

WHY YOUR NEXT CASSETTE SHOULD BE A MAXELI UD

THE SHELL - Even the best tape can get mangled in a poorly constructed shell. That's why Maxell protects its tape with a precisely constructed shell, made of lasting heavy-duty plastic.

No fixed guide posts are used. Instead Maxell uses nylon rollers on stainless steel pins thus eliminating the major cause of skipping, jumping and unwinding.
A tough teflon (not waxed paper) slip sheet keeps the tape pack tight and flat. No more bent or nicked tape to ruin your recording.
Maxell doesn't use a welded seal, but puts the cassette together with precision screws. Result Maxell doesn't jam.

1THE RESEARCH - More than twenty years ago, Maxell produced their first reel of magnetic tape. At that time, Maxell made a commitment to produce and sell only the finest magnetic products their technology could create
That commitment still stands today.

2THE TAPE - This continuous research has lead to the development of the Maxell UD (ultra dynamic) cassette. A tape that has a coating of super-fine PX gamma ferric oxide particles with an extra smooth mirror-finish surface.
All of this adds up to high output, low noise, distortion free performance and a dynamic range equaling that of open reel tapes.

THE LEADER - A leader tape that has a four function purpose.
a) Non-abrasive head cleaning leader (cleans recording head for 5 secs.).
b) 5 second cueing line (recording function starts 5 seconds after the line appears).
c) Arrows indicating direction of tape travel.
d) A / B side mark (indicates which side is ready for play).

Now you know why your next cassette should be a Maxell UD (ultra dynamic).

The sound expert's cassette. UD available in C60, C90 and C120. Distributed by Hagemeyer (Australasia) B.V. Branches in all States.

electronies today

Editorial: Les Bell
Publisher: Collyn Rivers

716 VHF Power Amp

We regret that, owing to production difficulties, we have had to postpone publication of this project until next month.

Cover: The success story of 1977 for the cinematographic world at least must be Star Wars. With the help of Twentieth Century Fox, we look inside the robots and bohind the scenes.

A Modern Magazines Publication - Recomended retail price only

Registered for posting as a publication Category B
PROJECTS
450:Bucket Brigade Boards 40
They're what you make of them!
589:Temperature Meter 50
Super-simple
Super-simple
588:Theatrical Dimmer 67
Circuit description
PCBs. 97
It worksl
FEATURES
New Look for Communications Satellites. 13
How intelsat V is different
TV Shopping 21
Price Comparisons
Sound 25
Hi-fi section
Inside Star Wars 30
How it was done
PCB Design and Manufacture 58
How you can do it
Product Review: Fluke 8020A DMM 81
How it is done well
Printout: $\mathbf{8 0 8 0}$ Octal Monitor 93
How it should be done
110
CB Submission
How the NCRA thinks it should be done
NEWS \& INFORMATION
News Digest 5
Print Out News 89
Sound Briefs 27
Unitrex Calculator Contest 65
Data Sheet 74
Kits for ETI Projects 87
Mini Mart 98
CB News 104
Ideas for Experimenters 115
Reader Services. 122
Index to Advertisers. 122

Thorens Transcription turntables: the professionals choice.

These are the furntables which other manufacturers use to evaluate the standard of their own product. Sold and serviced nationally by Rank Australia.

Here are 2 top selling models from our wide range.

TD126 MKII. Electronically controlled top-of-range model for sophisticated home music systems or semi-professional use. Drive motor supplied by electronic two-phase generator for even high speed consistency and better rumble figures.

TD145 MKII. 1 step belt drive with 16 pole two phase synchronous motor. Special Isotrack tone arm is dynamically balanced to prevent extemal shocks and acoustic feedback. Auto-stop feature. Excellent performance for a modest price. Watts: The record care people. Watts Dust Bug. Automatically removes static charges and dust as record plays. Fits all turntables Easy to connect.
Watts Disc Preener. Keeps new records like new. Ideal for recordings which have had no previous static treatment. Essential where playing weights are less than 3 grams.
Watts 'Manual Parastar'.
Dual purpose record cleaner. Treat older records with the manual Parastat when using a new lighter weight pick-up. You'll notice the difference where playing weights are less

Watts Disc Preener.

Watts Dust Bug than $11 / 2$ grams. Also keeps new records like new.

We Keep Performing
RANK
AUSTRALIA

News Digest

True-RMS (THD) Analyser

A new true-RMS distortion analyser/ac voltmeter/low-distortion oscillator from Hewlett-Packard can make true harmonic distortion measurements as low as 0.0018% from 10 Hz to 110 kHz , including harmonics to 330 kHz . The Model 339A Distortion Measurement Set is designed for use by engineers in audio, broadcast, hi-fi and amplifier design and development.

As a distortion analyser, the 339A measures THD from 0.01% full scale to 100% full scale (-80 dB to 0 dB) in nine ranges. Frequency resolution is two digits over the full range. Automatic set level and nulling is standard in the instrument. Accuracy from 20 Hz to 20 kHz is $\pm 1 \mathrm{~dB}$.

As a true-RMS voltmeter, the 339A measures inputs from 1 millivolt RMS to 300 volts RMS full scale over the range from 10 Hz to 110 kHz , and is calibrated in volts, dBV and dBm into 600 ohms. Accuracy from 20 Hz to 20 kHz is $\pm 2 \%$; from 10 Hz to 110 kHz is $\pm 4 \%$.

As a low-distortion oscillator, the 339A provides a sine wave output from 10 Hz to 110 kHz , with distortion from 20 Hz to 20 kHz specified as low as 0.0018%. Accuracy is $\pm 2 \%$ of the selected frequency. The output level is adjustable from less than 1 millivolt RMS to greater than 3 volts RMS into a 600 ohm load with a 10 dB per step attenuator and 10 dB vernier control.

True RMS measurements are more accurate than average readings when testing high distortion levels of nonlinear systems or measuring receiver sensitivity performance (SINAD measurements). Rapid and more accurate THD measurements are possible because of the built-in automatic tuning and set level features. A built-in tracking oscillator eliminates the need to find the fundamental frequency and tune the 339A for a null. Front-panel lights indicate when the input range setting is improper.

All FCC-required features for broadcast testing are included in the 339A These are: am detector, 30 kHz low-pass filter and switchable VU meter ballistics. Hum and noise filters, a high level monitor output and floating input are also standard. Duty free price of the Hewlett-Packard Model 339A Distortion Measurement Set is \$2090. Duty and Sales Tax are additional, if applicable. Further details are available from your local HP sales office.

VLSI's Progress

That Japanese VLSI programme is ploughing onwards, the latest product being a static 4 K RAM with 57 ns access time (that's fast!). It uses a single 5 V supply and is fully TTL compatible.

Illuminated Switch

A Melbourne based electronics company has developed a unique range of 12 volt illuminated toggle switches suitable for automotive and marine applications. The requirement for separate warning lights is eliminated as the toggle section of the switch is illuminated.

Available with conventional or duck bill toggle, the units feature plain or printed bezels for a variety of functions. A range of pre-drilled mounting panels to suit the toggle switches is also available. Further information can be obtained from Swann Electronics Pty. Ltd., P.O. Box 350, Mt. Waverley, Victoria.

4096 - Stage BBD

Matsushita have developed a new bucketbrigade device, the MN3005, with 4096 stages, which can provide up to 205 ms delays.

New Chartwell Monitor

Chartwell have developed a monitor unit which is claimed to have the most faithful sound reproduction so far achieved by a unit up to a maximum rated output of 116 dBA at 1 metre.

The performance of the model PM450 loudspeaker is derived from using a polypropylene plastic to make the cone in the 305 mm diameter bass/mid driver. This plastic does not have to be doped, so no sensitivity is lost. The cone material has a mechanical Q-factor of only 8. It has low density and a high Youngs modulus of elasticity. The voice coil assembly uses high temperature adhesive and an ultra-light high temperature former, permitting a continuous operating temperature of $200^{\circ} \mathrm{C}$.

High frequency signals are reproduced by a soft dome, 25 mm unit which employs an aluminium voice-coil former and generates low accoustic colouration.

The loudspeaker is available in two versions. One has a high signal level cross-over fitted with generously rated air-cored chokes and close tolerance polycarbonate capacitors, and requires a normal external power amplifier. The other version, the PM450 Electronic, contains an integrated pre-amplifier, low signal level electronic equaliser and power amplifiers and accepts balanced audio input signals. The filter enables this unit to be equalised to closer tolerances than is possible with the high level cross-over version.

INCOMPARABLE NEW TRANSCEIVER

Powerful Car stereo

A car stereo speaker system more powerful than many home hi-fi units has been introduced to Australia. The Beltek S 5029B speaker system can produce 25 watts music power per channel when driven by a matching power amplifier. The Beltek system will be marketed throughout Australia by the HMV Electronics Division of EMI. It was introduced to meet demand for increasingly sophisticated and powerful car sound systems.
"Many young panel van owners have adapted domestic stereo systems to fit their vans", the managing director of HMV Electronics Division, Mr. N.F. Jones, said this week.

The Beltek system matches a separate power amplifier to two dualcone 23 cm by 15 cm speakers. The speakers can be connected directly to a car radio or cassette player but use with the amplifier is recommended for maximum performance. Mr. Jones said the new system was developed to match the range of Beltek car radios, cassette players and AM/FM radio-cassette units introduced to Australia recently. For further information please contact EMI (Australia) Limited, 2-18 Parramatta Road, Homebush NSW 2140.

Portable Noise Monitor

The Model 614 is the only selfcontained portable noise monitor with automatic on-site calculation and printout of airport, community, traffic and industrial noise levels and relevant time of day information. It is a sound level meter that measures, calculates and prints out A-weighted sound pressure levels.

Features include: automatic, unattended on-site calculations with hard copy printout, printout of hourly, daily, L percentiles and Single Event noise levels and 7 day operation with two removable, rechargeable battery packs.

For further information, please contact:-

John Morris Pty. Ltd.,
P.O. Box 80,

Chatswood. NSW, 2067.

AP-C2

No, not out of Star Wars! Auto-Place Inc. of Troy, Michigan, manufactures an industrial robot which uses a General Electric TN-2000 Imager camera at the end of its arm to search for an object in a limited field of view and grasp it whichever way it is oriented. The processing is done by an Imsai 8080 microprocessor.

2464

Production starts early next year at Intel of the 2464 CCD memory chip. The 18 pin 64 k memory can be thought of as a rotating drum with 256 tracks of 256 bits per track. Data can be transferred in a serial manner at up to 1 MHz

in the first mode of operation but an alternative mode enables data to be transferred from a single page of the memory at 2.5 MHz . In this mode one can visualise the 2464 as a 256 high stack of 256 bit RAMs. Other modes of operation are search and standby.

Temperature Meter

The Ultrakust Thermophil Type 4445 is a relatively inexpensive, handy, small instrument for fast measurements on surfaces, in liquids and gases as well as plastics. A wide range of interchangeable semiconductor sensing elements are available to suit innumerable applications. Temperature range is from $-10^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$, subdivided into two scales. Accuracy is Class 1.5 and the unit operates from 9 volt batteries having approximately 100 working hours operation. Continuous measurements can be made without recalibrating. The unit operates on the Wheatstone bridge principle with the sensing element located on one arm of the circuit. For further information, please contact:-

John Morris Pty. Ltd.,
P.O. Box 80,

Chatswood, NSW, 2067.

10 good reasons to sound out Luxor.

1Luxor's advanced design incorporates the latest in Swedish electronics technology.

212 months guarantee on parts.
10 years guaranteed parts availability.
3 20 watts per channel (sine wave) amplifier.

4Sensitive AM/FM radio, 5 preset FM stations, accepts stereo FM.
5 Semi automatic belt driven turntable with excellent cartridge.

6
A pair of highly responsive bass reflex speakers.

7Three in one also incorporates easily operated top class cassette recorder.
8 Luxor music centres - convenient operation without sacrificing quality in sound.
9
Luxor have been manufacturing electronic goods for over 50 years and are Sweden's leading manufacturers in this field. equipment as well as colour TV's.

18 GHz Frequency Counter

The Hewlett-Packard Model 5342A Microwave Frequency Counter comes in a lightweight, portable package and measures frequency from 10 Hz to 18 GHz with a resolution of 1 Hz on an 11-digit LED display. A new unique rf design is used to accomplish the harmonic heterodyne technique of frequency down-conversion. This provides wide FM tolerance, high input sensitivity, and automatic amplitude discrimination.

From the easy-to-use keyboard, the operator can define his own frequency offsets with a few keystrokes for fast receiver testing. Offsets may be positive or negative, and can be stored in memory for recall and display to the user. Frequency deviations about a given value are equally easy to monitor.

With the new amplitude measurement option (Option 002), the user can now see input level displayed in dBm (with 0.1 dBm resolution and $\pm 1.5 \mathrm{~dB}$ accuracy) simultaneously with the input frequency (1 MHz resolution) without switching connectors.

Any three consecutive digits on the display can be converted into an alalog voltage output by adding the Digital-toAnalog Converter Option H01. This feature allows the user to monitor frequency drift with a strip chart recorder. Analog output voltage goes from zero volts with 000 displayed to 9.99 volts with 999 displayed.

Adding IEEE-488 (HP-IB) Option 011 permits remote programming of front and rear panel controls. Measurements can be fed to HP-IB compatible instruments, computing controllers or computers. Up to 80 readings per second can be obtained for frequency measurements; up to 10 measurements per second can be made for simultaneous amplitude/frequency data.

Duty free price of the HewlettPackard Model 5342A is $\$ 4950$. Option 001 , High Stability Time Base is $\$ 550$. Option 002, Amplitude Measurement is $\$ 1100$ additional. Option 003, Extended Dynamic Range is $\$ 415$ additional. Option H01, Digital-to-Analog Converter is $\$ 275$ additional. Option 011, HP-IB is $\$ 385$ additional. Duty and Sales Tax are additional to all the above prices, if applicable. For further information contact your local HP office.

Getting to Know OSCAR

The Technical Book and Magazine Company Pty. Ltd. of 289-299 Swanston Street, Melbourne 3000, have sent us a copy of the ARRL publication, 'Getting to Know OSCAR', which is a reprint of a series of articles from QST. OSCAR is

an acronym for Orbital Satellite Carrying Anlate ur Radio, and the book explains how to track the OSCAR satellites. OSCAR 6 is now defunct, but OSCAR 7 lives on, and the first Phase III satellite will be launched next year, so OSCAR activity will once again be in the news. This book (which sells for $\$ 5.10$ approximately) should be in every amateur's library. Who said ham radio was old-fashioned?

Project Electronics Kits

Dick Smith Electronics has released a range of kits based on projects from ETI's volume 'Project Electronics'. The kits, which are packaged in plastic hanger bags, contain all components including wire and solder and require only a soldering iron, wire strippers and cutters to put together. The kits are inexpensive.and form a good introduction to electronics. They are available from any Dick Smith store or dealer.

What Is It?

No, it's not a third-octave graphic equalizer! This intriguing device is a programmable attenuator, model PA-30, made by Audio Developments Pty. Ltd., of 42 Sailor's Bay Road, Northbridge. It comprises a 24 hour digital clock which sequentially selects one of 30 slide fades at $1 / 2$ hour intervals to control the level of an audio signal. This means that the level of background music in a shopping centre, say, can be varied automatically throughout the day to cope with the changing background noise. Cunning, eh? I wonder what else it can be used for?

Errata

In the November issue, in the Techniparts ad on page 72 , the price of an MA 1003 was incorrectly stated as $\$ 32.00$ post free. This should have read $\$ 27.00$ post free.

Way back in September, in Elmeasco's advertisement featuring the Fluke 8020A DMM, a photograph showed a price tag marked ' $\$ 169$ '. The correct price, as stated in the text, is $\$ 179$ plus tax.

On page 83 of the September issue, Figure 1, the circuit diagram of the Drunken Sailor Puzzle has a short circuit across the battery at the left end of the drawing. This should be ignored.

Geta Minolta. Keep a record of the action.

Professional photographers know Minolta as people who produce remarkably responsive machines.

Not so well known is the fact that Minolta produce a wide range of cameras that are designed to match the skills of the people who use them. Still cameras. Movie cameras. (Even a still camera that produces 'movies' via one of the fastest motor drives that ever stopped action.)

The point is that whether you know a great deal (or very little) about photography, Minolta make a machine that will deliver the shots you want. Every one has a genuine Rokkor lens that delivers almost unbelievable sharpness With no hassles. And a great deal of enjoyment. So if you want superb pictures, look into a Minolta.

What have the My -gains, the Cobras, the Presidents, the Kracos, the Trams, the Universes, etc etc etc got in common? They're all American rigs, in some cases 'dumped' in this country. What have the Scorpion, Hornet, Wasp \& Bumblebee got in common? They're DESIGNED FOR AUSTRALIA, by Australia's No. 1 CBer, Dick Smith!

OUR OTHER TRUMP CARD: The 18 channel 'HORNET' SSB/AM set. The mobile SSB which will soon have everyone talking - to each other as well as talking about this superb set. LED digital readout: of course! Again, 'black is beautiful'. And look at the knobs. They're those large, specially shaped knobs which everyone wants - but very few have!

Here it is - Dick's brilliant new 'Scorpion' SSB/AM base station. 18 channel, designed for Australia - with buitt-in power supplies for both $12 \mathrm{~V} \& 240 \mathrm{~V}$. Has LED readout, SWR meter (both meters are huge, easy-to-read types) and the finish is the latest 'black is beautiful' with contrasting chrome trim. An absolutely brilliant appearance - our drawing just can't do it justice! If you want outstanding value for money in an outstanding set, you can't go past the Scorpion!
OUR SPECIAL INTRODUCTORY OFFER: SAVE $\$ 501$! Retail price will be $\$ 349.50$ (as per our press release) but buy now and the price is just $\$ 299.50$

Cat D. 1740

$\rightarrow 20101020$ ideal for Australians! Up-to-the-minute electronics, full service back up (with spares!), not forgetting the 90 day warranty - a set you'll be proud to own, and one which will keep you happy for years! Cat D-1720

$y\left[\begin{array}{ll}4 & 0 \\ y\end{array}\right\}$ ケi合

A magnificent educational kit for both the inexperienced and advanced experimeter. Beautifully detailed manual describes in step by step instructions, how to make up to 150 different electronic projects. No soldering is required and the complete kit operates off harmless low voltage battery power. An enlarged transparent I.C. (integrated circuit) clearly shows the electronic layout of these most complex space age devices. As no soldering is required (connections are spring terminals) all components can be re-used time and time again. The kit includes the following electronic devices: Cadmium sulphide cell, solar cell, micro-ammeter, radio tuner, poteniometer, relay, I.C., speaker, signal light, microphone, earpiece, morse key. slide switch, transformer, etc. The separate projects are too numerous to list however, it has been said that the only thing that cannot be made is a television! Supplied in a sturdy wooden case. Dimensions $406 \times 216 \times 89 \mathrm{~mm}$. Batteries required: 1×9 Volt, 2×1.5 Volt.
Cat. K-2030

The Perfect Xmas Gift s39.95

BRISBANE:
166 Brie Rd Buranda it 3916233 Open 8.30 AM!

a new amplifier measurement?

"L.o.I. or, Loss of Information mechanisms in amplifier circuits seem to account for most variations between one audio amplifier and another. To improve the quality of the sound it is necessary not only to try to eliminate the causes of L.o.l. but also to ensure that where L.o.I. does occur (e.g. clipping) it is limited to the shortest possible time."
- J. VEREKER of Naim Audio

DESIGN CRITERIA OF NAIM POWER AMPLIFIERS
The purpose of an audio amplifier is to drive loudspeakers without loss of musical information. In our view many commonly accepted parameters have little to do with loss of information and in some instances, such as the pursuit of large bandwidths or low distortion, unqualified acceptance of them can actually lead to the creation of mechanisms that cause loss of information. Dynamic output impedance, open loop bandwidth, slew rate, propagation delay and stability margins are only some of the many other factors to which we attach importance, and which must all be brought into positive balance.
To this end our amplifiers not only achieve low harmonic distortion, low noise and wide power bandwidth, but also have a constant dynamic output impedance over the whole audio bandwidth. They are able to drive reactive loads with phase angles of -90° to $+90^{\circ}$ without any appreciable change in distortion, and are not sensitive to the absolute impedance of the load.

DESIGN CRITERIA ON NAIM CONTROL UNITS We consider the most important circuit in a preamplifier to be the phono input stage. This must be designed to accept the output from a pick-up cartridge without loss of information. To achieve this it is necessary to consider the total output of the cartridge and also the effect of its impedance
on the circuit. In our pre-amplifiers we have employed a new concept. The initial pre-amplifier stage is linear with a small gain, equalisation being divided into two parts. Complete theoretical and practical stability is attained, with a much wider open loop bandwidth than is normally possible.
The resultant overload capability is maintained over the whole audio bandwidth.
Our experience has shown that tone controls and filters do not improve the musical performance with a system of this calibre, even when playing old and dirty records, due partly to the excellent stability and overload margin of the pre-amplifier and partly to its outstanding transient handling capability.

All Naim Audio equipment has a frequency response to within 1 dB between 20 Hz and 20 kHz .
All distortions of whatever type including noise, at any audio frequency and at any power level, up to rated levels, will remain below one thousandth part of the required signal.

Now you've read Naim's philosophy on their approach to amplifier design, but you're really no better off. Right?!
The only way to really decide if in fact Naim does lose less information than any other amplifier and does sound more life-like, is to hear it yourself.
Write to us for a personal invitation to one of our carefully selected dealers in your state. He sells Naim because he, like us, uses only one reference point when judging reproduction of music, that is, its resemblance to live music, and isn't that what it's really all about?

Sole Australian Agents

NEW LOOK FOR COMMUNICATIONS SATELLITES

The latest Intelsat V series of satellites promises greater capacity through the use of advanced technology. By Brian Dance.

IF ONE PICKS UP a telephone and makes an intercontinental call, the chances are that it will be connected through one of the satellites stationed over the Indian, Pacific or Atlantic oceans. The demand for international telecommunications has increased enormously during the past few years and increasingly sophisticated satellites have been placed in orbit to provide more and more channels. Most of the satellites currently in use are cylindrical in shape with solar cells on the outside of the body, but future trends are stretched arms so that all of the solar cells are directed towards the sun. These new look satellites will provide even more channels of communication than their predecessors.

About 80% of satellite traffic is for telephone use. Although long distance television signals produce quite an impact in millions of homes, television accounts for only about 2% of the use of global satellite communications. About 15% of the traffic is for data and message transmission. Apart from international communications, satellites are now used for communications across a single country such as Canada, Nigeria, Indonesia, etc. Satellites are used for conveying television signals to remote areas and it is rather interesting to note that the earth station which received more occasional television
transmissions in 1975 than any other earth station was at Manaus - a Brazilian rubber port about 1400 km up the river Amazon!

History

A regular inter-continental telephone service was first introduced from London to New York in 1927 using a 60 kHz transmitter, but the first transAtlantic cable became available in 1956 with 48 speech circuits and provided much better quality and reliability. Reflections from the moon were used to provide a speech link across the U.S.A. in 1956, but our natural satellite is a poor reflector of radio waves and is too far away for low noise wide band signals.

The first artificial communications satellite, Echo 1, was a balloon about 30 m in diameter which was launched in 1960. Its aluminised surface reflected both radio waves and light very well; it formed a very bright object in the sky which has probably been seen by more people than any other man made object. Echo 1 orbited the earth in about two hours and acted as a passive reflector of radio waves so that it could be used to relay signals between Europe and the U.S.A. Echo 2 was rather similar, but the first television transmissions between the U.S.A. and Europe were carried by Telstar 1 in 1962; this
satellite had its own transmitter operating on 4170 MHz with a power of 2.25 W, the power being provided by 3600 solar cells.

These and similar satellites had the severe disadvantage that they were visible from any earth station only for a short time - about 20 minutes in the case of Telstar 1 - and had to be followed across the sky by the earth station aerials. Complex systems using as many as 50 satellites were proposed so that continuous communications could be maintained, but each earth station would have required at least two aerials so that one could follow the satellite whilst the other searched for the next satellite coming above the horizon.

A much better system was proposed as long ago as 1929 in which satellites in circular orbits $36,000 \mathrm{~km}$ above the equator are used; such satellites have orbital periods of about 24 hours, so they can be made to appear stationary from a point on the earth. The early rockets did not have enough power to place a satellite in one of these geosynchronous orbits. In addition, it took time to develop the technology required to enable the satellites to be manoeuvred in orbit, etc. Satcom 1 was the first geosynchronous satellite launched in 1963, but all modern continued overleaf

Figs 1 and 2. These two models show the outstretched solar arrays of the Intelsat V satellite.

continued from previous page

communications satellites are geosynchronous.

The International Telecommunications Satellite Organisation (INTELSAT) was founded in Washington in 1964 to provide telephone and television communications to all users on a non-discriminatory commercial basis. INTELSAT owns the satellites and leases circuits to numerous countries, but the earth stations are normally owned by the telecommunications authorities in the countries concerned.

The INTELSAT satellites launched up to the present time are known as the I, II, III, IV and IVA series, whilst a new type V series is planned for 1979. The first INTELSAT I ('Early Bird') could carry only 240 telephone conversations and could communicate with only two earth stations at any time. INTELSAT II ('Blue Bird') had the same capacity, but could operate with several ground stations simultaneously.

The INTELSAT III, IV and IVA vehicles have bodies which are spinning for optimum stability, the rate of spin being of the order of 1 revolution per second. The aerials are placed on a 'de-spun' shelf so that they point in a constant direction. Special lubricants are required for the bearings in the high
vacuum of space which can operate over a wide temperature range. Failures occurred in over half of the INTELSAT III spacecraft, but a much greater proportion of the INTELSAT IV and IVA craft have provided the desired performance.

The aerials of the INTELSAT IV satellites include 'global' beams for covering the largest possible area of the earth (including remote islands) and spot beam antennae which provide a 4.5° beam for optimum communication with areas where the traffic density is very high. Each successive type of satellite provides more channels of communication. The main improvement in the IVA series is the use of directional aerials for the east and west beams so that the same frequencies can be used in both of these beams without mutual interference.

INTELSAT V

One of the main disadvantages of the cylindrical spin-stabilised craft is that only a small proportion of the solar cells on the cylindrical body are facing the sun at any one time. Thus the available power is much smaller than that which could be obtained from a satellite with a similar number of cells which all face the sun. The new INTELSAT V vehicles will therefore employ three
axis body stabilisation with the solar cells on extendible arms which can be rotated so that all of the cells face the sun at all times. This type of system can provide about three times the power per square meter of solar cells than in a spinning satellite. The new satellites will use the 11 GHz and 14 GHz bands for communications as well as the 4 GHz and 6 GHz bands used by the existing INTELSAT craft.

The contract for the supply of INTELSAT V vehicles was awarded to Aeronutronic Ford (now Ford Aerospace and Communications Corporation) in September 1976 at a cost of US $\$ 236$ million for seven satellites with options on a further eight. Each INTELSAT V craft will have a capacity of about 12,000 telephone channels and 2 colour television channels. The first will be placed above the Atlantic to cater for the very heavy traffic in that region. The second will be a spare for the first, whilst the third is scheduled for the Indian Ocean (including Australian use). It is hoped to use the NASA space shuttles to launch some of these craft, since this should reduce the cost from about US $\$ 25$ million to $\$ 15$ million. All seven craft are due for launching by May 1981.

The INTELSAT V Atlantic satellites will employ space diversity with shaped
beams to the east and west so that Europe and Africa are covered by the east beam and North and South America by the west beam. Thus the 500 MHz wide frequency band will be used twice, as in the current IVA craft. In addition, INTELSAT V will re-use the frequency spectrum a second time for the Northern Hemisphere where the traffic demand is heavy. This will be accomplished by polarising these additional beams perpendicularly to the normal beams. The simultaneous use of polarisation and directional isolation is one of the major technical challenges of INTELSAT V.

Frequencies

The current INTELSAT system employs frequencies in the 6 GHz band for transmission from the earth stations, whilst the satellites transmit in the 4 GHz band. These frequencies and other likely to be used are shown in Table 1.

The bandwidth at the lower frequencies is 500 MHz , but there is a 3.5 GHz bandwidth in the 19 and 29 GHz bands for the up and down links respectively. In general the use of the bands is shared with terrestrial services and there is a limit to the power which can be used to avoid interference. However, the frequencies of $19.7-21.2 \mathrm{GHz}$ and 29.5

From earth station to satellite $(\mathbf{G H z})$	From satellite to earth station $(\mathbf{G H z})$
$5.925-6.425$	$3.7-4.2$
$12.5-12.75$	$10.7-10.95$
$14.0-14.5$	$11.2-11.45$
$27.5-31.0$	$17.7-21.20$

TABLE 1. Frequencies used for satellite communications.
-31.0 GHz are to be reserved exclusively for down and up satellite links respectively. The maximum permitted power in the 4 GHz band is $-152 \mathrm{dBW} / \mathrm{m}^{2} / 4$ kHz at arrival angles of less than $5^{\text {c }}$ rising to $-142 \mathrm{dBW} / \mathrm{m}^{2} / 4 \mathrm{kHz}$ at arrival angles of 25° or more. These values are 2 dB higher in the 11 GHz band, whilst in the shared part of the 20 GHz band it is increased by a further 11 dB , but the latter is specified for a 1 MHz rather than a 4 kHz bandwidth.

The greater available bandwidth and reduced chances of interference makes the use of the higher frequency bands very attractive, but one of the most fundamental obstacles to the use of frequencies above 10 GHz for satellite communications is the degradation of the signal by heavy rain in the vicinity of the receiving station. Rain and precipitation in the atmosphere not
only attenuate the signal from a satellite, but cause depolarisation, increased noise and increased interference between terrestrial and satellite systems. Even when 4 GHz signals were being received from the early Telstar satellite, it was noted that the noise level increased when the receiving station was near heavy rain. The effects of rain can be overcome by the use of diversity techniques with switching between two or more receiving stations, but this is obviously expensive. The use of high transmitter power also helps to reduce the effects of rain.

Telemetry and command signals are transmitted to the satellites within the communications band, but outside the communications channels themselves. The INTELSAT IV spacecraft have 223 command channels.
continued overleaf

Fig 3. The antennas of the Intelsat III and IV satellites are 'de-spun' on a shelf.

Fig 4. Intelsat sarellites are not small, as can be seen here. The use of the Space Shuttle will reduce launch costs tremendously.

Fig 5. Satellite Communication is ideal for areas such as Indonesia.

Positional control
Gravitational fields due to the sun, moon, etc. and inhomogeneities in the earth's gravitational field cause small movements in the position of a geosynchronous satellite. Solar radiation pressure also produces a small effect which accumulates with time. The drift in the orbit inclination out of the equatorial plane is about 0.8° per year in the case of small inclinations. If uncorrected, the would cause the satellite to move progressively around in a figure of eight. In addition, a satellite is accelerated towards two stable points at $75^{\circ} \mathrm{E}$ and 105 W due to the non-uniformity of the earth's gravitational field.

When a satellite has moved from its desired position by a certain amount, small thruster jets operated by command signals from the earth cause it to return to the desired position. The gas jets used consist of a mixture of nitrogen and hydrogen obtained by admitting liquid hydrazine into a reaction chamber containing a catalyst which causes the liquid to separate into its two constituent elements. Jets can also be used to keep the aerials on the de-spun shelf of existing satellites pointing towards the earth with an accuracy of 0.1°; the reference direction may be obtained by an infra-red sensor detecting radiation from the earth and from the sun.

Although the use of geosynchronous satellites gives rise to the problems discussed, it brings many advantages, such
as no Doppler shift of the signal frequency, few thermal stress cycles, low radiation environment, low magnetic fields, etc. The earth subtends an angle of about 18° at a geosynchronous satellite; a global beam from the satellite will cover about $4 / 10$ of the earth's surface, so ground stations can be linked over great circle distances of up to $17,000 \mathrm{~km}$.

Power levels

The variation of the signal power level at various points is extremely large. Let us trace the levels which are typical for a television signal being relayed from one amplifier in an earth transmitting station to the output of the amplifier of an earth receiving station.

The signal comes into the the transmitter power amplifier at a level of around 1 mW , but is amolified to a level of a few hundred watts before it is fed to the aerial at the centre of one of the giant 30 metre diameter dish aerials. This dish provides an effective gain of about a million by concentrating the power into a narrow beam; a power of a few hundred megawatts would be required to achieve the same signal level at the satellite if this power were radiated equally in all directions. This signal is attenuated by a factor of about 10^{20} its journey to the satellite, so it arrives at a level of a few picowatts. The satellite aerial provides a gain approaching one hundred and the satellite receiver amplifier a gain of about 100,000 , so
the signal leaves the receiver at a level of about $10 \mu \mathrm{~W}$.

Power levels in the circuits from the satellite back to earth are of the order of one million times lower than those in the up path in many cases. The $10 \mu \mathrm{~W}$ signal from the satellite receiver is amplified to a level of about 10 W and fed to an aerial with a directional gain of about 50 ; the effective power radiated by the satellite is thus around 500 W . This suffers a loss of the order of 10^{20} in the down path, so it arrives at the ground station receiving aerial at a level of about 5 attowatts (1 attowatt $=$ $10^{-18} \mathrm{~W}$). However, the enormous receiving dish provides a gain of about a million to bring the signal level up to around 5 pW ; without such a dish, the signal would be lost in noise. The signal is then amplified in the ground station receiver system so that its power level is brought up to about the 1 mW level (similar to the level at which it arrived at the power amplifier of the ground station transmitter at the start of the cycle).

It is difficult to fully appreciate the enormous range of power levels involved. This range is some 10^{26} times or 260 dB between the effective power radiated from the transmitting aerial of the earth station and the effective power level at the aerial of the receiving earth station.

Satellite repeaters

A satellite repeater accepts the incoming signal, amplifiers it, changes its frequency for the new band and amplifies the power level for re-transmission. Frequency modulation is normally employed for simplicity in both the up and down links, the modulation being identical in each case. In the Intelsat IV craft, the band is divided by a filter into 12 channels of 36 MHz each with a 40 MHz spacing of the centre frequencies.

The incoming signal in the 5.932 to 6.418 GHz region is fed to a tunnel diode amplifier operating at the signal frequency. It is then converted into a 2225 MHz signal for broadband amplification before being converted into a 4 GHz signal which is passed to a travelling wave tube for power amplification. These tubes offer efficiencies of about 30% and require a high voltage supply. There is a four fold redundancy in the electronic systems of a satellite to ensure reliability is high.

Tunnel diode amplifiers are simple and light in weight, put other amplifiers can be used in the receiver circuits of satellites. For example, the European Orbital Test Satellite (OTS) uses a parametric amplifier operating in the 11 and 14 GHz bands instead of a tunnel diode. It seems likely that gallium arsenide (GaAs) field effect transistors will

	First launch	Height cm	Mass in orbit (kg)	Power (W)	Effective Band- width (MHz)	Capacity (Voice circuits)	Design life (yr)	Cost per circuit per year (US dollars)
INTELSAT I	1965	59.6	38	42	50	240	1.5	32,000
INTELSAT II	1967	67.3	86	80	130	240	3	11,000
INTELSAT III	1968	104	152	120	500	1200	5	2,000
INTELSAT IV	1971	531	700	420	500	4000	7	1,200
INTELSAT IVA	1975	590	790	500	800	6000	7	1,100
INTELSAT V	1979	1570	1570	1200	2300	12000	7	800

TABLE II. The INTELSAT satellites.
replace tunnel diodes and possibly even travelling wave tubes at frequencies of up to at least 14 GHz .

Earth stations

The design of earth station equipment is very different from that of the circuits in the satellite, since the weight and size of the ground statian aerial can be far greater than that of the satellite system. In addition, ample power is readily available at earth stations. The carrier power required from a satellite is approximately inversely proportional to the gain of the earth station aerial in the receiving direction (G_{r}) and directly proportional to the earth station noise temperature $\left(T_{s}\right)$. Thus the factor G_{r} / T_{s} can be used as the figure of merit for an earth station which is conveniently expressed as $101 \log _{10}\left(\mathrm{G}_{\mathrm{r}} / \mathrm{T}_{\mathrm{s}}\right) \mathrm{dB} /{ }^{\circ} \mathrm{K}$. This figure of merit is an important parameter of an earth station, since it determines the traffic handling capability. The figure of merit is usually measured by pointing the aerial at a distant radio star so that the noise level may be compared with that of other aerials using the same star. This method is most satisfactory for large aerials, but the moon may be used for smaller 10 meter diameter dishes. Fơr small aerials of up to 8 m diameter, it is more convenient to obtain the figure of merit from the noise temperature and gain.

All standard earth stations in the INTELSAT network must have a high figure of merit, namely $40.7 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$. An aerial of at least 26 m diameter is required to obtain this figure, but a 30 m dish is normally used to give more flexibility in the positioning of low noise receivers by using longer wave guides with higher losses. The total weight of a '5th generation' standard aerial for INTELSAT use is about $300,000 \mathrm{~kg}$ and the overail height some 28 m .

The satellites are not quite stationary. A fixed antenna is unsatisfactory, since the aerial beam angle is narrow (about 0.2° at 6 GHz for a 30 m aerial). A servo system is usually used to control the movement of the aerial, the error signal being obtained by using a beacon signal emitted by the satellite. Most aerials are
fully steerable and can be moved to operate with any satellite.

Earth station receivers

Some of the very early earth station receivers employed maser amplifiers in the first stage, but these amplifiers cannot operate over the wide bandwidth used in the INTELSAT system. A very low noise amplifier is essential to handle a low power signal over a 500 MHz bandwidth.

Parametric amplifiers cooled to about $15^{\circ} \mathrm{K}$ are usually employed. Such an amplifier can provide a gain of some 30 dB with an effective noise temperature of about $15^{\circ} \mathrm{K}$. It may be followed with a tunnel diode amplifier giving a gain of about 10 dB or with a travelling wave tube amplifier. Continuously operating cryogenic cooling devices using gaseous helium have been developed in which the helium is re-circulated in a closed system.

Although the receiver noise temperature is about $15^{\circ} \mathrm{K}$, this is increased by about $15^{\circ} \mathrm{K}$ by losses in the feeders, by $15^{\circ} \mathrm{K}$ by side lobe pick-up and by $25^{\circ} \mathrm{K}$ by atmospheric absorption. Thus the total effective noise temperature is about $70^{\circ} \mathrm{K}$.

Each earth station receives a carrier from every other earth station with which it wishes to communicate. The number of carriers sent from stations is reduced to a minimum by using a single carrier for conveying signals to various destinations. Thus the number of transmitted carriers is lower than the number of signals received by various stations.

Earth station transmiters

The power required from an earth station transmitter depends on the aerial gain, on the geographical position and on the gain of the satellite system. The latter will depend on whether global or spot antennae are being employed and on the number of channels available. The required power can be obtained at the earth station by using narrow band transmitters (some tens of MHz) using klystrons or a wide band transmitter using travelling wave tubes $(500 \mathrm{MHz}$ bandwidth). If klystrons
are used, each carrier is amplified to a suitable level in a separate transmitter and the outputs of the transmitters are combined before the signals are fed to the areial. This arrangement is used mainly in stations operating with relatively few carriers. The initial cost and the running costs are fairly small with klystrons, but long breaks are required to change frequencies.

Large stations operating with many carriers favour travelling wave tubes. The carriers are combined at low power and then are amplified by the wide band transmitter before being passed to the aerial. The non-linearity of the travelling wave tube produces some intermodulation products at the output and these must be limited by operating the tube some 10 dB below its capability to prevent interference with other signals. Travelling wave tubes are more expensive and less efficient than klystrons in these circuits, but their wide band capability is very convenient.

Domestic satellites

There is a rapidly growing demand for communications via 'domestic' satellites across a single country. Signals from satellites used for this purpose can be concentrated within the boundaries of a nation, so smaller earth station aerials can be employed than for international communications where the beam energy must be more widely dispersed. For example, 10 m diameter antennae give $\mathrm{G}_{\mathrm{r}} / \mathrm{T}_{\mathrm{s}}$ values of around $31 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$, whilst 10 m antennae of $\mathrm{G}_{\mathrm{r}} / \mathrm{T}_{\mathrm{s}}$ about $26 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$ are being delivered in the USA for receiving only television signals. Antennas of 2 to 3 m in diameter with a figure of merit of 14 to $20 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$ can - be used in remote areas for providing 12 voice channels for emergency use or on oil drilling rigs, etc.

Telephone companies cannot charge such high rates for inland calls as they do for international calls, so the viability of domestic satellites is more severely limited by costs than that of international communications systems. However, domestic systems are now well established in countries such as Canada whose Telesat system provides television and voice communication

Fig 6. The Marisat satellites utilise an unusual and complex antenna array.
throughout the country, the USSR (mainly television), the USA, which has three systems provided by three different companies and various other countries.

Some countries, such as Spain and Mexico, have leased INTELSAT circuits for their domestic use, but the charges are high enough to make it more economical for most large countries to have their own system. In some cases a group of countries close together can jointly own a system.

Comparison with cables

Satellite communication links are generally cheaper than long distance cables operating under the ocean, but the cables have a minimum expected life of 25 years against 7 years for a satellite. It is uneconomic to connect remote islands by cable, so satellite or
radio links are used. Satellites are essential for carrying high bandwidth signals (like television) over intercontinental distances. The new TAT-6 cable laid across the Atlantic can carry 4000 voice channels, but satellites of the IVA series can carry 6000 speech channels and some domestic satellites even more. Cables may be more vulnerable to enemy attack and communications are vital in war.

A peculiarity of a satellite link arises from the fact that the signal must travel rather over 36000 km to the satellite and a similar distance back to the earth. Thus there is a delay of about a quarter of a second before the signal reaches its destination and a delay of at least half a second before any response reaches the sender. If a signal received by a satellite was transmitted to another satellite before being returned to earth, the
delay of a second or so before any response could be returned to a person might be unacceptable in ordinary telephone coversations. The longest delay on sub-oceanic cables is about 1/16 second.

Conclusions

Satellite communications are one of the most useful products of the huge investment in space technology. They have radically changed the pattern of world communications and confer outstanding benefits on the lives of ordinary people. It seems likely that satellites able to handle 100,000 telephone circuits will be developed without any great increase in the satellite mass. Improvements in frequency re-use, 3 axis body stabilis. ation, high efficiency solar cells, on board switching, hybrid modulators, etc. will provide great improvements. The life of satellites is partly limited by the life of the batteries used to provide power when the vehicle is eclipsed by the earth, but new nickel-hydrogen cells are showing great promise for this application.

If you want to enter our super "Name the Wombat" contest in

and win a great Pearce-Simpson rig
then you're too latel It closed on December 20th.

Inserted by Marginal Finking
Department as a public nuisance

OUR SECOND BEST IS BETTER THAN MOST OTHERS' FRRT BEST.

TDK's AD (Acoustic Dynamic) is one of the world's finest cassette tapes but not the best cassette tape made by TDK.

Our SA (Super Avilyn) has the edge but that's only if you're using the special bias/equalisation setting on your tapedeck.

However, if you're using the normal or standard setting, you'll have to settle for AD - second best.

Chances are you won't find anything better or with more consistent sound quality for decks with normal tape selector settings (or no selector switch at all). In other words, even if you don't own extravagant equipment, with AD you can still hear extravagant sound reproduction.

You see, because of AD's superior dynamic range at the critical high end, you'll hear any music that features exciting "highs", with amazing brilliance and clarity you won't get from any other tape.

But there is something else you should hear before you try TDK's AD. The price.

Unlike other so-called "super premium" cassettes, AD's price is down-to-

There's just no comparison between ours and what others consider to be their best. So try the second best cassette we've ever made - AD.

Available in: C45
C60
C90
C1 20
MTDK:AD
(Acoustic Dynamic)
SOLE AUSTRALIAN AGENTS: CONVOY INTERNATIONAL PTY LTD 4 DOWLING ST WOOLLOOMOOLOO 2011

TEL 3572444 TELEX AA 23111

The discerning listener has long been aware of the absolute purity of 'uncoloured' English sound.

Wharfedale - Britain's largest manufacturers of hi-fi speakers are dedicated to the design of speaker systems that exemplify this tradition.

Now Wharfedale speakers are fully imported into Australia.

Sold and serviced nationally by

Glendale 3XP. Larger bass drive than Linton with increased cabinet volume. Power handling 40 watts DIN.
 2 small bass drivers for excellent bass response. Handles power of 60 watts DIN.

Rank Australia. Available at all leading Hi -Fi Specialists.

Dovedale SP. 4 drive units including
Linton 2XP. Separate, specially designed drive unit for bass, midrange and treble. Handles power of 40 watts DIN.
 unit e.

(Not illustrated)

Airdale SP. Top-of-the-range model with 4 specialist drive units in reflex-loaded enclosure. Power handling 100 watts DIN.

TV
 s
 H
 O P P
 IN

A revolutionary new TV service gives tens of thousands of housewives up-to-the-minute news of store prices. By James Gold.

FOR 68,000 FANILIES in the New York area and thousands more in various other American towns, grocery and drug shopping is as close as their television sets.

Subscribers of Cablevision, the paytelevision service that comes into the home via cable rather than over the air waves, can sit back with their shopping lists and price 64 different items offered by 14 different supermarkets. At the same time - the service is broadcast from 4.30 pm continuously until 10.15 am the next day - shoppers can price 70 frequently prescribed drugs at 10 major drug stores.

The televised surveys aren't advertisements, such as those shoppers pore over in the daily newspaper in an effort to save money on their food bills. And this fact makes the televised surveys distinctly advantageous. For the newspaper ads merely feature the prices of items each supermarket or drug store wishes to feature. And that leaves unanswered the question of which store has the best prices overall.

Both surveys are provided under contract with Cablevision by Vector Enterprises, a California-based company that was started three years ago by four computer experts.

In the case of the supermarket price survey in the New York area, each Monday four women who live nearby and are employed by Vector, go to the stores, gather the prices and telephone them three thousand miles away to California. An operator there feeds the prices into a computer that tabulates and stores them. In the evening a computer operated by Reuters News Service in Manhattan calls Vector's computer and takes the data which is then transmitted to Cablevision and sent out along the cable to its subscribers.

A viewer studies the latest prices.

If it sounds complicated, it really isn't. The whole thing - after the surveys are completed - only takes a few seconds of whirring and blinking.

Each separate supermarket item and its price are shown on the screen for 20 seconds and after all have been shown individually, the totals are given for produce, meat, groceries and sundries. A grand total, computed to include the quantities of each item likely to be consumed by a family of four, is also given. Among the items surveyed are ground beef, stew beef, most kinds of steak, three kinds of roasts, beef, liver, bacon, whole frying chicken, two kinds of fish, apples, bananas, cantaloupe, tomatoes, potatoes, coffee, spaghetti, cereal, bleach, tissues, eggs, kidney beans and the cheapest brand of detergent on hand.

Why is the service being offered?
"It's not so much that we are being crusaders," said Alan Krause, programme director for the company, "although I look at the differences that show up among the various stores for the same item and I'm shocked. We realiy give our customers the opportunity to get an objective and fair assessment of what's on sale . . . before they have left the house and committed themselves by entering a particular store.
"Money is very tight everywhere," he added. "People are happy to save even a few dollars over the period of a week."

Cumulative

The supermarket survey has been shown on Cablevision since the end of 1975 and a look at the cumulative cost of the

148-item market basket over the period provides an interesting look at the pricing of various chains.

From December 29th 1975 to June 7th, 1976 . . . 24 weeks . . . the most expensive and the cheapest were separated by a difference of 17 percent overall, or $\$ 454.55$ for all the items.

But some shoppers aren't all that interested in overall savings as the difference between many of the stores over a long period are not that great. They're more interested in saving on an item by item basis. They like to plan a shopping day, leaving a certain amount to be spent at one store with a special price on one product before going to another bargain elsewhere.

Many viewers say that they have made substantial savings, using both the newspaper advertisements and the television lists in conjunction.

A woman in Massapequa, a suburb about 40 miles east of New York City, said that she had shopped at the same supermarket for fifteen vears - until she began keeping close tabs on the survey. "Then I realised that they weren't the cheapest by any means," she said. "I didn't switch over to another store completely, though. Because after looking at the surveys for a few weeks, I could see a pattern in
pricing begin to emerge and I saw that some of the items it carried were cheaper. Now I shop at three or four stores, all nearby. The extra time travelling is worth it."

There are some who complain.
Ernest Barbella, vice president of A \& P on Long Island, has disputed the results of the survey that places them 12 th out of 14 stores. "I know our price structure and there is no way we are 17 per cent higher than many other stores listed. I could believe one or two per cent because not all stores are the same."

A spokesman for Grand Union said that "it was no use commenting" because the surveys were not "scientifically conducted." The spokesman pointed out that inconsistencies in the survey make for big differences such as stores which might stock large and high quality items which must invariably cost more. "Some goods you wouldn't want to serve your family, no matter how much you could save," he said.

Useful Information

According to Russel Smith, president of Vector, the firm that conducts the surveys, consumers are left to draw their own conclusions from the data they see
on their television screens. He also said that his firm never intended the survey as a guide to quality.

But Mr. Smith said he believed the information was useful and that the survey had proved popular. The service is already being offered in Los Angeles and on two stations in San Diego and will soon begin in Honolulu, Hawaii, Dover and Oakland, New Jersey and in Manhattan.

Since many markets already accept orders by phone and deliver them the possibilities for the future are intriguing indeed: Combined with the telephone, shopping may be only as difficult as sitting in an easy chair before the television with an extension nearby.

This is seen as a potential saviour for the elderly, bed-ridden and disabled in particular, and for very busy housewives and professional women who don't have the time to spend in the market but wish to retain some control over how much they spend and what they buy.
"Eventually what we are hoping for, is to show the actual product on the shelf, allowing the customer to shop by television by merely pressing a button when she sees what she wants," said Krause. "That, however, is a bit far off. But not as far as you would think ..."

TECFINCS PRISENTS IIS CRBDENILALS.

Linear-phase speakers were developed by Technics and since their release have been acclaimed by critical hi-fi audiences all over the world. Shown above are the famous SB7000 system and the latest little brother, the SB4000.
Phase linearity in loudspeakers is the concept that gives Technics speakers their superb waveform fidelity. Phase simply means relation in time, and this is an integral part of
actual musical waveforms. For the waveform of the sound leaving the speakers to be a faithful reproduction of the waveform of the electrical input signal, Technics adopted high performance, wide range units in a unique network configuration and ideal positional location so acoustic paths are equal. The result is a new experience in realism.

For a National Technics catalogue please write to:
National Technics Advisory Service, P.O. Box 49, Kensington, N.S.W. 2033

WHAT must 60 Ces \mathbb{N} COME out.

Ortofon professional cutter head type DSS 732 in action.

Latest from Ortofon is the M 20 Super-a unique magnetic stereo cartridge, based on our exclusive world-patented Variable Magnetic Shunt (VMS) principle.

When it comes to perfection in recorded sound the principle is as simple as this:

What goes in must come out.
Which means that the response from the groove of your favourite record should be as close as possible to the sound of the original master tape.

With this in mind, we at Ortofon concentrate our activities in two areas only: the production of sophisticated cutting equipment for making master records-and the manufacture of the finest pick-up cartridges to play the discs which they produce.

Most of the major record companies use Ortofon cutters. And because it is only natural that the manufacturer who knows most about making the records should also know most about playing them, our cartridges for many years have been the choice of professionals and discerning music lovers throughout the world.

Ortofon do not make turntables, amplifiers or loudspeakers. We put all our experience into developing advanced products to cover the two most critical sectors in sound reproduction: the cutting and the playback of records.

For us accuracy in sound is more than just a slogan.
It's our reason for being in business.

The subject of pickup arm damping has come in for a great deal of comment of late, particularly in connection with moving coil cartridges, and Decca Londons. Both moving coil cartridges, and Deccas are effectively undamped at the fundamental arm/cartridge resonance (this resonance being a fairly complex function related to pickup compliance and effective arm mass), and the majority of other cartridges are generally less than optimally damped.

In a well compromised pickup system, the resonance will fall into the 8.12 Hz region, which is below the normal audible frequency range and above the frequency of record surface undulations such as warps and ripples. Even so, the resonance can still be quite easily excited by external vibration (particularly shocks and knocks transmitted through the turntable structure) and the result can sometimes be alarming, the pickup leaving the groove and bouncing merrily about the record surface with accompanying fiendish noises - in themselves potentially dangerous to amplifier and speakers - to say nothing of the stylus and the record itself.

The idea of damping is to reduce the ' Q ' of this resonance and in some instances to shift its frequency to some more appropriate point in the spectrum.

Damping can be applied in any of a number of ways, the most common being viscous silicone or oil about the pickup arm bearing. Examples of this kind of damping can be found in the JH Formula 4, the Decca International, Keith Monks' Laboratory arm and the Grace 704 and 714. SME recently introduced a damping system for its model 3009 series arms, consisting of an arctuate trough placed ahead of the pivot in which a quantity of oil is placed. An adjustable paddle, clamped to the arm tube is suspended in the trough, resistance of the oil against the paddle providing the damping. Onlife, in the highly advanced Dynavector arm, has provided electro-

magnetic damping of a novel type, the design featuring a surprisingly flexible and effective damping system applicable to a wide range of cartridges especially, of course, the Dynavector 20A and 20B.

The chief benefit of damping is to provide improved stylus/ groove interface, and this improves not only low frequency performance but gives better contact at higher frequencies. Anyone who has heard a Decca London, first in an undamped arm (in which it usually sounds awful) and then in a good damped arm (in which it sounds magnificent) will testify to the improvement damping can create. Damping will also reduce the effects of rumble and other subsonic noise reaching the pickup system since the arm will move more responsively and with less tendency to overshoot by inertia, thus the unwanted motion of stylus relative to the arm will be reduced.

Good news for owners of undamped arms is the DiscTraker, made by the Discwasher people in the U.S. This small and rather improbable looking device attaches to the headshell of the arm and operates in much the same way as the shock absorber of a motor vehicle, where the spring is equivalent to the compliant suspension of the stylus cantilever.

The manufacturers claim the DiscTraker to be more effective, both in theory and in practice, than the more normal sort of pivot damping since the damping effect takes place close to the stylus. Arena Distributors, the local agents, supplied us with a long discourse on why this is so and this can presumably be obtained on application.

Our tests involved two cartridges, both used in our JH Formula 4 arm - Decca's Mk 6E and the superb Garrott P77. this latter representing the more conventional types of cartridge.

The DiscTraker unit consists of a pneumatic plunger which bears upon the record surface, the support shaft being attached using an adjustable screw to a bracket which fits into the majority of headshells, in some instances with the help of assorted accessories supplied with the unit. Precise instructions
are supplied concerning the correct installation of the device and in essence the idea is to place the plunger as close to the stylus as possible and precisely upon the radius between the record centre and the stylus. It is also essential that the plunger is exactly vertical.

Using the Decca 6 E , we found a marginal improvement in bass quality, but unfortunately midrange and high frequency performance seemed less satisfactory. We attributed this more to the peculiarities of the Decca than anything else, and here it is significant to note that the 6E seems to perform best in the Decca International arm, which is a low-friction damped unipivot of moderately low effective mass.

But it was a different story with the Garrott. Once correctly set up, the DiscTraker gave a substantial improvement to bass quality, providing a tighter, better-defined sound and improved transient performance. Midrange and high frequencies became cleaner and smoother without any apparent sacrifice of the already excellent sound quality. The Garrott sounds magnificent regardless, but with the DiscTraker, our sample P77 contributed to a clarity and definition we could hardly have credited, and this became most apparent in terms of improved stereo imaging and perspective.

But there were drawbacks. The plush pad which bears upon the record surface quickly became soiled with dust and fluff, even from what appeared to be perfectly clean records. Cleaning this rubbish off was something of an awkward chore, the debris having a definite attraction to the plush which required vigorous brushing before playing a record. Failure to remove the rubbish seemed to degrade tracking performance rather seriously, and on some dished records, the DiscTraker-equipped arm showed a distinct tendency to travel inward toward the record centre during cueing until the stylus was finally located in the groove.

We found the recommended bias compensation did not give best performance; a substantial increase of bias compensation force was needed to give the correct (subjective) result.

Despite these drawbacks the DiscTraker really does work, provided it is carefully installed and kept scrupulously clean. We imagine it would be most beneficial with entirely undamped arms; and the most obvious benefit for most users would be reduced sensitivity of the pickup system to external knocks and shocks.

As the opportunity arises, we will use the device with various arm/cartridge combinations and report accordingly.

Rega\& Armstrong

WE'VE RECEIVED the very exciting news from Concept Audio, 13 Rickard Road, North Narrabeen, NSW, 2101, that Rega turntables and Armstrong electronics components are to be available in the New Year. Concept Audio, which also handles Onlife (Dynavector) and Sonab products, has recently been established in place of Sonab of Sweden to enable this product diversification to take place.

The Rega turntable has been described as 'the poor man's Linn-Sondek' but this, we feel, is an injustice. Whilst designer Roy Gandy has adhered to the principle of preventing as much vibration as possible from reaching the playing surface of the record during use (this is also the broad principle of the Linn Sondek), construction and setting up has been simplified. The Rega platter is made of glass, and we understand the unit is, like the Linn, a single-speed device fitted simply with an on/off switch. The turntable is offered in the UK either complete with arm or with a blank mounting board enabling you to fit the arm of your choice (which could, we guess, pose problems with some arms using deep mounting pedestals for the Rega is a very low-profile design). Gandy has adopted a straightforward belt-drive system using a synchronous motor, and it
seems likely that this turntable will add further fuel to the belt-drive v. direct-drive flames. Well, we're saying nothing until we've seen and heard one in the flesh, although our spies in England are telling us very nice stories indeed.

Armstrong is a very high-regarded British manufacturer of well-designed, high performance amplifiers, tuners and receivers. The current 600 range is based on an integrated amplifier with power yield of forty watts per channel minimum. The basic amplifier model 621 can be teamed with either of a pair of tuners, model 623 offering AM and FM reception and model 624 for FM only. Those who prefer tuner-amplifiers can choose between model 625 with FM only or model 626 with FM and $A M$. We expect Australian prices of these attractivelydesigned units will reflect their very competitive U.K. prices and are confident that Armstrong will be well received in this country. Also scheduled for introduction before the end of next year is a separate preamp and power amp, power output anticipated at 150 watts per channel which will make this the first really high power British amplifier to become available, with the possible exception of the Quad 405 which can be bridged for high-output mono operation.

SOUND BRIEFS

- Le Nouvel Entre

Jordan Watts

Entre is the brand name of a new cartridge - a moving coil (what else) - with tapered cantilever and relatively low overall mass. So far we've seen it but not heard; it looks very interesting indeed.

The Jordan Watts module is one of the few full-range drive units made, and forms the basis of a number of loudpeaker systems shortly to be marketed in Australia using locally manufactured enclosures conforming to Jordan Watts specifications.

Adjustable Speaker Stands

New High-End Components from JVC

Associated Metal Products, 88 Gow Street, Padstow, NSW 2211, has introduced a range of fully adjustable speaker stands. These range in price from $\$ 17.95$ to $\$ 28.95$ per pair, plus $271 / 2 \%$ tax, according to size (small or large) and finish (copper, black or chrome).

A refined frequency-synthesizer stereo FM tuner is but one of an exciting new range of products from JVC which also includes a 100 watt per channel directcoupled amplifier and matching preamp, a new direct drive turntable and a 10 -band graphic equaliser. Samples are to hand and reviews are in preparation.

JVC Model M-3030
stereo power amplifier

JVC Model SEA-7070
S.A.E. graphic equalizer

- New Chartwell Monitor
- ETI TLS Loudspeaker

Litz Wire

A new Chartwell monitor unit, the PM450, is available in two versions. The first uses a conventional crossover to drive a 305 mm polypropylene midrange/bass driver and 25 mm soft dome tweeter. The PM450 Electronic has a built in active crossover and power amplifiers, requiring only an external preamp.

Our mailbag overfloweth with correspondence on the ETI transmission line loudspeaker. A follow-up article will be presented in the January issue of ETI and this should answer all those questions. We regret we have been unable to answer individual enquiries; one problem has been that many of the questions asked were in fact answered in the original article!

We've carried out experiments using 60 -strand Litz wire (each strand individually enamel insulated and the bundle wrapped in nylon) for speaker connection. Result: vastly improved HF performance.

Worth investigation is the new Thorens low-mass arm, fitted to several Thorens turntables. A low mass, straight-arm design, the new model features a detachable tube with a locking-collar close to the pivot.

AEW
$F F$
stop
Play
REC
\square
 \square
\square
\square

"Before the CT-F 1000 you could count the exceptional cassette decks on one finger."

Pioneer's CT-F1000 is a unique new three-head machine which brings logether every worthwhile technological advance. In the important areas of facilities, performance and price, it is the possible dream that most sound connoisseurs have been waiting for.
With separate record and playback heads, you naturally have the ability to monitor sourid a split-secorid after recording, as well as the provision to lay additional tracks over those already recorded. And since the CT-F1000 is equipped with separate Dolby circuitry for both recording and playback, you can actually monitor Dolby in operation. This in itself is a valuable aid to recording quality, but the big plus is the facility to calibrate the degree of Dolby required to eliminate hiss and high frequency noise

Facilities are one thing. And you can go into raptures over external cosmetics. But the performance of any tape device relies heavily on the heads

In the CT-F1000, ordinary crystal ferrite has been superseded by unicrystal ferrite, leading to higher tinearity gap construction potential, unity, and anti-abrasion characteristics.

In terms of absolute performance, the sophisticated tape transport system in the CT-F1000 plays a critical part. Fast forward/rewind is powered by one motor. While a stable DC servomotor takes charge of the record/play functions, driving a closed-loop dual capstan. With two separate sets of capstans and pinch rollers, stable head contact combined with reduced dropout and level variation is assured The result of all of this is a wow and flutter reading of not more than 0.05\% WRMS
The front-loading CT-F1000 is a showcase of Pioneer advances. Memory stop/memory play. Auto chrome sensing/switching. Auto tape slack cancelling. And new integrated IC amplifier circuitry, to name but a few

Other facilities provided include: pitch control with a $\pm 6 \%$ adjustment 2-position Bias, 3-position EQ curves Direct logic controls. Switchable MPX filter. Wide-range Vu meters. Full autostop and tape-end indicator light Separate mic input controls line/source. Optional rack mounting adapters.

In turntables and some other component areas, it's fair to say that
no longer is exceptional performance of purely academic interest. In the CT-F 1000 , Pioneer introduces 'the possible dream' for all those vitally interested in truth in sound. It represents a whole new benchmark in accessible cassette deck technology A short specification
Frequency response
Wow and flutter
Signal-1o noise ratıo
Dolby off: More than 54 dB
Dolby on: More than 68.5aB (over 5 kHz)
Harmonic Distortion Nomore than 1.3% (OdB) Reterence tape Chromium Dıoxıde $\left(\mathrm{CrO}_{2}\right)$
All Pioneer cassette decks are covered by warranty for one year. Excellent service facilities are available throughout Ausiralia via a network of Pioneer approved outlets.
Doiby is a registered tradernark of Doitby Laboratones Lid

@PIONEER
leads the world in sound

A LOOK INSIDE

BY THE TIME this story is printed STAR WARS will have probably grossed $200,000,000$ dollars worldwide. All those zeros are the result of six years work by writer-director George Lucas, and an end product that makes the TV series Star Trek look as spectacular as Number 961

As early as 1971 George Lucas had the idea of filming a space fantasy. Originally he wanted to make an up-to-date version of Flash Gordon - but couldn't obtain the copyright to the characters created by Alex Raymond. Thwarted by this setback, he started researching the possible sources that inspired Flash Gordon. After a fair bit of digging, he realised that the Flash Gordon concept was probably based on a series of books by Edgar Rice Burroughs (of Tarzan fame) about "John Carter of Mars." In turn it looks as though Burroughs had been inspired by Edwin Arnold's "Gulliver on Mars" published in 1905. Jules Verne had preceded even this but never made his hero battle space creatures or have adventures on distant planets - the basis for a whole new concept (then) in adventure stories.

As soon as he finished American Graffiti George started writing Star Wars - that was in January 1973. He worked on the story virtually full time right up to and even during the actual filming in March 1976. At one point there were four different scripts, each one with a different blend of storyline and characters.

United Artists were the first to be offered the embryo idea, but they turned it down because they couldn't see the potentiall Universal were more interested at first, but also gave it the thumbs down. Finally 20 th Century Fox were persuaded to back it, but nobody thought it would be a big success little did they know.

New Worlds

The first step after completing a satisfactory basic script concept was to visualize a whole new world. Collin Cantwell, who had worked on "2001 - A Space Odyssey", was brought in to design the spacecraft models. Starting off with simple sketches, Ralph McQuarrie began visualizing the characters, costumes, robots and scenery - finally producing a series of full colour paintings to give an idea of what George Lucas wanted in various scenes.

Meanwhile producer Gary Kurtz had the headaches of finding a suitable place to film, working out logistics and budgeting. In turn all American, North African and Middle Eastern deserts were visited; the aim was to find a suitable location for Tatooine, the desert planet home of hero Luke Skywalker. Finally the southern part of Tunisia was chosen, near Tozeur in the Sahara desert.

Partly as a result of the decision to film locations in Tunisia, but mainly because of the facilities and people available, the interior work was to be done at EMI Studios in Elstree. It was the only studio complex in England or America that could provide up to nine sound stages simultaneously, and the technical staff are among the best in the world.

Production designer John Barry and his crew began designing and building the huge number of props and sets in August 1975. In order to make things look realistic $\$ 40,000$ was spent on junk and scrap metal; anything from sewage pipes to jet engines were used to make scenery look realistic. One of the interesting aspects of Star Wars is that everything looks used - just like real life!

The job of making the robots was given to John Stears (alias Special Effects Worldwide), who won an Academy Award for his special effects in Thunderball. John had also worked on six other Bond movies - he fitted out the legendary Aston Martin that did everything except make teal

John's job was to turn Ralph McQuarrie's illustrations into reality (or as near as possible). He was also responsible for the production effects. The main robot is R2-D2 (Artoo Detoo): the one that looks a bit like a dustbin with three legs. Artoo's partner is C-3PO (See Threepio), an android type. The only robot not made by John was Threepio, as he was just a casing designed by art director Norman Reynolds and sculptress Liz Moore - with Anthony Daniels entombed inside.

Besides Artoo types there were four other basic robot types used in the film, these were the Umbrella-type, Stick-type, Dome-type and Box robots. All of these were radio controlled - internal shots are given later in this article.

Now You See It...

As well as the variety of robots, John designed the Speeders used as transport on Tatooine, the multitude of explosions and the light sabres. The Speeder shells were moulded in fibreglass, and supported on a boom arm; after filming the boom was painted out frame by frame.

The light sabre effect was produced with the aid of reflective and non-reflective facets of the sabres. With a light mounted on the camera, the sabres appeared dark if their nonreflective part was towards the light, and glowed when revolved to expose their reflective section. By spiraling the reflective portion and spinning the sabre the effect of the light moving out was created.

Even though John Sears is an electro-mechanical wizard and special effects veteran, he hadn't made anything quite like Artoo and his (its?) fellow robots - even though his hobby is radio-controlled models. Asking for advice at St. Mary's College (University of London), where he met Professor Thring, the robotics expert, and Queen Mary's Hospital in Roehampton where he met artificial limb specialists, he gained useful information on pneumatics and electronics. The only problem was that when told the time available, everyone said it was impossible! In fact John did the impossible - with one exception: there wasn't enough time to produce a version of Artoo that wobbled on two legs.

The wobble effect was needed to make Artoo a bit more human and, as a final solution, a special Artoo casing was constructed for 3 ft . 8in. Kenny Baker to wobble around in! Simple way of telling which version is in a scene is two legs

Ben Kenobi (Alec Guinness) battling forcefully with the superevil (boo,hiss) Lard Darth Vader (David Prowse) near the captured Millennium Falcon space freighter.

Kenny, three legs the real Artoo with radio control. In March, 1976, the production unit moved into Tozeur in the South of Tunisia, to begin the transformation of desert into desert (from a different galaxy), and construction of massive Jawa transport vehicles. The Algerian army caught sight of these massive props and thought they were real!

After eight weeks of preparation the filming started. During the first week the entire crew had to wear sand goggles due to a big sandstorm. The filming lasted two-and-a-half weeks on location before moving to Elstree for the next $141 / 2$ weeks, where all nine sound stages were filled with John Barry's 30 sets. Planets, starships, caves, control rooms, cantinas and a vast network of corridors from inside the Death Star were at Elstree - but the Alliance's secret hangar full of X-wing and Y-wing fighters had to be built at Shepparton Studios, because it was the only place in Europe big enough!

When on location all the robots had to be cleaned every day - the sand and salt got in everywhere! One problem arose with the radio control systems because of static-charged windborne sand particles present in the Sahara; an extra aerial wire had to be attached to Artoo. Also being miles from nowhere the internal batteries had to be charged from mobile generators, which also had to be maintained. Trying to keep track of up to 30 sets of batteries is guaranteed to give anyone a twitch! Artoo and company were operated by John Stears and his crew, with Dick Hewitt (of Compact Video Systems) supervising the electronics.

A Imperial stormtrooper (hiss) blasting after Princess Leia inside the Alliance ship.

Built from Scratch

As well as the robots and mechanical effects, Star Wars uses the most advanced optical and miniature effects - the deep space shots, laser guns, etc. In June 1975 John Dykstra was asked to supervise all the photographic special effects. There

was a slight problem - no commercial facility had either the time or even equipment to produce what was required - so John built Industrial Light and Magic Corporation, from scratch, in an empty warehouse in the San Fernando Valley.

The ILM complex included a carpentry shop and machine shop, which had to build or modify the special camera, animation equipment, editing and projection equipment needed to produce the effects. Other departments included optical printing (for putting the many different layers of film together), a rotoscope department (for matte work and general backgrounds) and a library section for keeping track of the thousands of pieces of tilm.

Dykstraflex

The most important part of ILM is the Dykstraflex camera, which is based on an old VistaVision camera, linked into a computer. The VistaVision camera runs 35 mm film through sideways, like a 35 mm still camera, whereas normal movie cameras run the film vertically - the benefit is increased resolution, which is needed when up to 12 shots are put together on one print. The computer is used to store movement with control of seven separate parameters simultaneously.

Each of the 365 special effects needed between two and 12 separate exposures of film, in all 3838 exposures were needed. For example, in the battle sequence you see an X-wing fighter swooping and soaring over the Death Star - in fact, the model of the X-wing never moved an inchl The camera moves, creating the illusion that the fighter is moving; the Death Star is filmed separately with different camera movements. The two exposures are then printed together to create the impression of X -wing swooping over revolving Death Star - not to mention more fighters, laser flashers, stars, etc.

This is where the computer comes in . If the angle of the camera changes during a shot, the other shots change as well - hence each separate frame has to be exactly matched for each different component of the composite shot. The computer remembers everything and moves the camera accordingly - simple, but until the Dykstraflex, no camera could do it.

To create realism in the dogfight scenes, thousands of feet of World War II movies were viewed, together with storyboards. By studying the real life movements of the planes,

A Owen Lars (Phil Brown), uncle of Luke Skywalker, being shown the Jawa robot collection by the chief Jawa (Jack Purvis). The huge sandcrawler in the background was mistaken for a military vehicle by the Algerian army.
the model shots were planned to be the most realistic ever made - they succeeded.

Even with the aid of the Dykstraflex the ILM crew had several problems to solve. It was easy for the director to move his hand, and say "I want the starship to move like this . . ." but to actually turn this into a finished shot was a problem.

Thanks are due to John Stears and 20th Century Fox for their help in producing this feature. All photographs are world copyright 20th Century Fox Corporation.

Firstly the movement had to be put down on paper, so that the camera operator could try and emulate the movement - then the operator had to teach the computer the movement, in fact he had to 'fly' the camera over the fixed model. Needless to say at the end of the filming the camera operators were all accomplished pilots!

ALuke Skywalker Han Solo Chewbacce

WARS
 Contrary to some reports, most of the R2-D2 sequences were with a real robot, built by mechanical wizard John Stears - read all about the real R2-D2 here!

TWO VERSIONS of R2-D2 were made, one for Kenny Baker to fit inside and the three-legged radio controlled version. Our interest centered on the radio controlled version.

R2-D2 has three forward speeds, but no reverse, and is steerable. Provision is made for the change from two legs to three legs by radio control, also when tilted the third leg drops automatically. The reason for this is that R2 would fall over if left on only two legs!

Mechanical

In order to achieve forward motion, the two rear legs have individual traction motors which drive twin inline wheels. Steering is via the front drop leg, with a proportional self centreing servo unit. The twin wheels in the steering foot remain parallel to the other wheels during turns.

The front leg and foot can be retracted inside the body. When the front leg drops it is held at the correct distance by wires, R2-D2 can then move off at full speed.

The casings for all the R2s were specially made by a company called Petric Engineering for the modest sum of almost $\$ 30,000$, which may seem a trifle high - but they were precision pieces of engineering to the highest standard, in fact John Stears says they were excellent value.

Head Interior

1. Ql light source (front)
2. Coloured disc motor (front)
3. Pulsating lights (green/yellow)
4. Fibre optic display (rear)
5. Ol light source (rear)
6. Coloured disc motor (rear)
7. Fibre optic display (front)
8. Pulsating lights (red/blue)

Cleaning Up

For several of the scenes R2-D2 was made to appear thoroughly blasted, or covered in grime. The only way was to virtually blast it in real life, and then clean up for the next shot. While in the Tunisian desert John Stears was also continuously cleaning real dirt and sand from R2, it got in everywhere!

1. Deac
2. Main receiver
3. Leg drop servo and microswitches
4. Steering servo and micrós witches
5. Speed control microswitches
6. Speed control servo
7. Traction motor connections
8. Traction batteries charge terminals

General

1. Real aerial
2. Eye
3. Slot
4. Perspex dome
(1)
(2)

(4)
(1)

${ }^{\wedge}$ Super Structure
5. Dome locating blocks
6. Mirror domes
7. Electronics compartment

- Bridge Assembly

1. Eye Socket
2. Real aerial
3. Dummy aerial
4. Oil light
5. Deac
6. Mirror dome
7. Receiver on/off 8. Flashing beacon
\triangle Radio Control Cear 1. Suppomesors
8. Receiver
9. Connecting block
10. Speed contrals
11. Lighting servo
12. Lighting relay

BOX

Most people think the Box robot should have been called the Rat robot, its the one that runs around the Imperial Death Star. A Radio controlled yellow streak, makes Box robots turn and run when confronted with a Wookie!

STICK

4Track

1. Idfer wheel
2. Track guide
3. Drive wheel
4. Sand escape vents

Arm

1. Claw ram
2. In/out ram
3. Up/down ram
4. Dummy ram

${ }^{\wedge}$ Head
5. Eyes
6. Pivot
7. Slipring
8. Brush
9. Eyes up/down crank
10. Counter balance spring
11. Eyes up/down motor
12. Slip ring feed

13. Right traction motot
14. Auxiliary battery
15. Traction batteries
16. Receiver
17. Preumatic connections
18. Left traction motor
19. Gearboxes
20. Flexible couplings

21. Eyes pivo
22. Head swivel
23. Practical arm
24. Stick
25. Drive wheels
26. Battery compartment
27. Receiver on/off
28. Real aerial
29. Pneumatic connections

DENON

The Professional Audio Brand

providing a direct drive system with the following features:-

- HIGH ROTATIONAL ACCURACY - LARGE DIAMETER TURNTABLE - EQUIPPED WITH STROBOSCOPE - RUBBER \& FELT INSULATORS - INDEPENDENT CUEING LEVER - HIGH SENSITIVITY TONE ARM - WOW AND FLUTTER OF LESS

THAN 0.04 PER CENT (WRMS) at 33-1/3 rpm

In other words, the

SL-7D Direct Drive Turntable

MOVING MAGNET CARTRIDGE

DL-107

Output voltage: $2.0 \mathrm{mV}(1 \mathrm{kHz}$ $50 \mathrm{~mm} / \mathrm{sec})$ Frequency response: $20 \sim 30,000$

Tracking force: $2.0 \pm 0.3 \mathrm{gr}$
Compliance: $8 \times 10^{-6} \mathrm{~cm} / \mathrm{dyne}$ Weight: 8 gr

MOVING MAGNET CARTRID.GE

DL-109D

Output voltage: $3 \mathrm{mV}(1 \mathrm{kHz}$ $50 \mathrm{~mm} / \mathrm{sec}$) Frequency response: $20 \sim 50,000$

Tracking force: $1.8 \pm 0.3 \mathbf{~ g r}$ Compliance: $9 \times 10^{-6} \mathrm{~cm} / \mathrm{dyne}$ Weight: 7.5 gr

Also available, a unique recording process offering low distortion and a high dynamic range. A selection of titles soon to be released in an extended range of classical popular, jazz and folk music.

Listen to The Professional Audio Brand at your local DENON dealer.

For further information please contact:

Electronics is where it's all happening

...if yourre into it you've got it made!

It's the world's fastest growing industry... with new discoveries...new products every day. And, every day, there are more jobs...bigger salaries...better opportunities...for people who are trained.

You can be part of this boom now by training with International Correspondence Schools. Learn to design, build, install, test, control and maintain modern electronic equipment...from your own colour TV or hi-fi set to a digital computer.

Your career opportunities are limitless...in broadcasting, industry, the military, aerospace programs, medical science and communications. With your enthusiasm and ICS tuition, a well paid job and a secure future in electronics is well within your grasp.

How do I get into it? ICS have put together a FREE Electronics Career Folder. It tells you all about the many courses open to you including Communications and Broadcasting, Industrial Electronics, Computer Servicing and Audio/Radio Servicing...courses endorsed by the Television and Electronics Technícians Institute of Australia.
Post the coupon and the career folder will be on its way to you without obligation. Don't wait another minute... progress won't. The big developments in electronics are happening now and the demand for skilled people is growing all the time.

Special Colour TV repair course.

Colour TV is booming all over Australia, beyond the expectations of all the manufacturers, resulting in a shortage of qualified people to fill the service gap.

You could make a successful career in this growing field with the help of the ICS School of TV Servicing. You can benefit by this course - all you need is the enthusiasm to learn and enjoy rewarding work.

Your ICS course could be a start of an exciting new career or you can use your new-found knowledge to earn extra money in your spare time.

This special course is endorsed by the Television and Electronics Technicians Institute of Australia.

Send the coupon today. It could be the first step in an exciting new future for you.

Find out how you can be where it's all happening - in Electronics. Fill in the coupon and post today!

ICS Home Study ...your passport to success in life!

Burket Brigade Rudio Delay Line

This audio delay line uses the latest in IC technology, the 'Bucket Brigade' to give a simple unit suitable for various effects. However this is a project for the experimenter as full details of how to use it for any particular use are not given.

ANYONE WHO has been in an anechoic chamber will appreciate the need for some reverberation. In music the use of artifical reverberation or echo can compensate for a 'dead' room or create a new effect. Up until recently reverberation was normally obtained by mechanical means such as a spring or plate which is vibrated or excited by an electrical signal; a pickup elsewhere on the plate or spring receives the delayed signal. Due to the nature of resonances in springs, multiple echos occur giving the effect of reverberation.

A single echo is obtainable by using a tape loop, recording the signal on one head and playing back through a second. The distance between the heads and the
tape speed determines the delay. Echo can also be obtained accoustically by a long tunnel with a microphone and speaker.

When the price of digital ICs started to come down a number of digital delay lines were developed. These used an A-D (analogue to digital) converter, a long shift register and finally a $D-A$ converter. To accomodate the wide dynamic range required very good, fast, $A-D, D-A$ converters along with a large shift register. Even with the low price of ICs these units still cost around $\$ 500.00$ or so (this is the main reason we have not published one as a project).

A number of years ago several IC manufactures started playing with a
'digital' delay line which works by storing an analogue voltage on a capacitor and then transferring this voltage to another and then successive capacitor. This is accomplished by switching FETs on and off under digital control. The circuit became known as a bucket brigade and this name has stuck.

The IC we have chosen is the MN3001 which is a dual 512 step device. This was chosen mainly for its availability through Elcoma. Brief specifications of other devices we know about are given below. All the devices except the SAD 1024 (Reticon) are handled by Elcoma.

Uses of BBD

Variable or fixed delay of analog signals
Reverberation

Echo

Tremolo, vibrato, flanging or chorus effects
Voice control of tape recorders
Time compression of telephone conversations
Voice scrambling

Construction

As we are describing no mechanical arrangement our description of construction is limited to the assembly of the PC board. It is recommended that a socket be used for the BBD IC as it is an expensive MOS device. The inputs are protected but it should be handled with care. The same care should be taken with the CMOS IC but as a socket costs more than the IC it cannot be recommended I

The interconnection between the pc boards depends on the effect needed.

The mixer, filter board ET/ 4508.

SPECIFICATION - ETI 450

Maximum input < 3\% distortion
Delay time internal oscillator
Frequency response
Distortion 1 V in 1 kHz
Signal to noise re 2 V input
Supply current $(\mathrm{A})+5 \mathrm{~V}$

-15 V	9 mA
+5 V	6 mA
-15 V	6 mA

The bucket brigade board ETI 450A.

The printed circuit boards for this project are on page 97.

 with RV3 being used to remove the IC2 -. IC4 removes all the other hash generated by the clocking. The first two sections of this filter have unity gain while the third stage has a gain of 8.5 dB to compensate for the loss in the BBD.
These gains are of course below the cut These gains are of course below the cut
off point!

The second board used is simply a mixer and 4 pole filter which can be used together or in separate parts of the unit. Due to the sampling done by the BBD, the frequency of an input signal must not exceed the clock frequency
otherwise it will appear at the output at some other frequency lower than the clock-frequency. This is due to the BBD input circuit sampling almost corresponding points on successive
 BBD.
series. However the output has then twice the loss and even wits in a lower signal to noise ratio.

A second method of obtaining a large delay is to run the two sections in parallel with each sampling on alternate half cycles of the clock waveform giving effectively tho salows the clock frequency to be halved for the same frequency response giving twice the delay with only one attenuation loss.
However as you never get anything for However as you never get anything for
nothing the lowering of the clock frequency increases the low frequency energy content of the noise, making the filter do more work.

Getting back to the circuit diagram we see that the input signal is coupled to the input of both halves of the BBD with dc biasing being provided by RV1. IC2 is used as an oscillator with frequency adjustable from about 20 kHz to 90 kHz

In the device we have used there are 512 stages in each of two identical and independent sections. The internal the output stage is shown below (there are over 1000 capacitors anid 2000 FETs
in the (ranser of energy is done using FETs which are controlled by the two clock lines CP1 and CP2. These are complementary square wave signals. Using a 40 kHz signal the input is sampled every $25 \mu \mathrm{~s}$ then 'remembered' and transfered every $25 \mu \mathrm{~s}$. On the ue suiney auo 'suled omi orun papuitp
s! peusis aut 'uo 605 asmas wory 'zndino divided into two paths, one having an on the output is only there for half thr 25μ s period. By adding these two out-of phase outputs a continuous outpu
 however waste energy and the output is of a lower amplitude than the input. In the MN3001 it is about 8.5 dB lower. To
 two sections (or more if needed) in
 delay line which samples the input waveform at an instant in time and

 3 times faster than the highest frequency required. A single capacitor cannot store
 so a series of capacitors is used. Before

 second capacitor thus freeing the first to

 ssooord sily induy ayt soddues continues on each sample with the energy in each capacitor being
transferred to the next. Eventually we иวч7 sṭy pue sionjordes jo zno uns

NIVS 3^Hロา3y

TYPE	MN3001	MN 3002	MN3003	MN3004	TDA 1022	SAD 1024
NO OF STAGES	2×512	512	2×64	512	512	2×512
DELAY (ms)	$1-25$	$1-25$	$0.16-3.2$	$2.5-3.2$	$0.5-50$	$0.2-170$
INSERTION LOSS (dB)	8.5	8.5	1.5	4.0		
DISTORTION (\%)	0.4	0.4	0.5	0.4	0.4	1.0
SIGNAL TO NOISE (dB)	70	70	768	85	74	>70
SUPPLY VOLTAGE (V)	$+5,-14,-15$	$+5,-14,-15$	$-8,-9$	-15	-15	-15

Fig. 4. Summary of the bucket brigade ICs which we know exist.
Fig. 5. The circuit diagram of the mixer, 4 pole filter board (ETI 450B).

Fig. 6. The component overlay of the bucket brigade board.

Fig. 7. The component overlay of the mixer - filter board.

Adjustment

RV1 is used to set the bias voltage. If an oscilloscope is available look at the output of the board while feeding in a sine wave signal. Adjust RV1 to allow the maximum input signal without clipping. RV2 adjusts the delay while RV4 sets the output level to compensate for differences in the loss of
the BBD sections. RV3 is used to remove the clock frequency from the output. If an oscilloscope is available look at the wiper of RV3 and adjust to give the smoothest output. The switching transients at this point are very high but these are removed by the filter.

PARTS LIST - ETI 450A

Capacitors

C1,2 100n polyester
C3,4 100 $\mu 25 \mathrm{~V}$ electro
C5. $1 \mu 025 \mathrm{~V}$ electro
C6. 1 n0 polyester
C7. 680p ceramic
C8. 39p ceramic
C9. 33p ceramic
C10...... 2 n 2 polyester
C11. 1n0 polyester
C12...... 33p ceramic
C13...... $10 \mu 25 \mathrm{~V}$ electro
C14 6 n8 polyester
C15 n 0 polyester
C16 33p ceramic
C17...... 1 10025 V electro
Semiconductors
IC1 MN3001
IC2 4011 (CMOS)
IC3-IC5 ... 301 A
Miscellaneous
PC board ETI 450 A

PARTS LIST - ETI 450 B

Resistors	all $1 / 2$ W 5\%
R1-R6.	100k
R7	100R
$R 8$	1M
R9-R11.	100k
R12-R15	12k
R16.	100R
$R 17$.	M

Capacitors
01,2 100n polyester
C3,4 100 $\mu 25 \mathrm{~V}$ electro
C5. $1 \mu 025 \mathrm{~V}$ electro
C6. $10 \mu 25 \mathrm{~V}$ electro
C7. 33p ceramic
C8,9 $1 \mu 0$ 25V electro
C10. 3n9 polyester
C11 680p ceramic
C12...... 33p ceramic
C13...... 2n2 polyester
C14 in0 polyester
C15 33p ceramic
C16...... $1 \mu 025 \mathrm{~V}$ electro
Semiconductors
IC1-IC3 . . . 301 A
Miscellaneous
PC board ETI 450 B

Fig. 8. The interconnection for reverberation.

Fig. 9. Connections for a single echo. With a short delay this becomes a phaser.

Reverberation

If the audio signal is fed via a mixer into the delay line and its output fed back into the mixer we have a feedback system which will repeat a single sound many times. This is reverberation. If several different delays are used the effect will seem more natural. With all feedback systems if the sum of all the delayed outputs exceeds the original sound uncontrolled oscillations will result. This is similar to howl-round in PA work and careful adjustment is needed if long reverberation times are required.

Echo

This is similar to reverberation except the delayed signal is not fed back to its own input. A single echo only results (from a single delay) and it can be of any amplitude in relation to the original signal.

Phasing (Flanging)

By varying the delay times and by mixing in the right proportions total cancellation of some frequencies can occur. Now if the clock frequency is made variable a phasing or flanging effect occurs. A variable clock can be made by replacing potentiometer RV2 by an LDR and illuminating it with a globe the brilliance of which is controlled (try a 555 timer). We must leave details of this to the individual constructor.

AVAILABLE FROM ELECTRONICS TODAY INTERNATIONAL

ELECTRONICS IT'S EASY VOLS 1/2/3/

Volumes 1 \& 2 are now reprinted as a revised second edition.
Volume 1 takes the reader from basic electronics to operational amplifiers. Volume 2 covers power supplies, waveforms, filters, logic systems etc. Volume 3 includes digital displays and systems, instrumentation and power control.
$\$ 3.00$ per volume - from most newsagents or $\$ 3.40$ per volume lincl post and packing) direct from ETI. Send orders to:- Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

INTERNATIONAL 3600 AND 4600 SYNTHESIZERS

A totally revised and updated reprint of ETI's phenomenally successful music synthesizer book.
Beautifully printed on heavy art paper with a sturdy cover varnished for protection.
Available only from ETI and some kit suppliers - $\$ 12.50$ (including postage and packing).
Send orders to:- Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

m =MONA FOR PROMPT MAIL Embin ORDER SERVICE!

SALES: Room 208, 661 George St., Sydney. Phone: 212-4815 - C.B.C. Bank Bidg., Haymarket. REG. OFFICE: 21 Judge St., Randwick. Phone: 399-9061.

OUR NEW RANGE OF NATIONAL SEMICONDUCTORS CALCULATORS

NS 100

NS 4640
NS 201

- NS 100 - Ultraslim Pocket (7.5 mm thin) Billfold style. \$26.00
- NS 202 - Full Financier, Billfold style, $\$ 22.50$
- NS 201 - Full Scientific, Billfold style, \$19.50

NS 4640 - Scientific/Engineering/Statistical/Business calculatorNational SemJconductors Model 4640 (see August ETI for details) only $\$ 49.95$.

Plus 15% S. Tax (P\&P Int. $\$ 3.00$, NSW $\$ 2.00$). - Elcon SC-44F, Scientific - $\$ 32.50$. (Recharg. battery \& charger), plus 15% S. Tax. (P\&P Int. \$3.00, NSW \$2.00)

NATIONAL SEMICONDUCTOR QUARTZ DIGITAL LCD WATCHES

MENS: * CJIYW CHRONOGRAPH, $\$ 85.00$
in the timekeeping mode: Continous Read Display of Hours, Minutes, Seconds Counter; Day of Week Indicator; Month/Date Calendar and
Night Viewing Light. In the stopwatch mode: Continuous Counting Six Digit Display of Minutes, Seconds and HUNDREDTHS of a Second, plus Lap and Split Timing.

* DAB5W8 - Stainless steel case \& band - $\$ 47.00$
* DAB5YB - Gold plated case \& band - $\$ 55.00$

FEATURES: Continuous Read Display - Display of Hours, Minutes, Seconds Counter - Month/Date Calendar - Night Vie:Ning Light - Dust Resistant • Anti-Magnetic - Quartz Crystal Accuracy LADIES: *KED5WS - Stainless steel case \& black leather band $\$ 44.00$ * KEK5YS - Gold plated case \& brown leather band - $\$ 49.00$ *KEDSWB - Stainless steel case \& band - $\$ 53.00$ *KEK5YB - Gold plated case \& band - $\$ 58.50$.
FEATURES: Fashionably-Styled Cases - Continous Read Display of Hours, Minutes, Seconds Counter. Month/Date Calendar

* Night Viewing Light * Dust Resistant* Anti-Maqnetic © Quartz Crystal Accuracy.
WARRANTY: FULL 12 MONTHS
P \& P \$ 2.00

DIGITAL CLOCK RADIOS:

- EMONA E-4 Stereo FM/AM 24 HOUR DIG. CLOCK RADIO, $\$ 79.00$ (p/P Int. $\$ 4.50$. NSW $\$ 3.50$). EMONA E-2, All solid state AM IFM 24 HOUR DIG. CLOCK RADIO. \$49.00 (P\&P Int. $\$ 4.00$, NSW $\$ 2.50$). RADIO. Silding brightness, volume \& tone controls. $\$ 45.00$ (P \& P int. $\$ 4.00$; NSW $\$ 2.50$.)

DENTRON ANTENNA TUNER 80-10 SK YMATCHER

500W PEP.
$\$ 89$
Here's an antenna tuner for 80 through 10 meters, matches your 52 ohm transcelver to a random wire antenna. Continuous tuning $3.2-30 \mathrm{mc}$ - "L" network. Ceramic 12 position rotary switch. SO239 receptional to transmitter. - Random wire tuner. 3000 volt capacitor spacing. - Tapped inductor. Ceramic antenna feed thru. $7^{\prime \prime}$ W. 5" H. $8^{\prime \prime}$ D., Weight: 5 ibs.
DENTRON SUPER TUNER

$\$ 179$

160-10 Meters Balanced Line, Coax, Random or Long Wire Maximum Power Transfer, Xmitter to Antenna.

CB - FREQUENCY COUNTER, BC-275 \$89 P\&P int. 53.50 .

AMATEUR RADIO EQUIPMENT!

- YAESU FRG-7 GENERAL COVERAGE RECEIVER-WADLEY
LOOP SYSTEM
- \$295

TRANSCEIVERS:

- YAESU FT-101E AC-DC TRANSCEIVER - \$799
- YAESU FT-301 TRANSCEIVER - \$910
- YAESU FT-301D TRANSCEIVER - \$1050
- YAESU FT-301SD TRANSCEIVER - $\$ 839$
- TRIO KENWOOD TS 520S
- TRIO KENWOOD TS 820
- TRIO KENWOOD TS 600
- TRIO KENWOOD TR 7400A
- PRICE ON ALL KENWOOD EQUIPMENT TO BE ANNOUNCED
LINEAR AMPLIFIERS:
- YAESU FL $2100 B$
- \$510
- DENTRON MLA 2500
- \$899.50
- DENTROL MLA 1200
- \$489
- DENTRON 160-10L/572
- \$755
- SCS HF3-100L2
- \$219

ANTENNA TUNERS:

DENTRON MT-3000A
DENTRON 160-10AT
DENTRON 80-1OAT
RF PREAMPLIFIER $S X I$
RF PREAMPLIRIER $S \times 59$
$-\$ 399$
$=\$ 179$
$-\$ 89$
$-\$ 49$

ANTENNAS:
HUSTLER 4 BTV ALL BAND VERT. TRAP ANTENNA HUSTLEP ALL BAND MOBILE ANTENNA.

CUSHCRAFT:

ATB-34 4 ELEMENT 3 BAND BEAM ANTENNA,
COMPLETE WITH BALUN AT NO EXTRA COST

NEW MODEL. DX-555P COUNTER-GENERATOR

Hy you can see a difference, imagine what you'll hear:

Magnified, you can see recond vinyl wearing away.
You're looking at the solution to one of the oldest problems in audio-how to protect records from wear, while at the same time preserving full fidelity.

It's called Sound Guard,* and it's remarkable.

Independent tests show that discs treated with Sound discs played once.
distortion as "mint condition"
A by-product of dry lubricants developed for aerospace applications, Sound Guard preservative is so smooth it reduces friction, yet so thin (less than $0.000003^{\prime \prime}$) it leaves even the most fragile groove modulations unaffected.

Len Feldman in Radio Electronics reports "At last! The long awaited record-care product has arrived. It preserves frequency

Guard preservative played 100 times display the same full amplitude at all frequencies and the same absence of surface noise and harmonic
while reducing distortion and surface noise.' It's effective and safe for all discs, from precious old 78's to the newest LP's.

Sound Guard preservative,
in a kit complete with a nonaerosol pump sprayer and

Test record played first time.

After 100 plays without Sound Guard.

Identical test record after 100 plays with Sound Guard.
velvet buffing pad, is avail able in audio and record outlets.

Sound Guard keeps your good sounds sounding good.

*Sound Guard is Ball Corporation's trademark for its record preservative. Copyright © Ball Corporation, 1976.
Sound Guard is distributed throughout Australia by
LEROYA INDUSTRIESETY̌

Australian Made Extrusions For Every Purpose

These extrusions offer design engineers heatsinks "off the shelf" for most applications. They can be used in conjunction with: -

- Power Transistors
- Thyristors
- Silicon Diodes

Some under high
peak current
conditions
Standard Lengths (ins)

TYPE	2	3	4	6	8	72	
35D	$*$	$*$	$*$	$*$	-	$*$	$*$
40D	-	$*$	$*$	$*$	-	$*$	$*$
45D	-	$*$	$*$	$*$	-	$*$	$*$
55D	$*$	-	$*$	$*$	$*$	$*$	$*$
65D	-	-	$*$	$*$	$*$	$*$	$*$

All 36 inch and 72 inch bulk lengths are supplied in mill finish as is the total 65D range. The remainder are supplied in a black anodised finish.

Philips Electronic

Components \& Materials
Sydney
4270888
Melbourne 6990300
Brisbane 2773332
Adelaide 2234022
Perth \qquad 654199

Electronic
Components
PHILIPS
and Materials

Digital
 Temperature Meter

This simple yet accurate temperature meter will find many uses in the laboratory or home. It utilizes the digital panel described in the October issue.

THE RELIABILITY OF electronic circuits in the days of valves was, to say the least, poor by today's standards. The introduction of transistors and integrated circuits increased reliability dramatically. One of the main reasons for this is the reduction of power dissipation and the resultant lowering of temperature. Devices and circuits are now designed to minimise power dissipation as this allows a higher component density while increasing reliabjlity. However some circuits by their nature must dissipate high power and the semiconductor devices used must be kept within their temperature limits.

This temperature meter will allow transistor temperatures to be measured and the appropriate heatsink chosen. It is just as useful outside the electronic scene measuring liquid or gas temperature especially where the readout needs to be physically separate from the sensor.

Use and Accuracy

The accuracy of the unit depends on the calibration; provided it has been calibrated around the temperature at which it will be used, accuracy of 0.1 degree should be possible. We could not accurately check linearity but it appeared to be within 1° from 0° to $100^{\circ} \mathrm{C}$.

However other errors will affect this reading. If measuring the surface temperature i.e. a heatsink temperature, there will be a temperature gradient between the surface and the junction of

the diode. Silicon grease should be used to minimise the surface-to-surface temperature difference. Also when measuring small objects, e.g. a TO-18 transistor, the probe will actually cool the device slightly. At high temperatures these effects could give an error of up to 5% (the reading is always less than the true value). If the probe is in a fluid, e.g. water or air this problem does not occur.

Construction

Assemble the panel meter as previously described but omitting the zener diodes and R6 and R7. The value of R1 has also been changed. The decimal point drive should be connected to the righthand decimal point. The additional components can be assembled on a tag strip as shown.

We mounted our unit on a tag strip as shown in the photo. While we have not given any details, knocking up a case should be no problem. For a power supply we used eight penlight Nicad cells giving a 10 V supply. If dry batteries are used six penlight cells are recommended although a 216-type 9 V transistor battery will give about 300 hours of operation.

The sensor should be mounted in a probe as shown in Fig. 1 if other than air temperature will be measured. This provides the electrical insulation needed for working in liquids etc. It should be noted however that the quick dry epoxies are not normally good near or above $100^{\circ} \mathrm{C}$ and if higher temperatures than this are expected one of the slow dry epoxies should be used.

Calibration

To calibrate this unit two accurately known temperatures are required, one of which is preferably zero degrees and the second in the area where the meter will normally be used and highest accuracy is required. For a generalpurpose unit $100^{\circ} \mathrm{C}$ is suitable. The easiest way of obtaining these references is by heating or cooling a container of distilled water. However temperature gradients can cause problems, especially at zero degrees.

One method of obtaining water at exactly zero degrees is to use a test tube of distilled water in a flask of iced water and allowing it to cool to near zero. Now by adding salt to the iced water its temperature can be lowered to below zero. If you are very careful, the test tube water will also drop below zero without freezing (you should be able to get to about $-2^{\circ} \mathrm{C}$). However the slightest disturbance at this temperature will instantly cause some of the water to freeze and the remaining water to rise

Temperature range	$-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$-60^{\circ} \mathrm{F}$ to $+199.9^{\circ} \mathrm{F}$
Resolution	$0.1^{\circ} \mathrm{C}$ or F
Sensor	silicon diode
Power consumption	$1.5 \mathrm{~mA} @ 9 \mathrm{~V} \mathrm{dc}$

to exactly zero, providing an ideal reference.

For a hot reference the boiling point of distilled water is very close to $100^{\circ} \mathrm{C}$ especially if the container has a solid base and is evenly heated e.g. on an electric hotplate.

The actual calibration is done as follows:

1. In the $0^{\circ} \mathrm{C}$ reference adjust RV2 and RV3 until the unit reads zero.
2. In the hot reference adjust RV1 to give the correct reading.
This should be all the adjustment required.

If zero degrees is not available, e.g. if setting up for ${ }^{\circ} \mathrm{F}$, the following method can be used:

1. In the cold reference use RV2 and RV3 to adjust reading to zero.
2. In the hot reference use RV1 to adjust the reading to indicate the temperature difference between the two standards. If freezing and boiling points are used, this will be $180^{\circ} \mathrm{F}$.
3. Now, back in the cold bath, adjust RV2 and RV3 to give the correct reading.
No further adjustment should be required.
 complete temperature meter.

The printed circuit board for this project is on page 97.

HOW IT WORKS - ETI 589

While the voltage across a silicon diode is nominally about 600 mV it is dependent upon the ambient temperature and current in the device. The temperature coefficient is negative, i.e. the voltage falls with increasing temperature but fortunately is linear in the region of interest. The actual value varies with current and from device to device, but is typically $-2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at $250 \mu \mathrm{~A}$.

By measuring the voltage across the diode with a suitable offset voltage to balance the voltage at zero degrees an accurate temperature meter results. The digital panel meter described in October has a stable reference voltage available (between pins 1 and 32) of about 2.9 V ; with the 10 k resistor R11 this provides a constant current for D1 (the sensor). The offset voltage is also derived from this reference voltage by R12, RV2 and RV3. The panel meter is used as a differential voltmeter and measures the potential difference between the offset voltage and the diode. We have used two trimpots in series in the offset adjustment to give better resolution. If desired a 10 -turn trimpot can be used (2 k 2). Adjustment of the three potentiometers allows the meter to be calibrated in either ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ with the upper limit of $199.9^{\circ} \mathrm{F}$ due to the panel meter over-ranging.

The power supply is simply a 9 V battery, and so the zener diodes and dropping resistors described in the panel meter article should be omitted.

Fig. 3. The external components associated with the panel meter. For details of the panel meter see October 77 ETI.

PARTS LIST - ETI 589

Resistors	all $1 / 2 \mathrm{~W}, 5 \%$
tR1	10k
-R2	. 47 k
-R3	.100k
R4	. not used
*R5	1M
R6	. not used
R7	. not used
R8	. $4 \mathrm{M7}$
R9	. 100k
R10.	. $4 \mathrm{M7}$
R11.	10k
R12.	27k
R13.	

Potentiometer

*RV1 1k 10 turn trim RV2 2k trim RV3 200 trim

Capacitors

*C1. 100 n polyester
*C2. 470n "

- C3. 220n
-C4. 100p ceramic C5. 10n polyester C6. 10 n

Semiconductors

- IC1 ICL7106 O1 BC549

Miscellaneous
PC board ETI 135
Tag strip
-LCD Display

- Socket for LCD display Box
Switch
9 V battery
*These components are supplied with the Intersil ICL7106 EV evaluation kit.
\dagger This value has been changed from the original panel meter.

Fig. 4. The component overlay of the panel meter with the display removed. Note that for this project R4, 6, 7, 2D1, 2 and the external leads are not used.

NORTRONICS

AUDIO \& DIGITAL TAPE HEADS Long Life-Extended Response

Replacement heads for:
Domestic Cassette decks.
Recorders Cassette players.
Reel to reel. Cartridge:
Professional Broadcast recorders in reel to reel \& cartridge or Recorders cassette. Studio recorders $1 / h^{\prime \prime}$ to $2^{\prime \prime}$ multi track.
Duplicators Reel to reel \& cassette.
Aircraft Recorders, cockpit \& background.
To fit: AMPEX, SCULLY, TEAC, ATC, GATES, PENTAGON, INFONICS and many others. ALIGNMENT TAPES - Reel to réel, Cartridge, Cassette.

EMAC INDUSTRIES PTY. LTD.
9 Meriton Place, Clayton South, Vic, 3169.
Ph: 544-5157

Zener Diodes

5 Watt	volţs	1 Watt	volts
B2×83C-3v0	3	IS3006A	6.1
82x83C-3V3	3.3	153007A	6.8
82×83C-3v9	3.9	IS3008A	8.2
82×83C-4V7	4.7	153009 A	9.1
82×83C-5V1	5.1	IS3010A	10
82x83C-5V6	5.6	153012 A	12
B2x83C-6V2	6.2	153015A	15
$82 \times 83 \mathrm{C}-6 \mathrm{V8}$	6.8	IS3016A	16
$82 \times 83 \mathrm{C}-7 \mathrm{~V} 5$	2.5	IS3020A	20
82×83C-8V2	8.2	153024A	24
B2 $\times 83 \mathrm{C}-9 \mathrm{~V} 1$	9.1	IS3027A	27
B2×835-10	10	IS3030A	30
$82 \times 83 \mathrm{C}-12$	12	153033 A	33
B2X83C-13	13	153036 A	36
$82 \times 83 \mathrm{C}-15$	15	153039A	39
$82 \times 83 \mathrm{C}-16$	16	IS3047A	47
$82 \times 83 \mathrm{C}-18$	18	IS3051A	51
82×83C-20	20	IS3056A	56
$82 \times 83 \mathrm{C}-22$	22	IS3062A	62
BZ×83C-24	24	IS3068A	68
B2×83C-27	27	153075A	75
B2X83C-30	30	IS3100A	100
82×833C-33	33	IS3150A	150
$82 \times 83 \mathrm{C}-47$	47	IS3180A	180
		IS3200A	200

SPECIAL SAVINGS

6 V Batt. Box BH4 30c
Battery Clip for above and 216

CL5 10c

Better buy while the price is right

PRINTED CIRCUIT

ELECTROLITIC CAPACITORS

	1-9	10
4.7 mfd 16 volt	lic	9
10 mfd 16 volt	11 c	9 c
22 mid 16 volt	12 c	10c
33 mfd 16 volt	15 c	12 c
47 mfd 16 volt	15 c	12 c
100 mfd 16 volt	15c	12 c
220 mfd 16 volt	20 c	18c
470 mfd 16 volt	40 c	35c
1000 mfd 16 volt	55 c	50 c
2.2 mfd 25 volt	12 c	10c
4.7 mid 25 voit	120	10c
10 mtd 25 voit	12 c	10c
22 mfd 25 voit	12 c	10c
33 mid 25 volt	15 c	12c
47 mfd 25 volt	15 c	12 c
100 mid 25 volt	16 c	14c
220 mfd 25 volt	35 c	30c
470 mid 25 volt	35c	30 c
1000 mfd 25 volt	55 c	4 c
1 mid 50 volt	18 C	13c
3.3 mfd 50 volt	18 c	13 c
4.7 mfd 50 volt	20 c	18 c
10 mfd 50 volt	20 C	18 c
22 mfd 50 volt	20 c	18 c
33 mid 50 volt	20 c	18c
47 mft 50 volt	20 c	18 c

VEROBOARD
Copper strip $0.1 \times 0.1 \cdots$
No. $12217.9^{*} \times 3.15 \cdots 34$ way
Only $\$ 6.20$
No. $12317.9{ }^{\prime \prime} \times 4.7{ }^{4} 36$ way.
Only $\$ 8.30$
Only $\$ 8.30$
Veroboard Cutter Tool
2022
\$2.95
Vero-pin Inset Tool
2150
$\$ 3.95$
Veroboard Pins. Large or small. Only $\$ 1.75$ per 100

WAITING ON DELAYS AND ORDER ELECTRONIC SUPPUERS AT 'DAVRED' WE GUARANTEE TO SHIP OR REPLY WITHIN 24 HOURS. ONCE MORE, WE HAVE ONE OF THE LARGEST RANGES OF ELECTRONIC COMPONENTS UNDER ONE ROOF IN aUSTRALIA. IF YOU HAVEN'T DONE BUSINESS WITH US BEFORE, YOU'VE beEn missing out! on service.

body. Suitable for 3AG fuses
30c each

Microphones - never to be repeated!

 We did a bulk valuebuy and were buy and we're passing the savings onto you. Our best seller.
EX-220 Electret condenser uni-directional microphone is being offered until the 31st Dec. at the incredible price of $\$ 14.95$
Freq. response $50-12,000 \mathrm{~Hz}, 600$ ohm imped. Uses 1.5 V penlight battery. Sensitivity. 63 db (at 1 KHz .).

'Davred' Metal Boxes

If you've been searching for some handy little project boxes, look no further.
These little beauties are finished in two-tone duco and easy to work on.

Length With Depth Price
$\begin{array}{lllll}\text { No. } 1 & 82 & 70 & 56 & \$ 1.95\end{array}$
$\begin{array}{lllll}\text { No. } 2 & 100 & 82 & 54 & \$ 2.25\end{array}$
$\begin{array}{llrll}\text { No. } 3 & 127 & 89 & 54 & \$ 2.50\end{array}$
$\begin{array}{lllll}\text { No. } 4 & 140 & 120 & 90 & \$ 2.90\end{array}$
All dimension are mm. No. 4 box
comes complete with rubber feet.

Exclusive from \$1.95

Plastic Box p82
Black with aluminium base. Is ideal for all
Only $\$ 1.50$

'Davred' Electrokit 1

Óne Transistor Radio for boys (and girls) aged 8 to 88.

deaired and comes complete with full required and comes complete with full instructions. Capable of receiving local radio stations. Requires 216 battery.

Special Price $\$ 4.95$
MJ-020 Test Prods
Not only available in Red
and Black but we have
changed
to the new better grip, langer prod version

ONLY 65c each
Help! we ordered
the wrong knobs but you're the one to save. Never to be repeated. Out they go. No. 5070 $1 / \iota^{\prime} \phi$ shaft. 13 mm
diam.
Black plastic with aluminium end. Only 45c

Miniature Wafer PT9 Trim Pots
Suitable for 0.1 " grid boards. Rated $\pm 20 \%, 0.1 \mathrm{~W}$ at $40^{\circ} \mathrm{C}$. 100, 200, 500 ohm, 1K, 2K, 5K, 10K, 20 K $50 \mathrm{~K}, 100 \mathrm{~K} .250 \mathrm{~K} .500 \mathrm{~K} .1 \mathrm{meg}$. Look 15cea.

Dip Board matrix. Plug-in. $\$ 13.50$

CO-AX PLUGS P75A Standard co-ax. plugs with plastic covered body.
Stock up at this price.
$35 c$
EACH

Meters

$50 \mathrm{uA}, 500 \mathrm{uA} .1 \mathrm{~mA} 10 \mathrm{~mA}$ $100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} .10 \mathrm{~A}$. $10 \mathrm{~V}, 30 \mathrm{~V} .300 \mathrm{~V}$
MR 38 P 42 mm
MR52P 60 mm
MR65P 78 mm
$\$ 6.25$
$\$ 7$

Special 10 mA MR38P $\$ 4.50$

DAVRED ELECTRONICS PTY. LTD.

104-106 King Street Newtown Sydney Australia P.O. Box 317 Newtown, N.S.W. 2042. THE NEW BREED IN ELECTRONICS SERVICE

Telephone 516-3544

PROFESSIONAL QUALITY MULTIMETERS HICH SENSITIVITY

CHECK OUR
PRICES AGAINST COMPARATIVE INSTRUMENTS!
(but prices must rise shortly - so hurry!)

EQUIP YOUR LAB OR WORKSHOP WITH extra value 'trio' test gear

Trio VT108 FET meter
Cat 0.1210 \$124.20 Trio AG202A Audio Generator Cat $\alpha-1220$ \$155.25 Trio CO 13030 CRO Cat $0.1230 \quad \$ 228.85$ Trio CS1560A 15MHz dual CRO Cat O. 1241 \$557.75 Trio CS 156210 MHz dual CRO Cat $\mathbf{Q} \cdot 1242$ \$481.85 Trio CS 1570 30MHz dual CRO Cat $\mathbf{0 . 1 2 4 6} \quad \$ 1007.40$ Trio SG402 RF generator Cat $\mathbf{Q} 1250 \quad \$ 110.40$
ALL PRICES INCLUDE SALES TAX!

$\$ 41.50$

FOR THE SERIOUS MI.FI BUFF

AC MILLIVOLTMETER
 measurements.
FOR SERVICE, RESEARCH OR DESIGN SPECIFICATIONS
Measuring range: $\quad 200 \mu \mathrm{~V} 1030 \mathrm{~V}$ in 8 ranges
Frequency response: 20 Hz to $100 \mathrm{KHz}: 1 \mathrm{~dB} \mid \mathrm{KHz}$ reference
Voltage Range: Decibel Range:
$\begin{array}{ll}200 \mathrm{H} V \text { to } 10 \mathrm{mV} & -52 \mathrm{~dB} \text { to }-38 \mathrm{~dB} \\ 1 \mathrm{mV} \text { to } 30 \mathrm{mV} & -42 \mathrm{~dB} \text { to }-28 \mathrm{~dB}\end{array}$
$\begin{array}{ll}1 \mathrm{mV} \text { to } 30 \mathrm{mV} & -42 \mathrm{~dB} \text { to }-28 \mathrm{~dB} \\ 2 \mathrm{mV} \text { to } 100 \mathrm{mV} & -32 \mathrm{~dB} \text { to-28 }\end{array}$
$\begin{array}{cc}2 \mathrm{mV} \text { to } 100 \mathrm{mV} & -32 \mathrm{~dB} \text { to }-28 \mathrm{~dB} \\ 10 \mathrm{mV} \text { to } 300 \mathrm{mV} & -22 \mathrm{~dB}\end{array}$

10 mV to 30 mV	
20 mV to 1 V	-22 dB to-8 dB

$\begin{array}{rrr}20 \mathrm{mV} \text { to } 1 \mathrm{~V} & -12 \mathrm{~dB} \text { to } 2 \mathrm{~dB} \\ 100 \mathrm{mV} \text { to } 3 \mathrm{~V} & -2 \mathrm{~dB} \text { to } 12 \mathrm{~dB}\end{array}$
$\begin{array}{rrr}100 \mathrm{mV} \text { to } 3 \mathrm{~V} & -2 \mathrm{d8} \text { to } 12 \mathrm{d8} \\ 200 \mathrm{mV} \text { to } 10 \mathrm{~V} & 8 \mathrm{~d} \text { 10 } & 22 \mathrm{~dB}\end{array}$
$\begin{array}{rrr}200 \mathrm{mV} \text { to } 10 \mathrm{~V} & 8 \mathrm{d8} \text { to } & 22 \mathrm{~dB} \\ \mathrm{IV} \text { to } 30 \mathrm{~V} & 18 \mathrm{d8} \text { to } & 32 \mathrm{~dB}\end{array}$
Accuracy: $\quad 23 \%$ Full Scale
Inpur Impedance: \quad Megohons in all ranges
Inpur impedance: $\quad .1$ Megohons in all ranges
Dimensions:
Cot. 0.1492

DICK SMITH ELECTRONICS GROUP

All you need is a couple of hours, a pair of scissors and a screwdriver.

1 Screw the crossover
1 networks to the baffle boards.

Apply glue to the case and fit batfle boards in grooves.

3 Wrap sides of case around baffie board.

By assembling these Philips speaker kits yourself you can either save yourself a packet on what you were expecting to pay - or achieve a much higher quality system for the same money.
No need to make excuses about not being an electrician. These kits are complete. All components are genuine Philips units. Every part is ready to install. Every step is covered in simple illustrated stages. It's as easy as assembling a simple model kit from a hobby shop. Now simply connect up to your amplifier and turntable and you're in business. For information about your nearest dealer contact your state office or send in this coupon.

insert speakers in holos and screw into position

Clip fascia panel in place.

Sydney 42 1261, 420361, Melbourne 6990300 Brisbane 442471, Adelaide 2234022
Perth 654199
Philips
Electronic Components and Materials
Electronic Components and Materials
P.O. Box 50, Lane Cove. N.S.W. 2066.
Please send me details on your High Fidelity Loudspeaker kits.

Name
Address
Postcode
D - - - - - - - -

Printed Cirruit Boards Design \& Prodution

At last! The inside story on making PCBs from artwork in ETI (or your own).

WITH TODAY'S ELECTRONICS becoming more and more complex, the use of a printed circuit board is more than a luxury, it is virtually a necessity. For prototypes a hand wired system may be the ideal, bu: where more than one is required or high reliability is needed the PCB is without peer. In a purely digital circuit wire wrap can be used but it is limited to digital work.

As circuits become more complex, the copper tracks have to become thinner with tracks down to 0.25 mm being used sometimes, even in projects. The old method of copying the pattern with bituminous paint is no longer a practical proposition, if at all possiblel

The use of a photographic method of placing an image on the copper is therefore much better; this article will first explain how to make the pc board using the 'negative photoresist' method, and then how to design the artwork itself allowing your own designs to be built on PCBs.

Before continaing, a very brief explanation of the basic method of producing circuit boards may be of help to those who have not tried it before.

1. The pc board material when purchased is normally 1.6 mm thick in either fibreglass or phenolic with a sheet of copper about 0.03 mm thick bonded onto one or both sides. This copper weighs $1 \mathrm{oz} / \mathrm{sq}$. ft. and is simply called 1 oz copper. Two ozs. copper is also available.
2. An image is then painted or photographically placed on the copper in the pattern required, i.e., the pads and tracks. This is called the resist.

3. The board is placed in a solution which dissolves copper and any areas of copper not protected by the resist are removed leaving copper only where required.
4. Finally, the resist is cleaned off, leaving bright copper ready to be drilled and suitable for soldering.
As we have said, we will start this article half-way through the normal sequence of pcb manufacture by assuming that you have the artwork finished. This is the case if you are building an ETI project as normally the full size artwork is published. We will explain more on pcb design later.

To copy artwork out of a magazine it is usually necessary to photograph it one-to-one using a process camera. As we realized that this equipment is not generally available to the home constructor, we have changed our
presentation to allow a negative to be made without elaborate or expensive equipment. You may have noticed that as of the October issue the pcb designs have been published on a separate glossy page and that the copy on the reverse side of this page is in blue only. This allows a contact print to be made using Scotchcal 8007 emulsion film and a UV light source. As the blue is transparent to UV (as is the white page) it will not come out in the negative.

We have chosen to describe the negative photo resist method (i.e., the resist is hardened by exposure to light meaning a negative is required) as it is much easier to use (less fussy about baking temperature, exposure, etc.). If the magazine artwork is copied by the method described a negative will be made anyway.

Production

Equipment Needed

1. Source of UV light - Sylvania F20T12-BL or Philips TLA20W/05 Actinic Blue Fluorescent tubes or a sun lamp or the sun.
2. A method of holding the negative on to the pc board material during exposure. This could be as simple as a sheet of glass on a piece of foam plastic held down by a couple of weights or as complex as a vacuum frame. The setup we use is shown in Fig. 4.
3. A metal or glass tray for developing the pc board.
4. Photo resist - see table 1.
5. Photo resist developer - see table 1.
6. A soft, new, paintbrush.
7. Negative film (Scotchcal 8007 emulsion film).
8. Negative film developer (Scotchcal 8500).
9. Glass or plastic container for etching.
10. Etchant. See table 2.

Making the Negative

This method can only be used to copy ETI artwork from October 1977 on. Attempts to copy artwork from prior issues or other magazines' artwork by this method are unlikely to be successful.

Scotchcal 8007 film is UV sensitive and can be handled under normal room light. As normal fluorescent lights have some UV content, do not leave the film exposed to them any longer than necessary.

Cut a piece of Scotchcal 8007 emulsion film a little larger than the pc board and expose it to UV light through the page of the magazine. The non emulsion side should be in contact with the pc board pattern side of the page. The emulsion surface can be detected by its lack of gloss or by the fact that, if it is picked up by one corner, it will curl towards the emulsion surface. Exposure to the emulsion side will not result in a bad image - it will result in no image at all!

The film can now be developed by placing it emulsion side up on a table and pouring some developer (Scotchcal 8500) on the surface, spreading it to give a liberal coating over the entire surface using a piece of cotton wool, tissue or soft paper. Allow it to settle for 5-10 seconds then, with a light rubbing action, remove the unexposed material leaving the desired image. Wipe off excess developer and allow the film to dry.

If excessive rubbing is necessary to remove the unwanted material the exposure was too long while if the wanted material also tends to come off, the film was under exposed.

Using Photo-resist

The KPR and CCNR2O4 resists are liquids and are used to coat blank pc board material while Riston is a plastic material which is supplied prebonded to
fibreglass pc board material. It is easier to use but more expensive. For Riston, skip the next instructions and go direct to 'exposure'.

Laminate Preparation

Cut the blank pc board material, preferably about 10 mm larger than the finished size. This simplifies handling and coating of the board.

The laminate should now be scrubbed thoroughly using a powdered abrasive cleaner such as Ajax, using a new Scotchbrite pad or clean paper towelling and water. Wash the surface well and ensure that there is no trace of grease on the board and it "wets" evenly. Dry the surface then wipe it with a paper towel dampened with the appropriate developer, then dry agaın. Be careful not to touch the surface as skin oils will nullify the preparation.

Coating the Laminate

Like Scotchcal film, these resists are UV sensitive and can be handled under room lighting but exposure to fluorescent lights should be avoided or minimised.

Pour a small pool of resist in the centre of the prepared laminate and smooth it over the entire surface with a soft clean paintbrush to give an even thin coating. If too much resist has been used pour some off the edge, then smooth it out again. A second method, and the one we use with KPR resist, is to place the board on the palm of the hand and pour some resist onto the centre of the surface as before. Then by tilting the board slightly the resist can be made to move around and finally cover the entire surface. Now the excess is drained off (back into the bottle if desired) and the board is left resting on edge (on a paper towel preferably) for about five minutes. Wipe off any excess on the edge; as with all negative acting resists the coating must be thin. Your
paintbrush should be cleaned after use in the appropriate developer. This will soften and rinse out the resist.

Bake the laminate at about $80^{\circ} \mathrm{C}$ for 10-15 minutes to ensure the coating drys. KPR will dry at room temperature in about four to five hours if an oven is not available.

Exposure

All three resists are exposed in the same way using the same setup as for the Scotchcal film. That is, the negative is clamped onto the precoated surface and exposed to UV light. With the Riston there is a protective plastic coating on the surface and this should be left on during exposure.

Exposure times will of course vary with different light source/distance but we found that six minutes for KPR, three minutes for CCNR204 and one and a half minutes for Riston suited our setup, so experimenting around these times should yield reasonable results.

Development

All three resists have their own developer but the procedure is similar. With the Riston remove the protective plastic sheet before development.

Place the board face up in a tray of developer. With the Riston brush gently with a paint brush until the unwanted material is removed. With the CCNR204 gentle rocking is recommended for about two minutes until the unwanted resist dissolves, while with the KPR simply deave the board for three minutes or so.

Wash the board under running water, particularly the KPR which should be sprayed with a strong jet of water as the unwanted resist is simply softened and must be removed.

If the required image comes off it either means under exposure or bad surface preparation. If the unwanted area will not come off or if the tracks widen and holes fill in it is over exposed.

Post Baking

The CCNR204 requires a post bake of about 30 minutes at $110^{\circ} \mathrm{C}$.

Etching

Place the laminate in the etchant and gently agitate until the unwanted copper is dissolved. Alternatively if the container is deep enough, support the board by its edge, but off the bottom, until etched.

While there áre many etchants available the two most common (and least dangerous) are ferric chloride and ammonium persulphate. The method of mixing and ideal concentrations are as follows-

Ferric chloride

(a) Hydrated (yellow lumps). Mix 1 kg . with each litre of water. Heating to 75 $80^{\circ} \mathrm{C}$ will help it dissolve.
(b) Anhydrous. Slowly mix 500 gm . with $1 \frac{1}{2}$ litres of cold water, stirring continuously as extreme heat is generated.

Ammonium Persulphate

Mix 400 gm in one litre of water.

Pro's and Cons of Etchants

Ferric Chloride - It is cheap and will work cold. However, it is dirty and will stain clothes, etc.
Ammonium Persulphate - It is clean, will not stain clothes, is transparent allowing etching to be seen. However, it must be used hot, i.e., $40-50^{\circ} \mathrm{C}$. New solution etches in about five minutes.

Lower concentrations of both etchants will result in longer times. As both etchants will attack most metals, use plastic or glass containers. For ammonium persulphate a shallow fish tank (less the fish!) and heater (suitably wound up to $45^{\circ} \mathrm{C}$) is ideal.

Storing

Ferric chloride can be stored in a bottle (not a drink bottle please) when not in use. Ammonium persulphate must not be stored in a closed container due to a gas given off. It also decomposes with time so don't be surprised if a six month old solution doesn't work.

After Etching

The resist normally has to be removed as it makes soldering more difficult. For KPR rubbing with steel wool is the easiest method while with CCNR204 a couple of minutes in the developer softens the film allowing it to be rubbed off with a paper towel. The Riston can be removed with acetone or lacquer thinners.

A light rub with steel wool to clean the surface followed by a thin coating of liquid flux helps.

Drilling

If a drill press is available with a reasonably high speed the use of tungsten tipped drills, provided you are doing a reasonable quantity of boards, is economical. These cost about $\$ 3.00$ each compared to 75 c for normal drills (No. 60 or 1 mm), but they don't go bluntl They are not recommended for handheld drills as they are brittle and break easily.

Fig. 1. The circuit diagram of a filter which we are using as an example.

APPROXIMATE TIMES IN BOARD PRODUCTION

JOB.	APPROX. TIME
Expose negative	20 min.
Develop negative	5 min.
Cut and prepare board	$10 \mathrm{~min} . *$
Coat and pre bake board	$20 \mathrm{~min} . *$
Expose board	5 min.
Develop board	5 min.
Etch board	15 min.
	1.20 min.

*These can be done while negative is being exposed.

TABLE 1			
Resist	KPR Photo resist	CCNR204	Riston
Developer	KPR Photo resist developer	CCNR206	Riston developer
Pre bake time	$20 \mathrm{~min} . @ 80^{\circ} \mathrm{C}$	$15 \mathrm{~min} . @ 80^{\circ} \mathrm{C}$	NIL
Post bake time	NIL	$30 \mathrm{~min} . @ 110^{\circ} \mathrm{C}$	NIL
Exposure time (relative)	6 min.	3 min.	$11 / 2 \mathrm{~min}$.
Supplier	Kodak	Circuit Components	

Design

Equipment Needed

Light box*

Transparent 2.54 or 1.27 mm (0.1 or 0.05 inch) grid*

Matte one side drafting film (Accufilm)*
Crepe tape of appropiate widths
Crepe pads of suitable diameters
Stick on patterns for special components (ICs etc)
*A 2.54 mm (0.1 inch) graph pad and tracing paper will suffice if you are not going to do many boards.

The Circuit Diagram

This obviously is the starting point. Use a component numbering scheme, i.e. R1, R2, C1, C2 etc, as it will aid the layout. The circuit should have been proven in a breadboard setup unless it is very simple and foolproof (remember Murphy!)

Working out the Pattern

This takes time, patience and experience to do well. Some of the complex computer type boards may have taken more than a week just to layout! However simpler boards can be done a lot quicker especially if size is not important.

Cut a piece of the drafting film and stick it matte side up on the grid on the light box. The matte surface will take pencil well. Before starting the layout check all components to be used to obtain their physical size and note if their leads must be positioned accurately as with ICs. Also check from the circuit diagram if any conductors are carrying high currents or are at high voltages as this will affect track width and spacing. Tables 2 and 3 give the current capability of tracks and clearances required. Also note if there is any special requirements to prevent feedback or similar problems. With

TTL circuiting for example the OV line should be as solid as possible with decoupling capacitors on the 5 V line every 2 or 3 packages. For general, low voltage/current work we recommend pads of 3 mm (0.125 inch) tape of 1 mm (0.04 inch) wide using at least 0.75 $\mathrm{mm}(0.03$ inch) clearances. Where space is at a premium lines of $0.65 \mathrm{~mm}(0.025$ inch) and spaces of 0.5 mm (0.02 inch) can be used; however to maintain these clearances double - size artwork is needed.
The layout is initially done in pencil with the components represented by either their physical size or their circuit symbol. This drawing should be done from the component or non copper side. In our example we have initially given a layout which is done virtually as the circuit diagram is drawn. While this is easy and will work it uses a lot of board space, especially on a large circuit. By rearranging the components the layout in Fig 3 results. This is much neater and requires less board space.

Normally several different arrangements will be necessary before the final one is chosen. With a larger more complex board it is often easier to lay out sections of the board separately on different parts of the sheet of film and finally combine them into a single main drawing. This is especially so if the layout has to fit into a specific size board.

With a single sided board it is often impossible to join all pads even with careful positioning of components. In this case jumpers or links can be used. If a larger number of these are required it may be easier to use double sided board.

Taping

Before taping the circuit, double check to ensure there is enough room between the pads for the conductors to pass through with adequate clearance. Lift off the drafting film and turn it over repositioning it accurately on the grid. Commence taping with the IC sockets and any other special pads which have a backing material larger than the pattern itself. Then add the circular pads and finally the lines. The
crepe line can be bent to go round corners, even sharp ones if you are careful. It should not be stretched more than necessary as it may creep and move off the pad creating an open circuit.

When running a tape between pads the maximum clearance is obtained when the tape is at right angles to the line between the pads. Fig. 5 gives an example of this.

Once the taping has been finished add a number or code onto the board using 'letraset' or similar so that you

Filleting the tape-pad junctions.

Dissolving the resist (Riston) in the developer.
will know which is the right way round once a negative is made. Lift off the film and reverse it again. All the pencil can now be rubbed off and the layout checked for accuracy. A photo copy is good for this if available.

When soldering a pad the glue holding it to the pc board base material always softens. If the line joining the pad is too thin it may not conduct heat itself and if any pressure is applied to the joint a break may occur at the edge of the pad. To avoid this the line to pad junction should be filleted. This can be done with a normal drawing pen and ink on the matte side of the master. This film however does not absorb ink and drying time is long. A hair dryer or similar is useful for speeding up this process.

The Negative

This is similar to copying the artwork out of the magazine except only about $11 / 2 \mathrm{~min}$. exposure is needed and the non taped side should be against the negative film (non emulsion side).

Fig. 4. The setup we use for exposing the PC boards.

Fig. 5. The correct way and the wrong. way to run tapes for maximum clearance and minimum line length.

Without Compromise.

Choosing stereo headphones to suit the audio enthusiast's individual requirements has now become much easier, thanks to three models recently introduced by AKG.
They are "made in Vienna", the city of music, for peop.e who judge the quality of headphones, not only by outward appearance, but who also appreciate comfort and the wide and smooth
frequency response provided by the unique AKG large diaphragm systems. The K 240, with 14 diaphragms, offers an extremely wide stereo image: the K 140, through functional design, adapts itself automatically to the shape of
any head, and finally the K 40, a sweet sounding but robust and economically priced model with soft foam earpads, for maximum comfort.
Available from your local AKG hi-fi dealer in 104 countries throughout the world.

25 MHz Bandwidth

ELECTRONICS PTY. LTD.
Miles Street, Mulgrave, Victoria. 3170. P.O. Box 325 Springvale, 3171

Telephone 5612888 Telex 35115

- 5 mV Sensitivity
- 30MHz Triggering

Dual Irace Oscilloscope

at a price you expect to pay for half this performance.
The new BWD 539D is superb for CB Radio, μ Processors, Video recorders, Colour TV. Audio systems, Video games or any application where waveform fidelity and measurement accuracy is essential.

Break through the performance barrier. Ask for your BWD 539D data sheet today.
N.S.W. Amalgamated Wireless (A'asia) Ltd, Sydney. Ph. 8888111

QLD. Warburton Franki (Brisbane) Pty. Lid., Phone 527255
S.A. Protronics Ply. Lid., Adelaide. Phone 514713

Rogers Electronics, Adelaide. Phone 426666
W.A. Cairns Instrument Services, Perth. Phone 253144

TAS. Associated Agencies Pty. Ltd., Hobart. Phone 231843

14 page illustrated

 CATALOGUEof top quality electronic components - TTL, CMOS, LINEARS, Transistors, Zeners Capacitors, resistors, trimpots etc. Surprise yoursels with our discount prices. Just write to:

DIGGERMAN ELECTRONICS
 P.O. Box 33, Coramba, N.S.W. 2466

Keep electronics a hobby and not a luxury, compare our prices and buy from us. Same day turnaround service. Quality assured.

ELECTROCAPS			
CAP 16 V	25 V		

T03 KITS
MOUNTING
10 for $\$ 1$
or $\$ 4$ box
of 50
Generous
kit Includes
mica, screws,
nuts, washers,
tas, nylon
bushes.
LEDs: 28 c ea.
big red \& cllip.
Clip alone 3 c
Zeners: 15 c ea.
$400 \mathrm{~mW} 5 \%$
E24. 3 V to
33 V

POLYESTER
FILM CAPS
E12 10\% 100 V All values. 001 to. $01-7 \mathrm{c}$ ea. $.01=7 \mathrm{c} .1 \mathrm{l} \cdot 13 \mathrm{c}$.012 - 8c.12-14c $.015-8 \mathrm{c} .15-14 \mathrm{c}$ $.018 .8 \mathrm{c} .18-14 \mathrm{c}$.022 - 8c. 22 - 16 c $.027-8 c .27-16 c$.033 - 8c. $33-18 \mathrm{c}$ $.039-9 \mathrm{c} .39-19 \mathrm{c}$ $.047: 9 \mathrm{c} .47 \mathrm{Al}^{22}$
$.056: 9 \mathrm{c}$.056. 9c All .082 .10 c value

Specials: Economy LEDS - big red with clip - 20c ea. \$1.80/10, $\$ 15 / 100$.
Electrospecial: Axial $1000 \mathrm{uF} / 16 \mathrm{~V}-20 \mathrm{c}$ ea. plus 2 c ea. extra postage.
Reslstors: 2c ea. 1/4W carb film 5\% E12 values 1 Ohm to $1 \mathrm{M} \$ 1.80$ / 100 same. Also $1 / 2 \mathrm{~W}$: 3c ea. metal glaze 5% E12 2.2 Ohm to 470 K only. $\$ 2.50 / 100$ same.

Potentiometers: 50 c ea, rotary carbon sing. gang - log or lin: 1 K ,
$5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}$ Trim Pots: 17 c ea. $-10 \mathrm{Km}, 250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}$ (metal shafts). $500 \mathrm{Ohm}, 1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$. or vert: $100 \mathrm{Ohm}, 250 \mathrm{ohm}$,

All goods top quality \& new. No minimum order. One P/P charge of late regardiess of quantlity. Advert current 3 months for beneflt of late readers. Our prices a standard by which to judge others - If you are paying more you are supporting profiteers.

Unitrex Calculator Contest

Well, we all had a lot of fun with the October contest, you thinking up those root two mnemonics and us reading them! We also had a tough time deciding on a winner; we got it down to a short list of six all of which were excellent and one of which was unprintable!

We'll show you what we mean. First off is Ivan Martin of Lindfield, NSW who got two entries into the big six. His first entry starts 'A girl I know is a bit loose,' and the rest is unfortunately unprintable! But we thought it was rather funny, having the same curious sense of humour as Mr. Martin!

Ivan Martin also contributed a second entry, which runs like this: 'I have a disc by a new group coming to our country, the incredible 'Cosmology'. whose relativity song, 'Crawling Neutrino', engendered a simply gigantic overseas acclaim.' This entry uses three 10 -letter words to represent the zeros in the value of root two - other entries used all kinds of tricks to get round this problem.
A.I. Godfrey of Ardross, WA, submitted: 'A girl I know is a new woman thanks to her rushing out, acquiring rifle, then shooting paramour; a female approach becoming popular'. in which the punctuation marks count as zeros.

Also from Ardross, WA - from Mrs. H. Godfrey, in fact - comes this piece of genuine old-fashioned chauvinism: 'I hate a chap in a bed being ardent in the British way! Australia awake! More chivalry required! A maiden deserves Southern passion' which makes ! $=0$.

The celluloid-inspired Mr. P. Jarvis of Mt. Kuring-gai, NSW tackled the zeros head-on in this piece:
'I, whom I know as a cad,
Think fondly of the wistful sad O , Miserable weepy O ,
Ever drearily mournful O,
A subtly poignant creature tragedy'
If the poetic Story of O doesn't move you, here's an attempt that would have moved the great McGonigall himself to tears:
'A poem I trim as I sit
Scant regard to any synonym fit,
Cyphering roots,
Such bulldust pollutes,
I hereby bequeath immortal iambics' using commas to represent zeros.

After the great wailing and gnashing of teeth had died down in the office, we decided the only fair and equitable thing to do was to award a calculator to each of our winners.

If you really want to read Ivan Martin's rather bawdy first entry, then send us a stanped addressed envelope and we'll send you a photocopy. But be warned - if you are offended, it's your own fault for being so curious. Also, if we suspect from your handwriting that
you are in what we shall call the "junior age group' and too young for such provocative reading, you'll just get an empty envelope back.

On the subject of puzzles, pleasé, please, no more solutions to the Puzzle of the Drunken Sailor unless they take less than thirty moves which is the current minimum. Since that puzzle went down so well, here's a similar one as the December ETI/Unitrex Caiculator Contest, which was contributed by a gentleman with an unintelligible signature from Dandenong, Vic. (no kidding, we hope he knows we mean him!).

Two 'mobs' of sheep (English 'mobs', only four sheep per 'mob') are proceeding along a narrow path, the width of one sheep, in opposite directions. When they meet, there is one sheep's length between the leaders, and they now have to pass each other. Each sheep is only agile enough to jump over one other sheep or move forward a space, but can make as many moves as it likes without getting exhausted. Numbering the initial positions of the sheep 1 through 9 , position 5 being a space, in what order should the sheep move to minimise the number of moves required?

Scal an empty envelope, write your answer on the back of it with your name and address, and send it to: Unitrex Calculator Contest (Decernber), ETI Magazine, 15 Boundary Street, Rushcutters Bay, NSW 2011. Closing date is January 20th, 1978.

This rather unusual project prototype turned up in our labs the other day. We hope the final project will be slightly more refined!

The all new JAVELIN 900 series $1 / 2$ "

PORTABLE RECORDING SYSTEM

are compact and 7 lbs ., lighter than anyone else's.

FOUR MODELS to choose from. Javelin VTC systems are available to cover every operational range from bright sunlight down to starlight.
VERSATILE. Self contained rechargeable batteries provide a full hour of fieid use. Or plug into 240 VAC or your car's cigarette ilghter for continuous operation. One long playing cassette will store a 30 minute program, and you can pop in a fresh one In two seconds flat.

EASY TO USE. An electronic viewfinder provides 'see what you get' operation, and can be used for instant, on the spot playback. Sound and light levels are set automatically, Insuring smooth recording continually no matter how many times you stop and start. Or you can dub the sound later, if you prafer. Record directly from any monitor/ receiver if you want. Or use them to play back your own program.

AFFORDABLE. Even with all these features, Javelin's portable recording system are as easy to own as they are to operate. For further details, specifications and availability contact:

Photo Scan

Distributors (NSW) Pty. Ltd., P.O. Box 588,
Potts Point, NSW 2011 or telephone 31-0966.

THIS MONTH'S

SPECIALS

BC 547 (107)	BC 307 (557)
BC 548 (108)	BC 308 (558)
BC $549(109)$	BC $309(559)$

All just 15c each

Still some MOTOROLA MJ2955, 3055 at 94c each

An ideal gift for Christmas. Highest quality lightweight headphones from CORAL for only $\$ 27.50$.

KITSETS

657 Pittwater Road, Dee Why. 9827500 293 St. Pauls Terrace Brisbane 528391

Project 588

THEATRILCAL LICHTIIIG contriller

Pt. 2 Circuit Details

THIS MONTH WE ARE continuing the series on dimmers with a detailed description of the circuits. We are delaying final mechanical description until next month: although the circuit is fully tested, working and ready-to-go, we are still experimenting with the most economical method of manufacturing slightly.

4. Input buffer

This serves two purposes; firstlv, it allows a megohm input impedance and secondly below 0.1 volt and turns the dimmer output completely off. This allows the give a better control range, ie with the filaments just glowing, yet have them off if the control voltage is reduced to zero. diode D1 will lift the voltage on pin 2 of IC1 to equal that of the input on pin 3.
 about 0.1 volt due to R3 and the output of IC1 will go to about -10 volts.
 minimum adjustment potentiometers. This
 the input voltage and the minimum
adjustment only moving the curve up and นәчM adeys әч7 sutiopre inounin uмор

 input of the oscillator IC4 remains within
the supply voltage of the IC. $(+12 \mathrm{~V}, 0 \mathrm{~V})$ 6. Oscillator/triac drive
A CMOS oscillator IC4 is used to drive Q1 which supplies the energy for the pulse
transformer T1. The oscillator will only I suid) stndu! jonuos วчf uวчм əteiado

 7. Power stage

 of sassed $k q$ se parn ospe are sioupordej

HOW IT WORKS - ETI 588

 To help explain the operation the circuit can be broken into seven sections.. Power supply This is a simple full wave rectufer wh C16 and C17. Using 3 terminal regulators this is reduced to ± 12 volts which is needed for the circuitry. generator As the thes that the supply authority superimposes on the mains voltage. These are normally about 1050 Hz and can cause problems by upsetting synchronization of comprising IC6 and associated com-
 relationship this is corrected using phase
 Potentiometer RV3 is used
the phase shift is zero (at 50 Hz) with

 aq mini indino siy os LDI ot sosempon indu

 IIE IV Jufod sutssos oiaz aчt tnoqe uotion
 znoqe 'วs|nd әмp̣e

3. Curve generator

This produces the output shown in Fig. 6. .

 I! se kressojou si anino v onteurelp arou

 drive waveform showing the collector

sync pulse.

Fig. 3. Waveform showing relationship
between the end of the half cycle and the
sync pulse.
sync pulse loutput of IC7)
3
4
4
0
0
0
3
3
0
0
0
0
0
0
3
0
3
3
3
Fig. 2. Waveform taken on our 5 beam
oscilloscope? No we cheated to show the
phase relationships between various waveforms.
Waveforms from the top are.
voltage of $Q 1$. 3
Fig. 1. The circuit diagram of the complete dimmer module
oscillator contrive (collector of Q1)

Kits for these dimmers and the rack will be available from Nebula Electronics Pty Lid late January.

Fig. 5. The circuit diagram of the control desk.

There are two controls for each dimmer along with two master controls. The master controls vary the voltage on the individual level control potentiometets from 0V (no light) to -8 volts (full light). Normally one master will be at maximurn and the second at zero. The outputs of the two controls for each dimmer are added by an operational amplifier, referred to 0 V . As one set of potentiometers has 0 V on
both of its ends it can be varied without changing the output allowing it to be set for the next scene. By varying the master controls together, but in opposite directions, the complete lighting set up can be smoothly varied from one scene to the next.

As we need +12 V out to drive the dimmers the supply voltage of the control desk is ± 15 volts.

Fig. 6. The frequency and phase response of the control tone filter.

Fig. 7. The input-output relationship with the minimum adjustment at two different levels compared with a non compensated control curve liinear phase angle control).

MOW量OOWM Two superb 12^{3}-way 40 watt speakers per hour while you assemble them.

The Philips AD12 K12 MKII Speaker Kit. Full 40 watts RMS capacity. Modern, completely finished cabinet. Assembles in nine simple steps, taking most people about two hours. The finished job looks like it has been put together by a professional. And you save about $\$ 100$ per pair on a comparable assembled system! A modern three-way $\mathrm{Hi}-\mathrm{Fi}$ system with $1^{\prime \prime}$ domed tweeter, $5^{\prime \prime}$ mid-range and super $12^{\prime \prime}$ woofer, all fully imported, and rated full 40 watts RMS per channel. Power to deal with any reasonable living room. A particularly brilliant sound, with an excellent overall frequency response for the cost. It closely follows the ideal Bruel \& Kjaer curve for Hi-fi equipment measured in an actual listening room, using the "Third Octave Pink Noise Method".
Also available: Other quality systems at similar impressive savings. Phone or send coupon now for full details of all kits.

PHILIPS ELECTRONIC COMPONENTS AND MATERIALS

$1 / 4 \mathrm{w}$ rotary, carbon, log or lin. single gang $1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$,
$100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}$

4001
4002
4006
4006
4007
4008
40112
4013
4014
4016

	REGULATORS			
UA7805	(TO220)	+ $5 v$	1 A	\$1.30
UA7808	(TO220)	+ $8 v$	1 A	\$1.30
UA7812	(TO220)	$+12 v$	1 A	\$1.30
UA7815	(TO220)	$+15 v$	1 A	\$1.30
UA7818	(TO220)	$+18 v$	1 A	\$1.30
UA7824	(TO220)	$+24 v$	1 A	\$1.30
UA7912	(TO220)	- 12 v	1 A	\$2.25
4 A723	VARIABL	NDIL		20
UA78HG	(TO3)	5 AMP	VARIABLE	\$8.90
UA78H05	(TO3)	$+5 v$	F AMP	$\$ 8.90$ $\$ 8.50$

FAIRCHILD CB REGULATORS @ 2 AMPS + $\begin{array}{ll}\text { CB KC TO3 } & \$ 3.50 \\ \text { CE } V C(T O 220) & \$ 2.65\end{array}$

TRIMPOTS

10 mm O.I.N.
OK, $100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}$.
P.C. BOARDS FOR PROJECTS

QUALITY FIBREGLASS

LINEARS

741	
UA330	
4 A311	
4 A34	
	\$1.

TOGGLE

SWITCHES
NKK Uitraminiature
U-2012 SPST 75 c U-2022 DPDT 95C U-2023 DPDT
(CENTRE OFF)

OPTO

FND 357
(C.C. 375 ") - $\$ 1.30$

FND 500
(C.C. .5") . $\$ 1.40$

FND 5220
(DUAL .5") . $\$ 3.10$

LEDS
RED (with mount)
VÉLiLOW . . . 25 A C GREEN 35 c

DIODES
IN4004 400v1A 8
IN5625 400v5A 40

POLYESTER CAPACITORS 100 v

TRANSISTORS .001-.01..... 8c ${ }^{\text {BC107.8.9.... }}$ BC

 .068-. $15 . . .:$. 15 c

ZENERS
400 MW 5 percent E24 Values 3 VV to

$$
-3
$$

C SOCKETS
8 PIN DIL
14 PINDIL ${ }_{3}^{25 \mathrm{c}}$ 16 PIN DIL …33c

2N 3055
BF 180
BF $180 \ldots . . .65 c^{\circ}$ PN3565 25 C SCI41D
(TRIAC) . . $\$ 1.30$

RESISTORS
I.R.H. Metal Glaze 1/2 Watt E12 Values 2.20 HM to 1 meg 2.5 cents each or mixed, 2 cents for 100 plus.

Weller cordless solderlng Iron KIt model WC1000KW Includes batterles, solder 4 Interchangeable tlps, battery charger, plus list enclosed with each order. Postage and packing charge 5 oc per
order.

gAllery Bias

TO ALL OUR CUSTOMERS \& FRIENDS From all at Dick Smith Electronics mic with Auto Lave
Control (ALC). A real boon in cutting down over modulation, one of the big causes of TVI! Comes with cord, slider control. Cat C-1108 0
6. UIM SCAMD MICAOCOMPUTEM

- - - - -

SAVE NEAR
5.9
$\$ 200$ off last model! (EDUC.8.)
cook! only s 105

BRILLANT NEW

 BELT DRIVE T'TABLEHow about this? A two speed belt-drive turntable complete
with superb veneer base and acrylic cover, plus quality mag. cartridge all for $\$ 135.00$! Should be $\$ 181$. but our introduc
 small Australian antenna bases and find now that all those standard base antonas wont fit! No worries! We now have a use to $3 / 8^{\prime \prime}$ adaptor which will let you Now there's no need to be tied to one brand of antenna - or one type. Go
to the accepted standard base - it t's more versatile. Car 0 D.4504 (1) IO VICES?

We still have a few of the original FIBREGLASS printed circuit boards left for the 3.5 MHz exciter project. If you want to build your own transmitter, grab one now before they go! Cat H-8894 .. F'glass \$6.00

Thrasonics

Great for experiments! Use these fantastic little transducers for all sorts of control \& communic Feb '74). Not many
 left - be quick
Trans: Cat L- $7050 \$ 6.95^{\text {sen mom }}$ Recur: Cat L-7052 \$6.95 T
 D Unique

SLUG

 TUNINGKWIK! GET ONE BEFORE THEY'RE COPIED!!!!
This fantastic helical antenna is SLUG TUNED that means you don't have to snip bits off it to SWR it Also, it's fully moveable from car to car (because of the slug tuning. The adjousting nut is simply turned for best SWR! So simple! Standard 3/8" 24 TPI base so you can throw away your old antenna and repl ace it with one of these! Don't buy one of the OLD SUPERCEDED HELICALS: Insist on the slug-tuned! $\$$
 00 Cat
-4076

 , DICK SMITH ELECTR

SYDNEY: Civ. Ph 29-1126 Bankstown. Th 709.6600 Parramatta. Ph 683.1133

GNOBULUSES
Loge. Cat H-3740

(xuruxuryyy REALLY BEAUTIFUL KNOBS they really make any unit look so-0-0 good! These knobs are fully imported by Dick - and the are exclusive If you want to give that amplifier a million dollar look put some of these knobs on it!
Also available: Extra large size Same as others, Cat H-3744 \$1.20

ETI data sheet

MN 3001 Bucket Brigade Panasonic

THE MN3001 is the heart of our BBD experimenter's boards featured on page 40 of this issue. Each device contains two 512-stage BBDs with independent input, output and clock terminals. A pair of output terminals is provided in each BBD for cancellation of the clock component superimposed on the output signals.

P-channel silicon gate technology is used to fabricate the BBDs from chains of tetrode type MOS transistors and storage capacitors. The MN3001 is packaged in the standard 14-lead DIL plastic package.

TERMINAL ASSIGNMENT

Fig. 2. Voltage transfer characteristics.

TYPICAL CHARACTERISTICS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Fig. 3. Distortion characteristics.

Fig. 1. Block dlagram.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Ittem	SYmbol	Ratings	Unit
Terminal Voltage	$V_{D D} V_{G G} V_{C P} V_{I N}$	$-20 \sim+0.3$	V
Back-gate Bias Voltage	$V_{B B}$	$-0.3 \sim+10$	V
Total Power Dissipation	P_{T}	50	mW
Operating Temperature	$T_{\text {opr }}$	$-20 \sim+60$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T_{\text {stu }}$	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS ($\mathrm{T} a=25^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	TYp.	Unit
Drain Supply Voltage	$V_{D D}$		-15	V
Gate Supply Voltage	$V_{G G}$		-14	V
Back. gate Bias Voltage	$V_{B B}$	$V_{C P M}=0 \sim-1 \mathrm{~V}$	+5.1	V
Clock Voltage "H"	$V_{C P H}$	$V_{B B}=+4 \sim 6 \mathrm{~V}$	0.1	V
Clock Voltage "L"	$V_{C P L}$		-15	V

- 1 The MN3001 can be used at $V_{B B}=0 V$, if $V_{C P M}$ is fixed at -3 V .

ELECTRICAL CHARACTERISTICS $\left(T \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{C P L}=-15 \mathrm{~V}, \mathrm{~V}_{G G}=-14 \mathrm{~V}, \mathrm{~V}_{8 \mathrm{~B}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right)$

Item	Symbel	Conditions	Min.	Trp.	Max.	Unit
Clock Input Capacitance	$C_{C P}$				350	, pF
Clock Frequency	${ }^{1} \mathrm{CP}$		10		800	kHz
Signal Delay Time	${ }^{1}$		0.32		25.6	msec
Clock Pulse Width ${ }^{-2}$	${ }^{\text {C CPW }}$				$0.5 \mathrm{~T}^{\circ} 3$	
Clock Rise Time - 2	.$^{\text {c }}$ Pr			0.057		
Clock Fall Time -2	${ }^{\text {chap }}$			0.05T		
Input Signal Frequency	$\mathrm{fin}^{\text {in }}$	${ }^{1} \mathrm{CP}=40 \mathrm{kHz} 3 \mathrm{~dB}$ down	0		$0.3{ }^{\circ} \mathrm{CP}$	kHz
Input Signal Swing	V_{m}	2.5\% Distortion			2	Vrms
Output Signal Attenuation		$\mathrm{f}_{\mathrm{CP}}=40 \mathrm{kHz}, \mathrm{f}_{\text {in }}=1 \mathrm{kHz}$		8.5	11	dB
Output Distortion	$\mathrm{D}_{\text {tot }}$	$\begin{aligned} & \mathrm{fcp}=40 \mathrm{kHz}, \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{Vrms} \end{aligned}$			2.5	\%
Noise Level	v_{N}	$\begin{aligned} & { }^{{ }^{\mathrm{CP}} \mathrm{CP}=100 \mathrm{kHz}} \\ & \text { Weighted by } \mathrm{A} \text { "curve } \end{aligned}$		0.25		mVrms
Signa! to Noise Ratio	S/N	Max. Output Voltage vs. Noise Voltage		70		dB

-3 $T=1 /{ }^{\text {Cp }}$ (Clock period)
Fig. 4. Cut-off frequency.

Fig. 5. Output voltage swing.

Fig. 6. Frequency response.

Fig. 7. Basic circuit with clock component cancellation (single channel).

Fig. 3 - FREQUENCY RESPONSE
Fig. 8. Compensation of DC level shift due to clock frequency change using two BBDs.

Fig. 9. Extension of bandwidth nearly twice using two BBDs. Effective sampling rate becomes twice clock frequency.

EIl data sheet

2112 256x4 Bit Static RAM

LACK OF SPACE last month prevented the inclusion of the 2112 in the Data Sheet Special on Memories, but we've made up for it this month. The 2112 is a 256×4 bit TTL-compatible static RAM which is very popular in small systems where two 2112 s will provide 256 bytes of memory. Memory expansion in 256 byte increments is easy until you reach 1 K , where 82102 s could have done the job slightly more easily. The 2112 is made by Intel, National Semiconductor and many other semiconductor manufacturers.

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias
Storage Temper sture
$-10^{\circ} \mathrm{C} 1080^{\circ} \mathrm{C}$ Voltage On Any Pin With Respect 10 Ground $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation.

CAPACITANCE ${ }^{〔 21} \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}_{1} 1=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		TYp. [1]	Max.
C_{IN}	Input Capacitance (All Inpur Pins) $V_{\text {IN }}=O V$	4	8
C_{10}	$1 / 0$ Capacitance $V_{1 / 0}=0 \mathrm{~V}$	10	15

NOTES:

1. Typical values ara for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply valtage.

READ CYCLE WAVEFORMS

WRITE CYCLE WAVEFORMS
WRITE CYCLE \#1

NOTE: 1. Typical values ane for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltoge.

Pin Configuration

PIN NAMES

LOGIC SYMBOL

\square

BLOCK DIAGRAM

D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

A.C. CHARACTERISTICS FOR 2112A

READ CVCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specifled.

Symbol	Parameter	Min.	Typ. ${ }^{\text {(1) }}$	Max.	Unit	Test Conditlons
${ }_{\text {i }}^{\text {PC }}$	Read Cycle	350			ns	$\begin{aligned} & t_{1}, t_{f}=20 \text { ns } \\ & \text { Input Levels }=0.8 \mathrm{~V} \text { or } 2.0 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$t_{\text {A }}$	Access Time			350	ns	
too	Chip Enable To Output Time			240	ns	
${ }^{\text {c }} \mathrm{CD}$	Chip Enable To Ouiput Disable Time	0		200	ns	
O_{OH}	Previous Read Data Valid After Change of Address	40			ns	

WRITE CVCLE \# $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Paramerer	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
'wCl	Write Cycle	270			ns	$t_{4}, t_{f}=20 n s$ Input Levels $=0.8 \mathrm{~V}$ or 2.0 V Timing Reference $=1.5 \mathrm{~V}$ Load = 1 TTL Gate and $C_{L}=100 \mathrm{p}$.
$t_{\text {AWI }}$	Address To Write Setup Time	20			ns	
tow1	Write Setup Time	250			ns	
twP1	Write Pulse Widih	250			ns	
${ }^{\text {¢ }} \mathrm{CS1}$	Chip E nable Setup Time	0			ns	
${ }^{1} \mathrm{CH} 1$	Chip Enable Hold Time	0			ns	
'WR1	Write Recovery Time	0			ns	
${ }^{\text {T DM }} 1$	Data Hold Time	0			ns	
${ }^{\text {t }}$ CW1	Chip Enable to Write Setup Time	250			ns	

5 ELECTRDTIES LTD. The g.afat name for electronic SE Conponvers in australia

Old Fashioned Prices WERE HIGHER - TRY OUR NEW "COMPAC S"- for LOWER PRICES \&

 164.166 REDFERN ST., REDFERN, P.O. BOX 156 REDFERN, N.S.W: 2016 TEL: 69-5922 or $69.6912 \quad \begin{aligned} & \text { FROM MARCH } 78 \text {. } \\ & 699.5922 \text { or } 699.6912 ~\end{aligned}$

CAT. No: CP .1.
SUB-MIM. MICRO-SWITCM. Single pole change over. 250V 5A. Size. $18 \mathrm{~mm} \times 9 \mathrm{~mm} \times 7 \mathrm{~mm}$. U.S.S.A. manfracture. 5 for $\$ 4.50$.

CAT. No:
CP. 6 .
R.F. TRANSISTORS. Type 2 N5944 Good to 470 megs at $2 W$ output. PaNEAR 5 lo r 50 with data

CAT.
 No:
 CP. 11 .

 P\&P 75eRELAYS Miniature P.C. mounting type. Made by F.I.R.E. with 8 amp contacts, single pole changa/over. In the following values: 750Ω,
2.1 K and 7 K . Look at this for value . . . the 3 for only $\$ 6$. All new and unused.

CAT. No:

CP. 16 .
PAP
$5-\$ 1.00$

ELECTROLYTIC CAPACTTOR. Can type with mounting bracket. Made by DUCON 100 mFd 160 VW . Iremendous and unrepeatable value at only 5 for $\$ 1.00$

CAT.

No:
CP. 21 .

30e single
PAP $\$ 1.50$ for 20
ARROW TOGGLE SWITCHES. Single pole double throw with moulded switch lover, Rated VALUE 25 . Hath Dr carton of 20 for lust 34.00

Pap soc ea of 75 fe for 5

CAT. No:

CP. 26 .

ROTARY SWITCH, OAK TYPe. 2 pole 4 position, single water Shah size: $20 \mathrm{~mm} \times \mathrm{V}_{4}^{\prime \prime}$ " 1 部POSSIBLE TO BEAT PRICE of 45 C each or 5 for $\$ 2.00$.

CAT. No: CP. 2.

REED RELAY, Min. yod. 12VOC on/oft switch. Size of body 20 mm Dial 7 mm Overall Length 45 mm . 3 for $\$ 2.95$.

CAT, No: CP. 7. 2S8337 PNP germanlum PNP Power transistor in $0-3$ case. Sim. $\$ 4.95$.

PaP 75e

CAT.
No:
CP. 12.

RELAY Miniature P.C. mounting type. 12VDC double pole changeover with 5 mmp contacts. REAL VALUE HERE. . . 3 for $\$ 7.00$.

PAP SIngle 30e
 $10-90 \mathrm{c}$

CAT. No: 17.
ELECTROLYTIC CAPACITOR: Top brand by WIMA (Germany) AT S.E. at MOe each or 10 for $\$ 3.50$.

SDLID STATE RELAYS . . They'II carry 10 amps and 250 V switch and need 3 to 32 volts to operate ofti-
ciently. A bird of the normal price. OWLY AT S.E. for a paltry $\$ 5.50$
papen 10300 ?

CP. 27
ROTARY SWITCH, miniature OAK
type. 2 section 8 pole 2 position. Nylon waters. Shah size: 10 mm x y_{0}. HOW'S THIS FOR VALUE?
90e each or 5 for $\$ 4.00$.

CP.31.
PRECISION MMWIATURE TRIMPOTS - 20 TURN Wire wound. Made by RELIANCE. In the following values: $\$ 2.50$. A REAL GOOD -8UY . or $\$ 2.50$ ass io. for $\$ 7.50$.

CAT. No:

CP. 32
SWITCHES . . . 2 hole fixing with satin finished lever, 2 pole change over. 35 mm hole centres. Cannot be bought under 65 c each. S.E. price 35 sc or 5 for $\$ 1.50$.

PaP 5-40e

CAT. No:

CP. 3 .
8YF50 Gen. Purpose NPN Silicon transistor in $\mathrm{TO}-39$ case. VC 80 V
PAP 30c ea. $10 \$ 1.00$

CAT. No:

CP. 8 .
2N3054 Silicon NPN Audio OPP
transistor in TO-66 case. Vb 90 4 amp. 5 for $\$ 2.00$.

PAP 10 for 40c

CAT. No:
CP. 13.

COS/MDS Operational Amplifier Writ h MOS/FET output. In 8 load \$9.00 TYPE CA 3130.

PAP $10-30 \mathrm{c}$
$50-60 c$

CAT. No: CP. 18. RECTIFIER DIODES. Unmarked S. T.C. brand, but guaranteed. Wire ended type, 100 V 3 mp . 10 for 75 c

PaP 40e for 10

CAT. No: CP. 23. ferrite beads. 6 holes. Size $10 \mathrm{~mm} \times 7 \mathrm{~mm}$ die. Ready wired. 45 c anywhere bise but al SHERIDAN'S only 12 c each or 10 for 51.00 .

mINIATURE TRIMmING CAPACITORS. . rotary Vanetype. 2 values available. $12-75 \mathrm{pt}$ and 9 $\$$ \$25. AEAL VALUE MERE

CP. 33.

-2)

ROTARY SWITCH ... Subminiature sealed with adjustable stops 10 pos 2 pole. Overall length: 33 mm . Die 12 mm . Shaft: $10 \mathrm{~mm} \times 3 \mathrm{~mm}$. EXPLOSIVE VALUE AT ONLY $\$ 1.95$ each or 5 for $\$ 8.50$.

PAP 5 $-40 c$

CAT. No:
CP. 4.
80135 NPN silicon Power transistor in TO-126 Flatpak. $8 W$. 5 for $\$ 3.00$.

CP. 9
2 S8367 Germanium PNP Power transistor in TO. 66 case. Vb 25 lamp 4W, 5 lot $\$ 3.50$.

PGP $10-406$
 CAT. No:
 CP. 14.

CMOS Wide-band AmplifierDiscriminators Type CA3013. WHILE YOU CAN GRAB EM MITED STOCMS at the silly pries oi 5 for \$4.75.

PAP TEE

CAT. No: CP. 19. DISC CERAMICS. High voltage type with axial leads. 0.01 mid 12 KV . Tremendous value of this hard-toget Cap. Only limited quantities av-
 $\$ 1.50$.

PaP $10-40 \varepsilon$

CAT. No: CP. 24 FERRITE BEADS . . . Size $5 \mathrm{~mm} x$ 6 mm diag. 2 holes. Ready wired Another great BUY from us. Only 10c asch or 10 for 90e.

Pap

mINIATURE TRIMPOTS. Made by PIHER. P.C.8. Mounting. 10 mm dis $\times 15 \mathrm{~mm}$ long. 2 each of the following values: 50Ω - 200Ω look The 8 for 7 sc . 200Ω -

CAT.
 No:
 CP. 34.

SLIDER POTENTIOMETER singles in $1 \mathrm{~K}-10 \mathrm{~K}$ and 500 K and 2 duals $\ln 5 \mathrm{~K}$ and $\$ 4.75$. but from us only $\$ 1$.00

CAT. No:

CP. 15.

8C177 S.S. Amp. transistors in TO-18 metal can. Can say no more about this popular and well triad
PNP Silicon semi-conductor, OUR PRICE ONLY 10 for $\$ 1.50$.

CAT.No. CP 25.
MEOM LAMPS, Clear. For 240 VAC Suitable for Urilux cilip-on connertors. Length (overall) $38 \mathrm{~mm} x$ 13 mm did. Normally about 60 each. From us only 30 c each or 10 for $\$ 2.5$

AIR-SPACED VARIABLE CAPACITOR. TOp qually by JACKSON BROS (UK). 150 pi. Silver plated Vanes \& Ceramic end plates. TOP QUALITY. LIMITED GUANTITIES ONLY. Worth $\$ 5$ each. From us only $\$ 1.25$ each or 4 for $\$ 4.75$.

P\&P 60t

CAT. No.
CP. 35 .
WIRE WOUND TRIMMING POTS Made by EGEN (G.B.) 4 watts. Precision standards complete win integral knob. In ing following val yes. The 4 for 81.75 YOU CAIN DO NO BETTER.
N1.75. YOU CAN DO

> NEED MORE INFO send $\$ 1.00$ and return address for full details

APPLIED TECHNOLOGY P/L

109-111 Hunter St., Hornsby 2077.
Phone: 476 4758, 4763759
Hours: Mon - Fri. 9-5, Sat All Day.

END OF YEAR

SEMI-CONDUCTOR CLEARANCE SALE
*Offer expires 7/1/78 unless stock sold beforehand.

THE
ELECTRONIC MAILBOX
P. O. BOX 355,

HORNSBY N.S.W. 2077
(a division of Applied Technology)
Showroom 109-111 Hunter St., TERMS: Min order \$5.00
Please add \$1 post \& pack.
Open Mon-Fri 9-5
SORRY NO TAX EXEMPT SALES
All day Saturday

Power your rig direct from mains electricity with an SEC approved power supply.
These small portable units provide a factory-set 13.8V DC regulated output for maximum transmitting power.
High performance integrated circuitry guarantees clean, hum-free reception. Quick-connect terminals facilitate rapid changeover from static-mobile-static operation.

ARLEC CB radio power supplies

1.8 Amp peak capability. Automatic overload protection. 1.0 Amp continuous output. Size: $140 \times 80 \times 133 \mathrm{~mm}$

4 Amp peak capability. Automatic overload protection. 2 Amp continuous output. Size: $140 \times 80 \times 133 \mathrm{~mm}$

See them at your local CB Store or write to A\&R Electronic Equipment Co. Pty. Lid. for further details

A+R ELECTRONIC EOUIPMENT CO.PTY. LTD. A MEMBER OF TME A+R-SOANAR ELECTRONICS GROUP SALES OFFICES VICTORAA 89 U661
30 Lexton Road. Box Hill.Vic.. 3128 S AUSI ${ }^{78}$ S16981 Australia. Telex: 32286.

Buying components can be great fun, especially when you only want 16 IC's from one manufacturer and 10 from another and a few 10W resistors and a couple of connectors and Purchasing is too busy to write out 6 fiddly little orders and then the relay supplier reckons you're joking when you say you need one in a hurry and he only takes orders in hundreds and then while you're wondering how the hell you're going to get the circuit together, you're thumbing through Electronics Today and you see this advert for a crowd that can supply all the parts and aren't put off by the quantities - large or small and are small enough to care and they've even given you their telex number and they might just be the people to call and phew!

CLIP this out you never know when you Ll be: ne:ming us !!

CAPACITORS, SEMICONDUCTORS - Fairchild, ITT, National (NS), NEC, Motorola Philips, Plessey, RCA, Signetics, Texas. RELAYS - National (Japan), ITT. CONNECTORS - Acme/Kings, ITT/Cannon.
HEATSINKS - Delco Philips, Thermalloy. RESISTORS Soanar.
Ferguson.
 Beyschlag, Philips, TRANSFORMERS PLUS MORE

Orders:(02)6366052 Office: (02)6366222 Telex: AA23343

 Electronic (Distributors)2.3 Post Office Arcade, Joyce Street, PENDLE HILL. NSW 2145.

Product Review: FLUKE bozaa DIGITAL MULTIMETER

The traditional moving coil analogue scale multimeter which has served as prime tool of the trade for just about everyone involved with electricity is losing ground rapidly to comparatively new digital instruments. A widely held, and generally valid, belief is that the eradication of moving parts from equipment and their replacement with electronics will result in improvement in performance and a quantum jump in reliability. Multimeters such as the 'industry standard' Avo 8 must naturally succumb to this almost-law, relying as they do on fragile, precision jewelled movements.

Early digital voltmeters were rather large, to say the least, but of course we have all seen the effects of Large Scale Integration over the last few years. The latest product from the John Fluke

Manufacturing Co. of Mountlake Terrace, Washington, takes advantage of the benefits of LSI to produce a good quality and very functional multimeter which will fit in a pocket.

The 8020A is designed to meet the demands placed on a portable digital multimeter used in the field: it must be reliable, unaffected by rough handling, easy to use, must be small and light, run from batteries, must stay calibrated over long periods, and must be cheap. To fit this bill, the 8020A's designers chose to use CMOS LSI for the circuitry, coupled with a liquid crystal display in a tough plastic moulded case. In fact, the single chip in the meter is made by Intersil and is very similar to the 7107 described in ETI Data Sheet for October; this approach means a low component count, hence reduced costs.

The Chip

Fluke collaborated closely with Intersil in the design of the CMOS A-D chip, which has a number of interesting features. It uses the now well-established dual slope integration method of conversion. At the start of the measurement cycle, all counters are reset to zero and the unknown voltage is applied to an integrator circuit, which begins to ramp up. After 10,000 counts, the unknown voltage is disconnected and a reference voltage of opposite polarity is applied which causes the integrator to ramp down while the counter stages count down. When the integrator output reaches its starting point of zero, a comparator detects this and latches the counter output into the display.

Since the unknown voltage and the reference voltage are applied to the same circuitry, inaccuracies due to component tolerances tend to cancel out and accuracy is now dependent on the long term stability of the reference voltage and any range-selection circuitry to which the reference is not applied.

Of course, in the Fluke, it's not that simple: the A/D converter also has some logic for polarity indication and also for auto-zero, which complicates the basic measurement cycle just described.

Range switching is provided by a potential divider scheme on voltage inputs and shunts on current ranges in a similar manner to a conventional multimeter, except that the input current of the A-D chip is of the order of a few pA.

A cunning trick has been used to simplify the range switching using the characteristics of dual slope A-D. One of the pins on the chip is a range input which allows selection of either 200 mV or 2 V f.s.d. (full scale deflection? Well, you know what I mean!). This is done by changing the integration period from 1,000 counts on the 2 V range lused for three resistance ranges) to 10,000 counts for the 200 mV range (used on other ranges for greater resolution). This pin can also be used to swap the reference voltage with the unknown to allow conductance (inverse of resistance) measurements - yet another scheming trick.

Cunning design trick number three: by making the clock frequency harmonically related to the mains frequency, the A-D converter will automatically average out and reject any mains ripple signals. Unfortunately the clock is generated by a 3.84 MHz crystal, which divides neatly to 60 kHz , which is fine for the US 60 Hz mains but doesn't work so well for our 50 Hz mains. Mind you, when we tried to figure out what difference this made, we couldn't find any effect.

In addition to performing the A-D function and the associated control logic, the CMOS chip also contains the display decoding and driving circuitry fortunately this isn't too difficult with an LCD display, except for the problem of finding pins to get all the data out! The choice of an LCD display is obvious and we can expect to see a lot more equipment going to this type of display. In areas such as labs or test benches where there is a fairly high ambient light level, LEDs just don't give as much contrast.

In Use

We found the 8020A to be very easy to use, and very convenient on the workbench. Selection of voltage and

Product Review: FLUKE вогод DIGITAL

resistance or current measurements is made by selecting the correct socket for the test probe and voltage or resistance/ conductance measurements are selected on one of the side pushbuttons (if that sounds complex, look at the photoll. AC/DC selection is the top of the pushbutton bank. The remaining pushbuttons are the range switches, which correspond to the colour coding on the front panel. It took us a little while to remember which combination of letters to press for conductance measurements, but then the scheme clicked and we'd got it all figured out. A small operator's guide card helped us while we were becoming familiar with the machine.

The tilt stand/hanger/handle on the back meant that the meter can be propped at an angle: this, combined with the LCD display, gives good visibility. The meter could easily be hung on the wall at the back of your workbench where it is completely out of the way. For portability, the 8020A
is excellent, it measures only $180 \times 90 \times$ 40 mm and runs off a single 9 V cell battery drain is less than 1.5 mA and the chip will operate down to 6 V !

Accuracy on our review model is well within specs, and agreed with the 0.1% accuracy instruments we have in the lab. We checked resistance against some 0.1% resistors and found close agreement (within one digit). Try doing that with an Avo 8!

At the Australian price of $\$ 179,+$ tax, the 8020A is pitched mainly at servicemen, small labs, technical colleges, etc. and also at the hobbyist - once you've got a DMM you don't know how you got along without it, even for fairly simple projects.

Our thanks for Elmeasco, of 15 Macdonald Street, Mortlake, NSW 2100, who supplied our review model. Perhaps the highest recommendation we can give the Fluke 8020A is that Elmeasco just made another sale - the review model is now indispensable in our lab!

ACCURACY SPECIFICATIONS
(1 year, 18° to $28^{\circ} \mathrm{C}\left(64^{\circ}\right.$ to 82°). up to 90% R.H.)
VOLTS DC (all ranges)
$\ldots \pm 10.25 \%$ of reading +1 digit VOLTS AC

RANGE	45 Hz to 1 kHz	1 mHz to 2 kHz	2 kHz to 5 mHz
200 mV	$+1075 \%$ of reading 2 digits)	$\begin{aligned} & \text { F11 54 of } \\ & \text { reacing }+3 \text { digits) } \end{aligned}$	2 15* of reading -5 digils)
2 V			
20 V			
200 V			
750V	It 16 of reading - 2 oigits)		

RESISTANCE

kn thru 2000 kn Ranges $200 \cap$ Range
20 M 人 Range
CURRENT DC (all ranges) CURAENT AC (all ranges)

CONDUCTANCE•
2 ms Range 200 ns A ange
$\pm(0.2 \%$ of reading +1 diglt) $\pm(0.3 \%$ of reading +3 digits) $\pm(2 \%$ of reading +1 dioir) $\pm(0.75 \%$ of reading +1 dilgin $\pm(1.5 \%$ of reacing +2 digits) 45 Hz to 1 kHz except on 2 mA range: ${ }^{4} 5 \mathrm{~Hz}$ lo 450 Mz

[^0]

Hear your records the way they were meant to be heard.

The acoustic subtleties of great opera houses can be captured on record. Bringing them to life in your home is another thing.
Most record companies use Stanton Calibration Standard pickup cartridges to determine whether their recordings are as close to the actual performance as possible. They know that Stanton Calibration Standard Cartridges reproduce the acoustic and musical subtleties that they and the recording artists have worked so hard to achieve. If there were better cartridges made

And remember, you can't get the best out of your Stanton Cartridge unless you use a genuine Stanton Stylus.
major record companies who guard their reputations with millions of dollars worth of recording equipment, would use them. Their reputations depend largely on what they hear through a Stanton pickup. The fact that the vast majority of recording companies, as well as nearly all radio and TV stations throughout the world, use Stanton is dramatic proof of Stanton superiority.
When you play your records you can hear them the way recording artists mean you to hear them. Use a Stanton Calibration Standard Cartridge the same as they do.

LEROYA INDUSTRIESiTr

* OVER 25 DIFFERENT SPEAKER KITS STOCKED!
* 100's OF TYPES OF INDIVIDUAL SPEAKERS
INCLUDING X'OVERS, CABINETS \& ACCESSORIES.
- 12SAI
- 10SAI
- 8SAI
- 6SAI
- 12SA5
- 10SA5
- 8 SA5
- 12SA7
- 10SA7
- 8 SA7

PLESSEY FOSTER

-3016	$12^{\prime \prime}$	$3 w a y$	40W RMS
3003	$12^{\prime \prime}$	$3 w a y$	40W RMS
2503	$10^{\prime \prime}$	$3 w a y$	40W RMS
2510	$10^{\prime \prime}$	$3 w a y$	30W RMS
2010	$8^{\prime \prime}$	$3 w a y$	20W RMS
2006	$8^{\prime \prime}$	$2 w a y$	$12 W$ RMS

PHILIPS

07	$12^{\prime \prime}$	3 way	40W RMS
06	$10^{\prime \prime}$	3 3ay	40W RMS
04	$8^{\prime \prime}$	3 way	40W RMS
14	$12^{\prime \prime}$	3 way Dome Series $40 W$ RMS	
AD12K 12	$12^{\prime \prime} 3$ way Incl. Cabinets		
40W RMS			
AD8K40	$8^{\prime \prime} 2$ way Incl. Cabinets		
40W RMS			

KEF

- SK3 Concerto Kit 50 WRMS

WRITE OR RING
TODAY! (02) 7472931.

MAIL ORDER BY BANKCARD JUST QUOTE NUMBER

 3 WAY PHILIPS SPEAKER KIT$8^{\prime \prime} 3$ way kit inciudes
TOP QUALIT CABINETS
This magnificent kit includes very good looking dark walnut finished cabinets in knockdown form with acoustic loam fronts (Note: Freight on via carrier)

THIS IS UNOOUBTEDLY ONE OF THE FINEST SOUNDING KITS WE HAVE HEARD COME IN — PROVE IT FDR YOURSELF OR MAIL IN FOR THE INFORMATION.

EDUCAL кit specialists DIGITAL AM-FM CLOCK RADIO KIT

MODEL EDUCALDCR-77

Why pay $\$ 30.00$ for just a clock in an instrument case? Only an extra $\$ 7.00$ gives you an AM-FM radio plus a moulded plastic case as sold in Europe. (We get English version).

KITS FOR ETI PROJE(TS

We get many enquiries from readers wanting to know where they can get kits for the projects we publish. The list below indicates the suppliers we know about and the kits they do.

Any companies who want to be included in this list should phone LES BELL on 33-4282.
Key to companies:
A Applied Technology Pty. Ltd. 109. 111 Hunter St, Hornsby. 2077 NSW.
C Amateur Communications Advancements, PO Box 57, Rozelle, NSW.
D Dick Smith Pty. Ltd. of Crows Nest, NSW. (see Ads. for address).
E E.D. \& E. Sales, Victoria.
J Jaycar Pty. Ltd. 405 Sussex St., Sydney 2000.
L Delsound Pty. 1 Wickham Terrace. Queensland
M Mode Electronics. PO Box 365, Mascot 2020.
N Nebula Electronics Pty. Ltd. 15 19 Boundary St., Rushcutters Bay 2011. NSW.

- Appollo Video Games of Hornsby, NSW.
P Pre-Pac Electronics. 718 Parramatta Rd., Croydon NSW 2132.
S BKX Electronics Supply Service. 179 Victoria St., Kings Cross. NSW 2011.

T Townsville Electronics Centre. 281E Charters Towers Rd,
Rising Sun Arcade, Hermit Park. 4812

PROJECT ELECTRONICS

ETI 041	Continuity
ETI 043	Heads or Tails
ET1 044	Two-Tone Doorbel1.
ETI 045	Morse Practice Set
ET1 048	Buzz Board
	Simple Amplifier
ET1 062	Simple Amplifier Tuner
063	Electronic
ETI 064	Intercom
065	Electronic Sir
066	Temperature
67	Singing
ETI 072	2-Octave Orga

TEST EQUIPMENT	
ETI 101	
ETI	Logic Power Supply

SIMPLE PROJECTS

ETI 206 Metronome O.
ETI 218 Monophonic Organ ETI 219 Siren
ETI 222 Transistor Tester
Transistor TesterET
ETI 232 Courtesy Light Extender.
ETI 234 Simple Intercom 236 Code Practice Oscillator
$\begin{array}{ll}\text { ETI } 236 & \text { Code Practice Oscil } \\ \text { ETI } 239 & \text { Breakdown Beacon }\end{array}$
$\therefore E \mathrm{E}$

MOTORISTS' PROJECTS

ETI 302 Tacho Dwell 303 Brake-light Warning ET1 309 Battery Charger ETI 312 CDI Electronic Ignition ...P.ET

AUDIO PROJECTS

ETI 401
ETI 406
Audio Mixer FET Four Input Guitar Sound Unit One Transistor Receiver. Bass A,p
Spring Reverb. Unit.
ETI 408 Spring Reverb. Unit
ET1 410 Supnr Stereo. ..
ETI $413 \quad 100$ Watt Guitar Amp \qquad P,L,E,J,DT
ETI 413×200 Watt Bridge Amp ...SE
ETI 414 Master Mixer. .
Master Mixer.
Stage Mixer
25 Watt Amplifier
ETI 416 25 Watt Amplifier.
$\begin{array}{ll}\text { ETI } 417 & \text { Amp Overload Indicator } \\ \text { ETI } 419 & \text { Guitar Amp Pre-Amb. }\end{array}$
ETL 420 Four-channel Amplifier ... L.E
ETI 420E
ETI 422 International Stereo Amp SL.E.D
ETI 422B Booster Amp
50 Wat Power Module
Add-on Decoder Amp
Spring Reverberation Unit: SL, LE
Integrated Audio System.
Rumble Filter.
Graphic Equaliser. SL, E, J
Microphone Line AmpE.E. E.
Crossover Amp
Audio Level Meter
Audio Level Meter
Simple 25 Watt Amp.
Audio Noise Generator.
Compressor-Expander
Five Watt Stereo
Preamp.

ETI 446
ETi 449
ETI 480
ETI 480P
ETI 482A
ETI 4828
ETI 485
ETI 480

Audio
Balanced 50 W. 100 W Power Amp
Power Supply
Power Supply
Preamp Module
Preamp Module
Graphic Equalizer
Graphic Equalizer
50w, 100 W Power Amp.
\therefore DA . 100W Power Amp ...A.D.B

MISCELLANEOUS

ETI 502
ETI 503
Burglar Alarm
ETI 505 Strobe 506 Infra-Red Alarm. ET

ETI 509
ETI 512
Photographic Timer.
Tape Slide/Synchroniser
Tape Slide/Synchroniser
ETI 514 Flash Unit
ETI 515 Flash Unit
ET1 518 Light operated.
ETI 525 Drill Speed Controller
ETI 527 Touch Control Light
ETI 528 Home Burglar Alarm 529 . Plectronic Poker Machine : ET
ETI533 Digital Display............
TI 539 Couch Switch
ETI 540 Universal Timer
ETI 541 Train Controller.
ETI 543 Double Dice.
ETI 544 Heartrate Monitor.
ETI 528 Home Burglar Alarm
ETI 583 Gas Alarm

ELECTRONIC MUSIC

ETI 601

4600
Synthesiser.
ETI 602
Synthesis
Mini Orga

COMPUTER PROJECTS

ETI $630 \quad$ Hex Display
ETI 631 VDUKeyboard Encode
ETI 631 VDUKeyboard Encoder
$\begin{array}{ll}\text { ETI } 632 & \text { VDU } k \times 8 \text { Memory Card :...A } \\ \text { ETI } 633 & \text { VDU Sync Generator..... A }\end{array}$

RADIO PROJECTS

ETI 701 TV Masthead Amplifier ... E.D
ETI 702 Radar Intruder Alarma.
ETI 703 Antenna Matching Unit
L, A,D.E
ETI 706 Marker Generator
ETI 706 Marker Generator
C. E

Converters.
C.E

ETI 708 Active Antenna
$\begin{array}{ll}\text { ETI } 711 \mathrm{~B} & \text { Single Relay Remote Control. . A } \\ \text { ETI 711C } & \text { Double Relay Remote }\end{array}$
ETI $711 R$ Recelver control Transmitter
ETI 7IIDRRemote Control Decoder
ETI 740 FM Tuner
ETI 780 Novice Transmitter:....... E

ELECTRONIC GAMES

ETI 804 Selecta-Game
O.A.D

THE EXCITEMENT MACHINE - Just take a long, slow look at it - tms 9900

16-BIT MICROPROCESSOR INTERRUPT

Anyone who knows anything about computers has a right to get excited about this one. THE TECHNICO 9900-SS 7" 7 16" SINGLE-BOARD MICROCOMPUTER
The price? Fully assembled and tested. $\$ 775$ (Sales Tax included) or $\$ 700$ (if exempt). (Cheaper versions and kits also available.) All you need add is a power supply and terminal For full details, write to: INNOVATIVE MICRO PROCESSOR AND COMPUTER TECHNOLOGY, P.O. Box 177, Petersham NSW 2049 (560 7603, A.H.)

4148 CHANNEL AUDIO MIXER

- 8 input channels each with linear fader, input attenuation switch, bass, treble, echo send and pan controls. High and low impedance PMG inputs.
- 2 output channels with 5 stage equalisation on each channel, VU meters, overload led, master pan, echo and volume controls.
- Black anodised front panel with yellow lettering. Vinyl covered cabinet.
COMPLETE KIT $\mathbf{\$ 2 5 4 . 0 0}$ plus $\mathbf{\$ 5 . 0 0}$ Freight.

485 STEREO GRAPHIC EQUALISER

- This superb equaliser offers 10 octave-centred linear controls for each channel; level match control, in-out switch and tape monitor switch.
- The performance of this unit is equal to some of the best available.

COMPLETE KIT $\mathbf{\$ 9 8 . 5 0}$ plus $\mathbf{\$ 2 . 5 0}$ Frelght.

[^1]
ETI's COMPUTER SECTION

Brisbane Micro Course

Norman Wilson of the Brisbane Microcomputer Interest Group writes to tell us he has arranged with the Technical and Further Education Dept. for the inclusion of a course on microcomputer fundamentals in the 1978 programme. The course starts on Tuesday 14th February 1978 at 7.30 pm in the Adult Education City Centre, William Street, Brisbane. The course lasts for 10 weeks, 2 hours each week, and costs $\$ 10$, payable on enrollment. The prerequisite for the course are some electronics background and a basic knowledge of digital electronics. To enrol, write enclosing a cheque or money order for $\$ 10.00$ to: The Superintendent, Technical and Further Education Dept., P.O. Box 29, Mater Hill, Qld. 4101. For telephone enquiries, ring 224-7848.

Depending upon the response and need it is proposed to follow this course with a more advanced one on software. Incidentally, the Brisbane group seems to be thriving and now boasts 120 members.

Canberra Group

A letter from Peter Harris in Canberra advises us of the formation of a computer group in that area. MICSIG (MICroprocessor Special Interest Group) is affiliated to the Canberra Branch of the ACS but membership is not restricted to members of that august body as the club caters for both professionals and hobbyists. Membership is $\$ 5$ or $\$ 2$ for under 18 's, over $60^{\prime} \mathrm{s}$, registered unemployed, etc. The club meets on the second Tuesday of the month at 7.30 pm in Building 9 of the CCAE, and a monthly newsletter is produced which has all the news that's fit to print. Further details in the Directory.

Book Reviews

You can't run a computer without software, and the whole idea of hobby computing is that you write your own software. This collection of 'how-to' manuals and guides is available from Nerff, P.O. Box 32, Drummoyne, NSW 2047, who supplied our review copies.

Paperbytes Tiny Assembler 6800.

Jack Emmerichs' 'Tiny Assembler for the M6800' was first published in the April and May 1977 issues of Byte; this volume consists of reprints of both articles plus a User's Guide and both source and object code listings. The first section explains the design philosophy of the assembler, in particular demonstrating (by means of pseudocode) the structured programming techniques used in the writing of the assembler. If one intends to modify or patch a program of this complexity, it is important to have an overview of the program structure - besides, if you ever want to write an assembler yourself, it is useful to analyse one of the animals.

The second section of the book deals with the implementation of the assembler, specifically the translation from pseudocode into 6800 machine code which could actually be run. This section also contains notes on modification, a hex object code listing and a bar code representation of the assembler which can be input to a computer using a light-sensitive bar code scanner, as previously described in Byte. Using this method of input avoids the tedious job of hand entry - provided you've got the bar code scanner and software.

The third section provides a concise user's guide, while the fourth is an assembly listing of the assembler assembled by itself. It is a single pass assembler which runs in 4 k of memory

COMPUTER CLUB DIRECTORY

Sydney: Microcomputer Enthusiasts Group, P.O. Box 3, St. Leonards, 2065. Meets at WIA Hall, 14 Atchison St., St. Leonards on the 1st and 3rd Mondays of the month. Melbourne: Microcomputer Club of Melbourne, meets at the Model Railways Hall, opposite Glen Iris Railway Station on the third Saturday of the month at 2 p.m.
Canberra: MICSIG, P.O. Box 118, Mawson, ACT 2607 or contact Peter Harris on 72 2237. Meets at Building 9 of CCAE, 2nd Tuesday of month at 7.30 p.m.
Newcastle: contact Peter Moylan, Dept. of Electrical Engineering, University of Newcastle, NSW 2308. (049) 68-5256 (work), (049) 523267 (home).
Brisbane: contact Norman Wilson, VK4NP, P.O. Box 81, Albion, Queensland, 4010. Tel. 2621351. New England: New England Computer Club, c/. Union, University of New England, Armidale, NSW 2351. (New club; not restricted to students) Computer clubs are an excellent way of meeting people with the same interests and discovering the kind of problems they've encountered in getting systems 'on the air'. In addition, some clubs run hardware and software courses, and may own some equipment for the use of members. Try one - you'll like it!

If your club is not listed here, please drop us a line, and we'll list you. The same applies if you are interested in starting a club in your area. Also, if established clubs know their programme of forthcoming events, we can publicise them.
and has a number of interesting features which we cannot discuss here.

A must for the 4 k 6800 owner at $\$ 8.50+\$ 1$ p. \& p.

Understanding Microcomputers

A good book for the complete beginner, this volume starts small but ends up discussing quite complex devices and system considerations. It is obviously difficult to discuss microcomputer programming without giving examples, and to do this Scelbi have chosen to use a hypothetical computer which bears a remarkable similarity to the 8080. The different instructions used by common micros are introduced and this leads to a discussion of machine code programming and then higher level languages. On the hardware side, various peripherals and I/O devices are described and different microcomputer system configurations are discussed.

The treatment is entirely nontechnical, and people who are already playing with a micro will have covered much of the material before, but they will still find a lot of interesting reading here. Excellent for beginners - $\$ 10.95$ + \$1 p. \& p. well spent.

Scelbi 8080 Software Gourmet Guide and Cook Book

This book really carries on where 'Understanding Microcomputers' leaves off. Many readers of that book, being familiar with an 8080 -like processor, will naturally gravitate towards an 8080based (or Z-80 based) system. If they don't immediately jump to BASIC, but instead dabble in the delightful art of machine code programming, this is the book for them. The chapters cover: the 8080 instruction set; using the 8080 stack; general purpose routines; conversion routines; decimal arithmetic routines; floating point routines; I/O processing; and search and sort routines. Scelbi don't use the standard Intel instruction mnemonics, which is a bit baffling at first, but one soon becomes familiar with 'LAB' in place of 'MOV A, B', for example. The routines are all useful and are well explained. This book should be a textbook in many Computer Science courses. Highly recommended. There is a companion volume on 6800 , by the way. Both are priced at $\$ 10.95+\$ 1$ p. \& \mathbf{p}.

The '8080' Programmer's Pocket Guide. A great crutch for stumbling beginner programmers who can't remember which flags are affected by what

instructions and similar information. Each 8080 instruction is analysed as to what it does, what registers and flags it affects, what it is used for, and the machine code is given in both octal and hexadecimal. An added bonus is the inclusion of an Intel-format paper tape loader. The Pocket Guide is $\$ 3.50+\mathrm{p}$. \& p .

Tychon Code Cards

Tychon, Inc., are the very talented people who produced the 'Bugbook' series on digital electronics and microcómputers. Their slide-rule-like '8080 Hex Code Card' and ' 8080 Octal Code Card' are cunning devices that let you find the machine code corresponding to a particular mnemonic. This makes hand assemblies a lot easier. The cards also indicate which flags are affected by an instruction and has ASCII-octal, octalbinary conversions and other information on the back. Both cards are $\$ 43.50+\mathrm{p} . \& \mathrm{p}$.

LSI-II Rides Again!

The Digital Equipment Corporation (DEC) LSI-II microcomputer has apparently undergone a major redesign and now son of LSI-II takes to the range. The new design will be around 40% cheaper through the use of new LSI components such as 16 k dynamic RAMs.

R2-D2 Nuthin'!

A report in the New York Times tells of a 2 metre self-propelled robot security guard which makes Star Wars seem like Snow White and the Seven Dwarves! The Century 1 security robot, manufactured by Quasar Industries Inc. of Rutherford, New Jersey, weighs 300 kg and is bullet-proof. Century uses various sensors to detect bodyheat, movement and noise, and after locating an intruder, can pursue him at 20 mph . Says Quasar's robot expert, A.J. Reichelt, 'he can keep at that speed a lot longer than you can'. When the robot gets within 3 metres of the intruder, it orally instructs him to stop. If that doesn't work, Century can use a strobe light to blind him, an electronic gun to shock him, a high frequency sonic transducer to deafen him, or can simply squirt laughing gas at him. Personally, I'd stop!

If Century I doesn't impress you, Century II, which is under development for the US Army certainly will. A.J. Reichelt's comment is, 'Once he's put on program, nobody can stop him.'

CCD 2nd Sourced

National Semiconductor and Intel have signed a second-source agreement for the 65536 bit CCD memory type 2464.

Owners of Altair, Imsai, Vector Graphic, Parasitic Engineering, Cromemco Z-2, TDL and other S-100 bus computers take heart!

Subsystem B offers a choice of three memory modules - 4KRA. 8 KRA or 16 KRA - with four, eight or sixteen thousand bytes of memory for programs and data. The VDM-1 module interfaces the computer with a tv monitor. The CUTS (the Computer Users Tape System) module interfaces with a cassette recorder for program loading and mass storage of up to 200.000 characters per C-60 cassette. For all other communication to the outside world - keyboard. teletype. printers and so forth $-3 \mathrm{P}+\mathrm{S}$ provides three ports for data input or output.

The General Purpose Memory (GPM) is a single piece of hardware/software which integrates the functions of all the other modules. The software is preprogrammed onto IC chips and provides instructions to operate the interfaces as well as set up elementary operating commands for the system as a whole which can he entered through a keyboard.

COMPUTER BITS

A DIVISION OF AUTOMATION STATHAM PTY. LTD. 47 Birch Street,

Phone (02) 7094144
BANKSTOWN N.S.W. 2200
Telex AA26770

Protect and file your back issues of Electronics Today with these attractive binders. Price: $\$ 4.50$ plus postage and packing (80c NSW$\$ 1.70$ other states).

SUBSCRIPTION DEPARTMENT

ELECTRONICS TODAY INTERNATIONAL MODERN MAGAZINES (HOLDINGS) LTD., 15 BOUNDARY ST., RUSHCUTTERS BAY. 2011

EMCOLN
MICROCOMPUTERS PTY. LTD.

ATTENTION MOTOROLA D2

 OWNERS!If you want a functional, expandable system, you need:
 8K BYTE, STATIC MEMORY CARD

Australian Designed and Built

Fast Access 350 ns Chips (2102LF)

- Low Current - 1.3 Amps
- Motorola Bus Compatible

Write Protect

- Parity Generation/Checking available
- Professional Finish
- Plated through Holes
- \$275 assembled board
- $\$ 219$ in kit form
- 298 Assembled with Parity
- Built Boards Guaranteed 12 months

CARD CAGE/BACKPLANE:

- Designed for Motorola Cards
- Anodised Aluminlum chassis
- Sturdy Construction
- Tin Plated Backplane
- Accomodates 8 cards
$\$ 74.00$
EDGE CONNECTORS -

$43 \times 2 \times 0.156^{\prime} \$ 8.50$ each
Eight for $\$ 59.00$
S100 Connectors $\$ 8.50$
TOTAL SYSTEM: D2 KIT with Hex Keyboard, and cassette interface, Buffers for expansion, 81c Byte Memory and Cage, Back Plane, Power Supply

THE SEMCON CATALOGUE is a must for the Professional and Hobbyist interested in COMPUTERS INDUSTRIAL GRADE COMPONENTS AT COMPETITIVE PRICES.

IT includes:

1 - Pricing on our extensive range of © TTL - CMOS - Lower power schottily - Regulators - Analog • Memories e Microprocessors

- Optoelectronics - Linear - Diodes
- Capacitors - Socilets - Resistors - Cable

2 - Details on the Semcon System.
3 - Evaluation and Developments Modules Using - Texas 9900 - 16 b $1 / 1 / 1 / 8 \mathrm{CPU}$ o Fairchild CPU - Intersii 6100 - $12 \mathrm{~b} 1 / 1 / 8$ CMOS PDP8 compatble CPU - Mostek SBD80 280/16 keyboard - AMD 2900

Please send fifty cent stamp for a copy.
AMD 9511 - HIGH SPEED ARITHMETIC PROCESSOR
Application Notes $\mathbf{\$ 1 . 5 0}$
Features: Fixed and Fioating Point Maths, Binary Data Format, Add, Subtract, Muttiply, Divide, Jrig, Inverse Trig, Square Root, Logs, Exponemtiation. This 24 pin package performs these functions an order of magnitude taster than by conventional software. APPLICATION NOTES $\$ 1.50$

LOW POWER SCHOTTKY		$\begin{gathered} 2708 \\ \$ 19.50 \end{gathered}$	$\begin{gathered} \mathrm{Z}-80 \\ 4 \mathrm{MHZ} \end{gathered}$
2102 LFPC	8080	SOCKETS	
\$1.90	\$15.90	Solder	Wire Wrap
Voltage RGG		22	
1 Amp all Val-	Rectangular Leds	24	$14 \ldots \ldots \ldots . .40$
ves $\mathbf{\$ 1 . 6 0}$	\$0.99		
SHOWROOM: 1 Chivvers Road, THORNLEIGH. 2120 MAIL ORDER: P.O. Box 61, Pennant Hills. 2120 PHONE: 848-0389 or 848-0800 Add 15 percent Sales Tax P \& P \$1.50			

14.75°

PROJECT ELECTRONICS

PROJECT ELECTRONICS

This unique project book has been designed specifically for the newcomer to electronic circuit construction, and in particular to fulfill the needs of schools' current three-segment technics syllabus in electronics.
Available at most major newsagents, kitsets and component suppliers or directly from Modern Magazines, 15 Boundary St, Rushcutters Bay. NSW 2011-\$4.75 (special prices available for bulk orders from schools).

CONTENTS INCLUDE CONSTRUCTING PROJECTS SOLDERING
ELECTRONIC COMPONENTS
CONTINUITY TESTER
SOIL MOISTURE INDICATOR
HEADS OR TAILS
TWO TONE DOORBELL
500 SECOND TIMER
MORSE PRACTICE SET
BATTERY SAVER
BUZZ BOARD
BASIC AMPLIFIER
AM TUNER
ELECTRONIC BONGOS
SIMPLE INTERCOM
temperature alarm SINGING MOISTURE METER TAPE NOISE LIMITER TWO OCTAVE ORGAN LED DICE TACHOMETER OVER-REV ALARM INTRUDER ALARM CAR ALARM TRAIN CONTROLLER FM ANTENNA OVER LED HI-FI SPEAKER ELECTRONIC SIREN PROBLEMS? COMPONENT CONNECTIONS

PYRAL OFFER

The unanticipated response to the Pyral offer (August ETI) far exceeded the available stock for C90LN cassettes, whilst the demand for the Cobalt cassette was unprecedented.
Replenishment stock has been arranged so that all orders can be fulfilled at these very special prices.
It is confidently expected that this shipment will be received in Australia in 8-10 weeks from 15 November, 1977.
In the meantime, credit vouchers are being issued by Magna-techtronics for the quantity of cassettes which to date remain outstanding on orders placed through ETI and/or Hi-Fi Review magazines.
Any inconvenience caused by inability to meet the extroadinary demand for Cobalt and C90LN cassettes is regretted. Every effort is being made to meet such demand.

8080

Even if you never use it (maybe you don't even have an 8080) this monitor program is interesting as a good programming example. By Thomas E. Doyle.

THIS MONITOR PROGRAM will enable you to control your 8080 system from an ASCII keyboard and a TTY or CRT readout. All standard front panel control functions lexamine, examine next, deposit, load and run) are provided in octal format. Audio cassette input and output functions as well as a loader for MITS software are also included. Once you have this monitor in ROM, the drudgery of entering and reading data from the front panel switches and lights is all but eliminated.

Port Assignments

The monitor is designed to operate in an 8080 system with keyboard date input on port 1 and keyboard data available checked on port O, LSB (active low). Data output is also available on port 1 with terminal ready to receive data checked on port 0 , MSB (active low). The audio cassette interface data are on port 7 with status checked on port 6. These standards correspond with MITS port assignments used for the ACR and serial I/O boards used in Basic and Package II software.

Memory Requirements

Required are 512 bytes of memory which may be ROM or RAM. The program may be located anywhere in memory. A source object listing assembled to start at 376000 is included at end of text. The best configuration is to put the monitor in EROM and locate it in a high memory location so it may reside concurrently with programs in the low RAM address. The program is organized as a series of general purpose subroutines which may be called from user programs.

Monitor Functions

The monitor functions are:
EXAMINE (E): User types in octal address of memory location he wishes to examine and the computer prints out the address and data in octal format. HHH LLL: DDD:
EXAMINE NEXT SPACE: When in the examine mode the user may type the space bar and the computer will print the address and data for the next location in memory in octal format. HHH LLL: DDD:

DEPOSIT (D): After examining a location the user may deposit new data in that location by typing the letter D followed by the new data in octal format. The computer checks for proper storage by typing out the octal equivalent of the data actually stored at that address. HHH: LLL: DDD: D XXX where XXX is the new octal data the user wishes to deposit at the address.
Note: You must examine a location before you can deposit data in that

location.

RUN (R): After examining a location the user may elect to start program execution at that address by typing the letter R.
Note: You must examine a location before you can begin program execution at that location.
LOAD (L): After examining a location the user may elect to load octal data in sequential addresses by typing in L followed by the octal data. After the third digit in each octal number the computer will deposit the data in that address and check it as in the deposit mode, increment the address and automatically accept the next octal number. This mode is useful when you have a large amount of data to enter in sequential locations. Note: You must examine the starting address before you can begin loading. TAPE OUTPUT (O): Typing an O will select the tape output mode. The Computer will ask for the starting and ending addresses for the block of data you wish to put on cassette tape. After typing in the start and finish addresses, type space to begin output. The computer will record two STX characters (002) followed by the data. When it is finished the terminal will print: indicating it is through outputting data to the tape and is ready for a new command.
TAPE INPUT (1): Typing an I will select the tape input mode. The computer will ask for the starting address where you wish to begin depositing the data from the cassette tape. Type a space following the address. When you are through entering the tape, type in a carriage return and the computer will print a: indicating it is ready for a new command.

Note: The system will not automatically return to command mode at the end of the tape. You must type carriage return.

BOOT STRAP (B): Typing a B will copy a modified MITS cassette boot strap loader for 8 K Basic down into RAM starting at location 000000 . After typing B, type a space and start your basic tape. No need to wait the 15 seconds. This feature will be greatly appreciated by those who have grown weary of toggle switching the boot strap in. Since the boot strap is copied into RAM you may make any necessary changes before starting execution.
Note: Typing a carriage return will return the monitor to the command mode.

Subroutines Available for User Applications.

Several of the subroutines used in the monitor may be used to handle $1 / O$ in user programs. These subroutines save all used registers so it is only necessary to call the subroutines.
PNT: Prints the contents of the accumulator on the terminal connected to port 1.
INP: Inputs data from the keyboard and returns with the data in the accumulator. The routine INP (page 2000) is not used in the program. It is a general purpose routine for input from a keyboard and returning with the keyboard data in the accumulator. It was included as a general purpose routine for use in other programs.
CRL: Outputs an ASCII carriage return and linefeed.
SPC: Outputs an ASCII space.
POC: Prints the octal equivalent of the accumulator contents.
10C: Inputs a 3 digit octal number from the keyboard and returns with data in accumulator.
TOT: Outputs the contents of the accumulator to the audio cassette interface.
TIN: Inputs from the audio cassette interface and returns with the data in the accumulator.

Program Expansion

Provision for simple expansion of the program is made by including a

8080 octal monitor program

group of 3 NO-OPS in two critical locations. The end of the print (PNT) subroutine contains 3 NOP's which may be used for a call to a special 1/O handler program fi.e. ASCII to BAUDOT converter). The input control (INC) subroutine inputs from the keyboard and runs through a series of comparisons to determine which command is present. If the program reaches the bottom of the list of comparisons with. out finding a match it enters a default routine which prints a ? indicating that an invalid command was present. Three NO-OPS are included just ahead of the default routine to allow calling another set of comparisons and associated jumps for additional commands.

This monitor is by no means the ultimate but it does provide all basic control of the microcomputer and I/O. The length was arbitrarily limited to 512 bytes so it could be held on two 1702 type PROMS. Possible areas for expansion are:

- Tape verify routine; atter a block of memory has been recorded on audio cassette it could be read in and verified.
- HEX format, basic monitor functions handled in HEX format.
- Cassette I/O improvements, inclusion of file names and checksum on input and output routines.

Notes on Modified MITS Boatstrap Loader

This routine copies the modified bootstrap loader, which is stored in the monitor program starting at (page 1016) down to RAM starting at (000 000). After the routine has been copied down the routine waits for a key to be pressed on the keyboard. If any key other than a carriage return is pressed program execution will begin at the start of the bootstrap (000 024). The loader that is copied down is for MITS 8 K BASIC version 3.2.

If you wish to load software other than 8K BASIC, after typing B type a carriage return. You will now be back in the command mode and you can change whatever you need to by changing memory location (000 002) to 017 for 4-K Basic and Programming System II or to 057 for EXTENDED BASIC in the bootstrap. After making the changes, begin execution at (000 024).

The routine waits for the correct character marking the beginning of MITS tapes (Memory page 2 Address
044). For most current software this is 256. If you have an old version change location (000027) to whatever character starts your tape. (Some older tapes use 175).

Notes on Listing

The Program is contained on two 256 word pages. The first page contains the instructions for the commands. the second page contains the general purpose subroutines. The two pages do not have to be adjacent in memory. The listing includes object code for page 1 with a high address of 376 and page 2 with a high address of 377 . These page references are underlined in the listing. Changing these page references in the jump and call commands will allow the program to run in any two blocks of memory.

The first instruction (376 000) sets the stack pointer. Location of the stack pointer is dependent upon user's RAM configuration and may be changed depending on your available memory.

Port assignments may be changed by changing-
(Page 2 346)
For Keyboard Status
For Kayboard Data $\begin{array}{lr}\text { (Page 2 364) } & \text { For Display Status } \\ \text { (Page } 2 \text { 3731 } & \text { For Display Data }\end{array}$ $\begin{array}{lr}\text { (Page 2 364) } & \text { For Display Status } \\ \text { (Page } 2 \text { 3731 } & \text { For Display Data }\end{array}$ (Page 2 116) and (Page 2 136) for ACR board status
(Page 2 125) and (Page 2 146) for ACR board data
Program execution begins at (Page 1 000)

COMMAND PROCESSING

MEMORY PAGE 1

| $000-061$ | 377 | 037 |
| :--- | :--- | :--- | :--- |
| $003-315$ | 302 | 377 |
| $006-315$ | 345 | 377 |
| 011.376 | 105 | |
| $013-312$ | 050 | 376 |
| $016-376$ | 111 | |
| $020-312$ | 202 | 376 |
| $023-376$ | 117 | |
| $025-312$ | 246 | 376 |
| $030-376$ | 102 | |
| $032-312$ | 345 | 376 |
| $035-000$ | | |
| $036-000$ | | |
| $037-000$ | | |
| $040-076$ | 077 | |
| $042-315$ | 362 | 377 |
| $045-303$ | 003 | 376 |

INC: LXI SP	:LOAD STACK POINTER
STA: CALL CLC	:PRINT CR/LF AND
CALL RCV	:INPUT KEYBOARD DATA
CPI "E"	:COMPARE FOR ASCII "E"
JZ EXA	¿JUMP TO EXAMINE ROUTINE IF "E
CPI "1"	"COMPARE ASCII "I"
JZ TIP	:JUMP TO TAPE INPUT IF "1"
CPI "O"	"COMPARE FOR ASCII "O"
JZ TOD	:JUMP TO TAPE OUTPUT IF "O"
CPI"B"	:COMPARE FOR ASCII "B"
JZ BSL	:JUMP TO BOOT LOADER IF "B"
NOP	:GROUP OF THREE NO OPS TO
NOR	:ALLOW EXPANSION OF
NOP	:COMMAND TABLE
OEF: MVI A. "?"	:MOVE ASCII"?" TO A
CALL, PNT	:CALL PRINT SUBROUTINE
JMP STA	:JUMP BACK TO START

EXAMINE

050-315 315377 053-315 150377
$056-315330377$ $061-315166377$ 064-076 072
066-315 362377 $071-315345377$ 074.376040 $076-312123 \quad 376$

101-376 122
103-312 127376 106.376104

110-312 130376 113-376 114 115-312 152376 120-303 040376
$003-315302377$
$006 \cdot 315345377$
$011 \cdot 376105$
$013-312050376$
016-376 111
020-312 202376
025-312 246376
030-376 102
032-312 345376 $035-000$ $036-000$
$037-000$ 040.076077 045-303 003376

LOAD STACK POINTER
PRINT CR/LF AND INPUT KEYBOARD DATA

JUMP TO EXAMINE ROUTINE IF "E COMPARE ASCII "I
JUMP TO TAPE INPUT IF "I"
COMPARE FOR ASCII "O"
COMPARE TAPE OUTPUT IF "O
JUMP TO BOOT LOADER IF "B
GROUP OF THREE NO OPS TO
ALLOW EXPANSION OF
MOVE ASCII"?" TO A
CALL PRINT SUBROUTINE
JUMP BACK TO START

EXAMINE NEXT

123-043
124-303 056376

EXN:INX H
JMP PXA
:INCREMENT H AND L JUMP TO PRINT OCTAL ADORESS AND OATA

RUN		
127-351	RUN.PCHL	REFERENCED BY H AND L
DEPOSIT		
130-315 272377	DEP: CALL SPC	CALL PRINT SPACE SUBROUTINE
133-315 054377	CALL OCI	CALL OCTAL DATA IN FROM KEYBOARD
136-167	MOV M.A	:STORE DATA IN MEMORY
137-315 272377	CALL SPC	:PRINT SPACE
142-176	MOV A,M	:MOVE DATA FROM MEMORY TO A
143-315 231377	CALL POC	:PRINT OCTAL EQUIVALENT OF DATA
146.043	INX H	: INCREMENT H AND L
147-303 056376	JMP PXA	: JUMP TO PRINT OCTAL ADORESS AND DATA
LOAD		
$152-315330377$	LDE: CALL CRL	:PRINT CARRIAGE RETURN/LINE FEEO
155-315 166377	CALL POH	PRINT OCTAL EQUIVALENT OF ADDRESS AND DATA
160.315 272377	CALL SPC	:PRINT ASCII "SPACE"
163-315 054377	CALL OCI	:LOAD OCTAL DATA FROM KEYBOARD
166-167	MOV M, A	:MOVE DATA TO MEMORY
167-315 272377	CALL SPC	:PAINT ASCII "SPACE"
172-176	MOV A. M	MMOVE DATA FROM MEMORY
$173-315231377$	CALL POC	:PAINT OCTAL EQUIVALENT OF DATA
176-043	INX H	:INCREMENT H ANO L
177-303 152376	JMP LDE	JUMP FOR NEXT BYTE
TAPE IN		
202-315 315377	TIP: CALL CL>	:PRINT CR/LF AND>
205-315 150377	CALL LHK	:LOAD H AND L FROM KEYBOARD
$210-315302377$	CALL CLC	:PRINT CR/LF AND:
213-315345377	CALL RCV	WAIT FOR A KEY ON KEYBOARD TO BE DEPRESSEO
$216-315127377$	TSC: CALL TIN	:INPUT DATA FROM ACR BOARD
221-376002	CP1 "2"	;CHECK FOR STX (002)
223-302 216376	JNZ TSC	:JUMP IF DATA IS NOT STX
226.315127377	TSO:CALL TIN	:INPUT DATA FROM ACR BOARD
231-376 002	CP1 "2"	:CHECK FOR STX ${ }^{(0021}$

233-302 226 376 236-315 127377 241.167
242.043
$243-303$
236376

JNZ TSD TSN:CALL TIN
MOV M. A MOV M. A INX H. L
JMP TSN

TAPE OUT
246-315 315377 251-315 150377 254-315 272377 257-076 124 261-315 362377 264-076 117 266-315 362377 271-315 272377 274-345
275-315 150377 300.124
301.135
301.135
$302-341$

303-315 330377 306-076 002

310-315113 377 $313-076002$

315-315 113377
320.176
$321-315113377$ $324-174$
$325-272$
326.302 341376 321.175
$332-273$ $333-302341376$ $333-302341376$
336.303003376

TOD:CALL CL CALL SPC :TPINT SPACE CALL PNT MVIA, "O CALL PNT CALL SPC PUSH H CALL LHK MOV D. H MOV E. L POP H

CALL CRL
MVIA.

CALL TOT
MVIA, " 2
COE MOV TOT M
CALL TOT MOV A. H CMP D JNZ TON MOV A. L CMP E JNZ TON CALL PRANT CR/LF AND>
CALL LHK LOAD HAND LFROM KEYBOARE MVIA. TMT PMOVE ASCII T TO ACCUMULATOR PRINT T
MOVE ASCII O TO ACCUMULATOR PRINT O
:PRINT O
:PUSH H AND L
LOAD H AND L FROM KEYBOARD
MOVE H TO D
MOVE LTO E
:POP H AND L
:PRINT CR/LF
MMOVE STX "002" TO
ACCUMULATOR
: RECORD STX ON TAPE
;MOVE STX "002" TO
ACCUMULATOR
:RECORD STX ON TAPE
:MOVE DATA FROM MEMORY TO ACCUMULATOR
:RECORD DATA ON TAPE
:RECORD DATA
:MOVE H TO A
:COMPARE D WITH H
:JUMP IF D NOT $=\mathrm{H}$
:MOVE L TO A
:COMPARE E WITH L
:JUMP IF E NOT = L
JUMP EACK TO MONITOR SINCE
ENTIRE BLOCK HAS BEEN
RECORDED
$341-043$
$342-303320376$
TON:INXH
:INCREMENT H AND L
JMP TOE
: JUMP FOR NEXT BYTE

MITS BOOTSTAAP

$345-021000000$

350.041016377 | 350.041 |
| :--- |
| $353-176$ | $353-176$

354.353
354.363
$355-167$

355-167
$356-353$
357
357.175
360.376
$\begin{array}{ll}360.376 & 055 \\ 362-312372 & 376\end{array}$ 362.312
365.043
366.023

367-303 353376
372-315 345377
BSL: LXI D, "O, O" LXI H. 377 016":LOAD H AND E WITH 376000 BSN:XCHG MOV :EXCHANGEHAND L WITH DANDE XCHG MOV MOV A, CPI "05 JZ END
INX H INX D JMP ESN
ENO:CALL RCV
375-303 024000
000.333000

002-017
$003-332000377$
006-333 001
010.000
011.000
012.000

013-303 362377
016-041 256037 $021-061022000$

024-333 006 026-017 027.330 030-333 007
032-275
033-310
034-055
035.167
036.300
037.351
041.000
041.000
$042-333007$
044.376256

046-302024000 051-303 000000 054. 305 $055-006000$ $057-315345377$ 062-346 003 064.037
065.037

066-037
$067-200$
$071-315$
045
077
$074-346007$

JMP "000 024"

INP: INO
JC INP
IN 1
NOP
NOP
NOP
JMP PNT
BSP LXIH
LXI Sp
IN 6
RRC
RC
RETURN IF CARRY
CMP L \quad INPUT ACR DATA
RZ :RETURN IF ZERO
DCR L :DECREMENT L
MOV M. A MOVE DATA TO MEMORY
RETURN IF NOT ZERO
EXCHANGE PC WITH H ANO L
INCREMENT B ANO C
NO OPERATION
: INPUPERATION
COMPARE FOR CHARACTER MARKING 256
:JUMP BACK IF DATA IS NOT 256 JUMP TO START OF BOOTSTRAP :PUSH 8
MOVE OOO TO B
CALL KEYBOARD DATA INPUT
AND IMMEDIATE (MASK 2 LSE'S)
:ROTATE RIGHT
:THREE TIMES
ADO B
MOVE A TO B
:MOVE A TO B
CALL KEYBOARD DATA INPUT
:AND IMMEDIATE (MASK 3 LSB'S)

8080 actal monitar pragram

333-315 362377
$336-076012$
$340-315 \quad 362 \quad 377$
343-361
344-311
345-333000
347.017

350-332 345377
353-333 001
355-376 015
$357-312003376$
362-365
363-333 000
365.007
$366.332363 \quad 377$
371.361
372.323 001

374 -000
$375 \cdot 000$
376.000
377.311

CALL PNT MVIA. "LF" CALL PNT POP PSW RET
RCV:IN 0
JC ACV
in 1 CPI "CR"

JZ "STA"
PNT: PUSH PSW PNA:IN O RLC
JC PNA
POP PSW
OUT 1
NOP
NOP
NOP
NOP

TO ACCUMULATOR
PRINT CARRIAGE RETURN
:MOVE ASCII LINE FEED TO ACCUM :PRINT LINE FEED
:POP ACCUMULATOR
:UNCONDITIONAL RETURN
:INPUT STATUS CHANNEL
:CHECK LSB
JJUMP BACK IF NO KEYBOARD
DATA
INPUT KEYBOARD DATA
:COMPARE FOR ASCII CARRIAGE RETURN
:JUMP TO START IF CARRIAGE RETURN
:PUSH ACCUMULATOR
inPUT STATUS CHANNEL
CHPECK MSB
:CHECK MSB READY
:POP ACCUMULATOR
:PRINT ACCUMULATOR CONTENTS
NO-OP'S TO ALLOW CALL TO
SPECIAL I/O HANDLER
:ROUTINE
:UNCONDITIONAL RETURN

COMMAND PROCESSING

Fig. 1.

Fig. 3.

Fig. 4. From Examine Routine

NOTE: Typing a carriage return instead of octal data will cause a return to the command process routine.

NOTE: After the tape has been read in
NOTE: After the tape carriage return to return
type a command process routine.
type a carriage return to return
to the command process routine.

TAPE OUTPUT ROUTINE
From Command Processing

MODIFIED MITS BOOTSTRAP
From Command Processing

Reprinted, with permission, from Interface Age, February, 1977.

PCB's

Wini-Nat

We'll print your 24 words (maximum) totally free of charge. Copy must be with us by the 7th of the month preceding the month of issue. Please, please write or pre ferably type your adverts clearly, using BLOCK LETTERS.

CONDITIONS

Name and address plus phone number (if required) must be included within the 24 words allowed.
Reasonable abbreviations, such as 25 Wrms, count as one word.
Private adverts only will be accepted. Please let us know if you find a commercial enterprise using this service.
Evary effort will be made to publish all adverts received however, no responslbility for so doing is accepted or imp. lied.

Adverts must relate to olectronics or audio - general adverts cannot be accepted.

PLEASE USE BLOCK LETTERS			

SELL cheap: components, magazines, three ampliflers, speakers, inree tape decks, spring reverb, compander, WW Dolisy unit, zerostat. Parker: Sydney 9774971.
JOIN Boomerang Tape Recording Club. Membership fee $\$ 6$ per year. Full detalls Pho. Box 118. Wellington NSW 2820 Aust. Phone 738.
MICROPROCESSOR system 8080 A (SDK80) 1 K of RAM, monitor ROM, RX-only Teletype cassette, PSU, ETI keyboard, all In cabinet and working $\$ 1075$. M. Morton P.O. Box 490 Double Bay 2026 NSW Ph 308391.

SWAP Creed Nos $7 \& 8$ Teleprinter Matinenance Instructions, 11 th Edition, 1951 for Teletype manual of similar vintage.
Jeff $(02) 418934$ AH (02) 6923097 WK.

FOR SALE: Cobra 19 M CB Radlo (new) Bought in the USA, 23 channels with mic, whip antenna and base loaded magnetic mounting, in struction manual and CB Radio 4. Narrung way Nollamara 6061 . Porth WA. Narrung Way, Nollamara 6061 . Perth.

WANTED. Receiver(s) type:- Marconl C150 or $B 28$ or similar units, write with price and Darticulars to G.J.Wlison. Parattah. Tasmania. 7217.

EXPERIENCED programmer avaliable to write programs in BASIC. Send program requirements and computer type. Fee negotable. JIm. Downs, 1 Saltash Ave, Clity Beach. WA Ph (09) 3859643.

SELL Cheap, Philips valve radlogram working other valve radios and parts. 2 Kimber TCe, Kurralia Park SA 5037.
SELL: $1 / 2^{\prime \prime}$ Sanyo High Energy Video Tape, $2400 \mathrm{ft}^{\circ}$ on reels $\$ 10$ each. R. Beckett. 90 Ladbury Ave, Penrith, 047-311793 After 7 pm.
WANTED to buy BWD oscliioscope all models consldered preferably type 509 or 539 T. Harrison 14A Price St, Merrylands
NSW $637-2720$.

CRO CIrcuit diagram wanted, Transistorized, any model, buy or photocopy. Terry Smith. (leave Kessage) Waverly 2024, Phone 6650778 (leave message).
STUDIO Synthesizer, Roland system 700 , Block 1, 2 and 3 . Cost $\$ 6545$, sell $\$ 4980$. Stlit under Warranty. Teace, A 3340 4 4 Ch ,
Syncheads $\$ 750$, Phone $02.4281966-$ ext 373

WANTED: 8008 Mark-8; Software, Hardware, Articles and any copies of The Computer Hobbylst Micro-8 Newsletter. Pay top prices. N. Willlams. 56 Rialannati Rd, Mt. Nelson TAS. 7007 Ph 236993.

SELL SC/MP Introklt ${ }_{j}$ assembled, never powered-up, $\$ 80$. Model 15 Baudot teleprinter/tape punch $\$ 200$. Offers considered. P.O. Box 60 , Red Hill 4059 , Brisbane.

WANTED: Public address equipment. Amp-lifiers-valve or transistorized, speakers and mlerophone stands, etc. R.N.Ferguson, 4
George St., Ceduna, SA.

WANTED-Everyday Electronles, Nov 71, Jan, Feb, Apr, Aug, 72, Jun 73, Sept 74, 863537 .

SELL hitachl Cassette tape recorder AC/DC plus 6 V IC regulator for auto operation, good cond. plays well. \$25 o.n.o. Ph 3325374 SA Ask for David Thornton.

WANTED: 2 Kef BD 139 Passive bass radlators. J. Lewin, 52 Terrigal St., Maray ong, NSW 2148. Ph. 6225828.

SELL: computer grade 'Mallary' 40 000uF 10 V electrolytic capacitors. Ideal for TTL or 8 V 5100 bus supplles. $\$ 9$ sach. M. Baker, 208 Fleming Road, Hemmant, 4174.

MINISCAMP, Includes all modifications $\$ 80$. S. WInnall, 6 Melby Ave. East, St. Kilda, Vic. Ph. 5273527.
MELBOURNE Tape Friends. The Recording Society of Australla meets monthly for lectures and demonstrations. For further informatlon and syllabus ring AH (03) 459
1717 or $(03) 994185$ or write to Harry Day 1717 or (03) 994185 or write to Harry Day, 5 lona St., Black Rock, Vic.
WANTED: clrcults, manuals, etc. for AWA Teleradio TX 382 type 1150062 . Wilson 2 Chalgrove court, Bellerive, Tas 7018 (Ph.
WANTED: ETI447 Phaser PCBs Any reasonable price. P. Spresser, 54 Raceview St. Raceview, Dpswich 4305 Qid. After 6 pm Ph

WANTED: VDU formicroprocessor. ETI 632 +631 encoder or other. Reg Forsyth, $2 / 55$

TEXAS INSTRUMENTS SR5 2 Programmable calculator with card storage for sale - with manuals basic and finance card programs $\$ 220$ T. McGee, 107 Church St., Gloucester, NSW 2422.

WANTED: Coples of ETI TOD Projects V ols ${ }^{1} 242$ 2. Any reasonable price pald. Ian May, 34 Ferguson Ave., Myrtle Bank 5064 SA.

HRO. 60 Communleations Rx 50 kHz to 30MHz Bandspread ham bands AM/CW/SSB. Mint condition \$495. VK2SV 39 Hart St.

FOR SALE: 30000 UF 25 V caps $\$ 5 \mathrm{ea}$. or may swap for cheap 2102 RAMs. A. Rudd. 39 Bush St., Naenae, Lower Hutt, NZ (Ph 670 633 Wgtn).
SELL 6 ch . 5 W marine transceiver. 27.88, $27.115 \times$ tals, Squelch, ANL, Mod Indicator never used, \$69. J. Holliday, 104 Bankside St.

WANTED constructional plans for $27-29 \mathrm{MHz}$ 4.8 channel digital proportional radio contro system. ${ }^{1 / 2}$-1 mile range, for standard servos

SELL: Private automatic telephone exchange, ex-PMG, 50 extns, 8 x-lines Contalns blmotional switches, unliselectors, relays, motults. offers, VGC. $\mathrm{D} . \mathrm{V}$. Gorza, Alloway, Bundaberg, 4670 0, Qid. Ph. (071) 797302 .

WANTED: 2nd hand, new or used video monitor. Will pay reasonable price. Ph 498 6950 after 6.00 pm.

FOR SALE: one ETI 632 Character Generator needs small repalr job costing less than $\$ 3$. $\$ 45$. R. Galiaghea, 60 Mott St, Enoggera, 4051 . Ph 3551856.
> send your ad to ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

42 THE STRAND, CROYDON, N.S.W. 2132. TELEPHONE: (02) 747-2731, (02) 74-8063. CABLE ADDRESS:
AMPEC SYDNEY. TELEX: AA27136. MELB: 569-6984 ADEL: 51-4713 - PERTH: 87-1026 • BRIS: 391-5136
Also available from RADIO DESPATCH SERVICE

The professionals

Rehearsals have ended. This is the real thing. In the new year, Ampex professional quality cassettes and tapes will be available from selected retailers. Ampex - well worth waiting for.

DISTRIBUTORS

 for the Electronic Industry
ARE YOU AWARE??

THAT WE HAVE PROBABLY THE LARGEST RANGE IN AUSTRALIA OF TOP-BRAND, QUALITY PRODUCTS AT CURRENT MARKET PRICES WITH OFF-THE-SHELF AVAILABILITY.

Semi-Conductors	Passive Components
Delco	Bournes
E.D.I.	Elna
General Electric	Erie
Intermetall	I.T.T. Capacitors
I.T.T.	I.T.T. Thermistors
National Semiconductor	Philips (EIcoma)
N.E.C.	R.C.A.
Philips	Soanar
Sanyo	Sprague
Signetics	
Solitron	ANNOUNCEMENT
Texas Instruments	ANNOUNCEMENT
A.M.D. Intersil	to open
Monolithic Memories	31st January, 1978

Trade enquiries to:

Electro-Mechanical and Hardware
Alco
Cannon
Delco Heatsinks
I.T.T. Diecast Boxes
I.T.T. Fans \& Blowers

Dica I.C. Accessories
I.E.E.
I.T.T. Relays Jean Renaud
J.A.E.

National Relays
Pomona Accessories
Rotron Fans
Switchcraft Connectors
Thermalloy Heatsinks
T.I. I.C. Accessories

Weller Soldering Irons
G.E. Rechargeable Batteries

Instant Component Service

 DISTRIBUTORS:NORTH. J. A. SEVERNP.O. Box 47 Epping 2121 869-1058

SOUTH.
 BRYAN CATT INDUSTRIES.

105 Miranda Road South, (Near Motor Registry) Miranda.
Phone: 524-4425
Telex AA27266
EAST.
RADIO DESPATCH SERVICE.
869 George Street, Sydney, N.S.W. 2000 Phone: 211-0191

WEST.
ELECTRONIC (DISTRIBUTORS) (A Division of Electronic Enthusiasts Emporium). 2-3 Post Office Arcade, Joyce St., Pendle Hill, N.S.W. 2145. Phone 636-5222

> NEWCASTLE: DIGITRONICS 186 Parry Street, Newcastle West, 2302 Phone: (049) 614991

ELECTRONIC DISPOSALS

297 Little Lonsdale St., Melbourne, 3000 Phone 663-1785
AWA Solid State TV Tuners $\$ 7.50$ ea AWA Thorn Valve TV Tuners $\$ 5.00$ ea. EHT Stick Rectifiers $13 \mathrm{KV}, 18 \mathrm{KV}, 20 \mathrm{KV}$ 75 c ea. Plessey $8^{\prime \prime} 1$ OW $^{\prime \prime} 8 \Omega$ or $15 \Omega \$ 6.50$ ea; $4^{\prime \prime} 8 \Omega \quad \$ 1.50$ ea. Many other types in stock.
12 V DC5 Ω Solenoids $\quad \$ 2.00$ ea. 12V AC Min. Relays 5 Amp. $\$ 1.50$ ea. Slide Pots. 20K to 3 meg . Singles 35 c ea. Dual 60c éa.
Resistors. Most values $1 /$ to $\}$ Watt. 3 cea . Carbon Pots. Most values 30c ea. Duals 60c ea.
resistors 100 mixed $\$ 1.50$
Skéleton Preset Pots 100Ω to 3 meg. 8 c ea. Green Caps . 001 to . 022 uF 5 c ea. .033 to . $22 \mathrm{uF} \mathrm{15c} \mathrm{ea}. \mathrm{}$.47 to .68 uF 20 c ea.
Polystyrene Capacitors. Many Types 5c ea.
Disc Ceramics. Large Range. 5c ea.
Disc Ceramic capacitors 100 mixed \$2.00.
Polyester Capacitors. Large Range. Up to $1,5 \mathrm{uF} 250 \mathrm{~V} 10 \mathrm{c}$ to 25 c ea.
New Desk Telephones - Grey. $\$ 15.00$ ea. Polyester Capacitots 6.8 uF and 3.3 uF 60 c ea. 2.2 uF 40 c ea. Tantalum Capacitors. Good range 15 cea .
BC. 107 Transistors 10 c ea.
OA636 600V 2A Fast Recovery Silicon Diodes - TV Type 25c ea.
Dual $100 \Omega 3 W$ Wire Wound Pots. $\$ 1.25$ ea.
S.C.R. BT100A 300V 2 AMP 60c ea.

Triacs. 2AMP 400 V 60 c ea.
$2 \mathrm{~N} 3055,90 \mathrm{c}$ ea. AD149, $\$ 1.00$ ea. AY8110, 80c eа. OC912, $\$ 1.00$ еа. AY8139 and 9139, 45c ea. IN914 diodes 10c ea. 5 amp AC panel meters $\$ 3.50$ ea. 2500 uf 35V P/T electrolytics, 60 C ea. 2200 uF 25 V P/T electrolytics, 40c ea. Aluminium and plastic instrument boxes and ARLEC multimeters NOW IN STOCK.
Spkrs MAGNAVOX 5"x ${ }^{\prime \prime}$ " 8 ohm $\$ 1.50$ ea.
Belt drive T/T kits 240 V AC motor with speed change. 12" cast alloy platter, rubber miat, bearing, spindle and belt, $\$ 25.00$ ea.
CTS $10^{\prime \prime}$ woofers Mod10W14P 8 ohm 50 W continuous power, $30-2000 \mathrm{~Hz}$. Air suspension foam cone surround, $150 z$ ALNICO V magnet. $\$ 19.50$ ea.
Silicon bridge rectifiers $400 \mathrm{~V}, 1.5 \mathrm{~A}$, 85 c ea.
Balance meters $35 \mathrm{Mm} \times 15 \mathrm{Mm}, \$ 2.00$ ea. A\&R 240 V ac primary, 115 V secondary at 95 V amps, $\$ 7.50$ ea.
Phone enquiries and personal shopping only.
Also in stock - large range of electroIytic capacitors - wire wound resistors - switches - panel meters - transistors - diodes - plugs - sockets - edge connectors - vero board - transformers - chokes. We could go on and on, so call in and browse around and check our low, low prices.

For

 transistors you can depend onGeneral purpose Switching RF FET's Power Photo Transmitting

Think Philips

1530191

Pwitucs inetrants co Combanymis Mnd

CBNEWS

$\mathrm{Va}, \mathrm{Va}, \mathrm{Va}$ - VICOMI

Vicom have just released their power microphone designed for CB base station operation.

It is designed for direct replacement of any low impedance push to talk microphone, used for CB transceivers, with impedance values in the range 250 to 600 ohms.

A push-to-talk switch bar with finger-tip control is mounted on the front of the base and for continuous keying of the transmitter, a lock switch is provided.

A new type dynamic element provides crisp communication quality audio and the output lead will accommodate $3,4,5$ or 6 pin plugs as fitted to the majority of CB transceivers.

Construction is of heavy plastic material giving a solid feel to the mic, and ensuring stability on the operating table.

The VICOM VM2 is available from the Australian distributors, Vicom International Pty. Limited, 139 Aubum Road, Aubum, Vic, 3123 and their authorised dealers.

That's life!

Along with your TV, fridge, blender, toaster oven, deep cooker, microwave oven, hi-fi system, etc. - you can now equip your lifestyle with Sanyo CB's!

Sanyo have released a range of 18 channel AM rigs having very attractive styling with sloping, wood grain front panels.

The range includes an economy (TA2100) model, a mid-range (TA4100) model and a top-line (TA6100) rig all featuring digital LED readout and large front panel meters.

Each rig features the usual complement of controls and should be available through the usual Sanyo outlets.

Jaguar growis!

The Hatadi Electronics Division of Esquire products will be bringing a 40 -channel UHF transceiver on to the Australian market early in the new year, possibly ahead of Philips.

Made by a large Japanese communications equipment manufacturer, under the Pearce-Simpson brand name, for Hatadi, the rig will be called the Jaguar in line with the jungle-cat names given the range of Pearce-Simpson 27 MHz transceivers.

Rumored to be a fully-featured 'prestige' unit, as befits the name, the rig will sell for a very competitive price through Hatadi dealers throughout Australia.

- Here's a plug!

A new range of high quality co-ax connectors from Japan is being marketed in Australia by Soanar Electronics P/L.

This, the latest addition to their comprehensive range of electronic hardware, enables Soanar to cater specifically for the growing CB fraternity.

All the connectors are of particularly robust construction with low loss characteristics.

The range includes UHF plugs, sockets, elbows, T-junctions, adaptors, cable joiners and dummy loads.

There are also microphone plugs and sockets, mic holders, lightning arrestors, high performance antennas and a range of CB noise and inteference suppressors.

Enquiries to Soanar Electronics P/L, 30 Lexton Road, Box Hill, Vic, 3128.

SSB-AM mains supply

A new mains power supply from Expo will hit their dealer network in time for the Christmas rush.

Manufactured in Australia for Expo by Ferguson transformers, the attractive little supply will give 13.8 volts at 2 amps continuous output, 4 amps peak.

All the controls etc, are on the front panel, which include a LED 'on' indicator, the power on/off switch and the output terminals.

Attractively finished in matt black, everything is clearly marked in brilliant white and approved by all electricity authorities.

Further enquiries should be directed to your nearest Expo Fanon/Courier dealer - a list appears in the back of CB Australia this month.

Turner mobile mic

Communications Power Inc. have released a new Turner mic - the M3 mobile microphone.

The M3 incorporates a high output compression amplifier with the capability of fully modulating any transmitter or transceiver.

With the slide actuated gain control properly set you are assured of full modulation at all times without overmodulation.

The M3 has a tailored frequency response of 300 to 3500 Hertz with a rising characteristic.

This provides maximum speech intelligibility on transmission with a reduction in local noise interference.

This combination of full modulation capability provided by the compressor amplifier and the tailored frequency response of the generating element assures you of maximum voice power to increase range and cut through local QRM.

Enquiries to Communications Power Inc., Box 246, Double Bay, 2028 NSW (357-2022).

Meters galore

Dale International of Sydney and Danben from Melbourne are distributing a whole range of meters, matchers and filxdr accessories made by the Japanese JD company.

The range includes SWR meters, combination field strength and SWR meters, matchers, TVI filters and combination SWR/power/s/signalstrength meters and matchers!

Trade enquiries to Dale International P/L, 139 Harbord Road, Harbord, NSW, 2096 (939-7874, 939-6261) or Danben Imports, 729 High St., Armadale, Vic, 3143.

Watt meter

This accessory from CPI, the WM- 1000 wattmeter, provides a separate meter for power, VSWR and modulation.

Readings are fast, accurate and not confused.

The WM-1000 reads both average and true peak power. Both readings are essential for proper transmitter performance evaluation.

The ultra-precise VSWR meter has a full 30 db directivity for accurate measurement down to 1.1:1 VSWR.

Many other meters are inaccurate below 2:1 VSWR.

Modulation is indicated through a full-wave circuit which sums the entire modulation waveform.

Both VSWR and modulation meters allow on-the-spot calibration. Both work for 1 to 1000 watts of forward power.

The total measurement range of all WM-1000 functions covers $2 \cdot 30 \mathrm{MHz}$.

A battery check circuit is built-in, as well as an automatic shutback circuit which prolongs battery life should the unit be inadvertently left on after use.

Trade and customer enquiries to Communications Power Inc., Box 246, Double Bay, 2028, NSW (357-2022).

Biblio 1

In Orange, California, the Public Library has installed a base station with the handle 'Biblio 1' to answer questions over the air on local travel and other reference topics. The scheme is still under development, but already they are planning expansions to include phone patches so that CB'ers can be put through to reference librarians, as well as rigs in the mobile libraries.

The CPI equipment at the Sydney CRESTHO.

CBNEWS

CREST's Sydney HO

CREST, the emergency service organisation arm of the NCRA, opened their Sydney Region headquarters and 24 -hour monitoring station on December 5 .

Located at Northpoint Towers, 100 Miller St, North Sydney, CREST will man a 24-hour monitoring station transmitting from the top of the building.

The site will enable coverage from Gosford to Wollongong and west to the Blue Mountains.

The Precision Decision. Wemade it. Nowitis your turn.

We betieve that precision is the miost important factor in turntable design and performance. Which is why we've built such a high degree of precision into our advanced new line of JVC turntables. So you'll need a whole new set of reasons to choose the one that's right for you. And when it comes to value, all will play second to none.

Take our new QL-7 QuartzLocked and JL-F50 Fully Automatic direct drive, shown above. They're both unusually close when it comes to some important specs, but what will surprise you most is that they're also both in the same price range.

For instance, the JL-F50 checks in with less than 0.03% wow and flutter (WRMS); 70dB signal-toneise ratio (DIN B). And it offers a host of convenience features as well, with most controls up front so you can operate them without lifting the dust cover. Its fully automatic operation gentles your favourite records, and lets you repeat them from one to six times, or infinitely. A built-in strobe makes speed adjustments easy and accurate. And the JL-F50's looks are in keeping with its precision design.

The QL-7's looks are equally great. Anama its electronic heart, it's a tiger. All business, with the incredible accuracy only a QuartzLocked machine can boast. Truly for a perfectionist, the QL-7's wow and flutter measures only 0.025% (WRMS); S / N is more than 74 dB (DIN B). Figures that most other QL turntables we've seen in its category cannot match. It's totally manual, with strobe speed indicator.

The way we see it, you're left with a superb decision: our JL-F50 at less than $\$ 350^{*}$. . . with all the convenience and performance most people could ever want, or our QL-7, the finest under $\$ 450^{*}$ turntable available today for the discriminating audiophile.

Whatever JVC you choose, you'll know you've made the right choice.

For details on JVC Hi Fi Equipment, write to: JVC Advisory Service, P.U. Box 49, Kensington, N.S.W. 2033 - Approximate retail value.

JVE

TEAG's impressive value. It automatically includes precision TEAC performance.

Qur A-150 won't break your audio equipment budgét; but it may break the record for value. It includes a very impressive list of performance features: FG servo controlled DC motor with guaranteed wow and flutter of 0.07%, separate two-stage Bias and EQ switching, expanded scale VU meters, Dolby* NR circuitry, Mic/Line mixing, memory function, timer control capability, and more. Perhaps the most important fea, me is the rugged excellence our narrée he assures. TEAC quality is something you can trust.

TEAC A-150

australan nisthibutors

Australlan Musical Industries Pty. Lido., 155 Gladstóne Şreet.
South Melbourne. VIC. 3205. Ph: 6996455
INTERSTATE AEENTS
BTS Sales, 55 Dickson Avenue. Artarmon. N.S.W. 2064. Ph
43: 6262
BTS Sales, 51 Norma Road, Myaree. W.A. 6154. Ph: 301255

528900
P.G.A. Associates Piy. Lto., 62 Hindmarsh Square, Adplaide.'S.A.
5000. Ph: 2233024
hetallefs
VIC: Brashs, Allans, Douglas Hi-Fi. OLD: Jefi's Stereo Shop, Stered Suppiles.
N.S.W. Autel Systems, Douglas Mi-Fi, Miranda Mi-Fi. Grace Bret David Jones, S.A. Truscoth Electronics;
W.A. Albert's Mi-Fi, Audlo Centre, A. D. Urquhart.

ACCESSORIES for the CBer
 Purchasers of ham equipment may be asked to produce

 evidence that he/she is a holder of an Amateur Certifleate o ProficienayIMPROVE "TALK POWER" WIC COMPRESS0
AUDIO MIC COMPRESSOR
The model MC330 is a high quality audio compressor inserted in the microphone line. FEATURES ac/dc operation, front panel compression level meter, two tone for ssb checking built-in pre-amp and superb construction. Price $\$ 79$
IMPROVE

QUALITY SWR BRIDGES * OSKERBLOCK米VC2

FOR THE PROFESSIONA
The popular Oskerblock SWR200 handles power measurement 2/20/200/2000 watis with dual impedance and good accuracy Price S75

The popular $\mathrm{VC2}$ swifowr meter for ham and CB use covers 3.150 MHz . Each unit is individually calibrated for the Australian ham bands plus CB , high accuracy with power Comes complete with informative instructions. Price $\$ 38$

QUALITY

$\$ 8.90$ NOISE-CANCELLING

RECEIVER BOOSTER \$39 COMBINATION

Vour short wave communications receiver. It covers fou bands from 2.30 MHz with gein of 15 dBI

$\sum 5$

QUALITY COAX

 SWITCHcoaxial switch suitable for up to 500 MHz . Low insertion los and instrinsic VSWR, the non-used terminals are earthed Price $\$ 24$
HIGH POWER

LOW PASS FILTER

FD30M Hiǵh power (1 Kw), 32 MHz cut-off

MARINE ANTENNAS

 27.910 MHz$\$ 69$
6ft marine whip tuned 37.910 MHz , mav be mounted on fibre. glass, wood or on the mast. Quality USA manufacture. Price 569
TRANSISTORS

$$
\begin{gathered}
\text { DRIVER \& FINALS } \\
\text { 2SC } 1306
\end{gathered}
$$

2SC1306	$\$ 5.00$	2SC1018	$\$ 5.00$
2SC1307	$\$ 6.50$	2SC1818	$\$ 6.50$
2SC2043	S6.50	2SC1619	$\$ 6.50$
2SC2020	$\$ 5.00$	2SC2184	$\$ 5.00$
2SC2166	$\$ 5.00$		

ROTATORS

ART3000C heavy duty with control box ART8000 King Kong Super dutv, complete AR22XL light duty with control box

5199
5478
S478
$\$ 478$
$\$ 109$

TELESCOPIC ANT. - Toploaded CB/AM/FM Manual
CB/AM/FM Automatic

FRG-7 Receivers

The Yaesu FRG. 7 general coverage communications receiver covers 500 KHz thru 30 MHz .

SERVICE bY EXPERTS
VICOM are experienced communications engineers and are able to service the most complex of equipment in their well-equipped workshops

MOBILE ANTENNAS

HELIWHIPS (USA made quality whips)

Model HW- $11 \mathrm{~S}-66 \mathrm{ft}$, 100 loaded $\$ 23$ Model MW. 115 - 4 ff . 10p loaded $\$ 23$

- spring for above
-moulded base assembly
TD. 1 twin trucker antenna
Million G2 gutter mount, base loaded
Million M1 base loaded, bootlip
522
$\$ 29$
Top-loaded 5 ft helicals (excl base) $\quad \mathbf{\$ 1 9 . 9 0}$
GDX. 1 Discone antenna 80.500 MHz
Magnetic bases

23
23

Head Office and Mail Orders:
139 AUBURN ROAD, AUBURN, Vic.
Telephone: (03) $82.5398,(03) 813.2355$
TLX 30566
Adelaide: 43.7981 Brisbane: 384.4480
Canberra: 82.3581 Gold Coast: 32.2644
Perth: 446.3232

BOKKON CBRADO CBR

There are over 30 books on the market about CB Radios - but they are all about the U.S Service. Now we have one that is exclusively Australian!
WRITTEN BY AUSTRALIA'S LEADING AUTHORITY

and published by
HORWITZ PUBLICATIONS

This huge 128 page manual is crammed with the answers to all your questions:
*What is CB all about?
*What types of rig are there?
*What do I watch for when buying?
*What are the licensing requirements?
*What's the difference between the
Australian and USA systems?
*What accessories are available?
*How do I speak the lingo?
*Where are the CB clubs?
*What are all the technical terms?

* How do I use the emergency channel?

In addition, the handbook contains the full RB14 regulations which you MUST read before licensing a set, plus a sample RB13 application form.

NOW AVAILABLE: AT YOUR NEAREST DICK SMITH STORE OR DEALER OR NEWSAGENT.

CAN BE SUPPLIED WITH SHURE B75-6 MAGNETIC CARTRIDGE AND DIAMOND STYLUS AT $\$ 2.50$ EXTRA. ALL CHANGERS NEW IN ORIGINAL CARTONS
SPECIFICATIONS - A precision automatic and manual record-playing unit fitted with Garrard Synchro-Lat 4-pole shielded motor to provide constant speed conditions for the $101 / 2$-inch aluminium turntable. The low resonance tubular pick-up amm is counter-balanced with a resiliently mounted weight to permit light sensitive tracking, and the silde-in cartridge carrier enables stylus inspection and the interchange or replacement of cartridges to be carried out simply and quickly. Fine stylus force adjustment and blas compensation are both calibrated for accurately setting the arm to give optimum playing conditions for the chosen cartridge. The fluid-damped level-type cue and pause control ensures gentle lowering of the pick-up to the surface of the record and the record-stabilizing overarm swings back out of the way for more convenient single-record play. Up to eight 12 -inch $33-1 / 3$ rev/min records can be repeated automatically. A short spindele is supplied for single record play records. Precision engineering is reflected in the stylling of the SL65B, which is elegantiy finished in black and silver. Size (including rear and side overhang of pickup arm) $14 \frac{1}{4} 4^{\prime \prime}(374.5 \mathrm{~mm}$) wide by $121^{\prime \prime}$ " $\left(317.5 \mathrm{~mm}\right.$) front to rear by $41 / 2^{\prime \prime}(114.5 \mathrm{~mm})$ above and $2-15 / 16^{\prime \prime \prime}(75 \mathrm{~mm})$ below lower edge of unit plate. PEAFORMAMCE: O WOW and flutter Detter than 0.14 percent $\mathrm{r} . \mathrm{m} . \mathrm{s}$. Rumble (relative to $1.4 \mathrm{~cm} / \mathrm{sec}$ at 100 Hz) better than-46dB. POST AND PACKING EXTRA NSW $\$ 2.75$. Vic, SA and Old $\$ 4.75$; Tas, WA and NT $\$ 6.00$
(reg post \$2.00 extra)
base and perspex cover available at $\$ 25.00$ extra plus postage
NEW STANDARD PM-403 W-24 WATT STEREO AMPLIFIER AT LESS THAN TRADE PRICE mavufacture by standand aadiocorporationA MAJOR JAPANESE ELECTRONIC MANUFACTUREP.

SPECIFICATIONS: COntinuous power 12 wats R.M.S. per channel at 8 ohms (24 watts) at 1 KHz . Harmonic distortion at 1 KHz 0.5 percent to 10 watts. Power Dandwidth $20-20,000 \mathrm{~Hz}$ at 8 ohms. Frequency response $15-40,000 \mathrm{~Hz}$. Singal to noise ratio Aux. 70 bb Mag 60 db . Bass control - 10 db at 100 Hz . Treble control - 10 db at $10,000 \mathrm{~Hz}$ Input sensitivity Mag. 2.5 mv , Cer, 150 mv . Aux 100 mv . Tape 500 mv ,

- Tape Monitor Switch - Loudness Control - Speaker Selector Switch Headphone

$\$ 59.00$
 plus post t packing

Jack e Separate Bass and Treble Controls e Balance Control. Dimensions 141/" by 8 " x 4" high. Supplied in watnut-finished cabinet with operation manual and schematic diagram. Read review on the standard PM-403W Amplifier in Nov. Issue Electronics Australia p. 41.

WSW \$3.50. VIe, Qld, sA $\$ 5.00$. SPECIAL PACKAGE OFFER
Wh, Tas, $\$ 6.50$. (Reg, post $\$ 2.00$ STANDARD PM-403W AMPLIFIER - TWO GOODMAN - FOSTER SPEAKER KITS AND GARRARD oxtrà). SL65B CHANGER WITH SHURE MAGNETIC CARTRIDGE $\$ 155.00$
(Cabinets for speakers and changer not supplied). Freight and packing extra per rall or air freight

NEW GOODMANS-FOSTER 3-WAY 4-SPEAKER HEFI SYSTEM

Frequency Range 45 to 22,000 cycles. Power rating 25 watts. Imp. 8 ohms. Supplied in kit form (less cabinet) sach kit comprised two English Goodmans $8^{\prime \prime}$ bass units. Foster $5^{\prime \prime}$ mid range. Foster $1^{\prime \prime}$ doms tweeter crossover components (condensers and Inductance) (Registered post $\$ 2.00$ extra if required). Cabinets availabie.
CLASSIC RADIO

245 Parramatta Rd, Haberfield 2045. Phones 798-7145, 798-6507

CITIZENS BAND ANTENNAS

Made in Australia by SCALAR Industries, suppliers of communication antennas to Government, Industry and Commerce.

SCALAR Citizen Band antennas are designed to provide efficient performance with reduced length. Either helical, centre or top loading on fibreglass rods, many thousands are already efficiently in use throughout Australia in vehicle, marine and base installations.

Dipole Simulator meets the need of installations of 27 MHz antennas where a ground plane is not available. it can be used with any EALAR 27 MHz whip top and is particularly useful in installations on tibreglass and wooden boats and vehicles having fibreglass cabins. The helipole converts the whip into a $1 / 2$ wave centreted dipole, assuring a very stable and efficient antenna sys tem.

Moditied CB accessories, for use with any SCALAR moblie whip top: O GUTTER GRIPS - SLOPE ADJUSTERS - MARINE KNOCK DOWN

Avalleble from foading retallers and distributore throughout Australla.
trado enquites to:
SCALAR Industries Pty Lid.
18 Sholioy Ave, KIsyth, Vlc. 3137.
Tol: (03) 7258677 . Tolex: AA 34341. Cables: woikin. NSW: 20 The Strand, Ponhurst, 2222.
Tel: (02) 5701392
QLD: 969 Ann Street, Fortilude Valley 4006. Tel: (07) 52-2594. Telex AA 43007
 SOVIRITCN ClIT अLFCHIONICS Ballarat

TIL Specials

7400	. 17	7414			2476	. 33	
7406	. 21	\% 30			7493	. 46	
740	. 19	74.40					
DIL Specials (DATA SUPPLIED)							
93200	(Dual 4 Input buffer)		. 21	950 DC	(ac. Coupled rs ff)		1.47
93700	(HEX Inverter)		. 22	959 DC	(Manostabl	1brator)	1. 47
946	(Dual 4 Input ex burfer)		-22	961 or	(Cual 41 l	(ex)	. 76
94600	(Quad 2 ingut gate)		. 21	963 cm	(Triple 3		. 76
969 OC	(quad 2 input gate)		. 21	$961 \times$	(Cunal 417	(ex)	. 21

signnties TTL Low Schottky

74.500	.36	74.542	1.42	74.585	1.99
$74 L .502$.36	7.4551	.36	74.586	.56
74.504	.38	74.555	.36	74.590	1.73
$74 L .510$.36	74.573	.47	74.593	1.23
$74 L 520$.36	74.576	.49	76.5954	1.70
74.530	.36	74.578	.47	74.5164	1.76

Regulators		GENERAL ELECTRIC S.c.ris ptc.			
LM3>9\%	2.56	C 10601	1. 18	55^{2}	.33
LH360t	2. 10	C1220	2.11	ST4	. 50
LM723	. 65	C1226	2.54	D1314	1.68
unfecu	2.10	SC.4 10	1.95	01312	1. 18
U178C8 13.8 V	2.97	SC 1510	1.37		

PHILIPS Locmos

40 c	. 30	4012	. 30	4022	1.22
4001	. 30	4013	. 50	4.023	. 30
4002	. 30	4016	9. 28	4026	. 99
4006	9.28	4016	. 52	4027	. 57
400718	. 30	4017	9.26	4028	. 99
4008	1.26	4018	1.28	4030	. 52
6011	. 30	4021	1.28		

signotics Linear

LH301	. 56	NE556	9. 63	LM381	3.03
LM303	1.63	UAF4, 1	. 56	LM302	2.69
- 555	,64				
SUASTITITE MAY BE SU					

PHILIPS SPEAKERS AND KITS NOW AVAILABLE

Gold Rush Specials:
2500 UF CAN ELECTRO'S
HOOK UP WIRE


```
P.O. Box }62
Ballarat Victoria 3350
```

Senator Cotron opens the new CREST HO at North Point Towers in North Sydney. CREST is the emergency service arm of the NCRA.

NCRA SEEKS REGS CHANGES

THE NCRA SEEKS major alterations to the Citizens Radio Service regulations, as set out in the P \& T Department's document RB14.

In a submission to the P \& T Department and the Government, the NCRA demanded changes in eight major areas.

1. The NCRA want the definition of a station extended so that the operator and not the transceiver are licensed.
2. A reduction in the license fee is sought.
3. The tenure of the license should be able to be increased, at the licensee's option, to five years with an associated fee discount.
4. The NCRA claims that the users want a dual HF/UHF service and demand that the 27 MHz HF allocation be extended beyond 1982.
5. The 18 channel 27 MHz CB band be extended to 40 channels.
6. An immediate increase of UHF band channels is recommended, from 40 to 100 (at 25 kHz spacing), and further channels set aside.
7. The NCRA wants CBRS Advisory

Committees similar to those operating with the Amateur Radio Service.
8. The NCRA wants the Department's list of approved transceivers published.
In their submission, the NCRA criticizes the Department's policy that CRS stations be issued with 'Land Mobile Service' licenses.

They argue against this saying:-

[^2]Service within the ITU context, nor should it be in the Australlan context and previous practice. The LMS is basically a discrete relationship service as exemplified by the business model.

The NCRA submission also contains a lengthy criticism of the implied definition of a station contained in RB14, pointing out anomilies they see in the existing Wireless Telegraphy Act.

They say:-
The Wireless and Telegraphy Act and its Regulations fail to explicitly define the contents of a station. There are some regulations that provide hints to ald interpretation (e.g. WTR R66(2)). It appears that the Departmental Interpretations have run the gambit from one or more sets per station (for the Amateur Service), one or two sets (for business services where a standby of replacement set is sometimes permitted) to one set per station (for handphone service and CAS).

As the WTR provides for recognition of the International Accords, an examination of the International Radio Regulations of the International Telecommunications Union provides us with the following definition of the term STATION (Definition 21):

Station - One or more transmitters or receivers or a combination of iransmitters and receivers. including the accessory equipment. necessary at one location for carrying on a radiocommunication service. Each station shall be classified by the service in which it operates permanently or temporarily.'

For your interest, the proposed FCC definition of station is:
"Station means all of the equipment used by a CB licensee or authorized user, regardless of the ownership of the equipment" and additionally.
"Station address means the place where the station licence is kept or posted, where the station records are kept and where the primary fixed transmitter (if any) is operated".
The clear inference in these two precedents is that the Australian practice of only Ilcencing sets is open to challenge.

In regard to the license fee, the NCRA claims that the CBer is being ripped off.

What NCRA believes to be the case is that the revenue from the CRS licences are not being used to administer the Citizens Radlo Service, but are being used to delray the costs of the Department in administrating its other services - and in an ineflicient manner at that
The NCRA further belleves that the licence fee is not related to the cost of providing or maintalning the CBRS, but in fact is a tax levy on a specific user group. As such the NCRA questions the constitutional right of the Government to use the licence fee to tax the user and asks that the Aftorney General provide a legal opinion.
The current Wireless Telegraphy Act provides for a maximum license period of only one year. The NCRA would like to see this period raised to five years maximum at the option of the user with a 12 month license period being the basic tenure.

They say that a number of economies would flow from this measure and that the benefits of this could be passed on to the licensee.

Dual HF/UHF Service

The UHF band appears to have a place in the minds of most CBers. But not as an 'only child' allocation says the NCRA.

It is the Government's expressed intention that the HF CB service on 27 MHz will not continue beyond 1 July 1982. Those people wishing to continue operating on 27 MHz after that date will be required to obtain an amateur license - a fourth class of amateur licence, with fewer requirements than the present Novice Amateur license, has been forshadowed by the Government.

The Government does not want to transfer a 'pirate' situation of 1977 to 1982. They hope to do this by providing a fourth class amateur license.

This is naive according to the NCRA, who says:-

The Government will in fact be inviting legal operators to become illegal operators in 1982.

The Government attlude that HF CBers needs will be satisfied by entering the Amateur Radio Service is not shared by the majority of current users because:
(a) The user regulatlons of ARS are not keeping with the CRS operators,
(b) The morse code and technical requirements of the ARS are not capable of being met by CRS users (e.g. wives, businessmen, farmers and the like)
(c) The non-technical/appllance aptitude status of CRS operators and the aims and motivations of the ARS are simply not commensurate with the aims, aptitudes, inclinations, motlvations and desires of both current and future Citizen Band operators.

More Channels

In addition to retaining the 27 MHz allocation, the NCRA want the present 18 channel system expanded to the 40 channel US system.

The Department's argument that 18 channels on 27 MHz is sufficient on a per capita basis is severely criticized in the NCRA submission. They say this:-

It is in error of Understanding for the Department to claim that Australian CRS users are solely interested in purchasing 40 channel sets just to talk USA Skip - the 40 channel sets represent a low

NCRA maintains that the population densities of Sydney and Melbourne are quite compatible with the urban areas in the USA - seeing these places are where the majority of Australian CRS operators try to operate. then the 18 channel per capita argument does not hold.
In other words - there is a strong justification now to expand the spectrum space for the HF CBer. It could
be true to say that the eventual UHF CB population might rise to 100,000, 250,000 or even 1,100,000even if this were true (and only time will tell) there is little doubt that UHF will not satisty the needs of all CRS operators.
For example, the CRS operators in the country areas - farmers and the like - Just how well they take to a UHF system that is not only line of sight, but also suffers from additional signal absorption due to the abundant vegetation?
What about the CBer who takes no delight in having UHF conversations with his neighbours in the next suburb?
The Department and the Government should recognise that as far as the ordinary citizen is concerned (not the Amateur, not the taxi companies) he wants the ability to communicate cheaply and at no technical cost to him in terms of training.
The Government should cater for the two basic groups of CBers - both short haul CBers and the recreation/hobbyist who lack the necessary technical skills to go Amateur.
The users want a dual HF/UHF service - they want both services to be viable in terms of spectrum space and cost - and if the Government considers that there will be no pirate problem in 1982, then they have only to consider the events of the last two years and the prospect of an increased and unified CB community in 1982 with other thoughts in mind.

With regard to the channels on UHF, the NCRA would like to see more on this band tool Like up to 9001

NCRA recommends the increase of the number of UHF channels to 100 at 25 kHz spacing with further provision for an additional 900 channel allocated and set aside now.
The NCRA claim that the 476 MHz allocation is out of kilter with the thinking of the FCC in America which is presently considering a number of VHF and UHF bands for their CB service.

Further, they believe that the 40 channels allocated for the UHF band here are insufficient to cope with traffic densities that already exist and will only increase in the future.

The NCRA argues that:-
The 40 channel UHF allocation is grossly Inadequate and bears no relationship to the normal and peak density needs of the service in metropolltan areas as predicted by the Department and such large manufacturers as Philips-TMC.
Consideration should be given 10 Mr. Wilkinson's response to the question asked at the 1st Annual CB Convention - Would your Department's attitude to UHF be to align with major potential users such as

The USA?' to which Mr. Wilkinson replied 'We would fall in line with any major user of UHF CBRS.
The USA have no intention of starting a UHF CBRS in the 470 MHz area. Given that one of the objectives of going UHF was the potential revitalisation of Australlan manufacturing and its potential export markets - now our Postal and Telecommunications Department yet again blundered in determining the frequency band and number of channels and shown its incompetence in Spectrum Management to the detriment of the user, the manufacturer and thus the public of this country as well.

They maintain that the interests of all CB users would be accomodated with a dual $\mathrm{HF} / \mathrm{UHF}$ allocation.

Apart from the other points mentioned at the start of this article, the NCRA are seeking a clear definition of the manner in which a base station can be set up and licensed.

There is much contention surrounding the ' 32 km limit' mentioned in the CB regulations, RB14, regarding the permissable range of base stations. There is no distance limit, other than the geographical limits of Australia, mobile - mobile contacts.

As it is virtually impossible to prevent long distance contacts that occur via the ionosphere, RB14 sensibly put no restriction on this - except for base stations, although ambiguous interpretations of this section of the regulations are possible. The NCRA would like to see the ambiguities cleared up and base stations allowed to participate in skip QSO's as mobiles are.

Base antenna heights are presently limited to 6 metres above the structure on which they are mounted (excluding towers). The NCRA seek to have this extended to 10 metres. They maintain that this would allow operators to get their base antennas above the height of most suburban TV antenna installations, reducing TVI.

NCRA would like to see beams allowed for CREST stations and country stations or any other situation where antenna gain would allow communications where the existing provisions make operation difficult.

The Department admits difficulties in policing the CB channels adquately the NCRA has recommended that CBRS Advisory Committes be set up, similar to the Amateur A.C.'s that have existed for some years, to aid in self-regulation and policing within the CB service.

In their submission, the NCRA were critical of the attitudes of some District Radio Inspectors whom the NCRA thought were hindering cooperation between the CB clubs and the Department on this issue.

Entering the 'consumer protection' field, the NCRA say in their submission that the Department's list of approved equipment should be published to protect the interests of purchasers of CB equipment and to ensure that operators only bought licensable equipment.

SPECIAL LIMITED OFFER

-while stocks last

- 1024×1 static ram
- Brand new plastic PKG

MAILMAN ELECTRONICS

P.O. Box 536 Lane Cove PH: (02) 498-3405 A.H.

BURCLAR ALARMS

WE STOCK:
Alarm Modules, Electronic Eyes, Photo Sensitive Cells, Microwaves, Ultra Sonics, Gas/Heat/Smoke Sensors, Sirens, Bells, Pressure Mats, Door Monitors, Car/Caravan/Home/Office Hold Up Factory Alarms, Key Switches, Reed Switches, Relays, Shock Recorders, Aluminium Tape. You Name It. We Have It.

DO IT YOURSELF PRE-WIRED SYSTEMS EASY INSTALLATION

PORTABLE ALARMS

Microwave Systems concealed in Hi-Fi Speaker Enclosures or Desk Units, Mains Operated, Fully Automatic, Self-Resetting with battery standby.

Send 80c in Stamps for Illustrated Catalogue.
N.S.W. AGENT FOR NIDAC SOLID STATE SECURITY SYSTEMS

WHOLESALESECURITY FROM

PiOTECTOB
R.C.ALATMS

119-121 Pittwater Rd, MANLY N.S.W. 2095 PH: 977.6433

-Recomended retall price only

Fretilin radilio hase

A GROUP calling themselves the Campaign for an Independent East Timor (CIET) has been using Australian radio equipment to operate a secret communication service between East Timor and Australia for two years.

CIET have been operating a Iransceiver, passing messages to and from Fretilin forces in overun East Timor since December 1975 when East Timorese forces were forced to flee into the mountains ahead of invading Indonesian troops.
Operating 50 watt single sideband Australian made transceivers on frequencies in the 4 to 6 MHz landmobile band, CIET have passed thousands of messages to and from Timorese refugees and Fretilin officials in Australia and Fretilin forces trapped in East Timor

This unlicensed operation has been providing what has been called "an invaluable service. under extremely harsh conditions from secref locations in the bush near Darwin in the Northern Territory.

Despite three "busts", harrassment and considerable Government searching using sophisticated directionfinding equipment, the group has persisted quite successfully in maintaining the only communications link that Fre tilin had
world.
One 'bust" in Se 1976. accurred on the s Prime M
to Djak
Indone Indone
and F
Minis
Mins
in Kual
year. a 1
unit was
transceivers
CB Australiat has it on good authority that Mr Fraser ordered the clandestine transceiver put off the air.

Apparenlly the Army has

The Australian made Wagner transceiver first used for regular coptac
Fretilio. This equipment was siezed in Seotember ?
been cooperating with the P \&
T Department in Darwinto assist in monitoring and direction-finding activities in at so far vain ątempt to find the clandestine transceiversite and keep them off
Sufficient equ been obtained

ir

bust nothe ransceiver laced

ast Tint
was inval oops on De.
hat onth, the CIET misceiver and atFrentin forces in Easi Timor:
On the day of the invasion. Alarico Fernandes. Fretilin Minister for Information and National Security, broadcast from the hospital in Dili on the Australian Outpost Radio Network frequency.
He was picked up by the Overseas Telecommunica-

'Stay of execution' for 23ch

Ideas for experimenters

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details.
Electronics Today is always seeking material for these pages. All published material is paid for - generally at a rate of $\$ 5$ to $\$ 7$ per item.

This circuit provides overvoltage protection in case of voltage regulator failure or application of an external voltage. It is intended to be used with a supply offering some form of short circuit protection, either foldback, current limiting or simple fuse. The circuit is less effective in the latter case however, as a good deal of damage can be done in the time taken to blow a fuse.

The most likely application is a 5 V logic supply, since TTL is easily damaged by excess voltage. The values chosen in Fig. 1 are for a 5 V supply, although any supply up to about 25 V can be protected by simply choosing the appropriate zener diode. When the supply voltage
exceeds the zener voltage +0.7 V , the transistor turns on and fires the thyristor. This shorts out the supply, and prevents the voltage rising any further. In the case of a supply with only fuse protection, it is better to connect the thyristor across the unregulated supply as shown in Fig. 2 to prevent damage to the regulator circuit when the crowbar operates.

The thyristor should have a current rating about twice the expected short circuit current and a maximum voltage greater than the supply voltage. The circuit can be reset by either switching off the supply, or by breaking the thyristor circuit with a switch.

DRIFT FREE CURRENT SOURCE

The conventional type of constantcurrent source, as shown in Fig. 1, will drift in output current immediately after switch-on. This is because of the voltage drop across Q1, causing a significant amount of power to be dissipated in the trarsistor, heating it and its V be. Hence the output current slowly increases after switch-on, typically reach-
continued overleaf

For
 transistors you can depend On

General purpose Switching RF FET's Power Photo Transmitting

ELEKTROMART FOR
 HOBBYIST COMPONENTS

TTL			
7400	$45 c$	7447	1.50
7402	$40 c$	7451	$40 c$
7404	$40 c$	7454	$40 c$
7408	$40 c$	7474	$90 c$
7410	$40 c$	7490	$80 c$
7420	$40 c$	7492	$80 c$
7430	$40 c$	74107	1.00
LINEAR			
LM301	$70 c$	LM380	1.50
LM304	1.30	LM382	2.45
LM305	1.20	LM3900	1.50
LM307	$70 c$	LM555	$85 c$
LM308	2.30	LM566	4.50
LM309K	2.80	LM709	$45 c$
LM319	2.80	LM723	1.00
LM324	3.20	LM741	$45 c$
LM339	3.20	8038	6.95
LM377	2.80	LM1458	1.50
CMOS			
4000	$40 c$	4014	2.25
4001	$40 c$	4016	$85 c$
4002	$40 c$	4017	2.25
4006	2.50	4018	2.50
4007	$40 c$	$4022 A$	1.90
4008	2.75	$4023 A$	$45 c$
4009	$80 c$	4024	1.35
4011	$45 c$	$4027 A$	1.00
4012	$40 c$	$4028 A$	1.90
4013	1.00	$4030 A$	$80 c$

ELECTROLYTICS

CERAMICS

All preferred values from 1 pF to 0.037 MF to 0.1 MF © 15 C ea. 25 ct .10 C ea.) 0.47 MF 29 c .
RESISTORS
All values to $1 / 2 \mathrm{~W} 3 \mathrm{c}$ as.
POTENTIOMETERS - 47c each $1 / 4 \mathrm{~W}$, rotary, carbon, sing, gong, log or lin 1K, 5K, 10K, 25K, 50K, 100K, 250K, $500 \mathrm{~K}, 1 \mathrm{M}, 1.5 \mathrm{M}, 2 \mathrm{M}, 3 \mathrm{M}$
TRIMPOTS
$15 \mathrm{cea} .1 \mathrm{~cm}, \mathrm{I} . \mathrm{W}, 100 \Omega, 250 \Omega, 50 \Omega, 1 \mathrm{~K}$, $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}$, ${ }_{50} \mathrm{ok}, 1 \mathrm{M} .2 \mathrm{M}$.
SELECTION OF PLUGS AND SOCKETS - PREFERRED TYPES.

UNIQUE ELECTRONICS SECURITY CO. P/L. 682-3325

- A new shop catering for the hobbyist, CB'er and for the trade.
- We specialise in: Components Kits Technical Books Burglar alarm equip. CB Club needs.
- We have a range of data books for your use - or purchase your own copy.
- We stock a full range of security equipment Installation companies check our prices.
- If you are having technical problems with your equipment
drop in and have a chat, perhaps we can help you.
- If you don't see what you want displayed, please ask us, we can probably obtain it for you.
- MAIL ORDERS WELCOME SEND YOUR ORDER TO P.O. BOX 402, PARRAMATTA, 2150
- TRADE SALES WELCOME

383 MERRYLANDS ROAD, (CNR. BURNETT STREET) MERRYLANDS, N.S.W. 2160 682-3325

AVAILABLE FROM ELECTRONICS TODAY INTERNATIONAL

TOP PROJECTS VOL 3
Available from newsagents or directly from ETI. Contains FM tuner, 25 watt amplifier, active crossover, crossover amplifier, booster amplifier, 50 watt power module, 400 speaker system, audio noise generator, cross-hatch/dot generator, ETI utiliboard, linear IC tester. dual beam adaptor, Impedance meter, tone burst generator, digital display, digital volt-meter, frequency counter, logic probe, logic pulser, switching regulator supply, nickel cadmium battery charger, radar intruder alarm, intruder alarm, colour organ, car alarm, transistor connections. $\$ 2.50$ plus 40 cents postage and packing. Send orders to:- Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

ELECTRONICS IT'S EASY VOLS 1/2/3/

Volumes 1 \& 2 are now reprinted as a revised second edition.
Volume 1 takes the reader from basic electronics to operational amplifiers. Volume 2 covers power supplies, waveforms, filters, logic systems etc. Volume 3 includes digital displays and systems, instrumentation and power control.
$\$ 3.00$ per volume - from most newsagents or $\$ 3.40$ per volume lincl post and packing) direct from ETI. Send orders to:- Electronics Today International, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Ideas for experimenters

continued from previous page

ing a stable value about two minutes later. In tests the current increased by about 4\% for a small signal transistor dissipating 100 mW .

This effect is greatly reduced by the configuration shown in Fig. 2, which fixes the voltage across Q1 at a very low level by virtue of the common-base transistor Q2. The main voltage drop occurs across Q2, leaving about 600 mV across Q1, this being set up by the two extra diodes in the bias chain, (D1, D2) which fix the emitter potential of $\mathbf{Q} 2$.

TRIAC LAMP FLASHER
The circuit is a relatively simple triac lamp flasher, probably of most interest to those in the disco business. The flasher will handle a load of up to 2 kW with a variable flash rate of about 20/200 flashes per minute, achieved by
altering the value of RV1.
C 1 , the timing capacitor, can be experimented with to obtain the most satisfactory results. Even though little power is dissipated in the triac (15W on full load), it should be mounted on a heatsink.

RECORDING
LEVEL METER

The circuit shows a two-stage voltage amplifier driving a recording level meter. The AC signal input is amplified, rectified, and the resultant DC voltage shown on the meter. The circuit can be used with a tape-recorder or audio
mixer and should be fed from a point early in the pre-amp. Current consumption in a no-signal state is 2.8 mA . The 12 K preset gives a variation in sensitivity. The meter can be any general purpose type.

ALSO AVAILABLE

CONTEMPORARY

FOR

SEND COUPON TO
FARRELL KEYBOARDS
505 Pittwater Road
Brookvale • NSW 2100
Telephone • 9391785

Please send me a copy of

Name
Address \qquad
\qquad

7 DIGIT FREQUENCY METER KIT

'Electronics Australia' March 1977 design High Stability Crystal (30 P.P.M. $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$) in cold-welded HC18/U holder. ALL high quality components (National, Fairchild, etc.) Flbreglass P.C. Boards with component overlay 'Polaroid' front panel, L.E.D. readouts, 'BNC' socket standard - 'UHF' socket optional. Pre-drilled aluminium chassis with black 'Marviplate' cover.
240 volt operation - provision for 12 Volt operation. Instructions included.
Assembled units available - $\$ 40$ extra. Postage N.S.W. $\$ 2$. Interstate $\$ 4$. Registration \$2, "Comet" - Sydney \$2 insured. 'T.N.T.' Air-road courier, insured - Separate components (post free) $\$ 6$ anywhere in Australia. Crystal \$8,95H90 prescaler \$9.50.

J.R. COMPONENTS

P.O. Box 128, Eastwood, N.S.W. 2122 Ph: (02) 853976.

NEW MODEL, 3-30 MHz BI-LINEAR AMPLIFIER

HF-3-100L2

Frequency Range $3-30 \mathrm{MHz}$
Input Power: 10 W Nom, 5-20 W PEP range
Output Power: 100W Nom $\pm 1 / 2 \mathrm{~dB}$ across band 200-250W PEP output
Input Impedance: 50Ω nom, adjustable to match exciter range under 21 across band
Output Impedance: 50Ω nom, up to 3:1 VSWR acceptable with little degradation
Current Drain: 16A nom. 20 A supply recommended at 13.6 VDC
Power Supply: 13.6 VDC recommended for best results, 11.14 VDC acceptable positive or negative ground
Pre-amp: 18 dB nom. gain across entire HF band, 15 dB typ at $50 \mathrm{MHz}, 3-4 \mathrm{~dB} \mathrm{NF}$ Size: $19.1 \times 16.5 \times 8.9 \mathrm{~cm}$ wt $11 / 2 \mathrm{Kg}$
DEALERS ENQUIRIES WELCOME

SOLE AUSTRALIAN DISTRIBUTORS FOR SCS LINE OF LINEAR AMPLIFIERS

FERGUSON E PRINTED CIRCUIT BOARD MOUNTING TRANSFORMERS

Each transformer has two identical windings which may be series or parallel connected.
specification of stock range

Type No.
PL 6/5VA
Height 34 mm
Width 42 mm
Length 55 mm

VARIATIONS AND FEATURES

PL30/5VA

- Double insulated, plastic enclosed, designed to comply with relevant clauses of Australian Standard Codes and Telecom Australia Specifications.
- If required, quick connect terminals enable mains voltages to be kept clear of P.C. Board.
- May be supplied without plastic enclosure, if size is significant, which reduces dimensions to H = $30 \mathrm{~mm}, \mathrm{~W}^{7 / 4} 38$ mm and $\mathrm{L}=51 \mathrm{~mm}$.
- Variation in volts from No Load to Full Load (5VA) is approximately 15 percent.
- The tránsformers may be loaded to 7 VA with an extrapolatlon of regulation.
- Provision is made for five pin terminals and two quick connect terminals at each end, suitable combinations may be manufactured to order.
- Plastic mounting lugs enable transformers with quick connect terminals to be fitted to metal chassis.

Ideas for experimenters

COMPARATOR VOLTMETER

This circuit, although simple, is capable of accurate voltage measurement. The input is applied to the high impedance input of IC1 via the attenuator comprising of R1 to R5 inclusive.

Since this IC is used as a unity gain buffer, the output at pin 6 is equal to the input voltage at pin 3, but at a low impedance. IC2 is connected as a comparator driving a pair of LEDs, D1 and D2.

The inverting input samples a portion of the unknown input voltage, whilst
the non-inverting input is connected to a 1 V reference obtained from the stable voltage across ZD1.

In use VR1 is adjusted till D2 just illuminates. At this point, if the control knob is of the 0-10 calibrated type, the pointer will indicate the input voltage.

For example, with SW1 in position 2, and with a reading of 2 on VR1, the input voltage will be 2 V . With a little practice, the voltage can be read to $\pm 2 \%$, comparable to a moving coil instrument. The input impedance on all ranges is $3.2 \mathrm{M} \Omega$.

This circuit was originally built for use in a negative earth car. A miniature speaker, impedance immaterial, is connected in the emitter circuit of Q1, and acts as a microphone.

Q1 operates in the common base mode and a highly amplified signal appears at its collector. Q2, used in the common emitter mode, provides further amplification and the signal from its collector is fed via the blocking capacitor C3 to the volume control VR1.

Overall de-stabilisation is provided by obtaining Q1's base bias from the emitter of 02 .

The power amplifier is fairly conventional and fitted with a heavy duty output stage to enable a pair of 3Ω P.A. type horns to be driven in parallel. Under these conditions $8 W$ is available. A single 3Ω unit can be driven to $4 W$.

Since the unit is intended for the reproduction of speech a wide bandwidth is not required and C7 is incorporated to roll off the response above 5 kHz . C6 also provides a rapid roll off in the bass region. Q7 and Q9 should be fitted to a $5^{\prime \prime} \times 4^{\prime \prime}$ finned heatsink and the body of Q4 should be thermally in contact with this.

VHF POWER AMPS

(see November '77 ETI) ETI-715B kit 60 watts output on slx metres. suitable for IC502 \& FT620 owners. SSB (linear) or FM (class C) operation, requires $12-14 \mathrm{~V}$ supply BASICKIT- transistor, p.c.b. and components ... $\$ 55$ plus P P

ETI-716 kil- 45 watts output on two metres. sult any 10 W output 2 m transceiver. SSb (linear) or FM (class C) operation, requires 12.14 V supply BASIC KIT - transistor, p.c.b. and components $\$ 42.50$. plus P\&P $\$ 2$ cert. post.

HEATSINKS for above $\$ 3.00$.

VHF POWER TRANSISTORS

A25-12 (25w/6m, for ETI-715A)\$21 A50-12 ($60 \mathrm{w} / 6 \mathrm{~m}$, for ETI-715B). $\$ 37.50$. B40-12 (45w/2m, for ETI-716)...\$24.60. add P\&P \$2 for cert. post.

POWER AMP PCB's
 ETI-715 'universal' power amp. board ETI-716 stripline, double-sided board P\& of 60 c

VHF CONVERTERS

(see ETI Feb. '76)
ETI-707B kit- $28 / 52 \mathrm{MHz}$ converter, uses MOSFETS. sImple to construct and align, can be used from 25 to 85 MHz $\$ 15$.

ETI-707A kit- 144 MHz converter, also uses MOSFETS. simple to construct and align, can be used from 100 to 200 MHz \$19.
plus P\&P \$2 cert. post.
CONVERTER PCB's
ETI-707B (6 m pcb) …................... $\$ 2.50$
ETI-707A (2mpcb) $\$ 2.50$ add P\&P of 60 c

ODDS

MA4060C varactors, 40W................ $\$ 10$ metal clad mica cap,s mica trimmer caps, toroids etc write us.

> AMATEUR COMMUNICATIONS ADVANCEMENTS P.O. Box 57, Rozelle 2039. NSW.

Model WC 100-15 w

Weller Cord SOLDERING

 For the technician and hobbyist

 For the technician and hobbyist this is the cordless to do the job!

 this is the cordless to do the job!}

- Heats up in six seconds
- Developes tip temp of $700^{\circ} \mathrm{F}-370^{\circ} \mathrm{C}$
- Fast Power Charger
- Long Life Nicket Cadmium Batteries
- Built-in work light
- Interchangeable tips
- Fingertip control with Safety-Lock switch

RETAIL STOCKISTS:

C.A. Pearce, Bowen Street, Springhill, QLD 4000

Techniparts, Latrobe Terrace, Paddington, QLD
Hunts Electronics, 23 Russell Street, Toowoomba, QLD
TRADE ENQUIRIES:
Thew and McCann (OLD), Annie \& Wicklow Street, Kangaroo Point, Brisbane, QLD 4169

The dramatic breakthrough in ultimate speaker performance.

Acoustical transparency.

For further enquiries contact Cable Makers Australia Pry. Limited.

The cloth grille has gone. Now with Audiofoam's acoustical fransparency even the most devoted sound fanatic can have his speakers covered. In fact, many of the world's most respected names in quality speakers are already using foam.
the problem with cloth grilles is that they distort and baffle fine sound reproduction.

Exhaustive tests by a leading speaker manufacturer has proven the Audiofoam grille will closely match the performance of a bare speaker. That's what we mean when we say Audiofoam is acoustically transparent, as if there were no speaker grille at all. So when you're ready to buy your new speakers, make sure the grille is genuine Audiofoam.

Head Office - N.S.W. 1 Heathcote Rd., Liverpool Telephone 6000777 Branches throughout Australia.

Clegtronith totaty semvices ADVERTISERS INDEX

READERS' LETTERS

No charge for replies but a foolscap-size stamped addressed envelope must be enclosed. Project queries can only be answered if related to item as published. We cannot assist if project is modified nor if components are otherwise than specified.
We regret we cannot answer readers' enquiries by telephone.

SUBSCRIPTIONS AND BACK ISSUES

ETI subscriptions cost $\$ 17.00$ per year (inc. postagel within Australia. Cost elsewhere is $\$ 17.65$ (inc. postage - surface mail). Airmail rates on application.
Back issues cost $\$ 1.25$ (Sept onwards) each plus post \& packing.
We can supply only the following issues.
1976: May, Nov., Dec.
1977: All issues except Jan. Feb. March.
Photostats are available of any article ever published in ETI. We charge a flat $\$ 1.00$
regardless of page quantity from any one issue of ETI. Thus if the article is in three issues the cost is $\$ 3.00$. Send orders to address below.
Binders $\$ 4.50$ plus 80 c post NSW, $\$ 1.70$ other states.

COPYRIGHT

The contents of Electronics Today International and associated publications is fully protected by the Commonwealth Copyright Act (1968).
Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards. Although any form of reproduction is a breach of copyright, we are not concerned about individuals constructing projects for thelr own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.
Commercial organisations should note that no project or part project described in Electronics Today International or associated publications may be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Lid or from the copyright holders.

LIABILITY

Whilst every effort has been made to ensure that all constructional projects referred to in this edition will operate as indicated efficiently and properly and that all necessary components to manufacture the same will be available, no responsibility whatsoever is accented in respect of the failure for any reason at all of the project to operate effectively or at all whether due to any fault in design or otherwise and no responsibility is accepted for the failure to obtain any component parts in respect of any such project. Further no responsibility is accepted in respect of any injury or damage caused by any fault in the design of any such project as aforesaid.

A MODERN MAGAZINES PUBLICATION

Managing Director:
Secretary:
Publisher:

PRODUCTION

Art Director

Artist:

Production Manager:
Subscriptions \& Circulation:
Project Design:
Acoustical Consultants:

ADVERTISING

Sydney:
Bob Taylor (Manager), Geoff Peischler (NSW Manager), 15 Boundary St, Rushcutters Bay 2011. Tel: 33-4282.

Melbourne: Tom Bray (Manager), Poppe Davis, Suite $24,553 \mathrm{St}$. Kilda Rd, Melbourne. Tel: 51-9836.
Brisbane: Geoff Horne, 199 Jesmond Rd, Indooroopilly, Brisbane, 4068 Tel: 378-3273.
Adelaide: Ad Media Group of SA,

Arnold Quick
Charles O'Leary
Collyn Rivers

Jim Hat tersley
Maree Stanley
Roy Leaght John Oxenford Nebula Electronics Louis A Challis \& Assoc.

37 Fullarton Rd, Kent Town 5067. Tel: 42-4858.
Perth: Aubrey Barker, 38 Mounts Bay Rd, Perth. Tel: H.W. Lincolne Advance Publicity, 281 Elizabeth St, Nth Hobart 7000. Genzo Uchida, Bancho Media Service, 15 Sanyeicho Shintuku-Ku, Tokyo 160. Electronics Today International, 25-27 Oxford St. London W1R2NT. Tel: $01434-1781 / 2$

Electronics Today International is published by Modern Magazines (Holdings Lid, 15 Boundary St, Rushcutters Bay NSW 2011. It is printed (in 1977) by Wilke \& Co, Browns Rd, Clayton, Victoria and distributed by Australian Consolidated Press.

ADVERTISERS INDEX

Ammatuer Comm. Adv. 119
Ampec 100
Ampex 98
Auto Statham 91
A \& R Sonar. 80
Applied Technology 78,79
Ace Radio 77
A.K.G. Vienna. 63
AWA 38
Arena. 12
AMI. O.B.C
Ballarat Elect 109
BKX 99
BWD 64
Cable Makers 120
Classic Radio 106
Computer Components. 77
Convoy. 19
Diggerman 64
Davred 55
Dick Smith. 106
Elektromart 116
Electronic Disposals 103
Edge Electrix 86
Educal 86
Electronic (Distributors) 80
Emac 5
Eclipse Lighting 54
Electrocraft 54
Emona $6,46,118$
Ferguson 118
Farrell 117
Harmon 24
Haco 23
Hagemeyer B.C.
Int. Elect. Unlimited 121
Inst. Comp. Service. 102, 103
Impact 88
Int. Corresp. Schools.. 39
J.R. Components 118
Jaycar
$.84,85$
Jade Computer
Kitsets 66
Linear Elect 64
Leroya 48, 83
Mailman 112
Mode Electronics 22
O.B.C. Imports
8
112
Protector Alarms
Photo Scan. 115
Pioneer. 28, 29
Photimport 10
Ron Chapman
7
Rod Irving 72
Rank $4,20,47,65$
Scalar. 109
Sheridan Elect 104
Semcon. 91
Thew McCann 120
Unique Elect. Sec 16
Vicom 105

[^0]: $\pm 10.3 \%$ of reading +1 digit) $\pm(2 \%$ of reading +10 digits)

[^1]: 8y®at PTY P.0. Box K39 Haymarket 2000, LTD. 405 Sussex Stroet, SYDNEY Tol: 2115077.

[^2]: Australia has a well defined Land Mobile Service, generally such licences have been issued to applicants who can prove a need for such a service. The general style of approach is to licence a master base station with subsidary moblie stations, all on a discrete frequency. This group (or family) of stations are usually constrained to restricting radio contacts within their group. The Taxi company provides a well known example. Usually the contact is limited Base to Mobile, or Mobile to Base (as apposed to Mobile to Mobile contacts).
 The defacto CB service is shared frequencles with base or mobiles in contact with base or mobiles with or without existing relationships (in simpler terms anyone contacts anybody).

 Already, the trend of RB14 is to let moblie stations contact any mobile station without regard to the distance between them, but in the case of base stations - a radlal distance of 32 km is suggested.

 The Citizens Radio Service is not a Land Mobile

