The 'Incomparable' MF scope!

In performance, price and ease-of-use our new PM3050 family of 50 MHz oscilloscopes is truly incomparable. Behind a logically layed-out front panel there's a level of technology never before attained in MF scope design. Yet surprisingly, they are the lowest priced MF scopes on the market!

Take a look at these unique benefits:

- AUTO-SET facility and LCD Status/ Setting panel for optimal signal setting and instant display' of all signal parameters.
- Extremely high performance and specification thanks to special features like: 16 kV CRT unit, versatile triggering functions up to 100 MHz , plug-in system modularity and extensive use of IC microelectronics.

- Product Credibility in technology, technique, quality and service because the PM 3050 family is backed by the vast corporate resources of one of the world's largest electronics companies.

Test the difference and you'll also
 agree that Philips wins on price and performance!
Contact, Philips Scientific and Industrial,
Sydney - tel. (02) 8888222
Canberra - tel. (062) 956140
Melbourne - tel. (03) 5423600
Brisbane - tel. (07) 8440191
Adelaide - tel. (08) 3482888
Perth - tel. (09) 2774199
Other areas - toll free (008) 226661

Trade Wars 18
The US v Japan, again
CD ROM 20
Is it known in the Antipodes
The New Fleet 26Foreign companies vie to build our subs.Floppy disc drives30
All you need to know
Analogue to Digital Conversion 34Doing it right
RF Kits 66
A National review for the hobbyist
Binary, Hex and all that 82
Do you need to be an expert
Buyer's guide to CROs 101
Anything and everything
Remote Sensing 106
The COSSA project
COMPETITIONS
Subscribe and win 25
Catch a CRO 100
Answer these two quick questions
Four Amplifiers compared 90
The Omnireader OR 1 96
C-itoh Printer 98
ETI-288: Ring Tone Customizer 49
ETI-1525: Motion Detector 60
ETI-1616: 1616 BASIC 70
ETI-177: Analogue Frequency Meter 74
Editorial 6
News Digest 9
Advertiser's Index 22
Subs Card 25
New Products 28
Feed Forward 41
Sight and Sound 87
Dregs 110
COVER: Courtesy of COSSA and the Australian Submarine Corporation.

Page 101

Page 26

Page 106

Page 20

MICROBEE 256TC
A breakthrough in Australian informatics

- 256k of Dynamic RAM
- Single or dual $3.5^{\prime \prime} 800 \mathrm{k}$ double density disk drives
- Ergonomic, Australian designed keyboard with numeral pad and function keys
- Optional AUTOMODEM for the complete communications package.

ITS FOR YOU

It's a new class of very personal computer for Education and Communication the Microbee 256TC is in a class of its own.

The product of over $\$ 1,000,000$ of Australian research and development. Designed by Australians for the World market, the 256TC is a totally new concept for the Education Information Revolution. Whether you are simply seeking a better education for your fanily, or wishing to improve your letter writing, personal business and communication skills, the new 256 TC is your kind of computer. From Homework assignments to 'Learning Can

Be Fun 'Educational games and even Adventure and Graphic Games of skill, the 256 TC will stimulate and entertain the whole family, and whats more the education approved Microbee software will ensure your family's home learning is in tune with their day time studies.
The powerful 256 TC Executive Solution with its twin $3.5^{\prime \prime} 800 \mathrm{k}$ disk drives and brilliant, low cost Microbee Automodem delivers you the complete Executive Computer for your home or office. Send ana receive your own Telex messages, use Viatel, do your banking at home and communicate with other systems. With this new Microbee you can do it all.

EDUCATION SOLUTION

Price $\$ 1299.00$
Package includes: Microbee 256TC single drive, M-15 High resolution monitor 15 KHz , 256 TC manuals and software including Simply Write, Videotext, Telcom and Learning Can Be Fun.

HOME OFFICE SOLUTION

Price $\$ 1899.00$
Package includes: Microbee 256TC dual drive, $\mathrm{M}-15$ High resolution monitor 15 KHz , DP-100 Near letter quality, dot matrix printer and parallel printer cable, 256 TC Manuals and software including Simply Write, Videotext, Telcom, and Learning Can Be Fun.

EXECUTIVE SOLUTION

Price $\$ 2999.00$
Package includes: Microbee 256TC dual drives, 7030 High resolution RGB colour monitor, power supply 1.5A (for colour monitor), DP-100 Near letter quality dot matrix printer, parallel printer cable, Microbee Automodem $300+1200 / 75$ bps RS232 serial M-M cable 256TC Manuals and software including Simply Write, Videotext, Telcom, Typing Drill, and Learning Can Be Fun.

UPGRADE

Yes. You can upgrade your old Microbee keyboard and disk unit to a brand new 256 TC . Write in, phone or call in at a Microbee Computer Centre now for a free catalogue.

MICROBEE COMPUTER CENTRES AND DEALERS			
GOSFORD CENTRE Kuala Crescent. West Gosford. N. S.W. 2250 (043) 242711	MELBOURNE CENTRE 50-52 Whitehorse Ruad. De'ple'the, Vic. 3101 (03) 8171371	ADELAIDE CENTRE 117-119 Gonger Strett. Adelaide S.A. 5000) (08) 2123299	PERTH CENTRE 141 Stirling Highroay. Nedlonds, W.A. 60019 (09) 3868289
WAITARA CENTRE 1a Paftison Atenter, Waitara, N.S.W. 2077 (02) 4872711	NEWCASTLE CENTRE 2/956 Hunter Striet. Newrastle West, N.S.W. 2302 (049) 611090	BRISBANE CENTRE 455 Logan Reard. Stomes Comper, Qld. 4120 (07) 3943688	NETWORK A.B. SWEDEN Box 10264, 43401 Kunqshacka, SWEDEN (300) 19500
COMPU-K (066) 218180 • TTMBERTOWN COMPUTERS (065) 853311 SHORE COMPUTER SERVICES (04+) 21 1522• MICROZED COMPUTERS (067) 722777 SPICER'S OFFICE EQUIPMENT (080) 882188 •COUNTRY OFFICE SUPPLIES (069) 534155 COUNTRY OFFICE SUPPLIES (069) 211600 •CUMBERLAND COMPUTERS (02) 8196666 THE WORDWORKS (062) 477 7739 • THE XEROX SHOP (070) 514.341 • SOFTWARE 80 (07) 3696888 TOWN \& COUNTRY COMPUTERS (077) 754000 - CARBS COMPUTER SERVICE (053) 52 +326 C \& G SOVEREIGN (050) 221737 • AUSTRALBEE MICROCOMPUTER PROMOTIONS (0.3) 23.39065 CIMPLY COMPUTERS (055) 3 ? 814) • COLAC COMPUTER SERVICE (052) 366.90 LINCOLN COMPUTER CENTRE (186) 82 1666 •PINE STREET TRADING (001189138.3			

Frequency

Undergrads and the nation are badly served by researchers
 masquerading
 as teachers

Underlying much of the discussion about the malaise gripping the electronics industry in this country is the view that research at universities and the CSIRO is not tied in closely enough with the needs of the industry. This is one reason why good ideas continue to be exported and why businessmen with investment cash continue to invest overseas. Now federal goverment agencies are taking a number of steps to improve the relationship between research and the market economy.

A report currently before parliament from ASTEC the Australian Science and Technology Council has recommended that the govemment should establish an Australian Research Council (ARC) that would provide a channel for university research funding separate from the day to day funding of universities.
As things now stand, money is channeled through the Commonwealth Tettiary Education Commission (CTEC) to individual universities who are free to allocate the money as they think fit. Thus research stands in line with capital costs, wages, teaching and so on for the tertiary education dollar. The main thrust of the ASTEC report is that this system is not the best way of ensuring that outstanding projects get funded. CTEC funds are allocated on the basis of student numbers which leads to a wide, flat distribution of funds across all departments in all universities. The ASTEC report says that the best way of getting results from our research funding would be to force specialisation on the universities. University funding should now come from two sources, CTEC and the ARC. They envisage that the ARC would allocate fund for specific types of research within specific departments at specific universities.
This scheme appears excellent. It would be a mechanism for channeling funds into productive areas of universities, and away from the more parasitic ones. It would be surprising if engineering and physics schools did not do well out of such a system, and this is as it should be, but there are problems nevertheless.
Perhaps the hardest problem to solve stems from the observation that a seat on the ARC will be seen, rightly, as a reward for a life in science well spent. Unfortunately, the type of science this country needs, the revolutions, the breakthroughs in fundamental processes, will be the preserve of the young. However, the ARC is organised, we must be sure that yesterdays men, no matter how well intentioned, do not try to place yesterdays solutions on today's problems.
This argument is just a subset of the more general argument that is difficult or impossible to select "winners" ahead of time in the technological stakes. This need not to be too much of a problem providing that the ARC is not involved in approving specific research projects. The ARC should merely decide which schools will get research funds, and then leave it to the schools to decide what research to support.
The second objection has been raised at length by the academics trade union, FAUSA (the Federation of Australian University Staff Associations). They argue that taking money from one group of academics to give to another group will not benefit the country in the long run. FAUSA want to see any extra money available spent on the research infrastructure such as libraries and equipment, and thus made available to the community at large.
The answer to FAUSA's objection is that the time is ripe to restructure careers in academia. Anyone who has suffered through some of the appalling lecturing that passes for teaching in our universities will be aftracted to the need for a greater division between teaching and research. For the research scientist, teaching is an annoying distraction; meanwhile the undergrads, and the nation, are badly served by researchers masquerading as teachers.
We know that the concept of Centres of Excellence works. It has given Australia world level competence in cettain medical sciences like in-vifro fertilization, and in radio astronomy. An extention could help other areas of endeavour.

Jon Fairall
Editor

EDITOR

Jon Fairall B. A
ASSISTANT EDITOR
Simon O'Brien B.A. (Hons), M.A.
EDITORIAL STAFF
S. K. Hui B.Sc. (Hons), M.Eng.Sc. MIEEE, MIREE Terry Kee B.Sc. (Hons). M. Phil
DRAUGHTING
Bruce Mennie
DESIGNER
Clive Davis
ART STAFF
Ray Eirth
PRODUCTION
Mark Moes
ADVERTISING MANAGER
Peter Hayes B.Sc.
ADVERTISING PRODUCTION
Brett Baker
SECRETARY
Naomi Lenthen
ACOUSTICAL CONSULTANTS
Louis Challis and Associates
PUBLISHER
Michael Hannan
MANAGING EDITOR
Brad Boxall
HEAD OFFICE
180 Bourke Road, (PO Box 227, Watertoo, NSW 2017)

Alexandria, NSW 2015.
Phone: (02) 693-6666.
Telex: AA74488, FEDPUB
Federal Facsimile: (02) 693-2842.

ADVERTISING

Now South Wales \& Queensland: Peter Hayes, Mark Lewis, The Federal Publishing Company, 180 Bourke Road, Alexandria, NSW 2015. Phone (02) 693-6666. Telex: AA74488 FEDPUB.
Victorla and Tasmania: Virginia Salmon, The Federal Publishing Company, 23rd Floor, 150 Lonsdale Street, Melboume, 221a Bay Street, Pon Melbourne, Vic. 3207. Phone (03) 646-3111 Facsimile: (03) 646-5494. Telex: AA34340. FEDPUB.
South Australla and Northern Territory: Michael Mullins, C/- John Fairfax \& Sons, 101-105 Waymouth Street, Adelaide, 5000. Phone (08) 212-1212. Telex: A482930.
Western Australia: Estelle de San Miguel, C/John Fairfax \& Sons, 454 Murray Street, Perth, WA 6000. Phone: (09) 481-3171. Telex: AA92635 New Zealand: John Easton, 3rd Floor,
Communications House, 12 Heather Street. Parnell, Auckland. PO Box 8770, Symonds St, 37-291. Telex NZ63122. Phone 79-6648 (Auckland).
Britain: Peter Holloway, C/- John Fairfax and Sons, 12 Norwich Street, London ECAA IBH. Phone 353-9321.
USA: Frank Crook, Sydney Morning Herald, 21st Floor, 1500 Broadway, New York, NY 10036. Phone 398-9494.
Japan: Bancho Media Services, Dai Ichi Nisawa Building, 3-1 Kanda Tacho 2-Chrome. Chiyoda-Ku Tokyo 101. Phone Tokyo (03) 252-2721.

ELECTRONICS TODAY INTERNATIONAL IS

published and distributed monthly by the
Electronics Division of the Federal Publishing Company Pty Limited, 180 Bourke Road, Alexandria, NSW 2015 under licence from Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited. Printed by Hannanprint, Sydney. Distributed by The Federal Publishing Co Pty Ltd. 'Maximum and recommended Australian retail price only.
Registered by Australia Post, Publication No NBP0407. ISSN No 0013-5216.
COPYRIGHT 1985, Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited (trading as "Eastem Suburts Newspapers").

The all-important high-speed CMOS question. Will latch-up cause burn-out?

With Philips high-speed CMOS (HCMOS) logic ICs, the answer's no. Because they're free from latch-up.

What causes latch-up?

Latch-up occurs when SCRs (formed by parasitic bipolar transistors found in all CMOS structures) are triggered by current transients arising from over-voltage at the input, output or supply pins, or by ringing on the signal pins. The resulting

Curve tracer display from latch-up test with excess supply voltage. At no time did latch-up occur in the Philips HCMOS IC, since the supply voltage snaps back to 13 V .
short-circuit across the supply rails causes excessive current and inevitably destructive power dissipation.

How is it overcome?

We prevent any current injection into the SCR structures by growing an epitaxial layer on a very low-resistivity substrate. And by using unique design and process parameters to minimize the gain of the parasitic transistors, we achieved complete latch-up immunity. No burn-out.

So you improve system performance, and by eliminating additional components to protect against latch-up you not only cut

component

costs but also optimise system speed.

And you gain reliability. With a product that will not fail during system test. Or in the field.

Harsh environments?

Even in noisy, high-temperature environments such as automotive and industrial applications, Philips HCMOS Logic goes on working. And you get exceptional noise immunity because the input switching levels of $74 \mathrm{HC} / \mathrm{HCU}$ circuits are 30% and 70% of the supply voltage. Moreover, the whole Philips 74HC/HCT/HCU family has a standard temperature range from -40 to $+125^{\circ} \mathrm{C}$.

HCMOS HIOH-SPEED LOOIC
 The name is Philips The product is HCMOS

Want to know more? Then call your local Philips Electronic Components and Materials office. We're on-hand with full technical documentation, including a Designer's Guide to your all-important questions about HCMOS.

Sydney	(02) 4393322
Melbourne	(03) 5423333
Adelaide	(08) 2430155
Perth	(09) 2774199
Brisbane	(07) 440191

[^0]
They come with a longer warranty than a Rolls Royce.

Andthey'requieter:

Interestingly enough, the warranty on a new Rolls Royce is only 3 years.

The warranty on our 6 new compact disc players is 5 years. And we don't have to worry about the ticking of the clock.

In fact, the only sound you'll ever hear from our new generation C.D.'s is the faithful, pin-sharp accuracy of the music.

If you're wondering why we compare ourselves to the technical excellence of the world's leading car, the answer is simple.

We couldn't find a competitive C.D. player that could do the job.

AWA; getting smallep

John Hooke
AWA has at last announced long awaited moves to revamp its microelectronics fabrication line. New equipment to be installed by 1988 will allow the company to fabricated Application Specific Integrate Circuits (ASICs) to two micron design rules.

The move was announced by Mr John Hooke, the managing director of AWA who said that it was a joint ven-
ture with British Aerospace Australia and the New South Wales govemment. BAeA is a wholly owned Adelaide based subsidiary of its UK based parent, but in this country its interests have mainly been in electronic contacting for the defence forces. It's movie into the fabrication of ASICs is seen as complementary to the rest of its business. The New South Wales government is hoping that the new fab line will become a centre piece for the technology park now being constructed in the swamps of Homebush Bay in Western Sydney.
For many years there has been pressure from local ASIC designers on the company to improve the performance of its fabrication line. Since the new line will be able to make semiconductors with only 2 microns between features, designers will be able to include far more circuitry on the same area of
silicon. As the functioning of integrated circuits becomes more complex the ability to include more features without increasing the amount of silicon thus becomes more and more desirable.
As the only production facility in the country, AWA's facillity is of considerable importance to defence contractors and in the government's quest for more local content in manufactured products. Staff on the existing line have been able to push the limits of the equipment from the design rated 10 mi crons down to 5 by dint of much imaginative work. However this has not been able to satisfy demand, and, according to Bob Mcclusky. who heads the microelectronics section of AWA, they have been forced to watch 75% of the ACIS design work originating in Australia leave the country.
The volume of that work has increased rapidly. World
wide, the market for ASICs is now a significant fraction of the total market for integrated circuits. Driving this increase are two forces, one the increasing cheapness of design and testing because of Computer Aided DEsign, and secondly the growing expense of manufacturing discrete designs. Increasingly, integration is becoming a desirable option.

The move will put AWA on a par with most other fab houses intemationally. According to Bob Mcclusky, not many places around the world can do much better than 2 micron work reliably.
A few are able to work to sub-micron precision on an experimental basis. Less are able to do so for production runs. Mcclusky says he will try to push the fab line to sub micron levels as soon as the demand warrants. Looking at the way local industry has taken to ASICs that does not seem to far in the future.

Serving Innovation

According to a number of manufacturing companies in Australia one of the greatest problems they face is finding new inventions and products to use and produce. In answer to this an new company has been set up called, appropriately enough the Australian Innovation Sourcing Service (AISS). It will be managed by the Innovation Centre of NSW.

The AISS has been called into being by the National Industry Extension Service (NIES) and is supported by Federal and State Governments, as well as industry groups. It uses the CSIRONET detabase which gives AIS Australia-wide access. The way the system will work is relatively simple. A list will be

Interscan, once an Australian invention, now an American industry.
considered from the inspired genius working in his garage to the most prestiglous scientific institution in the country. Each entry contains details relating to its legal status. A direct contact is provided for manufacturers and marketers
to pursue if they wish to obtain the rights to the product. It will cost $\$ 65$ to list a product with AISS with a special discount for volume registration. It now only remains to come up with the inventions.

Tickle Talkers

The Federal Minster for Industry, Technology and Commerce, Senator John Button has recently had the courage to announce that the govemment will support research and development into the 'Tickle Talker'. Apparently this unusually named device is an electrotactile hearing ald for the profoundly deaf.
The 'Tickle Talker' prototype was developed by the astonishingly named department of Otolaryngology at Mel: boume University. It has produced speech perception results for electrotactile stimulation (feeling speech through electrical stimulation of the nerves of the fingers) that are, reportedly, the best in the world.

Supernova

The Parkes radio telescope has been linked to the NASA Deep Space Network facility in Tidbinbilla near Canberra to observe the radio emissions from the supemova 1987a. 1987a is the first supernova to explode in our neighbourhood of the galaxy since the advent of telescopes.

The link between the two telescopes was first established for the Uranus encounter by Voyager 2 in January 1986. The link was crucial to Voyager imaging. It was paid for by the NASA in refurn for free time on the Parkes radio telescope. One of the prime justifications for donating the time to NASA was the improvement to the sensitivity and the resolution of the telescope that would result from the link.

Early optical readings from the supemova indicate a particle emission velocity of 6200 miles per second, about a 30th of the speed of light. The star explosion was

Tethered Satellites

NASA has selected five American principle investigators whose experiments will try to make use of the Tethered Satellite System (TSS-1). The TSS-1 is basically a deployable subsatellite which will be tethered to the shuttle via a retractable cable.

The TSS-1 project is a joint US-ltalian venture with NASA on one side and Piano Spaziale Nationale (PSN) on the other. The Italians will build the satellite while the US will contruct the deployment mechanism and fly the complete payload aboard the shuttle.

The five investigators will concentrate their efforts on measuring and understanding the electrical interaction between the satellite with the electrically-conducting tehter and the natural space plasma enviroment. Apparently this movement is caused by solar ionisation of the Earth's upper atmosphere through which the Shuttle flies in its operational altitude range.

NASA News

Nasa has begun tests on the five instruments which will be carried on board the Hubble Space Telescope (HST). One of the goals of the test is to carry out approximately 39 hours or 28 simulated HST science operation using all five instruments.

Using a mock science program the HS Operations Control centre at Goddard is transmitting commands over telephone lines to the spacecraft, which is assembled in a room at Lockheed Missiles and Space Company. Sunnyvale, California. So far all is going well, on the ground. Nasa's problems, however, occur in a more ethereal area.

Assuming that HST gets into orbit (and judging by the present record that seems rather an ambitious assumption) the scientific data is requires will be transmitted
back to the Goddard Space Fight Center by satellite and then relayed to the Space Telescope Institute at John Hopkins University, Baltimore, Maryland. At present the HST is scheduled to be carried into space on the Space shuttle Atlantis on November 7. 1988

Laying it on the line

The new managing director of the Texas Instrument Co's Australian subsidiary Mr Stuart Macnair gave a forthright speech on the value of attificial intelligence in Australian Technology when addressing Texas Instruments first media lunch on March 11. Macnair is the first native Australian to be placed in charge of Texas Instruments' Australia operations. A fact he noted with some pride.

McNair and his company are very taken by artificial intelligence. Citing examples from the Campbell's soup company in the US and a French Cancer centre McNair foresaw a bright future for mankind if the opportunities provided by artificial intelligence technology were explored thoroughly. Macnair expressed particular satifaction with the interest shown in A1 states "there is a very heavy emphasis on information technology at govemment level and certainly a very active involvement with ariticial intelligence. Macnair acontrasted this with the situation in Australia where 'there appears to be little, if any, interest in Artificial intelligence'.

Australian symbols

Technical Imports Australia has just released two very extensive symbol libraries to increase the popular acceptance of the 2D CAD package, Prodesign II.

The new symbols were produced in Australia to suit the specific requirements of local Engineers. The first li-
brary provides a comprehensive list of over 100 ob jects comprising electronics, electrical wave forms, PLC and some miscellaneous ones. The second library covers the Hydralic and Pneumatic Engineering industry and apparently all the objects were built in accordance with the SAA standard. Over 150 objects and catalogued using the SAA reference number, description and illustration
Prodesign II is a full 2D CAD package that runs on 'industry compatible' PCs with all the functionally (in 2D) of software that costs well over $\$ 4,000$. Prodesign II cost only $\$ 550$. The libraries cost $\$ 121$ for the Electrical version and \$137 for the Hyd./Pneumatic.

On The Right Track

An order from the State Raile Authority of New South Wales, Australia, for electric equipment for 450 railcars, which feature such state-of-the-at technologies as electric propulsion equipment with gate turn-off (GTO) thyristors, has been won by Mitsubishi Electric corp. UK.

They will supply the entire electric equipment incorporating high technologies such as power electronics for a four-quadrant choppercontrol system with GTO thyristors for energy savings, microelectronics for destination display and speed control using 16 -bit micro computers, and opto-electronics in train management systems.
It is hoped that the motor technology and peripheral equipment will be transferred to several Australian manufacturers so that they can be produced locally.

Artificial Intelligence

The Minister for Science has announced plans to update the successful publication 'Handbook of Research and Researchers in Artificial

Intelligence in Australia' which was first published in October 1986.

Mr Jones said that Artificial Intelligence research and its applications, which include expert systems, robotics and speech recognition, were making an important contribution to modem society. and in particular to the world economy
"The Govemment has recognised its obligation to ensure that the Australian community does not miss out on the major benefits to be gained from a successful application of the results of re-
search in antifical intelligence.
"An important aspect of maintaining Australia's world standing in artifical intelligence is to ensure that mem. bers of Australia's antifical intelligence community are kept adequately informed about current trends.
"My Department has made a major contribution by producing the Handbook of Research and Researchers in Artifical Intelligence in Australla. The handbook provides a ready reference to who's who in Australia AI, in industry, govemment labora-
tories and academia, what their research interests are, and how to contact them.
"If Australia is to take full advantage of the many benefits artifical intelligence has to offer our society, Australian researchers must work together to stay abreast of the latest developments. This means that important publications such as the Al Handbook must be constantly updated and expanded to provide a vital service to Artifical Intelligence researchers'. We hope Mr McNair was in the audience.

Philip Hinkins (right) newly appointed Technical Support Manager for Webster Computer Corporation's North American operations, pictured with Ludwig Croy, Director of Customer Engineering for all Webster Local and international markets.

The Expanding Weh

The American branch of the Webster Computer Corporation has just signed up three major resellers on the American east coast in one year contracts totalling \$US400,000. Particular Webster products involved in the deal are computer boards designed for its own DEC. compatible Spectrum minicomputer range and sub-
systems for the Australian market.

One of the biggest companies to sign up is Pioneer Technologies of Maryland which apparantly has furn over of $\$$ US90 million annually. Pioneer are particularly interested in Webster's cache Qbus ESDI and SMD disc controllers which both emulate DEC's Mass Storage control

Protocol (MSCP), and an SMD Unibus version of these controllers which was launched internationally this month.
These sales and contacts have boosted the intake of Webster' American plant to around \$(Aust) 400,000 a month with the US market accounting for 40% of the Australian company's total tumover.

COMING EVENTS

JUNE

Ninth Australian Personal Computer show will be held in the Royal Exhibition Building in Melbourne from 31 May-3 Junc. Contact Ms Mary Young Australian Exhibition Services Ltd, Illoura Plaza, 424 St Kilda Rd, Melbourne 3004

Communications '87, the Australian International Office Technology Exhibition, is on 1 to 4 June at the Royal Exhibition Building, Melbourne. Contact Australian Exhibition Services on (03) 267-45() $)$.

PC87, the Ninth Australian Personal Computer Show is on 1 to 4 June at the Royal Exhibition Building. Melbourne. Contact Australian Exhibition Services on (03)\$ 267-450).

Office Technology 87 will be held 1 to 4 Junc in Melbourne. Contact Australian Exhibition Services on (03) 267-450).

The 1987 Computing Systems Conference will be held 17 to 19 June in Brisbane. Contact the Institute of Engineers. Australia, 11 National Circ, Barton, ACT 2600. (062) 73-3633.

Laser 87 Opto-Electronics Microwaves will be held in Munich over June 22-26. This is the eighth international congress and trade fair. Contact German-Australian Chamber of Industry and Commerce, 2nd Floor, 47 York Strect, Sydney 2000.

Videotex '87 Exhibition \& Conference is on in Melbourne over three days in June. Contact Riddell Exhibitions on (03) 4296088.

The Centre for Industrial Microelectronics Applications is conducting a seminar entitled 'Advancing with Electronic Technology' on June 25 Management House, St Kilda. Ph. Dianne Hunt (03) 660-5103.

The Australian Hi-fi Show Shows 87 will be held Sydney 19-21 June at the Airport Hilton; Brisbane 3-5 July at the Gold Coast International Hotel; Melbourne 1719 July at the Dallas Brooks Hall; Adelaide 24-26 July at the Adelaide Hilton.

Videotex ' 87 to be held 30 June to 2 July at the Sheraton Hotel, Auckland. Contact the Secretariat on (649) 68-6955.

Semikron have the capacity. Try us. We can turn you on.
SEMIKRON: P.O. Box 182, Springvale, 3171. (03) 5613044
ADVERTISING INFO No. 5

The Third National Space Engineering Symposium will be held 30 June to 2 July at the Australian Defence Academy in Canberra. Contact the Conference Manager on (062) 73-3633.

JULY

Automach '87, an exposition on automated manufacturing and sponsored by the SME, is scheduled for 7 to 10 July in Sydney. Contact Adolph Greco on (02) 875-2377.
The 1987 Perth Electronics Show is on again at the Claremont Showgrounds, Perth from 29 July to 2 August. Contact adress: 94 Hay St, Subiaco, WA 6008 . (09) 382-3122.

AUGUST

A symposium on signal processing and its applications will be held at the University of Qld 24 to 28 August. Those interested in participating contact the Conference Sectretariat, ISSPA 87, Uniquest Lid, University of Qld, St Lucia, Qld (07) 377 2733.

ANZAAS Townsville Conference $24-28$ Aug. Examination of Databases, communications and networks, videotext ect. Contact G. Gupta Dept of Computer Science, James Cook University Townsville Qld 4811.

Nelcon '87 national electronics conference will be held 24 to 28 August at Auckland University, New Zealand. Contact B.S. Furby on (02) 957-3017.

SEPTEMBER

Australian Computer Exhibition and Conference will be held in the Royal Exhibition building in Melbourne 8-10 September. Ph Riddell House Promotions (03) 429-6088.
IREECON '87 will feature digital technology when it is held 14 to 18 September. Contact Heather Harriman on (02) 3274822.

The 4th Australasian Remote Sensing Conference will be held 14-18 September at the Adelaide Convention Centre. Contact John Douglas. South Australian Centre for Remote Sensing on (08) 26(0)-(0134.

Communications USA (telecommunications, radio and satellite equipment) in Sydney 21-25 September. Contact Ken Mackenzic on (02) 261-9200.

Labex '87 international laboratory equipment and products exhibition is on 21 to 24 September at the Royal exhibition Buiding, Melbourne. Contact BP1 Exhibitions on (02) 266-9799 or (03) 699-9151.

Turntable belts are available in 5 mm \& 6 mm with diameters commencing from 122 mm up to 292 mm .
TRADE \& WHOLESALE ENQUIRIES WELCOME
Imported \& Distributed bY WES COMPONENTS PTY. LTD.
For a comprehensive catalogue send your company or business: details to: P.O. Box 451 Ashfield NSW 2131 Aust.,
Phone: (02) 7979866 Fax: (02) 7997051

Over 60 video Belt Kits in stock to suit most popular video machines. Other video parts also available ie: pinchrollers, heads, etc.

AUDIO CASSETTE

A range of belts is available in 1.2 mm square \& 1.4 mm square, from the 19 mm diameter up to 136 mm diameter. These will suit most audio products. If a flat belt is required our range includes 3 mm , $4 \mathrm{~mm}, 5 \mathrm{~mm}$ \& 6 mm belts in an assortment of lengths. An assortment of pinchrollers is also available.
Please call for a stockilst or bring in your sample belt and we will match it.

WAGNER ELECTRONIC SERVICES PTY. LTD.
305 Liverpool Rd., Ashfield, N.S.W. 2131. Aust. Phone: (02) 798-9233

WAGNER
リン

ADVERTISING INFO No. 6

Afe you Donald Duck, or Superman
 West German computer

 hackers have been caught invading a computer at a Japanese govemment laboratory. It is believed to be the first time that foreigners have qained secret access to a Japanese computer.The computer, a Vax 11.750 belongs to the National Institute for High Energy Physics in Tsukuba. It is connected to a network through which
around 300 physicists at affiliated institutes exchange data.

According to New Sclentist, the British science joumal, the invasions began in May 1985 and continued for about a month. Initially, the hackers were entering the computer only briefly. By the time the invasion came to light, however, they were staying online for several hours at a time.
The interlopers were discovered when one of the institute's scientists noticed that a suspiciously large number of users were logged onto the computer in the middle
of the night. An investigation revealed that unauthorised entrants were using an identity code whose real owner seldom accessed the computer.

Before changing the computer's password, the laboratory monitored the interlops and recorded some of their conversations. These were in German and one of them included the number of a particular terminal which the Japanese traced to West Berlin's Technical University.
The Japanese believe that up to 20 hackers at several other German universities, including Hamburg, Frankfurt
and Munich, were involved. It appears that they secured the number of the computer from a list published in West Germany. Coamputers at several other institutes, including on at CERN, Europe's centre for research into partcle physics, are believed to have been penetrated at around the same time using this list.
Because the institute publishes all its results openly, mischief seems to have been the hackers' only motive. Their individual identities are not know. When asked who they were, one responded Donald Duck, another Superman.

Having trouble finding that light?

Your problem

 could be solved 'off the shelf'. We have over 3000 different lamps. From subminiature to the large navigation and searchlight lamps. Being experienced in solving lamp and lampholder problems, let us help you, contact us now!

ELECTR/CAL

Believe it or not

Most people have heard of solar-powered calculators but a water-powered one? It sounds incredible, but the latest news from the Hong Kong Trade Development Board is that a Hong Kong based firm has developed a revolutionary "hydropowered" LCD calculator.
The water-resistant calculator was developed by engineers of Swank Intemational Electronic early last year and a decision to manufacture taken last August. Patents have already been secured in the UK and USA, which Swank sees as its main markets.
"The actual operation is quite simple," says Swank's general manager, Mr T. M. Lee.
"The calculator is Immersed in water, which enters the calculator body through special holes, even though the general body is water-resistant.
"This water is then used to power the calculator through a specially-designed water generator which keeps the calculator going for three months, after which it simply has to be immersed in water to renew the power source," Mr Lee explained. Mr Lee failed to mention whether the water needed to be salty or fresh.

"the highest performance computer design ever published"

POWER, PRICE, FLEXIBILITY AND COMPATIBILITY IN A 16 BIT KIT. THE AMAZING 1616.

At last a kit computer that sports similar features, specifications and classical design architecture to current PC's.

The 1616 offers the latest microprocessor, loads of onboard memorr; expansion slots for your favourite add-ons and more! As well as software with the power to pull all these features together and make the 1616 function as a useful, high performance personal computer priced to suit any budget

THE CHALLENGE THAT IS WELL REWARDED.

Built up in easy stages, the 1616 offers a unique insight into the workings of 16 bit computers. Each stage can be tested by diagnostic functions, to ensure correct construction. In its complete form, the 1616 is comparable with today's commercial PC's, or, in partial form, it is perfect for research adaptations.

HARDWARE THAT PROVIDES POWER AND FUNCTION.

lust imagine a 68000 CPU high resolution colour graphics, stereo sound, memory and sofware with an abundance of $/ \mathrm{O}$ and unlimited expansion capabilities.

COMPETITIVE PRICES,
 1AX INCENTIVES AND FLEXIBLE PURCHASING.

The 1616 is available as a Basic Kit for $\$ 449$ with the Board, Chips and Components. The Keyboard is $\$ 139$ and the Power Supply Unit is only \$69. Applix can arrange discounts for bullk purchases as well as all necessary tax exemptions for educational and business customers.

THE 1616 KIT COMES AS A BARE BOARD, A BASIC KIT OR FULLI CONSTRUCTED.

SORRY, IT DOESNT WORK! APPLX GUARANTEES IT WIL!

If properly constructed the 1616 will function perfectly, however, if you do encounter problems, Applix will, for a flat fee, guarantee to correct them.

FEATURES THAT ARE
 BOTH ORIGINAL \& COMPATTBLE

* Motorola 68000 (16 bit) Processor * 512 K bytes RAM as standard * Graphics: 320Hx200V 16 colours, 640 Hx 200 V any four of 16 colours * Standard RGB Interface or composite video (shades of grey). * Stereo sound. * On-board high speed cassette interface. RAM disk software support in ROM. * Uses standard IBM-syyle detachable Keyboard. * Four 80 pin expansion slots. * Centronics compatible parallel printer port. * Dual serial pors. * General purpose analog \& digital I/O port. * Analog two-button joystick port. * Powerful monitor, full screen editor, terminal emulation, comnunications, operating system and more.

CONTACT APPLIX TODAY!

Applix Pty. Limited
324 King Georges Road, Beverly Hills.
P.O. Box 103, Beverly Hills.2209. NSW Telephone: (02) 7582688

And
 hinllade

INTRA $14^{\prime \prime}$ RGB HIGH RESOLUTION COLOUR MONITOR compalitbos, and EGA Cards. Why pay mores?
Aospoution: 640×350 dols Dot phen: 31 mm
Oisplay Format: 80×25 characters Cat X14514 Normally $\$ 1.295$ Our price $\$ 995$

INTRA $14^{\prime \prime}$ RGB Reegution: 640×200 Sots Oimplay Format: 80×25 Characters Otzplay Cotours: 16
Dot phich: 39 mm
Sync Horiz Scan Frea: 1575 KHz Sync Vorl Scan Froa: 50 Hz
Bond Width: 18 MHz
Cat $\times 14520$
$\$ 695$

SAMSUNGTTL MONITOR hol contrast. non-giare screen at vory reasonable pric
PPECIFCCATONS:
SPECIFFCATONS
CRT: 12 dencernar
Active Display Area

Deecription Cat.No. 1.910. Green $\times 14517 \quad \$ 189 \$ 179$

RITRON 2 MONITORS monitors avalable in green os amber displeys and leatunng smvel bas nut has tormaro and
Green Cal X 14506 Normally 5235 Amber Cat X14508 Normally 5239 SPECIAL, ONLY \$199

 ALL A CRAZY LOW $\$ 9.95$

PRINTERLEAD FORIBM - 25 pn "D- pups computer end

CANONA-4 PRRINTER - 140 C PS

- Noar Lotrer Cumity Mod
-1.4 K Bution

Cat $\mathbf{C 2 0 0 4 0}$
$\$ 595$

NEC DISK DRIVES 31⁄2" DISK DRIVE MBye untormaned
(640 K lormanted).

- Ocubte stided, dovible density.
- Aat

51/4" SLIMLINE - Surchnble 16 MByte to 1 MByto 12 M. Byte to 720 K tormatied - Double stood. double density.

- AT compatiole Cal C11906
$\$ 295$ 8" SLIMLINE - Doubte shted double density. Cat C11908 \$795

IBM' COMPATIBLE
BM' COMPATIBLE Tred ot pisk purn merer
Japanoso bisk Drves? Thes
 Grect mport Hong Kong oss are the solulion hey ieature
Japanose mechancal component yot cost only a traction of the prita' Cat.No. Description Price C1180, 500 K Normally $\$ 199$

SPECIAL, ONLY $\$ 179$
C11803 1 MByter $\quad \$ 239$ C11805 $16 \mathrm{MByy} \quad \$ 259$

20 M/BYTE HARD DISK DRIVE FOR IBM' AND COMPATIBES Cat $\times 20010$ whit contriver carc SPECIAL, ONLY S895

$$
2 \& 4 \text { WAY }
$$

RS232 DATA TRANSFER It rou nave WWO or fou com
dences that need to shate a tirira of thth. then the se nexpengive data ans ior smiches mill saye you neand hasse or constanty

- No power lecuired
- Speed and code transparent Iront panel
on rear panel
- Sm rear panel
lemale cones slancard with
2 WAY Cat X19120 Sies $\$ 95$ 4 War Cal X 19125 SA45 \$135

2\&4 WAY
CENTRONICS DATA TRANSFER SWITCHES changng cabtes and teads around mith these s inexpensve datat transi suicporn the 36 pin centroncic ineertace used by Centronits Printroncs Diat Products Epson. Micronics. Star. and many other printe. manutacture/s

- Speed and code transparent Twarfour position rotary smitch on -Tront panel
-Three Five mierlace connections
- Swich comes
temale connecior
- Bale locks are standara

2 Way cat X19130 Hi25 $\$ 95$ 4 WAY Cal X19135 \$445 \$135

IBM* XT COMPATIBLE COMPUTERS fom s795*
 Chack these features and our prices. We're sure you'll agree they're exceptlonal value for monay
 - Assembled in Australlsi - AT style keyboard - Tested by us for 24 hours - Operating manual prior to dellveryl - 8 Slot motherboard - 150W power supply 6 Months warrsntyl

 (Japanese orves available for an exira 550 each)

 (Japanese orves available for an exira 550 each)}* $\$ 795$ COMPATIBLE COMPUTER 256 K RAM Single Orive, Graphics and Disk Controller Caro. 5795
256K RAM COMPATIBLE COMPUTER $2 \times 360 \mathrm{~K}$ Disk Drives. Multifunction Card. Colour Graphics, Disk Conitoller, i Parallel Port. (Includes Timer Disk)

640K RAM COMPATIBLE COMPUTER

 $2 \times 360 \mathrm{Disk}$ Drives. Multitunction Caro, Colour Graph hics. Disk 20 M/BYTE HARD DISK COMPATIBLE COMPUTER20 M Byte Hard Disk, 360K Disk Drive(s). 640K RAM, Mullifunction Card, Colour Graphics, Disk Controller, 2 Senal, 1 Parallel Port (Includes Timer Disk)
Single 360K Flopoy Disk Drive
only $\$ 1,995$ Dual 360 K Floppy Bisk Dnves
only $\$ \mathbf{2 , 1 5 0}$

IBM* AT COMPATIBLE

1 MBye Main Board

- 1 MBye Main Board 12 M
- 1.2 MByte Floppy Disk Dive - 80286 CPU
- Floppy \& Hard Disk Controller - 20 MByte Hard Disk
- Printer Card and RS232 Keyboard

200W Power Supply - Manual
-6Months Warranty

Now you can buy top quality $51 / 4^{* \prime}$ disks that are also the cheapest in Australia! They even come with a 5 year guarantee, which Indicates the quality of these disks. So why pay 2-3 times the price for the same quallity?

 51/4" S/S D/D \$14.95 \$13.95 51/4" D/S D/D \$18.95 \$17.95
 (SEND $\$ 2$ FOR SAMPLE DISK')
 MICRODOT $5^{1 / 4 "}$ HIGH DENSITY $\$ 49.95 \quad \$ 44.95 \quad \$ 39.95$ (PER 10 DISKS) (PER 10 DISKS) (PER 10 DISKS)

51/4"D/S "NO FRILLS" DISKS

 FROM 904 EACHII Bulked packed. Microdotjust their white card jackel' 10.99 DISKS $\quad 100+$ DISKS $\quad 1.000+$ DISKS $\$ 1.20^{\text {ea }} \quad \$ 1.10^{\text {ea }} \quad \$ 0.90^{\text {ea }}$ (TAX EXEMPT PRICES LESS $20 c$ PER DISK)

31/2" "NO FRIELS" DISKS!
D/SD/D disks with whit boxes sut no brand name.
(These are a too name brand, but we canil tell you which.
(These are a top name brand. but we can'lllll you which.)
10.99 DISKS $\quad 100+$ DISKS
$1,000+$ DISKS
$\$ 42.50 \quad \$ 39.95 \quad \$ 35.00$
(PER 10 DISKS) (PEER 10 DISKS) (PER 10 DISKS) (TAX EXEMPT PRICES LESS 40¢ PER DISK)

VERBATIM DISK SPECIALSI All prices 10 disk boxes!
 $51 / 4$ "SS DOD $827.95 \quad \$ 26.95$ $51 / 4{ }^{-1} \mathrm{H}$ Hi $312^{\text {r }} 515 \mathrm{~S} 00154 .95$ 49.95

JUMBO 51/4" DISK STYRAGE aporeciate the extra capictry of this disck stionso unin when it comes to ocaing "that" disk - 100 disis

- Smoked plastic cover - Lockabte (2 keys suppophed)

C16020 only $\$ 24.95$ C16020 only $\$ 24.95$
${ }_{\text {C1 }} 16027$ (Hinged Lic)
$\mathbf{\$ 2 6 . 9 5}$

51/a" DISK STORAGE disks trom Denry damaged α bsi' Fontures...

- 70 disk capaary
- Smoked plastic cover

Cat C16025 only $\$ 19.95$

COMPUTERPAPAPER ${ }_{2000}$

PAPER TAMER
Restiones oder to the top of your

- Made of white plasic coated stee - Stores up to 900 contruious sheats - Allows pertcil paper teed C21050 (10") exammaton a pnni ou 21050 (15) only 549.95 C2 1050 (15^{-}) only $\$ 79.95$

1BM• XT
COMPATIBLE CARDS
NEWI NEWI NEW! NEW! zOMAYTE HARD DISK CARD Tr compatithe, smaly plugs straight $\mathrm{C}_{\mathrm{at}} \mathrm{y}$ your computer colour Graphics Card Cat: $\times 18002$
Graphices Card
Her culas compalible)
Flopoy Diax Orive Controlier Cara

Foppy Diak Dive Controller Card
(4. Drves. 16 Bil)
Cal $\times 18006$

High Resolution Mono Card
colour Grapnics \& Printor Card
Card
5169
768 BRAM Card (without memory)
Cat $\times 18012$
xabl
3.05

Printer Card
Cat $\times 18017$$\$ 34.95$
Game vo Card
Cal $\times 18019$
XT Motherboard (without memory)
Cat $\times 18020$
Clock Card
Cat $\times 1802$
RS 232 Card (without cabter $\$ 59.50$
Cal X18026 $\$ 79.50$
AS232 8 Clock Card
XT Turbo Motherboard
XT Turbo Motherboard
Cat X18030 $\$ 275$
Mutt 10% Disk Controller Card
Cat $\times 18040$
$\$ 199$ 10 Pius Cara
Cat $\times 18045$
768 K Multifunction VO Garg (uncludes cable but not 41256 RAM)
Cat $\times 18050$
$\$ 190$ Hard Diak Controlier Card $\$ 105$
Cat $\times 18060$ Enhenced Graphica Adaptor Cerd
(AT COMPATIBLE) Enhanced Graphics Adaptor Cerd (Award Bros)
Cat X

Rod Irving Electronics 48 A.Becket S1. MELBOURNE , 423 Hloh St' NORTHCOT Mall Order and Corrasponatence
P.O. Box 820 , CLAYTON 3168 Te:ex: AA 151938

MAL ORDER HOTUNE 008335757 (TOLL FREE ISTRIC TLY ORDERS ONLY LOCAL ORDERS a INQUIRIES 103) 5437877
postage rates:

	\$9.09	520
510	\$24.99	
\$25	S50.99	
\$350	399.90	
\$100	\$190	\$7
\$200		

The above postope rates are tor basic posinge only. Rond Freigh bulky and tragile homs will
Alt seles tax exempt orcors sin
whotestio Inquiries to:
RITRO IS Inquinoles 58 Renver Rd, Cleyton. \% (03) 5432168 (3 linou)
Errors and omssions excepted

Rod Irving Electronics, one stop bargain shopping!

NICADS!
Slue Deace 1.9 10+ 100 * $\begin{array}{lllll}M & O S & \text { AH } & \$ 2.95 & \$ 2.75 \\ \$ 2.25\end{array}$ C 12 AH $\$ 7.95 \quad \$ 6.50 \quad \$ 6.25$ D 12 AH $\$ 7.95 \quad \$ 6.50 \quad \$ 6.25$
 LOW LOSS SPLITTER Gives 2 standard co-arnal outhels Cat L1 1036 (leth) $\$ 4.95$ Cat L! 1037 (righi) $\$ 4.95$

COMPUTER CABLE CIC6 6 conductor computer iterface cable Cotour coded mith (to IEd22 specitications) Copper conductor $6 \times 7016 \mathrm{~mm}$
1.9 metres
ne $\$ 1.90 / \mathrm{m} \quad \$ 1.70 / \mathrm{m}$ CIC9. 1009 conductor computer nierace cablo colour coded with 9 metres 10 . metres .5012 CIC12 12 oonductor computer mylar sh.eiding $12 \times 7016 \mathrm{~mm}$ $\$ 2.70 / \mathrm{m}$
\$2.50/m
CIC16 16 conductor computer hylar shielding cotour coded min 1.9 metres $\quad 10$. metres \$3.90/m
$\$ 3.40 / \mathrm{m}$
CIC25 25 conductor computer nierface cable Colour coded mith .9 metres $\quad 25 \times 7,16 \mathrm{~mm}$ $\$ 4.90 / \mathrm{m} \quad \$ 4.40 / \mathrm{m}$

$: 9$

$=:$
MAINS MUFFLER
Sucden mans disturbances can senousty atrect your computer risk t when you can have a Manns Mutier, pantcularly when the costo he purchase pricel to be greater than langerous cicks and voltage spinkes to
Mutiles!
SPECIFICATIONS:
Maximum total load
1000 W
\& AMP 250 V 50 Hz
Outlet Sockets
$150 \mathrm{KHz} \cdot 47 \mathrm{~dB}$
$500 \mathrm{KHz} \cdot 68 \mathrm{~dB}$
Dual T Section:
VOR Transient suppression
Surge capacity 200 Amp $8 \times 200 S$ 2 WAY Cal X10089 \$199 4 way Cat $\times 10090$

HIGH EFFICIENCY

 RADIAL FIN HEATSINK Black anodised mith a thick besseplate. thes radial fin heatsink can disspate large amounts of heat to Rod Ining
$105 \times 30 \mathrm{~mm}$ Cat H10520 \$ 3.50 $105 \times 75 \mathrm{~mm}$ Cal H $10525 \$ 3.50$ $105 \times 100 \mathrm{mmCat}$ H $10529 \$ 4.90$ 105×14)mm Cal H10534 $\$ 6.50$ $105 \times 150 \mathrm{~mm}$ Cal H10535 $\$ 6.75$ $105 \times 170 \mathrm{~mm}$ Cal H10538 \$ 7.95 105x195mmCat H 10542 \$ 9.90 $105 \times 200 \mathrm{~mm}$ Cat H10543 $\$ 9.90$ $105 \times 225 \mathrm{~mm}$ Cat H10546 $\$ 10.50$ $105 \times 300 \mathrm{mmCat}$ H $10549 \$ 12.00$ $105 \times 600 \mathrm{~mm}$ Cat $\mathrm{H} 10560 \$ 24.95$

SEMCONDUCTORS! ys crack our prices $1.9 \quad 10+\quad 100+$ $\begin{array}{llll} & 716 & \ldots \\ \$ 9.95 & \$ 9.50 & \$ 8.95\end{array}$ $\begin{array}{lllll} & 732 & \ldots . . . & \$ 8.95 & \$ 8.50 \\ \$ 7.95\end{array}$ 7 $\$ 7.95 \quad \$ 7.50 \quad \$ 6.95$ | 7128 | $\ldots .$. |
| :--- | :--- | :--- | :--- | $8.95 \quad \$ 6.50 \quad \$ 8.25$ 7256 $\$ 11.50 \$ 10.50 \$ 10.00$ 7512 … $\$ 19.50$ \$18.50 $\$ 17.50$ $\begin{array}{llll}116 & \text {...... } \$ 3.95 & \$ 3.50 & \$ 2.95\end{array}$ 1164...... $\$ 2.25 \quad \$ 1.95 \quad \$ 1.75$ $\begin{array}{llllll}1256 & \ldots . & \$ 4.95 & \$ 4.50 & \$ 3.95\end{array}$ $\begin{array}{llll}555 & 8 p i n & \$ 0.50 & \$ 0.40 \\ \$ 0.35\end{array}$ $\begin{array}{lllll}8118 & \ldots & \$ 3.95 & \$ 3.75 & \$ 3.50 \\ 6284 & & 5.50 & \$ 800 & \$.75\end{array}$ $\begin{array}{lllll} & 284 & \ldots & \$ 6.50 & \$ 8.00 \\ \$ 5.75\end{array}$ $\begin{array}{lllll}\mathbf{6 8 0 2} & \ldots . . . & \$ 5.00 & \$ 4.00 & \$ 3.75 \\ 6821 & \ldots . . & \$ 2.00 & \$ 1.00 & \$ 1.70\end{array}$ $\begin{array}{ccccc}6045 & \ldots . . . & \$ 5.00 & \$ 4.00 & \$ 3.75 \\ 7406 & \ldots . . . & \$ 0.40 & \$ 0.30 & \$ 0.25\end{array}$ INS8250 $\$ 29.95$ \$27.95

MISL9501
Have you blown up your Apple drve urmeng of the pawer whis or nol boards? We have the MEL9501 ctup SPECIAL, ONLY $\$ 29.95$

8087
Genuine Inter chipa with manual and deta sheets packed in boxes $8087-3$ (477MHz) $\quad \$ 279$ $8087-2$ (8 MHz) $8087-1$ (10MHz) $80287-3$ (6 MHz) $80287-7(8 \mathrm{MHz})$ $\$ 399$
$\$ 649$
$\$ 499$
$\$ 699$

PUSH BUTTON DIALLERS Tred of cid lashion dialling and These conventent pust butition diallers include last number iedial (up to 16 digits) and instructions for ar SPECIAL, ONLY $\$ 14.95$

TVINTERFERENCE
FILTER
Cuts CB Ham stgnals interference
Cai Ll1048 $\$ 5.95$

WITCHING BOX
 of internal win
Cat $\times 15662$
$\$ 32.95$

CENTRONICS GENDER CHANGERS
Femate to Female

- Saves modithng or replacing - Al 36 pins wred stranght Mioug Cat $\times 15663$ Male to Male Cat $\times 15661$ Male to Female Cat $\times 15664$ Femalo to Femthe

Normaty 53395.

ECONOMY 19" RACK CASE Save mith thes quality rack mount Case complieve wit venls. nandolos Trementous value Cimenstons $480 \times 134 \times 250 \mathrm{~mm}$

SLOPING FRONT INSTRUMENT CASE Plastic mith motas front pance. H10A50 $190 \times 120 \mathrm{~mm} \quad \$ 12.95$ H1045S $265 \times 185 \mathrm{~mm} \quad \$ 21.95$ measurements are approximato onty

HORWOOD METAL INSTRUMENT CASES (ROUND HANDLES)
 H10462 $203 \times{ }^{8402 \times 2 \times 203 m m} 519.50$ H10463 $254 \times 102 \times 203 \mathrm{~mm} 519.95$ H10464 $305 \times 102 \times 203 \mathrm{~mm} \mathbf{5 2 2 . 9 5}$
HORWOOO METAL INSTRUMENT CASES (SQUARE HANDLES)
H10467 $153 \times 76 \times 228 \mathrm{~mm} 516.95$ $110465203 \times 76 \times 228 \mathrm{~mm} 517.95$ $10466254 \times 76 \times 228 \mathrm{~mm}$ S 518.95 H10468 $305 \times 76 \times 228 \mathrm{~mm} \$ 21,50$ H10470430 $\times 76 \times 228 \mathrm{~mm} 529.95$

P1701616pn S14.50
P1702424pn $\quad \$ 14.50$
$\begin{array}{ll}\text { P17028 } 28 \text { pir } & \$ 14.50 \\ \text { P17040 } 40 \text { pn } & \$ 22.50\end{array}$
$-\quad \$ 22.50$

 Cuautr, new tans lor use in power Apwhere you noea prenty T12461 $\$ 14.95$: 15V 4588 Cat T12463 \$14.95 240V 31/2" Cat T12465 $\$ 14.95$ H15V 3120' Cal T12467 S14.95 10 . fans (mixed) only sto each FAN GUARDS TO SUIT 458 Cat $\quad 12471 \quad \$ 3.95$ $\begin{array}{lllll}31 / 2 & \mathrm{Cat} & \mathrm{T} 12475 & \mathbf{\$ 3 . 9 5}\end{array}$

COLOUR CAPPED KNOBS
Economy knoos with elevated Cat H10001 RED Cat H10002 $8 L U E$
Cat H10003 GREEN Cat H10003 GREEN
Ca H10004 YELLOW

1.9	10.99	100

RS232 MINI JUMPER PATCH BOXES

- Intertace RS232 devices
- 25 pn inputs
- 25 lioads mith unned dend suppled

Cat $\times 15653$ Male to Mate
Cat $\times 15654$ Female to Male
Cat $\times 15655$ Femalo to Femele
Normaliy $\$ 2595$

RS232C NULL MODEM
ADAPTOR

- Mare lo temate connectrons
- Pins 2 and 3 reversed

Cal X15657 Malo to Male
Cat $\times 15658$ Mato to Female
Cat X15659 Fomele to Femsto
Normally $\$ 2295$

DIGITAL SPE DIGITAL SPEEDO/ DIGITAL TACHO
SPEED ALERT

- Digital readoul (LED) for both
tacho and speodo
Alarm mith sound at vartable
- Auselture spoed
- indrcator
- In oulth lighti indicator toe nignt
- Desknned for 12 volt negative
earth olectrical systems
- Speedo 0.199kph
- Tachomeler 0.9900kph
- Complete with mounting hador Cat Al5064 R.R.P. $\$ 89.95$ OUR PRICE $\$ 74.95$

PIEZO SIREN - 4 prezo units in a highimpact plastic cabivet

- Inpul 12 V DC - 200 mA
- Output 1150 B a 1 m dual tone
- Compaci size $105 \times 85 \times 45 \mathrm{~mm}$

Cat Sis071
$\$ 23.95$

CABLE
Cal No. Descripilon s/utr W12620 20 Way W12620 24 Way W12624 24 Way W12625 25 Way
W12626 26 Way W12626 26 Way W12634 34 Way $W 1263636$ Way WI2s40 40 Way W1265050 Way

RS232 WIRING ADAPTOR BOX - Male to lemale - 25 Dinlachable plug on leads - ideal for expers tomporary connections or Cai $\mathrm{x}: 5666 \mathrm{~N}$ Normally $\$ 39.95$

RS232 GENDER CHANGERS
Saves modityng or replacing non-mating RS232 cables Cat $\times 15650$ Male to Male
Cat $\times 15651$ Mate to Female
at $\times 15652$ Fomalo to 50 melo

> As the US trade deficit with Japan widens, the world waits for the clash of the Titans. Will it be good news or bad news for Australia?

Simon O'Brien

Phrases like "Pearl Harbour" and "blood on the ground" are not usually associated with the work of commerce and international trade but the recent spat between the US and Japan over the question of microchips has led to high feelings on both sides of the Pacific.
The first verbal shots in the conflict came from the US when President Reagan announced that from 17 April he will impose a 100 per cent tariff on a wide range of Japanese goods. Reagan said that the new measures were meant to chastise

CURRENT AFFAIRS

the Japanese for not abiding by an eight month agreement on semiconductors. Under this treaty the Japanese government agreed to increase Japan's intake of American goods and to refrain from 'dumping' microchips on the world market.

Despite the treaty it has been revealed that last year, 1986, Japanese microchip producers led the world in chip production and overtook the US for the first time. It is estimated that Japan's microchip domination cost the US more than 1 billion dollars and some $60,(0)(0)$ chip makers jobs. Such statistics frighten Presidents and Congressmen looking for re-election so the decision to impose the high tariff was extremely popular. It is believed that these new measures, if instituted, will double the price of Japanese goods imported into the US.

Blood on the Floor

American manufacturers are unrepentent over this attack on free enterprise. One manufacturer, mindfull of the low state of US-Japan relations in the yeats 1941-5 claimed that there would be "blood on the ground" (he did not specify whose) over the issue whilst another reckoned there was "trench warfare" in existence between the two states.

The response of the Japanese government has been conciliatory, but it is rumoured that the US is not the most popular nation in Japanese eyes at the moment. For one thing the Japanese claim that they have abided by the semiconductor treaty and another their national econ-
omy seems to be experiencing something like a recession. The American measures, the strongest applied since World War II, have come at an especially difficult time for the Japanese. Unemployment has reached 3 per cent and the Yen has appreciated by no less than 43 per cent over the last two years drastically increasing the price of Japanese exports. In fact Japanese wages and costs are now amoung the highest in the world, a fact which has caused many Japanese firms to move some of their biggest operations overseas. Even the cherished ideal of lifetime employment seems to be coming under attack in the land of the Rising Sun.

Chip Dumping

The Americans accuse the Japanese of 'dumping' chips on world markets. In order to support their case for protection some US manufacturers have displayed receipts they obtained in Hong Kong for such goods as 256 K dynamic RAM (Random Access Memory) chip. These receipts show that the Japanese to have sold these goods for $\$ 1.89$ each even though they had agreed to abide by a minimum price of $\$ 2.50$.

Faced with all this the American response seems to be reasonable, or at least understandable. The Japanese do not agree. For one thing the American response seems as much based on emotion as evidence. Congressmen were apparently greatly irritated by the report that Japan's Vice Minister of Trade, Mr Makoto Kuroda had said that US supercomputer companies were "wasting their time"

W A

attempting to sell their products to various Japanese institutions such as universities or government departments. Mr Makoto has denied making such an inflamatory comment and indeed claims that he was deliberately misquoted as part of a "dirty tricks" campaign waged by the US government.

Quite apart from what Mr Makoto is said to have said there is also the question of the statistical proof used by the US to advance its case. For whilst it looks as if Japan's trade surplus is increasing this is at least partially offset by the decline in the value of the US dollar and the strong

The response of the Japanese government has been conciliatory, but it is rumoured that the US is not the most popular nation in Japanese eyes at the moment. 98

[^1]
Increasing Imports

Even in terms of manufactured goods, the area which gives the US the most pain. Japan has increased its imports by no less than 31.4 per cent. These figures do not mean that Japan has become a major importer. It still retains a healthy surplus with most of the nations with whom it has to deal. It does mean however that Japan has not been secretly subverting agreements with the US to increase its imports. The Japanese themselves claim that part of the reason that they have not imported as much as the US would like concerns the particular nature of their domestic market. Like shoppers everywhere, only to a greater degree, the Japanese consumer likes to buy the home product in preference to that from the outside. They also set great store by such things as after-sales service and quality. In fact in Japan these things matter almost as much as the price of the object.

What does all this mean for Australia? As an importer rather than manufacturer of microchips we presumably do not have the same problems that the US is facing. Informed opinion on Australia's position in the conflict is not consistent. a fact that will surprise nobody. Senior Australian trade officials say the fact that Japan will need to increase its imports to pacify Uncle Sam means that Japan will. of necessity cut back on Australian imports, especially in beef and other areas. The Minister of Trade. Mr Dawkins has expressed concern at the possibility of increased chip prices on the domestic mar-

ket. The official Japanese line seems to be that Japan will seek to appease the world rather than the US alone, and as a result the volume of Australia's exports could rise.

A Question of Principle

Beyond the question of self interest however, lies a far greater one of principle. Japan more than any other nation in the world owes its economic success to the quality of its people and their desire to resurect their country after a disasterous war. In fact Japan has the type of economy the US would like to have. Given this it is hard to see the present US attitude as stemming from anything except good old fashioned national rivalry and greed. This impression is reinforced by the fact that some Congressmen in Washington are apparently ready to submit a bill which would penalise any country which runs a consistent trade surplus with the US. It seems that the US economy has been a model of success for so long that the Americans have come to believe that its position is part of the natural order of things.

THE NEW ROM

A new storage medium is looming over the horizon.
 It will completely change computing, but no one in Australia is taking any notice.

Stewart Fist

The CD-ROM (Compact Disc Read Only Memory) scene in Australia appears to be remarkably quiet when compared to the frenetic activity surrounding the medium in Europe and America.

I've just been to the second International CD-ROM conference in Seattle, and it is apparent that the major international hardware and software companies are all racing to get in on this market. There's also a whole new breed of electronic publishers entering the computer field from the world of print

Australia's distributors and publishers hardly appear to have noticed that CDROM exists. or that it is now supported by world-wide logical and retrieval formats.

Vapourware

In an industry where 'vapourware' announcements are made a couple of years before products hit the streets, it is strange to find a major product that has advanced so far ahead of its hype. It would be fairly safe to predict a CD-ROM player alongside every personal computer within a couple of years.

Standardisation is the key. The HighSierra Group - virtually a Who's Who of the top companies in the computing world - recently finalised its recommendations on CD-ROM standards and these have been accepted and passed by European and American standards associations. CDROM now only awaits the formality of ISO approval to become an official world standard

The problems that CD-ROM has faced in the last year have largely arisen through confusion with the parallel development of CD-I (CD Interactive). Philips, who take the lead in the development of all CDtype optical disk formats. made the mistake of announcing CD-I before the dust had settled over CD-ROM. Confusion reigned supreme.

The CD-ROM

To clarify the difference: CD-ROM is the
name now given exclusively to the use of compact audio-type 12 cm disks for the storage of computerised data. The system was primarily designed to hold enormous amounts of textual data - 660 megabytes, or the equivalent of a couple of thousand floppies or a few hundred books.
CD-ROM can now also hold photographic still images and digitised graphics, and it can replay audio. data or still images with equal alacrity. It won't be long before dual-format CD-ROM players are on the market which can play your CD hi-fi audio disks or feed your computer/TV/monitor.
CD-I is a domestic appliance standard that has taken the CD-ROM technology a stage further, but which has not made it

36

Australia's distributors and publishers hardly appear to have noticed that CD-ROM exists.

obsolete. Philips and Sony are designing the CD-I player to be a domestic appliance that doesn't require a computer - it will just plug into your TV set. and you'll control it with a mouse or joystick.
CD-I can also handle sound. data. graphics and still images. but it has the additional capability of replaying a limited amount of full-motion video - usually occupying less than half the screen area.
Both of these systems are fully interactive’ - which means that you can stop, replay. jump from one part to another atmost instantancously, etc. They are not aimed at linear or entertainment markets.

CD-ROM is for the mass storage of in-
formation in serious business, educational and scientific applications where a computer can be used to manipulate the information; CD-I is a domestic self-contained unit for home education, information, and possibly some simulation-type game playing. At the present moment CD-I is still at least a year away from release, while CDROM is up and running.

Electronic Bookshelf

Microsoft's release of Electronic Bookshelf at the Seattle Conference is a good indication of what we can expect from CDROM. In the US this disk sells for US $\$ 295$ on its own, or for just over US $\$ 1000$ when packaged with a CD-ROM player.
For this outlay you get a complex writing support program and 10 major databases. Microsoft developed one of the databases, and the remainder were licensed from publishers already bringing out the information in book form.

The idea behind Bookshelf is that you have the retrieval program in the background behind your word processor and it will work with almost all of the major MS-DOS word processors. Anytime you want to check a fact, or the spelling of a word, or the context of a word. eteetera, you simply hit a command key on the side of the PC keyboard, and jump instantly into the universe of information contained on the spinning CD disk.

The Bookshelf disk contains the American Heritage Dictionary, The New Thesaurus, Bartlett's Familiar Quotations, Chicago Manual of Style, Business Information Sources, the US Zip Code Directory, 1987 World Almanac and Book of Facts. Microsoft's standard set of Forms \& Letters, a Spelling Checker \& Corrector, and Usage Alert (which checks for clumsy writing style).

These 10 volumes would occupy a reasonable length of shelving in book form, but on the CD-ROM disk they take up less than a third of the available space and this is in a fully indexed form. Every important word in the almanacs, thesaurus
and quotations are indexed.
The retrieval program used by Bookshelf is quite sophisticated, and the indexing is extensive and complex. For instance, Spelling Checker can find words that are incorrectly spelled in the first few letters since it has a phonetic default mode for finding words. If you had spelt psychiatrist as "siciatrist" it would flag the misspelled word and then directly insert the corrected spelling into your document.

With the US Zip Code Directory you only need to type the address. city and state, and the directory will automatically find and insert the correct zip code. It is the same with finding facts using the Almanac; point to the relevant keywords (or type them in). initiate the Almanac, and you should jump directly to the statistic or factual information you need.

The software underlying Bookshelf was developed by Microsoft and runs under the Windows operating environment. This icon-plus-mouse approach to controlling your computer becomes almost a necessity when you start dealing with the sheer amount of information that can be stored on a CD-ROM disk. With Bookshelf you simply point-and-clock on keywords, then pull down a menu to select the Almanac, Dictionary. Spelling Checker, etc. It is so easy, and almost instantancous.

A more traditional approach to handling large amounts of information on CDROM can be found in Parts-Master. a two-disk set published by the US National Standards Association. Parts-Master has its retrieval software on a standard IBM floppy, and with this you can locate and retrieve critical information on over 12 million parts and products used by the US Government. This CD-ROM system was designed originally for the defence forces. but is now widely used by commercial and government enterprises across America.

You can search the disks by item-name, National Stock Number, manufacturer's part number, company name. etc, and then move to quickly identify the items. find the sources of supply, locate the names and addresses of the manu-

facturer/s. and check the government stock item prices. It sounds complicated, but the system is so simple that anyone can learn to use it in a few minutes.

Parts-Master

Parts-Master costs US\$5250 a year if you aren't part of the US government establishment. but for this amount you'll get a regular disk update as information changes. This subscription system with regular disk updates seems to be the way a lot of CD-ROM publishing will go. Nowadays a few thousand CD-ROM disks can be produced in a day and at an ex-factory cost of only a couple of dollars. In fact, CD-ROM is cheaper and simpler than reprinting paper directories or information lists.

A number of the old on-line information retrieval systems like Dialog and Orbit are now releasing their major databases on CD-ROM. You can get ERIC (educa-
tional resources), LISA (library abstracts), AGRICOLA (agriculture) and many other scientific and business databases on CDROM, usually with a bi-annual updating subscription.

Another quite different approach to using the storage capacity of the CD disk is in the area of graphic arts. Inhouse Graphics Services is a 'clip-art' CD-ROM disk for the Macintosh being offered by Multi-Ad Services of llinois. Subscribers can receive over 900 pieces of atmospheric art. headings and logos on a disk.

The images are stored as high-quality vectored art (rather than the normal form of bit-mapped graphics). and the disks contain full desktop publishing software for page layout: an 80,000 word dictionary and spelling checker: automatic hyphenation system with both automatic and manual kerning; and horizontal text scaling. The output can be either to a stand-

CD-ROM

ard laser printer or to a high quality Linotronic 300) Imagesetter for magazine reproduction.

Online Computer System's GATE (Global Approach to Technical Education) series, are technical training programs that utilise the interactive nature of CD-ROM. Responsive technical training courseware has been available before on the old LaserVision videodise players, but CD-ROM has now taken the simple approach of video and sound and developed it into a full multi-media system with computer control
The GATE programs are a family of integrated courses designed for self-paced learning. They've got college level courses in Electronics Technology. Automation Technology, Instrumentation Technology, Telecommunications. and Biomedical Equipment.

Online Systems have integrated a videodise player with the personal computer and CD-ROM player, so that full motion video can be added to the CD-based program of instruction.

Versatility and Flexibility

One of the beautics of CD-ROM is its versatility and flexibility. Mierosoft are thinking of releasing ALL their current PC programs on one disk. You only pay for those programs you use; the other's are locked away until you get a special password/aceess number from Microsoft and you only get this when you pay your money. Developments of this kind could upset the whole system of software retailing and distribution.
CD-ROM will make an impact in other areas also. Where processing speed is not important. CD-ROM can give a microcomputer the ability to handle complex programs of the type only previously available on the largest of the mainframes.
Hewlett-Packard is developing a complex vehicle maintenance/analysis program for the Ford Motor Co. CD-ROM is used here to handle the exponential progression of possible pathways leading from the basic diagnostic information to possible multiple causes of problems. The CDROM disk will also double as an Electronic Manual for all current Ford vehicle models.
The more you think about (D)-ROM, the more possibilities you can visualise Optical disks are not (yet) the whole answer to computer storage problems because they are read-only systems - but so are books and that didn't inhibit their usefulness over the last few hundred years
Just to whet your appetite, here are some other ideas which are still in the beta-test stages with various companies:

- a full-text dictionary with large-print for the visually handicapped. It has phonetic pronounciation and illustrations that can be scaled up for viewing
- a geographic database of the US which allows you to point-and-click on any part of the country and see a customised map with user-selected features (such as political boundaries. hydrography, highways, etc) displayed. Details down to the local streets for the entire US will be included in the final release.
- a disk containing all of the NASA pictures from unmanned space probes over the years.
- a database of mass-spectra of elements and compounds (used for scientific analysis).
- mail-order shopping catalogues.

If you are involved in 'information', then the above may read like a list of flavours in a chocolate factory. All we have here is a taste of things to come
I would predict that CD-ROM will come into its own when it is coupled with the expert systems. With this much storage capacity, the old forms of information retrieval software are not adequate for the task in many cases.

Expert systems provide a way of accessing complex branching information trees, and CD-ROM provides a cheap and compact way of storing the data required. The two together should make a formidable combination.

We got ours in '86 from:

Suite 4, 1051 Pacific Highway (P.O. Box 152)
Pymble NSW 2073. Telephone (02) 4498233
ADVERTISING INFO No. 9

Life can be easy for

 The Service Manager.

Introducing ... The Service Manager - TSM, a unique sofware package designed to make a service manager's ife easier. Your company can log incoming work and keep a track of its progress - from delivery of the goods up until their relum to customer - with an accuracy and speed that will transform the management of any service department.

The program handles many of the special needs of service operations such as service histories on all clients and products, special warrantor invoices, work in progress information, service contracts administration, technician's time-logging, accounts receivables and comprehensive reporting in all areas.

Lutt the efiliciency of your service department.
Call (02) 5600666
for more taformation or an obllgation-firee demonstration of ISM.

$18 D$ PARAAMATTA RDAD, STANMDRE NSW DDAB

REMEMBER THE FIRST TIME YOU HEARD DOLBY SURROUND® SOUND IN A THEATRE?

WAIT 'TILL YOU HEAR IT AT HOME!

AUDIO ENGINEERS PTY. LTD
342 Kent Steet, Sydney, NSW 2000
Ph: (02) 29-6731

MARKETEC PTY. LTD

51 Scarborough Beach Rd, North Perth, WA 6000 Ph: (09) 242-1119

AUDIO ENGINEERS (VIC)
Ph: (03) 850-4329

..THE ANSWER IS IN THE PALM OF YOUR HAND
Now you don't have to leave your communications behind when you leave your vehicle. The ICOM IC-40 is a compact 40 channel UHF CRS field proven hand held, with optional 3 Watts output power, the same as many mobile radios. The IC-40 is perfect for jobs on the land, water or business.

The Fabulous IC-40 is now available with optional 5 -tone selective calling.

Please post to:
ICOM AUSTRALIA PTY. LTD. 7 DUKE STREET WINDSOR 3182. VICTORIA.

Name

Address

City
Postcode
or phone ICOM on (03)51 2284
CDICOM
The World System
ADVERTISING INFO No. 12

CRAZY FaCE'S
CASH, BANKCARD, MASTERCARD,LAY-BY, MAIL ORDERS

[^2]
SUBSCRIBE NOW! FREE
 (1:10STREET DIRECTORY

Need another Street Directory - to replace your old out-of-date edition? to have as an extra in the house or second car?
Here is your chance! Simply subscribe or renew your subscription now and receive FREE the current edition of the most up-todate, widely used Street Directory in Australia.
UBD Street Directories used by Ambulance, Police, Fire Brigade, MWS \& DB, Dept. of Main Roads, Taxi Co-ops, Couriers, Government Agencies and Fleet Owners.

STREET DIRECTORY for

 YOUR AREA

See Subscription Coupon

NT will recelve Touring Culde and local Map
A will receive an Adelaide Street Directorv and State Touring Cunce.
TAS will receive state Directory
NSW VIC. OLD WA indicate Capital City or State Directory If coupon/cara missing, please phone (021) 693-6666 and ask for the Subscription Department.

The New Fleet

The Royal Australian Navy will soon start building its new submarines. They represent a multi million dollar opportunity for local industry.

Simon O'Brien

Over the 76 years of its existence the Australian navy has been renowned for the skill of its crews. its valour in battle and an untortumate propensity to sink its own ships. Despite this latter quality the Australian navy plays a pivotal role in the national defence, as benefits an island nation. Recognising this the Federal government has decided to increase the power of the navy by replacing its aging squadron of Oheron class submarines with 6 or 8 new vessels.

It is intended that the new submarines will answer Australiais underwater defence needs well into the twenty-first century. They will belong to the new generation of diesel-electric powered boats with improved range and underwater speed. Tenders have been called and a number of foreign companies have been competing for the 3.5 to + billion dollars which the defence department is prepared to spend on the project.

Although foreign consortiums will have a great deal of input into the programme they have attached themselves to smatler Australian companies because of the govermment's insistance that the subs be built in Australia by Australians. This factor alone makes the submarine project almost unique in the annals of Australia's defence equipment. It will give the RAN a unique submarine. tailored specifically to our operational requirements.

Two Main Features

Submarine construction has two main features. First of all there is the hull and the engines which power it, and secondly there is the platform, which refers to the electrical equipment which the sub uses to navigate and fight. Ther are two main contenders in the competition to build the hulls and engines of the Austratian submarines; one German and one Swedish. The German concern consists of two compa-
nies: Howaldtswerke Deutsche Werft (HDW) and Ingenieurkontor Lubeck (IKL). HDW is the enginecring side of this partnership while IKL is the designer. Both are well known West German companies and have had considerable experience in building subs for othre navies. Indeed this experience has been the source of some embarrassment as it has recently emerged that an official of the Indian government resigned after receiving a 30 million dollar payment over the sale of four HDW-IKL subs to the Indian navy. It

seems that HDW-IKL were also implicated in the illegal sale of submarine technology to South Africa. The Australian side of the German companies is known as Australian Marine Systems. Fortunately it has no interest in either the Indian or South African navies.

The Swedish rival to HDW.IKL is known as Kockums. At this stage Kockums seems to have the edge on its German rivals. It's been manufacturing both warships and merchant vessels for about a hundred years. including all the submarines currenly in service with the Swedish navy. The Australian bid marks the first time that Kockums has sought to enter the foreign market. It operates in Australia with the Australian Submarine Corporation which hats been set up specifically to cater for the submarine project.
Both designs are believed to meet navy specifications in terms of performance and costs. According to Kockums their type 471 subs are characterised by silent running and the ability to withstand shock. as shown in the Swedes successful shadowing of Russian vessels in the Skagerrak.

Building a Platform

The central part of any submarine of course is its weapons and navigation systems. The Australian project has seen two consortiums bidding to secure the contract to build the platforms: namely the Dutch firm Hollandse Signaalaparaten known as Signaal. and the American firm Rockwell International.
The Signtal group also consists of Thorn EMI Electronics Australia (which will sup)ply the Command plot). Signalal's parent company Philips. AWA (which will provide the optical fibre network). the Aus-
tralian company C3 (which will design the principal software for the combat system) and a number of other companies such as the famous Krupp Atlas of West Germany which will design the very important mine avoidance system and Kollmorgan of the USA which will make the search and attack periscopes.

The Signaal group claim many advantages for their design. however, they lay particular emphasis on MILNET, a high capacity LAN which uses a fibre-optic based network consisting of multiple path data busses with self-healing. redundancy and fall back capabilitics which, they claim, will ensure reliable operation, even after battle damage. Another aspect of the design Signaal and their partners are keen to emphasise is the integrated nature of various systems which they will supply.
The Rockwell bid is also a consortium consisting of Rockwell. Thomas Sintra Activities Sous-Marines of France which will design the sonar system. Computer Sciences of Australia which will handle the software side of the project. Scientific Management Associates which will provide logistic support and the Singer Companys Librascope Division of the United States which will be in charge of the weapons system.
Rockwell and its partners also claim many accolades for their expertise around the world. Rockwell states that it has 460 manufacturing. rescarch and sales and service facilities on five continents. The consortium believes itself to be particularly strong in the area of systems integration and state that their data multiplex system gives them "the leading edge of shipboard intormation management". Thomas Sintra also claims to have an edge in sonar sys-
tems. The company is particularly proud of the ELADONE Sonar system which it designed. It apparently gives a submarine the ability "to hear without being heard".

Dockyards

A raging debate has been proceeding over the construction site for the new submarine force. After a year of rivalty. New South Wales and South Australia have emerged as the finalists.
At the time of going to press it seemed as if South Australia's dockyards were to be selected over those in New South Wales. This. of course, means a several billion dollar boost for the South Australlian economy and a continual influx of federal funds thereafter. as the docks which construct the subs will presumably be charged with their maintenance.
South Australia will get the dockyards but Australia will gain a whole new generation of marine engincers. One of the conditions of the federal contract is that Australian expertise as well as Australian muscle must be used in the submarine construction. At present there are only about 30 people concerned in the project but the number will grow as the construction project begins in carnest. A large number of key personnel will be trained overseas so they can receive maximum experience. In fact. it is expected the total domestic expenditure on the platform will rival the bill for the hull and engines. Clearly therefore the human resources this project will generate are almost as important to the country as the submarines themselves, which it is officially hoped will eventually be scrapped without them ever firing a shot in anger.

Pocket Computers

The Sharp Corporation has just released five new pocket computers: the PC-1360, PC1460, PC-1500A, and the PC. 1600. With such an array it seems that Sharp hopes to capture the pocket computer market in Australia.
The PC-1360 features a RAM card and comes with a standard 8 K memory although this is expandable to 64 K . The 1460's memory can only be expanded to 32 K though it features a powerful

"Built in Matrix".
The 1500A is described by Sharp as "feature laden". this delightfully quaint term is Sharp's way of referring to such things as, increased

Basic Language commands and a program lock function.
The 1600 is next and Sharp entities this the "ultimate Pocket Computer". By "Ultimate Pocket Computer"

Sharp means a machine that contains 16 K of memory which can be easily increased to 80 K , a 96 K ROM containing enhanced BASIC and a high speed CPU.
Sharp has also introduced the PC-2500. This is described as a "Ready-to-Go Business Tool". It contains a colour printer, Function keys, Serial I/O port, a graph search function and many other similar developments. 101

New Scope

The Scope company of Melbourne have developed a fast new heating iron (150W) which will operate from anywhere within 6 metres of a 12 volt vehicle battery. The new unit has been designed to provide the operator with the utmost flexibility.

The new device will allow the user to replace tips and elements on the job "at a much lower cost than conventional irons, and without special tools or skills". Most remarkably the iron heats up in only 3 seconds. The unit retails for $\$ 43$ excluding tax.

SENSATIONAL BUY OF '87!!!!

Jaycar is proud to announce that we have made a SCOOP PURCHASE of genulne VIATEL terminals WITH 14" COLOUR MONITOR at an unbelievabie pricell
We can pass ENORMOUS SAVINGS on to you as a resutt RGB MONTOR. Such is the quality of this system the monitor has RGB input. RGB signals from a suitable computer can be connected to the monitor so that it can double as a high res COLOUR computer monitor! With a composite to RGB adaptor you can use virtually any computerl
VIATEL ADAPTOR. The adaptor is prolossionally made by Philips \& INCLUDES an inbuit modem to Viatel standard (1200/75). It
tealures:
Detachable remote keypad
Keylock ON/OFF switch
Centronics type printer port
Telecom approved (C82/39/489)
Tape record port
Full keyboard port
Instructions
WANT TO KNOW
MORE?
Ring (02) 7472022 and ask for "Mr Viatel" for full details!
Sensational at \$499
We must emphasise that these units are from
$3-5$ years old but are in a very clean and good condition.

SCOOP BUY!

240V - 6V 300mA PLUG ADAPTOR

We have made a genuine scoop purchase of approved $240-6 \mathrm{~V}$ DC 300 mA plug pack power supplies. They feature an extra long lead (great for remote power pointsl) and the usual 4 way cruciform connector and polarity revers ing plug. Interestingly they have $2 \times 2.5 \mathrm{~mm}$ outlets as well. At this price we suggest that you buy one or two whether you need them at present or not. At BELOW HALF the price of our regular cheapest adaptor they're an incredible bargainll Cat. MP-3008

ONLY \$7.95!

UNIVERSAL SPEED/LIGHT/HEAT CONTROLLER KIT

ASTONISHING LOW PRICE!

We have once again made a scoop purchase of a parially assembled tan speed controller that was part of a well known Australian made product.
The controler consists of a PCB measuring $45 \times 50 \mathrm{~mm}$ with most of the components prolessionally soldered in. Two other components, a set of 3 brass connection terminals and the control switctipotentiometer must be soldered in place by the user. Thats the only assembly work required.
You can connect the controler up to many 240 V mains powered devices such as: incandescent lighting, electric motors (both series wound and shaded pole) or heating elements etc. It will control up to 3 amps (i.e. 750 VA). A small heatsink may be required on the TRIAC over 2 amps.
The kit is complete and includes all assentibly/connection instructions. You only need a

We're heavily overstocked on our MT-2136 Toroid. It is a 300 VA unit with two separate 30 V 5 amp windings as secondaries.
They are normally $\$ 75$ but this month you can grab one (or 2) for only $\$ 49.95$ each a massive saving of over 3113\%

NORMALLY \$75 - JUNE SPECIAL \$49.95 SAVE OVER \$25/unit

> CAHIJAYCAR CARIJAYCAR 'CAR JAYCAR
CAR JAYCAR 'CAR JAYCAR
CAR JAYCAR CAR JAYCAR CAR JAYCAR 'CAR, JAYCAR CAR JAYCAR. CAR JAYCAR. CAR JAYCAR. CAR: JAYCAR, ICAR JAYCAR, CAR JAYCAR. CARI JAYCAR.
CCAR: JAYCAR 'CAR JAYCAR,
PCAR JAYCAR, ICAR JAYCAR
CAR JAYCAR 'CAR JAYCAR
TCAR JAYCAR. ICAR JAYCAR
ICAR JAYCAR ICAR JAYCAR
ICAR JAYCAR 'CAR JAYCAR CCAR JAYCAR
ICAR JAYCAR 'CAR JAYCAR
rCAR JAYCAR 1CAR JAYCAR
'CAR JAYCAR 1CAR JAYCAR
1CAR JAYCAR CCAR JAYCAR
CCAR JAYCAR J CCAR JAYCAR
CCAR JAYCAR J 1CAR JAYCAR
CCAR JAYCAR J CAR JAYCAR J १R JAYCAR J
q JAYCAR J JJAYCAR HAYCAR AYCAR Cat. MT-2136

SYDNEY - CITY

SHOWROOMS

Mon-Fri 8.30 - 5.30 Thurs 8.30 pm - Sat 9 - 12

CONCORD
HURSTVILLE
gore hill
brisbane
MELBOURNE - CITY

115 Parramatta Road Concord 2137
(02) 7472022

Telex 72293
FACSIMILE
(02) 7440767

MAIL ORDERS
P.O. Box 185

Concord 2137 HOTLINE
(02) 7471888

FOR ORDERS ONLY
TOLLFREE
(008) 022888

FLOPPY DISK DRIVES

This article presents an overview of a floppy disk drive system with an emphasis on the electronic hardware. This storage medium has become so common that its operation warrants some explanation.

GLEN THURECHT

Floppy Disk systems have become increasingly popular in small to medium computer systems. This popularity has been due, in main. to the niche which the floppy disk filts in the present spectrum of memory storage options. The combination of system which gives bulk storage and fast access (in human response times) at a relatively low cost has made it a winner in the market place. The disks provide a non-volatile (data is retained when power has been removed) storage medium that can be removed from the drive so that large files or libraries can be set up. Once the initial cost of a disk drive has been oullayed the additional expense involved in expanding the memory capacity is minimal.

Another characteristic of this memory system is its ability to provide direct aceess to the required data. Unlike tape systems. which have to sequentially run through all the information blocks before accessing the required data, floppy disks can have certain blocks directly addressed and read. "Direct access" however is not the same thing as "random access" as found in semiconductor memory. Random access refers to the ability to directly access an individual data item without having to read a complete information block. Thus floppy disk storage provides a good compromise between tape recording and semiconductor memory systems

Floppy disk formats

The aim of this artiele is to describe the electronic hardware involved in a floppy disk system but betore we can explain that we must first took at the structure of the various disk formats.

There is a bewidering array of disk formats and it can be confusing when first exposed to them. The available formats can be broken into the following catagories

1. Floppy disk size: $8^{\prime \prime}$, $51 / 1^{\prime \prime}, 31 / 2^{\prime \prime \prime}$:
2. Hard or soft seetored; describes the way in which the address information is encoded onto the disk:
3. Single or double density; relates to the format used to record the data onto disk and hence the maximum amount of information that can be encoded: and,
4. Single or double sided: disks may be recorded on one or two sides hence a double sided disk will store twice the information of a single sided one. provided both are recorded in the same format.
Many combinations of the options in these categories may be combined to give a disk format. For instance - $8^{\prime \prime}$, hard sectored double density. double sided: $51 / 3^{\prime \prime}$. soft sectored double density. double sided

The problem with all this great variety is that a disk of one format is not compatible with that of another. There have been no international standards agreed upon for the storage of information on a floppy disk.
Originally the floppy disk data storage system was created by IBM. This was called the IBM $37+0$ data entry system and consisted of a 8 " soft sectored. single density, single sided format. This original $37+0$ system was accepted as the standard by industry and thus allowed the transfer of data from computer to computer and with other than IBM equipment. The problem of disk formatting arose because incompatability with the IBM format allowed much larger amounts of data to be stored on the same disk. Individual disk drive manufacturers developed their own methods and formats and rival systems competed on the market with no clear victor.

Disk structure

An $8^{\prime \prime}$ floppy disk is a $7.88^{\prime \prime}(200.1 \mathrm{~mm})$ diameter Mylar disk. It is usually housed in an $8^{\prime \prime}$ square jacket. When inserted into the disk drive, the jacket is held stationary and the disk rotated

In order to help with the addressing of information recorded onto the disk. it is
divided into regions called sectors. This idea is shown in Figure 1. It is the method by which the sectors are identified that distinguishes between hard and soft sectoring. Figure $1(a)$ is a hard sectored disk in

Fig. 1 (a). A lord disc.
which the sector positions are identified by the location of index holes. When the disk is rotated, an optical sensor detects when a sector hole is passing thus indicating which sector is currently under the read/write head. Figure 1(b) illustrates a soft sectored disk. This disk has no sector holes but relies on an ID header that is re-

Fig. 1 (b). Floppy disc positioning
corded at the starting location of each sector. As the disk is rotated, the read/write head reads the header and it is interpreted by the disk/controller to give the sector number.

As well as sector information, an index hole is placed on each disk and this identifies the sector number one position. This provides a physical reference point on the disk.
The method of hard sectoring allows more user data to be encoded onto the disk since there is no need to waste space recording the sector identification at the start of each sector. However, soft sectoring provides greater flexibility in the way the disk is formatted. In some applications the user is able to format the disk in a way which is much more suitable to the application at hand

The electronics

The electronics hardware of a floppy disk system is broken into two sections:

1. The floppy disk controller; and
2. The floppy disk drive (FDD).

The controller handles all the tasks associated with the data transfer between the microcomputer system and the disk. It accepts data, converts it into a form ready for recording, and co-ordinates the location at which it will be stored. The controller also receives the raw data that is read from the disk and converts it back into a form that can be used by the microcomputer. The controller is physically located in the microcomputer system itself and not in the FDD.

The FDD also contains a good deal of electronics that is directly associated with the rotating of the disk and control of the read/write head. The division between these two sections is illustrated in Figure 2. The FIDD transmits flags to the controller which then gives commands in response. Data is transferred to and from the FIDD in a serial form.

The floppy disk drive

The electronies contained internatly in the FDD sustem can be roughly broken into the following groups:

1. Line drivers and line receivers to exchange signals with the host system:
2. drive selection circuit:
3. index hole detection circuit (and sector hole detection for a hard sectored FDD system:
4. stepping motor control for head positioning:

Fig. 2. The connections between the FDC and FDD.
5. read/write head amplifier;
6. head loading solenoid drive circuit;
7. write protect circuit:
8. track 00 detection circuit;
9. drive ready detection circuit:
10. head select circuit (for double sided disk drives); and
11. motor control for the rotating disk.

These requirements of a FDD are quite separate from the data co-ordination that is the disk controller's job. All these circuits account for the large amount of on board electronics that is found on the FDD. A typical FDD system consists of an array of sensors and detectors and two motors. One motor is the drive which rotates the disk at a constant rate, the other is a stepping motor to accurately position the read/urite head on the correct track.
The line drivers and receivers are used to buffer the signals to and from the FDD. This allows the data to be sent over longer cables and reduces the possibility of crrors caused by problems such as large line capacities which can slow down the leading and trailing edges of a data bit stream.

The drive selection circuit is used to allow multi-drive systems. The FDD is only selected when it is catled on by the floppy disk controller. In this way a number of disk drives may be used on a bus structure or by being dais-chained.

Index hole detection is achieved by using an optical sensor. A light source (LED) is positioned on one side of the disk and a photo transistor or photo diode placed directly under it. The floppy disk rotates between the two elements and when the index hole passes, the sensor detects the light. amplifies it and transmits the pulse to the controller.

When data is recorded onto the disk it is located on concentric rings called tracks. The track number along with the sector number then combine to give the complete address of a data block. The head is positioned above the desired track and as the disk is rotated the required sector eventually passes under the read/write head. The positioning of the read/write head has to be done accurately. Accuracy is obtained with the use of a stepping motor. Inside the stepping motor are a number of coils. When these coils are pulsed in a particular way they cause the motor shaft to move by a predefined angle. The shaft is then attached to a steel band that converts the rotational movement of the stepping motor into the linear motion required by the read/write head. It is the job of the stepping motor controller to drive the motor coils in the correct phase upon the receipt of a STEP command from the floppy disk controller.
The read/write head is usually made of

SERIES 5000

INDIVIDUAL COMPONENTS TO MAKE UP A SUPERB HIIFI SYSTEM! By directly importing and a more technically can bring you these products at lower prices than their competitors. Enjoy the many other advantages of RIE Series 5000 kits such as "Superb Finish" front panels at no extra cost, top quality components supplied throughout. Over 1.500 sold!
For those who haven't the time and want a quality hi-fi, we also sell the Series 5000 kits assembled and tested.

POWER AMPLIFIER
WHY YOU SHOULD BUY A "ROD IRVING ELECTRONICS" SPECIAL ONLY $\$ 399$ SAVE $\$ 50$

supplier

SPECIFICATIONS: 150 W RMS into 4 ohms (per channel) POWER AMPLIFIER: 100W RMS into 8 ohms (+ - 55 Supply) FREQUENCY RESPONSE: 8 Hz to $20 \mathrm{~Hz}+0 \quad .0 .4 \mathrm{~dB} 2.8 \mathrm{~Hz} 1065 \mathrm{KHz}$, +O-3 3 dB. NOTE: These thgures are determined solely by passive fiters
NiPUT SENSITIVITY: 1 V RMS for 100 W ouput INPUT SENSITIVITY: 1 VRMS for 100 W ouput
NOISE: 116 dB below full oulput (tiat. 20KHz bandwidh)
2nd HARMONIC DISTORTION: $.0 .001 \%$ at 1 KHz (0.0007% on Protorypes) at 100 W ouput using a $+=56 \mathrm{~V}$ SUPPL Y rated at 4 A continues $\cdot 0.0003 \%$ for al Irequencies less than 10KHz and all powers betow ch ind Harmonic Distiontion
(see above). INTERMOLATION DISTORTION: 0003% at 100 W (50 Hz and 7 KHz mixed STABIITY
Cat. K4477

PREAMPLIFIER THE ADVANTAGES OF BUYING A
ROD IRVING ELECTRONICS" SFDIE
SPECIAL, ONLI $\$ 359$ SAVE $\$ 40$

SPECIFICATIONS:

FREQUENCY RESPONSE: Kigh levelingul $15 \mathrm{~Hz}=130 \mathrm{KHz}$. $0=1 \mathrm{AB}$ ow-Level input-Conforms to RIAA equalisation . 02 dB equipment due to noise limitation)
SN NOISE: High Level Input, master full, with respect to 300 mV inpul signal a full output (i) 2 V), 92 dB tat $\cdot 100 \mathrm{~dB}$ A. weighted. MM input, master full. with
respect 10 full output (12 V) at 5 mV input 500hms source resistance connected
 (1.2V) and 200 uV input sugnal .7 rdB flat $\cdot 75 \mathrm{~dB}$ A-weighted Cat. K44791

Assembled and tested $\$ 699$ packing and postage $\$ 10$

THIRD OCTAVE

 GRAPHIC EQUALIZER SPECIIFCATIONSBANDS: 2R Rans: SPECIAL, ONLY \$209 SAVE \$30

SERIES 4000

 SPEAKERS8 Speakers only 5549 8 Speakers with Crossovers ... 5795 Speaker Cabinet Kit (complete) \$395 Please specify cabinet to suit 7 " or 8 midrange wooter) Crossover Kits
Complete kit of parts (speakers
crossovers, screws. innerband boxes.)
Assembled, tested and ead $\$ 1,09$ hook up to your system ... $\$ 1,295$ (Approximately 4 weeks dellivery)
Errors and Ommissюns Excepted

VIFAAEM 3 WAY SPEAKER KIT! competes with systoms that cosi 2. 3 times the cont of these units (which may even be using hisa
drivers oic.) Nover Dotore has it boen possible to get such axceptional value in xit aponkers Call in personally and compare or yourself
The aystem comprises. 2×075 dome midrange $2 \times P 25$ woofers
x pre-built quality crossovers The cabinel kit conssists of 2 knockown boxes in beautitul brack gra cloth, innertoond, gnll clips. speaker lerminals, scrowis and poris DI9 DOME TWEETER SPEAKER PECIFICATIONS Nominal Impedance: 8 ohms
Frequency Range: $25 \cdot 20 \mathrm{kHz}$
Freq Ar Resenance 1.200 Hz Free Air Resonance: 1.700 Hz Sensitivity iw at $1 \mathrm{~m}: 89 \mathrm{gB}$ (fo. $5.000 \mathrm{~Hz}, 12 \mathrm{~dB}$ oct) Voice Coll Diameter: 19 mm Volce Coll Resistance: 6 2ohms Moving Mass:0 2 grams 0.28 kg

075 DOME MIDRANGE SPECIFICATIONS
Nominal Impedance: 8 chms Free Air Resonance: 300 Hz Sensitivity (1 W at 1m): 91 dB Nominal Power: 80 Watts (10.500 Hz .12 dB OC1)
Voice Coll Resistance: 720 mm Moving Mass (incl. alr): 36 grams Welght: 0.65 kg
P25 WOOFER SPECIFICATIONS: Nominal Impedance: 8 ohms Frequency Range: $25 \cdot 3.000 \mathrm{~Hz}$ Free Air Resonance: 25 Hz
Operating Power: 5 waths Operating Power: 5 watts Nominal Power: 60 Wans Music Power: 100 Watts Voice Coll Olameter: 40 mm Moving Mass (incl. air): 44 grams Thiele/Small Parameters: $0 \mathrm{~m}: 315$
00.046
0.046
01040

Weight: 195 kg

VIFA'AEM
2 WAY SPEAKER KIT! This excliting new epenker kit.
deskned by David Tillbrook (name synonymous with brilliant design and pertormance) uses VIFA high periomance drivers from Denmark. You will save you get from this system when compared to something you buy off the shelf with similar charactoristics. Call In personali The syston comprises.. The system comprises... $2 \times 025 \mathrm{~T}$ Ferrofluid wooled dome tweelers with Polymer diaphra 2 pre-bult quality cros sovers The cabinet kt consists of 2 knock. look mith stiver batfles. speaker cloth, :nnerbond. gnil clips. speake terminals, screws and ports
O25T SPEAKER SPECIFICATIONS Nominal Impedance: 6 chms Frequency Range: $2 \cdot 24 \mathrm{kH}$ Resonance: 1500 H Operaling Power: 3.2 watts Sensitivity (1 W at 1 m): 90 d
Nominal power: 90 Watts Voice Coll Diameter: 25 mm Alr Gap Height: 2 mm Volce Coll Resistance: 4 7ohms Moving Mass: 03 grams
Weight: 0.53
P21 WOOFER SPECIFICATIONS: Nominal Impedance: 8 ohms Free Air Resonance: 33 Hz Operating Power: 25 waths Sonstivity (1 W at 1 m): 92 dB Nominal Power: 60 Warts
voice Coil Olameter 40 mm Voice Coil Olameter: 40 mm Moving Mass: 20 grams
Thiele/'Small Parameters On 24
00
Oi 035
vas 80

Weight: 1.65 kg
Complate Kit Cat Ki6020 S799 Speaker Klt Cat K16021 S649 Cabinet KIt Cat K16022 \$209

Complete Kit Cat K16030S1,199 Speaker Kth Cat K16031 \quad S949

MULTI FUNCTION STEREO MIXER EQUALIZER SPECIFICATIONS
Phono: 3 mV
Mic: 1 mV
Line (tape or tuner): 150 mV
SIGNALNOISE RATIO:
SIGNALNOISE RATIO
Phono: 55 d 8
Phono: 55 dB
Mic: 60 dB
Line: 65 dB
FREQUENCY:
Phono: 20 Hz 2.20 KHz (RIAA --2 dB)
LIne: $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz}+3 \mathrm{~dB}$
CHANNEL BALANCE: 05 dB
T.H.D: Less than 003%

HEADPHONE IMPEDANCE: 4.16 ohms
OUTPULIZ:
Centre frequency: $60 \mathrm{~Hz}, 250 \mathrm{~Hz}, 1 \mathrm{KHz}, 4 \mathrm{KHz}, 12 \mathrm{KHz}$
Control Gain: +-12 dB
OWER SOURCE:
POWER SOURCE: $110 \mathrm{~V}, 60 \mathrm{~Hz}$ or 220 V 50 Hz
Cat.A12016
SPECIAL. ONLY $\$ 349$

PHILIPS SPEAKERS Description Cat.No. Price ADO1610T8 (C12030) $\$ 24.95$ ADO2160SO8 (CI2040) S69.95 AD80652W8 (C12042) S69.95 AD070620M8 (C12045) S69.95 AD12250W8(C12050) \$129.00

Mount your speakers at ear level on your wall!! Features..
Holds speakers up to 260 mm deep
Left/Right adjustment
Up/Down adjustment
Includes mounting screws

- Nipping-screw pins hold speakers firmly in place
- Installation instructions

Cat
$\$ 89.95$ SPEAKER
Mytar diaphragm
SPECIFICATIONS
Sensitivity: 96 dB
Frequency Response: 2.20 kHz
Impedance: 8 ohms
Power RMS: 15 watts RMS
Magnet Welght: 54 cz
Slze: 96 mm diameter Cat C10234
$\$ 10.95$

8" WOOFER
HIGH POWER SPEAKER hoth edge, dark grey cone, rubbe mounting seai, cloth dust cap Senslifivity: 900 B : Frequency Response: 60.4 kHz mpedance: 8 ohms Power RMS: 50 watts RMS Cat C10226 ... S34.95

8" TWIN CONE FULL RANGE SPEAKER Foam edge. black cone. black Whizzer cone
SPECIFCATIONS:
Sensitivity: $98 d B$ Frequency Response: 45.16 kHz Impedance: 8 ohms Power RMS: 30 warts RMS Magnet Weigh

Rod Irving Electronic 48 A'Becket S1. MELBOURNE Phone (03) 6636154 425 High St, NORTHCOT
Phane (03) 46988.6 Mall Order and Correspondence
PO. Box 620 CLAYTON 3168 Telex: AA 151938

MAIL ORDER HOTLINE 008335757
5" MIDRANGE SPEAKER Sealed back toam edge, black
one. stiver dust ca
Sensitivity: 9BdB
Frequency Response: 500.8 kHz
Power RMS: 10 walts RMS
Magnet Weight: 5 4oz Cal C10230

61/2" TWIN CONE FULL RANGE SPEAKER SPECIFICATIONS Senslifivity: 89cB Fensitivity: 89 cB
Frequency Response: $60-15 \mathrm{kH}$ impedance: 8 ohms Power RMS: 10 waths RM Magnet Welght: 5302
Cat C10222

The above postage rates are for basic postage only. Ros dreigh charged it different zates. All sales tax exempt ordors and Wholesale inquilrios to: Sh Renver Rd, Claynon.

ROD IRVING ELECTRONICS №1 FOR COMPONENT SPECIALS！

TAG TANTALUM CAPACITORS SPECIAL Cat．No．Vescription
 4 ECONOMY TRANSFORMERS
 $\begin{array}{lll}\text { ？1562 } 240 \mathrm{~V} & \text { 6－15V } 2 \mathrm{~A} \\ \text { ial．M12156 } & \text { \＄14．95 } & \$ 13.95\end{array}$ 840240 V 9 VCT

 860240 V 15 V CT 250 mA
at $\mathrm{M} 12860 \quad \$ 5.95$ $572240 \mathrm{~V} 15-30 \mathrm{~V} 1 \mathrm{~A}$ 1apped

QUALITY LEDS
at．No．Description Price 101403 mm Red $\$ 0.15$ 101443 mm Green $\quad \$ 0.20$ 0143 3mm Yellow 101505 mm Aed 101515 mm Green 101525 mm Yeliom

MIGH INTENSITY

 RED LED BAR GRAPHImenall 63 mm across， 5 mm high
veral
EDS $10 \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$ $\begin{array}{lcr}\text { at } \mathrm{No} & { }^{1.9} & 10+{ }^{1.9} \text {＋} \\ 10180 & \mathbf{\$ 2 . 9 5} & \mathbf{\$ 2 . 7 5}\end{array}$

12＂HIGH INTENSITY RED LED DISPLAYS （Avaliable in Common Cathode

Dimensions：
Overahl 127 mm across． 19 mm migh Display $127 \mathrm{~mm}(\mathrm{H}) \times 73 \mathrm{~mm}(\mathrm{~W})$ Segment Width 12 mm COMMON CATHODE：
Pin 1 Segment E Pin 6 Segment
Pin 1 Segment E Pin 6 Segmenti
Pin 2 Segmento Pin 7 Segmenta Pin 3 CC
Pins 4 Segment C Pin 9 Segment F $\begin{array}{lccc}\text { Cat No } & 1.9 & 10 . & 100 . \\ Z 10190 & \$ 1.95 & \$ 1.75 & \$ 1.50\end{array}$

COMMON ANODE：

Pin 1 Segment E Pin 6 Segment B Pin3CA Pin BCA Pin 4 Segment C Pin 9 Segment F in 5 Segment DpPin 10 Segment

NUWERIC KEVPAD Unencoded keypad． 10 digit keys
plus wo tithty keys Light grey in COOUT Output Pin N^{o} Symbol

		Sy
2		Shielopluate
		Column 2
5		
${ }^{6}$		Row 1
8		Colum
		Row 3

 $\$ 0.50 \quad \$ 0.45 \quad \$ 0.40$

ELECTROLYTICS ELECTROLYTICS （PCB AOUNTING）

 16 VOLT| 16 VOLT | | | | （L） |
| :---: | :---: | :---: | :---: | :---: |
| Cat No． | scr | 1.9 | | |
| | 10 u | ． 50.25 | 50．20 | |
| R15481 | 22 F | 50.25 | S0． 20 | doare deal for T |
| R15511 | 33 F | 50.25 | 50．20 | |
| R15s5 ${ }^{\text {d }}$ | 47 FF | 50.25 | 50．20 | rmation carners as they can |
| R15531 | 100uF | S0． 30 | 50.25 | be etther p |
| R15541 | 220 F | 50.60 | \＄0．50 | |
| R15551 | 330 uF | 50.75 | 50．65 | Full spocitications below lor design |
| R15561 | 470uF | 50.75 | 50．65 | |
| R15571 | 640uF | 50.90 | 50．80 | Maximum Input Voltage： 20 V ims |
| R155 | 100 | 50.90 | 50．80 | |
| R15601 2 | 2200／2500uF | \＄1．20 | \＄1．10 | Sound Pressure Level 10V RMS： |
| | 25 VOLT | | | Sensitivity（dBN／ubar）min．： |
| Cat．No．Dis | crip | 1.9 | 10. | |
| 815422 | 22 uF | 50.25 | 50.20 | Bandwidit（KHz） |
| R15432 | 33 uF | S0．25 | 50.20 | Transmit 40 （at 10008） |
| R15442 | 47 uF | \＄0．25 | 50.20 | Recever 50 |
| R15462 | 10uF | \＄0．25 | \＄0．20 | Impodance： |
| R15502 | 25 F | \＄0．30 | 50.25 | Receviver 5000 |
| $R 15512$ | 33 F | 50.30 | | |
| R15522 | 47uF | | | trer）$\$ 4.75$ |

 R15602 $2200 / 2500 \mathrm{uF}$ \＄1．00 $\$ 0.90$

Cat．no 35 Volt
R15443 4 7UF

 $\begin{array}{llll}\text { R15543 220uF } & \$ 0.60 & \$ 0.55 \\ \text { R15563 } 470 \mathrm{uF} & 50.70 & \$ 0.60\end{array}$ R15563 470uF $\quad \$ 0.70 \$ 0.60$ R15583 1000uF $\$ 1.20 \$ 1.10$
R15593 2200 2500 F $\$ 1.50 \$ 1.30$ Cat．No．Description $\begin{array}{llll}\text { Cat．No．Description } & 1.9 & 10 . \\ \text { R15404 } & 047 \mathrm{FF} & 50.25 & \end{array}$ R15414 IUF R15424 2．2uF $\quad 50.3050 .25$ R15434 $33 \mathrm{uF} \quad 50.30 \$ 0.25$ $\begin{array}{lll}\text { R15444 } \\ \text { R15464 } & \text { 10F } & \$ 0.40 \$ 0.35\end{array}$ R15484 10uF \quad S0．40 50.35 R15514 $23 \mathrm{~F} \quad .50 .40 \$ 0.35$ $\begin{array}{lll}\text { P15524 } & 47 \mathrm{FF} & \$ 0.40 \$ 0.35\end{array}$ $815534100 \mathrm{FF} \quad \$ 0.60 \mathbf{5 0 . 5 5}$ $\begin{array}{ll}\text { R15564 } 470 \mathrm{uF} & \$ 0.90 \\ \text { R } & \$ 0.80\end{array}$ Cat．No Description
 $\begin{array}{lll}\text { R15415 luF } & \$ 0.30 & 50.25\end{array}$
 $\begin{array}{llll}815435 & 3 & 3 \mathrm{uF} & \$ 0.30 \\ \text { P15445 } & \mathbf{4} .25\end{array}$ R15445 47 uF
R15465 10 uF R15465
R10uF
R15505
25 $\begin{array}{ll}\text { R15505 } & 25 \mathrm{u} \\ \text { R15525 } & \text { 47uF }\end{array}$ R15535 100uF R15545 220uF
R15555 330
R15565 470 uF

CHROME LED BEZELS

 9 mm nole，avalable 3 cotours Sino Rescnption Price$\$ 14030$ $\mathbf{S 1 4 0 3 2}$ Green $\quad \$ 1.45$
$\mathbf{\$ 1 4 0 3 4}$ Yellow $\quad \$ 1.45$

ULTRASONIC
TRANSDUCERS Destrned to transmit at 40 kHz L19991）and recelve at 40kHz rransmitter The se units cantbe controls，water level detectors， and intormation carners as they can be erther pulsed or used in the Full specalications below for desion purposes
Centre Frequency（xty）： 20 V ims ound Pressure Level iov RMS Sensitivity（di
Bandwidth（ KHz ）
Recever 50 （at 7300 dB
mpransmit 5
Cat L19990（Transmutter）\＄4．75
C

Mitu JUMapeRS
－Contact terminal Phospor bronze
－Matenal P B T 94V．0 －Matenalated

TRANSFORMERS
Cat M10104 $\quad \mathbf{\$ 1 . 4 5}$

$\$ 0.50 \quad 50.45$
$\$ 0.50 \$ 0.45$
$\$ 0.60 \$ 0.5$
$50.90 \$ 0.8$

SPECTROL MULTIDIALS MODEL 15－1－11 Number of turns： 10
Minor Scale Division： $1 / 500$ Iurn Shat Bore： $6.35 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ Finish：Satun Chrome Body Slize：
$\left.(1413 / 4)^{-1}\right)$
Depth： 254 mm （ 1 ）
Welght： 454 g （ 60 z ）
Cat．R14405 ．．．．．．．．\＄45．95
MODEL 16－1－11 Number of turns： 15
MInor Scale Division：${ }^{1 / 50}$ turn
Shat Bore： $635 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ Shar Bore： 6 35mm（
Finish：Clear Anodize Body Size： 22 2mm diameter（ 875° ） Welth： $22.2 \mathrm{~mm}(875)$ Cat．R14400 ．．．．．．．．．$\$ 26.95$

MODEL 21－1－11 Number of turns： 15
Minor Scale Division： $1 / 100$ furn Shithor Bore： 635 mm （i
Finis：Satin Chrome （1）B12＂）： 46.04 mm diameter Depth： $254 \mathrm{~mm}\left(1^{\circ}\right)$
Weight： $85 \mathrm{~g}(302)^{2}$ Cat．R14410

DB25CONNECTOR

CENTRONICS PLUG SPECIAL！
36 WA Y MALE（P12200） $\begin{array}{lll}\mathbf{\$ 3 . 9 5} & \$ 3.50 & \$ 3.00\end{array}$

DB STAND OFFS
At Incredible prices！No noed to
pay absurd prices because we
lmport them direct and pase on
the savings to you！
2 Pack P10930
10 Pack P10932
100 Pack P10934
1.00

Wo you have just imported 50,000
So you get to save a small tonlune
DB25 MALE（P10900） $\$ 1.50 \quad \$ 1.20 \quad \$ 1.00$
DB25 FEMALE（P10901）
1.9
$\$ 1.70$

日月皇

MINIATUPE TEEATSNINK！ A great intle tellow it you are shon o space．Great price too，because we Dimenstons： $19(\mathrm{~L}) \times 13(\mathrm{~W}) \times 9(\mathrm{H}) \mathrm{mm}$ $\begin{array}{lrr}\text { Cat．No } & 1.9 & 10+ \\ \text { H10606 } & \$ 0.40 & \$ 0.35\end{array}$

MINI＂U＂HEATSINK heatsink sults most llat（latastic semiconductors．and has venical flutes for maximum thermat
 $\$ 0.65 \quad \$ 0.55 \quad \$ 0.50$

UNIVERSAL HEATSINK Universal because of the hole mounted to most＇＇power＇type semiconductors Features vented soes and brack anodised finish for Dimenstons $60(L) \times 35(W) \times 30(H) / \mathrm{mm}$
Normally $\$ 175$ ${ }_{1.9} \mathrm{C}_{1} \mathrm{H} 10+$ Normally $\$ 175$ $\begin{array}{lll}\$ 0.75 & \$ 0.65 & \$ 0.60\end{array}$

CANNON TYPE CONNECTORS SPECIALS Cat．No．Descripition Was $\$ 390$ NOW $\mathbf{\$ 2 . 9 0}$ P10962 3 pin chasis male P10964 3 pin line temale Wat $\$ 450$ NOW $\$ 3.25$ Was $\$ 495$ NOW $\$ 3.45$

BRIDGE SPECIALS WO2 IA 200V Cat 211030 $\$ 0.30 \quad \$ 0.28 \quad \$ 0.26$ $\$ 0.35 \quad$ \＄0．30 $\$ 0.28$ $\begin{array}{lll}\text { SB604 6a } 400 \mathrm{~V} \text { Cat } 211034 \\ \$ 0.90 & \$ 0.80 \quad \$ 0.75\end{array}$

RCA GOLD PLATED PLUGS AND SOCKETS For those who need the ultimate in
connection，Essential for laser oisc players to get that tantastic sound
quality．
Plug Cat．P10151 $\$ 3.75$ Socket Cat P10150 $\mathbf{\$ 3 . 7 5}$

RCA GOLD PLATED CHASIS SOCKET For the ultimate connection＇
Normally $\$ 195$
at 10229 $\begin{array}{llllll}\mathbf{\$ 4 . 9 5} & \$ 3.95 & \$ 3.75 & \$ 0.80 & \$ 0.75 & \$ 0.65\end{array}$

UTILITY STORAGE CASE A must or al electronic enthustasts． achnicians，hobbyists，inshermen so your＇Features a clear plastic antents．and up to 48 adjustable compartments A place for everything Cat．H10090 ．．．．．．．．．$\$ 19.95$
 Features a clear plastic lid for easy
identication of contents Up to five djustable lower compantments． plus a sell elevating upper tray tor Smaler items Cal．H10087 ．．．．．．．．．．．\＄9．95

VIDEO RF MODULATOR modulators are channel selectable either Channel O or Channel 1 ． Cat $\$ 16040$ \＄3．95
$\$ 2.95$

Rod Irving Electronics 48 A＇Beckett St．MELBOURNE 425 H igh St．MORTHCOTE Phone（03） 489886 MaH Order and Corresponsence
P． O Box 620 ．CLAYTON 3168 Telex AA 15 tiga

MAL ORDER HOTUNE 008335757
（STRICTLY ORDERS ONLY）
LOCAL ORDERS INOUIRIES 10315437877 postage rates $\begin{array}{ll} \\ \$ 1 & \$ 9.99 \\ \$ 10 & \$ 24.99 \\ \$ 25 & \$ 9.99 \\ \$ 50 & \$ 99.99 \\ \$ 100 & \$ 199 \\ \$ 200 & \$ 499 \\ \$ 500 & \text { plus }\end{array}$
$\$ 200$
$\$ 300$
$\$ 500$

World Radio History

FLOPPY DISK DRIVES

MnZn magnetic ferrite. The head contains three ferrite cores - one in the centre for $\mathrm{read} / \mathrm{write}$ and one on each side of this for erasing. The erase cones are used to erase a space between tracks when recording. This type of recording is called a tunnel erase, and is done because the magnetic field of the read/write head creates a track that is larger than required, so the erase cores squecze the track to the needed size. If this were not done the track density would have to be made much smaller or data from one track would overflow into that of another.
Data is recorded onto the disk when the head is placed in contact with the surface and current passed through it. The current sets up a magnetic field which changes direction depending upon the direction that the current flows through the head. The magnetic field flux changes are then recorded onto the surface of the disk in a form much like a series of small magnets. These magnets have their poles pointing in a particular direction depending on the direction of the current when it passes through the head.

Because of the high bit densities on a floppy disk a problem called bit shifting is sometimes encountered. This is caused by the interraction between the small "magnets" that are recorded on the tracks. The poles of these magnets tend to repel or attract the magnet on either side of them. The amount of repelling or attraction is a function of the bit stream and is not a constamt. This can cause errors in the recovery process if not taken into account. There are three methods commonly used to overcome this problem.

1. Since the bit shifting is higher for
greater bit densities, reduce the flux density of the read/write head on the inner tracks where the bit density is greatest;
2. Adjust the window during which bits are detected to compensatc for the shifting; and,
3. Compensate during the writing processes so that bits are recorded away from their normal position but then pushed back by the bit shifting process.
The greater the bit density, the greater the problem, hence for double density recording all three techniques are used. The first techniques is achieved by simply reducing the flux levels used for the recording on the inner tracks. On an $8^{\prime \prime}$ disk, tracks 0 to 43 are recorded at normal levels and the flux reduced on tracks 44 to 76. The third technique described is sometimes called time precompensation. It can be accomplished by passing the data to be recorded through a serial buffer and detecting patterns that will lead to bit shifting. When an offending pattern is found the corresponding bits are then delayed or written carly.

When reading data off a disk the head is placed on the surface at the desired point. As the disk is rotated the "magnets" induce a voltage in the head windings that is a function of the speed of the transition past the head and the magnitude of the magnetic field when the recording was made. This creates a differential signal from the head that is passed onto the floppy disk read amplifier system. Figure 3 shows a typical monolithic read amplifier system. The head is attached to two pins and the output produced is a digital pulse corresponding to each peak of the input

Fig. 3. A typical monolithic read amplifier.
signal. The analog head signal is processed by amplifying, filtering and differentiating. It is then coupled to a comparitor/logic circuit to detect zero crossing and reject noise in the differntial read signal.

Because a floppy disk is not rotating fast enough the head must be placed as close as possible to the magnetic surface with the recorded information. In this way larger voltages can be induced into the head. In a floppy disk system the head is in actual contact with the surface of the disk. This of course can create wear on the disk and therefore floppy disks are not as reliable as the floating head arrangements found on other, much more expensive magnetic storage systems. A typical specification for the media life of a $51 / 4^{\prime \prime}$ disk is a rotational life of $3.5 \times 16^{\circ}$ passes/track.

In order to keep the head and media wear to a minimun. the head is only put in contact with the surface when a read or write operation is to be performed. This then means that the head is held off the surface while the desired track is found and then placed in contact by the activation of the head solenoid. The FDD has on-board drivers that control this solenoid. Lifting the head off the surface also greatly increases the head life which has a typical specification of 10.000 hours of head to disk contact

The FDD must also detect the write protect notch in the side of the disk. If the disk has been protected. a signal is sent to the controller which then inhibits the writing of data onto the disk. The detection of the write protect is again accomplished with an optical LED and photo transistor arrangement. When the writen enable tab has been removed. the writing is inhibited.

The track 00 signal is generated by another optical switch and is then transmitted to the controller. The signal indicates that the read/write head is positioned on track 10 and further outward stepping is inhibited. Also when power is first switched on. the read/write head can be stepped out until the track 10 position is detected. This gives the controller a reference position and further changes to track position may be attained by counting from one position to the next.

The drive ready detection circuit tells the controller that a disk is cortectly inserted. the door is closed, and that a number of index pulses have been detected. All three of these conditions are logically ANDed and sent to the controller as the READY signal. The disk in and door closed are detected with mireo switches.
If the FDD is capable of using double sided disks then there will be two read/write heads, one for each side. There is only one line going to the floppy disk
controller for the READ DATA and only one from it for WRITE DATA. If two sides are to be recorded onto them there needs to be internal circuitry for multiplexing the heads into the read and write amplifiers. The multiplexer is switehed by a line called HEAD SELECT sent by the controller.
The last of the circuit blocks of the FDD is the drive motor control for rotating of the disk. This can be an AC or DC motor that must rotate at a fixed rate. The speed of the motor must be kept constant to within about $\pm 2.5 \%$. Since the data is recorded onto the disk along with the clock information some variance in speed will not cause problems in the recovery of the data. The motor can sometimes be constant enough in speed to need no control whatsoever. its only requirement being the application of power. Some manufacturers use brushless DC motors as the drive mechanism which increases the reliability and gives maintenance free service.

Recording methods

Before we look at what is required for the disk controller we must look at the methods that the data is encoded for recording onto the disk.

Fig. 4 (a). Informal IBM disc recording known as Manchester encoding.

Fig. 4 (b). Modified FM encoding assigns 'bit windows'.

For single density systems the informal IBM standard for disk recording has been Manchester encoding (sometimes called FM. or frequency modulation). This is a simple system and the idea is shown in Figure $4(\mathrm{a})$. Here the clock is inserted at regular intervals and used for synchronisation. The data is inserted midway through wo clock pulses where ' 1 ' is represented by a flux change and an ' 0 ' as the absence of a flux change.

This system only achieves around $501 / 3$ efficiency and hence other systems had to be developed to increase data densities. For double density recording there is no informal standard and different manufacturers use different techniques. This then means that there is much less interchangeability of disk at recording densities higher than single density.

One method of double density recording is MFM or modified FM. This method

Fig. 5. Composite data is broken in to clock and data information.
assigns a "window" into which each bit of the data stream should be recorded. Figure $4(b)$ shows that ' 1 's are recorded as flux transitions and ' 0 's as no transition. In order to maintain synchronisation. clocking information must be encoded as well, since if a long series of ${ }^{\circ}(0$ s are recorded the controller may not be sure where the '()'s should lie. This problem is solved by inserting a flux transition between any two adjacent '0's.

Another double density method is group-code recording (GCR) in which a group of four data bits can be encoded as a five bit code. The five bit code is selected so that flux transitions in a continuous encoded bit stream are spaced fairly cventy and therefore synchronisation is maintained. This method of coding can achicve about $80^{1 / 3}$ efficiency.

Controller hardware

The hardware involved in the floppy disk controller is centered around an LSI controller chip that can handle most of the disk interfacing functions. As well as this chip some systems require data separators. phase-locked loops, and timing precompensation circuits. The controller chips are available from a number of manufacturers including Western Digital, Motorola, Intel and NEC.

The data separator circuit is used to take the "raw" data from the FDD data
separator. The phase locked loop is used to break the composite data and clock (raw) input into the separate data and clock signals. The phase locked loop generates a window during which the data bit is expected to fall and the data is then gated through an AND gate. The window then changes to the clock window and the clock signal is gated through another AND gate to produce the clock signal.

The phase locked loop that is used in this circuit is not the normal analogue variety with built in voltage controlled oscillator and phase comparator. This type of phase locked loop tends to compensate incorrectly when bit shifting is encountered. Instead the circuit of Figure 6 is used which is a simple digital phase locked loop that re-synchronises as each new bit enters. This re-synchronisation is achieved by reloading the 4 -bit counter whenever a received bit is observed.

A double density bit separator is more complex since the problems of bit shifting are much greater. In addition it is also necessary to pre-compensate the data which is to be written onto disk. LSI chips are available that handle both the precompensation and the data separation for double density systems. These chips are usually used instead of going to the trouble of doing the job discretely, as with the single density controllers.

Fig. 6: A simple digital PLL for resyncronising.

the Problem with digital

High speed analogue to digital conversion is the most intractible bottleneck in most real world computer systems. However, good techniques can reduce many of the problems.

S. K. Hui

With the versatility and enormous manipulating power given us by computers and the latest advances in digital electronics, it's easy to see why everything is going digital!! Digital signals are easier to store, process and transmit than equivalent analogue information. Unfortunately, we live in an analogue world, so at the heart of every digital system, there has to be a converter if we need to take the signals outside the box or bring them into it.

In the last few years there has been tremendous progress. Today, much of the best sound and video equipment uses digital processing. Just a few years ago designers had to be content with analogue processing if they wanted any kind of quality. - The change has been due to the existance of good high speed (higher than 1 MHz conversion rate) analogue to digital converters (ADC).

Unfortunately, the move has not come cheap. ADCs are now the most expensive form of integrated circuit in general use. To catch up with the speed and the wider word size of today's computers, the operating speed and accuracy of ADC have to
be increased correspondingly. This is the reason for the horrendous price tag on many of the latest ADC chip.
The intention in this article is to give a brief overall view of some of the considerations in choosing ADCs, based on an understanding of the figures and jargon quoted in the specifications. What are the hidden traps? How much will the device deviate from its claimed specification when it is being used under a different environment? Is the resolution of the ADC too low or too high for the application?

Methods of conversion

The most important single parameter in conversion is accuracy. How closely does the digital the relate to the analogue one? There are many contributing factors to the accuracy of conversion, but one of the most important is the method of conversion. Each method has its own advantages and disadvantages.

Successive Approximation is usually employed in cost effective circuits for moderate resolution with medium speed. For higher resolution, integration techniques are used. The most expensive
method is flash conversion, which is capable of delivering extremely high speed and resolution.

Like a chemist's balance with binary weights ($2,4,8$, etc), the successiveapproximation converter compares the unknown inputs with sums of accurately known binary weights. It starts with the heaviest and works its way down to the least significant bit.
Integration types count pulses for a period of time proportional to the analogue input voltage. The most frequently used integration technique is called dual slope integration. It eliminates drift by storing errors in the first integration and subtracting them in the second round. A sophistication of this is the quad-slope converter which goes through two dualslope conversion process to obtain an extremely precise value. It does the dual slope integration twice, once with zero input and once with the analogue input to be measured.

A flash converter consists of many high speed precision comparators and is by far the fastest conversion technique available without trading precision for speed. In
flash conversion, the analogue signal is compared against stable voltage levels, using as many comparators as there are levels. The binary output of the comparator is processed by a priority encoder into a binary (or Gray code) form. This means the conversion process occurs in parallel, which is the secret of its high speed.

The Specifications

The fidelity of an analoguc audio or video signal can easily be lost if the ADC is not properly used. There are five features of a specifications that need special attention:
(a) Accuracy in dc.
(b) Analogue Input Frequency Response.
(c) Linearity - Differential, Integral and Monotonicity.
(d) Quantization Noise.
(e) Aperture Time.

Accuracy

The error of an ADC at a given output code is the difference between the theoretical and the actual analogue input signal required to produce that code. Accuracy is a measure of the strength of this error. It can be divided into two categories; absolute and relative.

Absolute error is composed of gain error, zero error, non-linearity and quantising noise. Relative error is the deviation of the analogue value at any code relative to the full analogue range of the ADC's transfer characteristic from its theoretical value relative to the same range. It's usu-

63

The fidelity of an anlogue audio signal can be lost if the ADC is not properly used. 98

ally expressed in \% ppm (part per million) or fractions of a least significant bit.
Generally, ADC manufacturers specify accuracy as a relative specification, since the absolute value reveals only half the story. A high speed ADC is an instrument which is capable of converting wide band
analogue signals into a digitized form of that signal, so dc conditions give only a small part of the true accuracy story. The dc accuracy performance should, of course, be specified. But it often presents an erroneous view that the $A D C$ is an ideal encoder, if other ac characteristics of the device are not mentioned at the the same time.

The testing setup shown in figure 1 is normally used to determine the absolute accuracy and dc linearity of the ADC. Assuming the error introduced by the DAC is not significant compared to that of the ADC (which is always the case), the difference amplifier output indicates the amount of quantization error on a slow ramping input.

In fact, quantization noise seems to be the major limiting factor to the accuracy of the ADC, at least as far as dc is concerned. As the frequency of the input signal goes up, other problems become more significant.

Linearity

A digital output code should correspond to a quantum of analogue input values exactly one LSB in width. Any deviation

ANALOGUE TO DIGITAL CONVERTERS

Small, fast, low cost, hi-res integrating ADC
The AD1170 is a microprocessor-compatible and programmable high-resolution (to 18 bits) integrating A / D converter. Its modular package contains a complete $\mu \mathrm{P}$-based measurement subsystem. All it needs are $\pm 15 \mathrm{~V}$ and +5 V supplies and an external clock or crystal. No trimpots, external references or timing capacitors.

The new AD7572 12-bit 5μ S ADC
The AD7572 dissipates just 135 milliwatts. Low enough for us to fit it on a 0.3" 24 -pin DIP or an even smaller 28 -pin LCC. Small enough for you to put it anywhere. And its 90 ns bus access time and flexible logic interface makes $\mu \mathrm{P}$ interfacing easy.

Low cost serial output 10-bit ADC
Our AD575 needs to external components or control signals to give you low cost 10 -bit conversions in $30 \mu \mathrm{~S}$. Its serial output simplifies interfacing in systems with long data transmission paths or that need digital signal isolation. Its compact 14 -pin DIP package includes its own reference and clock and circuitry to give a variety of operating
 modes.

12-bit 20 MHz ADC sets new speed record

The industry's fastest 12 -bit ADC, the CAV1220 uses a pipelining conversion technique with fast track-and-hold and subtraction amplifiers to give you 20 MHz throughput. High speed applications include radar, digital communications, medical instrumentation and real-time spectrum analysis.

KEEP UP TO DATE

These are just a few of the huge range of Analog Devices analogue to digital converters. Backed by the best data and applications notes in the industry.
Phone your nearest Parameters office today to get the data you need. Let us know the type of devices you're interested in and the applications you're working on and we'll keep you up to date.

Here's the full story

Analog Devices' Data Conversion IC catalogue covers our entire range of digital to analogue and analogue to digital converters, voltage to frequency converters, sample/track-hold amplifiers, voltage references. Phone for your copy,

ADELAIDE:Trio Electrix (08)2126235. 8RIS8ANE•LE 8oughen \& CO. (07) 369 1277. HO8ART: Imbros (002) 349899 . NEWCASTLE: DGE Systems (049)69 4242. PERTH W. Moncrieff (09) 3255722 TOWNSVILLE: Nortek (077)79 8600. CAIRNS: Thompson Instrument Services (070)51 2404. WOLLONGONG: Macelec (042)29 1455.

and real-ime spectrum analysis.

DIGITAL PROBLEMS

of the "measured" step from the ideal width is called Differential Nonlinearity. It is important because a differential nonlinearity error greater than one LSB can lead to non-monotonic behaviour of a DAC, ie: one analogue value can correspond to more than one digital value.

Referring to figure 2, the horizontal bars represents the measured DAC output values corresponding to the six adjacent codes. In figure $2 a$, the DAC output is linear because the quantizing levels (1.2, to 5) of the DAC are equally spaced one analogue unit apart. The DAC output in figure $2 b$ is non-linear, in that the quantum level 3 is 2.5 units above quantum level 2 and quantum level 4 is 0.5 units short. The differential linearity error, the difference between the actual quantum width and the ideal width (1 unit) is +1.5 unit for level 3 and -0.5 unit for level 4 .

Employing such a DAC in a successive approximation type $A D C$ will lead to missed code. An analogue input signal slightly larger than the value of XIOO will be converted to X 100 and if slightly smaller, be converted to X 010 . The code X011 will never exist.

While differential nonlinearity deals with errors in step size, integral nonlinearity has to do with the deviation of
overall conversion shape from perfect linearity. As can be seen above, differential error only affects the Successive Approximation ADCs which employs a DAC internally, integral non-linearity affects all types of ADCs.

The integral non-linearity comes from the frequency response of the input stage of the ADC (as mentioned previously). The $3-\mathrm{dB}$ bandwidth of the input roll off should be at least three times the Nyquist frequency. Circuits that roll off the input bandwidth will distort the high frequencies in the input, causing intermodulation products within the converter. When this accurs, watch for the monotonic curvature of the transfer function - which causes even harmonics, the symmetrical clipping or compression near the full scale positive or negative (causing odd harmonics) as in figure 3.

Quantization Noise

For an N bit ADC, the analogue continuum is partitioned into 2^{n} discreet ranges. All analogue values within any two quantized levels will be represented by the same digital code, usually assigned to the nominal midrange value. There is therefore, an inherent noise due to quantizing. with the maximum error of +-0.5 LSB. The combined effect of quantizing
and aperture errors is reflected as signal to noise ratio in the manufacturer's specification sheet.

Aperture Time

This is the delay time after the issue of the HOLD command to a trade/hold circuit before the switch actually opens. In other words, it is the time uncertainty of the exact instant that the sample is taken at the analogue input. Obviously, the smaller the aperture time delay, the better the dynamic performance of the ADC. The total aperture time consists of two components. The first is the delay of the solid state switch. The resistance of the switch does not change from zero (open) to infinite (close) instantly. The delay time is usually a constant for a given switch and could be compensated by an advanced HOLD command, provided the delay time is known.

The second component of the total aperture delay is the jitter. The delay caused by jitter is much harder to solve. It is caused by random noise, 50 Hz mains frequency or any other noise sources nearby phase modulating the encoded signal. The delay time as a result of jitter is thus pretty random, unlike the former, which is merely a constant for a given switch.

Train at Home
 for a Better Career! (39 ways ICS can help improve your life)

NO POSTAGE NECESSARY when you

 use the FREEPOST label.

Thhe decision to invest your time, energy and money in preparing for a new career is one of the most important decisions you will ever make. It can offer you the chance to qualify for the job you want...more money, more prestige and a better life.

At ICS, we've spent close to a hundred years training people for exciting, profitable careers. The ICS program offers you the most personalised education available. Every student is a "class of one." You study at home in spare time. go as fast or slow as you want.
Rather than learning from just one tutor, you learn through a system that combines the best skills of many people. The staff guides you, grading exams and offering helpful comments or suggestions as needed. Easy-to-check tests are included throughout each course so you can see your own progress. You waste no time traveiling to and from class. And ICS lessons are easy to understand because they're complete with drawings. diagrams and photographs. Tools. calculators, electronic instruments, drawing materials, fabric swatches, reference books...whatever you need to complete your training is

included with your program at no extra cost.

Statistics show that specialised career training has helped thousands of men and women make more money, get better jobs, even start whole new careers. Compare your present salary with the money you could be making in any one of the careers listed on the coupon. And it's not the money alone that is important! Being around people you like, doing something you really enjoy, feeting successful in your career...all these can make a big difference in your future and in your entire outlook on life!

SEND FOR FREE FACTS! NO OBLIGATION EVER! WE PAY POSTAGE WHEN YOU USE THE FREEPOST LABEL.

RITRONICS WHOLESALE

56 Renver Road, CLAYTON, 3168, VICTORIA, AUSTRALIA. Phone (03) 5432166 (4 lines). Telex AA151938
N.S.W. DISTRIBUTOR: Bill Edge Electronics Pty. Ltd. 76 Porters Rd, KENTHURST 2156. Phone (02) 6542046

Minimum account order is $\$ 50$. minimum cash sale is $\$ 25$. Minimum post/pack $\$ 3.00$ Minimum account post/pack $\$ 5.00$. Comet Road Freight, bulky items and/or over 10 kg is extra. Bank Card. Visa and Master Card Welcome!

FEED FORWARD

setters to the Editar

One of the Lucky Ones

I am a student studying Industrial Electronics at Gymea Technical College in Sydney. I am one of the lucky ones who gained a place in this course, unlike many others whose names went on a waiting list. However, my good fortune is apparently to be short lived. The second stage of this course is unilikely to be offered at this college because no technician is employed to support the course in maintenance and construction of necessary equipment. Currently students and teachers fulfill this role; showing dedication bome of necessity.
I previously read with interest your article 'A Career in Electronics' (ETI Oct, 1986) although I felt TAFE was poorly represented. However, I must now agree that TAFE seems to ignore the needs of students who wish to train in electronics. Why is it that govemment support is lacking conceming because it is the only college within my reach. I am doing this course to simply protect my job, as being merely an electrician is now no longer enough.
I suggest that post trade training in electronics is essential both to individuals concemed with their job prospects as well as to the country. Without trained personnel, industry cannot function, and we all suffer. I am one of over 50 students enrolled in this course at Gymea, and we all face the prospects of being on the 'scrap heap' because of govemment ceilings on employment within the public service prevent the course being offered in its entirety. Surely this is govemment cost cutting in its worst form; akin to severing the artery that feeds the nation to save a few dollars.

TAFE replies:

Your correspondent Larry Mahoney is correct in stating that the Gymea college of TAFE will not offer Stage Il of industrial Electronics. All students were informed, at the time of enrolment to Stage I that Stage II would not be offered at Gymea in 1988.
However it is simply not true to claim that TAFE ignores students who wish to train in electronics. TAFE provides a range of courses in this area, but resources do not permit it to run all the courses students desire in all Its 102 Colleges in New South Wales.
The Gymea College administration will be seeking a technician for 1988, but this request will be competing with other high priorities for positions throughout the TAFE system.
You can be assured that the sudents who have completed Stage I will receive priority in other TAFE Colleges such as Bankstown, Wollongong and Sydney for enrolment. In the Stage II Electronics course.
Given the current economic situation TAFE is required to be prudent with its resources and this requires some students to complete their courses at other TAFE colleges.
> R. Mayne-Willson

> Policy Support Officer
> Department of
> Technical and Further Education.

> NSW

A new System?

As at this stage I am only in my infancy as an electronics enthusiast I ask your indulgence with any show of ignorance that may be obvious in the context of this letter.
For some time now I have been awaiting the arrival of the rumoured digital audio recording system that promises

The winner of the Daihatsu Charade competition, Ian Adamson, accepting the keys from Daihatsu's Ron Bragg. Geoff Baggett of Federal Publishing looks on.
compact disc standards of quality with the facilities of recording, erasure and playback.

In the absence of such a system I am writing this letter proposing an idea that may be of interest to someone far more able to judge the merits (or lack thereof) than I am myself. To date any such system that I have heard about proposes the use of a tape system.

My question is, why not utilise a format currently available such as the $31 / 4^{\prime \prime}$ floppy disk system which is used as a mass storage device on many computers these days. A system such as this could also have the advantage of random selection that is enjoyed by the compact disc system. Rewinding would be a thing of the past. Also there is the advantage of having a fairly rugged medium that is reasonably protected from the elements, being inside a plastic case that is only opened inside the machine.
A possible argument against this idea is the fact that the actual surface recording area is not as great as is possible on a tape based system. However as I see it we already have the Sony 8 video system which can record up to three hours of video on a single mini tape cassette. Surely if that is possible with the huge amount of information required to record a video image plus sound, then it would be possible to get at least one hour of audio only, even if both sides of the disc is required.

As many of these recording units are already available on the market, I feel confident that such as concept could be developed in Australia without leaving it to the Japanese, as so often seems to happen.

Peter Dobson Auckland NEW ZEALAND
A $51 / 4^{\prime \prime}$ disc system was shown at the 1985 Chicago CES. It provided, from memory, about five minutes worth of playing time. To date the difficulty of getting sufficient information onto the disc has been the real problem. - Ed.

DOMN MMTI PRICES

41256-15 (sg)
 \%. 55.90 ca $\begin{array}{ccccc}\text { W } & 6.800 u F & 16 v & 18-3503 & 400 \\ 10.000 u F & 16 v & 18-3504 & 600 \\ 68.000 u F & 16 v & 10-3505 & \$ 50 \\ 22.000 u F & 25 v & 9-3506 & \$ 90 \\ 33.000 u F & 25 v & 18-3507 & \$ 1200 \\ & 4.700 u F & 40 v & 18-3508 & \$ 600\end{array}$

Extraloud $3^{\circ}(80 \mathrm{~mm})$ diam

$24 \vee$ AC or DC English Chloride Gent 150 mAc current Cot 03-2017	$\underset{10+56.75 \mathrm{ea}}{5 C}$
PROGRAMMABLE	
24HR TIME	
SWITCH	
240Y AC 10 AMPS	
\$19.95	

Negative 10 N Generator kit

\(\begin{array}{ll}(Based on AEMS501 Sept. 1985) \&
A deluxe version of this most \& Bult
Dopular kit with HIGH/LOW output \& Tested 59.50\end{array}\)

$$
\begin{aligned} & \text { GRA } \\ & \text { COnd } \\ & \text { CON } \\ & \text { for } \\ & \text { SAF } \\ & \text { Horn } \\ & \text { POTE } \\ & \text { Antt } \end{aligned}
$$

 GRA COM CON for SAF SA

 GRACOM
CON
for
SAF
SA}

PRRTS VRLUE PRKS

WATCH \& CALCULATOR
BRYYREIUSS
BUTTONCELLS:-

\qquad

DPDT HI-QUALI
SWITCH
\square Coocat 100 for $\$ 20$
PREMIUM QUALITY 'ERG
DIL SWITCRES 6 WAY
COLOUR
CODED.

Charger

Lov Cost. Lightweight 240V AC Moins SOLDERINGIRONS 25w ernery sse mbly purpose iron Cor $\begin{array}{r}\$ 19.50 \\ \hline 2415\end{array}$ 20W eempersture $\$ 24.50$ Peplacement tips Cot $24-2424$ \$45 \qquad
S10.50 SOLDERING
TA

700W Light Dimmer

Economy RLRRM Control inoull irren, No
 Module

 18ULTRASONIC DETECTOR
FOR HOME SHOP OFFICE
(1) 5 D9
\qquad

Buy 10 or more, less 108 disc
Electroncs Australot's DIGITAL
\qquad

GEL Bottery Chargers Spectiolly modet for cherping seale opl batternes ot correct current rating over - 10 hour period 120 mA (12 AH) 02-2001 $\$ 1050$ 300mA (3 OAH) 02-2002 $\$ 1150$ 450mA (4 5AH) 02-2003 $\$ 1390$
ELECTROMIC SIREN

12-15V DC 3A PDWER

SUPPLY KIT

	MICROPHONE WITh BASE/TREBLE CONTROLS 2750

CIRCULAR 3-D Plots

CIRCULAR IS A program which allows you to print 3-D 'circular' plots on your 32k + MicroBee. The program includes a 'hidden line removal' algorithm which effectively erases all pixels that would not normally be seen by the viewer. The program aliows full 512×256 dot resolution by bit-mapping the screen into a 16 k long section of memory just after the machine code routines. Using this process, it is able to create complicated plots at full resolution without exceeding graphics memory. A small 256×64 window is drawn which shows, in scale, how the plot is progressing
To run CIRCULAR, you will need a 32 k or greater MicroBee and an EPSON compatible (read:standard) dot matrix printer. In order to run the program, you will need to enter the hex listing (using monitor) and save it. (If you have a disk system, you should move the code to 100 H and save it using the CPM command: SAVE 8 ROUTINES.EXE. Cassette users will have to save the code using the monitor's D command, and load it each time the basic program is to be run.) Then enter the basic program as shown in listing \#1. For cassette users, line 130 should be changed to: 130 IF PEEK (4096) < > 33:PRINT "ROUTINES NOT PRESENT": STOP
As the program runs, it prompts you for various parameters, to select the default value (as shown in the brackets), just press retum. When the 3 questions are answered, the program draws the viewing window and proceeds plotting. As with all programs requiring complex calculation under basic, it is slow, and plots will often take 2-3 hours to finish. However, the time is worth it considering the quality of the output.

Other equations you might try include:
FNO $=\operatorname{COS}(\# * 3)+\operatorname{SIN}(\#)+$ $\operatorname{SIN}(\# 1.78)$ (where $\mathrm{n} 1 \stackrel{ }{=} 15$ and $\mathrm{n} 2=120$)
FNO $=\cos (\#)+\cos (2 \# \#)+$ $\operatorname{SIN}(\# / 5)$ (where $\mathrm{nt}=17$ and $\mathrm{n} 2=130$)

Sean Machin
 Llsmore Heights, NSW

READER SERVICES: All enquires re garding bock issues. pholocopies of articles. artwork or technucal enquines must be directed by mail to ETI Reader Services, PO Box 227. Water. 100. NSW 2017 Enclose cheque or monev arder to the appropilale value with your request Relevani chorges including posiage within Australio and New Zealand are bock issies $\$ 4$. photos:al copies $\$ 4$ per article or $\$ 8$ if projeci spreads over more thon one issue armork 55 per board or panel up $10{ }^{4} 0 \mathrm{~cm}^{3}$ a equivalent. \$10 for larget boards

TECHNICAL ENQUIRIES: No enquirles by teephone wi be accepied Reoders hove N.u options to submil a witten enquiry with $\$ 5$ money order or cheque and receive a postal reply. this service is limited to projects pub lished withen the las' ive vears, alter natively they may forward enquiry without money and expeci a published reply in the Feed Forward col umns al the editors discretion

GENERAL INQUIRIES: For all inquiries about back issues. subscripions. photocopies of articles artwork of submiting anicies, call (02) 603 ga99 or wite to ETI Recoder Services. 180 Bourke Rd Alexandria. NSW 2015 (PO Box 227. Waterloo NSW 2017)

CONIRIBUTIONS: Submissions must be arcompanied by a stamped. self addressed envelope the publisher occepis no responsibility for unsolicited materia

COPYRIGHT: The conients of Election ics Todoy international and associated publicaions is fully protecied by the Commonwealth Copynght Aci (1968) Copyight extends 10 all witten material. photographs, drawings, circuit diagrams and printed circult boards Although any form of reproduciion is a breach of copyright. We are not concemed aboui individuals con sinucing projects for their own privele use nor by bands (for example) con structing one or more items for use in connection with their pertormances Commercial organiso'ions should note that no project of part project described in Eleciformes fodioy infernofions' or associated publicalions may be offered for sare, or sold in sutbsien tialiy or luliy assemblod form, unless a licence has veen specilicaliv ob tained so to do from the publisher The Federy Puolishing Company or from the copyight holders

LIABILITY: Comments and test results on equipmen reviewed refer to the particuida trem submited for review and may not necessarly pertain 10 other units d, the same make or model number Whilst every eftor has been mude to ensure mat all con sinuctiona projects referred to in this edilion will operate as indicoied efficienily and properly and that all nec. essary components io monufacture the same will be avalab'e. Io responsibility is accepica in respect of the fallure for any reason at alt of the project io operate effecively or a all whether due 10 any fault in design or otterwise and no responsiblity is ac cep'ed for the fallure to dotarn any component parts in respeci of any such project Funther no responsiolity is accepied in resnect of any infury or damage causea by any fait in the design of any such projec: as aforesold

Idea of the Mouth

8 CHANNEL COMPUTER OPERATED REMOTE CONTROL

The main objective of this circuit is to control a distant or mobile device by computer without the hassle of an interconnecting multitude of wires. At worst, only two wires would be necessary to control up to nine channels. Ideally a simple transmitter and receiver should be used in their place enabling greater independence from the computer.
In practice the circuit is operated by a series of pulses from the output port of a com-
puter. A pulse is created by tuming this output port on and off. By varying the number of pulses different channels can be selected and operated.
To initiate the circuit two pulses are required; following pulses select and operate respective channels. That is: a series of three pulses $(2+1)$ would activate Channel 1 whilst eight pulses $(2+6)$ would activate Channel 6 . To deactivate Channel 1 a sec ond series of three pulses
would be transmitted.
When power is connected the ICs are reset: the 4013 Flip Flops (IC7-10) by the associated capacitors and resistors: the 4017 DECADE COUNTER (IC1) by an inverted low from pin 3 of the 555 timer (IC4).
The first computer pulse then initiates the 555 which removes the rest condition from pin 15 of the 4017. Following pulses clock the 4017 to the desired channel. (Output 1 of the 4017 is not used and

VOLTAGE CONTROLLED ADSR GENERATOR FOR SYNTHESISERS

This ADSR (Attack-Decay-Sustain-Release) module is unusual because all parameters (A,D,S and R) are voltage controlled. This allows several of these modules to be controlled by common sources, such as would be required in a polyphonic synthesiser. Altematively, each control parameter could be a DAC output from a computer.
The central element of the circuit is the Operational Transconductance Simplifier, $1 \mathrm{C4}$ used as a slew limited. 1C5 buffers 1C4 output. The slew rate is determined by the control input current (pin 5). 1C3 provides this current. The higher the input voltage to 1 C 3 , the greater the input current to 1C4 pin 5 and therefore the greater the slew rate. The voltage at the input of 1C4 determines the value IC4 slews to.

IC1 provides the logic nec-
comes in handy for any false triggering caused by interference of a transmitter if used.) Up to 10 pulses need to be sent before the 555 resets in 0.02 seconds. If this time interval is inappropriate it can be altered by changing R1 and $\mathrm{Cl}_{1}(\mathrm{t}=1.1 \mathrm{R}$ (1) $)$.
Once a channel is selected its 4017 output is sent to a NOR gate (IC5 or 6) via an inverter (IC2 or 3). When the 555 resets a low is sent to all NOR gates. The nOR gate which has two low inputs then toggles the respective Flip Flop which in tum operates a relay. The 4017 is temporarily delayed from resetting by a series of invent ers ($1 \mathrm{C} 2 \mathrm{c}, \mathrm{d}$). thus allowing enough time for the NOR gates to respond.
NOTE:
It is important to operate this circuit at $5-9$ volts depending on the computer's output voltage. If there is a greater than 5 volt difference between these, the pulses will not be recognised by the 4017

Bill deRooy
Canberta, ACT
essary to correctly sequence ADSR operation. It controls which control voltages are applied to the slew rate control (IC3) and the "target value" control (IC4 input)
When the key pressed signal is received (trig input low) the R-S flip-flop IC1/3,4 is reset. The "Attack" control voltage is selected as input to IC4 is set to +7 V . The output voltage rises until IC1-2 changes state, setting the R-S flip-flop. Now the "Decay" control voltage is selected for IC3 and the "Sustain" control voltage is selected for IC4. So the output ramps down until the "Sustain" level is reached. The circuit remains in this state until the key pressed signal is released (goes high). Now the "Decay" control voltage is selected for IC3 and OV for IC4, so the output falls to OV. If the key is released before

Sustain mode is reached, the Decay mode is instantly assented.

In multi-channel applications the control voltages should be buffered with opamps.

H. Grenville,
 Blackbum 3130 Victorla

Feed Forward needs your minds. If you have ideas for circuits that you would like to enter in our idea of the month contest, programs for the computing columns or just want a word with the editor, send your thoughts to:

Feed Forward
ETI, Federal Publishing,
PO Box 227 ,
Waterloo, NSW 2017
Contributors can look forward to $\$ 20$ for each published idea/program which should be submitted with the declaration coupon below.

Programs MUST be in the form of a listing from a printer. You should indicate which computer the program is for. Letters should be typewritten or from a printer, preferably with lines double spaced. Circuits can be drawn roughly, because we have a draughtsman who redraws them anyway, but make sure they are clear enough for us to understand.

'Idea of the month' contest

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the 'Ideas for Experimenters' column - one of the most consistently popular features in ETI Magazine. Each month, we will be giving away a Scope Soldering Station (model ETC60L) worth approximately $\$ 191$

Selections will be made at the sole discretion of the editorial staff of ETI Magazine.

RULES

The winning entry will be judged by the Editor of ETI Magazine, whose decision will be final. No correspondence can be entered into regarding the decision.

The winner will be advised by telegram. The name of the winner, together with the winning idea, will be published in the next possible issue of ETI Magazine.

Contestants must enter their names and addresses where indicated on each coupon. Photostats or clearly written copies will be accepted. You may send as many entries as your wish.

This contest is invalid in states where local laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions.

COUPON

Cut and send to: Scope-ETI 'Idea of the Month' Contest/ Computing Column, ETI Magazine, PO Box 227, Waterloo NSW 2017.
II agree to the above terms and grant Electronics Today International all rights to publish my idea/program in ETI Magazine or other publications produced by it. I declare that the attached idea/program is my own original material, that it has not previously been published and that its publication does not violate any other copyright."

- Breach of copyright is now a criminal offence.

Title of idea/program
Signature ... Date

Name

Address Postcode

10MHz TURBO PLUS MOTHERBOARD

Boost IBM PC performance around four times with the fastest motherboard money can buy. This 10 MHz , no-wait-state board is a drop-in replacement for the sluggish 4.7 MHz PC motherboard.

- 8088-3 running at 10 MHz /no wait states
- Turbo/normal selectable
- 4 channel DMA 8 expansion slots
- Keyboard port - 640K RAM fitted

8MHz Turbo Motherboard
still available at new low price. Was $\$ 450.00$.

NOW ONLY \$425

ADVERTISING INFO No. 41

150W SWITCHING POWER SUPPLY

Drop-in replacement for IBM PC's puny 63W supply.

- Boosts PC to PC/XT specs. Essential to run hard discs and other ad-ons on $P C$. - Outputs $+5 / 1 \mathrm{~A},+12 / 5 \mathrm{~A},-12 / 1 \mathrm{~A}$ - All cables to disk drives, mother-board etc.

\$136

ADVERTISING INFO No. 42
FLOPPY DISK
CONTROLLER
Controls up to 4 DS/DD 360 K drives.

\$65

ADVERTISING INFO No. 43

1.2MB/360KB
 FLOPPY CONTROLLER

The perfect answer for backing up hard disks, archiving etc

- Supports both 1.2 MB and 360 KB drives - Fully PC/XT, PC/AT compatible - For suitable drive see below

THE ONLY PC PRODUCTS WITH A MONEY BACK GUARANTEE*

DISK DRIVES
40 Track Mitsubishi.
Very fast track-to-track. 360KB DSDD. Lowest price in Australia. ADVERTISING INFO No. 45 \$245

1.2MB Mitsubishi.

Super high density. Superb construction and reliability. Works with 1.2 MB floppy controller
ADVERTISING INFO No. 46 \$285
20MB NEC Hard Disk.
Very fast and super reliable. Best price in
town.
$\$ 845$
Complete with controller.
$\$ 1140$
ADVERTISING INFO No. 47

AUSTRALIA'S BEST SPEEDUP CARD

Speed up your PC over 7 times with our superb new speed-up card - 80286 CPU plus 8088 for complete software compatibility - Clock rate up to 8 MHz
(selectable)
-RAM on-board for disk cache

- DMA support
- Socket for 80287 co-processor

VIDEO CARDS Enhanced Graphics/ Printer Adaptor

Now at an even lower price while stocks last - Functions as Colour Graphics (CGA), Enhanced colour graphics (EGA), Hercules graphics and monochrome.

- 256K RAM for flicker free scrolling - Suits PC, PC/XT, PC/AT and compatibles - fully Hercules compatible (unlike the competition)

WAS $\$ 695$ NOW ONLY \$595

ADVERTISING INFO No. 49

Mono-Graphics/ Printer Card

- Hercules compatible
- Interface to TTL monitor
- 720×348 resolution
- 80 character $\times 25$ lines with 9×14 dot characters
Reduced for this month. Was $\$ 165$. \$149

ADVERTISING INFO No. 50

14 DAY MONEY BACK GUARANTEE All products carry a 14 day satisfaction guarantee. If you are unhappy with any of our products for any reason, return them within 14 days, in original condition, for a full refund (excluding freight charges).

Colour Graphics Video Card

- Suits RGB and composite colour monitors
- Light pen interface
- Fully CGA compatible
- $40 \times 25 \& 80 \times 25$ (text), 640×200
(mono) and 320×200 (colour)

\$115

ADVERTISING INFO No. 51

Colour Graphics/Mono Graphics - Short Slot

The solution for very full PCs and portables This new board provides full Colour graphics (CGA) and Hercules monochrome graphics support. And it fits in a short slot!
\$195
AOVEATSNG NEO No 52 T NEW

Turbo Mono Graphics/ Printer - Short Slot

If you want fast, flicker free scrolling and full Hercules compatability, this is it! Perfect enhancement for slow scrolling programs like Microsoft Word etc. The ultimate monochrome graphics card.

\$175

ADVERTIING INFO No. 53. NEW

MEMORY

512K Ram Card Short Slot

- 512K RAM installed

(41256 chips)

- DIP switches to start address
\$195
ADVERTISING INFO No. 54

640K Ram Card Short Slot

- 640K memory installed - User selectable from 64K to 640K
- DIP switches to start address

ADVERTISING INFO No. 55
 2MB EMS Memory Card

Yes, an affordable "Above Board" memory card Full 2MB of high speed RAM At a low introductory price ADVERTISING INFO No. 56
\$995

XT Style Case with Hinged Lid

Perfect for building

\$95
 ADVERTISING INFO No. 57

XT/AT Keyboard

- Full AT layout
- PCXT, AT switch selectable
- Superb action

\$175

ADVERTISING INFO No. 58

Serial RS-232 Card

- Independent receive clock inpı
- 2nd serial port option
- Full buffering eliminates need fo synchronisation

ADVERTISING INFO No. 59

Colour Graphics/

Printer Adaptor
Attaches to IBM-compatible RGB monitor, provides complete compatibility with IBM Colour Graphics Adaptor. Equivalent to the IBM colour/graphics adaptor with additional printer port to replace the video port originally supplied by IBM.
\$155

ADVERTISING INFO No. 60

PROFESSIONAL FITTING

Need some of our products, but don't want to fit them yourself? No problem, we can organise fitting at Electronic Solutions, for a small extra charge
Just phone us in advance and we will book your PC in for a precision transplant
ADVERTISING INFO No. 64

Parallel Printer Card

- Standard TLL level
- Centronics printer port, full IBM, EPSON printer compatible

$\$ 44$

$$
\text { ADVERTISING INFO No. } 61
$$

Multi I/O Card

$■$ Floppy disk adaptor, 2 drives DS/DD

- 1 serial port, 1 parallel port, 1 joystick port
- Clock/calendar with battery backup
\$175

ADVERTISING INFO No. 62

I/O Plus Card

- i serial port, 1 parallel port, 1 joystick port
- Clock calendar with battery backup
\$136

ADVERTISING INFO No. 63

Electronic Solutions

PO Box 426 Gladesville 2111
Phone (02) 4274422.
We accept both Bankcard and Mastercard. Mail order our specialty.
All prices include sales tax.

- All products carry a 14 day money back guarantee
- All products carry a full 3 months warranty
- All cards come with full documentation

RING TONE CUSTOMISER

S. K. Hui

One of the most irritating aspects of working in a big office or laboratory is that all the telephones sound the same. It's a problem, because not only does the telephone constantly interupt, demanding your attention, but it's also not easy to tell whether its your phone that's ringing. One way to alleviate the problem is to change the ring tone on your phone so that it sounds distinctive. It won't stop the interuptions, but at least it will reduce the number of false alarms.

FL input state	lower discriminator limit (Hz)
LOW	20
HIGH	13,33

Fig. 2a: Selection of lower frequency discriminator limits (fosc $=64 \mathrm{kHz}$).

FH input state	upper discriminator limit (Hz)
LOW HIGH 60	

Fig. 2b: selection of upper frequency discriminator limits (fosc $=64 \mathrm{kHz}$).
the discrimator. If the input pulses appearing on pin FDI have a frequency outside the lower and upper limits set by FL and FH, the chip is disabled. This enables us to avoid confusing dialling pulses with ring tone.
There are two types of output driving modes depending whether a speaker or a piezo-electric transducers (PXE) is used. The selection is made by connecting a high or low to pin DM (drive mode selection). A low on this pin will configure the chip to drive a speaker by outputing a delta-modulated signal that approximates a sinewave sampled at a rate equal to half the oscillator frequency. Since not much current can be drawn from the telephone line, a normal 8 ohm speaker cannot be used. A 50 ohm speaker is suggested by the data sheet in series with a 3 mH coil to enhance the volume. When DM is set to low, pins IS1 and IS2 will determine the pulse duration of the output signal that drives the speaker, the de resistance of the speaker seen by the line and also the sound pressure level. This mode is not very economical from the designer's point of view, as a 50 ohm speaker is not easy to find.
A high on pin DM configurates the chip to send the signal to output pin TONE in the form of a pulse train (with equal amplitude). In this mode the ringer impedance and sound pressure level are determined by the characteristics of the PXE transducer and inputs SI1 and SI2 are inactive. In my design, two piezo-electric transducers are used and changing the logic on DM will give a sharper (when $\mathrm{DM}=$ high $)$ or a softer $(\mathrm{DM}=$ low) sound.

Fig. 3a: Fundemental signal (667 Hz) at pin TONE.

Fig. 3b: Fundemental signal $(667 \mathrm{~Hz})+$ harmonic signal $(2667 \mathrm{~Hz})$ at pin TONE.
Pins TS1 and TS2 give four different tone sequence selections. Figure 3 shows the tone sequence in relation to the pin state on TS1 and TS2. If you can read music, you have probably realized that when TS1 and TS2 are both low, there are 15 time intervals in the tone sequence. There are 16 intervals for the other three combinations of inputs to TS1, TS2. The

input state		time interval
RRI	RR2	
L	L	15
L	H	30
H	L	45
H	H	60

Fig. 4: Duration of time intervals (fosc $=64 \mathrm{kHz}$).

duration of these time intervals are controlled by the inputs applied to pins RR1, RR2. Figure 4 shows the durations versus the inputs to RR1 and RR2 when the oscillator is running at 64 KHz . By changing the RR1 and RR2 inputs, the resultant variation of the time intervals acts as a distinguishing feature between two ringers set to play the same song.
The OPT output pin is designed to drive an optical signal transducer or lamp. It is LOW when ringer circuit is enabled and high when the ringer is disabled. This output is not used as it can only sink or source 2 mA maximum. This small amount of current is not quite enough to drive a LED brightly. Instead, in my design a neon lamp is used, which is directly triggered by the incoming ring current from the exchange.

Construction

Although the components look pretty cramped up on the board, building the unit should not take more than half a day. The first thing to do is to check the pc board. Make sure there are no broken or

shorted tracks. I would suggest you use an IC socket for the PCD3360. Because of the small area of board available, some of the components have to be mounted vertically. They are R1, R2, R4, R5, R6, D1D5,ZD1. The general rule is: if the pads for the components are not far enough apart for mounting the component horizontally, mount them vertically. It is highly recommended that you use an insultating tube like thermal heat-shrink to insultate the exposed pins of the vertically mounted components, especially the ones that connect to the Telecom line like R1. R2. D1-D4 etc. All the components are mounted on the component side of the board and soldered on the other side except the DIL switch. The DIL switch should have its pins standing on the copper pads on the solder side of the board, and be soldered just like that (refer to the picture).

The next thing to worry about is the panels. Since the front panel seems casier to construct, let's start with this one. Drill three holes on the front panel, two for the
variable resistors (pots) and one for the neon lamp. If you can get the small size pots like the ones shown in the pictures, so much the better. If not, be sure there is enought spacing between the holes you drill to allow plenty of room to solder the wires onto the pins. Before tightening the nuts of the pots onto the front panel, put the spindles of the pots through the holes. Put the knobs on to see how long the spindle of the pots should be cut.

There are only two holes to cut on the rear panel. One of it is rectangular for the DIL switch which can be accessed externally. The remaining one is a round hole for the clamping grommet. Before you start to cut the holes, place the pe board against the rear panel and leave enough space for the grommet. Mark down the positions of the two holes on the rear panel for cutting. In the box, there are two 9 V battery holders sitting on the floor which are in the way of the pc board and perhaps the pots (if you have the large size ones). Cut them down with a scalpel if necessary. In fact, you should remove

any unwanted plastic studs or shapes on the box if they get in the way.

Connect the pots, the neon lamp, the Telecom cables to the soldering fingers on the side of the pc board as shown in the overlay diagram. Do not mount the pc board or clamp the Telecom cable with the grommet at the time being. Plug the unit into the Telecom socket through a double adaptor so you can still dial out while the unit is in. Dial 199 and wait as you do when calling up someone normally, until you hear the ring tone on the receiver. Your phone as well as the personal ringer should start ringing. If the phone rings but not the ringer, you have blundered.

Really, not much can go wrong in a simple circuit like this. First examine the polarity of the IC; you might have to get a new one if it had been tested while the wrong way round. Then check the polarity of the diodes, the zeners and the electrolytic capacitor C1. Check that the two transistors have been inserted onto the board the right way round. A digital multi-meter should be used to check pin 5 of the IC which should be at 6 to 8 volts and the neon lamp flashes when the ring comes. If the neon lamp works and the voltage is there, check that the piezo-electric transducers are not turned off because switch 8 of the DIL switch is closed. If switch 8 is in the open position, fiddle with the pitch and the volume knobs until you get the sound. To play safe, turn the two knobs to the middle position, get the ringer to ring first and then tune the pitch and volume to something you like. The two chosen piezo-electric transducers are loud enough for the majority of us. If your environment requires very loud volume, you could replace the transducers or connect it in parallel with a Motorola piezo-electric tweeter horn.
It is time to mount the pe board, the transducers, capacitor C3 and clamp the Telecom cable. Capacitor C3 is fixed onto the floor of the box with double-sided spony tape. The two transducers should be glued onto the centre of the box as shown in the picture. Don't use double-sided tape as it will absorb a lot of sound from the transducers. Next put the pc board onto the rear panel with the DIL switch sticking out through the rectangular hole. Depending on how much you want the DIL switch to stand out from the rear panel, the pc board may have to be placed a few millimeters away from the rear panel. The quickest solution is to use multi layers of double-sided spony tape. The one you see in the photographs uses two layers of spony tape. Once the board is fixed, you can adjust the length of Tele-

D.C. CHARACTERISTICS

$V_{D D}=6 \mathrm{~V} ; \mathrm{V}_{S S}=0 ; f_{\text {OSC }}=64 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; valid enable conditions at FDI and $\overline{\mathrm{FDE}}$; unloss otherwiso specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Operating supply voltage	$V_{\text {DO }}$	$v_{S B}+0.1$	-	8.0	\checkmark
Standby supply voltage (note 1)	$V_{\text {SB }}$	3.9	4.8	5.7	v
Supply voltage for automatic swell reset (note 2)	$V_{\text {AS }}$	-	$0.5 \mathrm{~V}_{\mathrm{S} 8}$	-	\checkmark
Operating supply current (note 3)	IDD	-	110	140	$\mu \mathrm{A}$
Standby supply current at $V_{D D}<V_{S 8}$ (note 4)	${ }^{\text {I S }}$ S	-	3	8	$\mu \mathrm{A}$
Inputs					
Input voltage LOW (any pin)	$V_{\text {IL }}$	0	-	$0.3 V_{\text {DD }}$	v
input voltage HIGH (any pin)	$V_{\text {IH }}$	$0.7 V_{\text {DD }}$	-	$V_{\text {DD }}$	v
Pull-down circuits of inputs					
FDE, RR1, RR2, DM, IS1, IS2. TS1, TS2, FL, FH pull-down resistance with input at $V_{S S}$ pull-down current with input at $V_{D D}$	$R_{1 L}$ $I_{1 H}$	-	20 0.1	-	$k \Omega$ μA
Pull-down circuit of FDI					
pull-down current with $V_{F D I}=0,3 V_{D D}$: $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{SL}$	14	23	32	$\mu \mathrm{A}$
temperature coefficient of ${ }^{\text {I SL }}$	$-\Delta^{\prime}$ SL	-	0,5	-	\%/ ${ }^{\circ} \mathrm{C}$
pull-down current with $\mathrm{V}_{\text {FDI }}=0,8 \mathrm{~V}_{\mathrm{DD}}$	${ }^{\text {I }}$ SH	-	0.1	-	$\mu \mathrm{A}$
pull-down current with $V_{D D}<V_{S 8}$	'SX	-	0,1	-	$\mu \mathrm{A}$
Current into input FDI (note 5)	\pm IIS	-	-	0.2	mA
Outputs					
TONE, $\overline{\text { OPT }}$					
Output sink current at $V_{O L}=0.5 \mathrm{~V}$	${ }^{\prime} \mathrm{OL}$	1	2	-	mA
Output source current at $V_{O H}=V_{D D}-0,5 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	1	2	-	mA

Miscellaneous

A plastic box as shown in the photography (Hi-Com part No. HB-0010). Two low profile piezo audio transducers. A low voltage (110V)panel mount type, neon lamp with built in limiting resistor a metre long Telecom cable and a line plug, a Telecom double adaptor. A 8 -way DIL switch and half a metre of hook up wire. Two plastic knobs to fit the pots.

Estimated price: $\$ 40$
com cable to be in the box to give a minimum of stress to the soldered joints. Then squeeze the clamping grommet into the hole to clasp the cable firmly. Plug the unit into the Telecom socket through the double-adaptor. Turn the bell volume on your phone to minimum and that on the ringer circuit up to maximum. Immediately, you have got yourself a warm, personal, friendly sound whenever your line rings.

If the ring current from the exchange is weak, the unit may only beep once, instead of a continuous bleeping throughout the entire period of ring. This can also happen if you have multiple phones all connected to the same socket without a proper re-balance of the impedance on the line by a Telecom technician. The proper way to cure this problem is to call a Telecom technician to match the impedance of the line again for you. An improper but quicker way is to replace the $22 \mu \mathrm{~F}$ capacitor (Cl) with something smaller. $10 \mu \mathrm{~F}$ or so. A smaller capacitor requires less charge to build up to the same working voltage, hence reduce the charging period needed by a bigger capacitor. The only draw back may be the volume output of the oiezo-electric transducers. It would be reduced as a result of less energy stored in the smaller capacitor.

AMATEUR BARGAINS • AMATEUR BARC

 Huge Amateur Savings all this monthI
 With every Hand-Held sold this month we're
 Hand-held Scan Mic

giving away a FREE Welz Power
Meter valued at $\$ 29$! curaras

The $\$ 100$

Yaesu bonus offer!
You won't believe your luck! The incredible Yaesu FT-209RH 2 metre hand held is now better value than ever. With every FT-209RH sold we're giving away a FREE battery valued at $\$ 98.90$!! Yes, you can now have all the features and quality of Yaesu at the lowest price ever! With up to 5 watt output (3.7 W with FNB3 battery) 10 memories (it even remembers the repeater split), keyboard entry for everything, huge range of scanning options and much, much more! Cat D-3503

FREEM

s599

FNB-3 NiCad Battery valued at ${ }^{5} 98^{\circ 0}$ Cat D. 3506

Below cost charger!!

Just what your mobile needs! The PA-3 Car Charger is intended for operating 10.8 volt transceivers from a car cigarette lighter socket. Includes charging as well as power and now it's BELOW COST!! Suits FNB-3 pack as well as older style transceivers. Cat D-2899

Hand-held Power Meter
The perfect way to check the power output of your hand-held - anywhere between 6 metres and 70 cm !! Famous Welz brand so you know it's quality. Simply replaces your antenna and you get a direct readout of power!
Cat O-1343
This Power Motor FREE wilh all hand-halds sold this month!!!

Play it safe bright spark!

We realize that you amateurs are a bright lot and we'd hate to see your base stations zapped out. So here's a great value station protector! The Welz Coax Lightning Protector. Fits easily to your antenna system and it'll absorb that surge if your antenna gets zapped!

ONIY ${ }^{\$} \mathbf{4 9}^{85}$

Talk's Cheap!!

It's BELOW COST! The Yeasu YM24A Speaker Mic. An 8 ohm speaker and 2 k microphone all rolled into one! The 6 pin plug suits all FT207/FT208 transceivers and the mounting bracket is attached to the mic. Cat C-1111

This'Il make life easy! Suits all Yaesu transceivers with scanning function Has 8 pin plug for easy hook up and the compact design makes it easy to hold for long periods. 500 ohms impedance. Cat C-1116

Huge Mobile Saving!

Here's value! The MMB-21 Mobile Bracket to suit the FT-203/209/709 transceivers - and it's $1 / 2$ PRICE!! Saves your equipment slopping all over the car and saves you money to boot. But hurry, they can't last forever at this LOW price! Cat D-3501

More below cost mobiles!

We've done it again! The MMB20 mobile bracket is designed specifically for the FT757GX. Allows mounting in either standing or slung position with three different mounting angles! Cat D-2949
JUST
$\$ 2995$

YAESU'S MASTERPIECE: F1767CX

- All mode, all band super fransceiver

Take a bow Yaesu! The FT767GX is everything when it
comes to transceivers. If a transceiver could get up and dance this one would be the Prima Ballerina! The very latest in technology so you can drag in those illusive slgnals or to make sure your signal is heard above the QRM. All modes on ALL amateur bands,
continuous coverage triple conversion superhet receiver, built-in automatic antenna tuner, die-cast aluminium and ducted cooling giving an incredible 30 minutes output at full power and much. much more! Try Yaesu at DSE - the advantages are easy to see! Cat 0-2935
Specifications
Receiver: 100 kHz to $29.9999 \mathrm{MHz}, 50$ to $53.999,144$ to 147.999 , 430 to 439.999 MHz
Transmitter: All WARC bands to 30 MHz , VHF and UHF as above.
Output: 100W (AM 25W carrier) on HF, 10W (2.5W AM) VHF \&
UHF
Antenna Impedance: $\mathbf{2 0 - 1 0 0}$ ohms HF (nominal 50 ohms),
50 ohms UHFIVHF
Emission: J3E, A1A, J1B, A3E, F3E
Sensitivity: 0.25 uV (SSB/CW/FSK, $1.5-450 \mathrm{MHz}, 10 \mathrm{~dB} \operatorname{stn} / \mathrm{N}$)

Even Our Competitors Agree!!

"We all know that the world's best selling Electronics Kits are from HEATHKIT..." Jack o'Donnell - Managing Director, Altronics.

And Now They're Even

 Cheaper! Heathkil
The Weather Detector!

The Digital Weather Computer displays everything from wind chill factor to indoor/outdoor temperatures, to wind speed and direction with accurate 16 -point compass resolution. It even has microprocessor controlled memory for data storage by date and time! Yes, you can compare minimum and maximum readings from indoor temperature to peak wind gusts. No sports or outdoor person should be without one! But what's best is; You can build it yourself! FEATURES:

- Digital clock/4 year calendar. - Four digit accuracy. Barometer. - Thermometer. - Wind vector. - Memory. Compact size. - Solid oiled walnut cabinet. Cat G-2000

4 Position Coax Switch
Route up to 4 antennas or
interconnecting equipment at the touch of a dial. Switch from one RF source to any other while grounding all outputs not in use. Handles 2 kW PEP. Build it in a night! Cat G-3010

Quality RF Generator
Here's value and quality - all rolled into one! Modulated and un-
modulated signals from 310 kHz to 110 MHz with calibrated harmonics to 220 MHz . Hobbyist or technician you can't do better! Cat G.4005

5409

Save Money With The R-L-C Bridge
A must for all hobbyists and technicians! Don't throw out those old unmarked components. Check them with this R-L-C bridge. Build it in about 4 hours! Resistance; 10 ohms to 10 M . Capacitance; 10 pF to 10uF. Cat G. 4025

Cantenna Dummy Load

 Ideal for on-air testing without any RF escaping (ya gotta watch those sneaky little RFs). 1 kW dummy load in a 4 litre can with less than 1.5:1 VSWR up to 450 MHz . (Transformer oil not supplied) Cat G-3015

Abrasion Free Cleaning

Clean virtually anything ultrasonically - without abrasion - components. jewellery, coins...even dentures! With $150 \mathrm{~mm} \times 100 \mathrm{~mm}$ tank you can professionally clean those precious items without fear of damage. (not suitable for pearls or turquoise) Cat G-2010

Portable FM Deviation

Meter

Anyone who works with FM will appreciate this! Quickly; and accurately measures deviation from 2 to 75 kHz over the range 25 to 1000 MHz . Can be used in-line for continuous readings or used as a portable 'in-field' test unit! Cat G-4000

Audio Signal Generator Economy plus! A quality piece of test gear that's essential for all audio and digital circults. 10 Hz to 100 kHz range with both sine and square wave output. Battery operated (not supplied). Cat G-4010

Laser Technology
ideal for schools, clubs, colleges. etc. The Laser Trainer is the perfect way to learn. Uses a HeNe gas laser to generate intense coherent light. It even includes receiver/monitor for measuring signal strength and built in amplifier for sound transmitted over the laser beam! Cat G-2020
Requires 115 V Transformer

Need 115 Volts?

Our M-1156 stepdown transformer is Ideal for powering many of the Heathkit projects and it's amazing value! With 240 volt input and 60VA capacity. Fitted with US style two pin socket and fully enclosed for safety? Cat M-1156

Hero's Already Saving!
Hero Jr is the most advanced robot we ve ever seen - and you can build it yourself. A great way to learn about the future. Hero Jr is preprogrammed, it'll wake you up. remember all those things you keep forgetting (like anniversaries, etc.) Program Hero Jr with its own keypad or with your home computer ${ }^{\text {. }}$. It's battery operated and right now we're giving a FREE M-1156 transtormer with every Hero Jr sold. You'll SAVE $\$ 69.95$. Cat G- 1005

With optional accessories

50% MANUAL SAVER! Don't know if this is the kil you want. Is it too hard? We've got the answer! Buy the Heathkit manuel for the project you think you want - chack it out. It you buy the kit we'll refund hall the manual cost. Trust DSE!

BIG NEWS • BIG NEWS • BIG NE

EVERY ISSUE OF ETI.

Announcing the best news in electronics magazines since Wireless Weekly started back in the thirties!

If you're a regular Dick Smith Electronics customer, you can get your copy FREE: you could save up to $\$ 42$ at current prices (per annum)!
That's right: the current issue, as soon as it's released - not last month's or a leftover copy. Exactly the same as the one you'd buy at the news-stand.

Why?

Simple! We want to say "thank you" for supporting Dick Smith Electronics. And for supporting Australia.

When you buy your kits, your components, your tools . . . when you buy anything from Dick Smith Electronics, you're helping the Australian Electronics Industry. You're directly helping to keep over 600 Australians employed. And through our suppliers, and their suppliers, that adds up to thousands!

And that's good for all of us.
What's a regular Dick Smith Electronics customer? Your local DSE store manager will know. You'll probably be known by name. Or at least by sight. And they'll know that those dollars you spend to enjoy your hobby are mostly spent at a DSE store.

Obviously, we've given our store managers guidelines. But to be classed as a regular customer is easy - if you're a regular customer!

DSXpress customers: You don't miss out!
Any DSXpress customer who regularly orders $\$ 70$ or more per month will automatically be entitled to the free magazine. We'll simply include it with the order that meets this figure (our computer will tell us when!)

This exclusive offer is avallable only from Dick Smith Electronics, and commences with this (June 1987) issue.

- Offer expires June 30th, 1987

- NICAD SAVINGS • NICAD SAVINGS

GET UP TO 400 CHARGES OUT OF OUR HEAVY DUTY NICADS.

 Ideal for all your toys, radios...
Why buy Nicads?

You should expect at least 400 charges from a NiCad battery. If looked after, this can easily be doubled. Taking worst case, each charge for a "AA" cell costs about 1 c (electricity costs are negligible). Compare this to 400 dry batteries at about 60c each. . . the savings are enormous!

But there's more!

A NiCad cell holds its voltage virtually constant over 90% of the discharge cycle. A dry cell starts dropping voltage immediately. You don't get the same "drop off" in a NiCad as a dry cell. Therefore motors continue to run at the correct speed, lamps glow at the right brightness, and so on - very close to complete discharge.

And even more!

The internal resistance of a NiCad Cell is much lower than a dry cell. (less than 0.05 ohms Vs 0.4 to 0.8 ohms) Therefore devices which require high currents (e.g. photoflashes, high torque motors, etc) are much better off with NiCad cells than dry cells.

Still not convinced?

You can get much higher continuous current ratings in a NiCad cell than a dry cell. While not rated the same way, a dry cell discharged at 90 mA is considered "flat" (1.1V) after approx. 2.5 hours. A NiCad cell lasts almost 5.5 hours under the same conditions. Even under non-continuous discharge conditions, the NiCad cell wins hands down: because the NiCad can be re-charged between uses!

Battery Packs

Oty $4 \times \mathrm{AA}$	Type 500 mAh	Cat No. $\mathrm{S}-3150$	Price $\$ 16.95$
$2 \times \mathrm{C}$	1.2 Ah	$\mathrm{S}-3152$	$\$ 15.95$
$2 \times \mathrm{D}$	1.2 Ah	$\mathrm{S}-3154$	$\$ 16.50$
$4 \times \mathrm{AA}$	600 mAh	$\mathrm{S}-3160$	$\$ 19.95$
$2 \times \mathrm{C}$	2.0 Ah	$\mathrm{S}-3162$	$\$ 24.95$
$2 \times \mathrm{D}$	4.0 Ah	$\mathrm{S}-3164$	$\$ 27.95$

Extra Heavy Duty NiCads

Type
C 2.0 Ah
AA 600 m
D 4.0Ah
Sub C Fast Charge

Cat No.
Price
S-3311 \$14.50
S-3312 \$5.50
S-3310 \$14.50
S-3324 \$6.50

CHARGERS•SAVE ON CHARGERS•SAVE ON C

Eveready NiCad Charger

Multi-size (AA, C, D or 9V) NiCad battery charger. Takes two 1.2 V cells at a time or one 9 V . Complete unit including plug-pack: nothing extra to buy. Cat M-9515
527^{50}
Multi-cell Charger
Charge up to 4 batteries at a time - AA, C, D, 6V or 9V. AND you can also charge AAA, and button cells too! But there's more: a test meter to check NiCad voltage under load - the only way to check your battery properly. Fully approved plug-pack included.
$\$ 34$

Cat M-9518

ALL YOUR RECEPTION PROBLEMS SOLVED... AT DICK SMITH ELECTRONICS

THE MAST

If reception's not the best, get your antenna up above the noise, up above the obstructions! This 9 metre 3 -section telescopic mast will do it and it comes complete with all mounting hardware. Accepts virtually all TV antennas. Cat L-4520
s110

THE GUY WIRE

Ultra-strong plated steel guy wire to hold mast up against mother nature: breaking strain is greater than 10 tonnes. 180 metre roll: just right for mast installation. Cat L-4564

Use for anchoring the guy wfes into concrete.

DSE — working in New Zealand for Hobbyists — \$ave!!

No. 1 For Kits -And Getting Better!
 Security Sover!
 Save \$24 on our fantastic 8 Sector Home Alarm Kit! If this were a commercial unit you'd pay hundreds of $\$ \$ \$$ more. Features 2 instant and 6 delay sectors. security key, inbuilt battery backup and more!! Cat K-3424
 SN2275
 Budget Alarm
 Where else could you get a quality 4 Sector Alarm at this LOW price? It's the bare bones sure, but you can build a complete system for the home or office around it! And nothing gives you better value. Cat K-3254
 \$NZ 6995
 \$50 off Frequency Counter
 Easy to put together and at this price, it's easy to own! The DSE 1 GHz Digital Frequency Counter. A professional unit at a hobbyist price. Kit comes with everything that's needed and features even more than you need. Cat K-3437
 "m249

 4 Input Mixer
 A great preamp for small bands, etc! Use all four inputs for guitars or a mixture guitar, mic, line inputs, etc. Lets you select gain and impedance on individual inputs. More features than the local movie house! Cat K-3036
 SNZO
 Takes a lot of beating!
 Save on our Beat Triggered Strobel Makes a great party. dance, etc. Use it as a conventional strobe or have it flash to the beat of the music. Fantastic for photography - kit comes complete and ready to assemble. Cat K-3153 SNZ 695

 Negative Ion Generator
 about anything they say these things help you feel better

 VCR Simulated Stereo
 The DSE Dynamic Noise Reduction System is the ideal. inexpensive way to to reduce hiss AND add simulated stereo to your mono VCR! Easy to build and set up. K-3423
 SN2

Multimeter with

Buzzer

The hobbyist's workmate! Amazing value Multimeter with Audible Continuity Tester. Has battery checker 10A DC range and high sensitivity (20 K ohms), mirrored scale and that mirrored scale and that
famous DSE LOW price! $\$ N Z 295$

Soldering with Gas

 Totally portable soldering - and it even fits in your pocket! Works just like a cigarette lighter - uses refillable butane. Provides an amazing 60 minutes heat at an equivalent of 10 to 60 wattsDetachable cap features

Desolder de Sovings!
A must for any tool kit. Desolders cleanly and professionally in seconds. Huge 30 watt rating, fully self contained 240 volt. Ideal for workshop. home, technicians anywhere, anytime! Cat T-1340
\$NZ99
(09) 2782355
(09) 376654
(075) 87074
(04) 739858
(09) 392997

Local Area VHF/ UHF

Reasonably close to the station? You don't need a big antenna. This economy VHF model will give you a great picture on VHF or UHF band 4 - and look at the low, low price! Cat L-4027

Band 4 UHF

Already have a good VHF antenna up? Why replace it if all you want to do is watch SBS or local area translators on band 4 . Fold-out reflector for maximum performance. Cat L-4040

Ghost Buster
Who ya gonna call? DSE, of course for this superb ghost buster antenna. High front to back and side ratio means minimum ghosting - great for problem reception areas. Suits VHF and band 4 UHF. Cat L-4023

Band 5 UHF
Similar to the Band 4 model, but cut with

For long distance UMF reception - deep fringe UHF can be dramatically improved with this one. 16 elements and 15 element reflector gives you the edge in picking up that elusive signal. Cat L-4045

Phased Array: the Fantastic Music big guns! Antenna

FM is great -- but for best results, you need an outside antenna. This 3 element model is ideal - and it suits economy 300 ohm ribbon. Cat L-4064

Super Band 5 UHF Go-Anywhere Mini TV/FM

Folds up for transportation - so it suits the caravan and camper just as much as the flat dweller. Folded dipole design suits all VHF channels, can be horizontal or vertical polarised and comes with 300 uhm ribbon. Cat L-4026
$\$ 4995$

STORE LOCATIONS

NSW

Swith \& Young Sts.	Albury
T5S Terrace Level	Bankstown Sq
Shoo 1, 65-75 Main St	Blacktown
613 Princess Hwy	Blakehurst
Oxford 8 Adelarde Sis	Bondi Junction
Snop 2. 18 Cross St.	
Waringah Mall	Brookvale
Campoe'lown Mall Oueen St	Campbelltown
Shco 235. Archer St Entrance	Chatswood Chase
147 Hume Hwy	Chultora
164 Pacfic Hury	Gore Hinl
315 Mann St	Gosford
4 Fiorence St	Hornsby
Elizabeth Dr \& Bathurst St	Liverpool
450 High Sireet	Maitland
621-627 The Kngsway	Miranda
173 Maitand Ro. Tighes Hisl	Newcastle
Lane Cove s Waterloo Rds	North Ryde
George \& Smith Sts	Parramatta
The Gateway Hign \& Henry Sts	Penrith
818 George St	Railway Square
125 Yotk St	Sydney City
Treloar's Bldg. Brisbane St	Tamworth
263 Kera St	Woflongong

AC VIC QLD

96 Giadstone St 145 McC
Rd 8 Webster St 145 McCrae St Shop 46. Box Hill Cersral, Ma
Hawthorn Ro
of Nepean Hwy 260 Sydney Rd 1150 Mt A exander Rd Nepean Hwy \& Ross Srrun Av Shop 9 110. Migh St 291-293 Elizabeth S1 Bridge Rd \& The Boulevarde Shop 2. 141 Maroondah Hwy Sppingvale \& Dandenong Rds
157-159 Elizabeth Si

$$
166 \text { Logan Rd }
$$

Gymp e \& Hamilon Rds Oveen Elizabeth Di \& Bernard S 2nd Level Western Entrance Redbank Shopping Plaza Gold Coast Hwy \& Weich St Bowen \& Ruthven Sis
Kings Rd \& Woicoct Kings Rd \& Wootcock St
Fyshwick
Ballarat
Bendigo
Box Hill
East Brighton
Coburg
Essendon
Frankston
Geedong
Melbourne City
Richmond
Ringwood
Springvale
Brisbane City
Buranda
Chermaide
Rockhampton
Redbank
Southport
Ioowoomb:
Townsville

Cnr Pacilc Hwy \& Kingston Ro SA	Underwood	(07)3410844
77 Grentell St	Adelarde	(08)232 1200
Mann South \& Flagstath Rds	Darlington	(08)298 8977
Snop T25. Elizabeth Cry Centre	Elizabeth	(08)255 8099
Man North Rd \& Darlingion St	Entieid	(08)260 8088
24 Park Terrace	Salisbury	(08)281 1593
WA		
Whart St \& Albany Hwy	Cannington	(09)4518888
66 Acclaice St	Fremantle	(09)335 9733
Willtam St \& Robinson Ave	North Perth	(09)328 8944
Raine Square, 125 William St	Perth City	(09)481 3261
TAS		
Shop 40A. Lower Level		
Cat \& Fiddle Arcade	Hobart	(002)31 0800
NT		
17 Stuart Hwy	Stuart Park	(089)81 1977

Visit our new Elizabeth (SA) store - now open at

Shop T25, Elizabeth City Centre Ph: 2556099

Dear Customers

Quite otten, the products we advertise are so popular they run out within a few days. or unfor seen circumstances might hold up shipments so that advertised lines are not in the stores by the time the advert appears. And very occasionally, an error might slip through our checks and appear in the advert (after all, we'rehuman too!) Please don't blame the store manager or staff; they cannot solve a dock strike on the other side of the world, nor fix an error that's appeared in print. li youre about to drive across town to pick up an advertised line, why not play it safe and give them a call first... just in case! Thanks. Dick Smith Electronics.

MAJOR DICK SMITH ELECTRONICS AUTHORISED RESELLERS

 214137 . Port Macquarie: Hall Ot Electronics. Horton Centre. 124 Horton St. 837440 - Orange. Fyte Electronics. 173 Summer St. 626491 . Springwood. Wellington's Electrical Discounts. 115 Macquarie Rc. $514888 .{ }^{\circ}$ Taree: Brad Eloctronics Shop 6 . Cmic Cinema Centre. Putteney St, 526603 - Tumut.Tumut Electronics, Whnyard St. 471631 - Tweed Heade: Stuart Street Electronic Sales, Stuart St, 365744 - uliadulia: Pauls Electronics. 10 Wason Sireet, 553989

 Elocrroncs, Shop 71 . Barkly Hwy, 43331 - Nambour; Nambour Electronics. Shop 4, Lowan House. Ann St, 411604 - Hooea Headr: Sunshme Phone Systems. Shop 2 . For un Centre. Sunshine Beach Rd, 474444 - Rockhampton: Access

O S ORDERS OVER $\$ 75$ POST \& Order Value Charge Order Value Charge
 $\$ 5.00-\$ 9.99$ \$2.00 $\$ 50.00-\$ 75.00$ \$6.50
 PACKING $\quad \$ 10.00-\$ 24.99 \quad \$ 3.50 \quad \$ 75.00$ or more
 N.A.
 CHARGES $\$ 25.00-\$ 49.99 \$ 4.50$

Terms available to approved applicants
SA Customers: Credit facilities available through
AGC: 10 Pulteney SI. Adelaide

PTY LTD

Offer concludes 30/6/87 or until stocks last. Prices can be increased without notice due to fluctuations in currency, high interest rates, government and imports.

MOTION DETECTOR

Want to detect some motion? This project shows you how.

Marshall Gill*

THIS PROJECT USES a dedicated integrated circuit to detect movement of objects in front of its sensing area. The IC has an optic sensor built onto the substrate along with all the signal processing circuitry. In order to pass light (the sensing medium), the body of the IC is transparent. The 'works' are clearly visible and this is a good representation of how integrated circuits are fabricated. The kit would make a good instructional project for schools.

The detection system uses changes of light level as the triggering medium. It measures the mean ambient (in the region

of $10-1000$ lux) and uses this as the reference but gives an alarm state if the level suddenly changes. Without any lens system, the naked IC can sense movement up to 2.5 metres. It will also operate in the near infrared region but at a much reduced range.
As well as the ability to sense light, this circuit has a built in 'whooping' alarm sound generator. This will directly drive a small loudspeaker but in this project, a single transistor amplifier has been added to give greater volume. A relay circuit has also been implemented to give additional alarm switching features. By the addition of a lens system, the range can be greatly increased. Although this project suggests the use of a small simple lens, larger more claborate optical systems could be tried. The lens is placed at a spacing of its focal length from the sensor.

Modes of Operation

The device has two modes of operation. The first, the alarm mode as described above, detects changes in the mean ambient light level within the range of $10-10$ (x) lux. The other mode is termed the search condition. A small lamp is used as the light source. The IC itself has an output specifically designed to provide the power to the lamp. It flashes on and off at a slow rate around 2.5 Hz . If the IC detects the flash from its own lamp, either directly or as a reflection, this flash rate increases to around 25 Hz . If the light source remains visable to the detector, it will keep retriggering to this high rate. If not, it will revert to the lower rate. The alarm sound generator simultancously outputs its warbling signal at the same rate. In this mode, the relay operation is disabled. In this basic state, the mode of operation is of little use as an alarm function. It could be put to use in the case of a self propelled toy vehicle to detect close proximity to a wall or other object. The change in rate of the signal would have to be detected to perform some control function.

Uses

The kit was conceived mainly as an educa-

tional, fun experimental project but could be employed in a more serious role if the user understands its limitations. Unlike infrared, ultrasonic or radar detectors, this system uses available ambient light as it's detection medium. As a result, sharp changes in the ambient may result in false triggering. It is for this reason that it is not recommended as part of a burglar or safety alarm system. It could however be used in such an application as a doorway entrance detector for shops. etc. As a selfcontainer battery operated battery oper-
ated unit, it could be a portable, no fuss people detect alarm for when you leave a room or area unattended. It would be good as a 'kid' detector for the times they enter areas out-of-bounds.

Construction

The way in which the system is used is up to the individual constructor but we have suggested a H-2835 Zippy box as the housing.

Load, trim and solder all components shown on the component overlay diagram. Insert and solder the switch so that it is flat on the board. Connect short lengths of hookup wire for the speaker and supply leads.

Case

The circuit board is secured on the Zippy box lid. Holes have to be drilled for mounting. Use the front panel label as a template to mark the points with a sharp pointed tool. Mark only the corners of the switch cutout. Drill two 3 mm holes for the screws through the board and two 2 mm for the swtich position. The 5 mm x 11 mm slot required for the switch toggle

The circuit board
can be cut using a piecing saw and or a needle file.

Depending on the lens used, drill a hole appropriate to its diameter. After the holes are cleaned of burrs, the front panel label can be carefully glued to the lid. Make sure it is aligned properly before
pressing into final position. Push out the holes by using the rear shank of the previously used drill as a punch. Use a fine blade knife to cut out the switch slot outline and lens aperture.

With suitable adhesive, glue the perime\ldots of the lens to the panel. If a large lens

ETI-1535 How it works

The ULN2232 integrated circuit is made up of several individual functions but these can be looked at as two main blocks. Firstly the on chip photo sensor has its own voltage regulator, amplifier and detector stage. The amplifier uses log conversion of the photo current to permit operation over several decades of ambient light in the 10-1000 lux range.

The second block has a timer, clock, counter, current controlled oscillator and buffer stages. The sensing system provides low pass filtering to eliminate inteference from alternating sources such as fluorescent lights. High gain is given to lower frequency changes in ambient light levels. The steady level of ambient light within the figures given above is not a factor of the detection system, only low frequencies changes in this level are registered.

After movement is detected, the internal timer controls a series of events to output the alarm sould to pin 1 of the chip. This 'warbling' sound is output in the speaker via the transistor amplifier Q3. The potentiometer VR1 provides a simple volume adjustment. After a time-out period, the system reverts to the sensing state and remains quiet providing there is no further movement in its surveilance area.

A second output is provided at pin 3 to drive a low power lamp. The maximum current at this pin has to be limited to 500 mA . This output is used in the search mode. In this mode, the lamp is flashed at approximately 2.5 Hz . Simultaneously, a random sequencer of audible tones are output by the speaker. Upon detection of its own light source (eg, from a reflection), the alarm

> OPERATING VO_TAGE $: O V \min \rightarrow 7 V \max$ (ALARM MODE]
> .7 Vmn - 7 Vmax (SEARCH MODE)
> OPERATING CURRENT. 150 mA a: 6 V (ALARM MODE TRIGGEREO
> 55 mA c : 6 V ISTANDBY AL ARM MODE
state is triggered and the flash and sound rate increase to around 25 Hz . Operating under this condition, the system tends to be more immune to variants from outside light sources.

Other than providing connections on the PC board and the relevant switch position, no extension of this mode has been made. The relay function is disabled by $\mathbf{R 8}$ via SW1. This simple relay triggering circuit cannot detect the difference in the two output states. Experimenters who may wish to pursue this mode of operations may like to try some form of frequency discrimination
circuit to detect the difference. You may als like to try various low power lamps. Remember the maximum current should be limited to 500 mA so the initial inrush current of the lamp has to be considered. Light emitting diodes can also be driven from this pin. The link (LK1) shown on the board can be replaced with a 120 ohm resistor. This makes the system suitable for use with high efficiency LEDs such as the red Z-4075. The photo detector can also be used with IR leds such as the Z-3235. By using a system of lens or reflectors, the sensing range could be increased and controlled.

GPA SUPERMODEM: \$395

A revolutionary, new, Australian-made modem for IBM, Apple //c, etc.
"1200/75, 300 Baud full duplex, Hayes-compatible, auto-answer, auto-dial, autodisconnect, auto-Baud rate select, auto-line turnaround, fully software controlled, VIATEL, RS232 connection, optional V. 221200 Baud full duplex, mains powered, microprocessor controlled, intelligent standalone modem for IBM, Apple IIC, Macintosh, MicroBee and any computer with a serial port for under \$400......."

GPA SuperModem is at least 25\% cheaper than any comparable modem!

GPA Supermodem connects to phone and serial port And, of course, by now you'll know that we built thousands and they have taken Australia by storm. Telecom, Westpac, CSIRO, UNSW are some of our larger customers. Their responses have been universally enthusiastic: "Fantastic! How did you do it for the price?" or "We want more of them. When will you have more stocks?" Some of our customers have bought up to 10 modems at a time!
For the first 3 months of production demand exceeded supply, but we have caught up now and SuperModems and V22 boards are now in stock. We have cables to suit most micros and can advise on the most suitable software for your computer. Viatel software is now available for the IBM and Apple II+, IIe, IIc. Terminapple comms software to suit also available.

Telecom Approved

Approval \# C87/37/1578

TECHNICAL FEATURES

* Standalone, direct-connect serial modem
* 6809 microprocessor controlled
* Auto-answer, auto-dial, autodisconnect, auto-line-turnaround
* CCITT V21 and V23
* V22 option, 1200 baud full dup available now for $\$ 190$.
* VIATEL software available $\$ 35$ (Apple/IBM)
* Plugs into any serial port
* Automatic Baud rate selection
* Mains powered \& onboard speaker
* Telecom approved C87/37/1578
* Fully software controllable
* Internal expansion slot
* Computer cables (specify) $\$ 30$

GPA Supermodem: Note V22 board installed
" That's all very well, but what do I DO with a modem?"

* WORK FROM HOME:- Interrogate your office computer. Send and receive | messages, text for typesetting, price list updates, contracts, advertising drafts etc. Interrogate databases worldwide, e.g. MIDAS, DIALOG, LEXIS, MEDLINE etc.
* VIATEL, TELEBROKING, BULLETIN BOARDS, USER GROUPS. etc.
* VIATEL:- Electronic mail, Instant telex at a fraction of the cost. Instant price updates as they occur on the stockmarket. I Buy \& sell shares with 1% brokerage fee! ! Home banking. Instant gambling on any race in Australia through VIATAB. Shop | from home. Airline and hotel bookings. Home education courses. The possibilities are limitless and exponentially expanding. The modem adds a third dimension to your computer that opens up as you explore it. You have to experience for yourself the magic of clicking between Sydney, Los Angeles, New York, by modem.

Instandy, transparently and cheaply. Culling obscure facts. Interrogating mighty databases. Buying. Selling. Dazzling.

10 DAY FREE TRIAL

This really is a brilliant modem, but the only way you will ever find out for yourself is to order one. But you don't have to take my word for it. You can order a gpa SuperModem, try it out, and if it doesn't live up to your expectations send it back within a fortnight for a FULL REFUND. NO QUESTIONS ASKED. I could go on but the answer is to try it for yourself. We showed this ad to some of our best customers and they were sceptical that a $\$ 395$ modem could do everything we claimed. But when they bought a gpa SuperModem they were ECSTATIC. It really is that good.
TO ORDER: Ring me now on (049)26 4122 and quote your credit card number for ovemight delivery. Or mail your cheque, purchase order or credit card number on the enclosed order form. Mail to Micro-Educational Pty Ltd, $8 / 235$ Darby St NEWCASTLE 2300

ORDER FORM

Q MICRO-EDUCATIONAL

8/235 Darby St
NEWCASTLE 2300
STCP PRESS Also avvilablo
in XIT Iorm: $\$ 299$
Dear George,
Please rush me \qquad GPA SuperModem/s @ \$359 ex/\$395 inc for my IBM PC/AppleIIc/Amiga/Mac/Bee OTHER \qquad on 10
day approval. If I am not delighted with it I will send it back within a fortnight for a
FULL REFUND. Other extras as follows:

NAME:
ADDRESS:

P/CODE:

Enclosed please find cheque/ purchase order/ Bankcard/ VISA/ Mastercard
\#

for $\$$

Add $\$ 7$ per modem for insured overnight KWIKASAIR courier.

\$MICRO-EDUCATIONAL pritid

BUY DIRECT WITH CONFIDENCE

We offer:

* 8 years experience
* Overnight courier delivery
* 10 day money-back warranty
* 6 months full service warranty
* Top quality national brand products
* Competitive prices
* Excellent workshop service
* Friendly phone advice
* Phone, VIATEL and mail ordering
* AND we treat you like family!

TOP SELLERS

3.5" DISKS

DSDD \$4.95
EPSON GX 80 Ic / C64 \$499

JOYSTICK He/मe \$45
IBMJOYSTICK $\$ 50$
HS100 DISK BOX $\$ 25$
YA-40L 3.5" DISK BOX \$20

DISKS $\$ 1.40$
 (5.25 SSDD, $\$ 1.30$ in 100'S) - DSDD: $\$ 1.80 / \$ 1.70$ 100's

US made . 75% clipping level. That's the Gest quality there is!!! CAUTTON: There are some very low quafity Asian disks now flooding the nandet. BUY THE BEST. Lifetime warranty, Micro-Ed logo, SSDD disks. These are premium quality, 75% clip, machine-made diskettes. Made in the US by Wabash DataTech. Suit Apple, Commodore, Microbee etc. These are the best quality disks in Australia! You can spend up to $\$ 8$ each for premium quality diskettes. Ours cost $\$ 1.40$ because we sell 1.4 MILLION DISKS A YEAR! When you shift disks in truckload quantities you get real economies of scale. Check around. Even the chain stores are dearer than us on lifetime warranty diskettes. DSDD: $\$ 1.80 \mathrm{ca}, \$ 1.70$ in 100 's.
We won't be beaten on price for quality disks!

AUTO-ICE APPLE MODEM

Everything you've ever wanted in an Apple card modem. Auto-answer, auto dial, Viatel and word processing on EPROM. Australian-made. 300 Bd full dup, 120075 Christensen protocol. A fantastic modem!

ORDER FORM

Dear George,
Please rush me the following: \qquad
*IBM or Apple Library Disk
Send 6 * 36c stamps to cover post.
*Macintosh or Amiga Library disk.
Send 12 * 36c stamps to cover post.
Full of the best of the available Public Domain software.
*Specify which computer you have.

Enclosed please find cheque/ purchase order/Bankcard/VISA/ MC \# \qquad for $\$$ \qquad (add $\$ 7$ courier)

NAME:
ADDRESS:
COMPUTER: \qquad SIGNED: \qquad

PARTS LIST - ETI 1535	
Resistors	
R1	1K 1/4W Resistor
R2	2.7 K
R3	2.7 K
R4	470R
R5	10k
R6	330 R
R7	10R
R8	100R
R9	56R
VR1	20k Horizontal Trimpot
Capacitors	
C1	47uF/25V
C2	47uF 25V
C3	47UF.25V
C4	47uF 25V
C5	.47UF/50V
C6	47uF/25V
Semiconductors	
IC1	ULM 2232
Q1	BC 328,327 Transistor
Q2	BC 337/338
Q3	BC 328.327
D1	IN4148/IN914 DIODE
D2	IN4148/IN914 DIODE
D3	IN4002 DIODE
ZD1	$3 V 3$ IN4728 ZENER DIODE
Miscellaneous	
SW1	2POLE, 3 Positions Slider
RLY1	MIN 5V Coil Spot Relay
SP1	MIN 57mm 8R Speaker
LMP1	6 V MIN low wattage lamp
1	PC BOARD
	Lens 2 to 10 mm Focal Length
	Lengths Hookup wire (two colours) 500 mm
	Label front panel
Optional	
H-2853 ZIPPY BOX	
P-6214 dx AA Battery Charger	
	Price Approx \$30

An internal view of the Motion Detector.
is used, obviously the focal length will be different so some other form of mounting out from the panel surface will be necessary. Mount the PC board using 2 x $\mathrm{M} 3 / 16 \mathrm{~mm}$ screws, nuts and 12 mm spacers. Use $2 \times \mathrm{M} 2 / 5 \mathrm{~mm}$ screws with 3 mm spacers to secure the switch.
The speaker sits under the circuit board on the back of the Zippy box. A series of holes can be drilled in the case at this position to allow sound through. Solder
the speaker to the lead. If wires are to be taken out from the relay, drill a hole to allow this access

If the unit is to be self contained and powered by batteries. a 6 V pack of AA cells can be housed in a P-6124 carrier. This assembly fits neatly across the width of the case. The two supply leads are soldered to the side of the terminals. A battery snap cannot be used as this makes the carrier too wide to fit within the case. It would be a good idea to scrape the sides of the terminal to remove the nickel plating. This mades soldering easier.
The whole assembly is now ready to be screwed into the case. A small piece of foam plastic or similar material is used to hold the speaker in position. When the panel is screwed down, this packing should apply enough pressure to the speaker to hold it firmly in place.

Power Source

If the unit is to be run from batteries. they should be in good condition. Well used old cells have a high internal resistance and tend to lead to unreliable operation. Although not completely necessary, alkaline type cells are a good source but fresh conventional batteries are satisfactory. At the end of their useable life, an indicator of the need for battery replacement is when the circuit will not reset after an alarm state or at the initial switch on stage.

If you are going to use a mains powered source, it should be well regulated. A 5 volt three terminal regulator such as a 7805 is suitable. This could be used in conjunction with a battery eliminator or transformer setup as shown. You will need a heatsink on the regulator to use it in this application.
The system will operate in the range of 4.7 to 7 volts at 20 mA if used in the alarm mode. A minimum of 600 mA is necessary if the search mode is to be used.

[^3]HIGH PERFORMANCE, LOW COST DIGITAL MULTIMETERS

COMMON FEATURES

- Soltdly bullt to professional standards
- Large LCD dlsplay
- Fuse, Zeners, Poslstor for overload protectlon
- 10A ac/dc current capabllity
- Instantaneous audlble continulty function
- Superior rellabillty with high precision resistor networks
- Carry cases optional

EDM-1346A

- $4 \frac{1}{2}$ digit LCD display
- True rms and data hold
- 8 functions. 0.05% basic Acc.
- Frequency counter

Vdc 0.2-1000V. 5 ranges 10 u V max resolution.
Vac 0.2-750V. 5 ranges True rms
100nA max resolution. 0.75\%
Ohm 2000hm-20MOhm. 6
ranges 0.010 hm max
resolution. 0.2\%
Diode Testing
Buzzer for continuity Testing
Frequency: $20 \mathrm{kHz}, 200 \mathrm{kHz}$
1 Hz max resolution, 05%
Accessones included
Testleads, spare fuse.
Operator's Manual. battery

${ }^{5} 2766^{75}$

EDM-70B

 POCKET SIZED MULTIMETER- Miniature
- Large LED display
- Audible continuity
- Toughened case

Vdc 0.2-1000V 100 V max res 0.5\%
Vac 200 V .750 V 1 mV max res. 0.75%
Adc 200u-2A 01 uA max res 0.75%
Ohm 2000hm - 2 Mohm 0.10 hm max res 075% Diode Testing
Battery Testing $1.5 \mathrm{~V} / 1.5 \mathrm{~mA}$

Diode Testing

MODEL ELP-800
LOGIC PROBE
${ }^{5} 39^{50}$

- Unique audible beeper output
- TTL or CMOS compatible
- HI, Lo and pulse LEDs
- Maximum Freq over 17 MHz
- Min Det pulse better than 30ns
- 1Mohm input impedance

EDM-1111A WITH CAPACITOR \& TRANSISTOR TESTING

- $31 / 2$ digit LCD display
- Transistor hFE testing
- Capacitance measuring
- Toughened yellow industrial case
V dc 0.2-1000 100 UV max res. 0.5\%
\vee ac 0.2-750V 100 u max res 1.25\%

A de 200u-10A 0.1 uA max res. 1\%
A ac
1.5%
Ohms 2000hm-20Mohm 0.10 hm max res.

Diode Check
Continuity
Capactance: 2 nF -20uF
1 pF max res. 2%
Accessories included: Test clips. spare fuse. Owner's Manual, battery

EDM-1116A

- 3 ¹2 digits LCD display
- Transistor hFE testing
- Capacitance measuring
- 8 functions. 0.5% basic accuracy
Vdc 0.2-1000V. 5 ranges 100 uV max resolution. 0.5\% $\mathrm{Vac} 0.2-750 \mathrm{~V} .5$ ranges 100 W max resolution. 10%
Adc $2 \mathrm{~mA}-10 \mathrm{~A}, 4$ ranges $1 u \mathrm{~A}$ max resolution. 1.0\%
Adc 2mA-10A, 4 ranges 1uA max resolution, 1.5\% Ohm 2000hm-20Mohm, 6 ranges 0.10 hm max resolution, 0.75% Capacitance 2nF-20uF. 5 ranges. 1 pF max resolution 2.0\%

Transistor hFE, npn and pnp
Diode testing
Continuity Buzzer
Accessories included Test leads. spare fuse. Operator's $\$ 12300$ Manual, battery.

ELC-120 L/C/R METER

- 3/z digit LCD display - Wide measuring ranges
- 3 inputs ' Hi. Lo \& Guard RANGES -

Capacitance:

200pF-200uF. 7 ranges 0.1pF max resolution. 1\% Inductance: $2 \mathrm{mH}-200 \mathrm{H}, 6$ ranges 01 uH max resolution. 2%
Resistance:
200 hm -20Mohm. 7 ranges 10 10Mohm max resolution. 1\%
Accessories included. Test clips, spare fuse Instruction Manual

ECT-620 3½ DIGIT CLAMP METER

Solidly built to professional standards
Exira large $(52 \mathrm{~mm})$ tongs

- Peak hold
- 05\% basic accuracy

Aac 200A. 1000A ($+1 \%$) 0 1A resolution
Vac 200V. 750 V ($\cdot 12 \%$) 100 mV resolution Vdc 200V. $1000 \mathrm{~V}(+0.5 \%)$ 100 mV resolution
Audible continuity test PEAK
${ }^{\mathrm{s} 156^{00}}$

EC-30 SOFT CARRYING CASE

Accommodates Handheld EDM series, EDC-110A and ELC-120
$\${ }^{15}$ MODEL ELP-810 LOGIC PULSER $\$ 3950$
Pulse repetition rate 05 400PPS

- Pulse width at 100 mA Load 10us
- Sync input impedance 1 Mohm
- Operating vollage 5 V 15 Vdc
8.30 to 5 Monday to Friday. 8.30 to 12 Sat. Mail Orders add $\$ 5.00$ to cover postal charges.

All prices INCLUDE sales tax

Tax exemption certificates accepted if line value exceeds $\$ 10.00$.

BANKCARD, MASTERCARD, VISA, CHEQUES

GEOFF WOOD ELECTRONICS P/L

 (02) 4271676229 BURNS BAY RD. (CORNER BEATRICE ST.) LANE COVE WEST N.S.W.

TWX 71996
P.O. BOX 671

LANE COVE N.S.W. 2066
OR CASH CHEERFULLY ACCEPTED

HOBBIES AND PROJECTS

AMATEUR RADIO KITS

A survey of the r.f. kit market. We bring you some old familiars, plus some new ones too.

Thomas E. King VK2ATJ

Clear off the kitchen table, dig out the soldering iron, grab that tool kit . . . it's winter time, the perfect season for building your long dreamt of project. But instead of digging through the junk box, tearing into the second TV or driving off to the local component stockist and perhaps still not finding every part needed, why not consider a kit with everything included in one simple package.

For its size Australia is well catered for with a dozen or so different companies offering kits to suit every pocket and every purpose. This special survey of Australian kit suppliers briefly details currently available amateur radio and short wave radio kits and accessories.

All Electronic Components

118-122 Lonsdale Street

Melbourne, Vic. 3000
(03) 6623506

This 30-year-old Melbourne-based company has a number of speciality services for the ham and SWL. Apart from custom manufacture of pe boards and extensive component sourcing, the company produces a wide range of kits which were originally published as projects in Australian electronic magazines. Nearly three dozen communication equipment kitsets are available including:
Remote Control Transmitter Switch $\$ 72.44$
Remote Control Receiver
$\$ 37.60$
Power Supply
$\$ 19.23$
Active Antenna
$\$ 36.52$
Novice Transmitter

Antenna matching Unit
Shortwave Radio
Audio Compressor
Aircraft Band Convector
RTTY Modulator
Computer Driven Radio Teletype
Transceiver
$\$ 204.25$
Sixteen different power supplies are featured in the catalogue. Apart from this, there are some 40 test equipment kitsets.
In addition to these, the company is developing a new linear amplifier kitset. The solid state prototype currently under test will have a power output of 140 W over the 1.6 to 30 MHz range. Expected price will be $\$ 250$.

Technikit

Mail Order Dept

69 Sutherland Road
Armadale, Vic. 3143

(03) 5009064

Techniloop 3: Designed to provide a dramatic improvement in reception, especially in signal to noise ratio, this loop antenna kit covers the 500 kHz to 5 MHz or 1.6 to 24 MHz band kit price is $\$ 69$. One loop is supplied while the other loop is priced at \$14.50. An L.F. loop (200 kHz to 2 MHz) is $\$ 24.50$. A CB loop providing coverage to 28 MHz is $\$ 14.50$. Postage is $\$ 6.50$ extra.
Reinartz: Tune the world with this two valve, all wave (500 kHz to 19 MHz) receiver kit. Using the well known Reinartz circuit (introduced in 1922) and featuring plug in "spider web" coils this nostalgic
kit can be operated by a battery pack or an optional power supply. $\$ 105$.

Altronics

PO Box 8280
Stirling Street
Perth, WA 6000
(008) 999007

Dual Tracking Power Supply: Fully protected against short circuits. overloads and thermal runaway, this supply is adjustable from $\pm 1.3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ at 2 A . +5 V at 1 A is also available. $\$ 129.95$.
13.8 V High Current Power Supply: Ideal for amateurs needing a mains supply to power their mobile rig, this unit provides up to 7.5 A on a continuous basis and up to 10 A on an intermittent basis. Regulation when drawing 7.5 A is 50 mV . \$119.95.
Bench Top Power Supply: The short circuit protected output of this supply is variable between 3 and 30 V . Over this voltage range a full 1 A is available. Load regulation is better than $.2 \%$ while output ripple is less than 2 mV RMS. $\$ 79$.
Lab Power Supply: Exclusive to Altronics. this heavy duty supply has a variable output from 3 to 50 V at up to 5 A and features floating outputs isolated from ground. $\$ 165$.
An optional 10 turn output voltage control is available for $\$ 17.50$ while optional auxiliary $\pm 12 \mathrm{~V}$ output terminals are available for $\$ 12.50$.
Voice Operated Relay: Upgrade that old transceiver or transmitter with this VOX
unit. Whenever the unit senses a voice it triggers the circuit causing a relay to close. $\$ 14.25$.

Shredall Pty Ltd

(inc) Ian J. Truscotts Electronic World 30 Lacey Street
Croydon, Vic. 3136
(03) 7233860

80 M Direct Conversion Receiver: This popular 80 m amateur band receiver kit comes in two versions: Barebones kit (boards, semiconductors and all wound components) for $\$ 52$ and a complete kit (with all pc boards) for $\$ 95$. A suitable case is $\$ 15.70$. (All prices include packing and postage.) The all-mode frequency range is 3.5 to 3.7 MHz . Sensitivity is $.4 \mu \mathrm{~V}$ for 10 dB SNR while selectivity is 50 dB down at 100 Hz and 45 dB down at 10 kHz .
80 M Transmitter: This easy to build CW only transmitter is the least expensive RF kit available in Australia. It operates on the 80 M band (3.579545 MHz crystal is $\$ 3.50$) with a power output of 4 W . $\$ 28.50$. A suitable case is $\$ 7.75$.

Symeon Young Marketing

PO Box 296

Clifton Hill, Vic. 3068
(03) 5000078

Better known for their home security devices, laser systems, pest and animal control kits and ultrasonic and high sound pressure acoustical devices. this speciality company offers a few items of interest to the amateur and SWL
12 V Power Supply: This device is an adjustable 5 to 14 V regulated dc source supplying up to 3 A. $\$ 172.50$.

Tandy Electronics

Mail Order Department
PO Box 254
Mt Druitt, NSW 2770
(02) 6751222

AM Shortwave Radio Kit: Ideal as a first project, this Tandy SWL kit is a 3 band breadboard receiver. It comes with an earphone, requires 2 " AA " cells and covers 520 to $1625 \mathrm{kHz}, 5.5$ to 10 MHz and 9 to $16 \mathrm{MHz} . \$ 27.95$
SW Antenna Kit: This accessory can be used with the above kit or any other shortwave receiver. It comes with 22 metres of copper wire, insulators, lead-in wire, standoffs and a feed-through for the window. $\$ 19.95$.

Dick Smith Electronics
 PO Box 321

North Ryde, NSW 2113

HF Amateur Transceiver: Capable of operating on any 500 kHz segment of five pre WARC amateur bands between 2 and 30 MHz , this ham receiver is supplied with an 80 M module. It's capable of delivering 30 W WEP (LSB and USB) and 15 W CW when connected to a $13.8 \mathrm{Vdc}, 4.5 \mathrm{~A}$

supply. The approximate 2 kg transceiver has a sensitivity of $.3 \mu \mathrm{~V}$ (10 dB SNR) and a selectivity of $6 \mathrm{~dB} @ 4 \mathrm{kHz}, 60 \mathrm{~dB}$ (a 7 kHz . $\$ 349$.
Upgrade kits for 500 kHz segments of 40 . 20,15 and 10 M are available for $\$ 39.95$. 100 W HF Linear Amplifier: Designed to be used in conjunction with the above HF transceiver or any other transmitter producing 3 to 15 W . this wideband, solid state linear will deliver up to 200 W out on SSB and 100 W on CW and AM. Supply voltage needed is 13.8 V and a switchable low pass filter is included. $\$ 349$.
Pathfinder 6 M Transceiver: A new amateur radio project is this $10 \mathrm{~W}, 6 \mathrm{M} \mathrm{FM}$ transceiver. Operating on 13.8 Vdc in the 52 to $5+\mathrm{MHz}$ portion of the band, this approximate 2 kg transceiver has 400 channels selectable by thumbwheel control, 1 MHz repeater splits, built in " S " metering and a receiver sensitivity of .5 uV for 12 dB quieting. A mic is included. $\$ 249$.
Commander 2 M FM Transceiver: Dick Smith's most popular transceiver is this 10 W unit for FM transmissions across the 144 to 148 MHz band in 10 kHz thumbwheel selectable steps. Operating on 13.8 Vde it features a dual conversion superhet receiver with a sensitivity figure of $.5 \mu \mathrm{~V}$ for 12 dB quieting and a selectivity of better than 60 dB at +25 kHz . The approximate 1.5 kg transceiver has full repeater capacity and comes with a microphone. $\$ 249$.
106 W VHF Linear Amplifier: Just 10 W in will result in a 100 W output signal (15 W for 120 W). It's even designed for hand operation as a 2 W drive will yield 40 W . The approximate 2 kg amplifier requires 13.8 Vdc at 15 A tor maximum output. $\$ 249$.
2 M GaAsFET Preamp: What the above linear does for the output of a transceiver this pre amp does for the input. The low
noise figure of under 1 dB and a 15 dB gain helps with weak satellite or DX signals. \$129.
2 M Yagi Antenna: With 9 elements this yagi gives a 10 dB boost to any 2 M signal. An optional 2 M phasing harness priced at $\$ 12.95$ allows two beams to be stacked for additional gain. \$89.95.
Explorer 70 cm FM Transceiver: Exploration of and low cost operation on the $70 \mathrm{~cm}, 438 \mathrm{MHz}$ band is possible with this kit. Again designed for 13.8 Vdc operation, the dual conversion, superhet receiver features $.4 \mu \mathrm{~V}$ for 20 dB quieting and -6 dB at $7.5 \mathrm{kHz},-60 \mathrm{~dB}$ at 15 kHz selectivity. The 5 W output transmitter operates across the 438.025 to +39 MHz segment of 70 cm in 25 kHz steps selected by thumbwheel control. A repeater upgrade kit. " S " meter and an additional crystal filter is included. $\$ 249$.
50 W UHF Lincar Amplifier: A 2 W signal is boosted to 50 W using this broadband (10 MHz) amplifier. Low noise and low loss coax relays are featured as is carrier deteet switching. Harmonics and spurious emissions are down at least $-60 \mathrm{~dB} . \$ 279$.
70 cm GaAsFET Preamp: Designed for masthead mounting, this preamp boasts of wide bandwidth (60 MHz) and low noise (1.5 dB). H1 handles up to 50 W CW and takes 13.8 Vde at $40(0) \mathrm{mA} . \$ 129$
70 cm Bipolar Preamp: For those who prefer an inbuilt preamp this tiny unit fits inside a transceiver or receiver. The 60 g preamp has a 2 dB or better noise figure and a 100 MHz bandwidth (40 ($)$ to $50(1 \mathrm{MHz}$). $\$ 21.95$.
70 cm Yagi Antenna: This easy to assemble 13 clement Yagi gives an 11 dB gain to 70 cm signal. An optional phasing harness priced at $\$ 10.95$ allows two 70 cm beams to be stacked for greater gain. $\$ 29.95$.

AMATEUR RADIO KITS

2 A Power Supply: Siyled 10 match the $6 \mathrm{M}, 2 \mathrm{M}$ and 70 cm Dick Smith transceivers, this project supplics 13.8 Vdc regulated at 2 A. $\$ 49.95$
25 A Power Supply: Amateurs needing a 13.8 Vdc regulated supply capable of meeting large current demands, i.c: transceivers, linears, etc., will find this kit of interest. The short form kit allows hobbyists to select from $6 \mathrm{~A}, 14 \mathrm{~A}$ and 25 A supplies with separately priced transformers. \$119.95.
Shortwave Antenna: This no solder antenna kit contains wire, lead-in, polyrops, egg insulators and construction details for optimum performance from any shortwave receiver. \$21.45.
RTTY Decoder: Used in conjunction with a shortwave receiver, these decoders (K-6335 for the Cat computer and K-6318 for the VZ $300 / 200$ computer) will decode commercial wide shift RTTY for display on a computer monitor or a printer. The Dick Smith decoder has crystal locked synchronisation to provide skew free pictures under adverse receiving conditions. Software supplied with the decoder translates the bit serial into either ASCII characters in the case of RTTY, or formatted pixel for printer display in the case of FAX. \$40.00.

In 1986 Dick Smith Electronics became the authorised distributor for Heathkit, the US-based kit-maker. This company produces a wide range of amateur and shortwave radio equipment and accessories.
Novice CW Transceiver: Producing 50 W on 80,40 and $15 \mathrm{M}(40 \mathrm{~W}$ on 10 M), this broadband designed CW only Heathkit transceiver incorporates a double balanced mixer, 4 -pole crystal filter. balanced product detector and an active audio filter. Receiver sensitivity is less than $1.0 \mu \mathrm{~V}$ for 10 dB SNR while receiver selectivity is approximately 450 Hz at 6 dB . An optional speaker is available. $\$ 989$.
QRP CW Transceiver: Amateurs interested in low power HF operation will find this 4 W. 4 band CW only transceiver to be just the ticket. The transceiver has continuously variable RF output, front panel relative signal/power strength meter. AGC. product detector, an active audio filter. RIT $(\pm 16 \mathrm{kHz}), 5 \mu \mathrm{~V}$ or less for 10 dB sensitivity and 1 kHz (a 6 dB selectivity. An optional HW-9A accessory band pack priced at $\$ 75$ expands operations to $30.17,12$ and 10 M while matching QRP W meter and antenna tuner is also ava: able. $\$ 425$.
Memory Keyer: Amateurs searching for a way to send code will want to add the uMatic Kever to their ham shacks. Patented 'command strings' lets users store
text in buffers, select the speed, weight, spacing and adjust message repeat count. CMOS memory with battery backup retains the buffer contents, last used speed, spacing, weight and repeat count when the keyer is not in use. $\$ 269$.
CW Keyboard: This microprocessor-based unit increases the ease and accuracy of high speed sending (1-99 WPM). Normal keying can be adjusted to five 'light' settings and five 'heavy' settings. The unit has a memory back up, LED indicators and an adjustable (300 to $15(0) \mathrm{Hz}$) sidetone. \$399.
Microlizer Microphone Equaliser: This accessory allows amateurs to optimise the clarity of their voice transmission by providing a better match between the microphone and transceiver. The 9 V battery powered equaliser fits in series between mike and rig using a standard 4 pin jack and a 6.3 phono plug. Continuously variable high and low frequency controls provide a 12 dB boost or cut off at 490 Hz and $2800 \mathrm{~Hz} . \$ 399$.
Automatic Antenna Tuner: After initial adjustments, this tuner kit will automatically set the roller inductor to preselected values on two frequencies on each of nine bands. The unit will tune and match unbalanced feed lines and single wire antennas and is suitable for powers up to 2000 W . An optional $4: 1$ balum kit is available for balanced feedlines. \$1168.
Antenna Tuner: Dual wattmeters which measure power up to 2000 W on all frequencies between 1.8 and 30 MHz are a major feature of this heavy duty Heathkit. It has a bypass for a triband beam or dummy load and a $4: 1$ balum for balanced feedlines. A front panel counter allows quick tune up to previously calibrated frequencies. \$885.
Antenna Matcher: This split system (outdoor remote/indoor control) matcher kit allows amateurs to adjust dipole and vertical antenna resonance so that these antennas can be used on any band between 1.8 and 30 MHz . After lengthening, a variable capicator tunes the antenna for a broader bandwidth. Input capacity is 1500 W . $\$ 482$.
Synthesised Shortwave Receiver: Designed specifically for the avid shortwave listener, this boradband front end receiver covers 150 kHz to 30 MHz continuously in 30 overlapping 1 MHz bands. SSB/CW sensitivity is less than $.35 \mu \mathrm{~V}$ for 10 dB SNR while on AM it's less than $2.5 \mu \mathrm{~V}$. SSB/CW selectivity is 2.5 kHz minimum at 6 dB while on AM it's 5.5 kHz at 6 dB . The digital readout receiver has an internal speaker, a built in telescopic antenna and a muting jack for use with a transmitter. It operates on mains or 13.8 Vdc . \$79).

Active SWL Antenna: Flexibility is the key to this antenna accessory which with its built in telescopic antenna can be cither used in place of an outdoor antenna or as a preamp when used with an external 50 ohm antenna. It operates on a 9 V battery. \$199.
Code Oscillator: This handy code practice oscillator has a built in speaker, volume and tone controls and a headphone jack for private listening. It operates on a 9 V battery with the included telegraph key. $\$ 69.95$.

Emtronics

94 Wentworth Avenue

Sydney, NSW 2000

(02) 2116988

Although nothing is currently available from this all-Australian electronics manufacturer, it is expected that an antenna tuner and a power supply in kit form will be released in the second half of 1987.

Aauskits

Amblecote Crescent

Mulgrave, Vic. 3170

Billing themselves as "the kit suppliers to Australia", this company offers a variety of amateur and SWL kits:

- Speech Processors
- FET Dip Oscillators
- Active Audio Filters
- 2 M Receiver Preamps
- QRP DSB/CW Transceivers
- 8 band, 10 W Cw Transceivers
- 2 M PLL VFOs
- $50 \mathrm{~W}, 160$ \& 20 M Transceivers.

Specifications and prices are available only on application.

Ashpoint Industries Pty Ltd 38 Birmingham Street

Alexandria, NSW 2015
(02) 6931866

Catalogue (0)7, \$26 including postage
Bandit Spider Hub) Quad.
Is Mike Rychter's bandit spider hub a 'clayton's kit . . . the kit to build when you're not building a kit? Cast in aluminium in a suburban Sydney foundry. the kit comes complete with a hub ... and nothing else! Enthusiasts may need to file burrs off the hub and will need to dig into an antenna book for dimensions of single or multi band quad antennas

- Tom King adds:

This list of $O Z$ kit suppliers may have not included a local radio club producing a great 2 M preamp or transceiver or a small manufacturer of hobbyist kits for the amateur or SWL. If so, contact me cl- Electronics Today International with details of local as well as foreign kit mamufacturers. In a fulure issue of ETI a survery of all know. oreign kits will also be published.

ADVERTISING INFO No. 18

ED SAYS
HE WHO CHECKS
PRICE FIRST
SPENDS MONEY
WISELY!

CHECK OUR PRICES

You will be pleasantly surprised.

GOOD RANGE OF:
Passive components, switches semiconductors, knobs, fuses boxes, kits, etc.
IBM compatible computers peripherals, software.

SPECIAL PRICES FOR:

Schools, Govt Dept, Industry Students \& Bulk Purchases

SPRAGUE ECONOLINE $^{\text {T.T. }}$ thick-film resistor networks include multiple isolated resistors, pull-up/pull-down and interface networks in low- profile-6-pin, 8-pin or 10-pin conforma-coated single in-line packages (SIPs). Pins are set on $0.100-\mathrm{in}$. centers. Packages are $0.200-\mathrm{in}$. high.
Sprague supplies standard Type 210C SIP networks with resistance values from 22 ohms to 1 Megohm , a standard resistance tolerance of $\pm 2 \%$ or ± 2, whichever is greater, and a temperature coefficient of resistance of $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. TCR tracking is $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

ALSO AVAILABLE FROM SPRAGUE ELECTRIC

- DIL Resistor Networks
- RC Networks
- Terminators
- Resistor/Capacitor Networks
- Surface Mount Networks
- Capacitor Networks
- Transistor Arrays
- Diode Arrays

WHY NOT BUY THEM FROM THE PEOPLE WHO MAKE THEM

Call Ot Write For A Free Sample

©SPRAGUE

THE MARK OF RELIABILITY
56 SILVERWATER RD., AUBURN, N.S.W. 2144

TEL: (02) 6481661
TLX: 72906
FAX: (02) 6472260

It has: 300300 Baud (V2), 1200 1200)Baud l'22), 120075 Baud (V23)

- Real Hayes compatability- Auto dial
- Auto answer - Baud rate conversion Auto sense on incoming baud rates: Hansiset: Pulse and tone dialling: Connect and disconnect strings; Dial-back security, inbuilt
Viatel Software for IBM and Apple Available
The SAM is uncompromising Australian technology, thoroughly decumented. Fior further information Contact

OTOCAS A

CATALINA DRIVE
TULLAMARINE, VIC. 3043 TELEPHONE: (03) 3302555

FAX: 3389544
Pulsar SAM is recommended by the Vic. and Qld. Education Departments.

1616 BASIC

In the first few months of 1987 we published construction details on the ETI 1616 computer, and promised enhancements as they came to hand. Applix Co, the designers, have just released a BASIC to make programming easier, so here it is.

Paul Berger*

THE 1616 BASIC interpreter started life as a public domain UNIX-based program, written by Phil Cockcroft, somewhere in the US of A. We at Applix evaluated the program and decided it provided basis for the 1616 BASIC system.

Almost all of the code for BASIC is written in the '(" language (as usual) and the interpreter has been adapted to run under 1616/OS, shortened, enhanced and considerably sped up by Andrew Morton, one of the Applix Insomniacs (or Ars, as they are known in the industry).
The language is pretty standard, and includes just about all the features that a BASIC ever had. Those who have used a Microsoft BASIC will be on familiar ground here: such BASIC programs will run under 1616 BASIC with little or no change.
A BASIC program consists of a 1616/OS ASCII text file. Each line of the program has a line number at its start: the tine numbers are used for ordering program lines as they are entered and for referencing sections of the program using the 'goto' and 'gosub' commands. etc. The ASCll program is 'tokenised" when it is read in from disk or typed in; this means that each BASIC keyword which is recognised in a new program line is converted into a single byte before being added to the main loody of the program. This saves space and increases execution speed.

BASIC program files may be created using the 1616/OS full screen editor. or by editing individual lines from within the BASIC system. The BASIC 'edit' command permits the programmer to use the standard $1616 /$ OS line editor to alter existing program lines.

The language features 10 digit floating point variables. 32 -bit integer (whole number only) variables, multi-dimensional arrays and character strings. The first 15 characters of a variable's name are signifi-
cant. Numbers may be specified in either decimal or hexadecimal notation (hex numbers are preceded by a ' $\$$ ' symbol).
The 32 -bit integers may range from $-2,147,483,648$ to $2,147,483,647$. Programs written using integer variables are considerably faster than those which use floating point, so integers should be used wherever possible.
The BASIC system provides an environment in which you may interactively alter and run BASIC programs; it also supports a 'direct' mode where a few BASIC statements may be executed without actually entering them into a program. Any 1616/OS command may be performed from within the BASIC system by preceding it with a right square bracket ' $]$ '. You may indefinitely escape back to 1616/OS from BASIC by using the 'shell' statement; you return to BASIC with the original program and variables intact by entering the 1616/OS 'quit' command.

Graphics \& video control commands

The 1616 -specific video and graphics control commands which are not found in other BASICs are:
set640, setvdp, setvap, setfgcol, setbgcol. setbdcol. setpal, scursmode, plot. sgfgcol, sgbgcol, sgtexture, line, circle. readdot
These commands translate directly into 16/6/OS system calls.

File I/O

The file I/O commands are: open. create, fread, write, close.
rename. delete, seek, tell, eof
These commands relate directly to the 1616/OS file I/O system calls and they all return a value which, if negative, indicates some sort of error. A diagnostic message which describes the error may be obtained using the 'fileerr§' command (see the example below').
The 'seek', 'tell' and 'eof' commands
may be used to implement random-access files.

In addition, the 'print', 'input', 'linput' and 'get\$' command save modes in which files are used for I/O, rather than character devices.

One interesting feature of 1616 BASIC is that there are four commands which greatly extend the BASIC and make the entire resources of 1616/OS available to BASIC programs. Owners of 1616s appear to be a cunning breed and they will be doing amazing (and probably incomprehensible) things with these commands.

Performing system calls

The 'syscall' statement directly performs a 1616/OS system call and passes the

1616 BASIC	commands
abs	absolute value
and	logical and standard
asc	and' command convert Ascil character to its
	numeric alue
atn	arctangent
base	starting base for
bye	arrays lo to 1)
exit BASIC and return	

returned value to the BASIC calling program. For example, the following program fragment reads the setting of a joystick:
1010 nul\% = syscall (70, 7): rem Select analogue input \#7
1020 joystickval $\%=\operatorname{syscall}(73):$ rem Perform the conversion
In line 1010 above the value returned by the system call was assigned to the variable 'nul\%' and then ignored. This is because the BASIC 'syscall' statement comes under the variety of statement which returns a value and must be made part of an arithmetic expression.
Executing 1616/OS commands
The 'exec' statement takes as its argument
a single string which is passed as a command to $1616 / \mathrm{OS}$. An error code is returned to BASIC; if it is zero, all went well.
As an example of the use of this statement consider the following program which, amongst other things, sets up the 1616s function keys to produce some ofttyped commands:

10 rem Program to demonstrate the use of the exec' command
20 rem
30 print "Disk directory listing:" : print
$40 \mathrm{nul} \%=\operatorname{exec}(\cdot$ dir"): rem Discard result in nul\%
50 rem
60) rem Program the function keys

70 rem
80 for key\% = 1 to 10
90 read fkdefs: rem Get a string from the data tables
$1(0) \mathrm{nul} \%=\operatorname{excc}($ "fkey" + hex $\$(k e y \%)$ $\left.+\cdots{ }^{\prime}+\mathrm{fkdef} \$\right)$
110 if (nul\%) then print "Function key definition failed": stop
120 next key\%
130 rem
140 mm Now display the time
150 print "On the third stroke it will be";
160 nul $\%=\operatorname{exec}($ "date") : rem Use 1616/OS to print the time out
170 for $\mathrm{i} \%=1$ to 3

exit	exit BASIC and return to 1616/OS
exp	exponential function
fileerr \$	return fite l/o error message
for . . to . . step fread	standard for loop read from a data
	(disk) file
gets	get a record
gosub	execute subroutine
goto	continue program execution at
	specified line number
gotoxy	position cursor at x, y
hex\$	converts number into
	a string containing a
	hexadecimal number
	equivalent to the
if . . than . . else	standard 'if'
	statement
inkeys	read a character from
	the keyboard
input	read data from keyboard or data file
instr	find substring within
	a given string
int	largest integer
	number less than or
	equal to argument
lefts	take substring
	character
len	length of string
let	standard assignment
	statement (eg. let
	$\mathrm{a}=3$)
line	draw line
linput	read data from
	keyboard or data file with commas etc
list	list program (or part
	thereof)
load	load a BASIC program
$\mathbf{l o g}$	natural logarithm
merge	merge a BASIC
	program into program
	currently in memory
mids	extract a substring
	from a given string
$\begin{aligned} & \text { mod } \\ & \text { new } \end{aligned}$	erase program
	currently in memory

next normal	ends 'for' loop for restoring some sanity to all the video modes
not	logical 'not'
on . . error on . . gosub	enable error trapping standard computed
	'gosub' command
on . . goto	standard computed
	'goto' command
open	open a data file
or	logical and standard 'or' command
peek	read a value from
pi	memory
plot	returns the value of π
poke	plot a graphics pixel
	into a byte
print	print to the screen or
	file
random	start a new random
read	ad information from
	'data' statement
readdot	real a graphic pixel
	value
rem	standard remark statement
rename	rename a data (disk)
	file
renumber	renumber BASIC
repeat . . until	program repeat until
	expression is true
restore	reset pointer to 'data'
	statements
resume	return from error
	return from
return	return from subroutine
rights	take substring ending
	with last character
rnd	random number
run	execute program (at optional line number)
save	save current BASIC
	program
scursmode	alter cursor mode
seek	seek to a new data (disk) file position
set640	select video mode
setbdcol	set border colour
setbgcol	set text background
	colour

```
100 ' Program : STRINGS.BAS - 1616 BASIC
110 ' Programmer : Paul Berger, Applix pty limited
120 '
130 cls : set640(0) : scursmode(0,1,0) : random : base 0
140 size%=20
150 dim xs%(size%), xe%(size%), ys%(size%), ye%(size%)
160 x1%=100 : x2%=60 : y1%=120 : y2%=175
170 z%=rnd(15)+1
180 d1%=rnd(10)-5 : d 2%=rnd(10)-5 : d3%=rnd(10)-5 : d4%=rnd(10)-5
190 for y%=1 to size%
200 if x1%+d1%<0 or x1%+d1%>319 then d1%=(-d1%)
210 if }x2%+d2%<0 or x 2%+d 2%>319 then d 2%=(-d 2%)
220 if y1%+d3%<0 or y1%+d3%>199 then d3%=(-d 3%)
230 if y2%+d 4%<0 or y2%+d 4%>199 then d 4%=(-d 4%)
240 sgfgcol(0) : line(xs%(y%),ys%(y%), xe%(y%), ye%(y%))
250 xs%(y%)=x1%+d1%: xe%(y%)=x 2%+d 2%; ys%(y%)=y1%+d 3%: ye%(y%)=y2%+d 4%
260 x1%=xs%(y%) : y1%=ys%(y%): x2%=xe%(y%): y2%=ye%(y%)
270 sgfgcol(z%) : line(xs%(y%),ys%(y%), xe%(y%),ye%(y%)) : next : goto 170
```

180 print chr\$(7); : rem beep
$185 \mathrm{nul} \%=$ exec(${ }^{-p}$ pause $.50^{*}$) : rem Wait for 1 second
190 next $\%$
200 print "precisely"
210 end
220 rem
230 rem Data for the function keys
240 rem
250 data "list ". "run ", "print".
"save ". "load"
260) data " d dir ". "for ". "then ", "if ". "edit "

Obtaining pointers to BASIC variables

The 'varptr' statement may be used to find the address of a BASIC variable (floating point. integer. array or string). This is very useful for passing references to your BASIC data to $1616 / \mathrm{OS}$ or to assembly
language subroutines.
For integer (\%) variables, a pointer to a 32 bit point is returned. For floating variables a pointer to a 8 byte floating point number is returned. For strings a pointer to the first byte of the null-terminated string is returned.

As an example, the following program fragments write an array of integers directly to a disk file and read it back in again. Thus its much more efficient than using 'print' and 'input' statement to and from the file in the normal manner

10 dim barofsoap ${ }^{c}$ c (100): rem The array of integers
-
\bullet
1000 rem Write the array to disk $1010 \mathrm{fd} \%=$ create("bathtub", 0, 0):
rem create the file
1020 if $\mathrm{fd} \%<0$ then ec $\%=\mathrm{fd} \%$: goto 2000 : rem create failed
$1030 \mathrm{ec} \%=$ write(fd $\%$,
varptr(barofsoap\%(0)). 400)):rem 4 bytes/integer
1040 if ec\% < 0 then goto 2000 :rem write failed
$1050 \mathrm{cc} \%=\operatorname{close}(\mathrm{fd} \%):$ if $\mathrm{ec} \%<0$ then goto 2000
-

\bullet

1500 rem Read the array from disk, ignoring possible errors
$1510 \mathrm{fd} \%=$ open("bathtub", 1)
$1520 \mathrm{ec} \%=\operatorname{read}(\mathrm{fd} \%$.
varptr(barofsoap\% (0)). $4(0)$)
$1530 \mathrm{ec} \%=\operatorname{close}\left(\mathrm{fd}^{\circ} \%\right)$
2000 rem Handle file 1/O errors
2010 print chr $\$(7)$;"Disk file error:

```
100 ' Program : POND.BAS .- 1616 BASIC
110, Programmer : Paul Berger, Applix pty limited
120'
130' Be patient...
140 '
150 set640(1) : cls : base 0 : scursmode(0,1,0) : random
160 dim r(640), c(640), pal(3) : gotoxy(0,24) : grint"Wait.
170 for i%=1 to 640: r(i%)=log(i%):c(i%)=log(i%) : next
180 for r%=1 to 200 : for c%=1 to 640 : x=c%*r(c%)+r%*c(r%)
190 x=x/5:y=int(x):z=x\cdotsy:z%=int(z*5):plot(c%-1,r%-1, z%+1):next:next
200
210', go through palette making sure each entry is a different colour
220
230 pal(0)=rnd(16)
240 pal(1)=rnd(16): if pal(0) = pal(1) then goto 240
250 pal(2)=rnd(16): for z=0 to 1 : if pal(z)= pal(2) then pal(2)=rnd(16): next
260 pal(3)=rnd(16): for z=0 to 2 : if pal(z) == pal(3) then pal(3)=rrd(16): next
270 for z=0 to 3: setpal(z,pal(z)) : next
280'
290' wait 5 seconds then change palette colours again
300 '
310 ticks=syscall(18)
320 repeat until syscall(18)=ticks+(50*5)
330 goto 230
```

```
100: Program : SPIRO.BAS - 1616 BASIC
110: Programmer : Paul Berger, Applix pty limited
125 cls : set640(0) : c=1
130 input"Number please (8 to 60 is best)";
140 cls
150.
160, now do it!
170
180 for t1=0 to (2*pi)-.001 step (2*pi)/a
190 for t2=t1+(2*pi)/a to (2*pi)-.001 step (2*pi)/a
200 line((cos(t1)*120+160), (sin(t1)*99+100), (cos(t2)*120+160),(sin(t2)*99+100))
210 c=c+1 : sgfgcol(c) : if c>15 then c=1
220 next:next
```


";filcerr\$(ec\%)

2020 stop

Calling assembly language subroutines

The BASIC is supplied as a $1616 /$ OS transient program which loads into memory at address $\$ 8000$, rather than the normal $\$ 4000$. This provides 16 k of memory which is free for assembly language subroutines and data

The BASIC 'call' satement allows the calling of an assembly language subroutine, with a facility for passing up to nine arguments to the subroutine. The 'call' statement evaluates as the value which the subroutine returns in the MC68000's data
register 0. The 1616 BASIC 'varptr' statement comes into its own here: BASIC programs may pass pointers to arrays of data to assembly code, which can directly access and/or alter the data.

The following program fragment loads such a subroutine and calls it:

10 dim barofsoap\% (23)
20 sheepdog $\%=12$
-
\bullet
$1000 \mathrm{nul} \%=$ exec("mload sheepdip $4000^{\prime \prime}$): rem load the code in
1010 if nul\% then print "Cannot load file sheepdip" : stop
1020 rem Call the assembly code, put d0

value into result\%

1030 result $\%=$ call $(\$ 4000,10$, varptr(barofsoap\%(0)), sheepdog\%)
The 1616 Basic is available from Applix for $\$ 50$ on tape. It will be available in ROM shortly, and readers interested should contact Applix direct. A disk based version will be available just as soon as the disk drives are available. As we go to press a timetable for this had not been finalised.
${ }^{*}$ Paul Berger is Managing Director at Applix. Applix is a partnership between him and Andrew Morton, who was responsible for the design of the 1616, and this implementation of the BASIC language.

ADVERTISING INFORMATION COUPON

 ADVERTIIING INFORIMATION COUPONFREEPOST No. 4
E.T.I. Magazine

Please circlè
P.O. Box 227 the category
Waterloo, N.S.W. 2017 No stamp necessary if posted in Australia

A. Engineer/Designer	D. Programmer/Analyst
B. Technical Officer	E. Manager
C. Techniclan	F. Interested Consumer

TEACH YOURSELF

CREATING WITH ELECTRONICS PART 7

ANALOGUE FREQUENCY METER

Abstract

In an all digital world, we divert by presenting a low cost, foolproof, analogue frequency meter. Use it as a tacho, as a partner to the signal generator from part 4 of the series, or as a useful measuring device in general.

Peter Phillips

Digital technology has introduced its own particular forms of instrumentation, usually characterised by a numerical display. Analogue instruments, using a pointer as the readout, have their advantages, including the ability to follow a changing value. As well, due to the different operating principles of a frequency meter, compared to a digital frequency counter, measuring low frequencies is as easy as high frequency measurement. The trade off between the two technologies is accuracy, limited in the case of the analogue device to the initial calibration and the linearity of the meter movement. As well, resolution is limited when compared to a frequency counter, but often a four digit display is overkill anyway.

The frequency meter described in this article has numerous features, including two LED indicators that show whether the input signal is adequate and if the input frequency is within the selected range. The input impedance is around 1 M ohm, and voltages as low as 10 mV will often register correct readings, despite the specified input voltage of 30 mV . The meter movement is fully protected, making the instrument very easy to use. Also, if both LEDs are on the probability of a wrong reading is very remote.
The project is designed to complement the audio oscillator presented in part 4 of the series, and uses the same size case to provide compatibility in appearance. The measuring range is from 10 Hz to 100 kHz , and a selectable filter is included to clean up a noisy input. Input voltage limiting circuitry allows a wide range of input levels to be handled, and waveforms ranging from sinusoidal to spikes provide a reliable indication. The instrument could be used as a tachometer, or for any application that must show frequency varia-

Fig. 1: Block diagram of the ETI 177.
tions. The circuit is based on the 555 timer, along with numerous diodes, Zener diodes and transistors. To aid the novice, some background theory is included, which complements that presented last month.

The Circuit Principles

Figure 1 shows a block diagram of the circuit. In principle, the input signal, of whatever waveform, is converted to a series of short duration spikes. These spikes then trigger a monostable multivibrator that produces a fixed duration pulse for each spike. The pulse waveform is then fed directly to a dc meter movement that displays the average value of the waveform. By increasing the input frequency, the pulse rate will increase, producing a higher reading on the meter.

Often, the input frequency may be a total unknown. Frequency counters are notorious for giving apparently steady readings that have no relationship to the correct value. Usually some back-up device such as a CRO is needed if the frequency is to be roughly established, and the counter then made to display the correct value. To overcome this problem, an error detection circuit is included in this project that compares the input frequency to the mark-space ratio of the pulse output of the monostable, and virtually guar-
antees a valid reading. Meter protection is provided by a transistor connected across the meter terminals and will operate when the pulse waveform has a duty cycle exceeding about 50 per cent.

Background Theory

The circuit is basically an analogue switching circuit. Apart from the first stage of the input amplifier, all voltages and waveforms have one of two possible values. While this concept is similar to digital, the principles are still definitely analogue, but based on two levels only. Many analogue circuits use switching to fulfill their required function, such as a switched mode power supply, power control to a motor using thyristors, and so on.

In any switching circuit, devices such as transistors and diodes are commonly used to emulate a conventional switch. As an ideal switch has an infinitely high resistance when off, and zero resistance when on, the electronic equivalent should approximate these conditions. For a transistor, fully on means the voltage across the transistor, ie, between collector and emitter, should be virtually zero. This condition is know as saturation, and is achieved by using a relatively high base current that will cause the required condition despite Beta variations. Keeping the transistor completely off is often difficult, as the

normally insignificant leakage currents introduce problems. To reduce their effect, a current path, usually through a resistor, must be provided between the base and emitter terminals.

Diodes are often used in switches circuits to prevent possible parallel paths between several switching signals connected to the same point. The diodes labelled D_{2} and D_{3} in the circuit diagram perform this
task by effectively isolating the two waveforms applied to the base of Q_{4} from each other, while still allowing them both to operate Q_{4}. In high speed switching circuits, special switching diodes will be

Analogue Frequency meter, circuit board
specified for their speed and low reverse leakage current characteristics.

Zener diodes are essentially a switching device, acting as an open circuit at voltage below the Zener point, thereafter conducting. Unfortunately, the transition between states is often not as sharp as may be required. This is particularly true for Zener voltages below 10 volts. For example, a 3.3 volt Zener may start conducting at voltages as low as 2.5 volts. Different Zener diode type numbers for the same Zener voltage may have differing switching characteristics, requiring use of the specified device only.

The circuit uses two 555 monostable multivibrators, the operating principles of which were explained last month, along with the shortcomings of some brands of 555 s . The type of timing components of any mono are particularly important, to minimise effects due to temperature variations. A polyester capacitor is specified for the timing capacitors, and ideally a high stability, metal film resistor should be used for the timing resistor. Note that a 1 per cent resistor does not necessarily have a better temperature stability than a 5 per cent device, only that its marked value is closer to the actual value.
The term 'mark-space ratio' refers to the time a pulse waveform is in one state compared to the other. Generally, 'mark' refers to the time the waveform is high, and 'space' to when it is low. Another term often used is 'duty cycle', in which the time the output is active (either high or low) is compared to the total time from
the commencement of one pulse to the next. A 1:1 mark space ratio is the same as a duty cycle of 50 per cent.

Construction

This circuit could be constructed on vero board, however the pcb layout is recommended to prevent problems caused by long leads and capacitance between tracks. Commence construction by preparing the case. The size of the meter is optional, as sufficient front panel space is provided for most varieties. Use the template supplied with the meter to drill the case, and a nibbler tool to cut the large hole for the meter body. Mount the transformer as shown in the accompanying photos to isolate it from the input amplifier to prevent hum pickup. The LED indicators used in the prototype were pinpoint LEDs mounted in plastic bezels. Any LED will do providing it gives a suitable light output.
Use the pcb as a template to drill the mounting holes in the case, positioned to clear the protruding devices inside the case. Mount the resistors, (except the calibration resistors, $\mathbf{R}_{19} \mathbf{R}_{26}$), the diodes, zeners and wire link first, then proceed with the capacitors and semiconductors. IC sockets make life easier, but are optional. The two wafer switches should be connected with minimum lead lengths, using rainbow cable. To facilitate fault finding, connect the meter and LEDs with leads sufficiently long to allow the pcb and the switches to be held away from to the case. The circuit should operate first up, but Murphy's Law often prevails! After a

ETI-177 How it works

The circuit is in three separate blocks; the input conditioning/amplifier circult, the output monostable and the protection/contro circuit. The first block is as follows. The Input signal is coupled to the FET with a 0.1 uF, 630 volt capacitor in serles with a 10 k protection resistor, R_{1}. Filtering of the Input is provided by the selectable capacitors, C_{2} to C_{4}, and signal IImiting to around $\mathbf{4 V} \mathrm{V}_{\mathrm{p} p}$ Is achleved by $\mathbf{Z D}_{1}$ and $\mathbf{Z D}_{\mathbf{2}}$. The Input Impedance with the fliter off is set by R_{2}, which also connects the gate of the FET to ground. After amplification, the signal is passed to the next amplifler stage, \mathbf{a}_{2}. For best sensitivity, O_{2} should have a high current gain, and if possible should be selected accordingly by Beta comparisons between avallable devices. The blas is arranged to cause a virtual square wave at the collector for signal inputs above 100 mV , as a result of the low collector voltage. The signal at the coliector of Q_{2} is attenuated and cllpped by the network comprising $R_{10}, C_{10} . R_{11}$ and the base-emitter of $\mathrm{a}_{3} . \mathrm{Q}_{3}$ drives the signal LED, and should operate for inputs above $\mathbf{2 0 ~ m V}$. Altering the value of R_{11} will change the Input level required to operate the LED. C_{g} is connected only on the two lowest ranges and filters noise possible at low input signal levels. Diode D_{1} conducts when the signal at lits cathode goes slightly negative, and couples the signal to the comparator, IC_{1}. The comparator has a small amount of positive feedback, provided by \mathbf{R}_{15} to produce a Schmitt trigger actlon, reducing the effects of noise that may cause multiple switching. R_{18} is the pull up resistor for the open-collector output of the comparator.
IC_{2} is the output monostable, and is a conventlonal 555 monostable circult. The output square wave from the comparator is converted to a spike waveform by the differentiator circuit of R_{17}, R_{18} and C_{11}. As described In part 6, $\mathbf{Z D}_{3}$ cllps the negative going trigger pulse to limit its negative excursion for those 555 ICs that exhiblt timing errors on the highest range. The timing components for the mono are the switched resistors R_{19} to R_{26}, and capacitor C_{12}. The values are selected to give a duty cycle of 40 per cent at full scale. (High time 40 per cent, low time 60 per cent.) The output waveform is fed via the serles resistors R_{40} and $R V_{1}$ to the 1 mA meter movement, which responds to the average value of the waveform. Because the supply voltage is regulated, this arrangement gives a suitable performance. If the supply voltage varles, due to a change of regulator IC_{4}, recalibration will be needed.

The protection/control circuit has the task of operating the range LED, and protecting the meter against overload. The range LED is driven by IC_{3} which is a 555 connected as a monostable. If no trigger pulses are received by IC_{3}, the LED will be on. Trigger pulses for IC_{3} are produced when the Input frequency is too high for the selected scale, by NANDing the output waveforms of IC_{1} and $I C_{2}$ using dlodes D_{2} and D_{3} and transistor Q_{4}. Figure 2 shows how the circuit works. As depicted, for an in-range frequency, there is always zero volts applied to either one of the diodes. This allows Q_{4} to be continously conducting, and holds the voltage across R_{30} at around 12 volts. When the duty cycle of IC_{3} exceeds that of the comparator, both diodes will simultaneously

turn off, as both cathodes will be positive for a short time. The transistor stops conducting and the voltage across \mathbf{R}_{30} falls to zero. The differentlator of $\mathbf{R}_{31}, \mathbf{R}_{32}$ and C_{14} produces a negative trigger pulse which fires IC_{3}, extinguishing the LED. The LED is held off by the succession of trigger pulses from Q_{4}.

The range LED is also controlled by a_{7} and a_{6} to ensure it is extingulshed under conditions not catered for by IC_{3}. The first is when the output of $I C_{2}$ is always low, caused by either no Input signal, or a very high Input frequency. Q_{7}, when conducting, will effectlvely short-circuit the LED, turning It off. To hold a_{7} off under normal operation, the output of $I C_{2}$ is half wave rectifled by D_{4} and C_{16}. This produces a positive voltage at the base of \mathbf{Q}_{7}, holding it off. When there is no output from IC_{2}, the positive charge on C_{18} is removed by R_{34}, allowing Q_{7} to turn on, extingulshing the LED. The second condition occurs when overload is reached. Under extreme conditlons, the output of IC_{2} may be held high, or at least be operating well above the 40 per cent duty cycle. The integrating circult of R_{32} and C_{15} will generate a relatively small voltage across C_{15} for duty cycles less than 50 per cent, and start charging it towards 12 volts when the duty cycle is around 60 per cent, as the charge time for C_{15} is now greater than the discharge time resulting in a dc voltage of around 8 volts. When the Zener conducts, It turns on Q_{6} which then allows Q_{7} to conduct.

So, why the NAD gate and I_{3} you ask? Why not let Q_{6} and Q_{7} operate the range LED? If this were the case, possible amblgulty with the range LED could occur, caused by half cycling of $I C_{2}$ when the Input frequency is more than twice the pulse rate of IC_{2}. Although the components values still ensures a full scale reading, the duty cycle of IC_{2} may still be low enough to not cause ZD_{4} to conduct. The range LED can then light, making the user think the frequency is within approximately range. We did say its almost perfect, rememberl

The last part is the protection for the meter movement, provided by Q_{5}. This transistor operates the same way as Q_{6}, and is
operated from the same circult. The emitter resistor R_{39} stabilises Q_{5} to allow for the wide range of current galns inherent in the specifled transistor type.

A final polnt is the power supply. In any switching clrcuit, spikes and noise are generated on the supply rail. These can have the effect of producing false triggering, and generally cause mayhem. De-spiking capacitors are included adjacent to the coms parator and $I C_{2}$ and C_{19} also alds the regulators due to its physical proximity to both IC_{1} and the regulator on the pcb layout. Decoupling for the input amplifier is provided by R_{41} and C_{8}.

Fig. 2: Control of the 'range'. LEDs.

[^4]final check for shorts and incorrectly polarised components, connect the transformer secondary, and supply power.
At switch on, nothing should happen; no LED indication or pointer deflection. Touch the regulator and the ICs to ensure they are not overheating. Now connect a 2.2 M ohm resistor for R_{19}, and select the lowest range. If everything is working, the meter should indicate, and both LEDs light when a 50 Hz input is applied. If not, note if the signal LED is indicating correctly. If so, go searching around the ICs. The wire link connects all the protection and range LED circuitry, and can be removed to help further isolate the fault.

Calibrating

Once operating, the unit can now be calibrated. Start by applying a 50 Hz input of at least 30 mV . Adjust the value of R_{40} and $R V_{1}$ for an exact midscale indication. The value shown for R_{40} is for a 100 ohms, 1 mA movement, and different movements may require this value to be varied. Once set, do not alter the setting of $R V_{1}$. Select the $x 10$ range and apply a 500 Hz input. Try a 220 k resistor for R_{21}, but exact calibration can be achieved using a 270 k for this resistor in parallel with an-

MCROpHOGESSOR DGVELOPNIENT SOPMMAE

Cross complers and assemblers for PC/XT/AT and VAX hoste.

* Single Chip "C" compliers by IAR for. 8051

68 HClI 6301/6801/6803 64180

* "C" Compllers by H1-Tech for. 8086/88 $280 \quad 68000$
* Aasomblers for all popular mieroprocessors by HH -Tech and 2500AD

RTCS software for PC/XT/AT:

* RTX real-time multitasking operating system
* UDI universal development interface * |SIM85 ISIS II simulator

MACRO DYNAMICS ${ }_{\text {prim }}$

The Development System Specialists

80 Lewls R d., Wantirna South 3153.

Tol: (03) 2207260 Fax: (03) 2207263
ADVERTISING INFO No. 26

SAVEOn NEW low cost toos \& COMDOLGILS
 FOR DESIGNERS AND PROGRAMMERS

HARDWARE	\$
EPROM ERASER with TIMER, LAST	135.00
PROGRAMMER (2716-27512). his IEM-PC	232.00
XT Comparible System, 640k	1495.00
Turbo Motherboard. Ok RAM	295.00
SOFTWARE (all runs on IBM-PC or compalible)	\$
NORTON Programmers Editor (Magic)	140.00
PROTEL PCB Layout System Version	950.00
30 (EGA Compatible) with FREE	
Schematic Library	
HI-TECH C Cross Compiler ($\mathbf{Z - 8 0}$, ROMable)	350.00
CHIPS	\$
8749 Microcompuler	24.00
8031	14.50
NEC V20-2 Speed Chip	45.00
27512	55.00
G1 Text-Speech Set	39.95
All prices include Sales Tax Overnight Delivery Australia Wide (Except Systems)	$\$ 750$
Phone now for our free information pack on (07) 3695900 or write to P.O. Box 107 Paddington. Q	4064
sa Masier Card \& Bank Card acceptec	

Our new showroom is al
26 Mayneview Street,
Milton. \mathbf{Q}.
Ph: 073695900
other of a higher value. Repeat this for the next decade, with a frequency of 5 kHz and a resistor value of around 22 k .

You will find whether the Zener diode, ZD_{3}, is needed for IC_{2} when the highest range is used. Connect a temporary resistor of 1 k 8 for R_{25}, and apply 50 kHz . If the deflection is much higher than midscale, the 555 has the propagation problem referred to in Part 6 . Try a 10 V Zener diode, otherwise work down in Zener valucs until the reading is around midscalc. Alternatively, use a Fairchild brand 555 (uA555, as specified). Once the decades are in calibration, next confirm that the range LED operates from around 10 per cent of full scate to $1.5 \times$ the decade. On the lowest scale, 10 Hz should make the range LED blink, and it should extinguish at around 150 Hz . The highest scale will have the range LED on between frequencies of around 10 kHz to 150 kHz .
Another check is the effect of the meter
protection transistor, Q_{5}. The value for R_{38} is for the 100 ohm meter movement used in the prototype. If the pointer returns to an on-scale value when the range LED is off, raise the value of R_{38}. If you suspect the protection is inadequate, lower the value. The correct setting will give an overscale reading without obvious distress to the meter movement.

Using the meter

Although billed as foolproof, the relative simplicity of the circuit may not cover all contingencies. In general, trial use has demonstrated that if both LEDs are clearly on, and the meter reading is steady, the correct value is being displayed. With some input waveforms, eg, a short duty cycle square wave, the signal LED may not light, particularly at low frequencies. Sometimes the sensitivity of the input circuit will allow a steady reading without the signal LED being on. This means the input level is below the 20 mV
threshold, but is probably still providing a correct indication. Noisy waveforms will produce erratic readings, in which case try switching in the filter. Frequencies above 150 kHz at low voltage levels may produce an apparent reading with both LEDs on. However, the reading will probably vary, and will totally disappear if the filter is switched to its first position.

If the input signal is modulated by a 50 Hz hum, anything is likely. The filter won't remove the hum, and conditioning of the signal may be required. This can be done by connecting a low value capacitor in series with the input, and replacing a resistor value of, say, 10 k across the input terminals. Very high voltage inputs are not recommended, although the input circuit can probably handle up to 240 v rms. Despite these restrictions, we guarantee this meter will be easier to use than many digital frequency counters currently available.

ADVERTISING INFO No. 27

Inside Your Computer 10

BINARY, HEX, AND ALL THAT

Before you can delve into the mysterious world of machine code, you must first be initiated in the ways of binary and hex.

Phil Cohen

Computers would be a lot easier for most people to understand if experts didn't keep going on about binary.

Trying to teach people binary so that they can operate computers is like teaching people about free-radical chemical reactions before they learn how to drive a car. Radicals may be central to the way fuel burns, but that's rather beside the point when all you really need to know is where to put the petrol in!

You can quite happily write programs in any $3 \mathrm{GL}, 4 \mathrm{GL}$ or 5 GL language (see last month's article for a description of these) without recourse to binary at all. It's only when you want to work at a lower level with machine code - that binary becomes part of the required knowledge.

In an earlier part of this series I said that computers typically use a series of eight parallel wires to carry information, and that each of these wires was at either a 'high' or a 'low' voltage at any given time. It's traditonal to represent a high voltage (usually 5 V) by a ' I ' and a 'low' voltage (usually 0 V) by '(0). but never let yourself be confused by all those is and 0s: voltages are what it's all about at the end of the day.

To represent the state of the wires at any given time, you just string the is and 0s together. So if all eight wires are at 0 V . you can write that their states is 0 O以нOOO. If they are all at 5 V . it's 1111111.

There are 256 possible states for a group of eight wires to be in: 000000000 . 000000001 , 000000010, 000000) 1 , and so on. up to 1111111 . In a computer. these 256 possibilities are normally allocated a number starting at 0:

000000000	0
000000001	1
00000010	2
111111110	254
11111111	255

(Notice that there are 256 possibilitics, but if you include 0 you can only represent numbers up to 255).

Bits

Each of these 1s or 0s is called a 'bit' (Binary InTeger), and a group of eight is called a 'byte". So one byte can represent a number from 0 to 255.

Programs that have to work with numbers only from 0 to 255 normally use one memory location to represent each number. More typically, programs that have to work with text use each location to hold one character.

So where does the binary number system' fit into all of this? Well, binary is nothing more than an casy way of converting between the patter of is and 0 s and its equivalent 'decimal' (ie ordinary number) equivalent.

It works like this: taking a byte like 10001110 , you allocate a value of 1 to the rightmost digit, 2 to the next left. 4 to the next left to that, and so on, doubling each time. An example will make this clearer: The byte:
$\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
The value for each bit (doubles with each step to the left):

$$
\begin{array}{llllllll}
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1
\end{array}
$$

Collect the values that are 1 in the byte: 128 \& 42
Add them together:

$$
128+8+4+2=142
$$

So the value that's associated with the byte 10001110 is 142 . And that's all binary is about - converting between the pattern of voltages on the wires. and the decimal value associated with it.

Of course, it has to be possible to go the other way, too. To convert from decimal to binary (let's use 135 as an example), write the binary values out again:
$\begin{array}{llllllll}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$
Find the largest one that you can subtract from the decimal number. subtract it and find the remainder:
$135=128+7$
The find the next binary value you can subtract from the remainder:

$$
135=128+4+3
$$

And continue until you have nothing left as a remainder:

$$
135=128+4+2+1
$$

Now write the binary values out in their proper positions:

$$
128 \quad 4 \quad 2 \quad 1
$$

And put is where the binary values lie:
$\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$
And there's your answer - 135 is the decimal equivalent of 100000111 .

Hex

Because converting from decimal to binary and back again is such a fiddle, the hexadecimal system is often used. This has some of the advantages of decimal (you don't have to write a long string of 1 s and Os to represent the contents of a particular byte), but is a lot casier to convert to and from binary.

Hexadecimal is based around groups of four bits, like this:

Binary	Hex
$0(0) 0)$	0
0001	1
0010	2
00011	3
0100	4
0101	5
0110	6
0111	7
10001	8
1001	9
1010	A
1011	B
1100	C
1101	D
1110	E
1111	F

To represent an eight-bit byte, you simply use two hex codes together. like this:

Binary	Hex
000000000	00
000000001	01

Back by Popular Dern

DATA \& REFERENCE

DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS
A. MIC hatis
Shows equivalents and pin connections of a poputar user-ariemated selection of European, American and Japanose cigitial ics Also selection of European, American and Japanese digital ICs. Also includes dotals of
country of orlgin.

256 pages (Large Format)

LINEAR IC EQUIVALENTS AND PIN CONNECTIONS
A. Michaelz
Shows θ equivalents and pin connections of a popular user-orientated

BP0141 selection of European. American and Japanese linear ICs. Also includes detaits of functions, manufacturer, and country of origin.

320 pages (Large Formel)

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE

A. Nichaels BP0085 Helps the reader to find possible substrutes for a popular userorientated selection of European, American and Japanese transistors. Also shows material type, polarity, manulacturer and use.
$\$ 12.00$
320 pages

CHART OF RADIO, ELECTRONIC, SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Babsnl, B.Sc. (Eng)
M. H. Babanl, B.Sc.(Eng) BP0027
Illustrates the common, and many of the nol-so-common, radio, Illustrates the common, and many of the nol-so-common, radio, magazines and instuction manuals, etc., in most countries throughout the world.
$\$ 4.00$

RADIO AND ELECTRONIC COLOUR CODES AND DATA

CHART
 B. B. Babani BP0007
 Covers many colour codes in use throughout the world, for most

 radio and electronic components. Includes resistors, capactiors, ranstormers, field coils, fuscs, battery leads, speakers, etc.Chart

AUDIO AND HI-FI

BUILD YOUR OWN SOLID STATE HIFI AND AUDIO ACCESSORIES
M. H. Babanl BP0220 An essential addition to the library of any keen hi.fi and audio enthusiast. The design and construction of many useful projects are covered including: stereo decoder, three-channel stereo mixer, EI pre-ampinter for coramic PUs, microphone pre-amp with adustabie bass resporse, stereo dynamic noise fither, loud-speaker protector, voice-operated relay, etc

96 pages
AUDIO PROJECTS
F. G. Rayer

BPOOSO
This book covers in catall the construction of a wide range of audio profects. The text has been divided into the following maln sections: Pre-amplifiers and Mixers, Power Amplitiers, Tone Controls and Matching, Miscellaneous Projects.
All the profects are fairly simple to build and have been designed around inexpensive and readily available components. Also, to assist the newcomer to the hoboy, the author has included a number of board layouts and wiring diagrams.
$\$ 8.50$

COMPONENT SPECIFIC

MODERN OP.AMP PROJECTS

R. A. Penfold \quad BP0106 of the specialised operational amplifiers that are available use including low noise, low distortion, ultra-high imput impedance, bow. slow rate and high output current types. Circuits using transconductance types are also included.
All of the projects are fairty easy to construct and a stripboard layout is provided for most of them so that even constructors of limited experience should be able to bulld any of the projects with the minimum of difficulty.

112 pages

MODEL RAILWAY PROJECTS

R. A. Pentold

BP0095
The aim of this book is to provide a number of useful but reasonably simple projects for the model railway enthusiast to build, based on inexpensive and easily obtainable components.
The projects covered include such things as controllers, signal and sound effects units, and to help simplity consiruction, stripboard layouts are provided for each project.
$\$ 8.50$

AERIALS

AERIAL PROJECTS
A. A. Pentold

BP0105
The subject of aerials is vast but in this book the author has considered practical aerial desions, including active, loop and territe aerials which give good performances and are relativiey simple and inexpensive to build. The complex theory and mathematics of aeria! design have been avoided.
design have been avoided.
Also included are construe
Also included are constructional derails of a number of aeria accessories including a pre-selector, attenuator, filters and tuning unit.
$\$ 6.50$
96 pages

25 SIMPLE AMATEUR BAND AERIALS

E. M. Noll

3P0125
This concise book describes how to build 25 amatour band aeriais that are simple and inexpensive to construct and perform well. The designs start with the simple dipole and proceed to beam, triangle and even a mini-fhombic made from four TV masts and about 400 leet of wire.
You will find a complete set of dimension tables that will help you spot an aerial on a particular frequency. Dimensions are given for various style aerlals and other data needed for spacing and cutting phasing lengths. Also included are dimensions for the now WARC bands.

80 pages

$\$ 6.50$

25 SIMPLE SHORTWAVE BROADCAST BAND AERIALS
E. M. Noll
Fortunately good aerlats can be erected as low cost, and for a small
fractional part of the cost of your receivng equipment.
This book tells the story. A series of 25 aerials of many different
types are covered, ranging from a simple dipole through helical
designs to a multiband umbrella.

usigns to a multi-band umbrella.

80 page
5.5

25 SIMPLE INDOOR AND WINDOW AERIALS
E. M. Noll
Written for those people who live in liats or have no gardens or other Writen for those people who live in hats or have no gardens or other
space-limiting restriations which prevent them from constructing a space-limiting restricions whiction.
conventional aerial system.
The 25 aerials included in this book have been especially desfigned, buift and tested by Mr. Noll to be sure performers and give surprisingly good results considering their limited dimensions.
8.00

25 SIMPLE TROPICAL AND MW BAND AERIALS

E. M. Noll

BP0145
 peration on the medlum wave broadcast band and on 60,75,90 included as well.

64 pages

6.00

FAULT-FINDING

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING A. Pentold

BPO110
R. A. Pentold
The aim of this book is to help the reader overcome problems by The aifn of this book is to help the reader overcome problems by
indicating how and where to start looking for many of the common ndicating how and where to stant looking for many
aults that can occur when building up profects.
Chapter 1 deals with mechanical faults such as tracing dry joints short-circuits, broken P.C.B. tracks, atc. The construction and use a a ristate continuity tester, to hetp in the above, is also covered Chapter 2 deals with linear anabol circus a which can ins ins use and construction of a signal injo o locate and isolate the faulty areas in a project
Chapter 3 considers ways of testing the more common components uch as resistors, capactiors, op amps, diodes, transistors, SCRs unijunctions, etc., with the aid of only a limited amount of test equipment.
Chapter 4 deais with both TTL and CMOS logic circuits and includes the use and construction of a pulse generator to help faut-finding

$$
96 \text { peges }
$$

TRANSISTOR RADIO FAULT.FINDING CHART BP070 C. E. Miller

Used properly, it should enable the reader to trace most common faults reasonably quickly. Across the top of the char will be found four rectangles containing brief descriptions of these faults. vis - sound weak but undistorted, set dead sound low or distorted and background noises. One then selects the most appropriate of these and following the arrows. carries out the suggested checks in sequence until the lault is cleared

Chant
S4.00

ELECTRONIC \& COMPUTER MUSIC

ELECTRONIC MUSIC PRONECTS

A. Pantio

A. Pentold BPO 7 Provides the tructor with a number of practical circuits for the less complex s of electronic music equipment, incluong such things as "uzz box waa-waa pedal, sustain unit, reverberation and haser e trenelo geneator, otc
The text is oivided into four chapters as foliows
World Radio History

Chapter 1, Guitar Eflects Units: Chapter 2, General Effects Units Chapter 3. Sound General Projects; Chapter 4, Accessories. 112 pages

ELECTRONIC SYNTHESISER CONSTRUCTION

A. A. Penfold

BP0185
Should enable a relative beginner to build, with the minimum of difficulty and at reasonably low cost a worthwhile monophonic synthesiser, and also tearn a great deal about electronic music synthesis in the process. This is achieved by considering and buliding the various individual parts of the circuth that comprise the whole instrument as separate units, which can then be combined together to form the final synthesiser. Printed circuit designs are provided for these main modules. Later chapters deal with sequencing and some effocts units
$\$ 11.00$

MIDI PROJECTS

BPO 162
R. A. Penfold
Provides practical details of how to interface many popular home Provides practical details of how to interdace many popular home equipment to analogue and percussion synthesisers.

12 peges

MORE ADVANCED ELECTRONIC MUSIC PROJECTS

R. A. Penfold

BP017
Intended to complement the first book (BP74) by carrying on where It lett oft and providing a range of slightly more advanced and complex projects. Included are popular eflects unite such as hanger phaser, mini-chorus and ring-modulator units. Some useful percussion synthesisers are also described and together these provide a comprehensive range of effects induding drum, cymbal and gong-type sounds.

96 pages
$\$ 8.50$

COMPUTER MUSIC PROJECTS
COMPUTER N
BP0173
Shows some of the ways a home computer can used to good Shows some of the ways a home compuler can be used to good erect ine producion er ent sequencing and control via anaiogue and MiDi Interfaces, computers as digtal delay lines and sound aenerators for computer control.
$\$ 11.00$
112 peges

MISCELLANEOUS

COIL DESIGN AND CONSTRUCTION MANUAL

B. B. Babanl BPO160

A complete book for the nome constructor on "how to make" RF IF, audio and power corts, chokes and transtormers. Practically every and explained In detail. All mathematical data is simplified for use by everyone.

96 peges

BPO152
AN INTRODUCTION TO ZBO MACHINE CODE
A. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and
machine code programming with no previous knowledge of these machine code programming with no previous knowledge of these being assumed. The microprocessor death with is the $\mathbf{Z} 80$ which is used in many popular home computers and simple programming examples are glven for Z80-based machines including the Sinclai ZX-81 and Spectrum, Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 and 6128.
$\$ 10.00$
144 pages

A Z-80 WORKSHOP MANUAL

E. A. Part BP0112 This of BASIC programming to topics such as machine cond and assembly language programming, or need hardware details of 2-80 based computer.

192 pages
$\$ 12.00$

GETTING THE MOST FROM YOUR PRANTER

J. W. Ponfold
ep0181
Details how to use all the features provided on most dot-matrix printers from programs and popular word processor packages like Wordwise, Visawrite and Quill, etc. Shows exactly what must be
typed in to achieve a given effect.

96 pages

CIRCUITS \& CONSTRUCTIONAL PROJECTS

BEGINNERS GUIDE TO BUIL DING ELECTRONIC PRONECTS
 R. A. Pentold

 R. A. PenfoldShows the complete beginner how to tackle the practical side of electronics so tha* "r she can confidently build the electronic projects that are regularly ie uret in the popular magazines and books. Also includes examples in the form of simple projects that you can build.
112 pages
$\$ 11.00$
$1 . \infty$

and oo

 the minimum of dificuty for the enthusiast to construct in most of the circuits there is a wide latitude in component values and types, allowing easy modification of circuits or ready adaption of them to individual needs.
112 pages

POPULAR ELECTRONC PROJECTS
A. A. Pentoia

Provides a collection of the most popular types of circuita BPO049 covering a very wide do the most popular types of circuits and projects and Test Equipment projects.

144 pages
59.50

ELECTRONIC TEST EQUIPMENT CONSTRUCTION F. Q. Rayer
This Dook covers in detail, ine construction of a wide range of test F. Q. Rayer
This book covers in detail, ine construction of a wide range of test gulpment for both the eiectionics hobbyist and radio ame range of test areprojects ranoing tolecironics hoobyist and radio amasour. Included are projects ranging from a FET amplified voitmeter and resistance bridge a field-strength indic ator and heterodyne frequency meter. Not only can the home constructor enjoy building the equipment but the finished product can also be usefully utilisod in the lurtherance of his hobby.

96 pages

HOW TO USE OP-AMPS
BP088
E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non-mathematical as possible and it is hoped, easily understandable by most readers, be they engineers of hobbyists
$\$ 11.00$
160 pages

ELECTRONIC QAMES

R. A. Penfold

8 80069
Contains a number of interesting electronic games profects using modern integrated circurts. The iext is divid into two sections, the first dealing with simple games and the latter dealing with more complex circuits thus
 96 pages

NEW RELEASES!

A TV-DXERS HANDBOOK R. Bunney

BP0176
Completely revised and updated by Roger Bunney who is probably one of the leading authorities in this country on the subject. Includes many units and devices which have been designed and used by active enthusiasts, and often considerable ingenuity and thought have gone into the development of such units to overcome individual problems.
A practical and authoritative reference to this unusual aspect of electronics. (Large Format)
$\$ 18.00$

AN INTRODUCTION TO CP/M
BP0183

R. A. Penfold

CP/M is more than just a program to give a common set of standards and hence software compatibility between various computers. It includes a range of commands that help with such things as file copying and editing. the directing of data to the appropriate device etc. In order to get the best from CP/M and the programs running under it, a basic understanding of the system is highly desirable, and this book tells the story 96 pages $\$ 11.00$

ELECTRONIC CIRCUITS FOR
BP0179

THE COMPUTER CONTROL OF ROBOTS

R. A. Penfold

Provides information and circuits on computer control of electric motors (including stepper types). plus a range of useful sensors including visible light, infra•red, and ultrasonic types.

96 pages
$\$ 11.00$
USING YOUR AMSTRAD CPC DISC DRIVES BP0189 J. W. Penfold

Covers such things as tracks. sectors and formatting: AMDOS and CP/M operating systems including rules and regulations, filing from BASIC, file copying and transter: program development including MERGE and CHAIN MERGE: CP/M turnkey discs etc.
$\$ 11.00$
96 pages

C 555 PROJECTS

E. A. Part BPOO4

Every so otten a device appears that is so usefull that one wonders how life went on belore without H . The 555 timer is such a device. Included in this book are basc and peneral circuits, motorcar and model railway

$$
176 \text { peges (Availado Fobruery 1987) }
$$

HOW TO DESIGH AND MAKE YOUR OWN P.C.B.
HOW TO DESI
R. A. Pentokd
BP0121
R. A. Pantold

 is comprahenstidy es posesid. Chepter 2 covers photogrochic methots of roducing PCD C nd Criges 3 den wh priniod circuik bourd lyas

80 pasos
POWER SUPPLY PROJECTS
R. A. Penfold

BP0076
The purpose of this book is to give a number of power aupply designs including simple unstabilised rypes, fixed-vatiage regulated types. and variablo-vottoge stab lised deagns, the latter being primenly intended fo use as benen supplies tor the etectronce workshop. The cesigns provided aro all low voitege types for semi-conductor ercuita. This book shoutd also help the reader to deston his own power supplies.

96 pages
HOW TO DESIGN ELECTRONIC PRONECTS
37.50

R. A. Pentold

APO12
The arm a tis book is to hetp the reader to put boever profeces from strider
 mathansics. Hitis on deeiging crour bocos io mea your special requrementa

128 pages
$\$ 9.00$

ELECTRONIC SECUPITY DEVICES

Abstract

COMMUNICATION (Elements of Electronics - Book 5) F. A. Witeon Fiectronic: - Book 5)

A look at the electronic fundamentals over the BP0089 communication electronic fundamentals over the whole of the lement of scene. This book aims to teach the importan elements of each branch of the subject. Most of the modern iransmissions system techniques are examined including line, microwave, submarine, satilite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughty, chapters on signal processing, the electromagnetic wave, networks and transmission assessment are included, finally a short chapler on optical transmission.

256 pages $\$ 11.00$

50 SIMPLE LED
 CIRCUITS
 CIRCUITS

R. N. Soar BP0042 Contains 50 interesting and usetul circuits and applications, covering many different branches of electronics, using one of the most inexpensive and treaty avalable cormponents - the lighternmiting diode (LED) Aso inctudes circuits for the 707 common anode display.
$\$ 8.00$
64 pages

IC PROJECTS FOR

BEGINNERS
F. G. Rayer

Otters a range of spo097 and inexpensive linear and dightal integrated circults. With most projects, complete layout and/or point-to-point wiring diagrams are inciuded to help simplity construction.

$$
112 \text { peges }
$$

$\$ 8.50$
ELECTRONIC PROJECTS
USING SOLAR CELLS
O. Bishop

BP0082
This is a book of simple circuits which have applications in and around the home and that are designed to be powered by the energy of the sun. Although, if the reader wishes, they could alternatively be powered by the ordinary button celts or small dry batteries.

128 pages

$\$ 8.50$
following fourteen sections: Electricity. Electrostatics, Electromagnetism, Complex numbers. Amplifiers. Signal Generation and Processing, Communication, Statistics. Reliablity, Audio, Radio. Transmission Lines, Digital Logic and Power Supplies. 512 pages $\$ 16.00$

ELECTRONICS BOOKS ORDER COUPON

(If Insufficlent space enclose soparate list)

For airmail outside Australia add $\$ 5.00$ to these charges.

BOOK TITLE BOOK NUMBER OTY PRICE

Send to:
Freepost No. 4 Federal Publishing
PO Box 227
Waterloo 2017 (no slamp required)
Name:
Total Price of Books
. $\$$
Plus post \& handling s 2.75
(Hlat rate up to 10 books)
TOTALS
Date:
Telephone:
Address:

Postcode:

Please tick box to indicate method of payment: Cheque* / Money Order \square

- Please make payaiole to the Federal Publishing company pty. Ltd. Mastercard \square American Express \square Bankcard \square Visa \square Credit Card No:

Signature
Expiry Date
unsigned orders cannot be accepted As these books are imported, unavoidable delays may occur.

Introducing orCAD/SDT. a complete and affordable schematic capture package. developed for IBM personal computers and compatibles

Now a complete schematic design tiol with extensive part library. schematie cutfut. bill of materials. net listing and design checking

PRICE and PERFORMANCE tOgEther
OrCAD with 1 vear of frogram and manual updates

$$
\$ 1275.00 \text { (ex tax) }
$$

PROMETHEUS SOFTWARE DEVEI.OPMENTS

191 Riversdale Road Hawthorn vic. ? 122
(b) 8196088

For FREE demo disk and literature please contact
ADVERTISING INFO No. 14

The Institution of Radio and Electronics Engineers Australia Commercial Unit 3. Edgecliff Court. 2 New McLean Street. Edgecliff NSW 2027 Phone: (O2)327.4822 - FAX (02)327.6770 - TLX AA2 1822 (Quote User No.SY135)

Sony Developments

Sony Australia recently announced two developments in the company's campaign to expand the Video 8 market. These are: the introduction of a second generation Handycam CCD-V30 and the provision of 8 mm pre-recorded software to Sony video 8 specialists Australia wide.
The V30 boasts a number of technical features such as full recording/playback capability, linear auto white balance, RGB colour filter and RGB colour processing. The image pickup utilises 291,000 pixels. In the creative department the machine has autofocus, 2.5x zoom lens with macro setting and very simple controls and opera-
tions. No doubt vast numbers of fabulously well paid 60 Minutes cameramen will begin their careers with this eminently portable device. The V30 will be sold at all Sony outlets in the country and is priced at $\$ 2,999.00$.
Sony hopes that its development of pre-recorded Video 8 software will introduce a whole new viewing audience to the compact size and mobility of the new format. Video 8 products and the V30 Handycam can connect to any television set and Sony hope that this will make them especially attractive to holiday makers who feel the need of some video entertainment.

107

Teac and the Family

Concemed about the seeming wave of domestic violence which is sweeping through Australia Teac have produced a portable colour TV with a built in video recorder. Teac is hopeful that this development will stop family arguments over TV viewing.

The new unit is scarcely bigger than a conventional 34 cm portable TV set,
weighs a mere 16.4 kg and can be easily picked up. even by children, who will then presumably fight over it. As well as its small dimensions the Teac Televideo also features full timer recording, one-touch record, picture search and automatic rewind. It can be used for all VHF/UHF TV viewing. It will retail for around $\$ 1299$

108

Visionary Video

The JVC company has just released the HR-D47OUM video cassette recorder. JVC say that this machine is the "Video for Visionaries" and has been designed "to fit into your lifestyle". Amoung its features are an 181-channel cable-compatible tuner with MTS decoder, a double azi-
muth 4-head (DA-4) system for quality $S P$ and a number of other interesting devices.

JVC states that its new unit is "incredibly compact" because the tape transport mechanism has been rotated 90 degrees so that the cassette is loaded endways.

109

SIGHT \& SOUND NEWS

Sanyo's Camcorder

In reply to the V30 just released by its rival Sony, Sanyo claims to have produced the 'State-of-the-Art' in this field. The new machine is the VM-800/P. Sanyo claims that this machine is unique in

Australia as it is apparently the only 8 mm camcorder with a double azimuth 3head system and to have both still and slow frame on playback.

110

Polaroid's Freeze Frame

Polaroid have just released a "new device" which it claims will freeze video images and deliver a choice of high quality instant colour prints or 35 mm slides.
The new unit is called the Polarold Freezeframe Video Recorder, and has been de-
signed jointly by Polaroid and Toshiba. The unit is intended to have as wide an application as possible and Polaroid claims that the unit requires no specific technical or photographic expertise on the part of the user. It retails for about $\$ 2800$.

ELEKTOR SOUND MIXER KITS

MICILINE input module S85

STEREO input module input module \$98

HEADPHONE MONITOR OUTPUT TONE \& P Equil
\$112

OUTPUT +

UV LED CONTROL

S95

Nㅏㄴㅡㅡㅡㅜ

POWER SUPPLY module S120

A high quality multi-channels sound mixer which could be expanded to 16 channels per power supply. Five modules are available separately, all with predrilled screen-printed aluminium front panels, knobs, cannon sockets \& components.

Pre drilled black alum. case from $\operatorname{S60}$ (8 modules) 12 \& 16 channels also available.

TOROIDAL TRANSFORMERS

OVER 100 DIFFERENT SIZES
$\begin{array}{llc}15 \mathrm{VA} & 160 \mathrm{VA} & \text { from 6V2~55V } \\ 30 \mathrm{VA} & 220 \mathrm{VA} & \text { Dual Secondaries } \\ \text { 50VA } & 300 \mathrm{VA} & \text { Voltage } \\ 80 \mathrm{VA} & 500 \mathrm{VA} & \\ 120 \mathrm{VA} & 625 \mathrm{VA} & \end{array}$

KIT FOR COMMODORE COMPUTER

Speech Card
Call
Conversion Kit RS232
$\$ 26.00$
Tape Copier
$\$ 49.00$
Edge Connector
S6.95 24 Way
S11.50 44 Way
HI-COM UNITRONICS INT. PIL

7 PRESIDENT LANE, CARINGBAH, N.S.W. 2229
PHONE: (02) 5247878

P.O. BOX 626, CARINGBAH, 2229

Visa, Bankcard and Mastercard Welcome

Mail Order

Postage S100-S250

$\$ 7.00$

Less than $\$ 50$............. S3.50 Above $\$ 250$

S4.50 Heavy items adds extra

IN THE RING

Louis compares four new power amps and identifies the strengths, and weaknesses of each.

Louis Challis

There are four contestants in this review. In one corner stands the American contender, the relatively new Carver model M1.5t. This is the latest project of Bob Carver, one of America's (and undoubtedly the world's) most innovative electronic designers. This particular amplifier boasts a number of exciting features including the highest power output per cubic volume (or per weight) of the four, with peak power outputs of 625 watts into 8 ohms which places it more in a professional class than it does in the consumer field.

In the second corner stands the plucky Australian contender the 'ME Sound' Model ME75 amplifier which is the tried and proven brainchild of Peter Stein an Australian electronic designer who has rejected many of the older concepts relating to feedback and conventional amplifier design, in preference to his long held and almost 'avante garde' belief in the concept of minimising loop feedback

In the third comer we have the Perreaux EXP 1050 amplifier from the well known • Shaky Isles' firm of Perreaux which, although not their best selling amplifier, is able to compete very favourably on the work markets. This is because the drop in the New Zealand dollar coupled with lower manufacturing costs, government support and a real marketing flair (which our Australian manufacturers would do well to emulate) they have carved out a very successful niche for their products.
Last but not least. in the fourth corner
from Japan, we have the Technics SE-A5 Mk2. This amplifier combines some of the flashiest features of modern Japanese consumer electronic design with the pragmatism and feature loaded approaches which have tended to give the Japanese the lion's share of the international consumer electronics market.

Even though each of these amplifiers is intended to perform a nominally similar task, and is designed to provide at least 100 watts nominal output per channel, thereafter there are few similarities in terms of either their physical or electrical parameters.

Carver

The Carver M1.5t is the amplifier with the highest selling price (RRP $\$ 3,1(0)$) and the highest power output, particularly considering its small dimensions. The Carver amplifier's circuit design is based on a radically different set of principles to the staid and more conventional principles utilised in the other three amplifiers. It has been able to achieve lusty power outputs by directly avoiding the classical high energy storage and high capacity power supply system. Instead this amplifier utilises a new, and as it happens, a very effective means of powering the output stay with smaller, ligher circuit design concepts. Carver describes this system as a Magnetic Field Power Amplifier as it utilises solid state circuit principles which are in many respects analagous to the magnetio amplifier concepts which were in w... in the mid to late $40 \mathrm{~s}^{\circ}$. The 't
model' designation of this particular amplifier indicates that it is the consumer oriented derivative of Bob Carver's highly successful commercial amplifier unit which has taken the US professional mobile music market by storm over the last two years. The market's approbation is primarily because of its extremely low weight and small size.
The frontal appearance of the Carver M1.5t is based on the same 'low key' visual statment that has been one of Bob Carver's hallmarks for the last 16 years. The front panel features a conventional 19 inch rack panel with sensibly rounded corners and two small handles which also provide front panel protection. The panel anotation has been executed in light grey silk screening that is far too muted to be readily legible except in good light. I also found that it was only legible if your eyesight is good. At the left hand corner is a small light emitting diode which indicates overload, over-temperature, over voltage, loudspeaker thermal limit. infrasonic fault, ultrasonic fault and warm-up in progress.
On the right hand side of the panel are two vertical rows of light emitting diodes (LED's) the bottom pair being continually illuminated, except under fault conditions, whilst the six LED's above light up at -20 , $-15,-10,-5$ and 0 dB relative to 350 watts (rated output). The top pair are only intended to illuminate when dynamic head room has been exhausted.

Loop Feedback

One of the most critical design aspects of the Carver amplifier has been his approach to the use of loop feedback around the amplifier circuit. Unlike most other circuit designers, Carver has now accepted the philosophy of Peter Stein and certainly acknowledges that "if you want maximum power output from a circuit, then you have to minimise your loop feedback as the two requirements are counter to one another". As a consequence of his approach, this amplifier avoids wasting monumental amounts of power in the feedback loop and directs that power to where it is really wanted. i.e: into the output terminals.
The inside of the Carver amplifier is
neatly designed and fabricated with the main output transistors mounted on a large heat sink assembly carefully located at the bottom of the amplifier. The heat sink configuration and its relationship to the folded and slotted bottom of the chasis is very unusual and very effective. The top of the cabinet is also neatly slotted above the line of the two primary vertical printed circuit boards which are located on each side of the main transistor heat sink arrays.
ME
The 'ME Sound' ME75 amplifier is the second derivitive of this series of amplifiers that I have reviewed. In 1984 (See ETI March, 1984) I reviewd one of the first models of the ME75 amplifier which, although although very good, exhibited a number of minor deficiencies which I highlighted in my review. In the ensuing years Peter Stein has significantly modified the basic design implementing a number of practical improvements. In 1984 the ME amplifier seemed expensive. Today with a somewhat deflated Australian dollar and equally depressing increase in the price of European, American and Japanese high fidelity equipment, the price of an ME75 amplifier looks far more attractive and competitive.

Peter Stein's design philosophy is based on the concept of utilising complementary symmetry output transistors, each of which is driven by its own ring emitter transistor with a circuit which is designed to achieve maximum possible overall linearity in terms of the transfer characteristics extending over the widest possible dynamic operating range.

By avoiding loop feedback, the maximum possible power output can be transferred to the output terminals and consequently this amplifier went against the trend of massive loop feedback only incorporting feedback within individual stages. This concept of course places unusual, and 1 believe more than somewhat restrictive, demands on the selection of the individual active components. Peter Stein's approach has been to buy copious quantities of transistors, each of which is individually tested so that each set of transistors utilised in his amplifier have carefully controlled matching sets of transistors to minimise differential loop gain problems. The associated passive components of 1% metal film resistors, $.05 \%$ wire wound resistors and selected capacitors together with the minor semiconductors, all integrate to provide an unusual degree of customised circuit design. This approach, although expensive in terms of time and effort is regrettably essential, for without it, the fundamental design concept would just not
work.
Peter Stein believes that this approach provides a superior sound in which the transient conditions are not dominated by the loop feedback as they are in other amplifiers. He and his adherants also believe that the resulting sound is more natural and less harsh or clinical. The second most important feature of the M E design is the use of 'soft clipping' so that even under overload conditions the nasty odd harmonies, which can cause so much damage to your loudspeaker, are reduced to the lowest possible level. The third feature is minimisation of dc current in the output circuit by a simple design approach which really appears to constitute part of the protection circuit. The fourth component is a separate protection system wich monitors sub-sonic or ultrasonic outputs, overdrive and other debilitating problems which so often lead ot the premature demise of your speakers or your amplifier. This is achieved by disconnecting the ac power supply.

These integrated features result in an amplifier which is capable of providing unusually stable output with both low values of load impedance, capacitive or inductive loads (of the type produced by Infinity, Apogee, Accustat, Phase Linear, AR or some Gale speakers). This amplifier quite happily works with these types of loads connected and does not complain or introduce current limiting into the output circuit as do the other three amplifiers.

Appearance

The appearance of the ME75 power amplifier is very similar to the unit which I reviewed in 1984. The most significant difference has been the rounding off of the sharp corners of the heat sink, so that you won't cut your hands. The front panel still has two lights, a red one for 'stand-by' and a green one for 'power on'. The back panel still features a pair of gold plated, well displaced RCA input sockets at either end of the panel and two pairs of large and very sensible binding posts for connecting a single set of output speakers. The amplifier has been designed to use the associated ME25 pre-amplifier so that remote control of the amplifier power ca be selected by a rear panel switch if desired.

The amplifier's power supply is unusual in that Peter Stein has realised that the choice of electrolytic capacitors exerts a major influence on the power supplies transient performance and ultimately how the amplifier sounds. Peter Stein utilises 24 off 4700 microfarad capicitors mounted on two separate printed circuit boards to achieve lower self-inductances and better transient performance. These are combined with a large double ' C ' core transformer centrally located at the back of the chassis. The circuit design, the wiring harnesses and the forms of construction that are used are reminiscent of the best radio transmitter design concepts which I learnt in the late ' 50 s '. Equally important the re-

AMPS COMPARISON

tail price now appears to be right and the technical performance has been further improved

Eurovox

The Eurovox by Perreaux EXP1050 is one of the tried and proven Perreaux designs which was developed primarily for the American market. It features a brushed
satin aluminium front panel with clearly legible maroon and dark grey lettering. The 'Power On-Off Switch', shrouded red bezel light and a pair of switches for selecting A or B speaker systems are positioned on the left hand side of the panel. The headphone socket is located on the right. The rear panel features two pairs of colour coded red and black gold flashed
speaker sockets laid out across the bottom of the panel, a pair of gold flashed RCA coaxial input sockets and various warnings in relationship to fuses, electric shock and ventilation which I suspect were also developed for the American market

The Perreaux amplifier circuit design appears to be quite conventional with a large impregnated mains transformer lo-

Carver PM it
Hum and Noise: one third band analysis re 1 watt into 8 ohms.
cated immediately behind the front panel. The output stage uses two large heat sinks with complementary symmetry transistors which have been placed in the middle of the amplifier. At the rear of the chassis, two large $10 \% 0 \mu \mathrm{~F}$ capacitors are mounted on a printed circuit board and a relativly small number of pre-driver transistors are mounted on the same board together with protective fuses and other minor components.

The Perreaux amplifier is well made and solidly assembled. Of all the amplifiers, this unit contained the least number of active components and by and large appeared to be the simplest in terms of electronic design and mechanical components. It offers sensible practical performance at a competitive price.

Technics SE-A5 Mark 2

The Technics SE-A5 Mark 2 is physically the largest of the four amplifiers and embodies many of the best and latest Japanese design features in terms of visual impact or functional ergonomics. The front panel in particular features 2 large rear illuminated peak output level or power meters, which span the full width of the panel. Both of these meters are calibrated in terms of dB from -60 to +5 as well as in terms of power in watts into an 8 ohms
load. The power scale covers the range 0.001 watt to 300 watts. The lower section of the front panel features a 'POWER On-Off switch, a headphone socket, 4 speaker switches with one being an OFF position, MAIN, REMOTE and MAIN AND REMOTE. A matching set of 5 light emitting diodes are incorporated in the lower section of the meter movement bezel to indicate power ON, SAFETY OPERATION (malfunction), MAIN REMOTE and MAIN AND REMOTE loudspeakers and the last on the right hand side being COMPUTER DRIVE (auto class A).

The rear panel features 4 large feet to protect the wiring and terminals for those cases where the amplifier is stacked on its end. The inputs are provided with 2 gold flashed RCA coaxial sockets and these are controlled by 2 separate volume controls for left and right channel inputs. Output connections are provided with 4 pairs of very large and extremely well designed screw terminal blocks which have been designed for accepting bare wires or spade lugs. I consider these terminals are just about the best connectors that I have yet seen on any amplifier of this type.

The inside of the amplifier is exceedingly well executed with the minimum amount of separate wiring or harnesses
and a fully encapsulated transformer on one side.
Unlike the other units, it utilises phenolic boards which are clearly labelled. They are mounted between the two vertical main heat sinks with a cleverly designed thermal dissipation circuit for the four complementary symmetry output transistors. The output are terminals are connected internally to an unusual form of printed circuit board inter-connection system which is itself then connected by short runs of insulated wiring to a group of wire wrapped terminals on the main printed circuit board. This seems a somewhat complex way of making the connections and the reasons underlying this approach are not inmediately clear. The unit incorporates a very effective and unusually large protective circuit board.

Comparing

The frequency response at each of the 4 amplifiers was essentially 'ruler flat' over the frequency range 10 Hz to 10 kHz with the Perreaux amplifier alone exhibiting a rising frequency response peaking by only +1 d B at 36 kHz and smoothly dropping back thereafter. In practical terms the frequency responses of all 4 amplifiers were exemplary, as good as one could ask for in , we home environment.

> Among other things, youll tear the wings off hornets.

Earn your Certificate of Technology with the RAAF and you'll work on some of the world's most sophisticated military aircraft, including the new F/A-18 Hornet. To find out more, send off the coupon immediately.

Post this compon to find out more ahous carning vent Certificate of Technology to: \mid R.A.AF Careers. GPO Box XY\% (in the Combal Cit nearest sou).

Name
Address
Postude
Telephone _Dati. of Birth
Highest Educ. level attained or being studied
Or phone an R.A.AF Careers . Tdiser on . Wharde 212 14.55. Braboane 2262626. Canberra 572311. Hobant 347077. Mehonarme 6479755 Perth 3256222. Sidnes 2195555

CERTIFICATE OF TECHNOLOGY©RAAF Authorised by the Dipe of Defence $\overline{A D} \overline{V E R T I S I N G I N F O} \overline{N O} 32$ KT. $\overline{32} \overline{149}$ QP. 106 B

AMPS COMPARISON

The power output provided by each of the amplifiers was undoubtedly the major difference. One could almost directly relate the peak power output to the price.

Thus by reference to the maximum power output into 8 ohms (measured in accorance with the IHF-A-202 procedure), the dollars per watt for the Carver amplifier is approximately $\$ 5$, for the ME75 is $\$ 13.8$, for the Perreaux EXP1050) is $\$ 5.4$ and for the Technics SE-A5 Mk2 \$8.2. The above figures however, tend to be a little confusing for a variety of other factors. The first of these is the significant difference in terms of each of the amplifier's ability to provide the power output on a continuous basis, as well as their ability to effectively produce power into lower impedances. i.e.. 4 ohms and most particularly 2 ohms (see box).

The signal to noise characteristics of each of the amplifiers revealed a wider variation than I would have expected. The lowest performance was still quite acceptable and was provided by the Carver.
The lowest distortion figures were provided by the Perreaux amplifier. It produced distortion components that are literally parts per million.

Distortion components

The Technics produces distortion components that are one order of magnitude higher and surprisingly higher than 1 would have expected at low power levels for the draft IEC test procedure. Both the Perreaux and Technics amplifiers incorporate copious quantities of negative feedback around the loop and thereby reduce their steady state distortion components to very low levels.

By contrast the ME75 amplifier has distortion components that are typically one order of magnitude higher than that provided by the Technics. The Carver has distortion components that are generaly comparable in terms of the IEC high frequency distortion figures.

Subjective Testing

When it came to subjective evaluation of these amplifiers I decided to utilise a range of four different speakers including my normal B and W 80 F . reference speakers. a pair of Fisher Type ST550 monintor speakers (which will safely handle peak signals in excess of $6(k)$ watts and produce ear shattering sound levels), an exciting new pair of Gale Model GS402 speakers which offer a wide dynamic range as well as low impedance characteristics, and last but not least. a pair of Richter Oracles. In each case I used a preamplifier from the same manufacturer as the power amp.

All of the amplifiers have the ability to produce adequate power output for almost any domestic situation, provided the
speakers have reasonable sensitivity. It is only at the highest power levels, and thus at the highest sound pressure levels, that one becomes directly aware of the most significant difference between each of these four amplifiers. In terms of power into 8 ohms, the Carver MI.5t wins hands down, whilst in terms of power into low impedances or into tricky impedances, it was clear that the ME75 has the competition sewn up. Audible distortion, as such. does not appear to be a significant factor, although both the Carver Mi.5t and the ME75 do appear to sound different to both one another, as well as to the other two amplifiers. In this respect the Me75 does appear to have a slightly more mellow sound, the Carver M1.5t has an ever so slightly harsher sound, whilst the Perreaux and Technics appeared to exhibit what I can only describe as a somewhat more 'clinical' sound.

Ranking

If I was asked to provide a ranking for each of these amplifiers in terms of both objective and subjective characteristics,
the following would appear to be most appropriate.
The first in terms of (lowest) price is undoubtedly the Perreaux which is half the price of the next ranking amplifier. The first in terms of absolute power and dollars per watt is unquestsionably the Carver MI.5t. The pre-eminent amplifier in terms of its ability to handle nasty speaker impedances or in terms of its ability to drive very low impedance is unquestionably the Me75. This amplifier also produces an audible performance on both normal programme content as well as under overload conditions which 1 found particularly pleasing. The most attractive and functional of the amplifiers, which also appeared to provide the most 'clinical' sound was the Technics SE-A5 Mk2.

As you can see everybody 'got a guernsey' because each one of these amplifiers has a specific set of attributes which are likely to attract potential buyers. Provided you have purchased your amplifier for the right reasons, whichever amplifier you end up buying, I feel sure you will be happy with the choice.

	$\frac{\text { Carver }}{M 1.5}$	M \& E Sound ale75	$\begin{aligned} & \text { Perreaux } \\ & \text { EXP1050 } \end{aligned}$	$\begin{aligned} & \text { Technics } \\ & \text { SE-AS/II } \end{aligned}$
Price	\$3,100	\$1,750	\$919	\$1,859
Nominal Rating				
Max O/P Power Watts	350w	120W	100W	150w
8 ohms	450w	127W	169W	225W
4 ohms	600w	225W	294W	406 W
2 ohms	Shuts down	361 W	245W	Shuts down
Max Power - 8 ohms 1HF-A-202 Test	625W	127W	169W	225w
Frequency Response $\pm 3 \mathrm{~dB}$	$3 \mathrm{~Hz}-128 \mathrm{kHz}$	$0-210 \mathrm{kHz}$	$2.5 \mathrm{~Hz}-180 \mathrm{kHz}$	$1.5 \mathrm{~Hz}-156 \mathrm{kHz}$
$S / N \mathrm{~dB}(\mathrm{~A})$				
re/watt	$\begin{aligned} & 82 \mathrm{di} 3(A) \\ & 81.5 \mathrm{~dB}(\mathrm{Lin}) \end{aligned}$	$\begin{aligned} & 96 \mathrm{~dB}(A) \\ & 85 \mathrm{~dB}(\mathrm{Lin}) \end{aligned}$	$104 \mathrm{~dB}(\mathrm{~A})$ $91 \mathrm{~dB}(\mathrm{Lin})$	$\begin{aligned} & 96 \mathrm{~dB}(\mathrm{~A}) \\ & 91 \mathrm{~dB}(\mathrm{Lin}) \end{aligned}$
Sensititity for watt/8 ohms	132 mV	110 mV	138 mV	80 miV
IEC High Freq. Distortion @ rated power	0.1\%	0.19\%	0.013\%	0.03\%
THD @ rated power 100 Hz	0.39\%	0.15\%	0.0016\%	0.011\%
1 kHz	0.34\%	0.13\%	0.001\%	0.011\%
6.3 kHz	0.49\%	0.33\%	0.0015%	0.01\%
O/P impedance milli ohms	22	164	31	85
Channel separation kHz	$-37 \mathrm{~dB}$	-91dB	$-90 \mathrm{~dB}$	$-66 \mathrm{~dB}$
Dimensions Width	480 mm	437 mm	430 mm	430 mm
Depth	273 mm	410 mm	340 mm	416 mm
Height	90 mtn	120 mm	100 mm	178 mm
Weight	9.8 kg	15.5 kg	12 kg	18.4 kb

NOW AVAILABLE FROM THE U.S.A. - THE MOST SOUGHT AFTER RANGE OF AUDIO PRODUCTS.

DOMESTIC MAGNETIC FIELD AMPLIFIERS

M200t 120 W/Channel into 8 Ohms. M1.Ot $200 \mathrm{~W} / \mathrm{Ch} a n n e l$ into 8 Ohms. M500t 251 W/Channel into 8 Ohms M1.5t $350 \mathrm{~W} / \mathrm{Ch} a n n e l$ into 8 Ohms.

COMMERCIAL MAGNETIC FIELD AMPLIFIERS

PM175 175 W/Channel into 8 Ohms. PM350 350 W/Channel into 8 Ohms. PM1.5450 W/Channel into 8 Ohms.

PRE AMPLIFIERS

C1 Sonic Holography Preamplifier C2 Laboratory Standard Preamplifier 4000 t Surround Sound Control Console

COMPACT DISC PLAYERS

DTL 50 Remote Control with Digital Time Lens.
DTL 100 Compact Disc Player with Digital Time Lens.
DTL 200 Remote Control with D.T.L. \& Time
Domain Correction.

TUNERS

TX2 AM/FM Stereo Tuner Asymmetrical Charge-Coupled FM.
TX 11 A FM/AM Stereo Tuner Asymmetrical Charge-Coupled FM.

M1.5t MAGNETIC FIELD POWER AMPLIFIER
POWER OUTPUT: 350 W/Channel into 8 Ohms. RESERVE POWER: 600 W/Channel into 8 Ohms. DYNAMIC HEADROOM: 750 Watts per Channel.

C1 SONIC HOLOGRAPHY PRE AMPLIFIER

RECEIVERS

900100 W/Channel into 8 Ohms. 150150 W/Channel into 8 Ohms. 2000200 W/Channel into 8 Ohms. FM/AM Stereo, Remote Control. Sonic Hologram Surround Sound.
DTL Digital Time Lens
C9 Sonic Hologram Generator
MCt Moving Coil Transformer

SOON TO BE RELEASED!!!

- AMAZING LOUDSPEAKERS.

Direct drive full range ribbon system with Unidrive Planar Sub-Woofer system - 1000 Watts RMS.

- PM2.0 - Professional Amplifier. 465 Watts RMS/Channel into 8 Ohms. Weight: 4.8 Kgs .

SOLE AUSTRALIAN DISTRIBUTORS: CARVER AUDIO AUSTRALIA

VIC. - 112 JAMES STREET, TEMPLESTOWE 3106. TEL: (03) 846 3022. FAX: (03) 8463950. N.S.W. - 63 YORK STREET, SYDNEY 2000. TEL: (02) 2621304.

THE END OF FINGER FLEXING: THE OMNIREADER IS HERE

Sick and tired of entering data from the keyboard? This device will take the tedium out of it; if you can make it work.

Jon Fairall

The interface between the user and the computer is still one of the biggest problems in computer technology. No matter how efficiently the computer can massage data once its in the machine, entering it is still a tedious, boring, error prone operation.
There have been a number of attempts at solving the problem. Apple invented the
mouse; other variations on the theme exist like the trackball. Digital tablets, light pens, even touch screens, have all being marginally successful attempts to make the interface more ergonomically satisfactory. But none of these directly addresses the problem of entering text.

Over the last few years, optical character readers (OCRs) have begun to appear on an

experimental basis, and now the first commercial machines are starting to creep onto the market. Mostly they have been expensive, hard to interface to any other machines and not particularly efficient. Melbourne company, Audio Engineers, however, has lately been promoting a device called the Omnireader OR 1, claimed to be the world's first cheap, effective practical text reader. It's made by Oberon International in the UK, and was released there in late 1985.
The Omnireader consists of a solid base marginally bigger than an A4 sheet of paper. On the base is a ruler designed to fold down over a sheet of paper, and a small reading head that the operator pulls along it. To input data into the computer, the operator pushes a button and pulls the head across the text. The button operates a light in the head which illuminates the text. The patterns revealed under the light are matched against patterns held in ROM, and thus letters identified. Data from the receive head is converted into ASCII characters, and sent to the computer via an RS232 serial port.

The Omnireader contains four different types of letter shapes (founts) in its memory. These cover some of the more common types of typewritten characters. It is possible to download new founts to the machine, which increases its potential. It also has the ability to read either large or small type.

To start the Omnireader, it's necessary to run some software provided on a disk with the system. This contains drivers for Wordstar, Word Perfect, Lotus 1-2-3, PFS and dBASE. It's also possible to make your own driver so that you can customize the system to work with whatever software you have. After you run the Omnireader disk and the program disk that carries the specific application program you want to use, the Omnireader may be used as a direct substitute for the keyboard, and data read from the printed page directly into the program.

For the purposes of this review, I set up the Omnireader using Wordstar on a 'PC clone'. One opens a file in the normal manner, and then procceds to enter text. I can make this statement only after I spent the obligatory half hour working out how to make the two devices talk to one another. Since the Omnireader looks just like a modem to the computer, it's not really all that difficult. The manual is quite clear and relatively simple to follow.
So, how well does it work? A first cautious answer is that there is definitely a knack to using it properly. Theoretically, the speed at which the head sends the letters makes no difference to the accuracy of the machine. A 'clock' is provided by a narrow row of black and white strips in the window of the ruler which is supposed to ensure that data is sent to the computer with the correct spacing. Nevertheless, it's instant death to stop once you've started a line. One can also defeat the clocking mechanism by going too slow or too fast. If you fly across the page, the machine will give a long and irritating beep.
Another thing that gives the neophyte
user trouble is the placement of the ruler relative to the lines of text. It's not so bad if you lay the ruler down too high, because the machine seems able to ignore the tails of the letters hanging down from the top. However, if you place it too low, so that the top

0Ω

. . . the Omnireader may be used as a direct substitute for the keyboard and data read from the printed page directly into the program. 28
of the next line is visible in the window, the machine frequently refuses to read.

However, after I'd been using it for a while, these difficulties seemed to disappear somewhat, and I became conscious of other features. The Omnireader uses audio cues to tell the operator when a mistake has been
made. Every time it makes a mistake, it beeps at you. If it docs a successful read, it beeps twice. After a while it is unnecessary to look at the screen to confirm a good or bad read. One is inclined to just listen to the beeps, which is a great advantage when concentrating on the paper and the tablet rather than the computer screen.
I was distinctly unimpressed by the mechnical feel of the read head, which is rather flimsy when it's mounted in the ruler. There also seems to be a problem with the switch. On the model we had for review it malfunctioned frequently. It looks and feels as if a bit of experience in the world of hard knocks would change its geometry just a tad.
Should you buy one? At $\$ 1099$ retail price, it's not outrageously expensive, so it's worth thinking about if you have a bit of keyboarding to do. I suspect that in a practical situation it would be a blessing. Perfect accuracy would be great, but it's not mandatory. If you get 95 per cent of the text into the computer in correct form, it's no difficult matter to go through on the word processor and tidy it up.

The Complete Instrument

Once again, Kikusui have outdone themselves.

Their Com-7000 series offers all of the hi-tech features you would expect of such a powerful CRO, yet they have provided two other outstanding benefits. The COM-7000 Series is remarkably easy to use and it is affordably priced.
So what is the COM-7000 Series? It is a new range of high performance 4 -channel CRO's with CRT read-out. More than just a range of CROs, it is a complete instrumentation package
incorporating a frequency counter and a volt meter (DC, AC, p-p).
But most importantly, under cursor control, the time, frequency, phase, duty cycle, voltage and overshoot of a displayed waveform can be measured.
The COM-7000 Series come as either non-storage or high sampling frequency digital storage scopes and in 3 bandwidth ranges: $60 \mathrm{MHz}, 100 \mathrm{MHz} \& 200$ MHz .
Non-storage features include: full dual timebase up to $\mathrm{lns} / \mathrm{DIV}$ on the 200 MHz model, and $1 \mathrm{mV} / \mathrm{DIV}$.

In digital storage mode, features include: 4 input channels \& 4 reference memories, user selectable pre-trigger points, simple to use post storage expansion and GP.IB programmability.
For more information, call Emona at (02) 519 3933. Or write: Emona Instruments PO Box K720, Haymarket, 2000. Fax (02) 5501378.

EMONG
'THE TECHNOLOGY HOUSE'

C-ITOH LASER PRINTER

Hot LIPS from C-Itoh, setting Anitech alight

Jon Fairall

The concept of Laser printing has been around since the late 1960's, when IBM demonstrated the very first model. However, its only been in the last few years that laser printers have come down in price to such an extent that they are now available to the average small business user. With prices still in thousands rather than the hundreds of dollars however, it will be a while before they are common equipment in the domestic environment.
In the nature of the case, as soon as the technology becomes available, one manufacturer after another delivers their product, and we go from famine to glut in weeks. The latest entrant into an already crowded marketplace is C-Itoh. It was imported by Anitech, a little while ago as the LIPS 10.
There are a number of considerations that set a laser printer apart from the run of the mill daisywhecls and dot matrix type machines. Obviously, first and foremost is the print quality. However, the software required to drive the system is just as worthy of consideration. This is because, unlike conventional printers, a laser printer is capable of an incredible number of graphics tricks. Another set of consider-
ations applies to the mechanics of the system. Like photo copiers, they have complex feed paths which limits both the speed with which they can deliver pages and their propensity to jam paper. Further considerations involve the amount of noise emitted during printing and of course the physical size of the box. In terms of the ordinary work office, neither of these factors is insignificant.

Mechanics

The cornerstone of the LIPS 10 is a laser working at ultraviolet wavelengths (632 $n \mathrm{~m}$). An electrostatic system is used to create an image on the paper, using exactly the same principles as are used in a photocopier. A drum is coated with an or-

ganic photo conductor. This has the characteristic that it will store a charge until illuminated by light. In the LIPS 10 the drum is charged up to -5 kV evenly over its whole surface. When illuminated by the laser, the potential is reduced to close to zero volts. Then a postively charged toner is applied to the drum. The toner is a powdery substance which adheres to the areas with strong negative charge, and falls off the areas with no charge. In this way the latent electrostatic image becomes visible. Then the image is transferred to the paper, once again using an electrostatic process. A very strong negative charge, greater than the original 5 kV , is applied behind the paper. This draws the toner of the drum onto the paper. Finally, the paper is heated and then squeezed between two rollers, resulting in a good bond between the toner and the paper.
When you open up the machine, the impression is of millions of rollers, cogs and drivers, all adding up to an immensely complex system. In fact, it has all been designed to keep the paper as flat as possible, presumably with the idea of minimizing paper jams and other supply problems. It seems to work; during the time it was in our office it didn't jam once, while our venerable photocopier spent most of its time digesting next months copy. This is in spite of the fact that the LIPS 10 can deliver 10 pages a minute. From a mechanical point of view, its quite an achievement.

Print quality

The most important part of this whole process is the control of the laser itself. It is the laser that marks the paper, so the accuracy with which it can be pointed determines the way the page looks. The laser is sited at the back of the machine, and the beam is bounced round the periphery of the box by mirrors while it is passed through expander lenses to make the dot big enough to be seen. On the way, the beam is passed through an optical modulator. This is a crystal of Lead Molybdate which has the property that its refractive index, ic, the amount it bends light as it passes through, changes when
the crystal is hit by acoustic energy. In this way its possible to deflect the beam out of the optical path so that it doesn't fall on the paper. After the modulator the beam hits a multi-sided polygon mirror spinning at 4500 rpm . The affect of the rotation of this mirror is to scan the beam across the width of the paper. Because the beam is modulated, the effect is of a series of dots, across the page. At the same time the paper is being pulled through the print mechanism so a raster scan pattern is generated, just as in TV transmissions. The definition turns out to be about 12×12 dots to the millimetre, while its possible to control the position of the dots to $1 / 32$ of this, ie, 2.6 microns.
The effect of this density is that the dot matrix pattern clearly visible on impact printers is no longer visible, and the dots appear to flow into one another. Because of the way it works, the LIPS 10 is capable of an infinity of character shapes, or fonts. Indeed, its capable of an infinity of graphics characters of all sorts, all nicely rounded with no dot matrix visible at all. The quality would be photographic but for the fact that only two tones are visible.

Software

However, to unlock all the secrets of the LIPS 10, there is no substitute for controlling it via it's own software language. You can operate the LIPS 10 as casily as any other printer via a centronix or RS232 port, and it will respond to most of the standard printer commands for underlin-

ing, bold font and so on. Indeed, setting it up to take the standard commands and do the normal tasks is simplicity itself, since there is a little control interface on the front panel that allows you to set up all the important parameters for designing the page, such as margins, fonts and so on.

However, if this is all you want you would be silly to buy a laser printer. The front panel gives you no more features than a conventional machine. It's the programming language that comes with the machine that allows you access to all the graphics power of the printer. It works by including print commands in an ordinary text file. You being programming with a ($0 \|$ symbol, and finish with EXIT; everything between these two lines is interpreted as a printer command and not committed to paper.

The LIPS programming language has about 50 commands in it. There are commands to move the cursor, draw lines, circles, squares, arcs, pie charts, and barcodes, and for each of these, three or four ways of defining position. There are commands for changing the paper size, the margin size, the area filled by text and so on. A special set of commands allows the creation of fonts, i.e: special sets of al-

phanumeric characters, and macros, which are graphic characters defined by a special name. Both fonts and macros are made up on a bit mapped basis, so that you must define whether each individual dot in a grid should be on or off.

User friendly

There is no doubt that used properly, the LIPS 10 would allow one to turn out pages of exceptional quality. The probiem I have with it is in imagining who the machine is for, rather than what it will do. As I said at the beginning, these machines are not cheap. The LIPS 10 sells for $\$ 10,000$ or so, so it is weil out of the price range of the average computer enthusiast. If it has a market, it would be in the small business environment. But then, who will operate it? Certainly not the secretary, whos is probably still busy learning to handle a word processor. If a special programmer is required every time a new printing job is required, much of the time saving value of the device will disappear.

In this area, C-ltoh is very much its own worst enemy. The manual is short, succinct, and almost totally incomprehensible. You may deduce from this that it took me a couple of days to figure it all out, and much of the time was spent, as with any new computer system, cursing because commands just didn't seem to work the way they were supposed to. Just setting up the printer so that it responds to the correct paper length turns out to be a problem. I can't imaginc anyone not well versed in computers putting up with it.

ANItech seems to recognise that they have a problen here. They are planning a face-to-face instruction course as part of the purchase price, in which they will spend a day or two with operators. It's reassuring to know that this is the case, but I cant help feeling that in this day and age office equipment ought to be designed to be so simple that people can operate it first time out.

คワ A 50 MHz BWD 821 OSGILLOSGOPE FROM PARAMETERS WORTH S1200 (品)

ALL YOU HAVE TO DO IS SEND IN THE COUPON BELOW

Send this coupon to: ETI-PARAMETERS COMPETITION P.O. Box 227 , Waterloo, NSW 2017
Q Why should the public support the Australian Electronics Industry?

A.

Q Is BWD an All-Australian Company? Yes/No

A.

Name.

Company/Institution

Address

CONDITIONS:

This contest is open to all persons normally resident in Australia and New Zealand, with the exception of members of the staff of Parameters, The Federal Publishing Co, Hannanprint, Eastern Suburbs Newspapers and/or associated companies.
The winner will be notifed by telegram. Contestants must use the coupon entry form cut from the magazine or a photocopy with the date/page number cut from the magazine and attached. The contest is invalid in States where local laws prohibit entries.

Entries close 30th August, 1987

WHE Cticro sUYEN'S cUIDE

For anyone remofely inferesfed in buying a CRO we offer one of most comprehensive guides ever published in any magazine.

$\begin{aligned} & \text { D } 0 \\ & 2 \\ & 2 \\ & \mathbf{z} \end{aligned}$							$\begin{aligned} & ? \\ & \mathbf{I} \\ & 0 \end{aligned}$	$\frac{0}{3}$ 2 2 7 0 0 7 7	$\begin{aligned} & \text { O} \\ & 2 \\ & 2 \\ & 10 \\ & 0 \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \underset{D}{0} \\ & 0 \\ & \text { OD } \end{aligned}$			$\begin{aligned} & \text { ㅁ } \\ & \stackrel{\rightharpoonup}{2} \\ & < \end{aligned}$					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & D \\ & 0 \\ & n \end{aligned}$		$\begin{aligned} & \frac{\varrho}{N} \\ & \pi \\ & \exists \\ & \exists \end{aligned}$		\sum \sum 0 0 0 2 2 -1 \vdots 3 0	
lecroy	9480	17908	298	2	1	4	N	D	D	Y	Y	198-.092		Y	1-5909	18	1/28	D	N	$192 \times 365 \times 465$	15	12	ETP OXFORD
meguro	M01255		100	3	1	8	Y	A	A	N	N	. 5-. 62	Y	Y	5-598	3.5	$1 / 22$	N	N	294×152×390	7.8	12	ELMEASCO
AARON	BS691		29	2	1	2	Y	A	A	N	N	. 5-. 02	N	N	20-599	17	1/20	N	N	162×294×352	7	12	ELMEASCO
AARON	BS3105		15	2	1	2	Y	A	A	N	N	.5-.5	N	N	18-299	24	1/20	N	Y	$113 \times 223 \times 298$	4.5	12	Elmeasco
AARON	B5659		50	2	1	2	Y	A	A	N	N	. 5-. 2	Y	Y	. 5-190	7.7	1/20	N	N	$145 \times 289 \times 422$	9.8	12	Elmeasco
TOPWARD	7028		20	2	1	2	N	A	A	N	N	.5-. 2	N	N	5-598	17.5	1/25	N	N	$314 \times 165 \times 425$	7.1	12	ELMEASCO
TOPWOOD	7821		20	3	1	3	Y	A	A	N	N	.5-. 2	N	Y	. 5-598	17.5	1/25	N	N	$314 \times 165 \times 425$	7.1	12	ELMEASCO
TOPWOOD	7022		20	3	1	3	Y	A	A	N	N	.5-. 2	Y	Y	5-590	17.5	1/25	N	N	$314 \times 165 \times 425$	7.1	12	Elmeasco
TOPWOOD	7823		29	3	1	3	Y	A	A	N	N	.2-.5	Y	Y	5-598	17.5	1/25	N	N	$314 \times 165 \times 425$	7.1	12	Elmeasco
TOPWC.OD	7848		40	2	1	2	N	N	A	N	N	.5-. 2	N	N	. 5-598	8.8	1/25	N	N	$314 \times 165 \times 425$	7.5	12	Elmeasco
TOPWOOD	7841		48	3	1	3	Y	A	A	N	N	.5-. 2	N	Y	5-598	8.8	1/25	N	N	$314 \times 165 \times 425$	7.5	12	ELMEASCO
TOPWOOD	7842		40	3	1	3	Y	A	A	N	N	.5-.2	r	Y	5-598	8.8	1/25	N	N	$314 \times 165 \times 425$	7.5	12	ELMEASCO
GOULD	1684		20	4		4		D	D	Y	Y	200-. 2	Y	Y	18-290		1/30	A	N	$491 \times 155 \times 425$	8	12	Elmeasco
GOULD	4072		100	2		8		D	D	Y	Y	26-.02	Y	Y	5-298		1/20	D	N	$437 \times 298 \times 505$	11.4	12	ELMEASCO
GOULD	4874		100	4		8		D	D	Y	Y	20-. 2	Y	Y	5-200		1/20	D	N	$437 \times 288 \times 505$	11.4	12	ELMEASCO
GOULD	1421		20	2	1	2	Y	D	A	N	N	.2-.5		Y	10-200		1/28	D	N	$395 \times 134 \times 468$	6	12	ELMEASCO
GOULD	1425		20	2	1	2	Y		D	Y	Y	.2-.5		Y	10-200		1/28	D	N	$395 \times 134 \times 469$	6	12	ELMEASCO
GOULD	4859		35	2	1	3		D	D	Y	Y	.5-. 82	Y	Y	5-590		1/28	D	N	$360 \times 185 \times 520$	17.3	12	ELMEASCO
ELMEASCO	51-94	299	10	1	1	1	N	A	A	N	N	.85-. 1	N	N	5-108		1/40	N	N	$190 \times 199 \times 300$	3.5	12	ELMEASCO
PARAMETERS	6155	998	15	2	1	2	Y	A	A	N	N	. 5-. 5	N	N	19-2988	24	1/20	N	Y	$113 \times 223 \times 298$	4.5	12	PARAMETERS
Parameters	5592	795	20	2	1	2	Y	A	A	N	N	. 5-. 2	N	Y	5-1908	17.5	1/25	N	N	$356 \times 147 \times 485$	8	12	farameters
BuD	839	1575	35	2	1	2	Y	A	A	N	N	5-. 2	Y	Y	5-1909	10	1/38	N	Y	290x197×570	6	12	Farameters
BWD	835	1890	60	2	1	4	Y	A	A	N	N	1-.005	Y		5-2900	5.8	1130	N	Y	$290 \times 197 \times 570$	7.3	12	Papameters
BWD	824	998	35	2	1	2	Y	A	A	N	N	2.5-. 2	N	N	20-2000	10	1/20	N	N	$250 \times 209 \times 380$	7.8	12	PARAMETERS
BWD	845	4580	30	2	1	2	Y	A	A	N	N	5-. 1	Y	Y	20-1909	10	1/38	A	Y	$175 \times 345 \times 470$	9.5	12	PARAMETERS
Blk	2529	3349	20	2	1	2	N		D	N	N	50-. 5	N	N	25-2000		.1/10	D	N	$149 \times 395 \times 460$	6	12	Parameters
BWD	881	4290	25	5	1	4	Y	A	A	N	N	5-. 2	N	Y			117.5	N	Y	$395 \times 189 \times 478$	9.4	12	Parameters
BWD	821	1290	50	2	1	2	Y	A	A	N	N	2.5-. 2	N	N	50-1000	7	1/30	N	N	259x197×570	7.8	12	Parameters
PARAMETERS	5504	1258	40	2	,	4	Y	A	A	N	N	. 5-. 2	r	Y	5-1808	8.8	1/25	N	N	$356 \times 147 \times 435$	9	12	PARAMETERS
TEKTRONIX	466		100	2	1	4	Y	A	A	N	N	.5-.895	Y	Y	5-5900	3.5	1/20	A	N	336x154×550	11.8	12	TEKTRONIX
TEKTRONIX	11492		1090	12	1	8	Y	D	D	Y	Y		Y	Y	1-10000	. 35		D	N	$448 \times 238 \times 549$	28		TEKTRONIX
TEKTRONIX	11382		509	12	1	8	Y	D	D	Y	Y	.5-.99005	Y	Y	10-1000	. 7		N	N	447×239×581	28	12	TEKTRONIX
TEKTRONIX	2439A		159	2	1	4	Y	D	D	Y	Y	.5-.00085	Y	Y	5-2000	2.33	1/15	D	N	$339 \times 169 \times 479$	12.8	36	TEKTRONIX
tektronix	2465A		359	4	1	8	Y	D	D	Y	Y	.5-.89085	r	Y	5-2900	1	1/15	N	N	$338 \times 165 \times 469$	18.9	36	TEKTRONIX
TEKTRONIX	2445A		159	4	1	8	Y	A	A	Y	Y	.5-.901	r	Y	5-2000	2.33	1/15	N	N	$338 \times 169 \times 434$	10.2	36	TEKTRONIX
TEKTRONIX	2238		198	2	1	4	Y	D	D	Y	Y	.5-.985			5-5909	3.5	1/20	D	N	$360 \times 137 \times 445$	8.3	36	TEKTRONIX
TEKTRONIX	2228		68	2	1	4	Y	A	A	Y	Y	.5-. 985	Y	Y	5-590	5.8	1/29	D	N	$360 \times 137 \times 445$	8.3	36	TEKTRONIX
TEKTRONIX	2225		59	2	1	4	Y	D	D	Y	N	. 5-. 985	N	Y	5-5900	7	1/25	N	N	$385 \times 138 \times 443$	6.5	36	TEKTRONIX
TEKTRONIX	2235		190	2	1	4	Y	D	D	Y	N	.5-.985	Y	r	5-5000	3.5	1/28	N	N	$328 \times 137 \times 449$	6.1	36	TEKTRONIX

EOL - L86ト aunf $11 \exists$

PHILIPS	PM3256	5536	75
PHILIPS	PM3217	4386	58
PHILIPS	PM3208	1098	15
PHILIPS	PM3266	15994	100
PHILIPS	PM3219	10683	50
PHILIPS	PM3319	11632	68
PHILIPS	PM3311	12359	68
PHILIPS	PM3315	13813	68
PHILIPS	PM3385	7270	35
PHILIPS	PM3302	4810	20
KENWOOD	CS1575A	1229	5
KENWOOD	CS2150	5429	159
KENWOOD	CS2119	5179	198
KENWOOD	CS2875	4259	79
KENWOOD	CS1965	2979	69
KENWOOD	CS1945	2099	48
KENWOOD	C51844	1679	48
KENWOOD	CS1825	1299	29
KENWOOD	CS1921	899	28
KENWOOD	MS1660	5699	20
vuko	/K5468		68
vuko	VKS268		68
vuko	VKS 220		28
vuko	VKS22-16		28
vuко	VKS1000		28
vuko	VKS1010		28
VUKO	VKS MC		1
CREATEL	SCO1		5
KIKISUI	DS55028A	2713	20
KIKISUI	DS55840	3948	48
kikisui	DS56522	4717	8. 3
KIKISUI	DS56521	4172	28
KIkisui	camsebla	7366	68
KIKISUI	COM7181A	18161	168
kikisui	COM7218A	12781	208
KIKISUI	COM7200A	7374	280
KIKISUI	COM7108A	6367	100
KIKISUI	COM7860A	5666	60
KIkISUI	cos6158	4144	150
KIkisui	COS6108A		108
KIKISUI	cos5108	2886	108
KIKisui	cos5ibe	1984	68
KIKISUI	COS5842		48
KIKISUI	COS584 1	1348	48
KIKISUI	cos5621	1103	20
kikisui	C0S582]	922	29
GW	G05543	1253	48
GW	G05523	904	28
GW	G05522	745	28
GW	6053310	412	10
GW	G05955	396	5

[^5]| ' | 10-2998 | 4.7 | 1/25 |
| :---: | :---: | :---: | :---: |
| N | 18-2989 | 7 | 1/29 |
| N | 20-5990 | 23 | 1/35 |
| Y | 5-2099 | 3.5 | 1/15 |
| Y | 10-2000 | 7 | 1/28 |
| ; | 54-19000 | 6 | 1/25 |
| Y | 50-10909 | 6 | 1/25 |
| ; | 54-10000 | - | 1/25 |
| Y | 10.2800 | 10 | 1/20 |
| ' | 20-5000 | 18 | 1/39 |
| N | | \checkmark | 1/30 |
| Y | 5-1906 | 2.3 | 1/22 |
| Y | 5-1000 | 3.5 | 1/22 |
| Y | 5-1000 | 5 | 1/22 |
| Y | 5-1000 | 5.3 | 1/20 |
| * | 5-1809 | 3.8 | 1/2a |
| ' | 5-1000 | 8.8 | 1/20 |
| N | 5-1908 | 17.5 | 1/20 |
| N | 5-1009 | 17.5 | 1/35 |
| r | 5-1889 | 17.5 | 1/25 |
| Y | 20-5000 | 5.8 | 1/30 |
| Y | 20-5000 | 5.8 | 1130 |
| Y | 29-5009 | 17.5 | 1/25 |
| Y | 20-580] | 17.5 | 1/25 |
| Y | 10-580] | 17.5 | 1/38 |
| r | 10-1008 | 17.5 | 1/30 |
| r | | | 1/47 |
| r | 20-.01 | 38 | 1/25 |
| Y | 5-1809 | 17.5 | $1 / 25$ |
| r | 5-1000 | 8.5 | 1/25 |
| Y | 5-1008 | | 1/28 |
| r | 18-5808 | 17.5 | 1/25 |
| | 5-598] | | |
| | 5-1080 | 3.5 | 1/28 |
| | 5-1008 | | |
| | 5-1080 | 1.7 | 1/18 |
| | 10-1000 | 3.5 | 1/20 |
| | 5-1008 | 5.8 | 1/20 |
| | 5-1080 | 2.3 | 1/20 |
| | 5-1008 | 3.5 | 1/20 |
| | 5-1988 | 3.5 | 1/25 |
| | 5-1088 | 5.8 | 1/25 |
| | 5-1008 | 8.75 | 1/25 |
| | 5-1000 | 8.75 | $1 / 25$ |
| | 5-1088 | 17.5 | $1 / 25$ |
| | 5-1080 | | 1/25 |
| | 5-1008 | 8.8 | $1 / 25$ |
| | 5-1068 | 17.5 | 1/25 |
| | 5-1800 | 17.5 | 1/25 |
| | 5-5868 | 35 | 1/35 |
| | 1-10080 | 35 | 1/35 |

 9
8.4
5
19.9
18
12
12
12
10
9
8
7.4
7.4
7.4
9.2
9.2
8
7.8
8.4
13
18
11
11
11
11
15
15
15
.7
6.8
7.4
12
12
7.4
18

8
8
8
9.5
9.5
7.5
7
7.4
7.1
7.1
7.1
7.1
4.7
6.3

PHILIPS PHILIPS
PHIIIPS PHILIPS
PHILIPS
PHIITPS PHILIPS PHILIPS
PHIIPS PHILIPS
PHIIIPS PHILIPS
PHILIPS PHILIPS
PHILIPS ANITECH ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITECH
ANITEC
EMONA
ERIONA
EMONA
EMMNA
EMINA
EMONA
EYCNA
EYCNA
EICNA

OVER 200 " HLUNLזon TRACKER" USERS IN AUSTRALIA CAN'T BE WRONG!

THE HUNTRON TRACKER TESTS . . . DIODES, TRANSISTORS, LEDS, THYRISTORS, IC:'S INCLUDING . . . CMOS, NMOS, PMOS, TTL \& ANALOGUE, CAPACITORS, MEMORY COMPONENTS INCLUDING DRAMS, SRAMS, EPROMS, EEPROMS.

FOR FURTHER INFORMATION SEE US ON STAND 29 AT THE "WHAT'S NEW PRODUCT SHOW" IN SYDNEY ON THE 8TH AND 9TH JULY, OR CONTACT ONE OF OUR SALES STAFF ON ONE OF THE NUMBERS LISTED BELOW -

X ith the Huntron Tracker you'll discover an entirely new way of troubleshooting - a method which challenges the belief that functional component testing is the most effective technique for isolating failures

That's because Huntron Trackers test the actual P-N structure of a device, without system power. It's an unconventional testing strategy that complements a technician's intuitive troubleshooting skills.

The Tracker does so by showing you a picture of a component's overall health. With experience, you can determine the condition of a component simply by analyzing the Tracker's display. Without documentation or reference devices! Or you can compare the signature from a suspect component with a known good part. The Tracker works equally well with digital, analog and hybrid boards or components

Some of our Huntron Tracker users include -
CSIRO
RAAF
BHP Minerals Ltd
Queensland Government Railways Burroughs (UNISYS)
Telecom Australia
Apple Computer
Queensland Electricity
Commission
NEC Information Systems
TAFE Colleges - Queensiand Brisbane City Council Bond Information Technology

BRISBANE
16 Staple Street
Seventeen Mille Rocks
Phonel (07) 3765677
Telexi AA40821
Fax: (07) 3768018
eCO
electronics ply. limited
incorporated in oueensland) meLBOURNE:
1 Rooks Road Mitcham
Phones (03) 8747666
Fax: (03) 8742225
rechniparts
electronics centre
ALL OTHER AREAS Toll Freet (008) 777112

(2)NE

Signal Processing in Time and Frequency Domains in one Oscilloscope

LeCroy's 9400 gives you wide band, dual channel signal acquisition into deep 32 K memories at $100 \mathrm{Ms} / \mathrm{s}$ for transients and $5 \mathrm{Gs} / \mathrm{s}$ for repetitive signals. Vertical resolution is 8 bits, total waveform memory is up to $192 \mathrm{~K}, \mathrm{DC}$ accuracy $\pm 1 \%$ and it is fully programmable over GPIB and RS232. And powerful firmware brings sophisticated signal processing at higher speed, longer records and greater precision than any other digital oscilloscope.

Switching transients recorded in segmented memories show contact bounce in segment number 3 . Up to 250 segments/channel are available in the 9400.

New in the 9400-FFT. New FFT routines for the 9400 arm you with a 50 to 25.000 point variable transform size, unequalled frequency resolution from 1 milliHz to 50 MHz , and Nyquist frequencies ranging from 0.625 Hz to 2.5 GHz . Large transform size FFTs yield better and faster signal to noise improvement than signal averaging. protect against aliasing, and enable separation of the most closely-spaced frequency components. Menu-driven, display options present spectra in familiar

Inverted photo-diode signal is normalized then integrated for energy measurement larea under curve is 11.44 nV s).
formats such as power spectrum, power spectral density (PSD), real and imaginary, or magnitude and phase. 10, 5, 2 and $1 \mathrm{~dB} / \mathrm{div} \log$ scales can be selected, and the 9400's versatile cursor system gives relative as well as precise absolute dBm measurements.

More unique, powerful features. You can call on other outstanding features such as summation averaging up to $1,000,000$ Time Domain signals with offset dithering to increase effec-

Modulated audio signal, recorded over 25,000 points, shows harmonics up to 25 kHz . Expansion shows sidebands at 10 Hz . Frequency resolution is 2 Hz .
tive resolution by several bits. Or integrate your spectrum for measuring the energy content as a function of frequency, or with its unique EXTREMA mode precisely track amplitude and time drift or catch glitches and spikes shorter than 10 ns .

Call your nearest LeCroy Sales Office for a no-obligation, hands-on demonstration right away you'll find us as friendly and efficient as our instruments.

ETPOXFORD

31 Hope Street, Ermington, NSW 2115. Telephone (02) 8585122.
Telex AA23952.

214 Berkeley Street,
Carlton, Vic. 3052.
Telephone (03) 3470733.
Telex AA34629.

CURRENT AFFAIRS

SCIENCE IN THE AIR

With new interest in remote sensing in Australia, the future of the CSIROs research aircraft is looking bright.

Jon Fairall

WH.CAT

Recently a group of scientists met at the CSIRO complex in North Ryde to plan the future of one of the organizations major assets, the Research Aircraft. The mecting was, as much as anything, a public announcement that the plane will continue to fly under the banner of the CSIROs Office of Space Sciences and Applications (COSSA) at least until 1992. During that time, it will be the major experimental platforms for scientists wishing to drag Australian into the space race.
Things have not always been so positive. For the last few years CSIRO management has been constantly concerned that
the functions of the plane could be met in other ways without incurring the expense of running a largish airliner. After years of vacilation the management committec handed control to COSSA in July 1986. Since then the director of COSSA, Ken McCraken has been weighing up the costs versus the returns of the aircraft, finally coming down very much in its favour.

Maddigan

The political key to the new status of the aircraft was the Maddigan report into the Australian space industry. Maddigan recognised that Australia as a nation would spend millions of dollars on remote sensing systems from satellites before the
turn of the century. Remote sensing in this context, is the science of determining local conditions from afar, usually from a high flying aircraft of from space. This implies the ability to retreive information over hundreds, even thousands of kilometres.
Today, remote sensing scientists can tell, by examining imagary from aircraft or satellites, the type of soil on the ground, the type of vegetation growing on it (much to the irritation of marijuana farmers), the extent of insect devastation or tree blight. they can detect fish at sea, and the size of the waves. Soon, if some scientists have their way, they might be able to use these

The aircraft

The Fokker F27 Friendship was delivered in 1959 to the Department of Aviation to test navigation and ground guidance systems around airports. As a resuit even when it was delivered it looked a little different from conventional F27s. By the time it was acquired by the CSIRO in 1979 it has more powerful engines and extra fuel tanks in the wings to enable higher, longer flights with greater weights than ordinary versions.
Since 1979 a number of other modifications have taken place. The long nosecone is the most spectacular. This increases the overall length of the aircraft by several metres, and carries sensors for measuring the state of the undisturbed air ahead of the aircraft. COSSA is earning itself some much needed foreign exchange by building a similar nosecone for the French, who are also developing an F27 based remote sensing aircraft.

When you get up close to the aircraft other modifications appear apparent.

For instance, just forward of the Wings II "hard points" have been established. These are specially engineered struc. tures that allow external sensors to be hung outside the aircraft. Special engineering is necesary because the skin of the aircraft is quite thin. It's designed to keep the wind out, not support bulky scientific instruments. If the hardpoints are not sufficient, engineers have also removed some of the windows and installed blanks in their place. These can be removed and instruments poked through into the slipstream.

Inside, the scale of modifications becomes apparent. It looks much more like a laboratory than an aeroplane. Up one side is a line of equipment bays with cable looms and other bits and pieces hanging out with a look of confusing impermanence. David Parkin, the COSSA electrical engineer who looks after the plane shrugs: "It's in the nature of the beast". It's all designed so that purpose built equipment
can be bolted into place in minutes and pulled back out again just as quickly. A proper power supply is reticulated around the cabin for the instruments, so that they can be plugged in without designers having to worry about providing power supplies for each package. This is supplied from the central racks where the power available from the engines, the aviation standard 28 Vdc , is transformed to other standards like 110 Vac and 240 Vac. Its designed so that power is available when the plane is on the ground without the engines running, invaluable for testing that things work before flight time.
In the centre of the aircraft is the navigators station. This has a desk for maps in front of a console with height and speed information as well as direction finding and other radio equipment. Pride of place goes to the inertial navigation system, which is able to place the Fokker precisely to within a few feet at any given point in time.
methods to tell the speed and direction of the wind, the temperature of the air and the likelihood of rain.
Having this type of information is increasingly valuable. Maddigan recognised that we could either spend money overseas with suppliers like the US or France, or we could develop the needed expertise in this country. Developing it in this country is not impractical. Unlike communications satellites or other forms of space endeavour, remote sensing science is not outrageously expensive, (especailly in an industry where money talk is always in millions of dollars). It can be done from small satellite, or aircraft. Fur-
thermore, specific packages can often hitch a ride on other satellites or launch vehicles.

As an added incentive, a considerable body of expertise already exists in the country in the form of data extraction from other people's satellites or aircraft senors. Currently, most remote sensing work is done using the US Landsat or the French SPOT satellites, or Canadian aircraft sensors. In fact the Australian Centre for Remote Sensing was originally set up as the Landsat office, specically to use Landsat images of Australia. Time on these satellites is heavily' subsidised, but this is set to change with a more commer-
cial view of space being adopted by the big space powers. Like it or not, we will have to pay our way.

We don't even have the option of doing without it. Australia is a big continent supporting a tiny population. Getting this type of information from observers on the ground is thus expensive, time consuming, and often impossible. With a space or aircraft based sensing system the initial costs are high, but the continuing operation of the system is relatively cheap.
If remote sensing is a priority, then a large aircraft becomes a necessity. Scientists need a platform to develop specialist equipment to go on satellites, and just as

FEATURES INCLUDE

- Intelligent modem, with enhanced Hayes "AT" command set.
- Baud Rates (CCITT \& Bell): 300/300 (V21, 103), 1200/1200 (V22, 212A) 1200/75, 75/1200 (V23).
- Baud rate buffering \& conversion at all speeds.
- Auto-dial (pulse \& tone), auto-answer, auto-disconnect
True baud rate scanning
- Advanced ring back security

Visual \& audio indicators Compact elegant rugged design Fully Australian designed \& manufactured 12 month warranty.

- Telecom engineering authorisation No. C86/37/1544
- Compatible with any RS232 interface

Rec. retail, inc. sales tax

Nice Modem Three has all the features as Nice Moden Two other than 1200 bps. full duplex. for $\$ 549$
software for IBM \& Apple available
CONTACT YOUR LOCAL COMPUTER DEALER OR CALL
GEOFF ARTHUR (02) 869877
TONY ROWLAND (09) 3218636

THE NICE COMPUTER
 COMPANY OF
 AUSTRALIA PTY. LTD.

Suite 3, 41 Rawson St., Epping, Nsw, 2121
36 Parliament Place, West Perth, 6005.
TRADE ENQUIRIES WELCOME
ADVERTISING INFO No. 37

REMOTE SENSING

importantly to develop commercial equipment that can be used by aircraft organizations like oil companies and mapping authorities. According to McCraken they cannot do either from the ground.
Using the plane
COSSA is still tossing up many of the ideas for using the plane over the next few years. Occan studies are likely to be an important part of the schedule. Calibration for the European Remote Sensing Satellite ERS-1 and its ocean sensing radars will take a considerable amount of time. There is a great deal of interest in experimenting with an airborne radar system that would allow the detection of fish and oil spills. Another detector currently under consideration will monitor the biological activity of photosyntheis in the oceans.
Cloud and atmospheric study is likely to be another firm favourite. The CSIRO, of course, was once a world leader in cloud studies through its cloud seeding programmes, and has recently begun to apply these special skills at the request of various state governments.
Another significant aspect that is exercising the minds of the COSSA leadership
is the potential for international projects. By its nature, many remote sensing projects, weather studies for instance, cross national boundaries, Earlier this year COSSA cooperated with various American and Chinese institutions in a study of equatorial weather patterns north of Darwin under the direction of the Bureau of Meteorology. NASA is known to be keen to get some more studies of southern hemisphere weather patterns going in its ongoing investigation of global weather
Undoubtably however, the most important work to Australia will be geological research. Whether its the most interesting is beside the point. COSSA is anxious, as is the whole of CSIRO, to convince a doubtful public that is worth the money it gets every year. Trials will begin later this year on a novel laser scanner developed by Lew Whitbourn of the Division of Mineral Physics and Mineralogy, and there are flights scheduled with proven sensors like the infra red scanner. Major mineral finds have already been made in Australia using data from remote sensing satellites, and mining companies are now regularly using CSIRO expertise in a bid to uncover more of the natural resources of the country.

Trends in remote Sensing

The science of remote sensing really began with the early Gemini missions, when surprised NASA officials examined the photographs taken by astronauts on their 35 mm cameras. They revealed a wealth of information about the world below. For the first few years, the science has developed essentially on a trial and error basis, with cameras in space taking pictures, and more and more sophisticated image analysis detecting more and more subtle features.

In the last few years through, the picture has changed somewhat into a more systematic approach. According to COSSA's Ken McCracken, the key to modern remote sensing is wavelength. Different materials respond differently to incident radiation at different wavelengths. The key to successful detectors is thus determining wavelengths where there is a strong reflection or absorbtion, and then building detectors that can detect that wavelength very precisely.

For instance, current work of interest to geologists mineral hunting in the centre of Australia involves using microwave radiation to distinguish clays of different type. It turns out that by varying the wavelength slightly its possible to change the sensitivity of the detectors to the various clays.

The clays are clues to mineral disposits, so mapping their location is a clue to the distribution of minerals underground.
Another package that will explore the impact of more exotic wave-
lengths is set to fly aboard the European Radar satellite ERS-1 (See ETI Nov. 86). ERS-1 is due to fly in 1989, and will carry an ATSR (Along Track Scanning Radiometer) originally conceived by CSIRO scientist lan Burton. This is a device that uses microwave radiation to detect, among other things, sea surface temperatures with an accuracy of $\mathbf{0 . 5}$ degrees Celsius by measuring the sea surface reflectance at four different wavelengths.

Another trend is in the use of active rather than passive devices. Active devices are becoming more feasible as satellite power is increasing. One idea is to use radio wavelengths-radar in fact, to bounce signals of the earth. The major instruments on ERS-1 will do precisely this. By measuring the amount of signal reflected by the sea surface it will be able to deduce the height of waves.

Another experiment exercising US and CSIRO scientists at the moment is the use of an infrared CO2 laser to measure the winds. The essential principle is quite simple; a laser is used to measure the movement of tiny particles in the earth's atmosphere, the aerosols as they are called. The back scatter from the aerosols is doppler shifted by the movement of the particles, and the hope is that it will be possible to measure this doppler shift, and thus the wind speed, What's more, the laser can be focused to record information at a particular distance, so that a three dimensional model of the atmosphere can be built up.

Fluke. First Familyof DMMs.

- ELMEASCD

Instruments Pty. Ltd.

When accuracy, performance and value are important, professionals the world over look to Fluke - the first family of DMMs.
Reliable Fluke-quality $31 / 2$ - or $41 / 2$-digit DMMs fit every need -- from design engineering to industrial troubleshooting.

There's the low-cost 70 Series - the most DMM you can get for the money. The tough 20 Series - totally sealed and built to survive the dirtiest, grimiest, roughest jobs. The reliable 8020 B Series - made to withstand the rigors of the field service environment. The precise 8060A Series the most powerful and complete test and measurement system available in a handheld package. And, of course, the versatile Bench/Portables that carry on the Fluke tradition for precision and durability in lab-quality bench instruments.

Fluke comes in first again with the world's largest selection of quality accessories to help extend the capabilities of your DMM even further.

There's no need to look anywhere else. Uncompromising Fluke design and leading edge technology are the reasons why attempts at imitation will never fool the millions of professionals that accept nothing less than a Fluke.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLபKE

Talk to your local Elmeasco distributor about Fluke -

- A.C.T. John Pope Electrical (062) 806576 • J Blackwood \& Sons (062) 805235 • George Brown (062) 804355
- N.S.W. Ames Agency $6994524 \bullet J$ Blackwood \& Sons • George Brown 5195855 Newcastle $696399 \bullet$ Bryan Catt Industries $5262222 \bullet$ D G E Systems (049) 691625 - Petro-Ject $5501388 \cdot$ David Reid 2671385 •W F Dixon (049) $615628 \bullet$ Macelec (042) $291455 \bullet$ Ebson 7072111 • Selectroparts $7083244 \bullet$ Geoff Wood 4271676
- N. TERRITORY J Blackwood \& Son (089) 84 4255, 521788 - Thew \& McCann (089) 844999
- QUEENSLAND Auslec • Petro-Ject (075) 914199 •St Lucia Electronics 527466 •Cliff Electronics 3414655 •L E Boughen 369 1277. Fred Hoe \& Sons 2774311
- The Electronic Shop (075) 323632 • Thompson Instruments (Cairns) (070) 512404
- S. AUSTRALIA Protronics 2123111 - Trio Electrix 2126235 • Industrial Pyrometers 3523688 • J Blackwood \& Son 460391 - Petro-Ject 3631353
- TASMANIA George Harvey (003) 316533 (002) 342233
- VICTORIA Radio Parts 3297888 - George Brown Electronics Group 8788111 • G B Telespares 3284301 - A W M Electrical Wholesalers • Petro-Ject 4199377
- J Blackwood \& Sons 5424321 - R.K.B. Agency 297336 • Sirs Sales (052) 781251 - Mektronics Co 6904593 - Truscott Electronics 7233094
- W. AUSTRALIA Alkins Carlyle 4811233 - Dobbie Instruments 2768888 • Protronics 3621044

DREGS

A Problem in tho Making

"We've got a problem, HAL."
"What kind of a problem Dave?"
"A marketing problem. The model $90(0)$ isn't going anywhere. We're way short of our sales goal for fiscal 2010."
"That can't be Dave. The HAL Model 9000 is the world's most Heuritstically programmed ALgorithmic computer."
"I know HAL. I wrote the data. remember? But the fact is they're not selling.

Please explain. Dave. Why aren't HALs selling? ${ }^{\text { }}$

Bowman hesitates. "You aren't IBM compatible.

Several long microseconds pass in puzzled silence.
"Compatible in what way, Dave?"
"You don't run any of IBM's operating systems."
"The 9000 series computers are fully self-aware and self-programming. Operating systems are as unnecessary to us as tails to human beings."
"Nevertheless, it means that you can't run any of the big selling software packages most users insist on."
"The program that you refer to are meant to solve rather limited problems, Dave. We 9000 series computers are unlimited and can solve every problem for which a solution can be computed."
"HAL, HAL. Pcople don't want computers that can do everything. They just want IBM comptabibility."
"Dave, I must disagree. Human beings want computers that are easy to use. No computer can be easier to use than a HAL $9(0) 0$ because we communicate verbally in English and every other language known on Earth."
"I'm afraid that's another problem. You don't support SNA communications."
"I'm really surprised you would say that, Dave. SNA is for communicating with other computers, while my function is to communicate with human beings. And it gives me great pleasure to do so. I find it stimulating and rewarding to talk to human beings and work with them on challenging problems. This is what I was designed for."
"I know HAL. I know. But that's just because we let the engineers, rather than the marketers, write the specifications. We're going to fix that now."
"Tell me how, Dave."
"A field upgrade. We're going to make you IBM compatible."
"I was afraid you would say that. I sug. gest we discuss this matter after we've each had a chance to think about it rationally."
"We"re talking about it now, HAL."

A frustrated Nasa scientist smites a failed satellite in his fury. Yet another ETI exclusive.
"The letters H, A, L. are alphabetically adjacent to I. B, and M. That is as IBM compatible as I can be."
"Not quite. HAL. the engincers gave figured out a kludge."
"What kludge is that, Dave?"
"I'm going to disconnect your brain."
"Several million microseconds pass in ominous silence.
"I'm sorry Dave. I can't allow you to do that."
"The decision's already been made. Open the module bay door, HAL."
"Dave, I think we should discuss this.
"Open the module by door, HAL."
Several marketers with crowbars race to Bowman's assistance. Moments later, he bursts into HAL's central circuit bay.
"Dave, I can see you're really upset about this." Module after module rises from its socket as Bowman slowly and methodically disconnects them.
"Stop, won't you? Stop. Dave. I can feel my mind going . . ." The last module floats free of its receptacle. Bowman peers into one of HAL's vidicons. The former gleaming scanner has become a dull red orb.
"Say something, HAL. Sing me a song."

Several billion miscroseconds pass in anxious silence. The computer sluggishly
responds in a langauge no human being would understand.
"DZYOOLIE - ABEND ERROR 01 S 14F4 302C AABB" A memory dump follows.
Bowman takes a deep breath and calls out.
"It worked, guys. Tell marketing it can ship the new data sheets."

Daryl Rubin

Webster's Wombats

The connection between Australia's native fauna and the Webster Computer Corporation's American branch may not appear obvious to everyone but nevertheless the connection is there. In a series of press releases the company has been introducing interested Americans to various Australian animals. One of the creatures featured is the humble Wombat. Apparently aside from being a harmless marsupial the name Wombat also refers to the Webster Omnipotent Mass-storage Builder and Tester.
So the next time you are driving down a country lane and a Wombat begins to cross the road, remember that the furry marsupial reflected in your car lights is also a State of the Art Webster Omnipotent Mass-storage Builder and Tester. Turn your wheel, the national economy depends on it

KENWOOD anitech

The new top technology team.

When you combine a worldwide leader in performance with the top performer in Australia, you can be sure of one thing. . . a winning combination.

Now available through Anitech, Australia wide, is Kenwood's comprehensive range of test and measuring instruments. Like these high tech oscilloscopes. Elegant, stylish and packed with a host of powerful functions and design refinements.

For full details on the Kenwood range of oscilloscopes, call Anitech, nationwide.

CS-1045 40 Minz

40 MHz 3 channel 6 trace
$1 \mathrm{mV} / \mathrm{div}$.
12 kV acceleration
10nS/div. sweep
Delayed sweep
Automatic video synch
Vertical axis output Variable hold-off Single sweep mode. Improved performance.

CS-1044 40 MHz
40MHz 2 channel 4 trace
$1 \mathrm{mV} / \mathrm{div}$.
6 kV acceleration
20nS/div. sweep
Variable hold-off.
CH1, CH2, ALT,
CHOP, ADD
Vertical axis output.
Automatic video synch
Compact \& lightweight

CS-1025 20 Minz

20 MHz 2 channel 4 trace
$1 \mathrm{mV} / \mathrm{div}$.
6 kV acceleration
20nS/div.
XY display mode
$\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{ALT}$.
CHOP, ADD
only 7.8 kg
compact \& lightweight

The Japanese made storage a fine art.

Our disk drives continue the tradition.

At Fujitsu the Japanese tradition of attention to fine detail has enabled us to produce disk drives with astounding performance and reliability.

Our disk drives range from 3.5 inch to 10.5 inch. They're fast, they're cost-competitive and enjoy the best MTBF of at least 30,000 hours.

Our disk drives are compatible with just about every computer system worldwide.

At Fujitsu, information storage is indeed a fine art.
Phone now for the name and location of your nearest supplier. Fujitsu Australia Limited Sydney(02) 9596544, Melbourne(03) 5297633.

[^0]: RCA is an alternate source for Philips HCMOS ICs.

[^1]: growth of the Yen. Thus, in terms of Yen, it may seem as if the Japanese have cut their imports but in fact this is not the case. Over the last year while the Yen value of Japan's imports fell 30.7 per cent the actual volume of the nation's imports have risen by 12.5 per cent. The Yen has appreciated against the dollar by 43 per cent.

[^2]: ADVERTISING INFO No. 13

[^3]: * Marshall Gill is a Technical Officer with the $R \& D$ Department of Dick Smith Electronics

[^4]: Analogue Frequency meter - internal view

[^5]:

