-4	Jul 80	RIE, AEC
			Jay, ED

Firstly, on the circuil (page 49) exchange R.34 and R.35. The th resitor should now be connected from pin 9 of IC $2 b$ to the common rail (earth, or ( 1 V ). The capasitor across the presence control. a 4 n 7 markid $\mathrm{C} 20^{\circ}$. is actually C 24 . These three components are correctly marked on the overlay
Neve. on the overlay photo (paige 50) ICI and IC2 have been shown with the incorrect orientation. Pin $!$ of ICI is tocated diagonally opposite to where it it is shown on the overlay, It should be adjacemt to R1. Similarly' with IC2. pin 1 should be located adjacent to R23. The pe board copper side has them marhed cerrectly.
On the Parts Live. R 35 and C24 do not appear. Add a 270R resistor and a in 7 greencap. respectivtly. Finally. in the second paragraph on page 50, the maximum output is quoted as 200) volts peah to peak.. In reality, it is a more modest 20 volts peak to peah. Kit and component suppliers have already been notifed
469 Drum machine (precision synth) Apr 82 AEC
 $1 \mathrm{~N}+14 \mathrm{~S}$.
$47060 \mathrm{Wamp} \quad$ May $79 \quad$ RIE, AEC
The earth rail onto the amplifice must be returned to the 0 volt connection on the power surply. Althergh it in obvers to moin peesple it was net indicated on the circuit for the 470 mostble, but was shown on the wiring dagram for the Serie dik() amplifier yonem in the June issuc.
471
Pre-amp
Jun 79
RIE, AEC

The loudness conmel produces 8 dB heme at 150 Hz and 10 hHz . rather than an 15 kHz and 10 htiz is the artacle stited (gremlims again ...). Also in the circuit dagrams the function I.ED, are shown the wrong way round with respect to the swatch, an on the I.ED power sup. ply with reppee to the overlay. The overlay in correct and should the followed, hut either connection will work. In the parts list the resivtors R118 and R119 have been ombled. They are both 15 h . 1/ W. 5 \%

472	Power supply	Jul 80	AEC
473	Moving coil amp	Oct 80	AEC
474	4000 power amp interface	Feb 80	AEC
475	AM tuner	Aug 80	AEC

RFCI was omited from the parts line. Thu wa Phathp type $\backslash K 200$ widehand chohe and conbish of a si-hole ferrice bead (type number +312-(120-31550) with a length of 22 swg tinned copper wire pased through it five tumbe. In the antenna dutaik the copy bencath the antenna

No. Name Dote Suppliers
matching coil on page 26 should read: "For use with small loops 6.8 turns" and "For use with large loops 2 turns
476 Series 3000 amp 'compact' Nov 80 AEC
An error appears in the How It Works on page 28. Under the sub-heading "Power Amplificr" third paragraph, there is a sentence which reads: "This leaves a total of 0.6 y to he dropped across the two 27 ohm resistors R27 and R28". It should read ". . . 100 ohm resistors R27 and R28".
On the overlay (in both Nov. \& Dec.) R34 is shown as 270 R when it should be 180R. In the parts list. R25. 26. 125 and 126 should be shown as 180 . Only R3.4 should be shown as "180R, see text". Capacitor C21 (same as C20) was left off the paris list

477 Series 5000 power module |  | Jan/Feb/ | RIE, Alt, FE, |
| :--- | :--- | :--- |
|  | Mar 81 | AEC, HiC, |
|  |  | Jay, ED |

In the circuit diagran capacitons $C 7$ and $C 8$ were shown connected between the gates of $\mathcal{O}^{9}$ and OII respectively', and the feedback line. In fact. they connect between the gate and source of each derice, as shown in the Feb. issue.
In the February muc. under llow It Works, there is at typugraphaval error in the seexend last aentence, third column. It reads Thanswors OH and OS therefore form the main wolage gain section of the amplfier. . ". It should read "Tramsutors 1 go and $O X$
The ETI-477 MOSFET amp is not unstable if $j$ ou build it the wis we dencribed. Howerer.
 tion. There are two reasons for this. If capacitor (9 ( 200 greencap) has a high self-induct-

 and oxcillation will result. He
amp in not unstable ung them.
Secondly, if resulors R25 and R27 hate more sell-induttance than the "Noble" typer we used


 pad where the leads of eath revintor go to the sources of (09 and OI
478
Series 5000 Stereo preamp

Jul/Sept/	$\mathrm{RIE}, \mathrm{Alt}, \mathrm{FE}$,
Oct 81	AEC, HiC,
	Jay, ED

Overlay p38. Oct 81, shows R53 as 220R. It should be 220h.




479	Series 5000 power amp adaptor	Mar 82	RIE, Alt, FE,
			AEC, HIC. Jay, ED
480	50MOO W amp	Dec 76	RIE, DSE,
			AEC, Jay, ED
481	12 V 100 W amp	Jun 77	AEC
482	50 W stereo amp	Jan/Feb 77	AEC
483	Sound level meter	Feb 78	AEC
484	dBX	Jul 77	
485	New equalizer with gyrator	Jun 77	AEC
486	Frequency shifter	Nov 77	AEC
487	Real-time audio analyzer	Feb 78	AEC
488	650 W 2-NDFL module	Jan 83	
489	Mk2 real-time analyzer	Apr 78	AEC
490	Speech compressor	Dec 78	AEC
491	Graphic equalizer	Mar 79	

A very important rewiver was left off the circuit and overlay in this project - A 15.7 k resiator. made from an 18 h ind 120 h in parallel, connect, between the outpue of the gasin pot and the input (pin 2) of ICt. The circuit will not work without it.
492 Sound bender

Feb 82	RIE, DSE,
	AEC
Oct 82	RIE, Alt,
	AEC, Jay,   Aug 77   Feb 80   Jun 80   Jun 82   Mar 82
	RIE
	AEC
	AEC, Jay,
	ED





1401	DI box	Sep 85	Jay, ED
1402	Sampler	Apr/May/	Jun 86

 5": The standty pewer upply VA mentioned at the end of the llow it Worh should be in house syle reading $V^{\prime}$ (rf an in in the crreut diagram. On the wiring dhagram, the trigger switch is lathelled incorrectly: kerminal letternge $F$,hould read $J$ and vice verai

## PROJECT INDEX



No.	Name	Date	Suppliers
589	Temp meter	Dec 77	AEC
590	6-digit LCD stopwatch	Oct 78	
591	4-digit up/down counter	Jul 78	AEC
592	3-channel light dimmer	Aug 78	AEC
593	Colour sequencer	Dec 78	AEC
594	Development timer	Apr 79	AEC
595	Aquarium light timer	May 79	
596	White noise generator	Nov 81	
597	Emergency light unit	Dec 80	
598	Sequential touch switch	Feb 81	
599	Infrared remote controller	Apr 81	
1500	Metal detector	Dec 80,	
		Apr 81	AEC

There are a number of designation errors on the circuit on page 42. Firsily, terminals $T$ and $V$, which go to the volume pot RVS, are shown the wrong way round on both the circuit and winng diagram. Transpose them and the pot will work in the correct manner. Secondly, the pin numbers to IC2a are shown incorrectly. The gate is actually pin 6 (not pin 3). The drain and substrate are connected (internally) to pin 14 which goes to +10 V . The source is pin (not pin 1). Pins 1 and 2 of IC2 are unused. Pin 3 goes to 0 V . The overlay is correct.
It appears that C20 is shown on the overlay with incorrect polarity, the capacitor's construction and location of the + sign make this a bit confusing. The negative side connects to terminal R. Resistor R33 is shown as 10 k on the circuit diagram. It should be 100 k . The overlay and parts list are correct
Search head wiring should be as follows: receive coils, red and black (resistance, about so ohms). These go to pins $j$ and $k$ on the $p$ b board, via the DIN plug and socket. the cable shield and white wire are connected to the transmit coil (resistance about 12 ohms). The shield goes to 0 V at pin i and the white wire to pin h . Any extra wites in the head cable are unused.

1501	Negative lon generator	Apr 81	AEC
1502	Sling psychrometer	Dec 83	
1503	Standby battery charger	Aug 81	
1505	Emergency fluoro light unit	Aug 82	
1506	Bicycle flasher (xenon)	Jul 82	AEC
1507	Lightbulb saver	Nov 85	
1508	model train controller	Dec 82,	
		Dec 83	
1509	Uniersal dc-dc inverter	Sep 82	AEC
1510	model train controller	Jan 83	
1511	Zero crossing temp controller	Feb 83	
1512	Electric fence tester	Feb 83	RIE, AEC
1513	Digital frequency doubler	Jan 86	
1514	Solid state relays	Nov 83	
1515	Drill speed controller	Apr 83	RIE, AEC
1516	Model engine ignition	Jun 83	RIE, AEC

The Parts List on page 74 shows R16 as $18 k$, but the circuit diagram gives it as 560 R . The eircuit diagram is correct.
1517 Video distributor board Sep 83 RIE, AEC
There are two errors in the wiring diagram of the Video Distributor Amp. On page 148, the two yellow wires from the 2851 transformer are shown going to the top and botton tags of the tagstrip - this is incorrect. They should both be moved one tag toward the cenire of the tagsirip.

1518	Video enhancer	Dec 83	RIE, AEC
1520	Wide band amp	Jul 83	AEC

Capacitors C6 and C8 are shown on the overlay on page 74 as 2 p 2 while the Parts List and circuit shows C 6 as 3 p 3 and C 8 as 10 p . The latter values are correct

1521	Digital exposure meter	Mar 84	AEC
1522	Multiple light controller	Mar/Apr 84	
1523	Electronic scales	Jur/Jul 84	AEC
1524	Electronic mousetrap	Aug 84	AEC, RIE
1525	Motion Detector	Jun 87	
1526	Fibre optic link	Apr 85	DSE, AEC.
1527	Burglar alarm module	May/Jun 85	Jay, ED
			HiC
1528	Door controller	Jul 85	
1530	Noise detector	May 86	
1531	Brown out protector	Sept 86	Alt, FE,
1532	Iron temp controller		AEC, Jay.
			ED

The circuit diagram is incorrect. The node of D2 and D4 joins the top of R11. There is no connection between R11 and the bezel or R9. The overlay in correct
1533300 W power supply
1535
Motion detector
NovDec 86
Jun 87

No.	Name	Date	Suppliers
MUSIC			
604	Music sync	Oct 83	
602	Mini organ	Aug 76	AEC
603	Sequencer Mk1	Aug 77	
604	Metronome	Sep 77	AEC
605	Lin-exp converrer	Sep 78	
606	Tuning fork	Nov 79	
607	Sound effects unit	Jul/Sep 81 Mar 82	AEC
608	MIDI Patch Change	May 87	
609	MIDI thru box	Mar 86	
610	Drum synth module	Oct 74	
611	MIDI matrix	Sep 86	

All output ports are incorrectly labelled with pins 4 and 5 transposed. All pin is are commoned together and pulled up via R21. Pin 5 is connected to the output buffers.
612 Audio Test Set Aug 87
613 MIDI Interface for C64 Nov 87 AEC
D99. cols 1 and 2 pin 21 not 20. Col 2 first para 1 C 3 not 1 Cl

## COMPUTERS

630	HEX display	Dec 76	
631	ASCll keyboard	Dec 76,   Apr 77	AEC
632	VDU	Jan/Feb/   Mar 77	AEC
		Jan 77	AEC
633	Video sync	July 78	
634	8080 EDU INTERFACE	Sep 77	
635	Micro power supply	May 80	
636	S100 mother board	Jan 78	AEC
637	Cassette interface	Jul 78	AEC
638	2708 EPROM programmer	Mar 78	
639	Doorbell	Apr/May	
640	VDU Mk2 S100	Jun 78	
		Sep 78	
641	Philips printer interface S100	Feb 79	
642	RAM card 16K		

The inputs to IC38c on the circuit diagram should come from the BLOCK 1 to 4 lines rather than the CS 0 to 3 lines as shown. Two ICtis mere accidentally shown. The lower of the two is the real IC43. The IC above and to the left of this is IC44. a 74LS154. In the list of ICs at the top of the diagram, ICt5 should be shown as 74LSI75.

643	S100 EPROM programmer	Dec 79
644	Modem	Oct 82,
644	Follow-up	Nov 83.
$644 a$	Modification	Feb 84

 reference channel flip-flop. ICs) ein be reduced to $6 \mathbb{N} \mu_{p}$ in provide a hebler variahom range for RVI ('adjust output symmetry pol') Alas note that (Is consects it) pin 3 of IC'12a on the

In the Parts last. Iramistors O4, 6. 8 and 10 were cut off - whey are all BC549. Cd in whown as $\ln$, but $\ln 2$ on the circuit - it can be either. C19 shosuld be a 2 n 2 and a C21 a 330 p . R 48 shouid te oh8. not tikh. Ressotors R23 to Rot are given as lok in the Parls Lisl and 47 h on the circuit Euther is correct Nole that the progerammine diedes were not mentioned in the Parshlati. A lotal of $8: 5$ are reyured.
Parts hat, A total of share reyured. the evtreme. it is fesund that R\I (ADJUST OUTPUT SYMNll:TRY pot) does not hase
 nough range. Th
wap R2 and R16
If 75 batud operation proven 'touchy' increane the value of C18 oo 220 on or greater
There are diserepancies between the circuit diagram and the pe. |xaard. Cis gos to pin 3 of C 12 n , not pin ? athown on the circunt digram. Secondly. the junction of C 31 and R76 goes Wo the junction of DIt and D. not to pin 6 of IC 20 .
Eiveractice mateates an improvernent in performance under weah agnal conditions can be ohbined by making the pe beard conform to the circuit here (output of $1(20)$. This requires sumply cutting one trach and adding a linh ith shown in the accompanyng diagram
Tasman Turtle robot
Turtle hand controller
Turtle-talk voice synthesizer
Micro-grasp robot arm
Light pen for Microbee
Stac timer
Binary HEX trainer
System 80 joystick interface
16-channel driver
Apple $l \mid$ card


672 Oct 83 R
673 'Bee multiprom bier interface Oct 83 R
$\begin{array}{llll}674 & \text { 'Bee joystick controller } & \text { Dec 83 } & \text { RIE } \\ 675 & \text { 'Bee serial-parallel interface } & \text { Jan 84 } & \text { RIE, AEC } \\ 676 & \text { 'Bee RS232 adaptor } & \text { Feb 84 } & \text { RIE, AEC }\end{array}$
The pinout for the transistors, shown on page 65, is all screwed up. Use the pinout on page

677	Chatterbox voice synthesizer	Jan 85
678	'Bee ROM reader	Apr 84
679	'Bee joystick adaptor	Jun 85
680	280 cpu board	No 79
681	Prog character generator	Jun 80

In Table ! on page 69. the heading at the top of the left hand column should read "Value of Rp" as the vatues of RV1 and RV2 are fixed al $5 k$. On page 70, IC27 has a pin at the bottom marked " 18 " when it should be 15 - it's only a 16 -pin chip, anyway! On page 73, in the parts list. R3 is listed as $1 \mathrm{k} .9 .2 \%$. A $1 \times 8$, $5 \%$ resistor is OK here. On page 74, under "Dipswitch No. 2:". second paragraph. the lines "We recommend that you put the joystick port at hex 'FF' ... should say . put the joystick port at hex 'EF' . ." The joystick setup prucedure is correct as it places the joysticks at EF
In addition, a number of typrgraphical errors appearcd on the circuit diagram on page 70. Address lines A11. A13 and A1t wcre shown as going to pins 27,35 and 36 respectively. This is incorrect. All goes to pin 87 . A13 to pin 85 and A1t to pin 86 .

682	S100 prom board	Mar 81	
683	Computer controller	Dec 84	AEC
684	Intelligent modem	Dec 85,	HiC, Jay,
		Feb/Mar 86	ED
685	2650100 computer	Dec 81	

In the part, hat. the power upply input bypas tantilum eapacitor were crroneousty precified an $6 V$ iypes. Thes, should be $35^{\circ} V$ yyper - the ee :are capacitors C2. C4 and C5. Alw capucitors CX and Cy may be 6 V or 10 V tantalums. but capsettors C 6 and C , hould be $15 \mathrm{y}^{\prime}$ or $25 \vee$ typer.
686 PPI EPROM programmer
Oct 82
on the power supply circut it the hothom of page 72 the A.E.N on the 240 Vac input thould te A-N.E. OI is misneg from the Path Lint it is a BC.547.

687	VZ-200 update	Jul 86
688	Transpose pin 4 and 5 of 1 Cl	
Bipolar PROM programmer	Jan 83	

RIE, AEC
At date of going to press with this project. Chuck Simmers had onty tried the National hipohar PROMs so check the specifications before attempting to program other makes using this project.

84
n 85
079
80
AEC
$\square$

The photo on page 55 is not that of the marker gencrator as stated. The correct photo can be found on page 45

707	Converter for 28,52 and 144 MHz	Feb 76
708	Active antenna	Mar 76
709	Attenuator	Mar 76
710	Power amp	Apr 76
714	Remote control switch	Jul/Aug
		Sep 76

AEC
Mar 76
Apr 76
Sep 76 AEC
MPF 121 transistors are no longer available. The MPF 131 may be used as a substitute as these are the same chip mounted in a slightly different package.

712	CB power supply	Jun 77	AEC
713	Add-on FM tuner	Sep 77	
714	T-FM antenna	Feb/Mar	
715	2 and 6 m power amp	Nov 77	
716	Power amp	Jan 78	
717	Cross hatch marker	May 78	AEC
718	SW receiver	Oct 78	
719	Field strength meter	Nov 78	
720	2 m VFET power amp	Jan 79	
721	Aircraft band converter	Mar 79	AEC
722	Project 721 antenna	May 79	
723	Selective caller	Feb 82	
The last two line of the intro whould read: ". . . then this simple accesory allow, you to turn down the volume, notifying you when that certain party calls - no tones or funny nobes required".			
724	Microwave oven leak detector	Jul 79	RIE,   AEC,   ED

## 725 Polyphase SSB generator <br> Aug 79

$726 \quad 6$ and 10 m power amp
The overlay was perhaps not as clear as it could have been in a few places. The coax cables. A and B, shown near the changeover relay, secm to have their shiclds connected to the RF outpul track heneath them. Actually. the icad going up to the comment shields earthed" indicates what to do with them. Strap them to the ground to the left of the relay. adjacent to the shim strap.
As the low frequency gain of the DX 542 CF , used in the ETI.726, is uncharacterised some amps may show HF instability. This problem is easily cured by danping RFCI with a renistor. around 5 ohms in valuc, connected in parallel.
If you like to play it safe with regard to TVI, the filter descrited for use with ETi-715 6m amp. published on p. 52 of the January 1978 issuc of ETI, will serve very well.
727 Antenna matcher
Jan 81

No.	Name	Date	Suppliers	No.	Name	Dote	Suppliers
728	UHF TV antenna	Mar 81		741	10-channel synth radio mic	Dec 84/	
The text states the fokled dipole wa constructed of alummum strips 3 mm thick by 12 mm wide, while the diagram on page 43 shows the width to be 2.5 mm . It in in fact 25 mm wide. but this dimension is not ertical and cither strip width with worh.						Jan 85	
				742	Broadcast/coms speaker	Feb 85	
				743	25 W UHF power amp	Jun 85	
729	UHF masthead amp	Apr 81	AEC	744	UHFNHF tuner	Apr 86	
730	RTTY receiver converter	Aug 79	AEC	745	AM Radio	Mar 87	
All references to O 1 in the article should refer to O 2 . 13F338, as there is no way that the circuit will work as shown. If there are difficultios in obtaining the correct waveform at the output of IC7. it may be necessary to change the 56 k rewitors to $6 \$ \mathrm{k}$. and the 8 k ? resintor to 10k. Also note that pin 1 and pin 16 of the CMOS hex inserter should go to +12 V and pin 8 to 0 V .				746	AM Transceiver	Mar 87	
				750	6 mamp	Dec 83	
				751	FM bug	Dec 85	Jay, ED
				What could go wrong with this one? A (ypor). The equation for the turns ratio in the How It Works section (p.50) should tre:			
	RTTY modulator board	Sep 79	AEC				
If the tone oscillator doesn't ossillate, try placing a 22 n capacitor from the emitter of O 4 to common. Note that stability of the osseillator is greatly improved if you use silver mica or styroscal capacitors or C5. C6 and C7.				$\mathrm{N}=\mathrm{k}$			
					RITY transceiver	NovDec 84	RIE,
733	Microbee RTTY	Apr 83	RIE, AEC				Jay,
734	Phone patch line intertace	May 83		756	VZ200 RTTY transceiver	NoviDec 84	
735	UHF IV conventer	May 84	AEC	There are nine links on the decoder beard, not eigh. On the circuit diagram, P. 109. C23			
736	Picture plucher	Sep 83		the second command is SHIFFX. In the text on P. 110. second last paragraph, the lavt sen-			
737	70 cm preamp	May 84	DSE	tence should read: "Sce that the two polarized capaciton (C21 and C22) are correctly oriented. " Notc that R7 is actually 2k7, as per Parts Lint, not 4h7, as per circuit.			
738	UHF booster amp	Jul 84			Cat RTTY/FAX	Nov/Dec 85	DSE
739	AM stereo decoder	Oct 84		760	Video RF modulator	$\text { Oct } 81$	RIE, AEC
740	FM tuner	Feb/Ma		760 764	Video RF modulator AM Transceiver Pat 2	May 87	RIE, AEC
The LED spacing is 1.25 MHZ not 800 kHz . The display driver IC is a UAA 170 not a UA 170. The varicap stabiliser is a TAA 550 not a TA.550).				780	Novice tx	MayIJun 76	AEC



## DREGS

Continuing our perusal of other peoples mistakes we publish the following gleaned from a selection of journals from around the world.

THEY managed to contain the outbreak until the arrival of the fire brigade. The van, however, was taken to St Colmcille's Hospital and was discharged after treatment.
-WE make a specialty of gorillas and chimpanzees. They are wonderfully intelligent and can be trained right up to the human standard in all except speech. One of our directors and his wife are both able to be tamed to live in captivity.

To repair damaged tablecloths, first lay the tablecloth flat. with the hole uppermost.


Assistant Editor at play

FOUR youths found guilty of raping a 1 -ycar-old prostitute were each sent to prison for five vears at Sheffield Crown Court.

THE victim was taken to an adjoining room where medical aid was given by a woman doctor from Northern Ireland and by a former nurse. who applied the Kiss of Death.

Oven stolen
A microwave oven has been stolen from Waverley Crematorium. Clacton police said yesterday.

McLEOD - On August 18. peacefully in hospital. Joseph Phillip McLeod. loving dad of Joe. father-in-law to Gwen, loving grandad to Jane. Ian and Kelly. Sadly pissed.

## ADVERTISERS' INDEX

Adilam ..... 130
Advanced Component Distributors. 10, 105
All Electronic Components ..... 120
Amtex. ..... 20
Applied Measurement ..... 9
Applix .....  .7
Arista ..... , si 5
Audio Engineers ..... si 21
Aussat ..... si 9
Autodesk ..... 34
Avtek .....  8
Babani Books .....  92
Bose. ..... si 18
Clean Line Systems .....  18
Control Data ..... 104
Crusader Electronics ..... 50
Chemical Treatments and Coatings ..... 47
Convoy. ..... si 1
Datacom ..... 103
Diamond Systems ..... 97
ECQ Electronics. ..... 24
Eidetic. ..... si 19
Electronic Discounters ..... 23
Electronic Solutions ..... 58, 59
Electriboard Design ..... 30
Energy Control ..... 23
Fujitsu ..... 3, 142
Hawk ..... 110
Hi -Com Unitronics ..... 115
Image Analysing Services ..... 40
Intertronics ..... si 21
Jaycar Electronics ..... 127
Jesec Switches ..... 10
Kalex ..... 33
Manuco Electronics ..... 30
Marconi Instruments .....  2
Micro Educational. ..... 51
M. Muraca ..... 51
Orpheus Loudspeakers ..... si 20
Philips Elcom ..... 4
Philips Test and Measurement ..... 143
Pre Pak ..... 117
Prometheus Software ..... 32
RCS Design ..... 51
Rebel Audio .....  .9
Rod Irving Electronics ..... 127, 128, 129
Scan Audio ..... si 17
Scientific Devices ..... 16
Scope. ..... 119
STC Cannon ..... 139
Subscriptions ..... 124,125
Tektronix ..... 141
Telecom ..... si 4
Temple Smith ..... OBC
Tennyson Graphics .....  41
Texas Instruments ..... 114
Trevor Lees ..... si 23
Van Data ..... 97
W.E.S. Components ..... 21
Yamaha ..... si 24

## NEW TEK. PURE \& SIMPLE.



Now, the perfect measure of economy plus performance in a lowcost, 50 MHz scope backed by a 3 year warranty. The new 2225 exemplifies Tek quality at its pure and simple, affordable best. It's the easy, economical answer to your professional scope needs at bench and field sites, on the manufacturing floor and in the classroom.

Two-channel, single time-base Tek basics enhanced by features of much more expensive scopes. Plus outstanding ease of use. You get $500 \mathrm{uV} / \mathrm{div}$ vertical sensitivity for low-level signals. Horizontal alternate sweep magnifications of $X 5, X 10$ and $X 50$ for time measurement accuracy. New front-panel Z-axis input. HF and LF Reject trigger filtering to stabilize noisy-signal displays. Plus TV Line and Field triggering. All in a compact, portable package.

Two heavy-duty Tek 10X modular probes with a new ruggedized probe tip are included.

Scope. Probes. 3-year warranty, 10-day free trial with money back guarantee. One free call gets it all! Call Tek direct to order or obtain literature. Technical personnel can answer your questions and expedite delivery. Each order includes probes and operator's manual. Everything that says genuine Tek!

Bandwidth	50 MHz
vertical   Sensitivity	500 uV/div
Waveform Expansion	X5. X10 X50 Alternate Magnuif ${ }^{\text {ations }}$
Maxımum Sweep Spee	5 ns/div
Trigger Modes	Peak-to-Peak Auto, Norm. TV Field. TV Line. Single Sweep
Trigger Couplings	AC. DC. HF Reject. LF Reject
Weight	$66 \mathrm{~kg} / 146 \mathrm{lb}$
Standard Warranty	3 -years on parts and labour. including CRT
$\begin{aligned} & \text { Warranty-Plus } \\ & \text { Option N2 } \end{aligned}$	Optional 5 years parts and labou service - including CRT Specity Option N2 +30000

Call Tracee Smith at Tek direct:
008-023342
or (02) 8887066
Head Office:
80 Waterloo Road,
North Ryde N.S.W. 2113
(02) 8887066

Tektronix

## The DL 2400/2600 print quality graphics easily.



## The hard part is choosing the colours.



The Fujitsu DL 2400/2600 offer you high resolution printing for crisp, clear images in eight colours, programmed internally to make colour changes easy.

High speed printing at up to 34,000 dots per second. Automatic sheet load and unload of cut or continuous stationery. And bit image graphics in two modes.

It is also compatible with other wellknown computer brands - including IBM.

All these qualities make it an exceptional printer. What makes it extraordinary is the fact that it is yours for very little more than an ordinary daisy wheel printer.

Fujitsu make printing reliable.
For more information contact your nearest
Authorised Fujitsu Supplier for all the details.
Telephone Fujitsu Australia Limited on
Sydney (02) 9596544, or Melbourne
(03) 5297633.

# Tailor your own system set-up! 

Philips System 21-a highly flexible modular system for automatic testand measurement providing versatile I/O and switching functions controlled via the GPIB.

So you can geteasily configure-and reconfigure - your own small to me-dium-size GPIB instrumentation set-up.

Simply and economically.
Occupying only a single GPIB bus address, System 21 comprises a master GPIB interface/power supply module, and arange of slave modules for: switching (up to 18 GHz ); digital I/O; A/D conversion, and a user-adaptable module for customized functions.

And our commitment to hard- and software development ensures that

## Test the difference

System 21 will continue to grow up without ever growing old!

Product Credibilty in technology, technique, quality and service, too, is assured because System 21 is backed by the resources of one of the world's largest electronics companies.

READER INFO No. 68



Test \&
Measurement

Test the difference and you'll also agree that Philips wins on price and performance!
Contact, Philips Scientific and Industrial
Equipment division
Sydney - tel. (02) 888-8222
Melbourne - tel. (03) 542-3600
Brisbane - tel. (07) 844-0191
Adelaide - tel. (08) 348-2888
Perth - tel. (09) 277-4199
Other areas Australia - toll free (008) 22-666
Auckland -- tel. 894-160
Wellington - tel. 889-788

## THEY DON'T JUST LOOK TOUGH, THEY'LL BE TOUGH FOR YEARS AND YEARS.

 look, put your components into one of BETACOM's smart strong Instrument Case Enclosures. Made of strong powder coated aluminium with the unique flat fold lip for strength, these enclosures will look professional for years. Easy to assemble in a variety of sizes, supplied with all the hardware and shrink wrapped for protection. IC1, a 4 piece box available in 3 sizes with its cover screwed from the bottom. IC2, a 2 piece box available in 4 sizes with the cover screwed from the ventilated sides. IC3, a 2 piece box available in 4 sizes with the cover screwed from the sides. IC4 is an extruded aluminium 2 piece enclosure.

Cover is screwed at each end with the unique internal "square-wave" slotted extrusion with allows for slid-in Eurocard PC mounting. IC5 is a 2 piece box with the cover that is screwed from the bottom. IC6, finished aluminium front and end panel, 14 piece box which is screwed from sides and rear. Available in 20 sizes. Full width is $19^{\prime \prime}$ rack mountable with optional rack mount brackets. Handles are available for $3 \cup$ and 4 sizes. BETACOM's Standard 19" Rack Bins and Desktop Units also come in strong, powder coated aluminium, in a variety of sizes and colours with vented sides and top panels in five easy to assemble pieces with handles.


TEMPLE-SMITH AUSTRALIA PTY. LTD. 2-12 Harp Street, Campsie. PO Box 196, NSW 2194 Telephone (02) 783436 Fax (02) 7872529
VICTORIA: Temple-Smith Austraila Ply. Lid. 12 Rosella St. Frankston 3199 Telephone (03) 7811013 . Fax (03) 7839151
SOUTH AUSTRALIA: Graphic Electronic Industries Pty Lid 168 Payneham Rd., Evandale 5069 Telephone (08) 3630277 WESTERN AUSTRALIA: J G Thomas \& Assoclates 5 Durnham Rd. Bayswater 6053 Telephone (09) 2727122 QUEENSLAND: St. Lucia Electronics 24 Campbeil St.. Bowen Hills 4006. Telephone (07)527466


[^0]:    10088 REM DATA DE－BUGGER＇By 5．Carter 29／3／1987
    10018 REM Thi program requsres that data lines are numbered
    1002 REM in stepa of ten to operate property．
    1 1030 inPut－uith delay iY or NI．：izi．
    
    ：0050 INPUT－How many lines of data．．．．ir
    IPESA TFYRITMENIDOSA
    lease INPUT－URAT IIN
    10日8 RESTOREX：CLS
    10 R9G FORU＝0TOY－1：FORV＝1TOIG：CURSB
    $101 g 0$ READA：PRINTAI
    1\％110 ONERRORGOTOIब180
    
    
    15140 IFZDE：PLAYO．9
    10150 NEXTV：NEXTW
    10169 PRINT＇AII data IE corroct．＊END
    
    

