AUSTRALIA'S DYNAMIC ELECTRONICS MONTHLY

MARCH 1987
\$2.95* NZ \$3.95 incl. G.S.t.

PROJECTS TO BUILD:

- 16-BIT COMPUTER
 - AM RADIO
 - AMPLIFIER
 - PASSIVE RADIATOR

(11) 10

11-F
SYSTEMS

If your business world extends across the continent between specific facilities or to remote locations, the Skyswitch satellite communications system is your bottom line answer.

Skyswitch is compatible with stan 6 ard PABX telephone systems. It just phogs into your existing phone network and works. Over land, water or ice; to branch offices, subsidiaries or distant exploration sites, Sky switen hasa : ach that no landline dan natch
For vorce, data or facsimile, Skyswitch
provides transmission reliability so critical to the communication and safety needs of remote operations; so necessary to business_efficien cy

Skyswit 6 his a communizations system that you own and-control or rent from usilf you wish. Opr use of exclusive software imeans you no longer have to par for idle flxedtines of depend on the uncliable and non-private radio phone. Each Skyswitch transmission occupies its own separate channel with a clarity that surpasses the best land based communications system. And every
transmission station is monitored around-the-clock by a remote master station to check performance. The modular design of components make on-site maintenance or expansion of your system both ifast and Skyswitch reaches into space with advanced technology, bringing costs down to earth. Contact us to have a communications analysis performed to compare the costs and reliability of our Skyswitch system to your present system.

Fluke breaks the old mold.

The Fluke 37. A bold new shape emerges with more features for the money than any other bench DMM.

Dollar for dollar, the new Fluke 37 is unbeatable. In addition to its breakthrough design - with built-in handle and storage compartment - it has all the high-performance features of the world's best, most reliable $31 / 2$ digit DMMs.

Autoranging, to eliminate guesswork. Audible Continuity, so you don't have to look at the display. An exclusive analog and digital display, for the best view of the signal being measured. Superior EMI shielding. And user-friendly features like auto self-test, auto battery test and autopolarity. All this, plus a two-year warranty.

And, how many other bench meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.

None. Not at any price.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 37
0.1% basic dc accuracy
Analog/Digital Display
Volts, Onms, Anps. Diode Tesi
30 kHz AC bandenith
Fused 10A Range
Integial handile, storage compartmen
2 2-year warranty

ELMEASCD

Talk to your local Elmeasco distributor about Fhuke -

- A.C.T. John Pope Electrical (062) 806576 - J Blackwood \& Sons - George Brown (062) 804355
- N.S.W. Ames Agency 6994524 - George Brown 5195855 Newcastle 696399 • Bryan Catt Industries 5262222 • D G E Systems (049) 691625 • Petro-Ject 5501388
- David Reid 2671385 • W F Dixon (049) 615628 • Macelec (042) 291455 • Ebson 7072111 • Selectroparts 7083244 • Geoff Wood 4271676
- N. TERAITORY J Blackwood \& Son (089) 844255.521788 - Thew \& McCann (089) 844999
- QUEENSLANO Auslec • Elecnic (075) 914199 - SI Lucia Electronics 527466 • Cliff Electronics 3414655 • L E Boughen 3691277 • Fred Hoe \& Sons 2774311
- The Electronic Shop (075) 323632 - Thompson Instruments (Cairns) (070) 512404
- S. AuSTRALIA Protronics 2123111 - Trio Electrix 2126235 • Industrial Pyrometers 3523688 • J Blackwood \& Son 460391 • Petro-dect 3631353
- taSmanIa George Harvey (003) 316533 (002) 342233
- VICTORIA Radı Parts 3297888 - George Brown Electronics Group 8788111 - G B Telespares 3284301 - A W M Electrical Wholesalers • Petro-Ject 4199377
- J Blackwood \& Sons 5424321 • R K B Agency 297336 • Sirs Sales (052) 781251 • Mektronics Co 6904593 - Truscott Electronics 7233094
- W. AUSTRALIA Atkins Carlyle 4811233 • Dobbie Instruments 2768888 • Protronics 3621044

Editarial

I've been following debates in the hi-fi press for years now about the pros and cons of various technologies; CD versus tumtable, reel to reel versus cassette, one kind of noise reduction versus another, one kind of amplifier versus another, even one kind of speaker cable versus another.

I confess to a feeling of unreality when I read much of this stuff. Are we talking about improvements as the disceming listener might hear them, the engineer might measure them or the marketing man trumpet them on the streets? I have a horrible suspicion that it's the marketing man whose needs dominate.
This is not to say that the quest for perfection is a waste of time. It is not, but it does seem to have lost direction.
The human ear is a fairly good transducer, it has a reasonable response and it has some pretty good signal processing on the end of it. It's also both sensitive and wide ranging. For instance, the human ear has a logarithmic response to loudness with a lower limit set by the movement of molecules in the air and an upper limit set by the ability of the membrane to stay in one piece. It couldn't be much better.
But it does have limits, and there are many parts of hi-fi technology that exceeded those limits years ago. Just one example is to be found in amplifier distortion. It is possible to make amplifiers with distortion of the order of one part per thousand or better, and it has been possible for the last 30 years. The exercise is relatively trivial; certainly any first year engineering student has the tools to deliver an amplifier with vanishingly small distortion. The human ear cannot detect distortion under about a per cent or so.
The big practical improvement of the last 10 years has been the switch to digital signal processing. Even the best of tumtables suffer from audible distortion, particularly at the record/needle interface. Cassette players have problems all of their own. But in both cases new technology threatens to completely eliminate any audible imperfections. The record is now being replaced by the CD, and the cassette will be replaced by digital audio tape (DAT) within the next few years.
Even so, the result will not be perfection. Speakers are the weak link. The one area where real progress is sadly lacking in high fidelity products, and where it is badly needed, has been sidelined by the glamour technologies.
It has proven remarkably difficult to solve the problem of speakers. Over the years, numerous altematives have been tried to improve frequency response, power transduction, and distotion. They have ranged through electrostatic speakers, passive radiators, vented and folded enclosures and so on. Even more extreme measures have been taken with the introduction of sub-woofers and squarkers in separate boxes.
In spite of all the effort, the transfer of electrical energy to audio energy remains a difficult operation. Much of it is reducible to science, and very complicated science too, as an article this month demonstrates (the EII-1409, p 50). But one also has the impression that much of it reduces to black art. This timber is held to be better than that timber, this shape better than that, this brace position better than that brace position, and so on.

If's the hallmark of an inexact science. To a limited extent this is excusable, since the final result, the sound of a speaker is a subjective experience. This or that is alleged to sound 'warmer' or 'crisper'. But as the great CD debate has proved, it's also a matter of education. CDs are objectively better than records on a number of important grounds, but many people find them objectionable, presumably because they don't sound right. An ear can be educated to like a certain amount of distortion, and equally to find it intolerable.
One way to turn an inexact science into an exact one is to throw some money at it. If the hi-fi makers took some of the money they spend uselessly reinventing wheels in amplifiers or chasing microscopic degrees of distortion, and spent it on fundamental research into loudspeakers, the nett result could well be genuine improvements in high fidelity, the first for a while. We need them.

Jon Fairall
Edifor

EDITOR

Jon Fairall B.A.
ASSISTANT EDITOR
Mary Rennie B.A.
EDITORIAL STAFF
S. K. Hui B.Sc. (Hons), M.Eng.Sc. MIEEE, MIREE

Terry Kee B.Sc. (Hons), M. Phil.
dRaughting
Bruce Mennie
DESIGNER
Clive Davis
ARt Staff
Ray Eirth
PRODUCTION
Mark Moes
ADVERTISING MANAGER
Peter Hayes B.Sc
ADVERTISING PRODUCTION
Brett Baker
SECRETARY
Naomi Lenthen
ACOUSTICAL CONSULTANTS
Louis Challis and Associates
RF CONSULTANTS
Associated Calibration Laboratories
PUBLISHER
Michael Hannan
MANAGING EDITOR
Brad Boxail
head office
180 Bourke Road, (PO Box 227, Waterloo, NSW 2017)

Alexandria, NSW 2015
Phone: (02) 693-6666.
Telex: AA74488, FEDPUB.
Federal Facsimile: (02) 693-2842.

ADVERTISING

New South Wales \& Queensland: Peter Hayes, Mark Lewis, The Federal Publishing Company, 180 Bourke Road, Alexandria, NSW 2015. Phone (02) 693-6666. Telex: AA74488 FEDPUB
Victoria and Tasmania: Virginia Salmon, The Federal Publishing Company, 23rd Floor, 150 Lonsdale Street, Melboume, 221a Bay Street, Por Melbourne, Vic. 3207. Phone (03) 646-3111 Facsimile: (03) 646-5494. Telex: AA34340, FEDPUB.
South Australia and Northern Terftory: Dane
Hansen, C/- John Fairfax \& Sons, 101-105
Waymouth Street, Adelaide, 5000 . Phone (08) 212-1212. Telex: AA82930
Western Australia: Estelle de San Miguel, C/John Fairfax \& Sons, 454 Murray Street, Perth, WA 6000. Phone: (09) 481-3171. Telex: AA92635 New Zealand: John Easton, 3rd Floor,
Communications House, 12 Heather Street, Pamell, Auckland. PO Box 8770, Symonds St 37-291. Telex NZ63122. Phone 79-6648 (Auckland).
Brtain: Peter Holloway, C/- John Fairfax and Sons, 12 Norwich Street, London EC4A IBH. Phone 353-9321
USA: Frank Crook, Sydney Moming Herald. 21st Fioor, 1500 Broadway, New York, NY 10036. Phone 398-9494
Japan: Bancho Media Services, Dai Ichi Nisawa Building. 3-1 Kanda Tacho 2-Chrome, Chiyoda-Ku Tokyo 101. Phone Tokyo (03) 252-2721.

ELECTRONICS TODAY INTERNATIONAL is
published and distributed monthly by the Electronics Division of the Federal Publishing Company Pty Limited, 180 Bourke Road, Alexandria, NSW 2015 under licence from Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited Printed by Hannanprint, Sydney. Distributed by Màgazine Promotions. Maximum and recommended Australian retail price only. Registered by Australia Post, Publication No NBP0407. ISSN No 0013-5216.
COPYRIGHTO 1985, Double Bay Newspapers Pty Limited, General Newspapers Pty Limited and Suburban Publications Pty Limited (trading as "Eastern Suburbs Newspapers").

Copy

protection for recordings A major conflict of Interest has arisen over the provision of anticopy coding in pre-recorded records and cassetfes. The Japanese electronic glants want to do without the decoding devices in order to promote sales of digital audio tape and recorders, cassefte recorders and blank tape sales. On the other hand, the recording companles want new technology to prevent illicit recording, which is robbing them of millions of dollars every year.
The system works by
removing a band of frequenremoving a band of frequencies. The notch is 300 Hz wide. 60 dB deep and centred on 3.84 kHz . Circuitry built into a recorder recognizes the notch and stops the machine from recording. Engineers think that the system will work, but some doubt the claims that it is "effectively inaudible".
If the proposal to adopt Copycode, as the system is called, is adopted, records will in future be coded by passing them through a series of sharp electrical filters. Apart from the question of whether the sensitive ear will detect the missing frequencies, the sharp filters could introduce phase shitts into other frequencies. This could cause other odd audible effects, especially in stereo. CBS, which invented the technique, insists that the
worries are unfounded, but the company has failed to demonstrate the technology to prove otherwise.
The record industry association of America and the Intemational Federation of Phonogram and Videogram Producers has already had one meeting with the Electronic Industries Association of Japan (EIAJ). CBS has also been on a major sales drive. demonstrating the new technology to EMI engineers in London and to British government scientists.

Govermments are involved because it may only be through the intervention of governments that the EIAJ will be compelled to provide decoding equipment. Record companies are lobbying the EEC and US govemments to impose a 35% import duty on devices without decoding.

ERS-1 progress

The design of the Australian contributions to the ERS-1 European radar satellite is progressing with the development of a Fast Fourier Transform chip for the synthetic aperture radar (SAR). The work is being done by the CSIRO Division of Radiophysics, Computer Sciences of Australia, (CSA) and Austek Microsystems of Adelaide.

Over the past 10 years, Radiophysics has built up considerable expertise in real time signal processing. Most applications require the processing of a large amount of data, and of doing it very quickly. This leads to a requirement for powerful algorithms and scale integration of the resulting hardware.

This work was initially directed towards the needs of radio astronomy and later to the microwave landing system Interscan. More recently, a wider need for such techniques has become apparent.
The first VLSI chip developed at Radiophysics was a correlator chip for use in the Australia Telescope. The chip was co-developed by Austek Microsystems. Some 5000 are required for the Australia Telescope receiver system.
The expertise so developed has now been uti-
lized for the design of a Fast Fourier Transform (FFI) chip to operate some three to five times faster than any processors currently available. The chip will complete a 256 point transform in 0.2 ms and will be capable of operation in a variety of modes. It consists of approximately 90,000 transistors.
The design has been licensed to Austek Microsystems which sees a worldwide market. Austek has been instrumental in refining the specifications of the chip.
Possible applications include: spectral analysis for speech, sound, and vibration; high speed filtering for use in telecommunications, radar, and consumer electronics; and image processor modules for image coding, enhancement, and analysis. One of the first applications planned is a high-speed processor for data from the ERS-1 synthetic aperture radar (SAR) satellite.
In early 1985 the CSIRO Division of Radiophysics was approached by Computer Sciences of Australia (CSA) to advise on the possibility of constructing a special-purpose processor for SAR data from the ERS-1 satellite. The sidelook radar of the ERS-1 satellite will be capable of a resolution of 25 m on the ground and will open an im-

portant new remote sensing window for Australian users.
Initially, the aim was to use the technology and VLSI correlator chip designed for the recelver system of the Australia Telescope project. The processing requirements of a large synthesis radiotelescope have much in common with those for SAR, both in terms of scale and processing principles. It has since become apparent that a new development within the same Division of CSIRO for a chip to perform Fourier Transforms at very high speed would allow an even more cost-effective processor to be built.
Further development of the design for such a processor has been partially supported by a contract to CSA under Phase B of the DITAC-funded ERS-1 upgrade to the Australian Centre for Remote Sensing (formerly the Australian Landsat Station).
The design goal is to produce a processor capable of operation at near real time rates, while allowing an opportunity for Australian industry to gain valuable expertise. The performance would exceed that of a Cray II supercomputer for a fraction of the cost. World markets for such a processor have been estimated at \$70m.

Efforts af the Division of Radiophysics have concentrated on algorithm development for SAR processing and innovative structures to best employ the Fourier Iransform chip. Significant improvements on published SAR processing methods have been found possible. Detailed simulations of the proposed processing methods have recently been completed on both computer-generated SAR data and data from the ill-fated SEASAT satellite. These simulations have verified the accuracy and speed of the proposed methods.
The SAR processor as envisaged has not yet been subjected to a detailed design process. Nevertheless, it is clear that the processor will be capable of high performance while still retaining a modular structure. The modular structure would allow new versions of the processor to be configured for other satellites or requirements. Requirements such as these for precision processed ERS-1 data might also be handled with the same processor as a basis. The processor might also in the future form part of a complete airbome remotesensing radar system capable of imaging in real time.

The more successful Ariane 1 shown here on its final test flight (courtesy COSSA).

Ariane still down

Arianespace has announced further delays to the resumption of flights by the troubled Ariane launch system, which Is due to carry Aussat III into orbit next year.

Arianespace had hoped to begin launching again in February, but difficuities in understanding the ignition system in the cryogenic third stage booster has meant that engineers have been unable to give the rocket the all clear.
The trouble stanted back in May 1986, when the third stage falled to function properly. Controllers destroyed the rocket four and a half minutes into a flight from the Kourou rocket range in French Guyana. The rocket's payload of communications satellites was destroyed as well. The Incident happened In the middle of a particularly black period for the space industry, with major fallures of all launch vehicles including the shultie and other expendable US launchers.

Engineers reconstructing the incident believe that the third stage of the Ariane ignited, but then went out like a damp squid about 0.12 sec onds afterwards. This prompted a major study of
the ignition conditions of the revolutionary cryogenic motor. It was made by the French company Socletee Europiene de Propulsion, and led to a complete redesign of the ignition system. It has now undergone 23 simulated high altitude firings on a test bed near Paris. However, engineers have now decided to initiate several new tests which will occupy the next few months.

In fact, they admit that even when these tests are complete, they will still not completely understand the ignition process. Arianespace has initiated a research program to get this information, but the knowledge will only be useful by the time of the Ariane V launch in 1990.
People in the space business believe Arianespace is being exceptionally cautious in its approach to the next launch. This is hardly surprising. After a string of failures, insurance costs are now making many a communicatlons company think twice about the viability of satellite communications systems. Aussat is budgeting more than one third of total launch costs for insurance alone.

SIEMENS

SIPMOS saves grams, joules and bucks

Siemens new power transistors are a boon for designers.

By using SIPMOS ${ }^{\text {a }}$ power transistors, you can develop systems with smaller, lighter power supplies. And which are more economical and reliable. Furthermore, SIPMOS transistors are extremely fast switching and easy to parallel, with no secondary breakdown.
Most importantly, these advanced features increase the design possibilities for switch mode power supplies, asynchronous motor controls, audio amplifiers, DC convertors, proximity switches and inverters.
Innovative SIPMOS components arise from discoveries at the very forefront of technology.

The range includes:P channel and N channel.Small signal transistors including surface mount types.FRED FETS with fast recovery reverse diode.SMART FETS.
And other superior SIPMOS components are currently being developed by Siem...ns higher technology.
For more information, contact your nearest Siemens office.

Siemens Ltd.
; 44 Church Street, Richmond, Vic.
Melbourne: (03) 4207318 Sydney: (02) 4368730 Brisbane: (07) 3699666 Perth: (09) 3620123

Distributors

Victoria: Promark Electronics (Vic) (03) 8781255
Queensland: ECQ Electronics (07) 3765677

New South Wales: Nexus Electronics Pty. Ltd. (02) 4395800

Promark Electronics Pty. Ltd. (02) 4396477
South Australia: Auslec (08) 2691688
Protronics Pty. Ltd. (08) 2123111
Western Australia: Reserve Electronics (09) 3289755

NEWS DIGEST

Express yourself

As reported in last month's ETI, SBS television satellite transmissions have now been encoded by the DOC.
Wally Shand, General Manager of Videosat, one of the companies trying to sell satellite TVRO systems in the outback, is urging Australians to write to the Minister of Communications or their local MP to express their dis-
gust on the encoding of a public funded broadcaster.
Shand says "to give credit where credit is due, the recent World Cup soccer was superb, and other major and unencoded sports programs in the future will no doubt be of a similar standard. However, SBS is not a commercial station. It is funded by your tax dollar."

PENNANT CONSULTING SERVICES

Technical Staff \& Recruitment Consulting Services
(A part of the Mcliwraith McEachem Group)
Contact: Brian Adams TEL 230-1999
If YOU are a "TECHNICAL" person register now with PENNANT CONSULTING SERVICES the NEW High TECHNOLOGY consulting agency. Talk TECHNICAL to TECHNICAL people like YOURSELF about PERMANENT or CONTRACT positions.
 s 200

SPOT THE MISTAKE TO THE FIRST CORRECT COUPON DRAWN ON MARCH 2OTH, 1987

MAIL TO PENNANT CONSULTING SERVICES ATTN BRIAN ADAMS GPO BOX 2692 SYDNEY NSW 2001

Please find enclosed my correction to the above circuit
NAME \qquad PHONE
\qquad

Comment on proposed CB change

Public comment on a proposal to improve the CB radio service has been invited by the Minister for Communications, Michael Duffy.

At present CB users can operate on either $A M$ or SSB transmission modes in the 27 MHz band
The proposal is to phase out AM operations as follows: from July 1, 1988 cease type approval testing of $C B$ equipment using AM; and from July 1. 1993 withdraw existing type approvals of CB equipment using $A M$, in effect ceasing the issue of new licences for AM from that date.
Existing licensees would be able to relicense approved AM equipment owned in 1993 for as long as it remains within the old specifications.

Mr Duffy sald phasing out AM operations would have several advantages. It would reduce interference to home entertainment equipment such as television sets, VCRs
and stereos. Interference to other users of radiocommunications equipment would also be reduced, and it would lead to more efficient use of the spectrum (one AM channel occupies the same amount of spectrum as two SSB channels).
"Ending AM operations would therefore mean in effect that more channels will become available to CB users," Mr Duffy added.
Mr Duffy also said that any decision on AM would not prejudice any wider review of the CBRS at a later data.
The Department would be consulting with interested persons and organizations about the phasing-out proposal. Comment should be forwarded to The Assistant Secretary, Operations Branch, Radio Frequency Management Divislon, Department of Communlcations, PO Box 34, Belconnen, Act 2616.

Star grant to uni

The Australian Research Grants Scheme has allocated $\$ 500,000$ to the University of Sydney to begin construction of a 640 m baseline high-resolution stellar interferometer.
The new instrument will be a larger version of a prototype built at the university's Chatterton department of astronomy over the past 15 years. It will be able to measure the apparent diameter of 50,000 stars brighter than 8th magnitude, with an accuracy of 2 per cent or better. The technique has to date been used to measure the apparent diameters of only about 30 stars, mostly very bright, to within an accuracy of 5 per cent.

Measurement of the apparent size of stars whose distance is known will allow fundamental scales of stellar diameters and luminosities to be established. And observations of close binary stars can give all the parameters of the system including their orbits and temperatures. The interferometer could also help to solve problems such as mass loss, by observing how a star's envelope ap-
pears to grow at longer wavelengths, and stellar rotation, by observing the flattening of the poles.
The essential technology for the interferometer telescope has been proved in the prototype developed by the Sydney University team, under Dr John Davis. This prototype, which will form the heart of the new instrument, has an 11.4 m baseline with a steerable mirror at each end. The mirrors capture the light from a star and reflect it to a central optical bench where the beams are combined and interference fringes can be observed.
The design of the new interferometer is a development of Michelson's classic interferometer, and operates on the principle of amplifude interference. Amplitude interferometry previously has not been a workable option because of blurring caused by atmospheric 'seeing' effects.
The half million dollar grant to the university marks the beginning of the government's policy of concentrating grant funds into fewer but more highly rewarding development projects.

Breakthrough in keyboard

A Melboume-based computer company has developed a major breakthrough in keyboard technology it claims will dramatically widen the scope and application of computers and computer-based systems.
The company, Pulsar Electronics Pty Lta, has developed the Slimline membrane keyboard - a keyboard of 2 mm thickness that does not require
expensive tooling, or electronics, and which can be used in vitually any electronically hostile environment.
The adhesive backed keyboard which is suitable for IBM PCs, can be affixed to any flat surface such as a desk or wall. It has no moving parts to fail and is highly resistent to climatic conditions, moisture and abrasion.
"We believe it has a life ex-

Australian MSM wave technology

The Federal Government has released a report detailing the success of Australian researchers using special high frequency wavelength technology in fields ranging from industrial applications to navigation, communications and electronic warfare.
MSM stands for 'millimetre and sub-millimetre wave technology' and covers radiation of wavelengths from about 0.05 mm to 15 mm or, In terms of frequency, about 6000 GHz down to about 20 Ghz . This very broad range has many established and emerging applications due to properties which combine some advantages of both optical and microwave technologies including high bandwidth and spatial resolu-
tion, together with good penetration under adverse atmospheric conditions.
Australian R\&D in MSM is impressive and at the forefront in several areas. There are about 60 degreed MSM R\&D researchers in Australia distributed through about 18 establishments. The report identified about 50 R\&D projects, many of them being of a cooperative nature between establishments.

However, the scale of private sector MSM R\&D in Australia is almost non-existent.

Manufacturing productivity report

The results of four studies concerning productivity growth in Australian manufacturing dur-

technology

pectancy 10 times greater than conventional keyboards, and would be a must for many industrial controller type applications," said Pulsar's Managing Director, Phillip Delacretaz.
'It could well make 'push buttons' for such applications as cigarette machines, food dispensers, and electronic bank tellers redundant," he added. "Use of the Slimline
can eliminate one of the major maintenance items in these sorts of machines.
"The possibilities for the handicapped spring readily to mind as it is possible to make a key the size of a fist and lay the keys out in any order or format such as a circle or an 'L' shape."
Mr Delacretaz said that while the keyboard was a litthe outside the company's mainstream of research and development, the company had taken it on 'as a bit of a challenge'.
"We needed such a product to meet specifications on a system for which we had been contracted and couldn't find its equivalent anywhere around the world. When we contacted a number of the leading keyboard manufacturers they said it was impossible.
"This got our backs up a little, and we had the germ of an idea on how it could be done, so we did it. It took us 18 months - the chip design slowed us down - but we did it."
Mr Delacretaz said the company has had an opportunity to examine the export potential of the product and it appears very good.
ing the postwar period have been published in a Bureau of Industry Economics research report.
The first study, which examined the relationship between the rate of growth of production and the rate of growth of productivity, indicates that if future productivity trends follow those of the 1960s and 70 s then an average annual growth rate of more than 4 per cent in the volume of production will be required to maintain or increase employment in the manufacturing sector.

The results of the second study indicate that technological progress during the postwar period was predominantly biased towards saving labour. It is estimated that approximately half of the gains from productivity growth over the period were passed on to the consumers of manufactured products via lower rates of price increase. The remainder of the productivity gains were distributed directly to labour and capital in the form of wage or profit increases.

Offsets opportunity

The Minister for Industry, Senator John Button has announced that the Govemment's new Civil Offsets Program had achieved new commitments to industry development of $\$ 500$ million and was proving itself a most effective way of bringing new technologies and new skills to Australian industry.
"In the eight short months since the revised offsets policy was put into effect with its new emphasis on the development of export oriented, competitive capabilities in Australian industry instead of work and part production related to a specific contract - there has been a surge of new high technology offsets commitments entered into by suppliers," he said.
"As well as the introduction of the Pre-qualified Offsets Suppliers Scheme (PQOSS), which encourages long-term offsets activities by suppliers, there are also substantial forward commitments by companies involved in the program to build on and enhance their current work pro-
grams in Ausiralia.'
These activities include software and other research and development; overseas marketing of indigenous high technology products and services; procurement of high technology Australian products.
Senator Button said the program was confounding its critics in the way it was involving industry at all levels. Companies were now quick to accept the challenge of new opportunities.

Electronic Act concerns SW listeners

The Electronics Communication Privacy Act which was recently presented in the US will have no immediate effect on radio hobbyists but could provide the basis for radical changes in access to radio signals.
In a debate which lasted nearly nine months, the radio listener's point of view was put forward at a hearing before the US Congress by Robent Horvitz on behalf of the Association of North American Radio Clubs (ANARC).
The intention of the legislation is to protect users of the mobile telephone system from unwelcome ears, and early drafts of the Act even went so far as to outlaw shortwave receivers. This caused alarm amongst radio amateurs and enthusiasts who proclaimed their right to monitor transmissions which has been legal since 1934.
At the moment there are two bills in existence - one Senate and one House of Representatives bill. It is expected that the President will sign the Senate version.
The new law establishes penalties for unauthorized reception of centain radio transmissions and recognizes radio and wire under a new legal category, 'Electronic Communications', and not as part of the public domain. The bill states that all electronic communicators have the right of privacy unless they meet certain conditions where they are not protected.

- Arthur Cushen

Mr Bob McKinnon, Chief General Manager of Telecom Australia, presented the first ever Approved Inspection Status certificate to SAGEM, the French manufacturer of screen-based telex terminals used in the Australian network.

The AIS is a quality assurance award provided by Telecom when it has confidence in the company's ability to deliver goods which conform to Telecom's standards as well as those of Australian Standard AS 1823.

The certificate was presented to Mr Philippe Odouard, SAGEM's Australian Manager, in front of a distinguished gathering which included Mr Ken Douglas, Telecom State Manager; Mr Philippe Jeanmaire, SAGEM Manufacturing Manager; Mr Guy Rouanne, Vice President of SAGEM and senior officers and staff of SAGEM and Telecom.

Easinet scores

Easinet, the Melboume based computer company, has been awarded the highest possible grant of $\$ 100,000$ under the Australian Trade Commission's new High Technology Exporter's Scheme.
The High Technology Exponter's Scheme, established only last year, is to assist Aus-tralian-owned high technology firms in developing viable export markets. At present, the scheme is limited to companies which have already received investment capital recognition from either a registered Management Investment Company (MIC) or the Australian Industry Development Corporation (AIDC).
The High Technology Exporter's Scheme was first mentioned in the Prime Minister's address to the nation in

NOTES \& ERRATA

Project 611, MIDI matrix, September '86: All output ports are incorrecily labelled with pins 4 and 5 transposed. All pin $4 s$ are commoned together and pulled up via R21. Pin 5 is connected to the output buffers Project 1412, Speaker switch, February '87: The pc board artwork was incorrectly printed showing component side rather than copper side To rectify: reverse the negative of the artwork.

June last year as part of Govemment measures to improve Australia's continuing balance of payments problems.

The High Technology Exporter's grant will enable Easinet to improve its overseas market position - a market position made possible, in part, by the 1985 investment injection from the largest MIC, BT Innovation. At the time, the capital investment from BT Innovation was the largest single investment from the MIC initiative.
MICs were established in conjunction with the Federal Govemment to raise tax deductible funds from the Australian public for investment in rapid growth Australianowned companies like Easinet.

Digital phone study

Telecom's Research Laboratories have awarded a research contract to Philips Communication Systems in Melboume for a two-and-ahalf year study of future digital mobile radio telephones.

Telecom is currently in the final stages of pulting its new cellular mobile telephone service into action and Philips has a contract to supply mobile terminals for this system. However, Telecom expects its capacity to be fully utilized within 10 years.

The new contract with Philips is to answer the future need for greater capacity, and a wider range of services. Both Philips and Telecom are currently studying suitable successors such as digital mobile cellular telephone systems. A major focus of the study will be on spectral efficiency - trying to fit the maximum economically feasible number of customers into the somewhat limited available radio band.

The considerable worldwide resources of Philips, particularly those of the research centre for digital mobile telephony in Nuremburg, West Germany, are being called upon to assist in the study. Work already carried out at the Nuremburg centre is at the leading edge of intemational developments in this field. As part of the project, Telecom hopes that significant technology transfer will occur, thus achieving the second aim of the contract, namely, to enhance the expertise of Australian industry.

Digital mobile radio systems are anticipated for major cities in the mid-1990s. These systems will provide telephone and digital communications, probably in the 900 MHz or 1.5 GHz bands. Terminal types will include pocket-style, in-car, and book-sized keyboard plus screen. A large range of digital services will be available (telex, electronic mall videotex, data communications, etc) and they should be compatible with the new Integrated Services Digital Network (ISDN) planned for the fixed network. Low costs should appeal to a mass market. Some applications
could involve terminals in vehicles, whilst others could involve pocket-style terminals for in-office/factory applications. With encryption, excellent privacy should be possible.

Telecom's Langmore submission

Telecom has called for improved understanding of the role of telecommunications in economic growth and development. It says technological obsolescence in telecommunications infrastructure may have even more important implications to Australia's economic prosperity than physical obsolescence in other parts of the public infrastructure.
In a submission to the Langmore inquiry into Australia's public infrastructure, Telecom argues the roie of telecommunications becoming even more critical to economic growth and development.
"Over the next two decades, the merging of the technologies of computers and communications will reshape the social, industrial and business processes in the world.

It says the convergence of the communication and computer industries has already facilitated the massive expansion and growth of the information industry which has revolutionized the way people live and do business intemationally.
"It has also created new relationships involving technology transfer and changing pattems of trade. Indeed, today the major growth area in intemational trade is 'services' and its primary vehicle is instantaneous, worldwide communications."
"Any country failing to resource the necessary telecommunications infrastructure will place its people, its industry and its business ventures in a position of substantial disadvantage in relation to those countries rich in advanced telecommunications services," the submission says.

LABORATORY POWER SUPPLIES

APLAB offer a complete range of regulated DC bench/rack power supplies combining high precision and regulation capabilities with continuously adjustable outputs.
Designed with single, dual and multiple outputs, these power supplies can be used in either constant voltage or constant current mode of operation.

Standard models include:

SINGLE OUTPUT

OUTPUT: Output VOLTAGE: Current $0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 30 A $0-70 \mathrm{~V} 0-2 \mathrm{~A}$ to 10 A

DUAL OUTPUT MULTIPLE OUTPUT
$0-30 \mathrm{~V} 0-1 \mathrm{~A}$ to 2 A
$0-30 \mathrm{~V} 0-2 \mathrm{~A}$ to 5A

SCIENTIFIC DEVICES AUSTRALIA PTY. LTD.
VIC. 2 JACKS RD. SOUTH OAKLEIGH. 3167 PHONE: (03) 5793622 TELEX: AA32742 NSW: 559A WILLOUGHBY RD.. WILLOUGHBY 2068

PHONE: (02) 952064 TELEX: AA22978
S.A. 31 HALSEY RD. ELIZABETH EAST. 5112

PHONE: (08) 2556575 TELEX: AA88125

ADVERTISING INFO No. 5

5

STAR PRINTER WINNER

The lucky winner of the fabulous Star printer competition we ran in our last November issue was G. Carlson from West Brunswick in Victoria. He received his booty from Bill Lloyd of Genisis Systems.

Is Darwin the hole at the end of the Earth?

Speculation has been growing recently that the tropics north of Darwin form a huge interchange between the upper and lower atmospheres. If so, this area could be the main spot on Earth for the transfer of damaging atmospheric pollutants, particularly chloroflurocarbons (CFC), into the stratosphere.
CFCs are particularly dangerous because they react with ozone $\left(\mathrm{O}_{3}\right)$. Ozone forms a barrier against harmful ultraviolet rays from the sun. As yet, no one knows the mechanism that carries the chemicals into the ozone layer.
A month-long research project has been conducted in an attempt to find out. The project, costing $\$ 10$ million, is called the StratosphereTroposphere Exchange Project (STEP) and involves 50 scientists from the US, Australia and China.

The key experiment will test a theory proposed by Edwin Danielsen, a meteorologist at NASA's Ames Research Centre in Califomia. According to Danielsen, chemicals and water vapour are transported up to the stratosphere inside
immense cumulonimbus clouds. These are anvilshaped thunderclouds which straddle the tropopause, the upper boundary of the troposphere, the layer of the atmosphere where weather occurs. In the tropics near Australia, the tropopause occurs at about 17 kilometres up.

The tops of the clouds are chilled by radiative cooling into space, while the lower regions are warmed by heat from the Earth. The difference in temperature creates convective currents which carry air, water vapour and chemicals - including pollutants - upwards into the stratosphere.

Fifteen instruments were built to test the theory. They were flown aboard a lockheed ER2 research aircraft, a civilian derivative of the U2 spy plane.
The plane flew from Darwin to altitudes of at least 20,000 metres to measure humidity and air motion within the clouds.

Two other major experiments were carried out as part of the project. The United States National Oceanic and

Atmospheric Administration undertook a series of experiments aimed at finding out how tropical clouds heat the atmosphere.
The Bureau of Meteorology used radio-equipped weather balloons to study monsoon rains. A research boat from China will launch some of the balloons and provide radar measurements of storm pattems.

It is expected that when analyzed, the data from the US, Australian and Chinese teams will show how important Darwin is as a sink for pollutants.

QUASAT mission

The CSIRO Division of Radiophysics is participating in Phase A studies for QUASAT (QUAsar SATellite), a proposed orbiting radiotelescope that would further enhance the capabilities of the Very Long Baseline Interferometry (VLBI) observational technique. This technique has been used in radio astronomy over the past 20 years or so, and is responsible for many of the great advances made in our understanding of the Universe over that period.
The resolution of Earthbased VLBI is limited by the physical dimensions of the planet. It has therefore been proposed that the angular resolution of radio interterometry might be extended by using radiotelescopes in space. The QUASAT project, originally proposed by NASA and ESA, would use a dedicated orbiting observatory for such a purpose.

During 1986, Australia was involved in not only the QUASAT mission studies, but also participated in an important technical feasibility study. In July and August, a US, Australian and Japanese team successfully tested the orbiting VLBI (OVLBI) concept by temporarily using an existing spacecraft as an orbiting radiotelescope antenna. The spacecraft used was TDRS E, the first satellite in NASA's Tracking and Data Relay Satellite System.

TDRS E was linked with the 64 m antennas at Tidbinbilla, Australia and Usuda, Japan to make VLBI observations of quasars. Baselines of up to 1.4 Earth diameters were achieved.
Australian participation in the QUASAT project has great potential to benefit Australian industry as well as Australian science. If some of the science is done here, then it will open up opportunities for Australian industry to tender for construction of parts of the new satellite.
More important for Australian industry is that much of the electronics and fabrication of the proposed orbiting radiotelescope would be similar to that of a communications satellite. Many Australian companies would therefore have a chance to get vital experience in the growing industry of making satellite sub-systems.
To help Australian industry to start making 'space qualified' sub-assemblies is one of the main reasons that both the CSIRO Division of Radiophysics and COSSA are pursuing an active role in the project.
Dr Dennis Cooper, Assistant Chief, CSIRO Division of Radiophysics, recently attended meetings in London and Moscow to evaluate Divisional and Australian involvement in the European QUASAT and USSR Radioastron OVLBI satellite proposals.
The QUASAT meetings included a joint science and 'Tiger' team review of a reduced scope QUASAT mission in the wake of the American shuttle program setback and a one-day seminar on the scientific objectives of space VLBI. A launch in 1995 is targeted. Australia could be involved in both bus structure and scientific payload.

In Moscow, a two-day meeting presented to potential foreign collaborators an overview of the USSR space VLBI proposal, due for launch in the 1990-92 time frame. The extent of foreign cooperation in the development of the science package was also discussed. The CSIRO Division of Radiophysics has been invited to supply parts of the 18 cm receiver system.

 RITnin

 ใร

Something for everyone

DB CONNECTORS Cat. No. Description Price
P10880 DE9PMate

$\$ 1.95$ P10881 DE9S Female P10882 DEgC Cover P10884 DE9P RA Plug $\mathbf{\$ 3 . 6 5}$ P10885 DE9S RA Skt $\$ 4.25$ 10890 DA15P Male $\quad \$ 2.10$ 10891 DA15S Female $\$ 2.25$ 10892 DA15C Cover $\$ 1.25$ P10894 DA15P RA Plug $\$ 4.25$ 10895 DA15S RA Ski $\$ 5.00$ | P10900 DB25P Male | $\$ 2.75$ |
| :--- | :--- | 10901 DB25S Female $\mathbf{\$ 2 . 9 5}$ 1090' DB25S Female $\$ 2.95$ 10004 De25P AA 54.5 10905 De25s AA 54 55.95

RELAY AND BASE Can carry 10 A at 28 BDCD or 5 A at Mounting Socket with screw rerminals Great to school projectis and demonstrat.ons switching DC woth contacts parallel up to 20 A can oe switched
Cat $\$ 14074$

ITRASONIC
ULTRASONIC
TRANSDUCERS
Oesineo to transmit at a 0 kHz
(Li 19990 , and recelve at 40 kHz Hz (L19991) mith up to $20 V 1 P$ on ite transmmiter These units cantibe heard and so are sjeal lor TV remote
contiols water level delectors contiots water lever delectors and inlormation carrers as they can be either pulsed or used in the ontinuous wave mode
purposes
Maximum input Votrage: 20 V rms Cenire Frequency (kHz): 40 . 10
Sound Pressure
(evel iov RMS: ound Sensitivity -65 min (dervubar) min.
Bandwidth (kHz):
Transmit 40 (at 10008)
Recever 50 (at 730 B$)$
mpedance:
Trassmit 500
Recenver 5000
Cat L19990 (Transmutter) $\$ 4.75$ $\begin{array}{ll}\text { Cat L19991 (Recelver) } & \$ 4.75\end{array}$

SPECTROL MULTIDIALS Model 16-9-11 (9")
Cat R14400
$\$ 26.95$ Model R1440, (9" $\times 175$ "Rect) Model 1-1-1.11 (182")
Cat RIS4io \$46.95

[^0] Equiv (Bourns 3006) R14200 10R R1421020R R14330 20 K
R142050 R1422050R R1431050
R1423010 R14

R14240200R R 14320100 K $\begin{array}{ll}\text { R14250 } \\ \text { R1400R } & \text { R14330200K } \\ \text { R14340 }\end{array}$ $\begin{array}{ll}\text { R14260 } 1 \mathrm{~K} & \text { R } 143501 \mathrm{M} \\ \text { R14270 }\end{array}$ R142702K
R142805K
1.9
S1.95 $\quad \begin{array}{r}10.75\end{array}$

ECONOMY 4 CHANNEL MICROPHONE MIXER Its size and (MM1) is size and simplicity makes this
mixer very porable and easy operale
SPECIFICATIONS

- 4 low impedance 600 unm
- Indirioual gand control tor each microphone
- Master volume contro
- inputs.Oulputs - 63 mm mono
- OC operated (9 V battery only) - Outpui impedance 15 kohm - Srgnal noise ratio 55dB - Frequency response 20 Hz to 20kHz plus or minus 2018
- Dimension $948 \times 46 \times 86 \mathrm{~mm}$ - Torque varlable range 1.22 ab - Ings, sensilivivy 1 m , in -THO OO1 ${ }^{\circ}$ Cat Alzo01

UNIVERSAL MIXER WITH CUE CONTROL (MM3) - Microphone inputs 2 high or low impedance.

- Two stereo phono inputs magnetic or ceramic
- 1 stereo line input for tape or tuner
- Cue function with LED indicator for each inpul
- Tape recorder output connections
- Dual VU meters to monitor output and cue level
- Mono/stereo mode selector
- Battery test button to check their condition.
- DC or AC adaptor operation
input Sen sitivity: Mric low 07 mV at 600 Onm M chigh 35 mV at 50 kohm
Phono Mag 25 mV at 50 k ohm Phono Cer 150 mV al 100 k Ohms
Tape Tuner: 150 mV 50 k ohms
SN Ratio: More than 55 dB
T.H.O. Less than O 5°.

Fiequency Response: $20 \cdot 20 \mathrm{kHz}$, 2dB
Recording Output: 120 mV
Power Source: 9 VDC (PP100 9)
Dimensions $265 \times 195 \times 70 \mathrm{~mm}$
Dimensions. $265 \times 195 \times 70 \mathrm{~mm}$
Welght: 18 kg
RRP \$199
OUR PRICE $\$ 179$
DCDC CONVERTER Fail sale crcuin protects aganst
Under dash mouning
$-138 V D C$ mput
-75912 VCCoutp
75912 VDC output
Current $75 \mathrm{~V}(900 \mathrm{~mA})$
$9 v(12$ ampl.
$12 V(12 \mathrm{amp})$
-2 metres cord with 4 plug adaptor
Cat A15054
$\mathbf{S 2 1 . 9 5}$

(2)

CANNON TYPE
CONNECTORS
1.9

109603 PIN LINE MALE
 P10962 3 PIN CHASIS MALE P1096. 3 PIN LINE FEMALE
$\mathbf{\$ 4 . 5 0}$.................... $\$ 3.90$ S10966 3PINCHASI............. $\$ 3.90$ \$4.95 $\$ 3.95$

SPRING RETURN TOGGLE SWITCHES
SPDT COSH1012 Sa NOW DPDT Cal $511022 \$ 250 \$ 2.25$

QUALITY LEDS Cat. No. Description Cat. No. Description 2101403 mm Red Z10143 3mm Yellow 2101433 mm Yellow 2101453 mm Orang 2101505 mm Red 2101515 mm Green

at Rod Irving Electronics!

TELLECOMMUNICATIONS AUSTRALIAN STYLE ADAPTOR CABLE - Lengin 10 metires Cat. Y16015

U.S. TELEPHONE EXTENSION CABLE U.S. piug to 2 U.S sockels Cal Y 16028

TELEPHONE ADAPTOR Lengit 10 cm to US socke Cat Y16026

TELEPHONIE CURL CORD -USplug to US plug Replacement hand Cat Y16023
$\$ 6.95$

TELEPHONE
EXTENSION CABLE UNIT Allows 15 melres ol telepphone into a protable storage contaner The reet sis on a llai base and has a hancle to wind cable back on to "I deal tor the workshop. around the house, otice, poot etc
Cat Y 16013
\$22.95

HIGH EFFICIENCY RADIAL FIN HEATSINK Black anodised mith a thck Dase dissipate large amounts of heat to maximum efficiency Designed by Rodiving
$105 \times 30 \mathrm{~mm}$ Cat h 10520 \$ 3.50 $105 \times 75 \mathrm{mmC}$ Cat H10525 \$3.50 105x 100 mm Cat H10529 \$ 4.90 105x 14 Dmm Ca: H10534 $\mathbf{S} 6.50$ $105 \times 150 \mathrm{~mm}$ Cat H10535 \$ 6.75 $105 \times 170 \mathrm{~mm}$ Ca! H 10538 \$ 7.95 $105 \times 195 \mathrm{~mm}$ Cat H $10542 \$ 9.90$ $105 \times 200 \mathrm{~mm}$ Cat H10543 $\$ 9.90$ $105 \times 225 \mathrm{~mm}$ Cat H10546 $\mathbf{\$ 1 0 . 5 0}$ $105 \times 300 \mathrm{~mm}$ Cat H10549 S12.00 $105 \times 600 \mathrm{mmCar} \mathrm{H} 10560 \$ 24.95$

DIECAST BOXES Diecast boxes are excellent to

RF shielding, and strengin Screws are poovided win | Screws are porvided wit each box |
| :--- |
| H11451 $100 \times 5 \times 25 \mathrm{~mm} \quad \$ 5.95$ |

 $411433120 \times 65 \times 40 \mathrm{~mm}$ H11462 $188 \times 120 \times 78 \mathrm{mmm}$ H1 $1464188 \times 188 \times 64 \mathrm{~mm} \quad \mathbf{5 2 9 . 5 0}$

HORWOOD ALUUINIUM CASES
H10382 $3 \times 4 \times 2$ inches 55.50 H10383 $3 \times 4 \times 3$ inches $\$ 6.50$ H103843×4×4 nches $\$ 7.50$ H103853×4×5 nches $\$ 7.95$ H10386 $3 \times 4 \times 6$ ncches $\$ 8.50$ H103873x4×7nches $\$ 9.50$ $H 103883 \times 4 \times 8$ nches $\$ 10.50$
$H 103893 \times 4 \times 9$ nches $\$ 10.95$ H103893 $\times 4 \times 9$ inches $\$ 10.95$
$H 103903 \times 4 \times 10$ inches $\$ 11.95$

RACK MOUNTING
CABINETS
mels guve yuperty protelated a real protessional appearance - All dimensions contiorm - Atuminum construction - Removeable upper and tower - Vanelis aed lic

- Choice of Nalual or Black finish - Ouality brushed tinish anocised front panel
A Internal Height mm
B Rear Wuath
A B C Finish Cat.No. Price 38430254 Naturaà H10401 549.50 82430254 Natural H10402 559.50 126430254 Natural H10403 569.50 38430254 Black H10411 $\$ 59.95$ 82430254 Black \quad H10412 569.95 26430254 Black H10413 579.95

国1/2" HIGH INTENSITY RED LED DISPLAYS (Availibie in Common Caithode

Oimersions: Display $127 \mathrm{~mm}(H) \times 73 \mathrm{~mm}(\mathbf{W})$ Segment Width 12 mm
Brighiness 3400 ucd
tr COMMON CATHODE:
Pin 1 Segmente Pin 6 Segment

 ment G $\begin{array}{llll}\text { Cat No } & 1.9 & 10 . \\ 210190 & \$ 1.95 & \$ 1.75 & \$ 1.50\end{array}$ COMMON ANODE:
eqment B Pin 1 Segment
$\operatorname{Pin} 2$ Seqment
Pin
Pin
7 Segment
Segment A
 ${ }^{\text {Pin } 4 \text { Segment } C \text { Pin }}$ PSegment F $\begin{array}{ll}\text { Pins Segmentip Pinvosegment } \\ \text { Cat No } \\ 10.9 & 100 .\end{array}$ $\begin{array}{llll}\text { Cat No } & \mathbf{1 . 9} & { }^{10 .} & \\ \text { Z10191 } & \mathbf{\$ 1 . 9 5} & \mathbf{\$ 1 . 7 5} & \mathbf{\$ 1 . 5 0}\end{array}$

CORDLESS RECHARGEABLE - Bull t in solder ponit Illum - Eull in solder point illumnation - Protective siand which also Tunctions as Charging unit

- Sonne pac anach lo sland
- Pug pack power adaptor - includeck Nockad Danery - Inslruction manual - 12 moniths warranty Cat T12480 Normally 57995

SCOPE GOW SOLDERING SYSTEM

Infinitely adjustable lemp 200 C to | 470 C Sliding control selects |
| :--- |
| desired |
| 1 It temperalure (LED | eadour monitis thp temp) - Saltely hober tealures ceran burn-proot bush and can be

Convertec to leth hand siside - Sotr and cool hand gip in plable - Screw

- Screw type connector prevents guarantees solid contiacts - Temperature lock aliows production supensors to coniro) - Ant selre we tor reternion design -educesn nskot hhear seczure by removnng locking nut to cooter end of barrei
- Optronal 30 W soldering penci is avaiabie ior iner worn Cat T 12900 Normally $\mathbf{5 2 2 9}$

150W IBM COMPATIBLE SWITCH MODE POWER SUPPLY
C output: +5/13A . 5V/0 5A
 Cat X 11096 Normally $\$ 239$ Now only \$149

HEATSINK COMPOUND heasink compound is applied to the base and mounting studs on ransistirs and dosces mainta mproves heat transter trom in devce to the heatsink, thus increasing overall etticiency
Cat
$\mathbf{H} 11800$
$\$ 2.95$

This instrument is a compack rugged. bathery operated, nanch helo
$3^{1} / 2$ digit multimeter for measuring $D C$ and $A C$ voltage. $D C$ and $A C$, testing Ausibio continuty and transistor hFE The Dual.slope A.D Converner uses C.MOS technobgy tor aulo-2erang, polarity selection
and over -range indication Full overioad is provided itis an ideal instrument for use in the fied. laboratory, work shop. hoboy and
Features.

- Single 30 O NOFF power switch - Single 30 position easy to use RANGE Selection
- Autamatic onger-ang cont indication wat the ' 1 displayed
- Automalic polarity indication on

All ranges

Aurongenc tully protected plus mithout shortarant except 200 chm Range wirch shows "000 or 00 | Hinh Surge Volage protecion |
| :--- |
| 15 KV kV | - Drode lestir

- Anabible Contunuty Te - SPECIFICATIONS

Maximum Display: 1999 count $3^{1 / 2}$ cigit ype with automatic indication Method: $L C D$ display Measuring Melhod: Dual. stope in A.D converter system Over-range indication: "- Figure Over-range indication: "1"Figure
only in the disolay Temperature Ran
0.0
Power Supply: one 9 vot bathery (0068 or FC-1 type of equivalent) Cal $091530 \begin{gathered}\text { Normally } 5109 \\ \text { SPECIAL } 579\end{gathered}$

MU:THAETER

rusginstivment is a compact operated. hand held ${ }^{2} 2$ digil multimeter for measuring DC and $A C$ voltage. $D C$ and $A C$ Capacitance Transistor hFE Continulty Test The Duablsiope A.D Converter uses C -MOS lechnology for auto-zerang, polarity selection and over.range indication Full instrument for use in the heid. laboratory, works shop. hobby and Features...

- Push B bution O N OFF power smich
- Single 30 postion easyto use Rotary swich io fuNCTION and
RANGE selection - 12 " high contrast LCD
- Autamalic over.range incication - Automatic polalatiy yndication on - DC ranges
- All ranges fully protected plus
Automatic ZERO
of all range Authomaic mero it all ranges Range which shows -000 or 001 - High Surge Vottage protection - Capacilance measurements to 1p

Auralive
 - Avdide Continulty Test

- TPECLISIO AFE Te

Maximum Display: 1999 counts $3^{1 / 2}$ digil type with automatic polarity ind catoon
Measuring Method: Dual slope in A.D conventer sifstem \quad " 1 Figure Over range Indicat
only in the display
Temperature Ranges: Operating
$0 \mathrm{Clo}+40 \mathrm{C}$. 9 voll batter
Power Supply: one 9 volt battery
(006P or FC. 1 type of equivalent) Cat O91540 Normally $\$ 139$

RECHARGEABLE ELECTAIC SCHEWDRIVER the pertect tool for professional r handyman

- Long lasting NiCad battery - Fonward Reverse Mod - Simple to use chuck 22 Flat tips
- 2 Philups tups PERFORMANCE DATA: PERFORMANCE DA
Gears Ratio: 1.50 Gears Ratio: 1.50
Max. R.P.M.: 150
Max. Torque: 3.2 (Newton Metre) Scrowing Capacity: $4 \times 8,300$

DIGITAL SPEEDO DIGITAL TACHO
SPEED ALERT
Digital readout (LED) for both

- Alarm with sound at variable
- presel speed
- Audible beeper and visuas indicator
- In buminitightion indicator for nigh - Designed for 12 voll negative earth electrical system
- Tachometer 0.9900 kph
- Speed alert $40-120 \mathrm{kph}$ Cat A15064 R.R.P. S89.95 OUR PRICE \$74.95

HOOK UP WIRE Cat. No. Description W11251 1312 TNO BLK W 11253 13 12 TLD ORANGE
W 1125413 I2 TLD YELLOW W11255 13.12 TLD GREEN W11257 13 12 TLD WHITE
PRICES PER 100 METRE 1.9
$\$ 5.9$

$\$ 5.35$

W11260 14/20 RED
W11265 14/20BLUE
W11268 14,20 WHE TE
PRICES PER 100 MET
PRICES PER 100 METRE ROLL
$1-9$
$\begin{array}{ll}\$ 12.00 & \$ 10.00 \\ \$ 10.80 & \$ 9.00\end{array}$
W1 127024120 RED W1 $127224 / 20$ BLACK
PRICES PER 100 METRE ROLL
$\$ 14.00 \quad \$ 12.00$
$\$ 12.60 \quad \$ 10.80$
W1128032/2BROWN
W1128232 2 BLUE
PRICES PER 100 METRE ROLL $1-9$
$\$ 20.00$
$\$ 20.00$
$\$ 18.00$

FREE STANDING, FOLD UP MAGNIFIER An eoconomically pnoed hands tree magnifier, lets you take care of all those incky fine detarled jobs so any of many other practical uses such as home. work. hobores eic Cal T12083
$\$ 14.95$

RS232 MINI TESTER

- Male to temale connections - Dual cotour LED indicates activ and direction on 7 lines TD Transmit Oata S R Data Set Ready R.D Recerve Data D Cartier Detect D T A Data Terminal Ready C TS Clear to Send at
SPECIAL,
ONLY
ONLI
$\$ 32.95$
 Rod Irving Electronics 48 A Beckert St MEL BOURNE 425 High St. NORTHCOT
Phone 0334898868 Mall Order and Correspondence
PO 80×620. CLAYTON 316 B Teler AA 151938

MAL ORDER HOTLINE 008335757 [TOLI FREE
ISTRICTLY ORDERS ONLY

OCAL ORDERS

 8 INQUIRIES10315437877

postage rates
 OSTAGERAT $10 \$ 999999$ 10 52499

5200 p 549

The above poslage rates are for
silky and fraolle it ma will be
charged st different rates
Centited Pont for orders over
Regisierco Posifor orders over
s200 incuded itre'
All eales tax exempt orders and
Wholesale inquiries 1 io

R \& D up, but watch out for rorts

Technology Minister Button and Sclence Minister Jones called a news conference recently to announce that R\&D expenditure had risen dramatically, mainly because of the 150\% tax deductability of R\&D expenses. However, Department of Industry, Trade and Commerce (DITAC) officials have wamed against abuse to the system.

The Ministers' move was promoted by an announcement from the Bureau of Statistics, which has just released revised estimates of expenditure and human resources devoted to R\&D carried out in Australia by private and public business enterprises during 1984-85.
The main features of the new statistics are that:

- expenditure by business enterprises in 1984-85 was $\$ 721$ million;
- R\&D expenditure by private business enterprises increased over the period 1981-82 to 1984-85 by over 60 per cent in constant
price terms, while human resources devoted to R\&D increased by 43 per cent; and
- receipts in 1984-85 for technical know-how sold overseas were $\$ 28$ million, but far short of the payments of \$158 million made overseas for know-how.
In their joint statement, the Ministers said, "The resurgence of R\&D from the doldrums of 1981-82 is encouraging. As a percentage of gross domestic product, business expenditure on R\&D has increased from about one quarter to about one third of one per cent.
"There is, however, no cause for complacency," the Minister sald. "On the basis of these most recent statistics, investment in 1984-85 by Australian businesses was only one third that of the median for many OECD countries with whom Australia must compete in intemational markets To reach roughly comparable levels of investment in

ELECTRONIC WIZARDRY PERFORMED DAILY.

The very best jobs for Electronic Engineers and Technicians can only be found with the very best recruitment consultancy - QANTUM.

Talk to Ron Crause on (O2) 922 7900, for details of the most exciting career opportunities around.

LEVEL 490 MOUNT STREET NORTH SYDNEY NSW 2060
QANTUM

ADVERTISING INFO No. 7
technology by the end of the 1980s, Australian businesses will need to increase their performance by an annual average rate of about 25 per cent".
Senator Button added, "Advice I have received, based on registration for the 150 per cent taxation allowance for R\&D, indicates that registrant companies propose to almost double their performance of R\&D over the period between 1984-85 and 198687.
"This is heartening evidence of success of the Govemment's initiatives to encourage the business sector to be more innovative and to build on the technical inventiveness of Australians," he said.

However, Button appears determined not to allow the 150\% deduction to turn into a tax rort. He wamed late in December that the 150% tax incentive should be claimed only for expenditures incurred for genuine R\&D which would definitely benefit Australia.

He said that if the growth of any company was found to be inflated by tax rotls or contrived schemes, the law would be changed to recoup the benefits gained by the companies concemed.
DITAC director of R\&D policy, John McKenna said that the Federal and State Govemments would conduct a "technical review" of the tax allowance scheme, which it was hoped would be completed before the August 1987 Budget session of Parliament.
As well as determining the course of the scheme through to 1990, the govemment would also identify abuses to the scheme during the review.
However, McKenna emphasized that abuses would be identified throughout the scheme's duration and that even legally approved arrangements could be regarded as abuses.
"The govemment is going to be pretty sensitive to abuse of the scheme. It would be quick to act, even if it found a scheme which was legally satisfactory but
was considered to involve a contrived reallocation of wealth," Mr McKenna said.
"A company could damage the scheme if it unbolted the stable door, as it were, and let a whole lot of other companies bolt with it. The government would be negligent in not acting to prevent such a situation from occurring."
McKenna said that the technical review would also encompass other, more positive areas.
"The purpose of the review will not always be to see if there are ways of preventing people from exploiting the scheme," he said.

BMAC for AM

The Department of Communications (DOC) is currently investigating the use of BMAC, the satellite TV transmission standard, for use over the new terrestrial Multipoint Distribution Service (MDS).

MDS is a method of program distribution that will be used to carry the recently announced Video and Audio Entertainment and Information Services (VAEIS). Broadcasters have been extremely concemed that reception of VAEIS in homes would undercut their monopoly, so the DOC has been looking at ways of providing encryption services. BMAC, with its ability to address individual receivers, is a natural choice.
The research plan being carried out by the department is to determine spectrum usage of BMAC in a terrestrial environment. The bandwidth is well known, 7.5 MHz , but the necessary guard bands are still a bit contentious. The tests, in the if laboratory at Canberra, are to determine how many channels can be accommodated in the 2.3 GHz to 2.4 GHz and 2.076 to 2.111 GHz bands.

The department is still uncentain exactly how many licences will be required for VAEIS. So far, only a few have been released, and they have been for satellite-fed systems like Club Superstation and Skychannel.

MARCH

A serics of seminars will be held in conjunction with the International Technology Exhibition in Canberra 3-7 March. For more information contact Total Concept Exhibitions on (02)938-2033.

Hewlett-Packard Precision Architecture is on display at the South Pacific Area Conference of Computer Users at the Brisbane Hilton 17-19 March. Contact Graham Coote on (07)57-7007 or Chris Kelly on (07)371-6984.

PC87, the Eighth Australian Personal Computer Show, is on 17 to 20 March at Centrepoint in Sydney. Contact Australian Exhibition Services on (03)267-4500.
An International CAD/CAM Congress on current realities and future directions will be held 17 to 20 March in Melbourne. Contact ACADS/FACE Congress Secretariat, 576 St Kilda Rd, Melbourne, Vic 3004. (03) 51-9153.

The Fourth South Pacific Area Conference of Computer Users, SPARC '87, will be held in Brisbanc 17-19 March and is calling for papers. Contact Graham Coote on (07)577077.

The Australian Computer Society's Annual PC Conference will be held 18-20 March.
The Queensland Electronic Distributors Association will hold its next exhibition 24-25 March at the Brisbane Entertainment Centre. Contact Bob Hunt (07)854-1911 or Bob Heclan (07)277-4311.

APRIL

The fourth workshop on small computer systems, organized by Queensland Institute of Technology, is on 13-15 April and calling for papers. Contact Dr C. Chesmond, QIT Dept of Elec Eng, on (07)223-2484.
Labex '87, international lab and equipment and products exhibition is on in Brisbanc at the Science Pavilion, RNA Exhibition Grounds, 31 March to 2 April. Contact BPI on (02)266-9799.

ATUG '87 4th Australian Telecommunications Exhibition \& Conference will be held at the Hilton Hotel in Sydney 7 to 9 April. Contact Riddell Exhibitions on (03) 429-6088.
The What's New in Electronics Exhibition - electronics in process control - will be held 14-15 April at the State Sports Centre, Underwood Rd, Homebush, NSW.
The 17th International Symposium on Industrial Robots will be held 26-30 April at the Chicago Hilton \& Towers. Contact RI/SME Public Relations, I SME Dr, PO Box 930. Dearborn, MI 48121. Ph 313/271-()777.

MAY

Communications USA (telecommunications, radio and satellite equipment) in Sydncy 11-15 May. Contact Ken MacKenzic on (02)264-7044.
Ausgraph '87 is on 11-15 May in Perth. Contact Conference Secretariat on (03)387-9955.
In a CAD/CAM Congress at the Regent Hotel. Melbourne. 17-20 May. a panel of experts will discuss technical computing applications. Contact (03) 51-9153.
Photographics '87, an exhibition of the equipment and technology of photographics will be held 23 to 26 May at the RAS Showgrounds in Sydney.

JUNE

Communications '87, the Australian International Office Technology Exhibition, is on 1 to 4 June at the Royal Exhibition Building. Melbourne. Contact Australian Exhibition Services on (03)267-4500.
PC87, The Ninth Australian Personal Computer Show is on

1 to 4 June at the Royal Exhibition Building, Melbourne. Contact Australian Exhibition Services on (03)267-450).
Office Technology ' 87 will be held 1 to 4 June in Melbourne. Contact Australian Exhibition Scrvices on (03)2674500.

The 1987 Computing Systems Conference will be held 17 to 19 June in Brisbanc. Contact the Institute of Enginecrs, Australia, 11 National Circ., Barton, ACT 2600. (062) 733633.

Videotex ' 87 Exhibition \& Conference is on in Mclbourne over three days in Junc. Contact Riddell Exhibitions on (03) 429-6088.

The Australian Hi-fi Shows ' 87 will be held Sydney 19-21 June at the Airport Hilton; Brisbane 3-5 July at the Gold Coast International Hotel; Melbourne 17-19 July at the Dallas Brooks Hall; Adelaide 24-26 July at the Adelaide Hilton.
Videotex ' 87 to be held 30 June to 2 July at the Sheraton Hotel, Auckland. Contact the Secretariat on (649) 68-6955.
The Third National Space Engineering Symposium will be held 30 June to 2 July at the Australian Defence Academy in Canberra. Contact The Conference Manager on (062)733633.

JULY
Automach '87, an exposition on automated manufacturing and sponsored by the SME, is scheduled for 7 to 10 July in Sydney. Contact Adolph Greco on (02) 875-2377.
The 1987 Perth Electronics Show is on again at the Claremont Showgrounds. Perth from 29 July to 2 August. Contact address: 94 Hay St, Subiaco, WA 6008. (09)382-3122.

AUGUST

A symposium on signal processing and its applications will be held at the University of Qid 24-28 August. Those interested in participating contact the Conference Secretariat, ISSPA 87. Uniquest Ltd, University of Qld. St Lucia, Old (07)377-2733.

Nelcon '87 national electronics conference will be held 24-28 August at Auckland University, New Zealand. Contact B. S. Furby on (02)957-3017.

SEPTEMBER

IREECON ' 87 will feature digital technology when it is held 14 to 18 September. Contact Heather Harriman on (02)3274822.

The 4th Australasian Remote Sensing Conference will be held $14-18$ September at the Adelaide Convention Centre. Contact John Douglas. South Australian Centre for Remote Sensing on (08)260-0134.
Labex ' 87 international laboratory equipment and products exhibition is on 21 to 24 September at the Royal Exhibition Building, Mclbournc. Contact BPI Exhibitions on (02) 266 9799 or (03)699-9151.

OCTOBER

Computer Indonesia will be held in Jakarta 20-24 October Contact Australian Exhibition Services on (03)267-450).
The 38th International Astronautical Congress will be held in Brighton. England. I()-17 October. The theme thirty years of progress in space will be developed through a series of symposia. Contact the Austronautical Society of WA. COSSA. (09)307-5642.

NOVEMBER

CommuniTech and Computer ' 87 is on in Kuala Lumpur 11-14 November. Contact Australian Exhibition Services on (03)267-4500.

CU|R|RENTT AFFAIIRS

PRIVATE COMMUNICATIONS SYSTEM FOR NORTHERN TERRITORY

Abstract

Efficient communication systems span the world more easily than a navigator's dividers, but someone left the Northern Territory off the map. Finally the Territorians are going to do something about it - and they're turning to private enterprise to achieve their goals.

Robert Phillips

Imagine that you have been away from home for a few weeks and want to telephone home for a chat. Instead of using a telephone, you are obliged to go out in the street and use a loud-hailer to shout your greetings home.
Even if your voice were to be heard at home, how well would you be able to express yourself under such public conditions? That is exactly the standard of privacy that many Northern Territorians living in remote areas have when they use their HF radio phones to reach across the red and dusty outback.
You may think this is not such a great inconvenience. After all, the purpose of such a call is really just to say hello and that you are well. If that is the case, then the next time you have to ring the doctor, imagine having the same conversation with him at the top of your voice on a peak hour train. Territorians probably have the best collection of euphemisms you have ever heard!
The Northern Territory Government is determined to do something to improve the standard of communication in the Territory and bring the whole system into at least the late 20th century, but preferably the 21 st century. The amazing thing is that Qucensland, faced with similar problems in its remote country areas, has all but solved the problems in the space of a couple of years. To understand why the Territory is so far behind, we need to review some history.
In about 1860 the Queensland surveyorgeneral, Augustus Gregory, pushed to have the area of the Northern Territory, which was then part of Qucensland, split off from that State. Around the same time, John McDouall Stuart made his famous south-north crossing of the conti-
nent, and South Australia decided it would like the Territory to become part of that State. So in 1863 the Northern Territory was duly made the northern part of South Australia! It was still part of that State at Federation in 1901. The South Australians eventually found that the lack of communications with the north and the general cost of looking after the place was just too much, so in 1905 the Northern Territory was given back to Queensland. But Queensland did not really want it cither, so, in 1911, it was given to the Federal Government. Nobody heard much about the Northern Territory after that. Even its representative in federal parliament 'Silent Sam' Caulder was so-named because he was not allowed to speak or vote in the House, only listen!
There have been one or two abortive attempts to expunge Darwin from the face of the Earth (so far, bombs and a cyclone have failed), but the Territorians refuse to go away. For years successive federal governments have reminded themselves that there are no votes in the Territory and so it has been left alone as much as possible. Undeterred, the Territorians have just gone ahead and through their own efforts built a $\$ 350$ million gas pipeline to Darwin and now, after 100 years of broken promises, they are building their own railway system with private enterprise. Both projects are independent of federal help. Next, they are going to build a better, and private, internal communication system. It has to be 'private' because only Telecom is allowed to own public communication systems.

Queenslanders have been able to jump ahead because Queensland is a State. The Territory 'lost' its statchood in 1911, hence Territorians do not have the same

constitutional rights for independent deci-sion-making as most other people in Australia. Although they did get self-government in 1978, it is not statehood. But that's not going to keep them down.

It is difficult to know who history will identify as the 'father' of the struggle for better communications. There's Ray Hanrahan, the Northern Territory minister for business, technology and communications. And then there's the Territorian member of the legislative assembly and government whip, Colin Firmin, who has certainly been the struggle's driving force for a long time.
"The HF radio system was worthwhile back in the $1930 \mathrm{~s}, 40 \mathrm{~s}$ and 50 s , but it is no longer the answer to anything out in the scrub," said Firmin. "There are long delays in trying to get onto the radio service and there is a very limited time when you are allowed to use the service. Once you finally connect, it has problems with both rain and sunspots causing radio interference, so that the quality of the service is very poor."

Firmin went on to point out that under its Rural and Remote Area Scheme, Telecom had announced a proposal to put in $\$ 400$ million of digital radio concentrators across Australia. The program is floundering for a number of reasons. Some of them are financial, some are related to forward planning, and in the Northern Territory, in particular, there are also problems of running microwave towers over land that is now owned by Aborigines under the Northern Territory Land Rights Act.
"Since Aussat was first announced we have been saying that the best way is to use full satellite technology," said Colin Firmin. "The system is independent and you can place the satellite dish on the government buildings that are within the settlements."

Telephone service is not the only thing that the Government wants to deliver. With such a small population spread over such a large region, the government has unique problems in trying to reach out to the community and even to its own employees in the distant parts of the Territory. The aim is to provide meaningful government services to all Territorians in a cost-effective manner. One of the cost saving methods is to look for a single communication system that can provide voice, data and video. An all-in-one capability is far more acceptable than having to ask people to erect several different antennae for several different forms of communication. "What we are proposing, and are in the final stages of assessing, is a full Government network," Firmin said.
The Qucensland Government system,

Q-net, uses a dedicated transponder on Aussat and is in the final stages of testing as an operational network. They are testing things like telemetry, distance education, tele-medicine for the transmission of x -ray films and similar patient data, tracking every train in the State plus electronic mail and telephone services. The Northern Territory system is going to do all this and, said Firmin, "we have a few more innovative ideas".
One of the innovations is Firmin's "one stop government shop". The objective is for people to be able to dial a computer control centre and have their government questions answered instantly and/or facsimilied to wherever they happen to be. They will be able to pay bills from their remote site, transact land business, search information, get their driver's licence and car registration papers - all the services that are over the counter in a capital city. And the hackers won't get far since the central computer will be isolated from the government computers. People, rather

$$
36
$$

The Government has turned to private enterprise because Telecom is presently unable to provide all the needed services. 29

than computers, will control the flow of information back to the enquirer. In addition, the computer-based controller of such satellite systems has the capability of recognizing the calling station. This is necessary so that the computer can monitor the status of stations on the net. The controller also needs to identify stations so that it can establish a 'trunk' between stations before a call can go ahead.
The next question is the cost. At this stage the Government is not saying what is involved because it is still assessing the final proposals from companies tendering for the supply of the system. However the Q-net system has cost $\$ 7$ million for the trial phase, so the whole system could be in the $\$ 30$ million bracket. It depends on how many earth stations are deployed.
Canberra had Burley Griffen, Sydncy had Utzon. Who will Darwin immortalize?
The Government sent out a request for expressions of interest in the project and received 14 replies from a wide range of companies. The replies were from pre-
dominantly Australian-based companies but there has to be a significant overseas element because that is the source of such technology. The respondents included Crooks Michelle Peacock Stewart (CMPS), McConnell Dowell and Nichols, ICOM, Microwave Consultants, Telecom, Aussat, NEC Australia and several other companies such as Plessey who are involved with combined submissions. The list has been reduced to four finalists: CMPS, ICOM, McConnell Dowell Nichols and Telecom. Each respondent has been asked to propose a system and a method of finance which meets the communication requirements with the least possible cost to the Northern Territory Government. The proposal is also to take into account offsets for the overseas element, preferably by making use of the Northern Territory's Trade Development Zone (the first such zone in Austrlaia). The Northern Territory Government would like to see the successful company set up an office in Darwin as it believes this would ensure more efficient maintenance of the system.
The Government has turned to private enterprise because Telecom is presently unable to provide all the needed services. Companics such as McConnell Dowell Nichols are not acting in competition with Telecom, but more as a supplement to it. The private companies have the equipment, skill and resources to go where Telecom cannot go. The companies are providing the infrastructure to broaden Telecom's net. As in Q-net, there will be opportunities for Telecom to extend its services with the aid of the new installation. Telecom will be able to put public phones at the end of the systems, with the coins going to Telecom not the private companies.
One of the beauties of a satellite-based system is the ease of extending it and changing the locations of earth stations. For example, in August 1986, during a major bushfire emergency in Idaho, USA, the Skyswitch Satellite Communications company of Colorado, was asked to help with emergency communications for the firefighters. It put two portable satellite earth stations on a truck and headed north-cast for about 14 hours. Within 36 hours the first station was in contact with the fire control centre and within 60 hours, both stations were operational at frontline fire camps. Darwin had only one tenuous, fragile phone line for several days after Tracy.
So, when will the Northern Territory's new communication system happen? "The sooner, the better," says Colin Firmin. "The pcople in the scrub have been waiting for a long time for a system of some sort."

ADVERTISING INFO No. 8

For that total professional look, put you components into one of BETACOM's smart, strong Instrument Case Enclosures. Made of tough powder coated aluminium these enclosures will look good for years.
Easy to assemble in a variety of sizes, supplied with all the hardware and shrink wrapped for protection. IC4 is an extruded aluminium, 2 piece enclosure. available in 6 sizes. The unique "square wave" internal slotted extrusion allows for slide in standard 100 mm Eurocard printed circuit boards. The cover is screwed at each end and can be custom modified in various lengths and colours. IC6, is a 14 piece box with finished aluminium front and back panels, and is screwed from the sides and rear

The supplied internal chassis can be mounted in 3 different positions on its support brackets, enabling components to be mounted independently. IC6 comes in 20 sizes, $1 \mathrm{U}-4 \mathrm{U}, 1 / 2$ width and full width and a range of depths. Full width will fit into a standard $19^{\prime \prime}$ rack cabinet using optional rack mount brackets. Handles are available for 3 U and $4 U$ sizes.
Both these enclosures come in bright distinctive colours for that totally professional look for all your projects These are just 2 of BETACOM's extensive range of enclosures. Call us today for more information

131:TACOM

TEMPLE-SMITH AUSTRALIA PTY. LTD. 2-12 Harp Street, Campsie. PO Box 196, NSW 2194 Telephone (02) 783436 Fax (02) 7872529
VICTORIA: Temple.Smith Austraha Pty. Lid 12 Rosella St., Frankston. Victoria Telephone (03) 7811013 Fax (03) 7839151 SOUTH AUSTRALIA: Graphıc Electronic Industries Pty Lid. 168 Payneham Rd. Telephone (06) 3630277
WESTERN AUSTRALIA: I.G. Thomas \& Associates 5 Durnham Rd, Bayswater 6053 Telephone (09) 2727122
QUEENSLAND: Conwell Trading Company Pty. Ltd. 52 Doggett St., Fortıtude Valley 4006. Telephone (07) 527850

The Bose 1401 Large-Vehicle System is designed to provide high-performance music reproduction in large cars, trucks, vans, recreational vehicles, and even boats. The system features a 1401 Series II Equalized Amplifier, two $41 / 2^{\prime \prime}$ door-mount speakers, and two 6 " $\times 9^{\prime \prime}$ rear-deck-mount speakers.

Bose Reliability

The Bose 1401 Large-Vehicle System can withstand the unbelievable range of environmental conditions for which Bose Mobile Music Systems are famous. The speakers are virtually unaffected by extremes of temperature, moisture, direct sunlight, dirt, sand, salt and ozone. Their rugged, full-range design also makes it virtually impossible to destroy them with any music signal. The Equalized Amplifier contains a self-diagnosing protection system that continuously guards against abnormal load conditions, including short circuits. Finally, to be sure that your 1401 Large-Vehicle System sounds right in your vehicle, the Bose Syncom ${ }^{\text {® }}$ II computer tests each speaker before it leaves the factory.
The Bose 1401 Large-Vehicle System - the perfect system for your larger car, truck, van, or recreational vehicle.

ITTS EASY

All you have to do is correctly answer 3 simple questions on the coupon below. Answers can be found in the text on this page.

What sort of vehicle is the Bose 1401 system designed for?
A \qquad
What is the name of the Bose computer quality control test?
A
Is the Bose 1401 Series II amplifier equalized?
A
Please send entries to: ETI-BOSE COMPETITION PO BOX 227 WATERLOO NSW 2017

Conditions:
This contest is open to all persons normally resident in Australia \& New Zealand, with the exception of members of the staffs of Bose, The Federal Publishing Co, Hannanprint, Eastern Suburbs Newspapers and/or associated companies:
The winner will be notifed by telegram. Contestants must use the coupon entry form cut from the magazine or a photocopy with the date/page number cut from the magazine and attached. The contest is invalid in States where local laws prohibit entries.
Entries close 30th April, 1987.

GOVERNMENT AND INDUSTRY

A new relationship is being forged between the government and the electronics industry to spur the development of local electronics. This is the view from industry.

Bruce Goddard

Bruce Goddard, A.M., is President of the Australian Electrical and Electronic Manufacturers' Association.

It is often very difficult for an industry such as ours which is largely managed by engineers to understand the arguments used by economists. Economics is replete with theory, while engineering is governed by laws which translate into observable facts, like Ohm's law.

But economics also has its laws, many

of which were postulated in the first half of the 19th century - the classical period of economic thought.

Take the so-called law of comparative advantage. This has been the comerstone of the Industry Assistance Commission's (IAC's) approach to Australian industry for perhaps the last 15 years. That law, in the simplest form, says that in a two-country, two-commodity world, both countries will gain from trade if they specialize in the product in which they have a comparative (or relative) cost advantage. Australia has followed this broad approach for many years by specializing in land intensive agricultural products.

How is it then that our relative trade performance continues to slide and has done so since the 1950s? If the theory works, why haven't living standards and economic growth rates between countries converged rather than diverged? If economics was based on observable facts, then it should have a law which says trade can also impoverish.
Professor Gregory Clark, an economist, recently wrote that:
"Economic theory says that if Britain abandons its motorcycle industry to imports, this is good because it can now concentrate its resources in the car industry. Or, if Europe allows the Japanese to take over the audio industry, it does not matter because it can now specialize in up-market goods such as video-cassette recorders or compact discs.
"As the Japanese could have told the theorists long ago, it all works in reverse. If Britain loses its motorcycle industry, then its car industry becomes weaker, not stronger, because both were served by the same sort of technicians, parts suppliers, dealers and other staff and resources. If Europe abandons audio, it loses efficiency in producing certain items: say, the speakers needed for VCRs.
"An economy operates organically, not mechanically. The loss of one organ weakens, not strengthens, the rest of the body as the Japanese realized long ago."

One of the characteristics of much other theorizing is faith in the market as the allocator of resources to different uses such that these resources yield the highest real return to the community. However, governments often get landed with problems because the market fails to perform properly, as when we have high unemployment. The consequence of change falls disproportionately upon the minority within the population. Then political rather than economic issues make the prime running.
What conflicts of conscience such problems must cause the rational-minded public service economist! Especially when vote counting political masters demand that the problem be solved - not according to rational economic principles but to the realities of the ballot box.
If there is one single issue which manufacturing industry and government should be working on, it would have to be the reversal of our current account deficit in manufactured goods - particularly in the so-called high technology products area.

We estimated that even to get the present total trade deficit on current account down to reasonable proportions would require an annual growth in gross domestic product of two to three per cent - with all of it going to feed export growth.

The seriousness of this problem is awesome in proportions. In the Association's submission to the IAC's export concession inquiry, we estimated that even to get the present total trade deficit on current account down to reasonable proportions would require an annual growth in gross domestic product of two to three per cent - with all of it going to feed export growth, ie, no increase in domestic expenditure. When combined with a gross foreign debt which exceeds a quarter of our GDP and an interest and capital repayment bill on that debt which soaks up about 30 per cent of our total export revenue, we must all be very concerned.

I think that by now, nearly everyone in
business and in government understands the problems; it's agreeing on the appropriate solutions that is the stumbling block. Unless we get substantial support from all sides (and that includes a bipartisan political industry policy), then we will continue to meander, relying on luck and the vagaries of the invisible hand. We will continue to have short term changes in direction with changes of government.
The long term decline in our terms of trade for our traditional land-based exports has renewed interest in the manufacturing sector. I detect a new positive approach to assistance which is aimed at creating comparative advantage rather than merely hoping it will happen. This is a welcome change to which industry will respond where it can.
But there is no doubt that the structure of Australian manufacturing has changed massively over the last decade. There are some inherent weaknesses which cannot be remedied overnight. Many local manufacturing activities have disappeared and, once gone, will not be recovered. The base capability has been weakened.
Perhaps more so than most other countries, we have been open to international competition. This in itself should not be a cause of fear if:
(a) the rate of decline in the industries disadvantaged is broadly matched by the rate of growth in new industries; and
(b) the rate of change is within the economy's capacity to absorb.
In manufacturing, it is doubtful whether either of these conditions applied over recent years.

As an Association we have demonstrated our commitment to contribute to the policy formulation process through our involvement in a host of government working parties and committees. Attitudes on both sides have to change. On the government's side there is an understanding that policy cannot be formulated in a vacuum. For too long governments have believed that they have been the repository of all wisdom on industry policies. But industry must begin to understand the constraints of government. Industry has too often relied on short term measures to address symptoms of problems rather than the more fundamental causes. Hopefully, such mistakes have been relegated to the past.

But don't let anyone think the recent way of openness and wide involvement in decision making is the soft option. It is time-consuming, sometimes frustrating and often painful. And neither docs it work in all policy areas. But compared with complete acceptance and implementation of,
say, an IAC report, it is infinitely superior. The recent work we did on the telecommunications industry showed that very clearly. ${ }^{1}$

The electrical and electronic industries in Australia are at the forefront of technological change. Many of the products required to improve the productivity of Australia's basic industries are supplied by our industries. As an Association, we welcome the recognition of technology and $R \& D$ as important elements in Australia's competitiveness. There are areas of our industry which have shown very strong growth rates over recent years, well in excess of economic growth generally. There are other areas which are based on well established, mature technologies which can continue to grow steadily, given that they are updated in process and quality technology. Other areas such as those supplying the consumer market tend to fluctuate in concert with the business cycle. Our Association's coverage is extremely diverse and varied but all the signs are that the decline evident over the last decade has bottomed. Total employment in our industries was stable between 1984 and 1985 for the first time in many years.

So despite the problems which face us, I remain optimistic of the future of our industries. As long as the government's macro policies can deliver reasonable rates of economic growth with control of inflation and interest rates, these industries will obtain more than their fair share of growth.

I welcome what I perceive to be the spirit of cooperation between government and industry. The national preference agreement was also a welcome move towards improved cooperation between governments.
There is still a long way to go before we will genuinely pull together and act as one nation all supporting the common good but, given our lamentable past record in this area, one would have to say considerable progress has been achieved. That progress has, however, been aimed more at correcting the errors of the past rather than forging a new direction. Nevertheless, it is progress and I hope it will continue into areas such as offsets policy, technology, R\&D, bringing research organizations into more direct commercial activity, etc, where common policies between State and Federal governments would be welcomed by industry.

1. A 150-page document detailing development strategy for industry growth, prepared by the Association for Senator Button and largely implemented

ROD IRVING ELECTRONICS "YOUR PERIPHERAL SPECLALISTS!"

IBM COMPATIBLE
DISK DRIVES Tired ot paying out moret tor Japanase Disk Dirves? These
-droet imporrt Hong Kong disk anve are the soithon! They teature Japanese mechancal components. yet cost only a traction ol the prical Cat. No. Description Price
C 11801500 K Normally 5199 11801 500K Normally 5199

SPECIAL, ONLY $\$ 179$ C11803 1 M8yte $\$ 239$ | C1 $1805 \quad 16 \mathrm{M} / \mathrm{Byte}$ | $\mathbf{\$ 2 5 9}$ |
| :--- | :--- |

COMPIITER LEADS $\underset{-18 M P C}{C l}$

- 18 M PC, XI and bok - a -nkes min 25 pn D D Dug on computer end to
Contrones 36 pn plug Controncs 3 pan plug

-1.engin 213 metres | Cat. P19029 |
| :--- |

RS232 DATA THANSFER SWIFC:MES
11 you have wo of lour compatible
devices ind need io share a mird or titht, then these inexpensive data transter swiches will save you the
uime and nastif of constanily changing cables and leads around - No power reaured - Spoed and code transparent

- tront parnel position rotary smitct on
- Threefiven
on rear panel
-Smitch comes standard with
temale connector
2 WAY Cal $\times 19120$ \$425 $\$ 100$

CENTHONCSEATA THAMSEER SWTHCMES Save tire and hasslos of constianty chanomg cables and leads around mith these inexpensvive data transter swiches Thase data switches support the 36 prin centronx antertsco Used dy Cenironics, Printronics. Data Products. Epson, Microntes. Star, and many otner ponter manulacturers
 - No power required
 - Speed and code transparent
 - Tront paneel
 on rear pane
 - Smitch cormes standard mith
 - Baterocks are stancara
 2WAY Cal X19130 SAE5 $\$ 100$
 sWar Cat X19135 \$245 $\$ 115$

IBM* AT COMPATIBLE
cesombted \& Tezied In Australial ${ }_{-80286}^{-6} \mathrm{MPU}$
$: 8$ Stos
12 MByta foopy D

- Colour Graphics D Display Card
- Foowory and Hard Disk Contronler - Card
- Prnter Card and Rs232
- Kaybocarr
- 3 Montits Warranty

Only $\$ 3,695$

Aseembled a rested in Aust 3 Months Warrentyl

256K RAM Singie Dive -5795: 256K RAM Singie Dnve. 256K RAM: 2 Disk Drves.
Multufunction Card, Colour Grapmes,
Disk Contiolter, 1 Paralliet Port 640K RAM: 2 Disk Drives. Multitunction Card, Colour Graphics

RITRON 2 MONITOQS Styish 20 MHz , non-glare 12 inch
monitors availiabie in greenor ambe monitors availabie in green or ambe
displays and featunng 5 mvel base displays and fe stunng swiel baso
that tults lorward and back and swivel's nght 10 telt'
Green Cat X 14506 Normally $\$ 235$ Amber Cal X1 4508 Normally $\$ 239$ SPECIAL, ONLY $\$ 179$

INTRA 14* RGB HIGM NESOLUTION COLOUR MOVITOR Compatible with IBM. and compatibles, and EGA Cald
Why play more?
Resolution: 640×350 cots Dot phech: 31 mm
Display format: 80×25 characters Cat $\times 14514$

IBN* XT \& AT
COMPATIBLE EXTENDED KEYBOARD (105 KEYS)
Inese new keyboards are both XT and AT compatiblel - Enlargod "Return" and "Shin" ke Positive feol keys
Low Profile Design. DiN standar - Separate Numetic and Cursor - Addritionaypuans

- Additional Functions. Line Foed. Pause. Clear Screen. Resel
Cat. $\times 12022$ WAS $\$ 299$
SPECIAL, ONLY $\$ 199$

APPLE
COMPATIBLE CARDS PRINTER CARD
Cat $\times 17019$ DRIVE CARD 80 COLUMN CARD Cat X17025 $\mathbf{8 8 5}$ Cal $\times 17035$ SUPER SERIAL CARD $\$ 179$ Cat $\times 17039$ FGB CARD Cat $\begin{aligned} & \text { X17039 } \\ & \text { PAL COLOUR CARD }\end{aligned}$ at $\times 17027 \quad \$ 95$

IBMI' XT
COMPATIBLE CARDS Colour Graphics Card $\quad \mathbf{~} \mathbf{~ C a t ~} \times 18002$ Graphlc Card
(Herculas compatible) Cat X1800
$\$ 175$ Floppy Disk Drive Controller Card (2 Drves, 16 Bit)
$\mathrm{Cat} \times 18005$$\quad \$ 129$ Floppy Disk Drive Controller Cara (4 Ditves. 16 Bul)
High Rezolution Mono Card Colour Graphics \& Printer Card T68kB RAM Card (withoul memory) Printer Buffer Card $\quad \$ 37.50$
Cat $\times 18017 \quad 10$ Cat $\times 18017$
Game vo Card
Cat $\times 18019$
xT Motherbaral (withoul memory)

| Cat X18020 |
| :--- | :--- |
| |
| 225 | Clock Card

Cat $\times 18024$
RS232 Card (without cabla)
Cat $\times 18026$ (579.50
RS232 \& Clock Caro
Cat $\times 18028$
XI Turbo Motherboard
(wathout memory)
Cat X18030
M275
Muttilios Otizk Controiler Card
Cat $\times 18040$ vo plus Card
Vo Plus Card
758 K Multitunction $\$ 139$
768 K Multitunction vo Card (includes cable but not 41256 RAM)
Cat $\times 18050$
$\$ 199$ Hard Disk Controller Card
Cat X 18060 Enhenced Graphics Adaptor Cird
(AT COMPATIBLE)
Enhanced Graphic: Adaptor Card Enhanced Graphic: Adaptor Card
(Award Bwos)

NEC DISK DRIVES

- Al compatiote
- souble sided, couble censity.
- : 2 MByle to 720 K formatted.

Cat C11906

- Doudde sided SLIMLINE
.
- Double sided. doubte de

Cat C11908 ... $\$ 795$

MALL ORDERHOTLINE

- 008335757 , [TOLL FREE]
LOCAL: 5437877 -

20 M'BYTE HARD DISK DRIVE FOR IBM* AND COMPATIBLES
NEC CHVMO MTH DTC Contraler Cara SPCIAL ONLY SM95
 Sapanese Chinoon mechanis
Compatiote mit Apple $2+$
Cat X 19901
Normally
5225
SPECIAL $\$ 195$

SUPER 5EP-1201 DOT MATRIX PRINTER : 120 CPS

- Prac or Elite cnaracter sel Proportional Font. Orati
- Proporional Printing
- Relable and Compac

Logoct Seekinal Printung

- Log Prnmer Butiter

Cal C20035 only $\$ 595$

COMPUTER PAPER Qualty paper al alow prcel 2.500 ${ }_{\text {Cat }}{ }^{\text {paper }}$ C21003 Normally 899.95 SPECIAL, ONLY $\$ 44.95$

51^". DISK STORAGE EHrcient and practical Protect yout
disths from being damaged or bost' disks trom be
Foaturam .e.
.70 disk Ca

JUMBB 5V/4" DISK
STOMAGE
aporeciatat the extra capacity of ins disk storage unit whien il comes to
becting othar diskl Focating "tha

- 100 disk capacary
- Smoked plastic cover
- Lockabie (2 2 keys supolied)

C16020 only \$24.95 C16027 (Hinged Lio) $\$ 26.95$

3' DISK STORAGE UNIT - Horos up $10.40 \times 31 / 2{ }^{2}$ d skettes - Hign impact plasick to and base Cat C16040 only $\$ 19.95$

PAPER TAMER

- Resiores order to the top of your desk or work aroa
- Made ol whrie plastic coated steet
- Stores up to 900 contrnuous sheets
- Allows pertect paper leod

C21050 Normally 559.95 Special, only $\$ 49.9$
Thor

APPLE* II SERIES COMPATIBLE JOYSTICK These poysucks have adaplor
 and $11+$ compulers. Foatures include
selectable -spring centring or Selectable "Spring centing or "rres on boin axis. 360° curso controd and dual lire butions

CENTMOHICS GENDER CHANEERS - Fomera 10 - omale
non mating Centronics cables - Al 36 pris wired straight thro Cat $\times 15663$ Mala to Mate Cat. X $\mathbf{1} 5661$ Male to Female Cal $\times 15664$ Fomate to Female Normaly $\$ 33.95$
Only $\$ 24.95$

RS 232 GENDER
CHANGERS

- Saves moditing or replacing
non -manng Rsz232 cabtes. 25 pns wred strangh thro
Cat: $\times 15650$ Male to Mate
Cat $\times 15651$ Mole to Feme
Cat. X 15652 Female to Female
mally $\$ 1995$ each
RS232C NULL WODEM
ADAPTOR
Pins 2 and 3 reversed
- Al 25 pons connnected

Cat X 15657 Male to Moto
Cat $\times 15658$ Male to Female
Cal $\times 15659$ Femaide to Fomale
Only $\$ 14.95$

为

Rod Irving Electronics

 Man Orom and Correbponsernen
00 Box 520 CLAYTON 3168 Trice: AA 151938

MAL ORDER HOTUNE 008335757 (TOLLFREE) STRICTIY ORDERS ON, Y

LOCAL ORDERS \& INQUIRIES 10315437877

Where else can you buy top quality disks at these prices?!

 VERBATIM DISKS AT INCREDIBLE PRICES!

$\begin{aligned} & \text { C12610 } \\ & \text { C12612 } \end{aligned}$	$\begin{aligned} & \text { MF350 } \\ & \text { MF360 } \end{aligned}$	VEREAATUM $3^{1} z^{\prime \prime}$ DISIKS S/S D/D 80 tracks/135 TPI $\$ 54.95$ D/S D/D 80 tracks/135 TPI $\$ 59.95$	$\begin{aligned} & \$ 52.95 \\ & \$ 55.95 \end{aligned}$
VIRRBATHI $51 \mathrm{~s}^{\prime \prime}$ DATALIFE DISMS			
C12501	MD525-01	S/S D/D soft sector 40 track\$27.95	\$26.95
C12504	MD550-01	D/S D/D $\$ 34.95$	\$32.95
C12505	MD550-10	D/S D/D 10 sectors 40 tracks $\$ 61.20$	\$56.95
C12507	MD577-01	S/S D/D soft sectors 80 tracks $\$ 61.20$	\$56.95
C12510	MD557-01	D/S D/D soft sectors 80 tracks $\$ 75.60$	\$68.95
C12421		D/S D/D \$29.95	\$26.95
VEREATIM $8^{\prime \prime}$ DISKS			
C12811	DD34-4001	D/S D/D $\$ 69.60$	\$67.50
C12814	DD34-4026	D/S D/D $\$ 69.60$	\$67.50
	HEAD CLEANER DISKS 51/4" \square $\$ 11.75$ $\$ 9.95$		
C12551			
C12851	51/4" $^{1 / 2 . ~} 14.95$		$\begin{aligned} & \$ 9.95 \\ & \$ 12.95 \end{aligned}$

Now you can buy absolute top quality $51 / 4$ " disks that are also the cheapest in Australia!! They even come with a 5 year guarantee, which indicates the quality of the Microdot disks. So why pay 2-3 times the price for the same quality as Microdot?

CHECK THESE PRICES!

DESCRIPTION
1-9 BOXES 10+ BOXES 51/4" S/S D/D \$14.95 \$13.95 51/4" D/S D/D \$18.95 \$17.95
(SEND \$2 FOR SAMPLE DISK!)

51/4" D/S"NO FRILLS"DISKS FROM $\$ 1$ EACH!

Bulked packed, Microdot D/S D/D without boxes, or labels, or brand name, just their white card jacket! 1-99 DISKS
$100+$ DISKS
$1,000+$ DISKS

(SEND $\$ 2$ FOR SAMPLE DISK!)
(TAX EXEMPT PRICES LESS 20¢ PER DISK)

Bulked packed, D/S D/D disks with white boxes, but no labels or brand name. (These are a top name brand, but we can't tell you which.) 1-99 DISKS
100+DISKS
$1,000+$ DISKS
(PER 10 DISKS)
(SEND $\$ 5$ FOR SAMPLE DISK!)
(TAX EXEMPT PRICES LESS 40¢ PER DISK)

RETAIL INQUIRIES: Rod Irving Electronics,

A (HAM) TALE OF THREE CITIES

Amateur Radio in Kuala Lumpur, Singapore and Bangkok.

Thomas E. King VK2ATJ

SARTS President, Selva, 9ViUV, regularly demonstrates amateur radio to would-be amateurs in the massive Singapore Science Centre while amateur classes held within the complex attract great interest from the island nation.

When amateur radio operators in Malaysia aren't able to access their favourite 2 metre repeater they immediately know that someone's been monkeying with the junglesurrounded VHF system. And without fail the culprit turns out to be a monkey who's gone ape twisting repeater antennas or chewing the coax.

While Malaysia's two existing repeaters (another 144 MHz repeater is planned for south Malaysia while a 440 MHz repeater set-up is under consideration for Kuala Lumpur) are relative newcomers to the country's amateur scene, the hobby has a long history in this independent Southeast Asian country. It began on March 10. 1932 when the Malaysian Amateur Radio Transmitters Socicty (MARTS, PO Box 10777. Kuala Lumpur) was formed by a small group of enthusiasts in Kuala Lum-
pur. In those days Malaya was a British colony. The few founding fathers of MARTS were British expatriates who operated under the callsign VS2. (It's been 9M2 for West Malaysia and 9M6 and 9M8 for East Malaysia, since independence in 1957.)

The 'spark gap' period of amateur radio in Malaysia began to dramatically change in 1983 when discussions between MARTS officers and Jabatan Telekom (Malaysia's telecommunications authority) resulted in a radical change in attitude to the amateur movement and a markedly more liberal and enlightened interpretation of the rules and regulations.
The year 1984 heralded yet another major step forward with the introduction of objective type question papers for the technical exam. When detailed essay papers were previously required for the
tech exam an average of only three to six candidates would sit for the gruelling test. In June 1986, 50 candidates took the objective test while an unprecedented 212 sat for the recent December exam!

Ham numbers are now about 200 and MARTS membership around the 250 mark (SWLs account for the difference). Both figures are set for an increase as the majority of those who appeared for the exams in 1986 receive their licences and join MARTS.

At a cost of about \$A10 a year MARTS members enjoy club privileges which include contests and field days, a QSL bureau which handles around 2000 cards a month and an annual callbook. There are occasional get-togethers including the annual general meeting which was last held in mid January and there is the semi monthly MARTS newsletter. (The

December issue was more.like a magazine with 80 pages!)
Members (and non members) can keep up with Malaysia's changing amateur scene by attending regular 'meetings on the air'. While these broadcasts go out to enthusiasts on the 40 and 2 metre amateur bands, anyone watching TV3 on alternate Sundays can learn more about amateur radio from popular newsreader Ghazalic. 9M2GH. His 20 minute "MARTS Magazine" gives news about amateur activitics in Malaysia, Southest Asia and the world. and has been of immense promotional benefit.

Singapore

The amatcur population in Singapore has also seen the benefits of media promotion. A three-sentence notice in the Straits Times in early 1986 drew 120 responses
for the first amateur radio course ever conducted by the 18 -year-old Singapore Amateur Radio Transmitting Socicty (GPO Box 2728, Singapore 9047). Sixty applicants were finally selected for the 12 week course on theory, rules and regula-

63

> Singapore has the highest per capita income in Asia and purchase of equipment is not a financial burden. Time is much more of a problem. 80

The founding tather of amateur radio in Thalland, Brig-General, Kamchai Chotikul, HS1WR, pursued the full legalization of amateur radio in his country, a cause carried forward by his widow Mayuree, HS1YL.
tions, conducted inside the spacious Singapore Science Centre.

While Singapore's amateur population is set to expand far beyond its current 70 hobbyists, amateur radio operators in this tiny republic are confronted with a number of curious situations all of which make interesting ham tales.

For instance Singapore has the second highest per capita income in Asia and purchase of equipment is not a major financial burden. Time is much more of a problem. The big 'time grabber' is work. The typical Singaporean approach to employment is one of long hours and total commitment.

Another problem is that due to Singapore's thousands of multi storey buildings and tens of thousands of flats, the erection of proper antennas is extremely difficult. It can only be done after the approval of building owners and, in the case of Housing Board of Singapore flats, is subject to an annual antenna licence fee of about $\$ 80$.

If these dual difficulties can be solved would-be amateurs have a fairly straightforward path to achieving a licence. Candidates over 21 pay an application fee of about $\$ 6$ to sit for the two-part written exam which is held every August. Upon its successful completion with passes of at least 60 per cent in each section candidates may apply, with a fee of about $\$ 3$ to sit for a Morse exam. These are conducted in April and October. Would-be amateurs are required to send and receive 36 words in plain language in three minutes.
After candidates have successfully passed the written and Morse tests they have up to a year to apply for an Amateur Station Licence. Beyond that period the Morse test has to be taken again! A fee of about $\$ 17$ is payable on the issue of the renewable licence which is valid for one year.
Several operating peculiarities exist in Singapore. For instance, first year licence holders are limited to Morse operations with a power of 20 watts (except on 160 metres where power is restricted to 10 watts). On the VHF and UHF bands operation is limited to a few spot frequencies. Individual approval to operate on these bands has to be obtained in writing. Operating power is limited to 15 watts and only crystal-controlled equipment is permitted. (Some softening on the 2 metres

(HAM) TALE

issue occurred in late 1986 when the Republic's first repeater began operating on 146.625/.025.) Mobile operation on HF, VHF and UHF is not permitted and maritime mobile operation is also forbidden.

One area where absolutely no problem exists is in the obtaining of equipment. A number of equipment suppliers such as Rico Pty Ltd (80 Genting Lane, Singapore 1134. telephone 745-8472) offers the latest equipment at substantial discounts. A paradox is that since some of the equipment available features amateur bands not available in Singapore certain pieces can only be purchased by amateurs from overseas who take their bargains with them when they leave the country.

While these incongruities are often discussed at SARTS monthly meetings (held on the last Thursday of the month at the YWCA, 6, Fort Canning Road) an entirely different attitude and a vastly different appraoch is taken to amateur radio activites in Thailand.

Thailand

Amateur radio is a comparitively new activity in Thailand although it most certainly predates the 1965 founding of the Radio Amateur Society of Thailand. RAST was ably guided for many years by the late Brig-General Kamchai Chotikul, HSIWR. His widow, Mayuree HSIYL, is still a very active RAST member, who along with the 600 other members of the club, pursues her late husband's long term objective of the full legalization of amateur radio in Thailand.

A breakthrough came in mid November 1984 when the Thai Communications Minister, Samak Sundaravej, was the chief guest at RAST's 20th anniversary celebrations in Bangkok. It was his first personal contact with the society, the wireless hobby and the worldwide activities and achievements of amateur radio operators.
Since then a number of meetings on both formal and informal levels have taken place between RAST officers and senior officials of the Post and Telegraph Department. The Director General of the licensing organization. Mahidol Chantrangkook, has not only been understanding and helpful but has demonstrated such an interest in the hobby that RAST members donated and erected an HF triband Yagi at his home.

The most important meeting to date was in late 1985 when the frequency management committee of the Ministry of Communications summoned senior members from RAST to explain aspects of the hobby and to clarify certain points. The meeting was initiated by the Government and that in itself reflected a growing awareness of the amateur radio service in Thailand.

Malaysia's involvement, interest and development of packet radio and satellite communications has firmly placed the country as a amateur leader in Asia.

While debate among senior government officials continues on how best to fully legalize and regulate the Thai amateur radio service, RAST has been able to keep Thailand's amateur voice on the HF bands by applying for and receiving short term permission from the PTT to operate stations for special events and during recognized contests such as the All Asia DX Contest, the SEANET Contest, the European DX Contest as well as the CQ Worldwide contests. Contest operations are conducted from the club's HF station located at the Asian Institute of Technology which is about 45 km north of Bangkok. The call sign HS0A is used for contests and participation in special events such as the society's 20th anniversary and recent operation by the Japanese UNICEF Ham Club.

At the request of the Post and Telegraph Department. RAST set up a demonstration station within a telecommunications exhibition to mark Thailand's national communications day. The exhibition held at the Science Museum in central Bangkok forged a new and growing relationship between RAST and the Education Department of the Ministry of Education which administers the muscum. Science Museum officials are keen for the society to establish a permanent club station and have offered spacious premises. The society (PO Box 2008, GPO Bangkok) is currently in the process of seeking permission for such a station and arrang-
ing for the equipment.
The central location of this proposed station and its planned operation by qualified members on virtually a daily basis should not only help promote the hobby among enthusiasts but should broaden the understanding of the activity among officials concerned with licensing.

Thailand differs from other countries by authorizing non-amateurs restricted use of the 2 metre amateur band. Those authorized must be Thai nationals who have passed a PTT-administered exam in radio theory and operating procedures. Operators known as radio volunteers are assigned a number to be used in conjunction with the two letter "VR" prefix. Contacts are established on the calling frequency of 144.5 MHz. Operators then shift to a clear frequency choosing from 144.6, 144.7, 144.8 or 144.9 MHz . (Repeaters are not authorized.)
The stated objective of VR licence holders is that they "are to act as the eyes and ears of the police". They are to report accidents and other incidents. Some VR operators have even been on patrol with police officers.
For visiting amateurs Thai hospitality may not just stop with a friendly RAST get-together as local Thais or expats often invite guests to see other aspects of lively Bangkok. It's a gesture which nearly always results in providing enough anecdotes and incidents to fill another article with tall tales of Thailand.

IBM PRINTER CABLE

Approx 1.5 m long with quality connectors on each end. You couldn't bu'y the parts and make one yourself for the price. Were $\$ 22.50$ but till current stock is exhausted you can have one for just $\$ 15.00$.

10mm JUMBO LEDS

Yes the picture is just about actual size. They're a huge 10 mm diameter. They have three legs rather than the usual two because inside there are two Leds to allow you to vary the brightness. Available in red, yellow or green all at $\$ 1.45$ each

BOURNS TRIM-POTS

Continuing Geoff's policy of stocking only the highest quality components we have now added a range of Bourns trim pots.
Rectangular 15 turn type 3006P series $\$ 2.20$ each.

Square 25 turn type 3299 W series $\$ 2.95$ each.

Both series are available in the following values

10 ohm	$1 k$	$25 k$	$1 M$
100	2	50	2
200	5	100	5
500	10	200	
	20	500	

BOURNS TRIM-POT TOOL

Handy little tool for setting trim pots. It's always hard to find a screwdriver that fits so get one of these drivers. One end has a screwdriver for recessed slots. the other end fits over actuator screws and won't fall off - so you can leave the tool attached in awkard locations while you make other adjustments! At only $\$ 2.00$ you'll soon recover the cost by saving time and frustration.

MULTI-TURN DIALS

If you use multiturn potentiometers you need these beaut Spectrol Dials -
Model 15, 10 turn digital Multi-Dial has three digit readout. One turn of the knob gives a count of 100 . Resolution is to one fifth of a digit graduations! Measures approx $45 \times 25 \times 25 \mathrm{~mm}$ (inc knob). Incorporates lever action locking mechanism. \$36.50
Model 16, Multi-turn Dial has fifty graduations with turns counter which counts up to 15 turns. Only 22 mm diameter and 22 mm high - ideal for cramped panel layouts! Lever action locking mechanism. $\$ 24.00$

R. F. CHOKES

An extremely wide range of miniature RF chokes is now available (values are in uH). All $\$ 1.50$ each.

1	10	68	1000
1.5	15	100	2200
2.2	18	180	3300
3.3	22	270	4700
4.7	33	330	
6.8	47	470	

CONNECTORS

9-Way "D"	
DE9P	$\mathbf{\$ 2 . 3 0}$
DE9S	$\$ 2.40$
Backshell	$\$ 2.20$
15-Way "D"	
DA15P	$\$ 2.80$
DA15S	$\$ 3.00$
Backshell	$\$ 2.20$
25-Way "D"	
DB25P	$\$ 3.05$
DB25S	$\$ 3.20$
Backshell	$\$ 2.20$
37-Way "D"	
DC37P	$\mathbf{\$ 8 . 0 0}$
DC37S	$\$ 8.70$
50-Way "D"	$\$ 9.00$
DD50P	$\$ 9.80$
DD50S	$\mathbf{\$ 6 . 4 5}$
Centronics 36 Solder Male	$\$ 9.50$
Centronics 36 Solder Female	$\$ 10.50$
Centronics 36 IDC Male	$\$ 11.85$
Centronics 36 IDC Female	

CRYSTALS

Most popular crystals are available ex-stock. Call us for latest pricing

CHECK TRANSISTORS, CAPACITORS AND CURRENT TO 10A

One multimeter does the lot - Vdc from 200 mV to 1000 V . Vac from 200 mV to 750 V . Adc from 200uA to 10A, Aac from 20 mA to 10A. Ohms from 2000 hm to 20 Megs , Diodes. Continuity beeper. Capacitance from $2 n F$ to 20 uF . Plus measure hFE for PNP and NPN transisitors from 0 to 1000. Single rotary dial for unambiguous range selection. Auto-polarity $3^{1 / 2}$ digit display. Bright yellow case so you won't lose it! EDM1111A $\$ 118.88$ inc. tax ($\$ 103.03$ ex tax)

Measures only $126 \mathrm{~mm} \times 70 \mathrm{~mm} \times 24 \mathrm{~mm}$ yet incorporates full $3^{1} \%$ digit multimeter including a continuity buzzer. Single rotary switch for fast convenient operation. Checks diodes 100 Measures Vdc from 200 mV to 1000 V . Vac 200 and 750 V . Adc from 200uA to 2A. Ohms from 200 hm to 2 Meg . Special 1.5 V battery test range with 1 mV resolution and a continuity range which beeps when resistance is below 1000hm. Bright yellow case so you cant mislay it!! EDM-70B $\$ 64.40$ inc. tax ($\$ 55.52$ ex tax).
8.30 to 5 Monday to Friday, 8.30 to 12 Sat. Mail Orders add \$5,00 to cover postal charges

All prices INCLUDE sales tax.

Tax exemption certificates accepted if line value exceeds $\$ 10.00$.

BANKCARD, MASTERCARD, VISA, CHEQUES

GEOFF WOOD ELECTRONICS P/L (02) 4271676

INC IN NSW

229 BURNS BAY RD.
(CORNER BEATRICE ST. LANE COVE WEST N.S.W.
OR CASH CHEERFULLY ACCEPTED

HOBBIES AND PROJECTS

EXPANDING NEC's PORTABLE

A modification to the PC-8201A to get the whole of bank \#2 with a new IC.

Roger Davis

Roger Davis is with the CSIRO, Division of Tropical Crops and Pastures, 306
Carmody Road, St Lucia, Qld 4067.

The NEC lap computer, PC-8201A is widely used in Australian agricultural research both for in situ data entry via the keyboard and for automatic
data logging of instruments via serial data lines or analogue-to-digital converters ${ }^{1}$. Local journalists use it to prepare copy for direct entry to typesetting computers.

The 8201 A may access any of three 32 K read/write memory banks, but only one bank at a time. It normally comes with only 16 K of memory - half of its bank \#1. Bank \#3 is made as an external plugin module. Bank \#1 and bank \#2 may be filled up by plugging in special CMOS memory components (8201-06).

However, the price of a memory expansion unit, a hybrid 8 K part, has not fallen in step with other CMOS memory over recent years which makes the expansion of the 8201 A more expensive than equivalent systems. The recent release of 32 K CMOS memory integrated circuits (84256) at a price lower than that of an 8 K hybrid part prompted the development of a modification to allow one of these to provide the whole of bank \#2 in a PC-8201A.
The 8 K expansion sockets for the NEC 8201 are incompatible with the standard 28 -pin JEDEC 8 K pin connections and cannot be used with the low cost 8 K CMOS memory parts (eg, HM6264) for two reasons. Firstly, the 8201A RAM sockets use 0.7 inch wide pin spacing, and secondly, each one is decoded as four 2 K banks. (The 8201-06 memory hybrid consists of four 6117LP memory parts.) However, the 8201 A has a spare socket for a second 32 K ROM which does use standard JEDEC pin connections. By bending four of its pins so that they fall outside the socket (see Figure 1) prior to plugging in a 32 K CMOS RAM (eg, 85256), the bank \#2 32 K can operate in the ROM socket. Vcc must be supplied from the standby power line as supplied to the other RAM sockets. RAM \#7's lines for Vcc (28), WE-(25) and OE-(22) can be used by linking across to the 84256 pins 28,27 and 22 respectively.
Under the pcb, A14 is linked across from its pin 27 on the ROM to pin 1 for the RAM. The 84256 CE-(20) signal is obtained from a new circuit which gates the bank \#2 enable line with a memory enable line (E) which is low during powerdown and with the IO/M-line. The most convenient way to provide this CE-signal without cutting any tracks is to mount a $74 \mathrm{HC138}$ above an existing 74 H 138 (U4). This facilitates the connections to the required signals to control the new bank \#2.

The new IC is to be designated U4B and only its pins $5,6,8$, and 16 are soldered down to the original U4, Pins 1,2 , and 3 of U4B are connected to Vcc (ie, pin 16). Pin 4 of U4B is linked across to pin 1 of U 1 to pick up the $1 \mathrm{O} / \mathrm{M}$-signal.
Pin 7 of U4B provides the new CE- to be linked using a fine insulated wire (eg, 0.3 mm EnCu) to the new RAM's pin 20 (via a pcb feedthrough hole). The other
pins of U4B may be bent away or chopped off (see Figure 2). For details of the control signals see the full circuit diagram in the NEC service manual. ${ }^{2}$
Current consumption from the internal nicad backup battery increases from approximately $130 \mu \mathrm{~A}$ (bank \#1 32 K) to approximately $260 \mu \mathrm{~A}$ with both bank \#1 and \#2 fitted with 32 K . This reduces the nominal backup battery life from 14 days to seven days. A fully charged main battery pack will extend the memory backup life by a factor of 10 . Connection of the external supply (nominal 8.5 V) will recharge both the backup battery and a main nicad battery whether or not the computer is turned on.
The 8201A does not require that bank \#1 be filled in order to use bank \#2. Using this method of installing bank \#2 is cheaper than filling bank \#1 and thus one could use the new bank \#2 as a primary memory bank of 32 K with only the original 16 K in bank \#1. A convenient mode of operation may be to use bank \#1 for programs and bank \#2 for wordprocessing files. By setting the rear switch, PROTECT to ON, bank \#2 is write-protected (the WE- line is disconnected from bank

\#2) and the presence of the extra bank cannot be detected by the software or by the operator.

The cost saving due to using the more recent memory is not without a minor disadvantage. During operation the computer draws 15 mA more when operating in bank \#2 than it does when operating in bank \#1. However, this difference is similar to the difference in current consumption of two computers (eg, 65-80 and 7590 mA).

This modification has now been tested on eight machines with complete success.

A similar procedure cannot be used to provide bank \#3 without actually cutting pcb tracks and modifying the 8201's circuitry which may not be desirable
References

1. Davis R. (1986) "RD35 Digital Voltmeter and solid state scanner designed for use with microcomputers via fully isolated interface," CSIRO Aust Div Trop Crops and Past, Trop Agron Tech, Mem No 44.
2. NEC (1983). Personal Computer Service Manual PC8201. NEC Corporation, Tokyo, Japan.

"the highest performance computer design ever published"

POWER, PRICE, FLEXIBILITY AND COMPATIBILITY IN A 16 BIT KIT. THE AMAZING 1616.

Abstract

At last a kit computer that sports similar features, specifications and classical design architecture to current PC's.

The 1616 offers the latest microprocessor, loads of onboard memory, expansion slots for your favourite add-ons and more! As well as software with the power to pull all these feaures together and make the 1616 function as a useful, high pefformance personal computer priced to suit any budget.

THE CH: ILE NGE THAT IS WELL RFWARDED

Built up in easy stages, the 1616 offers a unique insight into the workings of 16 bit computers. Each stage can be tested by diagnostic functions, to ensure correct construction. In its complete form, the 1616 is comparable with today's commercial PC's, or, in partial form, it is perfect for research adaptations.

HARDWARE THAT PROVIDES POWER A MD FUNCTION.

Just imagine; a 68000 CPU , high resolution colour graphics, stereo sound, memory and software with an abundance of I / O and unlimited expansion capabilities
COMPETII VE I PRCES, TAX INCENTIVES AND FLEXIBLE PURCHASING.
The 1616 is available as a Basic Kit for $\$ 449$ with the Board, Chips and Components. The Keyboard is $\$ 139$ and the Power Supply Unit is only \$69. Applix can arrange discounts for bulk purchases as well as all necessary tax exemptions for educational and business customers.

6

THE 1616 KIT COMES AS A BARE BOARD, A BASIC KIT OR FULLY CONSTRUCTED.

FEATURES THAT ARE BOTH ORIGINAL \& COMPATIBL:

* Motorola 68000 (16 bit) Processor * 512 K bytes RAM as standard * Graphics: 320 Hx 20 O V 16 colours, 640 Hx 200 V any four of 16 colours. * Standard RGBI Interface or composite video (shades of grey). * Stereo sound. * On-board high speed cassette interface. RAM disk software support in ROM. * Uses standard IBM-style detachable Keyboard. * Four 80 pin expansion slots. * Centronics compatible parallel printer port. * Dual serial ports. * General purpose analog \& digital I/O port. * Analog two-button joystick port. * Powerful monitor, full screen editor, terminal emulation, communications, operating system and more.

CONTACT APPLIX TODAY!

Applix Pry Limuted 324 King Georges Road, Beverly Hills. P.0. Box 103, Beverly Hills.2209. NSW Telephone: (02) 7582688

SORRX, IT DOESNT WORK! APPLX GUARANTEES IT WIIT!

If properly constructed the 1616 will function perfectly, however, if you do encounter problems, Applix will, for a flat fee, guarantee to correct them. Shades of

 of

16-BIT COMPUTER

In part 3 of this project we describe the peripheral parts of the 1616 - the interfacing to keyboard and printer, the analogue input/output and the serial interface. We also begin a discussion of the software.

Andrew Morton \& Paul Berger

THIS ARTICLE will describe the peripheral parts of the circuit. The major peripheral function devices of the 1616 apart from the video are the keyboard interface, dual serial channels, parallel printer port, cassette port, analogue interface, sound generation, user port and the expansion connectors.

The keyboard interface

The IBM-compatible keyboard produces either 10 or 11 bits of clocked serial output depending upon the style of the keyboard. Schmitt triggers in IC34 clean the noise from the incoming clock and data signals. The leading two or three clock pulses from the keyboard are then discarded by the latches IC53 and IC49 and the remaining eight pulses are used to clock the data into the VIA's internal shift register. Filling this register causes the VIA to interrupt the 68000 . Software then reads the incoming data from the VIA and lowers the VIA CLRKBL signal, preparing IC53 to receive the next keycode.

The serial interface

The 1616's standard serial protocol is RS232C which is obtained by loading the serial drivers and receivers IC6-IC9 and linking pins on the serial jumpers. These jumpers may be wired to accommodate differing serial port pinouts. Other communication protocols such as RS422, MIDI and SDLC may be implemented by mounting a peripheral circuit board containing appropriate logic and drivers onto the serial jumper pins.

The 1616's serial interface is implemented using the Zilog Z8530 serial communications controller (SCC). The dual four-to-one data selector IC63 is used to generate the SCC's control signals SCCRD and SCCWR from the MC680\%)'s bus signals. The SCC has no reset pin but is reset by simultaneously lowering both these signals.

The 3.75 MHz signal from the timing PAL is sufficiently close to the desired 3.6864 MHz for it to be used as the baud rate reference for the SCC. This signal is
brought to the serial jumpers for this reason.

The parallel printer port

The parallel printer port is a minimal Centronics interface. Characters are written to the 8 -bit latch IC1, and the VIA CENTSTB signal is pulsed low to send the data to the printer.

Centronics-type printers send an acknowledge pulse to the host computer when they are ready for new data. This signal, CENTACK, is buffered and passed to a VIA interrupt input pin.
The printer also transmits a busy signal which is high when the printer is not ready to receive data. This signal is buffered and passed to the VIA CENTBUSY input.

The cassette interface

The tape recording format is a simple one: a binary 0 is represented by a 200 microsecond cycle and a binary I by a 400 mi crosecond cycle. To save data on tape the VIA is programmed to generate a stream of interrupts which provide the timing, and the VIA CLRCASIRQ signal is raised and lowered at interrupt time to generate the appropriate signal to be recorded.

Upon playback the recorded squareedged signals are greatly smoothed. The LM301 op-amp IC12 is used as a slope detector to cancel the effects of tape recorder bandwidth limitations. The LM319 comparator retrieves the original signal and produces a TTL compatible level.
The monostable IC33 has a timing period of approximately $3(K)$ microseconds and is used to decode the pulse-width modulation recording format: if two rising edges from the comparator are separated by less than 300 microseconds (a binary 0) then the monostable output will be low on the second rising edge: if the separation exceeds 300 mieroseconds then the monostable output will be high. On each rising edge of the output of IC11 during tape reading three things happen:
(1) The IC33 monostable is retriggered, starting the $3(\%)$ microsecond timer.
(2) The previous output of the monost-
able is latched in IC32 and presented to the MC68000 via the input port.
(3) The flipflop IC32 is clocked and CA$\overline{\text { SIRQ }}$ is lowered, interrupting the MC68000). The ECASRIRQ signal enables these cassette read interrupts. The cassette read interrupt software reads the data bit from the input port and resets the interrupt status by pulsing CLRCASIRQ low, thus presetting IC32.
Because the cassette I/O is software driven it is important that both the reading and writing interrupts be serviced by the MC68000 without any delay. For this reason the $\overline{\text { CASIRQ }}$ signal is put at a higher priority than any other interrupting device. (Sce ETI February for a discussion of interrupt priority levels.)
During cassette writing CASIRQ is generated by programming one of the VIA's internal timers to produce a continuous square wave on the PB7 pin. The flipflop IC49 is clocked by this waveform and requests the interrupt if the ECASWIRQ (enable cassette write interrupt) signal is low.
A bit on IC18, the analogue multiplexer port, is used to drive transistor Q2 and the relay which software uses to stop and start the cassette motor.

Analogue inputloutput

The analogue input/output is centred upon the IC20/IC21 8-bit digital-to-analogue converter circuit (DAC). This DAC is used for the following things:
General purpose analogue output and sound generation. The dual 4 -to- 1 analogue multiplexer 1C23 switches the buffered output of the DAC onto one of the four holding capacitors C39-C42. AIthough the voltage held on these capacitors will decay after a period, this technique enables us to produce four analogue signals using one DAC.
Analogue inputs. The 8 -to- 1 analogue multiplexer 1 C 10 selects an input from amongst the joystick potentiometers and the six general purpose inputs and presents it to the comparator IC11. This com-
parator compares the selected input with the DAC's output and a software successive approximations program is used to determine the input voltage level.

Sound generation

Sound output is produced by using the
DAC to produce audio waveforms on C40
and C41. These are amplified by the dual audio amplifier IC13 and drive loudspeakers. Sterco sound is produced by quickly switching the output of the DAC between the two amplifiers.

The potentiometers RV1 and RV2 control the left and right output signal level

PARTS LIST - ETI-1616	
Reslstors...............all 5\%	IC21.....................DACO800 8-bit DAC
R2....................... 18k	IC22.................... LM324 quad op-amp
R3, $6,7,17,18,19$,	IC23.................... 4052 dual 4-channel MUX
22, 28, 31, 36, 37 ...2k2	IC24....................74LS32 quad 2-input OR
R4, 56, $57 \ldots \ldots4 k 7 ~$	gate
R5, 41................. 10k	*IC25, "26 27256 ROM
R8, 48..................330R	IC27.....................MC6845 CRT controlier
R9.......................68R	IC29, 31 74LS166 8-bit parallel
R10, 11, 20, 25,	in/serial out register
$26 .56 k ~$	IC32, 49, $6074 L S 74$ dual D-type flipflop
R12, 13................ 15k	with clear
R14, 33................ 150R	IC33....................74LS123 dual retriggerable
R15, 21, 39...........33k	one shot
R16, 27, 32, 35,	IC34....................74LS14 hex Schmitt trigger
	IC35-38, 62...........74F153 dual 4-1 MUX
R23..................... 470R	IC39-46, 66-73 41256-15 256×1-bit
R24..................... 220k	DRAM
	IC47, 48, 52, $65 \ldots .$. spare
R34...................... 100R	IC49....................74F74 dual D-type flipflop
R40.....................3k3	with clear
R41.....................8k2	*IC51TPAL 16R8 timing PAL
R42-47, 50-5533R	IC53....................74LS174 hex D flipflop with
R49........................ 2k2, 1\% (not required if	IC54.......................74LS04 hex inverter
RV1, 2 200k trimpot	IC55.....................74LS32 quad 2-input OR
†RN1 1k	gate
RN3, 4, 5, 6...........3k3	IC56.................... 74LS148 priority encoder
Capacltors	IC57.....................74LS11 triple 3-input AND
C1, 2, 11, 20, 24,	gate
25, 43, 50, 51, 53,	IC58.....................74LS08 quad 2-input AND
$68,69,84,85,92$,	gate
	IC59.....................74LS138 3-10-8 line
C5-13, 17-19, 23,	decoder
26, 28-32, 34-42,	IC61....................74LS05 open collector hex
44-48, 52, 54-67,	inverter
70-83, 86-91, $95 \ldots .100 \mathrm{n}$ monolithic	\dagger IC63...................74F153 dual 4-10-1 MUX
C14.....................390p ceramic	IC64.....................74LS139 dual-to-4 decoder
C15..................... 120p ceramic	This description of ICs supersedes the listing
C16.....................56p ceramic	published ETI February.
C21, 22, $27 \ldots \ldots220 \mu$ electro	D1, $21 N 914 ~$
C33, 93, $94 \ldots \ldots \ldots \ldots .10$ n monolithic	Q1BC337
C49..................... 100n greencap	Q2BC327
Note that on revision B boards there are $2 \times \mathrm{C} 93$.	LED1, 25mm, red
The one located near C94 is the 10n monolithic.	Miscellaneous
The one near C30 is a 10μ tantalum. The kit may	SW1reset C and K 8168A
be supplied with either low leakage electrolytics	SW24-way DIL
or tantalums.	RLY1211-CD005M relay
Semiconductors	OSC1 30 MHz TTL oscillator
\dagger IC1.....................74LS374 tri-state latch	ETI-1616 pcb
IC2, 19, 28, $30 \ldots \ldots .74 \mathrm{LS} 244$ tri-state buffer	Connectors
IC3........................ 74LS298 quad 2 MUX with storage	speaker, cassette, keyboardpcb mount 5-pin DIN
IC4...................... 74 LS670 4×4 resister file	video, joystickpcb mount female DB9
-IC5 VPAL 16R8 Video PAL	power 5-way keyed dc power
	connector
	16-way IDC strip
IC10.................... 40518 -channel analogue	8-way pin strip
MUX	shunts to suit strip
IC11.......................LM319 dual high speed comparator	†Centronics26-way right angle IDC header connector
IC12....................LM301 op-amp	†user I/O...............34-way right angle IDC
IC13....................LM377 dual 2 W amp	header
-1C14MC68000-P10 CPU	\dagger serial A, Bpcb mount male DB9
IC15.................... 6522 VIA	Parts preceded by * are in the mini kit supplied
IC16, 18, 2074LS374 tri-state octal latch	by Applix.
$\dagger 1 \mathrm{C} 17 \ldots \ldots \ldots \ldots \ldots \ldots28530$ dual series	Parts preceded by t are only in the I/O kit supplied by Applix.

and hence also serve as a balance control.
Low-level signals LEFTSIG and RIGHTSIG are available at the speaker connector for connection to audio equipment such as recorders and amplifiers.

The user port

The user port is a 34 -way connector which makes available the 1616's power supplies, eight I/O pins from the VIA, six analogue inputs, two analogue outputs and an interrupt input. This port permits the user to implement his own control and interfacing projects.

The expansion connectors

The four 80 -way expansion connectors make available various clock signals, the power supplies and all of the MC68000's signals. They are designed to accept addon cards such as I/O expansion, disk controllers, memory expansion and coprocessors.

Construction

The 1616 is supplied with a construction manual which contains parts lists, circuit diagrams, further circuit descriptions and a step-by-step guide to constructing the project. An oscilloscope is highly desirable, however, a multimeter and a logic probe are sufficient tools for assembling the 1616 .
There are basically two ways to build the 1616. The first way is to simply solder in all the components, plug in all the ICs and turn it on. This may at first seem to be the fastest and easiest way. Unfortunately, the chances of the computer working first go are fairly slim. Neither does it provide the constructor with any insight as to how the computer works or how everything fits together.

The second way is called progressive assembly and test (PAT) and is the method described in the 1616 construction manual. PAT involves breaking the construction into a number of small, simple steps. Essentially breaking the 1616's complex circuit into a number of smaller ones. As each step is completed, a number of simple checks are done ensuring that that step is working. If something is wrong it is corrected at this stage before proceeding to the next step. The steps are arranged in such a way that each will only work if the ones preceding it work, so you should never continue onto a step until the previous one works. By constructing the 1616 in this fashion, on completion of the last step everything should work. Also, by breaking the circuit up into a number of smaller ones, it gives a better understanding of how the computer functions.
Initial construction involves visual inspection of the board and components, then soldering in the resistors, IC sockets,
capacitors and other discrete components. After verifying that this has been done correctly, the constructor proceeds to load the ICs into the sockets. Only 17 ICs are needed to get the MC68000 executing code from the EPROMs, at which stage the test programs in the 1616 EPROMs are used in concert with the construction manual to finish construction.
The setting of the quad DIL switch connected to IC19 is used by the MC68000 to determine which of the eight in-built test and diagnostic programs are to be executed. Some of the test programs generate waveforms for verifying circuit operation and debugging faulty circuitry whilst others perform internal tests and report their results.

Software

The 1616's EPROM-based operating system software was written by Andrew Morton, the chief designer of the 1616. The operating system (1616/OS) influences the 'feel' and the capabilities of programs which run under it, hence it has been designed to impose few limitations on the programmer. This software will be used by implementations of other operating systems such as Digital Research's CP/M $68 \mathrm{~K}, \mathrm{GEM}$ and OS-9.
The command line interface philosophy follows the standard scheme (like CP / M, MS-DOS/PC-DOS, UNIX, etc) of typing in commands followed by the arguments appropriate to the command and receiving some response. It is a disk operating system which can run without any disks cassette tapes are used to load files into the RAM disk and any changed or new files are archived on tape at the end of the session. Commands are provided which make this a very simple operation. The software is designed to support add-on disks, or other devices with which data may be transferred in 512 byte quantities.

1616/OS includes a powerful line editor for entering commands which incorporates full cursor control, last line recall and an undo command. The keyboard's 10 function keys are user-definable and may contain up to 31 characters. When a command containing wildcards is entered the system scans the disk directory and substitutes any matching file names into the command before it is executed; the ' \star ' wildcard matches any group of characters and '?' matches any single character.
When a command name is typed at the command line interface it is compared with the 60 available built-in commands and if it is not found then the operating system searches the disk for a file of that name. If one is found and it is executable, it is loaded into memory and executed. If the file is a text file its contents are exe-

6522 VERSATILE INTERFACE ADAPTOR

The 6522 Versatile Interface Adaptor (VIA) is a very flexlble I/O control device. Control of peripherals is handled primarily through two 8 -blt bidirectional ports. Each line can be programmed as elther an input or output. Several of the I/O lines can be controlled directly from internal interval timers for generating square waves or for counting externally generated pulses. To facllitate control of the many features of thls chip, an interrupt flag, interrupt enable and a pair of function control registers are provided.
FEATURES:

* Two 8-bit bidirectional I/O ports.
\star Two 16-bit programmable timer/counters.
\star Serial data port.
* Expand handshake capability allows positive control of data transfers.
* Latched Input and output registers.

Z8530 SCC SERIAL
 COMMUNICATIONS CONTROLLER

The Zilog $\mathbf{Z 8 5 3 0}$ SCC is a dual-channel, multtprotocol data communicatlons chlp. The SCC functions as a serial-to-parallel, paraliel-toserial converter/controiler. The SCC can be software configured to satisfy a wide variety of serial communications applications. The device includes on-chip baud rate generators, digital PLLs and crystal oscillators that help reduce the need for external loglc.
FEATURES:

* Two independent, 0 to 1 mblt -second, full duplex channels, each with separate baud rate generation and digital PLL for clock recovery.
* Asynchronous mode with 5 to 8 data bits and 1, 1.5 and 2 stop bits per character; programmable clock factor; break detection and generation; parity, overrun, and framing error detection.
* Synchronous mode with internal or external character synchronization on one or two synchronous characters and CRC generation and checking.
* SDLC/HDLC mode with frame level control, automatic zero insertion and deletion, 1 -field residue, abort, CRC generation and SDLC loop back.
* Local loopback and auto echo modes.

BUILDING THIS KIT

The 1616 computer has been designed from the very beginning to be as simple to build as possible. We have tried to make the circuit as clean and reliable as possible. It is expected that you have constructed electronlc kits before and/or have experience in digital electronics at elther a hobbyist or professional level. If you are a complete beginner it might be best to try a smaller project first or make arrangements with a friend to help you just In case you get into trouble.

CONSTRUCTION WORKSHOPS:

If you need a little hand-holding, you may wish to take advantage of the construction workshops conducted by Applix. Please contact Applix, 324 King Georges Rd, Beverly Hills, 2209, (02) 758-2688, for further detalls.

'FIX IT' GUARANTEE:

If your built up 1616 falls to operate and you can not troubleshoot the fault(s) you may wish to take advantage of the Applix 'Fix It' guarantee. Our techniclans will check and repalr your 1616 as required, for the flat fee of $\$ 150$. This fee Includes any necessary component replacements, etc, that may be have been damaged during or after construction. Your 1616 must be unmodified and must be constructed using decent IC sockets to use the 'Fix it' service. If a kit is so badly constructed as to make repair Impossible we reserve the right to return the computer and the service fee, in the condition received. The 'Flx It' fee only covers the actual computer. It does not cover your power supply, keyboard, expansion boards, etc. It is 'Fix it' service only, not a construction service. We want to see your 1616 working as much as you dol

BUILT AND TESTED:

If you feel you are not capable of building the 1616 and are not Interested in the constructlon workshops you may wish to return the kit in Its original condition and purchase a built and tested 1616 or arrange a refund. We can not accept a return once construction has commenced, if any of the component packs have been opened, or if the kit or cartons have been damaged in any way. Please contact Appllx concerning pricing of the bullt and tested 1616 and returns procedure.

cuted in batch mode - parameters from the original command line are substituted into wildcard symbols in the text file and the resulting commands are presented to the command interpreter.
The command interpreter supports input/output redirection. This is a powerful feature which sets up the input source and output destination of the invoked command. A concept which must be understood is that of standard input and output. Most programs and built-in commands will obtain input from standard input and send output to standard output. Usually these will correspond to the keyboard and the VDU, however, the program does not know (and does not need to know) what physical devices these correspond to this is up to the user who typed the command.

Standard input and output are reassigned to either I/O devices or disk files in the normal UNIX manner of using the ' $<$ ' and ' $>$ ' signs. Physical I/O devices require a character device driver program to be installed in the 1616's memory before they may be used. A character device driver is identified by a name followed by a colon; the character device drivers available when the 1616 is powered on are:
CON: This driver obtains input from the 1616 keyboard and sends output to the VDU.
SA: The SA: driver obtains input from and sends output to serial channel A.
SB: The SB: driver obtains input from and sends output to serial channel B.
CENT: This driver directs output to the parallel printer port.

As an example let us suppose that we have a program for converting characters from lower case to upper case which resides in the RAM disk file 'toupper'. This program should read characters from standard input, convert them to upper case and then write them to standard output. If we wish to use this program to convert characters coming into serial port A into an upper case file called 'myfile' we would type: toupper <sa: >myfile

The command executor first redirects standard input to the SA: driver and opens a file called 'myfile' and directs standard output to it, then executes toupper.
It is possible to direct standard output to append charaeters to a file, rather than creating a fresh one by using the ' \gg ' redirection command.
Next month we will discuss the software including system ealls, the full screen editor, the Assembler and 1616/OS commands in detail as well as some sneak previews of the latest developments Gosh, this is exciting!

EXPANSION CONNECTOR PINOUT:		
Pin \#	Name	Description
1-2	Com	System common ground.
3-4	+5V	+ 5 V power supply.
5-6	+12V	+12 V power supply.
7-8	-12V	-12 V power supply.
9-24	D0-D15	Data bus (D0-D15). Bldirectional, three-state data bus.
25	AS	Address strobe. This signal indictes that there is valid data on the address bus.
26	$\overline{\text { UDS }}$	Upper data strobe. This signal indicates that valid data is avallable on data bus bits D8-D15.
27	$\overline{\text { L.DS }}$	Lower data strobe. This signal Indicates that valid data is available on data bus blts DO-D7.
28	R \bar{W}	Read/write. This signal defines the data bus transfer as a read or write cycle. It also works in conjunction with UDS and LDS.
29	$\overline{\text { DTACK }}$	Data transfer acknowledge. This pin is used by expansion boards to determine when another board or the main board has responded.
30	EXTDTACK	External data transfer acknowledge. This open coilector signal is used by expansion boards and indicates that the data transfer is completed. When the processor recognizes EXTDTACK during a read cycle, data is latched and the bus cycle terminated. When EXTDTACK is recognized during a write cycle, the bus cycle is terminated.
31	$\overline{\mathbf{B G}}$	Bus grant. This output indicates to all other potential bus master devices that the processor will release bus control at the end of the current bus cycle.
32	BGACK	Bus grant acknowledge. This input Indicates that some other device has become the bus master.
33	$\overline{B R}$	Bus request. This input is wire ORed with all other devices that could become bus masters. It indicates to the processor that some other device desires to become the bus master.
34	HALT	Halt. When this bidirectional line is driven by an external device, it will cause the processor to stop at the end of the current bus cycle. When the processor has been halted using this input, all control signals are inactive and all three-state lines are high impedance. When the processor has stopped executing instructions, such as in a double bus fault condition, the HALT line is driven by the processor to indicate to external devices that the processor has stopped.
35	RESET	Reset. This bidirectional line acts to reset the processor in response to an external reset signal. An internally generated reset (result of a RESET instruction) causes all external devices to be reset with the internal state of the processor unaffected. A total system reset results from external HALT and $\overline{\text { RESET }}$ signals being applled at the same time.
36	$\overline{\text { VMA }}$	Valid memory address. This output is used to indicate to M6800 devices that there is a valid address on the address bus and the processor is synchronized to enable (E) signal.
37	E $\overline{V P A}$	Enable. This signal is the standard enable signal common to all M6800 devices. The period for this output is ten MC68000 clock periods (six low; four high).
38	$\overline{\text { VPA }}$	Valid peripheral address. This signal indicates to expansion boards that the device or region currently being addressed is an M6800 family device.
39	$\overline{\text { BERR }}$	Bus error. This input informs the processor that there is a problem with the cycle currentiy being executed.
40	$\left.\frac{\overline{\text { PL2 }}}{\overline{\text { PLI }}}\right\}$	Interrupt control ($\overline{\mathrm{PL}} 2, \overline{\mathrm{P} L 1}, \overline{\mathrm{P} P})$. These input pins indlcate the encoded priority level of the device requesting an interrupt.
42	$\overline{\text { PLLO }}$	
43	$\left.\begin{array}{l}\text { FC2 } \\ \text { FC1 }\end{array}\right\}$	These function code outputs indicate the state and cycle type currently being executed and are valid whenever AS is active.
44	FC1	currently being executed and are valid whenever AS is active.
$46-68$ 69	A23-A1 STARTUP	Address bus (A23-A1). This 23-bit, unidirectional, three-state bus is capable of addressing eight megawords of data. It provides the address for bus operation during all cycles except interrupts. Start up. Power on jump signal for use with expansion cards.
70	EXTVPA	External valid peripheral address. This input indicates that the device or region addressed is an M6800 family device and that the data transfer be synchronized with the enable (E) signal. This input also indicates that the processor should use automatic vectoring for an interrupt.
71	EIROO	External Interrupt request. These decoded inputs are used by
72	EIRQ1	expansion boards to generate interrupts. The level of the interrupt
73 74	$\begin{aligned} & \overline{\text { EIRQ2 }} \\ & \overline{\text { EIRQ3 }} \end{aligned}$	is determined by the setting of the 'INT LEVEL' straps on the main board.
75-76	+5V	+5 V power supply.
77-78	Com	System common ground.
79	CLK	Clock. 7.5 MHz system clock.
80	30M	30 MHz clock.

ब190 FORA $=23$ g०T02351
＠ल11ल READB：POYEA，B：NEXTA
60120 DATA $33,0,240,62,64,14,160,113,35,61,32,251,33,192,243,62,64,113,35,61,32$, 251，17．64
风13＠DATA $\propto, 221,33,63,246,62,15,221,113,1,221,113,1,221,25,61,200,24,244$
$0 \% 140$ CLS
Q®150 CURS $10.2:$ FFINT＂：MAGINE HAVING TEXT ON THE SCFEEN AND A BORDER＂
0160 CURS29， $4:$ FRINT＂THAT CONTINUOSLY CHANGES＊
Q9179 FCRA＝ 1025
وの180 POKEZ315，A
Q9190 S＝LISR（23ल9）
9＠200 NEXTA
09210 GOTC： 9

THleblock

This is a short machine code routine that produces an out－ lined screen．The outline is programmed by POKEing the numerical value of the character into position 2315 The machine code routine is llsted here with a simple ex－
ample of the routines func－ tion．

The routine is placed in the REM statement of line one so make sure the line is typed as it appears．

G．Heathcote
Inglebum，NSW

90801 REM12345672901234567896
9010ø FORA $=2309 \mathrm{~T} 02328$
0日110 READB：POKEA，B：NEXTA
øø120 DATA $33,0,240,1,0,4,126,254,160,32,2,54,71,35,11,120,177,32,243,201$
$0 \varnothing 130 \mathrm{CLS}$
の10140 CURS15，1：PRINT＂／／／／／／／／／／／
の日150 CURS15，2：PRINT＂／THINGS CAN CHANGE／＂
$0016 \&$ CURS15，3：PRINT＂$/$／／／／／／／／／／＂
96170 POKE2317，47：POKE2321，92：S＝USR（2309）
9Ø190 POKE2317，92：FOKE2321，47：S＝USF（2399）
の0210 GOTO17ヵ

Character change

This is a very handy machine code routine because it changes a centain character on the screen to another character．The different characters are easily POKED into different positions in the routine．Uses of the routine are varied but the most sulted use is the quick changing of PCG characters from one type to another．A simple example is shown here after the routine．The ex－
ample prints a heading and then changes the border continuously．
The positions to poke are as follows：
POKE 2317．x x（change character xx ）
POKE 2321，yy（to character yy）
To run the machine code routine type $S=U S R(2309)$ ．

G．Heathcote Inglebum，NSW

Minimart

FOR SALE：EI MAGAZINES May ＇71－July＇74 complete．\＄5 the tot．Ring David（03）534－4624 ah．

FOR SALE：VIC－20 32K RAM ex－ pansion board．Fully populat． ed．A\＆T \＄80．Optional bottery
back－up extra \＄20．Graphlcs software avallable．After 5pm （03）848－3524．

FOR SALE：INTO RS232／DB－25 interfacing？Save money and make your own mini－testers， break out boxes，2－way gen－
der benders，etc．Plated through boards \＄5 each，4－way gender bender boards \＄16．For more Info send SAE to Don Mc－ Kenzie， 29 Ellesmere Cres，Tul－ lamarine Vic 3043.

READER SERVICES：All enquiries re－ garding bock issues．photocoples of anicles．artwork or iechnical enquities musi be direcied by mall io EII Reader Services，PO Box 227．Waier－ 100．NSW 2017 Enclose cheque or money order to the appropiate value with your request Relevant charges in－ cluding posiage within Ausiralia and New Zealand are back issues $S A$ ． photosiat copies 54 per anticle or $\$ 8$ If project spreads over more than one ussue，artwork $\$ 5$ per board or panel up to $10 \mathrm{~cm}^{2}$ or equivalent．$\$ 10$ for larger boards

TECHNICAL ENQUIRIES：NO enquifies by relephone will be accepied Readers have two opsions 10 submif a witten enauiry with $\$ 5$ money order or cheque and recerve a postal reply． this service is limited to projects pub lished withun the last five years，alter natively they may forward enquiry without money and expect a pub lished reply in the feed forward col umns af the editors discretion

GENERAL INQUIRIES：for all inquiries about bock issues．subscriptions． photocopies of anticles，altwork or phorocapies of anticles，altwork of
subiniming aricies．call（02）663－gag9 submiting anticles．call（02） $603-9 \times 9$
or wite to EII Reader Services， 180 Bourke Ra Alexandria．NSW 2015 （PO Box 227．Waterloo．NSW 2017）

CONTRIBUTIONS：Submissions musi be accompanied by a siamped．self． addressed envetope the publisher accepts no responsibility for unsolic－ ired material

COPYRIGHT：The conients of Efectron． ics Todoy internaional and associaled publications is fully protected by the Commonwealth Copyright Act（＂968） Copyright exiends to all witten ma terial photographs，drawirigs．circuit diagrams and printed cricull boards Although any form of reproduction is a breach of copyright，we are not concemed about individuals con． strucring projects for therr own private use nor by bands（for example）con sinucring one or more tems for use in connection with thell performances Commercial organisations should noie that no project or part project described in Electronics Tooky interno－ tronal or associaied publications may be offered for sale，or sold in subsian fially or fully assembled form．uniess a licence has been specifically ob－ rained so to do from the publisher． The Federal Publishing Company or from the copyight holders

LIABILITY：Commenis and rest results on equipment reviewed reter io the particular item submitied for review and may not necessarsly pertain to other units of the same make or model number Whilst every effort hos been made to ensure that all con structional projects referred to in this edition will operaie os indicated elfi ciently and properly and that all nec essany components io manufaciure the same will be avalable．no ie－ sponsibility is accepied in respect of the fallure for any reason at all of the project to operate effectively or at all whether due to any tault in design or otherwise and no responsibility is ac cepted for the falture to obtain any component ports in respect of any such projeci further．no responsibilivy is accepted in respect of any infury or damage caused by any fault in the design of any such project as afore sard

Setterd to the Editar

COMPUTER WARE FOR JAILS

I AM CURRENTLY undertaking a computer programming di－ ploma in order to improve my employment prospects prior to my probable release from prison in October 1987
While I am able to do this using my own computer sys－ tem there are many other prisoners who have no such op－ portunity to take similar steps to ensure their employability after their release．
Since thls is a minimum security prison it has a higher proportion of prisoners who are nearing the end of their sentences and who will be released into the community in the near future．But unfortunately，because this is a prison ＇farm＇，it has very limited educational resources of any kInd －let alone for computer studies－and it seems there is lit－ tle prospect of the Govemment being able to＇invest＇in such resources in the near future（no votes in jails）．
It is for this reason that I am now setting up a computer studles facllity in the prison with the assistance of another prisoner／programmer．
We intend to run Computer Awareness Seminars for the other prisoners who pass through here，and to provide as much as possible in the way of hands－on study facilities so that people willing to make the effort will have the oppor－ tunity to do so．
Computing Australia ran an anticle on our efforts some time ago（and plans a follow up photo spread）which has helped to some extent with our efforts，but we are still in
need of many items if our centre is to be a success．
We are still in need of hardware and systems，disc drives and tape recorders，（anything from old TRS80s to IBM clones are usable as far as we are concemed），not to mention software for Amstrad／IBM systems．So far we have one clone（from SCA）coming；a Macintosh（from YACRO）； and my Amstrad；（we are trying to get a lle，a Commo－ dore，and some Amstrad systems）．We have a population here of approximately 80 inmates（and rising）so we will need sufficient systems to allow multt users，and the software／reference publications to match．At the moment we are still in dire need of suitable programs and／or litera－ ture for Apple，Amstrad and IBM．

If you can assist us in any way we will be most grateful， and you will be helping to ensure that at least some pris－ oners will leave here as contributing members of soclety rather than as potential re－offenders．

Gary Greaves
HM Prison Dhurringite，Vc

MORE PRECISION ON OTDRs

YOUR ARTICLE ENTITLED＂Reflectometers＂，on the optical time domain reflectometer（OTDR）in the October edition is somewhat misleading，as it suggests that a fault cannot be located to a precision better than 25 m ．This is not the case．The term＂resolution＂as used in the article refers to the＂minimum separation distance between two localized features，such that the reflections of each are distinguish－

able＂．This is a completely different Issue from the location of a single fault．

When fault finding，accurate and precise location of a single feature on the OTDR trace is required．The location of any feature on the OTDR trace is given by its leading edge．This result is independent of the pulse width．As the OIDR trace is obtained using digital sampling techniques， the precision to which this leading edge can be mea－ sured，Is set by the distance between successive sampling points．Currently available third generation OTDR＇s feature sampling Intervals down to 0.5 m ，enabling location of a frace feature，such as a fault，to this precision．

P．Skopakow
Flteroy，Vhe．

help required on speech interface

I OWN AND operate Axent Recording Studio at Kogarah， NSW and have worked as a recording engineer for 12 years．I am a blind person and generally have no trouble operating the equipment，with most of it being off－the－shelf items requiring little modification．I use light sensing probes with audible output to read LEDs and indicate recording level．The studio is automated and the computer uses a Votracs voice unit to output whatever is displayed on the screen．
I am now striking a problem with the newer types of
equipment coming from some of the Japanese manufac－ turers．On such things as reverb units，delay lines，sequenc－ ers and synthesizers，they are using screen displays to Indi－ cate functions and parameters which in itself is a bit of a nulsance，but more importantly they are using multi func－ tion buttons and alpha dials which do not give any me－ chanical indlcation to the user as to their position．Working with the more traditional knobs and switches I can gauge the position through touch which then tells me what func－ tion and what parameter is currently being used．
I need to find a way to interface a speech unit to such devices．I do not expect the problem to get better．I think that this change in equipment design is going to become more prevalent，and in time take over with the emergence of the all digital studio．I am writing to ask whether you or your readers could suggest an individual or a company which may be able to undertake this work for me．I am able to obtain the operational data and software informa tion for the speech unit．I have spoken with both Roland and Yamaha and they are happy to make available soft－ ware and hardware information on their particular prod－ ucts to assist．
Any information would be greatly appreciated．
Ross McGregor
Kogarah NSW
Kogarah，NSW
Any reader interested in working on this prolect should contact the writer on（02）587－7946 in the first instance．
$-E d$

Easy delete

Usually the only way to erase a line of a program is to type that line number and press RETURN．This is OK if you only have to erase a few lines．But what if you have to erase a lot of lines？
Let us say that you have a program numbered from 5 to 100 In increments of 5 ，and you want to delete lines 25 to 65．There are two methods to achieve this．

The first is to type 25 and RETURN，then type in 30 and RETURN and so on．
The second method is a lot faster．Type in：
POKE774，0：LIST 25 － 65 and RETURN．
Only the line numbers from 25 to 65 will appear．Now using the cursor keys，move the cursor to line 25 and press REIURN．Keep pressing RETURN until you have passed line 65.

Now type in：
POKE774，26：LIST and RETURN Your program appears （lines and program）minus lines 25 and 65．You have erased them．

> J. Vella
> Tregear, NSW

```
EFO\cap|ECSOg
"OFFI|T"।",*
G [F 'H1T"1" &.F'I
```



```
MCRINT
```



```
    l-H!
        " rerrtryt "* =|゙
```



```
        |आ\।バ1
        F*||T"*-*
```



```
        &ot |⿴囗十| lFil?
```



```
1.4न \ी1T1%
&!"! |%%)
101 1.+11.1
```



```
-い!1UこE4
```


Label maker

This short but handy program for the Commodore 64 is used with $10 \times 3.5 \mathrm{~cm}$ labels to produce neat little labels that add a touch of profes－
sionalism to your disks－or whatever else you dream up for them．

F．Mussger，R．Lang
Tailem Bend，SA

FEAD FORWARD

Idea of the Mouth

MIDI-sync

This circuit was created to synchronize MIDI equipment to non-MIDI equipment using the MIDI real time messages. The only commercially avail able equipment I have seen that does the same thing costs $\$ 150$.
IC1, an MM5303, is set up for the MIDI format with 8 -bit words, no parity and one
stop bit. The baud rate is generated by a 2 MHz oscillator driving a 4024 as a di-vide-by-two which gives 31.25K baud.

As the D3-D7 bits are all high in the MIDI codes to be used, pins 5-9 of ICl are ANDed together with the receiver data available output (pin 19 of IC1). This is then inverted by IC5a to work with the NOR logic decoders.
The decoded MIDI timing clock is taken from pin 13 of IC5 and fed into a 4017 which is set up as a divide-by-six to give one-to-one
resolution.
The 4017 takes its reset from both itself and pin 13 of IC6. This ensures that pin 2 (the 0 output) of the 4017 is high on the first timing clock which sends pin 2 low and activates the 555 . This is done because in MIDI the notes played in a beat coincide with the first timing clock. The 555 gives out a 5 ms pulse which is compatible with many older drum machines.
The stop and start outputs could be converted to give a run 1 stop bit by connecting them to an RS flipflop. A run 1 stop bit is used instead of start and stop in the sync 24 system.

EDITORIAL MODIFICATION

The 4 N 25 used in this idea requires 80 mA input current. MIDI supplies only 5 mA , so we suggest using a 6 N138 in line with the modification added to the original diagram.

Alan Downey
Speers Point, NSW

Mlcroprofessor IB memory expansion

This modification provides an extra 2K RAM memory for the microprofessor 1 B system. The requirements are simply an extra 6116 RAM chip and a short length of wire.
Pin 18 of the 6116 is bent out sideways and the chip placed firmly over the initial system RAM chip (U8 in the clrcuit diagrams). If the pins are bent slightly inwards, they will partially enter the socket for U8, and the new RAM chip will not need to be soldered into place. Then the wire is used to connect pin 18 of the new 6116 to pin 6 of the adjacent 74LS139 decoder chip (U9 in the circult diagrams). A short length of wire wrapped onto pin 18 of the 6116 and soldered onto the pad at pin 6 of U9 should suffice for this connection. The layout of this modification is shown.

This modification takes advantage of the fact that memory addresses $1000^{H^{-}}$ $17 \mathrm{FF}_{\mathrm{H}}$ are decoded by U9. but not used in the circuit. This range conveniently is a 2 K block, so it can be mapped onto a 6116 RAM chip. Also access to the correct data, address and control lines are provided by simply stacking the new chip onto an existing 6146 chip in the circuit. All that is required is to connect the new RAM chip's select input (pin 18) to the correct output of the decoder, ie, pin 6 of U9.

The new RAM address is therefore $\quad 1000_{\mathrm{H}}-17 \mathrm{FF}_{\mathrm{H}}$. This area can then be accessed and used as for other RAM areas, and the ROM monitor will set the default PC to 1000_{H}.

Glen Wovertoy, Mc

NEW 6116
PLACED
OVER U8
74LS139
U9

Feed Forward needs your minds. If you have ideas for circuits that you would like to enter in our idea of the month contest, programs for the computing columns or just want a word with the editor, send your thoughts to:

Feed Forward
ETI, Federal Publishing,
PO Box 227,
Waterloo, NSW 2017
Contributors can look forward to $\$ 20$ for each published idea/program which should be submitted with the declaration coupon below.
Programs MUST be in the form of a listing from a printer. You should indicate which computer the program is for. Letters should be typewritten or from a printer, preferably with lines double spaced. Circuits can be drawn roughly, because we have a draughtsman who redraws them anyway, but make sure they are clear enough for us to understand.

'Idea of the month' contest

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the Ideas for Experimenters' column - one of the most consistently popular features in ET Magazine. Each month, we will be giving away a Scope Soldering Station (model ETC60L) worth approximately $\$ 191$
Selections will be made at the sole discretion of the editorial staff of ETI Magazine.

RULES

The winning entry will be judged by the Editor of ETI Magazine, whose decision will be final. No correspondence can entered into regarding the decision.

The winner will be advised by telegram. The name of the winner, together with the winning idea, will be published in the next possible issue of ETI Magazine.

Contestants must enter their names and addresses where indicated on each coupon. Photostats or cleariy written copies will be accepted. You may send as many entries as your wish.

This contest is invalid in states where local laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions

COUPON

Cut and send to: Scope-ETI 'idea of the Month' Contest/ Computing Column, ETI Magazine, PO Box 227, Waterloo NSW 2017.
"I agree to the above terms and grant Electronics Today Intemational all rights to publish my idea/program in ETI Magazine or other publications produced by it. I declare that the attached idea/program is my own original malerial, that it has not previously been published and that its publication does not violate any other copyright. ."

- Breach of copyright is now a criminal offence.

Title of idea/program \qquad

Signature ... Date
Name

Address

Postcode

Project 7 \&5

WALKABOUT WADIO

Want to wisten to Wick Wakeman when walking? Have a whim for Wham while working? Then you need to build this wacky Walkabout Wadio.

Marshall Gill

Marshall Gill is an engineer in the Research and Development section, Dick

Smith Electronics.

AFTER LISTENING TO FM, AM can be a bit disappointing. It lacks audio frequency response after traversing your radio's circuits. With this little number, you can put stride back into your AM listening pleasure trip. The project is simple, does not cost the earth and is easy to build. It's a good afternoon project that is very rewarding.
The design uses a tuned radio frequency (TRF) system. With this means of reception, the original audio bandwidth transmitted by the station is largely maintained. This receiver does not compress the bandwidth as in the case of conventional superhetrodyne radios.

The power is taken from a single 1.5 volt AA battery so it is completely safe to build and operatc. Only a single inte-
grated circuit and a handful of parts are required. The IC is based on the well known ZN414Z but upgraded as a ZN 415 to directly drive a pair of 32 ohm headphones, the type used on 'Walkman' portables. You can use existing phones if you have such a system. If not, they can be purchased separately.
The receiver is designed to operate with strong signals from local stations so if you live at the back of beyond, it will not be much good to you other than to keep the flies out of your ears.

Construction

Load, trim and solder all capacitors as shown. Solder in the IC with the correct orientation. The tuning capacitor leads are bent so that the front edge of the body aligns with the edge of the pc board. The switch is fitted by first soldering three short lengths of copper wire (the pigtails from capacitors) through the contact legs. Now thread these wires through the holes in the circuit board and solder in position so that the front of the switch lines along the edge of the pe board. Fit the four pc board pins to the battery connection points.
Mount the ferrite rod and coil as shown and secure with two nylon cable ties. Allow enough movement so that the rod can still be moved. The ties can be pulled tight after tuning. Terminate the coil leads as shown. The main coil connects across the tuning capacitor. The secondary coil is soldered to the two unconnected pads. This secondary winding of the coil is not used in this application. If you are not sure of the coil connections or the colours are not the same as described, a quick

check with a multimeter will indicate the difference. The main coil (largest winding) will measure in the vicinity of 7 to 15 ohms. The secondary will be something like 0.5 to 2 ohms.

Before the volume control is fitted, the shaft should be shortened so that the knob fits almost flush with the panel surface. Use a fine saw to cut it to length, 16 mm to 17 mm from the body. Solder three short lengths of copper wire to the pot connections and bend the lugs around so they mate with the holes in the pe board. Be careful these connections do not short out on the pot position. Thread the three wires into the board. Fix the pot position by soldering the body to the two pc pins and then solder the remaining three wires. Mount the headphone socket so that it fits straight in position and aligns with the pc board edge.

Check all your work. The unit should now be operational. Slip a 1.5 V AA cell into position between the four pcb pins. It will be necessary to slightly bend the pins inward so that contact is made with the

Price: $\$ 19.95$
(not including batteries or earphones) available from Dick Smith Electronics

Project 7 @ 5

centre terminal and the end cap. Adjust the pins to achieve a tight fit. Use a small length of tinned or enamelled copper wire threaded through the four holes provided to hold the battery in place. A simple tie under the board is enough to secure the battery position.

Try the receiver with the headphones plugged in and the switch on. It should tune the broadcast band from the high frequency end to the low.

It may be necessary to move the ferrite rod slightly to receive the lowest frequency stations in the band. The coil should be close to the end of the rod as shown in the component overlay diagram. To tune the high frequency end, adjust the lower trimmer capacitor on the tuning gang. If you are lucky enough to have access to an rf signal generator, the tuning range should be between 520 kHz and 1630 kHz . The movement of the rod inside the coil adjusts the low frequency end (the tuning gang plate fully messed) and the trimmer adjusts the high frequency end (the gang plates fully open)

Fitting the board

The assembly is designed to fit inside a Dick Smith H-2853 Zippy box. The pc board slips into the third groove at each end. No modification of the case itself is required but the front panel has to be drilled. Use the front panel as a template

to mark the hole centres. Place the label over the panel so that the edges align. Mark the positions with a sharp scriber, centre punch or similar tool.

Lightly mark only the corners of the switch cutout. Drill the holes as shown. The headphone socket is 6.25 mm , the volume control ferrule is 7 mm , the tuning gang shaft 9 mm , its screw holes are 2.5 mm , the switch screws are 2 mm . Drill a small hole in the switch cutout centre to accept a piecing saw blade and cut the rectangular shape. A needle could be used to dress this hole.

After cleaning all burrs from the holes, carefully stick the label to the front panel. Make sure it is correctly positioned before pressing it down onto the surface. Punch out the holes using the shank of the drill used to originally drill the holes. Use a sharp blade to cleanly cut around the switch cutout.

Place the pcb in the box and fit the front panel. Fix $2 \times \mathrm{M} 2.5$ screws to the gang, $2 \times \mathrm{M} 2$ screws to the switch. Fit the knobs. If you wish, mark a white line on the edge of the tuning knob to act as an indicator

ETI-754 - HOW IT WORKS

This simple, high performance circuit is built around the Ferranti ZN415 integrated circuit. The TRF design uses a minimum of components to make an AM receiver. In addition to the ZN414 front end, the ZN415 has an output stage capable of driving headphones. The 8 -pin DIL package operates from a 1.5 volt battery.

The circuit provides an rf amplifier, detector and agc stage along with an output stage to deliver up to 120 mV into a 64 ohm load.
The rf signal is picked up by the ferrite rod and tuned by L. 1 and the variable capacitor VC1. After several stages of gain at the signal frequency, the modulation is detected and output as audlo at pin 2. VR1 provides a volume control and passes the audio to the output stage. The external headphones are driven from pin 5 . The individual earpleces are wired in series to achieve the 64 ohms toad.
The other components around the circuit provide bypass at various points to maintain stability and ac coupling to isolate dc levels at different sections. As the overall gain of the device is very high, component layout is critical. Any modifications to the circuit may result in instability.
As the circuit draws less than 3 mA , the battery is likely to last for 12 months or so. By the way, if you are tempted to power the receiver on a higher voltage, resist. Not only will the overall performance drop but it is likely that the IC could be damaged.

PASSIVE RADIATOR LOUDSPEAKER SYSTEM

> This is the first in a series of three articles that describes the design of loudspeakers. Here we describe how to build a "passive radiator". Never heard of them? . . . Well read on.

Eric Stokes

A PASSIVE RADIATOR (sometimes called an ABR, or auxiliary bass radiator) is a loudspeaker system in which the bass speaker is not driven by an electromagnetic coil. There are two driven elements, a tweeter and a bass midrange, but the third speaker is passive, driven only by the low frequency acoustic energy emanating from the active bass driver. The advantage of this way is that you preserve the simplicity of two-way electronics, while approaching the response of a three-way system.

This article follows design criteria first established by R. H. Small, who developed many of the equations used in this exercise. For a justification of the equations see the reference list at the end of the article. The aim will be to derive a volume (VB) for the interior of the box. The actual dimensions of the cabinet are based more on aesthetics, bearing in mind the physical space requirements of the drivers.

A passive radiator should have two or three times the volume displacement (VD) of the active bass driver and at least the same or better suspension compliance (CMS) to be suitable in the system. Compliance has to do with the rigidity of the speaker system. In the case of CMS it refers to the speaker suspension only. In the case of air volume compliance VAS, it refers to the volume of free air that couples with the speaker diaphragm given its suspension stiffness.
In practice, the diaphragm mass of the passive radiator is adjusted to set the system resonant frequency (FB). This is done by adding mass to the voice coil cavity using some form of epoxy sealant which lowers
the resonant point of the radiator. Bass extension is affected when the radiator replaces the decreasing driver output about FB. As a result, a passive radiator has a slightly higher cut off frequency than its vented box counterpart and a faster roll off which approaches a fifth order high pass attenuation rate.

Testing

Our design is built around two speakers sourced from Jaycar Electronics, and a Philips tweeter. The twecter is an AD 11610 T8. In our view this tweeter offers the best price/performance combination on the market today. It's readily available, inexpensive and it's a good performer. Power handling is rated at 100 W , more than enough for most amplifiers.

The midrange is a 150 mm clear polypropylene diaphragm speaker, while the passive radiator is 250 mm across, also with a polypropylene diaphragm. Incidentally, these polyprop diaphragm speakers just released by Jaycar are claimed to offer significantly better performance than conventional designs.

No data was supplied with the Jaycar speakers, so the first step was to obtain some figures to answer questions like: What

SPECIFICATIONS FOR 150 mm POLYPROPYLENE DRIVER

Free Alr Resonance (Fs)

 43.75 HzQ of mechanical resistance (QMS)
Q of electrical resistance (QES)
Total speaker Q(QTS)
2.718 0.547
0.437

Air volume compliance (VAS)

Figure 1. Speaker test circuit.
is its bass cutoff frequency? How much program power will it handle? And how loud will it go?

The first test is the free air test, aimed at ascertaining the characteristics of the driver independently of the enclosure. The first step is to measure the de resistance of the voice coil, RE, and then to choose a calibrating resistor close to that value, in our case 6.8 ohms. Then connect the circuit as shown in Figure 1. The frequency generator is set close to 40 Hz and RC connected. When the voltmeter showed 1 volt the current Ic was measured. Ie could be calculated by:

$$
\mathrm{I}_{\mathrm{c}}=\frac{\mathrm{I}_{\mathrm{c}} \mathrm{RC}}{\overline{\mathrm{RE}}}
$$

Replacing RC with the speaker, the minimum current Io was read when the speaker was held away from reflecting surfaces. Ro was calculated from:

$$
\mathrm{R}_{\mathrm{o}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{o}}}
$$

Finally, two frequencies have to be found when the voltage is one volt and the current reads $I_{c} / \vee R_{o}$. The resonant frequency can then be found from:

$$
F_{s}=V\left(f_{1} \times f_{2}\right)
$$

and the various $Q s$ from:
Q mechanical $(Q M S)=V R_{o} \times \frac{F_{s}}{f_{2}-f_{1}}$
Q electrical $(\mathrm{QES})=\frac{\mathrm{QMS}}{\mathrm{R}_{\mathrm{o}}-1}$
Q total $\quad(\mathrm{QTS}) \xlongequal{\varrho} \frac{\mathrm{QMS}}{\mathrm{R}_{\mathrm{o}}}$
The results of this procedure on the Jaycar driver can be seen in a separate box.

The next step is to test for the speaker's volume air compliance in the box. A heavy duty 23 litre plastic bucket was used. The lid was cut off and a chipboard baffle was made. The speaker and baffle were then sealed into the bucket and the speaker lead holes also sealed. The speaker was connected into the test circuit and current determined for a volt reading on the voltmeter. This was I_{oc}. R_{oc} can be derived from $I_{c} / I_{o c}$. $F 1$ and $F 2$ can be determined in the same way as previously, leading to:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{c}} & =V\left(\mathrm{f}_{1} \times \mathrm{f}_{2}\right) \\
\mathrm{QMC} & =V \mathrm{R}_{\mathrm{oc}} \times \frac{\mathrm{F}_{\mathrm{c}}}{\left(\mathrm{f}_{2}-\mathrm{f}_{4}\right)} \\
\mathrm{QEC} & =\frac{\mathrm{QMC}}{\mathrm{R}_{\mathrm{oc}}-1} \\
\mathrm{QTC} & =\frac{\mathrm{QMC}}{\mathrm{R}_{\mathrm{oc}}}
\end{aligned}
$$

The box

Having determined the drivers to be used the next step is to determine the box parameters. Figure 2 shows the alignment

INDUCTOR WINDING

L1 $989 \mu \mathrm{H}$ turns, 1.1 mm wire on a 15 mm high former 80.45 ohms.
L3 $214 \mu \mathrm{H} 61$ turns 1 mm wire on a 10 mm former R0.22.
L2 $460 \mu \mathrm{H} 89$ turns 0.8 mm wire on a 10 mm high former R0.48 ohms.
L. $4776 \mu \mathrm{H} 114$ turns 0.7 mm wire on a 10 mm former.
graph for vented box systems with typical losses of 7 (typical of passive radiator systems). If total Q is about 0.44 we can see that the box compliance ratio (α) is 0.79 and h , the tuning ratio. is unity. We can also read of the cutoff frequency ratio $f_{3} / f_{s}=0.9$.

Knowing the compliance ratio we can now calculate the total internal volume:

$$
\frac{\text { VAS }}{\infty}=\frac{23}{0.79}=29 \text { litres }
$$

We need to add one litre for the volume of the crossover and a further fudge factor for the radiator static volume, bringing in a total volume of 31 litres. A suitable box may be made from particle board with internal dimensions $300 \times 600 \times 170 \mathrm{~mm}$. We used 18 mm board, gluing and screwing all the joints to give it rigidity.

The enclosure's tuned frequency is given by:

$$
\mathrm{F}_{\mathrm{b}}=\mathrm{h} \times \mathrm{F}_{\mathrm{s}}
$$

which in this case equals 43.73 Hz . The cut off frequency is 39.36 Hz . The closed box resonance frequency FC was found to be $57.13 \mathrm{~Hz} . \vee \propto+1$ was 1.3391 so the sealed box frequency FSB is $\frac{67.13}{1.3391}=42.66 \mathrm{~Hz}$. The free air Qs were corrected by FSB/FS, so $\mathrm{Qe}=0.534 \frac{(0.75+6.3)}{6.3}=0.597$ and QT
works out to 0.487 . This is close enough to the original calculation, so it was decided not to correct the volume of the box. In any event, the bass lift would only be in the order of 0.5 dB , which you can't hear anyway.

The radiator

To see how well the design was going we mounted and sealed in the speakers. FL was found to be 40.65 Hz and FH was 85.47 Hz . The box tuned frequency was found to be $\mathrm{FB}=\left(\mathrm{FL}^{2}+\mathrm{FH}^{2}-\mathrm{Fc}^{2}\right)=75.46 \mathrm{~Hz}$ which

was way off the target of 42.66 Hz required. Predictably, the radiator diaphragm is nowhere near heavy enough to resonate the system at this frequency. To reduce its resonant frequency to the required level we need to add mass to the diaphragm. How much?
To find out, consider that the active bass box compliances ratio is:

$$
\propto=\mathrm{FL}^{2}+\mathrm{FH}^{2}-\frac{\mathrm{FB}^{2}-1}{\mathrm{FSB}^{2}}=0.79
$$

δ the radiator box compliance ratio is found by solving the following equation,

$$
\delta=\frac{\mathrm{FB}^{2} \mathrm{FSB}^{2}}{\frac{\mathrm{FL}^{2} \mathrm{FH}}{2}-1-\frac{1}{\propto}}=2.19
$$

The resonant frequency of the radiator F_{p} is FB $=\frac{34.46}{2.19} \mathrm{~Hz}$. However, we want it to resonate at $\frac{42.66 \mathrm{~Hz}}{2.19}=19.48 \mathrm{~Hz}$.

The VAS of the radiator is $29 \times 3.796=$ 111 litres.
The extra mass needed to lower the resonant frequency of the radiator from 34.46 to 19.48 Hz has to be calculated by first finding the radiator suspension compliance.

$$
\begin{aligned}
\mathrm{CMS} & =\text { VAS } \\
& \mathbf{P}_{\mathrm{Oc}^{2} \mathbf{S D}^{2}} \\
& =11 l_{c} \\
& =1.18 \times 345^{2} \times\left(30.17_{e}^{-3}\right)^{2} \\
& =8.860_{c}{ }^{-4} \frac{\mathrm{M}}{\mathrm{~N}}
\end{aligned}
$$

where SD is the area inside the speaker's suspension surround.

The diaphragm mass for 34.46 Hz is,

$$
\begin{aligned}
\mathrm{MMS} & =\frac{1}{\left(2 \mathrm{P} 1 \mathrm{~F}_{\mathrm{s}}\right)^{2} \mathrm{CMS}} \\
& =24.57 \mathrm{grams}
\end{aligned}
$$

The diaphragm mass for 19.48 Hz is 76.90 grams so the extra mass needed is $76.90-$ $24.57=52.33$ grams. It should be obvious that the radiator needs to be modified.

Selleys makes an epoxy bond two-part putty, stock number EB50g which in its handyman pack weighs 50 grams. This simplifies the task. Remove the dust dome of the radiator with a sharp knife or similar cutting instrument close to the plastic diaphragm, being careful not to cut the diaphragm. Having removed the dome, mix all of the putty as the instructions say. If it is difficult to mix, it can heated to soften it which makes it easier to knead and pummel. A couple of 10 second zaps in the microwave also helps.

When the putty is mixed, place and press it into the space under where the dust dome was and let it cure. The dust dome may be Araldited back into position being careful not to use too much because of the added mass of the Araldite. I elected not to replace the dome because the grille would hide it.
The system was retested and FL was 28.69 Hz and FH was 64.93 Hz , so $F B$ from calculation was 42.14 Hz which is near enough to 42.66 Hz . This completes the bass alignment.

Power

We can now calculate the amount of power we can put through the speaker. The displacement limited acoustic power ratings PAR and PER are:

$$
\mathrm{PAR}=0.85 \mathrm{f}_{3}{ }^{4} \mathrm{VD}^{2}
$$

$$
\begin{aligned}
& =3.099_{c}^{-3} \\
\text { PER } & =\frac{\mathrm{PAR}}{\mathrm{~N}_{\mathrm{o}}} \\
& =6.72 \mathrm{~W}
\end{aligned}
$$

so the program power handling is about 67 watts which works out to a sound pressure level of 98 dB .

Passive radiator suspension compliance should be at least equal to or lower than its associated bass driver, in this system the
radiator suspension compliance is slightly higher which lowers power handling a small amount.

Crossovers

The crossovers are just simple high and low pass filters, so we don't need to go too much into their design here. We need to specify a crossover frequency (F_{x}) and the slope of the filter. On the basis of experience, the crossover is a third order design, with F_{x} set at 2500 Hz . The details are shown in Figure 3.

The only problem with these is winding the inductors. The details appear in a separate box.

References

(1) R. H. Small, "Vented Loudspeaker Systems", J. Audio Eng. Soc. Part 1: Vol 21, pp 363-372, 1973; Part 2: Vol 21, pp 438444, 1973; Part 3: Vol 21, pp 549-554, 1973;

Part 4: Vol 21, pp 635-639, 1973.
(2) R. H. Small "Passive Radiator Loudspeaker Systems", J. Audio Eng. Soc. Part 1: Vol 22, pp 592-601, 1974; Part 2: Vol 22, pp 683-689, 1974.
(3) J. E. Benson, "An Introduction to the Design of Filtered Loudspeaker Systems", J. Audio Eng. Soc., pp 536-544.
(4) S. H. Linkwitz, "Passive Crossover Networks for Noncoincident Drivers", J. Audio Eng. Soc., Engineering Report.

\$13,000 REFERENCE MONITORS - also available in kit form.

Readers of overseas hi.fi magazines often wonder why imported quality loudspeakers sell for over twice the price in Australia. The answer is simple - but for good reasons not advertised.
Fully imported speakers incur such cost factors as:
$\begin{array}{ll}* 25-30 \% \text { freight } & * 30 \% \text { sales tax } \\ * 25 \% \text { import duty } & * 28 \% \text { handling }\end{array}$

- 25% import duty

Not one of these factors improve the sound - they only contribute to the extremely high Australian price tag A pair of fully imported 4 -way DYNAUDIO reference speakers is today priced at $\$ 13,250$ in Australia. By importing the drivers only and utilising world renowned Austratian technology (ỉhiele \& Small), together with local genuine timber craftsmanship, it is now possible to acquire a pair of these speakers fully assembled at less than half this price.
For the technically-minded hi-fi enthusiast further savings are possible by assembling the speakers yourself. Pre-buitt enclosures and crossovers make this task a mere breeze. A good soldering iron and a Phillips head screwdriver will save you a further 30%. Should you happen to be in the furniture production industry, enclosure plans can be supplied with the kit (drivers and crossovers) for even greater savings. To audition the S13,000 DYNAUDIO reference monitors, contact SCAN AUDIO for full details and the name of your nearest authorised DYNAUDIO specialist

Sole Australian Distributor
SCAN AUDIO Pty. Ltd., 52 Crown Street, Richmond, Vic. 3121. Phone: (03) 4292199 (Melbourne) (02) 8712854 (Sydney) (07) 3577433 (Brisbane)

SATELITE-1 \$2300 pair (\$1400 unassembled) ($\$ 948$ excl cabinets) Matching sub woofer available.

PROFILE-2
$\$ 2900$ pair
(\$1700 unassembled)
($\$ 1248$ excl. cabinets)

PROFILE-3
$\$ 3800$ pair
(\$2400 unassembled) (\$1938 excl. cabinets)

Train at home NOW for money making CAREERS IN ELECTRONICS ... and secure your future.

 NOW, AT HOME IN SPARE TIME, you can acquire the necessary skills in Electronics to help you secure a guaranteed future. You need no previous qualifications and there is no need to change your daily routine. Study when and where you choose. The course is compiled by experts and skilled tutors are ready to guide and assist you.
THE FUTURE IS ELECTRONICS.

Take a look around you. Electronics control and guide our everyday lives. From Home Computers to Space Travel, from Microwaves to Robots we are part of an electronic revolution. This revolution will continue and many job opportunities will be created ... opportunities that are available to you.

MORE THAN JUST ELECTRONICS MANUALS.

ICS courses are more than just 'Do it Yourself' manuals
.. they are complete, comprehensive programs
designed to give you the skills and knowledge
necessary to succeed in your ambitions.
And you receive at no additional cost ... yours to keep, all the equipment necessary to ensure that you have a complete and thorough understanding of Electronics through actual hands-on experience.
International Correspondence Schools
398 Pacific Highway, Lane Cove. NSW 2066. (2) (all hours) Sydney: (02) 4272700 or Austwide (TOLL FREE) (008) 226903

TEAC|H YOU|RSELLF

INSIDE YOUR COMPUTER 8

MONITORS AND MODULATORS

What are the options for displaying a computer's output? They range form the teletype to the monitor.

Phil Cohen

emuritar mitatid

Today's modern monitor sits atop keyboard and computer.

First, a little history. Way back when, the only way to get information into or out of a computer was by means of a 'teletype' - something like a cross between an electric typewriter and a washing machine. It had a keyboard and a printer built in, made a fair amount of noise and cost a fortune.

To replace the teletype, the visual display unit (VDU) was born. Basically, this has a screen (like a TV screen) in place of the printer and was affectionately known as a 'glass teletype'.

The VDU communicated with its host computer by means of a wire along which serial signals were passed, from the host to the VDU to tell it what to put on the screen, and from the VDU to the host to tell it what keys had been pressed
The VDU contained all of the circuitry to figure out where on the screen to put the characters that came from the host, where the cursor (the little flashing box or line that shows where you are about to type on the screen) was at any time, and to turn flashing characters on and off.

All the host computer had to worry about was what information needed to be output to the VDU, and what was coming in in the way of commands from its keyboard.

This simulation of a teletype, with the text moving up the screen (as paper moves up from a printer) worked OK for a while, but then people realized that you could actually use the system in another way, and screen-oriented applications were born.

These (and most modern micro applications programs are based on the same traditions) treat the VDU screen as a sheet of paper, rather than a roll. Prompts are put onto the screen by the host, and the user moves the cursor around the screen to fill in blanks (or data entry fields), which provide data for the host.

The upshot of all this was that instead of just telling the VDU what to print on the screen, the host had to have a way of controlling cursor movement, clearing the screen, and so on. This was done by inventing 'escape sequences', which are (normally) based on the host sending an

The insides of an old Model 15 Teletype.

Figure 1. Monitor, keyboard and controller as a VDU.

Figure 2. Monitor and keyboard attached to a microcomputer.

> The use of TV sets as monitors is restricted these days to games computers. Anything that is intended for serious use has an output for a monitor. 88

ESC (escape, ASCII 27) character followed by some more codes when it wanted to control the VDU rather than just sending data to it.

With the advent of the micro, the circuitry to do all of the clever VDU things was built into the box, but the escape sequences stayed. Instead of a host mainframe computer with a number of VDUs (VDTs or visual display terminals as they are called in the publishing industry for some unknown reason) attached to it, the micro had all of the clever electronics in a box, with a thing called a monitor sitting on top of it.
The monitor was simply a VDU with all the clever control bits removed and put inside the micro case instead. The output from the micro was in the form of a video signal, which told the electron beam flying across the monitor screen when to turn on and off to form the patterns of light and dark dots on the screen which made up letters and words (see Figure 2).

Now, it so happens that a monitor is very similar to part of a TV set - specifically, the part of the TV set downstream of the tuner which takes the information from the aerial and translates it into a video signal (see Figure 3).

Someone thought it would be a good idea for a home micro user to use his/her TV set as a sort of surrogate monitor reducing the purchase price of the computer. But the problem was that there was no easy way (in TV sets of the day) to put a video signal directly into the video input of the monitor part of the TV set. The only input on a TV set was the rf input that was connected to the aerial.

So the video output from the computer had to be passed through something called a 'modulator', which did exactly the opposite of the tuner in the TV set. In fact, the modulator was practically a little TV transmitter - a fact borne out by the amount of rfi given off in early models!
The rf output from the modulator was fed into the aerial socket, turned back into a video signal by the tuner, and the whole thing showed a picture.

Bandwidth became a problem; with the signal going through two transformations

NEGATIVE AIR IONISER INCREDIBLE BARGAIN

WORLD CLASS

75% off manufacłurers recommended price!
ADCOLA
SOLDERING/ $\$ 200$.
Well, to make a long story shont, "Country Air' is no longer around. (Except as air in the bush).
Hundreds of partially assembled ionisers were left with the contract manufacturer. This manufacturer contacted Jaycar with their problern. Jaycar has underwritten completion of these ionisers but at a massive loss to the original parties.
Their loss is your gain howeverl
We can now offer you this very high quality product at only 25% of the manufacturers original selling prical
Grab one now and enjoy the benefit of a negative air ioniser at this price while they last.
ONLY \$49.95

SAVE \$150 Cot. \times < 2020

over original pricol

LOW COST SOLAR PANEL

WILL CHARGE A LEAD ACID 12V BATTERY We have purchase the surplus stock of a well known brand solar panel. The panel will deliver 16 volts at up The panel will deliver 16 volts at up
to 200 mA in bright sunlight. This is to 200 mA in bright sunight. The
sufficient to slow charge a car battery
The units are made in the USA and are completely epoxy sealed. They can be screwed into any flat panel. tdeal for boats, farms, etc.
Cat. M-9008

WERE SELLING FOR $\$ 149.50$ ELSEWHERE

DE-SOLDERING

 ISTATION- See our Jan ads for full detalls. POWER CONTROLLER Cat TS-1475
(no tron or desolderer supplied)
| \$139.50
40 WATT SOLDERING PENCLI CT-6

S-1478
$\$ 39.95$
80 WATT SOLDERING
PENCLL CT-7
Cat TS-1480
$\$ 42.50$
DESOLDERING PENCIL
Cat TS-1476
ADCOLA 240 VOLT
IRONS
S30 30 watt Cat TS-1492
$\$ 27.95$
S50 50 watt

TIPS

For CT-6 and S30 Irons
Cat TS-1484
1.5 mm Chisel (standard)
1.5 mm Chisel (standard)

Cat TS-1485
3 mm Chisel potnt

Cat. TS-1494
\$29.95

For $\mathrm{Ct}-7$ and S 50 trons
Cat. TS-1488

$$
\text { Cat. TS-1488 (} \$ 5.95
$$

$$
2.5 \mathrm{~mm} \text { Chisel (standard) }
$$

Cat TS-1487
Cat TS-1490

HAS THE JAYCAR CATALOGUE

 (THAT WAS INSERTED IN THIS MAGAZINE)GONE MISSING

1987 Catalogue. Call in to any Jaycar store \& for one dollar we will give you a copy of our all new 1987 catalogue. It's full of new products \& valuable data! And, apart from our all new 1987 catalogue. It's full of new products
the $\$ 1-$ it's free!!

NEW GENERATION CORDLESS PHONE

Microprocessor controlled 200 metres range and absolute security Qute simply the finest cordless phone we have apprased. Naturdily it is in total confornity to the 1986 telecom
spocincotions and is Telecom approved.
The range whth the $39 / 30 \mathrm{M}$ 故 RXITX FM system is fobulous - os against the very short range coroless phones of yesteryear.
FEATURES:

- Operating range up to $750 \mathrm{ff}(250 \mathrm{~m})$
- Securly code system with 10.384 combinations
- Last number redial
- LED indicator on handsel for to bottery holication
- Hearing add compatible

Cat. YT-7065

DUAL TRACKING POWER SUPPLY

Rer: EA 2/87
This kit will supply up to ± 21.5 volts of 500 ma . At 5 voits it will supply $3 A$ and oft $10-16 \mathrm{~V}$ the curent is 2 amp .
Cot. KA. 1082
ONLY \$129.50

MODEL RAILWAY LIGHT CONTROLLER
For model train enthusiasts. Controls Signots, level crossings, etc. LEDs not supplied due to variations in gauge sizes. Cot. KA. 1563
ONLY \$21.95
sYONEY

CARLINGFORD

CONCORD
hurstville
GORE HILL

SHOWROOMS

117 York Si (02) 2671614 Mon-Fri 830 am .530 pm Thurs until 830 pm Sal 9 am - 12 noon | Cnt Carlingford $\&$ Pennant Hills Rd |
| :--- |
| (02) 8724444 Mon . Fot |
| 10 | Thuts untul 830 pm . Far 9 am - 530 pm 115 Parramatta Rd (02) 7453077 IIS Parramatta Rd (02) 7453077

Mon. Fri $830 \mathrm{am} \cdot 530 \mathrm{pm}$ onty 121 Forest Rd (02) 5707000 Mon - Frı 9 am $\cdot 530 \mathrm{pm}$
Thurs until 830 pm Sat 9 am 12 noon 188 Pacric Huy (Cnt Bellemue Ave) (02) 4394799 Mon . Fit $9 \mathrm{am} \cdot 530 \mathrm{pm}$ Sat $9 \mathrm{am}-4 \mathrm{pm}$

JAYCAF J
JAYCAF J
JAYCAF
JAYCAF J
JAYCAF
JAYCAF
JAYCAF J
JAYCAF J
JAYCAFJ
JAYCAF
JAYCAFJ
JAYCAF
JAYCAF J
JAYCAF J
JAYCAF J
JAYCAF J
JAYCAF
JAYCAFJ
JAYCAF
JAYCAF

INSIDE YOUR COMPUTER 8

before it got onto the screen, there was a lot of 'rounding' of the signal. This was particularly true for colour signals - in fact, when I reviewed the Apple micro way back when it first appeared in colour, I more or less said that colour wouldn't catch on in the home because of the very poor quality available on the screen once the signal had been through the wringer. OK, I was wrong.

Another possibility is to use a special

TV set which has a video input. TV sets with this facility are rather expensive, but they do provide you with a free colour monitor - except that when you're playing with the computer no one else can watch TV.

My first monitor (for an Apple) was an old black and white TV set to which I had fitted a video input socket. Warning: beware of high voltages when playing in the back of TV sets.

Figure 3. Monitor as a TV set.

Figure 4. Modulator turns into a monitor.

Figure 5. TV set with video input.

The use of TV sets as monitors is restricted these days to games computers. Anything that is intended for serious use has an output for a monitor.

For monochrome (literally one-colour) monitors, there are about two standards for video signals. There's the old TV video standard and an IBM one, which uses a different form of synch pulse.

Glossary

Apple: The company that brought out what was probably the first popular microcomputer.
Bandwidth: A measure of how much information can be handled by, say, a particular circuit.
Data entry field: A particular area (field) or areas set out on a computer screen for you to type some information (data) into.
ESC: Short code meaning escape.
Escape: One of the keys on a computer keyboard is labelled 'escape'. Originally, this was to be the key you pressed if you got into trouble - its meaning has changed over the years.
Escape sequence: A sequence of codes starting with escape usually involved in moving the cursor around the screen.
Field: A particular area on the screen.
Glass teletype: Another name for a VDU.
Host computer: The main computer that a VDU is connected to.
Mainframe: A large computer that won't fit on your desk! Usually, a computer whose 'housekeeping' functions are the responsibility of a specialist department inside your company.
Modulator: A device for turning video into rf.
Monitor: A TV-like device which takes video as an input.
Monochrome: Capable of showing only one colour or black (eg green and black, orange and black, white and black).
rf: Radio-frequency - in the context of computers, usually a video signal in rf form.
rfi: Radio frequency interference - produced by badly-designed circuits, particularly badly-designed computers!
Rounding: What happens to a signal when you put it through a circuit that has too little bandwidth - literally, the corners get taken off the waveform.
Teletype: An old keyboard and printer combination used as a VDU is now.
Tuner: The part of a TV set that captures and converts an rf signal into its video form.
Video: An electronic signal that specifies which dots on a display screen are going to be bright and which black.

 STOCK-UP ON THESE POPULAR LIMES NOW. WHILPRESENTLY STILL AVAILABLE AT THESE PRICES.

FII WIRELESS IIIKE

UHF to VHF TV SIGMAL DOW \square CONVERTER WAS 57900 Converts UHF output eq Sere 84000 KCR compuler or TY onma. $\$ 39_{\text {an }}$

PREMIUM QUALITY 'ERG
DIL 5WITCHES

20 MIXED VALUES ${ }^{185001}$ 100 MIXED VALUES $\$ 20$ 250 MIXED VALUES $\$ 35$ NEW PVC

Solar Panel Sut $12 / 13$ 8y cherging chers per dey. Cet 01-0220 SENO SAE for a solar catalogue. $3+\$ 102 \mathrm{eo}$

SUPER Hitach HERTSHRIDK $\frac{6}{c^{2}<}$

(8IBM EXPANSION

ADD HARD DISK, EXTRA FLOPPIES, TAPE DRIVE PC BOARDS, etc

RS232 DRTA TESTER

 sedepter museref $(t), 9$ to

RS232 JUMPER BOX مC日 25 Jumpers $04-1520 \$ 12.50$
RS232 nULL MODEM GEMDER CHRNGERS

RS232 SERIRL
$\$ 126$ tist llos

CENTRONICS

PARRLLEL
SURGE PROTECTOR

Large DC IIOTORS
$6 v-12 v \mathrm{dc}$
47 mm diom
60 mm long
Cel
$13-490, \$$ each

LIGHTS 'ON' REMINDER
Buzer and ligh

DIGITAL SPEEDO TACHO $0-199$
$\times \quad \mathrm{P}$
R. $\mathrm{P} . \mathrm{m}$

MOTOROLA MRF 603

PRE PRK electronics

10 West s1. HiwrirAM.

$(02) 569 \quad 9797$
10 Mank havo maisitiavil visan amix

(0) HARIE: 45
 C106 5or 40
 sor 14.40

VOLTAGE EGULATOR
 50 。
 2N5590
 LM-3
 EGULATOR

NEW PRITMYER
SWTITCIT BOXES H.D.

x IN $\times 0 U T$

 \times DUTIr \quad CAR ALARM

- FLASHING
- RED LIGHT

STEREO
SOUnD

ITOM TV'S

\qquad

TEACH YOURSELF

CREATING WITH ELECTRONICS 4

OSCILLATORS AND AMPLIFIERS

> Not just a project but a whole learning experience for the tyro designer . . . This article describes construction of a versatile
> power amplifier module along with principles of bootstrapping, cascading, and amplifier design.

Peter Phillips

Last month a range of concepts was presented in preparation for the circuitry contained in this article and subsequent parts of the series. We now move to actual circuits, commencing with a small general purpose power amplifier module. Various options are possible for construction of the module, including waiting until next month when a sinesquare oscillator with in-built amplifier will be described.
The amplifier is presented as a device intended for many applications. For example, an intercom system can be built using two modules. Or you may want a small sound system for an earphone-only radio or cassette player. A mixer/graphic-equalizer unit is planned, which could be combined with two modules for a complete
stereo amplifier. Whatever the application, the project will provide an introduction to audio amplifiers in general.

Overview of the circuit

ICs that perform the function of this project are available, but modifying them to suit applications outside their design parameters is very difficult. For flexibility, cost, parts availability and learning purposes, discrete components only are used. The circuit is based on a direct-coupled amplifier, with a complementary symmetry output pair operating in class $A B$. This configuration is typical of most hi-fi amplifiers and has all the advantages and problems associated with such designs. But more of this later . . .
The pcb layout does not include provi-
sion for the power supply, a topic covered previously in parts 1 and 2 of this series. The specifications of the amplifier are included with the circuit diagram. No distortion measurements have been made, but a subjective listening test gave excellent results. The gain of the circuit can be increased, as later described, for intercom use. As well, the power output can be increased to 4.5 watts by raising the supply voltage to a maximum of 25 volts.

Figure 1 shows the block diagram of a typical audio amplifier. All the blocks are represented on the module except the preamplifier, and their operation is briefly described to provide a background that should help in understanding the circuit.
The FET
A FET (field effect transistor) forms the

first stage of the circuit to provide a high input impedance. The FET is a voltage controlled device in which the input voltage controls the current flowing through it. Figure 2 shows the internal construction of an n-channel JFET, (junction FET) as well as the circuit of a common source FET amplifier. Common source means the source terminal is neither an input nor an output terminal, but is common to the other two. The drain current (I_{D}) is a dc current directly controlled by the voltage present between the gate and source terminals $\left(V_{G S}\right)$. If $V_{G S}$ is zero, I_{D} is a maximum, called the saturation drain current, $I_{\text {DSS }}$. When the polarity of V_{GS} reversebiases the gate junction, (gate negative to source for n-channel FET), I_{D} will drop as V_{GS} is increased, eventually to zero if V_{GS} is made sufficiently high.
V_{Gs} must always reverse-bias the gate junction, ensuring a virtual open-circuit at the gate terminal. The voltage field set up by the reverse bias is the controlling medium on I_{D}. If $V_{G S}$ is varied with an ac signal, I_{D} will change accordingly. The voltage variation resulting across the resistor R_{D} provides the amplified output signal. However, to ensure the signal doesn't forward bias the gate junction, a reverse dc bias voltage is required. This is usually done by grounding the gate terminal with a resistor ($\mathrm{R}_{\mathrm{G}}-\mathrm{up}$ to 1 M ohm) and using the dc voltage produced at the source terminal caused by the current flowing in the resistor $\left(\mathrm{R}_{\mathbf{S}}\right)$ connected from source to ground. The value of R_{S} is therefore chosen to establish the dc operating conditions of the FET, and typically should provide a voltage between 0.5 to 1 volt at the source.
Because no current flows in the gate junction, the input resistance of the FET

Box and wiring.

Figure 3. The complementary symmetry push-pull output stage.
amplifier is equal to the value of R_{G}. The voltage gain provided is modest, but the high input resistance makes the FET ideal as an input stage. The value of R_{D} should produce a drain voltage of approximately half the rail voltage at the chosen drain current. The circut uses a quiescent I_{D} of around $2-3 \mathrm{~mA}$.

The amplifier block

The complete circuit diagram is partitioned into sections to relate to Figure 1. The amplifier section comprises the FET and the common-emitter amplifier associated with Q2. Due to the high dc gain of the circuit, a low-leakage coupling capacitor for C2 is essential. Because the driveroutput stage is direct-coupled to Q2, the bias for Q2 determines all following dc voltages. Most amplifiers use a similar arrangement, presenting difficulties in fault finding as a fault anywhere affects all the other de voltages. The variable resistor RV2 is used to adjust the circuit to its optimum dc conditions. R5 provides dc and ac feedback for Q2 to stabilize it against changes in H_{FE}, permitting any suitable small signal transistor to be used. If more gain is required, a bypass capacitor can be placed across this resistor eliminating the ac feedback.
A critical factor in amplifier design is the power supply. Positive feedback can occur between stages and interstage decoupling is essential, performed by a series resitor (R6) and a filter capacitor (C2). Because the amplifier section also determines the de voltages for all subsequent stages, a constant voltage must supply this section, accomplished by the Zener diode.

The driverloutput section

This section is the critical part of any amplifier, as it determines the efficiency and
distortion figures. Efficiency of an amplifier relates input power and output power and is determined by the following equation:

$$
\text { efficiency } \%=\frac{\text { audio power out }}{\text { dc power in }} \times 100
$$

Efficiency is particularly important in high power amplifiers and in battery operated systems. For example, an amplifier designed for outdoor concerts may have a rated output power of 50,000 watts. If the unit is 50% efficient, then 50 kW out will require 100 kW in. As only half of this power is developed as audio power, the remaining 50 kW must be dissipated as heat.

The problem is the higher the efficiency, the worse the distortion, and vice versa. This conflict has occupied designers for years in a search for the ultimate circuit, and is where the class A versus class B tradeoff enters. The output stage converts the dc power into audio power and ideally should consume no power when there is no audio signal. However, all output devices need a current called the quiescent current for their operation. The question is how much quiescent current should flow?

The answer requires explanation of the terms 'class A' and 'class B' and a description of a complementary pair, push-pull output stage. Figure 3 shows the outline of such a circuit, comprising an npn and a pnp transistor (complementary pair), which should have matched characteristics (be symmetrical). The input signal is applied to both transistors, causing Q1 to conduct when the input signal is positive (push) and Q2 when negative (pull). The principle of each transistor providing half the output signal (or conducting for 180°) is known as class B operation.

However, because transistors don't conduct until the input voltage reaches 0.6 volts, this circuit would produce an output waveform with 'cross-over' distortion. This is caused when one transistor turns off before the other turns on. To prevent this, the 0.6 volts must be provided by the power supply in the form of a bias voltage to cause the transistors to conduct when the input signal is zero. The transistors will still turn on and off as before, but never be both off together. If the bias is high enough, the transistors will conduct all the time, with neither actually turning off as in class B operation. This is class A operation and offers the least distortion, but at the expense of efficiency.

Because class B operation produces cross-over distortion and class A is inefficient, a compromise, called class $A B$ operation, is found somewhere between. It is usual to adjust the dc bias to obtain the best efficiency with the least distortion, and is an important adjustment. Other variables such as non-linearity in the transfer characteristics of the transistors, variations in transistor parameters over the input signal range, etc, all contribute to design difficulties. Eliminating distortion through careful design is a complex issue, made more difficult as power output capability is increased.

The circuit being used in our design is noteworthy for its simplicity. The circuit description details its operation but note that RV3 is used to determine the class of operation. A diode is used in the bias chain to provide some degree of temperature compensation, and many designs attach it to the main heatsink. Emitter resistors such as R9 and R10 are generally used in commercial designs to provide stability against temperature variations, etc. Bootstrapping is used; this is a general term meaning the circuit helps itself perform the required task.

Construction

The supplied pcb layout will fit neatly into a medium sized zippy box, and an external dc plug-pack supplies the power. Vero board can be used as an alternative to the pcb if necessary. The presentation offered is an example only, and assembly is a matter of personal choice.

Component mounting should start with the low profile devices such as wire links and resistors. Care should be taken to ensure that the diodes, capacitors and transistors are correctly oriented. Mount suitable heatsinks on the output transistors before soldering them to the board. A small piece of aluminium, 20 mm square, will suffice if the finned variety shown on the prototype is not available. Insulate the
heatsink on Q4 with a mylar insulator to prevent inadventent shorts to the dc supply.

After mounting them, adjust the variable resistor RV2 to its maximum value by turning it fully clockwise. Similarly, adjust RV3 to its minimum value. Both these components can be later replaced with fixed value resistors if required, once their value has been determined by experiment. As a guide, RV1 will end up at around 5 k ohm, and the combination of RV3 and R9 will approximate to 27 ohms. Once all components are in, check particularly that the output transistors have the BD139 for Q4 and the BD140 for Q5. Also confirm that they are correctly oriented, with the metal side facing towards the centre of the pcb. Lastly, confirm that the capacitors, particularly C 2 , are correctly polarized.
Before applying power to the circuit, connect an 8 ohm load to the output, and ensure that the capacitor C 1 is connected between the input terminal and the volume control RV1. Set this control to minimum, then apply power, either from the suggested plug-pack or from an alternative source of around 15 volts dc. Switch on and confirm that neither output transistor gets hot. If it does, try adjusting RV2; perhaps it was incorrectly set in the first place. Setting the adjustments is ideally done with a signal generator and a CRO to observe the waveform. However, good results can be obtained with a dc voltmeter. Assuming all is well, measure the dc voltage at the emitter of either output transistor and confirm that it is nearly equal to the supply voltage. Adjust RV2 anticlockwise (reduce its resistance) to obtain a voltage around half the supply voltage.
Now connect the voltmeter across the series resistor R12 and adjust RV3 to give a voltage drop of approximately 0.4 volts to establish a quiescent current of 100 mA or so. Too little current will cause crossover distortion, too much will heat the output transistors unnecessarily. With the quiescent current set, readjust RV2 so that the emitter voltage at either output transistor is half the supply voltage.
When these settings are correct, the unit is ready to go using a speaker as the load (an 8 ohm speaker for best results). Touching the input terminal should give the characteristic hum, confirming that the amplifier is working. If a headphone radio is being used as the signal source, it may be necessary to connect a $39 \mathrm{ohm}, 1 / 4$ watt resistor across the input terminals to provide a suitable load for the radio.

Fault finding

Direct-coupled amplifiers are difficult to

©
SEE TEXT
WILL VARY WITH OEVICE
VOLTAGES MEASURED WITH DVM, NO SIGNAL.

USING SUGGESTED PLUG-PACK WITH AN 8.2 ohm RESISTIVE LOAD
MAXIMUM OUTPUT POWER (1 kHz): 1.5 W rms
VOLTAGE IN FOR FULL OUTPUT POWER: $190 \mathrm{~m} \mathrm{Vp}-\mathrm{p}$
VOLTAGE GAIN: 60 (35 dB)
BANDWIDT $\mathrm{HA}: 24 \mathrm{~Hz}$ TO 180 kHz
NPICIMCY 51% ICO SET AT OF 1 M ohm
EFFICIENCY: 51% (ICQ SET AT 100 mA)

ETI-284 - HOW IT WORKS

The input signal is applied to the volume control RV1 vla C1, and the value of RV1 determines the input resistance of the circuit. The setting of RV1 (logarithmic taper to match human hearing) determines the signal level applled to the FET, Q1. R3 source-blases the FET, which is connected as a common source amplifler producing a galn of around 1.3. C2, a low leakage capacitor, connects the FET input stage to the base of $\mathbf{Q} 2$ which is a current amplifler for the driver, Q3. All subsequent stages are di-rect-coupled, and their dc conditions are set by RV2. The Zener diode, R6 and C2 provide a stabilized rail voltage for Q2 of 10 volts. This ensures stablity in the de conditions for the circuit desple supply voltage variations.

Q3 is the driver for the complementary symmetry output pair comprising Q4 and Q5. The output transistors are blased to operate in class AB, and provide unity voltage gain but substantlal power gain. The blasing for the output stage is determined by the network made up of R7, R8, the parallel combinatlon of RV3-R9 and D1. Raising the bias by increasing the resistance of RV3 will cause more quiescent current to flow In the output transistors, and move their operation towards class A. A value of 100 mA quiescent current is recommended.

Feedback to stabllize the dc conditions and to establlsh the overall gain of the circuit is provided by R13 and R5. The galn of
the circuit is around 65, and can be approximated from the following equation:

Bootstrapping to ensure full conduction of $\mathbf{Q 4}$ for the positive half cycle of the output signal is provided by C4. The optional emitter resistors, R10 and R11 offer protection agalnst thermal runaway for the output transistors, and reduce the effects of any mismatch In their characteristics. As the specifled value may be difficult to obtain, wire links can be substituted. Q4 and Q5 should ideally be a matched pair having identical dc current gains to minimize distortion.

The lower cutoff frequency is determined by the values of C1, C3 and C6. The value of C1 must match the resistance value of RV1 to maintaln the quoted lower cutoff frequency. The specified value is sultable for potentlometers with resistance of 100 k and greater. Refer to last month's article on how to calculate the value for C1 if a resistance value less than 100 k is used for RV1. C5 prevents oscillation but due to the low input Impedance of Q3, does not materlally affect the upper cutoff frequency. C7 and R12 filter the de supply voltage, and are not required H a regulsted supply is used.
fault find, due to interaction between the stages. As an aid, voltage readings obtained from the prototype are included on the circuit diagram. These values are for no input signal, using the suggested plugpack as the power supply. The plug-pack has poor regulation, and if excessive dc current flows due to circuit overload, the input dc voltage can drop below the required minimum of around 11 volts. In this event, remove power and allow the amplifier to cool down. Adjust RV2 to its maximum value, and recommence the setup procedure. This will not occur under normal operation. Another problem arising from the poor regulation is ripple on the dc, which causes hum at the output.

The components R12 and C7 are used to filter the supply, and are not necessary if a regulated power supply is used.
Typical faults in a newly constructed circuit are wrong value resistors and incorrectly polarized components. Voltage readings similar to those on the circuit should be obtained for the FET and across C2, regardless of problems elsewhere. If these are correct, look for pcb track faults, wrong or faulty components or incorrect set-up. However, be assured the circuit works!

Modifying the circuit

If more output power is required, the dc supply voltage must be raised. For an am-

plifier of this type, the maximum possible output power can be calculated using the equation:
maximum output power $=\frac{\left(\mathrm{V}_{\mathrm{dc}}\right)^{2}}{8 \times \mathrm{R}_{\text {load }}}$ watts
The actual output power will always be less than the figure from the equation due to voltage drops across emitter resistors (if present), and the output transistors, etc. However, the direct relationship between output power, dc supply voltage and the value of the load resistor is shown by this equation.

Increasing the supply voltage will also increase the bias voltage at the output transistors, and raise their quiescent current. The variable resistor, RV3 should be readjusted to keep the current at around 100 mA (120 mA if supply volts exceed 20 V). The value of R9 may need to be reduced to maintain RV3 within the range of supply voltages exceeding 20 volts.

The limit for the de supply voltage is 25 volts, restricted both by the capacitor voltage ratings and the circuit design. For example, heat dissipation will increase. More significantly, high power amplifier designs use Darlington output transistors, or a configuration known as the quasi-complementary output stage to raise the current gain of the output transistors. The module can be adapted as the driver for an additional high power output stage, an issue beyond the scope of this article.

Increasing the gain of the circuit is another option if the module is to be used as an intercom system. The overall voltage gain is approximately determined by the values of R13 and R5. If a bypass capacitor (C) is placed in parallel with R5, the circuit is essentialy in open loop for ac, and closed loop for dc. The gain will be very high, but will allow a small speaker to act as the microphone. By appropriate selection of the value of the bypass capacitor, the frequency response can be tailored to minimize hum from stray pickup. For example, a $47 \mu \mathrm{~F}$ capacitor will produce a lower cutoff frequency of approximately 600 Hz , ensuring clear speech free of 50 Hz hum. However, removing the ac feedback will compromise all other characteristics, and is recommended only for lofi use

If two modules are to be used for a simple sterco amplifier, a more substantial power supply will be required. A 1 amp three terminal regulator will provide a good ripple-free dc supply and will minimize cross talk between channels. Use a $470 \mu \mathrm{~F}$ capacitor in lieu of the $2200 \mu \mathrm{~F}$ capacitor for C 7 on each board and delete R12. The $470 \mu \mathrm{~F}$ capacitors will help handle transients. Power supply design was described in parts 1 and 2 of this series (ETI Oct-Nov, 1986).

A close up of the board inside the box.

NEW PRODUCTS

1 Gs digitizing scope

Hewiett-Packard Australla has announced the introduction of the HP 54111D digitizing oscilloscope, with a 1 glgasample/second digitizing rate.
The new scope has a 500 MHz repetitive bandwidth and a memory 8 Kbytes deep.
To produce the HP 54111D, HP was required to develop five state-of-the-art parts specifically for the product: gallium arsenide (GaAs) track-and-hold circult, highspeed bipolar analogue-todigital converter, NMOS timebase chip, NMOS high-speed $2 \mathrm{~K} \times 8$ memory, and a 1 GHz saw oscillator.
By making this technological investment, HP belleves that it can restructure the oscilloscope market from analogue to digital. Until the introduction of the HP 54911D, digital oscilloscopes did not compete well with analogue-
storage oscilloscopes in the 250 MHz bandwidth range. However, by combining a super-fast digitizing rate with high bandwidth and deep memory, the HP 54111D will provide engineers with a digital alternative.
The HP 54141D's 1 gigasam-ple-per-second digitizing rate translates into a 250 MHz single-shot bandwidth, enabling it to capture glitches as narrow as 1 ns wide.
With a variety of built-in analysis features and an 8 -Kbyte-deep memory, the HP 54111D can compress, expand and measure the waveform. It can also position the window in positive or negative time with respect to the trigger, allowing the de-

signer to trace a glitich back to its cause.
Among potential applications are analyzing critical signals in laser and other high-energy research. With
sweep speeds up to $500 \mathrm{ps} /$ division, it can capture photodetector pulses single-shot, allowing the use of built-In routines to measure their parameters.

Robot language

Australia currently has more than 600 robots, and there are many thousands in service internationally. And there is every reason to expect this robot population will grow at an increasing rate. As it does so there is an increasing need for stand-
ardization in the Industry.
In a move reminiscent of that which has occurred in other industries, the biggest supplier is now Imposing a standard on other manufacturers through the sheer weight of numbers. The blggest robot maker is a familiar

A new soldering soldering station has been rleased by Scope laboratories. It features an adjustable spring loaded board holder on a 180 degree swivel, a stable tray with wiping sponge, non-slip feet and a solder reel dispenser. Price is $\$ 162$ before tax. For more information, contact scope on (03)338-1566.
name, General Motors through its subsidiary GM Fanuc, (GMF). Last year it introduced KAREL, touting it as the new industry standard for programming and communicatlons in robotics.
Its designers clalm it is easy to use and to understand, and is designed for the day-to-day operations manager who is not a com-
puter wiz. It allows the user to create speclal routines which require fewer changes to the basic program, thereby resulting in greater flexibility.
Its key features include communications and sensor support, fast execution of programs, built-In diagnostics and user menus. It's similar to Pascal and is easy to program, read and modify.

Mr Phil Hayes, Manager, Robotics Division of John Hart Pty Ltd, the exclusive Australian distributor of the GMF KAREL programming language.

World's fastest real time image processor LSI

The semiconductor Research Laboratory of Matsushita Electric Industrial (maker of NaHonal, Panasonic and Technics products in Australia) has developed the RISP-II, an improved version of the RISP (real time Image signal processor) unveiled last February.
A single RISP-II allows an Intelligent robot to detect the shape of an object in real tlme by processing Image data at the speed of 10 nanoseconds (100 million commands per second), twice as fast as that of the first version. parallel connection of multiple RISP-Il allows for even higher-speed processing.

The need for high-speed image processing is increasIng in varlous fields such as industrlal robots, surveillance of production lines, medical equipment and artificial intelligence for the future. In those flelds, it is necessary to process image data into digital signals so that a computer can recognize the image.

Conventional image-processing systems employ a spectalized custom circuit board for each function with several LSIs. The new reprogrammable, one-chip RISP-II replaces the circult board.
Matsushita employed its high-speed bipolar LSI technology of VIST (vertically isolated self-aligned transistor) for the RISP-II integrating 20,600 elements on each LSI chip. The RISP-II's expansion register also allows for expansion of a local area for more precise Image processing.

For high-precision image recognition, the area for recognition must be flexibly expandable in accordance with the purpose of the image processing. The RISP-II can be programmed as often as necessary by individual users for specific purposes using its RAM memory area.
Functions include detecting the edge of pictures, removing picture noise, enhancing contrast, binary pattemizing. As well as this, other functions are binary-pattern image data processing, pinning, pattern matching and enhancing picture quality of TV receivers.

An original image (left) and its binary pattern processed by the RISP-II.

Matsushita sees its applications in pattern recognition by robots; in medical equipment including CT scanners; for product surveillance on mass production lines; in imageinput devices for telecommunication and office equipment; and in video information equipment.

Specifications are instruc tion cycle time: 10 nanoseconds; I/O image data length: 8 -bits; image register: 3×3 pixeis; internal data length: 16-bit; I/O level: ECL (emitter coupled logic); and power level: -5.2 V.

Motorola's
 New TO220 triacs

Motorola has introduced a family of 27 isolated TO220 triacs that lower system cost, reduce mounting hardware and simplify assembly of product.
These isolated triacs are available in a wide range of current (6 to 25 amps) and voltage (220 to 800 volts) to give designers a choice for the most economical design. In many instances an isolated device may be substifuted for a conventional non-isolated device and save the user a considerable amount of money by eliminating mica insulators and hard-to-use bushings, as well as reducing
assembly costs.
These new thyristors are electrically identical to Motorola's standard line of triacs in the non-isolated TO220 package. The isolated triacs are capable of meeting the 1500 V UL requirement and offer increased reliability because the new assembly technique eliminates two solder joints found in internally isolated products.

This family of TO220 Isolated triacs will find usage in applications such as motor controls, appliance controls, light dimmers and power supplies.

VDO releases Little David

Instrument specialist VDO Australia has releasa a new. highly compact electric current/air pressure signal converter for industrial applications, where pneumatically controlled equipment can be linked by electrical circuitry.

The VDO Little David I/P conventer (group 22/06) will convert standard electronic signals ($0 / 4$ to 20 mA) into standard pneumatic signals (3 to $15 \mathrm{psi} / 0.2$ to 1 bar).
Its unique construction, with a fixed coil and low moving mass (100 mg) magnet, makes it a small size, lightweight instrument that is not sensitive to shocks or vibrations.
The VDO unit's principle of operation gives a linear correspondence of electric input and pneumatic signal output. It has European intrinsic explosion protection safe approval (E EX ib II CT6) and can be used in hazardous areas.

Two versions of the VDO I/P conventer are available: a $106 \mathrm{~mm}(\mathrm{~h}) \times 36 \mathrm{~mm}(\mathrm{w})$ single clip-on unit with $1 / 8^{\prime \prime}$ internal NPT connectors, suitable for mounting on DIN rails; and twin unit, arranged on a $100 \mathrm{~mm}(\mathrm{~h}) \times 160 \mathrm{~mm}$ (d) Eurocard, suitable for mounting in 19" racks with quick release fasteners or M 2.5 screws. The rack-mounted twin unit's front panel is $128.5 \mathrm{~mm}(\mathrm{~h}) \times 35 \mathrm{~mm}$ (w).

Both versions can be specified for direct or reverse
characteristics, and for electric input ranges of 0.20 mA or 4-20 mA

Connections are screwtype terminals, solder lugs, wire-wrap/permi-point pins or flat electrical connectors, and $1 / 8^{\prime \prime}$ NPT internal for alr supply and signal output

The new VDO I/P signal converter offers high output volume of approximately $1.6 \mathrm{scfm}(3 \mathrm{~kg} / \mathrm{h}$), low air consumption (0.028 scfm), high resolution and short response time (0.3 s with 0.0035 cf of volume).

These features, combined with high adaptability for range of input and output, make the instrument a versatile tool for process applications.
The new Little David is avallable from VDO Australia and expert agents Australia-wide.

ENGIINEERING

OPTICAL SPECTRUM ANALYZERS

Another in our occasional series on the practicalities of optical fibre usage. This month, we look at determining the 'colour' of the light.

Yoji Sonobe

Yoji Sonobe is with the measuring instruments division of Anritsu Electric, Tokyo, Japan.

The Anritsu MS96A optical spectrum analyzer.

optical fibre communications have rapidly become a reality. They have moved with surprising rapidity from being laboratory playthings to the mainstay of many existing and planned communications networks.

In addition, optical discs and other data recording and retrieval systems using light are already in use, showing how great the role of opto-electronics is becoming in our information-oriented society. Compact discs for audio reproduction, optical storage media, either in the form of cards or of discs, are also rapidly penetrating the marketplace.

The performance of these optical systems is determined by the spectra of the light emitting components of which they are composed. Specifying this spectra, being able to quantify it with certainty, is thus of tremendous importance to anyone wishing to design with such a system.

Measuring

So the problem becomes: how to make this measurement? The device that does the trick is called an optical spectrum analyzer, by analogy with the similar device used in conventional electronic communications systems. Its capabilities include the ability to determine frequency and level over the range of interest. As a result, optical spectrum analyzers can best be discussed in terms of their wavelength range, sensitivity, resolution and wavelength accuracy. These necessary characteristics can be thought of as follows:

1. Wavelength range. For use in optical communications, the ability to measure $0.6 \mu \mathrm{~m}$ to $1.6 \mu \mathrm{~m}$ wavelengths and for use in visible light applications, around 0.37 $\mu \mathrm{m}$.
2. Sensitivity. The ability to measure optical power of -60 dBm , necessary for measuring loss wavelength characteristics.
3. Maximum resolution. Resolution of
0.1 nm , necessary for measuring the spectrum of laser diodes.
1 4. Wavelength accuracy. An accuracy of $\pm 1 \mathrm{~nm}$ for precise wavelength reading.

Methods

Of course, there are different ways to do this. The two most favoured methods of spectrophotometry include dispersion spectrophotometry and interference spectrophotometry. The former method includes spectrophotometry by prisms and diffraction gratings, while the latter includes such methods as those using the Michelson or Fabry-Perot interferometer.
With the interference spectrophotometric method, light energy can be used in large amounts without using a slit. In addition, it has the advantage of allowing simultaneous measurement of all wavelengths of light. Shortcomings of this method include the fact that large-scale

63

However, sufficient performance cannot be obtained for accurately measuring broad wavelengths and also the narrow light emitting spectrum of laser diodes. For this reason, the optimum method is that in which the diffraction grating is revolved.

computations (Fourier transforms) are required, and when the measured wavelengths are short, extremely strict mechanical precision is demanded of the equipment used. This method is used in spectroscopes requiring high resolution of the far infrared range.

In contrast, the dispersion method is used for spectrophotometry of the ultraviolet, visible near infrared, and longer wavelengths. Wavelength sweep in spectrophotometry using a diffraction grating may be performed by the general method of revolving the diffraction grating, or light reception via a photo-diode array. In addition, some machines use an acoustic optical component equivalent to the diffraction grating, performing wavelength sweep electrically.

However, sufficient performance cannot be obtained for accurately measuring both

Figure 1. $0.85 \mu \mathrm{~m}$ LD spectrum.

Figure 3. Loss waveiength characteristics of Gl fibre (2 km).

Figure 2. $0.66 \mu \mathrm{~m}$ LED spectrum.

FIgure 4. Loss wavelength characteristics of optical fibre.

S
SPRAGUE ECONOLINE ${ }^{\text {TM }}$ thick-film resistor networks include multiple isolated resistors, pull-up/pull-down and interface networks in low- profile-6-pin, 8-pin or 10-pin conforma-coated single in-line packages (SIPs). Pins are set on $0.100-\mathrm{in}$. centers. Packages are $0.200-\mathrm{in}$. high.
Sprague supplies standard Type 210C SIP networks with resistance values from 22 ohms to 1 Megohm , a standard resistance tolerance of $\pm 2 \%$ or ± 2, whichever is greater, and a temperature coefficient of resistance of $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. TCR tracking is $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

ALSO AVAILABLE FROM SPRAGUE ELECTRIC

- DIL Resistor Networks
- RC Networks
- Terminators
- Resistor/Capacitor Networks
- Surface Mount Networks
- Capacitor Networks
- Iransistor Arrays
- Diode Arrays

WHY NOT BUY THEM FROM THE PEOPLE WHO MAKE THEM

Call Or Write For A Free Sample

THE MARK OF RELIABILITY
56 SILVERWATER RD., AUBURN, N.S.W. 2144

TEL: (02) 6481661
TLX: 72906
FAX: (02) 6472260

OPTICAL SPECTRUM ANALYZERS

broad wavelengths and also the narrow light emitting spectrum of laser diodes. For this reason, the optimum method is that in which the diffraction grating is revolved.

Diffraction gratings

A diffraction grating is a piece of glass on the surface of which have been engraved minute grooves (several tens to several thousands per mm) at equal intervals. The principle of light diffraction using the diffraction grating is actually quite complex, but essentially it means that the diffracted rays of light will add or subtract depending on their phase relationship. When the light is projected onto a screen it produces patterns of light and dark, called fringes. The separation of these fringes is determined by the wavelength of the incident light and the distance between the grooves. Since the latter is well known, the former can be determined by studying the fringe pattern.
In a practical spectrum analyzer, optical systems are required to introduce the incident light to the diffraction system, and for condensing the beams.

Essentially, the optical energy is focused onto the diffraction grating. The light is them focused back onto an optical fibre, where its intensity is measured. By physically changing the angle of the grating, it is possible to map the interference pattern as it presents itself to the fibre. This allows computation of the frequencies present in the incident light.

Composition

A practical instrument is composed of a photometry section and a control/processing section, with the photometry section further divided into spectrophotometry section, diffraction grating drive section and light receiver section.
The basic performance of an optical spectrum analyzer is determined by its spectrophotometry section characteristics. Items such as wavelength range, resolution and wavelength accuracy in particular depend upon the spectrophotometry section. When selecting a diffraction grating, the first element to be considered is its grating constant. The grating constant $d(=1 / G$, where G equals the number of grooves per millimetre), has an inverse relation to the resolution and wavelength range.

To cover a wide wavelength range while maintaining a high diffraction efficiency, it is necessary to use a diffraction grating with a small number of grooves per mm . All things being equal, this will maximize the resolution of the instrument. However, since most current instruments have an optical fibre input, the resolution is
relatively poor due to unavoidable limitations of the size of the image on the output slit surface. This is caused by the diameter of the input fibre core, and distortions of the image due to aberrations of the condensing optical system. Accordingly, in order to give the system sufficiently high resolution ($<0.1 \mathrm{~mm}$) for separating a semiconductor laser's longitudinal mode, it is necessary to use a diffraction grating with a large number of grooves per mm.

Another factor that needs to be considered is how accurately the diffraction grating can be moved. The accuracy of the drive method (in the case of most instruments, the motor) directly affects the accuracy of the wavelength. Normally, this conversion is performed mechanically by means of a sine bar and worm gear. With this method, the wavelength accuracy relies heavily on the mechanical parts, and is thus susceptible to vibration and temperature changes. In contrast, some modern instruments use a microcomputer to perform calculations and a linear connection is utilized in the mechanical section. A servo motor with excellent response characteristics is used for the drive motor. When the wavelength is set on the front panel, the CPU calculates the angle signal θ, and this is passed through the D/A converter to the motor drive circuit. In this way, the diffraction grating rotation angle can be controlled accurately. over a wide range.
After the light has passed through the diffraction grating the last task is to send it to the light receiver station. The principle characteristic of this section of the analyzer is its resolution.
The resolution setting is performed by controlling the output slit by means of a stepping motor. Also, since the wavelength range is a wide $0.6-1.6 \mu \mathrm{~m}, \mathrm{Si}-\mathrm{PIN}$ diodes and Ge-APDs are used for the light reception component. They are applied respectively to the wavelengths for which they have the best S / N. Light receiver switching is performed by an optical switch.
Optical filters are used for excluding secondary light generated by the diffraction grating but unnecessary to measurement. The light to be measured is chopped by a tuning fork chopper, and after photo-electric conversion, synchronous detection is performed. In this way, detection of low levels of light is made possible. The lowest level of light detectable is determined by the efficiency of the diffraction grating, the loss in the optical system used, the sensitivity of the light reception component, and noise characteristics. In the $0.6 \mu \mathrm{~m}-1.6 \mu$ range, a sensitivity of -65 dBm or lower is achievable.

ADVERTISERS' INDEX

ADVERTISING INFO No. 16

SEALED LEAD-ACID STATIONARY BATTERY

10 YEARS LIFE

 FEATURES- Maintenance Free (No water topping-up required)
- Completely Sealed (No liquid leakage, no acid vapor)
- No Gas Emission Under normal floating operation
- Fitted with Explosion Proof Filter
- No Equalizing Charge Required
- Excellent High Rate Discharge Performance
- Low Self-discharge
- Can Be Used in Any Orientation
- Easy Handling
- Compact in Size

APPLICATIONS
Telephone Exchange
Telecommunications Systems
Computers
Control Equipment
Instrumentation
Alarm System
Fire \& Security System
Microprocessor Based Office Machines
Emergency Lighting
Engine Starting
Solar Powered System
Uninterruptible Power Supplies

GENERAL SPECIFICATIONS

Battery Model	Nominal Voltage (V)	10HR Nominal Capaclty (AH)
UXL33-12	12	30
UXL44-12	12	40
UXL55-12	12	50
UXL66-6	6	60
UXL88-6	6	80
UXL110-6	6	100
UXL220-2	2	200
UXL330-2	2	300
UXL550-2	2	500

AMTEX

A IIVISON OF TLE ELECTRICAL PTY LIMITEO Incouroraled in New Sount Witesi

36 LISBON STREET
FAIRFIELD, N.S.W. 2165. AUSTRALIA TELEPHONE: (02) 728 2121, 7275444 TELEX: AA27922 ATTN AMTEX
FACSIMILE: (02) 728 6908, 7282837
ADVERTISING INFO No. 17 ETI March 1987

Intelligence in a digital multimeter

The Thurlby 1905 a is a high performance $51 / 2$ digit multimeter with sophisticated computing power to solve a huge range of measurement problems. As well as direct readout of $A C$ and DC voltage and current, resistance and diode tests the unit can be easily programmed to give readouts: with linear scaling and offset (ideal for transducer scaling); percentage deviation from a nominal value; limits comparison; logarithmic display (including dBV and dBm at any impedance). It can also automatically store up to 100 readings at any time interval from three readings per second to one reading every two
hours. As well as direct access to all the readings, it can display the maximum, minimum and average values.

Sensitivity is $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega$ and 1 nA . Basic one year accuracy is 0.015%. Other features include digital filtering for excellent noise performance and full protection against electrical and mechanical damage. To expand its capabilities a true RMS converter, a data output interface and an IEEE-488 interface are available as options.

Call Parameters today for full details of this advanced, low-cost bench multimeter.

See Thurlby and our other products at Stand 20 of Pavilion C at the International Technology Exhibition in Canberra from March 3rd to 7th.

Parameters Pty. Ltd.

SYDNEY:
Centrecourt 25-27 Paul Street Nth. North Ryde 2113.(02)8888777 MELBOURNE:
1064 Centre Road. Oakleigh South 3167. (03) 5750222

ADELAIDE: Trio Electrix (08)212 6235. BRISBANE:L.E. Boughen \& Co (O7) 369 1277. HOBART: Imbros (002) 349899 NEWCASTLE: DGE Systems (049)69 4242. PERTH: W.J.Moncrieff (09)325 5722 TOWNSVILLE Nortek (077)79 8600. CAIRNS: Thompson Instrument Services (070)51 2404. WOLLONGONG: Macelec (042)29 1455

PARAMETISREFTH
Disighy

ADVERTISING INFORMATION COUPON

 HYPEC ELECTRONICS 300/1200 MODEM Comms Package!

Never before such a Value-forMoney offer: Here's what you get for just \$275:

HYPEC 300/1200 BPS MODEM:

- Designed and manufactured in Australia to suit local communications standards.
- Optional HYPEC AutoDialer Accessory available!
- Suits any computer with RS232 Interface!
- Connects to Viatel at $1200 / 75$ BPS!
- Dials up Bulletin Boards at 300 BPS Full Duplex!
- Goes on-line to Databases and remote Mainframes!

Telecom Approval pending.

PLUS

Australia's own feature-packed COMMUNICATIONS SOFTWARE PROGRAMME! SuperCom II FREE OF COST! Yes! Normally $\$ 175$-it's FREE with your

HYPEC Modem Package!

SuperCom II, Australia's own highly-acclaimed Communications
Software Programme:

- Provides full support for the Viatel Videotext system, in addition to all on-line databases and mainframe computers!
- Automatic Log-on!
- Saves and replays frames, including Viatel!
- Sends and Receives to mainframes!
- Captures dial-up sessions to disk!
- Sets-up advanced dialling directories and batch command files!
- Uses Modem 7 \& YAM batch transfer protocols!
- Creates \& Edits custom terminal emulations!
- Operates your computer remotely in photostat mode, with similar functions to carbon copy*!
Special Bonus Package Offer! HYPEC Automatic Dial-Up Answer Unit just $\$ 50$ with every HYPEC Modem sold! You just won't beat this fantastic offer on communications equipment anywhere else. So call us on the HYPEC Hotline, and BUY AUSTRALIAN-MADE! 'kensstercd t mude nume.

HYPEC ELECTRONICS PTY LTD

21 Ryedale Rd, West Ryde, Sydney NSW Australia 2114. Tel: (02) 808 3666. Fax: 808 3596. Cable: LAMRON SYDNEY. Telex: AA71551 LAMRON.
TELEPHONE ORDER HOTLINE: (02) 8083666.
Bank cheque, money order, Visa,
Bankcard \& MasterCard accepted.
나

SCRUTINY OF THE BENCH

Weighing up the evidence on the modern bench multimeter. Do they offer anything beyond the DMM you put in your pocket?

The first digital multimeters were introduced during the 1970s, and after a number of hiccups are now accepted as the industry standard. Essentially, the first DMMs simply duplicated the features of the analogue multimeters they replaced: they could measure the three basic electrical parameters to about the same level of accuracy.
Within a short order of time it became apparent that the hardware developed for these DMMs was amenable to developments in a number of areas. One was in adding computer control, another was increasing accuracy to the point where the instrument could serve as a laboratory standard.

There was a price for doing either of these things, however, and that was increasing size and complexity. It rapidly became impractical to power the DMM from batteries, and certainly impossible to slip it into a brief case. So a new instrument was born, the bench digital multimeter.

Achitecture

There are two basic methods by which a digital voltmeter takes an input signal and turns it into a digital readout: successive approximation and multislope conversion.

A successive approximation analogue-todigital conversion begins when an input voltage is sampled and allowed to charge up a capacitor. Then the input is disconnected and the voltage held on the capacitor is applied to a comparator, as in Figure 1. Meanwhile a reference voltage source is applied to the other input of the comparator. The comparator signals that the reference voltage is below the input, and the reference steps its voltage up one level and tries again. When the two are equal a signal is sent to, the reference generator to stop further increases in voltage, and to send digital output to the display.

Multislope or dual slope conversion begins with the input at zero and all capacitors discharged. Then an input is applied to an integrator for a fixed time. (See Figure 2.) The output of the integrator is an upward ramp, the slope of which depends uniquely on the input signal. An extremely accurate counter keeps the input connected to the integrator for a fixed period, then dis-

Fluke 37

The Fiuke 37 has fuil autoranging on each test function. It features a 3.5 digit display with the standard Fluke analogue bar graph. The bar graph is uprated 10 times faster than the digits. It's claimed to be fully overload protected, in fact, according to Fluke Ilterature, 31% of all components on board is dedicated to high energy protection. It has auto-hold, automatic self test and auto-polarity swapper. Frequency response is quoted at 100 $\mathbf{k H z}$ for the 3 dB point. Available from Elmeasco.

DSE Q1550

Dick Smith's entry into the world of digital moters is a 4.5 digit pushbutton metor using dual slope integration which leads to a high degree of immunity to noise. Vde accuracy is quoted at 0.5%. It aiso features continulty and diode testing.

Philips PM2544

Philips calis this a logic multimetor bocause of the extensive microprocessor control built into the instrument. It measures all the standard electrical parameters plus frequency, event counting, time and peak voltage. It also offers plug-in memory moduios for 'capture and compare' type trouble shooting. Philips ciaims an accuracy of 0.2% on the Vdc reading.

Keithley Model 196

Keithloy Instruments of Cleveland Ohio has introduced a 6.5 digit mul. timeter onto the Australian market via Scientific Devices. The model 196 is designed in a half-rack format, and foatures 30 parts per million accuracy on Vdc as well as full GPIB programming.

Brown Boveri Scope Multimeter

The M2050 from Kent Instruments combines a digital multimotor with a solid state oscilloscope suitable for viowing fow frequency signals. The multimeter features 32 measurement functions covering voltage, current and resistance. It has $\mathbf{3 . 5}$ digits. The LCD oscilloscope provides a high contrast graphic Image of the waveform with a 128×64 dot-matrix.

Tai Tien CD1

A 7.5 digit meter from Taiwan, it has all the standard measuring ranges plus relative dB and frequency. Accuracy of 0.01 is ciaimed for Vdc. Available from Emona Instrumonts.
connects it and connects a precision voltage reference of opposite polarity. Since the voltage is accurately known, the slope of the integrator output is also known, and the time it takes to return to zero is an accurate measure of the voltage at the disconnect time, which, of course, is directly related to the voltage on the input.
Both methods have their advantages and disadvantages. Successive approximation was the first method to be used, and offers cheapness and simplicity, but it provides no method of rejecting noise on the input without slowing down the measurement speed.

System accuracy is also a problem, as it depends on the internal resistance of the sample-and-hold capacitor. If this leaks at all during the conversion there will be errors in the final result. Even with high quality capacitors, errors in the order of 100 parts per million are not uncommon.

Another problem is that the accuracy of the approximation is only as good as the

Kelthley Model 196

smallest increments of the reference supply. The more steps there are, the longer it takes to do the conversion but the coarser the result.

Dual slope is generally considered to be a much better method. It can provide good noise rejection by making the ramp-up time one or more multiples of the line frequency. The clock frequency is not directly related to the measurement accuracy, so it can be phase-locked to overcome supply frequency variations. The same is true of the integrator capacitor and resistor. The value of neither is directly related to the measurement accuracy. Since component accuracy is one of the big problems in developing accurate DMMs, this is an important consideration.
There are problems with dual slope integration, however. Since the whole system is tied to the power frequency, it is difficult to design it to be really fast. It may be possible to go to a few multiples of the power frequency, but that's all.
Another time related problem is that the answer to the conversion can only be known some time after the input is disconnected from the integrator. This will contribute to a slow autoranging capability.

Significant digits

In truth, there is little to differentiate between these two methods in portable DMMs, which typically have three and a

DSE $\mathbf{Q 1 5 5 0}$
half digits. However, one of the justifications for a bench multimeter is a desire for greater accuracy. When multimeters start stretching to six, seven or even eight digits then the limitations of the methods become very apparent.

If multislope conversion is stretched to six digits, a range of problems affects the readings. For instance, dielectric storage ef-
fects in the capacitor give zero crossing errors even when the best grade capacitors are used.

Transistor switching at the beginning and ends of the ramps can cause errors that vary with temperature. At this level of accuracy, variations in clock timing during a long ramp-up or down can become significant as well.

Figure 1. Block diagram of successive approximation architecture.

Figure 2. Block diagram of multislope approximation architecture.

Fluke 37

Generally, neither the dual slope nor successive approximation method will support meaningful measurement beyond six digits. Extra digits can be inserted, however, by mathematical means. Often the method is to integrate the reading over time and average out the results to give the remaining digit. For instance, if the instrument can reliably measure down to 1 microvolt, it is possible to average 10 measurements and get a reading with 0.1 microvolt accuracy. Sometimes this method is even extended to give a second statistical digit.
In many instances this probabilistic approach to measurement is not good enough. Recent work has attempted to find ways to improve the accuracy of dual slope so that it can be used on modern DMMs, and also to find new ways of doing the analogue-todigital conversion that don't suffer from these inherent problems. One method, pioneered by Solartron, is called pulse width conversion.
In PWC, a square wave is applied continuously to the input. This is integrated and tuned into a triangular wave. Two comparators are connected to this in such a way that one detects the positive going peaks of the wave, the other the negative ones. The result is a series of pulses out of the comparators.
These pulse trains are fed to a circuit which compares the length of both pulses. If they are identical, then the input may be assumed to be zero. If an input is applied it will add to the square wave, forcing it higher and resulting in the pulses in the upper detector becoming longer. The differ-
ence between the length of the pulses is a measure of the voltage.

There are a number of advantages to this way of doing things. There is an inherent zero measurement built into it. And it is extremely fast. An out of range signal can be detected almost instantaneously so that autoranging can be done very quickly. This

has the advantage of protecting the circuit from stress due to over-range signals.

The method is inherently reliable and allows production of a genuine eight-digit instrument. The problem is that the ability to measure voltage is so sensitive that the reading can be swamped by a host of unexpected and unforseen parameters. For example, changes in humidity can change the surface leakage of the pc board, thermal shock can change component values slightly, even incorrect mounting of components
can have an effect. If a highly stable six-volt Zener is mounted with one lead longer than the other, for instance, an error of roughly five parts per million can be thermally induced.

These considerations point to a need for additional circuitry to compensate for predictable changes in components over time. Long term drift in resistors can be fairly accurately predicted, and compensation arranged. The thermal co-efficient of resistors and semiconductors is also well known and can be compensated for by additional circuitry.

Computer control

The type of operation one can expect changes with the accuracy of the instrument. A hand-held, three-and-a-half-digit machine will suffice for most trouble shooting and bench work. The big machines with six or eight digits really only come into their own in laboratories or assembly lines where precise measurement to within a few parts per million is mandatory.
These are also environments where various types of computer aided operation are of great help. Such operation can take the form of controlling the instrument, either with the aid of an on-board computer or remotely over a communications interface. Alternatively, an on-board processor can be used for performing some sort of numerical

manipulation on the results obtained, such as might happen in turning a voltage level into dB .
These days, it is comparatively simple to set up a network to control instruments. The key is the industry standard IEEE-488 interface. The standard was published in 1975 by the US-based Institute of Electrical and Electronic Engineers as an interfacing standard for instruments. Largely based on the Hewlett-Packard interface bus HPIB, the standard was revised in 1978 as the general purpose interface bus, or GPIB.

GPIB provides a mechanical, electrical timing and data standard for users. In a
typical system, one device is selected as the controller, while other devices are defined as listen only (display), talk only (keyboard) or talk and listen (multimeter).

A typical application might be in a process line, where a series of measurements needs to be made. It's possible to imagine a situation where the device under test is plugged into the bus, along with a multimeter, a printer and a controller. The computer then stimulates the device into action, the multimeter makes measurements at a number of different points, perhaps scales some of them to make more sense of the readings, and then prints them out on a
printer. In the event that any of the results are out of tolerance the multimeter sends a message back to the computer which sounds an alarm or stops the process.

Actually, with some modern multimeters, it's possible to dispense entirely with the controlling computer, since the multimeter itself has sufficient computing power to control the bus.

The editor wishes to acknowledge the assistance of Tech Sales and Philips Scientific and Industrial Division in the preparation of this article.

Tal Tien CD1

REPAIRING THE PHILIPS ELC2060 VARICAP TUNER

A rundown of common faults and their likely sources from an experienced serviceman.

Gerry Nicholson

AIthough this article concentrates on the Philips ELC2060 tuner, the principles outlined apply to most varicap tuners. While it is often difficult to obtain some specialized circuits and parts, the Philips tuner does not present these problems.
Some varicap tuners use MOSFETs in the rf stages, others such as the Matsushita ENV77405F use thick-films to accommodate some circuitry. Unfortunately, the thick-film is no longer available although we have managed to duplicate it.
The ELC2060 tuner was first released in this country in the Philips CTV model K11. Philip's first receiver (K9) had a miniature turret tuner. The ELC2060
tuner was used in early Kreisler pushbutton sets and in later Pye and Kreisler receivers, which were both Philips sets in disguise, as Philips took over both companies. Some Princess portables also use this tuner.
The tuner in a television receiver, as in any superhetrodyne receiver, must amplify that rf signal and produce an intermediate frequency of suitable amplitude with a favourable signal-to-noise ratio. In the case of Australian TV, the IF is 36.875 MHz . All television tuners have automatic gain control to maintain the IF output within certain amplitude limits for varying IF signal strengths.
Varicap tuners also need a variable tun-

ELC2060 DESCRIPTION

The ELC2060 is a combined VHF/UHF tuner with electronic tuning and band switching covering the low VHF band with the channels 0 to 4 (frequency range 45 to 101 MHz), the high VHF band with the channels 5 to 11 (frequency range 101 to 222 MHz), and the UHF band with the channels 28 to 63 (frequency range 526 to 814 MHz).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover. The two aerial connections (VHF and UHF) are on the two frame sides, all other connections (supply voltages, AGC voltage, tuning and switching voltages) are made via feed-through capacitors in the under side.
Electrically, the tuner consists of VHF and UHF parts. The VHF aerial signal is fed via an IF trap, combined with a high-pass filter, to a tuned input circuit, which is connected to the emitter of the input transistor BF200. The collector load of this transistor is formed by a double tuned circuit, transferring the signal to the base of the mixer transistor BF183. The oscillator is equipped with a transistor BF494. The four rf circuits are tuned by four capacitance diodes BB109G. A capacitance diode BB106 provides a frequency-dependent coupling of the rf input signal to the tuned input circuit. Switching between the low and high

VHF bands is done by four switching diodes (BA182, BA243 and BA244).
The collector circuit of the mixer transistor is a single tuned IF resonant circuit, at the low end of which the IF signal is capacitively coupled out of the tuner (low capacitance coupling). An IF injection point is provided at the collector of the mixer, for aligning this circuit together with the IF amplifier of the television receiver.
The UHF part of the tuner consits of a tuned input circuit, connected to the emitter of the amplifier transistor BF183. The inter-stage network between this transistor and the self-oscillating mixer stage is formed by a double tuned circuit. A transistor BF181 acts as a self-oscillating mixer. The four tuned UHF circuits are tuned by four capacitance diodes BB105B.
The output of the self-oscillating mixer is fed to a double tuned IF circuit which is connected to the emitter of the VHF mixer transistor BF183, now operating as an IF amplifier in grounded-base configuration. Band switching between VHF and UHF is achieved by a diode BA243.

The tuner requires transistor supply voltages of +12 V , a switching voltage of +12 V , agc voltages, variable from $+2,4 \mathrm{~V}$ (normal operating point) to about +7.5 V (maximum age) and a tuning voltage, variable from $+0,5 \mathrm{~V}$ to +28 V .
ing voltage (0 to 28 V) and band switching voltages to allow selection of the band required. A wideband varicap tuner is not practical since it could not be produced with sufficient gain to drive the IF amplifier.

Figure 2 shows the usual methods of tuning and band switching in a typical varicap tuner. Some later tuners use pin diodes for automatic gain control leaving the rf transistor unattenuated. The advantages of this type of gain control are shown in a separate box.

Problems

A major source of problems in the Philips ECL2060 is dry joints where the pins are soldered to the circuit board, so the first thing to do is solder all these connections including both antenna pins. Be sure you do not cause any shorts by applying too much solder. It is a good idea to inspect your work afterwards with a magnifying glass.

The next most common fault is tuning drift caused by one of the varicap diodes becoming leaky. All of these diodes are in parallel to ground with an 820 k resistor in parallel.
The easiest way to check for leaky varicaps is to use the highest range on your ohmmeter with a 9 V battery in series connected between pin 2 and ground. To locate the faulty varicaps lift the 22 k resistors one by one until the leakage disappears. Use solder braid and don't apply too much heat or you may lift the thin tracks. The 22 k resistors are marked with asterisks on the circuit diagram.
The VHF section uses BB109G diodes, the UHF section BB105 diodes. Replace these with BB809 and BB405 devices.
It is well to note that shorted varicaps also cause snowy picture or no picture, so always check for leaky varicaps before you waste time investigating other parts.
The ECL2060 uses a BF200 as the VHF gain-controlled rf amplifier and a BF180 as the UHF rf amplifier. Lightning and other electrical interference can destroy both or either of these devices. If you

PIN-OIODE ATTENUATOR

Some tuners have an automatic gain control system employing pin diodes, rather than the well known method of varying the base bias of the of pream. pilfier transistors. In these cases a coparate adjustable attenuator in fron of the if transistors is used

Pin diodes are made by diffusing the semiconductor with p dopant from on side and n dopant from the opposite side, with the process so controlled, that an intrinsic region separates the n and p regions.
With a negative voltage applied to the p side, electrons from the centre of the in region are carried in the direc. tion of the positive voltage. The i region increases and so the junction capacity decreases.

When the positive voltage is applied to the p side, it carries electrons and holes to the centre of the il region and forward conduction occurs. With the
increase of forward voltage the i repion is supplied with carriers. This means the resistance of the i region decreases. (A difference of 0-10 V in forward voltage changes the junction resistance of the diode from 10k ohm to 1 ohm.)
The relatively large i region stores many carriers. Therefore a 'noticeable' change of the amount of carriers re quires a relatively long time and the 'storage time' therefore is long.

A voltage applied to a pin diode which changes direction all the time will result in the amount of carriers in the i region, remaining almost con stant. Whth if voltages above 1 MMz ap plied to the pin diode, the Junction resistance due to the long storage time remains constant.
With an If voltage of a frequency above 1 MMz superimposed on ac voltage (forward direction), it is now
possible to vary the if impedance of the diode with variation of the de volt. age. However, the value of the forward resistance is not affected by the ampiltude of the applied if voltage.

Adyantages of gain control with pin diodes:

1. Cood cross modulation performance due to gain control via a real resistive attonuator.
2. The if preamplifiers may be equipped with high current transistors which have good cross modulation performance (approximately 100 mV for 1 per cent cross moduiation)
3. No change in band pass response over the entire tuning range during field strength dopendent gein control. 4. Input impedance of the preamplifier transistors remains constant.
4. Even gain control effect at all chan nels.

FIgure 1. ELC2060 schematic.

PHILIPS ELC2060

have weak VHF or UHF check these transistors. Also check for dry joints at the antenna inputs and agc pins (pin 1 VHF , pin 13 UHF). If either rf stage is faulty, a metal pointer applied to the collector of either transistor should allow you to tune the channels with fairly reasonable gain.
The VHF mixer transistor BF183, the VHF oscillator transistor BF495 and the UHF mixer BF181 are less likely to be faulty. However, the BF183 occasionally fails.
If the tuner has no IF output, check that the IF output coil L519 has continuity and resolder it where the winding terminates onto the pins at the top. There is a small winding near the BF495 with foam inside it which sometimes deteriorates becoming resistive and causing trouble (this was a very hard fault to locate). Simply remove the foam - just in case - but don't bend the coil. Do likewise with another coil in the UHF section.
Another less common fault but which causes problems such as no band 1 is shorted or leaky switching diodes in the VHF section. These diodes are connected between pin 3 and ground with the anode to pin 3, so you will need to reverse the meter leads and locate the faulty one as you did with the varicap diodes - by elimination.

Flgure 2. Tuning and band switching methods.

I have repaired hundreds of these tuners and have found a capacitor faulty only once: C217 was short causing no band 1 .
Finally, once you have repaired the tuner run it for as long as possible in order to flush out any other leaky varicaps. Most ones will show up in the first
half hour, especially if you tune the set to channel 10 which puts about 20 volts across the varicaps.
One further note: as long as no one has compressed or extended any of the small inductors in the tuner there is no need for realignment.

If you're into computers you could have a job for life.

If you're interested in the finer points of digital electronics and computers, the computer industry needs you.

Enrol now into Control Data Institute's Computer Engineering course and you could be working in the ever-expanding computer industry in as little as 8 months.

Control Data Institute's flexible study programmes will allow you to study full-time or part-time in subjects such as Electronics, Microprocessors, Mini Computers, Data Communication, Terminals, Disk Drives, Line Printers and Machine Language Programming. Or if you choose, you can study individual subjects.

You can even get exemptions if you have some experience in the electronics field. And at the end of your

course of study, you qualify with a Diploma in Computer Engineering.

Control Data is accepting enrolments now for their Computer Engineering courses in Sydney and Melbourne. The demand for Control Data Engineering Graduates has never been higher.

For further information call Control Data Institute now. You can attend special monthly free engineering information seminars or phone Wendy Mason in Sydney on (02) 4381300 or Sherrill Maconachie in Melbourne on (03) 2689666 for a personal appointment.

HI-FI SYSTEMS BUYERS' GUIDE

Hi-fi integrated systems are becoming increasingly popular. Below we have listed a selection of these systems commonly available. The price range of $\$ 1500$ to $\$ 2500$ is recommended retail price including tax, and has wide variations. This range has been chosen as one most accessible to the average buyer.
In our Hi-Fi Buyers' Guide the definition of a system has been restricted to those that have been designed from the ground up as integrated systems.
Some manufacturers are cashing in on the markets' desire for integrated systems by packaging their discrete units as systems. We have not included these in our survey. All the hi-fi systems included are integrated and have at least a tuner and cassette and quite often a turntable or compact disc.
All information including specifications has been provided by the manufacturer. We do not claim the list is comprehensive. Omission implies only that our records were incomplete at the time of print.
We have not included a fequency response for amplifiers because they are limited by the source.

BRAND	MODEL	RRP (\$)	SIZE	TURNTABLE	TUNER Features; Freq Resp (Hz); SNR (dB)	CASSETTE Features; Freq Resp (Hz); SNR (dB)	EQUALIZER
Aiwa	V2100	1499	midi	semi auto; belt driven	AM/FM stereo; digital; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 60 \mathrm{~dB}$	single; dolby B ; 2 heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 73 \mathrm{~dB}$	5 band
	V2200	1599	midi	semi auto; belt driven	AM/FM stereo; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 73 \mathrm{~dB}$	double; dolby B ; hi speed dub; 2 heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 60 \mathrm{~dB}$	5 band
	V 2100	1899	midi	n/a	AM/FM stereo; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 73 \mathrm{~dB}$	double; dolby B ; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 60 \mathrm{~dB}$	5 band
	VX2200	1999	midi	n/a	AM/FM stereo; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 73 \mathrm{~dB}$	double; dolby B ; hi speed dub; 2 heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 60 \mathrm{~dB}$	5 band
Akai	Peo A202W	1500	maxi	semi auto; belt drive	AM/FM stereo; analogue; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 70 \mathrm{~dB}$	double; dolby B; hi speed dub 2 heads; $30 \mathrm{~Hz}-16 \mathrm{kHz} ; 56 \mathrm{~dB}$	5 band
	$\begin{aligned} & \text { Pro A302/ } \\ & \text { CD-A30 } \end{aligned}$	1849	maxi	semi auto; belt drive	AM/FM stereo; analogue; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 70 \mathrm{~dB}$	single; dolby $\mathrm{B} ; 2$ heads; $30 \mathrm{~Hz}-16 \mathrm{kHz} ; 56 \mathrm{~dB}$	5 band
	Peo-A70	1999	maxi	semi auto; belt drive	AM/FM stereo; analogue; $15 \mathrm{~Hz}-30 \mathrm{kHz} ; 70 \mathrm{~dB}$	single; dolby $\mathrm{B} ; 2$ heads; $30 \mathrm{~Hz}-16 \mathrm{kHz} ; 56 \mathrm{~dB}$	n/a
	Pro A90W	2499	maxi	semi auto; belt drive	AM/FM stereo; analogue; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 70 \mathrm{~dB}$	double; dolby B ; hi speed dub; 2 heads; $30 \mathrm{~Hz}-16 \mathrm{kHz} ; 56 \mathrm{~dB}$	n/a
JVC	Midi-W5	1499	midi	fully auto; belt drive	AM/FM stereo; digital	double; dolby B; hi speed dub; 2 heads	5 band
	Midi-W1	1099	midi	fully auto; belt drive	AM/FM stereo; digital;	double; dolby B; 2 heads	5 band
Kenwood	350 System	2324	maxi	belt drive	AM/FM stereo; digital; 70 dB	double; dolby $\mathrm{B} ; 2$ heads $20 \mathrm{~Hz}-15 \mathrm{kHz} ; 64 \mathrm{~dB}$	7 band
Onkyo	A22 Black	2075	maxi	semi auto; belt drive	AM/FM stereo; analogue; $40 \mathrm{~Hz}-15 \mathrm{kHz} ; 70 \mathrm{~dB}$	single; dolby $\mathrm{B} / \mathrm{C} ; 2$ heads $20 \mathrm{~Hz}-17 \mathrm{kHz} ; 56 \mathrm{~dB}$	n/a
Pioneer	Avante 6000	2579			AM stereo; FM stereo; digital; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 77 \mathrm{~dB}$	$\begin{aligned} & \text { double; dolby B/C; } \\ & \text { hi speed dub; } 3 \text { heads; } \\ & 30 \mathrm{~Hz}-15 \mathrm{kHz} ; 56 \mathrm{~dB} \end{aligned}$	n/a
	Avante 5000	1879		fully auto; belt drive	AM stereo; FM stereo; analogue; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 77 \mathrm{~dB}$	single; dolby $\mathrm{B} ; 2$ heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 57 \mathrm{~dB}$	n/a
Sharp	System	1799	midi	bilateral; linear track; programmable; front load	AM stereo; FM stereo; digital; 60 dB	double; dolby B; hi speed dub; 2 heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 57 \mathrm{~dB}$	5 band
Sony	Precise V-50	2138	midi	fully auto; belt drive	AM/FM stereo; SW; digital; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 80 \mathrm{~dB}$ mono/ 75 dB stereo	double; dolby B / C; hi speed dub; 2 heads	7 band
	AV-200	1599	maxi	semi auto; belt drive	AM stereo; FM stereo; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 80 \mathrm{~dB}$ mono/ 75 dB stereo	single; dolby $\mathrm{B} ; 2$ heads; $30 \mathrm{~Hz}-15 \mathrm{kHz} ; 65 \mathrm{~dB}$	5 band
Tandy	Realistic System-600	1499	maxi	semi auto	AM stereo; FM stereo; analogue; 60 dB	single; dolby B; 1 head; $40 \mathrm{~Hz}-14 \mathrm{kHz} ; 61 \mathrm{~dB}$	5 band
	Realistic System-1000	2299	maxi	semi auto	AM/FM stereo; digital; 60 dB	double; dolby B ; hi speed dub; 1 head; $40 \mathrm{~Hz}-14 \mathrm{kHz} ; 60 \mathrm{~dB}$	7 band
Technics	Series X77	2499	midi	fully auto	AM/FM stereo; 65 dB	double; dolby B ; hi speed dub; 2 heads; $30 \mathrm{~Hz}-17 \mathrm{kHz} ; 66 \mathrm{~dB}$	7 band

AMPLIFIER Power (W per channal); SNR (dB)	EXTRA FUNCTIONS	SPEAKERS No; Size of Drivers (cm)	COMPACT OISC Features; Freq Resp (Hz); SNR (dB)	REMOTE CONTROL	$\begin{aligned} & \text { 12V } \\ & \text { INPUT } \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { OUT } \end{aligned}$	H'PHONE JACK	WARRANTY (years)
50 W per ch; 84 dB	aux	2-way; 16	n	n	n	n	y	3
50 W per ch; 84 dB	aux	2-way; 16	n	n	n	n	y	3
50 W per ch; 84 dB	aux	2-way; 16	programmable; 5 Hz 20 kHz ; 93 dB	n	n	n	y	3
50 W per ch; 84 dB	aux	2-way; 16	programmable; 5 Hz - $20 \mathrm{kHz} ; 93 \mathrm{~dB}$	n	n	n	y	3
45 W per ch; 92 dB		2-way			n	n	n	2
65 W per ch; 95 dB	aux; tape 2	3 -way; 25	programmable; $20 \mathrm{~Hz}-20 \mathrm{kHz}$	n	n	y	y	2
100 W per ch; 100 dB	VCR; tape 2; laser disc	3-way; 25						2
130 W per ch; 100 dB	VCR; tape 2; laser disc							2
50 W per ch	auto reverse	3-way; 20	y	34 functions	n	y	y	5
30 W per ch	aux; CD	2-way; 16	y	n	n	y	y	5
30 W per ch; 79 dB	aux; CD	3 -way; 25	programmable; $5 \mathrm{~Hz}-20 \mathrm{kHz}$	п	n	n	y	variable
35 W per ch; 80 dB	6 inputs; 4 speaker A\&B	3-way; 25	programmable; x2 O'sampling; $5 \mathrm{~Hz}-20 \mathrm{kHz}$; 96 dB	п	n	n	y	5
50 W per ch; 102 dB		3 -way; 30	programmable; 4 Hz - 20 kHz ; 97 dB	13 functions	n	$\begin{aligned} & y, 2 V \\ & \pm 5 \mathrm{~V} \end{aligned}$	y	3
50 W per ch; 102 dB		3 -way; 25	n					3
40 W per ch	aux; CD	2-way; 21	n	n		y	y	1
40 W per ch		2-way; 21		36 functions	n	y, 2V	y	1
30 W per ch		3-way; 25		13 functions	n	y, 2 V	y	1
45 W per ch; 75 dB	aux; CD	3 -way; 20	n	y	n	n	y	5
100 W per ch; 85 dB	video; CD	3-way; 30	n	n	y	n	n	5
50 W per ch; 72 dB		2-way; 20	n	n	n		y	2

cA New Era in Project Building.

LIS - LASER INFORMATHON LIST: We have put together a complete listing of all lasers and accessory equlpment avaliable smaliest dlode to a multimillion watt pulse laser. $\$ 25$

NIC70 - NEGATIVE ION CENERATOR: PTOduces beneficlal negative ions giving a sense of well belng. vigor and energy. Natures best. \$122.50

LASER SYSTEM: Cholce of 1 or 2 milliwatt Portable untis project a thin pencill beam cleariy visible for many kilometres.
Highly spatial and temporat conerence Good special effects

OYE1 - TUNABLE DYE LASER: These fascinating laboratory, visible lignt lasers are truly amazing. Plans snow how to con struct these devices that will provide the builder with a weil
worthwhile device capable of generating pencil thin beams of variable colored light that can be projected for many

A88. ATOM SMASHER: Full construction plans ioniv on bulld ing a medium energy particle accelerator that will spils on a nigh voltage multiplier, accelerator assembly and com. plete nigh vacuum system. Circult only $\$ 75.00$

SOUND CONTROLLED SWITEN: Turning anything off or on with the sound of vour volce or a clap of your handsi it is sensitive enough to work with a whisper at 3 metres. $\$ 75.00$ sold as sin. gle units.

HEG1K - PORTABLE HIGH ENERCY SOURCE / PLASMA PROPULSION DEVICE: Produces megawatt pulses of electrical energy capable DEVICE: Produces megawatt pulses of electrical energy capable Ing etc. Ciassiffed R8D using water to generate nyper-velocitles EMP generation, plasma and pulsed magnetics. \$1497.50
kilometres. clrcult only $\$ 50.00$

HV1 - VAN DE CRAFF H!GH VOLTAGE GENERATOR: 3 million volts crashing lightning bolts! This is not a toy, but a prot
slonal quallty research instrument. circult only $\$ \$ 0$.

PTE1K - PLASMA TORNADO CENERATOR: Highly visible and truly fascinating, never seen before phenomena stmilar to a bolt of ilghtning thls controlled and con calned 4th state of matter truly possesses weird and b radlation llant penetration oat. radation, ight penetration, heat, cold, smell, energy netic, electrics and a host of other properties unlike an other device. Creat as a conversation plece, advertising gimmick. science project laboratory experiment project or Just a weird completely different object to have around the house or office. Swirling plasma will light lights without any contact. Unit is easy to bulld. The elec tronics are simple and can be assembled in severai nours seen as featured in hands on electronlcs magazine. $\mathbf{\$ 6 4 7 . 5 0}$

ISPIK - FNVISIBLE SENTRY/PROPERTY GUARD ALARM SYSTEM: ONE of our latest products is a completely automatic and foolproof guard alarm system for your proderty, home warehouse office. factory etc. Nothing and no-one can penetrate the Invisible silent shleld without being detected system automatically tells you where and what on a remote panel, can activate floodilghts,

LTOSR - HELIUM NEON LASER TUBE: PROCuces 1 MW Of In tense visible red light at 6328A. Small size allows use In 3 cm aluminium tubing. Rugged construction include operates at SMA and is easily trlggered. Suitable for use with LCUS laser IIght gun or many other similar appllea. tlons. \$875.00

SUPER INTRUSION INTERFACE AND ALARM MODULE: AIIOWS YOU

 to add on as you need. May be tallored to your particular home. office, factory or warehouse etc. intended for use against tilegal trespassers to hardcore dangerous intrusions. Detects via: broken trip wires, switches. Invisible beams (isp1). proximity or motion detector (MPD3), sound (see SOX2), remote slgnal isee SAS2 \& SNP2). Activates deterrents as: high intensity lights/strobes, sirens, painful disorientating uitrasonics such as our pph or ppF3, electrification devices such as our OE2/BLB1, with all controls, jacks and necessary terminations. $\$ 397.50$
Abstract

MAGNETIC FIELD DISTORTION OETECTOR: This all new ultra sensitive device allows one to listen to, measure and record any magnetic disturbances. Easlly detects alrcraft, automo. biles, UFO's?, etc., by sensing the sllghtest change in the arths magnetic fleld as they pass thorugh these lines of force. This is a great research/development and science falr device having many practical applications in working with device having many practical applications in working with magnetism, detecting magnetic storms from sun spots and the forewarning of intense disturbances that can cause pow. er IIne damage and many other costly failures will detect flux change in the microgauss. $\$ 747.50$

allows the user to montor and secure check points around allows the user to monttor and secure check points around houseloffice or other premises where sitenis. unit occuples a volume of slighty man a cuvantageous. Unit occuples a volume of slightly more than a cukilometres producing crystal clear audio quallty through a stan dard FM radto recelver. Tuning controls allow adjustment to a clear frequency or channel Unit operates on standard batteries for many months or can be permanently powered by a miniature power supply running off normal house current. Also oper ates from any venicle 12 volt battery. $\$ \mathbf{2 4 7}$.50

Abstract

HOOIK - ELECTRONIC HOMING OR YRACKING DEVICE: Is Intended for nunters, nikers or anyone who may go into unfamillar areas. Small electronic device is placed on roof of venicle and emits a beepling tone that is plcked up on a small portable pocket FM radlo carried by the user. Usable range can be in of receiver. Multidle units may also be used for increasing distance further. Device may also be used to follow venicies, people or animals. When properly used excellent range is obtalnab!e. \$222.50

\square

FCTSK - FM BROADCAST TRANSMITTER: Unlque circuit allows you to broadcast over standard radlo. Be a neighbournood disc Jockey. commurlcate with your friends. or use for lar to above but is packaged in an aluminium minl box. Can be a great intrusion alarm or wireless baby sitter, \$297.50

PS7K - MOTION AND PROXIMITY DETECTOR: KIts for two approaches that will detect movement or proximity. Units are portable and can protect objects or actual areas such as iv Installed and Interfaced with many deterrents as listed. \$172.50

HICH POWERED RUBY LASER: Produces a highly intense pulse of visible red light capable of blasting a hole started it ali and still finds a valuable niche in many of todays laser applications. Tneory of operation lends it self to becoming one approach to a modern day Buck Rogers ray gun. This system is built in two parts consist ing of the power supplyienergy storage section and the laser head/lignition section These are connected via an umbilleal cord and allows easy control and aiming of the laser head action. This particular device produces a pulse of light capable of being seen If one was on the moon ent of many million degree ketvin is obtainable with this device $\$ \mathbf{2 4 9 7} .50$

VWPMSK - VOICE OPERATED WIRELESS PHONE DEVICE: This neat little device broadcasts both sides of a telephone conversation to any nearby FM radio with erystal clear ciarity over considera. ble distances. The unlaue feature of this device is that it only transmits a signal when the telephone is being used thus conserving the batteries and eltminating unnecessary soundiess transmissions. Also allows several units to be used simultaneousiy
on different ilnes with one monitoring recelver it Is intended on different lines with one monitoring recelver it Is intended
for remote listening of home or office phone while perform. for remote listening of home or office phone whlle performnot interfere with normal telephone operations. \$197.50

For full construction and price details and free catalogue, write to or phone;- S.Y.M. Electronics, PO Box 296, Clifton Hill, Melbourne, 3068. Ph: (03) 500 0078. All projects are available as kits, fullyassembled or circuit diagrams only. Starting in the April edition with the Jacobs Ladder, many of these projects will be fully described in E.T.I.

DATA A REFERENCE

DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS A. Miehsola

Shows equivalents and pin connections of a popular user-oriemated selection of European. American and apanese digita ICs Also includes dotals of arckaging tamiles, tunctions, menulacturer and country of origin

256 peges (Large Format)

LINEAR IC EQUIVALENTS AND PIN CONNECTIONS A. Michaele

BP0141 Shows equivalents and pin connections of a popular user-arientated selection ol European. American and Japanese linear ICs Also includes details of functions. manulacturer, and country of origin 320 pages (Large Format)

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE A. Michaets

BP0085 Helps the reader to find possible substates for a popular user. orientated selection of European. American and Japanese transistors Also shows material type. polarity, manufacturer and use
$\$ 12.00$

CHART OF RADIO. ELECTRONIC. SEMICONDUCTOR AND LOGIC SYMBOLS

320 pages
M. H. Bebanl, B.Sc.(Eng)

BP0027
Illustrates the common. and many of the not-so-common, radio. electronic. semiconductor and logic symbols that are used in books. magazines and instruction manuals. etc. in most countries throughout the world

Chart
RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Baban

BP0007
Covers many colour codes in use throughout the world. for most radio and electronic components Includes resistors, capacriors. transtormers. field coils. fuses. battery leacs. speakers, etc

Chart

AUDIO AND HI-FI

BUILD YOUR OWN SOLID STATE HIFI AND AUDIO

ACCESSORIES

M. H. Bebani

8P0220
An essentiel addution to the library of any keen hi-fi and audio anthusiast. The design and construction of many useful projects aro covered including: stereo decoder, three-channel storeo mixer. FET pre-amplifier tor ceramic PUs. mictophone pro-amp with adjustable bass response. stereo dynamic nose fither. bud-spoaker protector. voice-opereted relay, aic

96 pages
AUDIO PROJECTS
F. G. Rayer

日P0090
This book covers in tetarl the construction of a wide range of audio propects. The text has been dinded into the following main sections Pre-amplifiers and Mixers. Power Amplifiers. Tone Controls and Matching. Miscellaneous Propects.
all the propects are farly simple to build and have been designed around inexpensive and readily available components. Also, to assist the newcomer to the hobby, the author has included a number of board layouts and wring diegrems.

COMPONENT SPECIFIC

MODERN OP-AMP PROJECTS
 A. A. Penfold

includes a wide pange of constructionel projects which make us of the specialised operational emplifiers thet are available todey ncluding low noise. low distortion, ultre-high mput impedance, how slow rate and high output curront types. Circuits using All of the propects ypes are also included.
is provided for most di them so that aven and a stripboard layou s provided for most of them so that even constructors of limited experience should be able to build any of the projects with the minimum of difficulty

MODEL RAILWAY PROJECTS

R. A. Pentold apooss

The aim of this book is to provide a number of uselul but reasonably simple projects for the model railway enthusiast to build. based on inexpensive and easly obtainable components
The projects covered inctude sueh things as controliers. signal and sound effects units. and to help simplity construction. stripbotird layouts are provided for each project

112 pages

AERIAL PROJECTS

R. A. Pentold

BPO105
The subject of aerials is vast but in this book the author has considered prectical aerial designs. including active. loop and fortit aerials which give good pertormances and are relativioy simpte and inexpensive to build. The complex theory and mathematics of aeria design have been avorded
Also included are constructional details of a number of aeriel accessories including a pre-selector, attenumor, fithers and tuning unit
$\$ 8.50$
96 puges

25 SIMPLE AMATEUR BAND AERIALS

E. M. Noll

This concise book describes how to build 25 emateur band elerias that are simpte and inexpensive to construct and pertorm well. The designs start with the simple dipots and proceed to beam, triangle and even minirthombic made from four TV masts and about 400 eof of wire.
You will find a complete set of dimension tables that will help you spot an aerial on a particular trequency. Dimensions are given for various style aeriats and other dala needed for spacing and cutting phasing lengths. Also included are dimensions for the now WARC bands.

80 pages

$\$ 8.50$

25 SIMPLE SHORTWAVE BROADCAST BAND AERIALS

E. M. Noll EP0192

Fortunately good aeriala can be erected at low coet, and for a smal ractional part of the cost of your receiving equipment.
This book talls the story. A series of 25 aerials of many different ypes are covered, ranging from a simple dipole through hetica

25 SIMPLE INDOOR AND WINOOW AERIALS

E. M. Noll

Wrttien for thoee people who live in hats or have no gardens or ather pace-limiting restrictions which provent them from constructing conventional aerial systom
The 25 eerials included in this book have been especially designed. builh and tested by Mr. Noll to be sure performers and give surprisingly good results considering their limited dimensions.
$\$ 8.00$

25 SIMPLE TROPICAL AND MW BAND AERIALS
E. M. Noll

BPO145
Shows you how to build 25 simple and inexpensive serials for operation on the medium wave broadcast band and on 60, 75, 90 and 120 metre tropical bands. Designs for the 49 metre bend are included as well.
$\$ 8.00$
64 peges

FAULT-FINDING

HOW TO GET YOUR ELECTAONK PROJECTS WORKING R. A. Penfold \quad Pp01 10 The aim of this book is to nelp the reader overcome problems by indicating how and where to start looking for many of the common feults that cen occur when building up projects.
Chapter 1 deals with machanical fauts such as tracing dry joints. short-circuits, broken P.C.B. tracks. efc. The construction and use of a tristate continulty tester, to hetp in the thove, is also covered Chapter 2 deala whth linear analogus circuits and also covers the use and construction of a signal injectorAracer which can be used to locate and isotate the fauty areas in a project.
Chapter 3 considers ways of testing the mors commion components such as resistors, capacitors, op amps, diodes, fransistors. SCRs unijunctions, efc., with the aid of only \& limited amount of teat equipment.
Chepter 4 deels with both TTL and CMOS bogic circurts and inctudee the use and construction of a pulse generator to help fauth-finding.

96 peges
AUDIO AMPLIFIER FAULT-FINDING CHAPT

C. E. Mlller

This chart with help the reanmight occur in audin:-
"starting" r-
No Sound R suggested ch - faults that ert are two most aporaction and no the - anrows and capropriate one IIt the arrows and carries Chart

ELECTRONIC \& COMPUTER MUSIC

ELECTRONIC MUSIC PRONECTS

A. A. Pentord

Bpoo74
Provides the constructor with a number of practical circuits for the less complex items of electronic music equipment, including such things as fuzz box. was-wat pedal, sustain unit, feverberation and pheser unita. tramedo gencator, ofc The text is divided into four chapters as follows:

MID PROVECTS
R. A. Penfold epois2 Provides prectical detaila of how to interface many popular home computers with MIOI systems. Also covers interfacing MIO equipment to anslogue and percussion synthesisers

112 pages

MORE ADVANCED ELECTRONIC MUSAC PROJECTS

R. A. Pentold

BPO174
Intended to complement the first book (BP74) by carrying on where it loft off and providing erange of slightly more advanced and complex propects. incuused are popular eniects unts such as hanger. phasar, mini-chorus and ring-modulator units. Some useful percussion synthesisers are also deacribed and together these provide a comprehensive renge of effects induding drum, cymbal and gong-type sounds.

96 pages

BP0173
Chapter 1. Guitar Effects Units; Chaptor 2, General Effects Units Chapter 3. Sound General Projects: Chapter 4. Accessories.

112 pages
ELECTRONIC SYNTHESISER CONBTRUCTION
R. A. Pentold
ep014s
Should enable a retative beginner to build, with the minimum of difficulty and at reasonably low cost a worthwhile monophonic synthesiser. and also hearn a great deal about electronic music synthesis in the process. This is echieved by considering and buiding the various inclividual parts of the circuit that comprise the whole instrument as separate units, which can then be combined together to torm the final synthesiser. Printed circuit deaigns are provided for these main modules Later chapters deal with sequencing and some offects units.
$\$ 11.00$

ค
COMPUTER MUSIC PROJECTS
R. A. Pentold

Shows some of the ways a home computer can be used to good efrect in the production of electronic music. Topics covered indude sequencing and control vi analogue and MIDI Intertaces. computers as diginal deley lines and sound generotors for computer control.
$\$ 11.00$
112 pages

MISCELLANEOUS

COIL DESIGN AND CONBTRUCTION MANUAL
 8. B. Bebant

A complete book for the hom constructor on "how to make" RF IF, sudio and power coils, chokes and transformers. Prectically every possible type is discussed and calculations necessary are orven and expleined in detal. All mathematical deta is simplified for use by everyone.

96 puges
$\$ 9.50$

AN INTRODUCTION TO Z8O MACHINE CODE
AN INTRODUCTION TO Z 80 mACHINE CODE
R. A. I. W. Penfotd
Takes the resder through the basics of microprocessors and
machine code progremming with no previous knowledge of these machine code progremming with no provious knowledge of these
being assumed. The microprocessor deah whth is the 280 which being essumed. The microprocessor deah whith is the 280 which examples are given for 280-based machines inctuding the Sinctair 2X-81 and Spectrum, Memotech and the Ametrad CFC 464. Also applicable to the Amstrad CPC 684 and 6128

144 peges
$\$ 10.00$

A Z-e0 WORKSHOP MANUAL

E. A. Parr \quad BPOt 12 tage of BASIC procramming to topics such as meghe beyond the assembly language programming, or need hardware deteils of a $2-80$ based computer.

192 pages
$\$ 12.00$

CETTING THE MOST FROM YOUR PRINTER

J. W. Pentotd

8potit
Details how to use all the leatures provided on most dot-matrix printers from programs and popular word processor packages like Worcwise, Visawrite and Quill, otc. Shows axactly what must bo yped in to echieve a given effect.

96 peges
$\$ 11.00$

CIRCUITS : CONSTRUCTIONAL PROJECTS

[^1]112 pages

50 PROJECTS USING RELAYS, SCR』 AND TRIAC.

F. G. Rayer

 the minimum diec and precticel working circults which should present circuits there is a wnce latituce in componsint values and in most of the circuits there is a wos latitude in component values and types, altowing easy moditication of circurts or resdy adeption of them to indindual needs.112 pages

POPULAR ELECTROMC PRONECTS

A. A. Penford

BP0048
Provides a cotiaction al the most popular types of circuits and profects covering a very wice renge of interests, inctuong Redio. Audwo. thou sehold and T ast Equipment propects.

144 peges

ELECTRONIC TEST EOUIPMENT CONSTAUCTION

F. G. Rayer

BP0075
The sook covers in derail, the construction of a wide range of test equipmant for both ine electronics hobbyis! and radio amaleur. Included are propects ranging from a FET amplitiod vottmeter and resisfance bridge to a liold-strength indicmar and heterodyne lrequency meter Not only can the hame constructor enfoy building the equipmont but the fintahed product can eso be usolutly utirised in the lurtherance of his hooby. 96 pages

MEMOTE CONTROL PRONECTS

O. Biehop

Aimed primerily at the efectrontcs enthusiast we with remote controt as many of the to the controt of other circuits been given so that the and can more " on persond. but elso intra. ogic ICs and,

AV
 Win control systems considered wit utratonic syzems. as are the use of modulation. stc. 178 pages

ELECTRONIC OAMES

A. A. Pentold

BP006s
Contains a number of interesting ewectronic garres profects using modern integrated cricuits. The text is divided into two sections, the lirst deeling with simple games and the latrer dealing with more complex circuits thus

C 555 PROJECTS

E. A. Parr BP004 Every so otren a device appears that is so usefull that one wonders how ite went on before without it. The 555 temer is sueh a device inctuded in this book are basic and general cricuits. motorcar and model ralway

178 peges (Avamebie Feoruary 1987)
HOW TO DESION AND MAKE YOUR OWN P.C.B.E A. A. Penfold

 ornad crouk boerd leprate

80 pages

POWER SUPPLY PROUECTS

R. A. Pentold

The purpone of this book is to give a number ot power supore including smple unstiolised types, fixed-vetioge repuiated types and vanable-vorage stabilud designs. the latter being primarity intended fo use is bench supplies for the dectronics work:hop. The designs provided re all low-vottege types for sem-conductor circutra This book shoutd aleo hepp the reader to desten his own power supplite.

96 pages
HOW TO DESION ELECTRONIC PRONECTS
A. A. Penford
. A. Peniord pr poxerer prowes hom serder
 meremer Hrey on a ree m " rock" cheg

128 pages
ELECTRONIC SECURTY DEVICES
ELECTRONIC
A. A. Penfold Many people essociate the term "security devics" with only burglar diams vatious types, but in lact, any piece of equipment witich helps to proxect eople and property agsinst any lorm ol danger coutd be termed "security device"
Thervitore this book. bessides induding both simple and more sopthssicated burglar aiarm circuits using light. infra.red and urresonics. also include many other types of cirours as well. sueh as gas and smoke detectors. hood alarms. doorphone and buby alarms, tic.

COMMUNICATION

(Elements of Electronics - Book 5)
F. A. Wilson

8 80089
A look at tha alectronic fundamentals over the whola of the communication scene. This book aims to teach the important alements of aach branch of the subject
Most of the modern trensmissions system fectorques are examined inciuding line, microwave, submarine, satilite and digital multiplex systems, radio and telography. To assist in understanding these more thoroughly, chapters on signal processing, the etectromagnatic wave, networks and transmission assessment ara included. finally wave, networks and transmission assess
$\$ 11.00$
256 pages

50 SIMPLE LED
CIRCUITS
R. N. Soar

BP0042
Contains 50 interesting and uselul circuits and applications. covering many different brancties of electronics, using one of the most mexpensive and treely avelable cormponents - the ingreermeng diode (LED). Abo inctudes crouls tor the 707 cormmon anode diapley

64 pages

IC PROJECTS FOR
BEGINNERS
P0097
Offers a pange of simple proects based around a number of popular and inaxpensive lineas and digital integrated circuits
With most profects, complete layout andior point-to-point wiring diagrams are included to heip simplity construction.
$\$ 8.50$
112 pages
ELECTRONIC PROJECTS
USING SOLAR CELLS
O. Bishop

BP0082
This is a book of simple circuits which have applications in and around the home and that are designed to be powered by the energy of the sun. Although, il the reader wishes, they could alternatively be powered by the ordinary button cells or small dry batteries
$\$ 8.50$

128 pages
ELECTRONICS BOOKS ORDER COUPON

COUPON VALID FOR COVER DATE MONTH ONLY

(If insufficient space enclose separate list)

BOOK SALES
PLEASE ENCLOSE
$\$ 2.50$ per book
for postage, handling
and insurance.

BOOK TITLE	BOOK NUMBER	QTY	PRICE TOTAL

Please tick box to indicate method of payment

Cheque */Money Order \square - Please make payable to the Federal Publishing Company Pty Ltd

For airmail to Papua New Guinea, New Zealand, Oceania and Southeast Asia, add $\$ 5.00$ to these charges.

Put your cheque or money order in an envelope with this order and send it to:
Total price of books \$ Add postage and handling \$ (\$2.50 per book)

NAME:
ADDRESS: \qquad
POSTCODE:

TV on radio

The unique new portable radio/cassette recorder from National, the RXI MA5V, features two bands for recelving IV audio stignals as well as four other frequency bands Including FM, AM and shortwave.

The TV band enables listeners to tune into all Australian TV stations on the VHS band (In mono only). Advantages of such a set are that it enables the listener to tune into news, serials or soaples when away from home, or to record documentaries. Also, for those who may be hard of hearing, TV listeners can use headphones with the RXFM45V, tum up the volume to sult, then watch the TV with the rest of the family.
The two-way four-speaker system complements the powertul 16 watt output from the built-in ampllifler. Three modes of listening can be selected: 'mono' is useful for listening to weaker FM or TV stations, as it greatly reduces the background hiss heard in these weaker slgnals; 'stereo' gives the expected separa-

Hon or 'imaging' between the left and right channels; while the 'amblence' setting creates a psycho acoustic IIIusion that the speakers are more widely separated than they actually are.

The tape transport mechanism features automatic reverse so that both sides of a cassette tape can be played without having to fum the tape over. Direction of tape play (side 1 or side 2) can be Instantly altered at the touch of a button. The two reversing mode control buttons allow only one side of a cassette to be played or both sides to be played endiessly for background music.

A bullt-ln microphone ensures easy voice recording for home, work or schoo while its ac/dc operation make it a 'go anywhere' unlt.

KEF launches new flagship

Leading hi-fi loudspeaker specialist KEF Electronics is introducing a new model at the top of lis highly respected Reference Series KEF Model 107.

This new model is the result of a combination of bass extension down to a genuine 20 Hz , plus good sensitivity from a compact system, sonically flexible enough to be 'tallored' to it's specific surroundings, says KEF.
At the heat of the new model is the unusual hybrid active/passive dividing network.

Passive dividing networks have to perform the three quite distinct functions of splitting the signals into the appropriate frequency bands, equalizing and balancing the outputs from the various drive units to give a neutral tonal balance, at the same time presenting an acceptable load to the power amplifler. Response equalization in passive dividing networks can only be provided by attenuation, resulting in unnecessary loss of efficlency.

Model 107 avolds this problem by the passive network providing the frequency divislon and load matching functions only, while the
equalization is performed by the actlve equallzer - KUBE.
According to KEF the Incluslon of KUBE provides other beneflis. A comprehensive range of adjustments allows the bass performance of the system to be tallored to the characteristics of the room, the specliflc slie of the speakers In the room, the taste of the listener and the quality of the program. This is not the coarse adjustment provlded by conventlonal tone controls and graphic equalizers, but a much more subtle affair which allows selection of the optimum bass cut off point, the degree of bass damping (Q), and the relative level of bass output, so that near optimum results can always be achleved.
Basic data specifications are:
frequency response:
$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$;
maximum output: 112 dB spl on program peaks;
amplifier requirements: 50300 W (Into 4 ohms);
Impedance: 4 ohms resistive ($20 \mathrm{~Hz}-20 \mathrm{kHz}$):
size: $1165(\mathrm{~h}) \times 330(\mathrm{w}) \times 448$ (d) mm ;
welght: $\mathbf{4 5} \mathrm{kg}$.
The Model 107 will retall at the remarkable price of $\$ 7500$ per pair.

New Ortofon cartridge

Ortofon engineers have been at It again - developing new and Improved pick-up cartridges! Six months ago they were able to introduce their first high output moving coll cartridges, splitting the total Ortofon moving coil program Into three categories:
(a) Iow output MCs: Ottofon's original MC designs where extra step-up device is required to boost the low output signal;
(b) higher output MCs: models that can be connected directly to amplifiers with built-in MC Inputs; and
(c) high output MCs: where addilional amplification is not necessary.

As a higher output MC, the new moving coll model MC 30 Super belongs to category (b).
The new MC 30 Super builds on the same construcHon princlples as the MC 20 Super. New features include slimmer proflle, Fritz Gyger diamond stylus - FG Type 1; conical shaped aluminium cantllever (llke the one used In the MC 2000): Ortofon's Improved wide range damping system with platinum disc between the two rubber damping bearings; improved high frequency damping (better rubber); pure silver thread for the coll windings; and stronger rear magnetlc pole pins.

SUBSCRIBE NOW! A. FREE STREET DIRECTORY
 Special Bonus Gift! IMMNW

STREET

 DIRECTORY for Directory - to replace your old out-of-date edition? to have as an extra in the house or second car?Here is your chance! Simply subscribe or renew your subscription now and receive FREE the current edition of the most up-todate, widely used Street Directory in Australia. UBD Street Directories used by Ambulance, Police, Fire Brigade, MWS \& DB, Dept. of Main Roads, Taxi Coops, Couriers, Government Agencies and Fleet Owners.

CAPITAL CITY OR COUNTRY DIRECTORY

See Subscription

NT will receive Touring Guide and Local Map
SA. will receive an Adelaide Street Directory and State Touring Guide
TAS will receive state directory
NSW VIC OLD WA indicate Capital City or State Directory
If coupon 'card missing, please phone (02) 693-6666 and ask for the Subscription Department.

AUDIO ENGINEERS (QLD)

Cnr. Jane \& Buchanan Streets,
West End, Qld 4101
Ph: (07) 44-8947

MARKETEC PTY. LTD.
51 Scarborough Beach Road, North Perth, WA 6000 Ph: (09) 042-1119

The CDP-65 designed to be compatible with all Sony video and audio equipment.

CD players galore

Sony has released three new and different compact disc players.

The D-700 player is a desk. top unit specifically designed for the office or home or wherever shelf space is at a premlum. its linear skating front-loading design allows the unit to take up minimal space.
Other features include random music selection for up to 16 selected tracks, plus shuffle play and three-way repeat mode. Headphones have their own volume control. These advantages, together with automatic music sensor and music search glve the D-700 features you would normally only expect in larger desk type units.

The D-700's RRP is \$699.
The other two releases are the more conventional modular CDP-55 and CDP-65.

The CDP-55 has Sony's uni-
linear converter system, assuring music clarity. This model has wireless remote with flve-repeat mode memory and is specifically designed to match Sony's supersession stereo component systems, both electronically and visually.
The CDP-65 has a number of distinct features. The automatic music selection 20-key direct muslc selection and quack index search is avallable via the supplied full function wireless remote commander. This means that the 1-20 keypad related to individual tracks on CD software for easy selection.
Another feature is the 20 track random music selection allowing the ilstener to play up to 20 tracks in any predetermined order.
Both the CDP-55 and the CDP-65 retail at $\$ 849$.

1986 Hi-fi Grand Prix Awards

Category winners of 1986 HI Fl Grand Prix Awards were: Amplifiers: Marantz PM-94; Cassette Decks: Yamaha K-540;
Compact DIsc Players: Pioneer PD-M6 (BK) Multi-Play; Recelvers: JVC R-X500B; Speakers: Technics SB-RX50;

Tuners: No Award for 1986; Turntables: No Award for 1986;
Technological Development: Yamaha DSP-1 Digital Sound Processor.
Amongst the judges was ETI's Louls Challis.

Solar colour TV

The Sanyo Electric Applied Research Centre in Japan has released prototypes of the recently developed solar powered TV system.

The system is composed of three parts - an Amorton module generating 50 watts of electricity, a compact sealed lead storage battery. and a $14^{\prime \prime}$ colour TV.

The Amorton module is capable of powering the television at a rate of up to four hours per day in areas with 2000 hours of sunlight per year. Even after two consecutive cloudy days Sanyo says the module will continue to function because of the storage battery's capabilities.

The television has achleved a 16 per cent reduction in power consumption and can run on either altemating or direct current.

Considerable interest has already been shown by China and Southeast Asia, where electricity shortage is a major problem. Sanyo is also assessing the market

value of the TV in Australia, particularly for the more remote areas.

News on the walkman

The ubiquituous walkman continues to be cloned and developed by many others besides its originator, Sony. But recently, Sony has released two new units with innovations in size and features.
The WM-F101 Super Walkman is not much larger in size than the audio cassette it plays, allowing easy portability with the same clear and powerful stereo sound Sony is renowned for. The unit's discreet size makes it ideal for the sult and shint
pocket or small clutch bag.
This walkman will deliver up to two hours of playback enjoyment on a single AA battery or the same playback period utilizing the optional BC-73F rechargeable battery system. The ultra thin battery can be recharged up to 300 times giving around 600 hours of listening pleasure.
The unit offers FM stereo/AM reception with two-mode auto reverse and continuous playback.

The WM-F202 Super Walk-
man gives playback as well as recording pleasure. The unit has a stereo recording capability via the one-point plug-in power stereo microphone supplied, that eliminates the need for microphone batteries by drawing power from the cassette recorder.

The WM-F202 is also cas-sette-case size with FM stereo/AM reception. It features two-mode auto reverse in playback and one cycle auto reverse in recording. It is compatible with optional
ultra-thin rechargeable batteries making it a most economical unit.
Both units come with stereo earphones and are available in black, through the Sony Dealer network. The suggested retall price for the WM-F101 is \$389, and the WMF202 is $\$ 449$.
The BC-73F rechargeable battery pack is also available at the suggested retail price of $\$ 79$.

AUTOCAD UNDER THE SPOTLIGHT

The industry standard for PC-based CAD is still fighting off newcomers after four years. We look at the latest version, Version 2.5.

T. Pugatschew
Tony Pugatschew is lecturer in Physics at SAIT, The Levels, Adelaide.

CAD systems are examples of horizontal application tools in the sense that their use extends across many disciplines: architecture, engineering, advertizing, and so on. In all areas, there are three types of CAD system: cheap single purpose packages, developments of these tailored to entire processes, and expensive general purpose user-customized systems.

Protel, smARTWORK, Hiwire Orcad, McCAD. Abacus and numerous other packages are examples of the first category, cheap systems, optimized for a single purpose. These packages are popular, well priced and serve as an excellent introduction to more advanced systems. Users will find most schematics and layouts can be handled effectively using them. However, these specialized programs require translators before output can be used by another program in the design sequence.

Integrated systems such as Personal Computer's P-CAD or Racal's REDBOARD, complete schematic and pcb design, checking and simulation environments, are examples of the second category. They cost much more than a specialized system. The designer can produce a schematic, the system can autoplace the components in optimum positions and auto-route the board, as well as conduct design rule checks. An engineer who must design complex, high-density multilayer boards and who demands 100 per cent confidence in layout and accuracy will benefit from such systems.
The third category of package is the general design and drafting system such as autoCAD, PRODESIGN II, CADVANCE, VERSACAD, etc. Most of these have particular strengths in certain areas such as three-dimensional drafting. Since many of the functions performed by the specialized and integrated system can be mimicked by these systems it is impor-
tant to examine their strengths and weaknesses.

AutoCAD

Autodesk's autoCAD package was one of the first fully featured CAD packages designed to run on a personal computer. Due to considerable vision on the part of the makers, autoCAD has dominated the market ever since it was introduced. There are claims that nearly half of all personal computer-based CAD users use the system.
There are many reasons for its success. In the first place it was well thought out.

It is extremely flexible, it's easy to customize. Macros (small segments of drawings) can be developed rapidly to increase productivity. Today, it has many of the features one is entitled to expect from an industry standard. There are textbooks, journals and extension systems supplied by third parties.

There is even provision for interfacing to an artificial intelligence system - LISP. The use of LISP permits the system to be expanded to do many parts of the design automatically. This has significant implications for productivity.

AutoCAD Version 2.5 is a two dimensional CAD package which is used to pre-

pare plane drawings. One hundred and twenty commands permit drawings to be constructed with the aid of several main facilities: entity draw, edit and inquiry, display controls, layers, drawing aids, blocks and attributes, and dimensioning.

Hardware requirements

AutoCAD can run on IBM-compatible machines. A version is also available for use on 680) 0 -based SUN systems and Apollo minicomputers. Of course, the 80286-based AT machines will run faster than the 4.77 MHZ 8088 IBM-PC family. The computer should have at least 512 K and preferably 640 K of RAM, the 8087 math-coprocessor and a hard disk.

AutoCAD is a large system and uses the disk for overlay files and maintenance of a continuous log file. The faster access offered by a hard disk is a real plus. The price of hard drives is dropping constantly so it is worthwhile to consider this option. The 8087 device speeds up autoCAD arithmetic since the system uses floating point representation for coordinates.

Mice, digitizers, trackballs, joysticks and light pens are very important because the user needs to address points on the screen which represent the drawing surface and select procedures from a comprehensive menu. The keyboard can be used with the arrow keys but it is certainly not as effective as a mouse

A large variety of video cards and monitors are supported from the common CGA card right up to the high resolution cards.

Description

Commands can be entered in several ways. The graphics screen is divided into four main areas - menu selection is on
the right hand side of the screen. A threeline prompt area at the screen base and a single line of text on top of the screen reminds the user of current coordinate and layer details. Drawing is performed in the central section of the screen. A separate monitor can be selected for text input while a high resolution screen can be reserved for the graphics display. Selection of menu items invokes autoCAD commands. The menus form a hierarchical structure which speeds the selection of functions. It is also possible to set up a digitizing tablet with a large block of menu choices. A section of such a tablet is shown in Figure 1. Menu commands can also be entered from the keyboard and are displayed on the lower prompt area.

A line cursor can be positioned on the screen with the pointing device or keyboard arrow keys. AutoCAD features a DRAG mode which allows selected items to be dynamically moved across the screen. For example, when the circle command is chosen options are presented to draw the cricle - diameter, radius, three points, two points, tangent, tangent and radius

Library creation

The major ain of CAD systems is to permit the efficient production of drawings and documentation which may be an entry into other areas. for example computer aided manufacture. It is important to produce library components which can be called up at will and inserted into the

THE WORLD WIDE HOBBY! AMATEUR RADIO ARE YOU A MEMBER OF THE WIA?

> Why not become a radio amateur by joining the Wireless Institute of Australia? The Institute can assist and advise you in how to obtain a Department of Communications licence, which will allow you to communicate with others having similar interests in Australia and throughout the world.

The Wireless Institute of Australia is non-profit society founded in the interests its inception it has nurteurs by liaison at all of all Australian amas.
Gov Apart from many other benefits as a member, you receive a montrazine called Activity. Ovpheric Preding. Awards, mmists encapsulated 64 page mour letter box each Activity, to name news nond and Solar month.

SUPPORT YOUR HOBBY - become a member!

For further information, including a sample magazine, write to: WIRELESS INSTITUTE OF AUSTRALIA

autoCAD

drawing. For example, an architect may require the use of particular windows, doors, etc. In the electronic schematic area the creation of standard symbols means that the library files are constantly in use. The user has to be able to create units as library components in an easy fashion.

Autocad uses the BLOCK command to assign a name to a drawing or a specified sub-unit of a drawing. A block is defined as a set of entities grouped into a compound object. BLOCK also requests details such as insertion point, scale and attributes. The WBLOCK command writes out the individual blocks to a disk file for use in other drawings. Symbol libraries can be easily created by the user or purchased from third-party vendors.

The main disadvantage of the saved block is that valuable disk space is used. Time is also spent in retrieving the block from the disk. However, because autoCAD uses a single block definition, regardless of the number of times the block is used in the drawing, the final drawing requires less disk space.

Another way of creating a library is to uses the SHAPE command. To draw a shape, the user must load a disk file containing the shape definition. The creation
of shapes is not an easy task since each shape is defined in terms of a shapenumber, number of bytes and a shapename. Special codes define operations such as line displacement, vector length and direction. Shapes are useful entities because they are quicker to load and use than blocks which are saved sections of drawings.

Editing

Any displayed object may be moved with the MOVE command, copied with the COPY or MIRROR command and changed with the CHANGE command. Multiple copies of an object can be created with the REPEAT or ARRAY command which permits a circular or rectangular array to be drawn. This is particularly useful for multiple pads in an IC footprint. Objects can be rotated, enlarged or shrunk. An object may be divided into equal parts or measured seetions. An inserted block can be disassembled or EXPLODED (is there violence in software???) into component parts.
An interesting command that is very useful for schematics is the STRETCH command which moves a selected object and preserves connections to other parts of the drawing. Unfortunately the connections are not maintained if the object is

STRETCHED and ROTATED. This would be very useful for finding optimal component placement in the design of pcbs using a rat's nest presentation.

Layers

The use of layers is similar to the use of transparent overlays in conventional drawing. For example we may allocate several layers to a pcb - component side, solder side, silkscreen overlay, solder mask, etc The layer name, colour, line type and whether the layer is active can be specified with the type and whether the layer is active can be specified with the LAYER command.

There is no limit to the number of layers in a drawing. Layers must be turned on if editing functions such as MOVE, etc. are performed otherwise entities on the OFF layers will remain in place. The FREEZE and THAW commands are used to speed up screen regeneration by only redrawing layers where editing or entry is being performed.

Drawing assistance

The real attraction of CAD packages is the ability to produce professional drawings with the minimum of fuss. AutoCAD provides several commands that speed up this process. The SNAP command ensures that entities are entered at specified inter-

ETI March 1987 - 95

autoCAD

vals. Board pads at 0.1 inch spacing are an obvious example. The ORTHO command ensures that lines are orthogonal or normal to each other.

The GRID and AXIS commands draw either a grid of dots at a specified spacing or a ruler axis on the side of the display. Tick mark frequency is requested from the user. The ADE-2 option enables the grid to be rotated at any angle and snapped to a specified drawing object.
The PER and TAN commands specify that lines are entered perpendicular to another line segment or tangent to an are or circle.

Special functions

Databases and their management play an important part in engineering projects. One advantage of CAD systems over conventional drafting is that extensive information may be entered on each component, for example, the cost and supplier. Furthermore these component attributes can be integrated into a bill of materials, job costing or warehouse pick sheet.

Attributes are defined in autoCAD with the ATTDEF command. When a block with associated attributes is inserted into a drawing, autoCAD prompts for values of the variable attributes. After this has been entered the program draws the block, dis-
plays any visible attributes and stores the values of the invisible attributes. If some information is incorrect the ATTEDIT command comes to the rescue. The autoCAD system supplies some simple programs written in BASIC to provide a bill of materials from sample drawings so users have some good examples to follow. The ATTEXT command writes the attribute information to a disk file in a form suitable for analysis with a package as dBASE II.
AutoCAD special features
AutoCAD special features are really cream on the cake of this already impressive package.
The EXTEND command extends line, are and polylines to meet other objects exactly. The OFFSET command simplifies construction of parallel or offset lines automatically. Automatic dimensioning features calculate the dimensions between selected points or the selection of an object. The HATCH command allows hatching of defined areas from a library of appropriate standard patterns for mechanical engineering and architecture.
The SCRIPT command permits the entry of a large number of commands which set up the drawing or replace repetitive key strokes. Slides or predrawn
views or a complete drawing can be created with MSLIDE and viewed with VSLIDE. The DELAY command introduces a delay between the showing of successive slides.

Design extensions

It is obvious that menu customization and library file creation permit the system to be moulded to suit a particular application. Autodesk has permitted autoCAD commands to be used in a LISP language format. This means that the user can create specific commands with appropriate names such as ENTER-PINS which may draw an IC pad on the screen and ask for a device name and attributes. Expressions include arithmetic, trig, geometric, string, conditional, special data and display functions

CADR, CDR, LIST and SETQ permit the user to write custom menus in which each selection is a short LISP function. The manual provides a lucid example of command design for an architectural application where a path filled with tiles is created. More examples would be welcome.
Most users would only value the LISP environment after they have used autoCAD for a time in order to appreciate the commands that are necessary in their area.

IEONCONEWS

Take advantage of our FAST INFORMATION SERVICE

If you would like specific details on any of the products featured in this news column simply dash off the coupon below and we'll send you complete information by return mail.

It's all part of the service at Technico Electronics.

URGENT INFORMATION REQUEST

For electronic components \& instrumentation.

AutoCAD maintains a log file on each drawing so it is possible to analyze this and discover the types of repetitive command sets that are being uscd. LISP definitions can then be created to save time.

Summary

To extract the maximum performance from a complex product such as autoCAD requires practice and discipline. The consistent design of menus, and the use of LISP programs requires a logical analysis of how the system should perform.
Since autoCAD is the topselling package, a large number of micro-based training aids are available, as well as self-study courses and training centres. Many users will find that the documentation is rather daunting and presented in a too formal text-book stylc.

The speed of the system has been significantly improved from past versions but the screen regeneration time is long for complex schematics (standard IBM-PC). This penalty was tolerable 18 months ago when no discrete schematic design or peb system was readily available. The software market has not stood still. The rapid panning, intelligent menu design and comprehensive library files of a package such as Hiwires sets a blistering standard for
competition with autoCAD.
The picture is complicated, however, by the existence of third part suppliers for autoCAD which significantly enhance its capacity. For instance, the autoboard system recently announced by the Great Softwestern Company, gives autoCAD an autorouting and auto-layout capability. However, the auto-routing of a simple schematic consisting of several 74LS00 and 74LS08 components took so long I suspected a system malfunction. Partly, this is a result of limitations in the PC hardware, and it is worth remembering that updates are happening all the time.

AutoCAD for schematics and pc boards . . . yes or no?
Dedicated packages like Protel and Hiwire win hands down over autoCAD. Speed ease of use and cost show that specific tasks are better handled by a master, rather than a jack, of all trades.

It's true that small schematics are handled equally well by both systems. However, the cost of autoCAD means that this is not a fair comparison. AutoCAD is typically three to four times more expensive than a simple PC-based dedicated system.

There is one caveat, however. Many
areas in electronic engineering require more than just a schematic drawer for their CAD system. Here autoCAD comes into its own. The extensive command set and its other functions make it a breeze to draw mechanical diagrams, flow charts or timing diagrams.

Another point running in autoCAD's favour is its extensive customizing capacity. This is a valuable and unfortunately rare feature. The question to ask at this stage is whether a cheaper alternative to autoCAD is just as useful. We hope to review other systems in the future to provide some answers.

Acknowledgements:

I would like to acknowledge assistance from Entercom (Aust) in providing a copy of autoCAD 2.5 and information on the support products, ASSCO (SA) for assistance with plotting supplies and information on new auto CAD literature. Mr Malcolm Raymond of Microlectronics Development Centre and Mr Ken Howard from Quentron Optics have permitted me to evaluate and use the P-CAD system. Technical and philosophical discussions with Mr W. Klompenhouwer of Maple Enterprises and Mr V. Dunda of Digital Concept Computers are much appreciated.

REVIEW

A CALCULATING PERFORMER

A look at TI's all singing, all dancing new calculator for the person who forgets formulae.
 Jon Fairall

n this day and age, when pocket computers are as common as mud, it seems odd to build, never mind buy, a large calculator without BASIC in it. Yet that's just what TI has done, and there are some very powerful reasons why it's done so.

Just consider the specifications for the new TI-95. It has a 7.2 K user memory which can be divided up into program steps, data
registers and file storage space. When you switch it on, you have 5.2 K of file space, 1000 program steps and 125 data registers. You can elect to have up to 4000 program steps, and 400 registers by eliminating the on-board file space. Alternatively, you can swap between steps and registers at the rate of eight lines per data register.

The file space is used to store programs,
and acts just like a RAM disk. You can store as many programs as you like on it, calling and running them directly from the memory. Alternatively, the TI-95 comes with add-on memory modules, so it's quite practical to store programs there, not in the user memory.
If you need to manipulate numbers, this gives unparalleled flexibility. There is prob-
ably sufficient space to store every formula encountered in a typical year of undergraduate study. The alphanumeric functions ensure that programs can be made user friendly, by using meaningful labels to prompt keyboard entries.

One of the most powerful aspects of this is the soft keys, the five function keys directly under the display. Separate display windows directly above the keys can be labelled to read any three letter combinations. Pressing a key transfers program operation to a new branch in the program. This can be as simple as yes/no type alternatives, or something a lot more complex.

For instance, I wrote myself a demo program that would solve Ohm's law. You call a program from the file space called OHM (names and labels are only three digits or less). Three soft keys appear labelled E, I and R. Select E and a prompt 'enter voltage' appears; select R and 'enter resistance' appears. When you've filled any two of the variables a solution to the third appears in the screen as $1-03 \mathrm{amps}$; ie, 1 milliamp.

The soft keys are also used, as you might guess, to extend the number of keys available on the front panel. For instance, the NUM key, causes two different menus to appear in the windows each with four choices of number functions like random number generators, integer or fraction selection and so on. It keeps the front panel down to manageable size, while making a quite extraordinary number of possibilities available to the user.

The programming language itself is quite straightforward. The algebraic operating system (AOS) allows the entry of an expression pretty much as it appears on a shcet of paper. It works by assigning priorities to each operation (brackets before multiplication before addition, for instance), and providing you are careful is pretty nearly foolproof.

There is the full range of functions you would expect on a scientific calculator trig functions, factorials, logs and so on. It also has some neat little programs built in for solving quadratic and cubic equations, lowest common multiples and divisors and primes. There is also a full battery of statistic functions, means, deviations and interestingly, a linear regression program as well.

For conditional branching within the program there are nine different tests, plus 16 user flags which can be set and reset conditionally. It uses two ways of defining a jump, either by a line address, or using labels. A handy feature is that the labels are all defined with two letters rather than numbers, which makes for more meaningful
labelling when programming. The first 26 memories can also be denoted by a letter rather than a number, so memory A is also memory 000 . To make the branching even more powerful, the TI-95 also uses indirect addressing, by which the address can be made to depend on the contents of a memory.

Another form of conditional branching is done via subroutines. Like labels, these can be defined in terms of line number of label and directly addressed. As usual, subroutines must be terminated with a RTN (return) statement.
To store the fruits of your labours, there are load and save file instructions, plus a directory and delete file command. These can

36

There is the full range of functions you would expect

 on a scientific calculator trig functions, factorials, logs and so on. It also has some neat little programs built in for solving quadratic and cubic equations, lowest common multiples and divisors and primes. 98be aimed at either the internal memory or an optional cartridge. When the cartridge is in use it's possible to assign names to each one so that you don't get lost. There are also corresponding commands for the tape I/O.

Once you really get going on the TI-95, it's possible to get right into the heart of the processor. On switch on, system registers are all protected so the user can't get to them. Removing protection allows you access to the system flags (from 16 to 99), and the data and system registers. It's then also possible to store or recall a single byte in any part of user memory, any system register or cartridge. It's also possible to call assembly language subroutines. There are a number of these listed in the manual.
I didn't get myself into the situation, but according to the manual it is possible, in ex-
tremes, to disable the keyboard or the display by fiddling with the system like this, in which case one needs recourse to the reset button which is thoughtfully recessed into the left of the front panel.

One of the main justifications for doing all this is to make full use of the powerful I/O features on the TI-95. There is a $10-\mathrm{pin}$ connector on the back of the unit that can be controlled by the unit. TI has a printer that works off this port, the PC324, but presumably you can control many other devices if you are sufficiently clever.

Not unnaturally, there are a few things wrong with the way the TI-95 works. For the most part they're trivial little things that ought to have been attended to in a device of this sophistication. For instance in order to delete a line, it's necessary to step to the left, then go to second function mode, then delete; three key strokes. There were calculators around 10 years ago that used one key stroke to do the same thing.

Much the same thing applies to inserting new lines in the program. Before you start work you are required to stroke the second function, then the insert button. It's surely not necessary. To add to the problem, many of the functions on the board will toggle the insert mode so that you can be inserting data and all of a sudden find yourself overwriting your program.

No doubt you get used to these things if you do enough programming, but they seem unnecessary.

Another thing I found annoying is that labels, file names and registers are sensitive to upper case or lower case alphanumerics. So ' a ' is not the same as ' A '. This is silly, but even worse is that the procedure for changing the calculator from one mode to the other is laborious in the extreme.

These annoyances aside, the TI-95 is a joy to use. In the non-programming mode it seems almost viceless. It's aesthetically pleasing, with a nice heavy feel to it, sufficiently robust, in fact, to stand up to being thrown in the bottom of a sackful of books.

Finally, the thing that makes it all happen: the manual. I'm delighted to report, it's a beauty. It's thoughtfully laid out in two volumes, each divided into logical chapters, and it's simply and clearly written. The front piece credits 10 people with its development, which says something about TI's commitment to good marketing.

RETAIL PRICES	
TI-95	$\$ 299$
maths cartridge	$\$ 55$
8K RAM	$\$ 69$
stats cartridge	$\$ 55$
PC324 printer	$\$ 249.95$
cassette interface cables	$\$ 40$

A FINE BALANCE OF BOOKSHELF SPEAKERS

Abstract

Despite the advertizing hype, it is a finely balanced act choosing between bookshelf speakers. To prove the point rather than make your choice easier, we have reviewed four sets of bookshelf speakers that range notably in price but rather more indeterminately in performance.

Louis Challis

Loudspeakers are unquestionably the most important component in your hi-fi system. There have been many thousands of different bookshelf speaker systems developed over the last 20 years, a few of which could be described as 'good' and an even smaller number of which could be described as 'outstanding'. The problem is that despite their appealing iook and plenty of advertizing hype, bookshelf speakers are generally a retrograde step when you seek optimum performance.
Nevertheless. we decided to select four of the most notable bookshelf speakers currently marketed in Australia in order to undertake a comprehensive comparison review. The decision was prompted by a number of readers' requests, and by the fact that our houses and apartments are becoming decidedly smaller, and the cost of good speakers is rising at an alarming rate. Even though the costs of CD players and some amplifiers is dropping, the most critical elements. the speakers, are becoming more expensive and more difficult to place.

The four speakers selected were, the Bose 301 Series II, the B\&W Matrix I, the Dali 3A and the JBL L20T. The real similarity these speakers have is their size and even then, there are obvious differences. One difference is in price. At one end of the spectrum you have the Dali 3As at $\$ 668$ whilst at the other you have the B\&W Matrix 1 selling at $\$ 1695$ RRP. In the middle you have the Bose 301 Series lls at RRP of $\$ 800$ a pair and the JBL L20Ts at $\$ 858$.
The Bose Corporation is located in Massachusetts in the US, the B\&W Company in England, the Dali Company (which stands for Danish American Loudspeaker Industries) in Denmark and the JBL Company in California, US. The underlying
design philosphies, and obviously their acoustical characteristics, are to a large measure directly related to their country of origin. See accompanying boxes for a rundown on the designs of these speakers.
Objective testing
When it comes to testing speakers as neat and as small as these four the task turns out to be far less complex and messy then it is with larger speakers. In this case the almost 'shoe box' sized dimensions and modest weights impose no practical constraints and induce no hernias when carrying them into or out of our anechoic room.
Frequency response
The first real problem came with the evaluation of the Bose 301 Series lls, which were never intended to be evaluated in our normal way, under free-field conditions. For this reason the measured frequency response of the Bose looks far more lumpy than any of the other three speakers, irrespective of which of the 10 or so angles we attempted to measure the frequency response at. But even allowing for the reflective characteristics of the intended place of usage. I would be hard pressed to convince myself that under optimum conditions (as recommended in the handbook) the perceived frequency response would ever be flat. Nevertheless. the frequency response measured directly on the axis of the woofer, indicates that this unit has been well selected and is properly ported by the enclosure.
The method of mounting the tweeters, without the benefit of flush mounting provides a frequency response that can only be described as disconcerting. With the Bose 301s, we were hard pressed to define the term ' 30 ' off axis' and it behoves us to examine the polar plots a little later on.

By contrast the on-axis frequency response of the B\&W Matrix is is quite

B\&W Matrix I
smooth at both 2 m and 1 m on axis, with a modest rise discernible between 200 and 600 Hz , and an almost flat response between 600 Hz and 11 kHz . Rather surprisingly the tweeter then suffers a 6 dB drop between 11 kHz and 20 kHz , which although measurable, would be in no way audibly disturbing. The measured response 30° off axis of the $\mathrm{B} \& \mathrm{Ws}$ exhibits no substantial droop. apart from a slightly higher attenuation at 20 kHz , which is then down by 12 dB instead of only 6 dB .

The Dali 3As exhibit a relatively smooth frequency response on axis, with the tweeter response extending out extremely smoothly in the $10-20 \mathrm{kHz}$ region. At 30° off axis the response is still commendable with only a modest 8 dB droop at 20 kHz .

The JBL 20Ts provide a particularly good response for such a small low frequency driver, with only one significant droop at 1.3 kHz and a high frequency response that is exceptionally good all the way to 20 kHz and beyond. At 30° off axis the response is only 7 dB down and the rest of the response does not significantly change.

Input impedance

When it comes to input impedances each speaker has a characteristic which is truly all its own. The Bose 301s exhibit a minimum impedance of 9 ohms, a maximum impedance of 31 ohms and a series of rises and falls which would make any roller coaster proud. The actual impedances are not dangerous or disturbing so much as relatively non-uniform at the lower end of
the spectrum, in the region where you are likely to try to extract significant output powers.

The B\&W Matrix Is, on the other hand, exhibit an impedance curve which is a credit to the system's designers. These are the first speakers that I have seen since the KEF 105s which have an iteratively optimized impedance characteristic. A curve as flat as this would not disturb any amplifier (even a bad one), and would allow the speakers to be paralleled with other comparable speakers.
The Dali 3As by contrast, have a minimum impedance of 6 ohms , a peak impedance of 42 ohms around the crossover frequency and a general impedance characteristic, which although not disturbing, does not look good when compared with the other speakers.

The JBL L20Ts have a minimum impedance of 5.5 ohms, a peak impedance of 35 ohms and because of the ducted port exhibit a general similarity to the Bose 301 Series Ils. This impedance curve would allow you to extract healthy powers from your amplifier, but it is not really optimized for paralleling with other speakers.

Phase response

The phase responses of the speakers were interesting. In the case of the Bose Series II it was not particularly easy to measure and caused us a few headaches. In the case of $B \& W$ Matrix Is, the curve proves to be remarkably smooth over the critical high frequency region.

For the Dali 3As the curve is also remarkably smooth over that critical high frequency region. The JBL's too was reasonably smooth, even though the phase relativity varies by approximately 240° over the critical high frequency region.

Dali 3A

JBL L20T

Polar plots

The polar plots clearly highlight significant design differences between each of the speaker systems. Whilst the Bose 301s exhibit a reasonably smooth polar plot at 1 kHz , with increasing frequency the nonuniformity of output reveals why we experienced so many problems in trying to
determine an appropriate off-axis angle at which to measure the frequency response. The 10 kHz frequency response between 30° and 50° to the front and between -210° to -270° to the rear can be clearly seen to be the preferred angles of directivity.

The B\&Ws exhibit remarkably smooth responses at all of the measurement frequencies, including 10 kHz , and although the twecter starts to run out of steam at 15 kHz , it is quite clear that over the range 70 Hz to 15 kHz these speakers provide a smooth non-directional performance over the forward projection are.

The Dali 3As also exhibit a generally smooth polar plot performance, although not quite as smooth as that of the B\&W Matrix Is. Even so, as the cheapest speakers of the four tested, they most certainly shine in this area.

The JBLs also provide a good polar performance and, although the directivity at $>$

JBL L20T

The JBL Company is renowned for its high powered and professional speakers. Most people who are familiar with JBL products have seen them used in either rock concerts, professional recording studios or in acoustical laboratories. JBL has also been an innovator, particularly in the area of high efficiency, controlled directivity, power handling capacity and speaker reliability.

Now the professional speaker market does not necessarily keep a speaker manufacturer alive, and consequently over the last 30 years JBL has developed and marketed some truly exciting consumer oriented loudspeaker systems.

The L20T is one of the smallest loudspeaker systems that JBL has produced. The first and fundamental principle of JBL speakers has been their reliability and the L20T incorporates a 155 mm diameter driver with an attractively made and extremely solidly constructed diecast speaker basket. None of the other three speaker manufacturers begin to approach this in terms of stiffness.

This driver utilizes a very large ferrite magnet assembly, together with a polypropylene speaker diaphragm with a very flexible rolled edge surround. This driver and the associated tweeter are installed in an 18 mm thick (real) timber veneered enclosure, which is conventionally and solidly constructed. The speaker crossover network is also well manufactured with quality air coiled inductors and, it should be noted, with 'over rated' capacitors and high power resistors. JBL's experience in the professional field clearly shows through here.

The tweeter features a 25 mm diameter titanium diaphragm which the designers have taken special care to protect from those 'cotton pickin' fingers' by means of a heavy wire mesh grille. Tweeter diaphragms as light as this are extremely vulnerable and so easily destroyed that they warrant that extra bit of protection. The Model 035Ti tweeter is one of the neatest and most cost effective tweeters that JBL currently manufactures and the same excellent tweeter is used in all four models of the L series consumer speaker systems.

JBL has designed the L20T system to handle 100 watts continuous power and more significantly peak (transient) inputs of up to 400 watts when fed with program material conforming to the IEC shaped sound signal (TC29B Secretariat 138-September 1978).

The cabinet which incorporates a venting port on its front panel is well made. A small amount of low density fibreglass material is stapled to the in. side faces and I suspect that the enclosure would benefit from the addition of a little more. This would likely change (and marginally improve in the region 200 to 500 Hz) the mid-band presence of the system.

The speaker grille is neatly made from open weave black cloth which has been carefully thermally bonded to a neat plastic frame.

The speaker terminals at the rear of the cabinet (which is also veneered in real timber) incorporates a large and sensible pair of universal terminals to which access is simplified through the same simple expedient that Dali has also utilized, of angling the terminals within the moulding.

Abstract

BOSE 301A SERIES II Aram Bose's philosophy for loudspeaker design runs counter to the general rule. He believes that you need to deliberately provide a supplementary set of mid-frequency and high frequency primary reflections from the sidewalls of your listening room in order to replicate the characteristics of the original listening environment. To attain that aim, his various loudspeaker enclosure designs have incorporated multiple rearward and/or sideward pointing speakers. In some of his designs these are supplemented by ac. tive equalizers to compensate for the non-linear frequency response of the resulting systems.

The 301 Series speakers incorpo. rates a pair of tweeters on the outer truncated corner of the cabinet. These point backwards at 45°, and forwards and slightly upwards, so as to create the spatial breadth and reflective characteristics of a live orchestra performing on a stage that is wider than your living room.

The 301 Series II enclosures are relatively light at 7.1 kgs . Each enclosure incorporates a 200 mm diameter driver with a polyurethane foam sur. port, which is positioned relatively close to the outer corner of the enclosure. The cabinet is manufactured from plastic veneered particle-board, 14 mm thick, and the two tweeters, which are mounted on the truncated corners with plastic brackets, have diameters of 75 mm . These speakers look a 'little lost' and ungainly and are covered by a neat open woven cloth covered plastic frame. The cloth has a different and contrasting light fawn colour.

The rear of the cabinet incorporates a simple speaker termination panel with a pair of red and black spring loaded sockets for terminating the bared ends of your speaker leads.

Inside the cabinet, the crossover network has been designed to provide two different transition frequencies for the respective tweeters. The lower and frontward pointing tweeter has a crossover operating at 2.5 Hz , whilst the upper and rearward pointing tweeter has a crossover frequency of 1.5 Hz. The designers have recommended minimum power amplifier ratings of 10 watts and 75 watts maximum (rms) per system.

 round and a 54 mm diameter ductedTone Burst response for 90 dB steady state SPL at 1 m on axis, 1 kHz ($2 \mathrm{~ms} / \mathrm{div}$). Upper trace is electrical input; lower trace is loudspeaker output.

JBL L20T

Dali 3A

B\&W Matrix I

Bose 301 Series II

10 kHz is somewhat sharper with a slightly narrower bandwidth than the competing units, their performance is still good.

Sensitivity

Distortion is a very important factor and particularly when the electro-acoustic conversion efficiency is simultaneously considered.
The Bose 301 s have comparable sensitivity to the other three speakers. At low and medium frequencies their distortion characteristics are also comparable, however, at 6.3 kHz the measured distortion was higher than I would have expected and this characteristic can be expected to extend to even higher frequencies.

The Matrix Is have the lowest sensitivity of the four but with modest distortion at 100 Hz , (higher than I would expect in a system costing \$1695). The distortion figures at both mid-frequency and high-frequency are, however, very low.

The Dali 3As have the highest sensitivity of the four systems (even if only marginally so). They exhibit relatively low distortion at low frequencies, moderate distortion at mid-frequencies and modest distortion at high frequencies.

The JBL L20Ts have intermediate sensitivity, with high distortion at low frequencies, which I guess is only to be expected when you use a 155 mm diameter woofer. Thercafter they have low distortion at mid-frequencies and low distortion at high frequencies.
Tone burst response, decay response The tone burst evaluation of each of the speakers tends to replicate some of the most significant characteristics of the distortion measurements, as well as those of the decay response spectra, which I will examine in detail below. In simple terms the Bose tone burst performance results are far from exciting, the results of the B\&W Matrix and the Dali 3A's are good, whilst those of the JBL L20Ts are very good.

The decay response spectra of the Bose speakers clearly show both that the cabinet resonances are significant and the multi-directional propagation patterns interact, to produce what is a visually disturbing pattern. By contrast the B\&Ws reveal a remarkably smooth decay response spectra, which is almost the equal of any I have yet seen. They have minimal signs of either speaker enclosure resonance or signs of speaker basket or transducer resonance.

Even the Dali 3As perform reasonably well in this respect, although speaker enclosure resonances are visible, as are some of the minor resonances from the speaker basket. A notch at 8 kHz appears to be a diaphragm anti-resonance in the tweeter,

Now is the time to update your Hi -Fi system with one of ORTOFON's superb OM/OMP cartridges.

By doing so, you will also have a chance to go to Denmark and visit the ORTOFON manufacturing plant.
WHY THE ORTOFON OM/OMP SERIES CARTRIDGES?
If we were to take away their high output, adjustable mass. diamond quality, superior sound and stylus
 interchangeability, these cartridges would be no different from all 'the others:
But with all these features and their sonic excellence, these cartridges have become the most successful range of cartridges ever produced by ORTOFON. In terms of value for money the 0 M -range is now recognised throughout the world as "the one to buy:

WHAT THE EXPERTS SAY!

GRAMOPHONE: * . .the OM-20 showed a more solid bass and midrange and freedom from edginess". ". . The OM-30 had a more subtle sound quality with greater clarity and definition. a more positive stereo image:"
HIGH FIDELITY: "The OM-40 is the best magnetic cartridge that this Danish manufacturer has ever produced
HI-FI CHOICE: "ORTOFON OM-10 ...BEST BUY!!"
The nomenclature "OM" stands for Optimum Match. By removing the in-built 2.5 gram weight-plate, the OM cartridges can be perfectly matched to any medium or low mass tone arm. The technically identical OMP models are designed for use in P-mount tonearms.
All OM styli are interchangeable. If your budget does not allow the top model initially. start with the OM-10 and update the stylus later.

THE PRIZE LIST

Buy any ORTOFON OM/OMP 10, 20, 30 or 40 cartridge between 1st March and 30th June 1987 and you could win one of the following prizes:

1st PRIZE:

7 days holiday in Denmark. Flying with SAS. The Businessman's Airline, to Copenhagen and return, including 6 nights first-class hotel accommodation and all transfers This exciting trip includes a visit to the Ortofon manufacturing plant. plus an opportunity to visit the Danish Royal Theatre, famous Tivoli Gardens and one of the many famous Danish jazz clubs

THE BUSINESSMAN'S AIRLINE
Next time you travel to Europe on business. why not give yourself a break and fly SAS. the Scandinavian way - one stop to
Copenhagen, the business heart of Europe.

2nd PRIZE:

 Ortofon MC30 Super Moving Coil Cartridge Valued at $\$ 800$
3rd PRIZE:

Ortofon MC20 Super Moving Coil Cartridge. Valued at $\$ 600$

Full details and conditions

of entry from your nearest ORTOFON specialist.
arlofon

BOOKSHELF SPEAKERS

which is neither audible nor disturbing.
Even though the JBL L20Ts are modest in size and in price, their decay response spectra are particularly good, although once again the low level resonances from the speaker enclosure make their presence felt. The speaker cabinet and transducer frames are not as well damped as I would like. The results manifest themselves as low levels of additive radiation right across the spectrum from 1 kHz to 20 kHz .
To check on the merits of the B\&W Matrix I cabinet design I ran out a comparison curve of sidewall vibration. This was generated by a swept sinewave signal fed to the terminals of two loudspeaker enclosures. The electrical signal produced a nominal output of 90 dB of mid-band signal at 1 m for both the B\&W Matrix Is and another similarly sized speaker enclosure with almost identical efficiency.
The measured acceleration level on the side panels of the two speakers clearly showed how efficiently the B\&W structure attenuates the sidewall resonance to the point where secondary radiation from the cabinet surfaces no longer appears to be a significant problem. Similar test measurements on the other speakers did not result in such low levels. It is patently clear from both the measurements and from my subsequent subjective evaluation, that
some of the subjective differences between these speakers is the result of cabinet resonances.

Subjective testing

The subjective evaluation of the four speakers was a time consuming labour of love because each of these speakers is without question a well designed piece of

DALI 3A

The design of the Dali 3A speaker system has been based on some of the best proven design parameters for conventional bookshelf speaker systems. It features a sealed enclosure with a well developed 200 mm diameter woofer and an exciting 25 mm diameter tweeter capable of providing superb performance at frequencies well beyond 20 kHz .

The Danish speaker manufacturer has become world-renowned for the excellence of workmanship in mass produced timber and composite cabinet materials. A close inspection of the plastic veneered particle-board enclosure confirms that the Dali organization has applied the best features of Danish precision to the manufacture of this speaker. The cabinet is marginally larger than the other three systems, Both the woofer and the tweeter have been carefully recessed into the heavy front panel of the enclosure.
equipment with more attributes than liabilities.
Because of the special rear wall mounting requirements of the Bose 301s, I was forced to modify the characteristics of my normal live end dead end (LEDE) listening room to provide the special reflective characteristics required.

The music I chose for my evaluations

The cabinet is fabricated from solld 25 mm thick particle-board and the drivers are representative of the latest and best OEM units manufactured by Vifa in Denmark.

The internal damping media inside the cabinet utilizes carefully shaped layers of heavyweight open cellular polyester foam overlying a thick layer of shredded cloth wadding. This provides the protection and separation in the area where the crossover network has been located.
The manufacturer has recommended amplifier power ratings of between 5 and 80 watts and aimed at achieving an equitable compromise between cost and performance.

The speaker connections are provided by means of a pair of colour coded universal terminals, which are sensibly angled on the plastic rocessed terminal block at the lower rear corner of the speaker's back panel.

The NCR PC8 Advanced Technology (AT) PC is an ideal CAD workstation with its 8 MHz 80286 processor and native 640 by 400 colour graphics capability.

AUTOCAD
NUMBER ONE IN AUSTRALIA AND WORLOWIDE

For further information or demonstration contact your nearest "Authorized AutoCAD" Dealer" by contacting us at
136 BRIDE RD. RICHMOND
VICTORIA 3121 AUSTRALIA
PHONE: (03) 4299888 TELEX: 30625 ME1400
Houston Instruments have defined the industry standard in low cost. high quality plotting with its best selling, A1 size, 16 ips DMP-52 plotter.

They come with a longer warranty than a Rolls Royce.

And they're quieter.

Interestingly enough, the warranty on a new Rolls Royce is only 3 years.

The warranty on our 6 new compact disc players is 5 years. And we don't have to worry about the ticking of the clock.

In fact, the only sound you'll ever hear from our new generation C.D.'s is the faithful, pin-sharp accuracy of the music.

If you're wondering why we compare ourselves to the technical excellence of the world's leading
car, the answer is simple.
We couldn't find a competitive C.D. player that could do the job.

Bose Series ||

was primarily CD-based, although I did resort to some of my tried and true spoken voice records for the critical 'voice realism' test. Using Robin Archer's A Star is Torn, I quickly discerned the ranking on human voice reproduction as being (i) B\&W (ii) JBL (iii) Dali and (iv) Bose

The subjective differences were not as marked as I would have expected and even the Bose 301As performed admirably
with one notable difference. A speaker which is designed to disperse the sound as the 301 As cannot achieve a realistic localization of source. With my eyes closed Robin Archer seemed to spread out, without the precise imaging that the other three speakers provided so effectively.
The second series of tests utilized tracks from a Delos Sampler entitled Soundscapes Volume Two (D/CD 3501) from

Abstract

B\&W MATRIX I The B\&W Matrix I speaker is one of the most innovative and, as it would appear, one of the most expensive bookshelf speaker systems currently available in this country. One of the most striking features about B\&W (which started off as Bowers and Wilkins in the late 60s) has been the extent to which their succeeding series of speakers have incorporated unconventional, but nonetheless technically exciting developments. The 'matrix' cancept is one of its most unusual, and as it would appear, one of its most expensive developments.

The matrix concept is unusual. Most of us may be aware that by providing internal bracing elements between the opposing walls of the enclosure you are able to effectively dampen out (but not completely remove) the natural tendency for the enclosure to vibrate at one or more natural resonant frequencies. The trouble with adding bracing elements between the walls is that they reduce the avallable space in the cabinet. That is they both obstruct and limit your ability to incorporate appropriate quantities of suitable sound absorptive material. B\&W's unusual approach to this problem was to form a plastic 'eggcrate' matrix into which individual rectangular strips of absorptive foam material could be inserted. The whole composite structure is then glued inside the cabinet walls. The space for the crossover network is left at the bottom of the cabinet from which there is normally minimal radiation. The space for the drivers is resolved by the use of an unusually heavy composite structure, about which B\&W has deliberately said very really is, and I must presume that the seemingly high cost of the Matrix I speakers is associated with the amount of hand work involved in correctly implementing the details.

The fully sealed cabinet is relatively deep at 310 mm overall (much deeper than any of the other speakers in this group). This is a direct result of the need to provide sufficient internal volume, whilst simultaneously minimizing the face area of the enclosure. This is essential as the front of the speaker enclosure is one of the hardest areas to stiffen. There is also a direct relationship between the depth of the speaker enclosure and its face area, if a given lower cut-off frequency is to be achieved. One of the results of incorporating all this extra stiffening material inside the cabinet is that its mass is increased dramatically: each of these small cabinets weighs 10 kg .

The 165 mm woofer and the 25 mm tweeter are the result of a long and extensive speaker development program, aimed at achieving unusual linearity of output, minimal distortion, minimal tendency to speaker break up at high power levels, and high power handling capacity. The performance of the new FFT2 high frequency transducer has been improved in three ways: by automating the construction, through the use of a ferro fluid in the air gap and by means of a high temperature voice coil to linearize the output at higher levels. As a further line of defence, the Matrix I also incorporates an automatic protection circuit which disconnects the tweeter when it is exposed to power (voltage) levels above a predetermined limit.

 little. All this sounds far simpler than itwhich I used Wagner's "Das Rheingold" with the anvil clashes of the "Entry of the Gods into Valhalla" to assess the transient performance of each speaker. I used the A-B replay facility on the CD player.

Each of the four speakers provided excellent transient performance with peak signal levels as high as 110 dB , although at that level the Dali 3s and the Bose 301s were exhibiting a trifle more distortion than either the B\&W Matrix Is or the JBL L20Ts.
Track 5 from the same disc is Beethoven's "Symphony No 8" and the Bose 301s provided a dramatic confirmation of their ability to replicate the physical breadth of an orchestra. I guess this compensates for their inability to localize an individual singer. On orchestral works of this type the Bose 301 s really do have something to offer, and if large orchestra music is your scene then they really are worth an audition.

The next disc I used was a new Pickwick International from Virgin Records entitled Impressions of Brass (PCD 836) which, with plenty of brass, provided a discriminating set of data to evaluate the four sets of speakers with.
With grouped instruments playing together, the most significant difference between the speakers was that provided by the Bose 301s with a greater breadth of sound disperson and 'richer' sound than the other three. In this respect the Dali 3As and JBL L20Ts took on a slightly more stident tone, whilst the B\&W Matrix Is exuded a feeling of slightly softer and almost muted characteristic (even allowing for the slightly lower output which I adjusted during their tests).

With a new Denon disc Buddy Rich Tuff Dude (33C38-7972) the equation took on a slightly different picture. Individual instruments were clearly and precisely audible, as were traces of colouration which the individual speakers produced. In this particular segment of the evaluation the

BOOKSHELF SPEAKERS

B\&W Matrix Is and Dali 3As provided a marginally superior performance to the JBL L20Ts. All three of these again sounded slightly more realistic and marginally less coloured than the Bose 301As.

The Romance of the Flute \& Harp (PCD 835) which provided magnificent percussive source material from a harp confirmed the attributes of the B\&W Matrix Is and elicited a superb performance from the Dali 3As and the JBL L20Ts.

The last disc that I used was from Huey Lewis and the News (CCD 1534) "The Power of Love". With this track played at average power levels of 80 watts input and peak levels well in excess of 250 watts, my family and all the neighbours were treated to a rare demonstration of how well small speaker enclosures can handle soft rock music without losing drivers, voice coils or even cross over components.
On this particular track all of the speak-

Polar response plots.
ers performed particularly well and although none of the speakers produced worthwhile output below 60 Hz , all provided music with which almost any rock music afficionado would be satisfied.

Unfortunately, ranking the speakers involves two conflicting requirements, namely, an allocation according to sheer performance and a second allocation in terms of cost benefit.

So the two rankings are as follows:

Performance ranking

1. B\&W Matrix Is
2. Dali 3As
3. JBL L20Ts
4. Bose 301 Series IIs

Cost benefit ranking

1. Dali 3As
2. JBL L20Ts
3. B\&W Matrix Is
4. Bose 301 Series IIs

Despite my rankings, the performance of the JBL L20Ts is still attractive because of their unusually small dimensions. This would put them at the top of the cost benefit ranking if you are really tight for space on your bookshelves. If you have a room without bookshelves then the Bose 301 Series Ils are still worthy of your assessment and consideration.

when you need if...

Tech.hentals
Catalogut

You'll need your 1987 Tech-Rentuls Catalogue

Be absolutely sure you receive your free copy of the catalogue that contains the largest range of measuring instruments and computer equipment available for rent in the Southern Hemisphere.
Simply fax or mail the coupon to us today or phone Tech-Rentals in your state.

MELBOURNE 8792266 SYDNEY 8083055 BRISBANE 8751077 ADELAIDE 3446999 PERTH 3221085 AUCKLAND (9) 504759

DREGS

To rain or not to rain . . . that is the question.

Long time readers of this column will remember the Electronic Scarecrow, an absolutely amazing beast with which a large collection of thoroughly truthful gentlemen threatened to rid fruit bats once and for all of any desire to eat your local friendly farmer's produce.
Now comes news, also out of the deep north, of yet another gentleman with an electronic gadget that is all set to change your life forever (as they say on the back of book covers). A certain Mr Toyer of Clarence River on the North Coast of New South Wales will, for a fee, use electromagnetic energy to create a vortex which punches a hole in the stratosphere. This will cause rain to fall, which is a Good Thing. On the other hand, if too much rain falls this is a Bad Thing, so Mr Toyer's machine can be put into reverse, and stop rain from falling.

In fact, with the Toyer machine, we could wind up deciding just when and where we wanted every drop of rain to fall.

Ian Causley MP, (Lib, North Coast), who is not entering for the prize of most gullible twit in the house, brought Mr Toyer and his amazing machine to the notice of the Parliament. The deal is that the NSW Government should pay Mr Toyer $\$ 500$ for every inch of rain that falls. If they do, Mr Toyer promises that he "will open the skies on the North Coast". The opposition is not committed to buying the device, but he did ask fellow parliamentarians to notice that it rained in November.

A twist to the story is that Mr Toyer is apparently being persecuted by the CSIRO. The CSIRO has given up its rainmaking experiments, which depended on cloud seeding, and Mr Toyer says they're jealous of his success. We at ETI think this is very unfair.

Speech problems

The Australian vernacular is something dear to all our hearts, so it's nice to know that it still confuses the hell out of foreigners. Its intricacies are perhaps one of the few things we can call our own.

This was brought into focus recently by a small news gem that filtered across the ETI news desk. (Actually the ETI news desk is the same desk used by the secretary to type on. the engincers to eat on, and everybody else to put their feet up on. But the lack of editorial amenities around here is entirely another story.) The news gem we heard from a mate in the trade concerned technicians of a large foreign company who were saved from a fate

Wang cares but emus don't.
worse than death recently when it was rumoured that corporate headquarters in the US decided that the company slogan was going to be "Wang Cares". The plan was that customer engineers would wear this gem of the copywriter's art blazoned across their chest, thus fostering a warm feeling towards the offending company.
The idea was dropped like a hot potato when Australian executives were forced to explain the consequences of the Antipo-
dean propensity for running words together. This is a problem in speech recognition, of course, and explains why no significant Australian contribution has yet been made to this science. It's also a problem of meaning. It needed to be explained that a word ending in ' g ' running into another one beginning in ' c ' ends up sounding like a letter ' k '. It may mean "Wang Cares" but it certainly doesn't sound like it.

Crusader and Beyschlag Always Ahead

Mini-Melf SMD Resistors

Cylindrical Melf resistors have largely identical characteristics as conventional rectangular resistors however the Mini-Melf allows more flexibility in the design of the conductor pattern. Mini-Melf resistors solder easily on both the flat front end and on the cylindrical circumference of the caps. This means they can also be soldered on printed conductors which run across the resistor axis.

CRUSADER ELECTRONIC COMPONENTS PTY. LTD.

81 PRINCES HWY, ST. PETERS NSW 2044

Phone 51950305163855 (3 Lines) 5196685 Telex 123993. Telefax 5171189.
SYDNEY: GEORGE BROWN \& CO PTY. LTD. Phone 519 5855; GEOFF WOOD ELECTRONICS PTY. LTD. Phone 810 6845; WOLLONGONG: MACELEC PTY LTD. Phone 29 1455; CANBERRA: GEORGE BROWN \& CO. PTY. LTD. Phone 804355 ; NEWCASTLE: D.G.E. SYSTEMS PTY. LTD. Phone $691625 ;$ MELBOURNE: R.P.G. AGENCIES PTY. LTD. Phone 439 5834; JESEC COMPONENTS Phone 598 2333: ROSNIK DISTRIBUTORS PTY. LTD. Phone 874 3424; GEORGE BROWN \& CO. PTY. LTD. Phone 419 3355; BRISBANE: L.E. BOUGHEN \& CO. Phone 369 1277; COLOURVIEW WHOLESALE PTY. LTD. Phone 275 3188; ADELAIDE: PROTRONICS PTY. LTD. Phone 212 3111; D.C. ELECTRONICS PTY. LTD. Phone 223 6946; PERTH: SIMON HOLMAN \& CO. PTY LTD. Phone 3814155 ; PROTRONICS PTY. LTD. Phone 3621044.

Philips' PM 3206 - your economic solution for day-to-day measuring problems.

"Philips' PM 3206 is a winner every time - and certainly when it comes to price/performance comparisons.
This top-value scope gives you full professional features, many of which are normally associated with much higherpriced instruments.
Features like a full $80 \mathrm{~cm}^{2}$ rectangular screen, with internal graticule and a highintensity spot. A 5 mV sensitivity across the full bandwidth of 15 MHz . Equal sensitivities on both X and Y channels for
identical input loadings. And external Zmodulation for display of a third parameter like time. Plus full triggering facilities. including auto-triggering, TV triggering and A / B channel or external-source trigger selection. So check all the professional features that PM 3206 gives you, and compare them with any other scope in the same price class.
You'll see at a glance that PM 3206 gives you more performance, more functions and more value!

Contact, Philips Scientific and Industrial Equipment division

Sydney Melbourne Brisbane Adelaide Perth tel. (02) 8888222 tel. (03) 5423600 tel. (07) 8440191 tel. (08) 3482888 tel. (09) 2774199

Other areas - toll free - (008) 226661 PHILIPS

[^0]: FERRITE ACAIAL ROD $\underset{\text { L1 } 1401}{200 \mathrm{~mm} \times 9 \mathrm{~mm}} \quad$ Normally $\$ 2.75$
 SPECIAL, ONLY $\$ 1.50$

[^1]: SEOMNERS GUIDE TO EUILDNG ELECTHONIC PRONECTS
 A. A. Pentold 0 eper

 Show the complete bugner how to tecite the practices ade of electronica so that the or she can conlidently build the electronic profecte thet are regularly fatured in the popular megarines and books. Aso induden examples in the form of simple projects the you cen build.

