

Elgatellics

MAY 1987
(incl. GST)

CELULAR PHONES

$16 \mid 1 / 020)$
 AND
 PRODECTX

TAK ? ${ }^{2}$
ANYWHERE

BUIL
B A VOLEE SYNIL FOR YOUR EOMMODORE

WHY

DRIVE

MANபA

(WHEN YOU CAN AFFORD AN AUTOMATIC)

Do it yourself TV
Cable television
Conversations with Bose 18
A meeting with the noted doctor
Made in Taiwan 20The Chinese alternativeKiwisats26The New Zealand satellite programme
The human computer 30Inside your brain
Cellular radio 34Telecom's new systemCrisis faces shortwave broadcasters38An administrative nightmare
Inside your computer 76
Various computer languages
Creating with electronics: RC circuits 78
Do the strangest things
Turning down the noise 90Low noise op amps
Instrument busses 92
Language and architecture
Thermionic cathodes 96A Dutch anniversaryThe omnireader OR 1102
Hewlett Packhard's spectrum analyser 104
The Eurovox tuner by Perreaux 106
PROJECTS
ETI-608: Midi patch changer 50
ETI-1607: Voice synthesiser 62
ETI-764: AM transceiver, Part 2 41

- DEPARTMENTS
Editorial 5
News Digest 6
Feed Forward 41
New Products 86
Sight and Sound 100
Dregs 110
COVER: Mark Hay's study of Phillip Onis, from the Sydney Skydiving Group, demonstrating the versatility of the MOBILETRONICS CELLULAR PHONE from PIRANHA CAR ALARMS. "Be home in five minutes ma".

Page 7

Page 106

Page 78

Page 92

They come with a longer warranty than a Rolls Royce.

Andthey'requieter.

Interestingly enough, the warranty on a new Rolls Royce is only 3 years.

The warranty on our 6 new compact disc players is 5 years. And we don't have to worry about the ticking of the clock.

In fact, the only sound you'll ever hear from our new generation C.D.'s is the faithful, pin-sharp accuracy of the music.

If you're wondering why we compare ourselves to the technical excellence of the world's leading car, the answer is simple.

We couldn't find a competitive C.D. player that could do the job.

The Minister of Defence, Mr Kim Beasley, recently released the long awaited Defence White paper. The paper is the government's response to the Dibb report, an independent report in which Australia's defence options were outlined.
Both reports are full of a most remarkable amount of hot air. This is not surprising. Australia faces no conceivable threat from any quarter during the rest of this century, so any defence planning will take place in an almost total vacuum. The only possible reason for Australian troops to be firing off 'the odd angry shot' this side of 2000 will be if the Americans drag us into another morass as they did in Vietnam. And Dibb, but more so Beasley, leave us in little doubt that we are still right in there, hanging on Uncle Sam's coat tales.
So why is it interesting at all? Well, the Defence department soaks up more money than any other government body except Social Welfare, and while Social Welfare is being cut, Defence is being expanded. To do nothing about anything, we will spend something like $\$ 15$ billion.
Who will this please? Not the taxpayer for sure. It may well amuse any Russians who happen to read it buried at the bottom of page 53 in Pravda. In the US of course, they will be ecstatic. On past performance much of that $\$ 15 b$ will wind up in the hands of Califomian defence contractors. Money for the bosses, jobs for the workers.

What a pity neither Dibb nor Beasley could find it in themselves to use this priceless opportunity to help Australian industry. What kind of a difference would it make to Australian computer companies if the govemment was handing out a few million dollar contracts for Defence electronics; if our space industry was to develop a few new rockets or a communications satellite for the services, $\$ 15$ billion can make a lot happen. As it is, Australian Industry will have to make do with a contract for six submarines, designed overseas and built in our dockyards. A reward for inefficient managements and bloody minded workers.
Of course, to have done anything else would have been 'novel', 'innovative' or even worse, 'courageous'. Anyone who follows 'Yes Minister' will understand just how reprehensible that would have been.

Reader Services

As of this month, readers will notice that many of the articles, as well as the advertisements in the magazine carry reader service numbers. We have been running these on the advertisments only for the last two months, and the results have been exciting, both for advertisers and ourselves. It's obviously a service you want, so we've decided to use it on articles and news items as well. Reply to us on the card in the middle of the magazine.

John Fairall
Editor

EOITOR
Jon Fairall B.A
ASSISTANT EDITOR
Simon O'Brien B.A. (Hons), M.A.
EDITORIAL STAFF
S. K. Hui B.Sc. (Hons), M.Eng.Sc. MIEEE, MIREE Terry Kee B.Sc. (Hons). M. Phil.
DRAUGHTING
Bruce Mennie
DESIGNER
Clive Davis
ART STAFF
Ray Eirth
PRODUCTION
Mark Moes
ADVERTISING MANAGER
Peter Hayes B.Sc.
ADVERTISING PRODUCTION
Brett Baker
SECRETARY
Naomi Lenthen
ACOUSTICAL CONSULTANTS
Louis Challis and Associates
PUBLISHER
Michael Hannan
MANAGING EDITOR
Brad Boxall
HEAD OFFICE
180 Bourke Road, (PO Box 227. Waterloo, NSW 2017)

Alexandria, NSW 2015
Phone: (02) 693-6666.
Telex: AA74488, FEDPUB.
Federal Facsimile: (02) 693-2842.

ADVERTISING

New South Wales \& Queensland: Peter Hayes, Mark Lewis, The Federal Publishing Company, 180 Bourke Road, Alexandria, NSW 2015. Phone (02) 693-6666. Telex: AA74488 FEDPUB.
Victoria and Tasmania: Virginia Salmon. The Federal Publishing Company, 23rd Floor, 150 Lonsdale Street, Melbourne, 221a Bay Street. Port Melbourne, Vic. 3207. Phone (03) 646-3111.
Facsimile: (03) 646-5494. Telex: AA34340. FEDPUB.
South Australia and Northern Territory: Michael Mullins, C/- John Faiffax \& Sons, 161-105 Waymouth Street, Adelaide, 5000. Phone (08) 212-1212. Telex: AA82930.
Western Australia: Estelle de San Miguel, C/John Fairtax \& Sons, 454 Murray Street, Perth, WA 6000. Phone: (09) 481-3171. Telex: AA92635. New Zealand: John Easton, 3ro Floor,
Communications House, 12 Heather Street Parnell, Auckland. PO Box 8770, Symonds St, 37-291. Telex NZ63122. Phone 79-6648 (Auckland).
Britain: Peter Holloway, C/- John Fairfax and Sons, 12 Norwich Street, London EC4A IBH. Phone 353-9321.
USA: Frank Crook, Syoney Morning Herald, 21 st Floor, 1500 Broadway, New York, NY 10036. Phone 398-9494
Japan: Bancho Media Services, Dai Ichi Nisawa Building. 3-1 Kanda Tacho 2-Chrome, Chiyoda-Ku Tokyo 101. Phone Tokyo (03) 252-2721.

ELECTRONICS TODAY INTERNATIONAL is published and distributed monthly by the Electronics Division of the Federal Publishing Company Pty Limited, 180 Bourke Road, Alexandria. NSW 2015 under licence from Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited. Printed by Hannanprint, Sydney. Distributed by The Federal Publishing Co Pty Lid. "Maximum and recommended Australian retail price only Registered by Australia Post, Publication No NBP0407. ISSN No 0013-5216.
COPYRIGHT* 1985. Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited (trading as "Eastern Suburbs Newspapers").

Traffic package export to Singapore
 Using an unusually entrepre-
 have the flexibility to re-

neurial combination of private and govemment technologies, Australia has secured a significant contract for a SCATS area road traffic control system to cover the whole of the central business district of Singapore.

Worth \$S3m, the tumkey project for the singapore Public Works Department represents a major milestone for Australian traffic control expertise and industry.

The contract was won by Philips in collaboration with the Road Traffic Authority of Victoria (RTA).

Replacing existing fixed time automatic traffic controllers and covering 180 traffic intersections, the new dynamic on-line system will
spond effectively to sudden changes in traffic conditions and will also enable the collection of data on traffic flow pattems at all hours of the day and night. This data will assist Singapore officials in daily operations and in forward planning.
The RTA will be responsible for adapting and commissioning the SCATS system (Sydney Coordinated Adaptive Traffic System) which was originally developed by the NSW Department of Main Roads and is now claimed to be the world's leading traffic responsive area control system. In addition to instaliations throughout Australia and New Zealand, SCATS systems are in use in China.

Incorporated in the Singapore project will be a powerful colour graphics display, visually depicting the various system levels of a 'bird's eye' view of the total traffic of the Singapore island, right down to individual intersections and even each lane at an intersection. The whole system is controlled by 180 PTF microprocessor controllers.

Traffic movements are captured by vehicle loop detectors which monitor the loops in the road surface in each lane at an intersection. More than 300 of these Australiandesigned and manufactured 4- or 8 -channel detection units will be used in the Singapore system.

Greenpeace in Antartica

The famous naturalist organisation Greenpeace is looking for a group of intrepid souls to spend the winter of 1988 at its newly established base in the antarctic. One of the foremost characters they are looking for is a radio technician.
The Greenpeace base is the first non-national scientific station to be established in the frozen continent. The organisation hopes to use this fact to further its aim of having the area declared a 'World Park'.

The 'overwintering' team which will occupy the base in 1987 is composed of people from New Zealand, from where the expedition will set forth, and Europe. The leader of the troupe is a New Zealander Kevin Conaglen who has experienced antarctic conditions before when he worked at New Zealand's
 station will be provided to two diesel generators. True to their environmental convictions the Greenpeace crew will gather all the wastes produced during the stay and take them back home.

The establishment of this base will grant Greenpeace observer status at various Antarctic Treaty meetings. It is these meetings which will determine the future status of the antarctic region.

Death of a Star

The first close Supernova since the advent of the telescope sent astronomers scrambling for their instruments recently. A Supernova is a gigantic stellar explosion, in which the core of a dying star implodes, forming a neutron star or black hole. and the exterior explodes.
sending perhaps 80% of its matter back into outer space. Astronomers are excited because Supernovae are the only known way in which elements other than hydrogen and helium can be returned to the interstellar medium after they are created in a star. They are
also important in measuring interstellar distances.
The top photograph shows a portion of the Magalenic cloud taken two years ago by the AAT. The bottom picture of the same star field was taken by David Malin and Ray Sharples a fortnight after the explosion.

How to beat the high cost of cheap meters.

ELMEASCD

Instruments Pty. Ltal.

Talk to your local Elmeasco distributor about Fluke -

- A.C.T. John Pope Electrical (062) 806576 - J Blackwood \& Sons (062) 8052.35 • George Brown (062) 804355
- N.S.W. Ames Agency $6994524 \bullet$ J Blackwood \& Sons • George Brown 5195855 Newcastle $696399 \bullet$ Bryan Catt industries $5262222 \bullet$ D. G.E Systems (049) 691625
- Petro-Ject $5501388 \cdot$ David Reid 2671385 • W. F. Dixon (049) $615628 \bullet$ Macelec (042) $291455 \bullet$ Ebson $7072111 \bullet$ Selectroparts $7083244 \bullet$ Geoff Wood $4271 € 76$
- N. TERRITORY J Blackwood \& Son (089) 84 4255, 521788 • Thew \& McCann (089) 844999
- QUEENSLAND Auslec • Petro-Ject (075) $914199 \bullet$ St Lucia Electronics 527466 • Cliff Electronics 3414655 •L E. Boughen 3691277 •Fred Hoe \& Sons 2774311
- The Electronic Shop (075) 323632 - Thompson Instruments (Cairns) (070) 512404
- S. AUSTRALIA Protronics 2123111 - Trio Electrix 2126235 • Industrial Pyrometers 3523688 • J Blackwood \& Son 460391 • Petro-Ject 3631353
- TASMANIA George Harvey (003) 316533 (002) 342233
- VICTORIA Radio Parts 3297888 - George Brown Electronics Group 8788111 - G B Telespares 3284301 - A.W M Electrical W/holesalers • Petro-Ject 4199377
- J Blackwood \& Sons 5424321 - R.K.B. Agency 297336 • Sirs Sales (052) 781251 • Mektronics Co 6904593 - Truscott Electronics 7233094
- W. AUSTRALIA Atkins Carlyle 4811233 - Dobbie Instruments 2768888 • Protronics 3621044

You get what you pay for.

So get the Fluke 70 Series.

You'll get more meter for your money, whether you choose the affordable 73 , the feature-packed 75 or the deluxe 77 .

All of them will give you years of performance, long after cheaper meters have pegged their fishhook needles for the last time.

That's because they're built to last, inside and out. So they're tough to break. They don't blow fuses all the time. You don't even have to replace batteries as often.

And they're backed by a 3 -year warranty. Not the usual 1-year.

Of course, you may only care that the world-champion 70 Series combines digital and analog displays with more automatic features, greater accuracy and easier operation than any other meters in their class.

You may not care that they have a lower overall cost of ownership than all the other "bargain" meters out there.

But just in case, now you know.
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73
Aralog/-digital display
Valis. ohms. 10 A . diode
test
Autorange
07% basic dc accuracy
$2000+$ hour battery tife
3 -yeat warianty

FLUKE 75
Analog/digital dsplay Volts, ohms. 10A. mA diode test Audible continuily 05% basic dc accuracy $2000+$ hour Dattery lite 3-year wartants

FLUKE 77 Analog/digital display Volts. ohms. 10A. mA diode test Audible continuily "Touch Mold" function Autorange/range hold 03% Dasic dc accuracy
$2000+$ hour battery Hete $\frac{2000+\text { hour battery }}{3 \text {-vear warranty }}$

NEWS DIGEST

The South
 East
 Convention

The South East Radio Group will hold its 23 rd annual convention at Mt Gambier beginning on 6 June. The convention traditionally attracts many companies involved in selling amateur radio equipment. Social activities play a great role in the convention and hopefully a good time will be had by all.

Optical
 Systems Design

March this year witnessed the bith of a new Australian company, Optical Systems Design Pty Ltd. According to its Managing Director, John Wise, the new company will
run as a consultancy and will offer 'a comprehensive service in fibre based systems".

Mr Wise believes that although fibre optics is now a mature technology applicable to many communications requirements the new technology is rarely applied "in a sensible, cost effective manner". Interestingly enough "fibre is sometimes used where more conventional technologies are a better solution".

A New Instrument

On 11 February this year the Federal Minister for Science, Mr Barry Jones, awarded a $\$ 250,000$ cheque to Sydney University for the construction of the world's most powerful 'Interferometer' which will be installed at Culgoora, 20 km west of Narrabri. Construction of the new device will begin in mid year and, all things being well, should be in

Barry Jones
operation some time around 4990.

An Interferometer is a deVice for gathering basic information about the stars such as their size, temperature and distance. Australia leads the world in this type of research due mostly to the brilliance of Professor Hanbury Brown who constructed the first optical interferometer in 1961. In fact the scales used to measure the temperatures of the stars were derived from the information obtained from this instrument.

Those concemed about the health of Australia's technological industries will be comforted by the knowledge that 85 per cent of the instrument will be built by Australian companies in Australia. it will also be a considerable improvement on its predecessor for where the original interferometer was only able to study 35 stars the new machine will examine 25,000 . It is hoped that such a wealth of information will occupy Australia's astronomers for many years to come.

Sound it out with the right connection

Cannon has been doing the job for decades.

STC-Cannon announces the introduction of a NEW AXR-PDN loudspeaker series connector for both the professional and sophisticated audio markets. This new product range is just a small part of STC-Cannon's worldwide connector export programme. For further details regarding these connectors or the additional features provided in our mature audio range contact your nearest Cannon outlet.

248 Wickham Road Moorabbin, 3189 Melbourne (03) 5551566 Sydney (02)6632283 Adelaide (08) 3630055 Brisbane (07)8325511

NEWS DIGEST

The circult layout for the STEREO LOUDSPEAKER SWITCHER printed on page 61 of the February ETI was of course incorrect. The correct version Is printed above. We apologise to all our readers.

The Institution of Radio and Electronics Engineers Australia
Commercial Unit 3, Edgecliff Court, 2 New McLean Street, Edgecliff NSW 2027
Phone: (O2)327.4822 - FAX (O2)327.6770 - TLX AA21822 (Quote User No.SY135)

NASA prepares for Planetary missions

NASA has selected the Inertial Upper Stage (IUS), a launch vehicle which fits in the cargo bay of the space shuttle to carry probes to Jupiter, Venus and the sun. However, an option is being kept open until early next year to use a Titan IV on one of these missions.
NASA selected the upper stage, for three planetary missions, Galileo, Magellan and Ulysses, to be launched in 1989 and 1990. These misslons will be the first to employ an IUS to carry payloads to study other bodles in the solar system.
Each of the planetary payloads will use a standard two-stage IUS. Ulysses, which is intended to study the poles of the sun, will require the addition of a Payload Assist Module. The added module, a smaller 'kick' stage, will be needed for additional energy to reach proper orbit around the sun.
Ulysses is a joint mission of NASA and the European Space Agency (ESA). ESA funded and built the Ulysses spacecraft, NASA will launch it, and both groups will receive data back.

The IUS is a two-stage, $17-$ foot-long vehicle weighing more than 16 tons. It has already been employed to carry payloads to geostationary orbit, although it was always intended for both Earth-orbital nd planetar5y misslons.
The Magellan mission will orbit Venus and map its surface with radar, since the cloud cover of the planet obscures direct vision.
Galileo will orbit Jupiter for nearly two years to measure such things as electromagnetic fields and plasma particles. The orbiting spacecraft also will send down an atmospheric probe for on-site readings, although the probe is expected to last for no more than a few hours because of the intense atmospheric pressure. Galileo is a joint mission of NASA and Germany, which developed the retropropulsion system for the probe's descent into the Jovian atmosphere.
The study of the solar poles by Ulysses will be the first time in the history of the space program that the area has been investigated.
NASA has also signed a

Business end of the Galileo orbiter.
contract for the upper stage that will propel the Mars orbiter on its way to the red planet in the early 1990s. The Mars orbiter is designed tomake an 18 month trip to Mars, then orbit the planet for two years with a variety of remote sensing instruments on board. This will result in a high resolution survey of the planet, preparatory to manned flights, which will probably take place around 2000.

The new upper stage is called the Transfer Orbital Vehicle or TOS. It's designed to fit into the cargo bay of the shuttle, but it could also be launched on board an expendable Titan launch vehicle. NASA would like to use the shuttle, but if space is not available it might be forced to use the aging but still serviceable titans to keep its space program going.

Exporting Telephones

Placing surface mount devices.
courtesy Philips

Philips have developed a new cellular radio phone for use in Telecom's Mobilenet system. This device will be conmpatible with the systems used in the US and Canada.

Philips have invested large sums into the development of the new device which is
tems should provide great opportunities for export. In 1986 sales of such machines in the US were estimated at more than $\mathrm{JS} \$ 500$ million. Even if the Philips' phone does not sell overseas it should do well for Telecom estimates that it will have 200,000 cellular subscribers across Australia within 10 years.

Niew life for' offsets policy

The govemment's troubled offsets policy, which has been maimed by lack of compliance on the part of foreign companies, has recelved a new lease of life as a result of new govemment initiatives.

Normally, under the offsets policy, companies that sell products or services to govemment authorities are obliged to develop or buy products in Austialia. Under the new arrangements the govemment will allow companies to satisfy offset obligations through a third party.
The first such deal was concluded recently in New York with the Ocean Capital Corp of New York. OCP is a venture capitalist, and under the new deal, companies with offset obligations will be allowed to invest in OCP, which will in tum invest in venture capital enterprises in Australia.

Ocean Ventures will consist of separate investment pools in Australia, the US and Britain. The Australian part will be managed by McIntosh, Hamson, Hoare and Govett Ltd.

DO IT YOURSELF TV

Cable TV has arrived, creeping in the back door while the media barons look the other way.

Simon O'Brien

Ask most Australians what they regard as the most dramatic happenings to occur in the national media in recent months and they will probably mention the big money monopoly games of the various media barons. In fact, however, the most exciting development in Australian television is not taking place in some plush executive boardroom or on the floor of various stock exchanges but on a housing estate in the Waterloo area of Sydney. In a few weeks the people of this area will have the opportunity to subscribe to Australia's first community owned cable TV system.

As we all know there is nothing particularly new about cable TV or even community ownership, such things have existed in the US and elsewhere for years. However, Australia has lagged behind in both areas. This has largely been due to the findings of a Senate inquiry into cable television. The good Senators found that such networks would be 'uneconomic' which usually means the death of any creative scheme.

Enter Mr Royce Sutcliff. Sutcliff had recently returned from a prolonged stay in England and he had been granted a flat on the Waterloo estate. Whilst walking across the road to inspect his intended premises he chanced to cast his eyes skyward and observed a common TV aerial on top of one of the famous 'Redfern Towers'. This, apparently, immediately suggested to him the idea of a cable TV station which would serve all the inhabitants. Of course these self same acrials had been spotted by many in the past but Sutcliff had an advantage in that he had had experience in the electronic media whilst working as a social worker with children for the Camden Borough Council in London. During this time Mr Sutcliff had attempted along with others, to set a cable TV station in the Camden area but had been discouraged by the the local council which wished to use the project to advertise itself. The British Government of the time was also unhelpful, informing him that such a scheme would contravene the

The indomitable Mr. Sutcliff
Broadcasting Act and was expressly forbidden.

As discouraging as this might have been Sutcliff resolved to try again. What he envisioned for the Waterloo project was em-
ploying the cable used in the mutual antenna system to transmit the new channel to the various subscribers. At first glance the obstacles seemed enormous. For one thing there was bureaucratic regulations. We are often told in Australia that we are too bound up with government rules and departments. Royce Sutcliff found otherwise. He first wrote to the Department of Communications to inquire about the Australian Broadcasting Act. The Department wrote back to say that Act did not cover such a scheme and 'wished him well'.

Apparently, as the situation stands at this moment there is no government regulation preventing you from setting up a cable TV station in your area providing that a. you do not cross a road with your cables and b. you do not take programmes directly off-air. Obey these and the obvious censorship restrictions and you are free to go. At least legally, there still remain the irritating little problems of money, equipment and expertise.

In order to determine the extent of the financial commitment the station would require Sutcliff and his fellow enthuasiasts asked Davron electronics to give a quote for connecting up the three main buildings of the Redfern towers to the cable network. Since most of the buildings had already been connected up the total bill was quite cheap, at $\$ 2280$. It has been estimated also that the cost of connecting up each subscriber is only $\$ 7$. Of course, the cost of the necessary equipment in the studio is considerably more.

Where is the money to come from? At the moment it is coming in from a variety of sources. The Department of Housing is expected to give a certain amount as are Telecom and the Sydney City Council. In the latter instance, interest centres around how the new station could keep constituents better informed about the activities of their representatives on the council. Sutcliff even has hopes of filming the council in session, which in the light of recent events would make gripping viewing.

There remains the question of studio equipment. As is presently envisaged the

The famous Redfern towers
main items required besides a Sony 6 video camera are a modulator and computer which will maintain the notice board and keep the community cable station running for twenty-four hours a day. Much of this material will be supplied by SAM Technology a Dutch firm which specialises in installing cable TV in Europe. For the near future SAM are prepared to loan both of these units to the project. SAM (or Telecom) will also provide the coaxial cable and the amplifiers needed to transmit the signal. Much of the video equipment needed for the project has been loaned by the Department of Housing. Metro TV. another intended community TV station. allows the staff of CTV-1 free editing time.

Finally there are the important questions of expertise and management. As regards overseeing the setting up of the station and guiding it through its earliest stages Suteliff himself is supplying many of
the skills. He emphasises. however, that he will "fight to the death" to ensure that the new station is run ultimately by the subscribers themselves. As things are planned at the moment the programming board will consist of elected representatives of the subscribers. Expertise in particular areas will be sought from the outside. As was the case with the equipment. people are being remarkably cooperative over this. The Redfern Legal Centre, for example, is looking after the legal issues involved in setting up the administration of CTV-1. To a large extent this question of management is about the last issue needing to be resolved before CTV-I hits the airways. Sutelff claims that the station is ready to transmit as soon as the staff receive "the key to the door"

Finally what type of programming will CTV-I produce? At present this is hard to say. but one can be sure that its programmes will be unique. Suteliff envisions
consumer interest shows which will inform the residents of the area of their legal rights as regards such fundamental matters as tenancy. The noticeboard, which will be on of the first features transmited by CTV-1 will keep all subseribers aware of social events happening in their area. For much of the initial period Sutcliff envisions making use of recorded material such as that supplied by the United Nations Organisation and other such bodies. As time goes on. however. he would like to see the station make extensive use of loeal talent. "The people of this area. like any other Australian suburb, often feel either ignored or intimidated by the media. What we hope to do is offer them a hands on approach to television which will increase. rather than decrease their eonfidence in their abilities to create and communicate with each other". Laudable aims which reflect a stimulating new approach in Australian television.

What's your big idea?

SINCE TIME BEGAN, man has always striven to improve his life through ingenuity and invention. Now it's your turn. Announcing AMP's 'Beyond 2000' Science Awards for 1987.

If you are a young Australian, you're invited to create working examples of how science can contribute to
popular series 'Beyond 2000' and the Australian Science Teachers' Association.

Entry forms can be obtained from AMP offices and agents, from science teachers at secondary schools, principals at primary schools, or by filling in the coupon below. [NO POSTAGE REQUIRED] daily life.

Entries must demonstrate innovation, practicability and scientific and technology content. They can be as simple or complex as you like.

There are three Awards:
PRINCIPAL AWARD - for those under 19 and this carries a first prize valued at $\$ 18,000$ with a 12 -day trip to the U.S.A. for two.

UNDER 14 CATEGORY - $\$ 1000$ first prize.
GROUP CATEGORY - $\$ 1000$ first prize.
There are also subsidiary prizes.
AMP is proud to be a sponsor of these prestigious Awards and to be associated with the Seven Network's

AWD 'BEYOND 2000' SCIENCE AWARDS

To: Mr. J. Martin, AMP'Beyond 2000 ' Science Awards Freepost 111, GPO Box 2527, SYDNEY 2001

NAME: \qquad
ADDRESS:
P/CODE:
TELEPHONE:

UNDERSTANDING UNIX James R．Groth，Paul N．Weinberg The exploding popularity of the
UNIX operating system is one of the UNIX operating system is one of the
most important trends in computing in the 1980＇s UNIX is avalable on hundreds of different computer ranging trom personal computers to manhrames and supercomputers Understanding UNIX otters an
overall perspective on UNIX． including a discussion of where UNIX fits in the worlds of computing， business．and education Individual chapters address the UNIX structure．
tile system，multuser capability． tile system，multuser capability
specific applications tools，and
＂A book that balances scope with depth．Complehensiven
brevity＂Alan Kaplan
Cat．B

PASCAL PRIMER －Mitchell waite，David Fox have dabbled in the popular language BASIC and wssn to learn
the capabalites of Pascal this book is definitely wrimen for you．Written and illustrated with a tcuch of humour．the informative tex describes Pascal program structure． and many other features There are chapters on decision making statemenis，numeric functions． sting functions．arrays and sets，and
much more The eight appendices much more The eight appendices
present facts about the advantages and disadvantages of Pascal． components of a Pascal system interliacing assembly langu
routines．and other usetul
Cat．B
．．$\$ 24.95$

CP／M PROGRAMMER＇S ENCYCLOPEDIA Bruce Brigham Encyciopedia is a tume saving Comprehensive reference for serous CP M users Covering all the commands and syntaxes for
CP．M $2 \times$ and $C P M 30$ ．this encyclopedia gives you the intormation you need in an easy－to－use lormat especially designed for programmers The is the only majot complation of CP M commands and syntaxes
you use $\mathrm{CP} M$ extensively，you you use CP M extensively．you
should not be without this importa reference gurde Cat．B
\＄39．95

BASIC
COMMODORE 64 BASIC James S．Coan Here＂s the key to using and enjoyng
the Commodore 64 microcomputer A last reading quide to computer operation and BASIC programming that is sultable for use at home or 1
the classroom The approach is the classioom The approach is Cat．B

HANDS ON Practical tips and usefu：
progiams lor iBM PC s from programs for IBM PC
editors of PC World edtors of PC World
A colfection of the best tips． programs，and routines for IBM computers trom the popular Covering both hardware and sotware，the book is organised so that you can quickly find informatio know． B20100
\＄34．95

THE C PROGRAMMER＇S HANDBOOK －Thom Hogan
While other books will tell you how to learn C．Itis one shows you now to
use it it s a tie al encyclopediat the use it its a hiteralencyccopedia ot the work tor you，etticiently and eltectively，Handy and well organized．it ives you quick access
to the thing pou need whe to the things rou need，when you
neea them．plus a clear defintion ol C language with exampies and explanations of restricions and detauls．You wort thro an apporoach this under standa
an y
anhere else 820120
\＄39．95

INSIDE THE IBM PC （Revised and expanded edition） The widely accla med gudero the IBM PC＇s sinner workings The latest edition now covers every model of every version of DOS from 1111030 B20080 $\$ 44.95$

Th．flomituelvin IIIIIItitio

（ \quad mproter

THE PLAIN ENGLISH MAINTENANCE \＆ REPAIR GUIDE Henry F．Beechnold解 these clear，sumple，witty explanations of computer electronics With its lucid line
drawnoss and diagrams．this book drawngs and diagrams．this book gives you expert instructions on
every fix－up and keep－up operation every fix－up and keep－up operation
or your IBM PC and its components OOS．penpherals，disk drive．and the rest
B20060
\＄53．95

IBM PC TROUBLESHOOTING \＆ REPAIR GUIDE REPAIR GUIDE

Robert C．Branner
Keep your IBM PC in op operating
 book．Inside you will find pages
schematics，photos and block diagrams to help you dentity probems．Simple instructions tell you what＇s wrong and how to fix it
fast．
－Make mosi repars with few or no Hools
Quickly zero－in on a malfunctionnig
－Remponent
－Reduces downtime －Easy to understand curcuit diagrams
Repar Gurde wall mate Shooling \＆ computer novice feel comfortable with the complex world of electronuc
trouble shooting This fully illustrated trouble shooting This fully illustrate
book is recommended for anyone who uses an IBM PC Cat．B

＂C＂SELF STUDY GUIDE Jack Purdum Learn at your own pace as this sell direcled study guide takes you areas of the C programming language The ungque format allows
fu to advance quickly or proceed bu 10 advance quikkly or proceed
slowly The book is divided into two parts $\begin{aligned} & \text { Questions：of varying degrees of }\end{aligned}$ dificulty to guide boginners over th rough spots and to challenge the Answers：that include many complete programs for testing new functions and for illustrating thps，sraps
techniques and shor culs Cat．B
$\$ 37.95$

APPLE II
CIRCUIT DESCRIPTION Winston O．Gayler Covers all Appie II motherboard and keyboard verstons －Helps you learn about
microcomputer hardware in general and Apple il hardware in detal
－Provides you with accurate schematics and ventied wavelorms
to rely on for servicing and repars －Explains the advanced concepts of daisy chains，interrupts，direct memory access．and the ready
－Gine successtus intertacing
－Contans tutorials on vodeo
signals．memory ic s and the 6502 mixruprocessor，as well as
full explanations of advanced concepts
－Each chapter contans an ovemew for the beginner and a detailed section for the more adventurou －leeal for students，lechnicians． hobbyists，engineers，and ol
who need Apple It technical Cat 8

WALL MOUNTING SPEAKER HOLOERS Your wall＇
－Hodss Speakers up to 260 mm deep
－LetuRight adjustmen
－Uncoluown adiusiment
－Nipoing－screw pins hoid speakers firmly in place
－Instalation instructions $\mathbf{C a t}$.

PANEL METERS GALORE
We have a great range of panes meters at great prices＇
Cal．No．
Doscription

3M SCOTCHCAL PHOTOSENSITIVE All prices per boxand incluce tax 8007 REVERSAL FILM $\begin{array}{ll}250 \times 300 \mathrm{~mm}(10 \text { sheets）} & 539.95 \\ 300 \times 600 \mathrm{~mm}(5 \text {（ } \text { sheets）} & \$ 54.95\end{array}$ 8005 BLACK ALUMINIUM $250 \times 300 \mathrm{~mm}$（ 10 sheets） 8009 BLUE ALUMINIUM
 $300 \times 600 \mathrm{~mm}$（5 sheets）$\quad \$ 79.95$ 8011 REDNHITE $\begin{array}{ll}850 \times 300 \mathrm{~mm} \text {（（10 sheets）} & \$ 64.95 \\ 300 \times 60 \mathrm{~mm} \text {（ } 5 \text { sheels）} & \$ 74.95\end{array}$ BO13 BLACKMELLOW $250 \times 300 \mathrm{~mm}$（ 10 sheers） 8015 BLACKWHITE $250 \times 300 \mathrm{~mm}$（ 10 sheets）$\quad \$ 64.95$ 8016 BLUEWHITE
$\begin{array}{ll}250 \times 300 \mathrm{~mm}(10 \text { sheels）} & 564.95 \\ 300 \times 600 \mathrm{~mm}(15 \text { she } & \\ 574.95\end{array}$
B018 GREENWHITE
$\begin{array}{lll}250 \times 300 \mathrm{~mm} \text {（10 sheels）} & 564.95 \\ 300 \times 600 \mathrm{~mm} \text {（ } 5 \text { sheels）} & 574.95\end{array}$

WELLER WTCPN SOLDERING STATION The WTCPN Features
$-P$ Puwer Unil $240 V A C$
－Temperature controlled non．
－flexible sulcon lead for ease of

－CLan

damaged tips

The best is always worth having
Ca1 T12500 R．R．P．$\$ 149$
SPECIAL ONLY $\mathbf{S 1 2 9}$

RACK MOUNTING CABINETS
These superb rack mount cabinets will give your projects a real polessional appearance
fust look at these features －Ald dimensions conform to the －Internationar Standars －Al aluminium consiruction －Choice of black or nalural finish panel Removeable top and botrom lid Ventilated lid A Internal Herght mm
B $=$ Rear Widin mm
C ${ }_{B}^{\text {Depth }} \mathrm{C}_{\mathrm{Cl}}^{\mathrm{mm}}$ Finleh Cat．No．Pric 38430254 Natural H10401 $\$ 49.50$
82430254 Nalural H $10402 \$ 59.50$ 82430254 Nalural H1O402 $\$ 59.50$
126430254 Natural H10403 $\$ 69.50$ $\begin{array}{ll}12643025 \text { Naiur } \\ 38430254 \text { Black } & \text { H } 10411 \\ 82430254 \text { Black } & \text { H10412 } \\ \$ 59995\end{array}$ $\begin{array}{rrr}82430254 \text { Black } & \text { H10412 } \$ 69.95 \\ 126430254 \text { Black } & \text { H10413 } \$ 79.95\end{array}$

DIECAST BOXES RF shielding．and streng！ \begin{tabular}{l}
Screws are provided with each box

H11451 $100 \times 50 \times 25 \mathrm{~mm} \quad \$ 5.95$

\hline H1152

$111452110 \times 60 \times 35 \mathrm{~mm}$

\mathbf{H}

\hline
\end{tabular} 11453.95 $\begin{array}{lll}H 11462188 \times 120 \times 78 \mathrm{~mm} & \$ 13.50 \\ & \$ 11464188 \times 18 B \times 54 \mathrm{~mm} & \$ 9.50\end{array}$

BREADBOARD
SPECIALS
Why pay more？
Cat P11000 100 hotes $\quad \$ 2.75$
 Cal P11009 $840+200$ noles $\$ 13.00$ Cal P11009 $840+200$ noles $\$ 17.50$
Cat P11010 1280 100 holes $\$ 19.95$ Ca！P1 1011 1280－300 holes $\$ 32.50$ Cat F11012 1280＊ 400 holes $\$ 36.75$ Cat P1 $10151920 \cdot 500$ holes $\$ 57.50$
Cat P11018 $2560 \cdot 700$ holes $\$ 64.95$
 DETECTOR Compact P IR with adjustable dual pyroelectric intra red sensth element grves a coverage 2×14 zones 2 mh high and 10 m wide －Sensitivity adjustment control －Delecting zones 9 long（up）． 5 short（down）
－LED indicator for walk lest（can be －disabled） －Relay outpuinC or NO at 30 V （AC－DC）OSA max －Integral NC tamper 5 witch Cat S7322？$\$ 145$

－Four dugne changeable code －Over 5000 possible combinations －Power consumplon 5 mA standby Two sector LED and 1 arm LED －Wrong number bockout
－ 12 V OC operation
－Relay output
－Panic buiton
－Normally open tamper 5 witch
－Armensions $145 \times 100 \times 37 \mathrm{~mm}$ －ACP3 compatible
R．R．P． 579.95
SPECIAL ONLY $\$ 6995$

HOOK UP WIRE
Cat．No．Descrition
W11251 13． 12 TNO BLK W11252 13 ： 12 TLD BROWN W11253 13／ 12 TLD ORANGE
W11254 13／12 TLD YELLOW W11255 13／．12 TLO GREEN W11256 13／12 TLD BLUE
W11257 13／12 TLD WHITE W11257 $13 / 12$ TLD WHITE
PRICES PER 100 METRE ROL $\begin{array}{lr}\text { PRICES PER } 100 \text { METRE ROLL } \\ 1.9 \\ \$ 5.95 & \$ 5.00 \\ \$ 5.35 & \$ 4.50\end{array}$

W1 $126014 / 20$ RED
W11261 $14 / 20$ BLACK
W1 $126514 / 20$ BLUE
PRICES PER 100 METRE ROLL

$\$ 12.00$	$\$ 10.00$
$\$ 10.80$	$\$ 9.00$

W $1127024 / 20$ RED
W $1127224 / 20$ BLACK

PRICES PER 100 METRE ROLL
$10+$

$\$ 19$	$10+$
$\$ 14.00$	$\$ 12.00$
$\$ 12.60$	$\$ 10.80$

W1 1280 32 2 BROWN
W11282 322 日LUE
PRICES PER 100 METRE ROLL
20.00
$\$ 18.00$

RECHARGEABLE 12V GELL BATTERIES cizes，these long service ite atteries are ideal for burgula ystems．emergency lighting or as a omputer backup power supply Cat $\mathbf{S 1 5 0 2 9 1 2 \mathrm { V } 1 2 \text { AH } \mathbf { \$ 1 7 . 5 0 } 0}$ Cat S15031 12V 26 AH S 32.50 Cat S15033 12V 45 AH S39．50

CENTRONICS GENDER CHANGERS Female to Female Saves modityng of repiacing non－mating Centronics cables ail 36 pris wired straight through Ca1 $\times 15663$ Male to Male Cat X 15661 Male to Female Cal $\times 15664$ Female to Female Only S24．95

H28．8．

DPN－200 PANEL METER
－Separately Addr
Aeparacely addres sable
Annunciator

－Band Digits Referen

A low profile LCD DPM with a range
of useful symbols as shown The O
OPM 200 features $15 \mathrm{~mm} 3^{1 / 2 ~ d i g i t ~}$ display．and ultra low current
consumption and a bandeap reterence for high stability litalso eatures Auto－zero．Auto－polarity， 200 mV tsd 11 may be usedin single ended，ditierential or ratome The isd can be easty changed by the user to eandica other unts The decimal points and symbols can all be driven from an internal source．Wide supply and
symbols can all be diven from an symbots can all be diven from an
internal source wide supoly ral （ 5.15 V DC）with a varnable threshold low bantry warning indicator Suppled with mounling chips and SPECIFICATIONS： Accuracy： 01% ． 1 drgit Linearity：＋－ 1 Semplea／sec： 3 Temp．Stablity： 50 ppm Iypical Supply Voltage： $5 \cdot 15 \mathrm{VDC}$ Supply Current：SOuA typical $\begin{array}{ll}\text { MaxDC Input Volts：} & -20 \mathrm{~V} \\ \text { Cat } 015510 \quad \$ 99,95\end{array}$

Rod Irving Electronics No. 1 for semiconductors
 NORTHCOTE 425 High Street, Phone (03) 4898866.

MELBOURNE 48 A’Beckett Street, Phone (03) 6636151. MAILORDER HOTLINE: (03) 5437877

 \&

4888888

[^0]2.90
2.90
 SPEECH CHIP
Contains the code recognition
circuit to enable the project to plug
directly on to the printer port, or directly on to the printe
into an IBM PC.
$\$ 27.00$ \$26.50 \$26.00
41256-12
$\$ 4.95 \quad \$ 4.75 \quad \$ 4.50$
4164

$\begin{array}{lll}\$ 2.25 & \$ 1.95 & \$ 1.75\end{array}$
27128
$\begin{array}{lll}\$ 7.50 & \$ 7.00 & \$ 6.50\end{array}$
27512
\$19.50 \$18.50 \$17.50
CA3130E
\$1.95 \$1.75 \$1.50
$6116 L P-3$
$\begin{array}{lll} \\ \$ 3.95 & \$ 3.75 & \$ 3.50\end{array}$
NE5534AN
$\begin{array}{lll}1.9 \\ \$ 1.95 & \$ 1.85 & \$ 1.75\end{array}$
INS8250
\$24.50 \$22.50 \$20.50
AM 7910
(WORLD MODEM CHIP)
\$24.95

CONVERSATIONS WITH BOSE

Abstract

Amar Bose, doyen of loudspeaker manufacturers flew into Sydney recently to boost the morale of the local troops and mastermind the launch of the new project X speakers. On the way, he met ETI for lunch.

Jon Fairall

Amar Bose strides across the floor to greet you; six foot two and greying wavy hair that would give him a distinguished look even if he wasn't the head of a major US company with branches all over the world. I was prepared for that, perhaps a trifle less prepared for the slightly donnish curiosity with which he looked at his surroundings ("terrible accoustics in here").
No matter what you bias, Amar Bose confounds expectation. A modern version of the renaissance man, he is the hi-fi buff par excellance, a teacher of electronics and maths, a businessman and marketer. None of these is exceptional on its own, but as a combination its highly unusual, even more so because Bose has been successful in every field he has touched. Today he is the world's biggest amplifier maker, probably the most revolutionary speaker designer, and incidentally, author of a standard undergraduate text on Network Theory. Bose is an interesting character.

Where it all began

It all began at age 13 when some friends in the Boy Scouts were looking for a communications device. From that he learnt how to read a schematic, and by age 14 he had opened a radio repair shop. As Bose recalls it, competition was limited since almost all the adult radio repair men were away in the war. Money was good and young Amar was the envy of his friends. It obviously didn't detract from his studies either, because he came out of school with results good enough to get into the Massachusetts Institute of Technology (MIT), then as now, one of America's better universities.

He graduated during the early fifties with a doctorate in electronics, and was all set on a career as a typical academic electronics engineer when he had the Seminal Experience. Bose has told this story a
hundred times but he still manages to look rueful as he recalls how he wanted to buy a hi-fi, and proceeded to buy it the way "any engineer would". He looked at the specs., and then, imagining that the salesmen would have little to tell him, went in to the store and demanded the amplifier, speaker and turntable that looked best on paper. He bought some records and invited some friends over for an evening to listen to good music. "We never finished the first record," he says. The sound was terrible, and Bose was curious. He went back to the store and this time listened to speakers. What he discovered was that there was little relationship between the specifications and the sound he heard. The

$$
36
$$

in 1956 he thought he knew everything. By '59 he knew he knew nothing. 08
scientist and the music lover rebelled.
That was in 1956. Bose spent the next twelve years trying to find out what the problems were, and how to put them right. By 1959 he had sorted out what speaker makers were doing wrong; it took until 1968 to design the first Bose speaker that embodied his new found knowledge on what made hi-fi speakers tick.

As Bose describes it, in 1956 he thought he knew everything. By 1959 he knew he knew nothing. Today, he says, he may have some glimerings of understanding. By subjective testing, scientific analysis, statistical tests and the battery of intellectual tools a doctorate in electrical engineering gives one, Bose deduced a num-
ber of things. Many are still secret, and the basis of much uncopyable Bose design, but much has appeared in scientific publications over the years as well. He discovered, for instance, that the human ear is totally unresponsive to the phase relationship between different frequencies; that amplifier transient response is essentially irrelevant to the sound perceived and that the experience of music played live depends almost totally on the delay caused by the many different reflection paths experienced in an enclosed space.
He also discovered that the traditional way of measuring speaker response, which is in an anechoic chamber with a mike directly in front of the speaker, will tell you nothing about how a speaker will perform in a real environment. At an absolute minimum a real environment will have a floor. Commonly it has walls, and sometimes even a corner. These effect the way in which sound reflects back to a listener. Whats more, all frequencies are not affected equally. Rather what happens is that low frequencies are reflected more than high frequencies. Thus a speaker that had a completely flat response from 20 Hz to 20 kHz in an anechoic chamber woulc have a quite diabolical response, perhaps varying by as much as 20 dB , in a live situation.

First Result

In 1959 the world saw the first result of the Bose rethink of sound. It was a commercial failure called the Model 2201, and consisted of 22 small drivers sitting in a box shaped like an eighth of a sphere. Although it performed extremely well, it was more expensive than the market would stand, and was replaced by a strange device that had one tiny driver facing forwards, and four facing backwards. It was called the Model 901.
The 901 and its derivitives made Bose's

name, and set a fashion with Bose speakers, in which the drivers, although many, are never divided up conventionally into woofers, tweeters and so on. Because the distance between the drivers is small with respect to the wavelength of a base note, the small drivers act together as if they were a very much bigger driver.
Since then there have been a sucession of other developments, probably the most notable being his deal with General Motors which called for Bose to put speakers and amplifiers into GM products. Overnight, Bose became the worlds biggest amplifier producer, since each GM car now comes equiped with a Bose amplifier. It's no mean amp either, since it's required to dissipate considerable heat in an extremely hot environment. Bose engineers were able to develop a 50 Watt amplifier on a 50 square centimeter board without any heatsinks by using a novel modulation system.

Noise supression

When I met him he was also bubbling over the success of his noise supression equipment. It had been used to protect the hearing of the crew of the long distance aircraft "Voyager", which flew around the world in nine days. Preflight medical advice to the crew was that the result of subjecting themselves to the 100 dB noise of the aircraft in flight for nine days without a break would be a permanent hearing loss of about 30%. Bose designed special ear muffs. The first problem
was to make them comfortable enough to wear for nine days straight, which apparently he did. Secondly he developed a structure that gave them 30 dB of attenutation to the main components of the engine, and finally, an electronic noise reducing circuit which analysed the noise present at the ear, and then cancelled it using a 180 degree phase shift approach. This technique has been tried before, with a notable lack of sucess for the most part, but Bose was able to refine the method to

36

most people are intimidated by boxes full of complex knobs 98

such an extent that the crew suffcred no measurable hearing loss at the end of their flight.

Project X

The big thing on the go at the moment is the Project X speaker system. These will be the subject of review in the near future in ETI, so I wont preempt it to much here. Suffice to say Project X departs from normal Bose design in having the speakers divided up into frequency components. It consists of two tiny mid range/tweeter
boxes, each about 100 mm on a side, and a single subwoofer. The small speakers are themselves interesting designs, having a claimed response curve that goes down to 200 Hz . The woofer, however is really radical. It consists of a closed box with two ports in it. No driver is visible. Apparently, there are two normal drivers in it, which are coupled to the outside air through the ports, one port to the front surface of the drivers, and one to the back. Not only does this give an enormously amplified base response at the resonant frequency of the amplifier, but it also gives extremely good attentuation of frequencies above the resonant frequency. Since most of the distortion components are produced above this frequency, Bose claims they will always be essentially inaudible.
Beyond Project X? I asked Bose about the future of hi-fi. Currently, the industry is suffering a slump world wide, and there is not a lot to be confident about. He reasons: hi-fi penetration in US households is only 30%, even when hi-fi is loosely described only as the existance of separate speakers in the house. The figure for Australia is not much different. The reason: most people are intimidated by boxes full of complex knobs, so any future expansion of hi-fi will have to be by providing people with simple equipment possessing good sound qualities. "For too long people have listed to equipment. We want them to start listening to music"

CURRENT AFFAIRS

MADE IN TAIWAN

To most of us in Australia, Taiwan is an electronic industry success story. But it's taken some government initiative and dedication.

Thomas E. King VK2ATJ

Taipei's World Trade Centre, one of the largest exhibition centres in Asia, displays nearly every product that the economically booming island province of the Republic of China produces.

While Taiwan's 36.188 sq km doesn't even give it a place among geographic giants this tiny Asian isle. just 5500 km north of Darwin, is truly an electronic Titan. Taiwan. on the Republic of China, exported a staggering $\$ 12.3$ billion worth of electronic products to over 130 nations last year. With figures expected to top the record breaking $\$ 15$ billion mark this year, it's an even more staggering achievement when the phoenix-like beginning of Taiwan's electronics industry is considered.

Before World War II, the tobacco leafshaped island's economy was agriculturally based, although some small scale industries had been established. During the five year period following the war emphasis was placed on the rehabilitation and reconstruction of damaged factories and work sites. For 10 years to 1960 the stress on the development and construction of import-substitution industries was aimed at the production of consumer goods to satisfy increasing domestic demands.

During the next 10 years, from 1961 to 1970, efforts were concentrated on the development of export oriented industries. This decade which experienced the birth of many company names now common around the world also saw an enormous demand for raw materials. Because of this, the government, during the years 1971 to 1980, encouraged the establishment of capital intensive heavy industries and petrochemical industries to produce raw materials and intermediates to substitute for imports.

During the third full decade of industrial development, Taiwan's business people have had to respond to several late 20th century peculiarities: fluctuating oil prices, keen competition of light industrial products among developing nations and the adoption of a protectionist attitude by many developed countries. To date efforts have been made to develop strategic industries such as machinery and information industries which have low energy demands but are of high tech sophistication.

Developments

Because the electronics industry satisfies
these conditions and because the government has provided a number of incentives it's not surprising that in 1983 electronic products and electric machinery replaced the traditional textile industry as Taiwan's largest export earners. (The electronics industry is now responsible for over 20 per cent of the country's total export revenue). The electronics industry today provides a firm foundation for many other high-tech sectors; all are undergoing extensive research and development programs according to data obtained from the Industrial Development Bureau. Ministry of Economic Affairs.

Computers and related products

Personal computers. floppy and hard disk drives, printers and local area networks have been developed and efforts are being made to develop minicomputers, work stations, larger hard disks and printers.

Computer software

Operating systems, software packages. software tools, and Chinese character codes for information exchange have recently been or are undergoing development. More than 100 specialized manufacturers develop computer software, 15 of them have their software avalable for export.

Electronic components

VLSI is being researched and developed. Major results are expected in the development of LED. LCD. multiayer peb's and flat panel displays.

Taiwan is currently the world's largest stpplier of 1 to 3 amp general type and lo, wered. fast recovery rectifiers and the fou. \quad et neb supplier behind the USA. Japan ata. ...c. Sermans

Electronic communication products

Optical fibre communication systems facsimile and microwave systems are being developed to strengthen the use and development of computer and commanication products.

Electronic industrial systems

In this sector. research and development is being focused on electronic instruments and industrial robots.

Consumer electronic products

The prototype of digital IV has been completed. Research and development efforts ato being placed on VCRs. digital audio players and video dise playersitems eligible for inversment encourage ment by the government.
(To effectively promote the prinate electronics industry Tiawans Industrial Development Bureat has embarhed on a

Although Tim Chen has been interested in amateur radio for nearly 50 years - the last 26 from Taiwan the enthuastic hobbyist is still active on the bands.
investment in Tawan. In order to stimulate private enterprises to enlarge their R\&D programs, a matching fund is available to organizations and businesses conducting R\&D exercises. The Electronic Research and Service Organization and the lnstitute for Information Industry will act as operating agencies to link together the efforts of the government research organization and private enterprise. Details of this program are avalable locally from the Far East Trade Survice Inc. Branch Office in Sydney. Suite 350 K . MLC Centre. King Street. Sydncy, NSW 2000. (02) 232-6626.)

Because their annual export of consumer electronic products has accounted for more than half of total exports in the electronics catcogory, and because an increasing number of these items are finding their way 10 Australia. it is worth taking a look at this mushrooming aspect of the industry. From a starting point in 1961 when Tamam established its first transistor radio plant. the electronics industry has grown to concompasi 1000 manufacturers producing prostucts as diverse as smple AD radio: and mini TV's to compact disc platers and satcellite receising - stems

Television

Fhe television set induatry "as extahlivhed in fawan in 1962 when the time It
station began transmission. In 1982 Taiwanese black and white TV manufacturers found their sets were beginning to lose international competitiveness and so started shifting investment and outlook to the production of computer monitors.

Colour broadcasts and the production of colour sets began in 1969 . The NTSC system was adopted to meet TV set demand in major export markets. In 198t manufacturers started making PAL units after receiving long-sought-after authorization. This greatly helped to expand and diversify Tawan's export market for colour sets.

It is hoped that wo new developments will further boost the television industry in the next few years. Digital TV developed in late 1985 has brought vast improvements have been made in resolution and picture fidelity. Perhaps even greater economic potential will be realized when picture in a picture TVS (simultaneous display of two pictures of different sizes on the same sereen) are commercially produced.

Video casseffe recorders

Although a relative neweomer to the Tawan electronic seene with first models released in ibs․ the mathet potential for
 cocd to he wery greal.

Audio equipment

This equipment now represents the single most important part of exported electronic products. Radio set production in every conceivable style from muti-function units to sets in sunglasses, amounts to between eight and nine million sets a year. Mini three-in-one systems incorporating a small TV set are the latest entry on the export market. These haven't been received in Australia vet but a $+1 / 2 "$ mini TV set has been found commercially successful.

One of the biggest selling audio items is the $C D$ player. Again it's an electronic newcomer with the first prototypes appearing in 1984 and commercial exports beginning only in 1986. Production technology and vital components such as laser pick-ups have to date been sourced from leading Japanese suppliers and Philips of the Netherlands.

Japanese-made CDs have so far dominated the market but with lower labour costs and the yen's meteoric appreciation. Taiwanese manufacturers have been able to internationally compete by offering CDs of comparable quality and at very competitive prices. (The strengthening of the yen, low labour costs, foreign investment. confidence and technology transfer. an emphasis on research and development, increased quality control and the government's declaration to enact legislation for the protection of intellectual property and copyright are all working in Taiwan's favour to markedly increase the technical standing of its products as well as its export carnings.)

Video tapes and audio tapes

These magnetic products are experiencing rapid growth in both the domestic and export markets. Demand for tapes is greatest in the USA. Hong Kong. Canada and Japan. This is in line with the country's overall electronics export breakdown with West Germany. Singapore. Holland and the United Kingdom completing the 'big cight' - the major importers of goods made in Tawan.

Telephones

Like other segments of the electronic industry. Taiwan's telephone manufacture is improving in quality with a move from a labour-intensive base to a technologically capital-intensive base. Telephones have progressed to the latest in high value added telephone sets with special functions. An integrated houschold telephone system has been developed which incorporates a burglar alarm, computer terminai and closed circuit VTR in the single unit.

Calculators

Calculators have been manufactured since 1972. The export volume exceeded

10 million pieces in 1981 for the first time. Emphasis nowadays is on solar-powered models which experts saly will replace the traditional battery operated units in the not-too-distant future.

Shows

Whether it be the latest solar powered calculator, the newest three-laser $C D$ or prototypes of digital TVs. Australian visitors can see them all and much more at two large electronics related trade fairs set for 1987. Computer Taipei, the Taipei International Computer Exhibition is set for June 8-14 while the Taiwan International Electronics Show is being organized from October 6-12. (Details are available from the Far East Trade Service Office in Sydney.)
Both of these events which attract between 200 and 50% participating exhibitors are annually organized by the trade promotion agency, the China External Trade Development Council (CETDC)

$$
36
$$

Radio sets production in every

 conceivable style from multi-functional units to sets in sunglasses. 98and the Taipei World Trade Centre. The globe-encompassing China Airlines also assists in numerous ways as the official carrier for all Taipei trade shows.
The venue for these trade shows (and a host of other world-class trade fairs ranging from machinery and sporting goods to leather goods and furniture) is the 46.000 sq metre World Trade Centre. Located near the Sung Shan Domestic Airport in cast Taipei, the centre is part of a $\$ 750$ million redevelopment project.
The main hall of the seven-storey centre can contain 1330 short term exhibition booths. In the centre is an enormous skylit atrium the size of six football fields where tall exhibits such as yachts and cranes can be shown. The second to sixth floors house nearly 1100 export sales and display shops for local exporters and manufacturers. The entire product spectrum of Taiwan's electronics industry can be seen here. In addition, a permanent Export Products Display Centre on the second floor contains some 1833 tiny enclosed stalls where still more goods are on display. (These are unmanned static displays which are changed every six
months.) After touring this ultra modern complex. it's much casier to understand the very important role that the electronics industry has played in helping Taiwan achieve the rank of the 11 th largest exporting nation in the world.

Amateur radio

While it's impossible to determine the sole individual responsible for either the start or the development of Taiwan's electronics industry such is not the case when it comes to amateur radio on the island nation. The number one ham title goes to Tim Chen, an enthusiast whose affinity with the hobby dates back nearly 50 years. During that time he has held the exotic calls of XU6A. C3YW', and since 1960 has been the trustee of BV2A (Kaohshung) and BV2B (Taipei), the club stations of the 4000 member strong China Radio Association.
Tim was the lone amateur voice from Taiwan for nearly 25 years until an Italian amateur radio group succeeded in obtaining permission from the Ministry of Communications to operate a five day DXpedition in late 1983. In carly January 1987 the eighth DXpedition - consisting of a group of Japanese amateurs - operated for the first time from Tainan. Taiwan's third largest city
Nowadays, these short but highly intensive radio sessions are complemented by regular operations from 14 licensed and fully equipped amateur stations. Call signs include the two club stations: BV2s, DA, FA. GA; BV5s GA. HA: BV61A and BV7s JA, KA and LA. A BV8 station on the eastern coast of the island is expected. BV9 is assigned to off-shore islands although no individuals from these remote beauty spots have yet appeared for the exam administered by the Department of Licensing and Regulations.
Only one exam has so far been conducted, although with the government's declared support of the hobby the second one is expected this year. Tim's wide amateur experience will likely again be called upon in preparing the test papers which form the basis of the day-long exam of electrical and electronic theory. international rules and regulations. English communications. geography and Morse sending and receiving at 13 wpm .
Although amateur radio is a relative newcomer to the Republic of China this hobby is destined for a bright future. With continued government encouragement not only will new friendships be forged between Taiwan and the peoples of the world but the emerging pool of well trained enthusiasts will incalculably assist the nation in meeting the electronic challenges and opportunities of the 21 st century

"CRUSADER HAS

 THE CHIPS"
UNION CARBIDE

 FROM KEMET THE LEADER IN TANTALUM TECHNOLOGY -NEW PRECISION MOULDED T491 TANTALUM CHIP CAPACITORS, MEETING OR EXCEEDING ALL PERFORMANCE REQUIREMENTS OF THE I.E.C.Q. TANTALUM CHIP STANDARD QC 300801/450001, RECOGNIZED AND ENDORSED BY THE E.I.A. FREE CATALOGUE F-3059 10/86 AVAILABLE ON REQUEST FREE SPECIFICATIONS AND DATA FROM:

CRUSADER ELECTRONIC COMPONENTS PTY. LTD.
 81 PRINCES HWY, ST PETERS, NSW 2044.
 Phone $5163855 \quad 5196685 \quad 5172775$. Telex: 123993 Fax: (02) 5171189.
 APPOINTED DISTRIBUTORS:
 SYDNEY: GEORGE BROWN \& CO PTY. LTD. PHONE 5195855 GEOFF WOOD ELECTRONICS PTY. LTD. PHONE 8106845 WOLLONGONG: MACELEC PTY. LTD. PHONE 291455 CANBERRA: GEORGE BROWN \& CO PTY. LTD.PHONE 804355 NEWCASTLE: NOVOCASTRIAN ELECTRONIC SUPPLIES PHONE 616055 MELBOURNE: R.PG. AGENCIES PTY. LTD. PHONE 4395834 JESEC COMPONENTS PTY. LTD. PHONE 5982333 GEORGE BROWN \& CO PTY. LTD. PHONE 4193355 BRISBANE: L. E. BOUGHEN \& CO PHONE 3691277 COLOURVIEW WHOLESALE PTY. LTD. PHONE 2753188 ST LUCIA ELECTRONICS PHONE 527466 ADELAIDE: PROTRONICS PTY. LTD. PHONE 2123111 D.C. ELECTRONICS PTY. LTD. PHONE 2336946 PERTH: SIMON HOLMAN \& CO PHONE 3814155 PROTRONICS PTY. LTD. PHONE 3621044

ADVERTISING INFO No. 7

LABORATORY POWER SUPPLIES

$A P L A B$ offer a complete range of regulated DC bench rack power supplies combining high precision and regulation capabilities with continuously adjustable outputs.
Designed with single, dual and multiple outputs, these power supplies can be used in either constant voltage or constant current mode of operation.

Standard models include:
SINGLE OUTPUT
OUTPUT: Output VOLTAGE: Current
$0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 30 A
$0-70 \mathrm{~V} 0-2 \mathrm{~A}$ to 10 A
DUAL OUTPUT
MULTIPLE OUTPUT
$0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 2 A

SCIENTIFIC DEVICES AUSTRALIA PTY. LTD. VIC. 2 JACKS RD.. SOUTH OAKLEIGH. 3167 PHONE (03) 5793622 TELEX: AA32742 NSW: 559A WILLOUGHBY RD. WILLOUGHBY 2068 PHONE (02) 952064 TELEX: AA22978
S.A. 31 HALSEY RD. ELIZABETH EAST. 5112 PHONE: (08) 2556575 TELEX: AA88125

SUBSCRIBE NOW! FREE STREET DIRECTORY Sperial Bonus Gift!

Need another Street Directory - to replace your old out-of-date edition? to have as an extra in the house or second car?
Here is your chance! Simply subscribe or renew your subscription now and receive FREE the current edition of the most up-to date, widely used Street Directory in Australia. UBD Street Directories used by Ambulance, Police, Fire Brigade, MWS \& DB, Dept. of Main Roads, Taxi Co-ops, Couriers, Government Agencies and Fleet Owners.
 use

.

 your area

[^1]
ADVERTISING INFORMATION COUPON

Electro Today
 To find out more about the products and services in this issue, circle the ADVERTISING INFORMATION COUPON numbers from the advertisements, photocopy this coupon, enclose it in an envelope and send to:
 FREEPOST No. 4
 E.T.I. Magazine
 P.O. Box 227
 Please circle
 Waterloo, N.S.W. 2017 the category that best fits you.
 A. Englneer/Designer
 B. Technical Officer
 D. Programmer/Analyst
 E. Manager
 C. Technician
 F. Interested Consumer
 Name
 Company

Address

Postcode

ETI MAY '87 For a prompt reply: Post today!

Train at Home for a Better Career! (39 ways ICS can help improve your life)

NO POSTAGE NECESSARY when yOu use the FREEPOST label.
 1. Cut out label along dotted lines
 2. Paste or tape label onto any envelope.
 3 Complete the coupon
 4. Insert coupon into envelope and mail TODAY!

included with your program at no extracost

Statistics show that specialised career training has helped thousands of men and women make more money, get better jobs, even start whole new careers. Compare your present salary with the money you could be making in any one of the careers listed on the coupon And it's not the money alone that is important! Being around people you like, doing something you really enjoy, feeling successful in your career...all these can make a big difference in your future and in your entire outlook on life!

SEND FOR FREE FACTS! NO OBLIGATION EVER! WE PAY POSTAGE WHEN YOU USE THE FREEPOST LABEL.

Kiwisats

Abstract

Satellite broadcasting comes to New Zealand with the singing of a contract between the NZ post office and Aussat. This is how the Kiwi's will use their new capacity

Alan Concannon

Eearly in 1986, the New Zealand government's Communications Advisory Panel (CAC) undertook two studies into satellites and their future in New Zealand. Both studies concluded that the country must acquire a satellite capacity, although it tempered its report with a sobering analysis of the economics of satellite usage, especially given the foreign exchange and other economic problems of the country.
One study concentrated on communications satellites. The CAC strongly recommended exploratory negotiations with Aussat and Intelsat for domestic television, direct broadcasting, and other services.
The other study dealt with remote sensing satellites. The CAC recommended that the government should give this the highest possible priority because of its importance to the nation's economy. They also concluded that New Zealand would need its own satellite receiving station.
As a result, in November 1986, New Zealand Post Office signed a contract with Aussat for a special transponder on the Aussat K3 satellite which will be the most Easterly of the three Aussats. K3 is designed to pick up some of the Australian capacity which has overflowed from K1 and K2, but more importantly, to provide communications channels into the South Pacific. When it finally flies (See box), K3 will provide New Zealand with TV reticulation, video conferencing and other communications services.

All members of the CAC agreed that there would be major benefits in using satellites in domestic telecommunication networks. However, within the immediate future most felt would not be sufficient demand to justify a satellite exclusively for New Zealand's requirements. The report also mentioned areas of the NZ Post Office that could benefit by a satellite system. These include:

- Telecommunications trunk routes: A satellite system would provide route diversity and ensure continuity of telecommuni-
cation services, especially during a microwave system failure. It would also assist with the growth of the telecommunication network, especially with unusual traffic expansion or geographic needs. The CAC envisaged that as existing equipment needs replacing, a new system using satellites will be phased in.
- Telecommunications Services in Difficult Areas: A satellite system would provide telemetry circuits - especially receiving data and information from remote collecting sites. Communities in remote and difficult areas could also reap the benefits of improved telecommunications. Emergency Communications like Civil Defence, Search and Rescue, Police operations, etc, would all find a vast improvement using a satellite facility.
- Television: A satellite system would assist with the distribution of network television programs to local transmitters.

Currently, TV programs are produced on two channels in Auckland, Wellington, Christchurch and Dunedin, and then transferred over land to transmitters throughout the country. A satellite system would increase route diversity and also spread reception of the second channel which was introduced in 1976, and still does not reach all the country.

If the satellite were used for TV reticulation, it would also simplify arrangements for the introduction of a third channel. Currently this is under discussion in New Zealand as a fully commercial channel, but it could also be implemented as a pay TV channel, for which BMAC, the Australian TV standard, would be ideal.
The report also looked into Direct Broadcasting from Satellite (DBS) and the possibility that it might be an option within the next decade. DBS, in which a television signal is transmitted from the satellite direct to the subscriber's home different from other communications systems. It is a prerequisite of such a system that the home terminals required by viewers must be made small and inexpensive if the service is to be a success. To satisfy

this condition the satellite broadcast signal must be many times more powerful than that required for other forms of communications. This means in principle, DBS will take most of the available bandwidth on a satellite, and thus, must be held responsible for most of the cost.
In addition to this financial disincentive, DBS is not technically practical except in the same way as they are provided in Australia, i.e: by large and expensive down stations. The CAC had hoped that some DBS capacity would be made available on the second generation Aussat satellites to fly in 1991, but it seems that any possibility of high powered transponders evaporated with the release of tender documents which showed an Australian commitment to a lot of relatively low power transponders. Intellsat is no better. The CAC looked at the possibility of using a proportion of the next generation Intelsats booked for the Pacific, but concluded they would not be viable.

However, the use of a satellite and DBS

The AUSSAT station at Belrose NSW
is not a foregone conclusion even in the long term. It's just one of several technologically feasible options that might come of age within the next few years. Others include UHF broadcasting and cable. The UHF band is particularly attractive be-
cause, unlike Australia, it is completely unallocated for TV use. However, the committee did note that the technology of direct broadcasting is advancing rapidly. It may well be economically feasible within the next few years to provide nationwide

The fortunes of Ariane

As we go to press, news has come in that Aussat K3, the last of this generation of Aussat satellites, is to remain firmly geostationary at Ourou in French Guyana. After the failure of an Arianne IV in the middle of last year, the Europeans abandoned their launch schedule pending an enquiry into what went wrong. Engineers quickly isolated the cause of the trouble as the new cryogenic motor used in the third stage. It appears it ignited and then went out like a damp squid, leaving launch officials with no alternative but to destroy the rocket and its cargo of communications satellites. To date, no complete understanding of the problem has

come forward.

This situation left Aussat feeling somewhat miffed, as K3 was the next load due to fly. Hasty consultation with Ariannespace, the operators of the rocket, left Aussat officials confident of a launch in January. Then February. Then March. Now it appears that the troubled rocket may well stay on the launch pad until July.

Meanwhile Aussat is beginning to count the losses in unserviced contracts as the months pass with only $2 / 3$ of planned capacity. The uncertainty around Arrianne has also fuelled a new round of price hikes in premiums as insurance companies react to the increased risk of failure.
coverage at a fraction of current costs, even when taking into account the fact that the cost of additional household receiving equipment is unlikely to drop below half the cost of a television receiv. er.
The report says that if the Government accepts there is a case for extended television services, given present economic circumstances, then in the short and medium term the terrestrial broadcasting bands should be fully and effectively utilised. Initially the UHF band should be developed for local, regional commercial or pay television in urban and provincial centres.

The NZ Post Office, the CAC decided, should be responsible for all satellite telecommunications services, including distribution networks for television. However, since the Post office is a monopoly, there should be a commitment to provide satellite services for small or even part-time users such as civil defence, search and rescue and so on.

RESISTOR NETWORKS

SPRAGUE ECONOLINE thick-film Sesistor networks include multiple isolated resistors, pull-up/pull-down and interface networks in low- profile-6-pin, 8-pin or 10-pin conforma-coated single in-line packages (SIPs). Pins are set on $0.100-\mathrm{in}$. centers. Packages are 0.200 -in. high.

Sprague supplies standard Type 210C SIP networks with resistance values from 22 ohms to 1 Megohm , a standard resistance tolerance of $\pm 2 \%$ or ± 2, whichever is greater, and a temperature coefficient of resistance of $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. TCR tracking is $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ALSO AVAILABLE FROM SPRAGUE ELECTRIC

- DIL Resistor Networks
- RC Networks
- Terminators
- Resistor/Capacitor Networks
- Surface Mount Networks
- Capacitor Networks
- Transistor Arrays
- Diode Arrays

WHY NOT BUY THEM FROM THE PEOPLE WHO MAKE THEM

Call Or Write For A Free Sample

(SPRAGUE

the mark of reliability
56 SILVERWATER RD. AUBURN, N.S.W. 2144

TEL: (02) 6481661
TLX: 72906
FAX: (02) 6472260

ADVERTISERS' INDEX

\qquad
\qquad
\qquad
Centre industries 99
Crazy Charles 75
Crusader 123
Dick Smith Electronics 57,61
Electronic Distributers 36
Electronic Solutions $.84,85$
Elmeasco 8
Geoff Wood 32School103
IREE 10
Jaycar 46-49
Marconi2
Microdynamics 95
Microeducation 75
Micro Mania 25
Multiple Sclerosis Society99
Nice Computer Co 75
Penn Central 29
Pirana 37
Pulsar 29
Rod Irving Electronics $.15,16,17,80,81$
Scientific Devices 23
Scan 101
Siemens 111
Temple Smith 112
WIA 29
Yamaha 4

HOW DOES THE HUMAN COMPUTER WORK?

> The human brain is a triumph of miniaturisation, the most remarkable computer in the world. Yet its nerve cells process only 100 or so instructions per second in contrast to the millions that a computer may handle. This makes the speed at which we perform very complex operations all the more astonishing.

Dr Kevan Martin *

Computers are now part of our daily lives. We see them at work in shops at the checkout till, they dispense money to us outside banks, they produce our utility bills and they are replacing

The brain of a monkey seen from the side. Much of the cortex lies buried in deep folds. If a piece of cortex is dissected away from the underlying fibre connections its laminated structure can clearly be seen. The width of a column of cells with similar functional properties varies from about 0.05 to 0.5 mm , depending on the property.
typewriters for tasks such as writing this article. They tackle complex arithmetic with an accuracy and speed that no ordinary human can hope to match. The rate at which they have proliferated to occupy

almost every niche of our existence, in the home and workplace is a tribute to their flexibility of operation.

In our admiration for the electronic marvel we perhaps forget that the most powerful computers in the world are not built of silicon, but are carbon-based. Each of us, in fact, owns one of those computers; they come built-in at birth and operate unceasingly, often for well over 70 years. It is, of course, the human brain.

Unlike the silicon chip, our brain has evolved over millions of years and, because it is always with us, we often forget how powerful it really is. It is only recently that attempts to simulate human behaviour using computers have revealed how difficult many of the tasks are that we perform with ease. The speed at which we can carry out very complex operations is all the more astonishing when we consider that a computer can process millions of instructions per second, against 100 per second or fewer for the average nerve cell.

Processing Visual Information

One of the most complex tasks we perform is that of visual perception, and this has been a major area of investigation over the last 25 years. We now know that the main processing of visual information goes on within an area of the brain called the cerebral cortex. In primates, including humans, the cerebral cortex is so well developed that it covers the rest of the brain and, with its connections, forms over 80 per cent of the brain's volume.

The cortex consists of a sheet of nerve cells 2 mm thick and about one-seventh of a square metre in area. In humans the cortical sheet has to be folded many times to fit inside the skull; this produces the very convoluted surface of the human brain.

The primary visual processing areas of the cerebral cortex lie at the back of the brain, but the positions of the many other visual areas that undoubtedly exist in humans have yet to be found. In other primates, such as monkeys. these other visual areas have been mapped and it turns out that about 40 to 50 per cent of their cerebral cortex carries out visual processing. That so much of the brain is occupied with visual processing is perhaps not surprising, when we consider how much we depend on our eyes for normal living.
The first stage in visual processing takes place in the eyc. where the retinal receptors sample the visual world and transmit the information to the visual cortex via an intermediate structure called the thalamus. Each receptor in the retina 'looks' at a small piece of the visual world and signals changes in contrast, such as the difference between black letters and the white page of this article. In many vertebrates, including ourselves, the retina contains a mix of receptors, all of which are selectively responsive to light of a different wavelength. The information they provide is used for the interpretation of colour.
While almost any visual stimulus activates the retinal receptors, the nerve cells in the cortex are much more selective in their responses. Intensive study by the Nobel-prizewinning scientists Professor David Hubel and Professor Torsten Wiesel of Harvard Medical School showed that most of the cells are selective for the orientation, shape, size and direction of movement of a visual stimulus. Cells with similar preferences are grouped together in columns extending through the full thickness of the cortex. Clearly this sort of functional organisation must reflect an underlying organisation of the cortical circuitry. However, analysis at this level is unable to tell us very much about how the cortex is put together and programmed any more than we can understand a computer by exploring its word-processing capacities. Nevertheless, in the same way that the circuitry and logic of the computer determines its capabilities, so our understanding of how the visual cortex performs its tasks depends on how much we can find out about the contents of the cortical 'black box'.

One of the main problems we face is the sheer number of components involved. Each square millimetre of cortex covers about 100,000 nerve cells. In primates, the primary visual cortex alone probably contains about 320 million nerve cells. As if this is not enough, there are many different types of nerve cells and the cortex is further divided into six basic layers con-
taining different densities of these types. Nevertheless. there appears to be one important simplifying principle in the design of the cortex: it is a modular system. This means that. at least at its most basic level. particular structural patterns are repeated again and again.
Our task. then is to uncover the structure of the cortical microchip, and how it works. There are two strategies we might use. The first is to watch how they form. unit by unit, by studying the development of the nerve connections during early life. The second strategy is to take the complete adult circuit, select one element, for example a single nerve cell, and find out its position in the circuit and what it does.
Using the second strategy, we examined the input to the cortex from the thalamus. Each nerve cell in the thalamus sends a single fibre to the cortex. and the fibres travel to the cortex in tracts known as the white matter. As the fibre from a thalamic nerve cell enters the cortex. it breaks up

36

Each square millimetre of the cortex covers about 100,000 nerve cells. In primates, the visual cortex alone covers about 320 million nerve cells. 98
into a great many branches, which are beaded. The beads, called boutons, are the points of connection between the nerve fibres and the cells in the cortex. The connection is made by a structure called a synapse, a specialisation of the membrane of the bouton that can only be seen using the very high magnifications of an electron microscope. The bouton itself contains many small packets of chemicals known as neurotransmitters, which are the means of communication between cells, as opposed to the electrical impulse that is the signal sent out from the nerve cell body down the nerve fibre. When this electrical signal arrives in a bouton, the neurotransmitter is released and crosses the synapse.
The nature of the neurotransmitter is critical in determining what happens next, because some neurotransmitters activate, or 'excite' their target cells to produce an electrical impulse, while other neurotransmitters act to prevent impulses being produced and so 'inhibit' their targets.

Extensive Branches

The nerve fibres from the thalamus excite their target cells. Our research has shown that the branches of these fibres is far more extensive than was supposed, and that as many as 5000 celis can be contacted by the branches of a single fibre from a thalamic cell. However, each fibre contributes no more than a few synapses to any single cell, whereas we know that each nerve cell in the cortex receives at least 3000 synapses.
The activity of each synapse produces only a small potential change in the cell to which it connects, and because each cel! has a threshold to be reached before it produces an electrical impulse, the activity of hundreds of excitatory synapses has to be added together before the cell sends the electrical signal down its nerve fibre. This is a critical observation, for it gives us the first hint of how the cortex might be working.
The high degree of convergent excitation that is required to activate a single cell makes it very different from the computers with which we have been comparing it. Unlike the computer, which is organised in a very hierarchical way. the cortex seems to be operating as a democratic society. Only when enough cells agree that an event has taken place do they act together to produce an electrical impulse in the cells on which they converge. This circuitry is in sharp contrast to that found at earlier stages in the visual pathways, where the linkage between one nerve cell and the next is very much more secure because there is much less convergence and divergence.
These experiments indicate that the principle on which the cortex is designed is one where each nerve cell talks to many other nerve cells and, in turn, receives communication from a great many nerve cells. There are a number of good reasons why this should be so. One big problem that needs to be dealt with by the brain is that the transmission time along the nerve fibres and across the synaptic junctions is very slow. If these conduction times were transposed to a computer, the processing times just to read a single line of text would be intolerably long. The situation is made worse by the fact that most of the problems the cortex has to deal with are complex and, naturally, the time taken to arrive at a solution increases with the complexity of the problem. Yet we can arrive at solutions to complex tasks with remarkable speed.

Parallel Processing

The paradox of how rapid solutions are achieved using circuitry that operates

HIGH PERFORMANCE, LOW COST DIGITAL MULTIMETERS

COMMON FEATURES

- Solidly bullt to professional standards
- Large LCD display
- Fuse, Zeners, Posistor for overload protection
- 10A ac/dc current capablity
- Instantaneous audible continuity function
- Superior reliabllity with high precision resistor networks
- Carry cases optional

EDM-1346A

- 4. digit LCD display
- True rms and data hold
- 8 functions. 005% basic AcC
- Frequency counter Vdc $02-1000 \mathrm{~V} .5$ ranges 10 N max resolution.
Vac $02-750 \mathrm{~V} .5$ ranges

True rms

100nA max resolution. 075%
Ohm 200ohm-20Mohm. 6 ranges0 010 hm max resolution 02%
Diode Testing

Buzzer for continuity Testıng
Frequency 20 kHz . 200 kHz
1 Hz max resolution. 05%
Accessorles included
Testleads. spare fuse. $\quad \$ 291.00$
Operator's Manual, battery
EDM-70B
POCKET SIZED
MULTIMETER

- Miniature
- Large LED display
- Audible continuity
- Toughened case

Vdc 0.2-1000V 100 uV max res 0 5\%
Vac 200 V .750 V 1 mV max res. 075%
Adc 200u-2A 0.1 uA max
res 075%
Ohm 2 Mohm - 2 Mohm 010 hm max res 075% Diode Testing
Battery Testing $1.5 \mathrm{~V} / 15 \mathrm{~mA}$

MODEL ELP-800

 LOGIC PROBE \$39.76Unique audible beeper output

- TTL or CMOS compatible
- Hi, Lo and pulse L.EDs
- Maxımum Freq over 17 MHz
- Min Det pulse better than 30 ns
Mohm input imperance

\$64.40

EDM-1111A WITH CAPACITOR \& TRANSISTOR TESTING

- 3^{3}, digat LCD display
- Trarisistor hFE tes:ing
- Capacitance measuring
- Toughened yellow

1r:dustr:a! case
V dc 02-1000V 100 uV max res 05\%
\vee ac $02-750 \mathrm{~V} 1$ meiv max res 125\%
A dc zocu-iCA 01 uA max res 1%
A ac 20m-10A 10uA max res 1.5\%

Ohms 200chm-20Mohm 0 10hm max res Diode Check
Contini:ty
Capac:tance $2 n f-$?ouf
1pF max res 2\%
Accessories included Test
clips. spare fuse Owner's
Mancal. battery

EDM-1116A

- 3\% digits LCD disp!ay
- Transisior hFE testing
- Cacaciance measuring
- 8 functions. 05% bas:c
accuracy
Vcc 02-1000V. 5 ranges $100 u V_{\text {mex }}$ resolution 05% Vac $0.2-750 \mathrm{~V} .5$ ranges 100 uV max resclution, 1.0\% Adc 2mA-10A, 4 ranges 1uA max resolution. 10%
Adc 2mA-10A, 4 ranges IUA max resolution, 15%
Ohm 2000hm-20Mohm, 6 ranges 0 1ohm max resolution 075%
Capasitance 2nF-2CuF. 5 ranges. 1 pF max resolution 2.0%
Transistor hFE. npn and pnp
Diode iesting
Continurly Suzzer
Accessorves included Test leads, spare fuse, Operator's \$121.10 Manial, batiery

ELC-120 L/C/R METER

- 3. digit LCD display - Wide measuring ranges - 3 inputs HI Lo \& Guard RANGES Capacitance
200pF-200uF. 7 ranges 0 1pF max resolution. 1%
Inductance
$2 \mathrm{mH}-200 \mathrm{H}, 6$ ranges 01 HH max resolution, 2\%
Resistance
200 hm -20Mohm. 7 ranges 10
10Mohm max resolution. 1%
Accessories included
Test chips. spare fuse.
insiruction Manual

ECT-620 3½ DIGIT CLAMP METER

Solidly built to professional standards - Exira large (52 mm) tongs - Peak hold

- 05% basic accuracy Aac 200A 1000A ($+1 \%$) 0 1A resolution

Vac 200V . $750 \mathrm{~V}(+1.2 \%)$ 100 mV resolution
Vdc 200V, 1000V $(+05 \%)$ 190 mV resolution
Audible continuity test PEAK Hold all ranges Diode lesting

EC-30 SOFT CARRYING CASE

Double wall, fabric-backed vinyl with zippered closure Inside pocket holds test leads and operation manua Carrying strap doubles as belt loop holder.
Accommodates Handheld EDM series, EDC-110A and ELC-120
$\$ 8.50$ MODEL ELP-810 LOGIC PULSER \$39.76
Pulse repetition rate $05,400 \mathrm{PPS}$

- Pulse width at 100 mA Lead 10uS
- Sync input impedance 1Mohm
- Operating voltage 5 V 15 V dc

> 8.30 to 5 Monday to Friday. 8.30 to 12 Sat. Mail Orders add $\$ 500$ to cover postal charges.
> All prices INCLUDE sales tax.

Tax exemption certificates accepted if line value exceeds $\$ 1000$.

BANKCARD, MASTERCARD VISA, CHEQUES

GEOFF WOOD ELECTRONICS P/L (02) 4271676

229 BURNS BAY RD.
(CORNER BEATRICE ST.) P.O. BOX 671 LANE COVE WEST N.S.W. LANE COVE N.S.W. 2066 OR CASH CHEFRFULLY ACCEPTFD

The Human Computer

The cortex is built on the principles of divergence and convergence. One nerve ceil diverges to contact many other cells and each cell in turn receives a convergent input from many other nerve cells.
slowly is explained by a technique known as parallel processing. This is a means of breaking up a single complex task into a number of sub-tasks than can then be solved simultaneously instead of sequentially. The result is that the overall processing time is reduced. It is the high degree of divergence in the input of single nerve cells to the cortex. and of nerve cells within the cortex itself, that provides the structural basis to make this parallel processing possible. In this way, the severe physiological limitations of the speed at which individual nerve cells can operate are offset by having a great many working at the same time on the same problem.

The converse aspect of the circuitry, a single nerve cell receiving a convergence input from many other nerve cells, also has important functional implications. Many nerve cells, particularly at the sen-
sory surfaces such as the skin or retina, are spontaneously active. This could be a source of confusion if every nerve impulse arriving at the cortex was interpreted as an indication that something had been seen or felt. We would be living much of the time in a land of illusions. The design of the cortex ensures that this random activity is filtered out, because only the simultancous action of hundreds of cells produces an electrical impulse in the cell or cells on which they all converge. Simultaneous activity in all these cells is most unlikely to occur through random spontaneous activity, so only real events produce the required simultaneous activation of large numbers of nerve cells.

However. even in normal vision the cortex has to create illusions in order to sidestep some of the inherent limitations of the system. For example, the visual field
of each cye contains a blind spot that corresponds to the region of the retina where the optic nerve leaves the eye. We have no conscious awareness that there is any gap in our field of view, because the brain is able to fill gaps in our visual space. Similar filling-in can occur in time, too. This is well demonstrated by our experience of cinema films, where 24 'stills' are presented successively every second, yet our experience is of continuous, smooth motion. These illusions of continuity in our visual experience are clearly preferable to a disjointed and incomplete view of the world. A great deal of what the cortex as a whole does may be to provide the most complete view it can of the world around us. when not enough information is present, we make the best guess, which unfortunately (and sometimes embarrassingly) is not always the correct one.

Highly Ordered

A crucial factor in our interpretation of a visual scene is that the stimulation must be such that the cortical circuits are activated in a highly ordered way in space and time. when this essential requirement is not met. the brain cannot usefully interpret the input. A simple illustration of this is the common experience of 'seeing stars' after receiving a knock on the back of the head. The mechanical stimulation activates large numbers of cortical neurones directly and we have the experience of moving points of lights, called phosphenes. This experience does not correspond to any normal visual perception because the knock on the head does not activate the cortical circuits in the appropriate pattern.

It is only through a knowledge of the circuitry and function of the cortical modules that we will be able to understand the nature of the processing that the cortex is doing. At present we are still grappling with very basic aspects of this problem Even when these are solved many big issues will remain, such as how our memories are used in cortical processing to solve problems of recognition, and how we are able to direct our attention to particular tasks and ignore extraneous distracting stimuli, and understanding why we are 'conscious'.
Solving these problems is till one of the most formidable tasks in biological research. but the rate of progress, and the development of new ways of unlocking the secrets of the cortical microchip, make this one of the most exciting and promising areas of new research.

[^2]
CELLULAR RADIO

The term cellular radio implies amoebas with antennas.
In fact the cellular radio system recently installed by Telecom introduces a new dimension to public communication.

Mervyn Beamish

The cellular radio concept of communication is almost a text book example of lateral thinking; it takes the negatives of a traditional two-way radio and turns them into positives. Two-way radio is plagued by the need for powerful transmitters, is heavy on frequency use. cumbersome with its single voice channel transmission and is susceptible to shadow areas of reception.

Cellular radio uses low power transmitters, is very frugal in its frequency usage. utilizes a duplex transmission system and.
because of its geographical spread, shadow areas are reduced to a minimum.
With the launch of Telecom's MobileNet system in February this year, and the associated media coverage, any reader with the slightest interest in technology and communications would, by now, understand the concept of cellular radio.

The Basics

Basically the geographical area the system is to cover is divided into cells. Cell size and shape is determined by subscriber
base and physical features that affect propogation. The MobileNet coverage map of Sydney (Fig. 1) is a good illustration of this. However, a theoretical grid pattern of hexagonal cells make the conept easier to visualise (Fig. 2).
Cellular radio utilizes FM transmission. One of the features of FM is a sharp cutoff at the edge of its reception range. Imagine each cell represents the effective range of its own small FM radio transceiver - which in fact it is. These transceivers are called base stations. Adjacent cells have their own base stations operating on different frequencies and, in turn, they act as buffers or absorbency zones between one cell and the next to utilize the same set of frequencies. A cellular car-phone, for example, moving between cells automatically utilizes a frequency of the cell it is currently occupying (Fig. 2). All this is controlled by a central switching computer.
Primarily the car-phone, when switched on but not in use, works on the same principle as the frequency scanner used by $C B$ and amateur radio operators. It is constantly scanning the full range of frequencies used by the cellular network for the code number which will indicate that there is an incoming call. On receiving this code it will switch to the strongest frequency available and tell the central computer to channel the call via the base station of whichever cell the strongest frequency originates. The central computer then takes control, switching from cell to cell, as the car-phone moves around until the call is finished. A similar pattern of events occur for both outgoing and incoming calls

Cellnet

Cellular radio is not reliant on additional bandwidth to expand; let me rephrase that; it is not solely reliant on additional bandwidth for expansion. As a geographic area becomes overcrowded with subscribers the cells in that area are reduced in physical size and more cells added - basically the strength of the base station signal

Figure 1: Mobicenet map - Telecom can supply.
is reduced and new base stations are added. Hong Kong, at the present moment, holds the record for the smallest cell size which is 1.2 kilometres in radius.

Cellnet is one of the two cellular radio networks operating in Britain and is run by British Telecom and Securicor.
Over the 1986 June holiday weekend, Cellnet dramatically increased its subscriber capacity. This was achieved through cell sectoring. In a standard cell the base station transmits and receives omnidirectionally (360 degrees). By changing this pattern to 60 degrees a cell can be divided into six sectors. Each sector is allocated a different range of frequencies. The cellular pattern can then be rearranged so that no cell or sector utilizing the same frequencies touches. Cellnet's old 12 unit cell pattern reused a frequency every 13th cell, but by sectoring the cell pattern was reduced to four units and frequencies reused every 5 th cell.

Cellnet's average cell is four kilometres across. However, by sectoring the four busiest base stations in London the actual cell size has been maintained but the ca-

pacity raised from 35,000 to 60,000 subscribers.

Problems arising from sectoring include increased demand on the switch capabilities of the central computer and interference from adjacent cells. Cellnet's sectori-
sation program is being observed by operators all over the world.

Digital Transmissions

Digital transmission is the area in which most research and development in cellular radio is being undertaken. Nearly all major manufacturers are involved in the search for cost effective digital hardware designs.

Telecom is confident that the MobileNet system will 'go digital' by late 1990 .

The working of a cellular radio system is dependent upon its ability to transmit and receive combined voice and data signals. The current analog systems are limited in this facility. A digital system will dramatically increase the amount and accuracy of data sent and received through a cellular system.

Currently Telecom advises its customers that MobilNet is not 100% secure. A determined radio operator with a scanning device might be able to eavesdrop on telephone conversations from MobileNet. Digital transmission will allow encrypted voice signals and therefore increase message security.

The availability of additional data transmission capabilities, with digital technology, will lead to additional customer services such as notification of a third party calling, current call charge and even messages and images on a CRT display unit.

One other effect will be a significant reduction in the 'multipath effects'. Multipath effects arise because antenna on mobile and handheld units are almost always below the heights which permit direct line-of-sight propagation to and from a base station. The signal received contains a mixture of direct and indirect components. These components are the results of random diffraction and reflection of radio waves by buildings and other objects. Digital transmission techniques will be able to resolve indirect random elements causing this effect and produce a cleaner signal.
Digital techniques also require less power and therefore less buik in handsets. Developments in this area combiend with reduced battery size will lead to miniaturisation of hardware. Miniaturisation similar to the famous Dick Tracy watch and communication devices that Startrek devotees associate with the words "Beam me up Scotty!"

Telecom in the 1990's

The magic number for MobileNet is 1990. By 1990 all capital cities and the majority of provincial towns throughout Australia will be linked into the Telecom cellular

Figure 2: Cellular network grid.
radio system. Major highways will be part of the nationwide system and expansion into the less populated parts of the country will have commenced.

While Telecom is visualising and planning its future within limited public view the Department of Communications seem to be more restrictive with their information. It would seem that there is a passing mention of 'mobile coms.' being part of the services packages proposed for the new 'AUSSAT Birds' and that it is part of another Cabinet Submission. Whether 'mobile coms.' include an involvement with cellular radio was not known. Planned bandwidth allocation for the inevitable expansion of Cellular systems within the country also was not known.
"We tend to be a follower," the department spokesman said, ". . . Not that the intelectual thinking isn't being done but it is what the Minister will permit us to release."

To be fair the department offered me the use of their library and are following up some more definite replies to my questions but you would have thought with Cellular Radio being the 'flavour of the month' good Public Relations would have been better achieved with a short press release on the topic.

Satellite Communication

The Department of Communications passing comment about AUSSAT could be very significant to the future of Cellular radio in this country. Whilst-ever Telecom operates MobileNet within the populated
coastal fringe of this country our cellular system can operate in traditional fashion. But what about the remote inland areas.

In November 1985, Salt Lake City (US), an inaugural trial of a system that combines the distinctly different technologies of Satellite and Cellular communications took place. The aim was to develop an 'immediate portable communications service'.
The three companies involved in the trial were NewVector Communications (cellular service provider), AT\&T Network Systems (cellular switching service provider) and American Satellite (earth station provider).

The bi-product of this development which caught most media attention was then an American trucking company utilized the technology to communicate with and geographically pinpoint the location of each of its trucks. But the significance is much greater. The system was developed primarily as an immediate portable emergency communications service. However, commercially its impact has been to link rural and remote areas of the USA into a national cellular network.
"Generally speaking, the advantages of this type of wireless distribution of voice and data communications is dramatic in rural areas or in circumstances where communications are down due to a natural disaster," says Bill Scott, American Satellite's Director of Systems Development Engineering, "Now all that is needed in these situations is a cellular system, a satellite, and a combined portable each station and a cell site. The solution is quick, efficient and reliable."

The satellite links widely spread base stations (earth stations) with the central cellular switching computer and also acts as the channel for voice and data signals in and out of these remote areas. I presume that the satellite, under some circumstances, could also act as a base station.

This technique would also be able to link aircraft and ships into a cellular system.

Automated Mobile Office

It only takes an elementary knowledge of radio direction finding or navigation to realise a number of added benefits to the cellular system. The cellular system's central computer could plot the precise location of every operating subscriber transceiver.

Imagine a future Taxi service that was leased part of a city wide cellular system. The dispatcher on receiving a booking would key the location into a computer and immediately a street map would appear on the VDU. A series of flashing coloured icons would indicate cabs in the area. The icons would represent cabs that were engaged or not for hire, those with prior bookings who would be unable to take the job, those sitting on ranks or cruising looking for fares. A selection of the appropriate cab would be made by the computer based on any priority list, eg, cabs on ranks get first offer, traffic condition and time of pick-up. The dispatcher could override the decision as required. In the cab the driver would not only receive, via a dashboard communications module, the details of the pickup and route recommendation based on current traffic flows etc.
An added advantage would be security for the drivers. On an emergency signal from a driver the dispatcher, or police, would know exactly where the cab was and even be able to listen to the voices of its occupants.

This is not exactly fantasy - the technology is already here and working on similar systems to MobileNet. Racal Electronics are already talking with Telecom about the introduction of their Automated Mobile Office services. The services inlcude telecopying of documents (Fax), printing facilities, display of road, weather and traffic information maps, TV telephone and VIDEOTEX systems as well as Data Terminals with electronic mail, data base access and online computer accesss etc.

The mind boggles when trying to picture all this equipment on the dashboard of a car, but in the form of a small attache case it seems to become more imaginable. Racal are already transmitting and receiving various forms of data on the USA cel-
lular systems and are only waiting for Telecom's green light to do the same here.

Possibilities of a Worldwide System
Great dreams of a worldwide cellular communications system are diluted by a traditional technological problem - incompatability.

The Australian MobileNet is using the AMPS system the same as USA, New Zealand, Canada, Phillipines, South Korea, Thailand and a number of other countries. There are at least four major systems and a number of minor ones each with their own incompatible interfaces.

The NMT system has been adopted by Britain, Uganda and China. China in actual fact has two systems. It also has the TACS system along with Spain, Greenland, Saudi Arabia, Malaysia, Indonesia and a number of Asian countries.

The Europeans have one of the longest running commercial systems which, I'm led to believe, does not incorporate the latest cellular technology. However, the EEC is working towards a pan-European system including Britain. This may well be the first significant clash of systems and a lot of interest will be focused on the European experience.

International travel and communication is as familiar as Vegemite to the Austra-

lian and Apple Pie to the American. One day all countries will agree on a common technology and the cellular radio system will cross all national frontiers. People will pack their cellular telephones along with the credit cards and passport.

Arther C. Clarke said "Man can suffer nostalgia for the future." and George Lucas has underlined this claim. Cellular Radio is the stuff that dreams of the future are made of - and what very feasible dreams they are too.

ED SAYS
HE WHO CHECKS
PRICE FIRST
SPENDS MONEY
WISELY!

CHECK OUR PRICES

You will be pleasantly surprised.

GOOD RANGE OF:

Passive components, switches semiconductors, knobs, fuses boxes, kits, etc. IBM compatible computers peripherals, sottware.

SPECIAL PRICES FOR:

Schools, Govt Dept, Industry Students \& Bulk Purchases

PROJECTS \& HOBBIES

CRISIS FACES SHORTWAVE BROADCASTERS

The World Administrative Radio Conference is faced with some big problems in trying to allocate frequencies to the plethora of competing broadcasters. All over the world nations are using more frequencies, more power and jamming each other in a bun fight to get messages out.

Last January, a meeting of the World Administrative Radio Conference representatives was held in Geneva to discuss the future of shortwave broadcasting.

The main problem confronting them is that of too many stations for too few frequencies, and in an attempt to accommodate the international, regional and local
broadcasters on the channels available a new approach has been made. Stations have been requested to indicate not only the time and frequency they require, but program details as well.

In 1984 representatives of the Post and Telegraph Administration met in Geneva to find a way of portioning out the shortwave

VOICE OF HOPE

Abstract

The Voice of Hope, KVOH, at Los Angeles has been testing with a 50 kW transmitter on an Initial frequency of 17775 kHz . The station is associated with the "King of Hope" In Lebanon, which has been in operation for some years and in recent weoks has been using 6280 kHz .

The transmitter used by the Volce of Hope was originally owned by HCJB, Quito, Ecuador. Migh Adventure Minis. tries, the operator of the Voice of Hope, purchased this RCA 100 kW transmitter and it was shipped from Ecuador in two containers through the port of Guaya. quill to Los Angeles.

The new transmitter has been installed in building on top of a hill in Simi Valley. The transmitter, rated at 100 kW , is expected to be only used at 50 kW .

The present schedule ls: $1400 \cdot 1600$ UTC on 8852.5 kHz, 1600.2200 UTC on 17775 kHz; 2200-2400 UTC on 15120 kHz; 0000.0300 UTC on 11930 kNz; $0300-0800$ UTC on 9852.5 kHz 0600. 0800 UTC on 6005 kHz . According to announcements, reception reports are appreclated and should be sent to KVOH, PO Box 93937, Los Angeles, Caiifornla 90093.
frequencies. The result was that stations were required to advise Geneva of their needs for frequencies and details of areas of service. The requests were fed into an adjudicating computer which allocated one frequency per broadcast to one target area, although provision was made for a second if necessary. If a station encountered interference problems, it was up to it to sort them out.

In an attempt to find out the limitations of this system, operating stations were asked to submit requirements for December 1985 and June 1988. One hundred and three countries out of the 160 which comprise the WARC replied - and the full extent of the shortage of frequencies became clear. The band between three and 30 MHz held between 12,000 and 18,000 hours of program per day. And this was exacerbated by the low sunspot activity forcing congestion of stations on the lower bands.
The results showed that some 30,000 hours of daily program time is presently needed, rising to 39,000 hours by June 1988, based on an allocation of one program per frequency.
Radio Nederland's "Media Network" has reported Jim Vastenhoud, a member of the Dutch delegation, as saying that at the present time less than half of the requirements can be fitted into the available frequencies and, in fact, only 43 per cent of stations operating could be allocated frequencies relatively free from interference.

At present there are some 2200 shortwave transmitters on air of which more than 300 are 500 kW strength, and some 900 are $100-300 \mathrm{~kW}$. It is expected that if any new plan comes into operation it would require the larger international broadcasters to cut back on their transmitters. For example, Radio Nederland with eight transmitters would be able to operate 78 per cent of its schedule under the new plan, with a corre-
sponding reduction of 22 per cent in daily transmissions. And all transmissions carried on more than one frequency would have to be cut back to a single channel. This would affect Australian listeners, for instance, as Radio Nederland's service through Bonaire 0730-0825 UTC is carried on 9630 and 9715 kHz ; only one of these channels would be permitted to carry the Radio Nederland transmission.

Jamming

Broadcasters from Western Europe carrying transmissions for instance in Russian use a multitude of frequencies in order to beat the jamming. In future one channel only would be allocated. In theory this would reduce the amount of jamming on the bands, as the USSR would concentrate on the single channel carrying the Russian broadcast. A decrease in jamming may in some way overcome the frequency problems as more channels free from interference would become available.

The main country which would have to reduce frequencies would be the USSR. We note, for instance, at 0700 UTC Radio Moscow World Service is receivable on 42 channels. These are beamed to Europe, Africa, Asia and the Far East. In theory these frequencies would be cut to one for each area which would mean at least the silencing of 30 transmitters.

The introduction of such a plan should cause concern to radio listeners, particularly the casual listener, as each of the four seasons of the year a different frequency plan will be in use. No longer will the casual listener be able to say that he finds Radio Australia on a certain spot on the dial, as Melbourne will not have any 'right' to a frequency, but can be allocated any frequency which it is felt would be efficient enough to serve the target area.

As the WARC sees it the way for short-

Local Inhabitants have agreed to a compromise settilng a dispute over the site of a new high powered shortwave fa. cility in \mathbf{S} witzerland.

The compromise involves feeding the hot water from the transmitter's cooiling system into the village free and the in. stallation of a community cable radio and television system (free again) to overcome possible interference from the nearby transmitters.

Since 1939, Swlss Radio International's main transmitting site has been located at Schwarzenburg, about 16 km
from Berne, and untll the late 1960s these faclilies were found adequate. However, with an increasing number of shortwave stations around the world there followed an Increase in facilities and power in a bid to provide better re. ception. Local opposition in Schwarzenburg blocked the Swles PTT (Post Telegraph and Telephone) plans for expanslon of the station there, so new site had to be found.

It was planned that the new facility would have bigger antennas with masts 50 to $\mathbf{1 2 0}$ metres tall between which there would be strung masslve aerial systems. The site would have to be away from high hills and mountains and the ground should have good conductiv. Ity, le, wet land would beideal. After an evaluation of 20 sites the choice was narrowed to area in the western Canton of Berne.

The project faced local opposition for Its effect on the environment and the possibility of electrical interference. There was also the fear that electrical fields produced by the transmitters might damage health.

It has been felt in the past that the Swiss PTT has been at fault in not fol. lowing up complaints from the Schwarzenburg area, but apparently it has learnt lis lesson and has agreed to asslst with the problems faced by the new transmitting site inhabitants.

- Athur Cushen
wave broadcasting to combat this present problem is by the introduction of single side band transmissions, and already some international stations are testing with that type of transmission. An improvement in receiver selectivity will be essential in order to tune into an SSB transmission and receive a strong clear stable signal. The introduction of SSB transmissions is faced with problems: some countries do not wish to move to SSB, and naturally the receiver manufacturers will not put on the market equipment
capable of SSB reception, unless there is a large audience wishing to buy this improved type of radio receiver.

The whole matter of the better utilization of shortwave frequencies is at the crossroads and it is felt that many governments will not be prepared to cut their international broadcasting by half in an attempt to try and get a clearer signal for the shortwave listener. Continuing chaos on the bands could well be with us yet in the years to come.

KILOHERTZ COMMENT

DUBAI: United Arab Emirates, Dubai is using 9595 kHz for its English broadcast 0330-0400 UTC. This transmission is also available on 11940 kHz , and as well as news and commentary, there is a daily feature on life in the Arabian Peninsula. On Sundays the Mailbag session answers questions about the United Arab Emirates. GABON: Swiss Radio International for the first time, is leasing time on an overseas relay station and is using the facilities of Africa Number One, at Moyabi, Gabon to broadcast to South America. Using 9625 kHz the transmission is 2215 0100 UTC. It is carried over a 500 kW transmitter, which is operated by a commercial organization in this West African country.
GUAM: KTWR, Agana, Guam has made a frequency change to 15115 kHz for its broadcast to New Zealand, which is heard daily. On Saturday "Distant Listeners' Log", is heard at 0830 UTC and the full English transmission is 0740-0900 UTC, with an earlier sign-on Friday and Saturday at 0730 UTC and on Sunday at 0715 UTC. A session in which letters are answered is featured on Friday at 0730 UTC. As well as English, KTWR which is operated by Trans World Radio,
broadcasts in 10 Asian languages.
Adventist World Radio, KSDA, has been delayed in its broadcasting plans, but is expected to be operating this month with 100 kW and one antenna system. The tentative schedule is English $2100-2200$ UTC on $7160 \mathrm{kHz}, 0000-0100$ UTC on 15300 kHz ; $0200-0300$ UTC on 17855 kHz . Other broadcasts will be in 14 Asian languages. According to a letter from the station, reception reports on initial test broadcasts are appreciated, and should be sent to AWR Asia, PO Box 7500, Agat, Guam 96928.
JAPAN: Radio Japan is using the transmitters of Radio Canada International at Sackville for two broadcasts in English and Japanese to North America. The broadcast has been retimed with English 1130 UTC and Japanese 1200 UTC on 6120 kHz. Radio Japan confirms reception of this relay broadcast through Sack. ville with a special verification card showing the satellite link to North America. Radio Japan's service to Australia continues to be very well received on its two frequencies, 11875 kHz and 15235 kHz 0900-1000 UTC.
USA: World Harvest Radio Station, WHRI, has
been operating for one year with its Gospel programs and is heard on many frequencies. The most interesting reception has been 2100-2300 UTC on $9770 \mathrm{kHz}, 0600-0800$ UTC on 6100 kHz and 0800-1100 UTC on 7355 kHz . Reports are requested to PO Box 12, South Bend, Indiana.

The latest newcomer to operate from the United States is the project of Christian Science Monitor. Broadcasts are from WCSN, Scotts Corner, Maine and the present schedule to Europe is: $2000-2200$ UTC, 7365 kHz ; 0100-0200 UTC, 7365 kHz ; $0200 \cdot 0300$ UTC, 9745 kHz ; $0700-0900$ UTC. 7365 kHz . There are also programs beamed to west, east and South Africa, according to the WRH newsletter.

This item was contributed by Arthur Cushen, 212 Earn St, Invercargill, New Zealand who would be pleased to supply additional Information on medium and shortwave listening. All times quoted are UTC (GMT) which is 10 hours behind Australlan Eastern Standard Time, and areas observing daylight time, should add an hour.

The Ferguson UPS operating principle provides one of the very truly uninterruptible power supply systems and is designed for use with all well-known designs of micros, minis, communication, process control, CNC equipped machinery and security systems - indeed with all applications requiring reliable and pure electrical energy. The Ferguson UPS features a unique ferro-resonant Constant Voltage Transformer isolated supply, guaranteeing trouble-free "clean" power from the mains under normal conditions. Voltage fluctuations, spikes and other transient conditions are not only prevented from entering your apparatus but are also prevented from entering the UPS electronics, thus providing unique self-protection. When mains voltage or frequency falls below levels unable to be corrected by the Constant Voltage Transformer then the mains Synchronized inverter takes over to maintain continuous, clean, electrical energy for your vital electronic apparatus.

Advantanges of a UPS System incorporating a
 Ferro-resonant Transformer

- Provides a sine wave of low distortion, typically less than 5\%
- Attenuates transient common mode and transverse mode noise voltages.
- Maintains a constant output voltage over a wide mains input range.
- provides overload protection, being able to tolerate an indefinite short circuit.
- The ferro-resonant transformer stores energy in its 'tank circuit' which assists in a smooth changeover from mains to battery.
- No transient radiation from inverter circuitry.

Uninterruptible Power Sup Supply TYPE UPS poly

Principle of Operation

The Ferguson UPS has four main components i Constant Vottage Transformer
2 Bantery Charger
3 Sealed Lead-Acid Battery Pack
4 Synchronized Inverter
Power enters the UPS va the input terminals of the Constant Voltage Transforme: The clean outpul from the CVI is then ted directiy to the connected load (normal operation) and also to the Battery Charger The Battery Charger is set to maintain the Sealed Lead. Acid Battertes in good operating condtion ready for a voltage
continuously monitor Irverter Synchronization with Matns Voltage in addition to monitoring Mains Voltage Level Mains Frequency. Battery Volts and Battery Charger Output
The output voltage of the UPS is regulated oy the action of the CVT When the mains voltage drops bolow 85% an electronic switch operates to disconnect the mains The mains will be automatically feconnected when the voltage returns to normal
In the event of an accidental short circuit on the output of the UPS no damage can occur The Ferguson UPS and its electronic circuirry are fully protected agains secondary short curcults and voitage transients

Technical Data

Type Number	UPS 250/15	UPS 750/15	UPS 1000/15
Rating	250VA	750 VA	1000 VA

ELECTRICAL SPECIFICATIONS

input Voliage	240VAC (or - 15%)	240VC (- or - 15%)	$240 \mathrm{VAC}(+$ or $\cdot 15 \%)$
Input Frea mency	50 Hz (- Or -3%)	50riz ($\cdot 0$ - 3\%)	$50 \mathrm{~Hz}(+0-3 \%)$
Batery Charging	Constant vo'tage with currentlimi (Floa: charging)	Constant voltaçe with currentimi (Floal charging)	Constani voltage with currenlimt (Float charging)
Ouiput Rat 9	250.A	750 Va	1000VA
Output Po: er Facio	08 'eading to 08 lagging	08 leading to 08 lagying	08 lead ing to 08 lagging
Output Vo'tage	240 VaC 50 Hz	$\text { 2.4OVAC } 50 \mathrm{~Hz}$	240 VAC 50 Hz
Ouiput Regu'at on	(. or - 4)	(. or -4%)	($\cdot 0$ or $4^{\circ} \mathrm{b}$)
Common ! 'oce Repection	$>120 \mathrm{~dB}$ up to 1 MHz	$>120 \mathrm{~dB}$ up 10 IMHz	>12008 up 101 iAHz
Transuerse roce Rejecton		>6098 l0 KHz to $1 \mathrm{M} / \mathrm{Hz}$	$>6008 \mathrm{~B} \quad 10 \mathrm{KHz}$ 10 1 L .4 Hz
Tolai Harmon c Distorvon	Less man 5\%. (3: 100%, thear 1030)	Lessthan 5*. (at 100% linear oad)	Less than 5\% (at 100% inear (gad)
Shon Circu:	Sel' protected	Sell protected	Sell protected
Transier Iime	Less than 10 ms	Less than 10 ms	Less than 10 ms
Backup lime	15 mnuies	15 minutes	15 mnules
Addicional Backup (Not provided with stareard unis)	Approx 15 m lo lo every addional 10Ah capacily	Approx is mintor every additional 10Ah cavaraty	Approx is minfor every adcitional 10Ah capacily
DIMENSIONS (mm)			
	$770 \times 440 \times 350$	$340 \times 440 \times 350$	$340 \times 440 \times 350$

Due to continuing efforts to improve our products information given herein is subject to change without notice

FERGUSON TRANSFORMERS PTY LTD
7 Moorepark Avenue, Moorebank NSW Australia
Bag No. 27 P.O. Liverpool NSW 2170
Telephone (02) 602 1222. Telex 25728 (Fertex).
Fax No. (02) 8212027.
Melbourne Office: Telephone (03) 5616699.
Telex 33510.
Branches \& Agents in other States.

FEED FORWARD

Letters to the Editar

A WARNING FOR LOUIS

WHILE I AM a comparitive newcomer to your ETI Journal would llke to compliment you and your technical writers for producing a well balanced coverage of electronic ori－ ented articles and projects which I always find to be of great interest．

As a retired Broadcast Design，Planning，Construction and Installation Engineer of Radio Studios，I have found your articles on Audio subjects most interesting and it has helped me keep abreast of new technlques in audio am－ plifiers and reproducers．

I found the Louis Challis article＇Gallon Performance in a Pint Pot＇quite interesting as during my professional career I had closely followed the development of better repro－ ducer design resulting in a considerable reduction In the enclosure capacity without serious degradation of response at high power levels．

With regard to Louis Challis＇section on Subjective Testing however it does concern me that there was no warning paragraph prefacing these details indicating that sus－ tained monitoring of high levels in excess of 95 dB can be capable of causing irreparable damage to the ears．I do strongly belleve that this fact should be always included in such articles to discourage readers from emulating the tests Mr Challis carried out．In particular the test in excess of 110 dB which as Mr Challis remarked＂did not destroy the reproducers＂but I do have some concern for the re－ sulting effect on his hearing．

I have no doubt you would be aware that music con－
ductors and recording studio engineers who are subjected to excessively high S．P．L．s（Sound Pressure Levels）for sus－ tained periods ultimately suffer some form of hearing impediment．
I trust that you will accept my comments as constructive criticism as I believe there is a trend towards the need to monitor programme material at S．P．L．＇s greater than 95 dB without appreciating the long term affects on the human ear，in a domestic situation．

J．E．Burgesson，

 Cheltenham，Vic．
CONGRATULATIONS MATHEW

MAY I CONGRATULATE Mathew Sorrell of Clarence Park S．A． on his skill and knowledge at 10 years of age demon－ strated by his completion of the projects referred to on page 44 of the cookbook．
Schoolboys over 60 years ago possessed similar skills and knowledge，limited of course by the range of compo－ nents available to them．However varicaps，spider－web coils，crystal detectors，hand wound coils，Reinats circuits and the many advances in technology were just as chal－ lenging to them as the ICs etc are to the boys of today．
I do not intend to make up Mathew＇s project because I merely have to walk into the garden to hear the natural sound of a buzzing mosquilo．

W．C．Hamis， Windsor，Qld．

9 REM ATITLE SCFEEN：
10 FRIMTH゙SCLA：：55－EVE
EO FO ESS．O：FOr ESS－1． 1

FESINTTAB
PRINTTAR（IS）：＇RED：：RVON：

110 FOKX $=$ OTOBO：NEMTY．A：GOTOTO
119 REM ESFRITE INIT，＊ 1
120 PRIMT（CLF：＂：FOFESS．E：FOXESS－1．

16E fou \＆vosi．
169 REM ESSCREEN OISFLAYBA
170 FELHTTARC

CJon：©VELO：：R＇VON

ZOO FFIHT ：：FVOH：LLFED：
20 FFINT KVVOR：LRED：
ZEO FFITHT IKNOH：SLFED：

こと0 3S＝FEE：
20） $15 J 5=110$ THENST $=5 F-1$
270 IFJS：12TMENSF $5 F .1$
270 IFJS•12TTMENSF－
Zar．IFJSilitMENE．N
Soo IFSF ITMENSF＝1

```
A:GOTOZO
#: вOTOZ0
    FOEE,Is:FOIE%:I, yt
```



```
    ,GA=1
```



```
        IFGG ITMENGMA-
            iFJJ=:=`TMEHO
            IFGG=:JHEMDN:
```



```
F0m |JJuMF fOUT:",E",
IFGM-1 PMEHDE=?
O10 TFGGMETHENDE=O-
%! JD=DE-MFHDE-8*
O:C, JD=DE-:=0SF
```



```
BOD FOKTM=MTOSN:MEMT
```



```
OQO NEM IHSCOEE SCREERMM
```



```
M,
040 IFJL TMENGE- O -:GOTOl"BO
log0 IFJL:THENG:-PFAGCTICE NEEDED"
lol
```



```
REAOV.
```


Long jump

The object in this game of strategy is to find the best comblnation of speed and angle to jump the furthest． The controls are：joystick left －slow down；joystlick right－ speed up；fire button－stant
jump；fire button and up－ degrees up；fire button and down－degrees down； releasing the joystick starts the jump．

John Avis，
Frenchs Forest，NSW

00010 REM Scientitic Calculator
OOO30 CLEAR：SDIO：DIM RO（1O）
 ODOSO FO＊O：F1－0：F2＊0：KO：－J•：N＝1：NO＝0：N1＝0：Y＝0：80－57．2957795：ON ERROR GOTO 1040 000ธ0 GOSUB 8ธ0：GOSUB 70：FO＝1：GOTO 280
00070 N2：$\cdots: 1=7:$ CURS2，J：PRINT KOs：CURS $6, J: P R I N T * ~$
00080 KO：KEY ：IF KO：．．THEN 80 ELSE GOSUB 1080

00100 tF KO＊F•P．THEN LET N2s－STR（3．1415926）：CURSB，J：PRINT N2s：Y＝1：GOTO 80 00110 IF KO＊－＇E．THEN LET N2BESTRIBOI：CURSS，J：PRINT N2S：Y＝1：GOTO B0
00120 IF KO＊＊・く・ THEN GOSUB 990：N2S－STR（RO（U））：CURSO，J：PRINT N2\＄：Y＝1：GOTO 80

 00150 SOSEKEYS：IF SO甘＝．．THEN 150
 OOIBO CURSI，J：PRINT SOEI＝I：1；CURSI，J：PRINT．－1：GOTO 80
00190 IF KOS＜ 0° AND KOS《＞．OR KO O．${ }^{\circ} 9^{\circ}$ THEN 210
00200 N2s＝N2s•KOS：CURSI，J：PRINT KO $1:$ I－I＋1：GOTO 80
00210 IF F1＝1 THEN LET FI＝0：M2＝VAL（N2＊）：NO＝M1＊10＾（SI＊M2）：GOTO 230
00220 NO－VAL（N2
00230 IF FO＝O THEN LET NI＝NO
$00240 \mathrm{~J}=\mathrm{J}+1:$ RETURN
00250 KOs\＃KEYS：IF KOE．．．THEN 250 ELSE GOSUB 1080

$00270 \mathrm{~J}=\mathrm{J}+1:$ ©0SUB 1000

00290 IF KOBF－．．THEN GOSUB 7O：NI－N1－NO：GOSUB 1000：GOTO 280

00310 IF KOE．＂．：THEN GOSU日 2O：NI＝N1／NO：GOSUY 1000：GOTO 280
00320 IF K03．＂•＂．THEN 670
00330 IF KOA－＂日＇THEN LET NIENI样1：GOTO 670
00340 IF KOB：＂A．THEN LET NIF－N1：GOTO 670

00370 IF KOSE•C．THEN LET N1－COS（N1／80）：GOTO 670
00380 IF KOE＂＇ X ＇THEN LET N1－EXP（N1）：©0T0 670
00390 IF KOSE＇Y．THEN LET N1＝10＾N1：GOTO 670
00400 IF KO\＃FI．THEN LET N1＝1／N1：GOTO 670
00410 IF KOB＝－3．THEN GOSUB 9JO：GOSUB 850：CURS1，J＋1：PRINT• • $1:$ GOTO 250

00430 IF KOU＝－E．THEN 30
 00460 IF N1＝0 OR N1＝1 THEN LET N1＝1：GOTO 670
00470 TI＝N1：FOR 21－1 TO N1－1：T1＝T1F（N1－21）：NEXT 21：N1－T1：GOTO B70
00480 ［F KO\＆ $3 \cdot{ }^{\circ} \cdot{ }^{-1}$ THEN 510 ELSE IF ABSIN1I3I THEN 1070
00490 IF ABS（N1）＝1 THEN LET N1－N1世90：GOTO 870

00510 IF KOB（）＂E．THEN SSO ELSE IF ABSINIHII THEN 1070
00520 IF ABS（N1）＝1 OR ABS（N1）＝0 THEN LET N1＝90－N1年9：GOTO 670
00330 NS－SER（1－N1＊N1）／N1：IF N1＞0 THEN LET N1＝N5：GOTO 660
00540 IF ABS（NS） 6.01 THEN LET NI＝NS\＃80 ELSE LET NI＝ATAN（NS）＊BO
00550 N1－180＊N1：GOTO 670
00560 IF KO（）＊R• THEN 580
00570 IF N1）＝0 THEN LET N1＝SQR（N1）：©0T0 670 ELSE 1070
00580 IF KOES $) \cdots$ THEN 600 ELSE GOSUS 70
00590 IF N1＞0 THEN LET N1＝N1＾NO：GOSUB 1000：GOTO 280 ELSE 1070

00610 IF AgS（NO． 00620 IF KOBC ${ }^{\circ} \mathrm{L}$ ．TMEN 640
OO6JO IF NL）O THEN LET NI＝2．JO25851＊LOGIN1I：GOTO 670 ELSE 1070

00650 IF N1＞0 THEN LET N1＝LOG（N1）：G0TO 670 ELSE 1070

00670 CURS2，J：PRINT KO：CURS6，J：PRINT N1：GOTO 250
00880 CURS33，1：PRINT－add－subtract
00690 CURS3J，2：PRINT multioly $/$ divide
00700 CURS33，J：PRINT．M mean $=$ terminator
00710 CURS33，4：PRINT．power F factorial
00720 CURS33，S：PRINT．L logiol $\quad x$ antilogie）．

00760 CURS33，9：PRINF．it tan $(x) \quad z$ are tan (x) ．
00770 CURS33，10：PRINT Q square R sq．root
00780 CURS33，11：PRINT－I inverse A alter sign
00790 CURS33，12：PRINT：P 3.14139 B 57.29578
00800
CURS33，13：PRINT＊＇to res．
00810 CURS33，14：PRINT．D trom res．
delete
00020 CURSJJ，15：PRINT．N now calc e reset reg．
00830 CURS33， $16:$ PRINT ${ }^{(1) P r e s s ~ a n y ~ k e y ~ t o ~ c o ~}$
00840 IF KEY
00840 IF KEY $1=$ ．．THEN B40 ELSE LET U＝O：V＝0
00850 FOR 2－1＋U TO 16－U：CURS33，Z：PRINT（A31 32）！：NEXT Z

00870 Q＝1：FOR 2＝100 TO 54E STEP 64：CURSZ：PRINT O
（Q1：QE日＋1：NEXT 2：IF U＝1 THEN 910
00900 CURS740：PRINT•Press＇
00910 RETURN
00920 1－7：F1＝0：CURSS，J：PRINT \｛A27 32］：RETURN

00940 IF WOE．．．THEN GOSUB 990：RO（w）－RO（w）•N1：RETURN
00950 IF W0．．．．．THEN GOSUE 990：RO（W）－RO（W）－N1：RETURN
00960 IF WO F．＇．THEN GOSUB 990：RO $(w)=R O(W)$ ANI：RETURN
00970 IF UO：－THEN GOSUB 990：RO（w）＝RO（W）／NI：RETURN
$00980 \mathrm{~W}=$ ：NT（VAL（WO 1$): R O(W)=N 1: U=1: V=7: R E T U R N$

01000 IF J 115 THEN 1030 ：REM Page Length Check
01010 FOR 2＝1 TO 15：CURS5，2：PRINT \｛AZ7 32］：CURS2，2：PRINT：：：NEXT $=$
01030 RETURN
01040 IF ERROR CS326 THEN 1060 ELSE GOSUB 1010 ：REM ETROR Traps

01060 GOSUB LOIO：CURS8，J：PRINT－ErCO IERROR C_{i}^{-}in LINE＇iERROR LIEND
01070 GOSUB 1010：JES：CURS2，1：PRINT KO ：CURSIO，3：PRINT•IIIEgal Operation＊：GOTO SO 01080 H＝ASC（KO3）：IF H）96 AND H《123 THEN LET KOS＝CHR（H－32）：RETURId ELSE RETURN

Sclentific calculator

The following program is writ－ ten in MicroWorld BASIC for the Microbee PC．It allows the computer to be used as a scientific calculator without the inconvenience and ineffi－ clency associated with un－ dertaking arithmetical com－ putations in the normal im－ mediate mode．The program utilizes most of the common mathematical operations in－ cluding standard arithmetic and power operations，trigo－ nometric and logarithmic functions，factorial，inverse， change sign，square and square root plus data stor－ age facillites．

The order of operation is（1） entry of a value；then（2） entry of an operator．The RE－ TURN key is not required after entry．
（1）Values can be entered on one of the following ways：
（I）in standard floating point format；
（ii）in scientific format； the mantissa is ent－ ered，then E is ent－ ered followed by the sign of the exponent （ + or - ），then the ex－ ponent，eg，2．36E＋9；
（iii）by entering either P or 8 which corresponds to $\mathrm{Pl}=3.14159 \ldots$ and the value $57.29578 \ldots$ used when converting from radians to de－ grees and vice versa； （ 1 rad $\times 57.29578$ deg）；
（iv）by retrieving a stored value；this is done by entering＜followed by a number 1 to 8 corresponding to the register in which the value is stored．
（2）Operators are entered by keying，immediately after the value，the letter or symbol corresponding to the operation required

Operator

Result
,,$+- *$ ，／Standard arithmetic operators．all can be used sequential－ ly．
Entered after the base and is fol－ lowed by a value representing the power to glve y^{x} ．

Note，if used in a chain calculation the base will auto－ matically be the total to that point．
$=$ Need only be ent－ ered to terminate a series of the above operators when the final total is re－ quired．This total can continue to be operated on by keying in another symbol．
M Entered at the end of a series of addi－ tions to give the mean．It can be ent－ ered in place of $=$ or after $=$ if the sum of the values is also required．
F Calculates the fac－ torial of the value．
1 Calculates the in－ verse（reciprocal）of the value．
A To alter the sign of the value．
Q，R Calculates the square and square root respectively of the value．
L，G Calculates the natu－ ral and common logarithm respec－ tively of the value．
X, Y Calculates the natu－ ral antilog $\left(\mathrm{e}^{\mathrm{x}}\right)$ and common antilog （ 10^{x} ）respectively of the value．
S，C，T Calculates the sine， cosine and tangent respectively of the value．Note，the ini－ thal value must be in degrees－use B to convert from radians．
H，W，Z Calulates the arc sine，arc cosine and arc tangent respec－ tively of the value． The result is in de－ grees．
$>$ Followed by a regis－ ter number（ 1 to ？）to store the current value in that regis－ ter，eg， 7 or followed by an arithmetic operator then a register number for arithmetic storage，
eg, $>$ *7 (this will multiply the contents of register 7 by the current screen value and store the result in register 7).
D Entered immediately after any value has been entered to delete that value see part (1)
N To end a series of calculations ready for a new set. Register values remain unchange d.
@ To clear the working area and reset all registers.
K Entered at any time during calculations to obtaina listing of the key codes.
If an illegal operator is entered, ? will be displayed and the Microbee will wait for a correct entry.
When an operator is entered, it will act on the current calculated total to that point and not the last value entered, eg, keying 45T + 7.2 3.6L equals $1 n(4.6)$. During chain calculations the current total may not be displayed on the screen, depending on whether = was entered. The running total is, however, always being monitored intemally. Using this mode of operations in conjunction with ther arithmetic storage and recall facilities, chain calculations can be accomplished quickly and efficiently.
Error messages will dlsplayed if an attempt is made to undertake any of the following improper operations: dlvision by 0
square root(x) where $x<0$
$\log (x)$ and x^{y} where $\mathrm{x}<=0$
$\tan (x)$ where $\cos (x)$ is 0 $\arcsin (x)$ and $\arccos (x)$ where $a b s(x)>1$
factorial (x) where $x<0$ or $x>48$ or x is not an integer.
If any of the above should occur, the current calculation is terminated and the operatonal state is as if N had been entered.

It should be noted that calculated values will be given to 10 significant digits. For some of the above functions, however, the displayed value may not be accurate down to the last digit. This will depend on which functions are used. for example, the
accuracy of the logarithmic function is taken as 0.0001%. It is suggested that the user consult the relevant sections of the Microbee User's Manual to obtain the accuracy of the various functions.

Minimart

FOR SALE: POWER SUPPLYIBM 63 W; 5V-7A, 12V-2A; -12V-0.25A; $-5 \mathrm{~V}-3 \mathrm{~A}$. Will run 1616 computor. \$50. (062) 31-6219.

FOR SALE: ETI MAGAZINES May '71-July '74 complete. \$5 the lot. RIng David (03) 534-4624 ah.

FOR SALE: VIC-20 32K RAM expansion board. Fully populatod. A\&T $\$ 80$. Optional battery back-up extra \$20. Graphics software avallable. After 5pm (03) 848-3524.

FOR SALE: INTO RS232/DB-25 Interfacing? Save money and make your own mini-testers, break out boxes, 2-way gender benders, etc. Plated through boards $\$ 5$ each, 4 -way gender bender boards $\$ 16$. For more Info send SAE to Don McKenzie, 29 Eliesmere Cres, Tullamarine VIc 3043.

WANTED: CIRCUIT DLAGRAM for Bek prectsion 3020 swoep/ function generator. Made by Dynascan Corporation. BIII (03) 791-2976, Dandenong 3175.

WANTED: DRAKE R-7A, JRC NRD-515, REALISTIC DX-160, HAESU FRG-7 recelvers also old 'QST' and 'Amoteur Radlo' mags. (042) 292573 . Tony.

FOR SALE: ANTIQUE RADIO COLLECTION, valves, instruments, spare parts, books, catalogues, knobs. Max, 41 willmington St. Newmarket, 4051, Qld. (07) 3566052.

WANTED: A COPY OF NOY' 77 EII, or a set of photostats contaling the FREQUENCY SHIFTER project. Expenses pald. Bill Hirst, 12 Jeffrey St., Dandenong, 3125, Vlc. (03) 7912976

FOR SALE: MONTTOR AND CABINET only, from Burroughs termlnal \$20. Heatsink from frame with diodes 12×10.25 inches. Jullan Sortland, Homsby, NSW, (02)476-1056.

READER SERVICES: All enquiries re garding bock issues photocopics of anticles. artwork or technical enquifies must be direcied by mall to EII Recoder Services. PO Box 227 Waier 1∞. NSW 2017 Enclose cheque or money order to the appropiate value with your request Relevant charges including postoge within Ausitalio and New Zcaland are back issues $\$ 4$. photostai copies 54 per anticle or $\$ 8$ If project spreods over more than one issue. artwork $\$ 5$ per boord or ponel uo to $10 \mathrm{~cm}^{2}$ or equivalent. $\$ 10$ for larger boards

TECHNICAL ENQUIRIES: NO Enquines by telephone will bc accepied Readers have two opions io submit o writen enquily with $\$ 5$ money order or cheque and recerve a posial reply. this senvice is limited to projects pub lished withan the last five years. alter natively they may forward enquily withoul money and expeci o published reply in the feed forward col umns at the editor s discretion

GENERAL INQUIRIES: For ell inauiries aboul bock issues, subscniptions, photocopies of anticles artwork of submitting anticles. call (02) 6639999 or wite to EII Recoder Services 180 Bourke Rd. Alexandria. NSW 2015 (PO Box 227. Watertoo. NSW 2017)

CONTRIBUTIONS: Submissions must be accompanied by u stamped. self addressed envelope the publisher accepts no responsibility for unsolic ited malerıl

COPYRIGHT: The contents of Electronras icuay international and associated publicaitons is tully protected by the Commonweolth Copyight Ac! (1908) Copynight extends to all witten ma terial, photographs drawings circuit diagrams and prinied-circuit boards Although any form of repioduction is a breach of copyright, we are not concerned aboul individuols con structing projects for their own pivale use nor by bands (for example) con siructing one or more thems for use in connection with their performances Commercial organisotions should note that no project or pant project described in Electronics looby internofional or associaled publications may be oftered for sale or sold in substan fially or fully assembled form. unless a licence hos been specilically ob ained so to do from the publisher The Federal Publishing Company, x from the copyight nolders

LIABILITY: Comments and resi results on equipment reviewed refer to the particular liem submited for review and may not necessarily pentain to other units of the same make or model number Whilst every effort has been made to ensure that all con stuctional projects reterred io in this edition will operate as indicated efficiently and property and that all necessary components to manufocture the same will be avaiable. no responsibility is accepred in respect of the fallure for any reason at all of the project io operate eftectively or at all whether due to any tault in design or otherwise and no responsibility is acceoted for the faliure to obtain any component parts in respect of any such project Further. no responsibility is accepled in respect of any injury or damage caused by any fault in the design of any such project as aforesoid
IC1 - 40106 HEX SCHMITT INVERTER
IC2 \& C3 555
RL1 \& 2 HE AVY DUTY CONTACTS
VR1 SETS 'UP' TIME
VR2 SETS 'DOWN' TIME

Automatic Car Aerial

The circuit is a modified or altemative version to that published in ETI Circuit Cookbook No 5, page 17 and has the following advantges:
\star Individual up/down adjustment (timing)
\star Relays driven directly from 555's (doing away with extra components, etc)

* Manual up/down override The circuit consists of a triggering circuit, two timing circuits and two relays, which in fum drive the aerial motor up or down. The input to the circuit is via the on/off switch. When the radio set is tumed on, C2 charges rapidly, and the negative going pulse from icla (inverter) triggers the timer circuit IC5 (555) and associated components. The up relay RLI is then activated for a time determined by R1, VR1 and C3. (VR1 being used to set this period accurately.)

When the radio or the ignition is tumed off the negative going pulse from IC1b triggers the timing circuit IC3 (555). Consequently the down relay is tumed on for the period determined by R4, VR2 and C5. (VR2 being used to get the down period accurately.)

The combination of C2/R5 allows approximately 10 sec onds delay prior to the aerial retracting. This allows for restarting the engine whilst the aerial is up.
Manual override of up/down allows the aerial to be lowered and raised independently of the unit, which can be useful at times, especially in city driving, where reception can be sometimes improved by adjusting the aerial length.

Filtering of noise spikes has been achieved by the inclusion of C1, which has proved adequate in the prototype. The circuit should be fused and wired directly to the battery and not via the accessory switch. Heavy duty 12 V contacts are a must due to the heavy current demands placed on them by the aerial motor surge.
V. Diana, Vermont South, Vic

Feed Forward needs your minds. If you have ideas for circuits that you would like to enter in our idea of the month contest, programs for the computing columns or just want a word with the editor, send your thoughts to: Feed Forward
ETI, Federal Publishing,
PO Box 227.
Waterloo, NSW 2017
Contributors can look forward to $\$ 20$ for each published idea/program which should be submitted with the declaration coupon below.
Programs MUST be in the form of a listing from a printer. You should indicate which computer the program is for. Letters should be typewritten or from a printer, preferably with lines double spaced. Circuits can be drawn roughly, because we have a draughtsman who redraws them anyway, but make sure they are clear enough for us to understand.

'Idea of the month' contest

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the 'Ideas for Experimenters' column - one of the most consistently popular features in ETI Magazine. Each month, we will be giving away a Scope Soldering Station (model ETC60L) worth approximately $\$ 191$.
Selections will be made at the sole discretion of the editorial staff of ETI Magazine.

RULES

The winning entry will be judged by the Editor of ETI Magazine, whose deci sion will be final. No correspondence can be entered into regarding the decision.

The winner will be advised by telegram. The name of the winner, together with the winning idea, will be published in the next possible issue of ETI Magazine.

Contestants must enter their names and addresses where indicated on each coupon. Photostats or clearly written copies will be accepted. You may send as many entries as your wish.

This contest is invalid in states where loca! laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions.

COUPON

Cut and send to: Scope-ETI 'Idea of the Month' Contest/ Computing Column, ETI Magazine, PO Box 227, Waterloo NSW 2017.
"I agree to the above terms and grant Electronics Today International all rights to publish my idea/program in ETI Magazine or other publications produced by it. I declare that the attached idea/program is my own original material, that it has not proviously been published and that its publication does not violate any other copyright. ${ }^{\text {c }}$
Breach of copyright is now a criminal offence

Title of idea/program
Signature \qquad Date \qquad

Name

Address

SCOOP PURCHASE

12 VOLT 15 AMP SPST RELAY

- NORMALLY OPEN CONTACT -

Japanese made, chassis mount with quick connect terminals. Can be used for 240 volt applications. Siver alloy contacts.
1 arpo 400 V quenching diode fited across coil. Data sheet supplied. Cat. SY 4048
$\$ 5.00$

FINALLY RELEASED!

The AEM 6000 arplifier system kit is NOW AVAILABLE ex-stock 240 watts RMS per channel of pure power. $\$ 998$ gets you the complete kit, nothing eise to buy.
Cat. KM-3020

MODEL 9532H-R
Bright red 'torch' style unit. Polished glass lens 82 mm dia. Focal distance 188 mm . Uses $2 \times$ ' C' cells for long life. 275 grams.
Са1. ам. 3510
$\$ 14.95$

GREAT NEW KITS FOR '87

WHO ELSE BUT JAYCAR?

OLTRA FLDELTHY PREAMP

- PERFECT MATCH FOR 6000

POWER AMP cax. ки. 2030

AEM 6505 WORK HORSE AMP MODULE

100 WATTS INTO 4 OHMS/50 WATTS INTO 8 OHMSI

 Ret: AEM January 1987A genuine low cost power amp "slave' module. Keeps costs down by having power supply filter caps on board. All that is required to make module operational is $\pm 30-40 \mathrm{~V}$ (DC unfiltered), a signal source and a load. Works well with PA line transformers 100 . All board parts supplied including jig drilled heatsink bracket. Cat. KM-3050

METER - Rex: EA May 1987
This simple project connects directly to the batery in your car. It wi indicate under-normal - or overcharging via a bar display al yellow green and red rectangular LEDs. Can be mounted on dash of car All specified board components supplied.

Cat. KA-1684

ET1467

MIXER
PREAMP Ref: ETI July 1980
$\$ 39.50$

ETI 1406 PARAMETRIC EQUALISER MODULE
 Rer: ETI August 1986

Module can be used on ins own or ganaged to equalise a whole system. Paramerric equalisers tune around a centre frequency reducing the number of units required in a signal line (reducing distorion) over the more normal "grahic" equalisers.
The Jaycar kit is supplied whit all board components including pots, knobs, switch and TL071 IC. SEE THE 1987 JAYCAR CATALOGUE FOR SPECIFICATIONS Cat. KE-4724

PLAYMASTER 60-60 AMPLIFIER - BLUEPRINT VERSION

The interest in the Playmaster 60-60 has been absolutely tremendous. We have not had such interest in a kit since the 5000 amp was releasedi When we released the 'Black Monolith' 5000 series amp it was extremely popular. People appreciated the quality refinements to the kit. Well we now have a 'Blue printed' version of the Playmaster 60-60. We believe what is shown below represents a significant improvement in the development of this project.

* Dual diagonally wound C-core power transformer. Endorsed in writing (with each kit) by EA. Slightly higher power rating than toroid power transformer (which is in the standard kit)
\star For lower noise, metal film $1 \% 50$ pom resistors are now supplied where 5% carbon types were originally specified.
* Power supply filter capacitors - Doubledl That's right, the Blueprint amp has $4 \times 4700 \mathrm{~F} / 63 \mathrm{~V}$ fiter capacitors instead of the $4 \times 2200 u F$ types in the standard version. This is a signiticant improvernent in power supply pertormancel
* Special extruded heatsink. The heatsink section is machined from a heavy section extruded aluminium section. $t \mathrm{t}$ is then black anodised. The standard heatsink is folded sheetmetal not anodised.
* Special high quality pretinned PCB
* Special front panel graphics emphasising the Blueprint treatment to the amp.

A JAYCAR SCOOP PRODUCT

We feel that this is a tremendous development in kit amp construction, especially when you consider the modest prical
The standard $60-60$ kit Cat. KA-1650 is still available for $\$ 299$. But the new Blueprint amp is an absolute bargain at only $\mathbf{5 3 4 9 1}$ That's right, you can have the Blueprinted version of the kit for only a little morel
When the 5000 'Black Monolin' blueprinted amp carne out we could not keep up whit demand. Custorners were hapoy to wait up to 6 months I We do no expect this to be the case with the $60-60$ but it you are contemplating the purchase of one of these fine kits (there is nothing wrong with our standard kit, by the way) we suggest that you buy soonll
Cat. KA. 1652
BLUEPRINT 60-60

Illustration shows standard 60-60 panel livery. Special livery only on the Blueprint version.

LOWER EVERYDAY PRIGES

ON CENTRONICS AND＂D＂

CONNENGOMS
These are NOT a special for one month only，these are our NEW LOWER everyday prices． WERE TYPE
$\$ 2.75 \quad 9$ pin Mate D
$\$ 3.50 \quad 9$ pin Female D
$\$ 2.209$ pin Backs hell
33.2515 pin Male D
$3.95-15$ pin Female D
35.7515 pin Female R／angl
$\$ 2.20 \quad 15$ pin Backshell
$\$ 3.9525$ pin Male D
\＄5．25 25 pin Female D
$\$ 2.20 \quad 25$ pin Backshell
$\$ 12.50$ 25D IDC Plug
$\$ 12.50$ 25D IDC Socket
$\$ 12.50$ Centronics Plug
$\$ 12.50$ Centronics IDC Plug
$\$ 15.95$ Centronics Socket
$\$ 17.50$ Centronics IDC Socket

1

NEW PRODUCTS

RECTIFIER DIODE

6 AMP 1000 V

cat． $28-1024 \quad \$ 1.50$ ea
10 up $\$ 1.30$ ea

CAR BRAKE LIGHT
 For salety sako you need one of these．

Easy to install．Mount it on your rear parcel
shelf，and it allows several cars travelling
behind you to see when you hit the brakes．
Soon to become compulsory on new cars．
Cat．XM－0600
$\$ 12.95$

AUTOMOTIVE ELECTRICAL CABLE
 For all those wiring jobs on cars

 boats，trucks，caravans andeven electronics．Cable is $16 / 0.303 \mathrm{~mm}$ diameter， 6 amps．Length is 9.25 metres supplied on a plastic spool． 7 colours available．
ONLY $\$ 3.99$ REEL
or bay all 7 tor ony $\$ 22.95$
Cat No．when buying ald 7．WH－3090

RED WH－3080｜GREEN WH－3084 BLACK WH－3081 BLUE WH－3085 BROWN WH－3082 WHITE WH－3086 YELLOW WH－3083

CONCORD
 NOW
 OPEN
 SATURDAY MORNINGS

SAVE UP TO 40\％
$\mathbb{S O}^{\circ}$ IPA SPIAREMR IBOX
Qualify woodgrain finish speaker box
Designed to hang on a wall for PA use，or just as an extension speaker for Hi Fi，radio，etc
Cat．CB－2360
SPEAKERS TO SUIT： $8^{-1} 10$ watt iwincone Cat．CE－2325 \＄11．95 Magnavox 8.1×40 watts CE－ $2333 \$ 28.50$ Magnavox BWR 65 watts CE－2338 \＄34．50
ONLY
$\$ 24.50$
10 up $\$ 22.50$

MAINS MUFFLERS

This fully approved Electricity Authority unit is the ulimate mains suppression device．It is fitted with a circuit breaker and VDR＇s for extra suppression capacity． Nothing but clean 240 V goes through． Recommended for computers－VDU＇s printers－disc drives－video－medical equipment．
Max load 1000 watts 4 amps 250 V ．
TWO OUTLETS
Cot．Ms－ $\mathbf{2 0 4 0} 0$
\＄149．00
FOUR OUTLETS
Cot．Ms－4042
$\$ 249.00$

BUTTON CELL BATTERY HOLDER

－PCB Mount

－Will take all common siver oxide cells＋small lithium batteries etc
－Gold plated contacts
Cat．PH－9225
\＄3．95 10 UP $\$ 3.50$ ea

SAVE $\$ 5.00$

TURN YOUR STOCK INTO
CASHI－Jaycar will purchase your surplus stocks of components and equipment．We are comtinually on the lookout for sources of prime quality merchand ise．

CALL GARY JOHNSTON
TODAY ON
（02） 7472022 OR FAX
（02） 7440767
CAR ALARM REMOTE CONTROL BATTERY
Ouality Alkaline 6 volt No．A544 battery suited for most car alarm remrote controls． Size 44 mm long． 12 mm diameter． Cat．SB－2397
－ーーーー 58.50 CARLINGFORD NOW OPEN

SATURDAYS UNTIL 2pm
PCB SCREW MOUNT
TERMINALS

2 way	$\$ 1.10$	$\$ 1.00$	$H M-3172$
3 way	$\$ 1.40$	$\$ 1.25$	$H M-3173$
4 way	$\$ 1.65$	$\$ 1.50$	$H M-3174$
5 way	$\$ 2.00$	$\$ 1.80$	$H M-3175$
6 way	$\$ 2.40$	$\$ 2.20$	$H M-3176$
8 way	$\$ 2.95$	$\$ 2.70$	$H M-3178$
12 way	$\$ 4.25$	$\$ 4.00$	HM－3182

IDEAL
FOR
Basically the same as the 3 amp version．
except it＇s 4 amp and it＇s fused．Accopts
3AG fuses．
Cat．MS－4006
8 AMP
For those big jobs．Again much the same as the 3 amp one－but 8 amps．
Cat．MS－4005
\＄29．95
41тा PROJECTS

JAYCAR NO． 1 FOR MAINS FILTERS

GORE HILL
OPEN
SAIURDAYS UNTIL 4pm

NPHONE Cordess Phone

Features：
家 Simple to use and easy to install－just plug in
－Operating range up to 250 metres（800ft）
－Security code system with 16,348 combinations
Call function at base unit to alert handset
．Pulse dialling with audible tone feedback at the touch

POLYSWITCHES

Ret：EA Juty 1986 The very latest in speaker protection．Polyswitch pro－ tectors are based on conductive polymers and act like resettable solid state circuit breakers．
RN3 10 is suitable for protection of tweeters in systems up to 100 watts．Its rated at $50 \mathrm{~V} \& 0.5 \mathrm{~A}$ ．Nominal resistance is 0.4 ohms．
Cat．RN－ 3410
RN34 15 will proted midrange and woolers up to 100 watts．Rated at 50V \＆1．15A．Nominal resistance is
0.12 ohms．

BOTH UNITS
$\$ 6.98$ ea
10 or more
$\$ 6.50$ each
Sensational
Ultrasonic Pest \＆
Insect Repeller
This one is $\$ 15.50$ cheaper
than last yearl
It will control mice，rats，roaches． crickets，silverstish，waterbugs， moths，exc．
Size： $100 \times 90 \times 80 \mathrm{~mm}$
Power adaptor supplied 240V／ 9 V DC．Output level 130 dB from 30 kHz to 65 kHz
Cat．YS－5510

ONLY \＄39．50

pH CHLORINE METER

Two probes coming out of one end of this hand held device are inserted into the water to be tested．An instant reading of the Chlorine level and pH value is given on the panel meter display．Battery powered and great for fish tankstool

FRIGI－F？$\overline{\mathrm{E}}$ SH

Frigi－Fresh automatically
ELECTRONIC REFRIGERATOR DEODORISER
circulates the ati inside
a refrigerator atter each door opening．Air is drawn thru the inlet grille（shown）．It passes through a special fiter that absorbs odours．The Frigh－Fresh automatically turns
hsell oft approx 12 seconds atter the door ts closed．
Cat．YF－5522（inc．fiter）
Spare fiters Cat．YF－5523 $\$ 3.00$ each
\＄24．95
Requites $4 \times$ AA cells（not supplied）
AIR OUTLET

／RECHARGEABLES \＆

CHARGERS
PENLIGHT NiCads
Don＇t keep wasting money buying throw－away batieries． Step up to NiCad rechargeables．
SUPERB ROCKET BRAND
AA PENLIGHT 450mA
Cat．S8－2452
$\$ 3.50$ ea
4 for $\$ 12$
UNIVERSAL NiCad CHARGER

－Oeatures：

 －Accopts AA，C，D \＆ 9 V NiCad －Charges singly or in groups Charge different size units logether（\＄32．50） －Charging indicator lamp at each battery position－Incorporates battery test facility Cat．MB－3504

GEL BATTERY CHARGER
This handy charger will recharge your Gel batteries．Delivers 300 mA current at 12 volts DC．Supplied with quick connect lugs for easy
connection to the battery．
Cat．MP－3506

\＄13．95

NEW LOWER EVERYDAY

PRICES ON 4164 RAM

200 ns
$1-9 \$ 2.95$
10 up\＄2．50
$100 \$ 1.80$ $1-9 \$ 3.50$

Cat．ZZ－8420
$100 \$ 2.20$

LEAD ACID RECHARGEABLE
Ideal for alarms or anywhere where constant use depletes batheries quickly．
12 VOLT 1．2AH
Cat．SB－2480
$\$ 28.50$
12 VOLT 4．5A／H
Cat．SB－2486 $\quad \$ 49.50$
MULTI－FUNCTION NiCad
CHARGER
This one does everything features
Charges 8 －AAA，AA．C or D collis at once
－Charges 3 to 9 V colils via universal connector
Charges 3， 6 and 12 V Gel batteries
Charges button cells
Test meter and LED charging － 240 V operated
Cat．MB－3508

SOLAR BATTERY CHARGER
The solas panel in the lid will charge up to $4 \times \mathrm{AA}$ NiCads in a laity short time． I is ideal for yachts，campers，or anywhere where 240 V is not avaitable．
Cat．MB－3502

SHOWROOMS

SYDNEY－CITY

CARLINGFORD
CONCORD
HURSTVILLE
GORE HILL
BURANDA QLD

MastorCard

117 York St．（02） 2671614 －
Mon－Fri $8.30-5.30$ Thurs 8.30 pm －Sat 9 － 12 Cnr．Carlingtord \＆Pennam Hills Rd（O2） 8724444. Mon－Fri9－5．30 Thurs 8.30 pm－Sat 9 － 2 pm
115 Parramatta Rd（02） 7453077 Mon－Fri 8．30－5．30－Sat 8．30－12
121 Forest Rd（ $毋$ ） 5707000 ．
Mon－Fri9－5．30 Thurs 8.30 pm －Sat 9－12 188 Pacitic Huy cnr Bellevue Ave（02） 4394799 Mon－Fri 9－5．30 Sat 9－4pm 144 Logan Rd（07） 393077 Mon－Fri 9 －5．30 Thurs 8．30－Sat 9－12 Concord 2137 （02） 7472022 Telex 72293
FACSIMILE
（02） 7440767
MAIL ORDERS
P．O．Box 185 Concord 2137 HOTLINE （02） 7471888 FOR ORDERS ONLY TOLLFREE
（008） 022888

JAYCAR JA JAYCAR JAY AYCAR JAY JAYCAR JAY JAYCAR JAY JAYCAR JAY JAYCAR JAY JAYCAR JAY
JAYCAR JAY JAYCAR JAY AYCAR JA JAYCAR JA） JAYCAR JA jaycar JAYCAR jaycar jaycar ja jaycar JAYCAR JA JAYCAR J JAYCAR JA JAYCAR J

Ppoject b08

ETI 608 MIDI PATCH CHANGER

This is the third in a series of simple MIDI devices to help the serious electronic musician join all his devices together. For a third the price of a bought one, you too can own a Patch

Changer.
Simon Leadley and Terry Kee*

MIDI (Musical Instrument Digital Interface) is a communications protocol that allows computer musical instruments to talk to each other. In the beginning, MIDI was used almost exclusively on synthesisers and drum machines. However, it is now beginning to appear on all sorts of instruments. Most of the latest generation of digital effects units are MIDI compatible, as are light introduction controllers, and even the latest electric guitars. For a good introduction to MIDI read 'Real Computer Music' by Neale Handcock (ETI October 86).

As the amount of MIDI gear expands
the communications network between all the instruments is becoming very complex. In fact, controlling it in real time is becoming something of a nightmare. Hence the need for a device to select pieces of music easily.

Enter the Patch Changer. It is designed to select a patch (predefinable program on a device) from up to eight channels connected together. Each MIDI device is assigned a channel on the MIDI buss. The patch changer can then select a channel and transmit a request for the machine on that channel to switch itself into a particular configuration.

MIDI devices usually have a number of patches in a memory space on-board. These may be defined in terms of eight banks, each with eight patches, or simply in terms of 64 patches numbered from 1 . to 64. Some of the latest machines go overboard with from one to 99 user definable patches. This is probably overkill, since it's impossible to keep track of 99 patches. Because of the differences between the various types of machines, and also to simplify the decoding circuitry, we decided to follow the simplest MIDI convention, which is to have eight banks and eight programs, numbered from zero to

seven. In operation, the difference between the number displayed on the machine, and the number on the ETI 608 is not a problem, since the operator defines everything in terms of the 608 .

Construction

The whole project is built on a double sided pc board. First check that there are no short circuits between the tracks, especially when they run between IC pads. Also check that none of the tracks are open circuit. When you are satisfied with the board, install the through pins. (To keep costs down we don't have plated
through holes.) You will find that there are 29 wire links that need to be installed, all designated by a ' T ' on the overlay.

Next install the resistors and capacitors, being careful to align the electrolytics correctly. There are four of them, with their polarities marked on the overlay. Notice that there are pads on both sides of the board at every hole. If there are tracks coming to the pad, you need to solder the component to it. You will find that sometimes you need to solder one side, sometimes the other, and in many cases both sides. In fact, just to be sure, you might want to solder every component on both
sides of the board.
Next solder in the flying leads and the appropriate plugs, making sure that you leave enough wire to make the connection to the appropriate place. About twice the length of the board will be plenty. Now mount the crystal and the ICs.

The IC section needs some consideration as there are two ways to proceed. You can solder the ICs directly to the board on both the top and bottom where necessary if you wish, but remember the ICs are all CMOS, and therefore more prone to damage as a result of careless handling. Good practise is to avoid touch-

Projeç 608

ing the pins, and to solder -Vdd (bottom left hand) and + Vcc (top right hand) pins first. Be especially careful of the 74C922 keyboard encoders as they are very sensitive.
Of course, if you do solder them in on both sides they will be impossible to remove without first destroying the IC. As a result you might want to consider option 2. This uses Molex pins to mount the ICs. This has the advantage of making it simple to mount the chip and facilitates fault finding. It's also quicker, easier and neater. Break off a strip of pins and solder them on both sides of the board, leaving the alignment strip in. Do this for all the ICs. This done, insert the ICs, check the orientation against the diagram and then remove the alignment strip. Do it this way as it makes it easier to install the IC.
Next, turn the board over and place the two rows of switches and the bank/pro-
gram selector switch. Align the switches so that the flat edge faces the top of the
pc board. Solder them in on the component side. Now mount the seven segment displays. These should stand proud of the board so as to ensure that none of the other components touch the top of the box. The easiest way to do this is to cut down two 14 pin DIL sockets to 10 pins and then solder them in. Insert the displays in the sockets.

At this point you can admire/check your work as the case may be. Confirm that all the components are on one side of the board, and all the switches and the displays on the other. Then connect a suitable 9 V power source and switch on. If the display lights up with some numbers then you are half way home. If it doesn't, switch off immediately and start checking your work even more carefully. The first things to suspect are the links from one side of the board to the other. Check them with a multimeter, as well as places where component leads are used as conducting paths from one side to the other.

If the unit works so far, connect the DIN plug and a MIDI keyboard or effects

ETI-608 HOW IT WORKS

sion of keyboard debounce output a binary number on pins 15, 16 and 17 representative of the button pressed. We have only implemented 8 buttons as we have 8 MIDI channels. The outputs of IC11 drive a 4021 directly, while in the case of the Bank/Program encoder (IC10) drive a Dual 4 bit latch, IC7, to save an extra 8 switches and key encoder. The D type flip top IC6 controls the latching of the data at the input of the latch allowing you to change the program in Increments of $\mathbf{8}$ or $\mathbf{1}$. The data from the latch also goes to the display decoders to display the data on the inputs to the 4021 and hency display the value of the program change. When the bank channel select button is pressed the DA output of IC11 goes low. This is converted to a narrow pulse by R19 and C2 and this loads the data at the inputs of the 4021's
and initiates serial transmission at the rate determined by the clock input. The serial output stream is buffered by IC1e and IC1f and forms the current loop source that will drive the opto coupler at the receiver end.
The MIDI clock is a 31.25 kHz oscillator and this is derived from a $2 \mathbf{M H}_{3}$ crystal that is divided by 64 by the 4024 binary counter (IC2), and then fed to the clock inputs of the 4021 s as well as the Display decoders (IC8 and IC9) to strobe the displays and reduce current consumption. The 5 volts is derived from a 9 v plug-pak regulated and filtered by a 1000μ cap (C7) and the 7805 regulator IC12
Current consumption for the unit is a maximum of 60 mA with the displays full on. So a 300 mA plug-pak is recommended to keep ripple to a minimum.
unit, power up and select a patch on the unit via the bank/program numbers and the bank/program selector, then send it out on the MIDI channel to which you have assigned the keyboard. The patch will change unless:
a: the unit is not working.
b: the receiver is on a different MIDI channel.
c: the receiver is already set to the patch you select.
If all is well then assemble the unit in a

box by placing the scotchcal panel on the lid and using it as a template for drilling holes for the buttons and the circuit board mounting bolts. Don't stick the panel down yet. Firstly use a bit of sticky tape to hold the panel without it moving. Then use a punch to mark the box by placing it on the centre of each cross marked on the panel. Then remove the panel and drill the holes, being careful to place the drill in the centre of the indent created by the punch. After drilling check to see that
everything aligns correctly. In order to centre some of them, you might find it necessary to resolder some of the switches. Finally, use a small drill to drill out the hole for the displays. Drill around the hole until the bit in the middle falls out, then go to town with a file. It's a terrible job, but keep at it until its nice and square. Now remove the backing from the scotchcal and stick it down. The sharper the knife, the better the result. We actually used a surgical scalpel.
-

-

Finally, mount the board in the box. Use stand-offs to keep the board away from the lid. You will need to adjust the height so that the displays are flush against the perspex. Screw in all the sockets on the back panel, bolt the lid down and you're ready to go.

Operation

To operate the unit simply dial up the patch number that you desire on the LED display using the bank/number buttons and the bank/number selector. Press one of the buttons in the bank/program select row, then the bank/channel select button and that number will appear as the "program". Now press a number again and it will appear as "bank". To transmit simply press the desired MIDI channel.

[^3]| ETI-608 Parts List | |
| :---: | :---: |
| Resistors...............all 1/4 W, 5\% | IC6......................40138 CMOS Dual D-type |
| Rito R14..............330R | fliptop |
| R15...................8M2 | IC7......................MC14088 CMOS Dual |
| R16,R20220R | 4-Bit Latch |
| R17,R19.............. 10 k | IC8,IC9 45118 CMOS BCD-to-7 |
| R18....................2k2 | Segment Driver |
| R21....................8k2 | IC10.IC11 74 C922 CMOS Keyboard |
| Capacitors | Encoder |
| C1,C833p ceramic | ICl2.................... 7805 5V Regulator |
| C2..................... 2 n 2 greencap | LD1,LD2LT313 8 mm Common |
| C3........................ 100 n greencap | Cathode LED display |
| C4....................... 10 n greencap | |
| C5,C6................. $2 \mu 2 / 25 \mathrm{~V}$ electrolytic | Miscellaneous |
| C7......................1000v25V electrolytic | XI.......................2MHz Crystal |
| C9....................... $220 \mu / 25 \mathrm{~V}$ electroiytic | SW1 to SW17........Snap action keyboard |
| Cd........................100n/25V ceramic 6 off | switches |
| | SW1 18 Miniature on/off toggle |
| Semiconductors.....
 4009B CMOS Hex | SK1......................lug pack connector |
| ICI.......................... Inventing Buffer | SK2....................... 5 Pin Din socket |
| IC2.....................40248 CMOS 7-Stage | used, eg, Jaycar's Console |
| C3inary Counter | box as used in the |
| IC3,IC4,IC5 4021 S COMS 8 -Stage | prototype. |

Pack 300 E24 1\%
Pack 300 E48 1\%
resistors
7.5 K 5 W wire
wound po
(metric)
Mini Electric J 1041 \$2.2

27k 1W resistor 8.2 k 5 W wire
wound resistor R-1708 60¢ 54

500 k linear pot $\mathrm{limp}_{100 \mathrm{k}} \log$ pot imp
20k dual linear pot (imp)
100k dual IInear pot (imp) 10k dual linear oot (imp) ok dual log pot (imp) 50 k dual log pot (imp) 1 Mlog switch pot (imp) 100k multiturn trimpot
$50 \mathrm{k} \log \mathrm{pot}$ (imp)
2 M linear
pot (imp)
$10 \mathrm{k} \log \mathrm{pot}$
(imp)
(1 mp)
(M linear pot
(imp)
10 k log pot
(metric)
10k linear
10k linear pot (imp) pot (metric)

1k line
$($ imp $)$

0.1 ohm 5W resistor	R-1600	605	359
$100 \mathrm{k} \log$ pot			
(metric)	R-6824	\$1.30	35 c
$50 \mathrm{ohm} 3 \mathrm{~W} \mathrm{w} / \mathrm{w}$ pot (metric)	R-6907	\$3.95	356
200 ohm 3W w/w			
pot (metric)	R-6911	\$4.10	$35 ¢$
10k 5W w/w pot (metric)	R-6925	\$6.95	350
2.2 M 5 mm			
vertical trimpot	R-1954	55¢	$35 ¢$
3.3 ohm 5 W w/w			
resistor	R-1614	60	35
100k 10 mm			
vertical trimpot	R-1965	55¢	35
$470 k 5 \mathrm{~mm}$			
trimpot	R-1781	604	35
-			
10000 FF 40 V			
electrolytic	R-4595	\$19.95	\$10.55
4700 uF 35 V electrolytic	R-4215	\$4.35	\$2.10
33 uF 10 V			
electrolytic	R-4330	304	$5 ¢$
22 UF 25 V			
electrolytic	R-4319	306	5
12pF 50V			
ceramic	R-2237	17	

ceramic
R-7020 \$19.95 \$10.55

R-7015	$\$ 17.55$	$\$ 11.60$
R-6923	$\$ 6.95$	$\$ 2.20$
J-1041		$\$ 1.50$

tantalum capacitor R-4765 954 704

5	2200 UF 35V			
	electrolytic	R-4459	\$1.35	356
54	1000 FF 16V			
	electrolytic	R-4175	\$1.05	356
54	2200 uF 16V			
54	electro (RT)	R-4459	\$1.35	356
	2200 F 16 V			
	electrolytic (RB)	R-4196	\$1.40	356
	330 FF 25 V			
$0 \$$	electro	R-4400	75	$35 ¢$

74LS373 IC	Z-5295	\$2.75	\$1.00
4051 lC	Z-5651	\$1.95	\$1.00
LM308 IC	Z-6045	\$1.65	\$1.00
4020 IC	Z-5620	\$1.65	\$1.00
CA3140 IC	Z-5417	\$1.95	\$1.00
74LS 10 IC	Z-4910	85	$35 ¢$
74LS08 IC	2-4908	$85 ¢$	35 c
74LS 14 IC	Z-4914	85	$35 ¢$
74HC367 IC	Z-5960	80 c	$35 ¢$
7401 IC	Z-5011	$35 ¢$	354
74LS31 IC	Z-4931	554	354
7410 IC	Z-5020	$90 ¢$	$35 \pm$
7408 IC	Z-5018	704	354
74LS06 IC	Z-4900	75	$35 \pm$
7400 IC	Z-5010	354	104
7413 C	Z-5023	504	104
AD162 Germanium transistor AD161 Germanlum transistor Pack 1003 mm premium red LEDs	Z-1112	\$2.95	\$1.95
	Z-1110	\$3.45	\$1.95
	Z-4076	\$19.95	\$14.50
2SC710 RF			
transistor	Z-2512	\$2.95	\$1.95
2N4427 RF			
transistor	Z-2506	\$3.99	\$2.55
2SC2694 power			
transistor	Z-2505	\$44.95	\$31.60
GaAsFET BFI15 RF	Z-1845	\$8.25	\$1.80
	Z-1560	\$2.45	\$1.40
MEL12 photo			
transistor	Z-1952	\$1.25	704
BFR91 RF	Z-1691	\$3.60	
$\begin{aligned} & \text { transistor } \\ & 3 \text { N4427 } \end{aligned}$			\$1.00
transistor	Z-5740	504	$35 ¢$
$8 F 470$ trans	Z-1636	\$1.50	354
2N5480 trans	Z-2340	95¢	354
8C549 trans	Z-1329	$40 ¢$	104
8C337 trans	Z-2190	$40 ¢$	104
8C338 trans	Z-2252	$35 ¢$	$10 ¢$
Speaker connection terminal	H-6770	504	$50 ¢$
Vernier Drive,	H-3901	\$8.25	\$4.10
6:1			
Instrument	H-2525	\$37.95	\$23.40
Case, 210×270			
$\times 73 \mathrm{~mm}$			
Pack 5 Insulated	H-1871	\$2.95	\$1.95
spacers, 20 mm			
Pack 5 plated brass spacers,	H-1832	\$2.95	\$2.50
9 mm			
Ultramini toggle switch DPDT.	S-1249	\$3.25	\$1.50
Mini toggle switch. DPDT. PC8	S-1177	\$1.50	\$1.50

ONLY WHIL STOCKS LAST:

 HURRY!$\begin{array}{lllll}\text { Red/Green } & \text { S-3530 } & \$ 4.35 & \$ 2.20\end{array}$ (dual col) LED
bezel
Knife Switch S-1930 $\quad \$ 1.95 \quad \$ 1.30$ DPDT
Ultramini switch, S-1251 $\quad \$ 3.60 \quad \$ 1.70$ DPDT, PC8
Ultramini toggle, S-1245 $\quad \$ 3.95$ \$1.60 DPDT
4 switch bank, S-1904 $\quad \$ 5.45 \quad \$ 2.65$ interlocked
Single switch S-1906 $\quad \$ 2.45 \quad \$ 1.95$ from above
IDC Connector, P-2762 \$11.95 \$4.10 40 way, card
edge
36 Way \quad P-2680 $\$ 12.95 \quad \$ 5.65$
Amphenol plug
$3.5 / 3.5 \mathrm{~mm}$ right P-6620 $\quad \$ 3.95 \quad \$ 2.20$ angle adaptor
$3.5 / 6.5 \mathrm{~mm}$ right P-6625 $\$ 4.95 \quad \$ 2.32$ angle adaptor
RCA plug/ P-6610 $\$ 2.95 \quad \$ 1.40$ 2xRCA socket
adaptor
P/B illuminated S-1521 $\$ 10.95 \quad \$ 6.85$ switch (blue)
P/8 illuminated S-1523 \$10.95 \$6.85 switch (yellow)
P/B illuminated S-1522 $\$ 10.95 \quad \$ 6.85$ switch (green)
12V 4PDT relay, S-7020 \$14.95 \$11.95 185 ohm
Waterproof 12V S.1195 $\quad \$ 7.65 \quad \$ 4.55$ DC 10A toggle
Car lamp relay $\mathrm{S}-7304 \quad \$ 24.95 \$ 16.90$ double pole
Alternate action S-1197 $\quad \$ 4.35 \quad \$ 2.85$ p/b, DPDT
$\begin{array}{lll}\text { Mini Toggle dpdt S-1287 } & \$ 4.95 & \$ 2.67\end{array}$ on/off/mom
Mini push button S-1220 $\$ 4.95 \quad \$ 2.35$ dpdt
Piano Key $\quad \mathrm{S}-1393 \quad \$ 4.95 \quad \$ 2.85$
Switch, dpdt
Self tapping \quad H-1680 $\quad \$ 9.95 \quad \$ 6.20$
screw
assortment

2x TO3
$\begin{array}{lll}\text { H-3461 } & \$ 6.55 & \$ 2.55\end{array}$
Heatsink

PTY L.TD

Arlec Supertool

What versatilityl It sands. It polishes. It engraves. It erases. It mills. It's one of the handiest tools you can have in your arsenall Includes the Supertool and plugpack, 2 milling cutters, 1 wire brush, 1 grinding wheel, 4 high speed drills, 5 chuck collets (0 to 4 mm), eraser sticks and instructions. Cat T-4754 Includes 240V Plug-Pack Adaptor

Supertool Pencil'Erasers
Set of 5 Cat T-4762
$\$ 3^{85}$

Arlec Hobby Vice

Need a third hand? Here's one that won't let go! The mini vice from Ariec attaches to any table, desk, bench, etc. (up to about 40 mm thick). 50 mm wide jaws hold tight. More than strong enough for cutting, filing, etc. Cat T-4748

$$
\$ 12^{95}
$$

Wire Stripper

Large adjustable range. Hardened jaws will last a long, long time. Great value at around half the price of other makes. Cat T-3630

Allen Key Set

Here's an ideal set for the workshop. 7 gunmetal finish Allen keys in a plastic wallet. Sizes 1.4 mm , $1.5 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}, 2.5 \mathrm{~mm}, 3 \mathrm{~mm}, 4 \mathrm{~mm}$. They are Ideal for most European and Japanese equipment that have Allen screws. Cat T-5080
s345

Solder Stand with Magnifier

The helping hand when you need it most: when you have a 'hot stick' in your hand! Heavy die-cast base solder stand, clips for holding PCB, etc. - plus a unique magnitying lens for those close assembly jobs. Cat T-5710
$\$ 4995$

Tweezers
 Pointed

Great for holding small nuts, components and delicate instruments, wires, etc. Also great for emoving ticks! Fine points. Cat T-4620
$\$ 495$

Serrated Jaw
Has flat serrated jaw for positive grip. Cat T-4630
$\$ 445$

9 PieceToolWallet

Handy go-anywhere wallet contains essential tools for the hobbyist, serviceman, etc:

- 4 flat blade jeweller's screwdrivers from
0.8 to 2.5 mm
- 2 Philips blade jeweller's screwdrivers
- Needie pointed surgical tweezers
- Insulated handle cutting nippers
- Mini snap-blade knife

All housed in tough, zip-up vinyl pack. Cat T-4836

Metal Bender

You can easily make your own with DSE's Sheet Metal Bender. You'll save $\$ \$ \$$ making your own heatsinks, RF shields, trays and covers.
Provides a clean, smooth bend up to 90° on metals to 16 gauge. Cat T-5250

$\$ 5995$

High Speed Mini Drill Kit

For the hobbyist, technician, toolmaker, etc... this superb mini drill kit is hard to beat. Very high speed - up to $30,000 \mathrm{rpm}$ (depending on voltage used) with a high torque, it's great for drilling, polishing, grinding, deburring, engraving, routing, buffing, carving, sanding, etc. etc. Kit comes complete with four high speed steel twist drills, three collets. grinding bit, spanner and tommy bar, plus DC power cable and plastic case. Cat T-4751

- 12-35V DC operated (external)
- Chuck sizes $0.4-1.5 \mathrm{~mm}, 1.7-2.9 \mathrm{~mm} \& 2.8-2.4 \mathrm{~mm}$
$\$ 1995$

Replacement

 Drills to suit above1.1 mm Cat T-4819
1.0 mm Cat T-4820 0.8 mm Cat T-4825
\$/ 50

IC Extraction Tool

The perfect way to remove IC's without damage. Works with all DIL packs, no bent pins and no static damage! Operates like a pair of tweezers - with hooks! Cat T-4650
$\$ 4^{15}$
4 BUY BOTH FOR \$10.95
IC Insertion Tool
Don't damage fragile IC's: this IC insertion tool keeps the pins shorted together and in the right place while you get the right position. Handles 14 and 16 pin IC's in standard DIL package. \$095 Cat T-4640

AM/SSB CB under \$200!

Australia's lowest priced full-featured AM/SSB CB? We're sure you won't find better value - anywhere With maximum legal power, all 40 channels are the extra range and performance that SSB gives, this is the ideal CB for the truckie, the car driver - even the home base with optional power supply. It's fully approved, fully licensable (not like some "bargain"
CB's being flogged around!) Cat D-1713
Features:

- Very simple to operate
- Maximum legal power on AM and SSB
- Fully guaranteed (12 months extended guarantee)
- State-of-the-art circuitry with advanced specifications
- Complete with microphone, mounting hardware and instructions

s199

Light Duły Antenna Base

Standard 5/6" 26 TPI threaded mount in black ABS base. Suits $1 / 4$ wave and smaller CB antennas or small VHF whips. Mounting plate includes solder lugs for coax connection. Cat D-4056
$\$ 350$

Antenna Layover

Heavy duty unit allows antenna to be left in three separate positions, vertical, horizontal or angled. Positions are easily obtained at the push of a button. Will not layover if hit. Cat 0-4506

Magna-base

 Universal MountA quality magnetic base - ideal for the company car where holes aren't allowed! Complete with 2 m coax and PL-259 plug. Standard thread suits most antennas. Cat 0.4514

$\$ 3495$

Rubber Duck Antenna

Here's a tiny one...just 33 cm long! Helically wound, extremely flexible. Standard $5 / 16^{\prime \prime}$ base (not supplied). Cat D-4635

VARIOUS HOOK-UP WIRES

10×0.12 (equiv. $10 \times .0048$) PVC hook up wire for projects, repair, hanging the washing on ...anythingl
w-2220 RED
w.2221 BLACK
w- 2222 BROWN
w- 2223 ORANGE
W-2224 Y ELLOW
w-2227 PURPLE w-2228 BLUE w. 2229 GREY W-2230 CREAM W-2231 WHITE
w-2225 GREEN
w-2226 BLUE (DARK)

\$350 PER OR 10 ${ }^{\text {c }}$ per metre

The Best Test On 2

The Oskerblock SWR-145 keeps you up to date! Designed to be left 'in-situ' for permanent readings. With a top range on two metres of 250 watts and, for VHF users, it needs very low power for full scale readings!
Cat Q-1341

VHF Hand-held Power Mełer.

Weltz quality, the ultimate versatility and DSE value! Check the output of your hand-held accurately just connect the TP-05X in place of your antenna and you've got it! Ca: Q-1343

Lightweight Spring
Designed to suit standard loaded $1 / 4$ wave mobile whips, to give the type of fiexibility required in today's low car parks! Cat D-4500
$\$ 795$

Quick Disconnect

Enables you to remove your antenna from its mount with an easy press and twist. Saves your antenna being stolen. Cat D-4501

Budget Priced 3.5 Digit

This just goes to prove thal you don't have to spend a fortune on quality test equipment! Pocket sized with easy one hand operation the 3.5 digit wide-angle LCD gives accurate readings at a glance. With overload protection, RF shielding, all ohm ranges handle 250 V AC or 350 V DC indefinitely and much, much more! Cat Q-1515

- 2, 20, 200, 1000V DC
- 2, 20, 200, 750 V AC
- Resistance: 2, 20, 200k, 2M
- Robust housing
- Much morel

At Iast! Frequency reading DMM!

It's finally happened: a digital multimeter with frequency reading...as well as all the advanced features of a top DMM (capacitance, transistors \& diodes, continuity, etc). Also features direct frequency readout to 200 kHz . Ideal for audio and general service work. And it even reads to 20A AC/DC! Cat Q-1505

- Frequency to 200 kHz
- Current to 20A
- Transistors, diodes a
capacitance too.
- AC: 2, 200mA, 20A
- Transistors: Hfe
- Diodes: Vf
- DC: 200uA, 2, 200mA, 20A
- Top quality rubber insulated probes/leads included.
s159

Personal LCD with Auto Ranging

An amazing feature-packed 3.5 digit multimeter that's the size of a pocket calculator: only 10 mm thick! Perfect for on-the-spot testing. It may be small but it boasts a number of impressive features. There's super-fast auto ranging, automatic polarity indication, 2 times/second sampling and audible continulty. Can even be used as a milli-volt meter (up to 20 KHz)
Cat Q-1555
-DC Voltage: $\mathbf{2 0 0 0 m V}, 20,200400 V$ $+/-(2.0 \% \mathrm{rdg}+/-2 \mathrm{dg} \mathrm{t})$.

- AC Voltage: $2000 \mathrm{mV}, 20$, $200400 \mathrm{~V}+/-(3.0 \% \mathrm{rdg}$ $+/-5 d g t)$.
- Resistance: 200, 2000 20, 200k ohms
$+/-(2.0 \%$ rdg $+/-2 d g \mathrm{f})$
- Continuity checks: 200 ohm $+/-10$ ohm

'Pigeon Pair' AF Signal Generator
Square/Sine wave output audio signal generator, essential for work on huge range of circuits. With wide $20 \mathrm{~Hz}-200 \mathrm{kHz}$ output and high accuracy, it is the perfect partner for the Q-1312 RF generator Cat Q-1310
- Frequency range: $\mathbf{2 0 H z - 2 0 0 k H z}$
- Output control: High/Low unbal. (-20dB) and fine adjuster
- Sine wave output: $\mathbf{2 0 H z - 2 0 k H z}, 5 \mathrm{~V}$ rms max at 1% or less distortion
- Square wave o/p: $20 \mathrm{~Hz}-20 \mathrm{kHz}, 10 \mathrm{~V} p-\mathrm{p}, 0.5 \mathrm{us}$ rise time

Wideband RF Signal Generator

Low cost RF signal generator that's ideal for the hobbyist/amateur as well as the serviceman Great for checking tuners in AM, FM, and TV sets plus a huge range of general purpose service, troubleshooting and development work Cat Q-1312

- Frequency range: 100 kHz to 150 MHz in six overlapping ranges
- RF output: 100 mV rms approx (up to 35 MHz)
- Modulation: 1 kHz internal, $50 \mathrm{~Hz}-20 \mathrm{kHz}$ external
- Audio output: 1 kHz at 1 V rms (fixed)
- Crystal oscillator: $1-15 \mathrm{MHz}$ external crystal, FR243 holder

FunWay 1 Gift Box

Makes an ideal birthday or Christmas present... and who knows, it could be the start of an absorbing litetime hobby in electronics, or even an exciting

FunWay 2 Gift Pack

Here's a gift bargain! Over $\$ 35$ worth of value for less than $\$ 27$! This gift pack has been specially selected for quality and for value. Cat K-2620
You get: - A copy of FunWay Volume 2-A quality DSE Soldering Iron • A pack of solder - A 9 volt battery PLUS: A 'Wireless Microphone' Kit (kit 11) - by far our most popular FunWay kit!

s2695

FunWay 3 Bonus Pack

And what value! Buy this kit with two of the most popular klits in the FunWay 3 Book... and we throw the book in FREEI Yes, you get the Electronic Cricket project plus the Miniature Amplifier project - and as a bonus. the FunWay 3 Book itself at no extra charge! Cat K-2670

FunWay Jumbo Gift Box

This pack isn't called the Jumbo pack for nothing: it's chocka-bloc with over 30 projects and a quality soldering iron to build them all. This may be the best gift a parent can give. Cat K-2690

598^{95}

FunWay 1 Project Kit 1-10

Enables you to build any of the first 10 projects in FunWay 1. And because the components are not soldered, they are all reusable so you can build any other of the first 10 projects, 100 ! Cat K-2600
\$895

FunWay Project Kit 11-20

Contalns the more specialised components req:ilred to complete the last 10 projects (11-20) in FunWay 1 NOTE: you will also need the $1-10$ kits to build these projects. Cat K-2610
$\$ 995$

FunWay 1, 2 \& 3 Gift Box

The pack contains all three books and a selection of the most popular and stimulating projects from each. Build a Flashing Brooch. Wireless Microphone, Cricket and Mini Amplifier plus much more! Cat K-2680

S54.95

Binary Bingo

A great school project: it's a fun game - but even more it demonstrates binary numbers very weil. And they're the basis of all computers! It seems pretty simple to play... but try it! Cat K-2668
$\$ 795$

Two Up

Australia's 'national game' has finally been converted to electronics Simulates the throw, the spin and the final result. Come in spinner! Cat K-2661
$\$ 495$

Soundbender

With this great little kit you can sound like a Dalek, Darth Vader, a Cylon or any one of a dozen robotic spin-offs! A versatile unit, it may also be used for special effects on electric guitars and other musical equipment. Cat K-3509 s3795

Lamp Saver

What a great idea! The DSE Lampsaver Kit will greatly extend the lite of any 240 VAC incandescent lamp. Those expensive Edison-screw spotlamps. etc can cost you a fortune when you have to replace them - but now. Lampsaver is here! The simple. money saving circuitry fits neatly behind your wall switch. Cat K-3083

$\$ 14{ }^{95}$

Microwave Leakage Detector

Microwave ovens are fantastic - bu are they completely safe? Your's could be leaking dangerous radiation! Check it out with this handy meter. No batteries required. Cat K-3095

s174s

Car Alarm Mk 2
Includes die-cast case \& terminal block

One of the most sophisticated, yet simple alarms around. It uses a triggering technique which makes it less prone to false alarms - yet it will sense a voltage drop anywhere in the electrical system. Cat K-3253
s35 ${ }^{50}$

Economy Car Alarm

Low cost protection

This alarm senses the voltage drop in your car's electrical system when a thief breaks into it. There's a visual warning for thieves so that chances are they will not even attempt a break-in. Cat K-3250

Ignition Killer

Ingenious but simple circuit based on a 555 timer that literally kills you car ignition. Making the thief think something is wrong with the engine. The theory is hell then go and pinch someone else's car instead. Cat K-3255

s22 ${ }^{95}$

Deluxe Car Alarm

Here's what it offers:

- Two delayed and six instant a!arm inputs

Delayed entry and exit times (10s each)

- Provision for auxiliary battery

Siren output (in case vehicle horn is disabled)

- Flashing dash lamp, internal key operated on/oH, etc
Cheap insurance for your vehicle! Cat K-3252
5995

Ultra Fidelity Preamp

Acoustic performance is its prime aim while, for systems with CD players, it gives a clean signal source, excellent frequency response and superb distortion characteristics! The unit makes it possible for the signal leaving the final low level stage to reach around 20 V rms and provides high level inputs for CD, tuner $1 \& 2$ and aux. Cat K-3037
\$2995

4 Input Mixer Preamp Kif

Great money saver for small bands Use all four inputs to connect guitars or a mixture: guitar, mic and line inputs. You can select gain and impedance on individual inputs. Features bass. presence, treble tone controls and more!!!! Cat K-3036
$\$ 59{ }^{95}$

Graphic Equaliser

Get total control and flexibility with your sound system. With cut and boost of up to 13 dB per channel. You can even make equalised tapes. Features professional quality brushed aluminium front panel.

Specifications:

Freq. respons (ea 'IN'): 10 Hz to $10 \mathrm{KHz}+/-.25 \mathrm{bd}(-1 \mathrm{db} @ 20 \mathrm{KHz})$
Boost and Cut: max 13dB
Steps: 10 in each stereo channel (individually controlled) Cat K-3500
s139

Radio Direction Finder

When coupled with a suitable FM receiver it rapidly indicates the direction of the RF signal being received. The system employs an electronically 'rotating' antenna to produce frequency modulation by Doppler shift. 32 LEDs representing the 32 points of the compass. indicate the direction of the received signal. Can be constructed by anyone with an intermediate level of electronics knowledge. Cat K-6345
s149

60W Mosfet Amp Module

Improve the performance of your medium power amplifier with this affordable module. Second and third harmonic distortion figures are below 0.001% at full power, and
intermodulation distortion is below 0.003% at 10 kHz . Frequency response is flat within $+/-0.4 \mathrm{~dB}$ from $8 \mathrm{~Hz}-29 \mathrm{kHz}$. Cat K-3441
s43 ${ }^{95}$

Includes Heatsinks!

Musicolour Mk IV

Four chase patterns plus auto chase and reverse chase AND four channel colour organ with built-in
microphone! Means you're ready to start a lightshow! Comes with sturdy case and exclusive DSE front panel!Cat K-3143

50W Module

Incredibly reliable - yet very simple to build. The complete amplifier on one pcb - all you do is add a heatsink. connect to power... and go! Perfect for band use, PA, even as half a stereo pair! Cat K-3440
${ }^{522^{25}}$

100W Module

As for 50W module, but double the output. Use two for stereo. or even use in bridge for double output! (Get up to a massive 200 W output!) Sensitivity (1V) and supply (33V @ 2.4A). Cat K-3442

$\$ 2995$

Power Supply

Designed to suit either two 50 watt (K-3440) or one 100 watt (K-3442) modules. Includes speaker de-thump circuitry for smooth switching. Amazingly simple to construct and incredibly inexpensive to buy! It doesn't include transformer though. Cat K-3438

s23 ${ }^{95}$

100W VHF Linear Amplifier

Cut through the noise and put out a whopping signal with this one. 100 W continuous output (in fact. 120W with 15 W in!). And from only 2 W drive you'll still get a healthy $40 \mathrm{~W}+$ out. Uses high quality coax relays for minimum noise and minimum loss. Cat K-6313

2m Amateur Transceiver

The 'Commander' has specs which more than match most commercial transceivers selling for two or three times the price. It covers the full 144 148 MHz band in 10 kHz channels (with 5 kHz offset), with full repeater facilities built in. And it delivers around 10.15 watts! Cat K-6308

UHF All Mode Power Amplifier

50 watts out from just 2 watts of drive? Sounds too good to be true! 14 dB gain with a 10 MHz bandwidth - and you can internally adjust the centre frequency anywhere from $430-480 \mathrm{MHz}$

13.8V 2A Power Supply

For the UHF or VHF transceiver Matching supply for the Explorer UHF or Commander VHF transceivers. Buitt in the same style, supplies 13.8 volts regulated at 2 amps continuous. Cat K-6310 $\$ 4995$

GaAsFET VHF Preamps

The very latest design featuring the wonder semi-conductor of the eighties: Gallium Arsenide FETs. Giving superb noise figures and high gain.

2 metre (VHF) model:

$144-148 \mathrm{MHz}$
 s89

bandwidth. Ideat for amateur satellite

HF Amateur Transceiver

An HF Amateur Band Transceiver you can build yourself. The state-of-the-art design can cover any single 500 KHz amateur band within $2-30 \mathrm{MHz}$. features CW, LSB \& USB Iransmission modes, and boasts an incredible 30W PEP (SSB) outpu!! Cat K-6330

s299

KEEPING AMATEURS IN TOUCH!

The Magnificent... Yaesu FRG-9600

All receivers should be built this way - but then, Yaesu know how to build the best! The FRG-9600 is THE all mode VHF/UHF Receiver for the serious minded amateur. Covers the complete 60 905 MHz spectrum with manual or fully automatic scanning - the choice is yours! FM, AM, CW, SSB... it's all there. For more features and better value, you can't go past DSE and Yaesu!
Cat D-2825

General Coverage FRG-8800

With an 8 bit microprocessur controlling all the tuning, mode selection, scanning, memory and clock functions you know the FRG-8800 can glve you all the versatility you're ever likely to want. Covers the entire $150 \mathrm{kHz}-29.999 \mathrm{MHz}$ range PLUS it has inbuilt provision for VHF converter. Features 12 internal memories. keypad, dial or automatic tuning, all mode/selectable IF-BW... just about everything a general coverage receiver can have C81 0-2820
FRG-8800 DC kit Cat D-2822 FREE with purchase of D-2820 - value $\$ 8.75$

The Complete Amateur Station

For the amateur who wants everything in a transceiver - Yaesu developed the FT767GX. You want all bands? With 767 - you've got it! From 160 metres to 70 centimetres. Want that again? Yes, 1.8 to 440 MHz in one transceiver. You don't know what features are till you've seen the 767 and once you've seen it - you'll own it! Cat D-2935

The Best Test

The Oskerblock SWR-145
keeps you up to date! Designed to be left 'in-situ' for permanent readings. With a top range on two metres of 250 watts and, for VHF users, it needs very low power for full scale readings! Cat Q-1341

"We all know that the world's best selling Electronics Kits are from Heathkit..." Jack O'Donnell - M.D. Altronics. Thanks Jack: you're right of course.

Hand-held Power

Meter. Welt qually, the ultimate versatility and DSE value! Check the output of your hand-held accurately - just connect the TP-05X in place of your antenna and you've got it! $50-500 \mathrm{MHz}$. Cat Q-1343
FREE with any VHF
land-hold sot

The Weather Detector!

The Digital Weather Computer displays everything from wind chill factor to indoor/outdoor temperatures, to wind speed and direction with accurate 16 -point compass resolution. It even has microprocessor controlled memory for data storage by date and timel But what's best is; You can build it yourself! Cat G-2000 s995
Simple handsfree operation
Give your FT-2700RH or your FT-270/RH virtual hands-free convenience with the SB-10PTT Switch Unit. Use with optional headset/ boom mic etc. Cat D-3519 branches only At selected $\$ 4 \bigcirc \bigcirc 5$

The best in

 the land DSE KITS
UHF 40 Channel s249 Transceiver

With the DSE Explorer 70 cm needn't be out of your reach! For a fraction of the cost of commercial models you too can be out there on the air waves. It's not a beginners kit - but then it's not a beginners sport! Cat K-6300

UHF 80 Channel Upgrade

Add another 40 channels in the band from $439-440 \mathrm{MHz}$ to your DSE Explorer. This simple circuit gives the Explorer extended coverage of the UHF FM Amateur Band. Simple and incredibly inexpensive! Cat K-6301

50 watt UHF Power Amp

This amazing kit will lift a 2 watt output rig to the 50 watt level! Use it with CW, FM and SSB modes. Features 10 MHz bandwidth, harmonics better than $-60 \mathrm{~dB}, 12$ voit operation for mobile or home use AND DSE value! Cat K-6307

VHF Amateur Transceiver

Save a fortune and get yourself a quality VHF transceiver into the bargain! The DSE
Commander covers the full $144-148 \mathrm{MHz}$ band in 10 kHz channels with 5 kHz offset and has full repeater facilities built-in. Comes with everything you need to get it up and running.

Cat K-6308
 UHF Gasfet Preamp ${ }^{\text {s }} 89$

Give your 70 cm a real boost in the reception department! For the $430-480 \mathrm{MHz}$ bandwidth you couldn't ask for a better kick in the butt. deal for both UHF CB and UHF amateur use! Easy to build and even easier to install. Cat K-6309

2m Linear Amp

For the serious VHF DX'er here's a superb all mode high powered linear amplifier which will give you that access to the distant repeater! Suitable for both mobile and base operation. Designed for reliability! Cat K-6313

- Frequency coverage: 144-148MHz
- Maximum output: 120 W (CW) for 15 W input

VHF Wattmeter ${ }^{\mathbf{5} 5295}$

This could save you a fortune! Get the most from your equipment. The VHF Wattmeter measures the VHF power output and the efficiency of your antenna system by measuring the reflected power from your antenna. Cat K-6316

- Useable Frequency Range: $144-148 \mathrm{MHz}$
- Maximum Power: 150 watts
-Ranges: 0.150 watts, 0.30 watts

National Logic Data Vol. 1

All the data you could want on
National Semiconductors -
logic devices, etc. Cat B-4015

National Logic Data Vol. 2

WAS
$\$ 31.95$

International Transistor Selector

Towers - 128 pages Computer listings of over 10,000 transistors with substitutes. outline diagrams. terminal identification manufacturers, codes and specifications. WAS
$\$ 36.95$ \$2992

TLL Cookbook
Lancaster - 328 pages A complete guide to the understanding and use of Transistor Logic (TTL) integrated circuits - the basics of TTL are given, what it is, how to power it and so on! Also contains a catalogue of TTL devices, giving physical and electrical specs. Cat B-1246

CMOS

Cookbook

Don Lancaster - 416 pages First an explanation of what CMOS is, how it works, and how to power it. Then a mini catalogue of over 100 devices, including pinouts and usage descriptions. Filled with explanations and practical applications. Cat B-1248

NSW		
Swit \& Young Sts	Albury	(080)21 8399
T55 Terrace Level	Banktiown 8q	(02)707 4888
Shop 1. 65.75 Main St	Blecktown	(02)671 7722
613 Princess Hwy	Biakehurat	(02)5467744
Oxtord \&\% Adelande Sts	Bondi Junction	(02)387 1444
Shop 2. 18 Cross St.		
Waringan Mald	Brookvale	(02)93 0441
Campoeltown Mall Oueen St	Campbelliown	(046)27 2199
Shop 235. Archer St Entrance	Chatrwood Chase	(02)411 1955
147 Hume Hwry	Chullora	(02)642 8922
164 Pacific Hwy	Gore Hind	(02)439 5311
315 Mann St	Gosford	(043)25 0235
4 Florence St	Hornaby	(02)4778833
Elizabeth Dr \& Bathurst St	Liverpool	(02)600 9838
450 High Street	Maittand	(049)33 7886
621-627 The Kingsway	Miranda	(02)525 2722
173 Maitand Rd. Tignes Hill	Newesatie	(049)61 1696
Lane Cove \& Waterloo Rds	North Ryce	(02)88 3855
George \& Smith Sts	Parramatta	(02)689 2168
The Gateway High \& Henry Sts	Penrth	(047) 323400
818 George St	Raltway square	(02)211 3777
125 York St	8 ydney City	(02)2879111
Treloar's Bldg. Brisbane St	Tarnworth	(087) 81711
263 Kerra St	Woilongong	(042)263800

ACT 96 Gladstone St VIC	Fyanwick
Creswick Rd \& Webster St	Ballerat
145 McCrae St	Bendigo
Shop 46. Box Mill Central, Ma SI	Box Hill
Hawthorn Rd \& Nepean Hwy	East Brighton
260 Sydney Rd	Coburg
1150 Ml Alexander Rd	Exsendon
Nenean Hwy \& Ross Smme Ave	Frankston
Snop $9110 . \mathrm{Hgh} \mathrm{St}$	Geetong
291-293 Elizabeth St	Melbourne C
Budge Rd \& The Boulevarde	Richmond
Snop 2. 141 Maroondah Hwy	Ringwood
Springvate \& Dandenong Rds	Springuale
QLD	
157-159 Elizabeth St	Brisbane City
166 Logan Rd	Buranda
Gympe \& Hamilon Rds	Chermaide
Queen Erzabeth Di \& Bernard St	Rockhampton
2nd Level western Entrance	
Redbank Snopping Piaza	Redbank
Gold Coast Hwy \& Wetch St	Southport
Bowen \& Ruthven Sis	Toowoomba
Kings Rd \& Woolcock St	Townsville

$(082) 804844$
$(053) 315433$
$(054) 430386$
$(03) 8900899$
$(03) 5922366$
$(03) 3834455$
$(03) 3797444$
$(03) 7839144$
$(052) 438522$
$(03) 679834$
$(03) 4261614$
$(03) 8795336$
$(03) 5470522$

$(07) 2299377$
$(07) 3916233$
$(07) 3598255$
$(079) 279844$
$(07) 2885599$
$(075) 329863$
$(076) 364300$
$(077) 725722$

Cnr Pacilic Hwy \& Kingston Rd 8A	Underwood	(07)3410844
77 Grentell St	Adelaide	(08)232 1200
Main South 8 Flagstall Rds	Darlington	(06)298 8977
Main North Rd \& Darlington St	Enfiold	(08)260 6088
24 Park Terrace	Sallabury	(08)281 1593
WA		
Whart Si \& Albany Hwy	Cannington	(09)451 8886
66 Adelade St	Fremantle	(09)335 9733
Wliam St \& Robinson Ave	North Perth	(09)3266944
Rane Square, 125 Willarn Si TAS	Perth Cily	(09)4613261
Snop 40A. Lower Level		
Cat 8 Fiddle Arcade	Hobart	(002)310600
NT		
17 Stuart Hwy	Stuart Park	(089)81 1977

New Elizabeth City Store in (SA) - now open at:

Shop T25 Prince Charles Walk Elizabeth City Centre

Dear Customers,
Quite often, the products we advertise are so popular they run out within a few days. or unforseen circumstances might hold up shipments so that advertised lines are not in the stores by the time the advert appears. And very occasionally, an error might slip through our checks and appear in the advert (after all. we'rehuman too!) Please don't blame the store manager or staff; they cannot solve a dock strike on the other side of the world, nor fix an error that's appeared in print. If you're about to drive across town to pick up an advertised line. why not play it safe and give them a call first... just in case! Thanks. Dick Smith Electronics.

MAJOR DICK SMITH ELECTRONICS AUTHORISED RESELLERS

 Wagga: Philips Eectroniss. 60 Forsyn St, 21 ES58 - Winder: M \& E Electronics. Shop 7. Mc Ewans Arcarde. 206 George St. 775935 -Young. Kenth Donges Electronics. 186 Boorowa SI, B2 1279 VIC: - Echuca: Webster Electronics

 Micro Electronics. 133 Lockyer Ave. 413432 TA8: - Leuncepton: Wills Electronics. 5 A The Ouadrant. 315688

PTY LTD
P.O. Box 321, North Ryde N.S.W. 2113 Tel: 8883200

Offer concludes 31/5/87 or when current stocks gone. Prices may be changed without prior notice

SPEECH SYNTHESIZER TECHNOLOGY is by no means new. Speech synthesizers have been in existence for several years now, but until recently, were far too costly for the average experimenter or hobbyist.
 There are a number of different types of speech synthesiser chips to select from, some with pre-stored words in their memories where you actually access the
 COMMODORE 64 TALKER

'words', others with which you can make words up from pre-stored portions of speech called 'allophones'. When added together allophones can produce speech in the form of sentences. The limit to the amount of words that can be programmed is virtually endless, a point we will discuss later on.

The design criterion for this project was to produce an inexpensive way to hook up a stand-alone synthesiser with a minimum component count. It was to be powered by the C64's 5 V rails giving a reasonable adjustable speech level along with a design that was simple to assemble and build up.

For the clock, a crystal was not justified since it was desirable to adjust the speech speed in order to listen to the actual words being spoken. A high speed quad NAND gate (74LS00) was chosen to perform the adjustment to the 3.12 MHz clock pulse at OSC1 of the SPO 256-AL2 chip. The output of the speech chip is filtered via a low pass filter, then amplified by a low voltage audio power amp (the LM386) with its gain set at about 200. This then drives a small 8 ohm speaker and all is housed in a convenient black box, complete with the 24 -way user port edge connector. The only Sydney source of this is a company called Xenitek, which can be found at 10 Wattle Rd, Brookvale NSW, (02) 938-4311. Since the SPO256AL2 chip is expensive, it is necessary to utilize a 28 -pin DIL socket to accommodate your investment.

Construction

Construction should always commence with the careful inspection of your printed circuit board for any miniscule cracks or spurs of copper giving rise to shorts be-

This project allows you to create speech using your Commodore 64's user port in conjunction with General Instrument's SPO256-AL2 speech synthesis chip, and a handful of off-the-shelf components.

Vickie \& Jeff Rose

tween adjacent tracks. When you are satisfied that all is well, commence by inserting all resistors in their respective holes, followed by the IC3, the two trim pots, and the capacitors paying attention to the polarity of the tantalums and electros.

The next step is to carefully insert the 28 -pin DIL socket followed by the careful insertion of ICl. Observe CMOS handling procedures at all stages when inserting both IC1 and IC2.

After your board is assembled, take time out and re-check that everything is in its right place, that the board is fully assembled, wired and soldered. Clean off the residue flux with either metho or thinners and a brush, then inspect your work for any dry joints (who me?).

In order to make good connection with the user port, it is necessary that the 24 way connector glides into position with no stress or weight placed upon the C64's port. The rubber feet chosen for your box will determine the size of the cut-out required to successfully mount the 24 -way connector. After a bit of experimentation it was found that a $14 \mathrm{~mm} \times 68 \mathrm{~mm}$ cutout was needed to facilitate the mounting and adjustment of the connector so as to allow the connector to easily glide into place. Only the second terminal, +5 volts, is required from the top 12 terminals. The
other 11 can be cut off neatly. Cut out a small $90 \mathrm{~mm} \times 17 \mathrm{~mm}$ strip of pcb with a $55 \mathrm{~mm} \times 8 \mathrm{~mm}$ cut-out to affix the 24 -way connector into place with two suitable screws/nuts to secure it firmly.

Scribe the speaker inside and drill a series of 2 mm holes to allow the sound out, then stick it into place with a contact adhesive. Wires can then be added to the LED speaker and reset switch. Capacitor C 2 is mounted across the rear of SW1 and not on the pcb.

Next, carefully wire the 10 coloured wires to the rear of the 24 -way connector, and after checking your work carefully, assemble the connector into place in the box. With the rubber feet mounted, align the connector with the user port so it. glides into place with no effort then remove carefully and tighten both screws firmly. Place a touch of contact adhesive so as to lock the screws in place. Affix the aluminium base plate and tighten the four screws, and the unit is ready to test.

Testing

First you must enter the sample program. BASIC was chosen as it was the simplest way to demonstrate the speech and the allophones. We stress that the speech is slower in BASIC, and it does suffer the problem of an American accent crossed with a former Premier (whoops!).

After loading the program save it and turn off the C64. Gently glide the Talker into the user port and turn your computer back on. Load the program and list it on the screen. Check that it corresponds to the published program. If so RUN it. It will say: "This is an ETI talking chip project" on a green screen; then the program will repeat itself due to loop.

To alter line 58010, type READ W:IF $W=255$ THEN STOP: REM SET ALD AND SEND DATA TO PORTS. This will stop it!

Now more on these allophones. Allophones are portions of speech broken down to minimal meaningful sound units. Take a simple word such as 'computer'. This is read in BASIC as DATA 42, 15, $0,16,9,49,22,13,0,52$.

$$
\begin{aligned}
42 & =\mathrm{C} \text { as in can't; } \\
15 & =\mathrm{U} \text { as in sUcceed; } \\
0 & =10 \mathrm{~ms} \text { pause; } \\
16 & =\mathrm{M} \text { as in Milk; } \\
9 & =\mathrm{P} \text { as in Pow; } \\
49 & =\mathrm{Y} \text { as in Yes or Uni; } \\
22 & =\mathrm{O} \text { as in tO; } \\
13 & =\mathrm{T} \text { as in To or Tin; } \\
0 & =10 \mathrm{~ms} \text { pause; } \\
52 & =\mathrm{ER} \text { as in furr; }
\end{aligned}
$$

Rule number 1: all that sounds is not as it is spelt, as in the case of 'OM' in computer; replace 15 with 24 and notice the odd difference. You can alter the total pronun-

HOW IT WORKS

The circuit is basically divided into three set functions. Firstly and most importantly is the oscillator, consisting of 74LSOOBP quad, two input NAND gates utilized as inverters and coupled with a 100 pF styrene capacitor in an oscillator configuration. The frequency is determined by RV1, a 1 k pot, and a 1 k resistor to prevent over frequency adjustment past 3.2 MHz .

One half of IC1 is utilized as the oscillator, the second half as inverter and buffers. This is then fed directly to pin 27 (OSC1) of the SPO256-AL2 chip.

The heart of the project is the amazing speech chlp IC2, which is connected directly to the C64's user port via a standard 8-bit paralle! port designated D0-D7. This is done by POKE 56579, 127 setting the DDRB, bits $1-7$ as outputs and bit 8 as an input. Setting up the alo and sending data to ports is done In line 58011 POKE 56577, 255: POKE 56577, W.

All connections to the speech chlp are protected by 100 k resistors as is the lro (load request). Both A7 and A8 are not used hence they are grounded also.
ciation of English by adding pauses or doubling certain allophones.
A breakdown of the programmed text:
Line 58025 DATA $54,12,55,55,55=$
THIS. $12,43,55=$ IS. $20=$ A. Note ${ }^{*}$ $0,1,2,3,4$ are pauses.
Line 58035 DATA $19,3,13,19,3,6=$

D7 (SBY) is used in conjunction with a pnp transistor Q1 (BC557) so when low signals are recelved on D7 an LED Illuminates, Indicating that the data from the C64 is currently being processed by the SPO256-AL2 speech synthesiser.

Pin 22 TEST is grounded as per data sheet. Pin 2 and pin 25 are both held high via R12. C2 provides the low reset pulse when powering up the device. Should the reset (pins 2 and 25) fall to reset correctly, switch 1 is provided to override the auto reset feature. Alternatively, it could be used If you were to hit RUN/STOP before the speech chip had completed reading data and completed speaking.

Pin 24 prouldes a pulse width modulated audio output that is filtered slightly before being amplified via pin 3 of IC3 (LM386). IC3's galn is set at approximately 200 by C7, but can be varied from a set minimum of 20 upwards to 200 (range $26-46 \mathrm{dBmax}$). RV2 serves to Ilmit the input to IC3 giving a volume control. The output to the speaker is decoupled via C10 from output pin 5.

ETI. 13, 23, 23, 1, 42, 3, 12, $44=$ TALKING and pause $50,1,12,12,1$, 9, $4=$ CHIP and pauses.
Line 58045 DATA 9, 39, 53, 0, 10, 7, 7, $41,17,4=$ PROJECT. 255 relates to 58010 loop.
You can see the potential of word struc-

GENERAL INSTRUMENTS'
 SP0256-AL2

Voiced Fricatlves

Silence

PA1 (10 ms) before BB, DD, GG, and JH
PA2 (30 ms) before BB, DD, GG, and JH
PA3 (50 ms) before PP, TT, KK, and CH, and between words
PA4 (100 ms) between clauses and sentences
PA5 (200 ms) between clauses and sentences
Short Vowels
-/IH/ sitting, stranded
-/EH $/$ extent, gentlemen
-/AE/ extract, acting
\cdot / UH cookie, full
-/AO/ talking, song
-IAX lapet, instruct
-/AA pottery, cotton
Long Vowels
IY/ treat, people, penny
/EY/ great, statement, tray
/AY/ kite, sky, mighty
/OY/ noise, loy, voice
UWV1/ after clusters with $Y Y$: computer
/UW2/ in monosyllabic words: two, food
/OW/ zone, close, snow
/AW/ sound, mouse, down
/EL little, angle, gentlemen
R-colored Vowels
/ER1/ letter, furniture, interrupt
/ER2/ monosyllables: blrd, fern, burn
/OR/ fortune, adorn, store
|AR/ farm, alarm, garment
YR/ hear, earring, Irresponsible
Resonants
WW/
/RR1/
/RR2/ initial clusters: brown, crane, grease
MU like, hello, steel
MY1/ clusters: cute, beauty, computer
MY2 initial position: yes, yarn, yo-yo
Affricates
/JH/ judge, injure
Nasal
/MM
/NG/ string, anger

N/	vest, prove even
/CH1/	word-initial position: this, then, they
/ CH 2	word-final and between vowels: bathe, bathing
[7]	zoo, phase
[$\mathrm{ZH} /$	beige, pleasure
Voiceless Fricatives	
-/FF	These may be doubled for
$\cdot /$ TH/	initial position and
$\bullet / \mathrm{SS} /$	singly in final position
/SH/	shirt, leash, nation
/HH1/	before front vowels: YR, IY, IH, EY, EH, XR, AE
/HH2/	before back vowels: UW, UH, OW, OY, AO, OR, AR
WH/	white, whim, twenty
Volced Stops	
/BB1/	final position: rib; between vowels: fibber; in clusters: bleed, brown
/BB2/	initial position before a vowet: beast
/DD1/	final position: played, end
/DD2/	initial position: down; clusters: drain
/GG1/	before high front vowels: YR, IY, IH, EY, EH, XR
/GG2/	before high back vowels; UW, UH, OW, OY, AX; and clusters: green, glue
/GG3/	before low vowels: AE, AW, AY, AR, AA, AO, OR, ER; and medial clusters: anger; and final position: peg

Voiceless Stops

/PP/ pleasure, ample, trip
/T1/ final clusters before SS: tests, its
$\pi T 2$ all other positions: test, street
/KK1/ before front vowels: YR, IY, IH, EY, EH, XR, AY, AE, ER, AX; initial clusters: cute clown, scream
KK2/ final position: speak; final clusters: task
/KK3/ before back vowels: UW, UH, OW, OY, OR, AR, AO; initial clusters: crane, quick, clown, scream
$/ \mathrm{CH} /$ church, feature
milk, alarm, ample
before front and central vowels: YR, IY, IH, EY, EH, XR, AE, ER, AX, AW, AY, UW; final clusters: earn
/NN2/before back vowels: UH, OW, OY, OR, AR, AA
-These allophones can be doubled.

We apologize for not including a front panel layout. We cheated this month and Letraset directly on to the front panel.
tures that can be created, even with your own accent if you wish. The experimental potential is endless. You may even add specch to your games to give them that extra interaction at certain times.

The key to unravelling the spoken word is to say it slowly, then look up the data sheet and write the sounds you think the
word is composed of. Proceed using your word as the building block, altering and modifying it as you go, remembering that there are varying pauses in speech.

Note: The SPO256-AL2 from Tandy Electronics Cat No 276-1784 comes complete with a 20-page reference manual and data on the chip.

Mlscellaneous
ETI-1607 pcb; UB1 (Dick Smith H-2851) box; variety of coloured hookup wire; 28-way IC socket; small 8 ohm speaker; $6 \times 6 \mathrm{BA} 20 \mathrm{~mm}$ long screws and nuts; $4 \times$ stand offs; 1×24-way connector (in Sydney from Xenitek P/L part No. 307-024-500-202, Phene (02) 938-4311 or (03) 4196377 Melbourne); $1 \times$ N/O simple push button switch.

Price estimate: $\$ 42$
 $\begin{array}{cc}\text { ALLOPHONES. SAMPLE WORD } \\ \text { PAI } \\ \text { PAR } & \text { Peune } \\ \text { Pavee }\end{array}$ duration
100ss
30 Ms 30 ns
sons BOMS
100 HS 100 HS
200MS
420N5 820ns
880ns 70 Ms
120 Hs

140 MS
140 HS
140 MS
140 Ms
140 Ms
170 MS
70 ms
180 ms
100M5
200 MS
250 MS

C64 falker

Inside the box.

27 MHz TRANSCEIVER

Part 2
This month we finish showing you how to build ETI's terribly, terrific transcendental, transceiver.

S. K. Hui

Construction Transmitter

SINCE THE CONSTRUCTION of the box was explained last time, here I will concentrate on assembling the board. First check the parts list to make sure you have the correct components. There should be two different pe boards in your kit; the transmitter and receiver boards. Start with the transmitter. since it will be needed when you test the receiver board.

Once again, you will either love or hate my way of designing the pe boards. I believe that my designs make assembling the boards casier and cheaper. I have deliberately arranged to have the tracks on the component side of the board and used the bottom side as an earthed ground plane. This arrangement provides a solid ground plane and the least number of holes on the board. This reduces the cost of the board to minimum.

On the transmitter board, the first components to be assembled are the transistors. Most of them have their pins cut short and soldered directly onto the board, except the emitter of Q2, which goes through the board and is soldered in the conventional way. As a general rule, when you sec a dot hanging off a pin of a component on the overlay diagram, that pin goes through the board. A black dot sitting on top of a donut means a feed-
through wire is needed at that point.
Be very careful to make sure none of the transistors' pins are bridged as the spacing between them gets very small after the pins are cut short. The easy one is Q5 though care must be taken to ensure the polarity is correct when being soldered. Figure 1 shows the pin arrangement of Q5 and Q6. They are dual gate MOSFETs housed in a 'button' shape SOT-103 package.

Resistors and diodes can be soldered now but don't forget that some of them have their pins through the board.

Capacitors are soldered as before except that C14 should lie flat to keep the board profile low. Be sure to study the photograph carefully and compare it with the component you are about to solder. Solder in the crystal. Be sure to keep it clear of the surrounding tracks. Integrated circuit IC1 is put on next. All pins of the IC

Specifications

SUPPLY VOLTAGE TO AM transceiver: +12V

1. Unit standby current consumption: 70 mA .
2. Frequency Response ($-3 d$ B point)
(a) Transmitter: $100 \mathrm{~Hz}-100 \mathrm{kHz}$
(b) Receiver: $100 \mathrm{~Hz}-3.5 \mathrm{kHz}$.
3. Distortion Figure: 2.6% at 1 kHz modulating frequency with $\mathbf{3 0 \%}$ modu. lating depth.
4. Signal to noise ratio: 40 dB (at 1 kHz modulating frequency).
Conditions in which testing (3) and (4) were carried out are; Modulating sig. nal (sine) at 1 kHz is injected into the mic socket with an amplitude to produce 30% modulation depth. The out. put signal to be examined is tapped out from the phone socket in the other
unit. Two units are separated by 500 mm with no antennas plugged into the antenna socket (SK3). But the socket is connected to the pc boards through two pieces of wire 120 mm in length each. In testing (4), the noise refers to the noise received with the modulating signal in the transmitter turned off and the carrier turned on by disabling the voice operated switch.
5. Microphone input is designed to take 600 ohm impedance microphone. Phono output will drive any standard headphone.
6. Operating range (width 9V battery).

Test Condition: One meter antennas, 9 V voltage on open field, With antennas held up.
Signals start to fade out at around 550 meters.

Figure 1: Pin arrangement of BF 981 (sot-103) transistor.

Flgure 2. How to mount spacers on transmitter board.
should be cut flat except pin 4, which goes through the board.

The last few components to be mounted are the ones sitting on the front edge of the board like LED1, RV1, 2 and SK1. The way you bend the pin of LED1 or RV1, or the exact spot you solder SK1 will have to match up with the mounting holes on the front panel of the box. Notice that you still have not mounted the coil Ll. Leave it for the time being and concentrate on the receiver board.

Receiver

The construction of the receiver board is similar to the transmitter board despite a few odd components. Once again, we leave the coil construction to the last. First load the transistors, then the resistors and diodes. Watch the polarity of the diodes. Before you start to solder the capacitors, you must load the ceramic filter (CFW455E) and the RF transformer T 1. Their pin arrangement is shown in figure 3. Pin 2, 3, 4 of the CFW455E should be soldered on the bottom of the board. Pin 1 and 5 have to be bent about half way along their length to make a foot for soldering to. Transformer Tl has three pins on its primary side which should face toward C33. You should cut the centre pin
short as it is not required when bending the other pins be careful to keep them clear of the case, and be careful of shorting the case on the surrounding tracks. The power on/off switch Swl is a small DPDT toggle, pc board mounting type from Dick Smith Electronics. I tried unsuccessfully to obtain the same one from other places. The switch has six pins for electrical connections and one for mechanical strengthening when mounted on board. Referring to the overlay diagram, they are labelled as P1, P2 to P7. Only pin 6 and pin 7 have to be soldered onto the other side of the board. Pin 1 to 5 should be tailored so that they are just long enough to touch the soldering pads when the switch is on the board.

Setting up the unit

At this stage we have no coils on the boards, no power and a problem. There are no reliable 27 MHz transmitters around, so we have no way of knowing when the receiver is set to preceisely 27 Mhz. Without a reliable receiver, we can't set up the transmitter. Is this the end of all our dreams? Not at all.

The first thing to do is to apply power to both boards. The battery and the on/off switch are all located on the receiver board. Check the transmitter and the receiver overlay diagrams carefully, and find the spots labelled as A, B, C. These should be joined together with thin hook up wires. Label A brings the rail from receiver to the transmitter board.

Three hook up wires also serve as a protecting fence for the coils.

PIN VIEW OF BOTH

[^4]Figure 3. Pin arrangement of CFW455E and T1.

Label B brings the audio output from the op-amp to the headphone driver Q8 so you can hear yourself when you transmit. Label C brings the voice operated switch output to IC2 and disables the receiving chip. Label D on the overlay diagram has no physical meaning. It merely indicates the continuation of the wire from the receiver board antenna port to the socket.

Earth Connections

There are three connections between the two boards but no earth. Although the metal standoffs can be treated as earth connections between the two boards, it is not very reliable. I decided to use dedicated wires for the job. Not only do they make a good connection, they also serve as a protective fence for coils L2, L3 against the battery when the boards are lowered into the box.

Tuning circuit

Now we are ready to begin work tuning the coil. If you look at the box on Coil Construction, you will get a good idea of how this should be done. With the coils soldered into place we are ready to start. The technique is quite simple. We have developed a small tuning circuit that, when applied to your multimeter will give you maximum output when the receiver is turned to 27 MHz .

Since the correct tuning coincides with the maximum amplitude of carrier across the coil, the trick is quite obvious: simply rectify the carrier signal and smooth it out to de voltage so it can be measured by your multi-meter.

The tuning circuit is shown in figure 4. If you wish you can mount it on vero board or some equivalent. I suggest you simply birdsnest it together. It's only temporary, after all.

Tuning Procedure

The tuning mechanism is the same for all coils. However, each individual coil requires its unique tuning condition to be set up. So here they will be dealt with individually. The tools you need to tune coils include a multi-meter, the tuning circuit, a long 6 BA brass screw and a ferrite slug.

Coil L1

This is the only coil used in the transmitter board. Its function is to form a resonating circuit with the antenna and C 17. To tune it properly, a unique antenna has to be selected first. There are two antennas, one for transmitting and one for receiving. The trade-off in picking the right antenna length is a long one for further operating range versus a shorter one for convenience and mobility. My suggestion is one meter long for both. The advantage

is you can check your unit against my published information since I used a one meter antenna myself during the testing.

Solder your two antennas into a 2.5 mm phono jack and plug it into the SK3 socket. Bear in mind that the SK3 socket is connected to the antenna ports on the transmitter/receiver pc board via two thin insulated hook up wires. Normal hook up wire can be used for the antennas. Separate the two antennas in to a ' V ' shape and maintain the shape with cello/masking tape during the tuning process.

The power required by the tuning circuit should be tapped from the transmitter board. The output from the tuning circuit
should be connected to your digital multimeter with alligator clips. Otherwise, you will be too busy holding the meter probes when you tune the coil. To tune the coil, you could start off with the brass or ferrite screws. Slowly insert the screw into the coil and keep an eye on the meter output reading. The reading can decrease or increase depending on which screw you use and how far it is inserted into the coil.
Brass decreases the inductance of the coil but ferrite increases it. Similarly, the inductance of the coil will be increased if it is compressed (small pitch) and decreased if stretched (larger pitch). The whole idea is to insert the screw into the

PARTS LIST - ETI-746

The parts list listed below are only for building up one unit. A complete system consists of two such units, therefore everything listed below needs to be doubled.

Transmitter board

Capacitors
$\mathrm{C} 1,6,19 \ldots \ldots \ldots \ldots 2 / 16 \mathrm{~V}$ or higher (Tant)
$\mathrm{C} 2,3,4,15,20 \ldots \ldots 100 \mathrm{nF}$ (disc or monolithic ceramic) ${ }^{\text {. }}$
C5......................... 1pF (disc ceramic)
$\mathrm{C} 7,8,11 \ldots \ldots0 .47 \mu \mathrm{~F} / 16 \mathrm{~V}$ or higher (tant)
C9..........................22nF*
C10.......................22 $2 \mathrm{~F} / 16 \mathrm{~V}$ (tant)
C12, 13, 17 150pF.
C14....................... $33 \mu \mathrm{~F} / 25 \mathrm{~V}$ (Elec.)
C16.......................22pF (disc ceramic)
C18.......................47nF (disc ceramic

semiconductors

Q1, Q2, Q4	BC549 or BC109 (Bipolar npn)
Q3	BC328 or BC558 (Bipolar pnp)
Q5	BF981 Philips Dual gate MOSFET
D1, 2	IN4148
IC1	CA3130E FET input op-amp
ED	.3mm dia. high efficient LED

Miscellaneous

Qne.3.5mm.mono.phono socket (SK1) for the microphone input. A crystal, the one used in the prototype is $\mathrm{XT}=27.620 \mathrm{MHz}$ (Dick Smith

Electronics part number B-9604). Eight 4BA tapped metal spacers with four counter-sink hed 4BA, $1 / 2$ inch long screws. Half a meter long hook up wires and 6 inches long 22 SWG insulated copper wire for winding up coil L1
Receiver Board

Mlscellaneous

Miniature toggle switch (SW1) from Dick Smith Electronics. A 3.5 mm phono socket (SK2) for the audio output to the phone. A ceramic filter (CFW455E) from irh components. The RF transformer could be obtained from Dick Smith Electronics again, the catalogue number is
L.0260. It is sold in a pack of four, the transformers are distinguishable by their colors The one you need has a black color slug. One foot long 22 SWG insulated copper wire for winding up L2, 3, L4. Two feet long 28 SWG insulated copper wire for winding the L5 and for connecting the antenna ports from the pc board to antenna socket SK3 on the front panel. Four 4BA counter-sink head $1 / 4$ inch long scews for fixing the receiver board onto the spacers.

General Assembly

parts

A 9 volt battery clip. A meter of hook up wire. If you are going to incorporate socket SK4 for battery charging or intending to operate the unit from external source, extra socket and a resistor is needed. The socket is 3.5 mm phono type with a 330R, $1 / 4 \mathrm{~W}$ resistor. The antenna section consits of two one meter long hook up wires and a 2.5 mm phono jack. The headset I used in my prototype was from AUDIO TELEX mode number 63-500/001 (the 500 series) but other series would also work so long if the mic. and phone impedance matches with the circuit specification. It is understood that the headset and the case (as described ini last issue) may not be supplied in the kit pack.
Parts for the tuning
circult
(Please refer to circuit shown in figure 4)

Resistors...............all 0.25W, 1\% tolerance	
1 X........	27k
$1 \times$.10M
$1 \times$...68k
1 X	220R
Capacitors	
$1 \times$.	.150pF*
$1 \times \ldots . .$.. $0.1 \mu \mathrm{~F}$ (tant) or Monolithic ceramic
$1 \times$. $47 \mu \mathrm{~F} / 25 \mathrm{~V}$ (Elec.)
$1 \times$	1 nF (disc ceramic)
Semiconductors	
$1 \times$.....	BF981 Philips Dual gate N channie MOSFET

1 X........................ 1 N 4148 small signal diode
Price estimate: \$100 approx. per unit (excluding the tuning circuit, the wooden box, battery and the headset)

Figure 4. Tuning circuit diagram.

coil to see whether its inductance is too high or too low for resonance to occur. The reading from the digital meter will increase as you slowly insert the ferrite screw. It generally reaches a maximum point then starts to decrease if the screw is pushed in further. The reading indicates that the inductance on the coil needs to be increased up to the maximum reading. Any further increase of inductance will kill the resonance. So to achieve the climax point, take a note of the maximum on the meter and remove the screw. Now compress the coil slightly, remove your hand from near the coil (as the human body can effect the tuning) and take a look at the reading. If it has already reached the maximum, that's fine, if not, it has either been compressed too far (having too much in-
ductance) or was not compressed far enough. To verify which is the case, you only have to insert the ferrite screw again. If it decreases the reading, you must have compressed the coil too far, in such case, you should stretch the coil.

It is an iterative, tedious process but should not take more than 15 minutes. Please consult table 1 for the tuning readings I obtained.

Coil L2, L3 and LA

These three coils should be treated together as they are related. To tune them, you must finish tuning L1 in the transmitter. Connect the tip of the transmitter antenna to that on the reciver via a 150 pF ceramic capacitor. The transmitter is now transmitting its carrier to the receiver.

This carrier signal is needed in order to tune the coils L2, L3 and L4. Remember that if there is no mic. input signal, the voice operated switch will disable the carrier signal. Since no one has lungs big enough, some means of keeping the carrier going while carrying out the tuning process is required. To do that, please refer to the photograph. There are two tracks very near to each other, located right next to the transmitter crystal. Bridging the two tracks together with solder will bring power supply to the oscillator. A continuous carrier will appear on the transmitter antenna without any mic. signal needed. Don't forget to break the solder link when the tuning is done.

As described above, power to the tuning circuit is either taped from the transmitter or the receiver board. The signal input to the tuning circuit should be taped from the drain of the transistor Q6. When you do your measurement, capacitor C26 should be ac coupling the signal to pin 14 of the IC2. Due to the absence of the impedance existing on pin 14, removing C26 would give you a higher reading on the meter. In fact, the result shown in table 1 was obtained under such a situation (with C26 removed).

Once the tuning circuit is hooked up properly, turn on the power and take a note at the reading on the meter. Slowly insert the brass screw into coil L3 and observe the change in the reading. The fact that coil L2 and L3 are so close together and with their axis parallel make them look like a single coil. The middle gap between the two coils affects the coupling from L2 to L3, but it has nothing to do with the tuning, although the smaller the gap, the better. Therefore, make sure the screw is inserted into the coils from the L3 side, not the L2 side. Again compress or stretch coil L3 as indicated by the screw in order to achieve maximum reading on the meter. You will find L2 does not require much tuning at all as it is merely a high impedance coil to pick up the carrier signal. Inserting a ferrite into L2 (from the L2 side) will deceptively increase the reading, but the increase is not due to the change of inductance, it is in fact, a better coupling between L2 and L3.

The coil which really affects your reading a lot is L4, it is a tuned band pass filter. The amplitude of the received signal, as indirectly indicated in your meter would shoot up to a climax if coil L4 resonates with the C24. In table 1, the maximum voltage obtained from the drain of Q6 is shown when L2, 3 and 4 are properly tuned. Again, don't forget to solder the capacitor C26 back when the tuning is done.

Coil L5

Tuning on this coil is not necessary simply because the turns are closely wound together (pitch is zero). Compressing and stretching it is not possible. So long as the number of turns in the coil is correct, the on chip oscillator should oscillate.

The output of the oscillator can be verified with a CRO on pin 10 of IC2 (the loading resistor R 25 must be there to correctly load the oscillator output when being monitored). Alternatively connecting the tuning circuit to pin 10 should give a reading of 0.79 V approx.

RF Transformer T1

When the coils have been tuned properly, you are ready to receive the best signal by tuning Tl . The tuning circuit is not needed here. The set up is similar to the one described above; with the voice operated switch disabled and the transmitter transmitting a non modulated carrier continuously. The 150 pF capacitor joining the tip of the transmitting antenna to the receiving one should be removed to avoid overloading the receiver chip. The carrier signal will be picked up by the receiver antenna off air. Capacitor C26 has been put back into its spot. Use your multimeter to measure the de voltage output from the internal AGC control on pin 8 while you turn the slug in the transformer. Before you start, unwind the slug on top of the transformer until it can't go any further. Then slowly wind down the slug (clockwise) and keep tracing the reading on the meter. You will experience a slow rise in the reading until it peaks, the down it goes!! The best (sharpest) tuning is the one when the voltage shown on the meter is at its peak. I can't really say what value this peak should be at because it depends on the strength of the carrier signal

Table 1: Various tuning voltages obtained using the tuning circuit as described in text.
Condition: Supply at 12 V
One meter long transmitter/receiver antenna fixed in a ' V 'shape for more detailed conditions. see text.

Close up of the iwo tracks which need to be bridged during tuning.
at the time. One caution: you will find your body will affect the reading as well. I suggest you turn to the slug a little, move your body back and read the meter, then repeat until you get the peaking to occur.

Testing The Unit

Get a friend to help when you try out your first test. Stand 5 metres away from each other, plus your mic. and phone onto the right sockets. Antennas are also plugged into the 2.5 mm phono socket ready for action!! Each of you should carry a small, watch screw driver for tuning the trim pots.
Turn on the unit and you will see the LED glow and die away after 2 seconds or so. A lot of hiss should now be heard from the earphone. If the LED glows steadily, you may have your MOD (the
trim pot RV1 labelled MOD on the front panel controls the gain of IC1 and hence the depth of modulation) turned up too high. Your breath or the ambient breeze is triggering the voice operated switch continuously. Turn it down by turning the trim pot in anti-clockwise fashion.
SEN stands for sensitivity of the voice operated switch. I personally find that turning the MOD up and SEN down (by turning it clockwise) works quite well. Having the MOD up means you don't need to shout. On the other hand, low SEN means ambient noise won't trigger the unit. Trim pot RV3 controls the volume output on the headphone. Turning it clockwise will reduce the volume output. If everything works fine, just follow the protocol described in the last issue when you communicate. (Continued page 108)

View of both boards and front panel.

Table 2: Information on winding up the coils in the circult. Please refer the symbols used here to figure 5.

Coil	1	T	d	P	D	S1	S2	L
L1	160	8	$\begin{gathered} 0.63 \\ (22 \mathrm{SWG}) \end{gathered}$	1 (approx.)	5.1 (approx.) (1364 inch)	3	3	9 (approx.)
L2	63	3	$\begin{gathered} 0.63 \\ (22 \mathrm{SWG}) \end{gathered}$	0.5 (approx.)	5.1 (approx.) 1364 inch)	2	4	3 (approx.)
L3	160	8	$\begin{gathered} 0.63 \\ (22 \mathrm{SWG}) \end{gathered}$	0.5 to 1 (approx.)	5.1 (approx.) (13.64 inch)	4	4	5.5 (approx.)
L4	190	10	$\begin{gathered} 0.63 \\ (22 \mathrm{SWG}) \end{gathered}$	1.5 to 2 (approx.)	5.1 (approx.) (1364 inch)	3	3	11 (aprox.)
L5	323	19	$\begin{gathered} 0.315 \\ (28 \mathrm{SWG}) \end{gathered}$	ZERO PITCH	5.1 (approx.) (13/64 inch)	3	3	6.5 (approx.)

NOTE: The pltch (p) and length of the coil (L) shown in the table is only rough. Their actual length depends on your tuning. All dimensions shown in millimetres (mm) unless otherwise noted.

Brass rod, ferrite slug and tuning circuit.

Coil Construction

To get the idea across efficiently, some jargon will need to be defined (as shown in figure 5).

The physical information for each coil is shown in table 2. Although the data shown in table 2 is quite different for each coil, the way they are made is not all that different. First cut the wire to the exact length as indicated in table 2. Oet a sharp blade or scalpel to scratch away the insulating coating on the sleeves for soldering purpose. Wind it up on the specified drill bit for the specified number of turns. It does not matter if you don't have any pitch between turns when you wind it up on the drill. As soon as you release it, it stretches itself anyway. Solder one sleeve onto the pad first, then refer to the picture shown here to get some idea of what the final pitch is like. Pull the other end of the coil with a tweezer to achieve roughly the same pitch and solder it down. This is an important step to ensure you are not too far from the maximum point even the start of the tuning process.

Coil L2 and L3 have one of their ends through the pc board and soldered on the bottom side. They take up a shape as shown in figure 4 (b). As mentioned ini the text, the gap between L2 and L3 should be as small as possible to maximize coupling between them. When it comes to L5, some way of stopping the coil from stretching is necessary as there is no pitch. I achieved that by putting one layer of cellotape onto the winding. Trim the extra bit of tape on the ends of the coil then carefully remove the coil from the drill bit.

Errata

After the basic functions worked, 1 made several measurements of the transceiver's performance. At first the results were disappointing but these were improved by a few minor changes. Several component values needed to be corrected.

Your circuit will be correctly assem. bled if you follow the overlay diagram or parts list. The values on the schematic are incorrect. The changed values are IC1, R4, 5,7,9,10,19,32 and C5, 10, 11, 21, 24, 30, 41 . (Incl. Sales Tax)

MAY

Photographics '87, an exhibition of equip. ment and technology of photographics will be held 23 to 26 May at the RAS Showgrounds in Sydney.

Office Technology '87 Show will be held in the Royal Exhibition Building in Melbourne from 31 May-3 Junc. Contact Ms Mary Young Australian Exhibition Services Ltd, Illoura Plaza, 424 St Kilda Rd.. Melbourne 3004.

JUNE
Communications '87, the Australian International Office Technology Exhibition, is on 1 to 4 June at the Royal Exhibition Building. Melbourne. Contact Australian Exhibition Services on (03) 267-4500).

PC87, the Ninth Australian Personal Computer Show is on 1 to 4 June at the Royal Exhibition Building, Melbourne. Contact Australian Exhibition Services on (03) 267-4500).

Office Technology ' 87 will be held 1 to 4 June in Melbourne. Contact Australian Exhibition Services on
267-4500.

The 1987 Computing Systems Conference will be held 17 to 19 June in Brisbane. Contact the Institute of Engineers. Australia, 11 National Circ, Barton, ACT 2600.
(062)

73-3633.
Videotex '87 Exhibition \& Conference is on in Melbourne over three days in June. Contact Riddell Exhibitions on (03) 4296088.

The Australian Hi-fi Show ' 87 wil be held Sydney 19-21 June at the Airport Hilton; Brisbane 3-5 July at the Gold Coast International hotel; Melbourne 17-19 July at the Dallas Brooks Hall; Adelaide 24-26 July at the Adelaide Hilton.

JULY

Videotex ' 87 to be held 30 June to 2 July at the Sheraton Hotel, Auckland. Contact the Secretariat on (649) 68-6955.

The Third National Space Engineering Symposium will be held 30 June to 2 July at the Australian Defence Academy in Canberra. Contact The Conference manager on (062) 73-3633.

Automach '87, an exposition on automated manufacturing and sponsored by the SME, is scheduled for 7 to 10 July in Sydney. Contact Adloph Greco on (02) 875-2377.

The 1987 Perth Electronics Show is on again at the Claremont Showgrounds,

Perth from 29 July to 2 August. Contact address: 94 Hay St, Subiaco. WA 6008. (09) 382-3122.

AUGUST

A symposium on signal processing and its applications will be held at the University of Qld 24 to 28 August. Those interested in participating contact the Conference Secretariat, ISSPA 87, Uniquest Lid, University of Qld, St Lucia. Qld (07) 3772733.

ANZAAS Townsville Conference 24-28 Aug. Examination of Databases, communications and networks, videotext ect. Contact G. Gupta, dept of Computer Science, James Cook University, Townsville, Qld 4811

Nelcon '87 national electronics conference will be held 24 to 28 August at Auckland University, New Zealand. Contact B. S. Furby on (02) 957-3017. Sydney.

SEPTEMBER

IREECON '87 will feature digital technology when it is held 14 to 18 September. Contact Heather Harriman on (02) 3274822.

The 4th Australasian Remote Sensing Conference will be held 14-18 September at the Adelaide Convention Centre. Contact John Douglas, South Australian Centre for Remote Sensing on (08) 260-0134

Communications USA (telecommunications, radio and satellite equipment) in Sydney 21-25 September. Contact Ken Mackenzie on (02) 261-9200.

Labex ' 87 internationl laboratory equipment and products exhibition is on 21 to 24 September at the Royal exhibition Building, Melbourne. Contact BPI Exhibitions
on
(02)

266-9799 or (03) 699-9151.

OCTOBER

Computer Indonesia will be held in Jakarta 20-24 October. Contact Australian Exhibition Services on (03) 267-4500.

The 38th International Astronautical Congress will be held in Brighton, England, 10-17 October. The theme 'thirty years of progress in space' will be developed through in series of symposia. Contact the Austronautical Society of WA, COSSA, (09) $397-5642$.

NOVEMBER

CommuniTech and Computer ' 87 is on in Kuala Lumpur 11-14 November. Contact Australian Exhibition Services on (03) 267-4500.

- Hayes Smartmodem compatible

Made in
 Australia

Autodial both DTMF (tone) and PULSE

- Auto-answer and Autodisconnect
- Ring Back Security facility
- Audio and Visual Indicators
- Compact Elegant Design
- Fully Australian Designed and Manufactured.
- 12 Month Warranty.

Nice Modem Three Incorporates all the features other than 1200 bps full duplex for $\$ 499$, expandable to 1200 bps full duplex.

- Transmission modes are:

CCITT V. 22 - 1200 bps Full Duplex
Originate and Answer
BELL 212A - 1200 bps Full Duplex
Originate and Answer
CCITTV. 23 - 1200/75 baud Half Duplex,
with built-in baud rate conversion
CCITT 21 - 300 baud Full Duplex
Originate and Answer
BELL 103 - 300 baud Full Duplex Originate and Answer

CONTACT YOUR LOCAL COMPUTER DEALER OI CALL
(02) 8698777 , (09) 3216636

The NICE COMPUTER COMPANY of AUST Pty Ltd (GP0 Box S1517 Perth 6001, P0 Box 51, Asquith 2078 TRADE ENQUIRIES WELCOME

MICRO-EDUCATIONAL PR

8/ 235 Darby St NEWCASTLE 2300
Australia's largust computer mail order compary.
FREE
OUR LATEST LBRARY DISK FOR YOLR
APPLE, IBM, or MACINTOSH
(Add \$10 for Mac $3.5^{\prime \prime}$ disks)
These disks contain the best in public domain software.
Send $6 \times 36 \mathrm{c}$ stamps for post.

Ask for your FREE CATALOG

Dear George,
Please rush me a free library disk for my IBM/ APPLE/ MACINTOSH
(Add $\$ 10$ for Mac disks)
Enclosed Please find $6 \times 36 \mathrm{c}$ stamps.
NAME:
ADDRESS:

TEACH YOURSELLF

Inside Your Computer 9

COMPUTER LANGUAGES

In this month's article, we explore the wide variety of languages that will run on a small computer.

Phil Cohen

First of all, what exactly is a computer language? The processor inside a small computer responds to a small set of generally about 200 codes. There's one code (say 34) to get it to copy the value of one location of memory to another location, another code (99, say) to get it to set a particular location to a particular value, and so on. This set of codes is called the 'instruction set' of the processor. A set of such codes in the form of a program is called 'machine code'

Now, it is possible to write a program in machine code directly - and in fact, that's what people did in the very early days of computing. That was called a 'first-generation' programming language.
Then someone came up with the bright idea of using easy-to-remember 'mnemonics' instead of the codes, and then get the computer to do the translation. So for example instead of remembering to enter a ' 34 ' for a copy, they might type in 'CPY' (short for copy), and a ' 99 ' might be 'SET'. A program called an 'assembler' did the translation of the mnemonics CPY and SET to the codes 34 and 99 .

So far, so good. This was called a 'second generation' language.
Eventually, people started noticing that some things, like printing the value of a decimal number, were used very often. Wouldn't it be nice, they thought, to be able to write a single mnemonic which translated to a whole set of codes which did something that was going to be needed again and again? So 'high-level' languages were born, and the first set of them were called 'third-generation' languages.

One of the first of these 'third-generation' languages was FORTRAN (short for FORmula TRANslator), which allowed people to write things like PRINT A, and have the computer translate (the process was called 'compilation', and the program that did it a 'compiler') PRINT A into a whole sequence of mnemonics, which were then further translated into codes for the processor to follow.
Then the same thing happened to third-
generation languages - people noticed that there were some very common requirements which could be replaced by even 'higher-level' mnemonics. An example of a common requirement might be the generation of a printed report from a set of numbers stored in the computer, with totals automatically generated at the bottom of each column of the report. In a 'fourth-generation' language, the command to do this might be REPORT A.
The main difference between third and fourth generation languages, though, is that fourth-generation languages are normally built around a 'database' - basically , a way of storing a lot of information in a very structured way, using disk drives.

$$
86
$$

Almost every language ever developed for a computer

 (there have been hundreds) is available to run on a small computer.

Now, of course, there are also 'fifthgeneration' languages for work in artificial intelligence. In a fifth-generation language (often shortened to ' 5 GL '), you don't actually write a program at all. Instead, you put in a series of statements about what you want to do, and the computer figures out how to go about it. For example, you might enter PRINT A first, then $\mathrm{A}=\mathrm{B}+$ C, then $C=3$ and finally $B=2$, and the computer will work out what order to do things in to get an answer.

BASIC

By far the best-known language for small computers is BASIC (Beginner's All-purpose Symbolic Instruction Code). BASIC is a usually third-generation language (although there are fourth-generation lan-
guages base on it, like PICK BASIC), and is a little different to other third-genration languages in that it is not usually compiled (although there are compiled veisions).
Now, if you remember, compilation is when a program called a compiler takes a series of code words like PRINT A, and turns them into the equivalent set of mnemonics (perhaps a sequence of 100 of them) which can then be 'assembled' into machine codes which the processor can run directly.
With BASIC, however, things are a little different. The processor runs a program called an 'interpreter', which takes each of the commands in the BASIC program - PRINT A, for example - and does what they describe. The difference between this and FORTRAN is a subtle one: with FORTRAN the commands are translated into codes that the processor itself can run, while with BASIC they are interpreted by a program, which does what they describe.
The main advantage of compile languages are that they work very quickly. The compilation process is slow, but once the program has been compiled. it runs very fast. The advantage of an interpreted language like BASIC is that there is no slow compilation process to go through you can change the program and have it running within a second (compilation can take minutes). even though the progiam runs more slowly when it is finished.

Languages

Almost every language ever developed for a computer (there have been hundreds) is available to run on a small computer. If you have an Apple computer, or an IBMcompatible nachine, you will have the widest choice.
The following languages are all available for microcomputers (and there are many many more):
BASIC: 3GL, compiled or interpreted. Developed specially for begimers. and ideal for small programs.
C: 3GL, compiled. Ideal for applications where speed is important. Most spread-

The famous French mathematician Blaise Pascal 1623-1662.
sheets, word processors, etc, are written in C.
dBase: 4GL, interpreted. Most widelyused language for one-off commercial applications on microcomputers.
FORTRAN: 3GL, compiled. Developed for scientific and engineering applications. Rather old, but widely used.
COBOL: 3GL, compiled. Widely used for commercial applications. Also rather old, very widely used.
ALGOL: 3GL, compiled. Very powerful, used mainly for scientific applications.
PASCAL: 3GL, partly-compiled, then interpreted. Slowly repiacing BÁSIC as a beginner's language. Good for large applications, too.
PROLOG: 5GL, compiled. Just starting to break new ground in the artifical intelligence field.

Running Languages

Most of the languages in this list will need hundreds of K or memory to run, with the exception of interpreted BASIC.

If you want to write your own spreadsheet package in C , you will need a computer with 640 K of memory and a hard disk. If you want to run PROLOG, you will need 640 K and at least floppy disks.
But to run BASIC all you need is a
cheap 'toy' computer and a cassette recorder. Almost every small computer has a BASIC interpreter built-in in ROM. If you want to run any other languages you will have to spend several hundred dollars on extra RAM, and then even more on buying the compiler itself.

If you want to learn about programming, BASIC is still by far the best choice of language. There are some excellent books around which will teach you programming using BASIC, and you can pick up a second-hand computer with BASIC for under a hundred dollars.

Glossary

1GL, 2GL, 3GL, 4GL, 5GL: First, second, etc, generation languages.
ALGOL: A compiled 3GL.
Apple: The company that introduced the first mass-market computer.
Artificial intelligence: A way of getting a computer to find a solution to a problem by trial and error.
Assembled: Translated from mnemonics to machine code.
Assembler: A program that translates from mnemonics to machine code.
BASIC: An interpreted 3GL.
C: A compiled 3GL.
COBOL: A compiled 3GL.

Compilation: The process of taking a program written in a 3 GL and translating it into mnemonics.
Compiler: A program that does compilation.
dBase: An interpreted 4GL
Database: A way of holding all of the information for a program in a structured way.
FORTRAN: A compiled 3GL.
Fifth-generation language: A language developed for artificial intelligence.
First-generation language: Machine code.
Fourth-generation language: A language built around a database.
High-level language: A 3GL, 4GL or 5GL.
IBM-compatible: A computer able to run all of the software written for the IBM PC.
Instruction set: The set of all possible codes that a processor can understand.
Interpreter: A program that allows a 3 GL program to be run without compilation.
K: 1024 bytes of RAM memory.
Location: One particular small part of a computer's memory.
Machine code: A program made up of codes that the processor can run directly.
Mnemonics: Short easy-to-remember codes.
PASCAL: A compiled 3GL.
PICK BASIC: A compiled 4GL version of BASIC.
PROLOG: A compiled 5GL.
ROM: Read-Only Memory - the memory that retains information even while the computer is turned off, and which contains all of the programs that came with the computer.
Report: A printed statement showing a list of figures.
Second-generation language: Made up from mnemonics, which in turn stand for machine code.
Spreadsheet: A popular type of financial and accounting program.
Third-generation language: A language which is translated into mnemonics.

TEACH YOURSELF

CREATING WITH ELECTRONICS 6

RC CIRCUITS DO THE STRANGEST THINGS

Integrating and differentiating are two of the many capabilities of the humble RC circuit. But how? This article explains these functions and more, in preparation for two more useful test instruments to be described in forthcoming issues. As well, the 555 timer is introduced, along with a few points the text books don't tell you!

Peter Phillips

T-he concepts of differentiation and integration may be unfamiliar to some readers. Mathematically, these processes are somewhat complex, but when related to an electronic application, they become much simpler. Applications of RC circuits are common, usually in conjunction with other devices, as will be found in the next two projects of this series. This article provides background theory for these projects which are an analogue frequency meter and a linear capacitance measuring instrument. These devices offer advantages over their digital counterparts; for example by permitting the easy measurement of low or varying frequencies, and by providing a test for capacitor leakage.

There are three RC applications that comprise the fundamental operation of these two projects; integration, differentiation and timing. Both instruments are based on the 555 timer, and this device is also described. As well, we examine some practical aspects of the 555 that are generally overlooked.

Integration

Theoretically, integration is a mathematical process performed on an equation. Eletrically, integration is applied to a waveform, to produce another, different, waveform. To explain, we start with the circuit of figure 1. Depending on its application, this circuit can be an integrator, a low pass filter, a decoupling circuit, or a timing circuit. Any RC combination has a characteristic known as a time constant, which is simply the product of the individual R and C values. This time value is used in figure 2, which shows two standard curves that describe how the voltage across a capacitor varies during charge or discharge. When the switch in figure 1 is closed, the voltage across the capacitor will rise towards the battery voltage in the manner shown by the charge curve of figure 2. Replacing the battery with a short circuit will cause the capacitor to discharge as shown by the discharge curve. Because the vertical axis is calibrated in percent of the final value, and the horizontal axis in time constants, the curves of figures 2 are universal, and describe any RC circuit with any applied voltage.

One time constant is, by definition, the time taken for the voltage to change by 63% of its initial value. If R is 1 M ohm, C is $1 \mu \mathrm{~F}$, and the input voltage 10 volts, it will take 1 second for the capacitor to reach 6.3 volts. It takes approximately 5 time constants (or 5 seconds for the exam-

Flgure 2: Universal charge-discharge curves
ple) to completely charge or discharge the capacitor. The curves trace an exponential shape, and are virtually linear for about the first 20%.

During integration, the output waveform varies proportionally to the area enclosed by the input, meaning the output voltage depends on the input signal's enclosed area as it varies with time. Figure 3 shows how integration of a square wave produces a triangular wave. If elapsed time commences at point A and proceeds towards point B, the area enclosed beneath the square wave will increase linearly. When graphed, the ramp waveform shown beneath these two points results. Continuing towards point C now causes the ramp to fall, because the area, although increasing as point C is approached, is now of the opposite polarity, subtracting from the previous positive value. An integrating circuit of whatever form will produce, therefore, a triangular wave output for a square wave input.
for an RC circuit to behave in this way, the values of the components and the input frequency must be related in a particular way, implying that the RC circuit of figure 1 behaves differently at other frequencies. As an integrator, if the positive half cycle of a square wave at the input causes the capacitor to charge to around 20% of the maximum value, then
only the linear part of the charge curve is used. Also, if the discharge time is the same as the charge time, the capacitor voltage will appear to be changing linealy, producing a triangular waveform. Because it takes 0.2 times the circuit time constant (TC) for 20% full charge to be reached, and a further 0.2 TC for discharge, the period of the input signal must be equal to or less than 0.4 RC if integration of the input is to occur. For example, a circuit with a 10 k resistor and a $0.01 \mu \mathrm{~F}$ capacitor will have a time constant ($\mathrm{R} \times \mathrm{C}$) of $100 \mu \mathrm{~S}$, giving a frequency (reciprocal of the period) of around 25 kHz . The output amplitude will be approximately 20% of the input, but amplification can be then applied if necessary.

Waveform generation for sound synthesis is a common use for the integrator, as is bass boosting in a sound system. Digital voltmeters also use an integrator as part of the process of converting the analogue input to a digital value for processing by the digital circuitry. The forthcoming projects use an integrator to produce a control voltage when the high time of the input square wave exceeds the low time. In this application, the integrating capacitor will charge more than it discharges, and the overall charge will increase in a positive direction, producing a voltage that can be used to operate protection circuitry.

IBM* XT COMPATIBLE COMPUTERS from \$795*

Check these features and our prices. We're sure you'll agree

 hey're exceptlonal value for money?- Assembled in Australia! - Tested by us for 24 hours prior to delivery! - AT style keyboard - Operating manual

150W power supply - 8 Slot motherboard
(Japanese drives available for an extra $\$ 50$ each)

* \$795 COMPATIBLE COMPUTER 256K RAM Single Drive. Graphics and Disk Controller Card. $\$ 795$ 256 R RAM CORFPATIBLE COMPUTER $2 \times 360 \mathrm{~K}$ Disk Drives, Multifunction Card, Colour Graphics. Disk Controller, 1 Parallel Port. (Includes Timer Disk)
640K RAM COMPATIBLE COMPUTER 2×360 K Disk Drives, Multifunction Card, Colour Graphics, Disk Controller, 2 Serial, 1 Paraliel Port. (Includes Timer Disk). \$1,195 20 M/BYTE HARD DISK COMPATIBLE COMPUTER
20 M/Byte Hard Disk, 360K Disk Drive(s), 640K RAM, Multifunction Card, Colour Graphics, Disk Controller. 2 Serial, 1 Parallel Port. (Includes Timer Disk)
Single 360 K Floppy Disk Drive Dual 360K Floppy Disk Drives
only $\$ 1,995$

IBM* AT COMPATIBLE

Assembled \& Tested in Australia!

- 1 M/Byte Main Board $\quad 6 \mathrm{MHz}$
- 12 M Byte Floppy Disk Drive $\bullet 80286 \mathrm{CPU}$
- Colour Graphics Display Card 8 Slots
- Floppy \& Hard Disk Controller - 20 M/Byte Hard Disk
- Printer Card and RS232 Keyboard
- 200W Power Supply - Manual
- 6 Months Warranty
only $\mathbf{\$ 3 , 3 9 5}$

Now you can buy top quality $51 / 4$ " disks that are also the cheapest in Australia! They even come with a 5 year guarantee, which indicates the quality of these disks. So why pay 2-3 times the price for the same quality?

MIRODOT $51 / 4^{\prime \prime}$ DISKS DESCRIPTION 1.9 BOXES $10+$ BOXES 51/4" S/S D/D \$14.95 \$13.95 51/4" D/S D/D $\$ 18.95 \$ 17.95$

MICRODOT 51/4" HIGH DENSITY 1.9 BOXES $\quad 10+$ BOXES $\quad 100+80 \times$ XES $\underset{\text { (PER } 10 \text { DISKS) }}{\$ 49.95} \underset{\text { (PER } 10 \text { Disks) }}{\$ 44.95} \quad \$ 39.95$

51/4" D/S "NO FRILLS" DISKS

 FROM $\$ 1$ EACH!!Bulked packed, Microdot D/S D/D without boxes, or brand name, just their labels and white card jacke!!
-99 DISKS
$100+$ DISKS

1,000 + DISKS
$\$ 1.30^{\text {ea }}$
$\$ 1.20^{\text {ea }}$
$\$ 1.00^{\mathrm{ea}}$ (TAX EXEMPT PRICES LESS 20c PER DISK)

31/2""NO FRILLS" DISKS!
D/S DID disks with white boxes and labels but no brand name (These are a top name brand, but we can't tell you which.)

TELECOMMUNICATIONS AUSTRALIAN STYLE ADAPTOR CABLE - ADASTralian sockel to pug sockel - Lengtin 10 melres Cal Y16015 \$14.95

TELEPHONE CURL CORD - U.S plug lous plug - Replacement hand - Length 45 melres
 MAIL ORDER HOTLINE |TOLL FREEI

TELEPHONE ADAPTOR - Australan onug to US socket Cat Y16026
$\$ 5.95$

TELEPHONE
EXTENSION CABLE UNIT Allows is merres of telephone exiension cabli to be neatly wound into a protabte storage conturner
The reel sits on a llat base and has a The reel sits on a tiat base and has
handele to wind cable back on to handele to wno cable back n tolt ideal tor the workshop. around the house, otice. pooi elc
Cat Yigol3

JUMBO 51/4" DISK
STORAGE
you've got tols disks youll aphe eatite the extra capactity of mis locating "hat olisk"
faltures.
100 disk capachy

- LTocked plastic cover
- 9 Dividers spacers
C16020
only $\$ 24.95$

C16027 (Hinged Lid) S26.95

51/4" DISK STORAGE EHc.ent and practical Protect your
disks flom being damaged or lost Fentures

- 70 disk capacity
- Smokeo piasicic cover

$51 / 4^{\prime \prime}$ DISK STORAGE Etticieni and practical Protect your disks trom denng damaged or bos Fealures..
- 50 disk capacity
- Lockabie (2 keys supplied

Cat C16030 only $\$ 19.95$

3' 2"DISK STORAGE UNIT - Hich impact plastric liti and base - Ang impaci plastic líi ano base Cat C15040 only $\$ 19.95$
$31 / 2^{n}$ DISK STORAGE UNIT - Holds up $1040 \times 31 / 2^{-2}$ disketies - Lockable (2 keys supplied) - C16035 only 519.95

RS232 MINI JUMPER PATCH BOXES - Intarace RS23

25 teads with unnec end supplied Cat X15653 min instuction Cat. X 15654 Female to Male
 Normally $\mathbf{S 2 5} 95$

RS232 MINI IESTER - All pin wred straxght through - Dual colour LED indicates activity and direction on 7 lines - No batteries or power required OSR Data Set Ready R.D Receive Data CD Carrer Detec RTS Request to Send
DT R. Data Terminal Ready
C T S Clear to Send

RS232 GENDER CHANGERS - Saves modrying or replacing
 Cal $\times 15650$ Male to Male Cat X15651 Mate to Female Cal $\times 15652$ Female to Femsie Normally S19 95 each
Only $\$ 14.95$

RS232C NULL MODEM ADAPTOR
temale connection Male to ADAPTor - Pins 2 and 3 reversed Cat $\times 15657$ Male to Male Cal $\times 15658$ Male to Female Cat X15659 Female to Female Only S14.95

RS232 WIRING ADAPTOR BOX - Male to temale - 25 Detachable plug on leads - 2 mini fumpers - ldeal for experimenting Cat $\mathrm{X} 15665 \quad$ Normally $\$ 39.95$

PRINTER LEAD FORIBM* - Sult IBM. PC XT and compatibles 25 pin "D" plug (computer end)
10 Centronics 36 pin plug

EXTENDED KEYBOARD (105 KEYS) and AT compatible ${ }^{1}$

- 20 Dedicated function keys - Enlarged "Return and keys - Low Protile Design, DiN standard - Separate Numeric and Cursor
control keypads
- Addinnack Audio Beep Prevrous Key-1n-lock. Audio
Word. Next Work Fast Repeat, Line Feed
Reset Resel
Cal $\times 1222$ EIAL, ONLS $\$ 299$
SPE

APPLE* II SERIES COMPATIBLE JOYSTICK These joysticks have adaptor connectors to suit the Apple II Ilc IIe
and II-computers Features include eloctabte -spung centinng of tree thoating" Electrical tnm adjusiments on both axis. 360° cursor controt and dual hire buttons Ca' C14201 $\$ 49.95$
UV EPROM ERASER
Erase your EPROMs quickiy and sately This unit is the cost ehective solution to yout problems If will
erase up to 9×24 pin devices in complete satety. in about 40 mimute (less for less chips)
Features include

- Chip drawer has conductive foam
- Mains powered
- High UV inlenstly at chip surlace ensures EPROMs are thoroughly - Enased
- Engineered to prevent UV
- Exposure

WITHOUT TIMER

WITH BUILT-IN TIMER Special $\$ 119$

"IBM" AT COMPATIBLE"
KEYBOARD

- 100% 18M. PC. XT compatible - Low profile keyboard design with large key tops to suit protessional typists
- 3 step herghtiangle adjustment - Chery brand TS-M00001 19 mm ergonomic requirement and provides high pertormance ano maximum reliability - Curl lead plugs siranght into PC XT - 3 Status displays a fraction ot the priccoy" only a Cat $\times 12020$ only $\mathbf{S 1 2 9}$

IBM X X \& AT
COMPATIBLE

JOYSTICK FORIBM eatures Selectable "Spring inm adjusiments on both axis 360 degree -1-sor control Cat Clez

Rod Irving Electronics $N^{\circ} \cdot 1$ for peripherals!

IBM' XT
COMPATIBLECAROS Colour Graphics Card
Graphics Card
Graphics Card
(Hercules compatible)
(Mercules compatible) S) S 975
Floppy Diak Drive ControlletCard 2 Drives 16 Bit)
Floppy Disk Drive Conlrolle Card Floppy Oisk Drive Conlroller Card
4 Drves 168,4$)$ (4) Drves, $168(t)$
$\times 18006$

High Resolution Mono Card Colour Graphics a Printer Caro Ca: Xibero
768k日 RAM Card (without memory)
Ca: X18012 Printer Card
at $\times 18017 \quad 534.95$ Game Vo Case

53795 XT Motherboard (without memory)
Cat $\times 18020$

Clock Card
Cat. $\times 1$ gor 4
(without $\$ 59.50$ Cat $\times 18025$ (winer cane) $\$ 79.50$ RS232 \& Clock Card
XT Turbo Mothertoard
(without memory)
Mutt l/O \& Disk Controlte
Multillo ${ }^{2}$ Disk Controlter Card
Cat $\times 19040$ VO Plus Card
$\$ 139$ 768K Mutifunction VO Card
(includes cable but not 41256 RAM) (includes cable but not 41256 RAM)
Cat $\times 18050$
S199 Hard Disk Controller Card Enhanced Graphics Adaptor Card (AT COMPATIBLE)
Enhancea Graphics Adaptor Card (Award Cos)

D LINK

NETWORK CARDS
Runs PC. NET ${ }^{\text {¹ }} 1$ M ${ }^{-1}$ Bit per second data transfer rate via 2 wire lonk Dedicated server not necessary UD to 255 stator:s

APPLE* COMPATIBLE CARDS PRINTER CARD Ca! XI7029 DRIVE CARD $\$ 89$ Cat $\times 17019 \quad \$ 79$ Cat $\begin{aligned} & 80 \text { COLUMN CARD } \\ & 5025\end{aligned}$ SUPER SFRIAL CARD Cat $\times 17039$ RGB CARD $\mathbf{\$ 7 9}$ Pal COLOUR CARD Cat $\times 17041 \mathrm{C} / \mathrm{M}$ CARD APPLE* 110 COMPATIBLE CARDS 80 COLUMNBAY, CA.9D Cat. X gar:2ex C.8s seg

IBM ${ }^{\circ}$ COMPATIBLE DISK DRIVES Tired of paying out more tor
Japanese disk 2 Dives? These Japanese bisk Orives? These are the sofution' They leature Japanese mechanical components yet cost only a traction of the pricel Cat.No. Description Price 11801500 K Normally $\$ 199$ SPECIAL, ONLY S179
C11803 1 M Bye
S239 C11805 16 M/8ye $\quad \mathbf{S 2 5 9}$

NEC DISK DRIVES 31/2" DISK DRIVE - (MBy By untormatted Double stred. double densty - Access Time 3m/sec \$265

51/4" SLIMLINE

Switchable 16 M Byte to 1 Misyle 12 MByy 10720 K formatted - Double sided double density. - AT compatible Cal C11906 \$295 8 " SLIMLINE - Double sicued, double density. | -16 M Bre untormatted |
| :--- |
| Cat C11908 |

20 M/BYTE HARD DISK DRIVE FOR IBM ${ }^{\circ}$ AND COMPATIBLES NEC drve win DTC Controller card
Cat X 20010
WAS 5995
590 SPECIAL, ONNY $\$ 895$
> - No power recuited
> - Speed and coore ransparent Tront panel position rotary switchon
> - Three five in
> - Switch comes standard wit temale connector 2 WaY Cal $\times 19120$ fite5 $\$ 95$ 284 WAY
> CENTRONICS DATA TRANSFER SWITCHES Save time ano has sles of constantly wint these inexpenswe dala aranste smiches These data swiches Support the 36 pen centronic interlace used by Centronics. Printronics. Star and many other panter manulacturers
> - No power requred
> - Speed and code ransparent - Iwo Four position rotary smich on
> - Three five in
> - On rear panel
> -
> - Bale locks are standard

> 2 Way Cat X19130 $\$ \mathbf{4} \mathbf{2 5} \mathbf{\$ 9 5}$
> 4 WAY Cal X19135 \$135

CANON A-40 PRINTER - Serial impact Dor Marix Near Letter Ouality Mode
-14 K Buffer ${ }^{-1} 14 \mathrm{~K}$ Buffer

S595

PAPER TAMER

- Restores order to the top of your desk or work area
- Made of white plastic coated steet - Allows perter paper teed - Alows easy examnation d pont our C21050 (10") only $\$ 49.95$ C21050 (15) only $\$ 79.95$

RS232 DATA SWITCH WITH TESTER - No power requrred or 2 computers to one peripheral - 25 pm RS 232 "D connectiors. - Six dual coloured LED indicator T.D. Transmit Data R.D. Rocerve Data
R.T.S. Request To Send D.S.R. Data Set Ready D.T.R. Data Terminal heady - Size $200($ W $) \times 68($ (H) $\times 150(\mathrm{D}) \mathrm{mm}$ Cat X 19110 Our Price $\$ 149$

2\& 4 WAY
RS232 DATA TRANSFER SWITCHES
Hyou have two or four compatible devices that need to share a third o lith, then these nexpensive data transter switches will save you the
tur? dnd hassle of constantly changing catles and leads around

Display Format: 80×25 characters Ditpley Colours: 16 Dot pitch: 39 mm . 15 km Sync Vert Scan Freq: SOMz Cat $\times 14520$
$\mathbf{\$ 6 9 5}$
 008 335757 1OCAL FREE
 COLOUR MONITOR Angh quality IBM. compatible
montors. quat min VCR's too Montiors,
SPECTPACATOMS
CRT
CRI: $13^{\circ} .90^{\circ}$ dellection colour
Input Signali:
Vibeo
Sinnal:
Separate voeo strnat
Syme Positive
Inpul Level TLLLeve

Honzontal 157
Verical 60 Hz
Disploy Size: $245(\mathrm{H}) \times 182(\mathrm{~V}) \mathrm{mm}$
Resolution:
Honizontal: 640 dots
Verical 200 line

SAMSUNG TTL MONITOR A quality 12 TTL monito, wrin a a very reasnable price
CRT: 12 diagonal
CRI: 12 diagonal 90° dellection
Active Display Area
$216(\mathrm{H}) \times\{60(\mathrm{~V}) \mathrm{mm}$
DNsplay Characterat: 2.000
180 characters $\times 25$ ines)
Deacription Car.No. $1.9 \quad 10+$ $\begin{array}{ll}\text { Gratn } \times 14517 & \$ 189 \$ 179 \\ \text { Amber } \times 14518 & \$ 189 \$ 179\end{array}$

20MHz MONITORS \$199

non-glare screens. Available in monitors with 12 "
Green ($X 14506$) displays with swivel base! or amber Amber (X14508) Normally \$235. NOW $\$ 199$

VERBATIM DISK SPECIALS!
All prices 10 disk boxes! $\begin{array}{lll}\text { Description } & 1.9 & 10 *\end{array}$
 $51 / 4^{-1}$ Hign Daneity 559.95849 .95 51/2" S/s D/D $31 / 2$ D/S D/D $\quad 559.95 \$ 55.95$

SUPER 5 EP-1201 DOT MATRIX PRINTER - 120 CPS

- Print Modes NLLo. Dot Graphics - Proportional Font. Dratt
- Proporional Printing - Relrabie and Compac - Logic Sceking

Cat C20035 only $\mathbf{\$ 5 9 5}$

MAL ORDER HOTUNE 008335757 ITOLL FREE (STRICTLY ORDERS ONLY) LOCAL ORDERS \& INQUIRIES 103)5437877

POSTAGE RATES:

ostager	0
\$10-\$24.99	3.00
\$25 549.99	8.00
\$50 \$99.99	\$5.00
\$100-\$199	\$7.50
\$200- $\$ 499$	\$10.00
3500 plua	\$12.50
FREE POST	RDERS
The above postage rates are for besic postage only. Row Freight. bulky and fragile tome will be charged at different rates.	
All entes tex exempt orders and wholeate inquirtes 10 : RITRONICS WHOLESALE. 56 Renver Rd, Cfyyton. Ph. (03) 5432166 (3 IInes)	
Errors and omissions excepted	
	V/SA

Differentiation

Differentiation is the opposite to integration. When used as an integrator, the voltage developed across the capacitor of an RC circuit is used to produce the integral. If the voltage developed by the current flowing in the resistor is used, a different waveform is produced, and if conditions are correct. this voltage can be used as the output of a differentiator circuit. To differentiate a waveform means to produce an output voltage that is proportional to the rate of change of the input. For a square wave, the only time any change is occurring is during the positive and negative transitions of the wave, producing, after differentiation, a series of spikes that occur during the transitions of the input. Figure 4 shows the output of a differentiator, demonstrating that no output occurs when the input waveform is steady between each transition.

Figure 5 shows an RC circiut connected as a differentiator, which is simply a juxtaposed integrator circuit. Again this circuit has other functions, such as a high pass filter, or a coupling circuit in an amplifier. The universal charge/discharge curves of Figure 2 are again used to show the circit's operation. When the switch is closed, the current flowing in the circuit rises from zero to a maximum determined by Ohm's Law, where $I_{\text {max }}$ equals the applied voltage divided by the resistance of the circuit. The voltage across the resistor equals the applied voltage at this time. As the capacitor charges, the current, and the voltage across the resistor, finally fall to zero (after $5 \times \mathrm{RC}$ seconds). If a short circuit is now applied across the input, the charged capacitor will discharge, the current now flowing in the opposite direction, producing the same waveshape as before, but of the opposite polarity. Figure 4 shows the waveforms that results when the component values and the frequency have the correct relationship. Notice how the output has twice the amplitude of the input.

Using the same component values as before, where R is $10 \mathrm{k}, \mathrm{C}$ is $0.01 \mu \mathrm{~F}$, and the
input voltage $10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, the time constant of the circuit will be, as before. $100 \mu \mathrm{~s}$, or 0.1 m S. For differentiation to occur, the capacitor must be able to charge and discharge fully, implying that the circuit's time constant must be short compared to the period of the input. If the input square wave is high for 10 times the TC of the circit, and low for the same period, reasonable differentiation can occur. Thus, the circuit behaves as a differentiator for waveforms that have a period exceeding 20 times the time constant of the circuit. For the example, this gives a period of 2 mS , or a frequency of 500 Hz . Even lower frequencies will produce waveforms more closely approaching the ideal shown in figure 4 .

Differentiators sharpens waveforms, while integrators smooth them. Differentiating a triangular wave will produce a square wave, the opposite to the integrator. A sinewave after differentiation retains its shape. as for the integrator, but with a leading phase difference of 90° to the input rather than lagging. Applications for differentiators include treble boosting
in a sound syitem. enhancing a video signal, and producing trigger pulses for 555 timers.

555 Timer: The theory

The 555 uses an RC network to provide the delays required. It comprises a series resistor/capacitor combination in conjunction with additional circuitry to sense when the capacitor voltage has reached a certain value. Numerous applications are possible using RC timing, and the 555 timer is one. Any timing device requires an input trigger to initiate the timing cycle. after which the circuit will revert to its pre-triggered state. Such a circuit is referred to as a monostable multivibrator, meaning the circuit has one stable state. A multivibrator is a generic term, and is a circuit that has two possible states, usually referred to as on or off, and that operates in one of three possible modes, including that of the monostable. The other two modes are the bistable, which has two stable states (also called a flip-flop) and the astable. An astable multivibrator has no stable states, and spends its life oscillating between its two possible states, and is often used as a square wave oscillator operating at a frequency determined by external RC networks.

Figure 6 shows the simplified internal circuit of the 555 timer. There are 5 separate blocks within the circuit, comprising 2 comparators, a flip-flop, a transistor and an output stage. Three internally connected, equal value resistors are used to establish voltages at one input of each comparator. The top comparator will have $2 / 3$ the supply voltage (V_{CC}) at its internally connected input, and the lower comparator $1 / 3$ V_{CC}. A comparator is a device that compares the voltage on its inputs. It will switch high if the positive input is greater than the negative, and switch low when

Figure 7: The 555 connected as a monostable
they are the other way around.
The comparator outputs are connected to the flip-flop, the output of which connects to the base of the transistor and to the inverting output stage. The state of the flip-flop will depend on the outputs of the comparators.

Figure 7 shows the circuit of a mono. with the external series RC timing network connected between V_{Cc} and ground, and their junction connected to the pins labelled 'threshold' and 'discharge'. While the 'trigger' input is held above $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, the output will be low and the discharge transistor on, placing a short circuit across the capacitor. If the trigger input voltage falls below $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, caused by a short duration, negative going trigger pulse, the trigger comparator will change state, forcing the flip-flop to 'flip' the other way.
Under this condition, the output of the 555 will equal V_{CC}, and the discharge transistor will be off. The capacitor will now commence charging towards V_{CC}, through the resistor. When the capacitor voltage just exceeds $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the threshold' comparator wiall change state. This then 'flops' the flip-flop back to its original state, restoring the conditions prior to the trigger pulse. How long the timer sends the output high is a function of the RC values, and is calculated using equation 1 .

$$
\mathrm{T}_{\mathrm{high}}=1.1 \mathrm{RC} \ldots \ldots \ldots \ldots . \text { (1) }
$$

Examination of the universal curves of figure 2 will show that it takes slightly longer than 1 time constant ($\mathrm{R} \times \mathrm{C}$) to reach the required 67% of the applied voltage, explaining why 1.1 time constants are required.

Practical aspects of the $\mathbf{5 5 5}$

Manufacturers generally quote a minimum value for R of 1 k , to prevent excessive discharge transistor current flowing from the supply. The maximum value of R is often specified at 20 M ohms, but has a practical limit determined by the leakage characteristics of the timing capacitor. Values higher than 3.3 M ohms are generally avoided. The minimum C value is given as 500 pF by most manufacturers,
but the capacitance meter circuitry breaks this rule, using 100 pF . The reset pin, when earthed, is used to interrupt the timing cycle, and should normally be connected to V_{cc} if not being used. The 'control' pin has specialised uses, and is usually connected to ground with a $0.01 \mu \mathrm{~F}$ capacitor. Applying a voltage to this pin will vary the time delay by altering the threshold voltage required to end the timing cycle. Use is made of this feature in the capacitance meter.
To derive the trigger pulse, a differentiator circuit is normally used. Figure 8 shows a suitable circuit, which includes a potential divider that should hold the trigger pin at greater than $1 / 2 \mathrm{~V}_{\mathrm{cc}}$ in the ab sence of a pulse. The values of the resistors and the capacitor are determined by the frequency of the trigger input frequency, as previously described. Typically, the differentiator time constant, which must now include both resistors as a parallel combination, should be less than $1 / 20$ th the period of the input frequency of the square wave being differentiated. The object is to provide a trigger pulse far shorter than the monostable's on time, to prevent it extending the timing period.
An obscure problem is the propagation delay of the triggering comparator. In some versions of the 555 , sending the trigger voltage to, or below zero, causes this comparator to become saturated, delaying its return to the pre-triggered state by up to $10 \mu \mathrm{~S}$. If the output pulse width is in the order of micro seconds, this delay adds to the output, and creates timing errors.

Figure 8: 555 trigger input circuit

Such a problem arose in the projects, apparent only when various brands of 555 s were tried during tests to verify repeatability in construction of each circuit. In fixed frequency applications, the triggering circuit can be customised by appropriate component selection. However, when the input trigger rate varies, such as in the project, components that give a short duration, low energy pulse at low frequencies produce a much longer, higher energy pulse at higher frequencies. Establishing correct values for one frequency will cause problems at the other if the range of frequencies is sufficiently broad.
Several options to overcome this difficulty are available, the most obvious one being to switch in different component values to the triggering circuit when range selection is made. Another possibility, chosen for the projects, is to include circuitry that absorbs the extra energy contained within the trigger pulses resulting from the higher repetition rates. Two methods have been employed in the projects, one using a Zener diode connected between the trigger input terminal and the supply. In this arrangement, the Zener will conduct when the trigger pulse pulls the trigger terminal voltage sufficiently low, preventing it exceeding the required value. The second method uses a forward biased diode that conducts at a preset voltage, again limiting the trigger voltage excursion in the negative direction.
Normally, the potential divider connected to the trigger input should provide a quiescent de voltage between half to $2 / 3$ the supply voltage. As already explained, triggering occurs when this voltage falls below $1 / 3$ the supply. For a 12 V rail, as used in the projects, a quiescent voltage of approximately 8 volts is provided by the potential divider and triggering occurs when this voltage falls to 4 volts. In theory, any voltage excursion below 4 volts is wasted, and can be clipped off to prevent the saturation problems.
The issue is even more complex however, as theoretically correct circuit values only work form some 555 s . It was found necessary to customise the values, depending on the brand of the IC. Two Zener voltages were finally established, 10 volts for the less critical types, and 8.2 volts for the very fussy varieties. No Zener was required for the remainder. Similarly, the amount of forward bias for the diode arrangement vaired from one 555 to another, and as described in the project articles, needs to be established by experiment. The author has previously encountered other differences between 555 s , including variations in the output circuit characteristics. A great device, but not as simple as the text books make out

10MHz TURBO PLUS MOTHERBOARD

Boost IBM PC performance around four times with the fastest motherboard money can buy. This 10 MHz , no-wait-state board is a drop-in replacement for the sluggish 4.7MHz PC motherboard. - 8088-3 running at 10 MHz /no wait states - Turbo/normal seiectable

- 4 channel DMA - 8 expansion slots - Keyboard port 640K RAM fitted

8MHz Turbo Motherboard
still available at new low price. Was $\$ 450.00$.
NOW ONLY \$425

150W SWITCHING POWER SUPPLY

Drop-in replacement for IBM PC's puny 63W supply.

- Boosts PC to PC/XT specs. Essential to run hard discs and other ad-ons on PC. - Outputs $+5 / 1 \mathrm{~A},+12 / 5 \mathrm{~A},-12 / 1 \mathrm{~A}$ - All cables to disk drives, mother-board etc. \$136

FLOPPY DISK CONTROLLER

Controls up to 4 DS/DD 360K drives.

\$65

1.2MB/360KB
 FLOPPY CONTROLLER

The perfect answer for backing up hard disks, archiving etc.

- Supports both 1.2 MB and 360 KB drives
- Fully PCXT, PC/AT compatible
- For suitable drive see below

THE ONLY PC PRODUCTS WITH A MONEY BACK GUARANTEE*

DISK DRIVES 40 Track Mitsubishi. Very fast track-to-track. 360KB DSDD. Lowest price in Australia.

\$245

1.2MB Mitsubishi.

Super high density. Superb construction and reliability. Works with 1.2 MB floppy controller.
\$285
20MB NEC Hard Disk.
Very fast and super reliable. Best price in town.

Complete with controller.
\$845
\$1140

AUSTRALIA'S BEST SPEEDUP CARD

Speed up your PC over 7 times with our superb new speed-up card. - 80286 CPU plus 8088 for complete software compatibility - Clock rate up to 8 MHz (selectable)
-RAM on-board for disk cache

- DMA support
- Socket for 80287 co-processor

INTRODUCTORY OFFER ONLY \$895

VIDEO CARDS Enhanced Graphics/ Printer Adaptor

Now at an even lower price while stocks last. - Functions as Colour Graphics (CGA), Enhanced colour graphics (EGA), Hercules graphics and monochrome - 256K RAM for flicker free scrolling - Suits PC, PC/XT, PC/AT and compatibles - fully Hercules compatible (unlike the competition)

WAS $\$ 695$
NOW ONLY \$595

Mono-Graphics/ Printer Card

- Hercules compatible
- Interface to TTL monitor
- 720×348 resolution
- 80 character $\times 25$ lines with 9×14 dot characters
Reduced for this month. Was $\$ 165$.
\$149

14 DAY MONEY BACK GUARANTEE All products carry a 14 day satisfaction guarantee. If you are unhappy with any of our products for any reason, return them within 14 days, in original condition, for a full refund (excluding freight charges).

Colour Graphics Video Card

- Suits RGB and comprsite colour monitors
- Light pen interface
- Fully CGA compatible
- $40 \times 25 \& 80 \times 25$ (text), 640×200
(mono) and 320×200 (colour)

Colour Graphics/Mono

 Graphics - Short SlotThe solution for very full PCs and . .rables. This new board provides full Colour graphics (CGA) and Hercules monochrome graphics support. And it fits in a short siot!

\$195

Turbo Mono Graphics/

Printer - Short Slot
If you want fast, flicker free scrolling and full Hercules compatability, this is it! Perfect enhancement for slow scrolling programs like Microsoft Word etc.
The ultimate monochrome graphics card

MEMORY

512K Ram Card

 Short Slot- 512K RAM installed (41256 chips)
- DIP switches to start address
\$195

640K Ram Card Short Slot

- 640K memory installed - User selectable from 64 K to 640 K
- DIP switches to start address

2MB EMS Memory
 Card

Yes, an affordable "Above Board" memory card. Full 2 MB of high speed RAM. At a low introductory price

XT Style Case with Hinged Lid

Perfect for building your own PC.

\$95

XT/AT Keyboard

- Full AT layout
- PC/XT, AT switch selectable - Superb action

\$175

Serial RS-232 Card

- Independent receive clock input
- 2nd serial port option
- Full buffering eliminates need for precise synchronisation

\$55

Colour Graphics/ Printer Adaptor

Attaches to IBM-compatible RGB monitor provides complete compatibility with IBM Colour Graphics Adaptor. Equivalent to the IBM colour/graphics adaptor with additional printer port to replace the video port originally supplied by IBM.
\$155

PROFESSIONAL

 FITTINGNeed some of our products, but don't want to fit them yourself?
No problem, we can organise fitting at Electronic Solutions, for a small extra charge.
Just phone us in advance and we will book your PC in for a precision transplant.

Parallel Printer Card

- Standard TTL level
- Centronics printer port, full IBM, EPSON printer compatible.

Multi I/O Card

- Floppy disk adaptor, 2 drives DS/DD
- 1 serial port, 1 parallel port, 1 joystick port
- Clock/calendar with battery backup

I/O Plus Card

- 1 serial port, 1 parallel port, 1 joystick port
- Clock calendar with battery backup
$\$ 136$

Electronic Solutions

PO Box 426 Gladesville 2111 Phone (02) 4274422
We accept both Bankcard and Mastercard. Mail order our specialty.
All prices include sales tax.

- All products carry a 14 day money back guarantee
- All products carry a full 3 months warranty
- All cards come with full documentation

> ELECTROMIC solutions

New Eleco wireless microphone system
 Audio Telex has announced

its third generation Eleco Wireless Microphone System claiming even lower background noise levels than for the highly successful second generation product.

The Eleco Wireless Microphone Systems are already widely used in churches, schools, council chambers, supermarkets and professional sound entertainment systems, radio and IV stations, where quality sound and interference free performances are essential.

The systems operate on

200 MHz which is less cluttered than lower frequencies in the 36 MHz range. The receiver features a dual diversity system, with twin aerials to avoid fade-out.
Priced to sult even the most stringent budgets, Eleco Wireless Microphone Systems are available in hand-held (no antenna lead) or belt pack with clip on lapel microphone. The receiver is table standing or rack mounting.
For further information contact Audio Telex Communica. Hions on (02) 633.4344; (03) 277-5311; (07) 852.1312.

New 7 segment display

Rod Irving Electronics has released a $1 / 2^{\prime \prime}$, high Intensity seven-segment display. It is avallable in either common cathode or common anode with overall dimenslons of $12.7 \mathrm{~mm}(\mathrm{w}) \times 19 \mathrm{~mm}$ (h). Display dimenslons are 12.7 mm (h) $\times 7.3 \mathrm{~mm}$ (w), each segment being 1.2 mm wide.
Electrical specifications are 3400 wcd brightness; 1.9 V forward voltage; 10 mA continuous forward current; $100 \mu \mathrm{~A}$ reverse current; 5 V reverse voltage/segment; and 120 mW power dlssipation.
This red LED high intensity dlsplay, excellent for use in klt bullding, may be used as pin-for-pin replocements for FND500/FN560 and HP5303 displays. The dlsplay retails for $\$ 1.95$ each (up to 10 , then \$1.75).
For more information contact Rod Irving Electronles, 56 Renver Rd, Clayton, Vlc 3168.

Optical specs

Alcatel Thomson Gigadisc Corporation of France, OSI, a division of Laser Magnetic Storage Intemational of USA, Phillps and DuPont Optlcal Company of the Netherlands and Sony Corporation of Japan have Joined in an agreement on the baslc specifications for a famlly of 130 mm optical disc drives and media, in order to promote the Interchangeablility of their products.

This agreement is based on American, European and Japanese standardization dlscussions on cartridges for 130 mm optical discs. The hope is that the agreement will be a basls for futher development of a full data interchange capabllity between 130 mm optical products. The companles are looking for wide acceptance for the specificatlons and are committed to suppont such an effort in the interest of developing the industry.

The data format is based on a so-called sampled
servo format. Thls servo format guarantees compatibilIty with a broad range of optical medla based on different technologies, IncludIng read only, write once, and erasable media.

The modulation code and the error correction system are deslgned to match the properties of the optical recording medla and the sampled format. A 4/45 modulation code, based on differential detection, and a Reed-Solomon product code for the error correction system have been adopted.

This format allows for a minimum of 300 Mbyte user data on each side of the cantidge.
For futher Information contact George sprague at Phillps: on (02)925-3333.

Protected power source

A 200 W dual-input converter (DIC 200) to meet the need for an effective original equipment manufacturer's power source where protection is required against immediate shutdown in the event of complete or partial ac mains failure has been developed in Britain.

It takes the form of a threeoutput switched-mode powersupply unit which can accept Input drive from either the ac mains or a 48 V dc source. It is normally operated from the malns with the standby battery connected, and a built-in trickle charger ensures that the battery is maintained fully charged. When mains interruption occurs, the unit automatically transfers to the battery and power-supply output is maintained for up to 12 minutes under full-load conditions. Longer hold-up time is possible for a higher battery capacity.
Under partial fallure, where input voltage drops below the line regulation limit, the required input is automatically shared between mains and battery to provide the volt-age-regulated supply to the host equipment. Immediately
mains powers Is restored the battery trickle charger resumes.
The converter has three fully floating voltage-regulated outputs: output 1 is set to deliver 5 V with load current from 4 to 25 A ; outputs 2 and 3 are identical, each dellivering 12 V with load current up to 4 A . Load regulation ensures less than $\pm 2 \%$ voltage change on any output, with load variation from 50 to 100%. Line regulation is also better than 2% for approximately 20% change in output voltage. Remote sensing is provided on output 1.
Constant current limiting on all outputs prevents damage from gross overioad. Overvoltage protection is provided on output 1.
Failure in computer systems employing data-protection routines prompts signals to indicate reduction of ac or dc input voltage below the lower line regulation limit.
The converter can operate from any standard ac mains supply and meets the safety requirements of most countries.

For more information, long distance contact with Weir Electronics, Durban Rd, Bognor Regls, England PO22 9RW is required. Telephone Bognor Regis 744243 865991; telex 86543.

More Tassie

software

Tasword PC, a word processor for the PC has been released in Australla.

The Tasword wordprocessors (from Tasman Software) for other computers have been very successtul worldwide. In particular sales of Tasword wordprocessors for the Amstrad range of computers have been in the thousands for Australia alone.

According to Tasword, the wordprocessors have been designed for speed, combined with ease of operation and understanding. The features include comprehensive cursor movement control, maximum use of available text memory, on-screen formatting, horizontal scrolling, 'help' pages, delete (character, word, line, paragraph,
block), Insert (character, Ilne, auto), tab, ruler, search/ replace, flex comprehensive and customized print commands, data merge, program customization, tutor program and so on.
At $\$ 79.95$ retall Tasword PC Is on the cheap side of the market. Dolphin Computers, the national distributor, can provide a demonstration disk for only $\$ 5$ which includes a $\$ 2.50$ rebate coupon for subsequent mall order purchase of the program.

For more information contact Ama Gillott on (02) 438. 4933.

Dr Bulb

Motorola has announced the avallabllity of Dr Bub, an electronic bulletin board dedicated to digital signal processing (DSP). The bulletin board offers the DSP community a wide range of information on Motorola's new line of digital signal processors.

Dr Bub provides the user with documentation on new products and improvements on existing products, application notes, DSP contest information, a confidential mail service, and a question and answer forum. A user can access the bulletin board from anywhere in the world providing they have the following equipment: a 1200 -baud modem (Bell 212A or V.22); and a terminal or personal computer.

Motorola to market ear mike

Sydney-based communications company, HeydenSpike Limited, has signed an agreement with the Motorola Corporation of the USA to market the Australian designed and developed earmicrophone throughout America.

The agreement was reached following a recent visit to Australia by the Product Manager of Motorola, Mr Leonard Bennett.

Motorola will feature the
ear-microphone in its Amer-Ica-wide promotional tour which began in February. The six months travelling road-show, with a $\$ 1$ million promotional budget featuring prominent American actors, is claimed to be the biggest mobile electronics exhibition in America.
The Heyden-Splke Ear-Mike was launched with the assistance of an Austrailan Govemment grant and received a gold medal at the Geneva Intemational Exposition of Inventions.
It is both a headphone and microphone, receiving and transmitting voice communications through a hearingald type apparatus. The user's speech is picked up from air modulation in the auditory canal and transmitted via the ear piece and 'hands off' equipment carried at the waist.
The Ear-Mike can transmit and receive through protective helmets and under high noise conditions, such as at airports and on battleflelds, or in covert low-noice surveillance operations.

The US promotion of the Heyden-Spike Ear-Mike will concentrate on public safety applications for police, ambulance and fire brigades, as well as for surveillance work by the American Internal revenue service, the military and general industrial applications, particularly in the petrochemical and airline industries.
Sales of the ear-microphone in the US are expected to top 5000 unlts for the 1987 calendar year with a sales value exceeding \$US1.5m.
Strongly directed to export, Heyden-Spike achieved $\$ 700,000$ in Ear-Mike sales in 1985-86 (12.8 per cent of group sales) and expects this to increase more than fourfold in the next three years.
Back at home, HeydenSpike has also been awarded a $\$ 1.6$ million contract from the NSW State Rail Authority for the supply of the latest designed Shinwa portable two-way radio equipment for use by train drivers in the metropolitan network.

Back by Popular Den

DATA \& REFERENCE

DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS A. Michaels BP0140 Shows equrvalents and pin connections of a popular user-orientated selection of European, American and Japanese digital ICs. Also includes detals of packaging, families, functions, manufacturer and country of origin.
$\$ 18.00$
256 pages (Large format)

LINEAR IC EQUIVALENTS AND PIN CONNECTIONS A. Michaels

BP0141 Shows equivalents and pin connections of a popular user-orientated selection of European, American and Japanese linear ICs. Also includes details of functions, manufacturer, and country of origin.
$\$ 18.00$

320 pages (Large Format)

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE
A. Michaele

BP0085
Helps the reade: to find possible substitutes for a poputar userorientated selection of European, American and Japanese transistors. Also shows material type, polarity, manulacturer and use.
$\$ 12.00$

$$
320 \text { pages }
$$

CHART OF RADIO, ELECTRONIC, SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Babanl, B.Sc.(Eng) BPO027 Illustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols that are used in books. magazines and instruction manuals. etc., in most countries throughout the world.
$\$ 4.00$

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babanl

BP0007
Covers many colour codes in use throughout the world, for most radio and electronic components. Includes resistors, capacitors, transformers, field coils, fuscs, battery leads, speakers, etc. $\$ 4.00$

Chan

AUDIO AND HI-FI

BUILD YOUR OWN SOLID STATE HIFI AND AUDIO

ACCESSORIES

M. H. Babenl

BP0220
An essential addition to tha library of any keen hi-fi and audio enthusiast. The design and construction of many usefut projocts are covered including: stereo decoder, three-channel stereo mixer,
FET pre-amplifier for ceramic PUs, microphone preamp with adjustable bass respor ceramic PUs, mic noise filter. loud-speaker protector, voice-operated relay, etc.

96 pages

AUDIO PROJECTS

F. G. Rayer

BP0090 This book covers in cetail the construction of a wide range of audio projects. The text has been divided into the following main sections: Pre-amplifiers and Mixers, Power Amplifiers. Tone Controls and Matching. Miscellaneous Projects.
All the projects are fainty simple to build and have been dasigned around inexpensive end readily available components. Also, to assist the newcomer to the hobby, the author has included a number of board layouts and wiring dlagrams.
$\$ 8.50$

COMPONENT SPECIFIC

MODERN OP.AMP PROJECTS

R. A. Ponfold

BP0108
Includes a wide range of constructional projects which make use of the specialised operational amplifiers that are available today. including low noise, low distortion, ultra-high imput Impedance, low slew rate and high output current types. Circuits using transconductance types are also included.
All of the projects are faity easy to construct and a stripboard layout
is provided for most of them so that even constructors of limited experience should be able to build any of the projects with the minimum of difficulty.

$$
112 \text { pages }
$$

MODEL RAILWAY PROJECTS

R. A. Penfold

BP0095
The aim of this book is to provide a number of useful but reasonably simple projects for the model railway enthusiast to build, based on inexpensive and easily obrainable components.
The projects covered include such things as controllers, signal and sound effects units, and to help simplity construction, stripboard tayouts are provided for each project.

$$
112 \text { pages }
$$

AERIALS

AERIAL PROJECTS
R. A. Penfold

BP0105
The subject of aertals is vast but in this book the author has considered practical aerial designs, including active, loop and ferrite aeriais which give good performances and are relativley simple and inexpensive to build. The complex theory and mathematics of aeria! design have been avoided.
Also included are constructional details of a number of aerial accessories including a pre-selector, attenustor, fitters and tuning unit.

96 peges

$\$ 8.50$

25 SIMPLE AMATEUR BAND AERIALS

E. M. Nold

BP0125 This concise book describes how to build 25 amateur band aerials that are simple and nexpensive to construct and perform well. The designs start with the simple dipole and proceed to beam, triangle and even a mini-rhombic made from four TV masts and about 400 feot of wire.
You will find a complete set of dimension tables that will help you spot an aerial on a particular frequency. Dimensions are given for various style aerials and other date needed for spacing and cutting phasing lengths. Also Included are dimensions for the now WARC bands.
$\$ 8.50$

25 SIMPLE SHORTWAVE BROADCAST BAND AERIALS E. M. Noll

80 pages

Fortunaly BP0132 fractional part of the cost of your receiving equipment.
This book tetls the story. A series of 25 aerials of many different types are covered, ranging from a simple dpole through helica! designs to a multi-band umbrella.

80 pages
25 SIMPLE INDOOR AND WINDOW AERIALS
E, M. Noll
BP0138
Written for those pecple who live in flats or have no gardens or other space-limiting restriations which prevent them from constructing a conventional serial system.
The 25 aerials included in this book have been especially designed, buit and tested by Mr. Noll to be sure performers and give surprisingly good results considering their limited dimensions.

64 pages

25 SIMPLE TROPICAL AND MW BAND AERIALS
E. M. Noll

Shows you how to build 25 simple and inexpensive BPO145 operation on the medium 25 simple and inexpensive aerials for operation on the medium wave broadcast band and on 60, 75,90 and 120 metre trapical bands. Designs for the 49 metre band are included as well.
$\$ 8.00$

FAULT-FINDING

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING R. A. Penfold BP0110 The alm of this book is to help the reader overcome problems by indicating how and whera to start looking for many of the common fauts that can occur when bullding up projects.
Chapter 1 deals with mechanical faults succh as Iracing dry pints, Chapter 1 doals with mechanical fauts such as fracing dry foints, short-circuits, broken P.C.B. tracks, etc. The construction and use Chapter 2 deals with linear analogue circuls and also covers the Chapter 2 deals with linear analogue circuls and also covers the use and construction of a signal injectornracer which
Chapter 3 considers ways of testing the mora common components such as rasistors, capacitors, op amps, diodes, transistors. SCRs, unijunctions, etc., with the aid of only a limited amount of tost equipment.
Chapter 4 deals with both TL. and CMOS logic circuits and includes the use and construation of a pulse generator to help fault-finding.
$\mathbf{\$ 8 . 5 0}$

$$
96 \text { pages }
$$

TRANSISTOR RAOIO FAULT-FINOING CHART BP 070 C. E. Miller

Used properly, it should enable the reader to trace most common faults reasonably quickly Across the top of the chart will be found four rectangles containing brief descriptions of these faults, vis - sound weak but undistorted, set dead. sound low or distorted and background noises One then selects the most appropriate of these and following the arrows carries out the suggested checks in sequence until the lault is cleared

Chatt
S4.00

ELECTRONIC \& COMPUTER MUSIC

ELECTRONIC MUSIC PROJECTS

R. A. Pentold

BP0074
Provides the constructor with a number of practical circuits for the less complex items of electronic music equipment, including such things as fuzz box, waa-waa pedal, sustain unit, reverberation and phaser units, tremelo geneator, etc.
The text is divided into four chapters as follows:

Chapter 1, Guitar Effects Units; Chapter 2, General Effects Units; Chapter 3, Sound General Prolects; Chapter 4, Accessories.

112 arges
ELECTRONIC SYNTHESISER CONSTRUCTION
R. A. Penfold BP0185 Should enable a relative beginner to build, with the minimum of difficulty and at reasonably low cost a worthwhile monophonic synthesiser, and also learn a great deal about electronic music synthesiser, and also learn a great deal about electronic music
synthesis in the process. This is achieved by considering and synthesis in the process. This is achieved by considering and building the varrous individual parts of the crrcur that comprise the whole instrument as separate units, which can then be combined provided for these main modules. Later chapters deal with sequencing and some effects units.
$\$ 11.00$

MIDI PROJECTS

R. A. Penfold BP0182 Provides practical details of how to interface many popular home computers with MIDI systems. Also covers interfacing MIDI equipment to analogue and percussion synthesisers.

112 pages
$\$ 11.00$

MORE ADVANCED ELECTRONIC MUSIC PROJECTS
R. A. Penfold BP0174 Intended to complement the first book (BP74) by carrying on where it left off and providing a range of slightly more advanced and complex projects. Inctuded are poputar eflects units such as flanger, phaser, mini-chorus and ring-modulator units. Some useful provide a comprehensive range of effects induding drum, cymbal and gong-type sounds.
$\$ 8.50$

$$
96 \text { pages }
$$

COMPUTER WUSIC PROJECTS

R. A. Pentold

BP0173
Shows some of the ways a home computer can be used to good effect in the production of electronic music. Topics covered include sequencing and control via analogue and MIDI Interfaces, computers as digital delay lines and sound generators for computer control.

112 pages
$\$ 11.00$

MISCELLANEOUS

COIL DESIGN AND CONSTRUCTION MANUAL

B. B. Babani

BP0180 B. B. Babani
A complete book for the homa constructor on "how to make" RF, IF, audio and power ooils, chokes and transformers. Practically overy possible type is discussed and calculations necessary are givan and explained in detai. All mathematical data is simplified for use by everyone.

$$
96 \text { pages }
$$

$\$ 9.50$

AN INTRODUCTION TO 280 MACHINE CODE
 \section*{AN INTRODUCTI A. J. W. Penfold}

BP0152
Takes the reader through the basics of microprocessors and machine code programming with no previous knowledge of these being assumed. The microprocessor dealt with is the $Z 80$ which is used in many popular home computers and simple programming examples are given for Z80-based machines including the Sinclair ZX-81 and Spectrum, Memotech and the Amsirad CPC 464. Also
applicable to the Amstrad CPC 664 and 6128.

144 pages
A Z-80 WORKSHOP MANUAL
E. A. Part

BP0112
This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming, or need hardware details of a 2-80 based computer.
$\$ 12.00$
192 pages
8P0181
getting the most from your printer
J. W. Penfold

BP0181
Details how to use all the features provided on most dot-matrix printers from programs and popular word processor packages like Wordwise, Visawrite and Quill, etc. Shows exactly what must be typed in to achieve a given effect
$\$ 11.00$
96 pages

CIRCUITs \& CONSTRUCTIONAL PROJECTS

BECINNERS QUIDE TO BUILDING ELECTRONIC PRONECTS

 R. A. PentoldBpo227 Shows the complete beginner now to tackle the practical side of electronics. so that he or the can contidently build the electronic projects that are regularly featured in the popular magazinas and bcoks. Also indudes oxamples in the form of simple projects the you can build.

112 pages
38.50

50 PROJECTS USING RELAYS, SCRE AND TRIACE
F. G. Rayar

This DOOk gives BP0037 the min. gives ried and practical working circuits which should prosent the minimum of dificulty for the enthusiast to construct. In most of the circuits there is a wide latitude in component values and types, allowing easy modilication of circuits or ready adaption of them to individual needs. 112 pages
popular electronnc projects
POPULAR EL
BP0048
R. A. Pentord
Provides a collection of the most popular types of circuits and profects covering a very wide renge of interesss, inctuding Radio, Audio. Household covering a very wide renge of in
$\$ 9.50$
144 pages

ELECTRONIC TEST EQUIPMENT CONSTRUCTION
F. G. Reyer BPOO75 This book covers in detail, the construction of a wide range of test aquipment or coin ine alecronics hobbyisi and radio amalour. incluoed aro profects ranging from FEY amplifed vottmeior and resistance bridge a fietd-strength indicator and heterodyre frequency meter Not only can the home constructor enfoy building the equipmont but the finished product can also be usefully utilised in the furtherance of his hoboy.

96 pages

HOW TO USE OP.AMPS

BP088
E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non-mathematical as possible and it is noped, easily understandable by most readers, be they engineers or hobbyists

160 pages
$\$ 11.00$

ELECTRONIC QAMES

R. A. Pentotd

8pooss Contains a number of interesting atectronic games projects using modern integrated circuits. The lext is dhaded into two sections, the first dealing with simple games and the latter dealing with more complex circuits thus maing the bock ideal fo both beginner and more somanced antusiact afto.

96 pages

NEW RELEASES!

A TV-DXERS HANDBOOK
BP0176 R. Bunney

Completely revised and updated by Roger Bunney who is probably one of the leading authorities in this country on the subject. Includes many units and devices which have been designed and used by active enthusiasts, and often. considerable ingenuity and thought have gone into the development of such unis to overcome individual problems.
A practical and authoritative reference to this unusual aspect of electronics. (Large Format) $\$ 18.00$

AN INTRODUCTION TO CP/M
$8 P 0183$
R. A. Penfold

CP/M is more than just a program to give a common set of standards and hence software compatibility between various computers. It includes a range of commands that help with such things as file copying and editing, the directing of data to the appropriate device etc. In order to get the best from CP/M and the programs running under it, a basic understanding of the system is highly desirable, and this book tells the story 96 pages $\$ 11.00$

ELECTRONIC CIRCUITS FOR
BP0179

THE COMPUTER CONTROL OF ROBOTS

R. A. Penfold

Provides information and circuits on computer control of electric motors (including stepper types). plus a range of useful sensors including visible light, infra-red, and ultrasonic types. 96 pages $\$ 11.00$

USING YOUR AMSTRAD CPC DISC DRIVES BP0189 J. W. Penfold

Covers such things as tracks, sectors and formatting: AMDOS and CP/M operating systems including rules and regulations, filing from BASIC, file copying and transfer: program development including MERGE and CHAIN MERGE; CP/M turnkey discs elc

C 555 PROJECTS

E. A. Part

BP0044
Every so otten a device appears that is so usefuti that one wonders how iffe went on before without it. The 555 timer is such a device. Included in this book ere basic and general circuits, motorcar and model railway

176 poges (Avallate Fooruary 1987)
HOW TO DESIGN ANO MAKE YOUR OWN P.C.B.

A. A. Pentotd

Chacter 1 deds with the simple mehods a cogrop prited cran boerd 121
 ta comproheneively so posititi. Chacter 2 covers protogrichic methocs of producin $\mathrm{PC} . \mathrm{B}$ s and Checter 3 dees with mose sepect of desiging your oun prited cirul boerd layols.

80 pages

POWER SUPPLY PRONECTS
$\$ 6.50$

BP0078
The purpose of this book is to give a number of power supply designs. incluaing simple unstebilised types, fixec-vatage regulated types, and including simple unstobilised types, fixeo-vatage regulated types, and
variable-votage stablisod designs. the latter being primarty intended for variable-votiage stablised designs. the latter being primarty Intended for use as bench supplies for the electronics workshop. The designs pronded so all low-rotage types for semi-conductor circuis This book should aiso help the reader to design his own power supples

96 pages
HOW TO DESION ELECTRONIC PROJECTS
R. A. Penfotd
$\$ 7.50$
is whep the reocer to PR BPO127
 menemes in mirium oi till end eror, tuf whous recotig to ary edencod here no "thes on desiging crrail biocts io meot your apeciat recuirements where no "stock" dodon in aviledie wre two provied.

128 pages
\square

ELECTRONIC SECURITY DEVICES

	R. A. Penford BP005 6
of various types, but in fact. sny plece of equipment which helps to protect people and propetty against any form of denger could be termed	
Therstore this book, besides including both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics. also includes many other types of circults as well, such as gas and smoke detectors. flood alarms, doorphone and baby ajarms. atc.	
112 page	39.
IRTHER PRACTICAL ELECTRONICS	BPO
CALCULATIONS AND FORMULAE F. A. Wilison	
Written in the same style as the first book (BP53) and with the same objectives in mind, this book is divided into the	

COMMUNICATION

Eloments of Electronics - Book 5)

F. A. Wheon
A look at the electronic fundamentals over the whole of the

BP0089 communication scene. This book aims to teach the important elements of each branch of the subject.
Most of the modern trensmissions system techniques are examined including line, microwave, submarine, satilite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electromagnetic wave, networks and transmission assessment are included, finally a short chapter on optical transmission.

50 SIMPLE LED

CIRCUITS
R. N. Soar BPOO42

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most inexpensive and treety available components - the lightermmiting diode (ED). Also includes circuts for the 707 comman anode displey.
$\$ 8.00$
64 pages

IC PROJECTS FOR

BEGINNERS
BEG. Rayer BP0097
Offers a range of simple profects based around a number of popular and inexpensive linear and digital integrated circuits.
With most projects, complete layout and/or point-to-point wiring diagrams are included to help simplity construction.

112 pages

ELECTRONIC PROJECTS

USING SOLAR CELLS
O. Bishop

BP0082
This is a book of simple circuits which have applications in and around the home and that are designed to be powered by the energy of the sun. Although, if the reader wishes, they could alternatively be powered by the ordinary button cells or small dry batteries.

$$
128 \text { pages }
$$

$\$ 8.50$
following fourteen sections: Electricity, Electrostatics, Electromagnetism, Complex numbers. Amplifiers, Signal Generation and Processing, Communication, Statistics, Reliability, Audio, Radio, Transmission Lines, Digital Logic and Power Supplies. 512 pages $\$ 16.00$

ELECTRONICS BOOKS ORDER COUPON

For airmail outside Australia add $\$ 5.00$ to these charges.

BOOK TITLE
 BOOK NUMBER
 QTY

PRICE

Send to.
Freepost No. 4 Federal Publishing PO Box 227
Waterloo 2017 (no stamp required)
Name:
:

Total Price of Books

 .Plus post \& handling 2.75
(liat rate up to 10 books)
TOTALS
Date:

Address:
Telephone:
Please tick box to indicate method of payment: Cheque* / Money order \square
-Please make payable to the Federal Publishing company Pty. Ltd. Mastercard American Express Bankcard \square Visa \square Credit Card No:

Signature Expiry Date
unsigned orders cannot be accepted As these books are imported, unavoidable delays may occur

ENGINEERING

TURNING DOWN THE NOISE

> Noise is the gremlin of the electronic works; the difference between equations and the real world. A quick round up on where it comes from, what it does, and what you can do about it.

Noise, roughly, is the unwanted part of the output from an electronic circuit. The noise defines the minimum signal strength that is tolerable for the system to work properly. It ultimately sets the minimum discrimination one can make of the signal. Thus noise is the bane of the engineer's life; getting rid of it one of the most important objects in design.

Types

Noise can be classified in a number of different ways, depending on one's needs. For our purpose, we can make a fundamental distinction between noise that originates in the circuit owing to the physical nature of the hardware and interference, and noise caused outside the circuit.

There are three types of noise caused by the physical nature of the components in the circuit. Any old resistor sitting on a bench suffers from Johnson noise, also
called thermal noise. It's the result of random movement of atomic particles in the material, and as such, it's an absolutely unavoidable consequence of the physical structure of a conductor. It's dependent on bandwidth and temperature; the more of either the greater the noise. There is only one way to minimize Johnson noise: in applications where noise performance is critical, like satellite communications systems, it is not uncommon to physically cool components. Johnson noise is 'white noise' which means that it is independent of frequency, or to put it another way, there is the same amount of noise at any frequency.

The second type of noise is shot noise. An electric current consists of a flow of discrete particles. Each of these particles has a finite charge attached to it, and the variation of this charge results in shot noise. Since there are a very large number

of particles passing at any given moment, it's easy to treat shot noise statistically. It, like Johnson noise, is white.

Both these forms of noise are fundamental to all circuits using physical components. They can't be avoided or altered by buying a different type of resistor, or minimized by clever design. A third type of noise, however, does depend very strongly on the type of material from which the component is made. Real resistances suffer from fluctuations in resistance proportional to the dc current flowing through them. This is called 'flicker noise', or ' $1 / \mathrm{f}$ (one on f) noise'. It can be minimized by good physical design of the component, particularly at the interfaces between differing materials. For instance, in a resistor, the end cap where the resistance material meets the lead is a favourite space for the generation of flicker noise. Redefining its geometry will result in a lowering of this type of noise. Table 1 lists the flicker noise for some typical resistor types.
Flicker noise is called $1 / \mathrm{f}$ noise because it is inversely proportional to frequency; as frequency goes up the noise goes down over an equivalent bandwidth. Another way of saying the same thing is that constant noise power can only be achieved by a constant percentage change in bandwidth, so the flicker noise between 1 Hz and 10 Hz is the same as between 100 kHz and 1 MHz . This noise is sometimes called 'pink noise', although 'pink noise' is a term that can be used to cover a multitude of different (non-white) frequency distributions, so perhaps it is as well not to use it.
Curiously enough, flicker noise manifests itself in a number of different and unlikely places. It can be seen in the speed of ocean currents and cars on a freeway, or the flow of sand out of an hourglass and the flow of the Nile over the last 2000 years. No unifying principle has been found for these phenomena.

Measuring

The best and simplest figure for measuring noise is the signal-to-noise ratio. As its
name suggests, the SNR is a simple ratio of the strength of the wanted signal to the strength of the unwanted noise, measured at the same centre frequency and over the same bandwidth in root mean squared (rms) volts. This latter point is important, since the absolute value of the noise will increase with the bandwidth, but the signal won't. A practical example of this occurs in FM stereo broadcasting, where it's possible to improve the SNR of a weak signal by switching to mono. The signal strength stays the same, but the mono bandwidth is substantially less than the stereo one.

There are some other values around that also measure noise. One absolute value is the noise power density. This is just the product of the rms noise voltage and the bandwidth it's measured over. For white noise sources this will be a constant of course, but for coloured noise it is necessary to specify the frequency at which the measurement is done, since it will fall off with frequency. Less intuitively convincing, but mathematically more useful, is the square of the noise power density, called the mean square noise density. This is often quoted in data books as $\mathrm{Vn}^{2} 1$. The beauty of this unit is that two of them can be added together. Noise power densities can't be added together because they're rms values. (To understand why this is so, you will have to go to any basic electronic maths textbook. If you don't want to do that, you'll have to take my word for it.)

Noise figure is the other popular figure of merit for amplifier noise performance. It is defined as the ratio in dB of the output of the real amplifier to the output of a perfect amplifier of the same gain. In both cases the same input resistor is specified on the input. For a typical amplifier, the noise figure will vary with both source resistance and frequency, which makes it less valuable as a means of comparison between amplifiers. In particular, it's easy to cheat. Manufacturers tend to quote the noise figure at the best possible value of current and voltage, rather than at some standard value.

Semiconductors

Armed with a little knowledge about how
noise is measured and manufactured, we can develop a model of how noise is generated in a typical transistor. We start by thinking of a perfect transistor and hanging noise generators around it. There are two, a voltage generator in series with the base, and a current generator in parallel with the base-emitter which creates a noise voltage depending on the input series resistance.
The voltage generator has three components, two white and one coloured. Of the white, one is a Johnson noise component that arises in the base-emitter region. The other a shot noise component caused by collector current creating a voltage across the emitter resistance. The coloured noise

Curiously enough, flicker noise manifests itself in a number of different and unlikely places. It can be seen in the speed of ocean currents and cars on a freeway, or the flow of sand out of an hourglass and the flow of the Nile over the last 2000 years. 8Ω

is flicker noise derived from the base-emitter current. The result of all this is that voltage noise is constant over a wide range of current and frequency. There will be some wide band noise at sufficiently low collector currents as the emitter resistor goes up, and some low frequency $1 / \mathrm{f}$ noise as the base current goes up.
The current noise behaves quite otherwise. The noise current flowing parallel to the base emitter junction generates a voltage in the source resistance on the base of the transistor. It's main source is taken to be shot noise riding on the steady base current, with some flicker noise thrown in for good measure. The shot noise contribution increases with the root of base current and since it's shot noise, it once again has a white distribution. The flicker noise

Table 1. Typical excess noise for some different resistor types.

Carbon composition	$0.1 \mu \mathrm{~V}$ to $3 \mu \mathrm{~V}$
Carbon film	$0.05 \mu \mathrm{~V}$ to $0.3 \mu \mathrm{~V}$
Metal film	$0.02 \mu \mathrm{~V}$ to $0.2 \mu \mathrm{~V}$
Wire wound	$0.01 \mu \mathrm{~V}$ to $0.2 \mu \mathrm{~V}$
From Horowitz and Hill, The Art of Electronics	

Carbon composition $0.1 \mu \mathrm{~V}$ to $3 \mu \mathrm{~V}$
Carbon film
$0.02 \mu \mathrm{~V}$ to $0.2 \mu \mathrm{~V}$
Wire wound
$0.01 \mu \mathrm{~V}$ to $0.2 \mu \mathrm{~V}$
From Horowitz and Hill, The Art of Electronics
rises more rapidly in proportion to the collector current. It shows the usual coloured frequency distribution.

Designing for low noise

The situation we have is that noise voltage increases at both high and low levels of collector current, while noise current increases in proportion to collector current. However, the increase in noise current masks the increase in voltage with increasing current. So to all intents and purposes, the art of low noise design becomes one of finding a compromise between noise voltage and noise current. We can minimize noise voltage by increasing collector current, or minimize noise current by reducing collector current. We can't do both at the same time.

In order to determine the contribution of each to the total noise of the system, we must first turn the noise current into a voltage. This is done by impressing it across the source resistance of the device. Effectively then the amplifier noise is being added to the noise riding on the input signal. Since these two are uncorrelated, we may add their rms values, and try to set up things such that the total reduces to a minimum. For any given input resistance and frequency, that's an empirical matter, usually solved by looking at a manufacturer's graph of the noise voltage and current against collector current.
It does lead to some practical suggestions, however. One is that if source resistance is low, the contribution from current noise will be reduced, so the design of the amplifier should emphasize low noise voltage, ie, have high collector current. The converse is also true: a high source impedance will increase noise current, so the designer should concentrate on minimizing it via decreased collector current.
Another suggestion is that if the source impedance is very low, say 50 ohms, the noise voltage will always dominate and the noise performance of the amplifier will be poor. This is why a transformer to raise the effective source impedance is a common feature in such amplifiers.

By the same token, if the input impedance is very high, then the best device for the input is probably a FET. Because of their high input impedance, they present a very small input current, so the contribution of current noise is minimized. In general, a FET will turn in superior performance under these circumstances even though its drain current is probably more noisy than the collector current of an equivalent transistor.

INSTRUMENT CONTROL

A look at the way modern instruments can be joined together and controlled, especially in automatic test systems.

The scope of automated tests systems has been increasing rapidly in recent years. While specialized instruments are used in certain clearly defined applications, there are many areas where a dedicated system cannot be justified in view of the wide range of measuring problems to be solved.

Combining measuring instruments into a system often gives big practical problems as each manufacturer has (or had until recently) his own conventions for remotecontrol and data signals, his own type of connectors, etc. Even instruments made by the same manufacturer often gave interconnection problems. They were often controlled by parallel wire, separate wire per function types of interface with a wide variety of electrical and code specifications. With this type of system the number of wires vary enormously between instruments, for example a synthesizer may have 80 control wires and 1 output, a digital voltmeter could have 6 control and 30 output wires, and a simple transducer may just require 3 controls. It was the responsibility of the ATE manufacturer to provide the necessary interfacing electronics between such instruments and the controlling source.

The automation of such a system - if possible at all - can present serious interfacing problems, which are time-consuming and costly to solve. These problems, became worse when people started connecting measuring instruments with computers, minicomputers and microprocessors.

The only way out of the above-mentioned difficulties was the introduction of an internationally standardized interface. To make this solution effective, all manufacturers of measuring, control and recording instruments must adapt their instruments to this standard interface.

TABLE 1

IEC 625 International Electrochemical Commission Standard number 625
IEEE 488 Institute of Electrical and Electronic Englneers Standard number 488
HP-IB Hewlett Packhard Company Interface Bus
GPIB General Purpose Interface Bus

PCA15 instrument controller from Rhode and Schwarz.

The IEC (International Electrotechnical Commission) therefore decided to take upon itself the task of defining a standard interface for measuring instruments. Of the various proposals which reached it, it took the HP ASCII interface bus as the basis for its standard, elaborating this by adding certain details and increasing the sharpness of definition.

The resulting international agreements are laid down in IEC publication 625-1 "Standard Interface Systems for programmable measuring equipment."

It goes under a number of different names, which are listed in Table 1. All refer to essentially the same thing.

The bus

The bus contains sixteen signal lines which are divided into three groups as shown in Fig. 1. The data bus of eight lines is used for all device dependent messages and a high proportion of interface messages which take the form of a single byte. The true (or logical ' 1 ') state of the data lines (and all bus lines) is low voltage, both being approximately TTL standard levels. The transfer of each byte of information over the data bus is controlled by a threewire handshake process between the source of the byte and all the destination device interface, using the DAV, NRFD, NDAC lines. The handshake cycle guaran-
tees correct information transfer with any combination of device response times. The third group of signals are the interface management lines, the purpose of which is as follows:
IFC Interface Clear - used by a controller to place the whole of the interface system into a known quiescent state.
ATN Attention - specifies in general whether the data bus holds interface messages (true) or device dependent messages (false).
SRQ Service Request - used by a device to request an interruption of the current bus traffic.
REN Remote Enable - used by a controller to enable and disable device interfaces.
EOI End or Identify - is a dual purpose line used either to indicate the end of the multibyte message or as a strobe in a parallel poll sequence.

Architecture

Roughly speaking, we can subdivide IEC-bus-compatible instruments into the following classes:
Listener. A listener device can receive data from other instruments. Examples are: printers, display units, programmable power supplies and signal sources.
Talker. A talker device can send data to

Instrument Control

other intruments. Examples are: Voltmeters and counters with data output facilities, tape readers and data loggers.
Controller. A controller device can control the information traffic on the bus lines. The controller determines which device has to send data and which are to receive. The controller can also send special commands and control signals.

Each device has its own address. Before data transfer can take place between a given pair of devices, they both have to be addressed by the controller. In general, a controller will be a kind of computer (this term being used here to include minicomputers and microprocessors). However, any device, e.g. a printer, could be given a control function in its IEC interface.

The communication between instruments of an IEC bus system is organized on well defined rules. For example, only one device at a time can "talk" (transmit data over the bus), while several can "listen" (receive messages) simultaneously. The rate at which information is transmitted is automatically adapted to the speed of the instrument which is slowest in processing information.
Since a controller passes information (such as device dependent programming instructions) regularly to the bus, it must have a "talk" function in addition to its "control" function. It will generally also have a "listen" function too, in order to enable it to know that information is passing along the bus (and of course to receive information itself). It is also possible for a given device to act as both a talker and as a listener at the same time.

A further complication is the possibility of sending two special control messages, "interface clear" (IFC) and "remote en-

Figure 2: The structure of an IEC byte together with the contents of each section.
able" (REN) to turn a control function into a "system control" function; the device in question is then called a System Controller. IFC and REN are general in-terface-management messages. The structure of the IEC interface of a device determines whether the instrument can function as a talker, listener or (system) controller. Apart from the above-mentioned interface functions of talk, listen and (system) control, the IEC interface can also contain other functions. The "handshake" functions play an important role in data-byte transfer control. A talker must contain the "source handshake" function in addition to the "talk" function, while all IEC-bus-compatible instruments must have an "acceptor handshake" function.

Formats

The object of this part of the standard is to define a limited family of preferred message codes and formats in a relatively device independent manner so that the highest degree of compatibility can exist between instruments from different manufacturers and between both simple and
complex devices. It should be possible to decode messages with a minimum of circuitry and to communicate directly between instruments without the need for translation and re-transmission of messages in alternative formats. The degree of standardisation that is possible in a particular device will, of course, depend to a large extent on the nature of the device and its practical application.

The formats are applicable to three broad types of data. A fourth type, data for display to human operator, by its nature requires a completely free format and would only conform to the terminator conventions. The three types of format are:
(1) Measurement data, i.e. measured results and other data gathered or generated by the instrumentation.
(2) Programmed or Control data, i.e. instrument commands and settings usually generated from the stored test program.
(3) Status data, i.e. the contents of the status byte transmitted during serial poll and giving overall information about the condition of a device.
The form of message used in types I and 2 has three main sections: A header containing codes to indicate the type or meaning of the main data part which follows it. The whole message unit is then terminated by special delimiter characters as in Figure 2. Within these sections it is useful to define particular fields not all of which may be present, but which enable consistent decoding of the messages. The table defines the fields and their meaning, contents and preferred character sets.

Instrument readings are sent over the bus via the talker function and may typically go to a recording device as well as the controlling device in the System. The

Figure 1: IEC Signal lines and messages.

Instrument Control

general format of the message is chosen to accommodate a wide range of device requirements while still permitting simple decoding. The message can therefore contain the alpha header, any length of numeric values in one of the above forms, and one of the terminator fields.

In common with all messages the fields are transmitted in order left to right and within a field the most significant character is transmitted first.

Languages

Many companies have developed languages which can be used to control their instruments. For instance Marconi Instruments Autotest Systems have been programmed in test languages such as 'INCITE' and 'MI-BASIC' which have been derived from the simple computational language Dartmouth BASIC. With the new system architecture corresponding changes have been introduced into the software to produce a new version of the test language, known as 'XBASIC'. The earlier languages were produced in interpreter form or compiled form, the former having the advantage of instant high level program and instrument manipulation by the operator, and the latter allowing only fast test program execution. 'XBASIC' is constructed in semi-compiler form which retains most of the benefits of both earlier
systems. This is achieved by packing the source program at load time into an intermediate code which is both fast to execute and which retains $1: 1$ relationship to the source program so that it can be automatically regenerated when required for lising or editing etc.

The software package contains a BASIC language processor to which may be added any number of modules which:
(1) provide additional commands,
(2) drive specific computer peripherals,
(3) handle the GPIB messages to and from specific instruments.
Thus for a particular set of equipment and range of test capabilities a complete software package may easily be assembled allowing high level test programs to be written and executed. For shorter term applications or when some instrument handler modules are not available, the basic language processor is able to control GBIB instruments in a lower level via general purpose bus commands.

BASIC programs consist of a sequential list of statements which have, in general, four parts

Line number: Command verb: Qualifying test : Terminator Line numbers serve as the statement references for both editing and program branching purposes, and when a statement
is input without line number it is actioned immedaitely instead of being added to the stored program. Command verbs are provided for a wide range of operations, some of which are only used in immediate mode (i.e. without line number) for program control or editing. Each command verb will have qualifying text, the syntax of which is chosen to suit the nature of the verb. The terminator may be either the carriage return at the end of line or the full colon between statements on a multistatement line.

The language processor checks the source program syntax at load time and reports any errors. Further error messages can occur while a program is being executed, particularly when fault conditions exist in GPIB instruments or computer peripherals.

IEC 628, in one of its various guises, is now the recognised standard for instrument makers all over the world. Moreover, the manufacturers have elected to support the standard by making their machines truly compatible with it. The result is that instruments can be bought on the shelf and slotted into the most complex of experimental test set ups without undue fuss. This in turn has had an effect on the willingness of engineers to adopt programmed test procedures.

Introducing OrCAD/SDT a complete and affordable schematic capiture package. developed for IBM personal computers and compatibles.
Now a complete schematic design tool with extensive part librarv. schamatic cutput. bill of materials. net listing and design checking
PRICE and PERFORMANCE togethey
GrCAD with 1 vear of prosram and manual ufdates

$$
\$ 1275.00 \text { (ex tax) }
$$

PROMETHEUS SOFTWARE DEVELIOPMENTS

$$
\begin{aligned}
& \text { 191 Riversdale Road }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) 3) d10 6()? }
\end{aligned}
$$

THE LTESTE LIFESTYLE

- Bathrooms
- Swimming Pools
- Outdoor Living
- Bedrooms and
Children's Rooms
- Apartments
- Renovations and Restorations - at your newsagent now

cf SJ Gompilers for Single-chip micros

C" Cross compllers for PC/XT/AT and VAX hoste by IAR for:

* $8051 * 68 \mathrm{HClI}$
* 6301/6801/6803 * 64180

FEATURES

* ANSI "C" standard
* IEEE 32 bit floating point
* Trig. exp. and log. functions
* Easy interface to assembler
* Produces compact, romable code

Package includes compiler, assembler, universal linker, librarian and run-time library.

MACRO DYNAMICS留

The Development System Specialists
80 Lewls Rd., Wantirna South 3153.
Tel: (03) 2207260 Fax: (03) 2207263
ADVERTISING INFO No. 20

A range of 28 models of DC to DC converters.

* Input voltage: 12, 24, 48 or 110 V DC (either polarity)
* Outputs: $5,12,15$ or 24 V in single, dual or triple configuration, either polarity
\star Power range: 12.5 to 100 Watt
* Over current protection
\star Over voltage protection
\star Operating temperature $0-50^{\circ} \mathrm{C}$
* Efficiency: 62 to 75% typical
\star All in metal enclosures
OFF THE SHELF DELIVERY

Showrooms:
300 Main Street, Lilydale
P.O. Box 509, Lilydale, 3140 Melb. Vlc. (03) 735-0588 673 High Street, Preston (03) 4705822

AMPLIFIERS
ZPE Series II (600W)
DISCO MIXERS
Citronic SM 350
Arista with equaliser $\$ 1100$

JUMBO STROBE
Scanner
HELICOPTER
${ }_{4}^{2}$ ARM Spinner $\$ 450$ $\$ 195$

6 ARM Spinner
CARM Spinner $\$ 580$

$\rightarrow 6$	PINSPO Par 36 Par 56	$\begin{array}{r} \$ 59 \\ \$ 130 \end{array}$
	MIRROR BALLS	358
z	MB 008-8 MB 012	\$38
min	MB 014	\$120
,	MB 018	\$160
	MB 020	\$198

SMOKE MACHINES
Great for Speclal Elfects
Hand Held 240 V
:375
Dynamite 1200 Smoke Machine
Has remote control lead to operate off-stage. We are so excited about this that full money back guarantee will be valid for 10 days from purchase date Our own product
$\$ 1800$ Fluid-1 litre $\$ 15$
MIRROR BALL MOTORS
AC 240 V
$\$ 39$
Heavy Duty
\$100
ROLLING LIGHTS
8×4515 lamps
$\$ 1800$
AUDIO CHASER
(DW4LC4000)
$\$ 700$
Musicolor and chaser all in onell

Pnces subject to change without notice liems for hire or sale Power Cords not included Send SAE with 60 cents postage for free price list
We have Piezo tweeters, Etone speakers,
Rope lights and many other products.
Do You Want To Be An Agent?

THE THERMIONIC CATHODE

Although the old-style vacuum tube has all but given way to solid-state devices, there are still many areas where the thermionic valve reigns supreme. This article summarises the steps leading to the development of the modern cathode.

JOHN BELL

Up to, perhaps, twenty-five years ago, a large part of the training of personnel involved in the radio and electronics industries was centred around understanding thermionic valves and their associated circuits. Indeed, for some fifty years, thermionic valves using oxide-coated cathodes were almost exclusively used in the domestic, military and industrial market, until such time as the invention of the junction transistor led to their replacement in most circuit applications.
Because today almost all radio and electronic equipment is constructed using solid-state devices and because the theory and operation of vacuum tube devices has largely disappeared from courses of instruction, it is easy to assume that the thermionic valve is obsolete. This is not so. Certainly, the triodes, tetrodes and pentodes which proliferated in radio and electronic equipment until the 1960s are, with few exceptions, no longer manufactured. Nevertheless, the vacuum tube still survives to meet special applications characterised by cathode ray and television tubes, and microwave generation and amplification. To meet the demands of television, instrumentation, medicine, radar, and satellite communications, some hundreds of millions of vacuum tubes cm ploying thermionic cathodes are still manufactured each year.

Early Days

One of the critical technical challenges faced by the early pioneers of radio, was the unavailability of efficient devices which would enable them to generate specific frequencies, amplify or otherwise process signals. These constraints thwarted their efforts to realise the potential of radio communication, even in simple form. To meet the demands of their new science, they required a range of active devices, which, when connected to external circuits, would allow the generation.
amplification, and detection of signals to take place.

The solution to this requirement for active devices was found in the development of the thermionic valve following investigations by Ambrose Fleming, Lee de Forest, and others in the early 1900 s. These early valves used a variety of directly
heated filaments as cathodes to provide a source of free electrons, the majority of which would be collected at the anode under controlled conditions. Eventually tungsten became established as the filament used in high anode voltage applications, with thoriated tungsten being used for lower voltages: these are known as

Figure 1: Cutaway of indirectly heated Triode
bright and dull emitters respectively, having corresponding operating temperatures of about 2100 degrees and 1600 degrees.
Unfortunately, these high operating temperatures pose problems that make them unsuitable for use in simple low voltage circuits. Valves were needed that would provide adequate amplification, long life, and predictable characteristics with minimal heater power. These objectives were finally met with the introduction of the oxide coated cathode.
Initially, valves made with oxide coatings were inferior to those using metal filaments. However, when Wehnelt and Jentzsch discovered the importance of a hard vacuum inside the glass envelope, cathode oxides really took off. As a result, the mass production of thermionic valves using oxide coated cathodes was not possible until the early 1920 's, when appropriate manufacturing technologies were available and an elementary understanding of the underlying physics was developed.

Central to this is the idea of thermionic emission. Electrons are emitted when some metals are heated, and, if a strong enough electric field is present, the electrons will flow under the control of the field. In order to increase electron emission significantly, either the cathode temperature must be increased, or the emitter material must be carefully chosen to maximize emission.
Another advance was to indirectly heat the cathode, i.e: to use a separate heater clement near the cathode.
The advantages of an indirectly heated cathode are that its emission per unit area is high compared with a directly heated filament, and that its geometry may be more precisely organised with respect to other components and special needs. Possibly, the principal disadvantages are that a separate heater is required which must normally be fed from a separate low voltage ac supply whose alternating magnetic field may introduce "hum". There is also a longer warm-up time before the emitter is able to reach its optimal operating temperature.

Basic assembly

One of the essential steps in manufacturing oxide-coated cathodes. whether directly or indirectly heated. is the preparation of the emitter paste. In preparing the paste, the manufacturer must be scrupulous in using pure materials and clean processes because the presence of even minute portions of foreign material may adversely affect the amount of emission achieved.

To assist in controlling contamination.

Figure 2: M Type dispencer cathode
manufacturers usually make their own carbonate pastes using approximately equal quantities of barium, strontium and sometimes calcium carbonate. The resultant paste is well mixed before other chemicals and solvents are added which will enable the paste to stick to its supporting structure. The layer of carbonates is spread as uniformly as possible over its supporting cathode structure to avoid hot spots or other undesirable effects. The best compromise for many years was the application of paste to a nickel or nickel alloy support.

Once the structure is assembled, as in Figure 1, the outer envelope is attached, and the outer envelope to glass base sealing process commences. At the same time, additional eddy-current heating is applied to commence the out-gassing of the internal structure; when the outer envelope is attached to the base, the valve is evacuated using diffusion pumping through the top and the heaters energised so that the carbonate paste is reduced to an oxide film. This latter process, which one can actually observe by the colour change, activates the cathode: the valve is then sealed. Finally. the getter is fired (using eddy-current heating) to deposit a thin metallic film on the inside of the glass envelope well away from critical parts: the getter improves the long-term high vacuum characteristics of the valve by allowing residual gases to physically and chemically combine with the layer. Once the vacuum is destroyed the getter is oxidised too: a powdered getter is the sure sign of a dead valve!

The time. under automated conditions. to seal and activate a small tube is a matter of minutes: larger devices. such as a television tube, are baked for about half-
an-hour prior to sealing and activation of its cathode(s).
Following this, the valves are frequently burned-in: that is, the filaments are heated at above normal ratings for up to several hours whilst anode current is drawn to improve the emission characteristics.

Emission Life

In general, emission characteristics remain reasonably constant, providing the vacuum is maintained during the early life of the tube. Valves are robust and can often withstand short-term application of an over-voltage to both heaters and anodes without damage to the cathode system (unless the heater filament goes open-circuit). Indeed the application of an overvoltage can help to reactivate an oxidecoated cathode (especially if the getter can be reactivated too) - in fact one trick used to prolong the life of television tubes was to feed the heater through a step-up transformer once the screen brightness had faded. The deterioration of emission is generally associated with the poisoning of the cathode due to several possible causes. There may be leakages through the glass envelope (eg at pin-glass interfaces) and gases will be released from various parts of the assembly through normal operating life. more so under high temperature conditions. with which the getter will be unable to cope. The barium in the emitting surface tends to vaporise with time and finally positive ionic bombardment of the cathode may occur.
The oxide-coated cathode may be damaged in practice by the excessive application of electric fields. Electrons may be dragged from any emitter by the application of a high voltage to an adjoining clectrode. This is called field emission. However, if an oxide-coated emitter has not

Figure 3: L Type dispencer cathode
reached its recommended operating temperature, an applied voltage can actually remove parts of the cathode coating. The advantage of purchasing a television set incorporating a stand-by heater for the television tube should now be obvious if one wants long life, as the application of a 25 kV final anode voltage tube produces a reasonably strong field despite the twenty cm or so separation between final anode and cathode.

Although tubes using oxide-coated cathodes met the requirements of the market for many years, they were unable to meet the demands placed upon them by specific commercial, military and space technologies. There has been an increased demand for reliability, more output power and quick warm-up times. Space exploration and satellite communication systems demand reliability. Communications and radar systems need more power. Quick warm-up times are a desirable feature of equipment which may be left inactive for long periods and then required to cope with sudden emergencies.
The development of the modern dispenser cathode probably commenced with work done by the Philips Research Laboratories in about 1950. It was designed to overcome some of the short-comings of the oxide-coated cathode which included the difficulty of obtaining a homogeneous layer of oxide coating on the nickel base. Essentially its mechanical construction made it more suitable for use in specialised tubes, in particular those used for microwave amplification and generation, than the original simple oxide-coated cathodes.
The first dispenser cathodes were the so-called L-types which utilize emissions from a barium-tungsten system. Figure 2 illustrates the basic concept where a porous tungsten disc has a small plug of car-
bonate paste behind it. In valve pumping, which takes about two hours, the carbonate paste is reduced to an oxide form as in the case of the simple thermionic valve. Emission takes place from a thin layer of barium which seeps through from the reservoir of the barium and causes varium oxides to appear on the surface of the tungsten. However, as unwanted leakages of barium vapour were found to occur, and the activation and outgassing processes were difficult to control, the L-type cathode gave way to impregnated and mixed-metal cathodes.
The M-type cathode, shown in Figure 3, is constructed from porous tungsten which has been impregnated with barium calcium aluminate. During manufacture the emitter surface is coated with a thin metallic layer of osmium-ruthernium or osmiumiridium. As in oxide-coated cathodes, the emission of cathode current takes place from a thin layer of barium which continu-

Figure 4: Simple space dispencer cathode
ously migrates to the surface from its reservoir within the porous tungsten.

A variant of the M-type cathode, called the mixed-metal cathode, was developed to avoid problems with the thin metallic coating which is susceptible to ion-bombardment and peeling effects. The solution was to incorporate metals within the porous tungsten block: various combinations such as tungsten and iridium or osmium tetroxide are used

Stringent requirements are required of cathodes needed to support microwave links operating in space where long-life is of paramount importance. Figure 4 shows a typical space dispenser cathode which could be used for space applications considered for this requirement. Porous tungsten is used as the emitter with an appropriate barium oxide mixture behind it: activation and operation results in barium migrating through the porous tungsten to form a mono-atomic layer of emissive material on its surface. The tungsten disc may be shaped to meet particular applications.

New developments

The requirements of special military and space applications have placed more stringent demands on cathodes during recent years. there are ever-increasing demands for more power (higher emission per unit area of cathode), for quick warm-up times and, especially for space applications, a life of about five years. There are, however, some conflicting requirements. Life expectancy is a function of operating temperature, but so is emission current: long life is of paramount importance in space exploration, but would be of little value in a guided missile with an active life of perhaps minutes or even seconds. Contrary to what might be expected in the age of solid-state devices, research and develop-

ment into improving the performance of the thermionic cathode is conducted at a high-level to meet the demands of microwave communications and display tubes.
In the last two decades there have been few advances made in the design of cathodes used in television tubes which are still based on the coating of a simple surface contained within a more complex supporting structure needed to focus and control the election stream. The nickel alloy sleeved oxide cathode is still industry standard although the construction has changed from one mounted in a ceramic support to an 'all metal' support. There have been improvements in materials and manufacturing techniques which have greatly extended the life of television (and display) tubes and tubes with warm up times measured in seconds have been developed. It would appear that the industry has a potentially reliable and relatively cheap device which meets the demands of the market, so if there has not been much pressure to develop new, more sophisticated, cathodes and supporting structures. Where cathode loadings are very high, such as in projection tubes, dispenser cathodes are now being introduced.

IBM has just released details of a new integrated multi-beam thermionic cathode
for cathode ray tubes; an array of minature electrodes are fabricated from thin metal films on a sapphire substrate with the microcathodes being made lithographically using carbonate paste and photoresist.

Acknowledgement

The author is indebted to Thomas Electronics of Australia Pty Ltd. IBM and Hewlett-Packard. for up-to-date information on progress and materials used in cathode ray tubes.

Figure 5: Advanced dispencer cathode for space applications

187 Allambio Road, Allambie Heights, P.O. Box 184, Brookvale, NSW 2100. Tal. (02) 451 5555. Telex AA22671

The Marantz CD 94

Marantz is fighting its lo-fi image with a range of very upmarket product which, it hopes, will turn the company's flagging fortunes around.

Ken Ishiwata, Marantz's best designer has been working on the new CD 94 for the last eight months, and following its release, he has been receiving many and varied accolades for his role in the development of the CD 94.

At a press conference to announce the release of the CD 94, Ishiwata said that one of the companys main aims in the design of this unit was to deal with the problem of eddy current. This was accomplished by dipping the chassis in a copper bath to create a superior ground
path. Double thickness copper was used throughout the circuit boards to lower signal path resistance. Crosstalk has been minimised by devising totally independent signal paths from input to output.
As regards circuit design the Marantz CD 94 has four independent regulated power supplies for the various electro-mechanical, digital analogue and display circuits. Left and right channels are totally separate circuits throughout.

Among the many features of this unit are an 'Automatic

Music Search (AMS) and 'Favourite Track Selection (FTS) which allows the user to program his or her favourite tracks from disc into the player's memory. This memory will remain even if
the unit is unplugged.
Altogether it is claimed that the stereo imagery of the CD 94 is particularly good largely on account of the low noise performance and its 'vivid' separation.

Enter the Discman

Sony have developed a new portable compact disc player the D-100 to follow up on the success of its other CD units. It claims that this unit is no less than 80% smaller than the original and weighs around 420 grams.

Apparently the D-100 is more than a portable music machine. In fact it's a testament to Sony's commitment to CD technology. With such grand sentiments inherent in the make-up of this device
one would naturally expect great things from the D-100. Sony claims that it delivers.
One interesting feature built into the D-100 is a digital filter that prevents jitter generation and suppresses unnecessary residual signals. It also features an 'inbuilt track memory' which if the player should be disturbed by earthquakes, civil war etc will return it to the precise playing position when 'normality' has been restored.

TDK's Rolls Royce

TDK claims that its MA-XG is 'unquestionably the finest tape in the world' and states that it can back its fightin' words with 'facts'.
The MA-XG is a metal (type IV) position cassette, using the TDK developed pure iron particle 'Finavinx'. Finavinx has 'four times the magnetic energy of high postion tapes'. It can also apparently store four times the information of any other type of tape.

The sensitivity figure of the MA-XG stands at -20 dB and the noise level rates -61.5 dB . This tape is claimed to have a large dynamic range which makes level settings during recording not as critical as would otherwise be the case.

Digital Solarization

Anyone who wants to know the effects of Digital Solarization would be advised to buy the new HR-D57OU Digital Video Recorder from JVC. Apparently Digital Solarization is 'something akin to an electronic paintbrush' what-
ever that might mean
In addition to this marvel the new recorder also features a Digital Freeze which will freeze action while recording or watching a reguiar IV broadcasdt, a Strobe Effect which gives a 'time lapse' effect as well as a $\mathrm{Hi}-\mathrm{Fi}$ dynamic range of more than 90 dB . With all these attractions it is difficult to see how the HR-D57OU can fail to be a winner in the marketplace.

The Portable Dictator

Sony have released the ICMR1, a mono cassette recorder aimed at the educational market. It uses large scale integrated circuitry and has a built-in ic memory so that the last four or eight second segment to be played back can be repeated 'immediately and endlessly'.
Sony reckon that this function is particularly useful 'when learning the phraseology of languages'. As a consequence the company belives that this unit will appeal to 'speech therapists, music and drama teachers and university students though the latter might baulk at the $\$ 249$ price tag.

\$13,000 REFERENCE MONITORS

 - also available in kit form.Readers of overseas hifi magazines often wonder why imported quality lcudspeakers sell for over twice the price in Australia. The answer is simple - but for good reasons not advertised. Fully imported speakers incur such cost factors as:

- 25-30\% freight
- 30% sales tax
* 25% import duty $\quad 28 \%$ handling charges (typically)

Not one of these factors improve the sound - they only contribute to the extremely high Australian price tag. A pair of fully imported 4 way DYNAUDIO reference speakers is today priced at $\$ 13,250$ in Australia. By importing the drivers only and utilising world renowned Australian technology (īhiele \& Small), together with local genuine timber craftsmanship, it is now possible to acquire a pair of these speakers fully assembled at less than half this price.
For the technically-minded hı.fi enthusiast further savings are possible by assembling the speakers yourself. Pre-built enclosures and crossovers make this task a mere breeze. A good soldering iron and a Phillips head screwdriver will save you a further 30%. Should you happen to be in the furniture production industry, enclosure plans can be supplied with the kit (drivers and crossovers) for even greater savings. To audition the S13,000 DYNAUDIO reference monitors, contact SCAN AUDIO for full details and the name of your nearest authorised DYNAUDIO specialist.

Sole Australion Distributor
SCAN AUDIO Pty. Ltd., 52 Crown
Street, Richmond, Vic. 3121.
Phone: (03) 4292199 (Melbourne) (02) 8712854 (Sydney) (07) 3577433 (Brisbane)

SATELITE-1 \$2300 pair
(S1400 unassembled)
($\$ 948$ excl. cabinets) Matching sub woofer available.

PROFILE-2
$\$ 2900$ pair
(\$1700 unass (S1248 excl.

ADVERT/SING INFO No. 24

PROFILE-3
$\$ 3800$ pair ($\$ 2400$ unassembled) (S1938 excl. cabinets)

NSW \& HEAD OFFICE:
92-94 Wentwarth Ave, Sydney NSW. 2000. TLX:AA73990
P.O. Box K21 Haymarket, NSW. 2000. Ph: (02) 2110988 FAX: (02) 2811508

VISIT OUR STORES FOR THE MOST COMPREHENSIVE SELECTION OF RADIO COMMUNICATION EQUIPMENT IN AUSTRALIA - COMMERCIAL, AMATEUR AND CB. THERE IS NO STORE LIKE EMTRONICS!
$\$ 59$
$\$ 139$
$\$ 199$
5339
5225

$\$ 329$
5399
5999
5880
5499
5499
Emtron Ace Australia's
most popular 40 CH general
purpose hand held
UHF CB transceiver

APPLICATIONS

- Commercia
\& Factory management Bulting and Roac Constivection - Boating - Farmung ano Pastoral Construction wo General Sba ${ }^{\text {Sunveyng }}$ Personal Securtly
Business Bussiness
Mobile and

TEST INSTRUMENTS

KIKUSUI 60 MHz -TRIPLE TRACE OSCILLOSCOPE - COS5060

NEW GW 20 MHz , DUAL TRACE OSCILLOSCOPE

A heavy duty and accurate scope for

- GOS522
service as well as production use.
Features include - Wide trea bandwidth
- Optimal sensitivity - Extremely bright display - Auto trigger level - Variable hold off - Alternate triggering - DC trigger coupling

10 MHz SINGLE CHANNEL CRO

 GOS-3310

FREQUENCY COUNTERS

- Micropocessor
Mren resoution
- Melif olagnosis ro breathtrouggn price GFC $8010 \mathrm{~F}(120 \mathrm{MHz}) \$ 39$ GFC $8055 \mathrm{~F}(550 \mathrm{MHz}) \mathbf{5 6 6 9}$ - C -8100G (16 Hz)

DIGITAL MULTIMETERS

- 8 digit dispoay
- Dverilom noticata - High senstitury

GUC-2010 UNIVERSAL COUNTER

- From 5 Hz 10100 MNz
rom 5 Hz 10100 MNz R

CHECK OUA RANGE OF PROFESSIONAL MULTIMETERS

GDM-8135T

- High Vollage 1200 V . 20 A
- Aulo Zero Circuit
- Range protection

GDM 8145 (GDM 8045)

- 6 Function - 4"\% Digit
- Hign acculacy 003% - High range - 1200 v - High range
- Autu zeno
True ams

LCR METER ESCOH ELC 12 ANALOGUE MUILTIMETERS - SOLIO PERFORMER

EmTHDIIES
Retail Division of EMONA ELECTRONICS P/L

VICTORIA:
288-294 Queen St, Melbourne Vic. 3000. (Entrance from Lt. Lonsdale St) Ph: (03) 678551 or 6700330 FAX: (03) 6700671

Clarity, transparency, imaging, openness...
Shure Ulitra D6000 explodes the myth that all CD players sound pretty much the same. It ushers in a new generation of sound purity that transcends the whole notion of audio "reproduction" and brings the sense of the actual reality of a musical performance. it is the best and most natural music source available at any price

Compensates for imperfect discs...
Its advanced laser system uses three beams instead Of one: one reads the disc while the other two give micro-precise guidance to the reader beamovercomes vibrations and disc imperfections.

PURELY

 PERFECTThe only 5 -year laser warranty The LONGLIFE' laser tracking system is engineered for a minimum of 8000 hours of service. (Replacing lasers on "bargain" CD units is prohibitively expensive.)

ULTRA COMPACT DISC PLAYER

AUDIO ENGINEERS PTY. LTD
342 Kent Steet, Sydney, NSW 2000 Ph: (02) 29-6731
MARKETEC PTY. LTD.
51 Scarborough Beach Rd, North Perth, WA 6000

Ph: (09) 242-1119
AUDIO ENGINEERS (VIC)
Ph: (03) 850-4329

Introducing ... The Service Manager - TSM, a unique software package designed to make a service manager's life easier. Your company can log incoming work and keep a track of its progress - from delivery of the goods up until their retum to customer - with an accuracy and speed that will transform the management of any service department.

The program handles many of the special needs of service operations such as service histories on all clients and products, special warrantor invoices, work in progress information, service contracts administration, technician's time-logging, accounts receivables and comprehensive reporting in all areas.

Lift the efinclenty of your service department.
Call (02) 5600666
for more information or an obligation-free demonatration of TSM.

[^5]
REVIEW

THE LATEST IN SPECTRUM ANALYSIS

Hewlett Packhard has just released a new spectrum analyser in Australia. It's the model 8590A, and HP expect it to set the world on fire.

Jon Fairall

MOST readers will be familiar with the idea of time domain displays, ie: an electrical signal seen in relation to time. A typical example is a sine wave displayed on an oscilloscope. However, the time domain is not the only way to look at electrical signals. The frequency domain is just as valid. This takes
an incoming waveform, no matter how complex, and divides it up into discrete frequency components. In a frequency domain graph, the vertical axis is amplitude, and the horizontal one is frequency.

Why bother? Potentially, the frequency domain is useful in a whole range of areas where ac signals are being produced. It

can give information about the output of oscillators, filters, mixers, amplifiers and so on that would be extremely difficult to obtain by studying time domain displays. This is especially true where more than one frequency is present as is often the case in the real world. At a glance a spectrum analyser can tell you about frequency, harmonic content, modulation, filter sharpness and noise levels.
The basic instrument for frequency domain analysis is the spectrum analyser. The most common form of analyser design is very similar to a radio, in as much as a conventional superhetrodyne architecture is used to select a single frequency and display its amplitude (See Figure 1). The trick is that a variable signal is fed into the mixer section, so that the frequency selected for display ramps up from a low frequency to a higher one. This is called the span. Usually it's done by feeding a sawtooth waveform into the local oscillator. If things are so arranged that the same signal is applied to the horizontal axis of a display, a graph of frequency against amplitude is the result.
Hewlett-Packhard's HP8590A is a good example of what can be expected in a modern, top of the line version of a spectrum analyser. Although the basic architecture is conventional, it comes equipped with all the extra accuracy and user features that digital control make possible. It was released on the Australian market in late 1986.
A quick look around the front panel gives some idea of what to expect. One of the great things about this machine is that the operation of the front panel is intuitive once you know what the machine is supposed to do. Since many machines are not so easy to operate, HP deserves a pat on the back for ergonomics, if nothing else.
There is a smallish but adequate CRT display to the left of the front panel. As
well as showing the trace, a graticule and all the information necessary to interpret the display is included on the screen. Down the right hand side of the display is a series of labels for the sort-keys. These show the current function of the six buttons on the side of the display.
The front panel controls are grouped in a number of logically coherent areas. Bottom right is a keypad for entering digits. Top centre are three buttons for the fundamentàl operating parameters of the machine: frequency, amplitude and span. Below is a big knob which can be turned to tweek any value held on the display. Top right is a series of buttons to alter the basic operating mode of the machine, and immediately below a set of controls for the markers. These are cursors which can be moved to any place on the trace to register the value in frequency and amplitude of a particular artifact.
To find out the way the 8590 works I connected it to an old HP rf signal generator, which was lying on the work bench. The first thing to do is to connect a fifty ohm lead to the input socket and to ensure that you match impedances at both end of the line. If you don't, at best you find the 8590 refusing to work, and at worst you will load the circuit under test, possibly breaking it.
Having got that straightened out, switch on. The machine jumps into the present mode, which gives you a very wide sweep from a few megahertz up to almost a Gigahertz. To narrow things down so as to centre on the frequency of interest, press the Frequency button. The softkeys on the screen display a number of options, including one for setting the centre frequency . This is the frequency at the centre of the screen, and if you know what you are looking for, can be entered from the keyboard. Alternatively, if you don't know what frequency you want, but can see a signal on the trace, you can use the knob to shift it until it's more or less centred.

Once this is done, you select Scan, and a new menu appears under the soft-keys. This will allow you to set the frequency at the extreme left and right of the display. In this way you can get the display to show you the exact region you are looking for.
Finally, pushing the amplitude button will allow you to configure the machine for the strength of the incomming signal. The soft-key menu allows you to select the value of the attenuator on the input of the machine, so that the signal is a manageable size, change the value of the top line of the display, change the vertical scale of

Spectrum Analyser Layout
the screen, and switch it from \log to linear.
At this stage the signal should be more or less centred and any harmonics or other features of interest should be within the screen. It's now possible to make readings by selecting the Marker button. This brings up another soft-key menu which allows you to move a small cursor onto any point on the trace and measure its position. It also allows you to measure the difference between any two artifacts on the screen with a delta marker. This is particularly interesting when looking at harmonics.

There are a number of things that can be done to increase the clarity of the display, and it's in the control of these that the operator gets his money's worth. For instance, the selectivity of the analyser is set by the bandwidth of the if stage. Selectivity is a measure of the ability of the machine to resolve two frequency components very close together. The narrower the bandwidth, the better the resolution. Also, the narrower the bandwidth, the less the noise that is admitted. On the HP, this is selectable by changing the 'resolution bandwidth'. The weakest signal that can be measured is defined by the amount of noise on the trace. If making the resolution bandwidth narrow does not help enough, a further stage is to apply the video filter, a post detection low pass filter that averages random noise and fluctua-
tions. Another useful function is signal track, which allows one to keep a signal in the centre of the screen as you zoom in or out on it. This zooming function is accomplished with the span button.

One problem that becomes important in manufacturing situations, where the same test must be done over and over again, is that it can take quite a while to set the machine up. there are a couple of ways around this. It's possible to store the position of all the knobs in non volatile memory, so that a single button will reconfigure the machine as required. Another option is to program it over an instrument control bus like HPIB or from a computer using RS232. The situation can also be turned around, so that you can send the results of experiments down the line, either plotting out a copy of the display or receiving back the values of the markers.

At $\$ 19,000$ the HP8590 is not for everyone. However, if you have a need for high quality spectrum analysis then this one is certainly worth looking at. According to Hewlett Packhard, it's under consideration by the RAAF, Telecom and other like minded bodies. It should do well.

Specs at a glance

Frequency range: $10 \mathrm{kHz}-1.5 \mathrm{GHz}$
Frequency accuracy $5 \mathrm{MHz}+1 \%$ of span
Amplitude Range -115 dBm to +30 dBm
Noise Level: $<15 \mathrm{dBm}$

THE KIWI THAT ROARED

The Perreaux company of NZ has produced a fine FM tuner. What it can do it does well it's what it can't do which worries Louis.

Louis Challis

When Eurovox. one of Australia's leading car radio and mobile sound system designers decided to act as agents for Perreaux of New Zealand. a number of people sat up and took interest. One could be easily excused for thinking that these two large and well-respected organisations do not really have all that much in common.

Eurovox have developed a range of mobile car radios and cassette players which are positively 'avante garde’ and which offer an ergonomic functionality, performance and appearance which I suspect is the envy of most of their competitors. Having reviewed a number of their products, I have been very impressed with what they have designed and, more importantly, with what they have produced.

Perreaux's factory is located at Napier in the 'Shaky-Isles' and over the last six years they have built up an international reputation for manufacturing high quality consumer and professional electronic equipment which has always placed the emphasis on quality without regard to price.

An FM tuner produced by Perreaux which doesn't incorporate an AM section, which is then marketed by Eurovox, sets me back on my heels. You ask why? Well, two years ago Eurovox had already developed a combined AM/FM stereo front end for their car radios which was and still is top of the class and which offers an AM component which is head and shoulders in front of most of their competitors. As a consequence the
concept of trying to market an FM stereo tuner, without AM in this country, worries me and I suspect would also worry most of you intending purchasers who would then undoubtedly ask the question 'What am I getting for my money?

The Eurovox by Perreaux Model EUI FM stereo tuner retains the same basic modular footprint that the rest of the Perreaux units currently display. As a consequence of it's large footprint it only really integrates well with other Perreaux equipment, although it will fit into a 19 inch rack. provided you've got a shelf to support it on.

Appearance

The front is finished in brush satin aluminium with neat dark grey silk screen lettering to label the functional controls. which are to say the least, somewhat sparse. At the left hand end of the front panel is a POWER ON/OFF push button switch with a small LED directly above. To the right is a STEREO/MONO MUTE switch. When in

EUROVOX BY PERREAUX FM	
Dimensions:	432 mm (wide)
	$\times 345 \mathrm{~mm}$ (deep) $x 48 \mathrm{~mm}$ (height)
Weight:	4.5 kg
Manufactured	Perreaux, Napier,
by:	New Zealand
Marketed by:	Eurovox, Australia
Recommended	

the stereo mode and whilst tuning between stations you have effective muting, whilst in the mono mode you can hear every bit of hiss or low level signal which the front end of the tuner can capture. In the centre of the panel are six PRE-SET MEMORY buttons with a separate STORE button which retains the memories, but only while the power is connected. You immediately lose the stored reference signals once you disconnect the mains plug. Flanking the top of the pre-set memory buttons is a five segment LED display to indicate the incoming signal strength. On the right hand side of the panel is a four digit tuning frequency display which covers the range 79.9 MHz to 107.9 MHz in 100 kHz steps and also displays stereo when tuned to a stereo station and ME for memory when the memory button is activated. At the right hand end of the front panel is a reasonably large rotary knob with indents whose continuous rotation allows you to tune up or down the frequency dial in precise 100 kHz steps.

Rear Panel

The rear panel is even more sparse than the front panel with a 75 ohm co-axial socket for connecting your FM antennas. a pair of gold plated RCA co-axial sockets for your left and right channel signal outputs and a selectable de-emphasis switch to select 25 . 50 or 75 microsecond de-emphasis characteristics depending on where the unit is being used. In New Zealand. Australia and Europe the 50 microsecond central position
MEASURED PERFORMANCE OF EUROVOX BY PERREAUX EU1 FM STEREO TUNER
SERIALNO. P13SAS
E.M. SECTION

	87.9-107.9 Hz
INPUTHPEDANCES	73 otums ONLY
QUTPUT LEVEL 9 I kHfz	. 900 mV
(60ktz Devation)	
FREQUENCYMESPONSE	
(Includes Generator Response)	Below $10 \mathrm{~Hz}-15 \mathrm{htz}$
CHANNEL SEPARATION	
(uncludes Cenerator)	
Left into Right	$370{ }^{\text {d }}$
Kight into Left	46sis
gistoktion g ikite	
(Inctudes Generatior)	
Deviation - 45 KH2, INPUT LEVLL .	65 dat
	0.122
USABLE SENSHTIVITY	
(40kHe Devistion)	
Wong for 36 de Signal to Noise Aatio	-sabt
stereo for tedb Signal to Noise Ratio	iskant
Vano	76and
steres	76 aiss

hand corner. Apart from the RF and IF stage which incorporates mosfets and varicap tuning elements in a neat imported Japanese module, the rest of the RF tuning system is limited to three linear integrated circuits and an array of tuning coils and filters. The design of this front end is based on a wide band quadrature detector and phase locked loop to achicve minimum phase shift and minimum harmonic distortion. These characteristics are only achicved provided you are correctly tuned to the required station and provided it has adequate signal strength. The rest of the circuitry at the front of the mother board consists of five integrated circuits and associated diodes. resistors and capacitors. These components which are all associated with the memory function and digital display account for almost half of the active components on the board. The metal cabinet is well fabricated from heavy guage steel and the unit has been designed for operation without supplementary ventilation, or it would appear. without special cooling requirements.
The objective evaluation of the tuner
confirms that it provides excellent performance. The frequency band width displays a very smooth frequency response which is almost ruler flat from 10 Hz to $15 \mathrm{kHz} \pm$ 1 dB .
The channel separation is better than 37 dB from left channel to right channel and better than 46 dB from right channel to left channel. The usable sensitivity for 26 dB signal noise ratio in the mono mode is 4.5 dBf and for 46 dB signal to noise ratio in the stereo mode is 18 dBf which may be regarded as excellent performance and certainly good enough for outer fringe areas. The maximum signal noise ratio is $70 \mathrm{~dB}(\mathrm{~A})$ in the stereo mode and is at least $73 \mathrm{~dB}(\mathrm{~A})$ in the mono mode. The distortion with 40 kHz deviation and a 56 dBf signal level is less than 0.12 per cent in the mono mode which is really excellent and a credit to the designers. Taken overall my measured performance results agree very well with the manufacturer's published figures and confirm that this is an excellent FM stereo tuner.

Objective Tests

I connected the tuner up to a Eurovox by Perreaux EXI dual channel Class A preamplifed and an EXP1050 dual channel power amplifier with the outputs being fed to a pair of B \& W 801 F speakers. With the rabbit's ear aerial connected to the input I had no difficulty in picking up every FM station in Sydncy whose presence I had previously been aware of, together with three TV stations and thre new FM stations. With the rabbit's ear connected, and even with the correct 50 micosecond de-emphasis selected, the quality of the sound seems to lack 'something' which I had some difficulty identifying. When I reverted to a proper FM acrial, thereby avoiding the obvious front-end mismatch from what is effectively a 300 ohm antenna being connected to a 75 ohm unbalanced input the initial subjective problem immediately disappeared. With a proper acrial connected, the quality of the sound was generally good and I suspect just about as good as the source material would allow. I soon became aware of

Project 74.6

AM TRANSCEIVER
(Continued from page 74)

nicad battery
Figure 6: Battery Connections

Figure 7: Switching action of socket SK3 for charging battery and powering up the unit from external source.

BATTERY CONNECTIONS

The battery connections are not included on the circuit diagram. This is because there are two variations, depending on how you want to configure the unit. If a normal 9 V PP3 battery is used, the centre taps of the switch SW1 should connect directly to a battery clip. Care must be taken here to avoid the fatal mistake of connecting the battery to the circuit with the wrong polarity. Note that since external charging is not necessary, you do not need to drill hole i in the side panel.

Alternatively, a rechargeable 9 V NiCad battery can be used. I obtained one from HiCom Unitronics which is the same size as a normal 9 V PP3 battery. The capacity of this NiCad is slightly less than a normal 9 V but that's not a problem as it can be recharged as often as necessary, either from a 12 V battery or via the mains.

To allow external charging, hole 1 is drilled on panel C for mounting a 3.5 mm phono socket (SK3). Figure 6 shows the actual connections with a normal and a NiCad battery. Socket SK3 has a switching action as shown in Figure 7. Normally when nothing is plugged into the socket, the 9 V NiCad will directly power the circuit and the 330 R resistor is redundant. With the 3.5 mm jack plugged in, the battery is charged through the current limiting resistor. The external source will also power the circuit if it is turned on via the toggle switch SW1. This is a rather handy feature since the unit can be operating while the battery is being charged.

From Figure 7, some readers will have detected that during battery charging, the circuit is powered by external 12 Vdc instead of the usual 9 V from the battery. This is not a problem, in fact the unit works better. The unit will work with a supply varying between 7 and 15 volts. Nine volts was picked simply because of its convenient size. A 12 V supply to the circuit would only increase the output on the transmitter and hence operate with a better range.

PERREAUX TUNER

the extend to which some of the local FM stations are still utilising old and I suspect worn out micro-groove records replete with clicks, pops and scratches. This leads me to wonder why would so many people wish to listen to FM stereo radio. During the course of the three months that I had the EUI FM stereo tuner I came to appreciate its smooth uncoloured sound on the better stations and most certainly became aware of the extent of dynamic compression being applied by a number of well known popular FM stations who happen to be positioned around the top of the band.

Criticism

My only criticism on the operation of the EU1 Fm stereo tuner relates to one's ability
to mis-tune stations by as much as 100 kHz (off centre frequency) in the mono unmuted mode. All of its other ergonomic characteristics are excellent and unimpeachable.
The Eurovox by Perreaux FM stereo tuner is well designed and generally excellent unit, but one which I believe is out of touch with what the market place really requires. Without an AM stereo tuner system. irrespective of how poor that AM signal quality may be, the market place is unlikely to accept this unit in any significant numbers. Eurovox know how to both manufacture and equally importantly how to market quality stereo AM . I feel sure that given the market's response to this unit that they will soon replace the current generation EU1 by a very much more worthy successor.

SPECTACULAR

RATEO POWER: 500 watts RMS per channel - both channels driven into 8 ohms from 20 Hz to $20,000 \mathrm{~Hz}$ at no greater than 0.09% THD from .25 watts to rated power. 1000 watts driven into 4 ohm speaker load on each channel. OISTORTION: 0.09% THD and IM under any and all conditions prior to clipping. The distortion is virtually all, even order harmonic and will not become irritating even well into clipping.
OPEN LOOP FREQUENCY RESPONSE: -6 dB at $120,000 \mathrm{~Hz}$. This is the amplifier's frequency response prior to correction of the signal. WEIGHT: 30 kg (66 lbs)
CHANNEL SEPARATION: 20 Hz to $20,000 \mathrm{~Hz}$, greater than 60 dB
HUM \& NOISE: 80 dB below rated output, 20 Hz to $20,000 \mathrm{~Hz}$ unweighted OAMPING FACTOR: 200 at 50 Hz .
SLEWING RATE: 55 volts per microsecond (of output stage after the RF Filter).
INPUTIMPEOANCE: 1OK ohms balanced. This is in accordance with international standards. A low input impedance is provided to minimize interaction with interconnect cables.
BALANCEO INPUT SENSITIVITY: 0.77 volts RMS for rated output at $1,000 \mathrm{~Hz}$ BANOWIOTH: $\pm 0.25 \mathrm{~dB}$ from 20 Hz to 20 kHz .
-3 dB 5 Hz and 50 kHz
The response of -3 dB is deliberately created by means of a filter in the balancing circuit, to reduce the possibility of RF break through
PHASE RESPONSE: $+2^{\circ}$ at 20 Hz

$$
-2^{\circ} \mathrm{at} 20,000 \mathrm{~Hz}
$$

This phase accuracy is to present a proper soundstage in width and depth. LEVEL CONTROL: Separate level controls are provided for each channel using high quality stepped attenuators of sealed construction. VARIABLE REFERENCE METERS: Calibrated -24 dB to 0 dB in 3 dB steps and Clip. Displays ACTUAL power available with respect to mains voltage and load impedance.
CANNON CONNECTORS: Cannon type connectors are provided for the input and output signals.
BALANCEO INPUT: Input balancing is achieved by means of an active circuit which provides better audio quality than some transformers, making this amplifier well suited for Recording Studios.
RACK MOUNT: The 8000C Amplifier is designed for standard 19"Rack Mount and is 4 units high.
OIMENSIONS:
Height $177 \mathrm{~mm} / 7^{\prime \prime} / 4 \mathrm{u}$
Width $483 \mathrm{~mm} /{ }^{\prime \prime}{ }^{*}$
Depth $447 \mathrm{~mm} / 17$ in $_{8}$

POWER OUTPUT: 180 watts RMS per channel at clipping into 8 ohms. 260 watts RMS per channel at clipping into 4 ohms. 400 watts RMS bridged into 8 ohms.
MAXIMUM CURRENT OUTPUT: 16 amps .
MAXIMUM VOLTAGE SWING: 113 volts peak to peak.
OISTORTION: 0.06% THD and IM under any and all conditions prior to clipping.
AMPLIFIER BANOWIOTH: 0.1 dB from 10 Hz to $20,000 \mathrm{~Hz} .3 \mathrm{~dB}$ from 2 Hz to $300,000 \mathrm{~Hz}$.
PHASE RESPONSE: $+2^{\circ}$ at 20 Hz .

$$
-2^{\circ} \mathrm{at} 20,000 \mathrm{~Hz} .
$$

RISE TIME: Typically 1 microsecond.
CHANNEL SEPARATION: 60 dB or better 20 Hz to $20,000 \mathrm{~Hz}$.
HUM ANO NOISE: 80 dB below rated output, 20 Hz to 20 kHz unweighted.
OAMPING FACTOR: Over 200 from 10 Hz to $1,000 \mathrm{~Hz}$.
INPUT IMPEOANCE: 47,000 ohms.
INPUT SENSITIVITY: 1.55 volts RMS.
OIMENSIONS: 483 mm ($19^{\prime \prime}$) wide.
133 mm ($5{ }^{1 \times}$ ") high.
356 mm (15") deep
WEIGHT: 15 kg (33|b).
Al specticalions subiect to change withoul notice.

PERREAUX PROFESSIONAL POWER AMPLIFIER MODEL 8000C.

PERREAUX PROFESSIONAL POWER AMPLIFIER MODEL 3000B

PERREAUX AUSTRALIA
A division of Eurovox United Pty Ltd.
6 University Place, Clayton, Vic. 3168
Phone 5615244

DREGS

Security at Australian airports is nothing if not meticulous.

The Watch and the World

The world today is faced by some of the greatest challenges in its history. Wars, plagues and famines are ravaging virtually every continent as never before. Many hope to find the answers to these international ills in technology and here in Australia Patrick W. K. Won has risen to the challenge. Casting their eyes about them Mr Won and his import company saw where they could make a valuable contribution to the wellbeing of the nation.

With lavish press releases they announced their find to the national media. we at ETI consider ourselves fortunate and privileged to have received one of these documents. Now, what is this won-
dorous item which is going to make such a change to our lives, prepare yourself for a shock, it is none other then the famous PROTIME watch, the ONLY watch in the world which combines a digital timepiece with a cigarette lighter. For all you cynics 'the Protime watch isn't just a watch it's a "state of the art electronic masterpiece". Mr Won points out that this device is 'indispensible to the smoker who is always losing his lighter'. With such entrepreneurs as Mr Won at the rock face of industry it surely cannot be long before the Australian economy begins its long awaited boom.

Dog story

In the last edition of ETI we featured a

Mutt Minder. As you will recall this device was intended to deter savage hounds from cating ETI readers and decreasing our circulation thereby. This device, an ETI exclusive seems to have been trumped by the Japanese. Earlier this year a Japanese company announced it had also invented a 'dog deterer'.

This gadget is fixed to the animal's collar and is designed to administer a mild electric shock to the offending beast when it barks. Like the Mutt Minder this device could either calm the dog down or enrage it with pain. So it could either preserve your life or take it depending on your luck. We prefer the non tech device of running.

SIEMENS

Switch on the future with Siemens relays

Siemens relays are at the heart of many technological advances.
Particularly within the automotive industry where Siemens electromechanical relays contribute to outstanding improvements in safety, fuel economy, convenience and pollution reduction.
That's because of their reliability, economy, compact size, sturdiness, efficiency and low resistance in the contact circuit.
And Siemens has an extensive range of relays for every application. Including solid state relays, which offer significant advantages such as high switching rate, long life, bounce free switching, low spark generation and non inductive input resistance.
Furthermore, Siemens higher technology is currently developing other superior relays which are even more efficient, more reliable and more compact.
And which are switching on the future. For more information, contact your nearest Siemens office.

Siemens Ltd.
544 Church Street, Richmond, Vic.
Melbourne: (03) 4207308 Sydney: (02) 4368730
Brisbane: (07) 3699666 Perth: (09) 3620123

Distributors

Victoria: Promark Electronics (Vic) (03) 8781255
Queensland: ECQ Electronics (07) 3765677
New South Wales: Nexus Electronics Pty. Ltd.
(02) 8911444

Promark Electronics Pty. Ltd. (02) 4396477
South Australia: Auslec (08) 2691688
Protronics Pty. Ltd. (08) 2123111
Western Australia: Reserve Electronics
(09) 3289755

Tasmania: Components Resources (002) 234263

For that total professional look, put your components into one of BETACOM's smart strong Instrument Case Enclosures. Made of strong powder coated aluminium with the unique flat fold lip for strength, these enclosures will look professional for years. Easy to assemble in a variety of sizes, supplied with all the hardware and shrink wrapped for protection. IC1, a 4 piece box available in 3 sizes with its cover screwed from the bottom. IC2, a 2 piece box available in 4 sizes with the cover screwed from the ventilated sides. IC3, a 2 piece box available in 4 sizes with the cover screwed from the sides. IC4 is an extruded aluminium 2 piece enclosure.

131:TACOM

 aluminium front and end panel, 14 piece box which is screwed from sides and rear. Available in 20 sizes. Full width is 19" rack mountable with optional rack mount brackets. Handles are available for 3 U and 4 U sizes. BETACOM's Standard 19" Rack Bins and Desktop Units also come in strong, powder coated aluminium, in a variety of sizes and colours withvented sides and top panels in five easy to assemble pieces with handles.

TEMPLE-SMITH AUSTRALIA PTY. LTD. 2-12 Harp Street, Campsie. PO Box 196, NSW 2194 Telephone (02) 783436 Fax (02) 7872529
VICTORIA: Temple-Smith Australia Pty. Lid. 12 Rosella St. Frankston 3199. Telephone (03) 781 1013. Fax (03) 7839151 SOUTH AUSTRALIA: Graphic Electronic Industries Pty. Lid. 168 Payneham Rd., Evandale 5069. Telephone (08) 3630277 WESTERN AUSTRALIA: J. G. Thomas \& Associates 5 Durnham Rd., Bayswater 6053. Telephone (09)2727122 QUEENSLAND: St. Lucia Electronics 24 Campbell St. Bowen Hills 4006 Telephone (07) 527466

Cover is screwed at each end with the unique internal square-wave" slotted extrusion with allows for slid-in Eurocard PC mounting. IC5 is a 2 piece box with the cover that is screwed from the bottom. IC6, finished

[^0]:

 SCR
 TCLA
 SC14
 SC110
 SC142
 SCl
 \qquad
 \qquad
 \qquad 5.50
 \qquad
 \qquad
 $4.44 \mathbf{W M}_{2}$
 $4.754 \mathrm{H}_{2}$
 4.9520 L
 888
 \qquad
 $4.90^{\circ} \mathrm{omHHz}$
 3.00 MHz
 5.0680 MHz
 5 MHz

 100 Hz
 $10 \mathrm{G4} 43 \mathrm{MHz}$
 11
 $11 \mathrm{MHR}_{2}$
 12 MMz

[^1]: See Subscription
 NT will receive Touring Cuide and Local Man
 SA will receive an Adelaide Street Directory and State Touring Guide
 TAS will receive state Directory
 Coupon
 VSW VIC OLD WA indicate Capital city or state Directory
 If coupon card missing please phone (02) $693-6666$ and ask for the Subscription Department

[^2]: * by Dr Kevan Martin, UK Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University

[^3]: * Simon Leadley is at Tracktown Sudios, Bondi Junction, Sydney. Terry Kee is on the staff of ETI.

[^4]: (1) : INPUT
 (2)(3) (4): GROUND
 (5) : OUTPUT

[^5]: 1 1日 PARRAMATTA ROAD, STANMDRE NSW 2OAB

